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ABSTRACT

Sikder, Orthi. M.S.E.C.E., Purdue University, August 2020. Influence of Size and
Interface Effects of Silicon Nanowire and Nanosheet for Ultra-Scaled Next Generation
Transistors. Major Professor: Dr. Peter J. Schubert.

In this work, we investigate the trade-off between scalability and reliability for

next generation logic-transistors i.e. Gate-All-Around (GAA)-FET, Multi-Bridge-

Channel (MBC)-FET. First, we analyze the electronic properties (i.e. bandgap and

quantum conductance) of ultra-thin silicon (Si) channel i.e. nano-wire and nano-sheet

based on first principle simulation. In addition, we study the influence of interface

states (or dangling bonds) at Si-SiO2 interface. Second, we investigate the impact of

bandgap change and interface states on GAA-FETs and MBC-FETs characteristics by

employing Non-equilibrium Green’s Function based device simulation. In addition to

that we calculate the activation energy of Si-H bond dissociation at Si-SiO2 interface

for different Si nano-wire/sheet thickness and different oxide electric-field. Utilizing

these thickness dependent activation energies for corresponding oxide electric-field,

in conjunction with reaction-diffusion model, we compute the characteristics shift

and analyze the negative bias temperature instability in GAA-FET and MBC-FET.

Based on our analysis, we estimate the operational voltage of these transistors for a

life-time of 10 years and the ON current of the device at iso-OFF-current condition.

For example, for channel length of 5 nm and thickness <5 nm the safe operating

voltage needs to be <0.55V. Furthermore, our analysis suggests that the benefit of

Si thickness scaling can potentially be suppressed for obtaining a desired life-time of

GAA-FET and MBC-FET.
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1. INTRODUCTION

Over the last few decades, nanotechnology has considerably improved and revolution-

ized almost every technology and industrial sectors including electronics, information

technology, medical and healthcare, energy, environmental remediation, transporta-

tion and so on. In modern world, every technology giant is making use of big data

technology for gaining insight and making strategic decision to any problem. In or-

der to keep these progresses going and to unveil the actual power of data, we are

compelled to look for the appropriate hardware level technology that can handle the

heavier computation at higher speed. The electronic transistor and the microchip are

the very basic tools, which make all modern electronics possible.

1.1 Evolution of Transistor Structures

The ideal characteristic of a transistor starts with high ON/OFF current ratio

and low leakage. High ON current ensures high speed operation, low OFF current

ensures low leakage and thus both of them contribute to a high ON/OFF ratio. To

ensure these features while keeping the power consumption low, shrinking down the

size of transistor is required. The size of a transistor is determined by its gate length

or the distance between source and drain. We now know that for attaining the best

performance from FETs, we need to adhere to the devices of smaller size. Not only

that, the cost of manufacturing for a given process is also dependent on the size as

the cost of manufacturing is determined by the required area of Silicon. Either way,

a smaller sized device makes the most of gain. With that in mind, various transistor

structures have been explored over the decades to get the best out of this device. The

initial and most widely accepted structure is Planar FET. As already mentioned, by

reducing the gate length, down scaling is achieved, but with this, some issues like:
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short channel effect, drain induced barrier lowering (DIBL) starts to appear. Such

concerns dim the difference of OFF state and ON state current. In addition, the

scalability of Planar structure is limited by 25 nm as reported by TSMC Deputy

Director Jin Cai [1].

To keep the Moore’s law going [2], other structures like Double gate FETs and

FinFETs have been being explored. While eventually by down sizing, double gate

FET is hindered by similar challenges like Planar FETs, FinFETS demonstrate a

reasonable performance with respect to scaling. The FIN provides gate contact over

three surfaces ensuring better electrostatic, also by reducing the width the device size

gets smaller without much short channel effect or DIBL concern. However, as the

device size gets shrinked another concern that comes into play is interface scattering.

With the fin width decreasing, the carrier mobility in the device is worsened due to

interface scattering and quantum confinement. In addition, the FinFET is challenged

by quantization limit since fractional fins are not possible. Hindered with all these

challenges, newer device configurations are intensively explored with the target of

harnessing the utmost benefits from nanostructures (i.e. wire, sheet, slabs) with newer

designs [3], [4]. Gate-all-around-FET and multi-bridge-channel-FET are two of the

few designs proposed by implementing nanowire and nanosheet as channels as ultra-

scaled next generation transistors. Our focus in this work is based on investigating

these two transistors, which are subjected to introduce ultra-scaling era in the next

phase of transistor technology.

1.2 Silicon Nanowire/Nanosheet Next Generation FETs

GAA-FET and MBC-FET both are gate all around transistors based on nanowire

and nanosheet, respectively. As the transistor size continues to shrink, nanowires

and nanosheets contain the advantage of having smaller channel and high surface to

volume ratio. Besides, these transistors have several benefit over the current leading

FinFET techology. The gate-all-around architecture shows some similarities with the
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FinFET architecture. In GAA-FET, the nanowire channel is surrounded with gate

in all direction. As a result, it provides a great electrostatic gate control. Thus,

GAA-FET is a perfect candidate to push the scalability flow to the sub 7nm node

regime introducing an era of ultra-scaled transistor. IBM has successfully demon-

strated 5nm process technology using GAA-FET [int-ref]. A Multi Bridge Channel

Field Effect Transistor (MBC-FET) is nanosheet based GAA-FET. They are archi-

tecturally similar except the fact that MBC-FET uses nanosheets as channel instead

of nanowires. It is registered under Samsung Electronics in the US where they have

announced MBC GAA-FET under 3nm process technology. For design and structural

reason MBC-FETs associate with several advantages. First, the nanosheets can be

stacked vertically which improves speed without additional area footprint. Second,

they are really compatible to the current technology (FinFET) as they share the same

manufacturing process. For the same reason, in the existing designs MBC-FETs can

replace FinFETS making the transition smooth.

1.3 Challenges due to Scaling and Motivation

The transistor dimensions have already touched a number of physical limits due

to the extreme down-scaling. As a result, both the manufacturing process and the

transistor designs are facing challenges to keep up with the scaling while maintaining

a reasonable performance. In this section, we overview the technical challenges caused

by the excessive down-scaling of transistors. Hence, we describe our key motivation

to address those questions through our research effort.

Generally, geometrical scaling of transistor refers to the scaling of area (width,

length). However, since oxide capacitance is proportional to the ratio of area and ox-

ide thickness, if the oxide thickness is not scaled along with area, then the capacitance

would increase. An increased capacitance will impact transistors threshold voltage

and ON/OFF aspects. As a result, oxide thickness is required to be scaled. Never-

theless, due to quantum effect like tunneling, oxide thickness scaling is restricted by
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Fig. 1.1. GAA-FET (a) structure and (b) cross sectional view with
Si-Nanowire (NW) channel. MBC-FET (c) structure and (d) cross
sectional view with Si-Nanosheet (NS) channel.

certain value so that it does not lead to abrupt increase in leakage current. In addi-

tion, the gate voltage cannot be down-scaled at the same manner. Since oxide electric

field is the ratio of supply voltage and oxide thickness, a scaled thickness with similar

supply voltage will lead to large oxide electric field leading to degradation processes

like bias temperature instability and so on. The earlier devices with thicker oxide

thickness used to be less impacted by these kind of degradation processes. These as

a whole generate a reliability concern.
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These geometrical scaling give rise to various fabrication challenges like short

channel effects, drain induced barrier lowering etc. Also, channel leakage current

increases considerably.

Another concerning issue due to scaling is the variance of factors between a batch

of device. Although variance has always been a process and fabrication consequence

for transistor, but in case of ultra-scaled transistor even a small difference has a

larger percentile change value. For example, in comparison with the larger devices,

ultra-scaled transistors include very few numbers of Si-H bonds and Si-O bonds. The

slightest deviation in this number/type of bonds will result in overall difference in

charge density and current flow. In addition, due to the fabrication difficulty for

scaling, the variability in device dimensions increases. Thus, even with the same

process technology the transistors show major variance in their characteristics while

operating in circuits.

In short, the problems due to scaling of challenges can be summarized as following:

• Due to scaling band gap increases which leads to decrease in mobile carrier

concentration and potentially decrease in device current drive.

• We speculate that, due to the ultra scale size of the device, the defect state

formation and its influence becomes so significant that it may require particular

attention.

• Scaling becomes challenging due to interface randomness induced variability.

• Due to the defect states presence, the reliable operation of device can be chal-

lenging. Therefore, we expect a trade-off between scalability and device relia-

bility.

1.4 Contribution

Unlike Planar FETs, in nanowire and nanosheet transistors, channels obtain finite

size effect. Hence, their behavior and characteristic need to be explored extensively
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while utilizing them as transistor channel in the current technology. The prior works

only investigated the bandgap structures of Si systems. But for exploring finite size

effects on channels and insights to transistor characteristics, considering Si/SiO2 in-

terfaces will be more relevant. In addition, being ultra scaled in size, the role of in-

terface states interference becomes significant while evaluating device operation and

reliability. Hence, investigating the band structures and quantum of conductance are

required along with density of states. Also, prior works assume the defect formation

energies as constant while we speculate these energies being dependent on channels

size and oxide electric field.

Therefore, to validate our argument and scientifically verify our speculation, we

have performed the following analysis:

• First Principle (DFT) Simulation

– Si-NW and Si-NS properties

– Defect state formation

• Self-consistent Device Simulation

– Effect of scaling on GAA-FET and MBC-FET

– Effect of defects in OFF state current
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• Reliability Analysis

– Optimal operational voltage

– Lifetime prediction.

Our contribution of this work can be briefly described as below:

• We have explored the electronic bandgap structures of SiO2-Si-SiO2 systems

(for both nanowire and nanosheet) along with H-passivated Si systems.

• We have investigated the influence of interface defect states through density of

states, band structure, quantum of conductance despite utilizing only density

of states as shown in the previous works.

• We have computed the influence of defects in ballistic current using Lauder-

Buttiker formalism and discussed the effect of defects in OFF state current.

• We have studied device properties through self-consistent Schrodinger-Poisson

simulator considering the band gaps found from our study to see the scaling

effect (nanowire/nanosheet thickness downsizing) on device performance.

• We have evaluated the activation energy barriers for formation of interface de-

fects for nanowire/ nanosheets of different thicknesses and explored its relation

to oxide electric field.

• We have considered the electric field and thickness dependent activation energy

in the reaction-diffusion model, despite using previously used constant activa-

tion energy. This provides more accurate calculation of density of defects and

shift in threshold voltage.

• Finally, by considering a failure criteria on the threshold voltage shift with re-

spect to oxide electric field, we find a predicted lifetime and optimum operating

voltage to reach the targeted lifetime.
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1.5 Thesis Outline

This thesis is divided into the following chapters:

• Chapter 1 discusses the evolution of fundamental block-unit of semiconductor

industry: field effect transistors. Section 1.1 shows how the continued scaling

growth has led the integrated circuit industry to explore various structures of

FETs. Section 1.2 briefly introduces the newly launched next generations ultra-

scaled transistors like GAA-FETs, MBC-FETs and so on. Section 1.3 discusses

the potential challenges due to scaling and interface defects. Section 1.4 briefly

describes the motivation and contribution of the work. Section 1.5 outlines the

chapters in the thesis.

• Chapter 2 discusses the fundamentals of density functional theory (DFT) which

is used for atomistic simulation of transistors channel materials and interface

properties in the later chapters. Section 2.1 revisits the approximations and

theories that eventually lead to the development of the ab-initio first principle

study. Section 2.2 discusses the required key concepts of plane wave DFT com-

putation used in this work. Section 2.3 analyzes the use of maximally localized

Wannier functions (MLWF) highlighting the Wannier transformation and max-

imal localization. The MLWFs are implemented through the Wannier90 code

in conjunction to DFT package to produce the transport properties along with

the computation of electronic structures of practical size devices.

• Chapter 3 describes our work to investigate the materials electronic structure.

We use DFT for the purpose. Section 3.1 explains the computational set up

used for DFT simulations. Next, it describes the structural optimization of

nanowire and nanosheet structures and their band structures without defects.

Section 3.1 shows the results of intensive study on the NWs and NSs of various

thickness through the energy dispersion relation and shows the comparison of

bandgap while showing the effect of scaling of the channels thickness. Section 3.2
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shows the interface defects in nanowire and nanosheet through band structure

and quantum conductance and evaluate Ballistic current with the presence of

interface defects.

• Chapter 4 explores the influence of quantum confinement due to scaling and

interface trap due to defect states in the operation of ultra-scaled transistors

character. Section 4.1 describes the device simulation methodology through

non-equilibrium Greens function (NEGF) formalism in conjunction with solving

Poisson’s equation. Section 4.2 investigates the impact of Si bandgap in the

characteristic of GAA-FET and MBC-FET and by comparing between their

performance for different thickness of nanowire and nanosheet FETs explore

the effect of scaling.

• In Chapter 5, the activation energy of Si-H bond has been explored. Section

5.1 describes the physical process of Si-H bond dissociation. Section 5.2 shows

the computation of activation energy associated with Si-H bond dissociation.

Finally, Section 5.3 analyze the correlation of the activation energy and the

electric filed in the SiO2 layer.

• Chapter 6 focuses on time-dependent generation of defect states and evaluate

transistor performance under that circumstance. Section 6.1 discusses the gen-

eration of defect states and analyze it in the context of scaling. Section 6.2

discusses the reliability concern NBTI and its mechanism. Section 6.3 shows a

physical model for defect generation.

• Chapter 7 summarizes the thesis and offers attainable direction for future re-

search work.
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2. THEORETICAL BACKGROUND OF FIRST

PRINCIPLE STUDY

For any atomic system, the Hamiltonian at equilibrium electron-electron and electron-

ion interactions can be computed by DFT. We have opted for an hybrid scheme

that relies on plane-wave DFT and a transformation of the output into a localized

Hamiltonian to use as a key ingredient for solving NEGF equation. In this chapter

the foundations of the DFT theory will be briefly revised.

In this chapter the theory for first principle simulation has been revised as well

as the procedure for density functional theory (DFT) simulation for transistors made

with homogeneous channel material Silicon has been discussed. The chapter is divided

into the following sections: Section 2.1 describes the approximation and theoretical

foundation for DFT, Section 2.2 describes the concepts for plane wave DFT calcula-

tion, Section 2.3 describes computation of Maximally Localized Wannier Functions

for calculation of quantum conductance.

2.1 Density Functional Theory

Density functional theory (DFT) has been a popular form of computation used in

last few decades, to investigate the electronic structure of solid state systems including

bulk materials as well as atoms, molecules, interfaces, surfaces and nanostructures.

The concept is to define a many body system not through many body wave function

but through its particles density. The trick that is utilized in DFT is that the parti-

cle density in a N body system the degrees of freedom is reduced to spatial (three)

coordinates from 3N degrees. As a result, the cost of computation becomes compar-

atively low than the conventional ways like Hartree-Fock approach, which is based

on many-electron wave function. Although there has been a lot of progress in DFT,
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there are still complications while using DFT in investigating some correlated systems

and in calculations of the band gap of some semiconductors. For this reason, many

new DFT methods are developed and designed by alterations to the functional or by

the inclusion of additive terms.

2.1.1 The Many Body System & Born-Oppenheimer Approximation

A many body systems Hamiltonian consisting of nuclei and electrons can be ex-

pressed as [5]:

Htot = −
∑ ~2∇2

RP

2MP

−
∑ ~2∇2

rp

2me

+
∑
P 6=Q

ZPZQe
2

2|RP −RQ|
+
∑
p 6=q

e2

2|rp − rq|
−
∑
P,p

ZP e
2

|RP − rp|
(2.1)

Here, p, q are indexes that operate on electrons and P, Q are indexes that operate

on nuclei, rp and RP are positions for electron and nuclei respectively and me and MP

are masses of electrons and nuclei respectively. ZP is the atomic number of nucleus

P. The first two terms define kinetic energies of the nuclei and electrons, the next

two terms describe potential energies for of nucleus-nucleus Coulomb Interaction and

electron-electron Coulomb interaction and the last term in the equation describe the

potential energy of nucleus-electron Coulomb interaction.

According to time-independent Schrodinger Equation:

HtotΨ(RP , rp) = EΨ(RP , rp) (2.2)

Ĥ = T̂ + V̂ (2.3)

Here, the energy operator Ĥ is divided into the kinetic energy operator T̂ and

coulomb potential operator V̂ respectively. This shows it is difficult to solve Schrodinger

equation when there are bunches of electrons and nuclei that interact with each other.

That is when in 1927 Born-Oppenheimer (BO) approximation was made by Born and

Oppenheimer. The mass of nuclei is much larger than the mass of electrons (1836

times). So the moving speed of nuclei is much lower than the speed of electrons
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(almost 2 order lower in magnitude). Since we can separate the movement of nuclei

and electrons, we will consider the positions of nuclei are fixed while considering the

movement of electrons. Thus, according to the Born-Oppenheimer approximation,

the dynamics of atomic nuclei and electrons can be separated to write the total wave

function as follow:

Ψ(RP , rp) = ΨN(RP ) ∗Ψe(rp) (2.4)

Our focus will be to solve the ground state of electrons for a fixed set of nuclei.

As a result, the number of variables in the Schrodinger equation is reduced and it

looks like the following:

ĤΨ(r1, r2, r3, ......, rN) = EΨ(r1, r2, r3, ......, rN) (2.5)

The importance of the BO approximation is that it separates the movement of

electrons and nuclei. We can assume that the electrons are moving in a static external

potential Vext(r) formed by the nuclei, which is the starting point of DFT.

2.1.2 The Kohn-Sham Equation

The significance of the Kohn-Sham Equation for DFT is immense. It is the con-

tribution of this equation that made DFT calculation possible with even a single

computer and became the most widely used tool for electronic structure calculation.

In 1998, Kohn was honored with Nobel Prize in chemistry as a recognition of this

contribution.

If we apply the BO approximation in the time independent Schrodinger equation,

the Hamiltonian Ĥ of the electronic wave function can be expressed in the following

way [5]:

Ĥ =
N∑
p

−1

2
∇2︸ ︷︷ ︸

T̂

+
N∑
p

V (rp)︸ ︷︷ ︸
V̂

+
N∑
p<q

U(rp, rq)︸ ︷︷ ︸
Û

(2.6)

Where N is the number of electrons, V is the external potential field generated

by the fixed nuclei, T̂, Û, V̂ denote kinetic energy, electron-electron interactions and
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external potential respectively. If we are considering a fixed number of particles than

the potential term V̂ is only system dependent.

The KS equation redefines an original many-body system by an auxiliary independent-

particle system where it assumes two systems with same ground state density. It maps

the original interacting system with real potential onto a fictitious non-interacting

system whereby the electrons move within an effective Kohn-Sham single-particle po-

tential VKS(r). The Hamiltonian for the auxiliary independent-particle can be written

as [5]:

ĤKS = −1

2
∇2 + VKS(r) (2.7)

For a system with N independent electrons, the ground state is obtained by solving

the N one-electron Schrodinger equations,

(
1

2
∇2 + VKS(r))Ψp(r) = εpΨ(r) (2.8)

n(r) =
∑

p = 1N |Ψp(r)|2 (2.9)

where, ∫
n(r)dr = N (2.10)

there is one electron in each of the N orbitals ψi(r) with the lowest eigenvalues εi .

2.1.3 The Exchange Correlation Functional

The Kohn-Sham ansatz does not consider any approximation, but in practice it

is not possible to know the exact form of the exchange-correlation functional unless

in the case of slowly varying densities or high densities. Again, it is important to

have an accurate XC energy functional EXC[n(r)] or potential VXC(r) in order to

describe a practical condensed-matter system. The most popular form of XC potential

approximation is the local density approximation (LDA). Although LDA has been

widely used to solve many quantum chemistry problems, it underestimates the band

gap of most semiconductors to some extent. That makes the physical meaning of the
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Kohn-Sham equations questionable. For improving the accuracy of the method, the

gradient of the electron density is also taking in to account along with the local density

itself. In the generalized gradient approximation (GGA) the exchange-correlation

functional is defined as the spatial integral of a function that depends both on the

density and on the gradient of the density at a given point.

2.2 Plane Wave DFT

In our work, by DFT study we investigate the electronic properties of Si nanowire

and Si nanosheet. Therefore, our study is performed over a set of atoms within a

crystal which are periodic in one direction (nanowire) or two directions (nanosheet).

This is the reason plane wave DFT is utilized for the materials study. The Bloch

waves for a free electron in a periodic crystal is expressed as:

Where Uk(r) is the positively charged nuclei periodic potential and eik(r) is elec-

trons plane wave in a crystal. The major concepts which are used in plane wave DFT

calculation in general are discussed below.

2.2.1 Pseudo-potentials

The outer shell electrons of an atom are known as valence electrons. The charac-

teristics and chemical interaction of materials are determined by the valence electrons.

In order to avoid heavy computation, an approximation called frozen core is adopted.

According to this approximation, the core electrons of an atom, which are regarded

as less crucial for the calculation, can be substituted by a smoothed density. The

pseudo-potentials for different elements can be found from the library built by DFT

packages based on the exchange correlations.
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2.2.2 Periodic Boundary Condition and Supercell

With DFT, it is easy to represent a crystal or lattice since unit cell defined in DFT

computation repeats periodically in all the specified directions based on the boundary

condition. Such unit cells are called supercell. Usually it can be a single atom or a

set of atoms or molecule. When unit cell is defined using the minimum number of

atoms, it is called primitive cell. Depending on how the periodic boundaries are set,

there will be interaction between two periodic images in a direction. Therefore, in

order to restrict the crystal in a dimension a vacuum region is usually inserted so that

the interaction between periodic images can be avoided in that case. The volume of

the cell and the atom coordinates are specified.

2.2.3 Cutoff Energy

When the periodic function in equation [5] is expanded by Fourier series, we get

the reciprocal lattice vector.

Ψnk(r) = eik.runk(r) = eik.r
∑
G

Cke
iG.r (2.11)

The equation above shows that the sum of plane waves results in Bloch wave. The

kinetic energy of plane wave is expressed as:

E =
~2

2m
|k +G|2 (2.12)

The finite lattice vectors defined in real space turn into infinite reciprocal space

lattice vectors. This means we will need to evaluate the sum of plane waves over

reciprocal lattice vectors. The concept of cutoff energy becomes important in this

regard. Since the plane waves obtain higher kinetic energy for increased reciprocal

vectors size, the plane waves having kinetic energy larger than the cutoff energy will

be disregarded for computing the sum of plane waves.
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2.2.4 k points

In the reciprocal space, the primitive cell is known as first Brillouin Zone (BZ).

The plane waves extend over the reciprocal space as wave vectors, k. The wave vectors

which shifts from BZ can be expressed as: k0=k+G, where G is the shifted lattice

vector in reciprocal space. As the wave vectors outside the BZ are expressed through

the actual wave vector k inside BZ, we will need sufficiently large k points number

inside to properly capture the actual form. By taking summation over the k points

integrals are evaluated. Hence, a proper sampling of k points is required to get better

approximation of energies.

2.3 Maximally Localized Wannier Functions

In almost all the DFT packages, plane waves are used to develop the KS wave-

functions. While that enables high accuracy computation of electronic structures,

it does not support transport simulation. Because in the transport simulations, the

localized basis functions are required. In 1930, Wannier introduced real-space repre-

sentation of localized Bloch states [6]]. In recent years, with the criteria of maximal

localization, a computational method has been developed to develop those Wannier

Functions (WFs) [7]. The method has been implemented as a code [eth-88] which is

known as the Wannier90 code. By the maximally localized Wannier functions (ML-

WFs) the bloch Hamiltonian is transformed into the basis for producing a maximally

sparse block-tridiagonal matrix which is crucial for the atomic level simulations of

devices with realistic physical sizes. In our work, we have utilized the MLWFs for

computing quantum conductance of Si/SiO2 systems of different thicknesses.
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3. ELECTRONIC PROPERTIES OF SILICON

NANOWIRE NANOSHEET

This chapter describes our work to investigate the materials electronic structure. We

use DFT for the purpose. Section 3.1 explains the computational set up used for

DFT simulations. Next, it describes the structural optimization of nanowire and

nanosheet structures and their band structures without defects. Section 3.1 shows

the results of intensive study on the NWs and NSs of various thickness through the

energy dispersion relation and shows the comparison of bandgaps while showing the

effect of scaling of the channels thickness. Section 3.2 shows the interface defects

in nanowire and nanosheet through band structure and quantum conductance and

evaluate ballistic current with the presence of interface defects.

3.1 First-principle Simulation of Si Nano-Wire and Nano-Sheet

We study the materials structural characteristic and electronic properties through

Density Functional Theory (DFT) study. The DFT calculations given in this work

have been done using ABINIT [8], Quantum Espresso [9] and Wannier90 [10] packages.

We have used ultra-soft pseudopotentials [11] and bases of numerical atomic orbitals

for the DFT simulations. The pseudopotentials were supplied with the ABINIT and

Quantum Espresso packages. The exchange-correlation has been considered as the

GGA-PBE (Generalized Gradient Approximation Perdew–Burke–Ernzerhof) func-

tional. The Silicon basis has been built in a way so that we get the correct electronic

properties of a Silicon nanowire. The performed convergence tests have the depen-

dency of total energy on supercell size and k point sampling. In accordance with the

convergence tests and considering the computational loads, the final simulations have

been conducted using 1x1x2 supercells. The lattice parameter for Silicon is the value
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Fig. 3.1. (a) H-passivated Si-Nanosheet (NS) and (b) H-passivated
SiO2-Si-NS-SiO2. Here, blue atoms are Si; red atoms are H, and
yellow atoms are oxygen (O).

identical to the experimental value 5.431 Å. The k-space is sampled by 20 points. In

a Monkhorst-Pack scheme, this is a 20x1x1 grid. The kinetic energy cut-off used for

wavefunctions is 30 Ry. The kinetic energy cut-off for charge density and potential is

240 Ry. The convergence criteria is set to less than 10.0e−8 eV total energy difference

between two subsequent iterations. All the calculations are conducted after allowing

the supercell volume and shape relaxation, the maximum force being required to be

less than 10.0e−3 eV/Å.

As Si-NW and Si-NS, we have considered two different systems for each of them.

In the first system, we consider that the all dangling bonds at the open Si surfaces are

passivated by Hydrogen (H) atoms. In the second system, we consider a SiO2 layer
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on top of the all open Si surfaces and the dangling bonds at the Si-SiO2 interfaces

are H-passivated. We call such system as SiO2-Si-SiO2. Considering Si-NS, a fully

H-compensated system and H-compensated SiO2-Si-SiO2 system are shown in Figure

3.1(a-b), respectively. Here, the structures are optimized for the minimum energy of

the system, which we discuss in the next subsection.

3.1.1 Structural Optimization of Si-Nanowire and Si-Nanosheet

In this section we demonstrate the physical configurations of Silicon nanowire

(NW) and nanosheet (NS) used for the atomistic simulations in DFT. We first show

the generic physical realization of Hydrogen (H) passivated Si structure and H passi-

vated SiO2-Si-SiO2 structures, which are subjected to relaxation and cell optimization

later one so that the minimum ground state energy is attained for each of the config-

urations.

Here, the configuration setups for the very initial structures are described on which

we operate further by changing thickness and interface bonds status. The initial

structure is built up using the measured bulk lattice parameters without geometry

relaxation. Thus, to build the supercell for Si nanowire and nanosheet, a = 5.431

as the lattice parameter is used. The distance between the periodic images along y

and z axis are set as b = 15 Å and c = 25 Å respectively for nanowire and only c

= 30 Å for nanosheet. In such a structure, there are dangling bonds associated with

all surface silicon atoms. We have used hydrogen atoms to fill those dangling bonds

on surfaces. The bond length considered for Si-H bonds is 1.5 Å, which is similar as

experimental value. The bond length value for Si-O bond and Si-Si bonds are 1.64 Å

and 2.3 Å. The supercell for DFT calculations is employed in a way that for nanowire

it gets infinite length in x direction, 1 Si unit cell (5.431 Å) width in y direction, 2 Si

unitcell (10.862 Å) thickness in z direction. For Silicon nanosheet it becomes infinite

in x direction and y direction and 2 Si unitcell or 10.862 Å thickness in z direction.
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As the periodic images appear, for having a distance more than 10 Å they do not

have interactions along y and z directions.

Atom/Ion relaxation

Unlike bulk crystal for a nanowire and nanosheet two dimensional (2-D) or one

dimensional (1-D) confinement and surface are created. When the bulk symmetry

is broken, there exist additional forces on the atoms especially on the atoms on or

around surface. Hence, after determining the initial structures, at this stage we

performed relaxation on the structure to reduce these forces. The relaxed structure

for H passivated Si-NW is shown in Figure 3.2(b).

Cell Optimization

After reducing the additional forces upon atoms, now we considered relaxing the

geometry and determine the optimized lattice parameter of the structures. We per-

formed vc-relax simulation through Quantum Espresso package. The term vc-relax

refers to variable cell relaxation. While it minimizes the inter-atomic forces, it simul-

taneously optimizes the lattice geometry using the components of stress tensor. The

optimized cell has lattice vector of 5.54 rA and 5.68 Å for H passivated Si systems

and SiO2-Si-SiO2 systems respectively. The finalized structures after these steps for

H passivated Si-NW is shown in Figure 3.2(c), which is used towards further studies.

So the relaxation and optimization can be summarized in 3 steps:

• Relax all atoms in the structure keeping the cell parameter fixed.

• Optimize the cell along x axis using the relaxed structure from previous step.

• Using optimized cell parameter performed another relaxation study to investi-

gate final positions for surface atoms.

During relaxation and cell optimization study the two factors taken into consid-

erations are: the force on the atoms in supercell and the total energies for each of
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Fig. 3.2. Structural relaxation of H-passivated Si-nanowire (NW)
showing atomic configuration as (a) input, (b) after atom/ion relax-
ation, and (c) after cell optimization. Here, the super-cell is periodic
along the x direction; blue atoms are Si and red atoms are H.
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the structure. Convergence threshold on total energy for ionic minimization is set

as 5.0E-5 eV/atom and convergence threshold on force for ionic minimization is set

as 5.0E-4 hartree/bohr while relaxing through the self-consistent field steps. All re-

laxation calculation is done using BFGS quasi-newton algorithm, based on the trust

radius procedure. With the final set of relaxed atom a cell optimization study is

conducted which gives us new lattice parameter 5.54 Å and 5.68 Å for H passivated

Si structures and SiO2-Si-SiO2structures respectively. We used this value for a in all

the subsequent calculations.

3.1.2 Band Structure of Si Nanowire and Nanosheet without Defects

Unlike bulk Si crystal, the Si-NW and Si-NS exhibit finite dimension along certain

directions. For example, Si-NS is confined along the z axis due its finite thickness

and Si-NW is confined along the y and z directions due to its finite diameter. As a

result, two-dimensional (2-D) and one-dimensional (1-D) quantum confinement effect

arises in the electronic properties of Si-NW and Si-NS. In order to navigate such

characteristics, we compute the band structures of Si-NW and Si-NS by performing

DFT simulation on the relaxed structures.

So far, there are many approaches used for the purpose such as tight binding

method, density functional theory, non-empirical self-consistent approaches and so

on. We have utilized DFT by combining the most-widely exchange-correlation GGA-

PBE (Generalized Gradient Approximation, Perdew–Burke–Ernzerhof) functionals.

Figure 3.4 and 3.3 shows the energy-dispersion relation of the H passivated Si-NW

and Si-NS structures.

However, due to the lack of correctness in the energy states of the excites electrons,

bandgap calculated from GGA-PBE is underestimated by 30-40% than the experi-

mental value [12]. The source of this inconsistency is the semi-local approximation

in portraying exchange-correlation, which results in underestimation of bandgaps of

semiconductors and insulators.
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Fig. 3.3. Energy-Dispersion (E-k) characteristics of Si nanosheet ob-
tained from DFT simulation for the thickness of (a) 1nm, (b) 2nm,
(c) 3nm, and (4) 4nm. Here, the nanosheet is periodic along the x
and y directions, therefore, k≡(kx, ky).
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Fig. 3.4. Energy-Dispersion (E-k) characteristics of Si nanowire ob-
tained from DFT simulation for the diameter of (a) 1nm, (b) 2nm,
(c) 3nm, and (4) 4nm. Here, the nanowire is periodic along the x
direction, therefore, k≡kx.
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Fig. 3.5. (a) GW correction of Bandgap and (b) comparison of DFT
Bandgap and GW corrected Bandgap (DFT+GW) for Si nanowire.
(c) GW correction of Bandgap and (d) comparison of DFT Bandgap
and GW corrected Bandgap (DFT+GW) for Si nanosheet.

While such limitation of GGA-PBE based DFT calculation is well known, the

mitigation of this issue needs to undertake a hybrid orbital correction to enhance the

GGA-PBE bandgap. In this case, we use the GW approximation in QE to calculate

the required correction in bandgap.

Figure 3.5(a) shows the GW correction for different Si-NW thickness and 3.5(b)

signifies the comparison of DFT calculated and DFT+GW corrected band gap for

different Si-NW diameter. The similar characteristics for Si-NS are shown in 3.5(a-

b). Here, we consider the Si-NW and Si-NS with fully H-passivated interface. The

bandgaps found from our study suggest excellent agreement with the experimentally

measured bandgaps [13], [14], [15] as depicted in Figure 3.7.
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Fig. 3.6. Bandgap of Si (a) nanowire and (b) nanosheet with hydrogen
passivated surface. Bandgap of Si (c) nanowire and (d) nanosheet with
Hydrogen passivated SiO2-Si-SiO2 system.

Similarly, the bandgap of Si-NW and Si-NS for a larger range of thickness and

diameter are shown in Figure 3.6(a) and Figure 3.6(b), respectively. Further, we

consider the SiO2-Si-NW-SiO2 and SiO2-Si-NS-SiO2 systems, and their respective

bandgaps with different diameter/thickness are shown in Figure 3.6(c) and Figure

3.6(d).
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Fig. 3.7. DFT+GW computed bandgap compared to the experimental
bandgap [13], [14], [15] of Si-NW and Si-NS

3.2 Interface Defects in Si Nanowire and Nanosheet

So far, we have considered Si-NW and Si-NS with no dangling bonds and that

implies, all the Si surfaces or Si-SiO2 interfaces are fully H-passivated. However, in

different scenarios, such Si-H bonds can break and that can lead to the appearance

of dangling bonds. Such dangling bonds in Si surface is known as Pb center and/or

interface defects. Formation of such interface defects can be triggered depending on

various factors. Among them, the dissociation of Hydrogen atom from a Si site is

most prominent, which we discus in Chapter 5. Most importantly, such interface

defects are of significant importance from the perspective of the use of Si-NW/NS in

a transistor channel. In particular, as transistors continue to shrink, interface defects

and its adverse effects can become crucially significant in the ultra-scaled transistors

compared to the transistors of earlier technology nodes, which we analyze in chapter

6 in great details.

To enable such discussion, in this subsection we show that, how the interface

defects affect the electronic properties of Si-NW and Si-NS. To that effect, we compute
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E− k relations, density of states (DOS) and quantum conductance (G(E)) of Si-NW

and Si-NS by considering different combinations of interface defects.

3.2.1 Band Structure of Si Nano-wire and Nano-sheet with Defects

So far, we have considered ideal surface or interface with no presence of defect.

Now we will consider defects at Si and oxide interface. We vary the number of defects

at the surface and explore its effect through the density of states (DOS) and quantum

conductance. In absence of any defects, the density of states should not have any

electronic states within the bandgap region as shown in Figure 3.8(a). However, in

presence of defects, electronic states appear within the bandgap region as shown in

Figure 3.8(b-c). The energy-dispersion (E-k) relation for different Si-NW and Si-NS

thickness are shown in Figure 3.9(a-c) and Figure 3.10(a-c). Both the results suggest

that the electronic states appear in bandgap region with presence of interface defect.

3.2.2 Effects of Defects in Quantum Conductance

Now we analyze the influence of theses defect states in the quantum conductance

characteristics.The quantum conductance (QC) is calculated using DFT code coupled

to Wannier90 [ [10]] code. First, using self-consistent field (scf) calculation the ground

states eigen functions are computed. Then they are transformed to Maximally Local-

ized Wannier Function (MLWF) basis. The Hamiltonian in MLWF basis is used to

calculate the quantum conductance (G(E)) in one-dimensional direction (along the x

direction).

The effects of defects in the G(E) characteristics are shown for Si-NW and Si-NS in

Figure 3.9(d-f) and Figure 3.10(d-f) that suggest the formation of finite conductance

states within the bandgap energy window in presence of defects. At the same time,

the defect induced conductance increases with the increase in the number of defects.
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Fig. 3.8. Density of states (DOS) of Si-NW (a) with no-defect, (b)
with defects, and (c) their comparison. Here, the Si-NW thickness is
3.5nm.
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Fig. 3.9. (a-c) Energy-dispersion (E-k) characteristics and (d-f) corre-
sponding quantum conductance (G-E) of Si-NW for 0, 2, and 3 defect
states (dangling bonds), respectively.

Note that, in case of no defect scenario, there is no conductance within the

bandgap energy region. Such defect induced conductance influence the current-

voltage characteristics of the Si-NW and Si-NS, which we analyze next.
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Fig. 3.10. (a-c) Energy-dispersion (E-k) characteristics and (d-f) cor-
responding quantum conductance (G-E) of Si-NW for 0, 2, and 3
defect states (dangling bonds), respectively.

3.2.3 Influence of Defects in Ballistic Current

The term ‘ballistic-current’ implies that an electron flowing through the Si-NW

and Si-NS does not change its energy, which is analogous to say that the electron-

phonon interaction is negligible. Such an assumption is valid considering the very

small dimension of our systems along the x-axis. This is because the mean free path
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for the electron to scatter and its changes in energy is larger than the dimension of

the system. Now, let us consider that the left side and right side of the system are

contacted through metals. Such a system is analogous to a transistor without having

a gate control. The current-voltage (I − V ) characteristics of this Si-NW/NS system

can be calculated based on Landauer formalism by employing the following equation.

Such observation implies that the threshold voltage of the transistor decreases with

the increase in interface states.

I =

∫
G(E)[f2(E − qV/2)− f1(E + qV/2)]dE (3.1)

Here, f1(2)(E) is the fermi function of the left (right) electrode, G(E) is the quan-

tum conductance and V is the applied voltage. In the above equation, the term

[f1(E − qV/2) − f2(E + qV/2)] can be denoted as the fermi window for an applied

voltage V as shown in Figure 3.11(a). The Landauer equation suggests that, only the

conductance state, G(E) within this fermi window takes part in conduction. Now,

let us first consider the scenario where there is no defect states (Figure 3.11(b)). In

this case, there is no G(E) within the fermi window and the resultant current re-

mains zero upto a certain V . In contrary, the presence of defect states leads to a

finite G(E) within the bandgap region and also within the fermi window. As a result,

finite current is observed in the I − V characteristics as shown in Figure 3.11(d).

Note that the current increases with the increase in the number of defects due to the

increase in defect induced G(E). It is important to note that the I − V characteris-

tics presented in Figure 3.11(d) is analogous to the drain-current versus drain-voltage

(ID-VDS) characteristics of a transistors. Based on this analogy, we can state that

off-state resistance or off-current of a scaled transistor is highly dependent on the

interface states and such current increases with the increase in trap state density.
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Fig. 3.11. (a-c) Energy-dispersion (E-k) characteristics and (d-f) cor-
responding quantum conductance (G-E) of Si-NW for 0, 2, and 3
defect states (dangling bonds), respectively.
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4. INFLUENCE OF SCALING IN GAA-FET AND

MBC-FET CHARACTERISTICS

In this chapter, we analyze the effect of scaling on the Gate-all-around (GAA)-FET

and Multi-bridge-channel (MBT)-FET characteristics. In Section 4.1, we briefly dis-

cuss the simulation framework for device simulation. In Section 4.2, we analyze the

bandgap effect of GAA-FET and MBC-FET characteristics.

4.1 Self-consistent Device Simulation Framework

A self-consistent simulation technique among electrostatic potential and charge

distribution is required to simulate any electronic device. When a device channel is

linked with the source and drain contacts, there will be charge flow into or out of the

device respectively. Similarly, when the device channel is linked with gate contact,

the electric field-lines will insert into or out of the device. This process develops a

resulting self-consistent potential (USC(r)). Any change in USC(r) changes the charge

density in the device ρ(r) and it continues until they achieve consistent values. This

process is modeled using two key equations: the Poisson equation [10.1.1..36] and

the Schrodinger equation. For self-consistent solution of potential and charge, we

utilize non-equilibrium Green’s function (NEGF) formalism that solves the Poisson’s

equation and Schrodinger’s equation in an iterative scheme until the self-consistency

is achieved.

The Poisson’s equation describes the interrelation between the charge density

profile (ρ(r)) and potential profile (USC(r)) based on the following equation.

∇(ε(r)∇USC(r)) = −ρ(r) (4.1)
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Here, USC(r) is the self-consistent potential, ρ(r) is the charge density. The di-

electric constant ε(r) is position dependent because of the transition in material from

Silicon layers to oxide layers.

Now, under NEGF formalism, the Schrodinger equation of an open system (due

to the presence of contacts) can be written in the following forms.

G(E) = [EI − (H + USC)− ΣS − ΣR]−1 (4.2)

Here, G(E) is the Green’s function; H is the device Hamiltonian matrix; E is the

energy; I is the identity matrix; and ΣS(D) is the self-energy matrix for source (drain)

contacts. From the above equation, the spectral charge density can be calculated

from the following equations.

n(r) =

∫ ∝
−∝

dE

2π
[(GΓSG

†)fS(E) + (GΓDG
†)fD(E)] (4.3)

p(r) =

∫ ∝
−∝

dE

2π
[(GΓSG

†)(1− fS(E)) + (GΓDG
†)(1− fD(E))] (4.4)

ΓS(D) = i[ΣS(D) − Σ†S(D)] (4.5)

ρ(r) = −q[n(r)− p(r)−N+
D (r) +N−A (r)] (4.6)

Here, fS(D) is the source (drain) fermi function; N−A and N+
D is the ionized accep-

tor and donor concentration, respectively. The self-consistent loop of the quantum

mechanical simulation in NEGF framework can be described with the following steps:

• Obtain an approximate value for USC(r) from semi classical simulation or as-

sume any small value.

• For a given USC(r) device, Hamiltonian and self-energy matrices are constructed.

• Charge density (ρ(r)) is computed from NEGF equation.

• Utilizing the ρ(r), Poissons equation is solved for the USC(r).

• The above three steps are repeated until the convergence of ρ(r) and USC(r).
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• Using converged value of density matrix and self-consistent potential, drain

current (ID) is calculated under Ballistic transport approximation based on the

following equation.

ID =
2πq

h

∫ ∝
−∝

dE[(GΓSG
†ΓD)(fS(E)− fD(E)] (4.7)

To get the GAA-FET and MBC-FET characteristics, we have performed the

NEGF simulation in Nano-hub tool [16]. Next, we discuss different simulated char-

acteristics of GAA-FET and MBC-FET, which we obtained from device simulations.

4.2 GAA-FET and MBC-FET Characteristics

The GAA-FET and MBC-FET utilizes the Si-NW and Si-NS as the channel ma-

terial, respectively. The side-view of the GAA/MBC-FET is shown in Figure 4.1(a).

Similarly, the cross-sectional view of the GAA-FET is shown in Figure 4.1 (b) and of

the MBC-FET is shown in Figure 4.1 (c). Corresponding parameters we have used in

the simulation are provided in the Figure caption. Next, we analyze their simulated

characteristics. For GAA-FET, we consider WSi=tSi and for MBC-FET we fixed the

WSi as 9nm.

The simulated drain-current (ID) versus gate-voltage (VGS) characteristics of GAA-

FET for different Si-NW thickness is shown in Figure 4.2(a). We plot these ID-VGS

characteristics at iso-OFF current condition and that suggest an increase in ON cur-

rent with the decrease in Si-NW thickness. It is trivial to understand that, with

the decrease in Si-NW thickness, the electrostatic control of gate voltage over the

channel carrier increases. As a result, the ON current should increase. However, in

chapter 3, we discussed that the bandgap of Si-NW increases with the decrease in

Si-NW thickness. As a consequence, the channel carrier concentration should de-

crease. Between these, two opposite effects (improvement in electrostatic control and

increase in bandgap), the improvement in electrostatic control dominates. Hence, the

drain-current improves with scaling.
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Fig. 4.1. GAA-FET (a) structure and (b) cross sectional view
with Si-Nanowire (NW) channel. MBC-FET (c) structure and (d)
cross sectional view with Si-Nanosheet (NS) channel. In our sim-
ulation, we assume EOT=0.75nm; gate length, Lg=10nm; channel
length, Lc=5nm; source (drain) extension, LS(D)=5nm; gate-source
(drain) overlap, Lov,S(D)=2.5nm; channel doping, ND=1015cm−3;
source (drain) doping, NA=1020cm−3
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Similarly, we plot the simulated ID versus drain-voltage (VDS) characteristics in

Figure 4.2(b-d) of GAA-FET for different Si-NW thickness that confirms an increase

in drain-current with thickness scaling.

Similar to the GAA-FET, the simulated ID-VGS characteristics and ID-VDS char-

acteristics for MBC-FET are shown in Figure 4.3(a) and Figure 4.3(b-d) for different

Si-NS thickness. Here, the trends are similar to GAA-FET with respect to thickness

scaling. However, our simulation suggest a higher ON current for MBC-FET com-

pared to the GAA-FET due to the higher width of GAA-FET. At the same time,

the quantum confinement effect on bandgap is less for Si-NS (that corresponds to

MBC-FET) compared to Si-NW (that corresponds to GAA-FET). As the bandgap is

low, the carrier concentration increase and that leads to higher current in MBC-FET

compared to GAA-FET.

Based on our findings, we can summarize that, for the similar Si-NW/NS thick-

ness, the MBC-FET performance can be higher compared to the GAA-FET perfor-

mance in terms of the ON state current of the device (for an iso-OFF state current

condition).
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Fig. 4.2. (a) ID-VGS characteristics and (b-d) ID-VDS characteristics
of GAA-FET for different Si-NW thickness.
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Fig. 4.3. (a) ID-VGS characteristics and (b-d) ID-VDS characteristics
of MBC-FET for different Si-NS thickness.
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5. ACTIVATION ENERGY OF SI-H BOND

DISSOCIATION

In this chapter, we focus on analyzing the process for interface defect state generation

at the Si-SiO2 interfaces. In Section 5.1, we discuss the physical process of Si-H bond

dissociation. In Section 5.2, we compute the activation energy associated with the

Si-H bond dissociation and in Section 5.3, we analyze the correlation of the activation

energy and the electric-field in the SiO2 layer.

5.1 Formation of Defects at Si-SiO2 Interface

While the formation of interface defects can occur in a diverse set of scenarios,

the most frequent and plausible mechanism is the dissociation of a Si-H bonds. In

Si-SiO2 interface, the dissociation of a Si-H bonds typically takes place based on the

following reaction.

Si−H +H+ → D+ +H2 (5.1)

The above reaction suggest that the presence of H+ ion is localized near the Si-

SiO2 interface. Then it leads to the dissociation of Si-H bonds by forming a H2

molecule and a dangling bond (D). Once the H2 molecule is formed, it diffuses and

moves away from the interface. Such a process has been depicted in Figure 5.1 (a).

It is important to note that the dissociation of such Si-H bonds exhibits an energy

barrier needs to be overcome for the occurrence of this process as shown in Figure

5.1 (b). The height of this energy barrier is known as the activation energy (EA) of

the Si-H bond dissociation.
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Fig. 5.1. (a) Process of Si-H bond dissociation in Si-SiO2 interface.
(b) Energy landscape of Si-H bond dissociation signifying the presence
of an activation barrier (EA).

5.2 Activation Energy of Si-H Bond Dissociation

To calculate the activation energy (EA) for dissociation of Si-H bonds, we have

used Nudged Elastic Band (NEB) method in conjunction with DFT simulation in

ABINIT. In NEB method, we need to provide the configurations that corresponds

to the initial structure (no defects + H+ at a certain distance) and final structure
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(dangling bond + H2 molecule). The initial and final configurations for a SiO2-Si-

NS-SiO2 system are shown in Figure 5.2(a-b), which we obtained from the complete

structural relaxation. The NEB simulation compute an atomic trajectory for H atom

(which was initially bonded with Si) that corresponds to the minimum energy path

(MEP) for the desired reaction. We compute the system energy for this MEP and

obtained EA as the difference between the maximum and minimum energy of the

reaction path. The EA for different Si-NS thickness are plotted in Figure 5.2(c)

signifying an decrease in EA with the decrease in thickness. Similarly, we compute

the EA for Si-NW with different diameter showing the similar dependency with its

dimension (5.2(c)).

In both of the cases (Si-NW and Si-NS) the activation energy (EA) decreases

with the decrease in thickness/dimension. While such insights are completely new,

an easy understanding may not be trivial. It is possible that, in the case of lower

thickness/diameter, the long range interactions are more confined and therefore, when

the H displacement takes place the corresponding change in atomic positions of Si

are less. As a result, the change in energy is less for lower dimension. Due the similar

effects, we observe that the EA is lower in Si-NW compared to Si-NS due to the more

size confinement in the former case. Nevertheless, this observation suggests that the

formation of dangling bond demands less energy with the scaling of Si-NW and Si-NS.

5.3 Effects of Oxide Electric Field on EA

So far, we have investigated the activation energy for the Si-H bond dissociation at

Si-SiO2 interface. Now, we will turn our focus into its dependency with applied voltage

or electric-field. First, we will briefly explain the physics behind such dependency.

In ideal condition and in absence of an electric-field, Si-H bonds do not carry any

net charge. However, the Si and H have different electro-negativities. As a result,

in presence of an electric field, they attract their bonding electrons with different

forces and that gives rise to a dipole. Most importantly, the applied electric field
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Fig. 5.2. (a) Process of Si-H bond dissociation in Si-SiO2 interface.
(b) Energy landscape of Si-H bond dissociation signifying the presence
of an activation barrier (EA). (c) activation energy EA for Si-NS and
Si-NW with different thickness and diameter, respectively.
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exhort a force on this dipole, which is proportional to the electric-field. Due to this

additional force, that stretches the Si-H bonds, the activation energy for the Si-H

bond dissociation decreases with the increase in electric-field. This phenomena has

been investigated in the work by J. W. McPherson et al. [17], where they developed a

thermo-chemical model to include the dipole effect showing how that lowers thermal

barrier justifying through experimental results. However, an animistic calculation of

such barrier lowering is never being attempted, which can potentially be important

for scaled Si-NW and Si-NS channel.

Fig. 5.3. Activation energy EA for Si-NS and Si-NW with different
oxide electric-field (EOX). Here, we consider the Si-NS (NW) with a
thickness (diameter) of 5nm.

To that effect, we have computed the EA for a Si-H bond dissociation considering

different electric-field in the SiO2 layer based on DFT+NEB simulation. Our simu-

lation results suggest that the EA decreases with the increase in oxide electric-field

(EOX) as shown in Figure 5.3. This is due to the formation of electric dipoles in
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the presence of electric-field and therefore, the Si-H bonds become more prone to

dissociate.
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6. DEFECT INDUCED RELIABILITY IN GAA-FET AND

MBC-FET

In this chapter, we focus on analyzing the time-dependent generation of defect states

at the Si-SiO2 interfaces in transistors and evaluating device performance under that

circumstance from the long-term reliability aspect. Section 6.1 discusses the genera-

tion of defect states and analyze it in the context of scaling. Section 6.2 discusses the

reliability concern NBTI and its mechanism. Section 6.3 shows a physical model for

defect generation.

6.1 Negative Bias Temperature Instability (NBTI)

The most common reliability issues for logic transistors are Negative Bias Temper-

ature Instability (NBTI), Hot Carrier Injection (HCI) and Time Dependent Dielectric

Breakdown (TDDB). Among the, NBTI appears to be the most dominant component

in scaled transistors. Hence, in this chapter, we focus on NBTI induced reliability

issues in GAA-FET and MBC-FET.

NBTI is a temperature-accelerated degradation phenomenon experienced by p-

type MOSFET. It was first recognized in the 1960s as a device reliability issue. At that

time, it was not regarded as a very serious problem. But now-a-days it is considered

as one of the common reliability concerns. Since the transistor technology trend is

experiencing rapid down-scaling, the oxide layers have also been scaled below 2nm in

the current technology nodes. However, the supply voltage did not undergo such a

significant scaling. As a result, the corresponding oxide electric field increases. Hence,

the NBTI has become a common degradation process faced by current transistors.
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In p-type transistors, NBTI leads to defects at the Si-SiO2 interface. In general,

the main two reasons that causes the bias temperature instability are (i) the trapping

of positively charged holes and (ii) that supplies the required energy for Si-H bond

dissociation at the Si-SiO2 interface. Such phenomena leads to a defect states with

positive charge at the interface. As a result, the threshold voltage of the device

changes with the increase in defect charge at the interface. The dynamic change in

threshold voltage, VT (t) with respect to the interface defect density can be written as

the following equation.

VT (t) = VT0 + ∆VT (t) = VT +
qNit(t)

COX

(6.1)

Here, VT0 is the threshold voltage without any defects; VT is the threshold voltage

with defects; Nit is the interface defect density; COX is the capacitance of the gate

oxide; and q is the electron charge. As Nit increases over time, the threshold voltages

also deviates. Such a dynamic change in threshold voltage leads to a shift in device

characteristics and if the change is significant, the device may fail to operate the way it

was supposed to be. Such a scenario is called breakdown. Now, to analyze the NBTI

induced reliability issues in GAA-FET and MBC-FET, we utilize a well-established

model, which we discuss next.

6.2 Reaction-Diffusion Model for NBTI

According to the R-D model, when a gate voltage is applied, it initiates an electric-

field dependent reaction at the Si/SiO2 interface that generates interface traps by

breaking the passivated Si-H bonds. Further, some H converts to H2 and as the H

diffusion is a slower process, H removal is mostly happened by H2 diffusion. Within

the R-D framework, the trap density (NIT ) and the corresponding change in threshold

voltage (∆VT ) with respect to time (t) can be calculated from the following equations

[18], [19]:
NIT

t
− δkH
k2rN

2
IT

(kfN0 −
NIT

t
)2 +

δkH2NIT√
6DH2t

= 0 (6.2)
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∆VT = α
qNIT

COX

(6.3)

Here, kf , kr, and N0 are defined as Si-H bond dissociation rate, Si-H bond re-

formation rate and the initial density of Si-H bonds before applying any gate voltage.

kH and kH2 are the generation rate of H and H2; DH and DH2 is the diffusion coef-

ficient of H and H2, and δ is the interfacial thickness (considered as ∼1.5A in this

work). Now, the dependence of NIT generation on the activation energy of Si-H bond

dissociation (EA) and the oxide electric-field (EOX) is captured in kf through the

following equation [18], [19]:

kf = A× EOT × EOX × exp(−ÊA/kBT ) (6.4)

Here, ÊA is the effective activation energy that depends on EOX , which we have

calculated from DFT simulation (shown in Figure 5.3), A is a fitting parameter, kB

is the Boltzmann constant, EOT is the effect oxide thickness which is considered 0.7

nm here, and T is the temperature. Now we utilize eqn. (6.2)-(6.4) to compute the

shift in threshold voltage by including the electric filed dependency and corresponding

effective activation energy.

Figure 6.1 (a) shows the shift in threshold voltage ((∆VT )) with respect to time.

The different lines here signify ∆VT shifts for oxide electric field ranging from 5-10

MV/cm. Here we have considered the operating temperature T=125 oC (398K). Our

result implies that the degradation is faster for higher electric filed. According to the

general convention, when a transistor attains a threshold voltage shift of 50 mV or

greater, the transistor will fail to operate and face breakdown. This failure criterion

is shown with red dotted line in Figure 6.1 (a). We also see that each different oxide

electric field requires different time period to reach the particular ∆VT . These are

shown with black dots Figure 6.1 (a). We extract the time period values to explore

the relation between oxide electric field and time until device failure (device lifetime).

Figure 6.1 (b) shows the relation between oxide electric field and device lifetime.

Our result suggests for a lifetime of 10 years the oxide electric filed is 7.4 MV/cm.

Figure 6.2 shows the relation between oxide electric field EOX and gate voltage VGS
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Fig. 6.1. (a) Shift in threshold voltage (∆VT ) with different oxide
electric-field (EOX) for GAA-FET with TSi−NW=5nm. (b) Corre-
sponding device life-time (tLIFE) prediction versus EOX based on
failure criteria of ∆VT=50mV [19]. (c) Optimum operating voltage
(VDD) of GAA-FET and MBC-FET for 10 year life-time. (d) ION of
GAA-FET and MBC-FET at optimum VDD for 10 year life-time.
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Fig. 6.2. EOX versus gate voltage, VGS for GAA-FET and MBC-FET
obtained from device simulation.

obtained from device simulation. Using that we extract the corresponding gate voltage

to 7.4 MV/cm is 0.52 V. Thus, we determine the safe operating voltage as 0.52V for

this particular device.

We employ the same approach to compute the safe operating voltage for tLIFE=10

years for GAA-FET and MBC-FETs. The results are described through Figure 6.1(c).

Our results suggest that with scaling (i.e. decrease in thickness of NW/NS) the safe

operating voltage for device also lowers. Using the calculated safe operating VDD as

the VGS we now compute the device ON current which is the safe ION at iso-OFF-

current (iso-IOFF=∼ 0.1nA) condition for the GAA-FETs and MBC-FETs. These

results are shown in Figure 6.1 (d). The results suggest we get a decrease in ION due

to scaling i.e. decrease in NW/NS thickness.



52

Our calculations suggest, while decrease in channel thickness gives better electro-

static control but that benefit comes with a cost of lower ION and lower VGS for a

targeted device lifetime. Whereas the alternate approach (higher electric field) will

provide higher VGS and higher ION , but at the cost compromised device lifetime.
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7. SUMMARY AND OUTLOOK

7.1 Conclusion

In summary, by considering the SiO2-Si-SiO2 systems, we have analyzed the quan-

tum confinement effects in on its bandgap for nanowire and nanosheet. We have

evaluated the influence of thickness scaling on GAA-FET and MBC-FET based on

first-principle DFT simulation and NEGF based device simulation. In addition, we

have studied the effects of Si-H bond disassociation on Si-NW/NS characteristics in

terms of quantum conductance and defect mediated trap-state generation. Further,

we have established a relation between the Si-H bond dissociation energy and finite-

size effect of Si-NW/NS, as well as its electric-field dependency. Our analysis suggests

a decrease in the activation energy with the decrease in Si-NW/NS thickness and with

the increase in oxide electric-field. Moreover, by employing R-D model of trap-state

generation and utilizing the electric field and thickness dependent activation energies,

we have analyzed the change in threshold voltage of GAA-FET and MBC-FET and

determined the safe operating voltage for a life-time of 10 years. Our analysis signi-

fies that - while scaling of Si-NW/NS thickness should provide better short-channel

effect, at the same time, the trap state mediated conductance increases and the safe

operating voltage decreases for a certain life-time of the device. As a consequence, the

desired benefit of thickness scaling of Si-NW/NS based GAA/MBC-FET can poten-

tially be suppressed. Therefore, it is suggested to investigate the possible mechanisms

to increase the device reliability along with the thickness scaling of transistor channel.
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7.2 Future Work

Our work suggests that, to mitigate the adverse effect of scaling on defect forma-

tion in ultra-scaled devices, some form of extensive engineering is required. To that

effect, we envision the following tasks as the future work, which can possibly lead to

the solution of these scaling problem:

• Investigating the effects of reverse bias voltage on the activation energy and

recovery of defect states.

• Use of new oxide materials and that disfavours the Si-H bond dissociation.

• Use of other materials in place of H that makes stronger bonds with Si and

hence, are less prone to defect generation.

• Investigating presence of catalyst as single atom or clusters around the inter-

face to find out its effect on Si-H bond recovery after dissociation and before

diffusion.
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