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ABSTRACT

Kolis, Peter A. PhD, Purdue University, Aug 2020. Quantification of Uncertainty in
the Modeling of Creep in RF MEMS Devices. Major Professors: Marisol Koslowski
and Anil Bajaj, School of Mechanical Engineering.

Permanent deformation in the form of creep is added to a one-dimensional model of

a radio-frequency micro-electro-mechanical system (RF-MEMS). Due to uncertainty

in the material property values, calibration under uncertainty is carried out through

comparison to experiments in order to determine appropriate boundary conditions

and material property values. Further uncertainty in the input parameters, in the

form of probability distribution functions of geometric device properties, is included

in simulations and propagated to the device performance as a function of time. The

effect of realistic power-law grain size distributions on the creep response of thin RF-

MEMS films is examined through the use of a finite volume software suite designed for

the computational modelling of MEMS. It is seen that the use of a realistic height-

dependent power-law distribution of grain sizes in the film in place of a uniform

grain size has the effect of increasing the simulated creep rate and the uncertainty

in its value. The effect is seen to be the result of the difference between the model

with a homogeneous grain size and the model with a non-homogeneous grain size.

Realistic variations in the grain size distribution for a given film are seen to have a

smaller effect. Finally, in order to incorporate variations in thickness in manufactured

devices, variation in the thickness of the membrane across the length and width is

considered in a 3D finite element model, and variation of thickness along the length

is added to the earlier one-dimensional RF-MEMS model. Estimated uncertainty in

the film profile is propagated to selected device performance metrics. The effect of

film thickness variation along the length of the film is seen to be greater than the

effect of variation across the width.
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1. INTRODUCTION

In this chapter the question of material modeling of thin films used for MEMS devices

is introduced, with a focus first on thin films themselves, and then on RF-MEMS

structures that are fabricated utilizing the thin films. Thin films can be modeled

through classical continuum models, but modern fabrication techniques necessarily

introduce various issues that make the assumption of a uniform elastic continuum

invalid. Various models of thin films introduce microstructural issues that are related

to nonuniformity in thin films, including models which represent nonuniformity in

the material’s microstructure; models considering uniform or nonuniform crystalline

grain structures; and the models of various microstructure properties that result in

creep and energy loss in the material during the course of deformation. In addition

to properties of thin films, modeling issues arise that result from actual physical

structural configurations of the MEMS devices in the form of beams with various

support mechanisms, plates with various geometries and supports, and actuation and

sensing mechanisms.

1.1 Thin Films in RF-MEMS Switches

Thin films with dimensions on the order of 1 µm in the smallest direction which

contain nanocrystalline grains are used in a variety of microelectromechanical systems

(MEMS). These thin films exhibit a higher yield stress than coarse-grained bulk mate-

rial due to Hall-Petch strengthening, which predicts an inverse relationship between

the grain size and yield stress [1]. Below a critical submicron grain size, however,

yield stresses have been seen to deviate from the Hall-Petch relationship and remain

constant or decline with decreasing grain size. This has been termed the ‘inverse
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Hall-Petch relation’ and has been noted in, for example, [2], [3], [4], [5], [6], [7], with

various underlying mechanisms proposed.

The small grain size of thin films has the additional effect of increasing diffusional

creep, a deformation mechanism in which point defects move through grain interiors

(Nabarro-Herring creep) or around grain boundaries (Coble creep) [8]. Plastic strain

rates in Nabarro-Herring and Coble creep are proportional to 1
d2

and 1
d3

respectively,

where d is the average grain size. Coble creep, in particular, is driven by the diffu-

sion of vacancies. At lower stresses and temperatures, Coble creep is the dominant

deformation mechanism.

Creep is defined as deformation under a constant applied load; stress relaxation

is the identical phenomenon for a constant applied deformation. Creep is time-

dependent and results in permanent deformation, which may degrade expected per-

formance and/or cause device failure. Creep generally occurs in three stages. In the

first and third stages, deformation is large and rapid. In the second stage, which

occurs over the greatest period of time and which is the only stage considered here,

the strain caused by creep is nearly a linear function of time. An example of this

behavior seen in [9] is reprinted with permission in Figure 1.1, in which permanent

deformation attributed to creep causes a loaded thin film to permanently deform over

the course of more than 100 hours. Similar behavior is seen in [10], and device profiles

are recorded before and after the creep behavior, with some apparent recovery after

further relaxation while unloaded.

The mechanical properties of thin films as used in MEMS are being extensively

studied. Reviews of various experimental methods for the determination of mechan-

ical properties are presented in [11], [12]. New characterization methods are being

defined, as in [13], which utilizes digital image correlation to determine strain fields

which result from tensile tests of dogbone specimens. Much literature involves the

study of individual materials. To present a few examples, thin polysilicon films are

examined in [13], aluminum films in [6], [14], copper films in [15], gold films in [16],

and nickel films in [4], [17].



3

Figure 1.1. Measured gaps (black) in an RF-MEMS switch at biased
and unbiased states, obtained using a confocal microscope. Trend-
lines were fitted using a series of decaying exponentials. c© 2011 IEEE.
Reprinted, with permission, from Hao-Han Hsu, Marisol Koslowski,
and Dimitrios Peroulis, An experimental and theoretical investiga-
tion of creep in ultrafine crystalline nickel RF-MEMS devices, IEEE
Transactions on Microwave Theory and Techniques, August 2011.

The mechanical properties of nanocrystalline thin films are significantly affected

by their microstructures. Nanocrystalline nickel samples with identical average grain

sizes were noted in [18] to have varying hardness, yield stress, and ductility, with these

differences attributed to microstructural differences apart from the average grain size.

Bimodal grain size distributions in nickel were studied in [19] with the unsuccessful

aim to increase the ductility of nanocrystalline nickel by the development of a bi-

modal grain size distribution. Relationships between microstructural properties and

mechanical properties are outlined in [20], and strain gradients seen in [14] after de-

formation and unloading are attributed in part to the grain size distribution. It is

clear from these examples that the microstructures of nanocrystalline thin films are

defined by an array of characteristics beyond the mean grain size.

The distribution of grain sizes within thin films plays an important role in their

mechanical properties. In-plane grain sizes are generally assumed to have a lognormal

distribution. This lognormal distribution is utilized in [21], with large grains following

a Hall-Petch relationship and small grains deforming under Coble creep in a combined
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model of the yield stress. Lognormal grain size distributions are incorporated into

the models in [22], [23] due to the high sensitivity of deformation mechanisms to

grain size. An increase in the grain size distribution standard deviation was seen to

broaden the transition from grain boundary strengthening to weakening in [24]. A

bimodal grain size distribution was studied in [25], and a plastic strain recovery was

seen which increased with the volume fraction of larger grains. A broader distribution

of grain sizes in nanocrystalline nickel was seen to yield higher strength and ductility

in [26], while a broader distribution of grain sizes in a combined model of Coble creep,

grain boundary sliding, and grain interior dislocation motion gave a lower yield stress

in [27]. The yield stress was also seen to decline with broader grain size distributions

in [1].

Microstructural effects, including grain size distribution, have been suggested as

causes for plastic strain recovery. Multiple studies of MEMS devices with nanocrys-

talline grains have shown a time-dependent recovery of what appeared to be plastic

deformation. In [15] plastic strain recovery is modeled and explained by the presence

of residual stresses and voids. In [28] it is suggested that residual stresses caused by

inhomogeneous grain distributions drive recovery in aluminum and gold films. The

explanation is that under moderate stress, small grains are imagined to remain elastic

while the stresses in large grains relax by plastic deformation. Upon unloading, the

stressed small grains exert tractions upon the large grains, resulting in an inhomo-

geneous stress distribution and consequent relaxation, in a manner similar overall to

a Kelvin-Voigt model. Simulations of phase field dislocation dynamics with bimodal

grain sizes also see plastic strain recovery [25], and similar simulations which include

the effects of grain boundary sliding show plastic strain recovery as well [29], [30].

In deposited films, grain growth during film deposition leads to columnar grains

and a gradient of grain size across the thickness of the film, meaning that smaller

grains are seen on one side of the film and larger grains are seen on the reverse

side [31], [32], [33], [34]. Small grains are seen at the bottom of the film when depo-

sition begins. As deposition continues, grains whose orientations allow rapid vertical
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growth outgrow those which do not. As the thickness increases, this competitive pro-

cess leads to a decrease in the number of grains and an increase in the grain size as

the thickness increases, as well as a columnar microstructure and a preferred crystal

orientation. The effect of this microstructural characteristic on the mechanical prop-

erties of nanocrystalline films may be extrapolated from the literature on bimodal

grain distributions, but in general it is not well studied.

1.2 RF-MEMS Switches

Radio-frequency microelectromechanical systems (RF-MEMS) are devices with

characteristic lengths ranging from hundreds of nanometers to millimeters which,

during their operation at radio frequencies, make use of coupling between electric

fields and mechanical motion [35]. These systems serve a variety of purposes; among

these purposes is their use as variable capacitors, where they may serve as variable-

frequency bandpass filters [36]. RF-MEMS are a subject of research as a result of their

functionality as well as their ability to replace larger components, allowing compact

design of the devices in which they are applied.

RF-MEMS capacitive switches have the potential to replace alternative RF switch-

es in applications which require low insertion loss and high linearity as well as to

drive innovations in mobile handsets, satellites, base stations, and other military and

civilian telecommunications systems which benefit from the re-configurability, high

performance, and low cost of RF-MEMS [37], [35]. However, they suffer from a variety

of failure mechanisms [37], [35], [38], [39], [40], [41], [42], with dielectric charging [43],

[44], [45] and creep [46], [47], [48], [49] being prominent among them. Creep is a

time-dependent and thermally activated permanent deformation that occurs at a

constant load below the yield stress. This behavior is very well characterized in bulk

materials [8], [50], [51], but the mechanisms of creep in nano-crystalline materials are

still not as well understood [4], [17], [52], [53], [54], [55], [56].
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The reliability of RF-MEMS devices has historically been a hurdle in their adop-

tion [38], [39], [41]. Challenges introduced by the small scale of the devices and the

manufacturing precision required for their reliable use have led to improvements in

thin film manufacturing and testing [57], [12].

The RF-MEMS switch studied here consists of a metal membrane of nano-cryst-

alline nickel suspended over an electrode. A simplified sketch of the system is shown in

Fig. 1.2. The application of a bias voltage to the electrode results in an electrostatic

force on the membrane, pulling the membrane toward the electrode and reducing the

gap. For a constant applied voltage, the gap gradually but permanently decreases due

to creep deformation [9]. A permanently smaller gap will result in a reduced voltage at

which the membrane is pulled down toward the electrode (pull-in voltage) [9] as well as

a reduction in the voltage at which the membrane releases from the electrode (pull-out

voltage) because the electrostatic force on the membrane is larger and the elastic force

resulting from deformation is smaller. Over time the device may become permanently

pulled-in at operating voltages due to creep, resulting in ‘complete failure’ of the

switch [37], [55], [9].

Figure 1.2. Schematic of the RF-MEMS switch with the membrane
deflected in the form of an arch due to residual stresses.

The static and dynamic pull-in voltages, the pull-out voltage, and the impact

velocity are measures used to estimate the reliability of the devices. These measures
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are known to be sensitive to variability in the device geometry and material properties,

both of which result from manufacturing processes [35], [58], [59], [60].

The effect of variations in membrane thickness also remains to be studied. Studies

have been conducted into the effects of inclined supports, flexible boundary condi-

tions, uncertain moduli, and initially curved beams [61] [62] [63]. These parameters,

however, may be overshadowed by uncertainty in the beam thickness within individ-

ual devices. Variability in the thickness of one device affects both the thickness of

the membrane and the air gap between the membrane and the electrode. As the

membrane response is very sensitive to both of these parameters, it follows that the

membrane response will also be sensitive to variability in the thickness across the

length of one membrane.

1.3 Organization

The first chapter of this work has briefly introduced radio-frequency microelec-

tromechanical systems (RF-MEMS).

The second chapter presents the incorporation of a Coble creep model into a

one-dimensional model of the dynamic and static response of a RF-MEMS switch to

electrostatic actuation. The uncertainty in the quanties of interest due to the uncer-

tainties in the material and geometric uncertainties as creep occurs is determined.

The third chapter is an investigation into the effects of grain size distributions on

the creep response of RF-MEMS switches. Membranes with multiple layers of grain

sizes are compared to membranes with uniform grain sizes.

The fourth chapter introduces the variation of the membrane thickness as a source

of uncertainty in the response of the RF-MEMS switch. A three-dimensional model

of the membrane non-uniformity is introduced, and the one-dimensional beam model

is modified to incorporate variation in thickness.

The fifth chapter summarizes the results developed in this work, and the final

chapter discusses suggestions for further investigations.
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2. UNCERTAINTY IN CREEP FAILURE WITH 1D MODEL

The goal of this chapter is to introduce creep into the material properties of the

MEMS switch and to predict the effect of creep on four quantities of interest for the

switch: the static pull-in voltage, the dynamic pull-in voltage, the impact velocity,

and the pull-out-voltage, with uncertainties in the geometric and material constants.

Creep deformation simulations of radio-frequency micro-electro-mechanical sys-

tems (RF-MEMS) switches are presented. The analysis of these simulations includes

quantification of uncertainty in the geometry, material parameters, and boundary

conditions.

The switch is modeled as an Euler-Bernoulli beam that is actuated electrostatically

in a fluid medium. The fluid damping is approximated with a squeeze-film model,

and the beam model incorporates stretching nonlinearity in addition to Coble creep.

The resulting nonlinear dynamic model is solved using a Ritz-Galerkin-based modal

expansion and explicit time integration. The focus of the study is on the effect of creep

as a failure mechanism and the implications of uncertainty in the device geometry,

material parameters, and boundary conditions.

The degradation of the device performance due to creep is seen in decreases in the

static and dynamic pull-in voltages, the pull-out voltage, and the impact velocity. We

find that the variability in the experimental pull-in voltage is accounted for by the

inclusion of uncertainty in the material and geometric properties. We find that the

four quantities of interest decrease with time due to creep. This degradation is seen

to occur more rapidly under higher loads, as expected. We note that the uncertainty

in the predicted degradation increases with time as well as with increasing load.

A torsion-spring boundary condition is presented as an alternative to the assump-

tion of a fixed-fixed boundary condition. It is found, however, that the known pull-in

voltages and measured profile data are insufficient to allow for the calibration of both
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the unknown residual stress and the unknown torsion spring boundary condition. For

this reason the fixed-fixed boundary condition is restored. It is understood that this

boundary condition assumption affects the calibrated residual stress, so the calibrated

residual stress may be a poor approximation of the actual value.

2.1 Literature Review

In order to be able to model the dynamics of the switch and then predict the

quantities of interest (QOI) that can shed light on the reliability of a MEMS device,

a dynamic model of the switch in Fig. 1.2 is presented. The model used to predict the

deflection of the membrane due to electrostatic actuation utilizes, as a simplification,

an Euler-Bernoulli dynamic beam model. A correction to the elastic modulus is made

to account for the plate-like stiffness of the membrane. The deflection is obtained

through the Ritz-Galerkin method, wherein it is assumed that the beam deflection

can be expressed as a linear superposition of the modeshapes of an undamped straight

beam. Within the context of the Euler-Bernoulli theory, the model also accounts for

beam stretching, initial curvature, residual stress, squeeze-film damping, and creep.

The model takes into account non-ideal clamped (fixed-fixed) boundary conditions

by modeling the boundaries as torsional springs. This allows for a range of boundary

conditions to be modelled, with low spring stiffness approximating pinned-pinned

boundary conditions and high spring stiffness approximating fixed-fixed boundary

conditions.

Uncertainty quantification (UQ) is becoming a very useful tool in assessing the ac-

curacy and range of applicability of the behavior predicted with simulation tools [64].

More specifically, uncertainty propagation can be used in simulations to estimate

variability in the device response due to uncertainties in the geometry and mate-

rial properties. Various methods exist to perform uncertainty propagation. These

methods include the Monte Carlo method [65], in which samples are stochastically

drawn from probability density functions (PDFs) of input parameters, Latin hyper-
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cube sampling [66] and Orthogonal sampling [67], in which the samples are drawn

selectively, and generalized polynomial chaos [68], [69], which involves representing

the governing model equations in a stochastic framework using Galerkin projections

in the parameter space of distribution functions.

This section is an extension of previous work in the literature, including especially

[61] and [63], which contain experimental results upon which the calibration in this

paper is based and the model which underlies the current extension, respectively. It

is analogous to [46] and [48], in which models of RF-MEMS devices are extended to

include creep. The underlying model is simpler in this work, and the computational

requirements are fewer, which yields a much more rapid though more coarse result.

It is, further, similar to [47] in its inclusion of creep in a simplified MEMS model, but

the creep model in this section is theoretically rather than empirically derived, and

the uncertainty due to beam geometries is included and discussed.

2.2 Euler-Bernoulli Beam Model

2.2.1 Equations of Motion

The equations of motion for a switch that accounts for both elastic behavior and

creep behavior are developed in this section. The basic steps involve first a summary

of the model for an elastic switch followed by the modifications that are needed to

make the model applicable to a beam undergoing creep. The equation of motion for

the elastic regime of the system shown in Fig. 1.2, with transverse deflection w(x,t)

and including stretching, squeeze-film damping, initial curvature, and electrostatic

forcing, is given by [63], [70] as

EeffIw
′′′′

+ρbHẅ+Fdamp = (
EeffbH

2L

∫ L

0

[(w
′
)2−2w

′
v
′
]dx)(w

′′−v′′)+NbHw
′′
+Felec,

(2.1)

where I is the second area moment of inertia of the beam cross-section, ρ is the

mass density, b is the beam width, H is the beam thickness, Fdamp is a damping
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force per unit length due to dissipation in the medium around the beam, L is the

beam length, v(x) is a stress-free initial deflection, N is an axial stress which approx-

imates the residual stress, and Felec is the electrostatic force per unit length. The

parameter Eeff = E
1−ν2 is the effective modulus of elasticity, meant to account for

the membrane width through the elastic moduli E and ν. In Equation 2.1, a prime

indicates differentiation with respect to x, and a dot represents differentiation with

respect to time. The first two terms on the left-hand side of Equation 2.1 account

for the bending stiffness and the inertia while the first two terms on the right hand

side represent contributions from stretching and axial stress. For the damping term

Fdamp, a squeeze-film gas damping model following [71] and [63] is used and takes the

form:

Fdamp =
10.39( b

G1+v+γ−w )3.1

1 + 1.374( b
G1+v+γ−w )1.825(λ

b
)0.966

ẇ, (2.2)

where G1 is the distance from the top of the dielectric to the bottom of the beam at

the anchor (see Fig. 1.2), γ = 10nm is the assumed height of any asperities on the

dielectric surface, and λ is the gas mean free path of the fluid surrounding the beam,

assumed here to be ambient air with a mean free path of λ = 68nm [72].

The effective electrostatic gap at the anchor of the beam is considered to be

go = G1 + td
εr

, where td is the dielectric thickness, and εr is the relative permittivity of

the dielectric [63]. The electrostatic force on the beam is determined by differentiating

the stored energy due to capacitance, Es = CV 2

2
, with respect to go and setting the

force Felec to zero outside the range of the electrodes, i.e. outside the range x1 to

x2. V is the applied bias voltage and C is the capacitance. A compact model of

the capacitance C which takes into account the electrostatic force on the sides of

the beam, the fringing-field model, is used here [73]. The specific model takes the

form [70]:

C =
ε0bL

go
(1− 0.36

go + v − w
b

+ (
0.85

b0.76
+ 2.5

H0.24

b
)(go + v − w)0.76). (2.3)
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Upon differentiation and removal of the terms outside the electrode region, this

capacitance gives an electrostatic force of

Felec =
εobV

2

2g2
o(1 + v − w)2

(1 + 0.204(
g0

b
)0.76 − 0.76(0.204(

g0

b
)0.76))

(x1 < x < x2)

(2.4)

where εo = 8.85 ∗ 10−12F/m is the permittivity of free space, x1 is the location of the

near side of the dielectric along the axial coordinate, and x2 is the location of the far

side of the dielectric (see Fig. 1.2).

To incorporate plastic deformation due to creep, the total strain εT is considered

as the sum of the elastic strain εE and creep strain εC . The elastic strain in the

beam is the result of the elastic deflection, wE, and the creep strain is the result of

the creep component of deflection, wC . The creep strain εC can be calculated from

the constitutive equations for secondary, or steady-state, creep strain rates with no

hardening [8], [9],

ε̇Cij = Ac
σdij
σvm

(
σvm

σy
)n (2.5)

where ε̇Cij is the creep strain rate, the stress exponent is n = 1 for Coble creep, σy

is the yield stress, σdij = σij − 1
3
σkkδij is the deviatoric stress tensor, σvm is the von

Mises stress given by

σvm =

√
1

2
[(σ11 − σ22)2 + (σ22 − σ33)2 + (σ33 − σ11)2 + 6(σ2

23 + σ2
31 + σ2

12)] (2.6)

and Ac is the creep constant defined as

Ac = A
δbDb0e

−Qb/RT

kT
(
bb
d

)3. (2.7)

The material constant A has a range of estimated values for nickel, varying from

nearly 40 [8], [17] up to 1000 [9]. In the above equation δb is the grain boundary

thickness, Db0 is the grain boundary diffusion coefficient, Qb is the activation energy, R

is the ideal gas constant, T is the absolute temperature, k is the Boltzmann constant,
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bb is the Burgers vector, and d is the average grain size. The value of Ac in Table 2.1

is taken from the work of Mahadevan et al. [74], which also draws data from [9].

In the context of the Euler-Bernoulli beam theory, only the axial component of

the deviatoric stress is relevant here, and it may be found as

σd11 =
2

3
σ11. (2.8)

Utilizing the relations from elementary beam theory under the kinematic assump-

tions of Euler-Bernoulli beam theory [75], and splitting the deflection into wE resulting

from the elastic strain and wC resulting from the creep part of the strain,

σ11 = −My

I
,

M = EI(wE)
′′
,

(2.9)

where M is the bending moment in the beam and y is the distance above the neu-

tral axis of the beam. Now combining Equation 2.7 and Equation 2.8 to relate the

deviatoric stress to the elastic deflection we obtain

σd11 = −2

3
Ey(wE)

′′
. (2.10)

For n = 1 in the equation for the creep rate, Equation 2.5, the creep strain rate

ε̇Cij is related to the creep deflection in the same manner as the elastic strain and

deflection are related in elastic beam theory, with

εC11 = −y(wC)
′′
. (2.11)

where wc is that portion of the deflection under no load which results from the creep

strain. Differentiating both sides with respect to time gives a second equation for the

creep strain rate,

ε̇C11 = −y(ẇC)
′′
. (2.12)

Substituting Equation 2.12 into Equation 2.5 gives the relation

(ẇC)
′′

=
2AcE

3σy0

(wE)
′′
. (2.13)
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Equation 2.1, which was written in terms of the elastic deflection wE, is now

rewritten to include the deflection wC where it is appropriate. The electrostatic

force, the inertial terms, and the damping terms depend on the total deflection, but

the time derivatives of the deflection due to creep are neglected in the inertial and

damping terms due to their small magnitude. As plastic strain causes no stress, the

bending stiffness term depends only on the elastic deflection. The stretching force

and the residual stress term will depend on the elastic deflection alone. Therefore,

Equation 2.1 can be rewritten as

EI(wE)
′′′′

+ ρbHẅE + Fdamp =

(
EbH

2L

∫ L

0

(((wE)
′′
)2 − 2(wE)

′
v
′
)dx)((wE)

′′ − v′′) + n(wE)
′′

+ Felec

(2.14)

where the creep deflection wC is incorporated into the electrostatic term alone.

Equations 2.13 and 2.14 form a two-degree-of-freedom system of equations for the

determination of the beam’s elastic deflection wE and creep deflection wC .

The inclusion of torsion-spring boundary conditions permits the simulation of

beams with a wide range of anchor conditions. This is important for practical switches

as it is rare that a switch with ideal boundary conditions can be fabricated. The

torsion-spring boundary conditions for an Euler-Bernoulli beam are:

w(0) = 0,

w(L) = 0,

EeffIw
′′
(0) = Kw

′
(0),

EeffIw
′′
(L) = −Kw′(L)

(2.15)

where K is the torsion spring stiffness.

As previously stated, a fixed-fixed boundary condition can be approached with

a large torsion spring stiffness, K, and a pinned-pinned boundary condition can be

simulated with the value of K = 0. Residual stress in the membranes is biaxial, but

the axial component of the residual stress alone is considered due to the width of

the membranes and the assumptions of the Euler-Bernoulli beam theory. The mode



15

shapes and frequencies which result from these boundary conditions for an axially

loaded elastic beam are developed in reference [75].

Dielectric charging is the buildup of carriers in the dielectric film which coats

the electrode; see Fig. 1.2. Its effect is to increase the electrostatic force on the

membrane, resulting in a decreased PIV. It has remained difficult to separate the

effect of dielectric charging from those of creep unless the dielectric is removed in the

experiments. In the present work dielectric charging has been neglected.

2.2.2 Solution Method

The coupled Equations 2.13 and 2.14 are discretized using the Galerkin technique,

which needs to be slightly modified from the direct application in the literature on

microbeams [63], [70] as there are now two coupled equations. To solve Equations

2.13 and 2.14 the following nondimensional quantities are defined:

x̂ =
x

L
,

t̂ =
t

τ
=

t√
ρbhL4

EI
)
,

ŵ =
w

go
,

v̂ =
v

go
,

x̂1 =
x1

L
,

x̂2 =
x2

L
,

N̂ =
NL2

EI
,

ωn =
ωn√
EI

ρbhL4

.

(2.16)

The time t is nondimensionalized with a constant τ =
√

ρbHL4

EI
. After nondimen-

sionalization, Equations 2.13 and 2.14 can be expressed as:
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(ŵE)
′′′′

+ ρbh ¨̂wE + F̂damp =

(6(
go
H2

)2

∫ 1

0

[((ŵE)
′′
)2 − 2(ŵE)

′
v̂
′
]dx)((ŵE)

′′ − v̂′′) + N̂(ŵE)
′′

+ F̂elec,
(2.17)

( ˙̂wC)
′′

= (ŵE)
′′ 2AcE

3σy0

√
ρbHL4

EI
. (2.18)

In order to perform a Galerkin approximation for the model Equation 2.17 and

Equation 2.18, the initial shape of the membrane also needs to be approximated

through an expansion. Here, the initial deflection v̂ will be expanded as a sum of M

sine functions and their coefficients pi in the manner

v̂(x̂) ≈ ΣM
i=1pisin(πx̂i), (2.19)

where the coefficients pi are found from

pi =

∫ 1

0

v̂sin((πx̂i)dx̂), (2.20)

The solution ŵT (x̂, t̂) is also assumed to be a linear combination of M orthonormal

linear modeshapes φi(x̂) of the undamped and straight beam, with M time-dependent

coefficients uTi (t̂):

ŵT (x̂, t) = ΣM
i=1û

T
i (t̂)φi(x̂). (2.21)

It should be noted that the modeshapes φi are the solutions to the eigenvalue

problem

φ
′′′′

i = N̂φ
′′

i + (ω̂i)
2φi (2.22)

with appropriate clamped-clamped boundary conditions for a straight beam, and ω̂i

is the normalized natural frequency of the ith mode.

The nondimensional total deflection ŵT and the coefficients ûTi are decomposed

into elastic and plastic parts as ŵT = ŵE + ŵC and ûTi = ûEi + ûCi . Substituting

the expansions defined by Equations 2.19 to 2.22 into the equations of motion (2.17)

and (2.18) in all but the damping and electrostatic terms, multiplying through by the
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orthonormal modeshapes φn, and finally integrating across the length of the beam

yields 2M ordinary differential equations,

¨̂uEn + ω2
nû

E
n +

∫ 1

0

F̂dampφndx̂ =

6(
g0

h
)2ΣM

i,j,k=1(ûEi û
E
j û

E
k ∗

∫ 1

0

(φ
′

iφ
′

jdx̂) ∗
∫ 1

0

(φ
′′

kφndx̂))

+ 6(
g0

h
)2ΣM

i,j,k=1(ûEi û
E
j û

E
k ∗

∫ 1

0

(πjφ
′

icos(x̂πj)dx) ∗
∫ 1

0

(φ
′′

kφndx̂))

+ 6(
g0

h
)2ΣM

i,j,k=1(ûEi û
E
j pk ∗

∫ 1

0

(φ
′

iφ
′

jdx̂) ∗
∫ 1

0

(−π2k2sin(x̂πk)φndx̂))

+ 6(
g0

h
)2ΣM

i,j,k=1(ûEi pjpk ∗
∫ 1

0

(πjφ
′

icos(x̂πj)dx̂) ∗
∫ 1

0

(−π2k2sin(x̂πk)φndx̂))

+

∫ 1

0

(F̂elecφndx̂),

(2.23)

˙̂ucn =
2τAcE

3σy0

ûEn , (2.24)

for n = 1, 2, 3, ...,M .

Because the elastic response and creep response occur at different timescales, this

system of equations is stiff. For this reason, the transient motion is solved numerically

in MATLAB with the built-in stiff ODE solver ode23s [76].

2.2.3 Determination of Quantities of Interest

The static PIV is the largest DC bias voltage which may be applied steadily

without the beam being pulled-in. It is calculated by setting the time-dependent

terms in the equations of motion, Equations 2.23 and 2.24, to zero, choosing a location

on the beam, assuming a range of deflections from zero through contact for that point,

and solving for the corresponding voltages required to achieve those deflections. This

technique is described in more detail in [63]. The result of this calculation is a graph of

voltage against deflection, as seen in [63] and many earlier works. The largest voltage

on this graph is the static PIV. Fig. 2.1 is a sketch of this graph of displacement

against voltage, and the static PIV is highlighted.
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Similarly, if the applied voltage is reduced after pull-in, the membrane separates

from the dielectric. The minimum voltage required to maintain contact is defined as

the pull-out voltage, and it is drawn from the same graph of displacement against

applied voltage shown in Fig. 2.1.

Figure 2.1. Example of a displacement-voltage graph for an electrostatic switch.

The dynamic pull-in voltage is defined here as the DC voltage that causes pull-in

when applied as a sudden step increase from 0 volts. In order to evaluate the dynamic

pull-in voltage, the step voltage is applied and the equations are integrated to arrive

at the transient behavior of the beam, which is solved for over several oscillations.

If the beam does not pull in, as is indicated by the transient motion settling to a

deflected equilibrium position, it is reset to its initial conditions and a larger voltage

is attempted. If the beam pulls in, a smaller voltage is attempted until the smallest

applied voltage that produces dynamic pull-in is found.

The velocity of the beam when it comes in contact with the dielectric can be

used to quantify the damage that occurs during contact [35]. During the transient
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simulations used to determine the dynamic pull-in voltage, the impact velocity is

calculated as the velocity of the section of the beam that first contacts the dielectric.

Note that all the quantities defined here (the static and dynamic PIVs, the pull-out

voltage, and the contact or impact velocity) are instantaneous responses, while creep

deformation occurs over a longer time scale. However, if these QOI are calculated

after a period of creep deformation leading to a degradation of the switch response,

their values significantly change.

2.3 Model Calibration, Validation, and Sensitivity Analysis

This section focuses on calibrating the various material and geometric parameters

of the model and understanding the sensitivity to these parameters by comparing

the simulated results to the experiments in [61]. The sensitivity of the PIV to the

geometric parameters is calculated using the beam model developed in Section II.

2.3.1 Experimental Characterization

Table 2.1. Parameters of the Switch from References [61], [74], [77].

Symbol Quantity Nominal Value

b beam width 120 µm

ν Poisson’s ratio 0.31

εr relative permittivity 7.9

E Young’s modulus 197.3 GPa

td dielectric thickness 200 nm

Ld dielectric length 260 µm

Ac creep constant 1.52e-10/s
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The geometric and material parameters are extracted from [61] and are shown in

Table 2.1. The modulus of elasticity of the nanocrystalline nickel membrane for the

same batch of membranes was estimated by Cantwell et al. in [77] by measuring the

crystallographic texture with x-ray diffraction and applying those measurements to

calculate a texture-weighted Hill polycrystal elastic average. These calculations for

two batches result in moduli of E=194.7±1.4 GPa and E=199.9±1.1 GPa. The mean

of 197.3 GPa is used here as the elastic modulus. The device geometry measurements

are from 44 devices with nominal length 400µm and 46 devices with nominal length

500µm. The variability in the measured thickness H, anchor gap G1, and rise R of the

90 devices is shown in Fig. 2.2 and Fig. 2.3, along with best-fit normal distributions.

(a) (b)

(c)

Figure 2.2. Experimentally measured parameters with fitted normal
PDFs for L= 500-µm beams: (a) Thickness H, (b) Anchor gap G1,
and (c) Midpoint rise R.
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(a) (b)

(c)

Figure 2.3. Experimentally measured parameters with scaled fitted
PDFs for the 400-µm beams: (a) Thickness H, (b) Anchor gap G1,
and (c) Midpoint rise R.

The normal probability density function (pdf) is given by

P =
1

σ
√

2π
e−

(χ−µ)2

2σ2 (2.25)

where σ is the standard deviation, and µ is the mean value. The chosen definition of

the standard deviation σ for a statistical quantity is

σ = (
1

n− 1
Σn
i=1(xi − x̄)2)

1
2 (2.26)

where n is the number of samples, xi is the measurement of the ith sample, and x̄ is

the mean of all the samples.
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Table 2.2. Measured Parameters of 500− µm Beams [77].

Symbol Quantity Mean Value Std. Dev.

PIV Measured static pull-in voltage 77 V 21 V

G1 anchor gap 2.72 µm 0.19 µm

R rise 2.13 µm 0.57 µm

H beam thickness 1.78 µm 0.28 µm

Table 2.3. Measured Parameters of 400-µm Beams [77].

Symbol Quantity Mean Value Std. Dev.

PIV static pull-in voltage 100 V 24 V

G1 anchor gap 2.95 µm 0.29 µm

R rise 1.48 µm 0.37 µm

H beam thickness 1.90 µm 0.28 µm

The mean values and standard deviations of the measured thickness H, anchor

gap G1, and rise R of the 90 devices are shown in Table 2.2 and Table 2.3. The mean

and standard deviation of the PIV is also shown in Table 2.2 and Table 2.3.

The variability or uncertainty in the other geometrical and material parameters

are not shown because the sensitivity of the quantities of interest to these parameters

is small in comparison to the sensitivity of the quantities of interest to H, G1, and

R [63].

A multivariate normal PDF is fit to the experimentally measured values of H,

G1, and R to study correlations between these input variables. The form of the

multivariate normal PDF is

P =
1√

|Σ|(2πdv)
e−

1
2

(ξ−µ)Σ−1(ξ−µ) (2.27)
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where P is the probability density for any chosen vector of variable values X, Σ is

the covariance matrix, dv = 3 is the quantity of variables, and µ is the vector of

means. The mean values of these three variables are in Table 2.2 and Table 2.3, and

the vectors of means are ordered corresponding to H, G1, R. The covariance matrix

for the 500-µm membranes is given by

Σ =


0.0766 −0.0002 0.0028

−0.0002 0.0373 0.0177

0.0028 0.0177 0.3291

 (µm)2

and the covariance matrix for the 400-µm membranes is given by

Σ =


0.0803 0.0006 −0.0007

0.0006 0.0836 −0.0097

−0.0007 −0.0097 0.1382

 (µm)2

It is evident from these matrices that the covariance is negligible. The experiments

show no correlation between the rise R and the anchor gap G1, as illustrated in Fig.

2.4 for both sets of devices. Though not shown, the experiments show no correlation

between the membrane thickness and the gap G1.

(a) (b)

Figure 2.4. G1 plotted against R for (a) 500-µm membranes and (b)
400-µm membranes, illustrating no correlation between the gap G1

and the rise R.
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2.3.2 Sensitivity Analysis

(a) (b)

Figure 2.5. Sensitivity of the static PIV to the normalized modulus
E, thickness H, rise R, gap G1, torsion spring stiffness K, and residual
stress N for the 400- and 500-µm beam.

Fig. 2.5 shows the sensitivity of the PIV to the Young’s modulus E, thickness H,

rise R, anchor gap G1, boundary torsion spring constant K, and residual stress N .

The PIV is determined as previously described, by determining quasi-static solutions

to Equations 2.23 and 2.24. The variables in the plot are normalized by the mean

value, and a range of ±50 percent in the thickness H, gap G1, rise R, and residual

stress N , is shown. The residual stresses are calibrated in a later section but are

included here to illustrate their effect. The calibrated residual stresses are shown in

Table 2.4. A range of torsion spring values from 1 ∗ 10−8 to 1 N·m/rad is shown, as

it encompasses the transition from fixed-fixed to pinned-pinned boundary conditions.

The torsion spring values are normalized and plotted as a semi-log plot, so that the

mean value is 1 ∗ 10−4 N·m/rad, at which value the beams are effectively fixed-fixed.

The mean values of each parameter are different for the 400-µm membranes and the

500-µm membranes, and so the two sets of membranes are normalized separately. For

each set of membranes, the normalized input parameters are written as
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Ê =
E

µE ∗ 100

Ĥ =
H

µH ∗ 100

R̂ =
R

µR ∗ 100

Ĝ1 =
G1

µG1 ∗ 100

K̂ = 1 +
ln(K)− µln(K)

ln(K)max − ln(K)min

N̂ =
N

µN ∗ 100

(2.28)

where µ is the mean value. In the beam model, the PIV is most sensitive to changes in

the normalized beam thickness Ĥ, the gap Ĝ1, and the rise R̂. A distinct sensitivity to

the torsion spring stiffness is seen below 1e-5 N•m/rad, where the boundary condition

begins to transition from a fixed-fixed to a pinned-pinned boundary condition. This

sensitivity is larger in the 400-µm beams. The profile of the beam is treated as a

half-sinusoidal curve from a minimum value of G1 to a maximum of G1 + R at the

center. The effect of this assumption is studied in a later section.

2.3.3 Calibration of the Residual Stress

The calculated static PIVs for the 400-µm and 500-µm membranes are fitted to

their experimental static PIVs by calibrating the residual stress through the Metrop-

olis-Hastings Markov chain Monte Carlo (MCMC) algorithm [65] using the Purdue

Uncertainty Quantification (PUQ) framework [78].

The general Metropolis-Hastings MCMC algorithm consists of choosing an initial

value for all of the unknown parameters, then iteratively proposing new values for

the parameters from their assumed distributions, and accepting or rejecting the new

values according to a calculated likelihood ratio α. The likelihood ratio describes how
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much more likely the proposed values are than the current values, given the observed

data. The likelihood ratio is defined as:

α = Σm
i=1

di −Di(θ1)2

(di −Di(θ2))2
(2.29)

where m is the number of experimental data points, di is the ith observed value of

the output, and Di is the ith value of the simulation output given the parameter

values θ. Likelihood ratios α may vary depending on the sampling algorithm chosen.

According to the general Metropolis-Hastings algorithm, the proposed location is

accepted automatically if α > 1, and is otherwise accepted with a probability α.

To illustrate, for the 400-µm membranes, m = 1 is chosen for each membrane

because each of the 44 membranes is being individually calibrated. With pull-in

voltage as a calibration quantity, the parameter d is the observed pull-in voltage, D

is the simulated pull-in voltage, θ1 will be the static PIV at the proposed step, and

θ2 will be the static PIV at the current step.

Rather than repeatedly simulate the pull-in voltage using the beam model, a

compact model based on a third-degree polynomial interpolation of the pull in voltage

is used. The interpolation is performed for a range of residual stress from -20 MPa to

50 MPa and for the experimentally measured ranges of the rises R, thickness H, and

gap G1 and clamped boundary conditions. A half-sinusoidal beam profile is assumed.

The distributions of residual stress that result from the calibration are shown in Table

2.4.

For the 500-µm membrane the calibration results in some compressive stress val-

ues. The critical buckling load for a fixed-fixed beam using the Euler buckling formula

is given by

Pcr =
4πEI

L2
(2.30)

Under this approximation, it is estimated that 8 MPa compressive stress will cause

buckling in the 500-µm membranes, which is outside of the stress range predicted in

the calibration.
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It should be noted that this fitting covers up other sources of error, such as the

deviation of the membrane profile from a half-sinusoidal curve, errors due to simplify-

ing assumptions, such as beam model, or the distributions chosen to fit the measured

distributions of other input parameters. Thus the distribution of the residual stress

found may cause the simulations to match experiments, but it may not be represen-

tative of the true value of the residual stress.

2.3.4 Sensitivity to the Profile

(a) (b)

Figure 2.6. PDFs of the experimental and simulated PIVs for (a) the
500-µm beams, and (b) the 400-µm beams.

Alternative fits to the profile of the membrane are considered in order to study

the sensitivity and uncertainty, resulting in three cases. In each case, ten simulations

are performed for each of the 90 devices by sampling the calibrated distribution of

residual stress in Table 2.4. The three cases are described as follows:

• Case 1: For each device, the measured profile of the membrane is fitted by seven

terms in the expansion in 2.19.

• Case 2: This is identical to Case 1, except that the profile of the membrane

is represented by a half-sinusoidal curve. This case is used to calibrate the residual

stress in Table 2.4.
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• Case 3: For each set of beams, 480 samples are drawn from the normal distribu-

tions in Table 2.2 and Table 2.3 of the input parameters. The profile of the membrane

is represented by a half-sinusoidal curve.

For all the cases, the normal distributions of the calibrated residual stress in Table

2.4 are sampled in each simulation. The predicted distributions of PIV are shown

in Fig. 2.6 and the mean and standard deviation are shown in Tables 2.5 and 2.6.

Case 2 was used to calibrate the distribution of the residual stress previously used,

and therefore this case provides the best fit to the experimental PIVs. The use of

full profiles in Case 1 had little effect on the predicted PIV for either set of beams.

The similarity of the results of Case 1, Case 2, and Case 3 suggest that the choices

of a half-sinusoidal profile and normal distributions to represent the variability in the

thickness, anchor gap, and midpoint was reasonable.

2.3.5 Calibration of the Boundary Conditions

The torsion spring stiffness value can also be considered as a candidate for cal-

ibration. A response surface is generated for the PIV as a function of the residual

stress and the torsion spring constant. The Metropolis-Hastings algorithm is then

used to calibrate the residual stress and torsion spring constants. Fig. 2.7 shows

resulting representative pairs of residual stress and torsion spring constants for one

membrane which provide a PIV in agreement with the experimental observation. The

experimental error in the measurement of the PIV is assumed to have a mean of 0V

and a standard deviation of 2.5V. It is evident from Fig. 2.7 that for a wide range of

torsion spring stiffness, a residual stress within the range of 0-50 MPa will allow the

PIV to be fitted to experimental data.

An attempt made by the authors to separate the contribution of the residual

stress and the boundary conditions was unsuccessful. It was hypothesized that the

boundary condition would affect the shape of the gap-voltage curve. Measurements of

the gap of each beam as a function of the applied voltage were compared to simulated
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Figure 2.7. Values of residual stress and torsion spring stiffness for
which simulation PIV fits the experimentally measured PIV for one
500µm beam.

values of the same, but despite the additional information, it remained possible to

choose any value of the torsion spring constant and find a residual stress value within

the range of 0-50 MPa which would allow the simulated voltage-deflection curve to

reasonably fit the experimental values. Because one of the two unknown parameters

could assume any value, the contributions and calibrations of the two parameters

remained unidentifiable.

For the above reason, the torsion spring stiffness is fixed to a single value equivalent

to a fixed boundary condition in the following analyses. It follows that the calibrated

values of the residual stress do not necessarily represent the actual values which might

be found with direct experimental measurement of the residual stress or by calibration

with additional data; it is possible, for example, to calibrate the residual stress using

measurements of the natural frequencies of the membranes, as seen in [47], where the

residual stresses in similar beams were found to have a mean of 2 MPa and a standard

deviation of 5 MPa.

In addition to the residual stress calibration with the simplified profile of Case

2, the residual stresses of the two sets of beams were calibrated while using the true
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profiles of Case 1. This calibration yields distributions of residual stress with mean

values of 7.2 MPa and 14.5 MPa for the 500-µm and 400-µm beams, respectively.

These values are within 2 MPa of the calibration with simplified profiles seen in Table

2.4 and are well within the standard deviations of 6.8 MPa for both sets of beams.

This result suggests that rapid simulations of the PIV using simplified profiles may

offer sufficient accuracy for the beams considered.

2.4 Simulation of Reliability under Creep Deformation

The effect of creep on the QOI is now studied by simulating creep deformation

under a constant DC bias voltage, and then calculating the QOI as described in Sub-

section 2.2.3. In all of these simulations, the residual stress is sampled randomly from

the calibrated normal distributions in Table 2.4, and clamped boundary conditions

are assumed.

2.4.1 Simulations of Creep Deformation

The static and dynamic pull-in voltages, impact velocity, and pull-out voltage

were determined after a constant applied voltage was applied during periods of time

of up to 40000 hours.

To include uncertainty in the simulations, 480 simulations were run for each ap-

plied voltage and extent of time, with random samples of the input parameters drawn

from the multivariate PDFs which were fitted to the measured values of the H, G1,

and R for the 500-µm beams, as well as from the calibrated residual stress distri-

bution with fixed-fixed boundary conditions. The creep coefficient Ac in Table 2.1

comes from estimation with Bayesian networks [74] and was treated here as a normal

distribution with a standard deviation of 10% of its nominal value. Results for four

applied voltages are shown in Fig. 2.8. The error bars include the median 10% of the

simulation pull-in voltages.
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Table 2.4. Calibrated Residual Stresses of 500-µm and 400-µm beams.

Beam Set Calib. σresid Mean (MPa) Calib. σresid Std. Dev. (MPa)

500 µm 8.4 MPa 6.8 MPa

400 µm 12.6 MPa 6.8 MPa

Table 2.5. Static PIV for 500-Micron Beams with Various Fits to
Uncertain Parameters.

Description PIV Mean PIV St Dev

Case 1 78 V 29 V

Case 2 78 V 26 V

Case 3 77 V 27 V

Table 2.6. Static PIV for 400-Micron Beams with Various Fits to
Uncertain Parameters.

Description PIV Mean PIV St Dev

Case 1 98 V 25 V

Case 2 99 V 24 V

Case 3 101 V 29 V

2.4.2 Conclusions

Simulations of the response of a radio frequency micro-electro-mechanical-systems

(RF-MEMS) switch composed of a nanocrystalline nickel membrane undergoing creep

deformation were presented. The model includes a Coble creep formulation incorpo-

rated into a beam model of an electrically actuated RF-MEMS switch with fixed-fixed

and torsion-spring boundary conditions. The pull-in voltage of the model was cali-

brated to experimental results before creep was simulated. The resulting degradation
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of the device behavior due to creep as well as the implications of uncertainty in the

device geometry and material parameters were studied, and it was shown that the

range of uncertainty in the input parameters yielded a large range of uncertainty in

the quantities of interest which increased over time due to creep.

A torsion-spring boundary condition was considered as a possible improvement in

the model. If the residual stress in each beam were known, calibration of the effective

torsion spring stiffness of each beam would be possible. Because the residual stresses

were unknown, it was not possible to calibrate a reliable value of the torsion spring

stiffness despite the wealth of PIV measurements and voltage-gap curves. Fig. 2.9

shows a representative sample of pairs of residual stress and torsion spring constants

that result in a PIV in agreement with the experimental observation within the toler-

ance of the measured PIV. The variation of the residual stress and the torsion spring

stiffness was carried out with the Metropolis-Hastings algorithm. It is evident from

Fig. 2.9 that for any chosen value of the torsion spring stiffness, some residual stress

within the chosen range of 0-50 MPa will allow the PIV to be fitted to experimental

data, so that neither parameter is identifiable. The large uncertainty in the resid-

ual stresses covered up any effect of the effective torsion spring boundary condition.

To continue the analysis, the boundary condition was set to be fixed-fixed and the

residual stress was calibrated alone.

When creep occurs, the devices pull in after a period of hours to months at applied

voltages below the pull-in voltage. A distinct decrease in device lifetime, defined as

the time to failure, is noted with increasing voltage. This is expected; larger applied

voltages lead to larger electrostatic forces and thus larger stresses, accelerating creep

deformation.
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(a)

(b)

(c) (d)

Figure 2.8. Simulation results with error bars representing the median
10% of output values are shown for the: (a) Static pull-in voltage,
(b) Dynamic pull-in voltage, (c) Impact velocity, and (d) Pull-Out
voltage.
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Figure 2.9. Values of residual stress and torsion spring stiffness for
which the simulation PIV fits the experimentally measured PIV for
one 500µm beam.
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3. VARIATION OF GRAIN SIZE ACROSS THE THICKNESS OF A BEAM AND

ITS EFFECT ON THE CREEP RESPONSE

As studied in the last chapter, creep deformation is a reliability issue for RF-MEMS

devices. Residual stresses which remain after fabrication, in combination with stresses

developed during operation, produce permanent creep deformation of the membrane.

This permanent deformation impacts the actuation voltage [79] and the impact ve-

locity.

Creep is a permanent time-dependent deformation response that occurs at a con-

stant applied load even for stresses below the yield stress [8]. Creep in crystalline

materials operates due to one or a combination of processes that occur at the atomic

scale, such as dislocation glide, grain boundary sliding, and the diffusive flow of atoms

in the lattice and grain boundaries. In nanocrystalline nickel RF-MEMS operated at

room temperature, creep deformation occurs due to the diffusion of atoms along grain

boundaries [80]. This deformation process is known as Coble creep. The functional

form of the Coble creep law has been determined in analytical form from highly ideal-

ized representations of grain boundaries [81]. While this assumption makes the model

tractable, it limits its applicability to real systems. More sophisticated models not

only exhibit dependence on the average grain size, which is evident in the analytical

form of the Coble creep law, but also take into account the impact of the grain shape,

grain size distribution [82], [83], and grain-boundary properties [84].

Creep in MEMS is measured in a variety of manners. Tensile tests of MEMS

devices to obtain creep properties were performed by Wang et al. [4], Yin et al. [17],

and Tuck et al. [56]. Indentation tests were performed by Wang et al. [53] and Cao

et al. [54]. Tests via membrane bending were performed by Vickers-Kirby et al. [55],

Bergers et al. [85], and Hsu and Peroulis [86].
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The incorporation of variability and randomness in models of material behavior

provides predictions which are not possible with deterministic models and parameters.

It also aids in the understanding of the underlying physical processes. For example,

knowledge of the variability in grain size distribution is fundamental to the prediction

of plastic strain recovery due to creep deformation in nanocrystalline thin films used

in MEMS [28], [25], [14].

Plastic strain recovery was recently noted by Mulloni et al [82]. In their article,

the dielectric commonly used in a MEMS electrostatically actuated cantilever was

replaced with a physical backstop. This substitution eliminated the possibility of

dielectric charging, which may be mistaken for creep. The elimination of dielectric

charging left creep as their explanation for both the time-dependent plastic strain they

found in their experiments as well as the incomplete recovery of the same plastic strain

when the electrostatic load was removed. Variation in grain size across the thickness

of the device is one explanation for the recovery; upon removal of the electrostatic

load, small grains which have only deformed elastically during the extended loading

are capable of compressing the large grains which have deformed plastically.

Variability in grain size distributions also affects active deformation mechanisms.

Along these lines, Raj and coworkers show that including grain size distributions leads

to a gradual transition in creep deformation mechanisms at different strain rates, and

that this transition is the result of a gradual change in the stress exponent which is

not observed using a non-stochastic model [87], [88].

In this chapter, the effect of the uncertainty of grain size distribution is studied

in RF-MEMS undergoing Coble creep during operation. The pull-in voltage is de-

termined by numerical simulations in which the RF-MEMS is actuated for varying

periods of time. The grain size variability is implemented by a representation of the

membrane that takes into account grain sizes which have been measured at different

heights across the membrane thickness.
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3.1 Model and Computational Approach

The RF-MEMS switch illustrated in Figure 3.1 consists of a fixed-fixed nanocrys-

talline nickel membrane suspended over an electrode. The geometric and material

properties of the switch are shown in Table 3.1. The electrode is coated with a di-

electric material to prevent direct contact between the membrane and the electrode.

In the ON state the membrane is undeformed, allowing a radio-frequency (RF) sig-

nal to pass through freely. In the OFF state, the membrane is deformed toward the

electrode as a result of the application of a bias voltage. This deformation increases

the capacitance of the switch, prohibiting the passage of a RF signal.

Figure 3.1. RF MEMS switch under study. The switch is represented
as a flat beam suspended over an electrode and a dielectric layer.

The transition from the ON state to the OFF state depends on the electrostatic

and restoring forces on the membrane. The electrostatic force on the membrane

increases with deflection at a greater rate than the elastic force resisting deformation,

with the result that as the applied bias voltage is increased, the electrostatic force

eventually overcomes the restoring force and the membrane “snaps through”, closing
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Table 3.1. Mechanical and Geometric Properties of the RF-MEMS
switch used in the simulations with height-dependent grain size.

Symbol Quantity Value

L Beam Length 500 µm

b Beam Width 120 µm

g Initial Gap 5.00 µm

ho Nominal Thickness of the Beam 2.0µm

td Dielectric Thickness 0.20 µm

Ld Dielectric Length 260 µm

ρ Beam Density 8912 kg/m3

E Young’s Modulus 200 GPa

σy Yield Stress 0.7 GPa

ν Poisson’s Ratio 0.30

εr Relative Permittivity 7.9

A Material Creep Coefficient 782

the gap and making contact with the dielectric. This phenomenon is called pull-in,

and the voltage at which the membrane makes contact with the dielectric layer is

called the pull-in voltage, VPI .

3.1.1 Electromechanical Response of a RF-MEMS Switch

Stress equilibrium governs the deformation of the switch, and is given by the

constitutive relationship

∂

∂t2
(ρui)−

∂

∂xj
(σij) = ρfi (3.1)

where ρ is the density of the nickel membrane, ui is the displacement, σij is the stress

tensor, fi is the external body force, and the indices are i = 1, 2, 3 and j = 1, 2, 3. The
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stress tensor σij is determined from the elastic strain, and is expressed as a function

of the elastic strain tensor εEij in the form

σij = Cijklε
E
kl (3.2)

where Cijkl is the fourth-order material elasticity tensor. The stress is assumed to de-

pend on the elastic strain εEkl alone, but there is an additional plastic strain component

εCkl which is assumed to contribute to the total strain εTkl in the manner

εTij = εEij + εCij (3.3)

The elastic strain is determined from the deformation, but the creep strain term

εCkl is obtained by time integration of the constitutive expression for the steady-state

creep rate [9]:

ε̇Cij = Ac
σdij
σvm

(
σvm

σy
)1 (3.4)

where σvm is the Von Mises stress, m is the creep stress exponent which is m = 1 for

Coble creep, σy is the yield stress, and Ac is the creep constant defined by

Ac = A
δbDboe

−Qb
RT σyo

kT
(

bb
< d >

)3 (3.5)

where δbDb0 is the grain boundary diffusion coefficient [9], Qb is the boundary diffusion

activation energy [8], R is the ideal gas constant, bb is the Burgers vector [8], < d >

is the average grain size, T is the absolute temperature, k is the Boltzmann constant,

and σy0 is the initial yield stress. The coefficient A in Equation 3.5 is a geometrical

factor. For nanocrystalline nickel, the values of A found in literature range from 1 to

1000 [4], [17], [89]. A value of A = 782 is used in the current simulations. The values

for the remaining parameters are shown in Table 3.2.

The system of equations defined by Equations 3.1-3.5 is numerically integrated

in an unstructured cell-centered finite volume method framework [48] in which creep

strain is implemented as a source term [90]. In order to determine the increment of
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Table 3.2. Further Properties of the RF-MEMS switch used in the
simulations with height-dependent grain size.

Symbol Quantity Value

δbDb0 Grain Boundary Diffusion Coefficient 3.5 ∗ 10−15m3/s

Qb Boundary Diffusion Activation Energy 115 ∗ 103 J
mol

R Ideal Gas Constant 8.314 J
mol•K

bb Burgers Vector 0.25 ∗ 10−9m

T Absolute Temperature 293K

k Boltzmann Constant 1.38 ∗ 10−23 J
K

σy0 Initial Yield Stress 0.7GPa

plastic strain, the creep strain rate in Equation 3.4 is integrated directly with the

explicit Euler method at each time step from knowledge of the stress state. This

plastic strain increment is added to the total strain, and the time is advanced.

In deriving the relationship between strain rate and stress for diffusional creep,

it is commonly assumed that the material consists of grains which are identical in

shape and size [81]. It is also commonly assumed that all grain boundaries display

equivalent behavior. However, the relative orientation of the grains with respect to

the loading axis has a strong influence in the value of A [91]. In addition, Schneibel et

al. calculated geometric factors for simple unimodal and bimodal grain structures and

found that creep strain rates were capable of varying by over an order of magnitude

as a result of the grain distribution, aspect ratios, and orientations [82].

In order to separate the effect of the grain size distribution from the aspect ratios

and orientations, the aspect ratios of the grains are here assumed to remain constant

through the thickness of the membranes. Therefore, the geometric material parameter

A is assumed to be constant throughout the membrane and the variation of the

diffusional creep law is related only to the experimentally measured variation in grain

size.
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In order to quantify the effect of the microstructure of the membrane on the creep

and pull-in voltage of the device, numerical simulations of the mechanical response of

the RF MEMS switch during and after creep deformation are carried out by means of

the finite volume method as implemented in the multi-physics solver MEMOSA [90].

It is noted that the 2D finite volume model used for simulations in this chapter

is distinct from the 1D Euler-Bernoulli beam model. The focus in this chapter is on

understanding the effect of the microstructure, specifically the grain size distribution,

on the film behavior, so the finite volume approximation is utilized to solve the model.

The model used is no longer for a beam, but for a solid, which allows for a more

natural incorporation of microstructural models as well as a nore natural solution of

the multiphysics problems.

3.1.2 Microstructural Analysis of the Nickel Membrane

The distribution of grain sizes as measured by the Perouli group at Purdue Uni-

versity are shown in Figure 3.2. The beam was cut, and measurements of grain sizes

were made at five heights.

From the measured distributions of grain sizes at five heights, the mean grain

sizes at the five heights are taken and plotted against their height in the membrane

in Figure 3.3. A power-law fit to the measured grain sizes is also shown.

3.2 Pull-In Simulations with Creep

.

3.2.1 Microstructural Representation of the Nickel Membrane

Three different models are considered to represent the uncertainty in the mi-

crostructure of the polycrystalline nickel membrane.
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Figure 3.2. Measured probability distributions of grain sizes at five
heights in the beam.

Figure 3.3. Measured average grain sizes at five heights in the beam,
with a power-law curve fit.

In model 1, the grain size is assumed homogeneous within the whole beam. To

understand the effect of uncertainty in the grain size distribution, different values of
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the standard deviation in the grain size are then considered. Model 1.1 is determin-

istic, with the grain size equal to the global average grain size. In Model 1.2, the

grain sizes in the homogeneous membrane are taken as samples from the lognormal

distribution fit to the measured grains. In model 1.3, the standard deviation of the

average grain size is increased. This is intended to show the effect of an increased

deviation in the grain size.

In model 2, the membrane is divided in five layers consistent with the five film

heights at which grain size measurements were taken, allotting the height between

measurements equally to the measurements above and below. A constant value of

the average grain size is assigned to each layer. A Gaussian process model with an

exponential fit to the measured average grain sizes is used to determine the average

grain size in each layer. In model 2.1, the exact values of the exponential fit at

the measured heights is used at the average grain size in the corresponsing layers. In

model 2.2, the average grain size in each layer is taken from one sample of the gaussian

process model with low covariance between grain size and height, with signal strength

s = 0.06 and length scale l = 0.5. In model 2.3 a stricter covariance was chosen, with

a signal strength of s = 0.02 and a length scale of l = 1.0. This resulted in less

variability in the average grain size distributions at each height. In Figure 3.4 and

Figure 3.5, examples of draws from these two processes are plotted in green. The

experimentally determined average grain sizes are shown in red.

Details of the different grain size distributions are shown in Table 3.3.

3.3 Results and Discussion

To investigate the effect of the grain size distribution on the pull-in voltage, con-

stant bias voltages of 10V and 20V are applied in the simulation for time periods

ranging from 1 ∗ 103 to 4 ∗ 103 hours. After this period of deterioration, the pull-in

voltage is measured by increasing the applied DC voltage at a rate of 1V/s. The
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Figure 3.4. Examples of samples from the Gaussian process modelling
the grain size distribution, with low covariance given by s=0.06, l=0.5.

pull-in voltage is defined as the voltage at which the gap is reduced to one-tenth of

the initial gap.

Figure 3.6 and Figure 3.7 show the predicted pull-in voltage as a function of

the time during which the bias voltage is applied. Clearly, increasing the constant

bias voltage causes more rapid degradation and a more rapid decrease in the pull-

in voltage. The pull-in voltage continues to decrease as the constant bias voltage is

applied for greater periods of time. As the time during which creep is active increases,

the uncertainty in the PIV value increases.

Figure 3.8 shows a comparison of the results for models 2.1-2.3 with the deter-

ministic model 1.1. It can be seen that when uncertainty is taken into account in this

model, the pull-in voltage decreases faster than in either the uniform deterministic

model 1.1 or the deterministic model 2.1. As the the uncertainty in the grain size is
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Figure 3.5. Examples of samples from the Gaussian process modelling
the grain size distribution, with high covariance given by s=0.02,l=1.0.

Figure 3.6. Models 1.1 - 1.3:Predicted PIV as a function of time for
the beams with grain size varying as a function of height.

increased, the deterioration of the pull-in voltage is more rapid and the uncertainty

in the pull-in voltage increases considerably.
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Table 3.3. Input parameters for the two models with grain size vary-
ing as a function of height in the membrane.

Model Layer # Layer Thickness [µm] µ [nm] σ [nm]

1.1 1 2.000 3.785 0.0

1.2 1 2.000 3.780 0.1

1.3 1 2.000 3.765 0.2

2.1 1 0.220 3.354 0.0

2 0.408 3.587 0.0

3 0.443 3.574 0.0

4 0.395 3.728 0.0

5 0.535 3.780 0.0

2.2 1 0.220 - -

2 0.408 - -

3 0.443 - -

4 0.395 - -

5 0.535 - -

2.3 1 0.220 - -

2 0.408 - -

3 0.443 - -

4 0.395 - -

5 0.535 - -

Contours of the effective von Mises stress for model 1.1 and model 2.1 under the

applied voltage of 10 volts are shown in Figure 3.9 and Figure 3.10. The scales in

these plots differ. The use of multiple layers with differing grain sizes is seen to lead

to greater asymmetry in the stress profile as well as greater concentrations of stress.
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Figure 3.7. Models 2.1 - 2.3: Predicted PIV as a function of time for
the beams with grain size varying as a function of height.

Figure 3.8. Predicted PIV after 40,000 hours of applied bias voltage
10V, as the grain size distribution uncertainty increases, for the model
with grain size varying as a function of height.

3.4 Conclusions

The influence of grain size distributions in a thin film has been demonstrated

with a finite-volume model which incorporated Coble creep. The inclusion of multiple

layers with grain sizes representative of the grain size experimentally seen in those

layers is seen to increase the simulated creep rate, as compared to models in which the

beam is treated as one homogeneous layer with a uniform grain size. The inclusion of



48

Figure 3.9. Plots of Von Mises stress contours in Model 1.1 at 40000 hours.

Figure 3.10. Plots of Von Mises stress contours in Model 2.1 at
40000 hours. The bottom layer of grains is particularly evident in the
asymmetry of the stress profile.

uncertainty in the grain size distribution resulted in distributions of the PIV which

show increasing variability with time and with greater loads. The distribution of

grains in multiple layers is seen to result in an asymmetric stress profile in which the

layer with the smallest grains experiences greater plastic strain. This distribution of

stress may result in plastic strain recovery when the load is removed.
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4. FILM THICKNESS VARIABILITY EFFECTS ON FIXED-FIXED RF-MEMS

CAPACITORS

Thickness variations occur in the suspended electrode films of fixed-fixed RF-MEMS

capacitive switches, as discussed in, e.g., [92]. Thickness uniformity is more frequently

discussed on the scale of the wafer on which devices are fabricated, as in reference [93],

in which a 5% variation of film thickness is seen across a wafer, suggesting a smaller

intra-device variation of thickness. Device-to-device variations in film thickness are

seen among devices fabricated on the same wafer, as in references [94] and [61],

although the film thickness is assumed uniform within each device in both of these

works.

The effects that these variations in thickness within a device have on the natural

frequencies and pull-in voltages (PIVs) of the switches are studied here by means

of finite element simulations in one and three dimensions. Variation of the upper

and lower surfaces of the suspended film are considered separately. This separation

is used to distinguish the effects of the thickness variation from those of the change

in the electrostatic gap resulting from varying the profile of the lower film surface.

The profiles of each surface are represented using 1D and 2D Fourier series. The

coefficients of these series are varied, and simulations of the modal harmonics and

quasi-static electrostatic loading of the resulting films are performed using ANSYS

to determine the resulting natural frequencies and PIVs of the films.

Polynomial response surfaces are fit to the PIVs, and probability density functions

(PDFs) of the PIVs are generated for assumed uncertainties in the Fourier coefficients

using ranges of approximately ±5% in the film thickness across the 400µm film length.

These variations in thickness cause standard deviations of approximately 2% in the

PIVs and natural frequencies. Variation in thickness across the width of the films is

seen to have a smaller impact than variation across their length. In an effort to rapidly
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calculate PIVs of switches of variable thickness, these variations across the film width

are neglected, leaving only variations in thickness along the length; this permitted

the derivation of a 1D equation of motion for the film with variable thickness along

its length, which is applied to further explore the sensitivity to the film thickness.

4.1 Introduction

Chemical vapor deposition (CVD), magnetron sputtering, molecular beam epi-

taxy, and electron beam deposition are among the wide variety of thin film deposition

techniques used to manufacture RF-MEMS. Because the thickness and uniformity of

thin films is frequently a critical factor in their application, much research has been

dedicated to measuring and improving the uniformity of deposited thin films [95], [96].

Thin film uniformity remains a critical parameter in MEMS fabrication. Some

measured values of non-uniformity are mentioned: In reference [97], a non-uniformity

of 5% across a 100-mm wafer of 30-µm thick electrodeposited copper, as measured by

spectroscopic ellipsometry and achieved by means of a current thief, is described as

excellent. A uniformity of 1.9% is achieved for electrodeposited copper films of about

1-µm thickness across 200-mm wafers in reference [98] and standard electroplating

is described in that reference as having uniformity of ”at best within 5.5%”. The

heights of deposited nickel through-metal vias (TMVs) across a 4-in wafer are seen

to vary within 3±0.25-µm, or about 8%, and separately, the heights of nickel TMVs

in a 160x220 array of MEMS are seen to vary within 4±0.5-µm, or about 11%, as

measured by scanning electron microscope (SEM) [99]. In [100] the authors were

able to reduce the thickness non-uniformity to around 4% for a copper film with a

thickness of 46µm, and they cite [101], in which approximately 11% non-uniformity

was achieved for a deposited 10-µm-thick nickel film.

Measurements of film thickness within or across single devices are less frequently

found. Measurements of the thickness of a single RF-MEMS device at multiple loca-

tions are shown in Figure 4.1. These measurements were performed and provided by
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Dr. Nurul Shaik. In this figure, an overhead view of a single device is shown. Dr.

Shaik made two cuts with a focused ion beam in order to remove the center portion of

the suspended film and estimated the thickness of the film at multiple locations along

these cuts, as seen in Figure 4.1, by examining the cuts via scanning electron micro-

scope. Additional measurements along the long edges of the film showed sub-micron

thicknesses, but these are considered to have a negligible impact on the effective width

of the film. The thickness of the film in the locations shown range from 2.88µm to

5.27µm across the length and width of the interior of the suspended film [102].

Figure 4.1. Measurements from Dr. Nurul Shaik of the thickness of
a single RF-MEMS device at multiple locations across two cuts [102].

4.2 3D Finite Element Model

The finite element method, as executed by ANSYS, is used to model the moving

electrode of a fixed-fixed radio-frequency microelectromechanical switch as well as

the electric potential in the region below the film. The material properties used are

representative of a nickel film and an air gap. Two-dimensional Fourier coefficients

are used to systematically vary the profile of the film without changing its average

thickness.

To estimate the natural frequencies of each film, a modal analysis is also performed

in ANSYS.
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To estimate the PIV, a quasi-static simulation is performed for each film. In this

simulation, the electric potential at the base of the gap below the film is increased in

increments until the simulation is unable to converge due to the inherent instability

near contact. The voltage at which the simulation fails to converge is treated as

the PIV, i.e. the voltage at which the electrostatic force upon the film overcomes

the mechanical restoring forces of the deformed film, causing the film to snap down

toward the electrode. The error due to this approximation is in the range of the

voltage increment size.

Numerical stability is used as an indicator of the PIV; see, for example, refer-

ence [57]. As the applied voltage is increased in steps, though, it is possible for

numerical instability to occur prior to the PIV. This is particularly of some concern

for the thin, flat elements used to model the film in this 3D model. This phenomenon

of numerical instability prior to the expected PIV was not observed in simulations

of films with uniform or non-uniform thickness; as tolerances on the force and elec-

trostatic potential were decreased, or as the voltage increment was reduced, the esti-

mated PIV was not seen to vary by more than the voltage increment and remained in

reasonable agreement with estimations of the PIV from the 1D Euler-Bernoulli beam

model previously discussed.

To provide further validation, additional estimations of the PIV were made by

adjusting the device length, thickness, and gap size in the example electrostatic-

structural analysis of a MEMS device presented in the ANSYS documentation [103].

This example is a reduced-order model in which the displacement of the suspended

film is described as a weighted sum of its calculated linear elastic mode shapes. The

displacement of the film under a test load is used to select a small number of important

mode shapes. The strain energy of the system is then calculated for a variety of

applied displacements, and polynomial functions of the strain energy are fit to these

samples. Finally, these polynomial strain energy functions are applied to estimate

the displacement of the film under applied electrostatic loading up to pull-in. These

approximations serve to reduce the computational complexity of modeling the device.
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The PIVs estimated in this manner were in reasonable agreement with both the full

3D finite element simulations and the 1D simulations.

Additional error in the estimated PIV is introduced by the inaccuracies inherent

in modeling the mechanics and electric potential using the finite element method;

by the chosen tolerances on the force and electric potential as used to determine

convergence of the simulation; and by neglecting the medium surrounding the film

on its sides and top. It is noted that this assumption, i.e. neglecting the surrounding

medium, neglects the fringing electric field in this volume, thereby decreasing the

estimated capacitance and increasing the estimated PIV.

4.2.1 Switch Description

A schematic of the switch under consideration is shown in Figure 4.2. The film

length L, electrode length Le, film width b, nominal film thickness h, dielectric thick-

ness td, and initial gap g are illustrated.

Figure 4.2. Illustration of Nominal Switch Properties.

The switch is composed of a metal film, fixed on either side, suspended above

an electrode. When a bias voltage is applied between the film and the electrode,

an electrostatic force is generated, attracting the film toward the electrode. The
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dielectric material between the suspended film and the electrode serves to prevent

contact between film and electrode as well as to increase the capacitance of the device.

The nominal properties of the modeled RF-MEMS switch illustrated in Figure 4.2

are shown in Table 4.1. In order to reduce the complexity of the model and isolate

the effects of the thickness non-uniformity the dielectric thickness is set to zero, so

that the dielectric layer covering the electrode is not considered.

Table 4.1. Nominal Switch Parameters.

Symbol Quantity Value

L Film Length 400 µm

Le Electrode Length 400 µm

b Film Width 100 µm

h Nominal Film Thickness 3.0 µm

ν Film Poisson’s Ratio 0.30

E FilmYoung’s Modulus 200 GPa

g Initial Air Gap 3.0 µm

td Dielectric Thickness 0.0 nm

4.2.2 Origins of Film Non-Uniformity

Deviation from planarity in the film profile does not by itself indicate thickness

non-uniformity, as non-planarity may be the result of multiple factors. Several of

these factors are discussed below.

A film’s deviation from flatness may be the result of a stress-free initial curvature.

A nonplanar film with uniform thickness and stress-free initial curvature may be

generated if a film of uniform thickness is deposited on a curved surface. When the

material beneath the film is removed, a stress-free curved film of uniform thickness

remains.



55

The deviation from a flat surface may be the result of curvature from residual

stresses, where the film bows up or down as the result of some combination of com-

pressive or tensile stresses. Compressive residual stresses in the direction of the film’s

length may increase the PIV if they cause the film to buckle away from the electrode,

as the greater distance from the electrode reduces the electrostatic force for a given

applied bias voltage. If the film buckles toward the electrode or does not buckle,

the PIV will generally be reduced by compressive residual stresses. In the case of

tensile stresses, the film is likely to exhibit an increased stiffness, meaning a greater

resistance to deflection, which results in an increased PIV.

The deviation from a flat surface may be the result of surface roughness due to

the crystallographic growth of the film. As polycrystalline films are deposited, some

crystallographic orientations result in a faster rate of growth normal to the substrate

surface. As the film thickness grows, the combination of crystallographic orientations

and resulting growth rates will result in an uneven surface. This surface roughness

on the scale of individual grains is differentiated from the waviness and considered in

this chapter, where the thickness of the film surface varies along its length at a larger

length scale.

The deviation from a flat surface may be the result of the deposition method.

Several film deposition methods are known to deposit films with some inherent ran-

domness in the deposited thickness at a length scale smaller than the device, or to

deposit films with a pattern of film thickness on a larger length scale. Depending on

the scale of the variability in the deposited film thickness, the film thickness may vary

within individual devices or it may vary from device to device.

4.2.3 Profile Description

Superpositions of 2D Fourier sine and cosine functions are used to model the shape

of the top and the bottom surfaces of the film. Considering the top of the film first,
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the change dHTop(x, y) in the total thickness of the film at a given location (x, y)

resulting from the top profile is given by

dHTop =Σn
j=0Σn

k=0[Ctop
jk cos((j)

2πx

L
+ (k)

2πy

b
)]

+ Σn
j=0Σn

k=0[Stopjk sin((j)
2πx

L
+ (k)

2πy

b
)]

(4.1)

where j and k are indices which range from 0 up to the maximum number n of sine

or cosine coefficients considered in each direction, Ctop
jk are the cosine coefficients in

µm and Stopjk are the sine coefficients in µm describing the height of the top surface

of the film above or below its nominal location, x is the coordinate along the length

L of the film, and y is the coordinate across the width b of the film.

The four cosinusoidal profiles whose coefficients are Ctop
00 , Ctop

10 , Ctop
01 , and Ctop

11 are

illustrated in Figure 4.3. As the top surface is modified according to these profiles, the

mean value of the whole film’s thickness does not change in any case except when Ctop
00

is nonzero. Adjusting Ctop
00 causes a uniform increase (or decrease) of the thickness.

This section is concerned with nonuniform profiles, so Ctop
00 is not considered in this

chapter. Similarly, the sinusoidal coefficient Stop00 causes no change in the thickness

and is therefore ignored. The same arguments will apply for the first sine and the

first cosine coefficients on the bottom surface, Sbot00 and Cbot
00 on the bottom surface,

and these are also neglected.

The bottom surface of the moving electrode may, in the same manner as the top

surface, be modeled as a superposition of 2D Fourier sine and cosine functions. The

change in thickness dHBot resulting from this modification may then be written as

dHBot =− Σn
j=0Σn

k=0[Cbot
jk cos((j)

2πx

L
+ (k)

2πy

b
)]

− Σn
j=0Σn

k=0[Sbotjk sin((j)
2πx

L
+ (k)

2πy

b
)]

(4.2)

where Cbot
jk and Sbotjk are the cosine and sine coefficients for the bottom surface, re-

spectively.
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(a) (b)

(c) (d)

Figure 4.3. Illustration of four 2D Fourier cosinusoidal profiles: (a)
the coefficient C00, a uniform change in thickness, which is not applied
here; (b) the coefficient C10, varying the thickness along the length
of the film; (c) the coefficient C01, varying the thickness across the
width of the film; and (d) the coefficient C11, varying the thickness
across both the width and length of the film. The z = 0 surface is
also shown. The length, width, and profile depth are not to scale.

Simultaneous variation of the top and bottom profiles may then be described

with superpositions of these Fourier sine and cosine functions on the top and bottom

surfaces, so that the total change dH in the film thickness at any location (x, y) will

be described as
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dH =Σn
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(4.3)

It is noted that Equation 4.3 describes the change in thickness of the film from

its mean value at any location (x,y) but that the mean thickness of the whole film

remains unchanged; that is, integrating the changes in thickness dH across the width

and length will result in no change in the volume of the film. It is further noted

that Equation 4.3 does not describe the location of the film centerline. That is, a

film may have a uniform thickness dH = 0 but may yet have a stress-free initial

displacement. For example, applying an identical sinusoidal profile Ctop
10 = Cbot

10 on

the top and bottom surfaces results in a film with uniform thickness but a sinusoidal

initial curvature. The descriptor ”stress-free” is used again here to differentiate a

film which is manufactured with some innate curvature from a film which develops

curvature absent of loading due to tensile or compressive residual stresses, stress

gradients, buckling, dielectric charging, or plastic deformation due to, e.g., creep or

fatigue.

4.2.4 Mesh Convergence and Verification of 3D Model

The deformation of the film under electrostatic loading is simulated, and the

resulting stresses and displacements are determined, using the finite element method

as implemented in ANSYS. The mesh used in ANSYS is studied to determine a

suitable mesh size and element aspect ratio. The voltage-displacement curve of a

single switch with the nominal properties shown in Table 4.1 is calculated by the

quasi-static application of a bias voltage in increments of ∆V = 1V .
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The element size along the thickness is determined by dividing the film into eight

equal layers, which is found to be sufficient. When the film thickness is later varied,

maintaining this constant number of elements across the thickness requires that the

element sizing across the thickness vary with the film thickness. The element sizing

across the width and length are made increasingly finer. The discretization of the air

gap follows the discretication of the width and length, with one element across the

height of the gap.

The differences in the vertical displacement d of the bottom surface of the film

at an applied voltage near the PIV for each of the M meshes are used to determine

the convergence. Because the meshes differ and do not share nodes at predeter-

mined locations, it is necessary to interpolate displacement of the bottom surface at

predetermined locations. The N points at which the displacement is calculated are

regularly distributed across the bottom surface with a spacing of 10µm. The root

mean square error (RMSE) is used to determine the convergence and is calculated

from the formula shown in Equation 4.4.

RMSE =

√
Σi=N
i=1 (di − dFi )2

N
(4.4)

where RMSE is the calculated error in meters for the chosen mesh, N is the total

number of points at which the displacement is interpolated, di is the vertical dis-

placement of the ith interpolated point, and dFi is the vertical displacement of the ith

interpolated point for the finest mesh used.

The interpolated displacement of one film under electrostatic loading is illustrated

in Figure 4.4.

The nominal element sizes and calculated PIV for the film for each of the meshes

are shown in Table 4.2. These nominal element sizes are approximations in each

dimension.

The approximated RMSE for each mesh is shown in Figure 4.5.

The film used in this mesh convergence study is flat, so any error resulting from

the discretization of the curves in the non-flat profiles is not represented.
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Figure 4.4. Illustration of interpolated displacement of a film under
electrostatic loading.

Table 4.2. Nominal Mesh Element Sizes (µm).

Mesh # ∆x ∆z ∆y PIV

1 100 50.0 0.375 155 ±1V

2 50.0 50.0 0.375 100 ±1V

3 25.0 25.0 0.375 97 ±1V

4 12.5 12.5 0.375 96 ±1V

5 6.25 6.25 0.375 96 ±1V

6 3.125 3.125 0.375 97 ±1V

The voltage-displacement curves for the meshes are shown in 4.6. The curves

for meshes 2-6 largely overlap. The fourth mesh is considered to be sufficient for

determining the PIV and natural frequency of the flat film.

As the voltage is increased, the onset of numerical instability is taken as evidence

of pull-in, as in reference [57]. Decreasing the voltage increment and force tolerance

negligibly affected the onset of numerical instability. Decreasing the voltage increment

showed that 1V increments was sufficient to determine an estimated PIV to within

1V. A voltage which causes the estimated displacement to exceed the gap, or a voltage
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Figure 4.5. Ratio of RMSE to the center displacement at 95V of the
finest mesh, for Meshes 1-5.

which results in greater than 20 iterations of the solver, was considered to have caused

the device to pull-in. The final voltage which converged above the gap was taken as

the PIV for the film.

Figure 4.6. Voltage-Displacement curves for six meshes of the flat film.

The mesh of the film with non-uniform thickness is now considered. In order to

feasibly represent the curvature of the film’s surface, the film’s volume is subdivided

into a sequence of vertically-oriented triangular prisms. These prisms are then meshed

with two or more elements along each side. The mesh is described further in the

appendix.
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For the case of the film whose thickness non-uniformity profile is represented by a

single coefficient Ctop
22 = 0.3µm on the top surface, representing a variation of ±10%

in the thickness, the volumetric resolution was increased from 9 points/prisms per

sine or cosine period to 17 points/prisms per period. For both meshes, the side of

each prism was further divided into two second-order elements. The PIV calculated

for the finer mesh decreased by 1V. This change was not considered sufficiently large

to justify the additional computational expense of the finer mesh. For this reason

the discretization of the chosen mesh was set with ∆x = 12.5µm and ∆z = 6.25µm,

meaning 32 volumes across the length and 16 across the width, to assure a minimum

of 9 points/prisms in the width- and length-directions per sine or cosine period for

all of the profiles considered.

4.2.5 Sensitivity of Natural Frequencies and PIV to Variations in Film

Thickness on Top Film Surface

The sensitivity of the PIV and first natural frequency to the first several fourier

coefficients is first examined by varying each of these coefficients one-at-a-time and

applying the finite element model discussed above to estimate the PIV and first

natural frequency for the film with the profile described by that coefficient. The top

and bottom surfaces are varied separately here, not simultaneously. These PIVs and

natural frequencies are compared to the those of the nominal flat film of uniform

thickness, so that the effect of each profile on the PIV is measured by the change of

the PIV from its ”nominal” value.

Additional coefficients varying the thickness of the film along its length with

smaller sinusoidal and cosinusoidal periods are included because variation of the thick-

ness in this direction was seen to have the greatest impact on the PIV. Further profiles

with linear variations in the film thickness are also considered because these profiles

are considered to be realistic but would require a very large number of sine or cosine

coefficients.
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The sensitivity of the PIV of the device to the first several coefficients is considered,

allowing only the profile of the top surface of the film to change.

The top surface of the film described in Table 4.1 is modified using the sine and

cosine profiles described in Equation 4.1. Each coefficient is individually adjusted by

0.3µm, which is 10% of the film thickness.

The sensitivity of the PIV and the first natural frequency of the film to the first

several cosine coefficients is shown in Table 4.3 and Table 4.4. These results are di-

vided into two tables to show the effect of positive and negative coefficients separately.

The sensitivity of the PIV and first natural frequency to the sine coefficients is shown

in Table 4.5. The sensitivity of the PIV to three additional profiles is shown in Table

4.6.

Table 4.3. Sensitivity of the PIV and first natural frequency to the
positive Cosine Coefficients Ctop

jk on the top surface, as difference from
the nominal value. The simulation voltage step size is 0.1V. The
nominal device resolves a PIV of 96.1V and natural frequency of 95.2
kHz. Yellow and blue represent +0.3 and -0.3 microns thickness,
respectively.

j k Ctop
jk (µm) ∆PIV (V ) ∆ωn(kHz) Profile

1 0 +0.3 6.7 6.6

2 0 +0.3 7.1 6.4

3 0 +0.3 1.8 1.5

4 0 +0.3 0.7 0.3

0 1 +0.3 1.0 1.1

0 2 +0.3 1.0 1.2

1 1 +0.3 1.0 1.2

2 1 +0.3 0.9 1.0

1 2 +0.3 0.9 1.1

2 2 +0.3 0.8 1.0
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Table 4.4. Sensitivity of the PIV and first natural frequency to the
negative Cosine Coefficients Ctop

jk on the top surface, as a difference
from the nominal value. The simulation voltage step size is 0.1V.
The nominal device resolves a PIV of 96.1V and natural frequency of
95.2 kHz. Yellow and blue represent +0.3 and -0.3 microns thickness,
respectively.

j k Ctop
jk (µm) ∆PIV (V ) ∆ωn(kHz) Profile

1 0 - 0.3 -5.7 -4.9

2 0 - 0.3 -7.9 -7.4

3 0 - 0.3 -4.1 -3.9

4 0 - 0.3 -2.9 -2.6

0 1 - 0.3 1.0 1.2

0 2 - 0.3 1.0 1.1

1 1 - 0.3 0.8 0.8

2 1 - 0.3 0.5 0.6

1 2 - 0.3 1.0 1.1

2 2 - 0.3 0.9 1.1

Because these three profiles seen in Table 4.6 are not expressed in terms of the

Fourier functions, they are not used in generating the response surfaces, which are

written in terms of the Fourier functions. The sensitivity seen here is underestimated

when these profiles are approximated using the response surfaces generated later in

this chapter, which suggests that caution should be applied when estimating the PIV

and natural frequencies of profiles which are not well-represented by Fourier series.

The greatest sensitivity of the PIV to a profile is seen in the first several cosine

profiles C10, C20, and C30. It is noted that these profiles are thinnest where the ends

are fixed. Additional coefficients which, like these, vary the profile along the length

direction alone were considered, but the sensitivity to these additional profiles was
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Table 4.5. Sensitivity of the PIV and first natural frequency to the
Sine Coefficients Stopjk on the top surface, as a difference from the
nominal value. The simulation voltage step size is 0.1V. The nominal
device resolves a PIV of 96.1V and natural frequency of 95.2 kHz.
Yellow and blue represent +0.3 and -0.3 microns thickness, respec-
tively.

j k Stopjk (µm) ∆PIV (V ) ∆ωn(kHz) Profile

1 0 +0.3 -0.3 -0.4

2 0 +0.3 0.0 -0.1

3 0 +0.3 -0.7 -0.8

4 0 +0.3 -0.8 -0.9

0 1 +0.3 0.5 0.8

0 2 +0.3 0.8 1.0

1 1 +0.3 0.7 0.9

2 1 +0.3 0.5 0.6

1 2 +0.3 0.9 1.1

2 2 +0.3 0.8 1.0

Table 4.6. Sensitivity of three additional profiles on the top surface,
as a difference from the nominal value. The simulation voltage step
size is 0.1V. The nominal device resolves a PIV of 96.1V and natu-
ral frequency of 95.2 kHz. Yellow and blue represent +0.3 and -0.3
microns thickness, respectively.

j k (µm) ∆PIV (V ) ∆ωn(kHz) Profile

- - +0.3 -0.3 -0.2

- - +0.3 -12.2 -8.6

- - +0.3 -6.3 -4.5
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small. The sensitivity to other coefficients beyond the ten shown are also presumed

to be small in comparison to those shown.

4.2.6 Sensitivity to Nonuniformity on Bottom Film Surface

The simulations carried out to estimate the sensitivity of the PIV to variations in

the top surface of the film are repeated for the bottom surface. The tabulated results

for the positive cosine coefficients, negative cosine coefficients, and sine coefficients,

are shown in Table 4.7, Table 4.8, and Table 4.9 respectively.

It is seen from these simulations that the greatest sensitivity of the PIV to the film

profile, on either the top or bottom surface, appears to occur in the lower coefficients

for the bottom surface, and specifically those which vary the film thickness along the

direction of its length; see Table 4.7, Table 4.8, and Table 4.9. A large sensitivity is

also seen when the profile of the bottom surface is varied in a linear fashion across

the width of the film; see Table 4.10.

As with the ramped profiles seen in Table 4.10, the three profiles seen in Table

4.10 are not expressed in terms of the Fourier functions and are not used in generating

the response surfaces. The sensitivity seen here is also underestimated when these

profiles are approximated using the response surfaces generated later in this chapter.

The sensitivity of the PIV to the cosine coefficients is again seen to be greater

than the sensitivity to the sine coefficients. The thickness of the film at the fixed

ends appears to greatly influence the PIV; profiles which are thicker at the fixed ends

provide higher PIVs.

4.3 Uncertainty Quantification for 3D Model

In this section, estimated uncertainty in the profile of the suspended electrode is

propagated from the film profile to the PIV and natural frequency. Uncertainty in

the profile is approximated by means of assumed probability density functions for

each of the Fourier coefficients representing variation of the top and bottom surfaces
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Table 4.7. Sensitivity of the PIV and first natural frequency to the
Cosine Coefficients Cbot

jk on the bottom surface, as difference from
the nominal value. The simulation voltage step size is 0.1V. The
nominal device resolves a PIV of 96.1V and natural frequency of 95.2
kHz. Yellow and blue represent +0.3 and -0.3 microns thickness,
respectively.

j k Cbot
jk (µm) ∆PIV (V ) ∆ωn(kHz) Profile

1 0 +0.3 -9.0 -4.8

2 0 +0.3 -4.9 -7.4

3 0 +0.3 -5.5 -3.9

4 0 +0.3 -4.0 -2.6

0 1 +0.3 -1.0 1.2

0 2 +0.3 -0.7 1.1

1 1 +0.3 -1.1 0.8

2 1 +0.3 -1.4 0.6

1 2 +0.3 -0.8 1.1

2 2 +0.3 -0.8 1.1

of the suspended electrode. These probability density functions are estimated based

on wafer-scale measurements of film nonuniformity found in the literature. These

assumed ranges of the Fourier coefficients are heavily sampled, generating a large

number of estimates of the PIV and natural frequency. If the space is sufficiently

sampled, these estimates may be plotted as a probability density function which will

show the likelihood of obtaining a particular PIV or natural frequency for the chosen

range of uncertainty in the profile.

In order to avoid the computational expense of running a full 3D finite element

simulation for each sample during this sampling, surrogate models for the PIV and

natural frequency are created and are heavily sampled in place of the full simulations.

The surrogate model chosen here is a polynomial response surface.
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Table 4.8. Sensitivity of the PIV and first natural frequency to the
negative Cosine Coefficients Cbot

jk on the bottom surface, as a difference
from the nominal value. The simulation voltage step size is 0.1V. The
nominal device resolves a PIV of 96.1V and natural frequency of 95.2
kHz. Yellow and blue represent +0.3 and -0.3 microns thickness,
respectively.

j k Cbot
jk (µm) ∆PIV (V ) ∆ωn(kHz) Profile

1 0 - 0.3 9.0 6.5

2 0 - 0.3 1.1 6.5

3 0 - 0.3 0.5 1.6

4 0 - 0.3 -1.3 0.3

0 1 - 0.3 -0.7 1.1

0 2 - 0.3 -0.8 1.2

1 1 - 0.3 -0.9 1.2

2 1 - 0.3 -1.0 1.0

1 2 - 0.3 -0.8 1.1

2 2 - 0.3 -1.0 1.0

The response surfaces generated for the PIV and for the natural frequency are

generated by means of the following procedure. First, a number of full 3D simulations

sufficient to fit a polynomial of degree one are run. The polynomial response surface

is fit by means of a least-squared error curve-fit in Matlab. A number of full 3D

simulations sufficient to generate a polynomial fit one degree higher are then run. The

lower-degree response surface is applied to estimate the results obtained in the higher-

degree sampling. If the error is sufficiently small, the response surface is accepted. If

the error is unacceptably large, the polynomial degree is increased and the procedure

is repeated. In this manner, a polynomial response surface of degree two for the PIV

is obtained and found to be sufficient, and similarly a polynomial response surface of

degree two is found to be sufficient for the natural frequency.
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Table 4.9. Sensitivity of the PIV and first natural frequency to the
Sine Coefficients Sbotjk on the bottom surface, as a difference from the
nominal value. The simulation voltage step size is 0.1V. The nominal
device resolves a PIV of 96.1V and natural frequency of 95.2 kHz.
Yellow and blue represent +0.3 and -0.3 microns thickness, respec-
tively.

j k Sbotjk (µm) ∆PIV (V ) ∆ωn(kHz) Profile

1 0 +0.3 -1.4 -0.3

2 0 +0.3 -1.9 -0.1

3 0 +0.3 -2.2 -0.8

4 0 +0.3 -2.5 -0.9

0 1 +0.3 -1.1 0.8

0 2 +0.3 -0.8 1.0

1 1 +0.3 -1.3 0.9

2 1 +0.3 -1.3 0.6

1 2 +0.3 -0.9 1.1

2 2 +0.3 -0.9 1.0

Table 4.10. Sensitivity of three additional profiles on the bottom
surface, as a difference from the nominal value. The simulation voltage
step size is 0.1V. The nominal device resolves a PIV of 96.1V and
natural frequency of 95.2 kHz. Yellow and blue represent +0.3 and
-0.3 microns thickness, respectively.

j k (µm) ∆PIVBOT (V ) ∆ωn(kHz) Profile

- - +0.3 -0.2 -0.2

- - +0.3 -4.8 9.5

- - +0.3 -1.9 4.6
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The following subsections step through the generation of the response surfaces for

the PIV and natural frequency and their application in propagating the estimated

uncertainty in the film thickness.

4.3.1 Response Surface Generation

A single simulation with a chosen set of input parameters yields a single, deter-

ministic result. If each input parameter is instead assigned a probability distribution

function, e.g. a uniform distribution or a normal distribution, then the output quan-

tities of interest of the system (e.g. the PIV and natural frequency) may be described

with an as-yet unknown probability distribution function. It is possible to estimate

this output PDF with generally increasing accuracy by sensibly sampling the PDFs

of the inputs and running a simulation for each sample; as the number of samples

and simulations increases, the histogram of the output samples approximates the true

output PDF with generally increasing accuracy.

As the number of samples and full 3D simulations required to reasonably ap-

proximate these output PDFs is computationally prohibitively expensive, a response

surface is fitted to a smaller number of samples of the input space. This response

surface is sampled using a large number of samples of the input parameters, and the

values generated from the response surface are used (in place of full simulations) to

generate the PDF of the output quantities of interest (the PIV and natural frequency).

Two first-order polynomial response surfaces were first generated from the results

of the sensitivity analysis above, considering only the 40 simulations with positive

values of the Fourier coefficients, in addition to the nominal simulation. The response

surface, then, required 41 simulations and is expressed in terms of the 40 sine and

cosine profiles. The 40 sine and cosine profiles are those shown in Table 4.3, Table 4.5,

Table 4.7, and Table 4.9. The linearly-ramped profiles in Table 4.6 and Table 4.10 are

not included here because they were not expressed in terms of the Fourier functions

used in generating the response surfaces. The simulations with negative coefficients in
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Table 4.4 and Table 4.8 are neglected here for simplicity but are incorporated in the

next iteration of response surface generation. The two response surfaces generated

in this polynomial curve fit provide estimates of the PIV and the natural frequency,

respectively, as functions of the 40 chosen Fourier coefficients.

Results from an additional 880 simulations were applied in order to test the first-

order response surfaces. These 880 simulations are comprised of four sets of 220

simulations. Each set of 220 simulations came from a second-order Smolyak sparse

grid sampling of a subsection of the parameter space. The Smolyak sparse grid algo-

rithm, like Latin hypercube sampling, is an efficient method for sampling a parameter

space, but it is optimized for a polynomial approximation of the results at the sampled

points [78]. The first set of 220 simulations sampled only the cosine profiles on the

top surface; the second set of 220 sampled the cosine profiles on the bottom surface;

the third set of 220 sampled the sine profiles on the top surface; and the fourth set

of 220 sampled only the sine profiles on the bottom surface. The original purpose of

these 880 simulations was the generation of four response surfaces, i.e. one for each of

sine and cosine profiles on the top and bottom surfaces. This approach was discarded

in favor of developing a single unified response surface including all 40 Fourier coeffi-

cients, but the simulation results are reused here as a testing data for the first-order

response surface. The maximum amplitude for any profile in these 880 additional

simulations was adjusted down from the previously-considered 0.3µm to 0.095µm to

avoid nonphysical configurations, e.g. devices where the two electrodes would be in

contact before being loaded. Predictions of the results of these same 880 simulations

were generated using the first-order response surface, resulting in root mean square

errors (RMSE) of 0.74 volts and 405 hertz for the PIV and the natural frequency,

respectively. These 880 predictions are compared to the corresponding simulations in

Figure 4.7 and Figure 4.8.

An attempt was made to improve this initial first-order response surface by in-

cluding the 20 simulations with negative coefficients seen in Tables 4.4 and 4.8. These

negative values of the Fourier coefficients are treated as additional parameters. Fur-
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Figure 4.7. Comparison of predictions from a first-order polynomial
response surface of the PIV to 880 additional simulations. Results are
sorted by the simulation PIV.

Figure 4.8. Comparison of predictions from a first-order polynomial
response surface of the first natural frequency to 880 additional sim-
ulations. Results are sorted by the simulation frequency.
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thermore, the 20 simulations with sine profiles shown in Tables 4.5 and 4.9 may be

reused; in considering the symmetry of the sine profiles, it is evident that the PIV and

natural frequency will not change if the sign of the Fourier coefficient is changed. This

provides 20 additional simulations and parameters. The response surface is therefore

expressed in terms of 80 parameters and, noting the use of symmetry, required only

61 simulations. A first-order polynomial response surface, modified by treating the

positive and negative values of the Fourier coefficients in this manner, is thereby gen-

erated. Predictions of the results of the 880 simulations previously discussed were

generated using this response surface, resulting in root mean square errors (RMSE)

of 0.73 volts and 563 hertz for the PIV and the natural frequency, respectively. These

880 predictions are compared to the corresponding simulations in Figure 4.9 and

Figure 4.10.

Figure 4.9. Comparison of predictions from a modified first-order
polynomial response surface of the PIV to 880 additional simulations.
Results are sorted by the simulation PIV.

The improvement from a RMSE of 0.74 volts to 0.73 volts in the PIV is considered

negligible. The RMSE of 563 hertz in the natural frequency is worse than the original
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Figure 4.10. Comparison of predictions from a modified first-order
polynomial response surface of the first natural frequency to 880 ad-
ditional simulations. Results are sorted by the simulation frequency.

405 hertz, despite a decrease in the mean absolute error. To improve these values, a

second-order polynomial response surface is considered.

The 961 simulations already available, consisting of the nominal case, 40 sensitivity

results for positive values of the Fourier coefficients, 40 more sensitivity results for

the negative values of the coefficients, plus the 880 additional simulations discussed

above, were applied to generate a least-squares polynomial fit of degree two for each

of the PIV and the natural frequency.

An additional 1300 simulations were run; these provide results with which to test

the second-order polynomial response surfaces. This does not constitute a number

of simulations sufficient to generate third-order polynomial response surfaces but is

considered sufficient for testing the second-order response surfaces. A partial factorial

design was applied in generating these samples [104]. A full factorial simulation design

for the 40 chosen parameters, allowing each factor to assume a value of −0.15µm,

0.00µm, or +0.15µm would require 340 simulations. Such a design would permit the
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combinatorial effects of every possible set of parameters to be explicitly found, but the

computational power required is prohibitively expensive. The partial factorial design

illustrated in Table 4.11 reduces that number of simulations significantly, while still

sampling important regions of the design space.

The ”X” mark in the first row and third column of Table 4.11 represents 100 sim-

ulations generated by linearly superposing each of the 10 Ctop
jk profiles set at +0.15µm

with each of the 10 Cbot
lm profiles set at +0.15µm. The remaining three ”X” marks

in this row represent a total of 300 additional simulations generated by the linear

superpositions of Ctop
jk = +0.15µm with Cbot

lm = −0.15µm, Stoplm = +0.15µm, and

Sbotlm = +0.15µm, respectively. The second, third,fourth, and fifth row add an addi-

tional 400, 200, 200, and 100 simulations, for a total of 1300 simulations.

Table 4.11. Illustration of factorial design applied in generating 1300
simulations for testing of the second-order polynomial response sur-
faces.

+Ctop
lm −Ctop

lm +Cbot
lm −Cbot

lm +Stoplm +Sbotlm

+Ctop
jk X X X X

−Ctop
jk X X X X

+Cbot
jk X X

−Cbot
jk X X

+Stopjk X

+Sbotjk

Predictions of the results of these 1300 simulations were generated using the

second-order response surface, resulting in root mean square errors (RMSE) of 0.38

volts and 387 hertz for the PIV and the natural frequency, respectively. These 1300

predictions are compared to the corresponding simulations in Figure 4.11 and Figure

4.12. Based on the magnitude of this error and on its minor reduction from the ini-
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tial RMSE of 0.74 volts and 405 hertz, the response surfaces were considered to have

converged and to perform with reasonable accuracy.

Figure 4.11. Comparison of predictions from a second-order poly-
nomial response surface of the PIV to 1300 additional simulations.
Results are sorted by the simulation PIV.

4.3.2 Propagation of Uncertainty

To generate the output PDF of expected PIV and natural frequency ranges, the

cosine coefficients and sine coefficients, for each of the top and bottom surfaces, are

sampled. Uniform probability distributions were assumed for all parameters. Ranges

of ±0.07µm were chosen for the low-frequency coefficients where (i+ j) = 1, such as

Ctop
10 and Sbot10 . This was halved to ±0.035µm for coefficients where (i + j) = 2 such

as Ctop
20 and Sbot02 , halved again for coefficients where (i+ j) = 3 such as Ctop

21 and Sbot12 ,

and finally halved again for coefficients where (i + j) = 4 such as Ctop
22 and Sbot31 ; the

minimum uniform range used was therefore approximately ±0.01µm. The profiles

and associated distributions of uncertainty are shown in Table 4.12.
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Figure 4.12. Comparison of predictions from a second-order polyno-
mial response surface of the first natural frequency to 1300 additional
simulations. Results are sorted by the simulation frequency.

The distributions of uncertainty shown in Table 4.12 are assumptions of the real

values; they are not the results of experimental sampling of profile thicknesses. It

is assumed here that the lower-frequency coefficients (e.g. Cbot
10 ) occur at greater

amplitudes than the higher-frequency coefficients (e.g. Sbot22 ) in manufactured devices.

The magnitudes of these ranges, however, have been intentionally scaled to generate

films in which the thickness varies within 5% to 10% of the nominal thickness of 3

microns, which is in the range of the wafer-scale thickness nonuniformity seen in,

e.g., [93] and [94]. This is achieved, as the maximum thickness at any point on this

set of films is increased by a mean of 7.1% with a standard deviation of 1.7%.

250,000 samples are randomly drawn from this parameter space of profile coeffi-

cients, and a PIV and natural frequency is calculated for each sample by application

of the second-order polynomial response surfaces. These collections form probability

density functions (PDFs) of the PIV and natural frequency. The resulting PDFs are

shown in Figure 4.13 and Figure 4.14, in addition to the mean values of the PDFs



78

Table 4.12. Assumed distributions of uncertainty in the amplitudes
of the 2D Fourier coefficients representing, separately, the top and
and bottom surfaces.

Profiles (Top and Bottom Surfaces) Uniform Distribution

C10 S10 ±70.0nm

C01 S01

C20 S20 ±35.0nm

C11 S11

C02 S12

C30 S30 ±17.5nm

C21 S21

C12 S12

C40 S40 ±8.75nm

C22 S22

and the nominal values for the flat film. The mean values of the PIV and natural

frequency are both seen to be greater than their nominal values.
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Figure 4.13. PDF of PIVs generated by sampling response surface.

Figure 4.14. PDF of first natural frequency generated by sampling
response surface.

An example top and bottom film surface generated during this process is shown

in Figure 4.15. The length and width of the film have been scaled down to make the
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variation in thickness more evident. The middle surface, halfway between the top

and bottom surfaces, is also shown.

Figure 4.15. Example surface generated during response surface sam-
pling. Contains contributions from all 40 parameters. The z = 0
surface is also shown.

4.4 Discussion of 3D Finite Element Model Results

A portion of the response surface generated for the PIV is illustrated in Figure

4.16. In this figure, the 1300 full 3D simulations not used in generating the reponse

surface are scatter-plotted against the two Fourier cosine coefficients Ctop
10 and Ctop

20 for

the top surface. The response surface is plotted as a function of these two variables

in the range of ±0.15µm for each parameter, with the remaining parameters set to

their nominal values of zero. The response surface is seen to be approximately linear

for these two variables.

The response surface is shown again as level curves in Figure 4.17. The linear

response of the PIV to each parameter remains evident.

The portion of the PIV response surface level curves representing only the variation

of the coefficients Cbot
10 and Cbot

20 on the bottom surface are shown in Figure 4.18. In

contrast to the effect of these two coefficients on the top surface, the response on
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Figure 4.16. Illustration of the PIV polynomial response surface as it
varies for two cosine coefficients on the top surface of the film, plotted
with simulated values of the PIV.

Figure 4.17. Illustration of the level curves of the PIV polynomial
response surface as it varies for two cosine coefficients on the top
surface of the film.

the bottom surface is evidently nonlinear; as both coefficients are decreased, the PIV

increases by more than the linear combination of their linear effects.

Finally, the level curves of the response surface for the natural frequency are

shown in Figure 4.19 as a comparison of the effects of the sine and cosine profiles.

Each cosine profile in the plots shown monotonically increased or decreased the PIV.
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Figure 4.18. Illustration of the level curves of the PIV polynomial
response surface as it varies for two cosine coefficients on the bottom
film surface.

The sine profiles, in contrast, have a smaller impact on the PIV and natural frequency

and have a much less linear effect, as illustrated in Figure 4.19.

Figure 4.19. Illustration of the level curves of the polynomial response
surface generated for the natural frequency as it varies for two sine
coefficients on the bottom film surface.

Noting that the greatest sensitivity to the change in profile occurs when the profile

is varied along its length, variability in thickness is added to a 1D Euler-Bernoulli

continuum beam model of the same device. The model is introduced as a rapid alter-
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native to the full 3D or similar 2D simulations. It allows a more thorough examination

of the effect of the profiles which vary along the length of the film.

4.5 1D Euler-Bernoulli Continuum Beam Model of the Film

4.5.1 Description of 1D Model

It would be possible to model the system described above in ANSYS using a

1D model composed of, for example, a large number of 1D beam elements with

varying assigned thicknesses. However, because a 1D Euler-Bernoulli beam model has

already been used in Chapter 2 to represent the film, and in the hope that it provides

additional insight into the effects of varying thickness, the 1D Euler-Bernoulli beam

model previously descibed, solved using the Ritz-Galerkin method, will be further

modified to incorporate the varying thickness of the film.

In the following simulations, the dielectric thickness is set to zero, and damping

and fringe field effects are neglected in the 1D model in order to better match the

assumptions made in the 3D model, which does not include these effects. An effective

modulus is still applied in the 1D model in order to better approximate the plate-like

stiffness of the wide film. Material and geometric properties are otherwise identical

between the 1D and 3D models.

4.5.2 Derivation of 1D Equation of Motion

The moments acting on a section of the undeformed curved film are first balanced.

Figure 4.20 shows the dimensions of and forces on a section of the undeformed,

initially-curved film with non-uniform thickness. The film is described as a core of

constant thickness, with additional thickness ht(x) above the film core and hb(x)

below the core.

Summing the moments on the film shown in Figure 4.20 about the left-center of

the film, which is the assumed location of the neutral axis at this cross-section,
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Figure 4.20. Schematic of the RF-MEMS switch of non-uniform
thickness with the membrane deflected in the form of an arch due to
residual stresses.

0 = Mo(x+ dx)−Mo(x)−

N([v(x+ dx)− v(x)] + [ht(x+ dx)− ht(x)]/2− [hb(x+ dx)− hb(x)]/2),
(4.5)

where dx is the length of the element, Mo(x) is the moment on the element’s cross-

section, N is the axial force which is meant to approximate the residual stress on the

element, and v(x) is the initial height of the film’s core above its location at the film’s

anchors. This height v(x) comprises the initial shape of the film before electrostatic

deformation.

Dividing Equation 4.5 by dx and taking the limit as dx goes to zero,

M
′

o = N(v
′
+ h

′

t/2− h
′

b/2). (4.6)

where [•]′ denotes differentiation of [•] with respect to the x-coordinate.

Having balanced the moments on the undeformed curved film, the moments acting

on the deformed curved film are now balanced.
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The film shown in Figure 4.20 is shown in a deformed position in Figure 4.21,

where a positive-downward deflection w(x) has occurred.

Figure 4.21. Schematic of the RF-MEMS switch of non-uniform
thickness with initial curvature, deformed by the application of elec-
trostatic forcing.

The deformation will cause an additional moment Mw(x), which is added to the

initial moment Mo(x). This combination yields the moment M(x) shown in Figure

4.21, where

M(x) = Mo(x) +Mw(x). (4.7)

Similarly, the deformation will result in additional axial stress Nw which is com-

bined with the pre-existing axial stress N to yield

P = N +Nw, (4.8)

as shown in Figure 4.21.

Summing moments about the left-center of the film shown in Figure 4.21 yields
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0 = Mw(x+ dx)−Mw(x) +Mo(x+ dx)−Mo(x)

− P ([v(x+ dx)− v(x)]− [w(x+ dx)− w(x)]+

[ht(x+ dx)− ht(x)]/2− [hb(x+ dx)− hb(x)]/2)−

V (x+ dx)dx.

(4.9)

where V (x) is the shear force on the film’s cross-section.

Dividing Equation 4.9 by dx, and taking the limit as dx goes to zero gives

0 = M
′

w +M
′

o − P (v
′ − w′ + h

′

t/2− h
′

b/2)− V (4.10)

Substituting the equation for M
′
o(x) from Equation 4.6 into Equation 4.10 gives

0 = M
′

w +N(v
′
+ h

′

t/2− h
′

b/2)− P (v
′ − w′ + h

′

t/2− h
′

b/2)− V (4.11)

After balancing the moments on the deformed curved film, the vertical forces

acting on a section of the deformed, curved film are balanced.

Summing forces in the vertical direction on the film element shown in Figure 4.21,

ρbh(x)ẍdx = f(x)dx− V (x+ dx) + V (x) (4.12)

where f(x) is a distributed load per unit length applied to the film, ρ is the film

density, b is the width of the film, and h(x) is the film thickness, given by the sum of

the uniform film core thickness ho and the additional thickness above and below the

film core, ht(x) and hb(x), respectively, or

h(x) = hb(x) + ho + ht(x). (4.13)

Dividing Equation 4.12 by dx and taking the limit as dx goes to zero gives the

equation of motion for the lateral displacement of the film,

ρbh(x)ẍ = f(x)− V ′(x). (4.14)
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The V
′

term in Equation 4.14 will be expanded into known terms by the use of

two further equations.

Equation 4.11, the summation of moments on the deformed film, is differentiated

with respect to x and solved for V
′

to yield

V
′
= M

′′

w +N(v
′′

+ h
′′

t /2− h
′′

b/2)− P (v
′′ − w′′ + h

′′

t /2− h
′′

b/2) (4.15)

In accordance with the Euler-Bernoulli beam theory applied here to represent the

film, it is known that the deformation-related moment Mw is related to the deforma-

tion w(x), modulus of elasticity E, and area moment of inertia I(x) by

M
′′

w = [EI(x)w
′′
]
′′
. (4.16)

Substituting Equation 4.16 and Equation 4.15 into the governing equation of mo-

tion, Equation 4.14, yields

ρbh(x)ẍ = f(x)− [EI(x)w
′′
]
′′ −N(v

′′
+
h
′′
t

2
− h

′′

b

2
)− P (v

′′ − w′′ + h
′′
t

2
− h

′′

b

2
). (4.17)

Having balanced the vertical forces acting on a section of the deformed curved

film, the electrostatic forcing function is now considered.

The electrostatic forcing function used in this 1D model of the system models the

same effect as, but is not identical to, the electrostatic model used in the ANSYS

simulations previously described. As with other modeling differences between the 1D

and 3D model, this difference is presumed to cause a small difference in the estimated

PIV. The fringe-field model of the electrostatic force on the film is taken from [73].

The capacitance per unit length in this model is given by

C =
ε0
b

[1− 0.36
g(x)

b
+ (0.85

1

b0.76
+ 2.5

h(x)0.24

b
g(x)0.76)], (4.18)

where C is the capacitance, ε0 = 8.85 ∗ 10−12F/m is the permittivity of free space,

the gap g(x) is given by
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g(x) = go − hb(x) + v(x)− w(x), (4.19)

where the thickness hb(x) added to the bottom of the film has affected the gap, and

where the effective air gap go is given by

go = tair +
td
ε0
. (4.20)

The formula in Equation 4.18 has been modified from its initial form to incorporate

the non-uniform thickness h(x) and the initial curvature v(x).

The electrostatic potential energy resulting from the capacitance given in Equation

4.18 is given by

Ep =
1

2
Cv̄2, (4.21)

where v̄ is the voltage differential between the two terminals of the capacitor.

Inserting the capacitance from Equation 4.18 yields the electrostatic potential

energy between the film and the electrode beneath,

Ep =
v̄2

2

ε0
b

[1− 0.36
g(x)

b
+ (0.85

1

b0.76
+ 2.5

h(x)0.24

b
g(x)0.76)]. (4.22)

Differentiating the electrostatic potential energy in Equation 4.22 with respect to

the gap g(x) yields the magnitude of the electrostatic force on the film,

|Felec| =
v̄2ε0b

2g2
(1 + 0.24g0.76(0.85

1

b0.76
)g0.76). (4.23)

The electrostatic force in Equation 4.23 is further modified with a Heaviside step

function H(x) to allow for the possibility of an electrode of finite width below the

film. Only the electrostatic force between the left side of the electrode where x = x1

and the right side of the electrode where x = x2 is included in the final electrostatic

force, given by

|Felec| =
v̄2ε0b

2g2
(1 + 0.24g0.76(0.85

1

b0.76
)g0.76)(H(x− x1)−H(x− x2)). (4.24)
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Although it is presented here, an electrode of finite width is not used here; the

electrode is treated as though it extends across the full length of the suspended film

above it.

With the electrostatic forcing function determined, the stretching function is now

considered.

The stretching force Pw on the film is given simply by

Pw =
Ebh(x)

L
∆S (4.25)

where ∆S is the change in the length of the film between the current deformed length

and the initial undeformed length, and is given by the change in the arc length of the

film,

∆S =

∫ L

0

√
1 + (v′ +

h
′
t

2
− h

′
b

2
− w′)2dx−

∫ L

0

√
1 + (v′ +

h
′
t

2
− h

′
b

2
)2dx, (4.26)

which is approximated by its first-order binomial expansion,

∆S ≈
∫ L

0

(1 +
1

2
(v
′
+
h
′
t

2
− h

′

b

2
− w′)2dx−

∫ L

0

(1 +
1

2
(v
′
+
h
′
t

2
− h

′

b

2
)2dx). (4.27)

Equation 4.27 simplifies to

∆S ≈ 1

2

∫ L

0

[h
′

bw
′ − h′tw

′
+ w

′2 − 2v
′
w
′
]dx. (4.28)

Substituting Equation 4.27 into the equation for the stretching force on the film,

Equation 4.25, gives the stretching force Pw,

Pw =
Ebh(x)

2L
[

∫ L

0

(h
′

bw
′ − h′tw

′
+ w

′2 − 2v
′
w
′
)dx]. (4.29)

With the stretching function determined, the damping forcing function is now

considered.

The magnitude of the damping force will be given by
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|Fdamp| = cf (w, x)ẇ, (4.30)

where cf is given by [71] as

cf =
10.39 ∗ ( b

tair−hb+v+γ−w )3.1

1 + 1.374( b
tair−hb+v+γ−w )1.825(γ

b
)0.966

h, (4.31)

which has been modified here to account for the thickness hb added to the bottom of

the film as well as the initial curvature v. A minimum gap of γ = 20nm is assumed

to exist due to asperities in the film and electrode surfaces.

The total magnitude of the damping force is therefore given by

|Fdamp| =
10.39 ∗ ( b

tair−hb+v+γ−w )3.1

1 + 1.374( b
tair−hb+v+γ−w )1.825 γ

0.966

b

hẇ, (4.32)

Although the damping force is derived here, damping is not considered in the

simulations in this chapter.

With the damping function determined, the impact forcing function is now con-

sidered.

If impact occurs, the resulting impact force will be given by a simple spring model

wherever contact occurs. This model is given by

Fimpact = −Eb
td

(w − v − tair + hb)(w ≥ v + tair − hb). (4.33)

Although the impact term is derived here, impact is not considered in the simu-

lations in this chapter.

4.5.3 Governing Equation of Motion for the Lateral Vibration of a Film

with Non-Uniform Thickness

Combining the vertical force balance given by Equation 4.17 with each of the

forcing functions given by Equation 4.24, Equation 4.29, Equation 4.32, and Equation
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4.33 yields the final governing equation of motion for the lateral motion of the film

with non-uniform thickness,

ρbhẅ + [E
bh3

12
w
′′
]
′′

=

v̄2ε0b

2g2
(1 + 0.24g0.76(0.85

1

b0.76
)g0.76)(H(x− x1)−H(x− x2))+

Ebh

2L
[

∫ L

0

(h
′

bw
′ − h′tw

′
+ w

′2 − 2v
′
w
′
)dx](v

′′ − w′′ + h
′′
t

2
− h

′′

b

2
)−

10.39 ∗ ( b
tair−hb+v+γ−w )3.1

1 + 1.374( b
tair−hb+v+γ−w )1.825(γ

b
)0.966

hẇ

− Eb

td
(w − v − tair + hb)(w ≥ v + tair − hb)−N(v

′′
+
h
′′
t

2
− h

′′

b

2
).

(4.34)

4.5.4 Nondimensionalization of the Governing Equation of Motion for

the Lateral Vibration of a Film with non-uniform thickness

To solve Equation 4.34 the following nondimensional quantities are defined:

x̂ =
x

L
,

t̂ =
t

T
=

t√
ρbhoL4

Ebh3o/12
)
,

ŵ =
w

go
,

v̂ =
v

go
,

x̂1 =
x1

L
,

x̂2 =
x2

L
,

N̂ =
NL2

EI
,

ωn =
ωn√
EI

ρbhL4

.

(4.35)

The time t is nondimensionalized with a constant T =
√

ρbhoL4

Ebh3o/12
. After nondi-

mensionalization, Equation 4.34 can be expressed as:
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h

ho
¨̂w +

h3

h3
o

ŵ
′′′′

+
6h2h

′

h3
o

ŵ
′′′

+
3h2h

′′
+ 6hh

′2

h3
o

ŵ
′′

=

6v̄2ε0L
4

g2Ehogo
(1 + 0.24g0.76(0.85

1

b0.76
)g0.76)(H(x− x1)−H(x− x2))+

6hg2
o

h3
o

[

∫ 1

0

(
h
′

b

go
ŵ
′ − h

′
t

go
ŵ
′
+ ŵ

′
ŵ
′ − 2v̂

′
ŵ
′
)dx̂](v̂

′′ − ŵ′′ + h
′′
t

2go
− h

′′

b

2go
)−

10.39 ∗ ( b
tair−hb+v+γ−w )3.1

1 + 1.374( b
tair−hb+v+γ−w )1.825(γ

b
)0.966

12L4h

Ebh3
ogo

ẇ

− 12L4

tdh3
o

(ŵ − v̂ − 1 +
hb
go

)(ŵ ≥ v̂ + 1− hb
go

)− 12L2N

Ebh3
o

(v̂
′′

+
h
′′
t

2go
− h

′′

b

2go
).

(4.36)

Into Equation 4.36 the assumed solution

ŵ(x̂, t̂) ≈
i=M∑
i=0

ui(t̂)φi(x̂), (4.37)

is inserted, where ui is the time-varying coefficient of the ith mode of the uniform

undamped flat film, φi is the mode shape of the ith mode of the uniform undamped flat

film, and M is the number of modes chosen. Multiplying through by the orthonormal

modeshapes φn and integrating along the length of the film yields the the final set of

ordinary differential equations which is to be solved.

4.5.5 Verification of 1D Model

In this section, the calculation of the natural frequencies of a non-uniform film

are verified and the convergence characteristics of the calculated natural frequencies

for a fixed-fixed tapered film with the properties given in Table 4.13 are considered.

Later, the natural frequencies of this tapered film are compared to reference values

from [105].

Neglecting the forcing functions and stretching of the film, the governing equation

for the motion of the non-uniform film was previously derived as

∂2

∂x2
(E
bh3

12

∂2

∂x2
(w)) + ρbh

∂2

∂t2
(w) = 0, (4.38)
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Table 4.13. Parameters of the Linearly Tapered Film.

Symbol Quantity Value

L Film Length 400 µm

b Film Width 120 µm

ν Poisson’s Ratio 0.30

E Young’s Modulus 200 GPa

ho Nominal Thickness of the Film 4.0µm

ht Non-Uniform Thickness on Film Top 1.5 x
L
µm

hb Non-Uniform Thickness on Film Underside 2.5 x
L
µm

where E is the Young’s modulus, b is the width, h = h(x) is the thickness, w is the

deflection, and ρ is the density of the film.

Multiplying Equation 4.38 by 12L4/Ebh3
ogo and nondimensionalizing with the use

of

x̂ =
x

L
(4.39)

ŵ =
w

go
(4.40)

t̂ =
t

T
(4.41)

T =

√
ρbhoL4

Ebh3
o/12

(4.42)

where ho is the initial thickness of the film, results in the nondimensionalized equation

of motion for the unforced motion of the non-uniform film,

(1 +
ht + hb
ho

) ¨̂w + ((1 +
(ht + hb)

3

h3
o

)ŵ
′′
)
′′

= 0, (4.43)

where ˙[•] represents differentiation of [•] with respect to time, [•]′ represents dif-

ferentiation of [•] with respect to x̂, and ht = ht(x) and hb = hb(x) represent the

non-uniform thicknesses added to the top and the bottom of the film, respectively.
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Into Equation 4.43 the assumed solution

ŵ(x̂, t̂) ≈
i=M∑
i=0

ui(t̂)φi(x̂), (4.44)

is inserted, where ui is the time-varying coefficient of the ith mode of the uniform

undamped flat film, φi is the mode shape of the ith mode of the uniform undamped

flat film, and M is the number of modes chosen. The substitution of Equation 4.44

into Equation 4.43 yields the equations of motion

i=M∑
i=0

ho + ht + hb
ho

üiφi +
i=M∑
i=0

(
(ho + ht + hb)

3

h3
o

uiφ
′′

i )
′′

= 0, (4.45)

which, when the differentiation on the second term is carried out, becomes

0 =
i=M∑
i=0

ho + ht + hb
ho

üiφi+

i=M∑
i=0

(ho + ht + hb)
3

h3
o

uiφ
′′′′

i +

i=M∑
i=0

2
3(ho + ht + hb)

2(h
′
t + h

′

b)

h3
o

uiφ
′′′

i +

i=M∑
i=0

3(ho + ht + hb)
2(h

′′
t + h

′′

b ) + 6(ho + ht + hb)(h
′
t + h

′

b)
2

h3
o

uiφ
′′

i .

(4.46)

Following the procedure of the Galerkin Method, further multiplication of this

equation by the modeshapes φn and integration from x̂ = 0 to x̂ = 1 yields the

system of equations

0 = Minüi +Kinui (4.47)

where Mij is given by

Min =

∫ x̂=1

x̂=0

[
ho + ht + hb

ho
φi]φndx̂ (4.48)

and Kij is given by
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Kij = ∫ x̂=1

x̂=0

[
(ho + ht + hb)

3

h3
o

uiφ
′′′′

i ]φndx̂+∫ x̂=1

x̂=0

[2
3(ho + ht + hb)

2(h
′
t + h

′

b)

h3
o

uiφ
′′′

i ]φndx̂+∫ x̂=1

x̂=0

[
3(ho + ht + hb)

2(h
′′
t + h

′′

b ) + 6(ho + ht + hb)(h
′
t + h

′

b)
2

h3
o

uiφ
′′

i ]φndx̂.

(4.49)

The natural frequencies in rad/s of the uniform, fixed-fixed, undamped, flat film

of thickness ho are defined by the equations (see references [105] and [106])

fi =
λ2
i

L2

√
Ebh3

12ρA
, (4.50)

and the mode shapes are given by the function (see reference [105])

φ̂i = cosh(λi
x

L
)− cos(λi

x

L
)− (

cosh(λi)− cos(λi)
sinh(λi)− sin(λi)

)(sinh(λi
x

L
)− sin(λi

x

L
)), (4.51)

which suffers in that higher-order modeshapes (M > 22) are difficult to calculate

in double-precision. The first and twenty-second modeshapes, scaled so that their

maximum amplitudes are one, are shown in Figure 4.22.

Nondimensionalizing with

x̂ =
x

L
, (4.52)

these modeshapes and their derivatives with respect to x̂ may be written as

φ̂i = cosh(λix̂)− cos(λix̂) + (sin(λix̂)− sinh(λix̂))
cos(λi)− cosh(λi)

sin(λi)− sinh(λi)
(4.53)

φ̂
′

i = λisin(λix̂)+λisinh(λix̂)+(λicos(λix̂)−λicosh(λix̂))
cos(λi)− cosh(λi)

sin(λi)− sinh(λi)
(4.54)
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Figure 4.22. Mode shapes 1 and 22 for the undamped uniform fixed-fixed film.

φ̂
′′

i = λ2
i cos(λix̂)+λ2

i cosh(λix̂)−(λ2
i sin(λix̂)+λ2

i sinh(λix̂))
cos(λi)− cosh(λi)

sin(λi)− sinh(λi)
(4.55)

φ̂
′′′

i = λ3
i sinh(λix̂)− λ3

i sin(λix̂)− (λ3
i cos(λix̂) + λ3

i cosh(λix̂))
cos(λi)− cosh(λi)

sin(λi)− sinh(λi)
(4.56)

φ̂
′′′′

i = λ4
i cosh(λix̂)− λ4

i cos(λix̂) + (λ4
i sin(λix̂)− λ4

i sinh(λix̂))
cos(λi)− cosh(λi)

sin(λi)− sinh(λi)
(4.57)

These modeshapes and their derivatives are used to calculate the natural frequen-

cies of the non-uniform film, which are the eigenvalues of the equations defined by

Equation 4.47. These natural frequencies are seen to converge in Figure 4.23, in

which the natural frequencies of the non-uniform film are divided by their final ap-

proximation after 22 modes are included. The natural frequency of the first mode
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is seen to drop from about 11% above its final value when one mode is used in its

approximation to within about 1% of its final value when two modes are used.

The first approximations of each new mode appear to decline in accuracy, as may

be seen when the first mode, initially about 10% higher than its ultimate value, is

compared to the 17th mode, which is initially about 15% higher than its ultimate

value. The final few modes appear to have not yet converged and therefore are not

expected to display this trend which was observed among the converged modes.

Figure 4.23. Natural Frequencies of the non-uniform film described
in Table 4.13, divided by their final value with 22 modes, as a function
of the number of modes included.

The first three natural frequencies of the film described in Table 4.13 are computed

with 22 modes and compared to values obtained from [107] in Table 4.14. The

appropriate natural frequencies in reference [107] are those for a clamped-clamped
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truncated wedge, and for the film described in Table 4.13 the truncation factor is

α = 0.5. This describes a linearly tapered film in which the thickness of the film at

one end is one-half the thickness at the other end.

Table 4.14. Natural Frequencies of the Non-Uniform (tapered) Film of Table 4.13.

Mode Naguleswaran [107] (rad/s) Calculated (rad/s) Error (%)

Mode 1 1.11697e6 1.11692e6 .004

Mode 2 3.07562e6 3.07547e6 .005

Mode 3 6.02663e6 6.02628e6 .006

The mode shapes of the non-uniform film are the eigenvectors of the system of

equations described by Equation 4.47. The calculated first three mode shapes of the

non-uniform film are shown in Figure 4.24 and are compared to the mode shapes of

the uniform film. It is seen that the peaks of the mode shapes shift to the left, where

the film is thinner and where greater deflection may be expected to occur.

4.5.6 Comparison with 3D Model Results

Simulations of the PIV are run for each of the profiles in the 1D model. Table

4.15 and Table 4.16 present the changes in the PIV for both the 3D and 1D models.

Considering each profile separately, when the nonuniformity is adjusted by 10%

of the film thickness, the difference in the PIV between the 3D and 1D simulations

is generally less than one volt and varies by no more than 2.5 volts, or about 3% of

the nominal value. The estimated natural frequencies are even closer, differing by no

more than 1 kHz, or about 1% of the nominal value.
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Figure 4.24. Comparison of the first three mode shapes of the uniform
film to the first three mode shapes of the non-uniform film described
in Table 4.13.

4.6 Conclusions

Three-dimensional electro-structural simulations of RF-MEMS device performance

were carried out by means of the finite element method in order to investigate the ef-

fects of non-uniform film thicknesses on the pull-in voltage and the natural frequency

of fixed-fixed capacitive radio-frequency microelectromechanical systems (RF-MEMS)

used as radio-frequency switches. The switch under investigation consists of a long

thin film suspended over an electrode, which in turn is covered by a dielectric. The

film is treated as fixed at its ends and free along its long edges. These simulations

estimated the pull-in voltage and the natural frequency, key device characteristics, as

the non-uniformity of the thin film thickness was systematically varied by adjusting
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Table 4.15. Sensitivity of the PIV and first natural frequency to
the Cosine coefficients Cjk and Sine coefficients Sjk as applied to the
top surface of the film, as a difference from the nominal value. The
simulation voltage step size is 0.1V for the 3D model and less than
0.1V for the 1D model. The nominal device resolves a PIV of 96.1V
and a natural frequency of 95.2 kHz in the 3D model. Yellow and
blue represent +0.3 and -0.3 microns thickness, respectively.

Profile PIV3D(V ) PIV1D(V ) ωn1,3D(kHz) ωn1,1D(kHz) Profile

Ctop
10 = 0.30µm 102.8 103.8 101.9 101.7

Ctop
20 = 0.30µm 103.2 101.7 101.7 102.7

Ctop
30 = 0.30µm 97.9 98.4 96.8 97.4

Ctop
40 = 0.30µm 96.8 96.7 95.5 96.0

Ctop
10 = −0.30µm 90.4 89.6 90.4 90.2

Ctop
20 = −0.30µm 88.2 89.8 87.9 87.7

Ctop
30 = −0.30µm 92.0 91.8 91.4 91.4

Ctop
40 = −0.30µm 93.2 93.1 92.6 92.6

Stop10 = 0.30µm 95.8 96.1 94.9 95.3

Stop20 = 0.30µm 96.1 96.1 95.2 95.7

Stop30 = 0.30µm 95.4 95.6 94.5 94.9

Stop40 = 0.30µm 95.3 95.2 94.4 94.5

the top and bottom surfaces of the suspended electrode according to two-dimensional

Fourier functions.

One-dimensional simulations of the same devices, considering only nonuniformity

along the length of the devices and subject to the assumptions of Euler-Bernoulli

beam theory, were then performed. The results of these one-dimensional simulations

were then compared to those of the three-dimensional simulations and were seen to

be in reasonable agreement.
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Table 4.16. Sensitivity of the PIV and first natural frequency to
the Cosine coefficients Cjk and Sine coefficients Sjk as applied to the
bottom surface of the film, as a difference from the nominal value.
The simulation voltage step size is 0.1V for the 3D model and less
than 0.1V for the 1D model. The nominal device resolves a PIV of
96.1V and a natural frequency of 95.2 kHz in the 3D model. Yellow
and blue represent +0.3 and -0.3 microns thickness, respectively.

Profile PIV3D(V ) PIV1D(V ) ωn1,3D(kHz) ωn1,1D(kHz) Profile

Cbot
10 = 0.30µm 87.1 89.6 90.4 90.2

Cbot
20 = 0.30µm 91.2 89.8 87.9 87.7

Cbot
30 = 0.30µm 90.6 91.8 91.4 91.4

Cbot
40 = 0.30µm 92.1 93.1 92.6 92.6

Cbot
10 = −0.30µm 105.1 103.8 101.8 101.7

Cbot
20 = −0.30µm 97.4 101.7 101.7 102.7

Cbot
30 = −0.30µm 96.6 98.4 96.8 97.4

Cbot
40 = −0.30µm 94.8 96.7 95.5 96.0

Sbot10 = 0.30µm 94.7 96.1 94.9 95.3

Sbot20 = 0.30µm 94.2 96.1 95.2 95.7

Sbot30 = 0.30µm 93.9 95.6 94.5 94.9

Sbot40 = 0.30µm 93.6 95.2 94.4 94.5

Polynomial response surfaces of the PIV and natural frequency of these devices as

functions of the 40 chosen Fourier coefficients were generated from the 3D simulations.

The final response surfaces, generated from 961 3D FEM simulations, were tested on

1300 separate 3D FEM simulations and performed well, with RMSE of 0.38 volts

and 387 hertz for the PIV and the natural frequency respectively, which is less than

0.5% of the nominal value of each. The generation of well-fitted response surfaces

required a larger number of 3D simulations than was initially expected. Despite a

small mean error, some natural frequencies were grossly overtimated by that response
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surface, especially as the 3D simulation natural frequency increased above its nominal

value. These response surfaces were applied to propagate uncertainty from assumed

distributions of the profile coefficients into estimates of the PIV and natural frequency.

The cosine and sine profiles on the top and bottom surfaces were seen to have

unique impacts on the PIV and natural frequency. Sine profiles are seen to have

much less impact on either surface. Varying the profile on the bottom surface of the

film using cosine profiles generally shifted the estimated PIV and natural frequency

down, with a few exceptions. Among the tested profiles, the deviation of the PIV

from the value found for the nominally flat device was greatest among those profiles

which were thickest and thinnest near the fixed ends of the film. Variation of the film

thickness across its width was seen to have a smaller impact on the PIV.

It is concluded that attention to the thickness uniformity and to device orientation

in fabrication will permit the reduction of observed variability in device-to-device PIV,

resulting in increased reliability in fabricated switches.
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5. SUMMARY

The first chapter of this work introduced thin films and their application in RF-

MEMS. In the second chapter, simulations of the response of an electrostatically-

actuated RF-MEMS switch nickel membrane with fixed-fixed and torsion-spring bound-

ary conditions and undergoing plastic deformation due to Coble creep were presented.

This required the introduction of a Coble creep formulation incorporated into an ex-

isting Euler-Bernoulli beam model. The model was calibrated against published ex-

perimental PIVs before creep was simulated. Uncertainty in the device geometry and

material properties was propagated through the simulations to the output quantities

of interest, and it was shown that the range of uncertainty in the input parame-

ters yielded uncertainty in the quantities of interest which increased over time due to

creep. A torsion-spring boundary condition was considered as a possible improvement

in the model, but because the residual stresses were unknown, it was not possible to

calibrate a reliable value of the torsion spring stiffness despite the wealth of PIV

measurements and voltage-gap curves; the large uncertainty in the residual stresses

covered up any effect of the effective torsion spring boundary condition. Finally, a

distinct decrease in device lifetime is noted with increasing voltage.

In the third chapter, the influence of grain size distributions in a thin film under-

going Coble creep was demonstrated using a finite-volume model. The inclusion of

multiple layers with grain sizes representative of those seen in experiments, as opposed

to a model in which the grain size is treated as uniform at the mean experimental

value, was seen to increase the simulated creep rate. The inclusion of uncertainty in

the grain size distribution resulted in distributions of the PIV which show increasing

variability with time and with greater loads. An asymmetric stress profile developed

in the multi-layer films, with the smallest grains experiencing greater plastic strain

and possibly contributing to the creep recovery phenomenon.
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In the final chapter, three-dimensional electro-structural finite element simulations

were performed to investigate the effects of non-uniform film thicknesses on the PIV

and natural frequencies of fixed-fixed switches as the non-uniformity of the thin film

thickness was systematically varied. Among the tested profiles, the deviation of the

PIV from its nominal value was greater among the those profiles which varied along

the length alone. Variation of the film thickness across its width was seen to have a

smaller impact on the PIV. Furthermore, cosine profiles had a greater impact than

the sine profiles, and varying the profile on the bottom surface of the film using cosine

profiles generally shifted the estimated PIV down. Finally, assumed uncertainty in

the profiles was propagated to the PIV and natural frequency, resulting in an estimate

of the uncertainty in these quantities of interest.
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6. FUTURE WORK

In this chapter, limitations of the current work and suggestions for future work are

presented.

Chapter 2 presents the incorporation of creep into a 1D Euler-Bernoulli beam

model and the propagation of uncertainty from material and geometric parameters

of a RF-MEMS switch to four chosen output quantities of interest, including the

PIV. Missing among these quantities of interest are several key device parameters,

including the closing time and the natural frequency of the suspended electrode.

Furthermore, noting that uncertainty was only propagated forward, a tool to predict

required manufacturing specifications in order to achieve a given device lifetime may

prove useful. Because creep is one of several reliability issues which cause device

failure, such a tool would be most useful if it were to include other failure mechanisms,

such as dielectric charging.

Chapter 3 considers the effects of the microstructural characteristics of the sus-

pended electrodes, generating representative distributions of grain sizes and present-

ing estimations of the resulting PIVs as a function of time. Although stress distri-

butions in the loaded film as creep is occurring are shown, behavior after unloading

of the film is not considered. This unloading may provide some insight into observed

recovery from creep, as seen in, e.g., references [85] and [55].

Chapter 4 addresses the possibility of film thickness non-uniformity in the sus-

pended electrode of the RF-MEMS switch. The natural frequency of the suspended

film is introduced as a quantity of interest in addition to the PIV, but here the re-

maining QOI previously discussed, e.g. the dynamic PIV and impact velocity, are

neglected and may deserve further treatment. Again, only forward propagation of un-

certainty is considered, where the reverse problem of determining required tolerances

to meet desired specifications may prove more useful. Further, if the importance of
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the profile non-uniformity is to be determined, the resulting uncertainty in the PIV

and natural frequency would be best compared to similar effects from other uncertain

parameters, e.g. device-to-device variations in thickness as well as initial curvature.

Preliminary work into the residual stress distribution is not presented here but

remains a topic of interest. In general, residual stresses in MEMS alter the shape

of the devices and effectively increase their stiffness, resulting in larger applied loads

and larger stresses if a certain deformation is required. These larger stresses will be

concentrated in areas of greater residual stress if gradients of residual stress exist

within a device – and with the wide distributions of residual stress seen from device

to device, it appears reasonable to make the assumption that residual stresses will

vary within a device. It would be useful in design to distinguish the effects of residual

stress, initial curvature, and relaxed (e.g. torsion spring) boundary conditions, and to

present a method for the determination of each of these parameters in manufactured

devices.
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A. 3D FINITE ELEMENT MESH DESCRIPTION

The following figures describe the mesh used in the 3D finite element model of the

RF-MEMS switch.

An illustration of the top surface of the film is shown in Figure A.1.

Figure A.1. Illustration of the subdivision of the top surface of the
film before meshing.
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The triangular subdivisions are evident. These triangles are extruded downward

from the top surface, forming triangular prisms, which are used to represent the film

and the air gap beneath it. Two of these extruded prisms are shown in FigureA.2.

Figure A.2. A pair of vertically-oriented triangular prisms, as used
to represent the film (top half) and air gap (bottom half), before
meshing.
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The bottom half of the volume shown is a portion of the air gap. The top half of

the volume shown contains the top and bottom halves of the film. These prisms are

then meshed. One representative mesh is shown in Figure A.3.

Figure A.3. A pair of vertically-oriented triangular prisms, as used to
represent the film (top half) and air gap (bottom half), after meshing.
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Each triangular prism is seen to have been meshed as three vertically-oriented

prisms. A single element is used through the thickness of the air gap, but the beam

is meshed with eight elements through its thickness.


