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ABSTRACT

Chakraborty, Prakash PhD, Purdue University, August 2020. Contributions to Rough
Paths and Stochastic PDEs. Major Professors: Kiseop Lee and Samy Tindel.

Probability theory is the study of random phenomena. Many dynamical systems

with random influence, in nature or artificial complex systems, are better modeled

by equations incorporating the intrinsic stochasticity involved. In probability the-

ory, stochastic partial differential equations (SPDEs) generalize partial differential

equations through random force terms and coefficients, while stochastic differential

equations (SDEs) generalize ordinary differential equations. They are both abound

in models involving Brownian motion throughout science, engineering and economics.

However, Brownian motion is just one example of a random noisy input. The goal

of this thesis is to make contributions in the study and applications of stochastic

dynamical systems involving a wider variety of stochastic processes and noises. This

is achieved by considering different models arising out of applications in thermal en-

gineering, population dynamics and mathematical finance.

1. Power-type non-linearities in SDEs with rough noise: We consider a noisy dif-

ferential equation driven by a rough noise that could be a fractional Brownian motion,

a generalization of Brownian motion, while the equation’s coefficient behaves like a

power function [1]. These coefficients are interesting because of their relation to clas-

sical population dynamics models [2], while their analysis is particularly challenging

because of the intrinsic singularities. Two different methods are used to construct so-

lutions: (i) In the one-dimensional case, a well-known transformation is used; (ii) For

multidimensional situations, we find and quantify an improved regularity structure of

the solution as it approaches the origin. Our research is the first successful analysis

of the system described under a truly rough noise context. We find that the system
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is well-defined and yields non-unique solutions. In addition, the solutions possess the

same roughness as that of the noise.

2. Parabolic Anderson model in rough environment : The parabolic Anderson

model [3] is one of the most interesting and challenging SPDEs used to model varied

physical phenomena. Its original motivation involved bound states for electrons in

crystals with impurities. It also provides a model for the growth of magnetic field in

young stars and has an interpretation as a population growth model. The model can

be expressed as a stochastic heat equation with additional multiplicative noise. This

noise is traditionally a generalized derivative of Brownian motion. Here we consider a

one dimensional parabolic Anderson model which is continuous in space and includes

a more general rough noise. See [4] and [5] for previous work in this direction. We first

show that the equation admits a solution and that it is unique under some regularity

assumptions on the initial condition. In addition, we show that it can be represented

using the Feynman-Kac formula, thus providing a connection with the SPDE and a

stochastic process, in this case a Brownian motion. The bulk of our study is devoted

to explore the large time behavior of the solution, and we provide an explicit formula

for the asymptotic behavior of the logarithm of the solution.

3. Heat conduction in semiconductors : Standard heat flow, at a macroscopic

level, is modeled by the random erratic movements of Brownian motions starting at

the source of heat. However, this diffusive nature of heat flow predicted by Brownian

motion is not observed in certain materials (semiconductors, dielectric solids) over

short length and time scales [6, 7]. The thermal transport in these materials is more

akin to a super-diffusive heat flow, and necessitates the need for processes beyond

Brownian motion to capture this heavy tailed behavior. In this context, we propose

the use of a well-defined Lévy process, the so-called relativistic stable process to better

model the observed phenomenon. This process captures the observed heat dynamics

at short length-time scales and is also closely related to the relativistic Schrödinger

operator. In addition, it serves as a good candidate for explaining the usual diffusive

nature of heat flow under large length-time regimes. The goal is to verify our model
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against experimental data, retrieve the best parameters of the process and discuss

their connections to material thermal properties.

4. Bond-pricing under partial information: We study an information asymmetry

problem in a bond market. Especially we derive bond price dynamics of traders

with different levels of information. We allow all information processes as well as

the short rate to have jumps in their sample paths, thus representing more dramatic

movements. In addition we allow the short rate to be modulated by all information

processes in addition to having instantaneous feedbacks from the current levels of

itself. A fully informed trader observes all information which affects the bond price

while a partially informed trader observes only a part of it. We first obtain the

bond price dynamic under the full information, and also derive the bond price of

the partially informed trader using Bayesian filtering method. The key step is to

perform a change of measure so that the dynamic under the new measure becomes

computationally efficient. See [8] for a previous work in this direction.
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1. ROUGH DIFFERENTIAL EQUATIONS WITH POWER TYPE

NONLINEARITIES

A version of this chapter has been reprinted with permission from Stochastic Processes and their Applications Journal.

Citation: https://doi.org/10.1016/j.spa.2018.05.010

1.1 Introduction

This article is concerned with the following Rm-valued integral equation:

yt = a+
d∑
j=1

∫ t

0

σj(ys)dx
j
s, t ∈ [0, T ] (1.1)

where x : [0, T ]→ Rd is a noisy function in the Hölder space Cγ([0, T ];Rd) with γ > 1
3
,

a ∈ Rm is the initial value and σj are vector fields on Rm. We shall resort to rough

path techniques in order to make sense of the noisy integral in equation (1.1), and

we refer to [9, 10] for further details on the rough path theory. Our main goal is to

understand how to define solutions to (1.1) when the coefficients σj behave like power

functions.

Indeed, the rough path theory allows to consider very general noisy signals x as

drivers of equation (1.1), but it requires heavy regularity assumptions on the coeffi-

cients σj in order to get existence and uniqueness of solutions. More specifically, given

the regularity of the coefficient σ, a minimal sufficient regularity of the driving signal

that guarantees existence and uniqueness of the solution is provided in [9]. However,

for differential equations driven by Brownian motion (which means in particular that

x ∈ C 1
2
−) the condition amounts to the coefficient being twice differentiable. This

is obviously far from being optimal with respect to the classical stochastic calculus

approach for Brownian motion.

https://doi.org/10.1016/j.spa.2018.05.010
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One of the current challenges in rough path analysis is thus to improve the regu-

larity conditions on the coefficients of (1.1), and still get solutions to the differential

system at stake. Among the irregular coefficients which can be thought of, power

type functions of the form σj(ξ) = |ξ|κ with κ ∈ (0, 1) play a special role. On the one

hand these coefficients are related to classical population dynamics models (see e.g [2]

for a review), which make them interesting in their own right. On the other hand,

the fact that these coefficients vanish at the origin grant them some special properties

which can be exploited in order to construct Hölder-continuous solutions. Roughly

speaking, equation (1.1) behaves like a noiseless equation when y approaches 0, and

one expects existence of a γ-Hölder solution whenever γ + κ > 1. This heuristic ar-

gument is explained at length in the introduction of [1], and the current contribution

can be seen as the first implementation of such an idea in a genuinely rough context.

Let us now recall some of the results obtained for equations driven by a Brownian

motion B. For power type coefficients, most of the results concern one dimensional

cases of the form:

yt = a+

∫ t

0

σ(ys)dBs, t ∈ [0, T ]. (1.2)

The classical result [11, Theorem 2] involves stochastic integrals in the Itô sense, and

gives existence and uniqueness for σ(ξ) = |ξ|κ with κ ≥ 1
2
. However, the rough path

setting is more related to Stratonovich type integrals in the Brownian case. We thus

refer the interested reader to the comprehensive study performed in [12], which studies

singular stochastic differential equations and classifies them according to the nature

of their solution. Comparing equation (1.2) interpreted in the Stratonovich sense

with the systems analyzed in [12], their results can be read as follows: if σ(ξ) = |ξ|κ

with κ ≥ 1
2
and the solution of (1.2) starts at a non-negative location, then it reaches

zero almost surely. In addition, among solutions with vanishing local time at 0,

there is a non-negative solution which is unique in law. However, in general we do

not have uniqueness. The results we will obtain for a general rough path are not

as sharp, but are at least compatible with the Brownian case. Let us also mention

the works [13, 14], where the authors study existence and uniqueness of solutions in
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the context of stochastic heat equations with space time white noise and power type

coefficients.

As far as power type equations driven by general noisy signals x are concerned, we

are only aware of the article [1] exploring equation (1.1) in the Young case γ > 1/2.

The current contribution has thus to be seen as a generalization of [1], allowing to

cope with γ-Hölder signals x with γ ∈ (1/3, 1/2]. Notice that we have restricted

our analysis to γ > 1/3 in order to keep our computations to a reasonable size.

However, we believe that our techniques can be adopted to obtain similar results

when γ < 1/3, at the price of higher order rough path type expansions. As we

will see, it turns out that when κ + γ > 1 equation (1.1) is well defined and yields a

solution. More specifically, we shall obtain the following theorem in the 1-dimensional

case (see Theorem 1.3.7 for a more precise and general formulation).

Theorem 1.1.1 Consider a 1-dimensional signal x ∈ Cγ, with γ ∈ (1/3, 1/2]. Let σ

be the power function given by σ(ξ) = |ξ|κ and φ be the function defined by φ(ξ) =∫ ξ
0

ds
σ(s)

. Assume γ ∈
(

1
3
, 1

2

]
and κ+ γ > 1. Then the function y = φ−1(x+ φ(a)) is a

solution of the equation

yt = a+

∫ t

0

σ(ys)dxs, t ≥ 0.

In the multidimensional case under a slightly increased regularity assumption on

x, namely x ∈ Cγ+([0, T ]) as well as a roughness assumption (see Hypothesis 1.4.6 for

precise statement), the following theorem holds under a few power type hypotheses

on σ and its derivatives.

Theorem 1.1.2 Consider a d-dimensional signal x ∈ Cγ+ with γ ∈ (1/3, 1/2], giving

raise to a rough path. Assume κ+γ > 1, and that σ(ξ) behaves like a power coefficient

|ξ|κ near the origin. Then there exists a continuous function y defined on [0, T ] and

an instant τ ≤ T , such that one of the following two possibilities holds:

(A) τ = T : y is non-zero on [0, T ], y ∈ Cγ([0, T ];Rm) and y solves equation (1.22)

on [0, T ].
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(B) τ < T : the path y sits in Cγ([0, T ];Rm) and y solves equation (1.22) on [0, T ].

Furthermore, ys 6= 0 on [0, τ), limt→τ yt = 0 and yt = 0 on the interval [τ, T ].

As mentioned above, Theorems 1.1.1 and 1.1.2 are the first existence results for

power type coefficients in a truly rough context. As in [1], their proofs mainly hinge on

a quantification of the regularity gain of the solution y when it approaches the origin.

We should mention however that this quantification requires a significant amount of

effort in the rough case. Indeed we resort to some discrete type expansions, whose

analysis is based on precise estimates inspired by the numerical analysis of rough

differential equations (see e.g. [15]).

Having stated the key results, we now describe the outline of this article. In

Section 1.2, a short account of the necessary notions of rough path theory is provided.

Section 1.3.1 deals with a few hypotheses we assume on the coefficient σ, all of which

are satisfied by the power type coefficient |ξ|κ. Section 1.3.2 proves the existence of

a solution in the one-dimensional case. In Section 1.4 we proceed by considering a

few stopping times and quantify the regularity gain mentioned above of the solution

when it hits 0. We achieve this through discretization techniques as employed in

Theorem 1.4.1. Finally we show Hölder continuity of our solution.

Notations. The following notations are used in this article:

1. For an arbitrary real T > 0, let Sk([0, T ]) be the kth order simplex defined by

Sk([0, T ]) = {(s1, . . . , sk) : 0 ≤ s1 ≤ · · · ≤ sk ≤ T}.

2. For quantities a and b, let a . b denote the existence of a constant c such that

a ≤ cb.

3. For an element z in the functional spaceR, letN [z;R] denote the corresponding

norm of z in R.



5

1.2 Rough Path Notions

The following is a short account of the rough path notions used in this article,

mostly taken from [10]. We review the notion of controlled process as well as their inte-

grals with respect to a rough path. We shall also give a version of an Itô-Stratonovich

change of variable formula under reduced regularity condition.

1.2.1 Increments

For a vector space V and an integer k ≥ 1, let Ck(V ) be the set of functions

g : Sk([0, T ]) → V such that gt1···tk = 0 whenever ti = ti+1 for some i ≤ k − 1. Such

a function will be called a (k − 1)-increment, and we set C∗(V ) = ∪k≥1Ck(V ). Then

the operator δ : Ck(V )→ Ck+1(V ) is defined as follows

δgt1···tk+1
=

k+1∑
i=1

(−1)k−igt1···t̂i···tk+1
(1.3)

where t̂i means that this particular argument is omitted. It is easily verified that

δδ = 0 when considered as an operator from Ck(V ) to Ck+2(V ).

The size of these k-increments are measured by Hölder norms defined in the following

way: for f ∈ C2(V ) and µ > 0 let

‖f‖µ = sup
(s,t)∈S2([0,T ])

‖fst‖
|t− s|µ

and Cµ2 (V ) = {f ∈ C2(V ); ‖f‖µ <∞} (1.4)

The usual Hölder space Cµ1 (V ) will be determined in the following way: for a contin-

uous function g ∈ C1(V ), we simply set

‖g‖µ = ‖δg‖µ

and we will say that g ∈ Cµ1 (V ) iff ‖g‖µ is finite.

Remark 1.2.1 Notice that ‖ · ‖µ is only a semi-norm on C1(V ), but we will generally

work on spaces for which the initial value of the function is fixed.
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We shall also need to measure the regularity of increments in C3(V ). To this aim,

similarly to (1.4), we introduce the following norm for h ∈ C3(V ):

‖h‖µ = sup
(s,u,t)∈S3([0,T ])

|hsut|
|t− s|µ

. (1.5)

Then the µ-Hölder continuous increments in C3(V ) are defined as:

Cµ3 (V ) := {h ∈ C3(V ); ‖h‖µ <∞}.

Notice that the ratio in (1.5) could have been written as |hsut|
|t−u|µ1 |u−s|µ2 with µ1+µ2 = µ,

in order to stress the dependence on u of our increment h. However, expression (1.5)

is simpler and captures the regularities we need, since we are working on the simplex

S3.

The building block of the rough path theory is the so-called sewing map lemma.

We recall this fundamental result here for further use.

Proposition 1.2.1 Let h ∈ Cµ3 (V ) for µ > 1 be such that δh = 0. Then there exists a

unique g = Λ(h) ∈ Cµ2 (V ) such that δg = h. Furthermore for such an h, the following

relations hold true:

δΛ(h) = h and ‖Λh‖µ ≤
1

2µ − 2
‖h‖µ.

1.2.2 Elementary computations in C2 and C3

Consider V = R, and let Cγk for Cγk (R). Then (C∗, δ) can be endowed with the

following product: for g ∈ Cn and h ∈ Cm we let gh be the element of Cm+n−1 defined

by

(gh)t1,...,tm+n−1 = gt1,··· ,tnhtn,···tm+n−1 , (t1, . . . , tm+n−1) ∈ Sm+n−1([0, T ]).

We now label a rule for discrete differentiation of products for further use throughout

the article. Its proof is an elementary application of the definition (1.3), ans is omitted

for sake of conciseness.
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Proposition 1.2.2 The following rule holds true: Let g ∈ C1 and h ∈ C2. Then

gh ∈ C2 and

δ(gh) = δg h− g δh.

The iterated integrals of smooth functions on [0, T ] are particular cases of elements of

C2, which will be of interest. Specifically, for smooth real-valued functions f and g, let

us denote
∫
fdg by I(fdg) and consider it as an element of C2: for (s, t) ∈ S2 ([0, T ])

we set

Ist(fdg) =

(∫
fdg

)
st

=

∫ t

s

fudgu.

1.2.3 Weakly controlled processes

One of our basic assumptions on the driving process x of equation (1.1) is that it

gives raise to a geometric rough path. This assumption can be summarized as follows.

Hypothesis 1.2.2 The path x : [0, T ]→ Rd belongs to the Hölder space Cγ([0, T ];Rd)

with γ ∈
(

1
3
, 1

2

]
and x0 = 0. In addition x admits a Lévy area above itself, that is,

there exists a two index map x2 : S2 ([0, T ]) → Rd,d which belongs to C2γ
2 (Rd,d) and

such that

δx2;ij
sut = δxisu ⊗ δx

j
ut, and x2;ij

st + x2;ji
st = δxist ⊗ δx

j
st.

The γ-Hölder norm of x is denoted by:

‖x‖γ = N (x; Cγ1 ([0, T ],Rd)) +N (x2; C2γ
2 ([0, T ],Rd,d)).

Preparing the ground for the upcoming change of variable formula in Proposition 1.2.5,

we now define the notion weakly controlled process as a slight variation of the usual

one.

Definition 1.2.1 Let z be a process in Cγ1 (Rn) with 1/3 < γ ≤ 1/2 and consider

η > γ. We say that z is weakly controlled by x with a remainder of order η if

δz ∈ Cγ2 (Rn) can be decomposed into

δzi = ζ ii1δxi1 + ri, i.e. δzist = ζ ii1s δxi1st + rist
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for all (s, t) ∈ S2 ([0, T ]). In the previous formula we assume ζ ∈ Cη−γ1 (Rn,d) and r is

a more regular remainder such that r ∈ Cη2 (Rn). The space of weakly controlled paths

will be denoted by Qγ,η(Rn) and a process z ∈ Qγ,η(Rn) can be considered as a couple

(z, ζ). The natural semi-norm on Qγ,η(Rn) is given by

N [z;Qγ,η(Rn)] = N [z; Cγ1 (Rn)] +N [ζ; C∞1 (Rn,d)] +N [ζ; Cη−γ1 (Rn,d)] +N [r; Cη2 (Rn)].

Let Lipn+λ denote the space of n-times differential functions with λ−Hölder nth

derivative, endowed with the norm:

‖f‖n,λ = ‖f‖∞ +
n∑
k=1

‖∂kf‖∞ + ‖∂nf‖λ.

The following gives a composition rule which asserts that our rough path x composed

with a Lip1+λ function is weakly controlled.

Proposition 1.2.3 Let f : Rd → Rn be a Lip1+λ function and set z = f(x). Then

z ∈ Qγ,σ(Rn) with σ = γ(λ + 1), where Qγ,σ(Rn) is introduced in Definition 1.2.1,

and it can be decomposed into δz = ζδx+ r, with

ζ ii1 = ∂i1fi(x) and ri = δfi(x)− ∂i1fi(x)δxi1st.

Furthermore, the norm of z as a controlled process can be bounded as follows:

N [z;Qγ,σ] ≤ K‖f‖1,λ(1 +N 1+λ[x; Cγ1 (Rd)]),

where K is a positive constant.

Proof The algebraic part of the assertion is straightforward. Just write

δzst = f(xt)− f(xs) = ∂i1f(xs)δx
i1
st + rst

The estimate ofN [z;Qγ,σ] is obtained from the estimates ofN [z; Cγ1 (Rn)],N [ζ; C∞1 (Rn,d)],

N [ζ; Cσ−γ1 (Rn,d)] and N [r; Cσ2 (Rn)]. The details are similar to [10, Appendix] and left

to the patient reader.
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More generally, we also need to specify the composition of a controlled process with

a Lip1+λ function. The proof of this proposition is similar to Proposition 1.2.3 and

omitted for sake of conciseness.

Proposition 1.2.4 Let z ∈ Qγ,σ(Rn) with decomposition δz = ζ̃δx+ r̃ and g : Rn →

Rm be a Lip1+λ function. Set w = g(x). Then w ∈ Qγ,σ(Rm) with σ = γ(λ + 1) and

it can be decomposed into δw = ζδx+ r, with

ζ ii1 = ∂i2fi(x)ζ̃ i2,i1 .

The class of weakly controlled paths provides a natural and basic set of functions

which can be integrated with respect to a rough path. The basic proposition in this

direction, whose proof can be found in [10], is summarized below.

Theorem 1.2.3 For 1/3 < γ ≤ 1/2, let x be a process satisfying Hypothesis 1.2.2.

Furthermore let m ∈ Qγ,η(Rd) with η + γ > 1, whose decomposition is given by

m0 = b ∈ Rd and

δmi = µii1δxi1 + ri where µ ∈ Cη−γ1 (Rd,d), r ∈ Cη2 (Rn).

Define z by z0 = a ∈ Rd and

δz = miδxi + µii1x2;i1i − Λ(riδxi + δµii1x2;i1i).

Finally, set

Ist(mdx) =

∫ t

s

〈mu, dxu〉Rd := δzst.

Then this integral extends Young integration and coincides with the Riemann-Stieltjes

integral of m with respect to x whenever these two functions are smooth. Furthermore,

Ist(mdx) is the limit of modified Riemann sums:

Ist(mdx) = lim
|Πst|→0

n−1∑
q=0

[mi
tqδx

i
tqtq+1

+ µii1tq x
2;i1i
tqtq+1

],

for any 0 ≤ s < t ≤ T , where the limit is taken over all partitions Πst = {s =

t0, . . . , tn = t} of [s, t], as the mesh of the partition goes to zero.
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1.2.4 Itô-Stratonovich formula

We now state a change of variable formula for a function g(x) of a rough path,

under minimal assumptions on the regularity of g. To the best of our knowledge, this

proposition cannot be found in literature, and therefore a short and elementary proof

is included. The techniques of this proof will prove to be useful for the study of our

system (1.1) in the one-dimensional case.

Proposition 1.2.5 Let x satisfy Hypothesis 1.2.2. Let g be a Lip2+λ function such

that (λ+ 2)γ > 1. Then

[δ(g(x))]st = Ist(∇g(x)dx) =

∫ t

s

〈∇g(xu), dxu〉Rd , (1.6)

where the integral above has to be understood in the sense of Theorem 1.2.3.

Proof Consider a partition Πst = {s = t0 < · · · tn = t} of [s, t]. The following

identity holds trivially:

g(xt)− g(xs) =
n−1∑
q=0

[
g(xtq+1)− g(xtq)

]
=

n−1∑
q=0

[∑
i

∂ig(xtq)δx
i
tqtq+1

+
1

2

∑
i1,i2

∂2
i1i2
g(xtq)δx

i1
tqtq+1

δxi2tqtq+1
+ rtqtq+1

]
(1.7)

where

rtqtq+1 = g(tq+1)− g(tq)−
∑
i

∂ig(xtq)δx
i
tqtq+1

− 1

2

∑
i1,i2

∂2
i1i2
g(xtq)δx

i1
tqtq+1

δxi2tqtq+1
.

Furthermore, an elementary Taylor type argument shows that for all i1, i2 there exists

an element ξqi1i2 of [xtq , xtq+1 ] such that

rtqtq+1 =
1

2

∑
i1,i2

∂2
i1i2
g(ξqi1i2)δx

i1
tqtq+1

δxi2tqtq+1
− 1

2

∑
i1,i2

∂2
i1i2
g(xtq)δx

i1
tqtq+1

δxi2tqtq+1

=
1

2

∑
i1,i2

(
∂2
i1i2
g(ξqi1i2)− ∂

2
i1i2
g(xtq)

)
δxi1tqtq+1

δxi2tqtq+1
.
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We now invoke the fact that g ∈ Lip2+λ in order to get

∣∣rtqtq+1

∣∣ ≤ C|tq − tq+1|(2+λ)γ,

where C is a constant depending on g and x. Thus, since (λ + 2)γ > 1, it is easily

seen that

lim
|Πst|→0

n−1∑
q=0

rtqtq+1 = 0. (1.8)

In addition, using Hypothesis 1.2.2 and continuity of the partial derivatives, we can

write
1

2

∑
i1,i2

∂2
i1i2
g(xtq)δx

i1
tqtq+1

δxi2tqtq+1
=
∑
i1,i2

∂2
i1i2
g(xtq)x

2;i1i2
tqtq+1

. (1.9)

Plugging (1.8) and (1.9) into (1.7) we get

g(xt)− g(xs) = lim
|Πst|→0

n−1∑
q=0

∂ig(xtq)δx
i
tqtq+1

+
n−1∑
q=0

∂2
i1i2
g(xtq)x

2;i1i2
tqtq+1

, (1.10)

for all (s, t) ∈ S2 [0, T ]).

On the other hand looking at the decomposition of ∇g(x) as a weakly controlled

process and using Proposition 1.2.3 we obtain:

δ [∇g(x)]ist = δ∂ig(x)st = ∂2
i1i
g(xs)δx

i1
st +Ri

st,

where R lies in C(1+λ)γ
2 . Then using the Riemann sum representation (1.2.3) of rough

integrals, we have

Ist(∇g(x)dx) = lim
|Πst|→0

[
n−1∑
q=0

∂ig(xtq)δx
i
tqtq+1

+
n−1∑
q=0

∂2
i1i2
g(xtq)x

2;i1i2
tqtq+1

]
.

Comparing the above formula with (1.10) proves the result.

1.3 Differential equations: setting and one-dimensional case

In this section we will give the general formulation and assumptions for equa-

tion (1.1). Then we state an existence result in dimension 1, which follows quickly

from our preliminary considerations in Section 1.2.
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1.3.1 Setting

Recall that we are considering the following rough differential equation:

yt = a+
d∑
j=1

∫ t

0

σj(ys)dx
j
s, (1.11)

where x satisfies Hypothesis 1.2.2 and σ1, . . . , σd are vector fields on Rm. In this

section we will specify some general assumptions on the coefficient σ, which will

prevail for the remainder of the article.

Let us start with a regularity assumption on σ:

Hypothesis 1.3.1 . Let κ > 0 be a constant such that γ + κ > 1, where γ is

introduced in Hypothesis 1.2.2. We assume that σ(0) = 0, and that the following two

conditions are valid:

(i) For all ξ1, ξ2 ∈ Rm we have the following:

|σ(ξ1)− σ(ξ2)| . |ξ1 − ξ2|κ, (1.12)

(ii) Consider the function Ψ = Dσ · σ defined on Rm. For all ξ1, ξ2 ∈ Rm such that
1
r
≤ |ξ1|
|ξ2| ≤ r for a fixed r > 1, there exists a constant NΨ (depending on r, m

and κ) satisfying:

|Ψ(ξ1)−Ψ(ξ2)| ≤ NΨ

∣∣∣∣ 1

|ξ1|2(1−κ)
+

1

|ξ2|2(1−κ)

∣∣∣∣ |ξ1 − ξ2| , (1.13)

In addition to above, we assume that outside of a neighborhood of 0, σ behaves like a

Lipploc function with p > 1
γ
. In other words, σ is bounded with bounded two derivatives

and the second derivative is locally Hölder continuous with order larger than ( 1
γ
− 2).

We also need a more specific assumption in dimension 1:

Hypothesis 1.3.2 Whenever m =d = 1, assume σ is positive on R+ and that φ

defined by φ(ξ) =
∫ ξ

0
ds
σ(s)

exists. Also consider κ > 0 as in Hypothesis 1.3.1. Then we

assume for all ξ1, ξ2 ∈ R we have

|F (ξ1)− F (ξ2)| . |ξ1 − ξ2|λ,

where F stands for the function (Dσ · σ) ◦ φ−1 and λ = 2κ−1
1−κ ∧ 1.
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We now give a typical example of a coefficient σ satisfying our standing assumptions.

Proposition 1.3.1 Let χ : R→ R+ be a smooth cutoff function such that χ(z) = 1 if

|z| ≤ M
2

and χ(z) = 0 if |z| ≥ M , for a given M > 0. Assume that σ = (σ1, . . . , σm)

where each σi : Rm → R is defined by the κth power of the Euclidean norm: σi(ξ) =

(
∑

j(ξ
j)2)

κ/2
χ(|ξ|). Then inequality (1.13) holds true for all ξ1, ξ2 ∈ Rm such that

1
r
≤ |ξ1|
|ξ2| ≤ r.

Proof We only handle inequality (1.13) when ξ1, ξ2 are close to 0, which is the

relevant case in our situation. We can thus assume that each σi is of the form

σi(ξ) = |ξ|κ in the sequel. For notational sake we will set σ̃(ξ) = |ξ|κ in the remainder

of the proof.

Observe that Ψ : Rm → Rm defined by Ψ(ξ) = (Dσ · σ)(ξ) satisfies Ψi(ξ) =∑
k σ

k(ξ)∂kσ
i(ξ). Consequently,

∇Ψij(ξ) = ∂jΨ
i(ξ) = ∂j

[
m∑
k=1

∂kσ
i(ξ)σk(ξ)

]

=
m∑
k=1

[(
∂j∂kσ

i(ξ)
)
σk(ξ) +

(
∂kσ

i(ξ)
) (
∂jσ

k(ξ)
)]

(1.14)

The partial derivatives above, when evaluated for σk(ξ) = σ̃(ξ) = |ξ|κ = (
∑
ξi

2
)κ/2,

turn out to be as follows:

∂kσ̃(ξ) = κ|ξ|κ−2ξk and ∂j∂kσ̃(ξ) = κ(κ− 2)|ξ|κ−4ξjξk + κ|ξ|κ−21(j=k).

Plugging these partial derivatives in the formula obtained in (1.14), we get

∇Ψij(ξ) = 2κ(κ− 1)|ξ|2κ−4ξj(ξ · 1) + κ|ξ|2(κ−1), (1.15)

where ξ · 1 denotes the inner product of ξ and the vector 1 ∈ Rm. Now we use the

multivariate mean value theorem in integral form given by:

Ψ(ξ1)−Ψ(ξ2) =

∫ 1

0

∇Ψ (ξt) · (ξ1 − ξ2) dt,
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where we have set ξt = (1− t)ξ2 + tξ1 for t ∈ [0, 1]. From (1.15) we thus obtain

Ψi(ξ1)−Ψi(ξ2) =
m∑
j=1

∫ 1

0

(
2κ(κ− 1)|ξt|2κ−4ξjt (ξt · 1) + κ|ξt|2(κ−1)

) (
ξj1 − ξ

j
2

)
dt,

Assume wlog that |ξ1| ≤ |ξ2|, which implies by our assumption on ξ1, ξ2 that 1 ≤
|ξ2|
|ξ1| ≤ r. Now observe

|ξ1|2(1−κ)
∣∣Ψi(ξ1)−Ψi(ξ2)

∣∣
= |ξ1|2(1−κ)

∣∣∣∣∣
m∑
j=1

∫ 1

0

(
2κ(κ− 1)|ξt|2κ−4ξjt (ξt · 1) + κ|ξt|2(κ−1)

) (
ξj1 − ξ

j
2

)
dt

∣∣∣∣∣
≤

m∑
j=1

∫ 1

0

(
2κ(κ− 1)

∣∣∣∣ ξt|ξ1|

∣∣∣∣2κ−4
∣∣∣∣∣ ξjt|ξ1|

∣∣∣∣∣
∣∣∣∣(ξt · 1)

|ξ1|

∣∣∣∣+ κ

∣∣∣∣ ξt|ξ1|

∣∣∣∣2(κ−1)
)∣∣ξj1 − ξj2∣∣ dt. (1.16)

Since ξt
|ξ1| = (1− t) ξ2

|ξ1| + t ξ1|ξ1| and 1 ≤ |ξ2|
|ξ1| ≤ r we must have 1 ≤ | ξt|ξ1| | ≤ r. Using this

information in (1.16) we get

|ξ1|2(1−κ)
∣∣Ψi(ξ1)−Ψi(ξ2)

∣∣ . m∑
j=1

|ξ1 − ξ2| . |ξ1 − ξ2|.

This yields (1.13).

Remark 1.3.3 A sufficient condition for σ to satisfy Hypothesis 1.3.1 is the bound-

edness of |ξ1|2(1−κ)|∇Ψ(ξ̃)| for any ξ̃ such that 1 ≤ |ξ̃|
|ξ1| ≤ r.

Remark 1.3.4 Let χ be defined as in Proposition 1.3.1. It can be easily shown that

perturbations of the power function, e.g. σ(ξ) = (σ1(ξ), . . . , σm(ξ)) where each σj is of

the form σj(ξ) = (|ξ|κ + sin(|ξ|κ))χ(ξ), also fall under the purvue of Hypothesis 1.3.1.

Finally we add some assumptions on the first and second order derivatives of σ,

which will be mainly invoked in the proof of Proposition 1.4.1.

Hypothesis 1.3.5 The derivatives of σ satisfy the following: there exists a `0 > 0

such that for all ξ with 0 < |ξ| ≤ `0 we have

|Dσ(ξ)| . |ξ|κ−1 and |D2σ(ξ)| . |ξ|κ−2. (1.17)
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Remark 1.3.6 Observe that Hypotheses 1.3.1 and 1.3.5 imply: there exists a `0 > 0

such that for all ξ with 0 < |ξ| ≤ `0 we have

|Dσ · σ(ξ)| . |ξ|2κ−1. (1.18)

In addition, the reader can check that (1.17) and (1.18) is satisfied for σ as in Propo-

sition 1.3.1.

Definition 1.3.1 Let Nα,F be defined as:

Nα,F := sup

{
|F (ξ)|
|ξ|α

; |ξ| 6= 0

}
, (1.19)

where α = κ if F = σ and α = 2κ− 1 if F = Ψ = (Dσ · σ).

1.3.2 One-dimensional differential equations

In the one-dimensional case, similarly to what is done for more regular coefficients

(See [16]), one can prove that a suitable function of x solves equation (1.11). This

stems from an application of our extension of Itô’s formula (see Proposition 1.2.5)

and is obtained in the following theorem.

Theorem 1.3.7 Consider equation (1.11) with m = d = 1, let σ : R → R and

assume Hypothesis 1.3.2 to hold true. Assume γ ∈
(

1
3
, 1

2

]
and κ + γ > 1. Let φ be

the function defined in Hypothesis 1.3.2. Then the function y = φ−1(x + φ(a)) is a

solution of the equation

yt = a+

∫ t

0

σ(ys)dxs, t ≥ 0. (1.20)

Proof Let ψ(ξ) = φ−1(ξ + φ(a)). Due to the definition of φ, some elementary

computations show that ψ′(ξ) = 1
φ′(φ−1(ξ+φ(a)))

= σ(ψ(ξ)) and thus we are reduced to

show

δψ(x)st =

∫ t

s

ψ′(xu)dxu. (1.21)

To this aim, observe that the second derivative of ψ satisfies

ψ′′(ξ) = Dσ(ψ(ξ))ψ′(ξ) = (Dσ · σ)(ψ(ξ)).
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Using Hypothesis 1.3.2, ψ′′ is thus λ−Hölder continuous where λ = 2κ−1
1−κ ∧ 1, that is,

ψ is a Lip2+λ function. Moreover, since κ+γ > 1 and γ ∈
(

1
3
, 1

2

]
we find (λ+2)γ > 1.

Consequently we can invoke Proposition 1.2.5 and hence we obtain directly (1.21).

The result is now proved.

Remark 1.3.8 It is readily checked that the power coefficient σ(ξ) = |ξ|κ satisfies

the conditions of Theorem 1.3.7, with a function F defined by F (ξ) = cκ|ξ|λsgn(ξ)

and where the exponent λ is given by λ = 2κ−1
1−κ .

Remark 1.3.9 If a = 0, we do not have uniqueness of solution since in addition to

the solution defined above, y ≡ 0 solves equation (1.20). This is not in contradiction

to the results stated in [12] where the authors deal with equations with non-vanishing

coefficients. In our case, σ(0) = 0.

Remark 1.3.10 As the reader might see, Theorem 1.3.7 is an easy consequence of

the change of variable formula (1.6). This is in contrast with the corresponding proof

in [1], which relied on a negative moment estimate and non trivial extensions of

Young’s integral in the fractional calculus framework.

1.4 Multidimensional Differential Equations

In the multidimensional case, our strategy in order to construct a solution is based

(as in [1]) on quantifying an additional smoothness of the solution y as it approaches

the origin. However, our computations here are more involved than in [1], due to the

fact that we are handling a rough process x.
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1.4.1 Prelude

In this section, we will introduce a sequence of stopping times, similarly to [1].

We assume that each component σj : Rm → Rm satisfies Hypothesis 1.3.1 and we

consider the following equation for a fixed a ∈ Rm \ {0}:

yt = a+
d∑
j=1

∫ t

0

σj(yu) dx
j
u, t ∈ [0, T ], (1.22)

where T > 0 is a fixed arbitrary horizon and x = (x,x2) is a γ-rough path above x,

as given in Hypothesis 1.2.2.

Our considerations start from the fact that, as long as we are away from 0, we can

solve equation (1.22) as a rough path equation with regular coefficients. In particular

the following can be shown under the above set-up. See [9].

Theorem 1.4.1 Assume Hypothesis 1.3.1 is fulfilled. Then there exists a continuous

function y defined on [0, T ] and an instant τ ≤ T , such that one of the following two

possibilities holds:

(A) τ = T , y is non-zero on [0, T ], y ∈ Cγ([0, T ];Rm) and y solves equation (1.22) on

[0, T ], where the integrals
∫
σj(yu) dx

j
u are understood in the rough path sense.

(B) We have τ < T . Then for any t < τ , the path y sits in Cγ([0, t];Rm) and y

solves equation (1.22) on [0, t]. Furthermore, ys 6= 0 on [0, τ), limt→τ yt = 0 and

yt = 0 on the interval [τ, T ].

Option (A) above leads to classical solutions of equation (1.22). In the rest of this

section, we will assume (B), that is the function y given by Theorem 1.4.1 vanishes

in the interval [τ, T ]. The aim of this section is to prove the following:

• The path y is globally γ-Hölder continuous on [0, T ].

To achieve this we will require some additional hypotheses on x (See Hypothesis 1.4.4

below).
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Quantification of the increased smoothness of the solution as it approaches the

origin would require a partition of the interval (0, τ ] as follows. Let aj = 2−j and

consider the following decomposition of R+:

R+ =
∞⋃

j=−1

Ij,

where

I−1 = [1,∞) , and Iq = [aq+1, aq), q ≥ 0.

Also consider:

J−1 = [3/4,∞) , and Jq =

[
aq+2 + aq+1

2
,
aq+1 + aq

2

)
=: [âq+1, âq) , q ≥ 0.

Observe that owing to the definition of aq, we have âq = 3
2q+2 . Let q0 be such that

a ∈ Iq0 . Define λ0 = 0 and

τ0 = inf{t ≥ 0 : |yt| 6∈ Iq0}

By definition, yτ0 ∈ Jq̂0 with q̂0 ∈ {q0, q0 − 1}. Now define

λ1 = inf{t ≥ τ0 : |yt| 6∈ Jq̂0}

Thus we get a sequence of stopping times λ0 < τ0 < · · · < λk < τk, such that

yt ∈
[
b1

2qk
,
b2

2qk

]
, for t ∈ [λk, τk] ∪ [τk, λk+1], (1.23)

where b1 = 3
8
, b2 = 3

4
and qk+1 = qk + `, with ` ∈ {−1, 0, 1}, for qk ≥ 1. If qk = 0 or

qk = 1, then we can choose the upper bound b2 as b2 =∞.

Remark 1.4.2 Since this problem relies heavily on radial variables in Rm, we al-

leviate vectorial notations and carry out the computations below for m = d = 1.

Generalizations to higher dimensions are straight forward.
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1.4.2 Regularity estimates

Let π = {0 = t0 < t1 < · · · < tn−1 < tn = T} be a partition of the interval

[0, T ] for n ∈ N. Denote by C2(π) the collection of functions R on π such that

Rtktk+1
= 0 for k = 0, 1, . . . n− 1. We now introduce some operators on discrete time

increments, which are similar to those in Section 1.2. First, we define the operator

δ : C2(π)→ C3(π) by

δRsut = Rst −Rsu −Rut for s, u, t ∈ π (1.24)

The Hölder seminorms we will consider are similar to those introduced in (1.4) and

(1.5). Namely, for R ∈ C2(π) we set

‖R‖µ = sup
u,v∈π

Ruv

|u− v|µ
and ‖δR‖µ = sup

s,u,t∈π

|δRsut|
|t− s|µ

We now state a sewing lemma for discrete increments which is similar to [15, Lemma

2.5]. Its proof is included here for completeness.

Lemma 1.4.3 For µ > 1 and R ∈ C2(π), we have

‖R‖µ ≤ Kµ‖δR‖µ,

where Kµ = 2µ
∑∞

l=1
1
lµ

Proof Consider some fixed ti, tj ∈ π. Since R ∈ C2(π) we have
∑j−1

k=i Rtktk+1
= 0.

Hence, for an arbitrary sequence of partitions {πl; 1 ≤ l ≤ j− i− 1}, where each πl is

a subset of π∩ [ti, tj] with l+ 1 elements, we can write (thanks to a trivial telescoping

sum argument):

Rtitj = Rtitj −
j−1∑
k=i

Rtktk+1
=

j−i−1∑
l=1

(Rπl −Rπl+1), (1.25)

where we have set Rπl =
∑l−1

k=0 Rtlkt
l
k+1

. We now specify the choice of partitions πl

recursively:
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Define πj−i = π ∩ [ti, tj]. Given a partition πl with l+ 1 elements, l = 2, . . . , j − i, we

can find tlkl ∈ πl \ {ti, tj} such that

tlkl+1 − tlkl−1 ≤
2(tj − ti)

l
. (1.26)

Denote by πl−1 the partition πl \ {tlkl}. Owing to (1.24), we obtain:

|Rπl−1 −Rπl | =
∣∣∣δRtlkl−1t

l
kl
tlkl+1

∣∣∣ ≤ ‖δR‖µ(tlkl+1 − tlkl−1)µ ≤ ‖δR‖µ
2µ(tj − ti)µ

lµ
,

where the second inequality follows from (1.26). Now plugging the above estimate in

(1.25) we get

∣∣Rtitj

∣∣ ≤ 2µ(tj − ti)µ‖δR‖µ
j−i−1∑
l=1

1

(l + 1)µ
≤ Kµ(tj − ti)µ‖δR‖µ.

By dividing both sides by (ti − tj)µ and taking supremum over ti, tj ∈ π, we obtain

the desired estimate.

Next we define an increment R which is obtained as a remainder in rough path type

expansions.

Definition 1.4.1 Let y and τ be defined as in Proposition 1.4.1. For (s, t) ∈ S2 ([0, τ ]),

let Rst be defined by the following decomposition:

δyst = σ(ys)δxst + (Dσ · σ)(ys)x
2
st +Rst. (1.27)

The theorem below quantifies the regularity improvement for the solution y of

equation (1.22) as it gets closer to 0.

Proposition 1.4.1 Consider a rough path x satisfying Hypothesis 1.2.2. Assume σ

and (Dσ ·σ) follow Hypothesis 1.3.1. Also assume Hypothesis 1.3.5 holds. Then there

exist constants c0,x, c1,x and c2,x such that for s, t ∈ [λk, λk+1) satisfying |t − s| ≤

c0,x2
−αqk , with α := 1−κ

γ
, we have the following bounds:

N [y; Cγ1 ([s, t])] ≤ c1,x2
−κqk (1.28)

and

N
[
R; C3γ

2 ([s, t])
]
≤ c2,x2

(2−3κ)qk . (1.29)
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Proof We divide this proof in several steps.

Step 1: Setting. Consider the dyadic partition on [s, t]. Specifically, we set

[[s, t]] =

{
ti : ti = s+

i(t− s)
2n

; i = 0, · · · , 2n
}

for all n ∈ N. Define yn on [[s, t]] by setting yns = ys, and

δyntiti+1
= σ(ynti)δxtiti+1

+ (Dσ · σ)(ynti)x
2
titi+1

We also introduce a discrete type remainder Rn, defined for all (u, v) ∈ S2 ([[s, t]]), as

follows:

Rn
uv = δynuv − σ(ynsu)δxuv − (Dσ · σ)(ynu)x2

uv

Since γ > 1/3 and σ is sufficiently smooth away from zero, a second order expansion

argument (see [9, Section 10.3]) shows that δynst converges to δyst.

Step 2: Induction hypothesis. Recall that we are working in [λk, λk+1). Hence, using

(1.23) we can choose n large enough so that

ynu ∈
[ a1

2qk
,
a2

2qk

]
for u ∈ [[s, t]], (1.30)

where a1 = 2
8
and a2 = 7

8
. In addition, using Hypothesis 1.3.1, (1.19) and (1.30)

above, we also have

|σ(ynu)| ≤ Nκ,σ|ynu |
κ ≤ Nκ,σ

( a2

2qk

)κ
(1.31)

as well as:

|(Dσ · σ)(ynu)| ≤ N2κ−1,Ψ|ynu |
2κ−1 ≤ N2κ−1,Ψ

( a2

2qk

)2κ−1

. (1.32)

We now assume that s and t are close enough, namely for a given constant c0 > 0,

we have

|t− s| ≤ c02−αqk = T0. (1.33)

We will proceed by induction on the points of the partition ti. That is, for q ≤ 2n− 1

we assume that Rn satisfies the following relation:

N [Rn; C3γ
2 [[s, tq]]] ≤ c22(2−3κ)qk (1.34)



22

where c2 is a constant to be fixed later. We will try to propagate this induction

assumption to [[s, tq+1]].

Step 3: A priori bounds on yn. For (u, v) ∈ S2 ([[s, tq]]) we have:

δynuv = σ(ynu)δxuv + (Dσ · σ)(ynu)x2
uv +Rn

uv. (1.35)

Hence, using (1.31), (1.32) and our induction assumption (1.34) we get:

N [yn; Cγ1 [[s, tq]]] ≤ Nκ,σ
( a2

2qk

)κ
‖x‖γ +N2κ−1,Ψ

( a2

2qk

)2κ−1

‖x‖γ|tq − s|γ

+N [Rn; C3γ
2 [[s, t]]]|tq − s|2γ

Since |tq − s| ≤ T0 = c02−αqk , we thus have

N [yn; Cγ1 [[s, tq]]] ≤ Nκ,σ
( a2

2qk

)κ
‖x‖γ +N2κ−1,Ψ

( a2

2qk

)2κ−1

‖x‖γ
(
c02−αqk

)γ
+N [Rn; C3γ

2 [[s, t]]]
(
c02−αqk

)2γ
.

Therefore taking into account the fact that α =
1− κ
γ

and our assumption (1.34), we

obtain:

N [yn; Cγ1 [[s, tq]]] ≤ c̃ 2−κqk (1.36)

where the constant c̃ is given by:

c̃ = Nκ,σaκ2‖x‖γ +N2κ−1,Ψa
2κ−1
2 cγ0‖x‖γ + c2c

2γ
0 . (1.37)

Step 4: Induction propagation. Recall that Rn
uv = δynuv−σ(ynsu)δxuv−(Dσ ·σ)(ynu)x2

uv.

Hence invoking Proposition 1.2.2 we have:

δRn
uvw = An,1uvw +An,2uvw +An,3uvw, (1.38)

with

An,1uvw = −δσ(yn)uvδxvw, An,2uvw = −δ((Dσ · σ)(yn))uvx
2
vw

and

An,3uvw = (Dσ · σ)(ynu)δx2
uvw.
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We now treat those terms separately. The term An,1uvw in (1.38) can be expressed using

Taylor expansion, which yields

An,1uvw = −
(
Dσ(ynu)δynuv +

1

2
D2σ(ξn) (δynuv)

2

)
δxvw,

for some ξn ∈ [ynu , y
n
v ]. Now, using (1.35) the above becomes

An,1uvw =−Dσ(ynu)
(
σ(ynu)δxuv + (Dσ · σ)(ynu)x2

uv +Rn
uv

)
δxvw −

1

2
D2σ(ξn) (δynuv)

2 δxvw

=− (Dσ · σ)(ynu)δxuvδxvw −Dσ(ynu)(Dσ · σ)(ynu)x2
uvδxvw

−Dσ(ynu)Rn
uvδxvw −

1

2
D2σ(ξn)(δynuv)

2δxvw.

(1.39)

Due to Hypothesis 1.2.2, the first term of (1.39) cancels An,3uvw in (1.38). Therefore we

end up with:

An,1uvw+An,3uvw = −Dσ(ynu)(Dσ·σ)(ynu)x2
uvδxvw−Dσ(ynu)Rn

uvδxvw−
1

2
D2σ(ξnw)(δynuv)

2δxvw.

Taking into account (1.12), (1.17) and (1.18) (similarly to what we did for (1.31)–

(1.32)), as well as Hypothesis 1.2.2 and relation (1.33) for |t− s|, plus the induction

(1.34) on Rn, we easily get:

An,1uvw +An,3uvw ≤
{(

ã1

2qk

)κ−1(
ã2

2qk

)2κ−1

‖x‖2
γ +

(
ã1

2qk

)κ−1

‖x‖γT γ0N [Rn; C3γ
2 [[s, tq]]]

+
1

2

(
ã1

2qk

)κ−2

‖x‖γN [yn; Cγ1 [[s, tq]]]
2

}
|w − u|3γ, (1.40)

where we have incorporated the constants on the right hand side of inequalities (1.17)

inside ã1 and that of inequality (1.18) inside ã2.

We are now left with the estimation of An,2. To bound this last term we first use

inequality (1.13) with r = 7
2
. Taking into account (1.30), we get∣∣An,2uvw∣∣ ≤ NΨ(|ynu |−2(1−κ) + |ynv |−2(1−κ))|ynv − ynu |‖x‖γ|w − v|2γ.

Invoking (1.30) again and the definition of N [yn; Cγ1 [[s, tq]]], this yields:∣∣An,2uvw∣∣ ≤ NΨ

(
2qk

a1

)2(1−κ)

N [yn; Cγ1 [[s, tq]]]|v − u|γ‖x‖γ|w − v|2γ.
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Finally using the a priori bound on yn stated in (1.36) we obtain:

∣∣An,2uvw∣∣ ≤ NΨ

(
2qk

a1

)2(1−κ)

c̃2−κqk‖x‖γ|w − u|3γ, (1.41)

which can be recast as:

∣∣An,2uvw∣∣ ≤ NΨ

a
2(1−κ)
1

c̃ ‖x‖γ2(2−3κ)qk |w − u|3γ. (1.42)

We can now plug (1.40) and (1.42) back into (1.38) in order to get:

N [δRn; C3γ
3 [[s, tq+1]]] ≤

(
ã1

2qk

)κ−1(
ã2

2qk

)2κ−1

‖x‖2
γ+

(
ã1

2qk

)κ−1

‖x‖γT γ0N [Rn; C3γ
2 [[s, tq]]]

+
1

2

(
ã1

2qk

)κ−2

‖x‖γN [yn; Cγ1 [[s, tq]]]
2 +

1

a
2(1−κ)
1

NΨc̃‖x‖γ2(2−3κ)qk .

Therefore, thanks to our induction assumption (1.34) and the a priori bound (1.36),

the above becomes

N [δRn; C3γ
3 [[s, tq+1]]] ≤ d2(2−3κ)qk

with

d =

(
ãκ−1

1 ã2κ−1
2 ‖x‖2

γ + ãκ−1
1 ‖x‖γcγ0c2 +

1

2
ãκ−2

1 c̃2‖x‖γ +
1

ã
2(1−κ)
1

NΨc̃‖x‖γ

)
(1.43)

Then using the discrete sewing Lemma 1.4.3, we obtain

N [Rn; C3γ
2 [[s, tq+1]]] ≤ K3γN [δRn; C3γ

3 [[s, tq+1]]] ≤ ĉ2(2−3κ)qk , (1.44)

where K3γ =
∑∞

l=1
1
l3γ

and ĉ = dK3γ.

Plugging in the value of c̃ from (1.37) in the expression for d in (1.43) we find that

ĉ can be decomposed as

ĉ = dK3γ = (d1,x + d2,x)K3γ,

where

d1,x =

(
ãκ−1

1 ã2κ−1
2 ‖x‖2

γ +
1

2
ãκ−2

1 N 2
κ,σa

2κ
2 ‖x‖3

γ +
1

a
2(1−κ)
1

NΨNκ,σaκ2‖x‖2
γ

)
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and d2,x consist of terms containing positive powers of c0, where we recall that c0 is

defined by (1.33).

Looking at inequality (1.44), we need ĉ to be less than c2 in order to complete the

induction propagation. Let us now fix c2 = 3
2
d1,xK3γ = c2,x and choose c0 = c0,x small

enough so that d2,x <
d1,x

2
. This implies ĉ = dK3γ = (d1,x+d2,x)K3γ <

3
2
d1,xK3γ = c2,x,

which is what we required. Our propagation is hence established.

Step 5: Conclusion. Completing the iterations over tq in [[s, t]] we get that relation

(1.34) is valid for N [Rn; C3γ
3 [[s, t]]]. Next, put the values of c0,x and c2,x in c̃ as defined

in (1.36) and call this new value c1,x. We thus get the following uniform bound over

n:

N [yn; Cγ1 [[s, t]]] ≤ c1,x2
−κqk .

Our claims (1.29) and (1.28) are now achieved by taking limits over n.

In order to further analyze the increments of yn, we need to increase slightly the

regularity assumptions on x. This is summarized in the following hypothesis:

Hypothesis 1.4.4 There exists ε1 > 0 such that for γ1 = γ+ε1, we have ‖x‖γ1 <∞.

The extra regularity imposed on x allows us to improve our estimates on remain-

ders (in rough path expansions) in the following way.

Proposition 1.4.2 Let us assume that Hypothesis 1.4.4 holds, as well as Hypothe-

sis 1.3.1 and Hypothesis 1.3.5. For k ≥ 0, consider (s, t) ∈ S2 ([λk, λk+1)) such that

|t− s| ≤ c0,x2
−αqk , where c0,x is defined in Theorem 1.4.1. Then the following second

order decomposition for δy is satisfied:

δyst = σ(ys) δxst + rst, with |rst| ≤ c3,x 2−κε1qk |t− s|γ, (1.45)

where we have set κε1 = κ+ 2ε1α.

Proof From (1.27) we have

|rst| = |(Dσ · σ)(ys)x
2
st +Rst| ≤ |(Dσ · σ)(ys)||x2

st|+ |Rst| (1.46)
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Under the constraints we have imposed on s, t, namely s, t ∈ [λk, λk+1) such that

|t− s| ≤ c0,x2
−αqk , and recalling that we have set γ1 = γ + ε1, we have

sup
s,t

|x2
st|

|t− s|γ
= sup

s,t

|x2
st|

|t− s|2γ+2ε1
|t− s|γ+2ε1 ≤ sup

s,t

|x2
st|

|t− s|2γ1
sup
s,t
|t− s|γ+2ε1

≤ N
[
x2; C2γ1

2

]
(c0,x2

−αqk)γ+2ε1 . (1.47)

where we have used sups,t to stand for supremum over the set {(s, t) : s, t ∈ [λk, λk+1) and |t−

s| ≤ c0,x2
−αqk}.

Note that under Hypothesis 1.4.4, the quantity ‖x‖γ1 is finite and hence (1.47)

can be read as:

sup
s,t

|x2
st|

|t− s|γ
≤ ‖x‖γ1c

γ+2ε1
0,x 2−α(γ+2ε1)qk . (1.48)

Moreover, owing to (1.29) applied to γ := γ + ε1, and κ as in Hypothesis 1.3.1,

we get

sup
s,t

|Rst|
|t− s|γ

= sup
s,t

|Rst|
|t− s|3(γ+ε1)

|t− s|2γ+3ε1 ≤ sup
s,t

|Rst|
|t− s|3γ1

sup
s,t
|t− s|2γ+3ε1

≤ c̃2,x2
(2−3κ)qk(c0,x2

−αqk)2γ+3ε1 . (1.49)

Here we have used the notation c̃2,x to stand for the coefficient c2,x in (1.29), with

‖x‖γ replaced by ‖x‖γ1 . Thus we have

sup
s,t

|Rst|
|t− s|γ

≤ c̃2,xc
2γ+3ε1
0,x 2−(α(2γ+3ε1)+3κ−2)qk (1.50)

Now incorporating (1.48) and (1.50) in (1.46), and recalling that α = 1−κ
γ
, we

easily get:

sup
s,t

|rst|
|t− s|γ

≤ N2κ−1,Ψ

(
b2

2qk

)2κ−1

‖x‖γ1c
γ+2ε1
0,x 2−α(γ+2ε1)qk + c̃2,xc

2γ+3ε1
0,x 2−(α(2γ+3ε1)+3κ−2)qk

= N2κ−1,Ψb
2κ−1
2 ‖x‖γ1c

γ+2ε1
0,x 2−(κ+2ε1α)qk + c̃2,xc

2γ+3ε1
0,x 2−(κ+3ε1α)qk

Collecting terms and recalling that we have set κε1 = κ+ 2ε1α, we end up with:

sup
s,t

|rst|
|t− s|γ

≤ c3,x2
−(κ+2ε1α)qk = c3,x2

−κε1qk ,

which is our claim (1.45).
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Thanks to our previous efforts, we can now slightly enlarge the interval on which our

improved regularity estimates hold true:

Corollary 1.4.5 Let the assumptions of Proposition 1.4.2 prevail, and consider 0 <

ε1 < 1 − γ as in Hypothesis 1.4.4. Then with α = γ−1(1 − κ), there exists 0 <

ε2 < α and a constant c4,x such that for all (s, t) ∈ S2 ([λk, λk+1)) satisfying |t− s| ≤

c4,x2
−(α−ε2)qk we have

|δyst| ≤ c5,x2
−qkκ−ε2 |t− s|γ, where κ−ε2 = κ− (1− γ)ε2. (1.51)

Moreover, under the same conditions on (s, t), decomposition (1.45) still holds true,

with

|rst| ≤ c6,x2
−qkκε1,ε2 |t− s|γ, where κε1,ε2 = κ+ 2αε1 − γε2 − 2ε1ε2. (1.52)

Proof We split our computations in 2 steps.

Step 1: Proof of (1.51). Start from inequality (1.28), which is valid for |t − s| ≤

c0,x2
−αqk . Now let m ∈ N and consider s, t ∈ [λk, λk+1) such that c0,x(m− 1)2−αqk <

|t− s| ≤ c0,xm2−αqk . We partition the interval [s, t] by setting tj = s+ c0,xj2
−αqk for

j = 0, . . . ,m− 1 and tm = t. Then we simply write

|δyst| ≤
m−1∑
j=0

|δytjtj+1
| ≤ c1,x2

−qkκ
m−1∑
j=0

(tj+1 − tj)γ ≤ c1,x2
−qkκm1−γ|t− s|γ,

where the last inequality stems from the fact that tj+1 − tj ≤ (t − s)/m. Now the

upper bound (1.51) is easily deduced by applying the above inequality to a generic

m ≤ [2ε2qk ] + 1, where 0 < ε2 <
κ

1−γ . This ensures κ
−
ε2

= κ− (1− γ)ε2 > 0.

Step 2: Proof of (1.52). We proceed as in the proof of Proposition 1.4.2, but now with

a relaxed constraint on (s, t), namely |t− s| ≤ c4,x2
−(α−ε2)qk where ε2 > 0 satisfies:

ε2 < min

(
κ

1− γ
,
ε1α

γ + ε1

)
. (1.53)

The equivalent of relation (1.49) is thus

sup
s,t

|Rst|
|t− s|γ

= sup
s,t

|Rst|
|t− s|3(γ+ε1)

|t− s|2γ+3ε1 ≤ sup
s,t

|Rs,t|
|t− s|3γ1

sup
s,t
|t− s|2γ+3ε1

≤ c̃2,x2
(2−3κ)qk(c4,x2

−(α−ε2)qk)2γ+3ε1 (1.54)
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As in Proposition 1.4.2 we have used the notation c̃2,x to stand for the coefficient

c2,x with ‖x‖γ replaced by ‖x‖γ1 and sups,t to stand for supremum over the set

{(s, t) : s, t ∈ [λk, λk+1) and |t − s| ≤ c4,x2
−(α−ε2)qk}. Collecting the exponents in

(1.54) we thus end up with:

sup
s,t

|Rst|
|t− s|γ

≤ c̃2,xc4,x2
−(κ+3ε1α−2ε2γ−3ε1ε2)qk . (1.55)

Similarly to (1.47), we also get:

sup
s,t

|x2
st|

|t− s|γ
= sup

s,t

|x2
st|

|t− s|2γ+2ε1
|t− s|γ+2ε1 ≤ sup

s,t

|x2
st|

|t− s|2γ1
sup
s,t
|t− s|γ+2ε1

≤ ‖x‖γ1(c4,x2
−(α−ε2)qk)γ+2ε1 . (1.56)

Consequently, owing to Hypothesis 1.3.5, we get the following relation:

|(Dσ · σ)(ys)x
2
st| ≤ N2κ−1,Ψ

(
b2

2qk

)2κ−1

‖x‖γ1c
γ+2ε1
4,x 2−(α−ε2)(γ+2ε1)qk

= N2κ−1,Dσ·σb
2κ−1
2 ‖x‖γ1c

γ+2ε1
4,x 2−(κ+2ε1α−ε2γ−2ε1ε2)qk . (1.57)

Notice that under the conditions on ε2 in (1.53), we have κ + 2ε1α − ε2γ − 2ε1ε2 <

κ+ 3ε1α− 2ε2γ − 3ε1ε2. Therefore incorporating (1.55) and (1.57) we have:

|rst| ≤ |(Dσ · σ)(ys)x
2
st|+ |Rst| . 2−qkκε1,ε2 |t− s|γ

which is our claim (1.52).

1.4.3 Estimates for stopping times

Thanks to the previous estimates on improved regularity for the solution y to

equation (1.22), we will now get a sharp control on the difference λk+1−λk. Otherwise

stated we shall control the speed at which y might converge to 0, which is the key

step in order to control the global Hölder continuity of y. This section is similar to

what has been done in [1], and proofs are included for sake of completeness. We start

with a lower bound on the difference λk+1 − λk.
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Proposition 1.4.3 Assume σ and (Dσ · σ) follow Hypothesis 1.3.1. Also assume

Hypothesis 1.3.5 holds. Then the sequence of stopping times {λk, k ≥ 1} defined by

(1.23) satisfies

λk+1 − λk ≥ c5,x 2−αqk , (1.58)

where we recall that α = (1− κ)/γ.

Proof We show that the difference τk − λk satisfies a lower bound of the form

τk − λk ≥ c6,x 2−αqk . (1.59)

There exists a similar bound for λk+1− τk, and consequently we get our claim (1.58).

To arrive at inequality (1.59) we observe that in order to leave the interval [λk, τk),

an increment of size at least 2−(qk+1) must occur. This is because at λk the solution

lies at the mid point of Iqk , an interval of size 2−qk . Thus, if |δyst| ≥ 2−(qk+1) and

|t− s| ≤ c0,x2
−αqk , relation (1.28) provides us with:

c1,x
|t− s|γ

2κqk
≥ 1

2qk+1
, (1.60)

which implies

|t− s| ≥ (2c1,x)
− 1
γ 2−

(1−κ)qk
γ = (2c1,x)

− 1
γ 2−αqk .

This completes the proof.

In order to sharpen Proposition 1.4.3, we introduce a roughness hypothesis on x,

again as in [1]. This assumption is satisfied when x is a fractional Brownian motion.

Hypothesis 1.4.6 We assume that for ε̂ arbitrarily small there exists a constant

c > 0 such that for every s in [0, T ], every ε in (0, T/2], and every φ in Rd with

|φ| = 1, there exists t in [0, T ] such that ε/2 < |t− s| < ε and

|〈φ, δxst〉| > c εγ+ε̂.

The largest such constant is called the modulus of (γ + ε̂)-Hölder roughness of x, and

is denoted by Lγ,ε̂ (x).
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Under this hypothesis, we are also able to upper bound the difference λk+1 − λk.

Proposition 1.4.4 Assume σ and (Dσ · σ) follow Hypothesis 1.3.1. Also assume

Hypothesis 1.3.5 holds and σ(ξ) & |ξ|κ. Then for all ε2 <
αε1
γ+ε1
∧ κ

1−γ and qk large

enough (that is for k large enough, since limk→∞ qk = ∞ under Assumption (B)

of Proposition 1.4.1), the sequence of stopping times {λk, k ≥ 1} defined by (1.23)

satisfies

λk+1 − λk ≤ cx,ε22
−qk(α−ε2), (1.61)

where we recall that α = (1 − κ)/γ. Furthermore, inequality (1.51) can be extended

as follows: there exists a constant cx such that for s, t ∈ [λk, λk+1) we have

|δyst| ≤ cx2
−κ−ε2qk |t− s|γ, (1.62)

Proof We prove by contradiction. Assume the contrary, that is, (1.61) does not

hold. This implies that for some ε2 <
αε1
γ+ε1
∧ κ

1−γ

λk+1 − λk ≥ C2−qk(α−ε2) (1.63)

holds for infinitely many values of k, for any constant C. Consequently

λk+1 − λk ≥ C 2−qk(1−κ)/(γ+ε̂), (1.64)

for an ε̂ small enough so that (1 − κ)/(γ + ε̂) ≥ α − ε2. We now show that there

exists s, t ∈ [λk, λk+1] such that |δyst| > |Jqk | providing us with our contradiction.

Here |Jqk | denotes the size of the interval Jqk .

To achieve this we now use Hypothesis 1.4.6. Taking into account we are in the

one-dimensional case let us choose

ε :=
c1 2−

qk(1−κ)
γ+ε̂

[Lγ,ε̂(x)]
1
γ+ε̂

≤ C 2−
qk(1−κ)
γ+ε̂ ,

where the inequality is true for a fixed constant c1 and a large enough constant C.

Due to (1.63) and Hypothesis 1.4.6 there now exist s, t ∈ [λk, λk+1] such that

ε

2
≤ |t− s| ≤ ε, and |δxst| ≥ cγ+ε̂

1 2−qk(1−κ). (1.65)
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Moreover, due to our assumptions on σ and because ys ≥ b12−qk ≥ 2−qk−2, we have

|σ(ys)| ≥ c2−qkκ for s ∈ [λk, λk+1]. Consequently, for s, t as in (1.65)

|σ(ys)δxst| ≥ ccγ+ε̂
1 2−qk .

For fixed ε, c1 can be chosen arbitrarily large (by increasing k or decreasing ε̂) such

that ccγ+ε̂
1 ≥ 6. We thus have

|σ(ys)δxst| ≥ 6 · 2−qk = 2|Jqk |.

In particular the size of this increment is larger than twice the size of Jqk (see relation

(1.23)).

Recall, ε̂ is small enough so that (1−κ)/(γ+ ε̂) ≥ α− ε2, so that from the bound

on |t− s| in (1.65) we have |t− s| ≤ c7,x2
−qk(α−ε2). With s, t as in relation (1.65) we

use the fact that δyst = σ(ys)δxst + rst and the bound (1.52) to get

|δyst| & A1
st − A2

st, with A1
st = 6 · 2−qk , A2

st ≤ c6,x2
−qkκε1,ε2 |t− s|γ ≤ c9,x2

−qkµε2 ,

where we recall that κε1,ε2 = κ+ 2αε1 − γε2 − 2ε1ε2 to obtain

µε2 = κε1,ε2 + (α− ε2)γ = 1 + 2αε1 − 2(γ + ε1)ε2.

Compared to 2−qk , A2
st can be made negligible for large enough qk by making sure that

µε2 > 1. One can ensure µε2 > 1 by choosing ε1 large enough and ε2 small enough.

As a consequence |δyst| & A1
st−A2

st, where A1
st is larger than twice |Jqk | = 3 ·2−qk and

A2
st is negligible compared to A1

st as qk gets large. That is, |δyst| > |Jqk | for k large

enough. We now have our contradiction and this proves (1.61).

1.4.4 Hölder continuity

Eventually the control of the stopping times λk leads to the main result of this

section, that is the existence of a Cγ solution to equation (1.22). The crucial step in

this direction is detailed in the proposition below. It is achieved under the additional

assumption γ + κ > 1, and yields directly the proof of Theorem 1.1.2.
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Proposition 1.4.5 Suppose that our noise x satisfies Hypotheses 1.4.4 and 1.4.6.

Assume σ and (Dσ·σ) follow Hypothesis 1.3.1 and Hypothesis 1.3.5 holds as well. Also

assume σ(ξ) & |ξ|κ and that γ+κ > 1. Then, the function y given in Proposition 1.4.1

belongs to Cγ([0, T ];Rm).

Proof We start with the assumption that y satisfies condition (B) in Proposi-

tion 1.4.1. We first consider s = λk and t = λl with k < l and decompose the

increments |δyst| as:

|δyst| ≤
l−1∑
j=k

∣∣δyλjλj+1

∣∣ .
Due to Proposition 1.4.4 we have λk+1−λk ≤ cx,ε22

−qk(α−ε2) for a large enough k. An

application of Corollary 1.4.5 yields

|δyst| ≤
l−1∑
j=k

∣∣δyλjλj+1

∣∣ ≤ c5,x

l−1∑
j=k

2−qjκ
−
ε2 |λj+1 − λj|γ. (1.66)

Rewriting inequality (1.58),

2−
qj(1−κ)

γ ≤ c−1
7,x (λj+1 − λj)

which implies

2−qjκ
−
ε2 ≤ (c7,x)

−
γκ−ε2
1−κ (λj+1 − λj)

γκ−ε2
1−κ .

Using this inequality in (1.66) and defining c8,x = c5,x(c7,x)
−
γκ−ε2
1−κ , we get:

|δyst| ≤ c8,x

l−1∑
j=k

|λj+1 − λj|µ̃ε2 , where µ̃ε2 = γ

(
1 +

κ−ε2
1− κ

)
.

Recall κ−ε2 = κ − (1 − γ)ε2, which can be made arbitrarily close to κ. Hence under

the assumption γ + κ > 1, µ̃ε2 is of the form µ̃ε2 = 1 + ε3. We thus obtain

|δyst| ≤ c8,x

l−1∑
j=k

|λj+1 − λj|1+ε3 ≤ c8,x|λl − λk|1+ε3 ≤ c8,x τ
1+ε3−γ|t− s|γ,

where we recall s = λk and t = λl. Having proved our claim for this special case, the

general case for s < λk ≤ λl < t is obtained by the following decomposition

δyst = δysλk + δyλkλl + δyλlt.

Finally, we make use of (1.62) in order to bound δysλk and δyλlt.
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2. QUENCHED ASYMPTOTICS FOR A 1-D STOCHASTIC HEAT

EQUATION DRIVEN BY A ROUGH SPATIAL NOISE

A version of this chapter has been reprinted with permission from Stochastic Processes and their Applications Journal.

Citation: https://doi.org/10.1016/j.spa.2020.06.007.

2.1 Introduction

The non trivial effects of random perturbations on the spectrum of the Laplace

operator has been a fascinating object of research in the recent past. While a direct

spectral analysis of perturbed Laplacians is possible in simple and regular enough

cases [17, 18], the problem is often addressed through the large time behavior of the

so-called parabolic Anderson model. More specifically the parabolic Anderson model

is a stochastic heat equation of the following form:

∂ut(x)

∂t
=

1

2
∆ut(x) + ut(x) Ẇ (x), (2.1)

where the noise Ẇ is a stationary spatial random field. Because of the linear form

of the noise term, it is possible under certain regularity conditions to express the

solution of (2.1) using a Feynman-Kac representation. Related to this representation,

the asymptotic behavior of ut(x) as t goes to ∞ gives some insight on the spectrum

of the operator 1
2
∆ + Ẇ .

In the spatially discrete setting with a discrete Laplacian, asymptotic equivalents

for the solution of equation (2.1) have been studied at length in [19] and [3]. In par-

ticular, if ut(x) is the solution under the discrete setup in Zd and U(t) =
∑

z∈Zd ut(x)

is the total mass, then it has been proven that both 1
t

log(ut(x)) and 1
t

log(U(t))

converge almost surely under certain regularity assumptions. Any information about

https://doi.org/10.1016/j.spa.2020.06.007
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those limits can then be translated into an information about the principal eigenvalue

of 1
2
∆ + Ẇ .

In the spatially continuous setting, the picture is not as clear. Indeed, the large

time behavior of the solution u to equation (2.1) has been analyzed in [20] and [21].

In particular, when the noise is Gaussian with a smooth covariance structure given

by γ(x) = Cov(Ẇ (0)Ẇ (x)) satisfying lim|x|→∞ γ(x) = 0, then we have for x ∈ Rd

lim
t→∞

1

t
√

log t
log ut(x) =

√
2dγ(0) a.s. (2.2)

The fact that the renormalization in (2.2) is of the form t
√

log t suggests that the prin-

cipal eigenvalue of 1
2
∆ + Ẇ is divergent, which is confirmed in [22,23] by asymptotics

on large boxes performed for the white noise.

Motivated by the examples above, non-smooth cases of equation (2.1) under the

setting of generalized Gaussian fields have been analyzed in [4]. Namely, the reference

[4] handles the case of a centered Gaussian noise W whose covariance function Λ is

defined informally (see Section 2.2.2 for more precise definition) by

E [W (φ)W (ψ)] =

∫
Rd
φ(x)ψ(y)Λ(x− y)dxdy, (2.3)

for all infinite differentiable functions φ with compact support. The class of functions

Λ considered in [4] are continuous on Rd\{0}, bounded away from 0 with a singularity

at 0 measured by Λ(x) ∼ c(Λ)|x|−α with α ∈ (0, 2 ∧ d) as x ↓ 0. In this framework,

the following almost sure renormalization result is proved in [4] for any x ∈ Rd:

lim
t→∞

1

t(log t)
2

4−α
log ut(x) = cα a.s. , (2.4)

with an explicit constant cα. Notice that this result is also applicable under a frac-

tional white noise with Hurst parameter H > 1
2
. Namely, considering d = 1 for

simplicity, relation (2.4) holds for a fractional Brownian noise W with α = 2 − 2H

(that is a renormalization of the form t(log t)
1

1+H ).

In this note we aim to carry forward the asymptotic result (2.4) to very singular

environments. Specifically, we consider a fractional noiseW as in [4], but we allow the
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Hurst parameter to be less than 1
2
(so that our noise is rougher than white noise). Go-

ing back to expression (2.3), we assume that Λ is a positive definite distribution whose

Fourier transform FΛ = µ is a tempered measure given by µ(dξ) = CH |ξ|1−2Hdξ.

That is for test functions φ and ψ we have

E [W (φ)W (ψ)] =

∫
R
Fφ(ξ)Fψ(ξ)µ(dξ). (2.5)

Let us first notice that equation (2.1) driven by a fBm with H < 1
2
is not explicitly

solved in the literature. As we will see, one can give a pathwise meaning, in a Young

type sense, to the solution of equation (2.1). Namely we show that t 7→ ut can be seen

as a continuous function with values in a weighted Besov space (we refer to [24] for a

complete definition of weighted Besov spaces). We will set up a fixed point argument

in those weighted spaces and obtain the following result (see Theorem 2.3.10 for a

more precise formulation).

Theorem 2.1.1 Let W be the Gaussian noise considered in (2.5) with H ∈
(
0, 1

2

)
.

Let u0 be an initial condition lying in a weighted Besov Hölder space (see Defini-

tion 2.2.4 or a more detailed description). Then there exists a unique solution to

(2.1) in a space of continuous functions with values in Besov spaces, and where the

integral with respect to W is understood in the Young sense.

Once we have solved (2.1) , we will give a property of the (formal) operator 1
2
∆+Ẇ

which is reminiscent of the density of states results contained e.g. in [17, 18]. The

result we obtain can be summarized informally in the following theorem:

Theorem 2.1.2 Let λẆ (Qt) be the principal eigenvalue of the random operator 1
2
∆+

Ẇ over a restricted space of functions having compact support on Qt :=(−t, t). Then

the following limit holds:

lim
t→∞

λẆ (Qt)

(log t)
1

1+H

= (2cHE)
1

1+H a.s, (2.6)

with a strictly positive constant E defined by

E = sup
g∈G(R)

∫
R

∣∣∣∣∫
R
eıλxg2(x)dx

∣∣∣∣2|λ|1−2Hdλ (2.7)
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where G(R) is the space of all Schwartz functions satisfying ‖g‖2
2 + 1

2
‖g′‖2

2 = 1.

Using a Feynman-Kac representation for the solution u of (2.1), our next step will

be to relate the logarithmic behavior of ut to the principal eigenvalue λẆ (Qt). This

is the content of the following theorem:

Theorem 2.1.3 Let W be the Gaussian noise defined by (2.5) for H < 1
2
, and con-

sider the unique solution u to (2.1). Then for all x ∈ R we have

lim
t→∞

1
t

log(ut(x))

λẆ (Qt)
= 1, a.s.

As the reader might conceive, our main asymptotic result will be a simple con-

sequence of Theorems 2.1.2 and 2.1.3. It gives a generalization of (2.4) to the case

H < 1
2
.

Theorem 2.1.4 Under the same conditions as in Theorem 2.1.3 and for H < 1
2
we

have

lim
t→∞

log(ut(x))

t(log t)
1

1+H

= (2cHE)
1

1+H , a.s. (2.8)

Remark 2.1.5 Let us draw the reader’s attention to the fact that formula (2.8) has

already been proved in [4] for H ∈ [1/2, 1) and hence our contributions in this paper

imply that formula (2.8) holds for all H ∈ (0, 1).

Let us say a few words about the methodology we have resorted to in order to get

our main results.

(i) Theorem 2.1.2 is obtained by splitting the eigenvalue problem into small intervals,

similarly to what is performed in other parabolic Anderson model studies (see e.g [3]

and [4]). Then on each subdomain we combine some variational arguments with

supremum computations for Gaussian processes. An extra care is required in our

case, due to the singularity of our noise.

(ii) Theorem 2.1.3 relies on a Feynman-Kac representation of ut(x), whose main in-

gredient is an integrability property established thanks to a subtle sub-additive argu-

ment (see Proposition 2.4.1 below). Once this Feynman-Kac representation (involving
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a Brownian motion B) is given, a probabilistic cutoff procedure on the underlying

Brownian motion B allows to reduce the logarithmic behavior of ut(0) to the quantity

λẆ (Qt).

(iii) As mentioned above, Theorem 2.1.4 is an easy consequence of Theorems 2.1.2

and 2.1.3.

Eventually let us highlight the fact that Theorem 2.1.4 provides a rather com-

plete description of the asymptotic behavior of log(ut(x)) in dimension 1. A very

challenging situation would be to handle the case of a rough noise in dimension 2 or

higher. In this case it is a well known fact that a renormalization procedure is needed

to define the solution u of (2.1), as shown e.g. in [25]. The effect of this kind of

renormalization procedure on the principal eigenvalue of 1
2
∆ + Ẇ has been partially

investigated for the space white noise when d = 2 in [22].

This paper is organized as follows. Section 2.2 contains some preliminaries on

Besov spaces and the structure of our noise. In Section 2.3 we prove the existence

and uniqueness of our solution as outlined in Theorem 2.1.1. The Feynman-Kac

representation of the solution is obtained in Section 2.4. The upper and lower bounds

to the long-time asymptotics of the principal eigenvalue of the operator 1
2
∆ + Ẇ

are obtained in Subsections 2.5.2 and 2.5.3 respectively. The asymptotic relation

between the solution and the principal eigenvalue of the previous section is completed

in Section 2.6.

Notations. We denote by pt(x) the one-dimensional heat kernel pt(x) = (2πt)−1/2 e−|x|
2/2t,

for any t > 0, x ∈ R. The space of real valued infinitely differentiable functions with

compact support is denoted by D(R). The space of Schwartz functions is denoted by

S (R). Its dual, the space of tempered distributions, is S ′(R). The Fourier transform

is defined as

Fu(ξ) = û(ξ) =

∫
R
e−ι〈x,ξ〉u(x)dx.
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The inverse Fourier transform is F−1u(ξ) = (2π)−1Fu(−ξ). Denote by l the following

probability density function in S(R):

l(x) = c exp

(
− 1

1− x2

)
1(|x|<1),

where c is a normalizing constant such that
∫
R l(x)dx = 1. For every ε > 0, let the

set of mollifiers generated by l be given by lε(x) = ε−1l(ε−1x). Observe that, owing

to the fact that l is a probability measure, we have limξ→0F l(ξ) = 1 and F l(ξ) ≤ 1

for all ξ ∈ R.

2.2 Preliminaries

This section is devoted to introduce the basic Besov spaces notions which will

be used in the remainder of the paper. Observe that since we are dealing with a

variable x in the whole space R, we will need to deal with weighted Besov spaces.

The definitions and main properties of those spaces are borrowed from [24].

2.2.1 Besov spaces

In this subsection we define some classes of weights which are compatible with

our heat equation (2.1). Two scales of weights will be used: stretched exponential

weights and polynomial weights.

Definition 2.2.1 Let |x|∗ =
√

1 + |x|2 and fix δ ∈ (0, 1). Denote by W the class of

weights consisting of:

(i) the weights wγ of the form wγ(x) = e−γ|x|
δ
∗, with γ > 0.

(ii) the weights ŵσ of the form ŵσ(x) = |x|−σ∗ , with σ > 0.

The definition of our Besov spaces depends heavily on a dyadic partition of unity.

In order to handle weights as in Definition 2.2.1 we have to work (as done in [24])

with functions in the so-called Gevrey class, that we now proceed to define.
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Definition 2.2.2 Let θ ≥ 1. We call Gθ, the set of infinitely differentiable functions

f : R→ R satisfying

for every compact K, there exists C <∞ such that for every n ∈ N,

sup
K
|∂nf | ≤ Cn+1(n!)θ.

We let Gθc be the set of compactly supported functions in Gθ.

We are now ready to state the existence of a partition of unity in the Gevrey class

Gθc .

Proposition 2.2.1 One can construct two functions χ̃, χ ∈ Gθc , taking values in [0, 1]

and such that

(i) Supp χ̃ ⊆
[
0, 4

3

]
and Supp χ ⊆

[
3
4
, 8

3

]
.

(ii) For all ξ ∈ R, we have χ̃(ξ) +
∑∞

k=0 χ(2−kξ) = 1.

In the sequel we also set χk(ξ) = χ(2−kξ) for k ≥ 0.

With the partition of unity in hand, the blocks ∆ku of the Besov type analysis can

be defined as follows.

Definition 2.2.3 Set χ−1 = χ̃, and define for k ≥ −1 and u ∈ S(R),

∆ku = F−1(χkû).

Our analysis will rely on Besov spaces defined through the weighted blocks intro-

duced in Definition 2.2.3.

Definition 2.2.4 Let χ and χ̃ be the functions introduced in Proposition 2.2.1. For

any κ ∈ R, w ∈ W, p, q ∈ [1,∞] and f ∈ S(R), we define weighted norms of f in the

following way:

‖f‖Bκ,wp,q :=

[
∞∑

j=−1

(
2κj‖∆jf‖Lpw

)q] 1
q

, (2.9)

where Lpw is the weighted space Lp(R, w(x)dx). Denote the weighted Besov space Bκ,wp,q
as

Bκ,wp,q =
{
f ∈ S(R); ‖f‖Bκ,wp,q <∞

}
.
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Remark 2.2.1 Notice that as in [26], we define ‖f‖Lp(Rd;w(x)dx) as ‖fw‖Lp(Rd). This

is slightly different from [24], but yields similar results.

In the next section we will solve the heat equation in a weighted Besov space

whose weight is varying with time. We now define this kind of space.

Notation 2.2.2 Let λ and σ be two strictly positive constants. For t ≥ 0 we define v

as the function vt = wλ+σt, where we recall that wγ is introduced in Definition 2.2.1.

We consider an additional parameter κu > 0 and q ∈ [1,∞). Then the space Cκu,λ,σq

is defined by

Cκu,λ,σq =
{
f ∈ C([0, T ]× R); ‖ft‖Bκu,vtq,∞

≤ cf

}
.

2.2.2 Description of the noise

The noise driving equation (2.1) is considered as a centered Gaussian family

{W (φ), φ ∈ D(R)} on a complete probability space (Ω,F ,P) with the following co-

variance structure:

E [W (φ)W (ψ)] =

∫
R2

φ(x)ψ(y)Λ(x− y)dxdy, (2.10)

where Λ : R 7→ R+ is a non-negative definite distribution. In fact the covariance

structure of W is better described in Fourier modes. Indeed, the distribution Λ can

be seen as the inverse Fourier transform of a measure µ on R defined by

µ(dξ) = cH |ξ|1−2Hdξ.

Then for φ, ψ ∈ D(R) we have

E [W (φ)W (ψ)] =

∫
R
Fφ(ξ)Fψ(ξ)µ(dξ). (2.11)

It can be shown that (2.11) defines an inner product on D(R). We call H the com-

pletion of D(R) with this inner product. It also holds that the variance of our noise

W has an alternate direct-coordinate representation (see e.g. [27, relation (2.8)]) in

addition to the one suggested by (2.11). Namely for φ ∈ H, we have

E[W (φ)]2 = cH

∫
R

∫
R

|φ(x+ y)− φ(x)|2

|y|2−2H
dxdy. (2.12)
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The mapping φ 7→ W (φ) defined in D(R) extends to a linear isometry between H

and the Gaussian space spanned by W . This isometry will be denoted by

W (φ) =

∫
R
φ(x)W (dx). (2.13)

Remark 2.2.3 Notice that the measure µ(dξ) = cH |ξ|1−2Hdξ satisfies the following

condition ∫
R

µ(dξ)

1 + |ξ|2(1−α)
<∞, for α < H. (2.14)

This relation will be crucial in order to see that W belongs to a weighted Besov space

in the proposition below.

Before a complete description of our noise regularity, we state below a Besov

embedding result for weighted Besov spaces. Notice that this embedding result is

part of the folklore in the analysis literature. However, we include a complete proof

here since we haven’t been able to spot a precise reference. In particular our result

(2.20) doesn’t hold true in the setting of [24], for which the weights behave differently

from ours. We start off with a version of Bernstein’s lemma for our weighted spaces.

Lemma 2.2.4 Let B be a ball. For every p ≥ q ∈ [1,∞] and non-negative integer k,

there exists C <∞ such that for every λ ≥ 1 and f ∈ S(R) we have

Suppf̂ ⊂ λB ⇒ ‖∂kf‖Lpŵσ ≤ Cλk+( 1
q
− 1
p

)‖f‖Lqŵσ , (2.15)

where the weight ŵσ is given in Definition 2.2.1

Proof The proof is similar to that in [24]. Due to the differences in definition of

weighted Besov space it is still provided here. Moreover we will only consider the

situation where p, q are finite, the proof when at least one of them is infinite being

similar.

Let φ ∈ Gcθ be such that φ = 1 on B. Define φλ = φ
( ·
λ

)
. Observe that

f = F−1
(
f̂φλ

)
= gλ ? f, (2.16)
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where the function gλ is defined by gλ = F−1φλ = λg1(λ·). Writing g(k)
λ := (∂kg1)λ =

λ(∂kg1)(λ·), we can differentiate (2.16) in order to get

∂kf = λkg
(k)
λ ? f.

Notice that our weight ŵσ satisfies ŵσ(x + y) . ŵ−σ(x)ŵσ(y). Using this and the

weighted Young inequality [24, Theorem 2.4] we have:

λ−k‖∂kf‖Lpŵσ = ‖(g(k)
λ ? f)ŵσ‖Lp . ‖g

(k)
λ ŵ−σ‖Lr‖fŵσ‖Lq , (2.17)

where r is such that 1 + 1
p

= 1
r

+ 1
q
. Since g(k)

λ = λ(∂kg1)(λ·) and ∂kg1 is the inverse

Fourier transform of a function in Gθc we have due to [24, Proposition 2.2]:∣∣∣g(k)
λ (x)

∣∣∣ . λe−c|λx|
1/θ ≤ λe−c|λx|

δ

.

Consequently, recalling the norm | · |∗ introduced in Definition 2.2.1, we obtain

‖g(k)
λ ŵ−σ‖Lr . λ

(∫
e−cr|λx|

δ |x|σr∗ dx
) 1

r

= λ1−1/r

(∫
e−cr|x|

δ
∣∣∣x
λ

∣∣∣σr
∗
dx

) 1
r

. (2.18)

Observe that λ ≥ 1 implies |x/λ|∗ ≤ |x|∗. Thus the integral in (2.18) can be bounded

above by a constant independent of λ. In addition, it holds that 1− 1
r

= 1
q
− 1

p
. We

thus end up with the following relation:

‖g(k)
λ ŵ−σ‖Lr ≤ Cλ( 1

q
− 1
p

). (2.19)

Using (2.19) in (2.17) yields our desired result (2.15).

The Besov embedding result we need in order to quantify our noise regularity is

now a direct consequence of Lemma 2.2.4 and is provided below.

Proposition 2.2.2 Let κ > κ′ > 0. There exists K < ∞ and q large enough such

that

‖f‖B−κ,ŵσ∞,∞
≤ K‖f‖B−κ′,ŵσ2q,2q

. (2.20)
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Proof From the definition of ∆kf , observe that the support of its Fourier transform

is contained in 2kB for some ball B in R. Thus we may apply Lemma 2.2.4 with

k = 0 and p =∞ to obtain:

‖∆kf‖L∞ŵσ ≤ C2
k
q ‖∆kf‖Lqŵσ .

Replacing q by 2q and premultiplying by 2−κk we obtain:

2−κk‖∆kf‖L∞ŵσ ≤ C2(−κ+ 1
2q

)k‖∆kf‖L
ŵ
2q
σ

= C2(κ′−κ+ 1
2q

)k2−κ
′k‖∆kf‖L

ŵ
2q
σ

. (2.21)

Fix a q large enough such that ω := κ− κ′ − 1
2q

is positive. Denoting 2−κk‖∆kf‖L∞ŵσ
by xk and 2−κ

′k‖∆kf‖L2q
ŵσ

by yk, Eq (2.21) can be restated as:

2ωkxk ≤ Cyk.

This implies that

‖y‖`2q =

(
∞∑

k=−1

y2q
k

)1/2q

≥ 1

C

(
∞∑

k=−1

22qωkx2q
k

)1/2q

.

Since 22qωk ≥ 1
22qω

for k ≥ −1 we obtain

‖y‖`2q ≥
1

C

(
∞∑

k=−1

1

22qω
x2q
k

)1/2q

=
1

C2ω

(
∞∑

k=−1

x2q
k

)1/2q

≥ 1

C2ω
‖x‖`∞ , (2.22)

where in the last inequality we have used the fact that ‖x‖`2q ≥ ‖x‖`∞ for any sequence

x ∈ RN. Applying inequality (2.22) to the sequences x and y given in (2.21), we now

arrive at (2.20).

Proposition 2.2.3 For all κ ∈ (1−H, 1) and every arbitrary σ > 0, W has a

version in B−κ,ŵσ∞,∞ , where ŵσ is given in Definition 2.2.1 and B−κ,ŵσ∞,∞ is introduced

in Definition 2.2.4. In addition the random variable ‖W‖B−κ,ŵσ∞,∞
has moments of all

orders.
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Proof Consider κ, κ′ such that κ > κ′ > 1 − α, where α is defined by (2.14). Due

to (2.14) observe that this implies that we can consider any κ > 1 − H. For q ≥ 1,

denote the Besov space B−κ
′,ŵσ

2q,2q by Aq. Invoking Proposition 2.2.2 observe that for

large enough q, Aq is continuously embedded in B−κ,ŵσ∞,∞ , i.e.,

‖Ẇ‖B−κ,ŵσ∞,∞
. ‖Ẇ‖Aq . (2.23)

Hence it is enough to work with ‖Ẇ‖Aq .

Let us now evaluate the quantity ‖Ẇ‖Aq . To this aim, notice that ∆jf(x) =

[Kj ∗ f ] (x) where Kj(z) = 2jF−1χ(2jz). Therefore, using the notation Kj,x(y) =

Kj(x− y) we obtain:

E
[
‖Ẇ‖2q

Aq

]
=
∑
j≥−1

2−2qjκ′
∫
R
E
[
|W (Kj,x)|2q

]
ŵ2q
σ (x)dx. (2.24)

Using the fact that W (Kj,x) is Gaussian we thus have

E
[
|W (Kj,x)|2q

]
≤ cqE

q
[
|W (Kj,x)|2

]
.

Consequently, (2.24) can be recast as:

E
[
‖Ẇ‖2q

Aq

]
≤ cq

∑
j≥−1

2−2qjκ′
∫
R
Eq
[
|W (Kj,x)|2

]
ŵ2q
σ (x)dx. (2.25)

Now let us work with E
[
|W (Kj,x)|2

]
. According to (2.10) we have

E
[
|W (Kj,x)|2

]
=

∫
R
|FKj,x(ξ)|2µ(dξ).

Let us introduce a new measure ν on R defined by ν(dξ) = µ(dξ)

1+|ξ|2(1−α)
. Notice that

due to (2.14), ν is a finite measure. Since Kj = F−1χj and the support of χ is in a

closed interval, say [a, b], we obtain:

E
[
|W (Kj,x)|2

]
=

∫
R

∣∣χ(2−jξ)
∣∣2µ(dξ) ≤

∫
R
1[0,2jb](|ξ|)

(
1 + |ξ|2(1−α)

)
ν(dξ)

≤ ν
([

0, 2jb
])

(1 + (2jb)2(1−α)) ≤ cµ22(1−α)j. (2.26)
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Therefore plugging (2.26) into (2.25) and recalling that 1− α < κ′ < κ, we get:

E
[
‖Ẇ‖2q

Aq

]
≤ cq

∑
j≥−1

2−2qjκ′
∫
R
cqµ2(1−α)jqŵ2q

σ (x)dx

= Cq,µ

(∫
R
ŵ2q
σ (x)dx

) ∑
j≥−1

22qj(1−α−κ′). (2.27)

Owing to the Definition 2.2.1 of ŵσ, it is now readily checked that the right hand side

of (2.27) is convergent whenever q is large enough.

Similar calculations as the ones leading to (2.27) also show that the random vari-

able ‖W‖B−κ,ŵσ∞,∞
has moments of all orders.

2.3 Pathwise solution

Now that we have proved that our noise Ẇ is almost surely an element of B−κ,ŵσ∞,∞ ,

we will transform our stochastic eq. (2.1) into a deterministic one, which will be solved

in the Riemann-Stieltjes sense. We first label an assumption on a general distribution

driving the heat equation.

Hypothesis 2.3.1 Let δ ∈ (0, 1) be a fixed constant and σ > 0 be an arbitrarily small

constant. We consider a distribution W on R such that W ∈ B−κ,ŵσδ∞,∞ with κ ∈ (0, 1).

Remark 2.3.2 The constant δ ∈ (0, 1) in Hypothesis 2.3.1 is related to the exponen-

tial weights in Definition 2.2.1.

We now introduce the notion of solution for equation (2.1) which will be considered

in the sequel.

Definition 2.3.1 Let W be a distribution satisfying Hypothesis 2.3.1. Let u ∈ Cκu,λ,σq

for λ, σ > 0 and κu ∈ (κ, 1), where Cκu,λ,σq is introduced in Notation 2.2.2. Consider

an initial condition u0 ∈ Bκu,v0q,p where we recall vt = wλ+σt. We say that u is a mild

solution to equation
∂u

∂t
=

1

2
∆u+ uW (2.28)
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with initial condition u0, if it satisfies the following integral equation

ut = ptu0 +

∫ t

0

pt−s(usW )ds. (2.29)

Remark 2.3.3 Observe that the Dirac delta initial condition δ0 falls beyond the scope

of our considerations, as κu needs to be negative in order to have δ0 ∈ Bκu,wλq,p .

Remark 2.3.4 In (2.29), we implicitly assume that the product of distributions u ·W

is well defined. This will be treated in the forthcoming Lemma 2.3.8.

Before we can solve equation (2.29), we list a few results which would prove useful

later. The first one recalls the action of the heat semigroup on weighted Besov spaces.

Lemma 2.3.5 The following smoothing effect of the heat flow is valid in Besov

spaces: Let κ̂ ≥ κ be real numbers, γ0 > 0 and q ∈ [1,∞]. Then there exists C < ∞

such that uniformly over γ ≤ γ0 and t > 0,

‖ptf‖Bκ̂,wγq,∞
≤ Ct−

κ̂−κ
2 ‖f‖Bκ,wγq,∞

Proof See [24, Proposition 3.11].

We now give a result on comparison of Besov norms for different weights w.

Lemma 2.3.6 Let w1, w2 ∈ W be such that w1 ≤ w2. Then for every f ∈ Bκ,w2
p,q we

have

‖f‖Bκ,w1
p,q
≤ ‖f‖Bκ,w2

p,q

Proof Follows easily from Definition 2.2.4.

Our next preliminary lemma is an elementary comparison between the weights cor-

responding to Definition 2.2.1.

Lemma 2.3.7 Recall that the weight vt = wλ+σt has been defined for t ≥ 0 in No-

tation 2.2.2. Then for 0 ≤ s < t and for all σ > 0, there exists a constant cσ such

that

vt ≤ cσ|t− s|−σvsŵδσ.
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Proof For 0 ≤ s < t, observe that vt = vse
−σ(t−s)|x|δ∗ . Then we use the fact that

there exists a constant cα such that

0 ≤ xαe−sx ≤ cα
sα

for x, α, s ∈ R+

Consequently e−σ(t−s)|x|δ∗ ≤ cσ|t− s|−σ|x|−σδ∗ which implies vt ≤ cσ|t− s|−σvsŵσδ.

Let us recall the definition of products of distributions within the weighted Besov

spaces framework.

Lemma 2.3.8 Let α < 0 < β be such that α + β > 0. In addition, consider p, q ∈

[1,∞] and ν ∈ [0, 1]. Let p1, p2 ∈ [1,∞] be such that

1

p1

=
ν

p
,

1

p2

=
1− ν
p

and w = wγŵσ.

Then the mapping (f, g) 7→ fg can be extended to a continuous linear map from

Bα,wγp1,q × Bβ,ŵσp2,q
to Bα,wp,q . Moreover there exists a constant C such that

‖fg‖Bα,wp,q ≤ C‖f‖Bα,wγp1,q
‖g‖Bβ,ŵσp2,q

.

Proof The proof is similar to that of [24, Corollary 3.21].

We also include the following extension of Gronwall’s Lemma taken from [28, Lemma

15] which will be required in order to show existence of our solution.

Lemma 2.3.9 Let g : [0, T ] 7→ R+ be a non-negative function such that
∫ T

0
g(s)ds <

∞. Let (fn, n ∈ N) be a sequence of non-negative functions on [0, T ] and k1, k2 be

non-negative numbers such that for 0 ≤ t ≤ T ,

fn(t) ≤ k1 +

∫ t

0

(k2 + fn−1(s))g(t− s)ds. (2.30)

If sup0≤s≤T f0(s) < ∞, then supn≥0 sup0≤t≤T fn(t) < ∞, and if k1 = k2 = 0, then∑
n≥0 fn(t) converges uniformly on [0, T ].

We are ready to state our main result about existence and uniqueness of solution

for our abstract heat equation (2.28).
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Proposition 2.3.1 Let W be a distribution as in Hypothesis 2.3.1. Consider λ > 0

and q ≥ 1. Then there exists a unique solution to equation (2.29) lying in Cκu,λ,σq

where κu ∈ (κ, 1) and where Cκu,λ,σp is defined in Notation 2.2.2.

Proof We will follow a standard Picard iteration scheme to prove our result. Con-

sider a small time interval [0, τ ] where τ is to be fixed later. We restrict all spaces

and corresponding norms on this time interval. Define u(0) ≡ u0 and for n ≥ 0 set

u
(n+1)
t =

∫ t

0

pt−s(u
(n)
s W )ds. (2.31)

Fix κu ∈ (κ, 1) and consider δu(n)
t = u

(n+1)
t − u(n)

t . Observe that from (2.31) and then

applying Lemma 2.3.5 we obtain

‖δu(n+1)
t ‖Bκu,vtq,∞

≤
∫ t

0

‖pt−s(δu(n)
s W )‖Bκu,vtq,∞

≤ C

∫ t

0

|t− s|−
κu+κ

2 ‖δu(n)
s W ‖B−κ,vtq,∞

ds.

where here and in the following C is a generic constant which may change in subse-

quent steps. Now applying Lemmas 2.3.6 and 2.3.7 we get

‖δu(n+1)
t ‖Bκu,vtq,∞

≤ C

∫ t

0

(t− s)−
κu+κ

2
−σ‖δu(n)

s W ‖B−κ,vsŵδσq,∞
ds.

Using ν = 1 in Lemma 2.3.8 and observing κu > κ, we find

‖δu(n)
s W ‖B−κ,vsŵδσq,∞

≤ ‖δu(n)
s ‖Bκu,vsq,∞

‖W ‖B−κ,ŵδσ∞,∞
.

Consequently,

‖δu(n+1)
t ‖Bκu,vtq,∞

≤ C‖W ‖B−κ,ŵδσ∞,∞

∫ t

0

‖δu(n)
s ‖Bκu,vsq,∞

|t− s|(κu+κ)/2+σ
ds. (2.32)

Observe that

sup
0≤s≤τ

‖δu(0)
s ‖Bκu,vsq,∞

= sup
0≤s≤τ

‖u(1)
s − u(0)

s ‖Bκu,vsq,∞
= sup

0≤s≤τ
‖psu0 − u0‖Bκu,vsq,∞

.

Also recall that vs = wλ+σs, where the weight wλ+σs has been defined in Defini-

tion 2.2.1 above. Consequently ‖psu0‖Bκu,vsq,∞
≤ ‖psu0‖Bκu,v0q,∞

. Thus, owing to Lemma 2.3.5

and 2.3.6, we have

sup
0≤s≤τ

‖δu(0)
s ‖Bκu,vsq,∞

≤ sup
0≤s≤τ

‖psu0 − u0‖Bκu,v0q,∞
≤ C‖u0‖Bκu,v0q,∞
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which is finite by our assumption on the initial condition. We can thus apply Gron-

wall’s Lemma as stated in Lemma 2.3.9 to equation (2.32). As a consequence we find∑
n≥0 ‖δu

(n)
s ‖Bκu,vsq,∞

converges uniformly on [0, τ ] and thus u(n) converges uniformly in

Cκu,λ,σq . This proves existence of a solution on [0, τ ] (observe that we don’t need τ to

be small for this step).

In order to prove uniqueness, we can resort to the same techniques. Consider two

solutions u1 and u2 in Cκu,λ,σq and set u12 = u1 − u2. We have to show u12 ≡ 0. Since

we have

u12
t =

∫ t

0

pt−s(u
12
s W )ds,

we obtain similarly to (2.32)

‖u12
t ‖Bκu,vtq,∞

≤ C‖W ‖B−κ,ŵδσ∞,∞

∫ t

0

‖u12
s ‖Bκu,vsq,∞

|t− s|(κu+κ)/2+σ
ds. (2.33)

Therefore, choosing σ small enough we get:

‖u12
t ‖Bκu,vtq,∞

≤
(
C‖W ‖B−κ,ŵδσ∞,∞

τ η
)

sup
0≤s≤τ

‖u12
s ‖Bκu,vsq,∞

.

where η = 1−
(
κu+κ

2
+ σ
)
. Then choosing τ small enough so that (‖W ‖B−κ,ŵδσ∞,∞

τ η) < 1,

we find ‖u12
t ‖Bκu,vtq,∞ = 0 for all t ∈ [0, τ ]. This achieves uniqueness on the small interval

[0, τ).

In order to get global existence and uniqueness we observe that our considerations

above do not depend on the initial condition of the solution. Hence one can repeat

the proof on subsequent intervals of size τ to get the result.

The proof for uniqueness of solution in Proposition 2.3.1 can also be achieved through

Picard iterations applied to (2.33) in order to get ‖u12
t ‖ = 0. This alternative proof

would thus avoid the need to consider a small τ . We thank one of the reviewers for

drawing our attention to this fact.

We can now apply our general Proposition 2.3.1 in order to solve our original

equation (2.1).
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Theorem 2.3.10 Let W be the centered Gaussian noise defined by (2.11), with H ∈(
0, 1

2

)
and consider κ ∈ (1−H, 1). Let u0 ∈ Bκu,wλq,∞ for a given λ > 0 and κu ∈ (κ, 1),

where wλ = e−λ|x|
δ
∗ is defined in Definition 2.2.1. Consider the space Cκu,λ,σq introduced

in Notation 2.2.2. Then equation (2.1) admits a solution which is unique in Cκu,λ,σq .

2.4 Feynman-Kac representation

In this section we shall establish a Feynman-Kac representation for the solution of

(2.1), which will be at the heart of our Lyapounov computations. We first introduce

some additional notations about random environments.

Notation 2.4.1 Let B be a Brownian motion defined on a probability space (Ω̂, F̂ ,P),

independent of the space (Ω,F ,P) on which W is defined. In the sequel we denote

by E (resp. E) the expectation on (Ω,F ,P) (resp. (Ω̂, F̂ ,P)). We will also write Ex
when we want to highlight the initial value x of the Brownian motion B.

We now introduce the Feynman-Kac functional we shall use in order to represent

the solution of (2.1).

Notation 2.4.2 Let W be the Gaussian noise defined by (2.11). For ε > 0 we set

V ε
t (x) =

∫ t

0

∫
R
lε(B

x
r − y)W (dy)dr, (2.34)

where lε stands for the ε-mollifier generated from the standard bump function l as

given in the general notation of the Introduction. We will also write, somehow infor-

mally,

Vt(x) =

∫ t

0

W (δBxs )ds =

∫ t

0

∫
R
δ0(Bx

r − y)W (dy)dr, (2.35)

which will be seen as a L2-limit of the random variables V ε
t .

We state the following lemma taken from [29, Theorem 1.3.5] which will be used

in the proof for Proposition 2.4.1
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Lemma 2.4.3 For any non-decreasing sub-additive process Zt defined on (Ω̂, F̂ ,P)

with continuous path and with Z0 = 0, the following inequality holds true for all θ ≥ 0

and t > 0:

E [exp (θZt)] <∞ ∀θ, t > 0.

In addition,

lim
t→∞

1

t
log (E [exp (θZt)]) = Ψ(θ),

where Ψ is a function from [0,∞) to [0,∞).

We now give a rigorous meaning to the quantity Vt(x) by showing that it can be seen

as a L2−limit of V ε
t (x). We also include some exponential bounds which are crucial

for the Feynman-Kac representation of (2.1).

Proposition 2.4.1 For ε > 0, t ≥ 0 and x ∈ R, let V ε
t (x) be defined by (2.34). Then

(i) {V ε
t (x); ε > 0} is a convergent sequence in L2(Ω × Ω̂). We call its limit Vt(x),

where Vt(x) is defined by (2.35).

(ii) For all q ≥ 1 we have

lim
ε↓0

E⊗ E
[∣∣eqV εt − eqVt∣∣] = 0.

Proof We divide this proof in several steps.

Step 1: Proof of (i). Observe that V ε
t (x) can be written as

∫ t
0
W (lε(B

x
r −·))dr, where

W (lε(B
x
r − ·)) has to be understood as a Wiener integral conditionally on B (see

(2.13)). In the following we try to find limε1,ε2→0 E⊗E [V ε1
t (x)V ε2

t (x)], which is enough

to ensure the L2 convergence of V ε
t (x). To this aim, we invoke the isometry (2.11) in

order to get

E⊗ E [V ε1
t (x)V ε2

t (x)] = E⊗ E

[∫ t

0

∫ t

0

W (lε1(B
x
u − ·))W (lε2(B

x
v − ·))du dv

]
= E

∫ t

0

∫ t

0

∫
R
F lε1(Bx

u − ·)(ξ)F lε2(Bx
v − ·)(ξ)µ(dξ) du dv.
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Taking into account the expression for F lε(Bx
u − ·) we thus get

E⊗ E [V ε1
t (x)V ε2

t (x)] = E
[∫ t

0

∫ t

0

∫
R
F l(ε1ξ)e

−ι〈ξ,Bxu〉F l(ε2ξ)e
ι〈ξ,Bxv 〉µ(dξ) du dv

]
= E

[∫
R

(∫
[0,t]2

e−ι〈ξ,B
x
u−Bxv 〉du dv

)
F l(ε1ξ)F l(ε2ξ)µ(dξ)

]
.

(2.36)

We can now use the fact that Bx
u −Bx

v ∼ N (0, v − u) to write

E⊗ E [V ε1
t (x)V ε2

t (x)] =

∫
R

(∫
[0,t]2

ψε1,ε2(u, v; ξ)dudv

)
µ(dξ), (2.37)

where ψε1,ε2(u, v; ξ) is defined by

ψε1,ε2(u, v; ξ) = e−
1
2
|ξ|2|v−u|F l(ε1ξ)F l(ε2ξ).

Moreover, setting ψ(u, v; ξ) = e−
1
2
|ξ|2|v−u|, it is readily seen that

lim
ε1,ε2→0

ψε1,ε2(u, v; ξ) = ψ(u, v; ξ), and |ψε1,ε2(u, v; ξ)| ≤ |ψ(u, v; ξ)| .

In addition, the reader can check that∫
R

∫
[0,t]2

ψ(u, v; ξ) du dv µ(dξ) ≤ c

∫
R

µ(dξ)

1 + |ξ|2
<∞.

Therefore, a standard application of the dominated convergence theorem to rela-

tion (2.37) proves that for every sequence εn converging to zero, V εn
t (x) converges in

L2 to a limit denoted by Vt(x) as mentioned before.

Step 2: Conditional law of Vt(x). We will next show that Vt is conditionally Gaussian

for all t ≥ 0 with conditional variance given by

E
[
V 2
t

]
=

∫
R

∣∣∣∣∫ t

0

eıξBsds

∣∣∣∣2µ(dξ). (2.38)

This will follow from similar calculations as before. First observe that V ε
t is condi-

tionally Gaussian, with conditional variance given by

E[V ε
t ]2 = E

[(∫ t

0

W (lε(B
x
r − ·))dr

)2
]

(2.39)
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The right hand side of (2.39) can be simplified by using the covariance structure of

our noise as follows, using the same computations as for (2.36):

E
[
(V ε

t )2] =

∫ t

0

∫ t

0

E [W (lε(B
x
r − ·))W (lε(B

x
s − ·))] drds =

∫
R
|F l(εξ)|2

∣∣∣∣∫ t

0

eıξBsds

∣∣∣∣2µ(dξ).

Since Vt is the L2 limit of V ε
t and L2 limits of Gaussian processes remain Gaussian, we

now have that conditioned on the Brownian motion, Vt is Gaussian with zero mean

and variance given by (2.38).

Step 3: Exponential moments of Vt. Our next aim is to show that Vt entertains

exponential moments. Specifically we will prove that for all q > 0 we have

E⊗ E
[
eqVt
]
<∞. (2.40)

Since we have already shown that Vt is conditionally Gaussian, we have

E
[
eqVt
]

= exp

(
q2

2

∫
R

∣∣∣∣∫ t

0

eıξBsds

∣∣∣∣2µ(dξ)

)
. (2.41)

Hence, the unconditional expectation of eqVt is given by

E⊗ E
(
eqVt
)

= E

[
exp

(
q2

2

∫
R

∣∣∣∣∫ t

0

eıξBsds

∣∣∣∣2µ(dξ)

)]
.

To see that this quantity is finite let us define the following random variable

Zt =
1

t

∫
R

∣∣∣∣∫ t

0

eıλBudu

∣∣∣∣2µ(dλ).

Observe that we can write:

Zs+t
s+ t

=
1

(s+ t)2

∫
R

∣∣∣∣∫ s+t

0

eıλBudu

∣∣∣∣2µ(dλ)

=

∫
R

∣∣∣∣ s

s+ t

(
1

s

∫ s

0

eıλBudu

)
+

t

s+ t

(
1

t

∫ s+t

s

eıλBudu

)∣∣∣∣2µ(dλ). (2.42)

Using Jensen’s inequality in (2.42) we now obtain:

Zs+t
s+ t

≤
∫
R

(
s

s+ t

∣∣∣∣1s
∫ s

0

eıλBudu

∣∣∣∣2 +
t

s+ t

∣∣∣∣1t
∫ s+t

s

eıλBudu

∣∣∣∣2
)
µ(dλ)

=
Zs + Z ′t
s+ t

where Z ′t =
1

t

∫
R

∣∣∣∣∫ s+t

s

eıλBudu

∣∣∣∣2µ(dλ).
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We have thus obtained that Z satisfies the following sub-additive property:

Zs+t ≤ Zs + Z ′t. (2.43)

Moreover, notice that Z ′t above can be written as

Z ′t =
1

t

∫
R

∣∣∣∣∫ s+t

s

eıλ(Bu−Bs)du

∣∣∣∣2µ(dλ),

due to the fact that |e−iλBs|2 = 1. Hence, it is readily checked that Z ′t is independent of

{Bu; 0 ≤ u ≤ s} and thus also independent of {Zu; 0 ≤ u ≤ s}. In addition, Z ′t
d
= Zt.

Let us now slightly generalize those considerations. Namely, consider a new process

Z̃ defined as

Z̃T = max
t≤T

Zt. (2.44)

It is easily seen that the new process Z̃t is also sub-additive in nature. In other words,

for all T1, T2 ≥ 0, we have

Z̃T1+T2 ≤ Z̃T1 + Z̃ ′T2 ,

where Z̃ ′T2 is independent of {Z̃t; 0 ≤ t ≤ T1} with Z̃ ′T2
d
= Z̃T2 . In addition, since

Z̃0 = 0 and Z̃ has continuous paths, we can apply Lemma 2.4.3 in order to obtain for

all θ > 0 and t > 0:

E
[
exp

{
θZ̃t

}]
<∞,

and as a direct consequence we also have:

E [exp {θZt}] <∞.

This proves the boundedness of the unconditional expectation of the exponential

moments of Vt as expressed in (2.40).

Step 4: Conclusion. Observe that using the mean value theorem in its integral form

and then Cauchy-Schwarz inequality one can write:

E⊗ E
[∣∣eqV εt − eqVt∣∣] = E⊗ E

[∣∣∣∣q (Vt − V ε
t )

∫ 1

0

eλqV
ε
t +(1−λ)qVtdλ

∣∣∣∣]

≤ q
(
E⊗ E

[
|Vt − V ε

t |
2]) 1

2

(
E⊗ E

[∣∣∣∣∫ 1

0

eλqV
ε
t +(1−λ)qVtdλ

∣∣∣∣2
]) 1

2

.

(2.45)
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Using Cauchy-Schwarz inequality on two consecutive occasions separated by Fubini,

the object on the right hand side in (2.45) can be further decomposed as:

E⊗ E

[∣∣∣∣∫ 1

0

eλqV
ε
t +(1−λ)qVtdλ

∣∣∣∣2
]
≤
∫ 1

0

E⊗ E
[
e2λqV εt +2(1−λ)qVt

]
dλ

≤
∫ 1

0

(
E⊗ E

[
e4λqV εt

]) 1
2
(
E⊗ E

[
e4(1−λ)qVt

]) 1
2dλ

(2.46)

Observe from the variance of V ε
t calculated earlier in (2.41) that

E
[
eqV

ε
t
]

= exp

[
q2

2

∫
R
e−εξ

2

∣∣∣∣∫ t

0

eıξBsds

∣∣∣∣2µ(dξ)

]
,

and consequently

E⊗ E
[
eqV

ε
t
]
≤ E⊗ E

[
eqVt
]
.

Plugging this observation into (2.46) we obtain

E⊗ E

[∣∣∣∣∫ 1

0

eλqV
ε
t +(1−λ)qVtdλ

∣∣∣∣2
]
≤ E⊗ E

[
e4qVt

]
, (2.47)

which is finite by our considerations in Step 3 (see (2.40)). Using (2.47) in (2.45) we

have

E⊗ E
[∣∣eqV εt − eqVt∣∣] ≤ q

(
E⊗ E

[
|Vt − V ε

t |
2]) 1

2
(
E⊗ E

[
e4qVt

]) 1
2 .

Since {V ε
t (x); ε > 0} is a convergent sequence in L2(Ω × Ω̂), our conclusion now

follows by taking limits.

With the exponential moments of Vt(x) in hand, we can now obtain the announced

Feynman-Kac representation of u.

Proposition 2.4.2 Consider the Gaussian noise Ẇ defined by (2.11). Let u be the

unique solution of equation (2.1) with initial condition u0(x) = 1, written in its mild

form as:

ut(x) = 1 +

∫ t

0

pt−s(usẆ )ds. (2.48)
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Then u can be represented as

ut(x) = Ex [exp (Vt(x))] , (2.49)

where Vt(x) is the Feynman-Kac functional defined by (2.35).

Proof For ε > 0, let lε be the approximation of the identity given in the Introduc-

tion. We define a smoothed noise Ẇ ε by Ẇ ε = Ẇ ∗ lε, as well as the approximation

uε of u as the solution of

uεt(x) = 1 +

∫ t

0

pt−s(u
ε
s Ẇ

ε)ds. (2.50)

Along the same lines as for Proposition 2.3.1 we can prove that

lim
ε↓0

uε = u in Cκu,λ,σq ,

where κu, λ and q are defined in Proposition 2.3.1. In addition, since uε solves (2.50)

in the strong sense, it also admits a Feynman-Kac representation of the form

uεt(x) = E
[
eV

ε
t (x)
]
,

where V ε
t (x) is defined by (2.34). For any p ≥ 1, we are now claiming that for all

t > 0 we have

lim
ε↓0

E [|uεt(x)− ut(x)|p] = 0. (2.51)

In order to get (2.51), notice that

E [|uεt(x)− ut(x)|p] = E
[∣∣E [eVt(x) − eV εt (x)

]∣∣p]
≤ E⊗ E

[
|Vt(x)− V ε

t (x)|p
(
epVt(x) + epV

ε
t (x)
)]
.

An elementary application of Cauchy-Schwarz inequality and the fact that Vt(x),

V ε
t (x) are conditionally Gaussian yield

E [|uεt(x)− ut(x)|p] ≤ cp
(
E⊗ E

[
|Vt(x)− V ε

t (x)|2
]) p

2

×
[(
E⊗ E

[
e2pV εt (x)

]) 1
2 +

(
E⊗ E

[
e2pVt(x)

]) 1
2

]
.
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We can now apply directly Proposition 2.4.1 in order to get

lim
ε↓0

E [|uεt(x)− ut(x)|p] = 0.

The proof of (2.49) is now achieved.

2.5 Principal eigenvalues

Recall that we have shown in Proposition 2.4.2 that the unique solution u of our

stochastic heat equation (2.48) can be written as

ut(x) = Ex [exp(Vt(x))] = Ex
[
exp

(∫ t

0

W (δBs)ds

)]
,

where the second identity stems from (2.35).

Furthermore, W being a homogeneous noise, the asymptotic behavior of u does not

depend on the space parameter x ∈ R. For sake of simplicity we will thus consider

x = 0 and investigate the quantity

ut(0) = E0

[
exp

(∫ t

0

W (δBs)ds

)]
.

As we will see later on the following equivalence holds true as t→∞:

E0

[
exp

(∫ t

0

W (δBs)ds

)]
≈ exp (tλẆ (QRt)) (2.52)

for a given region Rt and a principal eigenvalue type quantity λẆ defined as

λẆ (D) = sup
g∈K(D)

{
W (g2)− 1

2

∫
D

|g′(x)|2dx
}
. (2.53)

In (2.53), K(D) is a set of functions defined by

K(D) =
{
g ∈ S(D) : ‖g‖2 = 1 and g′ ∈ L2(R)

}
, (2.54)

where S(D) is the space of infinitely smooth functions that vanish at the boundary of

an open domain D. Notice that K(D) can be seen as a subset of the classical Sobolev

space W 1,2(R). In addition, observe that the set K(D) is not compact, so that the
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reader might think that the sup defining λẆ (D) in (2.53) is ill-defined. However,

as we will see in the proof of Proposition 2.5.1, our optimization can be reduced by

scaling to a compact set G(D) defined by

G(D) :=

{
g ∈ S(D) : ‖g‖2

2 +
1

2
‖g′‖2

2 = 1

}
. (2.55)

Before establishing relation (2.52), we will try to get some information about the

limiting behavior of λẆ (D) as the size of the box D becomes large.

2.5.1 Basic results

In this section we establish some Gaussian and analytic results which will be

building blocks in the asymptotics (2.52). We start by noting that W (g) is a well-

defined Gaussian field on the space K(D) defined by (2.54).

Lemma 2.5.1 Let g ∈ K(D) for any D ⊂ R. Then

W (g2)− 1

2
‖g′‖2

2 <∞ a.s.

Proof Note that the variance of W (g2) is given by

Var
[
W (g2)

]
= cH

∫
R

∣∣Fg2(ξ)
∣∣2|ξ|1−2Hdξ. (2.56)

Also observe that for g ∈ K(D) we have

∣∣Fg2(ξ)
∣∣ =

∣∣∣∣∫
R
e−ıξxg2(x)dx

∣∣∣∣ ≤ ∫
R

∣∣g2(x)
∣∣dx = 1.

In addition, an elementary integration by parts argument shows that∫
R
e−ıξxg2(x)dx = −i

∫
R

(
1

ξ

dg2

dx

)
e−iξxdx.

Hence for any ξ ∈ R and g ∈ K(D) we get

∣∣Fg2(ξ)
∣∣ ≤ |ξ|−1

∫
R

∣∣∣∣dg2

dx
(x)

∣∣∣∣dx = 2|ξ|−1

∫
R
|g(x)||g′(x)|dx ≤ 2|ξ|−1‖g′‖2,
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where the last inequality follows from Cauchy-Schwarz inequality and observing that

‖g‖2 = 1 for g ∈ K(D). Let us now break up the variance in two parts by utilizing

the two bounds just established.∫
R

∣∣Fg2(ξ)
∣∣2|ξ|1−2Hdξ ≤

∫ 1

−1

|ξ|1−2Hdξ + 4‖g′‖2
2

∫
|ξ|≥1

|ξ|−(1+2H)dξ =
1

1−H
+

4‖g′‖2
2

H
(2.57)

We thus get that the variance of W (g2) is bounded and consequently W (g2) is finite

almost surely. Coupled with the fact that ‖g′‖2 < ∞ whenever g is an element of

K(D), we get that

W (g2)− 1

2
‖g′‖2

2 <∞ a.s.

Remark 2.5.2 The following variational quantity will play a prominent role in our

limiting results (see also (2.7) in Theorem 2.1.2):

E ≡ sup
g∈G(R)

∫
R

∣∣∣∣∫
R
eıλxg2(x)dx

∣∣∣∣2|λ|1−2Hdλ, where G is defined by (2.55). (2.58)

The computations of Lemma 2.5.1 imply that E is a finite quantity. Moreover, if we

denote E = E(Ẇ ), then it is easily seen from relation (2.56) that

E(pẆ ) = p2E(Ẇ ) (2.59)

The first result we need on Gaussian processes is an entropy type bound.

Lemma 2.5.3 Let Ẇ be the noise defined by (2.11), and recall that G(−ε, ε) is given

by (2.55) for all ε > 0. Then we have:

lim
ε→0+

E

[
sup

g∈G(−ε,ε)
W (g2)

]
= 0.

Proof The beginning of the proof is similar to [4, Lemma 2.2], and we will skip

the details for sake of conciseness. Indeed, one can mimic the entropy arguments

developed in [4, Proposition 2.1] and show that

lim
δ↓0

E sup
{
W (g2); g ∈ G(Q1) and E[W (g2)]2 ≤ δ

}
= 0,
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where we remind the reader of the notation Qt = (−t, t). Then, still following the

steps of [4, Lemma 2.2], it suffices to show that

lim
ε↓0

sup
g∈G(Qε)

E
[
W (g2)

]2
= 0. (2.60)

To establish (2.60) we use the alternate expression for our covariance function as in

(2.12), which yields the following expression for all functions g ∈ G(Qε):

E
[
W (g2)

]2
= cH

∫
R

∫
R

|g2(x+ y)− g2(x)|2

|y|2−2H
dxdy. (2.61)

Since the domain of any function g ∈ G(Qε) is contained in Qε, let us break the right

hand side of (2.61) into three parts by integrating over three regions {Ri}i=1,2,3, where

R1 = {(x, y) : |x| ≤ ε, |x+ y| ≤ ε} ,

R2 = {(x, y) : |x| ≤ ε, |x+ y| > ε} ,

R3 = {(x, y) : |x| > ε, |x+ y| ≤ ε} .

Consequently,

E[W (g2)]2 = I1,ε + I2,ε + I3,ε,

where

Ii,ε = cH

∫
Ri

|g2(x+ y)− g2(x)|2

|y|2−2H
dxdy.

Let us now work with each integral Ii,ε in succession. In order to upper-bound I1,ε,

observe that

∣∣g2(x+ y)− g2(x)
∣∣ = |g(x+ y) + g(x)| |g(x+ y)− g(x)| ,

and that

|g(x+ y)− g(x)| =
∣∣∣∣∫ x+y

x

g′(z)dz

∣∣∣∣
≤

√∣∣∣∣∫ x+y

x

|g′(z)|2dz
∣∣∣∣ |y| ≤ ‖g′‖2

√
|y|, (2.62)
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by an application of the Cauchy-Schwarz inequality. Thus the integrand in I1,ε can

be upper-bounded as follows:

|g2(x+ y)− g2(x)|2

|y|2−2H
=
|g(x+ y) + g(x)|2|g(x+ y)− g(x)|2

|y|2−2H

≤ 2 (g2(x+ y) + g2(x)) ‖g′‖2
2|y|

|y|2−2H
, (2.63)

where we have used (2.62) and the fact that |a+ b|2 ≤ 2(a2 + b2). Plugging (2.63) in

I1,ε and using the fact that ‖g′‖2
2 ≤ 2 for every g ∈ G(Qε), we obtain:

I1,ε ≤ 4cH

∫
R1

g2(x+ y) + g2(x)

|y|1−2H
dxdy

= 4cH

[∫ ε

−ε
dx

∫ ε−x

−ε−x
dy

g2(x+ y)

|y|1−2H
+

∫ ε

−ε
dx

∫ ε−x

−ε−x
dy

g2(x)

|y|1−2H

]
≤ 4cH

[∫ ε

−ε
dx

∫ ε

−ε
dz

g2(z)

|z − x|1−2H
+

∫ ε

−ε
dx g2(x)

∫ 2ε

−2ε

dy
1

|y|1−2H

]
. (2.64)

Let us now recall some basic analytic facts taken from [30, Chapter 4]: the Sobolev

space W 1,2 is embedded in any Lk(R) for all k ≥ 2. More specifically, for all k ≥ 2

we have

‖g‖Lk(R) ≤ ck‖g‖W 1,2(R), (2.65)

where ck is a positive constant independent of g.

We shall invoke (2.65) in order to bound the first integral in the right hand side

of (2.64). Namely, apply Hölder’s inequality with two conjugate numbers p and q,

which gives

∫
(−ε,ε)2

g2(z)

|z − x|1−2H
dxdz ≤

(∫
(−ε,ε)2

|g(z)|2pdxdz
) 1

p

(∫
(−ε,ε)2

dxdz

|z − x|(1−2H)q

) 1
q

.

We now take a small constant δ > 0 and q = 1−δ
1−2H

, which means that p = 1−δ
2H−δ .

Then inequality (2.65) plus some elementary computations show that for ε < 1∫
(−ε,ε)2

g2(z)

|z − x|1−2H
≤ cH,δ‖g‖2

W 1,2(R)ε ≤ 3cH,δε,
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where we resort to the fact that ‖g‖2
W 1,2(R) ≤ 3 whenever g ∈ G(Qε) for the last

inequality. Using this information in (2.64) and noting that the second term in (2.64)

is bounded thanks to elementary considerations, we obtain:

I1,ε ≤ cH
(
3cH,δε+ ‖g‖2

2ε
2H
)
≤ cH,δε

2H . (2.66)

Let us now work with I2,ε and I3,ε. Observe that I2,ε can be expressed as follows:

I2,ε = cH

∫
R2

|g2(x+ y)− g2(x)|2

|y|2−2H
dxdy

= cH

∫
R2

g4(x)

|y|2−2H
dxdy

= cH

∫ ε

−ε
g4(x)

[∫ −ε−x
−∞

dy

|y|2−2H
+

∫ ∞
ε−x

dy

|y|2−2H

]
dx

=
cH

1− 2H

∫ ε

−ε
g4(x)

[
1

(ε− x)1−2H
+

1

(ε+ x)1−2H

]
dx.

We let the patient reader check that the same kind of identity holds for I3,ε. Thus,

we find that

I2,ε + I3,ε ≤
2cH

1− 2H

∫ ε

−ε
g4(x)

[
1

(ε− x)1−2H
+

1

(ε+ x)1−2H

]
dx. (2.67)

In order to bound the right hand side of (2.67), we use the same strategy as for I1,ε.

Namely, for p, q ≥ 1 satisfying 1
p

+ 1
q

= 1, Hölder’s inequality imply

I1,ε+I2,ε ≤
2cH

1− 2H

(∫ ε

−ε
g4p(x)dx

) 1
p

[(∫ ε

−ε

dx

(ε− x)(1−2H)q

) 1
q

+

(∫ ε

−ε

dx

(ε+ x)(1−2H)q

) 1
q

]
.

As before, let us now fix q = 1−δ
1−2H

. This implies that the integrals
∫ ε
−ε (ε± x)−(1−2H)qdx

are finite and each is equal to cδε1−δ for a universal constant cδ. Putting together this

information, we find

I2,ε + I3,ε ≤ cH,δ‖g‖4
4pε

δ
q .

Moreover, a second usage of equation (2.65) plus the fact that ‖g‖W 1,2(R) ≤
√

3 yield:

‖g‖4p ≤ cp‖g‖W 1,2 ≤ cp
√

3.

Thus, we obtain:

I2,ε + I3,ε ≤ cH,δε
δ
q . (2.68)
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Combining the inequalities (2.66) and (2.68) we find that

I1,ε + I2,ε + I3,ε ≤ cH,δε
ν ,

for a given ν > 0, uniformly for all g ∈ G(Qε). Therefore we get

lim
ε↓0

I1,ε + I2,ε + I3,ε = 0.

We have thus proved (2.60).

We now introduce the scalings which will be needed in our future computations.

Notation 2.5.4 For fixed u > 0 and t > 0 we introduce a scaling coefficient ht

defined as:

ht =
√
u(log t)

1
2(1+H) . (2.69)

Then for each g ∈ S(R), we define a L2(R)-rescaled function gt as follows:

gt(x) =
√
htg(htx). (2.70)

Also, denote by Qr the open interval (−r, r).

We now see how to rescale the principal eigenvalues related to Ẇ in boxes of the

form Qr.

Lemma 2.5.5 Let Ẇ be the Gaussian noise defined by (2.11). For a box Qt = (−t, t),

recall that λẆ (Qt) is given by formula (2.53). Then the following relation holds true:

λẆ (Qt) = h2
t sup
g∈K(Qtht )

{
1

h2
t

W (g2
t )−

1

2

∫
Qtht

|g′(x)|2dx

}
, (2.71)

where the quantities ht and the function gt are introduced in Notation 2.5.4.

Proof Notice that the map g 7→ gt when defined from K(Qtht) to K(Qt) is a

L2(R)-isomorphism between the two spaces. As a consequence, supg∈K(Qt) A(g) =

supg∈K(Qtht )
A(gt) for any general functional A defined on a domain included in L2(R).

Hence,

λẆ (Qt) = sup
g∈K(Qt)

{
W (g2)− 1

2

∫
Qt

|g′(x)|2dx
}

= sup
g∈K(Qtht )

{
W (g2

t )−
1

2

∫
Qt

|g′t(x)|2dx
}
.



64

Also, since g′t(x) = ht
3/2g′(htx), we get∫

Qt

|g′t(x)|2dx =

∫
Qt

h3
t |g′(htx)|2dx = h2

t

∫
Qtht

|g′(y)|2dy,

where the second identity is due to an elementary change of variable. Consequently,

λẆ (Qt) = sup
g∈K(Qt)

{
W (g2)− 1

2

∫
Qt

|g′(x)|2dx
}

= h2
t sup
g∈K(Qtht )

{
1

h2
t

W (g2
t )−

1

2

∫
Qtht

|g′(x)|2dx

}
, (2.72)

which is our claim.

Remark 2.5.6 One can justify the scaling by ht given by (2.69) in the following

way: let us start with the rescaled version (2.71) of λẆ (Qt), which is valid for any

weight ht. In addition, we will see in Section 2.5.2 that the main quantity we should

handle in (2.71) is the family
{
h−2
t W (g2

t ); t ≥ 0
}
and we want this family of Gaussian

random variables to remain stochastically bounded in t as t→∞. Next an elementary

computation (see (2.86) below for more details) reveals that for all g ∈ K we have

σ2
t,g ≡ Var

[
h−2
t W (g2

t )
]

= cH,gh
−2(1+H)
t . (2.73)

Due to the Gaussian nature of h−2
t W (g2

t ), we thus have (for all x > 0)

P
(
h−2
t

∣∣W (g2
t )
∣∣ > x

)
≤ c1e

−c2x2/σ2
t,g . (2.74)

A natural way to have the family {h−2
t W (g2

t ); t ≥ 0} stochastically bounded is thus

to pick the minimal ht such that one can use Borel-Cantelli in the right hand side

of (2.74). It is readily checked that this is achieved as long as σ−2
t,g is of order log t.

Recalling the expression (2.73) for σ2
t,g, this yields ht of order (log t)1/2(1+H).

In the following two subsections we explore the long-time asymptotics of λẆ (Qt).

More precisely, we will try to prove the following:

lim
t→∞

λẆ (Qt)

(log t)1/(1+H)
= (2cHE)1/(1+H) a.s. (2.75)
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2.5.2 Upper Bound

In order to get the upper bound part of (2.75) we rely on the general idea that

principal eigenvalues over a large domain can be essentially bounded by the maximum

value among the principal eigenvalues on some sub-domains. See [31, Proposition 1]

where this result is proved when the potential is defined pointwise. In [4] the same re-

sult is stated to be true for generalized functions as well. We start with an elementary

lemma whose proof is very similar to the aforementioned references.

Lemma 2.5.7 Let r > 0. There exists a non-negative continuous function Φ(x) on

R whose support is contained in the 1−neighborhood of the grid 2rZ, such that for

any R > r and any generalized function ξ,

λξ−Φy(QR) ≤ max
z∈2rZ∩QR

λξ(z +Qr+1), for all y ∈ Qr, (2.76)

where Φy(x) = Φ(x+ y). In addition Φ(x) is periodic with period 2r, namely

Φ(x+ 2rz) = Φ(x), x ∈ R, z ∈ Z, (2.77)

and there is a constant K > 0 independent of r such that

1

2r

∫
Qr

Φ(x)dx ≤ K

r
. (2.78)

We now show how to split the upper bound for the principal eigenvalue λẆ (Qt) into

small subsets.

Lemma 2.5.8 Let W be the noise defined by (2.10) and Qt = (−t, t). We consider

the principal eigenvalue λẆ (Qt) given by (2.53). Recalling that ht is given by (2.69),

the following inequality holds true:

λẆ (Qt) ≤ h2
t

(
K

r
+ max

z∈2rZ∩Qtht
Xz(t)

)
, (2.79)

where the random field {Xz(t); z ∈ 2rZ, t ≥ 0} is defined by:

Xz(t) = sup
g∈K(z+Qr+1)

{
W (g2

t )

h2
t

− 1

2

∫
Qtht

|g′(x)|2dx

}
. (2.80)

In (2.80), the set K(z + Qr+1) is given by (2.54) and the function gt is defined by

(2.70).
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Proof Let {Wt(ψ), ψ ∈ D(R)} be the generalized Gaussian field defined asWt(ψ) =

W (ψ̂t) where ψ̂t(x) = htψ(htx). Then with the definition (2.70) of gt in mind, notice

that W (g2
t ) = Wt(g

2). Thus invoking Lemma 2.5.5 we have:

1

h2
t

λẆ (Qt) = sup
g∈K(Qtht )

{
1

h2
t

W (g2
t )−

1

2

∫
Qtht

|g′(x)|2dx

}

= sup
g∈K(Qtht )

{
1

h2
t

Wt(g
2)− 1

2

∫
Qtht

|g′(x)|2dx

}

= sup
g∈K(Qtht )

{〈
1

h2
t

Ẇt −
1

2r

∫
Qr

Φydy, g2

〉
+

〈
1

2r

∫
Qr

Φy(x)dy, g2

〉
− 1

2

∫
Qtht

|g′(x)|2dx

}
,

where 〈Ẇt, g
2〉 is understood in the distribution sense. Hence inequality (2.78) and

the fact that 〈g2,1〉 = 1 if g ∈ K(Qtht) yields

1

h2
t

λẆ (Qt) ≤
K

r
+ sup

g∈K(Qtht )

{〈
1

h2
t

Ẇt −
1

2r

∫
Qr

Φydy, g2

〉
− 1

2

∫
Qtht

|g′(x)|2dx

}
.

Therefore bounding sup
∫
by
∫

sup and invoking the definition (2.53) of the principal

eigenvalue, we end up with:

1

h2
t

λẆ (Qt) ≤
K

r
+

1

2r

∫
Qr

sup
g∈K(Qtht )

{〈
1

h2
t

Ẇt − Φy, g2

〉
− 1

2

∫
Qtht

|g′(x)|2dx

}
dy

≤ K

r
+

1

2r

∫
Qr

λ Ẇt
h2t
−Φy

(Qtht)dy.

We can now resort to (2.76) in order to get:

1

h2
t

λẆ (Qt) ≤
K

r
+ max

z∈2rZ∩Qtht
λ Ẇt
h2t

(z +Qr+1) .

Recall again that Ẇt is defined by Wt(ψ) = W (ψ̂t) where ψ̂t(x) = htψ(htx). Thus we

have
1

h2
t

λẆ (Qt) ≤
K

r
+ max

z∈2rZ∩Qtht
Xz(t),

where the random fields {Xz(t); z ∈ 2rZ, t ≥ 0} are defined by (2.80). Our claim

(2.79) is thus easily deduced.

We are ready to state the desired upper bound on our principal eigenvalue.
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Proposition 2.5.1 Let λẆ (Qt) be the principal eigenvalue of the random operator
1
2
∆+Ẇ over the restricted space K(Qt) of functions having compact support on (−t, t),

defined by (2.55). Then the following limit holds:

lim sup
t→∞

λẆ (Qt)

(log t)
1

1+H

≤ (2cHE)
1

1+H , a.s.

where we recall that E is defined by (2.58).

Proof We shall rely on relation (2.79) and bound maxz∈2rZ∩Qtht Xz(t) thanks to

Gaussian entropy methods. We divide the proof in several steps.

Step 1: Reduction to a Gaussian supremum. By homogeneity of the Gaussian field

{W (φ);φ ∈ D(R)}, the random variables {Xz(t)}z∈2rZ∩Qtht
are identically distributed.

Consequently we have

P

[
max

z∈2rZ∩Qtht
Xz(t) > 1

]
≤ # {2rZ ∩Qtht}P [X0(t) > 1]

≤
(
tht
r

)
P [X0(t) > 1] . (2.81)

Recalling the definition (2.80) of X0(t), we thus get

P

[
max

z∈2rZ∩Qtht
Xz(t) > 1

]
≤
(
tht
r

)
P

[
sup

g∈K(Qr+1)

{
1

h2
t

W (g2
t )−

1

2

∫
Qtht

|g′(x)|2dx

}
> 1

]
.

(2.82)

Notice that in (2.82) the Gaussian supremum for the family (W (g2
t )) is taken over

the set K given by (2.54). However, this set is not compact, which is not suitable

for Gaussian computations (see e.g. the discussion after [32, Lemma 1.3.1]). In the

following steps we will reduce our computations to an optimization over a compact

set of the form G (see equation (2.55)). To this aim, for any g ∈ K(Qr+1), set

φ =
g√

1 + 1
2
‖g′‖2

2

.

Notice that since ‖g‖2 = 1, we have

φ ∈ G(Qr+1), and φt =
gt√

1 + 1
2
‖g′‖2

2

,
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where the notation φt is given by (2.70). Therefore the following rough estimate holds

true for the parameter ht defined by (2.69):

1

h2
t

W (φ2
t ) ≤

1

h2
t

sup
f∈G(Qr+1)

W (f 2
t ).

Moreover, recalling that φ2
t =

(
1 + 1

2
‖g′‖2

2

)−1
g2
t , we find

1

h2
t

W (g2
t ) ≤

(
1 +

1

2
‖g′‖2

2

)
h2
t

sup
f∈G(Qr+1)

W (f 2
t ).

Thus, subtracting ‖g′‖2
2 on both sides of the above equation we get the following

relation for all g ∈ K(Qr+1):

(
1

h2
t

W (g2
t )−

1

2

∫
Qr+1

|g′(x)|2dx
)
≤

(
1 +

1

2
‖g′‖2

2

)
h2
t

sup
f∈G(Qr+1)

W (f 2
t )− 1

2
‖g′‖2

2

Taking supremum over g ∈ K (Qr+1), this yields

X0(t) ≤ sup
g∈K(Qr+1)


(

1 +
1

2
‖g′‖2

2

)
h2
t

sup
f∈G(Qr+1)

W (f 2
t )− 1

2
‖g′‖2

2

 .

Consequently, if X0(t) ≥ 1, we also have

sup
g∈K(Qr+1)

(
supf∈G(Qr+1) W (f 2

t )

h2
t

− 1

)(
1 +

1

2
‖g′‖2

2

)
≥ 0,

or otherwise stated:[
sup

f∈G(Qr+1)

W (f 2
t )

h2
t

− 1

]
sup

g∈K(Qr+1)

(
1 +

1

2
‖g′‖2

2

)
≥ 0.

It is readily checked that the above condition is met iff supf∈G(Qr+1) W (f 2
t ) ≥ h2

t .

Summarizing, we have shown that

{X0(t) ≥ 1} ⊂

{
sup

f∈G(Qr+1)

W (f 2
t ) ≥ h2

t

}
,

which implies

P (X0(t) ≥ 1) ≤ P

[
sup

g∈G(Qr+1)

W (g2
t ) ≥ h2

t

]
. (2.83)
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We are now reduced to the desired sup over a compact set.

Step 2: Gaussian concentration. We now evaluate the right hand side of (2.83) by

standard Gaussian supremum estimates. Namely, some elementary scaling arguments

show that for each g ∈ G (Qr+1),(
1 +

(h2
t − 1)

2
‖g′‖2

2

)−1/2

gt ∈ G(Q(r+1)/ht).

Moreover by the linearity of Gaussian fields and due to the fact that ‖g′‖2
2 ≤ 2

whenever g ∈ G(Qr+1), we get

E

[
sup

g∈G(Qr+1)

W (g2
t )

]
≤ h2

t E

[
sup

f∈G(Q(r+1)/ht
)

W (f 2)

]
≡ h2

t δt. (2.84)

In addition, Lemma 2.5.3 asserts that limt→∞ δt = 0 (notice that the fact of working

on a box with finite size r + 1 is crucial for this step). We are now in a position

to invoke Borell-TIS concentration inequality for Gaussian fields (See [32, Theorem

2.1.2]) and our inequality (2.84), which yields

P

[
sup

g∈G(Qr+1)

W (g2
t ) ≥ h2

t

]

= P

[
sup

g∈G(Qr+1)

W (g2
t )− E

(
sup

g∈G(Qr+1)

W (g2
t )

)
≥ h2

t (1− δt)

]

≤ exp

[
−h

4
t (1− δt)

2

2σ2
t

]
, (2.85)

where σ2
t is a parameter defined by σ2

t = supg∈G(Qr+1) Var [W (g2
t )].

We now find an upper bound for the term σ2
t in (2.85). This is achieved as follows:

Owing to the definition (2.11) of the covariance of W , we have

σ2
t = cH sup

g∈G(Qr+1)

∫
R

∣∣Fg2
t (ξ)

∣∣2|λ|1−2Hdλ

= cH sup
g∈G(Qr+1)

∫
R

∣∣∣∣∫
R
eıλxg2

t (x)dx

∣∣∣∣2|λ|1−2Hdλ.
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Therefore, recalling the definition (2.70) of gt and invoking some easy scaling argu-

ments we obtain:

σ2
t = cHh

2−2H
t sup

g∈G(Qr+1)

∫
R

∣∣∣∣∫
R
eıλxg2(x)dx

∣∣∣∣2|λ|1−2Hdλ

≤ cHh
2−2H
t sup

g∈G(R)

∫
R

∣∣∣∣∫
R
eıλxg2(x)dx

∣∣∣∣2|λ|1−2Hdλ = cHh
2−2H
t E , (2.86)

where we recall that E is a finite quantity according to (2.58). We can plug our upper

bound (2.86) for the item σ2
t in (2.85) and replace ht by its value

√
u(log t)1/(2(1+H)).

We end up with:

P

[
sup

g∈G(Qr+1)

W (g2
t ) ≥ h2

t

]
≤ exp

(
−(1− δt)2u1+H

2EcH
log t

)
.

We wish the series
∑

kP
(
supg∈G(Qr+1) W (g2

2k
) ≥ h2

2k

)
to be convergent. To this

aim, owing to the fact that limt→∞ δt = 0, for t sufficiently large we get

P

(
sup

g∈G(Qr+1)

W (g2
t ) ≥ h2

t

)
≤ exp [− (1 + ν) log t] =

1

t1+ν
, (2.87)

where ν > 0 is a small enough constant, provided the following condition is met:

u > (2cHE)1/(1+H). (2.88)

Here we highlight the fact that t−(1+ν) is obtained in the right hand side of (2.87). This

exponent lead to our choice of scaling by ht =
√
u(log t)

1
2(1+H) in our computations

(see Remark 2.5.6).

Step 3: Conclusion. Now, we summarize our steps so far. Thanks to (2.81), (2.83)

and (2.87) we have

P

[
max

z∈2rZ∩Qtht
Xz(t) ≥ 1

]
≤
(
tht
r

)
P [X0(t) ≥ 1]

≤
(
tht
r

)
P

[
sup

g∈G(Qr+1)

W (g2
t ) ≥ h2

t

]

≤
(
tht
r

)
exp (−(1 + ν) log t) =

ht
r

1

tν
.
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Take the sequence tk = 2k. Then we have

P

[
max

z∈2rZ∩Qtkhtk
Xz(tk) ≥ 1

]
≤
√
u

r

(log tk)
1

2(1+H)

tνk
=

√
u

r
(k log 2)

1
2(1+H) 2−kν ,

and the right hand side of the above inequality is the general term of a convergent

series. By Borell-Cantelli Lemma, we thus have

lim sup
k→∞

max
z∈2rZ∩Qtkhtk

Xz(tk) < 1, a.s. (2.89)

We now draw conclusions on the principal eigenvalue itself. Indeed, from (2.79) and

(2.89), it is readily checked that

lim sup
k→∞

λẆ (Qtk)

(log tk)
1

(1+H)

<

(
K

r
+ 1

)
u, a.s.

Thus some elementary monotonicity arguments show that

lim sup
t→∞

λẆ (Qt)

(log t)
1

(1+H)

<

(
K

r
+ 1

)
u a.s. (2.90)

Since the constant K in (2.90) is independent of r, and r can be arbitrarily large, we

also get

lim sup
t→∞

λẆ (Qt)

(log t)
1

(1+H)

≤ u a.s.

Eventually recall that we had to impose the condition (2.88) on u. However u can

be taken as close as we wish to the value (2cHE)
1

1+H . As a consequence we get

lim sup
t→∞

λẆ (Qt)

(log t)
1

(1+H)

≤ (2cHE)1/1+H a.s.

2.5.3 Lower Bound

This section is devoted to a lower bound counterpart of Proposition 2.5.1. We

start by a lemma asserting that λẆ (Qt) cannot get too small with respect to an order

of magnitude of h2
t .
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Lemma 2.5.9 Let λẆ (Qt) be the principal eigenvalue of the random operator 1
2
∆+Ẇ

over the restricted space K(Qt) of functions having compact support on (−t, t). Then

we have the following upper bound:

P
[
λẆ (Qt) ≤ h2

t

]
≤ P

[
sup

g∈G(Qtht )

W (g2
t )

h2
t

≤ 1

]
. (2.91)

Proof Observe that from (2.71),

P
(
λẆ (Qt) ≤ h2

t

)
= P

[
sup

g∈K(Qtht )

{
W (g2

t )

h2
t

− 1

2

∫
Qtht

|g′(x)|2dx

}
≤ 1

]
. (2.92)

Moreover,

P

[
sup

g∈K(Qtht )

{
W (g2

t )

h2
t

− 1

2

∫
Qtht

|g′(x)|2dx

}
≤ 1

]
≤ P

[
sup

g∈G(Qtht )

W (g2
t )

h2
t

≤ 1

]
. (2.93)

This is proved similarly to our considerations in Step 1 of the proof of Proposi-

tion 2.5.1, details are included here for sake of clarity.

Namely, in order to prove (2.93), notice that for g ∈ G (Qtht), we have φ = g
‖g‖2
∈

K(Qtht). Consequently

W (φ2
t )

h2
t

− 1

2

∫
Qtht

|φ′(x)|2dx ≤ sup
f∈K(Qtht )

{
W (f 2

t )

h2
t

− 1

2

∫
Qtht

|f ′(x)|2dx

}
.

Thus the bound

sup
f∈K(Qtht )

{
W (f 2

t )

h2
t

− 1

2

∫
Qtht

|f ′(x)|2dx

}
≤ 1 (2.94)

implies, still with φ = g/‖g‖2,

W (φ2
t )

h2
t

− 1

2

∫
Qtht

|φ′(x)|2dx ≤ 1.

This in turn gives the following inequality when we write down φ in terms of g:

W (g2
t )

h2
t

− 1

2

∫
Qtht

|g′(x)|2dx ≤ ‖g‖2
2.

Therefore we have obtained, for every g ∈ G(Qtht),

W (g2
t )

h2
t

≤ ‖g‖2
2 +

1

2
‖g′‖2

2 = 1,
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where the last equality follows from the fact that g ∈ G(Qtht). Taking supremum and

recalling that we have assumed (2.94), we get{
sup

g∈K(Qtht )

{
W (g2

t )

h2
t

− 1

2

∫
Qtht

|g′(x)|2dx

}
≤ 1

}
⊂

{
sup

g∈G(Qtht )

W (g2
t )

h2
t

≤ 1

}
.

Thus, (2.93) is proved and (2.92) can be further reduced to

P
[
λẆ (Qt) ≤ h2

t

]
≤ P

[
sup

g∈G(Qtht )

W (g2
t )

h2
t

≤ 1

]
,

which proves our result (2.91).

Our next lemma is a general bound for Gaussian vectors with nontrivial covariance

structure. It is borrowed from [4, Lemma 4.2] and will be used in a discretization

procedure which is part of our strategy for the lower bound on λẆ (Qt).

Lemma 2.5.10 Let (ξ1, . . . , ξn) be a mean-zero Gaussian vector with identically dis-

tributed components. Write R = maxi 6=j |Cov(ξi, ξj)| and assume that Var(ξ1) ≥ 2R.

Then for any A,B > 0, the following inequality holds true:

P

[
max
k≤n

ξk ≤ A

]
≤

(
P

[
ξ1 ≤

√
2R + Var(ξ1)

Var(ξ1)
(A+B)

])n

+ P

[
U ≥ B√

2R

]
where U is a standard normal random variable.

We can now state our lower bound on the principal eigenvalue λẆ (Qt).

Proposition 2.5.2 Under the same conditions as for Lemma 2.5.9, the following

lower bound is fulfilled:

lim inf
t→∞

λẆ (Qt)

(log t)
1

(1+H)

≥ (2cHE)
1

1+H a.s.

Proof We divide the proof in several steps.

Step 1: Reduction to a discrete Gaussian supremum. Let the constant r > 0 be fixed

but arbitrary and set Nt = 2rZ ∩ Qt−r. When t is large enough (namely t > r and

ht > 1), it is readily checked that htz +Qr ⊂ Qtht for each z ∈ Nt. Hence,

sup
g∈G(Qtht )

W (g2
t ) ≥ max

z∈Nt
sup

g∈G(htz+Qr)

W (g2
t ).
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and thus owing to (2.91),

P
[
λẆ (Qt) ≤ h2

t

]
≤ P

(
max
z∈Nt

sup
g∈G(htz+Qr)

W (g2
t ) ≤ h2

t

)
.

For any g ∈ G(Qr) and z ∈ Nt, notice that gz(·) ≡ g(· − htz) ∈ G(htz + Qr).

Hence maxz∈Nt supg∈G(htz+Qr) W (g2
t ) ≥ maxz∈NtW ((gzt )

2), for any g ∈ G(Qr). The

consequent inequality is therefore:

P
[
λẆ (Qt) ≤ h2

t

]
≤ P

(
max
z∈Nt

W ((gzt )
2) ≤ h2

t

)
. (2.95)

for any given (but arbitrary) g ∈ G(Qr).

Step 2: Control of covariance. For ease of presentation let us denote W ((gzt )
2) by

ξz(t). We will try to control the covariance Cov(ξz(t), ξz′(t)) for z, z′ ∈ Nt in order to

show that the assumptions of Lemma 2.5.10 are met. First notice that F((gz)2
t ) can

be also expressed as:

F
(
(gz)2

t

)
(ξ) =

∫
R
e−ıξx{gzt (x)}2dx =

∫
R
e−ıξx

{√
htg

z(htx)
}2

dx

=

∫
R
e−ıξxhtg

2(ht(x− z))dx.

Therefore, with change of variable s = ht(x− z) we get:

F
(
(gz)2

t

)
(ξ) = e−ıξz

∫
R
e
−ıξ s

ht g2(s)ds = e−ıξzFg2

(
ξ

ht

)
(2.96)

Hence, the covariance of the random field ξz(t) is given by

Cov (ξz(t), ξz′(t)) =

∫
R
F(gz)2

t (ξ)F(gz′)2
t (ξ)µ(dξ)

= cH

∫
R
eıξ(z−z

′)

∣∣∣∣Fg2

(
ξ

ht

)∣∣∣∣2|ξ|1−2Hdξ,

where the last equality follows by using (2.96) and by plugging in the value of µ.

Changing variable, we can rewrite the covariance as

Cov (ξz(t), ξz′(t)) = cHh
2(1−H)
t

∫
R
eıhtu(z−z′)∣∣Fg2(u)

∣∣2|u|1−2Hdu. (2.97)

In particular, we have

Var (ξ0(t)) = cHh
2(1−H)
t σ2(g) (2.98)
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where σ2(g) =
∫
R |Fg

2(u)|2|u|1−2Hdu, which is a finite quantity when g ∈ G(Qr)

according to (2.57).

Recall that ht =
√
u(log t)

1
2(1+H) and thus ht → ∞ as t → ∞. In addition,

ht|z − z′| ≥ 2htr uniformly for z 6= z′ in Nt. Also observe again that g ∈ G(Qr)

and hence G(u) = |Fg2(u)|2|u|1−2H is in L1 thanks to (2.57). By Riemann-Lebesgue

lemma, we get the following assertion uniformly for z 6= z′ in Nt:

lim
t→∞

∫
R
eıhtu(z−z′)∣∣Fg2(u)

∣∣2|u|1−2Hdu = 0.

Therefore, plugging this information into (2.97), we end up with

Rt = max
z,z′∈Nt
z 6=z′

|Cov (ξz(t), ξz′(t))| = o(h
2(1−H)
t ). (2.99)

Furthermore observe that (2.98) implies limt→∞[Var(ξ0(t))/h
2(1−H)
t ] = cHσ

2(g) >

0. Thus we also get Var(ξ0(t)) ≥ 2Rt for t sufficiently large. Summarizing our

considerations so far, we have proved that the family {ξz(t); z ∈ Nt} satisfies the

conditions of Lemma 2.5.10 if t is large enough. We now introduce an additional

parameter v > 0 (to be chosen small enough later on) and we resort to Lemma 2.5.10

with A = h2
t and B = vh2

t in order to write:

P

[
max
z∈Nt

ξz(t) ≤ h2
t

]
≤ V 1

t + V 2
t (2.100)

where Rt is defined by (2.99), and

V 1
t =

(
P

[
ξ0(t) ≤ (1 + v)h2

t

√
2Rt + Var(ξ0(t))

Var(ξ0(t))

])|Nt|
, V 2

t = P

[
U ≥ vh2

t√
2Rt

]
.

We now bound these two terms separately.

Step 3: Bound on V 2
t . First, we bound the term V 2

t on the right hand side in (2.100).

By a classical bound on the normal tail probabilities:

P

[
U ≥ vh2

t√
2Rt

]
≤ 1√

2π

√
2Rt

vh2
t

exp

(
−v

2h4
t

4Rt

)
. (2.101)

Since by (2.99), Rt

h
2(1−H)
t

→ 0 as t→∞ we have for t sufficiently large

1√
2π

√
2Rt

vh2
t

< 1. (2.102)
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As for the term inside the exponential in (2.101), observe that (recall ht =
√
u(log t)

1
2(1+H)

again)
v2h4

t

4Rt

=
v2h

2(1+H)
t

4

h
2(1−H)
t

Rt

=
v2u1+H

4

h
2(1−H)
t

Rt

log t,

and that for t sufficiently large

Rt

h
2(1−H)
t

4

v2u1+H
<

1

2
. (2.103)

Plugging (2.102) and (2.103) into (2.101), for t sufficiently large we have

V 2
t = P

[
U ≥ vh2

t√
2Rt

]
≤ 1√

2π

√
2Rt

vh2
t

exp

(
−v

2h4
t

4Rt

)
≤ exp (−2 log t) =

1

t2
. (2.104)

Step 4: Bound on V 1
t . Let us now bound V 1

t in (2.100), which can be written as

V 1
t =

(
P

[
ξ0(t)√

Var(ξ0(t))
≤

(1 + v)h2
t

√
2Rt + Var(ξ0(t))

Var(ξ0(t))

])|Nt|
. (2.105)

Therefore according to relation (2.98), we have

V 1
t = (P [U ≤ lt])

|Nt|

where we have set

lt =
(1 + v)h1+H

t

cHσ2(g)

√
2

Rt

h
2(1−H)
t

+ cHσ2(g).

In order to work with this last term we can rewrite it as:

V 1
t = (P [U ≤ lt])

|Nt| = (1−P [U > lt])
|Nt|

=

[
exp

(
1

P[U > lt]
log (1−P[U > lt])

)]|Nt|P[U>lt]

. (2.106)

Owing to (2.99) and the fact that limt→∞ ht =∞, it is easily checked that limt→∞ lt =

∞. Therefore,

lim
t→∞

exp

(
1

P[U > lt]
log (1−P[U > lt])

)
= e−1 (2.107)

Let us now concentrate on |Nt|P[U > lt] in (2.106). We use the following elementary

facts about lt:
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(i) limt→∞
Rt

h
2(1−H)
t

= 0, and thus

lim
t→∞

(
lt − cv,gh1+H

t

)
= 0, where cv,g =

(1 + v)

c
1/2
H σ(g)

. (2.108)

(ii) Since limt→∞ lt =∞, we have limt→∞ lte
l2t /2P[U > lt] = 1√

2π
.

Using this information it is easy to see that

P[U > lt] ∼
e−

l2t
2

lt
∼

exp
(
− c2v,g

2
h

2(1+H)
t

)
√

2πcv,gh
1+H
t

With the expression ht =
√
u(log(t))

1
2(1+H) in mind, this yields

P[U > lt] ∼
exp

(
− c2v,gu

1+H

2
log(t)

)
√

2πcv,g [u1+H log(t)]1/2

and thus

P[U > lt] ∼
1

√
2πcv,g[u1+H log(t)]1/2t

c2v,gu
1+H

2

In addition, we also have |Nt| ∼ t
r
, which yields

|Nt|P[U > lt] ∼
t1−

c2v,gu
1+H

2

√
2πcv,g[u1+H log(t)]1/2r

Recall now that cv,g is given by expression (2.108). Hence, choosing v small enough

and provided

u <
(
2cHσ

2(g)
)1/1+H

, (2.109)

we can check that c2v,gu
1+H

2
< 1. Consequently, for t large enough we obtain:

|Nt|P[U > lt] ≥ tβ, for some β > 0. (2.110)

Plugging (2.107) and (2.110) into (2.106), we get the following relation for t sufficiently

large:

V 1
t =

(
P

[
ξ0(t) ≤ (1 + v)h2

t

√
2Rt + Var(ξ0(t))

Var(ξ0(t))

])|Nt|
≤ e−t

β

. (2.111)
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Step 5: Conclusion. Reporting inequalities (2.104) and (2.111) into (2.100), we find:

P

[
max
z∈Nt

W ((gz)2
t ) ≤ h2

t

]
≤ 1

t2
+

1

etβ
,

for some β > 0 whenever

u <
(
2cHσ

2(g)
) 1

1+H .

Now appealing to (2.95) and using Borel-Cantelli Lemma:

lim inf
k→∞

h−2
tk
λẆ (Qtk) > 1 a.s.

for some increasing sequence tk of integers. Thus the expression ht =
√
u(log t)

1
2(1+H)

and some elementary monotonicity arguments show that

lim inf
t→∞

λẆ (Qt)(log t)−1/(1+H) > u a.s.

Now thanks to (2.109) and taking u ↑ (2cHσ
2(g))

1
1+H , we have for every g ∈ G(Qr),

lim inf
t→∞

λẆ (Qt)(log t)−1/(1+H) ≥
(
2cHσ

2(g)
) 1

1+H a.s.

Recall that E = supg∈G(R) σ
2(g). Hence taking supremum over g ∈ G(Qr) and letting

r →∞ gives the needed lower bound

lim inf
t→∞

λẆ (Qt)(log t)−1/(1+H) ≥ (2cHE)
1

1+H a.s.

2.6 Lyapounov exponent

In this section we will combine the Feynman-Kac representation of u and our

preliminary study of the principal eigenvalue λẆ (Qt) in order to get the logarithmic

behavior of ut(x), achieving the proof of our main Theorem 2.1.4.

2.6.1 Preliminary Results.

Recall that V ε is defined by (2.34), and observe that one can also write

V ε
t (x) =

∫ t

0

Ẇ ε(Bs)ds,
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where Ẇ ε is the regularized noise given by

Ẇ ε(x) =

∫
R
lε(x− y)W (dy). (2.112)

The following lemma will allow us to extend the domains on which principal

eigenvalues are computed. The interested reader is referred to [4, Lemma 2.2] for a

proof.

Lemma 2.6.1 Let W be the Gaussian noise whose covariance is defined by (2.10),

and let Ẇ ε be defined by relation (2.112). For a bounded measurable set D ⊂ R we

write Dε = (−ε, ε) +D and define for positive θ the eigenvalue type quantity λ+

θẆ
(D)

by:

λ+

θẆ
(D) := lim

ε↓0
λθẆ (Dε)

Then λθẆ ε(D) is bounded as follows:

λθẆ (D) ≤ lim inf
ε↓0

λθẆ ε(D) ≤ lim sup
ε↓0

λθẆ ε(D) ≤ λ+

θẆ
(D) a.s.

The second lemma below is a first relation between Feynman-Kac representations

of equation (2.1) and principal eigenvalues. It is stated for a general potential ξ which

is pointwise defined but not necessarily bounded.

Lemma 2.6.2 Let ξ : R 7→ R be a potential, not necessarily bounded. Let τD be

the stopping time defined by τD = inf {t ≥ 0 : Bt /∈ D} for a measurable bounded set

D ⊂ R. Then the following inequalities hold where λξ(D) is defined similarly to

(2.53):

(i) We have:∫
D

Ex
[
exp

{∫ t

0

ξ(Bs)ds

}
1{τD≥t}

]
dx ≤ |D| exp {tλξ (D)} . (2.113)

(ii) For any α, β > 1 satisfying 1
α

+ 1
β

= 1 and λ(β/α)ξ(D) <∞ we have for 0 < δ < t:∫
D

Ex
[
exp

{∫ t

0

ξ(Bs)ds

}
1{τD≥t}

]
dx ≥ (2π)α/2δ1/2tα/(2β)|D|−2α/β×

exp
{
−δ(α/β)λ(β/α)ξ(D)

}
exp {α(t+ δ)λα−1ξ(D)} . (2.114)
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Proof The proof of (2.113) relies on classical Feynman-Kac representations of semi-

groups. Namely if Ttg is the semigroup on L2(D) defined by

Ttg(x) = Ex
[
exp

{∫ t

0

ξ(Bs)ds

}
g(Bt)1{τD≥t}

]
, t ≥ 0, x ∈ D, (2.115)

it can be shown that the generator A of Tt admits a Dirichlet form defined by

〈g, Ag〉 =

∫
D

ξ(x)g2(x)dx− 1

2

∫
D

|∇g(x)|2dx.

One can prove that

λ0 ≡ sup
g∈D(A)
‖g‖=1

〈g, Ag〉 = sup
g∈K(D)

〈g, Ag〉 = λξ(D).

Then (2.113) is obtained thanks to some spectral representation techniques. The

reader is referred to [29] for further details and to [33] for the lower bound (2.114).

The following lemma holds as a consequence of the Markov property for the Brow-

nian motion B, and will yield a second relation between Lyapounov exponent and

our principal eigenvalue. It is borrowed from [33, Section 4].

Lemma 2.6.3 Let ξ: R 7→ R be a not necessarily bounded potential and D be a mea-

surable bounded set. Let 0 < δ < t and assume 0 ∈ D. Let 1
α

+ 1
β

= 1.

(i) The following upper bound holds true:

E0

[
exp

{∫ t

0

ξ(Bs)ds

}
1{τD≥t}

]
≤
(
E0 exp

{
β

∫ δ

0

ξ(Bs)ds

})1/β

×(
1

(2πδ)d/2

∫
D

Ex
[
exp

{
α

∫ t−δ

0

ξ(Bs)ds

}
1{τD≥t−δ}

]
dx

)1/α

.

(ii) We also have the corresponding lower bound:

E0

[
exp

{∫ t

0

ξ(Bs)ds

}]
≥
(
E0 exp

{
−β
α

∫ δ

0

ξ(Bs)ds

})−α/β
×(∫

D

pδ(x)Ex
[
exp

{
1

α

∫ t−δ

0

ξ(Bs)ds

}
1{τD≥t−δ}

]
dx

)α
,

where we recall that pδ designates the heat kernel in R (see Notations in the

Introduction).
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2.6.2 Upper Bound.

We can now apply the preliminary results on exponential functionals of B recalled

in the last section, in order to get a first comparison between log(ut(0)) and the

principal eigenvalue λẆ (Qt). The logarithmic asymptotic behavior of ut(x) can be

upper bounded thanks to the following result.

Proposition 2.6.1 Let {ut(x); t ≥ 0, x ∈ R} be the field defined by (2.49). Then the

following holds:

lim sup
t→∞

1
t

log(ut(0))

λẆ (Qt)
≤ 1, (2.116)

where Qt = (−t, t) and λẆ (D) is defined by (2.53) for a domain D.

Proof Step 1: Decomposition of ut(0). To implement the upper bound (2.116), let

us introduce a constant M to be specified later on and for k ≥ 1 let Rk be defined by

Rk =
{
Mt(log t)

1
2(1+H)

}k
. (2.117)

Also recall that, according to (2.49), we have ut(x) = Ex [exp (Vt(x))], where Vt(x)

and V ε
t (x) are defined by (2.35). We now set Vt(0) = Vt and V ε

t (0) = V ε
t . With these

notations in hand, we decompose ut(0) as:

ut(0) = E0 [exp (Vt)]

= E0

[
exp (Vt)1{τQR1

≥t
}]+

∞∑
k=1

E0

[
exp (Vt)1{

τQRk
<t≤τQRk+1

}
]

(2.118)

In order to upper bound the terms in our decomposition (2.118), we apply Hölder’s

inequality to each term in the sum. We get:

ut(0) ≤ Ut,0 +
∞∑
k=1

P0(τQRk < t)1/2Ut,k (2.119)

where

Ut,0 = E0

[
eVt1{

τQR1
≥t
}] , (2.120)
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and for k ≥ 1

Ut,k = E1/2
0

[
e2Vt1{

τQRk+1
≥t
}
]
. (2.121)

We will now bound the terms Ut,k separately.

Step 2: Regularization. Let us replace the quantities Vt by V ε
t in the definition of

Ut,k for k ≥ 0. The corresponding random variables are denoted by U ε
t,k. We start by

getting a uniform bound for U ε
t,0. Namely using Lemma 2.6.3(i) write

U ε
t,0 = E0

[
eV

ε
t 1{

τQR1
≥t
}] = E0

[
exp

(∫ t

0

Ẇ ε(Br)dr

)
1{

τQR1
≥t
}]

≤
(
E0

[
exp(q

∫ 1

0

Ẇ ε(Bs)ds)

])1/q

×

(
1√
2π

∫
QR1

Ex
[
exp

(
p

∫ t−1

0

Ẇ ε(Bs)ds

)
1{

τQR1
≥t−1

}] dx)1/p

=
(
E0

[
eqV

ε
1
])1/q

(
1√
2π

∫
QR1

Ex
[
epV

ε
t−1(x)1{

τQR1
≥t−1

}] dx)1/p

. (2.122)

We can now apply Lemma 2.6.2(i) to the right hand side of the above equation. This

yields ∫
QR1

Ex
[
epV

ε
t−1(x)1{

τQR1
≥t−1

}] dx ≤ |QR1| exp
[
(t− 1)λpẆ ε(QR1)

]
.

Computing the volume |QR1| and plugging into (2.122) we obtain:

U ε
t,0 ≤ (E0 [exp (qV ε

1 )])
1
q

(
2R2

1

π

) 1
2p

exp

[
(t− 1)

p
λpẆ ε(QR1)

]
. (2.123)

We now take limits in equation (2.123). In order to handle the left hand side of

(2.123), we observe that the random variable E0

[
eV

ε
t

]
converges in Lq(Ω) to E0

[
eVt
]

for q ≥ 1 thanks to Proposition 2.4.1. Therefore for all q ≥ 1, an easy application of

Hölder’s inequality shows that

Lq(Ω)− lim
ε↓0

E0

[
eV

ε
t 1{

τQR1
≥t
}] = E0

[
eVt1{

τQR1
≥t
}] ,

where Lq(Ω) is the space of Lq random variables on (Ω,F ,P), see Notation 2.4.1. It

follows that there exists a subsequence {εn;n ≥ 0} such that P− a.s. we have

lim
n→∞

E0

[
eV

εn
t 1{

τQR1
≥t
}] = E0

[
eVt1{

τQR1
≥t
}] . (2.124)
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Similarly there exists a subsequence {ε′n;n ≥ 0} of {εn;n ≥ 0} such that P− a.s. we

have

lim
n→∞

E0

[
eqV

ε′n
1

]
= E0

[
eqV1

]
(2.125)

Incorporating (2.124), (2.125) and Lemma 2.6.1 into the left and right hand sides of

(2.123), we obtain the following relation P − a.s. (recall that Ut,0 = E0[eVt1{τQR1
≥t}]

according to (2.120)):

Ut,0 ≤
(
E0

[
eqV1

]) 1
q

(
2R2

1

π

) 1
2p

exp

[
(t− 1)

p
λ+

pẆ
(QR1)

]
. (2.126)

We can proceed similarly in order to bound the terms Ut,k in (2.121). Indeed applying

Cauchy-Schwarz inequality and following the same steps as for (2.122)-(2.123) we get,

for all k ≥ 1

E0

[
exp(2Vt)1{

τQRk+1
≥t
}
]
≤ (E0 [exp(4V1)])

1
2

(
2R2

k+1

π

) 1
4

exp

[
(t− 1)

2
λ+

4Ẇ

(
QRk+1

)]
.

(2.127)

Consequently plugging (2.126) and (2.127) into (2.119), we end up with:

ut(0) ≤ a1,p,qMp,t + a2Rt, (2.128)

where

Mp,t = exp

(
(t− 1)

p
λpẆ (QR1)

)
and Rt =

∞∑
k=1

αk exp

(
(t− 1)

4
λ+

4Ẇ

(
QRk+1

))
,

(2.129)

and where we also recall that Rk is defined by (2.117), and the constants a1,p,q and

a2 are given by

a1,p,q =

(
2R2

1

π

) 1
2p

(E [exp(qV1)])
1
q , a2 = (E0 [exp(4V1)])

1
4 .

In (2.128), the constants αk for k ≥ 1 are also defined by:

αk =
(
P0

(
τQRk < t

)) 1
2

(
2R2

k+1

π

) 1
8

. (2.130)

We will now treat the terms in (2.128) separately.
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Step 3: Bound on ut(0). Let us first bound the constants αk in (2.130). To this aim,

we can invoke the reflection principle for Brownian motions (see e.g. [34, section 2.6]),

which asserts that

P0

(
τQRk < t

)
≤ 4√

2πt

∫ ∞
Rk

e−
y2

2t dy ≤ 4
√
t√

2πRk

e−
R2
k

2t .

Furthermore when t is large enough, it is readily checked from the expression (2.117)

of Rk that
4
√
t√

2πRk

≤ 1,

uniformly in k ≥ 1. Therefore we get

P0

(
τQRk < t

)
≤ e−

R2
k

2t .

Plugging this inequality in equation (2.130) and designating by c a universal constant

which can change from line to line, we get

αk ≤ cR
1
4
k+1e

−R
2
k

4t . (2.131)

We now prove the convergence of the weighted sum defining Rt in (2.129). To this

aim, recalling the asymptotic relation proved in Proposition 2.5.1, we can say that

for t sufficiently large:

exp

[
(t− 1)

4
λ+

4Ẇ

(
QRk+1

)]
≤ exp

[
(t− 1)

4

(
16(2cHE)

1
1+H + 1

)
(log(Rk+1))

1
1+H

]
.

(2.132)

Consequently, using our bound (2.131) on αk and the expression (2.117) for Rk we

have the following:

Rt ≤
∞∑
k=1

Ak,tBk,tCk,t, (2.133)

where

Ak,t = cR
1
4
k+1 = cM

k+1
4 t

k+1
4 (log t)

k+1
8(1+H) ≤ cM

k
2 t

k
2 (log t)

k
4(1+H) , (2.134)

Bk,t = exp

(
−R

2
k

4t

)
= exp

[
−1

4
M2kt2k−1(log t)

k
1+H

]
,

Ck,t = exp

[
(t− 1)

4
λ+

4Ẇ

(
QRk+1

)]
.
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Furthermore, thanks to (2.132) for t large enough we have:

Ck,t ≤ exp
[
c t(logRk+1)

1
1+H

]
.

Thus, plugging the value (2.117) of Rk into the above inequality we get

Ck,t ≤ exp

[
c t(k + 1)

1
1+H

(
logM + log t+

1

2(1 +H)
log log t

) 1
1+H

]
.

It is then readily checked for large enough t, that

Ck,t ≤ exp
[
c(k + 1)

1
1+H t(log t)

1
1+H

]
.

In addition, it is easily seen that for any arbitrary constant c > 0, there exists M

large enough such that M2k > 8c(k + 1)
1

1+H uniformly in k. Therefore for this value

of M , for all k ≥ 1 and t large enough, we have

Bk,tCk,t ≤ exp

[
c(k + 1)

1
1+H t(log t)

1
1+H − 1

4
M2kt2k−1(log t)

2k
2(1+H)

]
≤ exp

[
−1

8
M2kt2k−1(log t)

2k
2(1+H)

]
≤ exp

[
−1

8
Mktk(log t)

k
2(1+H)

]
. (2.135)

Combining (2.134) and (2.135) we have thus obtained

Ak,tBk,tCk,t ≤ c1η
k
t e
−c2η2kt , where ηt =

√
Mt(log t)

1
2(1+H) .

Furthermore, we have that η2k
t > kηt for all positive integers k if ηt >

√
2. Thus, for

sufficiently large t:

Ak,tBk,tCk,t ≤ c1η
k
t e
−c2kηt .

Recalling (2.133), the following bound holds true for the term Rt defined by (2.128)-

(2.129):

Rt ≤ c1

∞∑
k=1

(
ηte
−c2ηt

)k
< 2 (2.136)

for all sufficiently large t such that ηte−c2ηt < 1
2
.
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Now let us work with the termMp,t in the expression (2.128). Observe that using

Theorem 2.1.2 we have:

lim
t→∞

λpẆ (QR1)

λẆ (Qt)
= lim

t→∞

λpẆ (QR1)

(log(R1))
1

1+H

(log(t))
1

1+H

λẆ (Qt)

(log(R1))
1

1+H

(log(t))
1

1+H

=
(2cHp

2E)1/(1+H)

(2cHE)1/(1+H)

= p
2

1+H , (2.137)

where we have also used the form of Rk from (2.117) to show that the limit of

log(R1)/ log(t) as t goes to infinity is 1. Plugging this identity into the definition

(2.129), we get that
1

t
log(Mp,t) ∼ p

1−H
1+H λẆ (Qt), (2.138)

as t goes to infinity. In particular, owing to Theorem 2.1.2 we have

lim
t→∞

1

t
log(Mp,t) =∞ a.s.

Finally, going back to (2.128) we write

1

t
log (ut(0)) ≤ 1

t
log (Mp,t) +

1

t
log

(
a1,p,q + a2

Rt

Mp,t

)
. (2.139)

Due to (2.136) and the fact that limt→∞Mp,t =∞, we have

lim
t→∞

1

t
log

(
a1,p,q + a2

Rt

Mp,t

)
= 0.

Therefore, thanks to (2.138), relation (2.139) entails the following upper bound:

lim sup
t→∞

1
t

log(ut(0))

λẆ (Qt)
≤ p

1−H
1+H . (2.140)

At the very end, notice that the parameter p > 1 in (2.140) can be chosen arbitrarily

close to 1. Therefore, taking limits as p ↓ 1 in (2.140), we end up with

lim sup
t→∞

1
t

log(ut(0))

λẆ (Qt)
≤ 1, a.s.,

which is our claim (2.116).
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2.6.3 Lower Bound.

This section is devoted to finding a lower bound for log (ut(0)) matching the upper

bound (2.116). Specifically we will get the following result.

Proposition 2.6.2 Let ut be the field defined by (2.49). Then the following holds:

lim inf
t→∞

1
t

log(ut(0))

λẆ (Qt)
≥ 1, (2.141)

where we recall that Qt = (−t, t) and λẆ (D) is introduced in (2.53).

Proof Let p, q > 1 satisfy 1
p

+ 1
q

= 1 with p close to 1 and let 0 < b < 1 be close to

1. From Lemma 2.6.3(ii), taking α = p, q = β, δ = tb and ξ = Ẇ ε, we get

uεt(0) = E0

[
exp

(∫ t

0

Ẇ ε(Bs)ds

)]
≥

(
E0

[
exp

(
−q
p

∫ tb

0

Ẇ ε(Bs)ds

)])− p
q

×

{∫
Q
tb

ptb(x)Ex

[
exp

(
1

p

∫ t−tb

0

Ẇ ε(Bs)ds

)
1{

τQ
tb
≥t−tb

}
]
dx

}p

, (2.142)

where we recall that pδ is the heat kernel in R. Hence some elementary bounds on pδ

over Qtb yield

uεt(0) ≥ Dε,b,p,tFε,b,p,t, (2.143)

where

Dε,b,p,t =

(
E0

[
exp

(
−q
p

∫ tb

0

Ẇ ε(Bs)ds

)])− p
q

,

Fε,b,p,t =

{
e−t

b/2

√
2πtb

∫
Q
tb

Ex

[
exp

(
1

p

∫ t−tb

0

Ẇ ε(Bs)ds

)]
dx

}p

.

We will now bound Dε,b,p,t and Fε,b,p,t separately. In order to bound Fε,b,p,t we apply

Lemma 2.6.2(ii), taking α = p, β = q, t = t− tb and δ = tb:

∫
Q
tb

Ex

[
exp

(∫ t−tb

0

Ẇ ε(Bs)ds

)]
dx

≥ (2π)
p
2 t

b
2 (t− tb)

p
2q (2tb)−

2p
q exp

(
−tbp

q
λ p
q
Ẇ ε (Qtb)

)
exp

(
ptλ Ẇε

p

(Qtb)

)
.
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Using (2.143) and replacing e−
tb

2 by e−Ctb for a larger C to absorb all bounded-by-

polynomial quantities, we thus get

Fε,b,p,t ≥ e−Ct
b

exp

(
−p

2tb

q
λ p
q
Ẇ ε (Qtb)

)
exp

(
tλ Ẇε

p

(Qtb)

)
. (2.144)

We now take limits as ε ↓ 0 in relation (2.143). Invoking Proposition 2.4.1, we use

our bound (2.144) and Lemma 2.6.1 which gives

ut(0) ≥ Db,p,tFb,p,t (2.145)

with

Db,p,t = e−Ct
b

(
E0

[
exp

{
−q
p

∫ tb

0

W (δBs)ds

}])− p
q

,

Fb,p,t = exp

(
−p

2tb

q
λ+
p
q
Ẇ

(Qtb)

)
exp

(
tλ Ẇ

p

(Qtb)

)
.

We will now prove that

lim
t→∞

1

t
log(Db,p,t) = 0 (2.146)

Indeed, it is easily seen that

1

t
log(Db,p,t) = − C

t1−b
− p

qt1−b

log

(
E0

[
exp

{
−q
p

∫ tb
0
W (δBs)ds

}])
tb

. (2.147)

Moreover combining (2.116) and Proposition 2.5.1 we get the following bound for t

large enough:

log

(
E0

[
exp

{
−q
p

∫ tb
0
W (δBs)ds

}])
tb

≤ c(log t)
1

1+H

Plugging this information into (2.147), we obtain (2.146).

Let us now analyze the term Fb,p,t in (2.145). We have

1

t
log(Fb,p,t) = −p

2

q

λ+
p
q
Ẇ

(Qtb)

t1−b
+ λ Ẇ

p

(Qtb) .
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Taking into account the behavior of λ Ẇ
p

(Qt) given by Proposition 2.5.1, we get

lim inf
t→∞

1
t

log(Fb,p,t)

λ Ẇ
p

(Qtb)
≥ 1 a.s. (2.148)

In conclusion, plugging (2.148) and (2.146) into (2.145), we end up with

lim inf
t→∞

1
t

log(ut(0))

λ Ẇ
p

(Qtb)
≥ 1 a.s. (2.149)

Now taking b ↑ 1 and then p ↓ 1 in (2.149), and observing that λ is monotonic under

both maneuver, we get our desired lower bound (2.141):

lim inf
t→∞

1
t

log(ut(0))

λẆ (Qt)
≥ 1 a.s.
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3. RELATIVISTIC STABLE PROCESSES IN QUASI-BALLISTIC

HEAT CONDUCTION IN THIN FILM SEMICONDUCTORS

A version of this chapter has been reprinted with permission from Physical Review E Journal.
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3.1 Introduction

Standard heat flow, at a macroscopic level, is modeled by the random erratic

movements of Brownian motions starting at the source of heat. However, this diffu-

sive nature of heat flow predicted by Brownian motion is not seen in certain materials

(semiconductors, dielectric solids) over short length and time scales [35]. Experimen-

tal data portraying the non-diffusive behavior of heat flow has been observed for tran-

sient thermal grating (TTG) [36,37], time domain thermoreflectance (TDTR) [38] and

others [39, 40], by altering the physical size of the heat source. The thermal trans-

port in such materials is more akin to a superdiffusive heat flow, and necessitates the

need for processes beyond Brownian motion to capture this heavy tail phenomenon.

Recent works [41–47] try to explain the physics behind the quasiballistic heat dy-

namics. But these methods, driven mostly by the Boltzmann transport equation, are

infeasible for processing experimental data. Some more recent studies [48, 49] try to

explain the non-diffusive heat flow through hyperbolic diffusion equations, however,

closer investigation shows that these methods fail to capture the inherent onset of

nondiffusive dynamics at short length scales in periodic heating regimes.

The attempts mentioned above fail to provide a stochastic process that would ex-

plain the heat dynamics under short length-time regimes. The most natural stochas-

tic process to explain a superdiffusive behavior is an alpha-stable Lévy process [50].

https://doi.org/10.1103/PhysRevE.101.042110
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Alpha-stable Lévy processes differ from Brownian motion in that its movements are

governed by stable distributions as compared to Gaussian distributions for the latter.

In this context, some of us have tried to explain the heat flow dynamics through a

"truncated Lévy distribution" approach [6,7], where it has been possible to extract the

value of the Lévy superdiffusive coefficient α that regulates the alloy’s quasiballistic

heat dynamics.

The current contribution can be seen as a further step in this direction. Specif-

ically, let T (t, x) designate the temperature of a semiconductor or dielectric solid in

the experimental settings alluded to above, with initial condition T0(x). Then we

shall describe T through the following Feynman-Kac formula (see Section 3.2.1 for

more details about Feynman-Kac representations):

T (t, x) = E [T0(x+Xt)] , (3.1)

where X is a well-defined Lévy process that captures the observed quasiballistic heat

dynamics, in addition to being a good candidate for explaining the usual diffusive

nature under non-special large length-time regimes. We shall see that such a pro-

cess X can be chosen as a so-called relativistic stable process (see [51], and [52] for

properties related to the relativistic Schrödinger operator). It possesses the remark-

able property of behaving like an alpha-stable process under short length-time scales

while being closer to Brownian motion otherwise. This is reflected in the estimates

of the transition density, provided below in Section 3.2.2. Summarizing, our result

lays the mathematical foundations of heat flow modeling on short time scales by

means of stochastic processes. In addition, in spite of the fact that our computations

are mostly one-dimensional, the model we propose allows natural generalizations to

multidimensional and multilayer settings.

3.2 Relativistic stable process: a primer

In this section we give a short introduction on relativistic stable processes. We

first recall the definition of this family of processes. Then we will give some kernel
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bounds indicating how relativistic processes transition, as t increases, from an α-

stable behavior to a Brownian type behavior (this property being crucial to model

quasiballistic heat dynamics in semiconductors).

3.2.1 Characteristics and Feynman-Kac formula

We will consider here some stochastic processes X, that is a family {Xt; t ≥ 0}

of random variables indexed by time. In particular, each Xt has to be considered as

a random variable. More specifically, we are concerned here with relativistic α-stable

processes. Those objects are parametrized by two quantities M > 0 and α ∈ (0, 2],

and will be denoted byXM . For a relativistic process, each random variableXM
t is Rd-

valued. Its probability distribution is described through the so-called characteristic

function. Recall that the characteristic function of a Rd valued random variable X is

given by φ(ξ) = E[exp(ιξ ·X)] for any ξ ∈ Rd. For the relativistic stable process this

is given, for any t ≥ 0 and ξ ∈ Rd, by:

φM(ξ) ≡ E
[
exp

(
ıξ · (XM

t −XM
0 )
)]

= exp
(
−t
((
|ξ|2 +M2/α

)α/2 −M)) . (3.2)

Some standard stochastic processes are recovered for certain choices of M and α.

Observe that we obtain Brownian motion when α = 2, while M = 0 returns a

rotationally symmetric α-stable process. The infinitesimal generator of XM is given

by LM = M − (−∆ + M2/α)α/2. Under the special choice of α = 1, this reduces to

the free relativistic Hamiltonian M −
√
−∆ +M2, which explains the name of the

process. An explicit expression for the Lévy measure of XM can be found in [53–55].

We omit this formula for sake of conciseness, since it will not be used in the remainder

of the paper. Notice that for α = 1, the quantityM can be interpreted as a mass [56].

This is no longer true when α 6= 1, and M has to be generally seen as a parameter

which prevents large random jumps in the paths t 7→ Xt (cf. the tail estimate (3.6)

below).
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Lévy processes like XM are classically used in order to represent solutions of deter-

ministic PDEs. In our case, consider the following equation governing the temperature

T in our material:

∂tT (t, x) = LMT (t, x), with T (0, x) = T0(x). (3.3)

Then it is a well known fact (see [50]) that the solution T to (3.3) can be represented

by the Feynman-Kac formula (3.1), where the process XM is our relativistic α-stable

process. The Feynman-Kac representation is crucial in order to get equation (3.8)

below, and is one of the main point of the current contribution. Indeed, we are giving

a link here between the physical heat transfer and a proper stochastic process. This is

in contrast with the truncated Lévy distribution approach advocated in [6, 7], which

was taking into account the transition from stable to Gaussian type distributions but

had no related Feynman-Kac representation.

3.2.2 Transition kernel estimates

In this subsection, we identify the behavior of a relativistic stable process with

a stable process on short time scales and a Brownian motion on larger time scales.

As mentioned above, this will be achieved by observing the patterns exhibited by

the transition kernel of Xm
t . Some results will be stated without formal proof, and

interested readers are referred to [53–55] for more details.

Since XM is a Lévy process, it is also a Markov process. As such it admits a

transition kernel pMt , defined by:

P
(
XM
s+t ∈ A |Xs = x

)
=

∫
A

pMt (x, y) dy,

for all x ∈ Rd and A ⊂ Rd. Notice that pM is related to the function φM (see definition

(3.2)) as follows:

pMt (x, y) = F−1φM(x− y) =
1

(2π)d

∫
Rd
eı(x−y)·ξe−t{(M

2/α+|ξ|2)α/2−M}dξ. (3.4)

We start by a simple bound on pMt , exhibiting the stable behavior for small times

and the Brownian behavior for large times. Observe that this bound does not depend
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on the space variables x, y. We include its proof in Appendix 3.6, which is based on

elementary considerations involving Fourier transforms, for sake of completeness.

Theorem 3.2.1 Consider a relativistic α-stable process XM , and let pM be its transi-

tion kernel. Then there exists c1 = c1(α) > 0 such that for all t > 0 and all x, y ∈ Rd:

pMt (x, y) ≤ c1(Md/α−d/2t−d/2 + t−d/α). (3.5)

The upper bound (3.5) already captures a lot of the information we need on

relativistic stable processes. Invoking sophisticated arguments based on stopping

times and Dirichlet forms, one can get upper and lower bounds on the transition

kernel pM involving some exponential decay in the space variables x, y. We summarize

those refinements in the following theorem.

Theorem 3.2.2 Let pM be the transition kernel defined by (3.4). Then the following

estimates hold true.

(i) Small time estimates. Let T > 0 be a fixed time horizon. Then there exists C1 > 0

such that for all t ∈ (0, T ] and x, y ∈ Rd,

C−1
1

(
t−d/α ∧ te−M

1/α|x−y|

|x− y|(d+α+1)/2

)
≤ pMt (x, y) ≤ C1

(
t−d/α ∧ te−M

1/α|x−y|

|x− y|(d+α+1)/2

)
. (3.6)

(ii) Large time estimates. There exists C2 ≥ 1 such that for every t ∈ [1,∞) and

x, y ∈ Rd,

C−1
2 t−d/2 ≤ pMt (x, y) ≤ C2t

−d/2.

3.3 Application of relativistic stable processes to thermal modelling

In this section we show how to apply the mathematical formalism of Section 3.2

to our concrete physical setting. More specifically, in Section 3.3.1 we shall introduce

length scales in our Lévy exponent (3.2). Then Section 3.3.2 compares our model to

previous work. Finally Section 3.3.3 is devoted to a description of our experimental

setting, and also relates our measurements to the Fourier exponents we have put

forward.
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3.3.1 Formulation in terms of material thermal properties

The "macroscopic" heat dynamics perceived in a solid crystal is the cumulative

effect of microscopic motions of a wide distribution of discrete heat carriers linked

with the material’s fundamental phonon properties. Quantitatively, working back-

wards from the analytical solution of the Boltzmann transport equation under the

relaxation time approximation (RTA-BTE), one can show that 3D phonon transport

in an isotropic crystal is governed by a characteristic function given by [6, 57]:

ψ(ξ) =
∑
k

Ck |ξ|2Λ2
k,x

τk(1 + |ξ|2Λ2
k,x)

/∑
k

Ck
1 + |ξ|2Λ2

k,x

(3.7)

In (3.7), the generalized summation index k runs over discretized wavevector space

and all phonon branches, while the mode-specific properties C, τ and Λx = |vx|τ sig-

nify the heat capacity per volume unit, relaxation time and mean free path measured

along the x-axis respectively.

Concrete evaluations of (3.7) with first-principles DFT phonon data indicate that

semiconductor alloys exhibit a transition from characteristic Lévy dynamics with

ψ ∼ |ξ|α at short length-time scales to regular diffusive transport with ψ ∼ |ξ|2

[6]. Thus the evolution of relativistic processes, from alpha-stable behavior at short

length and time scales to regular Brownian motion at longer scales, renders them

suitable to describing quasiballistic thermal transport in semiconductor alloys. Let

us consider such a material, having nominal thermal diffusivity D = κ/Cv with κ

being the thermal conductivity and Cv the volumetric heat capacity (in Jm−3K−1).

The physical quantity we have access to is a slight variation of the function T (t, x)

defined by (3.1). Specifically the single pulse response for the excess thermal energy

can be expressed as P (t, x) = Cv ∆T (t, x). Under the Lévy flight paradigm the

Fourier transform of P is written as

P (|ξ|, t) = exp (−t ψ(|ξ|)) , (3.8)
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for a given Lévy exponent (also called spatial heat propagator) ψ. For the relativistic

case under study here, this spatial heat propagator ψRS is simply a multiple of the

exponent in the function φM introduced in (3.2). Namely ψRS reads

ψRS(|ξ|) = Dα

[(
|ξ|2 +M2/α

)α/2 −M] . (3.9)

The prefactor Dα with unit mα/s denormalizes the characteristic function for dimen-

sionless space and time variables defined by Eq. (3.2) to its physical counterpart, and

denotes the fractional diffusivity of the alpha-stable regime as we shall see shortly.

For thermal modeling purposes it is furthermore convenient to reformulate the

process mass M , which has an exponent-dependent unit 1/mα, in terms of an asso-

ciated characteristic length scale xRS around which the transition from alpha-stable

(Lévy) to Brownian dynamics takes place. Our analyses in Appendix 3.6 leading up

to Eq. (3.18) and (3.19) show that this length should be given by:

xRS = |ξ0|−1 = M−1/α.

This means that expression (3.9) can be recast as

ψRS(|ξ|) = Dα

[(
|ξ|2 + |ξ0|2

)α/2 − |ξ0|α
]

= Dα |ξ0|α
[(
ξ̃2 + 1

)α/2
− 1

]
, (3.10)

where ξ̃ ≡ |ξ|/|ξ0|. With those values of M and ξ0 in hand, we can translate (3.19)

into an asymptotic transport limit as follows:

alpha-stable regime ξ̃ � 1 : ψ(|ξ|) ' Dα |ξ|α,

Brownian regime ξ̃ � 1 : ψ(|ξ|) ' αDα

2|ξ0|2−α
|ξ|2. (3.11)

The former corresponds to Lévy superdiffusion with characteristic exponent α and

fractional diffusivity Dα; the latter should recover to nominal diffusive transport

ψ(|ξ|) ≡ D|ξ|2. In order to make the last relation compatible with (3.11) we must set

αDα

2|ξ0|2−α
= D =⇒ Dα =

2D

αxRS2−α . (3.12)
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Finally, plugging (3.12) into (3.10) the heat propagator reads

ψRS(|ξ|) =
2D

αxRS2

[(
1 + xRS

2|ξ|2
)α/2 − 1

]
. (3.13)

This formulation contains 3 material dependent parameters, each with an intuitive

physical meaning: the characteristic exponent α of the alpha-stable regime; the nom-

inal diffusivity D of the Brownian regime; and the characteristic length scale xRS

around which the transition between those two asymptotic limits occurs (Fig. 3.1).

In the sections that follow, we determine these parameter values for In0.53Ga0.47As by

fitting a thermal model built upon the propagator (3.13) to time-domain thermore-

flectance (TDTR) measurement signals.
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Figure 3.1.: Transition between Brownian and alpha-stable Lévy behavior.
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3.3.2 Comparison with previous models

The first publications on this topic [6, 7] used a truncated 1D Lévy process in

which the heavy tail of the jump length distribution was attenuated exponentially to

enforce the required recovery from Lévy flights to Brownian motion. This approach

had been adopted in previous literature in unrelated research disciplines and allowed

to carry out most derivations in closed form; however, the resulting expression for

ψ is cumbersome and the methodology proved problematic to be extended to higher

dimensions. These difficulties were addressed in [57] with an improved "tempered

Lévy" (TL) model that rigorously describes isotropic multi-dimensional processes

with characteristic function

ψTL(ξ) =
D|ξ|2

(1 + x2
TL|ξ|2)1−α/2 (3.14)

This function induces a transition from Lévy dynamics with characteristic exponent

α and fractional diffusivity Dα = D/x2−α
TL to regular diffusive transport with bulk dif-

fusivity D over characteristic length scale xTL in a compact but merely phenomeno-

logical way. However, the main drawback of (3.14) is that it does not correspond to

any known Lévy process documented in the literature.

The relativistic stable (RS) processes employed in this work describe a similar

transition but through a characteristic function given by (3.2) that can be recast as

(3.13), thanks to which we get a fractional diffusivity Dα = 2Dα−1x
−(2−α)
RS , with xRS

the characteristic length scale for ballistic-diffusive recovery.

While ψRS and ψTL can be shown to be quantitatively quite similar for data-fitting

purposes, ψRS has the advantage to have been extensively studied and characterized

by mathematicians and theoretical physicists. It corresponds to a classical RS process,

as introduced in [51]. In addition, the Feynman-Kac representation (3.1) links the dy-

namic thermal profile of the material to averages over sample paths of the relativistic

stable process, thus vastly expanding the applicability of this particular model. Our

current paper adds to the already existing body of knowledge, but has the additional

main objective to forge a collaborative connection between two communities that may
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otherwise not necessarily interact. On the one hand, our work demonstrates to the

mathematical community that RS processes have timely and practical applications

in (non-relativistic) physics and engineering contexts, which may help spur further

research interest. On the other hand, it introduces solid state physicists and heat

conduction specialists to a rich mathematical framework that may help to tackle the

open and difficult problem of extending compact semi-analytical models for phonon

transport dynamics to thin films and/or multilayer geometries.

Quantitative comparison between relativistic stable and tempered Lévy

processes. We can directly compare the TL characteristic function to the RS coun-

terpart by plotting their relative difference (ψTL−ψRS)/ψRS. In order to make useful

comparison, the asymptotes need to be the same. To achieve this, it suffices to impose

that both processes have the same D, α and Dα, which for the latter requires that

xTL = (α/2)1/(2−α) xRS. (3.15)

The ratio xTL/xRS is only weakly α dependent (it monotonically rises from 0.5 for

α = 1 to exp(−1/2) ' 0.607 for α → 2). Having identical asymptotic regimes,

the difference between the TL and RS characteristic functions is mainly situated in

the transition region (i.e. for length scales slightly above and below xTL and xRS),

and remains quite modest (< 16%) for all allowed α values (Fig. 3.2). For typical

exponents α ' 1.70 observed in semiconductor alloys, both functions even remain

within 2.2% across their entire domains.

3.3.3 Modelling of TDTR measurement signals

The central principle in TDTR is to heat up the sample with ultrashort pump laser

pulses, and then monitor the thermal transient decay using a probe beam. Pulses

from the laser are split into a pump beam and probe beam. The pump pulses pass

through an electro-optic modulator (EOM) before being focused onto the sample sur-

face through a microscope objective. A thin (50-100 nm) aluminium film is deposited
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Figure 3.2.: Relative difference between the characteristic functions of a tempered Lévy process (ψTL) and relativistic

stable process (ψRS).

onto the sample to act as measurement transducer: the metal efficiently absorbs the

pump light and converts it to heat, and translates temperature variations to changes

in surface reflectivity which can be captured by the probe. Lock-in detection at the

pump modulation frequency fmod resolves the thermally induced reflectivity changes

captured by the probe beam. A mechanical delay stage allows to vary the relative

arrival time of the pump and probe pulses at the sample with picosecond resolution.

To minimize the impact of random fluctuations in laser power and the variation of

the pump beam induced by the delay stage, thermal characterization is performed

not on the raw lock-in signal itself but rather the ratio −Vin/Vout of the in-phase and

out-of-phase components as a function of the pump-probe delay.

Theoretical ratio curves −Vin/Vout can be computed semi-analytically through

mathematical manipulation of the semiconductor single-pulse response (3.8), as de-

scribed in detail in Refs. [57–59]. Briefly, we first obtain the surface temperature

response of a semi-infinite semiconductor to a cylindrically symmetric energy input
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via Fourier inversion of (3.8) with respect to the cross-plane coordinate. Next, a

matrix formalism that accounts for heat flow in the metal transducer and across the

intrinsic thermal resistivity rms (in K-m2/W) of the metal-semiconductor interface

provides the temperature response, weighted by the Gaussian probe beam, of the

transducer top surface induced by a Gaussian pump pulse. Finally, harmonic assem-

bly of this response at frequencies n ·frep±fmod (for n = 0, 1, . . .) accounting for the

laser repetition rate frep, pump modulation frequency fmod, and phase factors induced

by the pump-probe delay τ yields the theoretical lock-in ratio signal −Vin/Vout(τ).

3.4 Experimental analysis

We have applied our model to TDTR measurements taken on a'2 µm thick film of

In0.53Ga0.47As (Cv ' 1.55MJ/m3-K) that was MBE-grown on a lattice-matched InP

substrate. We note that although the semiconductor alloy under study (the InGaAs

layer) is a geometrically thin film, thermally speaking it can still be considered (as

is assumed by the thermal model) as a semi-infinite layer with good approximation.

This is because the effective thermal penetration length ` =
√
D/(πfmod) stays firmly

within the film over the experimentally probed modulation range 0.8MHz . fmod .

18MHz. The aluminium transducer deposited onto the sample measured 64 nm in

thickness as determined by picoseconds acoustics. We used pump and probe beams

with 1/e2 radii at the focal plane of 6.5 and 9 µm respectively, with respective powers

of 17 and 8 mW at the sample surface.

In the thermal model with relativistic stable heat propagator (3.13), we fixed the

heat capacity at the aforementioned 1.55MJ/m3-K. Theoretical ratio curves were

then collectively fitted through nonlinear least-square optimization to signals mea-

sured at 7 different modulation frequencies to identify the 4 key thermal parameters:

the characteristic exponent α of the Lévy superdiffusion regime; the quasiballistic-

diffusive transition length scale xRS associated to the mass M ; the nominal thermal

conductivity κ = CvD of the diffusive regime; and the thermal resistivity rms of the
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transducer/semiconductor interface. The resulting best-fitting values α = 1.695 , xRS

= 0.86µm , κ = 5.82W/m-K , rms = 4.28 nK-m2/W yield an excellent agreement

with the measured signals (Fig. 3.3). Theoretical curves with parameter values devi-

ating from the best fitting ones (Fig. 3.4) furthermore visually reveal the sensitivity

to each of the parameters and illustrate the good quality of the best fit.
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Figure 3.3.: TDTR characterization of Al/InGaAs sample: a thermal model based on a relativistic stable random

motion of heat (lines) provides an excellent fit to measured signals (symbols).

Remark 3.4.1 The emergence of alpha-stable heat dynamics in alloys originates

from the strong dependence of phonon lifetimes on frequency in these materials. An

ideal Debye crystal with scattering relation τ ∼ 1/ωn where n ∈ (3,∞) can be shown
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Figure 3.4.: Ratio curve fitting tolerance and sensitivity. The plotted theoretical curves are computed with sub-optimal

parameter combinations in which one parameter deviates from its best fitting value as indicated.

to induce Lévy dynamics with characteristic exponent α = 1 + 3/n (please see Ap-

pendix 3.7 for proof). One can therefore expect a generic ideal alloy, being governed by

Rayleigh scattering (n = 4), to yield α = 1.75. DFT computations for In0.53Ga0.47As

predict slightly lower exponents α ∈ [1.67, 1.69] (see [6, 60]), in very good agreement

with the value of 1.695 inferred experimentally in this work.
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Remark 3.4.2 The quasiballistic-diffusive transition length is related to the charac-

teristic mean free path of the heat carriers. As phonon mean free paths typically span

several orders of magnitude (roughly from 1 nm to 10 µm) a single "characteristic"

value is not uniquely defined. However, a physically justified average can be obtained

by weighing the mean free path of each individual phonon by its relative contribution

to the total bulk thermal conductivity κ [60]:

Λchar =
∑
k

κk
κ
· Λk,x =

∑
k

Ck|vk,x|Λ2
k,x∑

k

Ck|vk,x|Λk,x

Evaluation of this expression with first-principles phonon data for In0.53Ga0.47As yields

Λchar = 0.73µm, once again in good agreement with our experimentally inferred tran-

sition length scale xRS = 0.86µm.

Remark 3.4.3 Note that the truncated [6, 7] or tempered [57] Lévy approaches are

in good quantitative agreement with respect to the Lévy exponent α obtained in this

work. This complies with the fact that α is directly related to the dominant phonon

scattering mechanism (see Remark 3.4.1) and therefore arises as an intrinsic property

of the material sample that should be fairly insensitive to the model and fitting details.

In addition, note that from (3.15) for α = 1.695 we find xTL ≈ 0.58xRS. For the

experimentally inferred value xRS = 0.86µm this implies that xTL = 0.50µm, in good

agreement with the value of 0.55µm previously found in [57].

Remark 3.4.4 The analysis in the current paper is limited to the TDTR setting,

for which the mathematical setting is simple enough. Notice that the tempered Lévy

formalism has also been successfully applied to TTG for the Si0.93Ge0.07 alloy in [61].

Although FDTR would be worth investigating in order to validate our Lévy type set-

ting, we are not aware of any study in this direction.

3.5 Conclusions and Outlook

Quasi-ballistic heat propagation in materials can be studied using atomic parame-

ters through a multitude of techniques. First principle calculations and multi spectral
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phonon Boltzmann transport equations are very powerful in this regard. However,

their use in the study of heat propagation in multi-layer/anisotropic materials and

materials with complex geometries is limited. The Feynman-Kac representation of

solutions to partial differential equations with non-local parameters can potentially

provide alternative approaches to explain experimental thermal data. In this article

we have replaced the traditional heat equation by a different PDE, whose solution

has a Feynman-Kac representation driven by the so-called relativistic stable Lévy

process. The transition characteristics of this process is in harmony to the heat prop-

agation behaviour exhibited by TDTR data. In general, numerical approximations

of the PDE solution can also be achieved through Monte Carlo simulations of the

driving stochastic process in the Feynman-Kac formula. In particular, these numeri-

cal computations may provide substitute techniques to optimize materials or source

geometry in order to reduce heating from nanoscale and/or ultrafast devices.

Our next challenge in this direction will be to model multidimensional transport in

multilayer structures. To this aim, we shall investigate two methods: (i) Monte Carlo

simulation according to our Feynman-Kac representation (3.1), taking into account

jumps and change of media. (ii) Related PDEs involving the non local operator

LM = M − (−∆ + M2/α)α/2, with boundary terms corresponding to the different

layers. Both methods rely crucially on the relativistic Lévy representation advocated

in this paper. They will be subject of future publications.

3.6 Proof of Theorem 3.2.1

Proof The strategy of our proof is based on the fact that the characteristic function

φM defined by (3.2) behaves like a Gaussian characteristic function for low frequencies,

and like an α-stable characteristic function for high frequencies. We shall quantify

this statement below.
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Step 1: Elementary inequalities: Let β = α
2
. The following inequality, valid for for

0 ≤ z ≤ 1, is readily checked:

zβ − βz ≤ 1− β. (3.16)

Substituting z = M2/α

|ξ|2+M2/α in (3.16), we thus have:

M

(|ξ|2 +M2/α)α/2
− αM2/α

2(|ξ|2 +M2/α)
≤ 1− α

2
,

which yields: (
|ξ|2 +M2/α

)α/2 −M ≥ α|ξ|2

2(|ξ|2 +M2/α)1−α/2 . (3.17)

Relation (3.17) prompts us to split the frequency domain in two sets:

A1 = {ξ : |ξ|2 ≤M2/α}, and A2 = {ξ : |ξ|2 > M2/α}. (3.18)

Accordingly, we get the following lower bounds:

(|ξ|2 +M2/α)α/2 −M ≥



α

2(2M2/α)1−α/2 |ξ|
2,

when ξ ∈ A1

α

22−α/2 |ξ|
α,

when ξ ∈ A2.

(3.19)

This relation summarizes the separation between an α-stable and a Gaussian regime

alluded to above.

Step 2: Consequence for the transition kernel. Recall relation (3.4) for pM , that is:

pMs (x, y) =
1

(2π)d

∫
Rd
eı(x−y)·ξe−t{(M

2/α+|ξ|2)α/2−M}dξ.

In the integral above, we simply bound |eı(x−y)·ξ| by 1 and split the integration domain

Rd into A1 ∪ A2. Taking our relation (3.17) into account, this yields:

pMt (x, y) ≤ 1

(2π)d

∫
A1

e
− αt

2(2M2/α)1−α/2
|ξ|2
dξ

+
1

(2π)d

∫
A2

e
− αt

22−α/2
|ξ|α
dξ ≤ I1

t + I2
t , (3.20)
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where

I1
t =

1

(2π)d

[
1

td/2

(
(2M2/α−1)

α/2

)d/2 ∫
Rd
e−|ξ|

2

dξ

]

I2
t =

1

(2π)d

[
1

td/α

(
(22−α/2)

α

)d/α ∫
Rd
e−|ξ|

α

dξ

]
.

It is now easily checked that

I1
t =

c2

td/2
, and I2

t =
c3

td/α
.

Plugging this information into (3.20), our claim (3.5) follows.

3.7 Proof for emergence of Lévy heat dynamics in semiconductor alloys

Let us consider an isotropic Debye crystal with a single phonon branch. By defi-

nition, the branch has a linear dispersion ω = vsk, where ω is the phonon frequency,

vs the sound velocity, and k = ‖~k‖ the phonon wavenumber. Assume furthermore

a single dominant phonon scattering mechanism of the form τ ∼ 1/ωn in which τ

signifies the phonon relaxation time. Due to the linear dispersion, the phonon mean

free path Λ = vsτ then relates to the phonon wavenumber as

Λ ∼ 1/kn ⇔ dΛ

dk
∼ 1/kn+1. (3.21)

The probability that, at any given moment and location, heat is being carried by a

phonon having a wavenumber between k and k + dk is simply proportional to the

phonon density of states:

fK(k)dk ∼ k2dk.

A change of stochastic variable and invoking (3.21) provides the probability that heat

is being carried with a phonon having a mean free path between Λ and Λ + dΛ:

|fΛ(Λ)dΛ| = |fK(k)dk| ⇒ fΛ(Λ) = fK(k)

∣∣∣∣ dkdΛ

∣∣∣∣ ∼ k2 · kn+1 ∼ kn+3 ∼ 1/Λ1+3/n.



108

We now turn our attention to Poissonian flight processes. These realize random

motion by consecutive execution of the following two-step procedure: (i) remain in

current position during a time ϑ drawn from an exponential distribution (having

average ϑ0); (ii) perform an instantaneous "jump" in a randomly chosen direction

with length U drawn from a jump length distribution pU(u). It is known [62] that

heavy-tailed jump length distributions pU(u) ∼ 1/u1+α where 1 ≤ α < 2 induce

Lévy dynamics with characteristic exponent α, i.e. fluid limit of the flight process is

governed by a characteristic function ψ(ξ) ∼ |ξ|α.

The final step of the proof consists of deriving the jump length distribution pU(u)

that is associated to the mean free path selection probability fΛ(Λ) we previously

derived for the Debye crystal. While pu and fΛ intuitively have a direct qualitative

relation, the distributions are quantitatively not the same, due to a subtle but im-

portant distinction in how physical heat carriers and random flyers exactly carry out

their motion. On the one hand, thermal "jumps" carried out by phonons with long

mean free paths take a proportionally longer time to complete than those with short

mean free paths, since all phonons propagate with a given finite velocity vs between

scatterings. The Lévy flyer, on the other hand, is characterized by the same average

wait time ϑ0 irrespective of the distance traversed by any given jump. The jump

length distribution pU(u), therefore, acts as a measure for the number of jumps with

lengths between u and u + du that are executed per unit of time. As the number of

transitions that a given phonon mode can execute per second is given by its scattering

rate τ−1 ∼ 1/Λ, we have

pU(Λ) ∼ fΛ(Λ)/Λ ∼ 1/Λ2+3/n ∼ 1/Λ1+(1+3/n).

This shows that for n values satisfying 1 ≤ 1 + 3/n < 2 (being n > 3 with n not

necessarily integer) the jump length distribution is heavy-tailed and gives rise to

Lévy dynamics with characteristic exponent α = 1 + 3/n. Semiconductor alloys can

therefore be expected to produce such behavior, since heat dynamics in these materials

are predominantly governed by mass disorder (Rayleigh) scattering τ ∼ 1/ω4, yielding

n = 4↔ α = 7/4 = 1.75.
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4. BOND PRICES UNDER INFORMATION ASYMMETRY AND A

SHORT RATE WITH INSTANTANEOUS FEEDBACK

A version of this chapter has been submitted for review.

4.1 Introduction

In a market, different traders have accesses to different levels of information. This

leads to different interpretations of market dynamics under varying degrees of infor-

mation. Even knowledge of the fact that a trader does not have access to full informa-

tion greatly alters her strategy. Therefore, understanding difference in dynamics for

informed and partially informed traders is a crucial part of modeling dynamics of an

information influenced market. Mathematically, additional or exclusive information

that only informed traders can access adds extra random sources to a model, and

makes the market incomplete as a result. Also, one needs a larger filtration to make

additional random variables or stochastic processes adapted.

Information is modeled by a filtration in mathematical finance. A trader with

access to more information has a larger filtration than one with access to less. In [63],

[64] and [65] the filtration for the fully informed trader is assumed to be of the form

Ft = Gt∨σ(L) for some fixed random variable L (usually a future price). [66] studied a

model that incorporated the availability of additional information to the investor with

time. They used a sequence of random variables available only to insiders as additional

information at certain points of times. Also see [67], [68] and [69] for enlargement

of filtration, utility maximization, and other advancements in this area. This article

is a continuation of a series of articles where these studies have been generalized to

the case with Ft = Gt ∨ σ(Xs, 0 ≤ s ≤ t). Here the additional information given to
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insiders is not a single random variable nor a discrete sequence of random variables,

but a continuous time jump-diffusion process.

Let us mention a few cases where some of us have implemented the above notion

of information generated by a continuous time process in the context of a hedging

problem. [70] considered the case where the information modeled by a diffusion affects

the jumps of the price process by influencing the timings of the jumps. The jumps in

this study follow a doubly stochastic Poisson process depending on the information.

Likewise [71] studied the other scenario where the information affects jump sizes of

the price. The two models considered in [70] and [71] may be combined to consider

the case where the jump times and sizes of the price process are affected separately

by two different information processes. The extension of the model to the scenario

when the jump sizes and times of the price process are affected by a single information

process is complicated; nevertheless this was implemented in [72].

So far, most studies on information asymmetry are about stock markets. On the

other hand, there are only a few studies on information effects on a fixed income

market. Information asymmetry is more obvious in a stock market since there are

many hidden factors affecting stock prices. On the other hand, there may be less

private information in the bond market. However, there are so many factors which

affect the interest rate, and a trader can be more informed than others by superior

understanding of the market. For instance, a trader with better understanding and

interpretation on the effect of COVID19 on the economy in short and long terms is

more informed than those who are lack of this insight. In the mathematical modeling,

a less informed trader will omit an important information process while an informed

one will include. The present article concerns the bond price dynamics for a fully

informed versus partially informed trader, where the latter is aware of the deficiency

in her knowledge.

There exists a plethora of models for the short rate. The diffusion-type models

described to use the short rate can have both a single factor as well as multiple

factors. The most common textbook examples from the first category are the time
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homogeneous models given by Vasicek [73], Rendleman-Bartter [74], Cox-Ingersoll-

Ross [75], Ho-Lee [76] and Hull-White [77] among others. They can all be expressed

in the general form:

drt = µ(t, rt)dt+ σ(t, rt)dWt, (4.1)

where r is the short rate and W is a Brownian motion under a risk neutral measure.

The time homogeneous single factor lognormal models, for example the ones by Black-

Derman-Toy [78], Black-Karasinski [79], and Kalotay-Williams-Fabozzi [80] can be

generally expressed as:

d log rt = µ(t, log rt) + σ(t, log rt)dWt.

Single factor models suffer from the drawback of creating all points on the yield curve

perfectly correlated. This can be improved by the introduction of multi-factor models

for the short rate, where the short rate dynamics is additionally dependent on other

factors or prices. They also appear to provide better fitness to empirical data. The

most common examples of this model are the Longstaff-Schwarz model [81] and the

Chen model [82] with factors or prices assumed to satisfy a diffusion with a general

representation:

dX i
t = µi(t,X i

t)dt+ σi(t,X i
t)dW

i
t , i = 1, . . . , n,

where W i’s are Brownian motions. The short rate is now given by another diffusion

akin to (4.1), but where the drift and diffusion coefficients depend on X i.

In this article we will adopt a multi-factor model for the short rate, that is, n inde-

pendent factors are assumed to influence the dynamics of the interest rate. In addition

we assume only k many of them are known by the partially informed trader. However,

we will go beyond the diffusion setting and allow all factors or price processes to have

jumps. These jumps are modeled by compound inhomogeneous Poisson processes.

The short term interest rate is also given by an Itô-diffusion with jumps, where the

latter is modeled the jumps of a compound doubly stochastic Poisson process whose

arrival intensity depends on all factors. Thus the short rate receives instantaneous
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feedback from all factors. Let us mention that a model similar to ours has already

been analyzed in [8], where a multi-factor model is assumed for the short rate. The

main difference between the model considered in [8] and the one analyzed in this

paper is that while only the short rate and no factor is observable in the former,

our article allows the factors to be partially observable, in addition to incorporating

jumps in the short rate and factor processes.

Considering jump-diffusion type factors gives us a great flexibility and also fits

the market better. Some factors or news come continuously like a diffusion, while

others arrive at random times. Also, some factors generally move continuously but

sometimes have larger shocks that a usual diffusion cannot explain. Therefore, by

using jump-diffusion type factors, we can successfully model most types of factors,

whether they move continuously, have jumps at random times, or both.

A partially informed trader either observes only a proper subset of these factors

or fails to include some of factors in the analysis since she does not know that these

are also relevant. The goal of this paper is to find the bond price of this partially

informed trader. The partially informed trader knows that she is partially informed

and tries to minimize the difference between an informed trader and herself. We

consider here the least squares estimate (of the bond price process for the informed

trader) amongst all processes adapted to the information filtration of the partially

informed trader.

We also provide the bond price dynamic of the fully informed trader. As we will

see, this dynamic is given by a partial differential equation. More precisely, we shall

obtain the following theorem (also see Theorem 4.4.1).

Theorem 4.1.1 Let h be the bond price of the fully informed trader. Then we have

∂tht + (Ah)t − rht = 0,

hT = 1, (4.2)

where A is the infinitesimal generator of the multidimensional process formed by com-

bining all factors and the short rate.



113

The bond price dynamic of the partially informed trader is much more complicated

and is given below (see Theorem 4.5.17 for the precise version).

Theorem 4.1.2 Let π be the bond price of the partially informed trader. Then the

dynamic of π is given by a jump diffusion, that is we have:

πt = π0 +

∫ t

0+

Audu+

∫ t

0+

DudB̂u +

∫ t

0+

Judu,

where B̂ is a drifted version of the Brownian motions driving the observed processes,

and J is the jump part.

As we will see, the jump part is driven only by the jumps in the observed processes. In

addition, the diffusion coefficient Du depends on the filtered estimates of parameters

involved only in the observed process. Theorem 4.1.2 is achieved by applications

of techniques in stochastic filtering. This involves working with a new measure to

obtain some drifted versions of Brownian motions in the original measure as Brownian

motions with no drift in the new measure. In addition, the non-homogeneity of the

Poisson processes modeling the location of jumps is removed.

Having stated the key results, we now describe the outline of this article. We ex-

plain the model in Section 2. Section 3 introduces necessary mathematical properties

essential to our analysis. Our main results are in Section 4 and Section 5, containing

the pricing dynamics of a fully informed and a partially informed trader, respectively.

Section 6 concludes.

4.2 Model

We restrict ourselves to a finite time horizon [0, T ] where the short rate r under the

risk neutral measure is given by a jump-diffusion process. However we allow the drift

and the jumps of the short rate to depend on n independent information processes

or factors X i, i = 1, . . . , n. Each of these factors is again given by a jump-diffusion

process.
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4.2.1 Description of factors.

For each i = 1, . . . , n, the information process X i is given by:

dX i
t = αiXdt+ σiXdW

i
t + dRi

t, (4.3)

where αiX and σiX > 0 are constants for simplicity. W i’s are independent standard

Brownian motions and Ri’s account for the jumps in the information process X i.

These jumps are modeled by a compound Poisson process given by

Ri
t =

N i
t∑

j=1

U i
j .

Here N i
t is a Poisson process with intensity function λi, while the U i

j ’s are iid random

variables drawn from some distribution νi, having finite second moment. All Poisson

processes and U i
j ’s are assumed to be independent within themselves and of each

other, and the Brownian motions W i. In addition, for simplicity in presentation we

assume that on [0, T ] each intensity function λi is bounded and bounded away from

0.

4.2.2 Description of short rate.

The risk neutral dynamics of the short rate is given by

drt = µt(X
1:n
t− , rt−)dt+ σt(rt−)dWt + dRt, (4.4)

where Rt =
∑Nt

j=1 Uj. However we make the jumps depend on the information pro-

cesses by now modeling Nt as a doubly stochastic inhomogeneous Poisson process

with intensity function λt(X1:n
t− , rt−), while as before in (4.3), the Uj’s are iid random

variables drawn from distribution ν with finite second moment. W appearing in (4.4)

is a standard Brownian motion. Both N and W are independent of X i for all i.

We also need some restrictions on the drift and diffusion terms in (4.4). Namely, we

assume µ (resp. σ) as functions from R+×Rn+1 (resp. R+×R) to R (resp. R+) such

that each is Lipschitz (so that (4.4) makes sense) and µ
σ
is bounded. Finally for sake
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of simplicity in presentation we again assume that the intensity process λ is bounded

and bounded away from 0.

Remark 4.2.1 Note that the short rate rt and all factors X i
t have jumps, so that

the model can capture any unusual movement. Each factor X i
t is composed of three

parts, a drift part, a Brownian motion part, and a jump part. The first two move

continuously, while the last moves at random times. The arrival rate λt(X1:n
t− , rt−)

gets instantaneous feedback from the current short rate rt and the current factor levels

X1:n
t− . Therefore factors give instantaneous feedback to the short rate.

4.2.3 Description of information asymmetry.

Next we consider two traders. The fully informed trader observes all the informa-

tion processes X i, i = 1, . . . , n. However out of these n information processes only k

of them are known to the partially informed trader. Without loss of generality the

partially informed trader observes only Xj, j = 1, . . . , k. Since we are already in the

risk neutral world, the bond price at time t for the fully informed trader is calculated

by

ht(X
1:n
t , rt) = E

[
e−

∫ T
t rsds|Ft

]
(4.5)

where Ft = σ(X1:n
s , rs; 0 ≤ s ≤ t). Note that due to the Markovian nature of all

processes in Ft,

E
[
e−

∫ T
t rsds|Ft

]
= E

[
e−

∫ T
t rsds|X1:n

t , rt

]
.

Thus the relation (4.5) is well-defined. Let us define Gt = σ(X1:k
s , rs; 0 ≤ s ≤ t) which

is the filtration generated by the processes observed by the partially informed trader

and corresponds to the information available to her. The bond price of the partially

informed trader is given by E[ht(Xt, Yt, rt)|Gt]. This is the least squares estimate of

the bond price chosen among all Gt-adapted processes. The aim of this article is to

calculate this conditional expectation.
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4.3 Preliminaries

In this section we will gather some essential results from stochastic calculus which

would prove to be useful in later sections. We first state the Girsanov-Meyer theorem

borrowed from [83] which discusses the change in a semimartingale decomposition

under a change of measure.

Theorem 4.3.1 (Girsanov-Meyer) Let (Ω,F ,F = {Ft}0≤t<∞,P) be a filtered prob-

ability space. In addition let P and Q be equivalent probability measures (that is, each

is absolutely continuous with respect to each other) on (Ω,F). Denote Zt to be the

right continuous version of EP[dQ
dP |Ft]. Let X be a classical semimartingale under P

with decomposition X = M +A. Then X is also a classical semimartingale under Q

and has a decomposition X = L+ C, where

Lt = Mt −
∫ t

0

1

Zs
d[Z,M ]s

is a Q local martingale, and C = X − L is a finite variation process under Q.

The most ubiquitous result in stochastic calculus is perhaps Itô’s formula. In this

text, we utilize a general version of this important result involving semimartingales.

For completeness, the result is stated below and the interested reader is directed

to [83] for further information.

Theorem 4.3.2 (Itô’s formula) Let X = (X1, . . . , Xn) be an n−tuple of semi-

martingales, and let f : Rn 7→ R have continuous second order partial derivatives.

Then f(X) is a semimartingale and the following formula holds:

f(Xt)− f(X0) =
n∑
i=1

∫ t

0+

∂f

∂xi
(Xs−)dX i

s +
1

2

∑
1≤i,j≤n

∫ t

0+

∂2

∂xi∂xj
(Xs−)d[X i, Xj]cs

+
∑

0<s≤t

{
f(Xs)− f(Xs−)−

n∑
i=1

∂f

∂xi
(Xs−)∆X i

s

}
.

One essential result when dealing with change of numeraire or change of measure

is the Bayes formula. In the sequel we will be working with a transformed measure
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which is not an equivalent martingale measure. Usually in asset pricing, the purpose of

changing the measure is to find a measure which makes the price process a martingale.

However, our purpose of changing the measure is different. This formula helps in

the computation of conditional expectations under the original measure in terms of

conditional expectations under the transformed measure which may exhibit more

amenable forms.

Lemma 4.3.3 (Bayes formula) Let (Ω,F ,P) be a probability space and let P� Q

for some probability measure Q. Then for any σ-algebra G ⊂ F and for any integrable

random variable X (i.e., EP|X| <∞), the Bayes formula holds:

EP (X|G) =
EQ

[
X dP

dQ |G
]

EQ

[
dP
dQ |G

] P− a.s. (4.6)

The expression is well-defined, as P
(
EQ

(
dP
dQ |G

)
= 0
)

= 0.

4.3.1 Counting measure and compensator.

For ease of presentation in the subsequent sections it would be beneficial to con-

sider the random measures associated with the jump processes {Ri
t}1≤i≤n and Rt.

Notation 4.3.4 Let ηi (resp. ηr) denote the random counting measure on [0, T ]×R

generated by the jumps of Ri
t (resp. Rt).

Consequently for functions W : [0, T ]× R 7→ R we have∫ T

0

∫
R
W (ω;u, x)ηi(du, dx) =

∞∑
n=1

W (ω;T in(ω), U i
n(ω))1{T in(ω)≤t},

where T in is the nth jump time of the Poisson process N i
t . A similar expression holds

for ηr. From [84, Ch. 8] ηi and ηr admit the respective compensators η̂i and η̂r given

by

η̂i(du, dx) = λiuν
i(dx)du, and η̂r(du, dw) = λu(X

1:n
u− , ru−)ν(dw)du.
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This means that for predictable mappings W : Ω × [0, T ] × R 7→ R such that∫ T
0

∫
R |W (ω;u,w)|η̂r(du, dw) <∞ P−a.s. we have∫ T

0

∫
R
W (ω;u,w)(ηr − η̂r)(du, dw) is a P− local martingale.

A similar expression holds for ηi and η̂i. We can also consider all jump processes

together as an (n + 1)-dimensional process Jt = (R1
t , . . . , R

n
t , Rt) which also admits

an associated counting measure.

Notation 4.3.5 Let η denote the random counting measure on [0, T ]× R 7→ R gen-

erated by the jumps of Jt = (R1
t , . . . , R

n
t , Rt).

Because of the inter-independence of {N i
t}1≤i≤n and Nt, all jumps of Jt are in precisely

one coordinate P-almost surely. However since the time component is common to all,

superposition of {N i
t}1≤i≤n and Nt yields the combined intensity ζu =

∑n
i=1 λ

i
u +

λu(X
1:n
u− , ru−). For every u ∈ [0, T ] an arrival in this superimposed Poisson process

is associated to Ri (resp. R) with probability λiu
ζu

(resp. λu(X1:n
u− ,ru−)

ζu
). Thus the

compensator of η is given by

η̂(du, dy1:n, dw) (4.7)

= ζu

(
n∑
i=1

λiu
ζ
νi(yi)1{yj=0 ∀j 6=i,w=0} +

λu(X
1:n
u− , ru−)

ζu
ν(dw)1{y1:n=0}

)
du

=

(
n∑
i=1

λiuν
i(yi)1{yj=0 ∀j 6=i,w=0} + λu(X

1:n
u− , ru−)ν(dw)1{y1:n=0}

)
du. (4.8)

4.4 Dynamic under full information

It is important to understand the bond price dynamic under full information in

order to contrast it with the dynamic under partial information. We first present a

preliminary result that provides the dynamic of a generic function of all processes

involved in our model. Since the bond price itself is such a function the following

result also applies to h given by (4.5).
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Lemma 4.4.1 Let f : R+ × Rn+1 7→ R have continuous second partial derivatives.

Then the dynamic of ft(X1:n
t , rt) is given by

ft(X
1:n
t , rt) = f0(X1:n

0 , r0) +

∫ t

0+

(Lf)u(X
1:n
u− , ru−)du+

∫ t

0+

(Mf)u(X
1:n
u− , ru−)dBu

+

∫ t

0+

∫
Rn+1

[
fu(X

1:n
u− + y1:n, ru− + w)− fu(X1:n

u− , ru−)
]

(η − η̂) (du, dy1:n, dw), (4.9)

where L is given by

(Lf)u(x
1:n, r)

=

((
∂u +

n∑
i=1

αiX∂xi + µ∂r +
1

2

(
n∑
i=1

(σiX)2∂2
xi

+ σ2∂2
r

))
f

)
u

(x1:n, r)

+

∫ t

0

∫
Rn+1

(
fu(x

1:n + y1:n, r + w)− fu(x1:n, r)
)
η̂(du, dy1:n, dw), (4.10)

and

(Mh)u(x, y, z) =
((
σ1
X∂x1 , . . . , σ

n
X∂xn , σ∂r

)
h
)
u
(x, y, z).

In addition, η is the random counting measure given by Notation 4.3.5 and η̂ is its

compensator given by relation (4.7).

Proof The proof is an application of Itô’s formula. Observe that from Sections 4.2.1

and 4.2.2 that because of independence of the underlying processes, [X i, Xj] = 0 for

i 6= j and [X i, r] = 0 for all i. Thus we obtain from Theorem 4.3.2 that:

ft(X
1:n
t , rt) = f0(X1:n

0 , r0) +

∫ t

0+

(∂uf)u(X
1:n
u− , ru−)du

+
n∑
i=1

∫ t

0+

(∂xif)u(X
1:n
u− , ru−)dX i

u +

∫ t

0+

(∂rf)u(X
1:n
u− , ru−)dru

+
1

2

n∑
i=1

∫ t

0+

(∂2
x2i
f)u(X

1:n
u− , ru−)d[X i, X i]cu +

1

2

∫ t

0+

(∂2
r2f)u(X

1:n
u− , ru−)d[r, r]cu (4.11)

+
∑

0<s≤t

[
fu(X

1:n
u , ru)− fu(X1:n

u− , ru−)

−
n∑
i=1

(∂xif)u(X
1:n
u− , ru−)∆X i

u − (∂rf)u(X
1:n
u− , ru−)∆ru

]
. (4.12)
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Observe that

d[X i, X i]cu = (σiX)2du and d[r, r]cu = σ2
u(ru−)du. (4.13)

In addition∫ t

0+

(∂xif)u(X
1:n
u− , ru−)dX i

u −
∑

0<s≤t

(∂xif)u(X
1:n
u− , ru−)∆X i

u

=

∫ t

0+

(∂xif)u(X
1:n
u− , ru−)

(
αiXdu+ σiXdW

i
u

)
, (4.14)

and∫ t

0+

(∂rf)u(X
1:n
u− , ru−)dru −

∑
0<s≤t

(∂rf)u(X
1:n
u− , ru−)∆ru

=

∫ t

0+

(∂rf)u(X
1:n
u− , ru−) (µu(Xu−, ru−)du+ σu(ru−)dWu) . (4.15)

Finally using the marked point process η we have∑
0<s≤t

[
fu(X

1:n
u , ru)− fu(X1:n

u− , ru−)
]

=

∫ t

0+

∫
Rn+1

[
fu(X

1:n
u− + y1:n, ru− + w)− fu(X1:n

u− , ru−)
]
η(du, dy1:n, dw)

=

∫ t

0+

∫
Rn+1

[
fu(X

1:n
u− + y1:n, ru− + w)− fu(X1:n

u− , ru−)
]
η̂(du, dy1:n, dw)

+

∫ t

0+

∫
Rn+1

[
fu(X

1:n
u− + y1:n, ru− + w)− fu(X1:n

u− , ru−)
]

(η − η̂) (du, dy1:n, dw).

(4.16)

Using (4.13), (4.14), (4.15) and (4.16) inside relation (4.11) we obtain our desired

result (4.9).

Recall the bond price h in (4.5) which is a conditional expectation given the full

information. This is exploited to find its dynamic, well-known in literature to be

given by a partial differential equation. The following proposition provides the partial

differential equation corresponding to our model as described in Section 4.2.
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Proposition 4.4.1 The bond price process h solves the following partial differential

equation:

(Lh)t(x
1:n, r)− rht(x1:n, r) = 0,

hT (x1:n, r) = 1, (4.17)

where L is given in Lemma 4.4.1.

Proof This is an application of a more general Feynman-Kac formula. Since the

proof is a simple application of Itô’s formula, it is provided below. Let 0 ≤ s ≤ T

and consider

vs = exp

(
−
∫ s

0

rudu

)
.

Notice vs is differentiable and hence of bounded variation. Hence Itô’s formula dictates

d(vshs) = vsdhs + hsdvs, (4.18)

since the covariation term [v, h] = 0. Observe that

dvs = −rsvsds. (4.19)

In addition from Lemma 4.4.1 we obtain

dhs = (Lh)sds+ (Mh)sdBs +

∫
Rn+1

(∆h)sd(η − η̂). (4.20)

Plugging (4.19) and (4.20) in (4.18) we have

d(vshs) = vs [(Lh)s − rshs] ds+ vs

[
(Mh)sdBs +

∫
(∆h)sd(η − η̂)

]
(4.21)

However

vshs = exp

(
−
∫ s

0

rudu

)
E
[
exp

(
−
∫ T

s

rudu

)
|Fs
]

= E
[
exp

(
−
∫ T

0

rudu

)
|Fs
]

is a martingale and hence the drift term in (4.21) must equal zero, that is

(Lh)s − rshs = 0,

as asserted in (4.17).
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4.5 Dynamic under partial information

Our approach, using techniques borrowed from the theory of stochastic filtering,

relies on creating a new measure under which the observed and unobserved Wiener

processes (or transforms of) become independent of each other. In addition the non-

homogeneity of the Poisson processes involved are removed. In order to achieve this

we will be using Theorem 4.3.1 stated in the prequel.

As already mentioned in the Introduction, observe that equation (4.4) can be

understood as an extended case of the Vasicek, Ho-Lee and Hull-White models. The

Hull-White model which also includes the Vasicek and Ho-Lee models in its generality

is usually represented as:

drt = (µt − αtrt) dt+ σtdWt. (4.22)

Comparing equation (4.22) with that of (4.4), we find that (4.4) is indeed more general

than the three models mentioned above, and in the rest of this section we will provide

one way of inferring about the dynamics of the bond price under this more general

interest rate dynamics, with the additional constraint of partial information.

Our next goal is to find the bond price under partial information, that is, the

conditional expectation πt = E[ht(X
1:n
t , r)|Gt], where h is given by Proposition 4.4.1.

Conditional expectations of this kind are usually found using well-established tech-

niques in the stochastic filtering literature and here we will try to do the same. More

precisely, we will use the change of measure approach in stochastic filtering to find

our desired quantity πt.

4.5.1 Measure change and dynamics under changed measure

We now mention this necessary change of measure under which the Wiener pro-

cesses driving the unobserved processes become independent of drifted versions of the

Wiener processes driving the observed processes. Recall the regularity assumption

on µ and σ stated in Section 4.2, namely we assume that in addition to the usual
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assumptions for the existence of the Itô jump-diffusion (4.4) we also have that µ
σ
is

bounded. The following hypothesis defines our new measure.

Hypothesis 4.5.1 Let Zt be given by

Zt = 1−
∫ t

0+

Zs−

[
k∑
i=1

αiX
σiX

dW i
s +

µs(X
1;n
s− , rs−)

σs(rs−)
dWs

+
k∑
i=1

(
1− 1

λis

)
(dN i

s − λsds) +

(
1− 1

λs(X1:n
s− , rs−)

)(
dNs − λs(X1:n

s− , rs−)ds
)]
.

(4.23)

Define QT by dQT
dP = ZT and Qt by dQt

dP = E[ZT |Ft].

Remark 4.5.2 Observe that Z can be represented as Zt = E(M)t where M is given

by

Mt = −

(
k∑
i=1

αiX
σiX

dW i
s +

µs(X
1:n
s− )

σs(rs−)
dWs +

k∑
i=1

(
1− 1

λis

)
dÑ i

s

+

(
1− 1

λs(X1:n
s− , rs−)

)
dÑs

)
, (4.24)

and E(M) is the stochastic exponential of M . In (4.24) we have denoted Ñ i
s and

Ñs to stand for the compensated Poisson processes under P. Using the formula for

stochastic exponential of semimartingales we have

Zt = E(M)t = exp

(
Mt −

1

2
[M,M ]ct

) ∏
0<s≤t

(1 + ∆Ms) exp(−∆Ms). (4.25)

Using (4.24) in (4.25) it is readily checked that

Zt = exp

(
−
∫ t

0+

(
k∑
i=1

αiX
σiX

dW i
s +

µs(X
1:n
s− )

σs(rs−)
dWs

)
− 1

2

(
k∑
i=1

(αiX)2

(σiX)2
t

+

∫ t

0+

µ2
s(X

1:n
s− , rs−)

σ2
s(rs−)

ds

)
−

k∑
i=1

∫ t

0

log(λis)dN
i
s −

∫ t

0

log(λs(X
1:n
s− , rs−))dNs

−
k∑
i=1

∫ t

0

(1− λis)ds−
∫ t

0

(1− λs(X1:n
s− , rs−))ds

)
. (4.26)
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Remark 4.5.3 Qt is a valid probability measure. To see this observe from (4.23) that

Z is a P-local martingale. Using [83, Cor. 3, p 73 ] Z would be a square integrable

martingale if and only if

E[Z,Z]t <∞, ∀t ≥ 0.

Taking into account the independence of W i, W , N i and N we obtain:

[Z,Z]t =

∫ t

0+

Z2
s−

((
k∑
i=1

(αiX)2

(σiX)2
+
µ2
s(X

1:n
s− , rs−)

σ2
s(rs−)

)
ds

+
k∑
i=1

(
1− 1

λis

)2

dN i
s +

(
1− 1

λs(X1:n
s− , rs−)

)2

dNs

)
.

Boundedness of αi

σi
, µ
σ
, 1
λi

and 1
λ
implies there exists a constant c such that:

[Z,Z]t ≤ c

[∫ t

0+

Z2
s−ds+

k∑
i=1

∫ t

0+

Z2
s−dN

i
s +

∫ t

0+

Z2
s−dNs

]
.

Taking expectation on both sides , using the fact that E[
∫
hsdNs] = E[

∫
hsλsds] and

a further use of the boundedness of λi, λ we obtain

E[Z,Z]t ≤ c′E
[∫ t

0+

Z2
s−ds

]
= c′

∫ t

0+

E[Z2
s−]ds.

From (4.26) we have

E[Z2
t ] ≤ c1E

[
exp

(
c2

k∑
i=1

W i
t +Wt +

k∑
i=1

N i
t +Nt

)]
≤ C,

for some constant C, by computing the exponential moments explicitly. Having thus

obtained that E[Z,Z]t < ∞ we conclude that Z is a square integrable martingale.

Hence

Qt(Ω) = EP

[
dQt

dP

]
= EP[Zt] = EP [Z0] = 1.

Thus Qt is a probability measure for each t ∈ [0, T ].

Remark 4.5.4 Notice that the measures P and QT are absolutely continuous with

each other. This is evident from the fact that the Radon-Nikodym derivative dQT
dP is
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strictly positive. In addition Qt(A) = QT (A) for any A ∈ Ft. To see this observe that

for A ∈ Ft:

QT (A) = EP [ZT1A] = EP [EP [ZT1A|Ft]] = EP [Zt1A] = Qt(A), (4.27)

where we have used the fact that A ∈ Ft to bring 1A out of the inner expectation, and

the fact that Zt is a martingale under P for the final conclusion.

We now provide our result on how some drifted versions of our original Brownian

motions behave under the new measure Q defined in Hypothesis 4.5.1.

Lemma 4.5.5 Under Q the following are independent standard Brownian motions:

W̄ i
t = W i

t +
αiX
σiX

t, i = 1, . . . , k,

W̄ i
t = W i

t , i = k + 1, . . . , n,

W̄t = Wt +

∫ t

0

(µ
σ

)
s
(X1:n

s− , rs−)ds.

Proof From Theorem 4.3.1 we know that for i = 1, . . . , n,

V i
t = W i

t −
∫ t

0+

1

Zs−
d[Z,W i]s

is a Q-local martingale. For i ≤ k we have

d[Z,W i]s = −Zs−
αiX
σiX

ds,

while d[Z,W i] = 0 for i > k. This implies V i
t = W̄ i

t . In addition [W̄ i, W̄ i]t =

[W i,W i]t = t. Consequently W̄ i is a standard Brownian motion for i = 1, . . . , n.

Further note that

Vt = Wt −
∫ t

0+

1

Zs−
d[Z,W ]s

is a Q-local martingale with

d[Z,W ]s = −Zs−
µs(X

1:n
s− , rs−)

σs(rs−)
ds.

This implies Vt = W̄t. In addition [W̄ , W̄ ]t = [W,W ]t = t. Thus W̄ is also a standard

Brownian motion. Finally observe [W̄ i, W̄ j] = [W i,W j] = 0 for i 6= j, in addition

to [W̄ i, W̄ ] = [W i,W ] = 0 for i = 1, . . . , n. Thus W̄ i, i = 1, . . . , n and W̄ are

independent.
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For simplicity in presentation we consider the following notation.

Notation 4.5.6 Let B and B̄ denote the (n+1) dimensional Wiener processes given

by

Bt =
(
W 1
t , . . . ,W

n
t ,Wt

)ᵀ
, and B̄t =

(
W̄ 1
t , . . . , W̄

n
t , W̄t

)ᵀ
.

In addition, we introduce the notation for the (n+ 1) length vector

µ̄t(X
1:n
t− , rt−) =

(
α1
X

σ1
X

, . . . ,
αkX
σkX

, 0, . . . , 0,
µt(X

1:n
t− , rt−)

σt(rt−)

)
,

so that dB̄t = dBt + µ̄tdt.

We now state a lemma to help find the new compensator of the random measure η

under Q. It is adapted from [85, Ch 3 Theorem 3.17], so we omit the proof.

Lemma 4.5.7 Let P̃ = P⊗B(R) be the σ-field of predictable sets in Ω̃ = Ω×[0, T ]×R

and MP
η = η(ω, du, dx)P(dω) be the positive measure on (Ω×[0, T ]×R,F⊗B([0, T ])⊗

B(R)) defined by

MP
η (W ) = E(W ∗ η)T = E

∫ T

0

∫
R
W (ω; s, x)η(ω; ds, dx),

for measurable non-negative functions W = W (ω; t, x) given on ω × [0, T ] × R. The

conditional expectationMP
η ( Z

Z−
|P̃) is defined to be theMP

η−a.s. unique P̃−measurable

function Y with the property

MP
η

(
Z

Z−
U

)
= MP

η (Y U),

for all non-negative P̃−measurable functions U = U(ω; t, x). Let η̂ be the compensator

of η under P. Then the compensator of η under Q is given by

η̃ = η̂MP
η

(
Z

Z−
|P̃
)

The next lemma gives us the compensator of the random measure under the

changed probability Q.
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Lemma 4.5.8 Under Q the compensator η̂Q of the random measure η is given by

η̂Q(du, dy1:n, dw)

=

(
k∑
i=1

νi(yi)1{yj=0 ∀j 6=i} +
n∑

i=k+1

λiuν
i(yi)1{yj=0 ∀j 6=i} + ν(dw)1{y1:n=0}

)
du.

Proof The compensator for η under P is given by (4.7). In addition according to

(4.23)

Zt = 1 +

∫ t

0+

Zs−dMs,

whereM is given by (4.24). In order to apply Lemma 4.5.7 we need to findMP
η ( Z

Z−
|P̃).

To that effect observe that

Zt
Zt−

= 1 + ∆Mt = 1−
k∑
i=1

(
1− 1

λis

)
∆N i

t −
(

1− 1

λt(X1:n
t− , rt−)

)
∆Nt. (4.28)

Because of independence, {N i}1≤i≤k andN do not share common jumps almost surely.

This implies from (4.28)

Zt
Zt−

=
k∑
i=1

∆N i
s

λis
+

∆Ns

λs(X1:n
s− , rs−)

, a.s.

Taking conditional expectation MP
η (·|P̃) we obtain that

MP
η

(
Zt
Zt−
|P̃
)

=
k∑
i=1

1

λis
MP

η

(
∆N i

s|P̃
)

+
1

λs(X1:n
s− , rs−)

MP
η

(
∆Ns|P̃

)
. (4.29)

For P̃−measurable U we have

MP
η (∆NsU) = E

[∫ T

0

∫
R
1{y1:n=0}U(u, y)η(du, dy, dw)

]
= MP

η (1{y1:n=0}U).

Since the indicator functions are P̃−measurable we get

MP
η

(
∆Ns|P̃

)
= 1{y1:n=0}. (4.30)

Similarly we have

MP
η

(
∆N i

s|P̃
)

= 1{yj=0∀j 6=i,w=0}. (4.31)
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Plugging in relations (4.30) and (4.31) in (4.29) we obtain

MP
η

(
Zt
Zt−
|P̃
)

=
k∑
i=1

1

λit
1{yj=0∀j 6=i,w=0} +

1

λt(X1:n
t− , rt−)

1{y1:n=0}.

Now appealing to Lemma 4.5.7 we find that the compensator for η under Q is given

by

η̃ = η̂MP
η

(
Z

Z−
|P̃
)
,

where η̂ is given by (4.7). Since the indicators are orthogonal we obtain our desired

result.

Remark 4.5.9 It is useful to represent ht in terms of the martingales under Q.

ht(X
1:n
t , rt)

= h0(X1:n
0 , r0) +

∫ t

0+

(LQh)u(X
1:n
u− , ru−)du+

∫ t

0+

(MQh)u(X
1:n
u− , ru−)dB̄u

+

∫ t

0+

∫
Rn+1

[
hu(X

1:n
u− + y1:n, ru− + w)− hu(X1:n

u− , ru−)
] (
η − η̂Q

)
(du, dy1:n, dw),

where

(LQf)u(x
1:n, r)

=

((
∂u +

n∑
i=k+1

αiX∂xi +
1

2

(
n∑
i=1

(σiX)2∂2
xi

+ σ2∂2
r

))
f

)
u

(x1:n, r)

+

∫ t

0

∫
Rn+

(
fu(x

1:n + y1:n, r + w)− fu(x1:n, r)
)
η̂Q(du, dy1:n, dw),

and

MQ =M.

4.5.2 Bridge to the partially informed trader’s price

To obtain the partially informed trader’s price, we will use Bayesian filtering

methods. Recall Zt defined in Hypothesis 4.5.1. In order to use the Bayes formula in

Lemma 4.3.3 and obtain the bond price dynamics for the partially informed trader,

it would be useful to obtain the dynamics of Z−1
t . This is the content of the following

lemma.
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Lemma 4.5.10 Let Λt = 1
Zt
, where Zt is defined in Hypothesis 4.5.1. Then the

dynamics of Λt is given by

Λt = 1 +

∫ t

0+

Λs−

(
k∑
i=1

αiX
σiX

dW i
s +

µs(X
1:n
s− , rs−)

σs(rs−)
dWs +

n∑
i=1

(
αiX
σiX

)2

ds

+
µ2
s(X

1:n
s− , rs)

σ2
s(rs−)

ds+
k∑
i=1

(
λis − 1

) (
dN i

s − ds
)

+
(
λs(X

1:n
s− , rs−)− 1

)
(dNs − ds)

)

= 1 +

∫ t

0+

Λs−

(
µ̄t(X

1:n
t− , rt−)dB̄u +

k∑
i=1

(
λis − 1

)
dN̄ i

s +
(
λs(X

1:n
s− , rs−)− 1

)
dN̄s

)
,

where {N̄ i}1≤i≤k and N̄ denotes the compensated Poisson processes under Q.

Proof From (4.26) we have

Λt = exp

(∫ t

0+

(
k∑
i=1

αiX
σiX

dW i
s +

µs(X
1:n
s− )

σs(rs−)
dWs

)
+

1

2

(
k∑
i=1

(αiX)2

(σiX)2
t

+

∫ t

0+

µ2
s(X

1:n
s− , rs−)

σ2
s(rs−)

ds

)
+

k∑
i=1

∫ t

0

log(λis)dN
i
s +

∫ t

0

log(λs(X
1:n
s− , rs−))dNs

+
k∑
i=1

∫ t

0

(1− λis)ds+

∫ t

0

(1− λs(X1:n
s− , rs−))ds

)
. (4.32)

Now applying Itô’s formula we obtain that

Λt = 1 +

∫ t

0+

Λs−

(
k∑
i=1

αiX
σiX

dW i
s +

µs(X
1:n
s− , rs−)

σs(rs−)
dWs +

1

2

(
k∑
i=1

(αiX)2

(σiX)2

+
µ2
s(X

1:n
s− , rs−)

σ2
s(rs−)

)
ds+

k∑
i=1

log(λis)dN
i
s + log(λs(X

1:n
s− , rs−))dNs +

k∑
i=1

(1− λis)ds

+(1− λs(X1:n
s− , rs−))ds

)
+

1

2

∫ t

0+

Λs−

(
k∑
i=1

(αiX)2

(σiX)2
+
µ2
s(X

1:n
s− , rs−)

σ2
s(rs−)

)
ds

+
∑

0<s≤t

(
Λs − Λs− − Λs−

(
k∑
i=1

log(λis)∆N
i
s + log(λs(X

1:n
s− , rs−))∆Ns

))
(4.33)

Observe that∑
0<s≤t

Λs−

(
k∑
i=1

log(λis)∆N
i
s + log(λs(X

1:n
s− , rs−))∆Ns

)

=

∫ t

0+

Λs−

(
k∑
i=1

log(λis)dN
i
s + log(λs(X

1:n
s− , rs−))dNs

)
. (4.34)
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Furthermore from (4.32) itself

∑
0<s≤t

(Λs − Λs−)

=
∑

0<s≤t

(
Λs− exp

(
k∑
i=1

log(λis)∆N
i
s + log(λs(X

1:n
s− , rs−))∆Ns

)
− Λs−

)
.

Since the {N i}1≤i≤k and N do not share common jumps, for fixed s only one of

{∆N i
s}1≤i≤k and ∆Ns equals 1. This simplifies the above as

∑
0<s≤t

(Λs − Λs−) =
∑

0<s≤t

Λs−

(
k∑
i=1

(λis − 1)∆N i
s + (λs(X

1:n
s− , rs−)− 1)∆Ns

)
. (4.35)

Plugging in (4.34) and (4.35) in (4.33) we obtain

Λt = 1 +

∫ t

0+

Λs−

(
k∑
i=1

αiX
σiX

dW i
s +

µs(X
1:n
s− , rs−)

σs(rs−)
dWs +

k∑
i=1

(αiX)2

(σiX)2
ds

+
µ2
s(X

1:n
s− , rs)

σ2
s(rs−)

ds+
k∑
i=1

(
λis − 1

) (
dN i

s − ds
)

+
(
λs(X

1:n
s− , rs−)− 1

)
(dNs − ds)

)
,

as desired.

Remark 4.5.11 Similar to (4.27) we also have:

EQt

[
ht(X

1:n
t , rt)Λt

∣∣∣∣Gt] = EQT

[
ht(X

1:n
t , rt)Λt

∣∣∣∣Gt] = EQT

[
ht(X

1:n
t , rt)ΛT

∣∣∣∣Gt] ,
(4.36)

where one might find it convenient to use the fact that Λ is a martingale and the

tower property of conditional expectations in order to obtain the last equality.

Notation 4.5.12 Let η̄i and η̄ respectively denote the compensated versions under Q

of the random measures ηi and η. More precisely, we denote

η̄i(du, dy) =
(
ηi(du, dy)− ν(dy)du

)
, and η̄(du, dy) = (η(du, dy)− ν(dy)du) .

It is now necessary to calculate the numerator corresponding to relation (4.6). In

order to achieve that we first find the dynamics of the integrand, whose conditional

expectation we require.



131

Lemma 4.5.13 The dynamics of ht(X1:n
t , rt)Λt is given by

ht(X
1:n
t , rt)Λt = h0(X1:n

0 , r0)Λ0 +

∫ t

0+

Λu−(Lh)u(X
1:n
u− , ru−)du

+

∫ t

0+

Λu−((M+ µ̄)h)u(X
1:n
u− , ru−)dB̄u +

∫ t

0+

Λu−(∆hu)(η − η̂Q)(du, dy1:n, dw)

+

∫ t

0+

Λu−

(
k∑
i=1

(λiu − 1)

∫
R
hu(X

1:n
u− + yiei,n, ru−)η̄i(du, dyi)

+
(
λs(X

1:n
s− , rs−)− 1

) ∫
R
hu(X

1:n
u− , ru− + w)η̄r(du, dw)

)
. (4.37)

Proof We use integration by parts. Recall for two semimartingales U and V we

have

UtVt = U0V0 +

∫ t

0+

Us−dVs +

∫ t

0+

Vs−dUs + [U, V ]t. (4.38)

Taking Ut = ht(X
1:n
t , rt) and Vt = Λt we have from Remark 4.5.9 and Lemma 4.5.10

that the covariation process is given by

[U, V ]t =

∫ t

0+

Λu−((µ̄ᵀM)h)u(X
1:n
u− , ru−)du

+

∫ t

0+

Λu−

(
k∑
i=1

(λiu − 1)

∫
R

[
hu(X

1:n
u− + yiei,n, ru−)− hu(X1:n

u− , ru−)
]
ηi(du, dyi)

+
(
λs(X

1:n
s− , rs−)− 1

) ∫
R

[
hu(X

1:n
u− , ru− + w)− hu(X1:n

u− , ru−)
]
ηr(du, dw)

)
(4.39)

In addition we have∫ t

0+

Vs−dUs =

∫ t

0+

Λs−(LQh)u(X
1:n
u− , ru−)du+

∫ t

0+

Λs−(MQh)u(X
1:n
u− , ru−)dB̄u

+

∫ t

0+

Λs−

∫
Rn+1

∆hu(η − η̂Q)(du, dy1:n, dw). (4.40)

Finally∫ t

0+

Us−dVs =

∫ t

0+

Λs−(µ̄h)s(X
1:n
s− , rs−)dB̄s

+

∫ t

0+

Λs−

(
k∑
i=1

(λis − 1)

∫
R
η̄i(ds, dx) +

(
λs(X

1:n
s− , rs−)− 1

) ∫
R
η̄r(ds, dx)

)
. (4.41)
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Plugging relations (4.39), (4.40), (4.41) in (4.38) we have

ht(X
1:n
t , rt) = h0(X1:n

0 , r0) +

∫ t

0+

Λs−
[((

µ̄ᵀMQ + LQ
)
h
)
u
(X1:n

u− , ru−)

+
k∑
i=1

(λiu − 1)

∫
R

[
hu(X

1:n
u− + yiei,n, ru−)− hu(X1:n

u− , ru−)
]
νi(dyi)

+
(
λs(X

1:n
s− , rs−)− 1

) ∫
R

[
hu(X

1:n
u− , ru− + w)− hu(X1:n

u− , ru−)
]
νr(dw)

]
du

+

∫ t

0+

Λu−
((
MQ + µ̄

)
h
)
u
(X1:n

u− , ru−)dB̄u

+

∫ t

0+

Λu−

(
k∑
i=1

(λiu − 1)

∫
R
hu(X

1:n
u− + yiei,n, ru−)η̄i(du, dyi)

+
(
λs(X

1:n
s− , rs−)− 1

) ∫
R
hu(X

1:n
u− , ru− + w)η̄r(du, dw)

)
+

∫ t

0+

Λu−(∆hu)(η − η̂Q)(du, dy1:n, dw)

Simplifying the drift and diffusion coefficients above we obtain

ht(X
1:n
t , rt)Λt = h0(X1:n

0 , r0)Λ0 +

∫ t

0+

Λu−(Lh)u(X
1:n
u− , ru−)du

+

∫ t

0+

Λu−((M+ µ̄)h)u(X
1:n
u− , ru−)dB̄u +

∫ t

0+

Λu−
(
(∆hu)(η − η̂Q)(du, dy1:n, dw)

+
k∑
i=1

(λiu − 1)

∫
R
hu(X

1:n
u− + yiei,n, ru−)η̄i(du, dyi)

+
(
λs(X

1:n
s− , rs−)− 1

) ∫
R
hu(X

1:n
u− , ru− + w)η̄r(du, dw)

)

4.5.3 Price of the partially informed trader

We are ready to put all the pieces together to calculate the partially informed

trader’s price. For simplicity, we define some notations.
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Notation 4.5.14 Let the functional operators ∆i(z) and ∆(z) be defined as follows(
∆i(z)f

)
u
(x1:n, r) = fu(x

1:n + zei,n, r)− fu(x1:n, r), for i = 1, . . . , k,

(∆(z)f)u(x
1:n, r) = fu(x

1:n, r + z)− fu(x1:n, r).

In addition let

B̂t = (W̄ 1
t , . . . , W̄

k
t , W̄t),

and

µ̂t(X
1:n
t− , rt−) =

(
α1
X

σ1
X

, . . . ,
αkX
σkX

,
µt(X

1:n
t− , rt−)

σt(rt−)

)
.

The following lemma will be useful if we are to take expectation in Lemma 4.5.13 in

order to obtain γt. The proof of this result is standard and can be found in most

stochastic calculus textbooks.

Lemma 4.5.15 Let W̃ 1 and W̃ 2 be two independent Ft-Brownian motions such that

the generated sigma algebras satisfy:

(i) FW̃ 1

t ⊆ Gt ⊂ Ft,

(ii) FW̃ 2

t and Gt are independent.

Then for an Ft-adapted bounded process F we have:

E
[∫ t

0

Fs dW̃
1
s

∣∣∣∣Gt] =

∫ t

0

E
[
Fs

∣∣∣∣Gt] dW̃ 1
s ,

E
[∫ t

0

Fs ds

∣∣∣∣Gt] =

∫ t

0

E
[
Fs

∣∣∣∣Gt] ds,
E
[∫ t

0

Fs dW̃
2
s

∣∣∣∣Gt] = 0.

Lemma 4.5.16 The unnormalized filter γt(h) = EQt [ht(X
1:n
t , rt)Λt|Gt] is given by

γt(h) = γ0(h) +

∫ t

0+

γu−(Lh)du+

∫ t

0+

γu−(M̂h)dB̂u

+
k∑
i=1

∫
R

(
γu−(∆i(yi)h) + (λiu − 1)γu−(∆i(yi)h+ h)

)
η̄i(du, dyi)

+

∫
R

(γu−(∆(w)h) + γu−((λ− 1)(∆(w)h+ h)) η̄r(du, dw),
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where

(M̂h)u(x
1:n, r) =

((
σ1
X∂x1 +

α1
X

σ1
X

, . . . , σkX∂xk +
αkX
σkX

, σ∂r +
µ

σ

)
h

)
u

(x1:n, r).

Proof We obtain this result by taking conditional expectation EQt [·|Gt] in equation

(4.37). Using Lemma 4.5.15 we obtain

EQt

[∫ t

0+

Λu−(Lh)u(X
1:n
u− , ru−)du|Gt

]
=

∫ t

0+

EQt
[
Λu−(Lh)u(X

1:n
u− , ru−)|Gu

]
du

=

∫ t

0+

EQu
[
Λu−(Lh)u(X

1:n
u− , ru−)|Gu

]
du

=

∫ t

0+

γu−(Lh)du. (4.42)

Using Lemma 4.5.15 and Lemma 4.5.5 we have

EQt

[∫ t

0+

Λu−((M+ µ̄)h)u(X
1:n
u− , ru−)dB̄u|Gt

]
=

∫ t

0+

γu−(M̂h)dB̂u, (4.43)

since the Brownian motions W̄ i
t , i > k are independent of Gt under Qt. Similarly

EQt

[∫ t

0+

Λu−(∆h)u(η − η̂Q)(du, dy1:n, dw)

]
=

k∑
i=1

∫
R
γu−(∆i(yi)h)η̄i(du, dyi),

(4.44)

since ηi, i > k are independent of Gt under Qt. Combining (4.42), (4.43) and (4.44)

together we obtain our result.

Finally, the next theorem gives us the bond price of the partially informed trader.

Theorem 4.5.17 The normalized filter πt(h) = γt(h)
γt(1)

satisfies

πt(h) = π0(h)

+

∫ t

0+

[
πu−(Lh)−

〈
πu−(M̂h), πu−(µ̂)

〉
+

(
k∑
i=1

(λiu − 1) + πu−(λ− 1)

)
πu−(h)

−

(
k∑
i=1

∫
R

(
πu−

(
∆i(yi)h+ (λiu − 1)πu−(∆i(yi)h+ h)

))
νi(dyi)

+

∫
R

(πu−(∆(w)h)πu−((λ− 1)(∆(w)h+ h))) ν(dw)

)]
du

+

∫ t

0+

[
πu−(M̂h)− πu−(h)πu−(µ̂)

]
dB̂u +

∑
0<s≤t

[
As(h)

Bs(h)
− πs−(h)

]
,
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where

As(h) = πs−(h) +
k∑
i=1

∫
R

{
πs−(∆i(yi)h) + (λis − 1)πs−(∆i(yi)h+ h)

}
ηi(ds, dyi)

+

∫
R
{πs−(∆(w)h) + πs−((λ− 1)(∆(w)h+ h))} η(ds, dw)

and

Bs(h) = 1 +
k∑
i=1

(λis − 1)dN i
s + πs−(λ− 1)dNs.

Proof From Lemma 4.5.16 the dynamic of γt(1) is given by

γt(1) = γ0(1)+

∫ t

0+

γu−(µ̂)dB̂u+
k∑
i=1

(λiu−1)γu−(1)(dN i
u−du)+γu−(λ−1)(dNu−du).

We can now apply Itô’s formula in Theorem 4.3.2 in order to obtain the dynamics of
γt(h)
γt(1)

. To that effect we consider the function f given by

f(x, y) =
x

y
.

The partial derivatives of f now satisfy:

∂f

∂x
=

1

y
,
∂f

∂y
= − x

y2
,
∂2f

∂x∂y
= − 1

y2
. (4.45)

Theorem 4.3.2 now imply

γt(h)

γt(1)
=
γ0(h)

γ0(1)
+

∫ t

0+

∂f

∂x
(γu(h), γu(1))dγu(h) +

∫ t

0

∂f

∂y
(γu(h), γu(1))dγu(1)

+

∫ t

0

∂2f

∂x∂y
(γu(h), γu(1))d[γ(h), γ(1)]cu

+
∑

0<s≤t

{
γs(h)

γs(1)
− γs−(h)

γs−(1)
− ∂f

∂x
(γs(h), γs(1))∆γs(h)− ∂f

∂y
(γs(h), γs(1))∆γs(1)

}
.

(4.46)

Notice that

∆γs(h) =
k∑
i=1

∫
R

{
γs−(∆i(yi)h) + (λis − 1)γs−(∆i(yi)h+ h)

}
ηi(ds, dyi)

+

∫
R
{γs−(∆(w)h) + γs−((λ− 1)(∆(w)h+ h))} η(ds, dw),
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while

∆γs(1) =
k∑
i=1

(λis − 1)γs−(1)dN i
s + γs−(λ− 1)dNs

= γs−(1)

(
k∑
i=1

(λis − 1)dN i
s + πs−(λ− 1)dNs

)
.

Using the fact that one can represent

γs(h)

γs(1)
=
γs−(h) + ∆γs(h)

γs−(1) + ∆γs(1)
,

one now has
γs(h)

γs(1)
=
As(h)

Bs(h)
.

Combining the above together we have:

πt(h) = π0(h)

+

∫ t

0+

[
πu−(Lh)−

〈
πu−(M̂h), πu−(µ̂)

〉
+

(
k∑
i=1

(λiu − 1) + πu−(λ− 1)

)
πu−(h)

−

(
k∑
i=1

∫
R

(
πu−

(
∆i(yi)h+ (λiu − 1)πu−(∆i(yi)h+ h)

))
νi(dyi)

+

∫
R

(πu−(∆(w)h)πu−((λ− 1)(∆(w)h+ h))) ν(dw)

)]
du

+

∫ t

0+

[
πu−(M̂h)− πu−(h)πu−µ̂

]
dB̂u +

∑
0<s≤t

[
As(h)

Bs(h)
− πs−(h)

]
.

4.6 Conclusion

We have studied bond prices of the fully informed trader and the partially in-

formed trader. The fully informed trader’s bond price is given by a partial differen-

tial equation, while the partially informed trader’s problem is more complicated. We

employed a Bayesian filtering method to obtain the partially informed trader’s price

which included a useful change of measure technique.
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