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ABSTRACT

Zhao, Haiqing Ph.D., Purdue University, August 2020. Essays in High-Dimensional
Econometrics. Major Professor: Mohitosh Kejriwal.

My thesis consists of three chapters. The first chapter uses the Factor-augmented

Error Correction Model in model averaging for predictive regressions, which provides

significant improvements with large datasets in areas where the individual methods

have not. I allow the candidate models to vary by the number of dependent variable

lags, the number of factors, and the number of cointegration ranks. I show that

the leave-h-out cross-validation criterion is an asymptotically unbiased estimator of

the optimal mean squared forecast error, using either the estimated cointegration

vectors or the nonstationary regressors. Empirical results demonstrate that including

cointegration relationships significantly improves long-run forecasts of a standard set

of macroeconomic variables. I also estimate simulation-based prediction intervals for

six real and nominal macroeconomics variables. The results are consistent with the

point estimates, which further support the usefulness of cointegration in long-run

forecasts.

The second chapter is a Monte Carlo study comparing the finite sample perfor-

mance of six recently proposed estimation methods designed for large-dimensional

regressions with endogeneity. The methods are based on combining shrinkage es-

timation with two-stage least squares (2SLS) or generalized method of moments

(GMM), where both the number of regressors and instruments can be large. The

methods are evaluated in terms of bias and mean squared error of the estimators. I

consider a variety of designs with practically relevant features such as weak instru-

ments and heteroskedasticity as well as cases where the number of observations is

smaller/larger than the number of regressors/instruments. The consistency results
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show that the methods using GMM with shrinkage provide smaller estimation errors

than the methods using 2SLS with shrinkage. Moreover, the results support the use

of cross-validation to select tuning parameters if theoretically derived parameters are

unavailable. Lastly, the results indicate that all instruments should correlate with at

least one endogenous regressor to ensure estimation consistency.

The third chapter is coauthored with Mohitosh Kejriwal. We present new evi-

dence on the nexus between democracy and growth employing the dynamic common

correlated effects (DCCE) approach advanced by Chudik and Pesaran (2015), which

is robust to both parameter heterogeneity and cross-section dependence. The DCCE

results indicate a positive and statistically significant effect of democracy on eco-

nomic growth, with a point estimate between approximately 1.5-2% depending on

the specification. We complement our estimates with a battery of diagnostic tests for

heterogeneity and cross-section dependence that corroborate the use of the DCCE

approach.
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1. FACTOR-AUGMENTED ERROR CORRECTION

MODEL AVERAGING IN PREDICTIVE REGRESSIONS

1.1 Introduction

The use of factor models in regressions has substantially increased in recent years,

especially as big data has become widely available. Using a reduced number of com-

mon components to represent the comovement among a panel of predictors increases

the degrees of freedom, thereby improving the parsimony of the regression model and

mitigating the curse of dimensionality. Applications such as forecasting benefit from

the use of factors extracted from a large predictor panel with cross-sectional depen-

dence. Examples include Stock and Watson (2002a), Stock and Watson (2002b), Eick-

meier and Ziegler (2008), Kim and Swanson (2014), and Leroux et al. (2017). These

papers explore forecasting U.S. or Canadian macroeconomic variables and find that

factor-augmented regressions (FARs) outperform autoregressive models and model

selection methods.

Banerjee et al. (2014) introduce the Factor-augmented Error Correction Model

(FECM) for forecasting, which builds on FARs using nonstationary information. The

error correction terms represent the long-run relations between the nonstationary tar-

get variable and the predictors, and help guide the short-run changes of the target

variable moving toward the long-run equilibrium. Empirically, Banerjee et al. (2014)

demonstrate that including the error correction terms increases the forecasting accu-

racy for some real variables under long forecasting horizons.

Model averaging methods have also been widely proven to be useful in predic-

tive regressions. These methods assign weights to each candidate model in order

to optimize the trade-off between bias and variance and achieve the lowest weighted

mean-squared forecast error (MSFE). Hansen (2008), Hansen (2010), and Hansen and



2

Racine (2012) derive the asymptotic properties of different model averaging methods.

These papers show that under appropriate penalties, the weighted MSFE after nor-

malization converges to the optimal MSFE. Tu and Yi (2017) are able to include

nonstationary information by combining a constrained vector autoregressive model

with an unconstrained error correction model. They employ Mallows model averaging

and use the nonstationary variables directly as regressors, which is in contrast to the

pre-estimations of cointegration vectors in Banerjee et al. (2014). Tu and Yi show

that the OLS coefficients of the I(1) regressors are consistent assuming cointegrations.

The population values for those OLS coefficients are the products of the adjustment

parameters with the cointegration vectors. For their empirical application, Tu and

Yi (2017) forecast inflation using the one-month treasury bill rate, and show that

model averaging provides smaller MSFEs than models using pre-estimated unit root

and cointegration test results.

Cheng and Hansen (2015) apply model averaging methods to FARs, thereby taking

advantage of both regressor combinations and model combinations. Their simulation

and empirical results demonstrate some forecasting improvements of FAR model aver-

aging; however, they do not incorporate any nonstationary information. Leroux et al.

(2017) also show that the combination of FARs with model averaging methods per-

forms well in forecasting real activities, but not price variables. The one-year-ahead

forecasts of price variables in particular, have larger efficiency losses compared to the

one-month-ahead forecasts. Moreover, Swanson and Xiong (2018) and Elliott et al.

(2015) show that forecasting nominal variables, such as the changes of interest rates

or inflation, does not benefit from combining model averaging techniques with FAR

as compared to using simple (vector) autoregressive models. The Tu and Yi (2017)

framework does include potential nonstationary information in predictions, but is

not suitable for a large panel of predictors. Additionally, their asymptotic theory is

limited to two models with one-step-ahead forecasts.

In this paper, I bring the two ideas of using nonstationary information and us-

ing large datasets together, and show that adding error correction terms to FAR
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model averaging improves forecasting performance particularly for multi-step predic-

tive regressions. I allow for the averaging of multiple FAR models and FECMs with

different numbers of factors and cointegration vectors, with the largest model nesting

both FAR models and FECMs. To incorporate the nonstationary information, I use

the pre-estimated cointegration vectors to generate the regressors. As comparisons, I

also use the estimated I(1) variables directly as regressors in the empirical work.

The value of using cointegration information in multi-step forecasting exercises is

especially evident in forecasting nominal macroeconomic variables. Nominal variables

are more likely to be influenced by mean shifts in the long-run trends, due to long-run

economic restrictions such as price stickiness. The Beveridge-Nelson trend and cycle

decomposition also shows that the short-run stationary dynamics can be influenced

by the shocks to the long-run nonstationary trend components. This relation can

be captured in the predictive regression by cointegrations. One example of nominal

variable forecasting in the long run is trend inflation. Faust and Wright (2013) analyze

the forecasting performance of inflation through a set of models, where they show

that higher forecasting accuracy is generally accompanied by the inclusion of the

slow-varying inflation trend. They argue that the low-frequency level shifts of the

inflation trend usually involve fundamental changes in the overall economy, which

the short-run dynamics are incapable of capturing. Additionally, the added long-

run equilibrium relationships estimated through cointegrations can serve as shrinkage

principles, which can enhance the out-of-sample predictions. For these reasons, I

include the error correction terms in the predictive regressions in this paper.

I investigate four types of model averaging methods: Mallows model averaging,

leave-h-out cross-validation model averaging, Bayesian model averaging, and simple

averaging. My empirical results demonstrate that by applying FECM averaging, the

forecasts of both real variables, such as industrial production, and nominal variables,

such as consumer price index, achieve lower MSFEs over longer horizons compared
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to FAR model averaging and model selection methods.1 These results contrast with

Banerjee et al. (2014), where they find that FECM is only preferable for real variable

predictions. Generally, the 5th, 25th, 50th, and 75th percentiles of the MSFE distri-

butions using FECM averaging are smaller than using FAR model averaging for the

macroeconomic variable forecasts, with improvements being particularly pronounced

for nominal variables. Results are also consistent across different model averaging

methods, which further supports the contribution of FECM averaging to the long-

run forecasting.

I use four different panels of macroeconomic variables for the empirical analysis,

at either the monthly or quarterly level. Broadly speaking, all four datasets contain

output, labor market, and price variables. For brevity, the point forecasts presented

in the main text are calculated using the monthly macroeconomic dataset taken from

the Federal Reserve Economic Data website for the U.S. forecasting exercise. This

dataset is also referred to as the FRED-MD dataset in McCracken and Ng (2016).

They suggest that the factors extracted from this dataset have predictive advantages

over factors extracted from other regressor panels. I also present the results using

the monthly dataset provided by Fortin-Gagnon et al. (2018) to conduct Canadian

macroeconomic variable forecasting. All of these four datasets are treated as station-

ary, and their recumulated counterparts are used as the nonstationary panels from

which the nonstationary factors are extracted.2 To check robustness, I use the panel

taken from Stock and Watson (2012) and Cheng and Hansen (2015), where I man-

ually transformed part of their monthly data into quarterly data. Additionally, I

use the FRED-QD (quarterly) dataset in McCracken and Ng (2016). Furthermore,

to evaluate the source of the FECM averaging forecasting improvement, I provide

model averaging results using two subsets of the model candidates, where either the

same optimal number of factors is used across models or the cointegration rank is

1The industrial production variable is transformed as the growth rate; the consumer price index
variable is transformed as the growth rate of inflation.
2These choices are consistent with Banerjee et al. (2014), where they retained the I(1) variables from
the Stock and Watson (2005) dataset. Essentially, the I(0) series are recumulated to construct the
I(1) panel.
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pre-determined. By comparing the two sets of results, I show that allowing the

cointegration rank to vary across models contributes substantially more to the fore-

casting performance improvements. This again indicates that shifts in the long-run

equilibrium relationships matter more than the short-run dynamics in macroeconomic

predictive models.

The first step of the forecasting exercise is to estimate the stationary and nonsta-

tionary factors, as well as the cointegration vectors of the nonstationary factors and

the predicted variable. I follow Bai and Ng (2004) to take first differences of the I(1)

predictor panel, then estimate the stationary factors, and calculate the cumulative

sums of the stationary factors to obtain their nonstationary counterparts.3 Next, I

calculate the covariance matrix of the estimated nonstationary factors and predicted

variable as in Stock and Watson (1988). The eigenvectors of this covariance matrix

can be treated as the cointegration vectors. This matrix is also used to estimate

the number of common trends, following the Bai and Ng (2004) PANIC procedure.4

Alternatively, in the second step forecasts, the recumulated I(1) factors can be used

as regressors in place of the estimated cointegrations, as in Tu and Yi (2017).

The second step is to estimate the forecasting regression, wherein model averaging

methods are applied. A rolling forecasting scheme is used to mitigate the effects of

structural breaks. For each dataset, I report the distributions of the MSFE ratios of

FECM averaging, FAR model averaging, and model selection methods over an au-

toregressive model with twelve lags (AR(12)).5 Overall, empirical results uniformly

indicate that by employing FECM averaging, MSFEs at longer horizons are signifi-

cantly smaller than using the other methods. The improvement can be as large as 70

3The complete discussion of the consistency of these recumulated I(1) factors is presented in Bai
and Ng (2004). Alternatively, nonstationary factors can be estimated directly through the procedure
in Bai (2004) if the errors are stationary. The empirical results using Bai (2004) to estimate I(1)
factors are available upon request.
4PANIC stands for Panel Analysis of Nonstationarity in Idiosyncratic and Common Components.
5The number of lags is four when using quarterly datasets. Correspondingly, the benchmark model
is AR(4).
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percent, and the superior performance holds for samples restricted to recession and

expansion periods.6

Asymptotic properties are presented for the unbiasedness of the Mallows and leave-

h-out cross-validation criteria. I show that after normalization, both these criteria

converge in distribution to random variables whose means are the infeasible opti-

mal MSFEs. These theoretical derivations are not for the purpose of demonstrating

optimality since the predictive models are allowed to contain lags of the dependent

variable.7

To further demonstrate the advantages of FECM averaging, prediction intervals

are estimated using simulations as Zhang and Liu (2018). I use the nonstationary

regressors and regressand directly in the forecasting model to apply the theoretical

analysis developed by Tu and Yi (2017). The nonstationary factors are estimated

according to Bai (2004), assuming the idiosyncratic components are stationary. The-

oretical results show that under the fixed parameters setup, the leave-h-out cross-

validation criterion asymptotically assigns zero weights to under-fitted models. The

procedures are applied to estimate the prediction intervals for six real and nominal

variables from the Stock and Watson (2012) panel, and the results show that FECM

averaging provides narrower bands than FAR model averaging.

The paper is organized as follows: Section 1.2 discusses the related literature.

Section 1.3 presents the estimation procedures, including the first step factor and

cointegration estimation, and the second step model averaging methods. Section 1.4

discusses the asymptotic properties. Section 1.5 reports empirical results. Section

1.6 discusses the simulation-based confidence interval and related results. Section 1.7

concludes the chapter. Data preparations, extra tables for robustness, and proofs of

the asymptotic properties are included in the appendix. For simplicity, all variables

appearing in lowercase are stationary, and all variables appearing in the corresponding

6The U.S. recession periods are taken from the following URL: https://www.nber.org/cycles.html.
The Canadian recession periods are taken from the following URL:
https://www.cdhowe.org/council/business-cycle-council. Both are retrieved on September 3,
2019.
7Simulation results are available upon request.
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uppercase are nonstationary. The notation ⇒ means converge in distribution, and

→ means converge in probability.

1.2 Literature Review

This paper contributes to four closely related literatures. First, and most broadly,

is the growing literature on factor-augmented predictions. Stock and Watson (2002a)

and Stock and Watson (2002b) show that FARs can help increase the forecasting ac-

curacy of industrial production and CPI inflation over autoregressive (AR) predictive

models. Eickmeier and Ziegler (2008) survey the FAR predictive performance with

European datasets. They show that FARs deliver better inflation forecasting per-

formance for the Euro-area. Using the FAR framework, researchers have proposed a

variety of techniques to further improve the predictive power, such as determining the

model specification by information criteria (Bai and Ng, 2008), and pre-selecting the

number of factors (Bai and Ng, 2002). A recent survey paper by Swanson and Xiong

(2018) summarizes these dimension reduction methods through penalized regression

methods and FARs. Stock and Watson (2012) argue that several selection methods

can be written as shrinkage formulae, and they compare FARs with pretest, bootstrap

aggregation, and logit-type shrinkages. Empirical analyses presented in Boivin and

Ng (2006), Bai and Ng (2008), Kim and Swanson (2014), and Leroux et al. (2017) also

demonstrate that forecasting results from the direct application of FARs are inferior

to those from applying shrinkage methods first, then applying FARs.

The second literature involves the use of model averaging methods in forecast-

ing. One shortcoming of model selection methods is that the best model choice is

sensitive to the order of factors. To overcome this disadvantage, Cheng and Hansen

(2015) (henceforth CH) employ FAR structure in conjunction with model combina-

tion methods. Using the Stock and Watson (2012) dataset, CH compare five model

averaging methods with the three model selection methods used in Stock and Wat-

son (2012). Results show that about half the variables in the panel achieve higher
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predictive accuracy using the leave-h-out cross-validation model averaging on FAR

models.

The third literature involves FECMs. Banerjee et al. (2014) suggest that ad-

justments to the long run disequilibrium can be utilized to improve real variable

predictions. Specifically, FECM achieves lower MSFEs compared to an AR model

more than half the time for longer forecasting horizons. To empirically calculate the

forecasts, Banerjee et al. (2014) first estimate the cointegration rank and vectors to

form the error correction terms. They then use the estimated error correction terms,

as well as the factors and lags, as predictors. In a subsequent paper, Banerjee et al.

(2016) continue to explore applying FECM to structural analysis.

While the FECM introduces nonstationary information to the prediction, it also

requires additional estimation of cointegration ranks and vectors. In more recent

work, Tu and Yi (2017) use nonstationary variables directly as regressors in an error

correction model. This direct usage of I(1) variables has benefits and drawbacks. On

the one hand, incorporating nonstationary variables avoids determining the cointe-

gration rank and vectors, which also complements the idea of model averaging; on the

other hand, estimations with I(1) variables assume that cointegration relationships

exist. To both take advantage of this parsimonious estimation method with I(1) vari-

ables and accounting for its restriction, I present two sets of empirical results, using

the I(1) regressors and estimated cointegration vectors, respectively.

Finally, to estimate the multi-step forecasting results, I consider only direct fore-

casting models rather than iterated forecasting models. It has been discussed in past

literature that the trade-off between these two groups of models lies in the source

of estimation errors (See McCracken and McGillicuddy, 2019, and Marcellino et al.,

2006). The former model setup provides a larger efficiency gain when the one-step

forecasting model is misspecified, and the latter model setup works better for the sim-

ple error structures. Given that model averaging methods alleviate the uncertainty

involved in model misspecification, and the leave-h-out cross-validation criterion is
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robust to serial correlation and conditional heteroskedasticity, I focus on the direct

forecasting models in this paper.

1.3 Estimation Procedures

1.3.1 Factors and Cointegration Vectors

Stock and Watson (1988)

Let Yt and {Xit} be the nonstationary observations for t = 1, ..., T and i =

1, ..., N . Furthermore, assume that the unobserved factors satisfy a factor structure

Xit = λiF t+eit, and the cointegration relationships between Yt and F t are Yt+δ
′
1F t =

η1t, ..., Yt + δ′KF t = ηKt. Note that if the starting observations of f t are zeros,

then F t =
∑t

s=2 f s. The cointegration coefficient of Yt is normalized to one for

notation purposes. This normalization helps avoid additional rotation matrices when

estimating the cointegration vectors {δ1, ... δK}. If the true cointegration coefficient

of Yt is zero, then the normalization can be written in different ways without loss of

generality. The candidate predictors considered in this paper are the historical mean,

the lags of the target variable, the estimated factors, and the estimated cointegrations

between Y and F̃ .8 Thus, the conditional forecast using the full model is

ŷt+h|t = ĉ+ α̂1yt + ...+ α̂p+1yt−p +
∑R

r=1 β̂rf̃rt +
∑K

i=1 γ̂i(Yt + δ̃
′
iF̃ t),

where the number of dependent variable lags is p, the number of factors is R, and the

cointegration rank is K.9 From Bai and Ng (2004), f̃ is estimated using Principal

Component Analysis from the first-differenced panel xit = Xit−Xit−1, t = 2, ... T . The

nonstationary factors are then recumulated as F̃ t =
∑t

s=2 f̃ t.
10 Next, to estimate the

8Equations and formulae in this paper do not include factor lags for brevity.
9If a variable occurs with a tilde, it is the first step factor estimation’s product. By comparison, a
variable with a hat is a product from the second step forecasting regression.
10The estimated stationary factors have the time dimension of T − 1, and I assume the first period
observations of the I(0) factors to be zeros. This setting is consistent with the FECM structure,
wherein the I(1) factors’ differences are the I(0) factors. These estimated I(0) factors are not exactly
the same as the factors extracted directly from the stationary panel, but the results do not change
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cointegration vector δ̃i, I follow Stock and Watson (1988) and Bai and Ng (2004) to use

the matrix θ̃ from the matrix B = [θ̃⊥, θ̃], where B is comprised of the (normalized

and orthogonal) eigenvectors of 1/T 2
∑T

t=2[Y c
t , F̃

c′

t ]′[Y c
t , F̃

c′

t ]. The vector [Y c
t , F̃

c′

t ] is

constructed using the demeaned Yt and the demeaned estimated I(1) factors. Given

that the maximum factor number is R, the cointegration rank ranges from 0 to R.

Thus, there are two extreme cases. The FECM degenerates to a FAR model when

the cointegration rank is zero; if the cointegration rank is R, then θ̃ contains the last

R columns of the B matrix.

Tu and Yi (2017)

Tu and Yi (2017) use the nonstationary predicted and predictive variables directly

as regressors, instead of estimating cointegration vectors. From the fitted equation in

the last subsection, the final part regarding the error correction terms can be rewrit-

ten as γ̂Y Yt +
∑R

r=1 γ̂FrF̃rt. This will not result in any imbalances of the predictive

regressions given that Yt and F̃ t are assumed to be cointegrated. Under this setting,

the forecast becomes:

ŷt+h|t = ĉ+ α̂1yt + ...+ α̂p+1yt−p +
∑R

r=1 β̂rf̃rt + γ̂Y Yt +
∑R

r=1 γ̂Fr F̃rt.

Assuming r factors are included, the number of forecasting models with the corre-

sponding nonstationary information is one. This number can be significantly smaller

than r, which is the number of extra models introduced to the FAR model averaging

set using the estimated cointegration vectors.

1.3.2 Model Averaging Methods

I apply model averaging methods to combine predictions in the second step using

the estimated regressors. Let the maximum lag of the target variable be pmax, the

maximum factor number be Rmax, and the corresponding cointegration rank be Kmax.

much. Following Banerjee et al. (2014), in the empirical analysis I assume the recumulated factors
to be I(1) and the idiosyncratic components to be I(0).
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Then, using zt to represent the true regressor vector at time t, and z̃t to represent

the estimated counterpart, the observations of the largest model approximation are:

zt = (1, yt, ..., yt−pmax, f1t, ..., fRmaxt, (Yt + δ′1Ft), ..., (Yt + δ′KmaxFt)) and

z̃t = (1, yt, ..., yt−pmax, f̃1t, ..., f̃Rmaxt, (Yt + δ̃
′
1F̃ t), ..., (Yt + δ̃

′
KmaxF̃ t)).

zt and z̃t can also be written as

zt = (1, yt, ..., yt−pmax, f1t, ..., fRmaxt, Yt, ..., F1t, ..., FRmaxt) and

z̃t = (1, yt, ..., yt−pmax, f̃1t, ..., f̃Rmaxt, Yt, ..., F̃1t, ..., F̃Rmaxt)

if I(1) regressors are used. Furthermore, suppose there are M0 model candidates, and

zt(m) represents a subset of zt for model m, where m = 1, ..., M0. The mth model

approximation of FECM averaging is yt+h(m) = zt(m)′b(m) + error. Plugging in the

generated factors and cointegration vectors, the conditional forecast of period T + h

becomes ŷT+h|T (m) = z̃T (m)′b̂(m), where the estimated factors and their levels are

consistent with the rotation matrices H1 and H2.

The aim of model averaging is to estimate the weights assigned to each model m as

approximations to the infeasible weights which minimize the optimal MSFE. In this

paper, I focus on showing the asymptotic unbiasedness of the Mallows the leave-h-out

cross-validation model averaging criteria as the dynamics of the dependent variable

are allowed in the models.

The objective function of the Mallows model averaging is the Mallows criterion:

w = argmin w′ê′êw + 2σ2w′k, where ê is the OLS residual matrix stacked by all

of the residuals obtained from estimating each model candidate. The variance of

the error term σ2 can be consistently estimated as long as the true model is nested

in the largest model. After selecting the weights, the final forecast is ŷT+h|T (ŵ) =∑M0

m=1 ŵmŷ
m
T+h|T .

As discussed in Hansen (2008), the Mallows model averaging can only asymptot-

ically estimate the optimal weights when the forecasting regression error terms are



12

conditional homoskedastic and serially uncorrelated. To adapt to the situation where

there exists conditional heteroskedasticity or the forecasting horizons are longer than

one, Hansen and Racine (2012) and Hansen (2010) propose the Jackknife model av-

eraging and the leave-h-out cross-validation model averaging, respectively. Hansen

and Racine (2012) show that the Jackknife model averaging is a special case of the

leave-h-out cross-validation model averaging when the forecasting is one-step-ahead.

Under the leave-h-out cross-validation criterion, weights are selected to minimize

the objective function w = argmin w′ě′ěw. Similar to the Mallows model aver-

aging, ě is the residual matrix. For each model candidate, ět = yt − zt−hb̌t, where

b̌t = (
∑
|j−t|≥h z̃j−hz̃

′

j−h)
−1(

∑
|j−t|≥h z̃j−hy

′
j) is the leave-h-out estimator. Essentially,

to estimate ět given the moving average component of the model, observations at

least h-step away from time t are kept in the estimation.

I also present the forecast performances using non-frequentist model averaging

methods. For brevity, I only discuss the procedure in the text, and the empirical

results are available upon request. As opposed to calculating the weights to minimize

the weighted MSFE, Bayesian model averaging assigns weights based on the Bayesian

information criterion (BIC) with wi = exp(−BICi/2)∑M
i=1 exp(−BICi/2)

, and simple model averaging

assigns equal weights to all of the model candidates. One application of simple model

averaging is the complete subset regression suggested by Elliott et al. (2013) and

Elliott et al. (2015). Simulation results in these two papers show that the complete

subset regression is superior to shrinkage methods such as bootstrap aggregation.

Lastly, I consider some model selection methods in this paper for comparison.

Forecasting with these methods shares the shrinkage representation as stated in Stock

and Watson (2012): ŷT+h|T =
∑n

i=1 ψ(κti)b̂ixiT + op(1), where i is the index of re-

gressors, b̂i represents the OLS estimates from the full model regression, and φ(κti)

is a function specific to each model selection method. For the hard threshold pretest,

the ψ function is ψPT (κti)b̂i = 1(|ti| > c), where ti is the t-statistic for each co-

efficient and c is the threshold. For the bootstrap aggregation, the ψ function is

ψBG(κti)b̂i = b̂i(1−Φ(ti+c)+Φ(ti−c)− t−1[φ(ti−c)−φ(ti+c)]), with Φ and φ being
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the cumulative and probability density functions of the standard normal distribution,

respectively. For the logit-type shrinkage function, ψLG(κti)b̂i = b̂i
exp(θ0+θ1|ti|)

1+exp(θ0+θ1|ti|) , and

θ0 and θ1 are pre-selected to minimize the MSFE of the prediction model.11

1.3.3 FECM Averaging Procedures

To conduct the FECM averaging, I first estimate the stationary and nonstationary

factors from their corresponding panels. Then I apply Stock and Watson (1988) to

estimate the cointegration vectors. The final regressor set includes the lags of the

dependent variable, the estimated stationary factors, and the estimated cointegra-

tion relationships. Suppose the maximum number of dependent variable lags is pmax,

and the maximum number of factors in the predictor panel is Rmax. Tables 1.1 and

1.2 present the model sets to take average from. Each row presents the regressors

contained in each model candidate. Table 1.1 contains the model set when the esti-

mated cointegration vectors is used to generate the predictors. The smallest model

contains the intercept, then the stationary factors are added as FARs, and finally the

nonstationary information is included through the error correction matrix c.

11In this paper’s empirical analysis, I choose the truncation value c as 1.645; θ0 is chosen from a
sequence [-140:5:29], and θ1 is chosen from a sequence [0:1:21]. These choices are the same as in
Stock and Watson (2012).
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Table 1.1.: The set of models with estimated cointegration vectors

1 # of models, culmulative

...

1 yt−1 ... yt−pmax pmax + 1

1 yt−1 ... yt−pmax
f1t

...

1 yt−1 ... yt−pmax
f1t ... fRmaxt pmax + 1 +Rmax

1 yt−1 ... yt−pmax f1t ... c1t

...

1 yt−1 ... yt−pmax
f1t ... fRmaxt ... cRmaxt pmax + 1 +Rmax + (Rmax + 1)Rmax/2

From the last panel in Table 1.1, c1t is the error correction term calculated us-

ing the eigenvector corresponding to the smallest eigenvalue of 1
T 2

∑T
t=2[Y c

t , F̃
c′
1t ]
′[Y c

t ,

F̃ c′
1t ]; cqt is vector containing the error correction terms calculated using the eigenvec-

tor matrix corresponding to the last Rmax smallest eigenvalues of 1
T 2

∑T
t=2[Y c

t , F̃
c′

t ]′

[Y c
t , F̃

c′

t ]. The vector F̃
c

t is a Rmax× 1 demeaned vector of the estimated nonstation-

ary factors. Given that the number of the included factors is Rmax, the maximum

cointegration rank of the system is also Rmax, which leads to (Rmax + 1)Rmax/2 num-

ber of FECMs in total. For example, if Rmax = 3 and pmax = 3, the FAR model

averaging set contains seven models, and the FECM averaging set contains six extra

models.

As an alternative, the set of regressors considered in the FECM averaging using

I(1) variables directly is presented in Table 1.2, with the total number of models being

pmax + 2Rmax + 1. This number is significantly smaller than (Rmax + 1)Rmax/2 +

Rmax + pmax + 1. On the one hand, there is less efficiency loss in cointegration vector

estimations using I(1) variables directly in the forecasting models. On the other hand,

if some of the factor are not cointegrated with the predicted variable, then using
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the pre-estimated cointegration vectors offers more flexibility as it is conceptually

equivalent to regressions with constraints.

Table 1.2.: The set of models with the I(1) regressors

1 # of models, culmulative

...

1 yt−1 ... yt−pmax
pmax + 1

1 yt−1 ... yt−pmax f1t

...

1 yt−1 ... yt−pmax
f1t ... fRmaxt pmax + 1 +Rmax

1 yt−1 ... yt−pmax
f1t Y1t F1t

...

1 yt−1 ... yt−pmax f1t ... fRmaxt Y1t F1t ... FRmaxt pmax + 1 +Rmax +Rmax

1.4 Asymptotic Properties

This section consists of two parts. In the first subsection, I show that the Mal-

lows model averaging criterion is an asymptotically unbiased estimator of the op-

timal MSFE for one-step-ahead forecasts with conditional homoskedasticity, when

cointegration vectors are estimated. The leave-h-out cross-validation model averag-

ing criterion has the similar property for multi-step forecasts and conditional het-

eroskedasticity. In the second subsection, I show that the asymptotic unbiasedness

still holds using the generated I(1) regressors. The theorems are developed under the

presumption that the true model is nested in the largest model candidate. I present

the assumptions before stating the theorems in each subsection. Finally, I discuss

the procedure of generating the critical values of the Bai and Ng (2004) MQc
c test

through simulations to conduct robustness checks using the estimated cointegration

ranks. All of the functions mentioned in this section are defined in the appendix.
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1.4.1 Asymptotic Properties with Estimated Cointegration Vectors

Assumptions

The forecasting model considered in this subsection is yt+h = c+αyt+β
′f t+γ1(Yt+

δ′1Ft) + ..γK(Yt + δ′KFt) + εt+h. Let zt = (1, yt, ..., yt−pmax, f1t, ..., fRmaxt, (Yt +

δ′1Ft), ..., (Yt + δ′KmaxFt)). The assumptions contain two parts: the first part in-

cludes the assumptions for the predictive regression, and the second part includes

the assumptions for factor estimations. To estimate the nonstationary factors, de-

pending on whether the idiosyncratic components are stationary or not, either Bai

and Ng (2004) or Bai (2004) procedure can be applied. For brevity, I only discuss

the assumptions using the Bai and Ng (2004) PANIC procedure, given that PANIC

allows more generalized error structures. Let M be a generic large constant, N be

the cross-sectional dimension, and T be the time dimension. The assumptions for the

predictive regression are as follows.

Assumption R. (i) E(εt+h|Ft) = 0, where Ft = σ(yt, f t, x1t, x2t, ...) denote

the information set at time t. (ii) (zt, εt+h) is strictly stationary and ergodic. (iii)

E||zt||4 ≤ M , E||εt||4 ≤ M , and E(ztz
′
t) > 0. (iv) T−1/2

∑T−h
t=1−h εt+h

d−→ N(0, Ωε),

where Ωε =
∑
|j|<hE(εt+hεt+h−j), and T−1/2

∑T−h
t=1−h ztεt+h

d−→ N(0, Ω), where Ω =∑
|j|<hE(ztz

′
t−j εt+hεt+h−j).

These assumptions are the same as CH. Assumptions R(i) and R(ii) assume the

unpredictability of yt+h; the stationarity assumption also connects the in-sample

and out-of-sample MSFEs. Assumptions R(iii) and R(iv) are the standard moment

bounds and the central limit theorems. Note that for this paper zt contains the error

correction terms ηt. Assumptions R(i) to R(iv) also imply the assumption in Stock

(1987) Theorem 1.
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Assumption F1. For nonrandom λi, ||λi|| ≤ M ; for random λi, E||λi|| ≤ M ;

N−1
∑

i=1 λiλ
′
i

p−→ ΣΛ > 0.

Assumption F2. (1 − L)F t = C(L)ζt, where L is the lag operator, and C(L) =∑
CjL

j. (i) ζt ∼ iid(0, Σu), E||ζt||4 ≤ M . (ii) var(∆F t) =
∑
CjΣζCj > 0. (iii)∑

j||Cj|| < M . (iv) C(1) has rank r1, 0 ≤ r1 ≤ r.

Assumption F3. (1 − ρiL)eit = Di(L)ψit, where Di(L) =
∑
DijL

j. (i) For each i,

ψit ∼ iid(0, σ2
ψi), E|ψit|8 ≤M ,

∑
j|Dij| < M . (ii) E(ψitψjt) = τij with

∑
i |τij| ≤M

for all j. (iii) E|N−1/2[ψisψit − E(ψisψit)]|4 ≤M , for every (t,s).

Assumption F4. The errors {ψit}, {ζt}, and {λi} are three mutually independent

groups.

Assumption F5. E||F 1|| ≤M , and E|ei1| ≤M for every i.

Assumption F6. For all (i, t), E||(NT )−1/2
∑T−h

t=1−h
∑N

i=1 λiψitεt+h||2 ≤ M , where

E(λiψit εt+h) = 0.

Assumptions F1 to F5 are similar to the assumptions made by Bai and Ng

(2004). Based on these assumptions, Bai and Ng (2004) Lemma 1 and Lemma 2

show that when N, T → ∞, min{
√
N, T}(f̃t − H1ft) = Op(1) for each t, and

max1≤t≤T ||F̃t −H1Ft + H1F1|| = Op(T
1/2N−1/2) + Op(T

−1/4). These properties sug-

gest that T/N → 0 is required for showing the consistency of the estimated I(1)

factors, and that the cross-sectional dimension needs to be larger than the time di-

mension if the idiosyncratic components contain nonstationary elements. Given that

the estimated levels of factors are recumulated from the estimated first-differenced

factors, the rotation matrix for showing the consistency of the estimated I(1) factors

is the same as the one for the estimated I(0) factors. If it is assumed that all of the
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idiosyncratic components are stationary, Bai (2004) suggests to directly apply Princi-

pal Component Analysis (PCA) to the nonstationary panel {Xit}. The requirement

of the N and T relation is then relaxed under Assumptions A to E in Bai (2004).

Assumptions F1 to F4 and F6 imply Assumption F in CH except F(vi). The

purpose of Assumption F(vi) in CH is to relax the requirement
√
T/N → 0, which is

automatically satisfied given T/N → 0. In order to apply the asymptotic properties

of factors estimated through PCA to the predictive regressions, I assume that the

maximum number of factors used in the predictive regressions is no greater than the

true number of factors.

The MSFE of the conditional forecast ŷT+h|T (w) can be written using the relation

MSFE= E(yT+h|T + εT+h− ŷT+h|T (w))2 ≈ E(ε2T+h) +E(yT+h|T − ŷT+h|T (w))2 = σ2 +

E 1
T

∑t=T−h
t=1 (yt+h|t − ŷt+h|t(w))2.12 This shows that the expectation of the in-sample

loss plus the unconditional variance of the error term is asymptotically equivalent

to the out-of-sample MSFE. Thus, the weights calculated from the in-sample model

averaging criteria can be applied to calculate the out-of-sample MSFEs.

Asymptotic Properties using PANIC to Estimate I(1) Factors

Theorem 1. Suppose h = 1, E(ε2t+1|Ft) = σ2. Under Assumptions R and F1

to F6, for fixed M and weights (w), and N, T → ∞ with T/N → 0, CT (w) =

LT (w)+T−1ε′ε+2T−1/2r1T (w)−T−1r2T (w), where r1T (w)
d−→ κ1(w), r2T (w)

d−→ κ2(w),

E(κ1(w))= 0, E(κ2(w))= 0, and LT (w) = 1
T

∑
(yt+h|t − ŷt+h|t(w))2.

Theorem 2. Under Assumptions R and F1 to F6, for fixed M and weights (w),

and N, T →∞ with T/N → 0, CVh,T (w) = ĽT (w) + T−1ε′ε+ 2T−1/2ř3T (w), where

ř3T (w)
d−→ κ3(w), E(κ3(w)) = 0, and ĽT (w) = 1

T

∑
(yt+h|t − y̌t+h|t(w))2. y̌t+h|t(m) =

z̃t(m)b̌t,h(m) and b̌t,h(m) is the leave-h-out estimator of model m for time t.

12The last equality is true given the stationarity of (yt, f̃t), and the full discussion can be found at
CH. For the estimated cointegration vectors η̃t, Stock (1987) and Stock and Watson (1988) show
that they are consistent.
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Critical Values of MQc
c Tests

Table I in Bai and Ng (2004) provides the MQc
c test critical values with up to

six common trends. For the purpose of the empirical analysis, I simulate the critical

values of the MQc
c test with the maximum of eleven common trends. According

to Bai and Ng (2004), the limit distribution of the MQc
c statistic under the null

hypothesis of m common trends is the distribution of the smallest eigenvalue of the

matrix 1
2
[W c

m(1)W c
m(1)′ − Im][

∫ 1

0
W c
m(s)W c

m(s)′ds]−1, where W c
m = Wm −

∫ 1

0
Wm and

Wm is an m-vector standard Brownian motion. The same limit distribution holds in

this paper, as the system contains the observed nonstationary variable Yt along with

the generated factors. The simulated critical values are presented in Table 1.3.

Table 1.3.: MQc
c test critical values

Number of common trend .01 .05 .10

1 -20.151 -13.73 -11.022

2 -31.621 -23.535 -19.923

3 -41.064 -32.296 -28.399

4 -48.501 -40.442 -36.592

5 -58.383 -48.617 -44.111

6 -66.978 -57.04 -52.312

7 -76.698 -65.749 -60.439

8 -87.382 -75.127 -69.642

9 -94.129 -82.956 -77.755

10 -105.298 -93.118 -86.605

11 -110.979 -100.290 -93.889
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1.4.2 Asymptotic Properties with Estimated I(1) Variables

Assumptions

Let z1t = (1, yt, ..., yt−pmax, f1t, ..., fRmaxt)
′, and z2t = (Yt, F1t, ..., FRt)

′,

where R ∈ [1, Rmax]. The forecasting model considered in this subsection is yt+h|t =

c+α0β
′
0z2t +α1yt + ...+αp+1yt−p +

∑R
r=1 βrfrt + εt+h. The cointegration structure is

assumed to exist, with α0 being the adjustment matrix, and β0 being the cointegra-

tion matrix.13

Assumption R1’. (i) E(εt+h|Ft) = 0, where Ft = σ(yt, f t, x1t, x2t, ...) denote

the information set at time t. (ii) (z1t, εt+h) is strictly stationary and ergodic. (iii)

E||z1t||4 ≤M , E||εt||4 ≤M , and E(z1tz
′
1t) > 0. (iv) T−1/2

∑T−h
t=1−h εt+h

d−→ N(0, Ωε),

where Ωε =
∑
|j|<hE(εt+hεt+h−j), and T−1/2

∑T−h
t=1−h z1tεt+h

d−→ N(0, Ω1), where

Ω1 =
∑
|j|<hE(z1tz

′
1t−j εt+hεt+h−j).

Assumption R2’. For each FECM candidate, let zm2t = (Yt, F1t, ..., Fmt)
′ with m ≤

R, and βm0 be the corresponding cointegration matrix. (i) zm2tβ
m
0 is strictly stationary

and ergodic. (iii) E||zm2tβm0 ||4 ≤M , and E(zm2tz
m′
2t ) > 0. (iv) T−1/2

∑T−h
t=1−h z

m
2tβ

m
0 εt+h

d−→

N(0, Ω2), where Ω2 =
∑
|j|<hE(zm2tβ

m
0 β

m′
0 z

m′
2t εt+hεt+h−j).

Assumption R3’. For each FECM candidate, let zm2t = (Yt, F1t, ..., Fmt)
′ with

m ≤ R; let βm0 and αm0 be the corresponding cointegration matrix and the adjustment

coefficient matrix, respectively. (i) Let the characteristic polynomial for the FECM

system be A(λ), and det(A(λ)) = 0 has roots on or outside the unit root circle. (ii)

αm0 β
m′
0 has rank g, with 0 < g ≤ m. (iii) Let αm0,⊥and βm0,⊥be two matrices satisfying

13This is also the first equation in the FECM system: ∆Zt+h = α0β
′
0Zt+

∑p−1
j=1 Πj∆Zt−j+1 +εt+h+

constant, with Zt = (Yt, F
′
t)
′.
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βm
′

0 βm0,⊥ = 0g×(m+1−g), β
m′

0,⊥β
m
0,⊥ = Im+1−g, α

m′
0 αm0,⊥ = 0g×(m+1−g), and αm

′

0,⊥α
m
0,⊥ =

Im+1−g. The matrix αm
′

0,⊥[Im −
∑p−1

j=1 Πm
j ]βm0,⊥ is nonsingular.14

Assumptions R1’ and R2’ are similar to Assumption R in the above subsection.

They also imply Assumption 4 in Tu and Yi (2017). Assumption R3’ is added since

the I(1) variables are used directly as regressors. The following asymptotic theorems

mimic Theorems 1 and 2.

Asymptotic Properties using PANIC to Estimate I(1) Factors

Theorem 3. Suppose h = 1, E(ε2t+1|Ft) = σ2. Under Assumptions R1’, R2’,

R3’ and F1 to F6, for M and weights (w), and N, T → ∞ with T/N → 0,

CT (w) = LT (w) + T−1ε′ε + 2T−1/2r4T (w) − T−1r5T (w), where r4T (w)
d−→ κ4(w),

E(κ4(w)) = 0, r5T (w)
d−→ κ5(w), E(κ5(w)) = 0, and LT (w) = 1

T

∑
(yt+h|t− ŷt+h|t(w))2.

Theorem 4. Under Assumptions R1’, R2’, R3’ and F1 to F6, for fixed M and weights

(w), and N, T → ∞ with T/N → 0, CVh,T (w) = ĽT (w) + T−1ε′ε + 2T−1/2ř6T (w),

where ř6T (w)
d−→ κ6(w), E(κ6(w)) = 0, and ĽT (w) = 1

T

∑
(yt+h|t − y̌t+h|t(w))2.

y̌t+h|t(m) = z̃t(m)b̌t,h(m) and b̌t,h(m) is the leave-h-out estimator of model m at time t.

1.5 Empirical Results

In this section, I apply FECM averaging methods to forecast a number of U.S.

and Canadian macroeconomic variables. The results indicate that FECM averaging

improves the forecasting performance especially over longer horizons. The Canadian

dataset is taken from Fortin-Gagnon et al. (2018), which is a monthly dataset of 139

macro series. For the U.S. forecasts, I use the Stock and Watson (2012) dataset and

14Assumptions R2’ and R3’ are specific to the nested model setup in this paper. Essentially, the
cointegration matrix of any FECM candidates used in the model averaging set should be of full
column rank. If the model candidates are not nested, then the notation of Assumptions R2’ and
R3’ changes accordingly.
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the datasets discussed in McCracken and Ng (2016). To incorporate the nonstationary

information in the predictive regressions, I use either the estimated cointegration

vectors to generate the regressors or the I(1) variables as predictive regressors directly.

For brevity, only the MSFE results for the variables from the McCracken and Ng

(2016) monthly dataset (FRED-MD) are reported in the main text.

There are 118 monthly series in the FRED-MD dataset, with the time span from

1959M1 to 2017M12. The monthly factors are extracted from the whole panel. To

check for robustness, the same forecasting experiments are conducted using the quar-

terly dataset (FRED-QD) suggested by McCracken and Ng (2016), where the number

of series which contain zero missing observations from 1959M1 to 2017M12 is 210.

The other quarterly dataset I use is the CH dataset with the ending period being

2009Q4.15 The quarterly factors are extracted from subsets of the quarterly panels,

which contain only the lower-level disaggregate series. This choice helps avoid infor-

mation overlapping as well as provide more efficient factor estimations (see Boivin

and Ng, 2006).16

I include ten factors for each model, resulting in 66 models considered for FECM

averaging if the cointegration vectors are estimated. Alternatively, there are 21 mod-

els if the nonstationary variables are used directly for predictions.17 In separate

robustness tests, all forecasting experiments are conducted with the inclusion of five

factors, and the MSFE patterns remain the same. No lags of the factors are included

in the predictions, as Kim and Swanson (2014) show that the lags of factors contribute

15The CH dataset is the same as the dataset used in Stock and Watson (2012). The raw dataset
contains both monthly and quarterly series. To construct a larger quarterly panel, I take the last
month observations /averages of the monthly observations and combine the transformed dataset with
the existing quarterly subset. Results are not sensitive to how I construct the quarterly dataset.
16The Stock and Watson (2012) dataset can be found at the following URL:
https://www.princeton.edu/˜mwatson/publi.html. Details of the FRED-MD and FRED-QD
datasets can be found at the URL https://research.stlouisfed.org/econ/mccracken/fred-databases/.
17All empirical results are calculated based on Bai and Ng (2004) for factor estimations. I also present
the MSFE results using Bai (2004) as robustness checks. The results are available upon request.
MSFE distributions and ratios do not vary much. When using the estimated cointegrations, the
overall number of model candidates is 66, which contains the smallest model with only the constant
and the lags, 10 more models with the factors, and 1+2+. . . +10=55 more models containing the
potential cointegrations between the nonstationary predicted variable and the factors. Similarly,
when using the I(1) regressors directly, the overall number of model candidates is 21=1+10+10.
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little to the FAR forecasting performance. All series in each of the panels are used as

dependent variables to be predicted, and I follow McCracken and Ng (2016), Fortin-

Gagnon et al. (2018), and Stock and Watson (2012) in transforming the datasets.

The transformations used for each category of variables are listed in the appendix. I

also provide model selection results to compare with the model averaging results, and

the shrinkage or selection criteria for the model selection methods are chosen based

on Stock and Watson (2012). Additionally, I calculate the MSFE ratios using an

ARMA(1,1) model and the three-pass regression filter proposed by Kelly and Pruitt

(2015), whose superiority has been shown in consumption, industrial production, and

the market return forecasting.18

1.5.1 U.S. Variables Forecasting Performance

Tables 1.4 to 1.7 report the MSFE results for U.S. macroeconomic variable fore-

casting using the FRED-MD dataset, where the full sample period ranges from

1959M1 to 2017M12. For all estimation methods, I keep twelve lags of the dependent

variable and a constant as fixed regressors. All values displayed in the tables are

the MSFE values scaled by the MSFE obtained from estimating an AR(12) model,

unless otherwise stated. These MSFEs are computed by a pseudo rolling forecasting

scheme with a window size of 120 months; the forecasting horizons are one month,

three months, six months, and one year.19 In each table, Panels A, B, and H report

results obtained using model selection methods. Panels C and D report results using

model averaging methods. Panels E and F contain results of FECM averaging when

factor numbers or the cointegration ranks are pre-estimated. In contrast to Panels B

and D to F, Panel G reports results obtained using the generated I(1) factors.

Several patterns emerge from the MSFE results. First, model averaging outper-

forms model selection for both FAR models and FECMs in general. For example, the

18Here I set the factor number to be ten for comparison reasons. In Kelly and Pruitt (2015), the
empirical work is reported with one factor.
19The rolling window size for quarterly datasets is 100 quarters. The benchmark model is AR(4)
with four lags as fixed regressors.
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ratios in Table 1.6 Panel C are smaller than those in Panel A, and similar conclusions

can be drawn by comparing Panels D and B.20 Second, among the model averaging

results, the major contribution of FECM are shown at longer forecasting horizons. To

illustrate, Table 1.6 Panels C and D report the model averaging results for FAR mod-

els and FECMs. The fifth percentile of the FECM averaging results indicates that

about six variables have the relative MSFEs smaller than 0.45. The relative perfor-

mance for FAR model averaging is worse by comparison, although FECM averaging

provides larger median MSFE ratios in Tables 1.4 and 1.5. When the forecasting hori-

zons are longer than three months, FECM averaging dominates FAR model averaging

in a more uniform way. For example in Table 1.7, the MSFEs for FECM averaging

are about 20 percent smaller compared to those for FAR model averaging. Third,

using I(1) variables as predictors provides the best forecasting results in general. In

Table 1.5, the MSFEs of applying the leave-h-out cross-validation model averaging in

Panel G are on average five percent smaller than those in Panel D. Moving to longer

forecasting horizons, these improvements are persistent and more significant. Finally,

the forecasting performance of simple averaging and the leave-h-out cross-validation

averaging are comparable. Smith and Wallis (2009) provide some explanations of the

forecasting combination puzzle of real GDP, where using equal weights can outper-

form using estimated weights if the imposed restriction is approximately true. On

the contrary, Panel G of Tables 1.4 to 1.7 presents different results. Simple averaging

performs slightly better in the one-month forecasts, while using the leave-h-out cross-

validation model averaging achieves smaller MSFEs in longer forecasting horizons.

Thus, simple averaging losses in efficiency by trading off a large bias against a smaller

estimation variance considering the long-run forecasting exercise.

Forecasting results using the quarterly datasets are also conducted, and are avail-

able upon request. The results display similar patterns. In the following subsection, I

discuss the MSFE results of some robustness checks, including the forecasting perfor-

20Some of the MSFE ratios of “bagging” and “pretest” are outstandingly large, because these ratios
depend on the threshold values which are chosen arbitrarily by researchers. For all forecasting
experiments, I set the threshold value to be 1.645.
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mances for recession periods, some individual macroeconomic and financial variables.

MSFEs of these selected periods and variables are presented in Tables 1.12 to 1.18,

and the results are formed using the generated I(1) variables.

1.5.2 Robustness Checks

Pre-select the Optimal Factor Number and Cointegration Rank

To check robustness, first, I report the MSFE results using all of the non-nested

models with five factors. To reduce computation burden, I report the MSFE distri-

butions using the Stock and Watson (2012) quarterly dataset with a constant and

four lags. This adds to CH, where they focus on averaging across nested models.

Figure 1.1 plots the two MSFE distributions using estimated cointegration vectors.

The two distributions resemble each other, indicating that the improvement of FECM

averaging is not sensitive to factor numbers.

Second, Panel E of Tables 1.4 to 1.11 presents the MSFE ratios where the number

of factors is set to be the same across FECMs. These optimal numbers are selected

by the PC2 criterion in Bai and Ng (2002), with ten factors to be the maximum

set. Thus, the results reported in Panel E focus on averaging forecasts obtained from

different cointegration vectors. Additionally, the MSFE ratios where the cointegration

rank is estimated by the MQc
c tests from Bai and Ng (2004) are reported in Panel F

of each table. In contrast to Panel E, Panel F fixes the cointegration rank, but allow

the number of factors to vary.

In general, the MSFE patterns are similar among Panels E, F, and D; however,

averaging across both the factors and cointegrations provides the smallest MSFE

ratios for longer horizons. Moreover, by comparing the results in Panels E and F,

forecasts for shorter horizons benefit from the flexibility of factor numbers, while

forecasts for longer horizons have smaller MSFEs when the cointegration ranks are not

estimated. For illustration, in Table 1.7, more than 75 percent of the MSFEs in Panel

E are smaller than their counterparts in Panel F, indicating the long-run forecasting
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improvements stem from the inclusion of cointegration relationships and the flexibility

of the cointegration ranks. Intuitively, cointegration tests can be sensitive to the

number of lags included in the model, and different tests may suffer from different

size or power distortions. As stated in Haug (1996), the Stock and Watson (1988)

cointegration test tends to overestimate the cointegration rank, which again suggest

the benefit of allowing cointegration ranks to be flexible.

To further demonstrate the contribution of cointegrations, I present some dis-

tributions of the weights assigned to each model candidate in the FECM averaging

framework. The dataset where these weights are obtained is the McCracken and Ng

(2016) monthly dataset, and the factors are estimated using PANIC with the max-

imum number being ten. In the first half of Table 1.19, I collect the model number

for each of the out-of-sample periods, where the model is assigned the largest weight.

I then calculate the median of these numbers, and present the distributions of the

medians for the 118 series in the panel. Both the one-step and multi-step forecast-

ing models have been evaluated. The second half of the table reports similar model

selection distributions, with the interquartile range as the statistics. Given that the

models are nested, the larger number indicates that the model contains more factors

as well as more informative cointegration relationships.

From Table 1.19, the models associated with the largest weight contain error

correction parts in the majority of the cases. The model number is larger when the

forecasting horizon is longer, indicating that cointegration relationships benefit the

long-run forecasts more. Moreover, the interquartile distributions show that the CVA

model averaging criterion selects a variety of models. With the total number of model

being 66, a range of 40 means that the smallest model can contain just one factor,

while the largest model can contain ten factors.

Table 1.20 reports the variances of weights estimated from FECM averaging and

FAR model averaging. To form the table, I first calculate the weight variance for each

series and each out-of-sample period. Then, I calculate the average of these variances

across the out-of-sample periods, and present the distributions of the averages of
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the 118 series in Table 1.20. The weight variances obtained from FECM averaging

are smaller than the ones of FAR model averaging, meaning that the weights are

assigned more evenly for the former method. Both Tables 1.19 and 1.20 demonstrate

that modeling uncertainty exists in this forecasting experiment.

Recessions and Expansions

The U.S. recession periods are identified by NBER. There are six recessions oc-

curred during the out-of-sample period: November 1973–March 1975, January 1980–

July 1980, July 1981–November 1982, July 1990–March 1991, March 2001–November

2001, and December 2007–June 2009. Given the number of observations, I use the

McCracken and Ng (2016) monthly dataset to calculate MSFEs for the U.S. reces-

sion periods. The Canadian recession periods are June 1981–October 1982, March

1990–April 1992, and October 2008–May 2009. These dates are identified by the C.D.

Howe Institute. The expansion periods for U.S. and Canada are the complement sets

of the corresponding recession periods.

The forecasting results specific to the recession periods are presented in Tables

1.12 and 1.13, and the results for the expansion periods are in Table2 1.14 and 1.15.

In these tables, the upper and lower panels report the MSFEs of FAR model averag-

ing and FECM averaging, respectively. As a baseline comparison, the MSFEs using

FARs with the optimal factor numbers are presented as well. In these restricted

sample periods, FECM averaging continues to outperform FAR model averaging for

longer horizons. This finding is complementary to the existing literature, where FAR

models are not performing well in forecasting expansions, and model averaging meth-

ods contribute less to forecast recessions (See Smith and Wallis, 2009, Pauwels and

Vasnev, 2014, and Leroux et al., 2017).
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Real Activities and Prices

To further illustrate the advantage of FECM averaging, I select four real variables

and four nominal variables. These variables are: industrial production (IP), unem-

ployment rate (UNRATE), real personal income (RPI), real manufacturing and trade

industries sales (CMR), consumer price index (CPI), consumer price index less food

and energy (CPI core), personal consumption expenditure (PCE), and producer price

index (PPI). Depending on the different data transformations, the target variables are

the changes for real variables and the changes of inflation for nominal variables. The

MSFE ratios of FECM averaging and FAR model averaging are reported in Tables

1.16 to 1.18; a number smaller than one means that FECM averaging is preferable.

From the results, first, FECM averaging improves the forecasting performance for

nominal variables at a broader range of horizons than real variables, except for CPI

core. Moreover, the overall decreases in MSFE ratios are larger for nominal variables.

For instance, in Table 1.18, the lowest MSFE ratios for CPI are about 40 percent,

meaning that FECM averaging provides a smaller MSFE than FAR model averaging,

where the improvement is about 60 percent. This is in contrast to the empirical results

in Banerjee et al. (2014), wherein they suggest that FECMs outperforms FARs for real

variable forecasts, but not for nominal variables in the more recent period. The results

are also contrary to the inflation forecasting performance in Leroux et al. (2017), as

they show that combing simple model averaging with FARs does not improve on using

FARs themselves.

Exchange Rates, Interest Rates, and the S&P 500 Index

Forecasting results for the S&P 500 index are presented in Table 18, where FECM

averaging outperforms ARMA(1,1) models and random walk models in the long term.

Base on the arguments made in Leroux et al. (2017) about forecasting stock returns,

these results further indicate the failure of the efficient market hypothesis.
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Furthermore, I consider the forecasts of four exchange rates: Switzerland/U.S.,

Japan/U.S, U.S./U.K. and Canada/U.S. It is widely argued that exchange rates fol-

low random walks and that factor models or model combinations do not contribute

much to their forecasts. The middle panel in Table 18 reports the MSFE ratios for

FECM averaging and its performance relative to FAR model averaging. Similar to

the macroeconomic variables, the results favor FECM averaging for horizons longer

than six months, suggesting exchange rates are predictable to some extend.

Finally, I select five interest rate series from the dataset, and show that FECM av-

eraging continues to be preferable. Specifically, I compare the Dynamic Nelson-Siegel

(DNS) model with the FECM averaging methods. The former method is suggested by

Diebold et al. (2006), and some empirical evidence is provided by Swanson and Xiong

(2018). The model is essentially a dynamic factor model with theoretical restrictions

on the loading terms, and the factors represent the level, slope, and curvature of a

yield curve. Swanson and Xiong (2018) show that the DNS models have the strongest

forecasting performance than AR models, FARs, and hybrid models combining the

DNS models with factors. This finding is supported by Table 1.18, where the DNS

models produce smaller MSFEs than AR(12). On the contrary, Table 1.18 also shows

the outperformance of FECM averaging comparing to the DNS models, indicating

that model flexibility can contribute to forecasting term structures.

1.5.3 Canadian Variables Forecasting Performance

The Canadian forecasting results are reported in Tables 1.8 through 1.11. In gen-

eral, FECM averaging improves on three-month-ahead forecasting and beyond. For

instance, in Table 1.11 Panel G, about 90 percent of the series have better forecasting

performances using FECM averaging than AR(12), and the decreases in the median

MSFE ratios are about 20 percent larger than using FAR model averaging.

The superior performance of FECM averaging to FAR model averaging is less

significant for the Canadian housing variables. The numbers in the last two columns
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of Table 1.17 are relatively larger than the ones in other columns, indicating that the

Canadian housing market reacts more slowly to the disequilibrium in the long run.

Thus, adding extra regressors to the prediction can reduce the signal-to-noise ratio.

On the one hand, the prediction performance of the housing market is consistent with

the results in Fortin-Gagnon et al. (2018), where they show that the improvements are

smaller compared to the ones of forecasting real activity and inflation. On the other

hand, FECM averaging provides the smallest MSFEs than FARs and AR models for

the majority of the forecasts, which demonstrates the usefulness of cointegrations in

the predictive regressions.

1.6 Prediction Interval Estimation

I construct prediction intervals to further demonstrate the usefulness of FECM

averaging. Under the fixed parameter model settings, Zhang and Liu (2018) propose a

simulation-based method to estimate the confidence intervals of coefficients obtained

using Jackknife model averaging criterion. Bai and Ng (2006) derive the close form

of the prediction intervals using FARs. These two papers’ results are extended in this

section to cover multi-step forecasting models with cointegrations.

The leave-h-out cross-validation model averaging method proposed by Hansen

(2010) is applied to accommodate multi-step forecasting models. The nonstationary

regressors and regressand are used directly in the forecasting model as Tu and Yi

(2017), and the nonstationary factors are estimated using Bai (2004). The theoretical

results of this section are thus build on the two papers. Results show that the weights

assigned to under-fitted models converge to zeros. Moreover, the weights assigned to

over-fitted models converge to some random variables, and converge to zeros by adding

a penalizing term to the leave-h-out cross-validation criterion. Empirically, I apply

the simulation method to six real and nominal macroeconomic variables in the Stock

and Watson (2012) panel. The prediction intervals obtained from FECM averaging
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are narrower than the ones obtained from FAR model averaging for the out-of-sample

period from 1985 to 2015.

1.6.1 Assumptions and Conditions

This subsection contains the assumptions and the regularity conditions. These

assumptions and conditions are required by all of the model candidates, and are the

prerequisite for all of the following propositions. The first M0 model candidates are

assumed to be under-fitted. Let S = M −M0 and the small letter m be the mth

model candidate. The conditions are the modified regularity conditions of Zhang and

Liu (2018) to accommodate multi-step forecasting models. The variance matrix Ω

takes into consideration of the serial correlation among errors. The estimated I(0) and

I(1) factors follow the distribution theories presented in Bai (2003) and Bai (2004),

respectively.

Assumptions for factor estimation: Bai (2003) Assumption A-G, and Bai (2004)

Assumption A-G.

Assumptions for FAR and FECM forecasting. Cheng and Hansen (2015) As-

sumption R and F. Tu and Yi (2017) Assumption 1, 4, and 5.

Remark: Given that N
T 3 → 0 is required in Bai (2004), and T

N2 → 0 is required in

Cheng and Hansen (2015), the requirement N
T 2 → 0 in Bai and Ng (2006) is implied.

The first set of conditions are with respect to multi-step forecasting models with

observed regressors. The matrix z contains the all of the observed regressors, and e

is the error term.

Condition 1. QT = 1
T
z′z → Q, where Q = E(ztz

′
t) is a positive definite matrix.

Condition 2. ξT = 1√
T
z′e→ ξ ∼ N(0, Ω), where Ω =

∑h−1
s=−(h−1) E(zt−h+sz

′
t−het+set)

is a positive definite matrix.



32

Condition 3. E||zt||4 < ∞, and h̄T = max1≤m≤M, 1≤t≤Th
m
tt = op(T

−1/2), where hmtt

is the tth diagonal element of the projection matrix zm(z′mzm)−1z′m and zm is the

regressors in model candidate m.

Condition 4. ΩT =
∑s=h−1

s=−h+1
1
T

∑
t zt−hetet+sz

′

t−h+s → Ω.

The next set of conditions are the modified regularity conditions to accommodate

multi-step forecasting models with estimated stationary factors. H1 is the rotation

matrix for factor estimations. These conditions mirror Conditions 1-4. The matrix f̃

contains the all of the estimated regressors. e is the error term when the estimated

factors are the regressors, and contains the factor estimation errors.

Condition f1. QT = 1
T
f̃
′
f̃ → H1QH

′
1, where Q = E(f tf

′
t) is a positive definite

matrix. Specifically, Q̃T = 1
T
f̃
′
f̃ = Ir.

Condition f2. ξT = 1√
T
f̃
′
e →H1ξ = 1√

T
H1f

′e ∼ N(0, H1ΩH ′1), where Ω =∑h−1
s=−(h−1) E(f t−h+sf

′
t−het+set) is a positive definite matrix.

Condition f3. E||f̃ t||4 <∞, and h̄T = max1≤m≤M, 1≤t≤Th
m
tt = op(T

−1/2), where hmtt

is the tth diagonal element of the projection matrix f̃m(f̃
′
mf̃m)−1f̃

′
m and f̃m is the

regressors in model candidate m.

Condition f4. Ω̃T =
∑s=h−1

s=−h+1
1
T

∑
t f̃ t−hetet+sf̃

′

t−h+s →
∑s=h−1

s=−h+1
1
T

∑
tH1f t−hetet+s

f
′

t−h+s H
′
1 → H1ΩH ′1.

The last set of conditions are the modified regularity conditions to accommodate

multi-step forecasting models with estimated factors and cointegrations. H1 and H2

are the rotation matrices for the stationary and nonstationary factor estimations,

respectively. Denote µ+ = [fH ′10, (Y, FH ′20)C]21, and µ̃+ = [f̃ , (Y, F̃ )C] where

C
(R+1)×R

contains the cointegration vectors between Y and F̃ . Without loss of gener-

21H10 and H20 are the modified rotation matrices of Bai (2003) and Bai (2004). Specifically, H10 =

(Λ′Λ
N )( f

′f
T )V −1

NT,1 = (λ
′λ
N )( f

′f̃
T )V −1

NT,1+op(1), and H20 = (λ
′λ
N )(F

′F
T )V −1

NT,2 = (Λ′Λ
N )(F

′F̃
T 2 )V −1

NT,2+op(1).

V −1
NT,1 is an r×r diagonal matrix containing the first r largest eigenvalues of (1/NT )xx′ in decreasing

order, and V −1
NT,2 is an r×r diagonal matrix containing the first r largest eigenvalues of (1/NT 2)XX ′

in decreasing order.
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ality, assume that the matrix C is in the form



C11 C21 . . . CR1

C12 C22 . . . CR2

C23 . . . CR3

...

CRR+1


given the

assumption that all models satisfy the FECM structure. e is the error term when the

estimated stationary and nonstationary factors are the regressors, and contains the

factor estimation errors.

Condition F1. Q̃T = 1
T
µ̃+′µ̃+ → QT = 1

T
µ+′

µ+ → Q, where Q = E(µ+µ+′) is a

positive definite matrix.

Condition F2. ξ̃T = 1√
T
µ̃+′e → ξT = 1√

T
µ+′

e → ξ ∼ N(0, Ω), where Ω =∑h−1
s=−(h−1) E(µ+

t−h+sµ
+′

t−het+set) is a positive definite matrix.

Condition F3. E||µ̃+
t ||4 < ∞, and h̄T = max1≤m≤M, 1≤t≤Th

m
tt = op(T

−1/2), where

hmtt is the tth diagonal element of the projection matrix µ̃+
m(µ̃+′

m µ̃
+
m)−1µ̃+′

m .

Condition F4. Ω̃T =
∑s=h−1

s=−h+1
1
T

∑
t µ̃

+
t−hetet+sµ̃

+
t−h+s → Ω.

Proposition 1 Consider a model averaging environment with M number of model

candidates, where the first M0 models are under-fitted. Let m ∈ {1, ..., M0}, N, T →

∞, and ŵCV A,m be the weights estimated from the leave-h-out cross-validation model

averaging criterion. Under the conditions and assumptions:

(1) For multi-step forecasting models with observed regressors, ŵCV A,m = op(T
−1/2).

(2) For multi-step forecasting models with estimated I(0) factors, and the true

model being FAR, ŵCV A,m = op(T
−1/2).

(3) For multi-step forecasting models with estimated I(0) and I(1) factors, and

the true model being FECM, ŵCV A,m = op(T
−1/2).

Proposition 2 This proposition adopts the notations in Conditions F1-F4. Assume

the true model contains error corrections and the conditions and assumptions hold
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for all model candidates. Then the estimated coefficient vector α̂ = [β̂′, γ̂Y , γ̂
′
F ]′ has

the property where

√
T (α̂CV A − α) =

M0∑
m=1

ŵCV A,m
√
T (α̂m − α) +

M∑
m=M0+1

ŵCV A,m
√
T (α̂m − α)

→ op(1) +
M∑

m=M0+1

ŵCV A,m Cm
(rm+1)×rm

(
µ̃+′µ̃+

T
)−1 1√

T
µ̃+′

× {(F − F̃H−1′

2 )γF + (f − f̃H−1′

1 )β + e}

= op(1) +
M∑

m=M0+1

ŵCV A,m Cm
(rm+1)×rm

(
µ̃+′µ̃+

T
)−1 1√

T
µ̃+′e

= op(1) +
M∑

m=M0+1

ŵCV A,m C
(R+1)×R

Π′m
R×r

(ΠmQ̃TΠ′m)−1Πmξ̃T

→
S∑
s=1

ζ̃CV A,s C
(R+1)×R

Vsξ

in distribution. Thus, the conditional point forecast ŷT+1|T, CV A converges to a ran-

dom variable

(ŷT+1|T, CV A − yT+1)→
S∑
s=1

ζ̃CV A,sξ
′
T+1Vsξ.

Πm = (Irm , 0rm×(R−rm)) is the selection matrix. Qs = ΠM0+sQΠ′M0+s, Ωs = ΠM0+sΩ

Π′M0+s, and V s = Π′M0+sQ
−1
s ΠM0+s. ζ̂CV A,s = argmin ζ ′Σζ where Σ is an S×S ma-

trix with the (s, j)th element Σsj = trace((Qs)
−1Ωs)+trace((Qj)

−1Ωj)−ξ′Vmax{s,j}ξ.

Proposition 3 Define ˜CV A = CV A + φTw
′k, where the model averaging criterion

is defined in section 2 and the vector k contains the numbers of regressors. Under

the above assumptions and conditions, let φT →∞ and N, T →∞, then w̃CV A,m =

Op(φ
−1
T ) for any m ∈ {M0 + 2, ..., M}.
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1.6.2 Inference for the Leave-h-out Cross-Validation Model Averaging

Estimator

Given the coefficient distributions derived by Tu and Yi (2017) Lemma 3, the

estimated slopes of the cointegration system asymptotically converge to some multi-

normal distributed random variables. The estimated intercept, however, converges to

a random variable which does not follow a normal distribution. Thus, the simulation

procedures focus on the de-meaned sample to avoid estimating the intercept. To

conduct the empirical analysis in the following subsection, I assume that the factors

are cointegrated with the predicted variables for each model candidate. The choice

of the estimated cointegration vectors is flexible as long as the consistency of Ω and

Q estimates is ensured. The steps of estimating the simulated prediction intervals of

ŷT are following:

1. Demean the dataset by the averages using observations from {1, ..., T − 1}.

2. Calculate the asymptotic variance of f̃ and F̃ , with the formulae provided by

Bai (2003) Theorem 1, and Bai (2004) Corollary 1, respectively.

3. Let êt be the residuals from the full model. Then σ̂2 =
∑T−1

t=1 ê
2
t/(T − k) is a

consistent estimator of σ2, where k is the number of regressors.

4. For each model m collect the coefficients for (Y, F̃m). Use the coefficients

as the cointegration vector to transform the nonstationary regressors into the

stationary error correction terms. Combine the estimated error correction terms

with the I(0) factors and create the matrix µ̃+.

5. Calculate Q̂ = 1
T

∑T−1
t=1 µ̃

+
t µ̃

+′

t . Then, calculate Ω̂ = 1
T

∑T−1
t=1 µ̃

+
t µ̃

+′

t ê
2
t if the

forecasting horizon is one, and Ω̂T =
∑s=h−1

s=−h+1
1
T

∑T−1
t=1 µ̃

+
t−hêtêt+sµ̃

+
t−h+s if the

forecasting horizon is beyond one. Note, the dimension of the regressors de-

creases by one unit with the transformation in step 4. The overall number of

model candidates is still the same.
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6. For steps 6-8, fix M0 = {0, ..., M − 1}. Calculate V̂ s = Π′M0+sQ̂
−1
s ΠM0+s, and

simulate ξ(iter) ∼ N(0, Ω̂T ).

7. Demean the last observations of the dataset using the averages from {1, ..., T −

1}. Similar to step 4, transform the nonstationary part using the estimated

cointegration vectors. Denote the transformed last right-hand-side observations

as µ̃+
end .

8. Calculate the ŷ
(M0, iter)
T+h|T =

∑S
s=1 ζ̂

(iter)
CV A,sµ̃

+′

endV̂ sξ
(iter), where the superscript (iter)

represents each iteration. The weights ζ̂
(iter)
CV A,s are estimated by applying Propo-

sition 2.

9. Estimate wCV A using Proposition 3, and calculate ŷ
(iter)
T+h|T (wCV A) =

∑M−1
M0=0

wM0+1, CV Aŷ
(M0, iter)
T+h|T .

10. Calculate the variance of ŷ
(iter)
T+h|T (wCV A), which is denoted as vary. The simu-

lation based prediction interval is

[ŷT+h|T − 1.96× sqrt(σ̂2 + vary/T + AsyV ar(f̃)/N + AsyV ar(F̃ )/N),

ŷT+h|T + 1.96× sqrt(σ̂2 + vary/T + AsyV ar(f̃)/N + AsyV ar(F̃ )/N)]

1.6.3 Empirical Results with Six U.S. Macroeconomic Variables

This subsection estimates the prediction intervals of six macroeconomic variables

from the Stock and Watson (2012) dataset. The factor number is set to be five. The

prediction models are the same as Section 1.5. Figures 1.2-1.7 contain the predic-

tive bands for industrial production, unemployment rate, CPI, core CPI, personal

consumption expenditure, and S&P 500 index, where these variables are transformed

as the section above. The green and the red shaded areas represent the prediction

intervals for FECM averaging and FAR model averaging, respectively. The brown

area is where the green and red bands overlap. The solid line in each of the graphs

connects the true observations. h stands for the forecasting horizon, and the x-axis
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represents the out-of-sample forecasting period. The comparisons demonstrate that

cointegrations contribute to forecasting macroeconomic variables.

First, the FECM averaging prediction bands are in general narrower than the

corresponding FAR model averaging prediction bands, especially when the forecasting

horizons are eight and twelve. The advantage is the least substantial in forecasting

the growth rate of industrial production, and is the most significant in forecasting the

growth rates of unemployment rate and core CPI changes.

Second, the advantages of using FECM averaging over FAR model averaging are

more obvious during 1995 to 2000, an expansion period. Specifically, the growth rates

of industrial production and personal consumption expenditure went through several

troughs (and the growth rate of unemployment rate experienced a peak) around

2003. Even though the forecasts present lag effects, FECM averaging reacts faster

and the changes are promptly picked up. As shown in Figure 1.3, the green band

shifts up around 2004 in predicting the unemployment rate. In contrast, FECM

averaging reacts with a less amount than the FAR model averaging if the adaption

takes place too late. In Figure 1.6, neither the green or the red bands successfully

cover the true values in the 2003 period. In later periods, both prediction bands shift

downward, while the FECM averaging predictions are more conserved. In summary,

FECM averaging tends to provide larger improvements to the predictions right away,

or brings less damage to the predictions if the adaption takes a long time.

1.7 Conclusion

This paper combines model averaging methods with Factor-augmented Error Cor-

rection Models. The procedure estimates factors and error correction terms in the

first step, and predictive regressions using the generated regressors in the second step.

I show that both the Mallows and leave-h-out cross-validation criteria are asymptot-

ically unbiased for the mean-squared forecast error. Forecasts of macroeconomic

variables demonstrate that model averaging with the inclusion of error correction
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terms outperforms model averaging with only the factors in the long run, indicating

adjustments to long-run equilibria is useful in prediction. In particular, FECM aver-

aging provides superior results for exchange rate and interest rate forecasting when

the forecasting horizon is greater than or equal to three months. The patterns of

the forecasting performance also hold when analyzing recession and expansion peri-

ods separately. Additionally, I show that the improvements primarily come from the

inclusion of the cointegration relationships. Lastly, this paper estimates the predic-

tion intervals around the point forecasts using simulations. Results show that for the

out-of-sample period from 1985 to 2015, FECM averaging not only produces smaller

mean squared forecast errors but also narrower prediction intervals.
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Fig. 1.1.: Nested and non-nested distribution
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Fig. 1.2.: Prediction Interval, Industrial Production

Fig. 1.3.: Prediction Interval, Unemployment Rate
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Fig. 1.4.: Prediction Interval, CPI

Fig. 1.5.: Prediction Interval, CPI core
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Fig. 1.6.: Prediction Interval, Personal Consumption Expenditure

Fig. 1.7.: Prediction Interval, S & P 500
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Table 1.16.: U.S., MSFE ratio, FECM:FAR, I(1) regressors

Horizon MN monthly IP UNRATE CMR RPI CPI CPI core PPI PCE

h=1
CVh 1.056 1.043 1.071 1.031 0.956 0.985 0.98 1.009

EQ 0.978 1 1.026 1.044 0.953 0.954 0.968 0.959

h=3
CVh 0.845 0.892 0.964 0.954 0.783 0.809 0.796 0.81

EQ 0.83 0.86 0.877 0.95 0.79 0.799 0.806 0.813

h=6
CVh 0.647 0.657 0.733 0.861 0.616 0.688 0.627 0.692

EQ 0.706 0.714 0.732 0.865 0.643 0.675 0.655 0.681

h=12
CVh 0.506 0.459 0.541 0.666 0.499 0.564 0.467 0.574

EQ 0.56 0.565 0.571 0.633 0.543 0.569 0.489 0.566

Note: The variables from left to right: industrial production, unemployment rate, real manufacturing

and trade industries sales, real personal income, consumer price index, consumer price index less

food and energy, producer price index, and personal consumption expenditure. The benchmark is the

FAR model averaging. The bold numbers mean that FECM averaging improves on both FAR model

averaging and AR(12).

Table 1.17.: CAN, MSFE ratio, FECM:FAR, I(1) regressors

Horizon CAN monthly IP EMP UNRATE CPI CPI core Houst 5Y MORT

h=1
CVh 1.085 1.044 1.042 1.001 1.006 1.054 1.026

EQ 1.045 1.023 0.98 0.999 0.995 1.018 0.985

h=3
CVh 0.915 0.949 0.848 0.931 0.867 1.016 0.907

EQ 0.878 0.874 0.811 0.912 0.865 0.937 0.806

h=6
CVh 0.677 0.758 0.718 0.816 0.712 0.884 0.626

EQ 0.704 0.703 0.658 0.769 0.743 0.802 0.676

h=12
CVh 0.482 0.515 0.537 0.727 0.591 0.793 0.566

EQ 0.523 0.497 0.53 0.668 0.631 0.701 0.576

Note: The variables from left to right: industrial production, employment, unemployment rate,

consumer price index, consumer price index less food and energy, housing starts, and five year

mortgage rate. The benchmark is the FAR model averaging. The bold numbers mean that FECM

averaging improves on both FAR model averaging and AR(12).
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Table 1.18.: U.S., MSFE, I(1) regressors

S&P 500 Exchange rates Interest rates

Horizon MN monthly S&P 500 Swi Japan UK CAN 3 months 6 months 1 year 5 years 10 years

h=1

ARMA(1,1) 1.002 0.988 1.07 1.129 1.019 1.056 1.129 1.431 1.243 1.178

RW 0.922 0.882 0.961 0.976 0.955 0.875 0.928 1.014 0.997 0.945

CVh, FAR MA 0.973 1.005 1.029 1.028 1.04 0.819 0.804 0.88 0.967 0.972

EQ, FAR MA 0.999 1.028 1.058 1.036 1.043 0.802 0.792 0.851 0.938 0.945

CVh, FECM MA 1.057 1.063 1.104 1.114 1.111 0.852 0.878 0.973 1.007 1.016

EQ, FECM MA 1.018 1.027 1.077 1.044 1.074 0.781 0.79 0.865 0.941 0.956

FECM optimal 0.807 0.806 0.889 0.995 1.031

DNS VAR(1) 1.129 1.221 1.324 1.277 1.143

DNS AR(1) 0.944 0.994 1.075 1.057 0.992

h=3

ARMA(1,1) 0.921 0.853 0.949 0.929 0.951 0.774 0.773 0.817 0.828 0.822

RW 0.894 0.848 0.923 0.922 0.936 0.746 0.773 0.776 0.821 0.811

CVh, FAR MA 0.983 1.002 1.021 1.03 1.037 0.859 0.853 0.872 0.941 0.947

EQ, FAR MA 0.963 1.015 1.025 1.037 1.035 0.807 0.803 0.833 0.926 0.948

CVh, FECM MA 0.91 0.907 1.016 0.928 0.96 0.631 0.654 0.754 0.776 0.803

EQ, FECM MA 0.871 0.882 0.952 0.907 0.941 0.659 0.663 0.713 0.793 0.817

FECM optimal 0.838 0.842 0.85 0.995 1.036

DNS VAR(1) 0.752 0.783 0.789 0.837 0.821

DNS AR(1) 0.748 0.777 0.778 0.825 0.812

h=6

ARMA(1,1) 0.907 0.85 0.929 0.93 0.939 0.816 0.863 0.859 0.862 0.866

RW 0.9 0.845 0.891 0.926 0.942 0.82 0.87 0.845 0.855 0.863

CVh, FAR MA 1.002 0.988 0.989 1.016 1.07 0.917 0.847 0.859 0.929 0.93

EQ, FAR MA 0.95 1.004 0.974 1.037 1.069 0.827 0.803 0.826 0.931 0.943

CVh, FECM MA 0.723 0.743 0.937 0.704 0.764 0.633 0.615 0.644 0.65 0.674

EQ, FECM MA 0.704 0.717 0.818 0.749 0.807 0.649 0.623 0.635 0.703 0.708

FECM optimal 0.914 0.899 0.908 1.056 1.07

DNS VAR(1) 0.82 0.877 0.85 0.863 0.869

DNS AR(1) 0.82 0.875 0.846 0.858 0.867

h=12

ARMA(1,1) 1.038 0.901 0.976 0.977 1.026 0.836 0.886 0.877 0.901 0.911

RW 1.026 0.899 0.904 0.975 1.024 0.835 0.891 0.872 0.893 0.905

CVh, FAR MA 0.991 0.995 0.961 0.962 1.01 0.86 0.868 0.874 0.948 0.932

EQ, FAR MA 0.858 0.948 0.896 0.924 0.869 0.816 0.808 0.816 0.875 0.891

CVh, FECM MA 0.474 0.625 0.726 0.495 0.683 0.467 0.479 0.491 0.543 0.561

EQ, FECM MA 0.498 0.54 0.618 0.548 0.548 0.531 0.533 0.534 0.559 0.565

FECM optimal 0.9 0.926 0.935 1.01 1.033

DNS VAR(1) 0.837 0.902 0.875 0.899 0.912

DNS AR(1) 0.836 0.9 0.873 0.898 0.911

Note: The variables from left to right: the S&P 500 index, the exchange rates between Switzerland/U.S.,

Japan/U.S, U.S./U.K., and Canada/U.S, the 3 months and 6 months T-bill rates, and the 1 year, 5 years,

and 10 years T-bond rates. I also present the MSFE ratios of interest rates using the Dynamic Nelson-Siegel

models. I use the five interest rates to form the variant, and use AR(1) / VAR(1) to model the dynamics of

the factors. The decay parameter is set to be 0.0609. The benchmark estimation method is AR(12). Bold

numbers are the smallest numbers of each column under the same forecasting horizon.
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Table 1.19.: Distributions, the model with the largest weight, FECM MA

Median Percentile 5 25 50 75 95

hori=1 month 3.4 13 19 25 33.3

hori=3 months 12 18 25.25 31 38

hori=6 months 14.4 20 25 31 38

hori=12 months 15.4 20 24 27 35.2

Interquartile range Percentile 5 25 50 75 95

hori=1 month 11.4 22 30 36 43

hori=3 months 19 26 32.5 37 42

hori=6 months 22.4 29.75 33 36 41.75

hori=12 months 20 29 33.75 38 41

Table 1.20.: Distributions, the variances of weights

FECM weight variance Percentile 5 25 50 75 95

hori=1 month 0.031 0.036 0.042 0.047 0.059

hori=3 months 0.035 0.041 0.045 0.051 0.062

hori=6 months 0.041 0.051 0.056 0.062 0.071

hori=12 months 0.045 0.055 0.062 0.069 0.08

FAR weight variance Percentile 5 25 50 75 95

hori=1 month 0.059 0.071 0.083 0.094 0.119

hori=3 months 0.062 0.072 0.081 0.092 0.113

hori=6 months 0.058 0.071 0.084 0.093 0.112

hori=12 months 0.065 0.081 0.092 0.101 0.116
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2. APPROACHES TO ESTIMATING

LARGE-DIMENSIONAL REGRESSIONS WITH

ENDOGENEITY: A SIMULATION COMPARISON

2.1 Introduction

The objective of this paper is to compare several recently proposed estimation

methods designed for large-dimensional regressions with endogeneity. When using

instrumental variables, two-stage least squares (2SLS) and generalized method of

moments (GMM) are the two most common ways to cope with endogeneity. The

former method includes first-stage regressions of the endogenous regressors on the in-

struments, and a second-stage regression between the dependent variable and the esti-

mated regressors from the first-stage. The latter method is the generalized form of the

first method, where the error distribution assumptions are relaxed. Both approaches

assume the number of observations to be large to obtain estimation consistency.

Empirically, endogeneity is a common issue in reduced-form analyses. Applica-

tions include, but are not limited to, growth empirics, demand/ supply curve es-

timation, and epidemiological studies. Specifically, the GMM framework is often

applied to dynamic panel settings. The two widely-applied GMM methods, proposed

by Arellano and Bond (1991) and Blundell and Bond (1998), use the lags of de-

pendent and independent variables as instruments. These strategies have proven to

be useful in multiple literatures, but they suffer from weak instruments and over-

identification problems. Roodman (2009) discusses these issues, and reproduces the

analysis of growth and national income inequality from Forbes (2000). He argues

that by expanding or collapsing the original Forbes (2000) instrument set, the signif-

icance of national income inequality is unstable, and it is unclear if reversibility or

third-variable causation exist. In a more recent simulation study, Hauk Jr (2017) gen-
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erates simulated datasets which meet the moment conditions of the real-world growth

data. He shows that the within-group estimators, such as system-GMM (see Blundell

and Bond, 1998), are dominated by between-group estimators when estimating all

coefficients. Whether or not this result comes from the over-identification problem

associated with the GMM estimators remains to be explored.

In a similar fashion, the instrument selection process of the 2SLS method can be

ad-hoc. For example, to find out the determinants of GDP and income growth, re-

searchers have investigated various factors in the presence of reverse causality. Com-

mon determinants include foreign aid, trade volume, access to financial intermedi-

aries, and governance quality. The Solow-model-induced productivity factors have

also been closely examined from a growth accounting perspective. Other covariates

may contribute to growth as well, as macroeconomic variables comove with each

other. Which variables and instruments are the most informative? Four of the most

well-cited papers using instruments to evaluate the causality of foreign aids to GDP

growth, namely, Burnside and Dollar (2000) , Collier and Dollar (2002), Hansen and

Tarp (2001), and Dalgaard et al. (2004), have four different sets of covariates and

instruments. Twenty-six different covariates are used to predict growth while only

seven of them overlap, and the total number of regressors used in the first-stage re-

gressions is even greater. This is a large number of variables considering that the

sample size of low-income countries is only 189, according to the dataset used by

Burnside and Dollar (2000), and can be even smaller in the presence of structural

breaks. As a consequence, the choices of regressors can be highly influential to the

final results (see related arguments in Christensen and Miguel, 2018). Additionally, it

may be beneficial to include other functional forms of these regressors, which requires

high-dimensional econometric methods.

Some micro-related topics also rely on the proper analysis of large dimensional

datasets. Chernozhukov et al. (2015) re-evaluate the analysis of automobile market

share studied in Berry et al. (1995). After applying shrinkage methods to both the

control variables and instruments, their results show that the estimates of own-price
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elasticities are larger in absolute value, which fit the automobile industry market

structure better than the Berry et al. (1995) results. Additionally, recent papers,

such as Hansen and Kozbur (2014) and Carrasco (2012), re-analyze the regression

model in Angrist and Keueger (1991) using shrinkage estimation methods. These

papers have not yet investigated the use of shrinkage methods in the second-stage

regression.

Last but not least, instrumental variables have been intensively used for making

causal inferences in epidemiology. Lawlor et al. (2008) discuss the limitations of using

randomized controlled trials to make causal inference in medical studies, and propose

the use of instrumental variables. Moreover, high-dimensional models have allowed

researchers to determine the origins of certain diseases. For example, Lin et al. (2015)

use 2SLS with shrinkage estimation methods and identify genes that are related to

obesity. It is also desirable for estimation methods to be robust to weak instruments,

as it is a concern that individual genes can only capture a small amount of the variance

contained in genetically complex traits.

Theoretically, a strand of literature has developed shrinkage estimation methods

which allow for many regressors and many instruments simultaneously. Lin et al.

(2015) and Zhu (2018), among others, combine the least absolute shrinkage and se-

lection operator (Lasso) with 2SLS in this context. Shi (2016) and Caner et al.

(2018) also use shrinkage techniques, combining Lasso and elastic net with GMM,

respectively. The simulations conducted in these papers provide supportive evidence

of coefficient estimation consistency. Another collection of papers, e.g., Caner and

Kock (2018), move one step further and construct confidence intervals around the

consistently estimated coefficients.

With these newly developed econometric tools, how do applied researchers deter-

mine the most appropriate approach to use? One way is to examine the assumptions

and determine which one best fit the real-world dataset. The first assumption to

check is regarding the dimensions of the regressors and instruments. The sparsity

requirements, which represent the level of useful information contained in the re-
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gressors and the instruments, also varies across approaches. For example, Lin et al.

(2015) require the sparsity of both the first step and the second step regressions to

be o(
√
n) in a 2SLS framework, where n is the number of observations. In contrast,

Zhu (2018) does not impose such requirements. Instead, the paper imposes stricter

assumptions on the number of instruments. The sparsity and dimension assumptions

of Shi (2016) are somewhere in between. Other assumptions include the allowance of

conditional heteroskedasticity. For instance, Gold et al. (2020) focus on homoskedas-

ticity to develop statistical inference, while GMM-based shrinkage methods allow for

second-stage conditional heteroskedasticity.

In this paper, I conduct Monte Carlo simulations comparing the finite sample

performance of six shrinkage methods that are designed for regressions with large

dimensional regressors and instrumental variables. The simulations are aimed at an-

swering the following questions: between the two types of shrinkage methods based

on 2SLS and GMM, which one has the better finite sample properties? How sen-

sitive are the results to weak instruments, heteroskedasticity, different dimensions

for the number of observations and regressors/instruments, and the choice of tuning

parameters?

The rest of this paper is organized as follows. Section 2.2 describes the six es-

timation procedures and assumptions. Section 2.3 presents the simulation designs,

results, an empirical example, and discussions. Section 2.4 concludes the chapter. All

result tables are located subsequently.

2.2 Estimation Procedures

This section presents the assumptions and estimation procedures of each method.

The regressions considered are Y
n×1

= X
n×p

β
p×1

+ u and Xj
n×1

= Z
n×q

αj
q×1

+ ej, j = 1, ..., p,

where n is the number of observations, p is the dimension of regressors X, and q is

the dimension of the instruments Z. The first-stage regressions can be stacked as

X = [X1, ..., Xp] = Z[α1, ..., αp] + e = ZA+ e.
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The six estimation methods are categorized into two groups: the two-stage least

squares method combined with shrinkage (2SLS-shrinkage) and the generalized method

of moments method combined with shrinkage (GMM-shrinkage). Zhu (2018), Lin

et al. (2015), and Gold et al. (2020) use the 2SLS-shrinkage in the large-dimensional

data environment. In the first stage, α̂j = argmin
αj∈Rq

1
2n

(Xj−Z αj
q×1

)′(Xj−Z αj
q×1

)+λjp(αj),

j ∈ 1, ..., p. The second-stage objective is to find β̂ = argmin
β∈Rp

1
2n

(Y −X̂β)′(Y −X̂β)+

λ0p(β), where p(•) is the penalty function, X̂ is the first-stage estimated regressors,

and {λ1, ..., λp, λ0} are the tuning parameters.

Caner et al. (2018), Shi (2016), and Caner and Kock (2018) adopt the GMM-

shrinkage methods. These methods also involve two estimation stages, where the

second-stage is designed for conditional heteroskedasticity in u. In the first stage,

the weighting matrix W is set to be the identity matrix with dimension q, and the

objective is to find β̂1st = argmin
β∈Rp

1
n2 (Y −Xβ)′ZZ ′(Y −Xβ) +λ1stp(β), where p(•) is

the penalty function and λ1st is the first-stage tuning parameter. In the second stage,

the weighting matrix is constructed as diag( 1
σ̂2

1
, · · · , 1

σ̂2
l
, · · · , 1

σ̂2
q

), with σ̂2
l =

1
n

∑n
i=1 Z

2
ilû

2
i and û = Y −Xβ̂1st. The objective is then to find β̂2nd = argmin

β∈Rp
1
n2 (Y −

Xβ)′ZWZ ′(Y −Xβ) + λ2ndp(β), where p(•) is the same penalty function as the first

stage and λ2nd is the second-stage tuning parameter.

The following six subsections contain the estimation procedures in detail. I then

discuss the procedures of two bias-corrected estimators. The last subsection discusses

the assumptions of each method.

2.2.1 Lin et al. (2015)

Lin et al. (2015) analyze three shrinkage methods in the 2SLS environment, in-

cluding the Lasso-type shrinkage, smoothly clipped absolute deviation penalty, and

minimax concave penalty (MCP). The largest rate that the numbers of instruments

and regressors can grow of is eo(n). The authors derive the l1 loss upper bound of

the coefficient estimation error, and the weak oracle property regarding the nonzero
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subset of {βi}pi=1. Cross-validation is suggested to select the tuning parameters. I

focus on the MCP penalty in this paper, as Lin et al. (2015) show that MCP provides

the smallest estimation losses among the three penalties.

The MCP penalty takes the form λp(t) =
∫ t

0
(aλ−θ)+

a
dθ, j = 1, ..., p, where

a = 3.7 and λ is the tuning parameter. Thus, the first stage objective is to find α̂j =

argmin
αj∈Rq

1
2n

(Xj−Zαj)′(Xj−Zαj)+
∑q

i=1

∫ |αij |
0

(3.7λj−θ)+

3.7
dθ for each j ∈ {1, ..., p}. The

second-stage objective is to find β̂ = argmin
β∈Rp

1
2n

(Y−X̂β)′(Y−X̂β)+
∑p

j=1

∫ |βj |
0

(3.7λ0−θ)+

3.7

dθ.

2.2.2 Zhu (2018)

Zhu (2018) adopts the Lasso-type penalty, and uses theoretically derived tuning

parameters. The detailed sparsity assumptions can be found in Assumption 2.5 of

the paper, and the theoretical results include the upper bounds for both l1 and l2

losses of {β̂i}pi=1.

The algorithm includes an iterative estimation of the tuning parameters. The

details of calculating the tuning parameters can be found in the paper. In the first

stage, for each j = 1, ..., p, α̂j = argmin
αj∈Rq

1
2n

(Xj − Zαj)′(Xj − Zαj) +
∑q

i=1 λ
(k)
j |αij|,

where λj is the tuning parameter and the superscript (k) represents the kth iteration

of estimating the tuning parameters. The second-stage objective is to find β̂ =

argmin
β∈Rp

1
2n

(Y − X̂β)′(Y − X̂β) +
∑p

j=1 λ
(k)
0 |βj|.

2.2.3 Gold et al. (2020)

Gold et al. (2020) analyze the asymptotic behavior of two-stage Lasso estima-

tors, with the tuning parameters selected based on cross-validation. The two stage

estimation objectives are the same as Zhu (2018).
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2.2.4 Shi (2016)

Shi (2016) uses the Lasso-type penalty with GMM-shrinkage, and suggests the

GMM-AIC criterion to select the tuning parameter ρ. The paper focuses on the

standard instrument regressions where n > q, allowing q and p to be large. The

theoretical analysis in Shi (2016) is built on approximate sparsity, and shows the

consistency of β̂ under the l1 norm.

The two stage estimations can be written as β̂ = argmin
β∈Rp

1
n2 (Y −Xβ)′ZWZ ′(Y −

Xβ) + ρ̂
∑p

1 |βi|, where ρ̂ = argmin 1
n2 (Y −Xβ̌(ρ))′ZWZ ′(Y −Xβ̌(ρ)) + 2

n
ln[ln(n)]

||β̌(ρ)||0, β̌(ρ) is the estimated β with the chosen tuning parameter ρ, and || • ||0 is

the number of nonzero components in a vector.

2.2.5 Caner and Kock (2018)

Caner and Kock (2018) use the Lasso-type penalty with cross-validation to select

the tuning parameters and derive the l1 estimation loss upper bound of β̂ for both

n > q and q > n. There are no sparsity requirements nor full rank assumptions of A.

This allows Σxz and A to be rank deficient under higher order moments conditions.

As a result, their procedure is robust to a fixed number of weak instruments.

2.2.6 Caner et al. (2018)

Caner et al. (2018) use the adaptive elastic net as the penalty function, where

β̂ = (1 + λ2

n2 )argmin
β∈Rp

(Y − Xβ)′ZWZ ′(Y − Xβ) + λ1

∑p
j=1 πj|βj| + λ2

∑p
j=1 β

2
j . The

model does not allow q or p to be greater than n. The theoretical results demonstrate

the model selection consistency, and the simulation results demonstrate the superior

performance of the elastic net penalty as compared to the Lasso-type penalty.

There are two estimation steps at each stage. First, β̂ is obtained by setting πi = 1

without the scaling factor (1+ λ2

n2 ). Denote β̊ as the estimated coefficient at this step.
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In the next step, πi = |β̊i|−2 is calculated and shrinkage estimation is conducted one

more time to obtain the final β̂.

The tuning parameters are selected based on a BIC-type information criterion,

(λ̂1, λ̂2) = argmin ICλ = 1
n
(Y −Xβ̌(λ1, λ2))′ZWZ ′(Y −Xβ̌(λ1, λ2)) + ||β̌||0ln(n)

max{1, ln[ln(p)]}, where β̌(λ1, λ2) is the estimated β with the chosen tuning pa-

rameters (λ1, λ2), and || • ||0 is the number of nonzero components in a vector.

2.2.7 Bias Corrections

Gold et al. (2020) and Caner and Kock (2018) also propose the bias-corrected

estimators. Specifically, Gold et al. (2020) construct the bias-corrected estimator as

β̃ = β̂ + ( X̂
′X̂
n

)−1X̂ ′(y − X̂ ′β̂)/n, where β̂ is the second-stage estimator. To estimate

( X̂
′X̂
n

)−1 with the possibility that X̂ ′X̂ is rank deficient, Gold et al. (2020) propose a

modification of the CLIME estimator of Cai et al. (2011).

Similar to Gold et al. (2020), Caner and Kock (2018) suggest the bias-corrected

estimator β̃ = β̂ + (X
′ZWZ′X
n2q

)−1(X
′ZWZ′(Y−Xβ̂)

n2q
), where W is the second-stage weight-

ing matrix. The estimation procedure of (X
′ZWZ′X
n2q

)−1 is the same as the estimation

procedure of ( X̂
′X̂
n

)−1 in Gold et al. (2020).

To make the estimation procedures comparable across the six papers, I focus on

the consistency results obtained from the non-bias-corrected estimators. The results

of the two bias-corrected estimators are available upon request.

2.2.8 Model Assumptions

Table 2.1 lists the main assumptions and objectives of the six papers to highlight

the differences among them. These assumptions and objectives serve as guidelines

to help researchers select the most suitable method based on the data characteristics

and research goals.
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Table 2.1.: Model Requirements

Papers q > n Hetero Sparsity A rank Gaussian Theorem Objectives

Caner and Kock (2018) x Y flexible N l1 loss upper bound

Caner et al. (2018) Y exact Full N model selection consistency

Shi (2016) Y approximate N l1 loss upper bound

Lin et al. (2015) x Y exact Y l1 loss upper bound, weak oracle

Zhu (2018) x Y exact Full Y l1, l2 losses upper bound

Gold et al. (2020) x N exact Full Y l1 loss upper bound

Notes: This table contains the modeling requirements. n is the number of observations and q is the number of

instruments. The first column lists the papers. The second column is marked if the method is valid under q > n.

“Hetero” column is “Y” when the method allows for second-stage conditional heteroskedasticity. “A rank” column

is “Full” if the method requires the first-stage coefficient matrix to be full rank. “Guassian” is “Y” if the method

requires sub-gaussian distribution assumptions. “Sparsity” and “Specific Theorem Objectives” columns list the

sparsity assumptions and the main theoretical results for each paper, respectively.

Data Dimensions

The first assumption is with respect to the relationship between n and q, where

Caner et al. (2018) and Shi (2016) require n > q and p. The other four papers allow

the numbers of regressors (p) and instruments (q) to be larger than the number of

observations (n).

Conditional Heteroskedasticity

The three GMM-based methods allow for conditional heteroskedasticity given the

weighting matrix. Zhu (2018) and Caner et al. (2018) focus on the consistency of

β̂, and their methods are also robust to conditional heteroskedasticity. Gold et al.

(2020) derive the inference analysis for 2SLS-shirinkage estimators, and the asymp-

totic theory is constructed under conditional homoskedasticity. Note that this paper
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focuses on consistency, thus the simulation results present in the next section should

not vary much between homoskedasticity and heteroskedasticity.

Sparsity of A and β

A model is considered of “exact sparsity” if many components of these vectors are

exactly zero. Alternatively, the model is considered of “approximate sparsity” if some

of the components are small but not exact zero.1 Four out of the six papers assume

exact sparsity. The two exceptions are Shi (2016), which allows approximate sparsity,

and Caner and Kock (2018), which do not have sparsity requirements. In Remark 4.1

of Gold et al. (2020), the authors note that the exact sparsity requirements in their

paper may be relaxed and more complicated theoretical estimation error bounds can

be derived.

Rank Conditions

Caner et al. (2018), Zhu (2018), and Gold et al. (2020) use 2SLS-shrinkage, and

assume A and the covariance matrix of X and Z to be full rank. The other three

papers instead make assumptions regarding the population restricted eigenvalue.

Data Distributions

The last assumption is about the distributions of the regressors and errors, where

sub-gaussian distributions are often chosen to facilitate the derivations of the esti-

mation error’s upper bounds. Caner and Kock (2018), Caner et al. (2018), and Shi

(2016) do not require specific distributions on X, Z, u, or e. Instead, these papers

impose stricter assumptions on moment conditions and tuning parameters than the

other three papers.

1The definition of sparsity is taken from Shi (2016), Assumption 2.
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Main Theoretical Results

Finally, Table 2.1 reports the main theoretical results of each paper. Two out of

the six papers discuss the model selection consistency. Specifically, Lin et al. (2015)

prove the weak oracle property, and Caner et al. (2018) show the model selection

consistency derived using the tuning parameters selected by the BIC-type information

criterion. The other four papers emphasize the l1 estimation losses of β̂, and Zhu

(2018) reports the upper bound of ||β̂−β||2 as well as the upper bound of ||β̂−β||1 .

2.3 Monte Carlo Simulations

2.3.1 Simulation Designs

The data generation processes (DGPs) considered in this paper follow the mod-

eling structures Y = Xβ + u and X = ZA + e. The parameter choices are selected

to reflect different modeling assumptions in Table 2.1. Based on these assumptions,

Table 2.2 contains the DGP designs, which mainly follow Zhu (2018) and Caner and

Kock (2018).

There are two main aspects of these DGP designs. The first is the relative mag-

nitudes between n and q, and two situations are considered in this paper: large

instruments (q > n), and standard asymptotics (n > q). Shi (2016) and Caner et al.

(2018) require q and p to be smaller than n, although p and q can both be large.

The second aspect of the DGP designs relates to the first-stage coefficient matrix

A. Given that the sparsity requirements are explicitly discussed in each of the six

papers, the simulations in this paper focus on exact sparsity to save computation time.

Moreover, the matrix A can be full column rank or rank deficient. The latter case

is considered for the situation where researchers do not screen the instrument set in

advance and include useless instruments. Lastly, the element values of A determine

the relative strength of the instruments. To distinguish between these settings, I

consider four cases whose details are listed in the second half of Table 2.2.
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The instruments Z are generated following the standard normal distribution. The

level of endogeneity, which is characterized by the correlation coefficient between u

and {ej}pj=1, is set to be 0.5. Assuming homeskedasticity,

(u, ej) ∼iid N





0

0

...

0



σ2
u ρσuσe ... ... ρσuσe

ρσuσe σ2
e 0 ... 0

0 σ2
e ...

...
...

...
...

. . . 0

ρσuσe 0 ... 0 σ2
e


with σu = σe = 1 and ρ = 0.5. The error terms under conditional heteroskedasticity

are generated as uheteroi = ηiui||Zi||2/
√
q, where ηi ∼ U [0.5, 2], i = 1, ..., n. I conduct

500 Monte Carlo simulations for each DGP design. The parameter choices are also

made due to computational limitations.

I mainly use two R packages for the shrinkage estimations: “glmnet” and “ncpen”.

The results are trimmed to exclude outliers in order to avoid non-convergent estima-

tions. Specifically, I calculate the distances between the estimates with their medians,

and compare the values with six times the interquartile ranges. For the methods pro-

posed by Caner and Kock (2018) and Gold et al. (2020), I report the consistency

results without the bias-corrections, which are essentially the Lasso estimators with

tuning parameters selected by cross-validation.2

2.3.2 Simulation Results

Tables 2.3A, 2.3B, 2.4A, and 2.4B report the bias, l1-loss, and l2-loss for con-

sistency evaluations. Each column contains the estimation results for one estima-

tion method. The combination of the first and the third row represents whether

2SLS or GMM is used, and how the tuning parameters are selected. A new nota-

tion, “CV”, is introduced, which stands for cross-validation to select tuning parame-

2I focus on the results without bias correction because the consistency theories in these papers are
derived for the non-bias-corrected estimators. Five-fold cross-validation is applied when estimating
the Caner and Kock (2018), Gold et al. (2020), and Lin et al. (2015) methods.
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ters. With these abbreviations, “GMM-Lasso+AIC” means that Shi (2016) uses the

GMM-shrinkage method with the Lasso-type penalty, and uses AIC to select tun-

ing parameters; “2SLS-Lasso+CV” means that the Gold et al. (2020) estimator uses

cross-validation to select tuning parameters in a 2SLS framework.

Several patterns emerge from the results. First, GMM-shrinkage provides smaller

estimation losses than 2SLS-shrinkage when n > q, especially for the methods pro-

posed by Shi (2016) and Caner et al. (2018). This observation is most distinctive

when A is full rank and the instruments are strong. When q > n, Zhu (2018) and

“2SLS-Lasso+CV” provide the smallest l1 losses as well as MSEs across the GMM

and 2SLS methods, while Caner et al. (2018) and Shi (2016) are not applicable. The

two procedures also preform the best among all 2SLS-shirinkage methods in most

cases when n > q.

Second, the advantages of using GMM-shrinkage remain under heteroskedastic-

ity. In Table 2.3B Case D, the estimation losses of “GMM-Lasso+AIC” are about

half of those produced by “2SLS-Lasso+Zhu”. In contrast, differences between the

estimation losses are less distinctive under homoskedasticity, with the MSE of “GMM-

Lasso+AIC” being slightly smaller in Table 2.3A Case D. Moreover, Gold et al. (2020)

produce larger estimation errors than Caner and Kock (2018) in Tables 2.3B and 2.4B

Cases C when αj = 0.5, which is consistent with the simulation results presented in

Caner and Kock (2018). This relation is reversed when αj = 5, indicating that

GMM-shrinkage is sensitive to weak instruments.

Third, the consistency accuracy is generally worse when the instruments are

weaker. This is shown by comparing the losses in Case A (C) with their counter-

parts in Case B (D). Relatedly, the losses in Case B are larger than the ones in Case

D, indicating that X̂ needs to be full rank and the instruments should be correlated

with at least one endogenous regressor.

Fourth, tuning parameters can influence the results significantly. Generally speak-

ing, cross-validation is the preferred method, although the GMM-AIC and BIC crite-
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ria proposed by Shi (2016) and Caner et al. (2018), respectively, perform better when

n > q.

Lastly, one would expect that the consistency performance deteriorates for smaller

sample sizes. Even though this paper does not investigate the simulation performance

for larger sample sizes given computational constraints,3 some evidence can be found

in Table 2.1 of Caner and Kock (2018), where the size of “D2GMM” is 17% when

n = 75, q = 100 and the size drops to 0% when n = 150, q = 200.

2.3.3 An Empirical Illustration

In this section, I apply the methods proposed by Shi (2016), Caner and Kock

(2018), and Caner et al. (2018) to analyze how foreign aid affects GDP growth. León-

González and Montolio (2015) show that the magnitude of the foreign aid coefficient

is unstable across different groups of regressors and instruments using GMM. Instead,

they propose a Bayesian model averaging method and demonstrate that the foreign

aid coefficient is small. Moreover, the authors find that the interaction term between

the “good policy index” proposed by Burnside and Dollar (2000) and foreign aid

also has no major impact on GDP growth either. This result differs from the policy

implications in previous literature, which suggest that foreign aid simulates GDP

growth for countries which have “good” macroeconomic polices.

I use the same unbalanced panel dataset as León-González and Montolio (2015)

and apply the three GMM-shrinkage methods studied in this paper. There are 291

observations, and the dataset covers 63 countries with from 1974-1994. The dependent

variable is the GDP growth rate, and the independent variables of interest are foreign

aid and foreign aid interacted with the good policy index. The instruments are lags

of initial GDP, lags of foreign aid amount, lags of the natural log of population, lags

of armed imports, and lags of various interactions involving the policy index. The

details of the instruments and regressors are listed in León-González and Montolio

3In this paper, I set n = 75 when q > n to save computational cost. As reference, the numbers of
observations are set to be at least 100 in five of the six papers.
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(2015), Appendix A. I also conduct wild bootstrapping to test the significance of the

estimates.4

Table 2.5 reports the estimation results. The number of lags used as instruments is

one, two, three, or four, which results in 54, 99, 135, or 162 instruments. There are 16

regressors for all regressions reported in the table. The first half of Table 2.5 reports

that the effect of foreign aid on growth using Shi (2016) and Caner and Kock (2018)

is much smaller than the GMM estimates presented in León-González and Montolio

(2015), and is closer to their Bayesian model averaging results. The method proposed

by Caner et al. (2018) produces a larger effect, although the magnitude is unstable

across different instrument sets. All of the coefficient estimates are insignificant at

the 1%, 5%, or 10% level.

Additionally, the coefficient of the policy interaction is nearly zero and insignificant

for all model settings, as reported in the second half of Table 2.5. This result supports

León-González and Montolio (2015) where they show that the policy interaction has

a nearly zero posterior probability of entering in the regression.

In summary, these findings highlight the over-identification problem of the GMM

estimators, which is mentioned in León-González and Montolio (2015) and confirmed

by their diagnostic tests. The results also show the usefulness of the GMM-shrinkage

methods, which introduce parsimony to the model.

2.3.4 Discussion

How will researchers select the most suitable methods? One intuitive direction

is to refer to the assumptions of each paper. First, the sample dimension should

satisfy the (n, p, q) requirements. Next, GMM-shrinkage methods are the natural

choices with dynamic panel regressions. If heteroskedasticity is a component for the

4To conduct the bootstrapping to test a coefficient’s significance, I first collect the residuals from the
original shrinkage estimation results. Then, I resample these residuals and multiply each element
with a randomly generated standard normal variable. Next, the bootstrapped dependent variable is
generated under the null hypothesis that the coefficient is zero, and shrinkage methods are applied
to the bootstrapped sample. Finally, the original estimates are compared with the α/2 and (1−α/2)
percentiles of their corresponding bootstrapped coefficients.
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second-stage regression, GMM-shrinkage is also advantageous given the choice of the

weighting matrix. On the contrary, 2SLS-shrinkage is preferable when researchers are

interested in knowing which instruments contribute to each endogenous regressor.5

Finally, the sparsity requirements of A and β need to be met.

There are two other less obvious but equally important data characteristics. The

first is regarding the full rank assumption of Σxz = E(X ′Z), indicating that all

instruments should correlate with at least one endogenous regressor. It is well docu-

mented that GMM and 2SLS estimators are volatile with weak instruments, which is

also shown in the above simulation results. In addition, 2SLS-shrinkage procedures

maybe even more affected by the possibility that A is rank deficient, since the second-

stage estimation requires the the first-stage estimated X̂. This negative effect may

be severe when weak instruments are used.

The other data assumption made by some of the papers is sub-gaussianality.

Heavy tail distributions, such as the log-normal distribution commonly used in the

finance literature, are usually not sub-gaussian. Last but not least, the elastic net

procedure proposed by Caner et al. (2018) is theoretically preferable when instru-

ments are highly correlated, considering that the elastic net shrinkage encourages a

grouping effect.

The next set of decisions researchers face is computational, when converting the

selected model to a computer program. The most crucial parameters in any shrinkage

method are the tuning parameters, which control how parsimonious the model will

be. The 2SLS-shrinkage procedures have more tuning parameters than the GMM-

shrinkage procedures, and so GMM-shrinkage estimators are more efficient from this

perspective. Researchers can refer to the theoretical results from Shi (2016) and

Zhu (2018) and analytically pick out the suitable tuning parameters. However, such

choices may still require researchers to assign (other) parameter values, such as the ζ

and C in Zhu (2018), to calculate the value of the tuning parameters. These values

can play a critical role in finite sample estimations, although theoretically they should

5All of the methods are robust to serial correlation for the second-stage regression.
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produce the same asymptotic properties with enough iterations. Non-parametrically,

cross-validation is the most common choice even though there is no thorough proof

of its validity to shrinkage methods. Despite its wide-spread applicability, cross-

validation tends to select too many regressors (see a related discussion in Spindler

(2016)).

Convergence thresholds can also affect finite sample results. For some non-convex

penalties, such as the MCP used in Lin et al. (2015), the convergence to a global min-

imum is not guaranteed. Different software packages allow researchers to set different

convergence criteria. For example, the R package “glmnet” does not allow researchers

to set the maximum number of iterations, but they can set the convergence thresh-

olds. This naturally invokes the trade-off between computation time and estimation

accuracy.

Moreover, the cutoff value where coefficients can be treated as zeros also requires

attention. The common choice is 1e−4 for most of the existing software programs, and

this concern is specific to the 2SLS-shrinkage methods. On the one hand, it is desirable

to keep only a few selected instrument for the first-stage shrinkage estimations. On

the other hand, if too few of the original instruments enter the second stage, X̂ = ZÂ

may not be full column rank. This conclusion is in accordance with the consistency

results reported in Tables 2.3A and 2.3B, where Lin et al. (2015) and Zhu (2018)

provide larger estimation losses when the first-stage coefficient matrix is rank deficient.

These all encourage empirical researchers to select a strong and relevant instrument

set before using any shrinkage estimation methods.

2.4 Conclusion

In this paper, I compare six shrinkage estimation methods with large-dimensional

regressors and instruments through Monte Carlo simulations. The results show that

combining shrinkage methods with generalized method of moments offers smaller

estimation errors, as compared to combining shrinkage methods with two-stage least
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squares. The difference is especially large when the number of observation is greater

than the number of instruments, when the instruments are strong, and when at least

some of the instruments are plausibly correlated with the regressors. The results also

support using cross-validation to select tuning parameters. Lastly, I apply a GMM-

shrinkage method to reestimate an empirical macroeconomic model, and show that

foreign aid has no significant impact on economic growth.
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Table 2.3A.: Consistency, (n, p, q)=(100, 20, 40)

GMM 2SLS

Shi (2016) Caner et al. (2018) Caner and Kock (2018) Lin et al. (2015) Zhu (2018) Gold et al. (2020)

Case A Lasso+AIC Elastic Net+BIC Lasso+CV MCP+CV Lasso+Zhu Lasso+CV

Bias -0.0049 -0.02853 -0.00107 -0.0106 0.00412 0.01621

l1 loss 0.34373 0.66045 0.32096 1.56033 1.76233 0.9748

MSE 0.0042 0.01405 0.00315 0.0542 0.0554 0.03116

Case B Lasso+AIC Elastic Net+BIC Lasso+CV MCP+CV Lasso+Zhu Lasso+CV

Bias -0.00148 0.00017 -0.00953 0.00097 -6e-05 0.0015

l1 loss 0.176 0.32257 0.4906 1.97521 1.65951 0.82172

MSE 0.00095 0.00351 0.00828 0.07708 0.04786 0.01976

Case C Lasso+AIC Elastic Net+BIC Lasso+CV MCP+CV Lasso+Zhu Lasso+CV

Bias -0.00251 -0.02766 0.01837 -0.02398 -0.03212 -0.02856

l1 loss 0.32855 0.59185 0.85971 0.68932 0.77235 0.61976

MSE 0.00223 0.01249 0.00593 0.0136 0.01662 0.01308

Case D Lasso+AIC Elastic Net+BIC Lasso+CV MCP+CV Lasso+Zhu Lasso+CV

Bias -0.00211 -0.00319 -0.01216 0.00104 -0.00218 0.00235

l1 loss 0.04381 0.06427 0.24313 0.18833 0.05676 0.35665

MSE 7e-05 0.00013 0.00174 0.00032 0.0001 0.00053

Notes: This table presents the consistency results when n > q under second-stage conditional homoskedasticity. The first

three rows of this table describe the estimation method, how the tuning parameters are selected, and the corresponding

paper. “CV” stands for cross-validation. Zhu (2018) uses theoretically derived tuning parameters.
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Table 2.3B.: Consistency, (n, p, q)=(100, 20, 40)

GMM 2SLS

Shi (2016) Caner et al. (2018) Caner and Kock (2018) Lin et al. (2015) Zhu (2018) Gold et al. (2020)

Case A Lasso+AIC Elastic Net+BIC Lasso+CV MCP+CV Lasso+Zhu Lasso+CV

Bias 0.0043 -0.0224 -0.00383 -0.01261 -0.00104 0.00268

l1 loss 0.78354 0.53555 0.47325 1.56831 1.72325 0.78023

MSE 0.00916 0.011 0.00632 0.05603 0.05578 0.02095

Case B Lasso+AIC Elastic Net+BIC Lasso+CV MCP+CV Lasso+Zhu Lasso+CV

Bias -0.0002 -0.00058 -0.00837 0.00107 -0.00053 0.00161

l1 loss 0.80991 0.4057 0.516 2.22809 1.73665 0.9279

MSE 0.01048 0.0071 0.00865 0.10959 0.05147 0.02185

Case C Lasso+AIC Elastic Net+BIC Lasso+CV MCP+CV Lasso+Zhu Lasso+CV

Bias 0.02618 -0.03796 0.01981 -0.03397 -0.03737 -0.03259

l1 loss 1.18173 0.76344 1.1527 0.85868 0.8712 0.77154

MSE 0.01071 0.01777 0.01062 0.01899 0.02003 0.01768

Case D Lasso+AIC Elastic Net+BIC Lasso+CV MCP+CV Lasso+Zhu Lasso+CV

Bias -0.00141 -0.00336 -0.01222 0.00083 -0.00333 -0.00162

l1 loss 0.07227 0.06765 0.24443 0.22826 0.0788 0.05864

MSE 9e-05 0.00016 0.00174 0.00045 0.0002 0.00015

Notes: This table presents the consistency results when n > q under second-stage conditional heteroskedasticity. The first

three rows of this table describe the estimation method, how the tuning parameters are selected, and the corresponding

paper. “CV” stands for cross-validation. Zhu (2018) uses theoretically derived tuning parameters.
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Table 2.4A.: Consistency, (n, p, q)=(75, 50, 100)

GMM 2SLS

Caner and Kock (2018) Lin et al. (2015) Zhu (2018) Gold et al. (2020)

Case A Lasso+CV MCP+CV Lasso+Zhu Lasso+CV

Bias 0.00594 0.00686 0.00123 0.00287

l1 loss 6.72049 8.71486 1.88005 0.56494

MSE 0.04148 0.0503 0.02499 0.00398

Case B Lasso+CV MCP+CV Lasso+Zhu Lasso+CV

Bias -0.00154 0.00012 -0.00015 0.00138

l1 loss 0.58501 3.76987 1.82068 1.02852

MSE 0.00339 0.02583 0.02038 0.01039

Case C Lasso+CV MCP+CV Lasso+Zhu Lasso+CV

Bias 0.02161 0.01847 -0.01728 -0.01518

l1 loss 5.38486 6.29962 0.96133 0.80384

MSE 0.02533 0.02607 0.00954 0.00762

Case D Lasso+CV MCP+CV Lasso+Zhu Lasso+CV

Bias -0.00314 0.00338 -0.0023 -0.00043

l1 loss 0.15717 1.0036 0.11907 0.07015

MSE 0.00032 0.0007 0.00019 8e-05

Notes: This table presents the consistency results when q > n under second-stage conditional homoskedasticity.

The first three rows of this table describe the estimation method, how the tuning parameters are selected, and the

corresponding paper. “CV” stands for cross-validation. Zhu (2018) uses theoretically derived tuning parameters.
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Table 2.4B.: Consistency, heteroskedasticity, (n, p, q)=(75, 50, 100)

GMM 2SLS

Caner and Kock (2018) Lin et al. (2015) Zhu (2018) Gold et al. (2020)

Case A Lasso+CV MCP+CV Lasso+Zhu Lasso+CV

Bias 0.00599 -0.0055 -0.00392 0.00576

l1 loss 6.85032 1.58081 1.68267 1.00515

MSE 0.04274 0.02117 0.02236 0.01522

Case B Lasso+CV MCP+CV Lasso+Zhu Lasso+CV

Bias -0.0016 0.00045 -0.00041 0.00177

l1 loss 0.59517 3.29084 1.82248 1.04233

MSE 0.00354 0.09285 0.02077 0.0104

Case C Lasso+CV MCP+CV Lasso+Zhu Lasso+CV

Bias 0.02163 -0.01303 -0.01812 -0.01659

l1 loss 5.45186 0.99136 0.98575 0.86888

MSE 0.02581 0.00907 0.00995 0.0084

Case D Lasso+CV MCP+CV Lasso+Zhu Lasso+CV

Bias -0.00314 0.00051 -0.00292 -0.0006

l1 loss 0.15741 0.87535 0.14838 0.07533

MSE 0.00031 0.00112 0.00028 8e-05

Notes: This table presents the consistency results when q > n under second-stage conditional heteroskedasticity.

The first three rows of this table describe the estimation method, how the tuning parameters are selected, and the

corresponding paper. “CV” stands for cross-validation. Zhu (2018) uses theoretically derived tuning parameters.
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Table 2.5.: Foreign Aid to GDP Growth

Methods # of lags 1 2 3 4

β̂aid Shi (2016) 0.106 -0.083 -0.113 -0.113

Caner and Kock (2019) 0.296 - - 0.005

Caner et al. (2018) -3.754 -0.13 -3.85 -1.39

β̂polaid Shi (2016) - 0.052 -0.011 -0.021

Caner and Kock (2019) 0.019 - 0.042 0.002

Caner et al. (2018) -0.081 -0.007 -0.019 0.068

# of instrument 54 99 135 162

Notes: β̂aid and β̂polaid are the estimated coefficients for foreign aid and foreign aid

interacts with the good policy index. “-” means the shrinkage procedure does not select

the variable. The coefficients are marked with “*”, “**”, or “***” if they are significant

with 10%, 5%, or 1% significance level. Otherwise the coefficient is not significant. The

bootstrapping iteration number is 399.
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3. REVISITING THE DEMOCRACY-GROWTH NEXUS:

NEW EVIDENCE FROM A DYNAMIC COMMON

CORRELATED EFFECTS APPROACH

with Mohitosh Kejriwal

3.1 Introduction

The question of whether democracy is beneficial for economic growth has spurred a

large theoretical and empirical literature over the past five decades (see, e.g., Doucou-

liagos and Ulubaşoğlu, 2008, for a review). While proponents of democracy argue that

political rights and civil liberties are necessary to preserve the motivation of citizens

to work and invest while maintaining an effective allocation of resources in the mar-

ketplace, opponents promote the view that democracies are vulnerable to popular

demands at the expense of profitable investments and are unable to suppress ethnic,

religious and class conflicts that are detrimental to growth. There is also a third

so-called “skeptic view” that points to the importance of the institutional structure

in facilitating growth rather than the regimes per se. The literature does not appear

to have reached a consensus yet among these different views.

In an influential recent article, (Acemoglu et al., 2019, henceforth ANRR) take

a major step forward by empirically examining the effect of democracy on economic

growth based on a new comprehensive panel dataset covering 175 countries over the

period 1960-2010. Their analysis employs standard dynamic panel data estimation

methods such as within groups and Arellano-Bond GMM as well as the more recent

bias-correction approach proposed by Hahn et al. (2001). These methods assume

that the model parameters are homogeneous across countries and rule out strong
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cross section dependence among the countries.1 The baseline estimates reported in

ANRR suggest that democracy has a positive and statistically significant effect on

economic growth, with GDP per capita being approximately 20% higher in the 25

years following a permanent democratization.

This paper reconsiders the nexus between democracy and growth using a recently

proposed econometric approach that allows for both parameter heterogeneity and

strong cross section dependence. Parameter heterogeneity can arise from economic,

cultural and political institutional differences across countries. As shown in Pesaran

and Smith (1995), pooled estimators are biased in a dynamic model with random

coefficients. On the other hand, strong cross section dependence can emanate from

common global shocks that affect different countries to different degrees. This notion

of dependence is distinct from spatially correlated shocks that essentially capture

weak dependence (see Chudik et al., 2011). Chudik and Pesaran (2015) demon-

strate through Monte Carlo experiments the serious biases associated with the within

groups estimator in the presence of strong cross section dependence. Our analy-

sis employs the dynamic common correlated effects (DCCE) approach proposed by

Chudik and Pesaran (2015) that models the cross section dependence in terms of a

small (unknown) number of unobserved common factors with heterogeneous loadings.

The DCCE estimator is computed by augmenting the dynamic panel regression with

cross-sectional averages of the current and lagged values of the dependent variable

and regressors. Our findings confirm the statistically significant positive effect of

democracy on growth documented in ANRR, with a DCCE point estimate between

approximately 1.5-2%, depending on the specification. We complement our estimates

with a battery of diagnostic tests for heterogeneity and cross-section dependence that

corroborate the use of the DCCE approach in evaluating the effect of democracy on

growth.

1An exception is when the dependence is not country-specific in which case a specification that
includes time fixed effects (as in ANRR) is sufficient to address the issue.
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The rest of the paper is organized as follows. Section 3.2 lays out the econometric

framework and the DCCE estimation procedure. Section 3.3 presents the empirical

results. Section 3.4 concludes. Appendix A reports results from a set of diagnostic

tests for parameter heterogeneity and cross-section dependence as well as estimates of

the degree of cross section dependence using the approach proposed by Bailey et al.

(2016).

3.2 The Dynamic Common Correlated Effects (DCCE) Approach

Consider the dynamic panel data model

yit = αi +

p∑
j=1

γijyt−j + βiDit + uit (3.1)

uit = λ′ift + εit (3.2)

for i = 1, ..., N and t = p+1, ..., T, where yit is the log of GDP per capita (or the growth

rate) in country i at time t and Dit is a dummy variable which equals unity if country

i is democratic at period t and zero otherwise. The αi denote the country fixed effects

representing the time-invariant country characteristics. The error uit is composed of

a common component λ′ift and an idiosyncratic component εit. Here, ft represents

a (m × 1) vector of unobserved common factors and λi denotes a (m × 1) vector

of associated factor loadings. The number of factors m is assumed unknown. The

factors are allowed to be correlated with the dichotomous democracy measure. The

traditional dynamic panel framework adopted by ANRR can be obtained as a special

case of (3.1) and (3.2) by setting λi = λ, βi = β for all i and γij = γj for all i and

j = 1, ..., p.

Chudik and Pesaran (2015) consider consistent estimation of the means of the

parameters in (3.1). They propose proxying for the common factors by augmenting

the regression (3.1) with cross-sectional averages of yit and Dit:

yit = αi +

p∑
j=1

γijyt−j + βiDit +

qT∑
l=0

δ′i(L)z̄t−l + eit (3.3)
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where z̄t = N−1
∑N

i=1 zit, zit = (yit, Dit)
′ and qT , the number of lags of cross-sectional

averages included, is assumed to grow with the sample size at a particular rate:

qT →∞ and q3
T/T → κ, with 0 < κ <∞.2

Denote πi = (γi1, ..., γip, βi)
′. The common correlated effects mean group (CCEMG)

estimator of π = E(πi) is given by

π̂ = N−1

N∑
i=1

π̂i

where π̂i is the ordinary least squares estimate of πi from (3). Chudik and Pesaran

(2015) establish the consistency of π̂ under two alternative sets of assumptions. The

first set consists of a rank condition on the matrix of factor loadings which, in the

current context, requires that the number of factors m ≤ 2. The second set does

not require the rank condition but assumes that the factors are serially uncorrelated.

In both cases, π̂ is shown to be
√
N -consistent and its asymptotic variance can be

estimated by ∑̂
= (N − 1)−1

N∑
i=1

(π̂i − π̂)(π̂i − π̂)′

In order to correct the small sample bias of π̂, a “half-panel jackknife” procedure is

adopted in which the bias-corrected estimator is obtained as

π̃ = 2π̂ − 0.5(π̂a + π̂b)

where π̂a denotes the CCEMG estimator computed over the period t = 1, ..., [T/2], and

π̂b is the CCEMG estimator computed over the period t = [T/2] + 1, ..., T . Based

on Monte Carlo experiments, Chudik and Pesaran (2015) propose using the jackknife

bias corrected estimates for the coefficients of the lagged dependent variable while

the uncorrected estimate is preferred for the coefficient on democracy.3 As per their

recommendation, we set qT = [T 1/3].

2While the theoretical analysis in Chudik and Pesaran (2015) allows weighted cross-sectional aver-
ages, their Monte Carlo experiments are based on simple averages.
3The authors also consider bias correction based on recursive mean adjustment which is, however,
dominated by the jackknife.
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3.3 Empirical Results

Our empirical analysis is based on a balanced sample of countries appearing in the

dataset compiled by ANRR.4 Each country in our sample has experienced a change

in democratic status at least once. The reason for concentrating on this subsample

is that the CCEMG estimator is based on country-wise time series regressions so

that if a country’s democratic status remains unchanged over the sample period, it

cannot be separately identified from the country-specific effect αi. This constraint

combined with the focus on a balanced sample led us to a set of 41 countries over

the period 1975-2010.5 ANRR report results based on three estimators: the fixed

effects or within groups (WG) estimator, the Arellano-Bond GMM (AB) estimator

and the Hahn, Hausman and Kuersteiner (HHK) bias-corrected instrumental variables

estimator. They also present estimates of the long run effect of democracy and the

effect after 25 years (say the medium run effect) for each of the estimators. ANRR

consider four choices of the lag order p: 1,2,4,8. Since the DCCE approach is based on

country-specific time series regressions, we only consider p = 1, 2, 4 out of a degrees

of freedom consideration.

Table 3.1 presents our findings based on the three estimators considered by ANRR

where Panel A reports the results for GDP measured in levels while Panel B refers to

GDP growth. Considering first the estimates in Panel A, the effect of democracy is

smaller for a given estimator and lag order, relative to the original ANRR estimates.

For instance, with p = 4, the WG estimate is about .48% while the corresponding

estimate in ANRR is .78%. The medium and long run effects are also smaller. These

differences reflect the fact that our analysis is based on a smaller balanced sample.

4The focus on a balanced sample is due to the fact that the DCCE estimator is derived assuming a
balanced sample and its statistical properties are known in this case. To the best of our knowledge,
the corresponding properties in the unbalanced case are yet unknown.
5The countries are: Argentina, Burundi, Benin, Bangladesh, Bolivia, Brazil, Central African Rep.,
Chile, Dominican Republic, Ecuador, Spain, Ghana, Gambia, Guatemala, Honduras, Hungary, In-
donesia, Kenya, Lesotho, Madagascar, Mexico, Mali, Mauritania, Malawi, Niger, Nigeria, Nicaragua,
Nepal, Pakistan, Peru, Philippines, Portugal, Sudan, Senegal, Sierra Leone, Thailand, Turkey,
Uruguay, Venezuela, South Africa, Zambia.
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Among the three estimators, for a given lag specification, the immediate effect on

democracy as well as the medium and long run effects are largest for WG and smallest

for HHK based on the current dataset. Given the possibility of a unit root for the

data in levels as indicated by the high persistence estimates, Panel B presents the

results based on the growth rate of GDP. Again, the effect of democracy is smaller

than the original ANRR estimates. This is true for the current period effect as well

as the medium and long run effects. Relative to the results in levels, the parameter

estimates are more similar between the three estimation methods. The differences are

particularly small between the WG and AB estimates, with the instantaneous effects

ranging between 63% and .69% regardless of the number of lags used. Finally, as

expected, the estimates of the persistence parameter are much lower (¡.15 in all cases)

than the corresponding estimates from the specification in levels.

Table 3.2 presents results obtained from two estimation methods: (1) the mean

group (MG) estimate that is obtained by taking the average of the country-specific

effects from least squares time series regressions estimated separately for each country;

(2) the DCCE estimate that accounts for both parameter heterogeneity and cross

section dependence. The role of the MG estimate is to isolate the impact of parameter

heterogeneity from that of cross section dependence. The MG estimates are all bias-

uncorrected. The standard errors for the MG and DCCE estimates are computed

nonparametrically based on the standard deviation of the country-specific estimates.

The medium and long run effects are based on bias-uncorrected estimates.

The results for GDP in levels are reported in Panel A of Table 3.2. The MG

estimates of the current period effect of democracy are considerably larger than those

reported in Table 3.1. The lowest MG estimate across the three specifications is

about 1.71% while the highest among the homogeneous estimators is about .58%.

Further, the MG estimates are all statistically significant at the 1% level. The medium

and long run effects are also markedly larger across the three lag orders relative to

those reported in Table 3.1.6 For example, the estimated medium run effects range

6To compute the medium and long run effects using the MG estimator, we eliminated three countries
Pakistan, Sierra Leone and Sudan as the country-specific effects in these cases were implausibly large
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between 0.9%-8.6% for the homogeneous estimators while the MG estimates are all

between 22-25%. These results indicate that parameter heterogeneity can have a

substantial impact on the estimated effect of democracy. Turning to the DCCE

estimates, the current period effects are between 1.5%-2% and broadly comparable to

the corresponding MG estimates although for p = 2, the MG effect is somewhat more

pronounceḋ (∼1.87%) than the DCCE effect (∼1.51%). The magnitude of the DCCE

medium and long run effects are strongly dependent on the lag order employed with

the estimated effects being much larger (∼38%) when p = 1. When p = 2 or 4, the

WG estimates from Table 3.1 are larger than the corresponding DCCE estimates

while the opposite is true when p = 1.

Moving to results for the GDP growth rate presented in Panel B of Table 3.2, we

find that the MG estimates are larger than the homogeneous estimates in Table 3.1,

echoing the findings obtained from the data in levels. While the DCCE estimates are

comparable in magnitude to the MG estimates when p < 4, the DCCE estimates are

more notable with p = 4. The current period DCCE effects lie between 1.46%-1.65%

while the corresponding range for the MG estimate is 1.42%-1.59%. In contrast to

the results in levels, the DCCE estimates based on the growth rate are much less

sensitive to the number of lags of the dependent variable used in the estimation.

In summary, the foregoing results suggest that parameter heterogeneity and cross

section dependence can have important implications for the impact of democracy on

economic growth and the DCCE framework appears to provide a useful extension to

traditional dynamic panel approaches that can be used to quantify the influence of

these features when evaluating the economic consequences of democratization.

3.4 Conclusion

This paper investigates the robustness of the democracy-growth relationship using

an econometric approach that accounts for the twin features of parameter heterogene-

and negative which dominated the average based on all countries. The DCCE estimates are, however,
computed using all countries.
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ity and cross section dependence. The estimates show that the finding of a positive

and statistically significant effect of democracy on growth is robust to the presence

of these features. It is important to stress, however, that our findings are specific to

the dataset under consideration and do not necessarily generalize to countries outside

our sample.
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A. APPENDIX FOR: FACTOR-AUGMENTED ERROR

CORRECTION MODEL AVERAGING IN PREDICTIVE

REGRESSIONS

A.1 Proof of Theorem 1 and 2

Fist, I introduce some notations before the proofs: if a variable is with a “tilde”,

it is the first step factor estimation’s product. As comparisons, a variable with a hat

is a product from the second step forecasting regression. All variables are assumed to

have zero means. Eigenvectors are ordered such that the corresponding eigenvalues

are decreasing.

In this appendix, I assume there is no predictors other than the factors and cointe-

gration relationships for simplicity. Additionally, I assume there is one cointegration

relationship between Yt and F t: Yt = δ′F t + et, where I fix the coefficient for Yt

to be one without loss of generality. With the estimated factors, the equation is

rewritten as: Yt = δ′H−1
2 F̃ t + δ′(F t −H−1

2 F̃ t) + et. Under different assumptions of

the dataset and different I(1) factor estimations, (F t −H−1
2 F̃ t) has different orders.

If we assume there is no nonstationarity among the idiosyncratic components when

estimating the factors, Bai (2004) proves that (F t −H−1
2 F̃ t) = Op(

1
min(

√
N, T 3/2)

),

where H2 = (λ′b/N)(F ′F̃ /T 2)V −1
NT , and VNT is an r × r diagonal matrix consisting

of the first r eigenvalues of (1/NT 2)XX ′. If we assume there is potential nonsta-

tionarity in the idiosyncratic components, then (F t −H−1
2 F̃ t) = Op(

√
T

min(
√
N, T 3/4)

),

where H2 = (λ′λ/N)(f ′f̃/T )V −1
NT , and VNT is an r × r diagonal matrix consisting

of the first r eigenvalues of (1/NT )xx′. In the rest of the proof where the second

estimation method is used, I implicitly assume T < N .

Start from the forecasting equation :
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yt+h = α′f t + γ′(Yt + δ′F t) + εt

= α′H−1
1 f̃ t + γ′(Yt + δ′H−1

2 F̃ t) + {γ′δ′(F t −H−1
2 F̃ t)+

+α′(f t −H−1
1 f̃ t) + εt}

= α′H−1
1 f̃ t + γ′(Yt + δ̃

′
F̃ t)

+{γ′(δ′H−1
2 − δ̃

′
)F̃ t + γ′δ′(F t −H−1

2 F̃ t) +α′(f t −H−1
1 f̃ t) + εt}

= α̂′f̃ t + γ̂′(Yt + δ̃
′
F̃ t)

+{(H−1′

1 α− α̂)′f̃ + (γ − γ̂)′(Yt + δ̃
′
F̃ t)

+γ′(δ′H−1
2 − δ̃

′
)F̃ t + γ′δ′(F t −H−1

2 F̃ t) +α′(f t −H−1
1 f̃ t) + εt}

= α̂′f̃ t + γ̂′(Yt + δ̃
′
F̃ t) + ε̂t

, where H1 = (λ′λ/N)(f ′f̃/T )V −1
NT , and V NT is an r× r diagonal matrix consisting

of the first r eigenvalues of (1/NT )xx′. H2 follows different formulae depending

on which method is used for the estimation of nonstationary factors. In the error

structure, the first two terms come from the estimation of the forecasting regression,

the third to the fifth terms are errors from the cointegration and factor estimations,

and the last term is the original error term in the true forecasting regression. We

know that δ̃
p−→ δH−1

2 from Stock and Watson (1988). It is shown in Stock and

Watson (1988) and Stock (1987) that the estimated cointegration vectors have the

follow asymptotic property: δ̃ − δH−1
2 = Op(

1
T 1−∆ ), for all ∆ < 1.

The rest of the proof follows Cheng and Hansen (2015). From ε̂ = ε + u − û,

we have 1
T
ε̂(w)′ε̂(w) = 1

T
(u− û(w))′(u− û(w)) + 1

T
ε′ε + 2

T
(u− û(w))′ε. Using the

notation of CH,

C1T (w) = L1T (w) + 1
T
ε′ε+ 2√

T
r1T (w)− 2

T
r2T (w) ,

where r1T (w) = 1√
T
u′(I − P̃ (w))ε, r2T (w) = ε′P̃ (w)ε − δ̂2

∑M
m=1 w(m)k(m), P̃ (w)

is the projection matrix of [f̃
′
t, (Yt + δ̃

′
F̃ t)

′]′, and P is the projection matrix of the

true data [f ′t, (Yt + δ′F t)
′]′. As in CH , the goal is to show r1T (w)

p−→ κ1(w) and

r2T (w)
p−→ κ2(w), where κ1(w) and κs(w) are zero mean variables. The proofs have

two parts. The first part contains the proof of the above two convergences when the
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cointegration rank is r, which means all the cointegration relationships used as re-

gressors are “valid” stationary variables. The second part is to show that even there

are some “invalid” nonstationary terms in the predictive regression, those terms do

not affect the asymptotic theory.

There are two lemmas that are useful:

Lemma 1. Under assumptions R and Fs, for N, T →∞, and T
N
→ 0 if Bai and Ng

(2004) is used for estimating the levels of the factors,

(a) 1√
T
ε′(̃fH−1′

1 − f) = op(1)

(b) 1√
T
ε′(F̃ δ̃ − Fδ) = op(1)

Proof of Lemma 1 (a). 1√
T
ε′(̃fH−1′

1 − f) = H−1
1

1√
T

∑
f̃ tεt − 1√

T

∑
f tεt =

H−1
1

1√
T

∑T
t=1(f̃ t −H1f t)εt. Bai (2003) proves that H1 = O(1). The asymptotic

of 1√
T

∑T
t=1(f̃ t −H1f t)εt is discussed in both Gonçalves and Perron (2014) and Bai

and Ng (2006).

Proof of Lemma 1 (b). 1√
T
ε′(F̃ δ̃ − Fδ) = ε′ 1√

T
(F̃ δ̃ − FH ′2δ̃ + FH ′2δ̃ − Fδ) =

1√
T

∑T
t=1(Yt + δ̃F̃ t − Yt − δH−1

2 F̃ t)εt + 1√
T

∑T
t=1(Yt + δH−1

2 F̃ t − Yt − δF t)εt =I+II,

For I, (Yt + δ̃F̃ t−Yt− δH−1
2 F̃ t) = op(1), for all t. Thus, with the Assumption R,

I = op(1). For II, H−1
2 F̃ t − F t = H−1

2 (F̃ t −H2F t) = Op(
√
T√
N

) or Op(
1

min(
√
N,T 3/2)

) ,

where H2 = O(1) is shown in Bai (2003) and Bai (2004), depending on how the I(1)

factors are estimated.

Lemma 2. Under assumptions R and Fs, for N, T →∞, and T
N
→ 0 if Bai and Ng

(2004) is used for estimating the levels of the factors,

(a) H−1
1

∑T
t=1 f̃ tf̃

′
tH
−1′

1 /T
p−→

∑T
t=1 f tf

′
t/T

(b) H−1
1

∑T
t=1 f̃ t(Yt + δ̃

′
F̃ t)/T

p−→
∑T

t=1 f t(Yt + δ′F t)/T

(c)
∑T

t=1(Yt + δ̃
′
F̃ t)(Yt + δ̃

′
F̃ t)/T

p−→
∑T

t=1(Yt + δ′F t)(Yt + δ′F t)/T
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Proof of Lemma 2 (a). H−1
1

∑T
t=1 f̃ tf̃

′
tH
−1′

1 = H−1
1

1
T

∑T
t=1(f̃ t−H1f t+H1f t)(f̃ t−

H1f t+H1ft)
′H−1′

1

p−→
∑T

t=1 f tf
′
t/T , these proofs are straightforward from Gonçalves

and Perron (2014), Lemma A.2.

Proof of Lemma 2 (b). We can decompose the left-hand side into:

H−1
1

T∑
t=1

f̃ t(Yt + δ̃
′
F̃ t)/T = H−1

1

1

T

T∑
t=1

{f̃ t −H1f t +H1f t}{Yt + δ′F t

+ (δ̃
′ − δ′H−1

2 )F t + (δ̃
′ − δ′H−1

2 )(F̃ t −H2F t)

+ δ′H−1
2 (F̃ t −H2F t)}′

Thus it is sufficient to show that 1
T

∑T
t=1{f̃ t − H1f t}(Yt + δ′F t)

′, 1
T

∑T
t=1(f̃ t −

H1f t)F
′
t(δ̃
′− δ′H−1

2 ), 1
T

∑T
t=1(f̃ t−H1f t)(F̃ t−H2F t)

′(δ̃
′− δ′H−1

2 )′, 1
T

∑T
t=1(f̃ t−

H1f t)(F̃ t−H2F t)
′δ′, 1

T

∑T
t=1 f tF

′
t(δ̃
′−δ′H−1

2 ), 1
T

∑T
t=1 f t(F̃ t−H2F t)

′(δ̃
′−δ′H−1

2 ),

and 1
T

∑T
t=1 f t(F̃ t −H2F t)

′δ′ are all op(1).

The first four terms are op(1), and there are intermediate results from Bai (2003),

Bai (2004), and Bai and Ng (2004). We know that (f̃ t −H1f t) = op(1) and (F̃ t −

H2F t) = Op(
√
T√
N

) or Op(
1

min(
√
N,T 3/2)

), thus

1

T

T∑
t=1

(f̃ t −H1f t)F
′
t(δ̃
′ − δ′H−1

2 ) =
1

T

T∑
t=1

(f̃ t −H1f t)
F ′t√
T

√
T (δ̃′ − δ′H−1

2 ) = op(1).

Similarly,

1

T

T∑
t=1

(f̃ t −H1f t)(F̃ t −H2F t)
′(δ̃
′ − δ′H−1

2 )′

=
1

T

T∑
t=1

(f̃ t −H1f t)(F̃ t −H2F t)
′(δ̃
′ − δ′H−1

2 ) = op(1)

and 1
T

∑T
t=1(f̃ t −H1f t)(F̃ t −H2F t)

′δ′ = op(1).

For the last three terms, first we have || 1
T

∑T
t=1 f tF

′
t(δ̃− δH−1

2 )′|| =||δ̃− δH−1
2 ||

|| 1
T

∑T
t=1 f tF

′
t|| = op(1) and ||(δ̃−δH−1

2 )′|||| 1
T

∑T
t=1 f t(F̃ t−H2F t)

′|| = Op(
1

T 1−∆ )||F t

−H−1
2 F̃ t|| = op(1). Then, || 1

T

∑T
t=1 f t(F̃ t − H2F t)

′δ′|| = Op(1)|| 1
T

∑T
t=1(F̃ t −



101

H2F t)
′||, which is op(1) depending on if we assume there is nonstationary idiosyn-

cratic components.

Proof of Lemma 2 (c). Similar to the proof of Lemma 2 (b), (Yt + δ̃
′
F̃ t) can be

decomposed to {Yt+δ′F t+(δ̃
′−δ′H−1

2 )F t+(δ̃
′−δ′H−1

2 )(F̃ t−H2F t)+δ′H−1
2 (F̃ t−

H2F t)}. Thus, we need to prove that each of the last three terms is op(1),which is

shown in Stock and Watson (1988), Bai (2003), and Bai (2004).

Proof of Theorem 1. Consider the first part where all predictors are stationary.

First, I show that σ̂2 p−→ σ2, where σ̂2 =
∑T
t=1 ε̂

2
t

T
. By examining the terms in the resid-

uals, we have ||f t−H−1
1 f̃ t|| = Op(

1
min(

√
N, T )

), ||F t−H−1
2 F̃ t|| = Op(

1
min(

√
N, T 3/2)

) or

Op(
√
T√
N

), (δ̂
′
− δ′H−1

2 )F̃ t = Op(
1

T 1−∆ )
√
T , (α̂−α) = Op(

1√
T

) and (γ̂ − γ) = Op(
1√
T

).

Thus, with the largest model nests the true model, σ̂2 p−→ σ2.

Second, I show that r2T (w)
p−→ κ2(w), which means ε′P̃ (w)ε

p−→ ε′P (w)b. From

the definition of the projection matrix,

P̃ (w) = [f̃ (Y + F̃ δ̃)]

 ∑T
t=1 f̃ tf̃

′
t

∑T
t=1 f̃ t(Yt + δ̃

′
F̃ t)∑T

t=1(Yt + δ̃
′
F̃ t)f̃

′
t

∑T
t=1(Yt + δ̃

′
F̃ t)(Yt + δ̃

′
F̃ t)

−1

×[f̃ (Y + F̃ δ̃)]′

= [f̃ (Y + F̃ δ̃)]

 H−1
1 /
√
T 0

0 1/
√
T


×

 H−1
1

∑T
t=1 f̃ tf̃

′
tH
−1′

1 /T H−1
1

∑T
t=1 f̃ t(Yt + δ̃

′
F̃ t)

′/T∑T
t=1(Yt + δ̃

′
F̃ t)f̃

′
tH
−1′

1 /T
∑T

t=1(Yt + δ̃
′
F̃ t)(Yt + δ̃

′
F̃ t)

′/T

−1

×

 H−1′

1 /
√
T 0

0 1/
√
T

 [f̃ (Y + F̃ δ̃)]′

.
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By applying Lemma 1 and Lemma 2, we can separately show that ε′(̃fH−1
1 − f) =

op(1), ε′(F̃ δ̃ − Fδ) = op(1). Thus, H−1
1

∑T
t=1 f̃ tf̃

′
tH
−1′

1 /T H−1
1

∑T
t=1 f̃ t(Yt + δ̃

′
F̃ t)

′/T∑T
t=1(Yt + δ̃

′
F̃ t)f̃

′
tH
−1′

1 /T
∑T

t=1(Yt + δ̃
′
F̃ t)(Yt + δ̃

′
F̃ t)

′/T


−

 ∑T
t=1 f tf

′
t/T

∑T
t=1 f t(Yt + δ′F t)/T∑T

t=1(Yt + δ′F t)f
′
t/T

∑T
t=1(Yt + δF t)(Yt + δF t)/T

 = op(1)

Next, by applying Lemma C.1 in Bai and Ng (2004), H−1
1

∑T
t=1 f̃ tf̃

′
tH
−1′

1 /T H−1
1

∑T
t=1 f̃ t(Yt + δ̃′F̃t)/T∑T

t=1(Yt + δ̃
′
F̃ t)f̃

′
tH
−1′

1 /T
∑T

t=1(Yt + δ̃
′
F̃ t)(Yt + δ̃

′
F̃ t)/T

−1

−

 ∑T
t=1 ftf

′
t/T

∑T
t=1 ft(Yt + δFt)

′/T∑T
t=1(Yt + δFt)f

′
t/T

∑T
t=1(Yt + δFt)(Yt + δFt)

′/T

−1

= op(1)

.

This proves ε′P̃ (w)ε
p−→ ε′P (w)ε. The proof of r1T (w)

p−→ κ1(w) is similar.

The last part of the proof of Theorem 1 is to show that when we incorrectly include

some nonstationary regressors in the forecasting regression, those “useless” regressors

do not affect the asymptotic properties of the forecasts. Now assume the true model

is

yt+h = α′f t + γ′1(Yt + δ′1F t) + εt ,

but we are estimating

yt+h = α′f t + γ′1(Yt + δ′1F t) + γ′2(Yt + δ′2F t) + εt .

In the prediction, the regressors are f̃ t, at = (Yt + δ̃
′
1F̃ t), and bt = (Yt + δ̃

′
2F̃ t).

Let ü1t = γ̈1at and ü2t = γ̈2bt,

1
T
ε̈(w)′ε̈(w) = 1

T
(u− ü1(w)− ü2(w))′(u− ü1(w)− ü2(w)) + 1

T
ε′ε

+ 2
T

(u− ü1(w)− ü2(w))′ε

= 1
T

(u− ü1(w))′(u− ü1(w)) + 1
T
ε′ε

+ 2
T

(u− ü1(w))′ε+ 2
T

(ü2(w) + ε)′ü2(w)

,
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where the last term is of interest. Since we are using OLS for the estimations, the

formula of the estimated coefficients are:

√
T (γ̈1 − γ1)

T (γ̈2 − 0)
=

 ∑T
t=1 ata

′
t/T

∑T
t=1 atb

′
t/T

3/2∑T
t=1 bta

′
t/T

3/2
∑T

t=1 btb
′
t/T

2

−1  ∑T
t=1 atεt/

√
T∑T

t=1 btεt/T


, thus ü2t = γ̈2(Yt + δ̃1F̃t) = Op(

1√
T

) and 2
T

(ü2(w) + ε)′ü2(w) = Op(
1√
T

).

The final step is to show that with the “invalid” I(1) regressors, γ̈1 are asymptot-

ically equivalent to γ̂1 when there are just the f̃ t and at = (Yt + δ̃
′
1F̃ t) as regressors.

Back to the above distribution formula, applying the formula for inverse of partitioned

matrix,

√
T (γ̈1 − γ1) = {

∑T
t=1 ata

′
t

T
−

∑T
t=1 atb

′
t

T 3/2 (
∑T
t=1 btb

′
t

T 2 )−1
∑T
t=1 bta

′
t

T 3/2 }−1
∑T
t=1 atεt√
T

−(
∑T
t=1 ata

′
t

T
)−1

∑T
t=1 atb

′
t

T 3/2 {
∑T
t=1 btb

′
t

T 2 −
∑T
t=1 atb

′
t

T 3/2 (
∑T
t=1 ata

′
t

T
)−1∑T

t=1 bta
′
t

T 3/2 }−1
∑T
t=1 btεt
T

= (
∑T
t=1 ata

′
t

T
)−1

∑T
t=1 atεt√
T
− (

∑T
t=1 ata

′
t

T
)−1

∑T
t=1 atb

′
t

T 3/2 (
∑T
t=1 btb

′
t

T 2 )−1
∑T
t=1 btεt
T

+Op(
1√
T

)

= (
∑T
t=1 ata

′
t

T
)−1

∑T
t=1 atεt√
T

+Op(
1√
T

)

→
√
T (γ̂1 − γ1)

,with
∑T
t=1 atb

′
t

T 3/2 = 1√
T

∑T
t=1 atb

′
t

T
= Op(

1√
T

). Thus, ü1t → û1t, and 1
T
ε̈(w)′ε̈(w)

p−→
1
T
ε̂(w)′ε̂(w)

p−→ σ2.

Proof of Theorem 2. The proof of Theorem 2 is similar to Theorem 1. First, if the

regressors contain any nonstationarity, the above proof shows that this extra predicted

part has a smaller order than O( 1√
T

). Thus, we can write the CVA criterion as:

CVh,T (w) = 1
T
ε̌h(w)′ε̌h(w) = Ľ(w) + 1

T
ε′ε+ 2√

T
ř3T (w) + op(

1√
T

), where Ľ(w) = 1
T

(u−

ǔh(w))′(u− ǔh(w)) and ř3T (w) =
∑M

m=1 w(m) 1√
T

∑T−h
t=1−h(ut − z̃t(m)′b̌t,h(m))εt+h.

Next, we can further decompose ř3T (w) into four terms: ř3T (w) = ř0
3T (w) +

š1T (w)+ š2T (w)+
∑M

m=1w(m) 1√
T

∑T−h
t=1−h{zHt(m)− z̃(m)}′b̌t,h(m)εt+h, where ř0

3T (w),

š1T (w), and š2T (w) have the same formula of CH equations (4.18), (4.19) and (4.20).
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For the last term 1√
T

∑T−h
t=1−h{zHt(m)−z̃(m)}′b̌t,h(m)εt+h = 1√

T

∑T−h
t=1−h{[zHt(m)−

z̃t(m)]′b(m) + z̃(m)′[b(m)− b̌t,h(m)]}εt+h, from the Lemma 1 and Theorem 2 in CH,

[b(m) − b̌t,h(m)] = op(1) and δ′F t − δ̃
′
F̃ t = δ′(F t −H−1

2 F̃ t) + (δ′H−1
2 − δ̃

′
)F̃ t =

Op(
√
T√
N

) +Op(
1

T 1/2−∆ ) or Op(
1

min(
√
N,T 3/2)

) +Op(
1

T 1/2−∆ ) for all t. Withb̌t,h(m) = O(1)

and Assumption F, we have ř3T (w)
p−→ ř0

3T (w), and ř0
3T (w)

d−→ κ3(w), which proves

E(κ1(w)) = 0.

A.2 Proof of Theorem 3 and 4

In this appendix, I show the unbiasedness of MMA and CVA criteria using the I(1)

regressors as Tu and Yi (2017). Assume the true model is yt+h = αyβ
′
0[Yt−1 F

′
t−1]′+εt,

and αy is the first row of the adjustment matrix α0.

Proof the Theorem 3. From Cheng and Hansen (2015), we know that ε̂ = ε+u−û,

and 1
T
ε̂(w)′ε̂(w) = 1

T
(u − û(w))′(u − û(w)) + 1

T
ε′ε + 2

T
(u − û(w))′ε. Following the

notation of CH,

C1T (w) = L1T (w) + 1
T
ε′ε+ 2√

T
r4T (w)− 2

T
r5T (w) ,

where r4T (w) = 1√
T
u′(I−P̃ (w))ε, r5T (w) = ε′P̃ (w)ε−σ̂2

∑M
m=1w(m)k(m). The true

regressors can be considered as the error correction term β′0Zt = Wt. Correspondingly,

the set of regressors are now formed by subsets of the full error-correction matrix,

and the mapping should be one-to-one. Without loss of generosity, let P̃ (w) be the

projection matrix of [f̃ t
′
, W̃ t

′
]′, and P is the projection matrix of the true data

[f ′t, W
′
t]
′. As CH , the goal is to show r4T (w)

p−→ κ4(w) and r5T (w)
p−→ κ5(w). The

proof have two parts. The first part is to show the consistency of σ̂2. The second part

is to prove r4T (w)
d−→ κ4(w), r5T (w)

d−→ κ5(w), with E(κ4(w)) = 0, E(κ5(w)) = 0.

For the first part, the proof is similar to Theorem 1. For the second part, define

r0
4T (w) = 1√

T
u′(I − P (w))ε, r0

5T (w) = ε′P (w)ε − σ2
∑M

m=1 w(m)k(m), and rewrite

u = Zb = Wα′y. Now, with P̃ (w) = W (w)(W ′(w)W (w))−1W ′(w), r4T (w) turns

into:
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r4T (w) =
1√
T
u′(I − P (w))ε

=
1√
T
αyW

′(ε−W (w)(W ′(w)W (w))−1W ′(w)ε)

=
1√
T
αyW

′ε

− 1√
T
αyW

′W (w)√
T

(
W ′(w)W (w)

T
)−1W

′(w)ε√
T

→ κ4

Similarly, ε′P (w)ε is

ε′P (w)ε =
ε′W (w)√

T
(
W ′(w)W (w)

T
)−1W

′(w)ε√
T

→ κ5.

These together prove that r0
4T (w) and r0

5T (w) converge in distribution to some zero

mean random variables.

Next, similar to CH, we show that the terms AT , B1T and B2T in equation (4.12)

of CH are op(1). The rest follows the proof of Theorem 1.

Proof of Theorem 4. The proof of Theorem 4 is similar to Theorem 2. First, since

the I(1) variables are assumed to be cointegrated, with the omission of the rotation

matrices of factor estimations, we can write the CVA criterion as:

CVh,T (w) = 1
T
ε̌h(w)′ε̌h(w) = Ľ(w)+ 1

T
ε′ε+ 2√

T
ř6T (w)+o( 1√

T
), where Ľ(w) = 1

T
(u−

ǔh(w))′(u− ǔh(w)) and ř6T (w) =
∑M

m=1 w(m) 1√
T

∑T−h
t=1−h(ut − z̃t(m)′b̌t,h(m))εt+h.

We can further decompose ř6T (w) as

ř6T (w) = ř0
6T (w) + š3T (w) + š4T (w) +

M∑
m=1

w(m)
1√
T

T−h∑
t=1−h

{zt(m)− z̃(m)}′b̌t,h(m)εt+h,

where ř0
6T (w), š3T (w), and š4T (w) have the same formula of CH equations (4.18),

(4.19) and (4.20). Note that the term b(m) − b̂(m) still has the same order when

the regressors are I(1) and cointegrated, but the asymptotic formula follows equation

(A.5) in Tu and Yi (2017).
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For the last term 1√
T

∑T−h
t=1−h{zt(m) − z̃(m)}′b̌t,h(m)εt+h = 1√

T

∑T−h
t=1−h{[zt(m) −

z̃t(m)]′b(m) + z̃(m)′[b(m) − b̌t,h(m)]}εt+h, from Lemma 1 and Theorem 2 in CH,

[b(m) − b̌t,h(m)] = op(1) and zt(m) − z̃t(m) = Op(
√
T√
N

) or Op(
1

min(
√
N,T 3/2)

) for all t.

With b̌t,h(m) = O(1) and Assumption F, we have ř6T (w)
p−→ ř0

6T (w), and ř0
6T (w)

d−→

κ6(w), with E(κ6(w)) = 0.

A.3 Proof of Propositions 1-3

In this appendix, I discuss the proofs of Propositions 1-3 and their related lemmas.

The theoretical work is built on the assumptions regarding factor estimations from

Bai (2003) and Bai (2004), as well as the Conditions 1-4, f1-f4, and F1-F4. I assume

the first M0 candidate models are under-fitted, and S = M −M0.

Lemma 3 Assume the largest model is yt+h =
∑R

r βrf̃rt+et and R is the total number

of factors. Denote P̃m as the projection matrix of the estimated stationary factors

P̃m = f̃m(f̃m
′
f̃m)−1f̃m

′
= 1

T
f̃mf̃

′
m, and am = y′(I − P̃m)y. Under the assumptions

and N, T →∞, am − aM = Op(T ) when m ∈ {1, ..., M0}.

Proof of Lemma 3 Consider an FAR structure:

yt+h = β′f t + et

= β′H−1
1 f̃ t + {β′(f t −H−1

1 f̃ t) + et}

= β̃
′
f̃ t + ẽt

Let β̃mc = Πmcβ̃, where β̃ is the true coefficient vector when the estimated factors

are regressors, and Πm = (Irm , 0rm×(R−rm)) is the selection matrix with rm being the

number of factors in model m.

am − aM = (ẽ+ f̃mcβ̃mc)
′(I − P̃m)(ẽ+ f̃mcβ̃mc)− ẽ′(I − PM)ẽ

= (f̃mcβ̃mc)
′(I − P̃m)(f̃mcβ̃mc) + 2(ẽ)′(I − P̃m)(f̃mcβ̃mc)− ẽ′(P̃m − P̃M)ẽ

= I + II + III
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It is not hard to show that I = (f̃mcβmc)
′(I − P̃m)(f̃mcβmc) = Op(T ).

II = 2(ẽ)′(I − P̃m)(f̃mcβ̃mc)

= 2(e+ (f − f̃H−1′

1 )β)′(I − P̃m)(f̃mcβ̃mc)

= 2e′(I − P̃m)(f̃mcβ̃mc) + 2((f − f̃H−1′

1 )β)′(I − P̃m)(f̃mcβ̃mc)

= Op(
√
T ) + op(

√
T )

where the second part is discussed in Gonçalves and Perron (2014) and Bai and Ng

(2006).

III = ẽ′(P̃m − P̃M)ẽ

= (e+ (f − f̃H−1′

1 )β)′(P̃m − P̃M)(e+ (f − f̃H−1′

1 )β)

= e′(P̃m − P̃M)e+ 2((f − f̃H−1′

1 )β)′(P̃m − P̃M)e

+ ((f − f̃H−1′

1 )β)′(P̃m − P̃M)((f − f̃H−1′

1 )β))

= Op(1) .

These prove Lemma 3.

Lemma 4 Assume the largest model is yt+h =
∑

r βrf̃rt+γY Yt+γF F̃ t+et. DenoteH1

and H2 as the rotation matrices for the estimated stationary and nonstationary fac-

tors, respectively. Let Cmc = CΠ
′
mc , and θmc = Πmcθ, where Πm = (Irm , 0rm×(R−rm))

is the selection matrix. Moreover, denote P̃m as the projection matrix of the esti-

mated stationary factors and cointegrations P̃m = [f̃m, (Y, F̃m)Cm]{[f̃m, (Y, F̃m)Cm]′

[f̃m, (Y, F̃m)Cm]}−1 [f̃m, (Y, F̃m)Cm]′, where C is the cointegration vector matrix be-

tween Y and F̃ . Let am = y′(I− P̃m)y, then am−aM = Op(T ) when m ∈ {1, ..., M0}

and N, T →∞.

Proof of Lemma 4 Consider an FECM structure:
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yt+h = β′f t + γY Yt + γF
′F t + et

= β′H−1
1 f̃ t + γY Yt + γ′

FH
−1
2 F̃ t

+ {γ′
F (F t −H−1

2 F̃ t) + β′(f t −H−1
1 f̃ t) + et}

= β′H−1
1 f̃ t + γY Yt + γF

′H−1
2 F̃ t + ẽt

= β′H−1
1 f̃ t + γY Yt + γ̃F

′F̃ t + ẽt

= β′H−1
1 f̃ t + θ′[Yt, F̃

′
t]
′C + ẽt

= β̃
′
f̃ t + θ′[Yt, F̃

′
t]
′C + ẽt

Denote θ as the adjustment vector. The error correction structure indicates that

the same subset of f̃ and F̃ exists in the model. Note that Y and F̃ are assumed

to be cointegrated with rank R, and C has form



C11 C21 . . . CR1

C12 C22 . . . CR2

C23 . . . CR3

...

CRR+1


without

loss of generality.

am − aM = (ẽ+ f̃mcβ̃mc + [Y, F̃ ]Cmcθmc)
′(I − P̃m)(ẽ+ f̃mcβ̃mc + [Y, F̃ ]Cmcθmc)

− ẽ′(I − PM)ẽ

= (f̃mcβ̃mc + [Y, F̃ ]Cmcθmc)
′(I − P̃m)(f̃mcβ̃mc + [Y, F̃ ]Cmcθmc)

+ 2ẽ′(I − P̃m)(f̃mcβ̃mc + [Y, F̃ ]Cmcθmc)− ẽ′(P̃m − P̃M)ẽ

= I + II + III

I = (f̃mcβmc + [Y, F̃ ]Cmcθmc)
′(I − P̃m)(f̃mcβmc + [Y, F̃ ]Cmcθmc) = Op(T ).
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II = 2(ẽ)′(I − P̃m)(f̃mcβ̃mc + [Y, F̃ ]Cmcθmc)

= 2(e+ (f − f̃H−1′

1 )β + (F − F̃H−1′

2 )γF )′(I − P̃m)(f̃mcβ̃mc + [Y, F̃ ]Cmcθmc)

= 2e′(I − P̃m)(f̃mcβ̃mc + [Y, F̃ ]Cmcθmc)

+ 2((f − f̃H−1′

1 )β)′(I − P̃m)(f̃mcβ̃mc + [Y, F̃ ]Cmcθmc)

+ 2((F − F̃H−1′

2 )γF )′(I − P̃m)(f̃mcβ̃mc + [Y, F̃ ]Cmcθmc)

= Op(
√
T ) + op(

√
T ) + op(1)

The proof of 1
T

∑
t(f
′
t(F t − H−1

2 F̃ t)) = op(T
−1) + op(N

−1/2T−1/2) is similar to

Lemma B.4 (i) of Bai (2004) with the application of Bai (2003) Assumption F. Then

1
T

∑
t(f̃
′
t(F t − H−1

2 F̃ t)) = 1
T

∑
t((f̃ t − H1f t)

′(F t − H−1
2 F̃ t)) + 1

T

∑
t f
′
tH
′
1(F t −

H−1
2 F̃ t) = op(T

−1) + op(N
−1/2T−1/2). Finally, from Theorem 2 of Bai (2004),

III = ẽ′(P̃m − P̃M)ẽ

= (e+ (f − f̃H−1′

1 )β)′(P̃m − P̃M)(e+ (f − f̃H−1′

1 )β)

+ ((F − F̃H−1′

2 )γF )′(P̃m − P̃M)((F − F̃H−1′

2 )γF )

+ 2(e+ (f − f̃H−1′

1 )β)′(P̃m − P̃M)((F − F̃H−1′

2 )γF )

= Op(1) + op(1) .

These prove Lemma 4.

Proof of Proposition 1

(1) From Hansen (2010) equation (13), êt,h = êols,t+xt−h(z
′z−z′t,hzt,h)−1z′t,hêols,t:h.

Let Cmj denote the (m, j) element of the CVA criteria, and the superscripts (j) and

(m) denote the model candidates, then
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CVmj =
∑
t

ê
(m)
t,h ê

(j)
t,h

=
∑
t

{ê(m)
ols,t + z

(m)
t−h(z

(m)′z(m) − z(m)′

t,h z
(m)
t,h )−1z

(m)′

t,h ê
(m)
ols,t:h}

× {ê(j)
ols,t + z

(j)
t−h(z

(j)′z(j) − z(j)′

t,h z
(j)
t,h)−1z

(j)′

t,h ê
(j)
ols,t:h}

=
∑
t

ê
(m)
ols,tê

(j)
ols,t +

∑
t

{z(m)
t−h(z

(m)′z(m) − z(m)′

t,h z
(m)
t,h )−1z

(m)′

t,h ê
(m)
ols,t:h}

× {z(j)
t−h(z

(j)′z(j) − z(j)′

t,h z
(j)
t,h)−1z

(j)′

t,h ê
(j)
ols,t:h}

+
∑
t

ê
(m)
ols,t{z

(j)
t−h(z

(j)′z(j) − z(j)′

t,h z
(j)
t,h)−1z

(j)′

t,h ê
(j)
ols,t:h}

+
∑
t

ê
(j)
ols,t{z

(m)
t−h(z

(m)′z(m) − z(m)′

t,h z
(m)
t,h )−1z

(m)′

t,h ê
(m)
ols,t:h}

= {Φmj + Ψmj + σ̂2(Km −Kj)}

Here Φmj follows the same definition of Zhang and Liu (2018). Ψmj is self-defined

through the equation.

From matrix algebra,

{z(j)′

t−h(z
(j)′z(j) − z(j)′

t,h z
(j)
t,h)−1z

(j)′

t,h ê
(j)
ols,t:h}

= trace{z(j)′

t−h(z
(j)′z(j) − z(j)′

t,h z
(j)
t,h)−1z

(j)′

t,h ê
(j)
ols,t:h}

= trace{(z(j)′z(j) − z(j)′

t,h z
(j)
t,h)−1

s=h−1∑
s=−h+1

z
(j)′

t−h+sê
(j)
ols,t+sz

(j)
t−h}

= trace{(
z(j)′z(j) − z(j)′

t,h z
(j)
t,h

T
)−1 1

T

s=h−1∑
s=−h+1

z
(j)′

t−h+sê
(j)
ols,t+sz

(j)
t−h}

= Op(T
−1).

Thus,
∑

t{z
(m)′

t−h (z(m)′z(m)−z(m)′

t,h z
(m)
t,h )−1z

(m)′

t,h ê
(m)
ols,t:h} {z

(j)′

t−h(z
(j)′z(j)−z(j)′

t,h z
(j)
t,h)−1 z

(j)′

t,h

ê
(j)
ols,t:h} = Op(1), and

∑
t ê

(j)
ols,t{z

(m)′

t−h (z(m)′z(m) − z(m)′

t,h z
(m)
t,h )−1z

(m)′

t,h ê
(m)
ols,t:h} =

∑
t ê

(j)
ols,t

{z(m)′

t−h (
z(m)′z(m)−z(m)′

t,h z
(m)
t,h

T
)−1 1

T

∑s=h−1
s=−h+1 z

(m)′

t−h+sê
(m)
ols,t+s} = op(

√
T ). Thus, applying the

similar proof as Zhang and Liu (2018) Theorem 3, with the same definition of am,

equation (A.13) of Zhang and Liu (2018) remains the same:
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ŵCV A,m ≤ (am − aM)−1{2σ̂2(KM − Km) + ŵCV A,m(ΨMM + Ψmm − ΨMm − ΨmM) +

2
∑M

j=1 ŵCV A,j(ΨMj −Ψmj)}. Part (1) of Proposition 1 is then implied .

(2) Now consider an FAR:

yt+h = β′f t + et

= β′H−1
1 f̃ t + {β′(f t −H−1

1 f̃ t) + et}

= β̃
′
f̃ t + ẽt

= β̂
′
f̃ t + {β′(f t −H−1

1 f̃ t) + (β̃ − β̂)′(f̃ t −H1f t) + (β̃ − β̂)′H1f t + et}

= β̂
′
f̃ t + êt

where (f t −H−1
1 f̃ t) and (β̃ − β̂) have orders smaller than et.

From Lemma 3, (am − aM)−1 = Op(1/T ). The formula of CVmj is revised by

replacing x with f̃ , and the formula for êt is updated according to the above notation.

{f̃ (j)′

t−h(f̃
(j)′

f̃
(j) − f̃ (j)′

t,h f̃
(j)

t,h)−1f̃
(j)′

t,h ê
(j)
ols,t:h}

= trace{(Ir − f̃
(j)′

t,h f̃
(j)

t,h)−1(
s=h−1∑
s=−h+1

f̃
(j)′

t−h+sê
(j)
ols,t:h+s)f̃

(j)′

t−h}

= Op(T
−1),

wheremax1≤t≤T ||f̃t|| ≤ max1≤t≤T ||H1ft|+max1≤t≤T ||f̃t−H1ft|| = Op(max1≤t≤T ||ft||).

Thus,
∑

t{f̃
(m)′

t−h (f̃
(m)′

f̃
(m)−f̃ (m)′

t,h f̃
(m)

t,h )−1f̃
(m)′

t,h ê
(m)
ols,t:h}{f̃

(j)′

t−h(f̃
(j)′

f̃
(j)−f̃ (j)′

t,h f̃
(j)

t,h)−1f̃
(j)′

t,h

ê
(j)
ols,t:h} = Op(1), as well as

∑
t ê

(j)
ols,t {f̃

(m)′

t−h (f̃
(m)′

f̃
(m) − f̃ (m)′

t,h f̃
(m)

t,h )−1f̃
(m)′

t,h ê
(m)
ols,t:h} =∑

t ê
(j)
ols,t {f̃

(m)′

t−h (
f̃

(m)′
f̃

(m)−f̃ (m)′
t,h f̃

(m)
t,h

T
)−1 1

T

∑s=h−1
s=−h+1 f̃

(m)′

t−h+sê
(m)
ols,t+s} = op(

√
T ),

the rest of proof is similar to the proof of part (1).

(3) Move to the FECM structure:
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yt+h = β′f t + γY Yt + γF
′F t + et

= β′H−1
1 f̃ t + γY Yt + γF

′H−1
2 F̃ t

+ {γ′
F (F t −H−1

2 F̃ t) + β′(f t −H−1
1 f̃ t) + et}

= β̂
′
f̃ t + γ̂Y Yt + γ̂F

′F̃ t

+ {γ′
F (F t −H−1

2 F̃ t) + β′(f t −H−1
1 f̃ t)

+ (β′H−1
1 − β̂)′f̃ t + (γF

′H−1′

2 − γ̂F )′F̃ t + (γY − γ̂Y )Yt + et}

(γF
′H−1′

2 − γ̂F )′F̃ t + (γY − γ̂Y )Yt is op(1) given the cointegration assumption and

Tu and Yi (2017) Lemma 3. γ̂Y and γ̂F
′ have the same asymptotic as β̂, and the

terms in the bracket of the above equation is {et + op(1)}. Thus, from Lemma 4,

(am−aM)−1 = Op(1/T ), we can replace the f̃ by F̃ . The proof is similar to the proof

of part (2).

Proof of Proposition 2

The proof of the first half of the proposition is straightforward under the assumptions

and conditions. For the second half of the proposition, we know that the weights

are op(1) for the under-fitted models, and the proof that CVmj = op(
1√
T

) for m, j ∈

{1, ..., M0} is the same as Zhang and Liu (2018). The focus is on how to simulate

weights for the just-fitted and over-fitted models.

From Hansen (2010), CVmj =
∑

t ê
(m)
t,h ê

(j)
t,h ≈ trace((Q̌s)

−1Ω̌s) + trace((Q̌j)
−1Ω̌j)

−e′[f̃ , (Y, F̃ )]′ V̌max{s,j}[f̃ , (Y, F̃ )]e, where Q̌, V̌ and Ω̌ are functions of [f̃ , (Y, F̃ )].

Denote C contains the cointegration vectors and Č as its Moore–Penrose inverse. We

can transform CVmj into by playing with the term

 IR

C


(2R+1)×2R

×

 IR

Č


2R×(2R+1)

. Note

 IR

C

 is full column rank, and

 IR

Č

 is full

row rank. Thus, as an example,



113

(

 IR

Č ′

 IR

C ′

 Q̌

 IR

C

 IR

Č

)+

=

 IR

C

 IR

Č ′

 IR

C ′

 Q̌

 IR

C

+

=

 IR

C

 IR

Č ′

 IR

C ′

 Q̌

 IR

C

+

=

 IR

C

 IR

C ′

 Q̌

 IR

C

+  IR

C ′


=

 IR

C

 Q̃−1

 IR

C ′


Then, CVmj ≈ trace((Q̃s)

−1Ω̃s) + trace((Q̃j)
−1Ω̃j) − e′[f̃ , (Y, F̃ )C]′Ṽmax{s,j}[f̃ ,

(Y, F̃ )C]e, where Q̃, Ṽ and Ω̃ are functions of [f̃ , (Y, F̃ )C]. Given F̃ → FH20

and f̃ → fH10, the (s, j)th element of Σsj = trace((Qs)
−1Ωs) + trace((Qj)

−1Ωj) −

ξ′Vmax{s,j}ξ + op(1).

Proof of Proposition 3 The proof are essentially the same as the proof of Theorem

5 of Zhang and Liu (2018).

A.4 Variable transformations
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Table A.1.: The right-hand side

Categories Stationarity I(1)

Income, output ∆log(xt) log(xt)

Labor market ∆log(xt) log(xt)

Construction, inventory and orders ∆log(xt), ∆xt log(xt), xt

Interest rates and asset prices ∆xt xt

Prices, wages and money ∆2log(xt) ∆log(xt)

Table A.2.: The left-hand side

stationary transformations yht+h transformation

∆log(yt) 400/k ∗ {log(yt+h)− log(yt)}

∆yt 1/k ∗ (yt+h − yt)

∆2log(yt) 400/k ∗ {log(yt+h)− log(yt)} − 400{log(yt)− log(yt−1)}
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B. APPENDIX FOR: REVISITING THE

DEMOCRACY-GROWTH NEXUS: NEW EVIDENCE

FROM A DYNAMIC COMMON CORRELATED

EFFECTS APPROACH

This appendix contains supplementary results pertaining to formal diagnostic tests

for parameter heterogeneity and cross section dependence and estimates of the degree

of cross section dependence.

B.1 Diagnostic Tests

In order to motivate the use of Chudik and Pesaran (2015) dynamic common

correlated effects (DCCE) approach, we conduct a set of diagnostic tests for parameter

heterogeneity and cross section dependence, the two potential features of the data that

the approach is designed to account for. When testing for the presence of one of these

features, it is important to allow for the presence of the other so that the outcome

of the test is not affected by model misspecification emanating from ignoring one of

these features. We therefore test for parameter heterogeneity while allowing for cross

section dependence and vice-versa. We only briefly describe the tests here and refer

the reader to the original papers for details.

First, we conduct tests of the null hypothesis of slope homogeneity that allow for

the potential presence of cross section dependence through an interactive fixed effects

specification. Two procedures are employed in this regard: (1) the LM test of Su and

Chen (2013) that is based on testing if the slope coefficients in the regression of the

restricted (imposing homogeneity) residuals on the observable regressors are zero; (2)

the Swamy-type test of Ando and Bai (2015) that is calculated from the dispersion of

country-specific slope estimates from a pooled estimate, both of which are obtained
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from estimating an interactive effects model. The pooled estimate is taken to be the

mean of the individual slope estimates. Both tests possess a standard normal limiting

distribution under the null hypothesis. The results are presented in Panel A of Table

B.1. When GDP is measured in levels, both tests are significant across the three lag

order specifications at the 1% level, except the Su and Chen test with four lags that

rejects only at the 5% level. For GDP growth, the evidence against slope homogeneity

is weaker when based on the Su and Chen test although the Ando and Bai test still

rejects the null at the 1% level in all cases.

Next, we consider procedures for testing cross section dependence. We use two

tests to this end: (1) Pesaran (2015) CD test which is based on estimated pairwise

error correlations that allows for weak cross section dependence under the null hy-

pothesis; (2) Castagnetti et al. (2015) test for homogeneous factor loadings computed

using the maximum deviation of the estimated loadings from its mean so that the

factor structure reduces to a time effect under the null hypothesis. To construct the

CD test, the residuals are obtained from country-wise estimation of the dynamic

heterogeneous model (1) which entails estimating N country-specific time series least

squares regressions. The test has a standard normal limiting distribution under the

null hypothesis so that standard critical values can be used. To construct the test

based on factor loadings, we employ the DCCE estimates to obtain the residuals in

the first step which are then used to estimate the factor loadings by principal compo-

nents in a second step. The critical values of the test are obtained from the Gumbel

distribution. The results are presented in Panel B of Table B.1. Regardless of whether

GDP is measured in levels or first differences, both tests comprehensively reject the

null hypothesis for all three lag order specifications.

B.2 Estimates of the Degree of Cross Section Dependence

Here we present estimates of the exponent or degree of cross section dependence

using the approach proposed by Bailey et al. (2016). In particular, these authors
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propose a bias-corrected estimate of α, where α denote the rate at which the largest

eigenvalue of the covariance matrix of the data grows with the cross-section sample

size (N) with 1/2 < α ≤ 1. The closer α is to unity, the higher is the degree of

cross-section dependence and hence the more plausible is the presence of a common

factor structure relative to a spatial structure. Table B.2 reports the estimate for

each lag order specification when GDP is measured in levels or first differences. The

results are suggestive of strong cross section dependence, with the exponent estimates

in the range [.79,.83]. The estimates appear to be quite robust to the lag order as

well as to the way in which GDP is measured.
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Table B.2.: Estimates of the degree of cross-sectional dependence

Dependent variable GDP level GDP growth

one GDP lag 0.834 0.803

two GDP lags 0.797 0.794

four GDP lags 0.801 0.791

Notes: This table reports the degree of cross-sectional dependence suggested by Bailey et al. (2016).

The estimates are calculated from equation (13) in that paper.
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