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ABSTRACT

Xu, Chengyi Master, Purdue University, August 2020. Derivation and Analysis of
Behavioral Models to Predict Power System Dynamics. Major Professor: Steven D.
Pekarek.

In this research, a focus is on the development of simplified models to represent

the behavior of electric machinery within the time-domain models of power systems.

Toward this goal, a generator model is considered in which the states include the

machines active and reactive power. In the case of the induction machine, rotor slip

is utilized as a state and the steady-state equivalent circuit of the machine is used

to calculate active and reactive power. The power network model is then configured

to accept the generator and induction machine active and reactive power as inputs

and provide machine terminal voltage amplitude and angle as outputs. The potential

offered by these models is that the number of dynamic states is greatly reduced

compared to traditional machine models. This can lead to increased simulation speed,

which has potential benefits in model-based control. A potential disadvantage is

that the relationship between the reactive power and terminal voltage requires the

solution of nonlinear equations, which can lead to challenges when attempting to

predict system dynamics in real-time optimal control. In addition, the accuracy of

the generator model is greatly reduced with variations in rotor speed. Evaluation

of the models is performed by comparing their predictions to those of traditional

machine models in which stator dynamics are included and neglected.
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1. INTRODUCTION

1.1 Motivation

The power system is coupled to nearly every aspect of modern life. Thus, ensur-

ing power is provided where desired despite faults, rapid changes in demand, and the

potential variability of the energy available from renewable resources is of significant

importance. One can argue that in much of the developed world, the engineering

community has designed their respective power systems effectively. Indeed, outages

are relatively rare events and the cost of electricity remains relatively low. How-

ever, the increased reliance on renewables, the integration of wide-bandwidth power

electronics in both loads and sources, and the coupling of electrical and transporta-

tion infrastructures is increasing the complexity of the system. As a result, many

researchers have been considering the role that model-based control methods such

as model-predictive control can play in optimizing the performance of the evolving

power system [1]. Examples of MPC-based methods applied to power systems in-

clude [2], [3], [4], and [5].

One of the critical aspects of model-based control methods is establishing models of

components and systems upon which the control can be established. In general, there

is a tradeoff between model complexity and its computational requirements. In this

research, an initial focus has been placed on developing full-detailed models of a power

system proposed in [6] that can serve as a reasonable test case to assess alternative

control methods. The system consists of an infinite bus, a turbine generator with

associated governor and exciter, a tap-changing transformer, and several transmission

lines between the 5 system busses. Loads include those with constant impedance in

parallel with induction machines. Herein, the word ’detailed’ is used to indicate that

the fast (stator) dynamics that are typically neglected in the models of larger power
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systems, are represented. Within the models of the machines, the state variables are

the stator flux linkages. The inputs to these models are the stator voltages. The

network dynamics are represented using a π-based model for each transmission line.

Subsequent to the detailed model derivation, a reduced-order model of the system

is created in which the stator dynamics of the machines and transmission lines are

neglected [7]. In this form, an algebraic relationship is established between stator

terminal voltage and stator current of each machine. Coupling the machine models

is performed by representing the stator voltage as a model output and the stator

current as a model input. Steady-state forms of the transmission line models are used

to establish a network admittance matrix that relate network voltage and current.

The traditional advantage of the reduced-order model structure is that it has enabled

power system analysts to use a larger time-step when simulating power systems [7].

A similar advantage is likely in MPC-based control.

Finally, to potentially further reduce computational complexity, simplified behav-

ioral models of the turbine generator and induction machine are considered. In the

case of the turbine generator, the active and reactive power are utilized as state vari-

ables. In the case of the induction machine, rotor slip is utilized as a state variable

and the steady-state equivalent circuit of the machine is used to calculate active and

reactive power. The network model is then configured to accept the generator and

induction machine active and reactive power as input and provide machine terminal

voltage amplitude and angle as outputs. The potential offered by these models is

that the number of dynamic states is greatly reduced. This can lead to increased

simulation speed. In addition, in the case of the turbine generator, the number of

model parameters is significantly reduced. Indeed, the only parameters in the be-

havioral model are several time constants in the machine, governor and exciter. A

potential disadvantage is that the relationship between the reactive power and termi-

nal voltage requires the solution of a nonlinear equation, which can lead to challenges

in MPC-based control.
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In this research, the details of each of the models is provided along with their

implementation structure within MATLAB.
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1.2 Description of 5-Bus System

Fig. 1.1.: 5-bus System

The 5-bus system that is considered in this research has a one-line diagram shown

in the Figure 1.1 and is described in [6]. The reason the system was selected is

that it has several key traditional power system components and the parameters of

all components and controls are provided. As shown, the 5-bus system consists of

an infinite bus 1, a load bus 2, a generator bus 5 and transmission lines coupling

bus 3 and bus 4. In addition, there is a load tap changing transformer between bus

3 and bus 2, and a fixed turns transformer between bus 4 and bus 5. The machine

sources and loads are highlighted in subsequent chapters. Some details of the network

components are highlighted in the following subsections.

1.2.1 Infinite Bus

The infinite bus represents an ideal AC source voltage with a voltage magnitude

and frequency independent of the bus current. In 3-phase electrical circuit analysis,
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it is convenient to use reference frame theory to transform systems into a frame in

which steady-state currents and voltages are constant [8]. This allows one to solve

algebraic expressions for steady-state operating points. In addition, It also provides

convenience for controls, since the input variables are constant in the steady-state,

rather than time-varying. As a result, the infinite bus would provide the synchronous

reference angle for the utilization of the reference-frame theory.

1.2.2 Generator Bus

At bus 2, there are three components: a wound-rotor synchronous machine with

excitation and governor. The excitation system controls the field voltage to the

generator. There are various types of excitation systems [9], in the [6] a DC excitation

system is utilized. For the governor system, there are multiple types of governors,

including steam- gas-, and hydro-turbine-based. In the thesis, a steam governor

system is considered . For the wound-rotor synchronous generator, the machines is

a three-phase, wye-connected, salient-pole model with two damper windings on the

q-axis, one damper winding on the d- axis and one field winding on the d-axis.

1.2.3 Load Bus

Load bus 2 includes two induction machines and a constant-impedance load.

Based on [10], this combination is common practice in American power system re-

search. For the constant-impedance load, a symmetrical three-phase wye-connected

series-connected RC load is assumed. The use of the induction as part of the load

model is based on three factors [11]: first, it is a fast-restoring load in the time

frame of a second; second, it is a low power factor load with a high reactive power

demand; third, it is prone to stalling when the voltage is low, or the mechanical

load is increased, which can lead to issues of power system stability. For the induc-

tion machines, both are three-phase, wye-connected, symmetrical induction machines.

The main difference between the two machines is their inertia. One has an inertia
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consistent with a large-power machine. The second has a lower inertia that is repre-

sentative of many smaller-power machines connected to a bus, which often occurs in

manufacturing plants.

1.2.4 Transmission Line

For the network, a π model of the transmission lines is used, as described in

[12]. Physically, between bus 1/2 and bus 3/4, there is a conductor that is modeled

using a π circuit. Hence for the system, there are twelve π circuits representing the

transmission lines. The π model of the transmission is shown in Figure (1.2). The

per-unit impedance (value of Rl, Xl) and admittance (bl) for the transmission lines

are the same; the differences are their length. The lines between bus 1 and bus 3 are

longer than the lines between bus 3 and bus 4.

−

+

Ṽj

Ĩj

−

+

Ṽi

Ĩi

j bl
2

Rl jXl

j bl
2

Fig. 1.2.: Transmission Line π-Equivalent Circuit

1.2.5 Transformer

A load-tap-changer transformer (LTC) is used to step the voltage from transmis-

sion levels to distribution levels and regulate bus 2 voltage. A fixed-turn transformer

is used to step the voltage from transmission to distribution levels at bus 5. The

only difference between the two transformers is that the LTC can vary its turns ratio,

whereas the fixed-turn transformer has a fixed value. In this research, both trans-

formers are modeled using the circuit shown in Figure 1.3. Therein, one can observe

that the input-to-output relationship consists of an ideal turns ratio in series with a
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reactance that is representative of the transformer’s leakage reactances. As shown,

all both primary and secondary resistances are assumed negligible. Similarly, the

transformer magnetizing reactance is assumed to be sufficiently large that it can be

neglected. Again, for the load tap changer between bus 3 and bus 4, Vin
Vt

varies in

order to control Vout to a desired value.

N2N1

Ĩin

−

+

Ṽin

−

+

Ṽout

−

+

Ṽt

jXl Ĩout

Fig. 1.3.: Transformer Equivalent Circuit
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2. DETAILED MODEL

2.1 Introduction

In this chapter, the detailed model for each of the components is described. For

all electrical components, the state equations are represented in a suitable reference-

frame. Brief details of reference frame transformation are provided in the Appendix.

For the transmission lines, transformers and constant admittance loads, the corre-

sponding differential equations are based upon equivalent circuits described in [12].

In the generator and induction machines, model details are provided in [8] and [11].

Herein magnetic saturation in all machines is neglected. All models are built based

on the per-unit quantities for all the variables. Parameters described in the appendix.



9

2.2 Infinite Bus

Description

The infinite bus 1 provides phase voltages expressed (2.1) in per-unit form:

vainf = Vs cos (ωet) (2.1a)

vbinf = Vs cos (ωet−
2π

3
) (2.1b)

vcinf = Vs cos (ωet+
2π

3
) (2.1c)

Transforming the infinite bus voltage to the synchronous reference frame using

equation (B.1) with θe = ωet, the infinite bus is modeled in the synchronous reference

frame can be expressed as:

vqinf = Vs (2.2a)

vdinf = 0 (2.2b)

v0inf = 0 (2.2c)

Simulink Implementation

The infinite bus voltage magnitude and electrical frequency are constant. As a

result, the bus voltage in the qd0 variables and the synchronous reference frame angle

θe can be calculated. Hence the Simulink block diagram is shown in Figure 2.1
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Fig. 2.1.: Infinite Bus Simulink Implementation



11

2.3 Detailed Generator Model

2.3.1 Wound-Rotor Synchronous Machine

The detailed model for the generator utilized is fully described in [7] page 42. The

derivation of the model starts from the cross section of a two-pole, three-phase, wye-

connected salient-pole synchronous machine depicted in Figure 2.2. Analysis of the

relationship between winding current and magnetic flux and voltage and current is

used to generate the ordinary differential equations (ODEs) used to predict machine

performance. Reference frame theory is then applied to establish the common Park’s

equivalent circuit described in [8] that can be modeled using ODEs of the form:

Fig. 2.2.: Two-pole, three-phase, wye-connected salient-pole synchronous machine
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vrqs = −rsirqs + ωrλ
r
ds +

dλrqs
dt

(2.3a)

vrds = −rsirds − ωrλrqs +
dλrds
dt

(2.3b)

v0s = −rsi0s +
dλ0s

dt
(2.3c)

v
′r
fd = r′fdi

′r
fd +

dλ
′r
fd

dt
(2.3d)

v
′r
kd = r′kdi

′r
kd +

dλ
′r
kd

dt
(2.3e)

v
′r
kq1 = r′kq1i

′r
kq1 +

dλ
′r
kq1

dt
(2.3f)

v
′r
kq2 = r′kq2i

′r
kq2 +

dλ
′r
kq2

dt
(2.3g)

where v is used to represent respective winding voltage, r winding resistance, and ωr

is the rotor electrical angular velocity. The variable λ is used for winding flux linkage.

The winding flux linkages can be expressed in terms of winding currents using (2.4):

λrqs = −Llsirqs + Lmq(−irqs + i
′r
kq1 + i

′r
kq2) (2.4a)

λrds = −Llsirds + Lmd(−irds + i
′r
fd + i

′r
kd) (2.4b)

λ0s = −Llsi0s (2.4c)

λ
′r
fd = L′lfdi

′r
fd + Lmd(−irds + i

′r
fd + i

′r
kd) (2.4d)

λ
′r
kd = L′lkdi

′r
kd + Lmd(−irds + i

′r
fd + i

′r
kd) (2.4e)

λ
′r
kq1 = L′lkq1i

′r
kq1 + Lmq(−irqs + i

′r
kq1 + i

′r
kq2) (2.4f)

λ
′r
kq2 = L′lkq2i

′r
kq2 + Lmq(−irqs + i

′r
kq1 + i

′r
kq2) (2.4g)

In (2.3) and (2.4), the subscripts s and r refer to stator and rotor quantities

respectively. The superscript r is used to indicate the variables are in the rotor frame

of reference, and the prime ′ is used to indicate that the respective winding is referred

to the stator winding through an appropriate turns ratio. The inductances in (2.4)
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with a subscript l are leakage values of the respective winding while those with a

subscript md and mq are the d- and q-axis magnetizing values, respectively. Since

the parameters of the synchronous machine are often provided in terms of reactances

rather than inductances, it is convenient to multiply (2.3) and (2.4) on both sides by

a base angular velocity ωe and express the result in a state model form:

1

ωe

dψrqs
dt

= rsi
r
qs −

ωr
ωe
ψrds + vrqs (2.5a)

1

ωe

dψrds
dt

= rsi
r
ds +

ωr
ωe
ψrqs + vrds (2.5b)

1

ωe

dψ0s

dt
= rsi0s + v0s (2.5c)

1

ωe

dψ
′r
fd

dt
= −r′fdi

′r
fd + v

′r
fd (2.5d)

1

ωe

dψ
′r
kd

dt
= −r′kdi

′r
kd + v

′r
kd (2.5e)

1

ωe

dψ
′r
kq1

dt
= −r′kq1i

′r
kq1 + v

′r
kq1 (2.5f)

1

ωe

dψ
′r
kq2

dt
= −r′kq2i

′r
kq2 + v

′r
kq2 (2.5g)

where

ψrqs = −Xlsi
r
qs +Xmq(−irqs + i

′r
kq1 + i

′r
kq2) (2.6a)

ψrds = −Xlsi
r
ds +Xmd(−irds + i

′r
fd + i

′r
kd) (2.6b)

ψ0s = −Xlsi0s (2.6c)

ψ
′r
fd = X ′lfdi

′r
fd +Xmd(−irds + i

′r
fd + i

′r
kd) (2.6d)

ψ
′r
kd = X ′lkdi

′r
kd +Xmd(−irds + i

′r
fd + i

′r
kd) (2.6e)

ψ
′r
kq1 = X ′lkq1i

′r
kq1 +Xmq(−irqs + i

′r
kq1 + i

′r
kq2) (2.6f)

ψ
′r
kq2 = X ′lkq2i

′r
kq2 +Xmq(−irqs + i

′r
kq1 + i

′r
kq2) (2.6g)
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To continue the description, it is convenient to define several reactances of the

machine. The d- and q-axis reactances are expressed:

Xd
∆
= Xls +Xmd (2.7a)

Xq
∆
= Xls +Xmq (2.7b)

The d- and q-axis transient reactances are expressed:

X ′d
∆
= Xls +

1
1

Xmd
+ 1

X′lfd

(2.8a)

X ′q
∆
= Xls +

1
1

Xmq
+ 1

X′lkq

(2.8b)

Finally, the d- and q-axis subtransient reactances are expressed:

X ′′d
∆
= Xls +

1
1

Xmd
+ 1

X′lfd
+ 1

X′lkd

(2.9a)

X ′′q
∆
= Xls +

1
1

Xmq
+ 1

X′lkq1
+ 1

X′lkq2

(2.9b)

The transient and subtransient time constants are defined as:

T ′do
∆
=

X ′lfd
ωer′fd

(2.10a)

T ′qo
∆
=

X ′lkq1
ωer′kq1

(2.10b)

T ′′do
∆
=

1

ωer′kd

(
X ′lkd +

1
1

Xmd
+ 1

X′lfd

)
(2.10c)

T ′′qo
∆
=

1

ωer′kq2

(
X ′lkq2 +

1
1

Xmq
+ 1

X′lkq1

)
(2.10d)
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Finally, three additional variables associated with the rotor windings are defined:

E ′q
∆
=
Xmd

X
′
lfd

ψ
′r
fd (2.11a)

E ′fd
∆
=
Xmd

r′fd
V
′r
fd (2.11b)

E ′d
∆
= − Xmq

X
′
lkq1

ψ
′r
kq1 (2.11c)

These are substituted into (2.5) and (2.6), and the result rearranged to establish

a final detailed model:

1

ωe
pψrqs = rsi

r
qs −

ωr
ωe
ψrds + vrqs (2.12a)

1

ωe
pψrds = rsi

r
ds +

ωr
ωe
ψrqs + vrds (2.12b)

1

ωe
pψ0s = rsi0s + v0s (2.12c)

T ′qopE
′
d = −E ′d + (Xq −X ′q)[irqs −

X ′q −X ′′q
(X ′q −Xls)2

(ψ
′r
kq2 + (X ′q −Xls)i

r
qs + E ′d)] (2.12d)

T ′′qopψ
′r
kq2 = −ψ′rkq2 − E ′d − (X ′q −Xls)i

r
qs (2.12e)

T ′dopE
′
q = −E ′q − (Xd −X ′d)[irds −

X ′d −X ′′d
(X ′d −Xls)2

(ψ
′r
kd + (X ′d −Xls)i

r
ds − E ′q)] + E ′fd

(2.12f)

T ′′dopψ
′r
kd = −ψ′rkd + E ′q − (X ′d −Xls)i

r
ds (2.12g)

pδ = ωr − ωe (2.12h)

J
2

P
pωr = TM − Te (2.12i)

Te =
3

2

P

2

1

ωe
(ψrdsi

r
qs − ψrqsirds) (2.12j)

where δ is the rotor angle with respect to the synchronous reference frame, J is

the rotor inertia, Te is the electromagnetic torque, P is the number of poles of the

machine, TM is the mechanical torque, and p is the d
dt

operator.
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This model can be expressed in a per-unit form:

1

ωe
pψrqs = rsi

r
qs −

ωr
ωe
ψrds + vrqs (2.13a)

1

ωe
pψrds = rsi

r
ds +

ωr
ωe
ψrqs + vrds (2.13b)

1

ωe
pψ0s = rsi0s + v0s (2.13c)

T ′qopE
′
d = −E ′d + (Xq −X ′q)[irqs −

X ′q −X ′′q
(X ′q −Xls)2

(ψ
′r
kq2 + (X ′q −Xls)i

r
qs + E ′d)] (2.13d)

T ′′qopψ
′r
kq2 = −ψ′rkq2 − E ′d − (X ′q −Xls)i

r
qs (2.13e)

T ′dopE
′
q = −E ′q − (Xd −X ′d)[irds −

X ′d −X ′′d
(X ′d −Xls)2

(ψ
′r
kd + (X ′d −Xls)i

r
ds − E ′q)] + E ′fd

(2.13f)

T ′′dopψ
′r
kd = −ψ′rkd + E ′q − (X ′d −Xls)i

r
ds (2.13g)

pδ = ωr − ωe (2.13h)

2H

ωe
pωr = TM − Te (2.13i)

Te = ψrdsi
r
qs − ψrqsirds (2.13j)

The per-unitization assumes that base voltage is the peak value of the rated phase

voltage, base power is the machine volt-ampere rating, and base rotor angular velocity

is ωe=377 rad/s. The corresponding current base, torque base and impedance base is

calculated from the base voltage, power, and angular velocity. These are then used to

rewrite (2.12a)- (2.12g), to form (2.13a)-(2.12g). For the rotor mechanical dynamics,

(2.12i)-(2.12j), the base torque is first expressed:

TB =
PB

(2/P )ωe
(2.14)

Subsequently, (2.12i) is expressed in terms of per-unit values of speed and torque,

which yields the inertia constant defined as:

H =

(
1

2

)(
2

P

)
Jωe
TB

=

(
1

2

)(
2

P

)2
Jω2

e

PB
(2.15)
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Equations (2.13a)-(2.13j) represents the state model of the synchronous machine.

Within the machine detailed model, the following expressions are used to relate wind-

ing currents to the states:

irqs =
1

X ′′q
(−ψrqs −

X ′′q −Xls

X ′q −Xls

E ′d +
X ′q −X ′′q
X ′q −Xls

ψ
′r
kq2) (2.16a)

irds =
1

X ′′d
(−ψrds +

X ′′d −Xls

X ′d −Xls

E ′q +
X ′d −X ′′d
X ′d −Xls

ψ
′r
kd) (2.16b)

i0s = − 1

Xls

ψ0s (2.16c)

i
′r
kq2 =

X ′q −X ′′q
(X ′q −Xls)2

[ψ
′r
kq2 + (X ′q −Xls)i

r
qs + E ′d] (2.16d)

i
′r
kq1 =

1

Xmq

[−E ′d + (Xq −X ′q)(irqs − i
′r
kq2)] (2.16e)

i
′r
kd =

X ′d −X ′′d
(X ′d −Xls)2

[ψ
′r
kd + (X ′d −Xls)i

r
ds + E ′q] (2.16f)

i
′r
fd =

1

Xmd

[E ′q + (Xd −X ′d)(irds − i
′r
kd)] (2.16g)

The active and reactive power are also calculated in per-unit using:

P = vrqsi
r
qs + vrdsi

r
ds + 2vr0si

r
0s (2.17a)

Q = vrqsi
r
ds − vrdsirqs (2.17b)

2.3.2 Generator Exciter system

The exciter model used comes from [6]. A block diagram of the exciter model is

shown in Figure 2.3. The output of the exciter system is the field winding voltage

E ′fd, which labeled as vf in Figure 2.3. The field winding voltage value is expected to

be 1 per-unit when the generator operates unloaded at rated speed with a 1 per-unit

terminal voltage.

The control input to the exciter model is the V0 in Figure 2.3, which is used

to control the stator terminal voltage magnitude of the synchronous machine. By
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Fig. 2.3.: Exciter System

using the measured machine stator terminal phase voltage magnitude, labeled as V ,

a relation among E ′fd, V0 and V can be expressed under steady state:

E ′fd = G(V − V0)
Ta
Tb

(2.18)

The control described in (2.18) is commonly referred as an Automatic Voltage

Regulator(AVR), which is used to control the field winding voltage value based on

the measured machine stator terminal voltage. In Figure 2.3, also shown are the

control sections in the top part of the figure labeled Power System Stabilizer (PSS),

transient gain reduction, and another control section in the bottom part of the figure

labeled OverExcitation Limiter (OEL),which is related to the field winding current

limit.

To briefly explain the OEL, ilim1
fd is the field current limit that is established by

the generator manufacturer. Under normal operation, if the field current, labeled if

in Figure 2.3, is lower than the field current limit, a negative value is input into the

min block. Since ilim2
fd is a positive number, a negative signal of if − ilim1

fd results as

an inmput to the integrator. Since the output of the OEL is bounded between 0 to

L3, the output of the OEL is then 0 under normal operation. However, when the field

current exceeds ilim1
fd , the signal that goes to the OEL integrator is based on the min
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gate. In the end, the more the field current exceeds the limit, the higher the output

of the OEL will be.

The transient gain reduction is used to limit the overshoot in the terminal voltage

following a step disturbance. The Bode response of this block is shown in Figure 2.4. If

the frequency of the input signal to the block is greater than 1Hz, the output is reduced

by 8 dB. Otherwise the gain is fixed at G. Thus, any low frequency disturbances receive

greater response compared to high frequency disturbances.

Fig. 2.4.: Frequency Response for Transient Gain Reduction Block

The PSS uses rotor electrical speed ωr as an input. It includes a high pass filter

and two identical lead filters in cascade. The overall PSS transfer function is shown

in Figure 2.5. As shown, it filters signals at very low frequencies (below 0.01 rad/s)

while providing significant gain to signals above 100 rad/s.

2.3.3 Governor System

The governor model system is a steam turbine based model, shown in Figure 2.6.

It also comes from [11]. In the bottom half of the figure, one can observe that the

steam turbine is divided into three different pressure stages (labeled LP, MP, HP)

which add to yield commanded mechanical torque.

From the top of Figure 2.6 one can observe that the model accepts the rotor

mechanical speed (shown as ω) and desired generator electrical power (shown as Po)
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Fig. 2.5.: Frequency Response for Power System Stabilizer

Fig. 2.6.: Governor System

as inputs. The valve open z is added to the speed error. This results in a droop-

type of action between power and speed. Specifically, assuming steady-state, one can

assume the input to the valve opening integrator is 0. Under this condition, one can

express

z = Po +
1− ω
σ

(2.19)

Assuming no loss in the mechanical system, it can be shown that Tm = z = Po. As

speed varies away from 1, the load torque varies from the commanded power.
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2.3.4 Detailed Generator/Infinite Bus Implementation

Synchronous Machine

-+

-+

-+

Infinite Bus

ibs

ias

ics

vas

vbs

vcs

+ -

+ -

+ -

vasb

vbsb

vcsb

L

L

L

nmnb

+- vnmb

Fig. 2.7.: Detailed Generator/Infinite Bus Implementation

With the infinite bus and the generation system described, a simple system in-

cluding an infinite bus and a generator can be readily developed, shown in Figure

2.7. Such a system is often used for the purpose of generator stability studies and ex-

citation/governor control design. In subsequent behavioral model development, this

system is used for model derivation and characterization. Hence, a Simulink model

of an infinite/bus generator has been constructed. The Simulink model of the gener-

ator accepts as inputs the qd stator terminal voltage expressed in the rotor reference

frame, the load torque (from the governor model) and the field voltage excitation

E ′fd (from the excitation system model). In addition to the states, the simulation is

used to solve for field winding current, d- and q-axis stator currents, electromagnetic

torque, rotor angular velocity, rotor angle, active and reactive power and the termi-

nal voltage magnitude. The machine is connected to the infinite bus through a 0.15

per-unit series reactance X. This enables implementation of the Exciter system to

control the machine terminal voltage (machine terminal voltage magnitude would be

the infinite bus voltage without this reactance).
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Within the Simulink model, the series reactance is incorporated within the syn-

chronous machine model by adding its value to the leakage reactance of each phase.

From the definition of the parameters in (2.9) and (2.8), it can be shown that equation

(2.13) does not need to change with the addition of the series reactance, since the

terms involving the parameters of the wound-rotor machine do not rely on its leak-

age inductance. However, it is important to note that the stator voltage and stator

flux linkage per second in (2.8) is influence by the series reactance since the lumped

leakage reactance is the infinite-bus voltage and the total flux linkage per second af-

ter including the series reactance. Hence, in addition to use the equation (2.13) to

calculate the states variables, further calculation is needed for the calculation of the

machine terminal voltage and stator flux linkage per second.

The infinite bus voltage is expressed:

θe = ωet (2.20)

vabcsb =


Vi cos(θe)

Vi cos(θe − 2π
3

)

Vi cos(θe + 2π
3

)

 (2.21)

where Vi is the peak voltage of the infinite bus and

θe = ωet (2.22)

Using Kirchhoff’s law around the loop from nb to nm the relationship between the

infinite bus voltage and the machine terminal voltage can be expressed:

vabcsb = −X
ωe

diabcs
dt

+ vabcs +


1

1

1

 vnmb (2.23)
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Transforming (2.23) and (2.21) to the rotor reference frame yields:

vrqsb = −X
ωe

dirqs
dt
− ωr

X

ωe
irds + vrqs (2.24a)

vrdsb = −X
ωe

dirds
dt

+ ωr
X

ωe
irqs + vrds (2.24b)

v0sb = −X
ωe

di0s
dt

+ v0s + vnmb (2.24c)

As shown in the equation (2.64), the derivatives of the generator stator currents

are needed for the calculation of the generator stator voltage. The derivatives can be

calculated based on equation (2.16) by using the derivative operator d
dt

on both sides.

pirqs =
1

X ′′q
(−pψrqs −

X ′′q −Xls

X ′q −Xls

pE ′d +
X ′q −X ′′q
X ′q −Xls

pψ
′r
kq2) (2.25a)

pirds =
1

X ′′d
(−pψrds +

X ′′d −Xls

X ′d −Xls

pE ′q +
X ′d −X ′′d
X ′d −Xls

pψ
′r
kd) (2.25b)

pi0s = − 1

Xls

pψ0s (2.25c)

Where p = d
dt

and all the terms on the right hand sides with p are the states and

their derivatives are calculated based on the equation (2.13).

In addition, it is assumed the machine windings are balanced and wye-connected,

in which case one can show that vnmb = 0. These steps enable one to express the

transformed stator phase voltages in terms of the infinite bus voltage as:

vrqsb = Vi cos(δ) (2.26a)

vrdsb = Vi sin(δ) (2.26b)

v0sb = 0 (2.26c)
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Simulink Implementation

The overall implementation of the generator/infinite bus in Simulink is shown in

Figure 2.8. At the source function block, the infinite bus voltage vrqd0sb in the rotor

frame of reference is calculated using (2.26) and where the angle difference is the state

variable δ.

Fig. 2.8.: Detailed Generator/Infinite Bus System Simulink Implementation

Inside the governor block and exciter block, the dynamics of the governor and

exciters are implemented. The implementation of the governor dynamics are shown in

Figure 2.9, Figure 2.10 and Figure 2.11; the implementation of the exciter dynamics

are shown in Figure 2.12, Figure 2.13 and Figure 2.14.

Inside the Full Detailed Gen block, the dynamics of the generator are imple-

mented, which is shown in Figure 2.15.
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Fig. 2.9.: Governor Simulink Implementation

Fig. 2.10.: Speed Governor Simulink Implementation

Fig. 2.11.: Steam Turbines Simulink Implementation

In the ElectricalDynamics and MechanicalDynamics function block,(2.13)

are implemented. In the Current function block, (2.16) are used to calculate the

stator and damper windings currents. In the Additional Info block, shown in Figure

2.16. In the Voltage function block, the machine voltage is calculated using (2.24).
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Fig. 2.12.: Exciter Simulink Implementation

Fig. 2.13.: PSS Simulink Implementation

Fig. 2.14.: OEL Simulink Implementation

In the synchV function block, the stator terminal voltage is transformed back to the

synchronous reference frame for the bus information calculation.
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Fig. 2.15.: Generator Simulink Implementation

Fig. 2.16.: Generator Subblock Simulink Implementation
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2.4 Load Model

2.4.1 Constant RC Load

The constant impedance load modeled in this section is a three phase symmet-

rical wye-connected series RC load. In the physical abc variable representation, the

equations:

vabcLoad = RiabcR + vabcC (2.27a)

iabcC = CpvabcC (2.27b)

are used to relate load voltage and current. In (2.27), the v and i are vectors of voltage

and current, respectively. The variable p is the d/dt operator, and R and C are three-

by-three square diagonal matrices with diagonal entries R and C. The load model can

be transformed to the synchronous reference frame using the transformation (B.3),

resulting in:

veqload = ieqRR + veqC (2.28a)

vedload = iedRR + vedC (2.28b)

ve0load = ie0RR + ve0C (2.28c)

where

pveqC =
ieqC
C
− ωevedC (2.29a)

pvedC =
iedC
C

+ ωev
e
qC (2.29b)

pve0C =
ie0C
C

(2.29c)

In (2.29), the currents with subscript C are the capacitor currents. Since the load

is series connected, then iqd0R = iqd0C = iqd0RC .
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Simulink Implementation

For the constant admittance, with the load currents given, the load voltages can

be calculated using (2.28). The Simulink diagram is shown in Figure 2.17.

Fig. 2.17.: Constant Admittance Simulink Implementation

2.4.2 Detailed Induction Machine Model

The induction machine model used is derived in [8] based upon the cross section

of the two-pole, three-phase, wye-connected symmetrical induction machine shown

in Figure 2.18. Similar to the synchronous generator described in Section 2.3, the

relationship between winding current, magnetic flux, and voltage is used to express

the ODEs used to predict machine performance. The ODEs expressed in the abc

variables are described in detail in [8] starting from page 216. Since the model used

in this work is all based on reference-frame theory, the ODEs in machine abc variables

are not discussed here. Rather, the common qd0 representation of the induction

machine in the synchronous reference frame is expressed in (2.30).
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Fig. 2.18.: Two-pole, Three-phase, Wye-connected Symmetrical Induction Machine

veqs = rsi
e
qs + ωeλ

e
ds +

dλeqs
dt

(2.30a)

veds = rsi
e
ds − ωeλeqs +

dλeds
dt

(2.30b)

v0s = rsi0s +
dλ0s

dt
(2.30c)

v
′e
qr = r′ri

′e
qr + (ωe − ωr)λ

′e
dr +

dλ
′e
qr

dt
(2.30d)

v
′r
dr = r′ri

′e
dr − (ωe − ωr)λ

′e
qr +

dλ
′e
dr

dt
(2.30e)

v
′

0r = r′ri
′

0r +
dλ
′
0r

dt
(2.30f)
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where v is used to represent respective winding voltage, r winding resistance, ωe is

the synchronous electrical angular velocity from the infinite bus, and ωr is the rotor

electrical angular velocity. The variable λ is used for winding flux linkage. The

winding flux linkages can be expressed in terms of winding currents using (2.31):

λeqs = Llsi
e
qs + LM(ieqs + i

′e
qr) (2.31a)

λeds = Llsi
e
ds + LM(ieds + i

′e
dr) (2.31b)

λ0s = Llsi0s (2.31c)

λ
′e
qr = L′lri

′e
qr + LM(ieqs + i

′e
qr) (2.31d)

λ
′e
dr = L′lri

′e
dr + LM(ieds + i

′e
dr) (2.31e)

λ
′

0r = L′lri
′

0r (2.31f)

Subscripts s and r refer to stator and rotor quantities respectively. The superscript

e is used to indicate the variables are in the synchronous frame of reference, and the

prime ′ is used to indicate that the respective winding is referred to the stator winding

through an appropriate turns ratio. The inductances in (2.31) with a subscript l are

leakage values of the respective winding while those with a subscript M magnetizing

values. Since the parameters of the induction machine are often provided in terms of

reactances rather than inductances, it is convenient to multiply (2.30) and (2.31) on

both sides by a base angular velocity ωe and express the result in equations (2.32):

ωev
e
qs = ωersi

e
qs + ωeψ

e
ds + pψeqs (2.32a)

ωev
e
ds = ωersi

e
ds − ωeψeqs + pψeds (2.32b)

ωev0s = ωersi0s + pψ0s (2.32c)

ωev
′e
qr = ωer

′
ri
′e
qr + (ωe − ωr)ψ

′e
dr + pψ

′e
qr (2.32d)

ωev
′r
dr = ωer

′
ri
′e
dr − (ωe − ωr)ψ

′e
qr + pψ

′e
dr (2.32e)

ωev
′

0r = ωer
′
ri
′

0r + pψ
′

0r (2.32f)
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Where p is the d
dt

operator and:

ψeqs = Xlsi
e
qs +XM(ieqs + i

′e
qr) (2.33a)

ψeds = Xlsi
e
ds +XM(ieds + i

′e
dr) (2.33b)

ψ0s = Xlsi0s (2.33c)

ψ
′e
qr = X ′lri

′e
qr +XM(ieqs + i

′e
qr) (2.33d)

ψ
′e
dr = X ′lri

′e
dr +XM(ieds + i

′e
dr) (2.33e)

ψ
′

0r = X ′lri
′

0r (2.33f)

In (2.33), the currents can be readily calculated using (2.34).

ieqs =
1

Xls

(ψeqs − ψemq) (2.34a)

ieds =
1

Xls

(ψeds − ψemd) (2.34b)

i0s =
1

Xls

ψ0s (2.34c)

i
′e
qr =

1

X ′lr
(ψ
′e
qr − ψemq) (2.34d)

i
′e
dr =

1

X ′lr
(ψ
′e
dr − ψemd) (2.34e)

i0r =
1

X ′lr
ψ
′

0r (2.34f)

where ψemq and ψemd are defined as:

ψemq
∆
= XM(ieqs + i

′e
qr) (2.35a)

ψemd
∆
= XM(ieds + i

′e
dr) (2.35b)
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It is useful to express ψemq and ψemd in terms of the states in the equations (2.32) and

the reactances for Simulink implementation:

ψemq = Xaq(
ψeqs
Xls

+
ψ
′e
qr

X ′lr
) (2.36a)

ψemd = Xad(
ψeds
Xls

+
ψ
′e
dr

X ′lr
) (2.36b)

where

Xaq = Xad
∆
= (

1

XM

+
1

Xls

+
1

X ′lr
)−1 (2.37)

With ψemq and ψemd, (2.32) can be readily written in a form:

pψeqs = ωe[v
e
qs − ψeds +

rs
Xls

(ψemq − ψeqs)] (2.38a)

pψeds = ωe[v
e
ds + ψeqs +

rs
Xls

(ψemd − ψeds)] (2.38b)

pψ0s = ωe[v0s −
rs
Xls

ψ0s] (2.38c)

pψ
′e
qr = ωe[v

′e
qr −

ωe − ωr
ωe

ψ
′e
dr +

r′r
X ′lr

(ψemq − ψ
′e
qr)] (2.38d)

pψ
′e
dr = ωe[v

′e
dr +

ωe − ωr
ωe

ψ
′e
qr +

r′r
X ′lr

(ψemd − ψ
′e
dr)] (2.38e)

pψ0r = ωe[v
′
0r −

r′r
X ′lr

ψ′0r] (2.38f)

The rotor dynamics of the machine can be expressed using:

J
2

P

dωr
dt

= TM − Te (2.39a)

where J is the rotor inertia, P the number of poles, TM the mechanical torque, and

Te the electromagnetic torque that can be expressed in terms of stator flux linkages

and currents as:

Te =
3

2

P

2

1

ωe
(ψedsi

e
qs − ψeqsieds) (2.40)
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The induction machine implemented within the power system is in per-unit. The

per-unitization applied assumes that base voltage is the peak value of the rated phase

voltage, base power is the machine volt-ampere rating, and base rotor angular velocity

is ωe=377 rad/s. The corresponding current base, torque base and impedance base is

calculated from the base voltage, power, and angular velocity. To apply to the rotor

mechanical dynamics in (2.39), the base torque is first expressed:

TB =
PB

(2/P )ωe
(2.41)

Subsequently, (2.39) is expressed in terms of per-unit values of speed and torque,

which yields

2H

ωe
pωr = TM − Te (2.42a)

Te = ψedsi
e
qs − ψeqsieds (2.42b)

where

H =

(
1

2

)(
2

P

)
Jωe
TB

=

(
1

2

)(
2

P

)2
Jω2

e

PB
(2.43)

The active and reactive power are also calculated in per-unit using:

Pe = veqsi
e
qs + vedsi

e
ds + 2ve0si

e
0s (2.44a)

Qe = veqsi
e
ds − vedsieqs (2.44b)

Simulink Implementation

The Simulink implementation of the induction machine is shown in Figure 2.19.

In the dynamics block, the states equations (2.38) are calculated. In the current

block, the stator and rotor currents are calculated based on equation (2.34). In the
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torque block, the torque and rotor speed are calculated. In the loadtorque block,

the load torque is calculated, which is in the general form of:

Tl = Tm0(0.5ω2 + 0.5) (2.45)

Where ω are the per-unit rotor speed, ωr

ωe
.

Fig. 2.19.: Induction Machine Detailed Model Simulink Implementation
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2.5 Transmission Line

As mentioned in Chapter 1, the π circuit is used to model the transmission line. In

Figure 1.1, there are twelve transmission lines, where six of them are connecting bus

1 and bus 3 with two transmission lines for each phase; the other six are connecting

bus 3 and bus 4. For simplicity, only the phase a connection is shown in Figure 2.20.

To model parallel lines, the values of resistance and inductance of the individual

C1

R13 L13

C1 C2

R34 L34

C2

Fig. 2.20.: 5-Bus System Transmission Line Equivalent Circuit

conductors are divided by two and the values of the capacitance are multiplied by

two.

In the implementation, the capacitors across bus 3 share the same voltages as the

primary side of the LTC transformer. Therefore, the capacitors with admittance b13

and b34 are combined to form a single capacitance. In addition, within the Simulink

implementation to avoid algebraic loops, and based upon the fact the the capacitor

should not directly connect to a voltage source (the infinite bus) because of the

continuity of capacitive voltage, a small resistor is added between the infinite bus and

the transmission line. Hence, the final topology shown in Figure 2.21 is used.

−

+

vinf

il1

−

+

vC1

Rinfiinf

C1

iC1

R13 L13

−

+

vLTC

il2

iLTC

−

+

vC2

itran

C2

iC2

R34 L34

C1 + C2

iC3

Fig. 2.21.: 5-Bus Transmission Line Implementation Model
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Currents in inductor L13

In the Figure 2.21, the currents and voltages can all be calculated. For the inductor

L13, the equations for the currents states in abc variables are: (2.46):

vabcl1 = vabcLTC − vabcC1 (2.46a)

vabcl1 = L13piabcl1 + R13iabcl1 (2.46b)

Where L13 and R13 are three-by-three square diagonal matrices with diagonal entries

L13 and R13 respectively. To transform the abc variables to qd0 variables, a reference

frame transformation to the synchronous reference frame is applied, yielding a state

model of the form:

pieql1 =
veqLTC − veqC1 −R13i

e
ql1

L13

− ωeiedl1 (2.47a)

piedl1 =
vedLTC − vedC1 −R13i

e
dl1

L13

+ ωei
e
ql1 (2.47b)

pie0l1 =
ve0LTC − ve0C1 −R13i

e
0l1

L13

(2.47c)

In (2.47), voltages with subscript LTC are calculated based on the capacitor in

Figure 2.21 labeled with C1 + C2; voltages with subscript C1 are calculated based

on the capacitor in Figure 2.21 labeled with C1, and the currents are states for the

inductor L1.
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Currents in inductor L34

In the same fashion, the currents in the transmission lines connecting bus 3 and

bus 4 can be calculated. First of all, the voltage in the lines can be calculated:

vabcl2 = vabcLTC − vabcC2 (2.48a)

vabcl2 = L34piabcl2 + R34iabcl2 (2.48b)

Following the same procedure described for the calculation of current in L13, the

derivatives of the currents through the L34 can be calculated in the equation (2.49)

in the synchronous reference frame.

pieql2 =
veqLTC − veqC2 −R34i

e
ql2

L34

− ωeiedl2 (2.49a)

piedl2 =
veqLTC − veqC2 −R34i

e
ql2

L34

+ ωei
e
ql2 (2.49b)

pie0l2 =
veqLTC − veqC2 −R34i

e
ql2

L34

(2.49c)

In the equation (2.49), voltages with subscript LTC will be calculated based on the

capacitor in Figure 2.21 labeled with C1 + C2; voltages with subscript C2 will be

calculated based on the capacitor in Figure 2.21 labeled with C2, and the currents

are states for the inductor L2.

Voltages in shunt capacitor C1 + C2

With the currents through the inductor calculated, the voltage across the capaci-

tors can also be calculated. For the capacitor C1 + C2,

iabcC3 = iabcLTC − iabcl1 − iabcl2 (2.50a)

iabcC3 = (C1 + C2)pvabcLTC (2.50b)
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These can be transformed to the the synchronous reference frame, yielding (2.51)

pveqLTC =
ieqLTC − ieql1 − ieql2

C1 + C2

− ωevedLTC (2.51a)

pvedLTC =
iedLTC − iedl1 − iedl2

C1 + C2

+ ωev
e
qLTC (2.51b)

pve0LTC =
ie0LTC − ie0l1 − ie0l2

C1 + C2

(2.51c)

In (2.51), currents with subscript LTC are calculated based on the LTC model, which

will be described in later sections.Currents with subscript l1 and l2 are calculated using

(2.47) and (2.49) respectively, and the voltages are states for the capacitor C1 + C2.

Voltages in shunt capacitor C1

For the capacitor C1, the model in abc variables can be expressed in the form:

(2.52)

iabcC1 = iabcinf + iabcl1 (2.52a)

iabcC1 = C1pvabcC1 (2.52b)

Transforming (2.52) to the synchronous reference frame and expanding the equa-

tion, the derivatives can be calculated as:

pveqC1 =
ieqinf + ieql1

C1

− ωevedC1 (2.53a)

pvedC1 =
iedinf + iedl1

C1

+ ωev
e
qC1 (2.53b)

pve0C1 =
ie0inf + ie0l1

C1

(2.53c)
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In (2.53), currents with subscript inf are those through through the resistor Rinf ,

placed between the infinite bus and the capacitor of the transmission line. These

currents are determined using:

ieqinf =
veqinf − veqC1

Rinf

(2.54a)

iedinf =
vedinf − vedC1

Rinf

(2.54b)

ie0inf =
ve0inf − ve0C1

Rinf

(2.54c)

The currents with subscript L1 are calculated based on equation (2.47).

Voltages in shunt capacitor C2

Similarly, for the capacitor C2, the equations in abc variables can be expressed in

the form: (2.55)

iabcC2 = iabctran + iabcl2 (2.55a)

iabcC2 = C2pvabcC2 (2.55b)

Transforming these equations (2.52) to the synchronous reference frame and ex-

panding yields:

pveqC2 =
ieqtran + ieql2

C2

− ωevedC2 (2.56a)

pvedC2 =
iedtran + iedl2

C2

+ ωev
e
qC2 (2.56b)

pve0C2 =
ie0tran + ie0l2

C2

(2.56c)

In (2.56), currents with subscript tran are calculated based on the transformer model,

which will be described in a later section. Currents with subscript L2 are calculated

using (2.49).
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Simulink Implementation

As all the equations describing the currents and voltages are shown, one can notice

that there are only three quantities shown in the Figure 2.21 that are not states:

iqd0LTC , iqd0tran and vqd0inf . These quantities are used as input to the transmission

line subsystem. Specifically, iqd0LTC are calculated from the Load-tap-changer section,

iqd0tran are calculated from the transformer section and vqd0inf are calculated in the

infinite bus section. The outputs are the vqd0LTC , which are used in the LTC system

(between bus 2 and bus 3), and vqd0C2, which are used in the transformer system

(between bus 4 and bus 5). The implementation of the transmission line is shown in

Figure 2.22.

Fig. 2.22.: Transmission Line Simulink Implementation
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2.6 Transformer Model

Transformer

The transformer model is shown in Figure 1.3. To aid description, the same figure

with additional current labels are shown in Figure 2.25. The model is derived from

an analysis of two magnetically coupled coils shown in Figure 2.23 from [8]. With sat-

uration neglected. An T -equivalent circuit for the transformer can be derived shown

in Figure 2.24 with a detailed described in [8] page 2-7.In power system analysis, the

resistance in the windings, namely r1 and r
′
2 in Figure 2.24, are assumed negligible.

In addition, it is assumed the permeability of the core is relatively large compared

to the air so that the magnetizing inductance lm1 is relatively large compared to the

leakage inductances Ll1 and Ll2. Thus, the shunt impedance of the Lm1 is ignored.

In the end, the transformer is modeled using a single inductor with the two leakage

inductances lumped together. To accommodate the LTC, where the turns ratio can

be varied, the left part in the Figure 2.25 is added. By changing the turns ratio of

N1

N2
, the voltage ratio Vin

Vt
is changed accordingly. Hence the left of the Figure 2.25

acts as a voltage regulator.

Fig. 2.23.: Two Wingdings Magnetically Coupled Circuits
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Fig. 2.24.: Transformer T-Equivalent Circuit

N2N1

iin

−

+

Vin

−

+

Vout

−

+

Vt

Ltran il

Fig. 2.25.: Transformer Implementation

Finally, in assuming there is no coupled between the phase leakages of a 3-phase

transformer, the voltages equations in abc variables can be expressed as: (2.57).

vabcin =
N1

N2

vabct (2.57a)

vabct − vabcout = (Ltran)piabcl (2.57b)

Where the Ltran is a diagonal matrix with entries of the lumped leakage inductance

of the transformer. Using a transformation to the synchronous frame of reference,

the model can be expressed:

pψeql = (
veqin
r
veqin − veqout − ψedl)ωe (2.58a)

pψedl = (
veqin
r
vedin − vedout − ψedl)ωe (2.58b)

pψ0l =
veqin
r
ve0in − ve0out (2.58c)
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where r = N1

N2
, and

ψeql = Xtrani
e
ql (2.59a)

ψedl = Xtrani
e
dl (2.59b)

ψ0l = Xtrani0l (2.59c)

With the inductors obtained by solving the state model, the input currents and

can also be calculated. On the input side, there is a voltage regulator, with the

relationship shown in equation (2.57a). Based on the conservation of energy, i.e., the

input power should equal to the output power, the currents can be expressed:

iabcin =
N2

N1

iabcl (2.60)

Furthermore, from the direction of the iin, the input currents are expressed in the

synchronous reference frame as:

ieqin = −
ieql
r

(2.61a)

iedin = −i
e
dl

r
(2.61b)

ie0in = −i
e
0l

r
(2.61c)

Simulink Implementation

The Simulink implementation of the transformer is shown in Figure 2.26. In the

PsiCalculation block, (2.58) is utilized. In the CurrentCal block, (2.59) and (2.61)

are used.

LTC Tap-Changing Mechanism

The LTC tap-changing mechanism is developed from [13]. The LTC is able change

its turn ratios in distinct steps to regulate the output voltage magnitude within a
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Fig. 2.26.: Transformer Simulink Implementation

desired range. The typical parameters of the LTC include the maximum and minimum

turns ratio, rmin and rmax respectively, the tap position Ntap, a voltage dead-band

Vd, a delay time before the first tap change td1, a delay time between subsequent tap

change td2, and a voltage sampling time ts.

The N1

N2
can vary and the number of the tap position specifies how much the turns

ratio can vary between each tap position. The incremental turns ratio change δr, due

to change of one tap position, is calculated based upon:

δr =
rmax − rmin
Ntap − 1

(2.62)

The voltage dead-band is the control objective of the LTC. Typically, the voltage

dead band represents the objective voltage Vo±Vd in per-unit, which means the LTC

measures the voltage Vout shown in Figure 2.25 and the tap changes if Vout does not

fall into the voltage dead-band. The last two parameters are used as time delay for

the tap-position change to prevent the LTC making unnecessary tap-changing due to

transient voltage responses. To be more clear, the LTC checks Vout at every sampling

time ts. At these sampling times, if the Vout is within the voltage dead-band, the LTC

does not make any changes. However, if Vout is not within the voltage dead band, the
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LTC changes its turns ratio by ±δr after a time delay of td1. If Vout is in the voltage

dead-band as desired after the first tap-change, the the LTC stops making changes

and checks the voltage again after ts. However, if Vout is still not in the voltage dead-

band after the first tap-change, it makes subsequent changes after a time delay of

td2.

In Simulink, since there is no direct time domain delay block to be conveniently

used in the LTC operation, a combination of a triangle signal T and hit crossing check

block is used to mimic the LTC signal sampling and time delay. The magnitude of the

triangle signal is set to a value Tmax and the frequency of the triangle signal is varied

based on Vout. The LTC makes necessary changes to its turns ratio and the slope kT

of the signal when the triangle signal T hits its maximum value Tmax. Even though

the voltage magnitude Vout can be calculated at every time step in the simulation, it

is not used in the LTC operation decision until the triangle signal T hits its maximum

value Tmax. The slope of the triangle signal kT is based on the Vout and the delay

or the sampling time. The operation flow chart is shown in Figure 2.28. The inputs

to the LTC operation are LTC turns ratio r, output voltage Vout, triangle signal T ,

and the slope of the triangle signal kT and the outputs are the LTC turns ratio r and

triangle signal slope kT .

Simulink Implementation

The Simulink implementation of the tap-changing mechanism is shown in Figure

2.27. The TapChaning block contains the logic described in Figure 2.28, with an

additional signal e, which represents the condition “Vo−Vd ≤ Vout ≤ Vo+Vd?”. On the

right hand side, there is an integrator used to create the triangle signal, which resets

to 0 when it reaches 1. The hit crossing block is used for the condition “T = Tmax?”.
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Fig. 2.27.: LTC Tap-changing Mechanism Simulink Implementation
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Start

r, Vout, T, kT

T = Tmax?

Vo − Vd ≤ Vout ≤ Vo + Vd?

kT = Tmax

ts
?

kT = Tmax

td1

kT = Tmax

td2

Vo − Vd > Vout?

r, kT

End

r = r − δr

r = r + δr

Yes

No

Yes

No

Yes

No

Yes

No

Fig. 2.28.: LTC Flow Chart
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2.7 System Level Simulink Implementation

2.7.1 Simulink Block Diagram

The overall 5-bus system Simulink block diagram is shown in Figure 2.29, which

is a combination of all the aforementioned components. The inputs to the system

is the infinite bus voltage, Po for the generator governor and V0 generator exciter.

Furthermore, the input and output voltages and currents of each bus are all in the

synchronous reference frame.

Fig. 2.29.: 5-bus System Detailed Model Simulink Implementation

For each bus, an info block is added in addition to blocks described in previous

sections. This block uses a busdata function block, shown in Figure 2.30, to calculate

the bus information in steady state. The bus voltage and current magnitude, voltage

and current angle are obtained based on the (B.9) in the Appendix.Then the active

and reactive power are calculated based on (C.2). Hence, the inputs to this block are

the bus voltages and currents in the synchronous reference frame, and the outputs are

the steady-state voltage magnitude, voltage angle, active power and reactive power.
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Fig. 2.30.: Bus Information Simulink Implementation

Infinite Bus

The Inf block is shown in Figure 2.1. The inputs to this block are the fixed infinite

bus voltage magnitude and the electrical frequency. The outputs are the infinite bus

voltage in the synchronous frame reference.

Transmission Line

The Transmission Line block is shown in Figure 2.22 with an additional info

calculation. Hence, the inputs to the block are the currents of the LTC between bus

2 and bus 3, currents of the transformer between bus 4 and bus 5 and the infinite bus

voltages. The outputs of the block are the LTC input voltages and the transformer

input voltages.

Generator System

The generator and the transformer are lumped into a single in the Simulink imple-

mentation, similar to the generator/infinite bus implementation. Since the reactances

of the transformer are series connected to the generator, they are treated as part of

the leakage reactances of the generator. Hence, the transformer reactance is incor-
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porated within the synchronous machine model by adding its value to the leakage

reactance of each phase.

Similar to the generator/infinite bus implementation described in section 2.3.4, the

correct machine stator terminal voltage needs to be calculated. The series connected

transformer and the generator can be described by using Kirchhoff’s law from the

transformer input terminal to the generator terminal. The relationship between the

transformer input voltage and the machine terminal voltage can be expressed:

vabcin = rvabct (2.63a)

vabct = −X
ωe

diabcs
dt

+ vabcs (2.63b)

Where the voltage with subscript in are the transformer input terminal voltage shown

in Figure 2.25, the voltages with subscript t are the transformer internal voltage after

the voltage regulator and the quantities with subscript s are the generator stator

quantities.

Transforming (2.63) to the rotor reference frame:

vrqsin = rvrqst (2.64a)

vrdsin = rvrdst (2.64b)

vr0sin = rvr0st (2.64c)

vrqst = −X
ωe

dirqs
dt
− ωr

X

ωe
irds + vrqs (2.64d)

vrdst = −X
ωe

dirds
dt

+ ωr
X

ωe
irqs + vrds (2.64e)

v0st = −X
ωe

di0s
dt

+ v0s (2.64f)

The overall implementation in Simulink is shown in Figure 2.31. At the upper

right corner, a constant block represents the constant tap setting r is used for the

transformer, as shown in equations (2.64a) to equation (2.64c).
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Fig. 2.31.: Generator/Transformer Simulink Implementation

All the sub-blocks are the described in section 2.3.4. hence they are not discussed

further. The inputs to the generation system block are the commanded power Po for

the governor, V0 for the exciter and the input is the transformer input voltages The

output of the system is the bus information for bus 4 and bus 5, and the transformer

input currents in the synchronous reference frame.

Load Bus

The load bus includes three components as described, which is implemented as

shown in Figure 2.32.

The three blocks on the left are the constant admittance load,induction machine

1 and induction machine 2. The constant admittance load is shown in Figure 2.17.

The inputs are the load currents and the outputs are the load voltages. The details of
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Fig. 2.32.: Load Bus Simulink Implementation

induction machine blocks are shown in Figure 2.19. Both blocks use the same model

with different machine parameters. Inputs to the induction machine blocks are the

machine stator voltages and the outputs are the machine stator currents.

The RCcurrent function block is used to calculate the input currents to the

constant admittance block, which is based on KCL and can be expressed as:

ieqd0RC = ieqd0load − (ieqd0ind1 + ieqd0ind2) (2.65)

Where the currents with subscript ind are the induction machines currents, the cur-

rents with the subscript load are the total currents at the load bus.

The busV function block is used to calculate the voltage magnitude, which is

calculated based on:

Vm =
√
veq

2 + ved
2 (2.66)
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And three more businfo blocks are used to calculate the induction machine ter-

minal information and the bus information.

Therefore, the inputs to the load bus are the LTC output currents and the outputs

are the bus load voltage magnitude, the load voltage in the synchronous reference

frame, and three info for the load bus and induction machine.

LTC

The LTC block is shown in Figure 2.33. Underneath sub-block, shown in Figure

2.34), is the transformer dynamics, shown in Figure 2.26, and the tap position control

mechanism, shown in Figure 2.27.

Fig. 2.33.: LTC Simulink Implementation

The inputs to the LTC block are the load voltage magnitude at bus 3, the input

and output voltages of the LTC in the synchronous reference frame. The outputs for

the LTC blocks are the input and output currents of the LTC in the synchronous

reference frame.
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Fig. 2.34.: LTC Subblock Simulink

2.7.2 State Initial Condition

The initial conditions of all states are calculated based on the power flow solution

described in the Appendix. Using the bus voltages and complex power, the initial

condition of the states in each components is calculated. The main idea is to use

the power flow solution as known quantities, and solve the differential equations

mentioned in this chapter with the derivative terms set to 0. All zero sequence

quantities are set to zero because it is assumed that all the currents, voltages and

flux linkage are balanced.

Infinite Bus

The infinite bus block only has a state, θe, which is angle of the synchronous

reference frame. The initial condition of this state is set to 0.
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Synchronous Generator

There are 9 states for the wound-rotor synchronous machine, 5 states for the

governor system, and 5 states for the exciter. From the Matpower solution, the

generator terminal voltage phasor and the complex electrical power produced by the

generator are obtained. In the power system generator steady-state analysis, the

angle δ is used for the power and rotor stability studies. From [8], chapter 5 starting

from page 160, the steady-state equations relating the angle δ and the voltages and

currents in steady state are shown to be:

Ẽa = [(Xd −Xq)I
r
ds +XmdI

′r
fd]e

jδ (2.67a)

Ṽas = −(rs + jXq)Ĩas + Ẽa (2.67b)

Using (C.2) from the Appendix, the Ĩas is calculated based on the Matpower

solution, and the δ is calculated based on the angle of Ẽa.

From the equation (B.11), the q- and d- axis quantities can be calculated. After

expansion:

vrqs0 = |Ṽas| cos (θv − δ) (2.68a)

vrds0 = −|Ṽas| sin (θv − δ) (2.68b)

irqs0 = |Ĩas| cos (θi − δ) (2.68c)

irds0 = −|Ĩas| sin (θi − δ) (2.68d)

(2.68e)

Where θv and θi are the voltage and current phasor angle respectively. The subscript

0 represents initial condition at t = 0s.

As mentioned in the Simulink Implementation section, the transformer connecting

the generator and the rest of the power system network is lumped into the generation

block. The reactance of the transformer, shown in Figure 2.25, is added to the leakage
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reactance of the synchronous machine. Hence, the stator flux linkage per second in

the implementation is the total flux linkage per second including the generator and

the transformer. Letting the subscript t represent the transformer input terminal

voltage. From equation (2.5):

vrqst0 = ψrds0 (2.69a)

vrdst0 = −ψrqs0 (2.69b)

v0st0 = 0 (2.69c)

v
′r
fd0 = r′fdi

′r
fd0 (2.69d)

v
′r
kd0 = r′kdi

′r
kd0 (2.69e)

v
′r
kq10 = r′kq1i

′r
kq10 (2.69f)

v
′r
kq20 = r′kq2i

′r
kq20 (2.69g)

Since the rotor windings kq1, kq2 and kd are short circuits, the currents in these

windings are 0 in the steady state.

From (2.13), (2.16) and using the fact that the the winding currents are zero:

E ′d0 = (Xq −X ′q)irqs0 (2.70a)

ψ
′r
kq20 = −E ′d0 − (X ′q −Xls)i

r
qs0 (2.70b)

E ′q0 = −(Xd −X ′d)irds0 + E ′fd0 (2.70c)

ψ
′r
kd0 = E ′q0 − (X ′d −Xls)i

r
ds0 (2.70d)

ωr0 = ωe (2.70e)

TM = Te (2.70f)

Based on (2.70), the initial conditions of the E ′d, ψ
′r
kq2, E ′q, ψ

′r
kd and ωr can be calculated

if the initial condition of the E ′fd0 is known.
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From the equation (2.6), and the definition of the Xq, Xd and E ′fd, the q- and

d-axis voltage is calculated based on:

vrqs0 = −Xdi
r
ds0 + E ′fd0 (2.71a)

vrds0 = Xqi
r
qs0 (2.71b)

From (2.17) and (2.71), the excitation voltage is calculated using:

E ′fd0 =
Pe0 − (Xq −Xd)i

r
qs0i

r
ds0

irqs0
(2.72)

Where Pe is the same as the commanded Po in the exciter if the stator resistance rs is

neglected. If the stator resistance is not 0, there are power losses in the stator, which

can be calculated:

is0 =
√
irqs0

2 + irds0
2 (2.73a)

Ploss0 = i2s0rs (2.73b)

Then the electrical power produced by the generator (2.72) is:

Pe0 = Po − Ploss0 (2.74)

To this end, the initial conditions for the synchronous generators are all calculated

except ψrqs, ψ
r
ds and ψr0s. The initial condition of the stator flux linkage per second is

calculated from: (2.64):

vrqst0 = −Xirds0 + vrqs0 (2.75a)

vrdst0 = Xirqs0 + vrds0 (2.75b)

v0st0 = v0s0 (2.75c)
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Hence, by plugging (2.75) into (2.69):

ψrqs0 = −Xirqs0 − vrds0 (2.76a)

ψrds0 = −Xirds0 + vrqs0 (2.76b)

ψ0s0 = 0 (2.76c)

Governor System

In the governor, there are several first order transfer functions. To specify the

initial condition for these transfer functions, the state model form of these transfer

functions are used. For the first block, which is used to control the valve opening, the

initial condition for the first transfer function is assumed 0 and the initial condition

for the integral of the valve opening z is set to the commanded power Po. For the

second block of the governor system, all the initial condition for the transfer functions

are set to be the commanded power Po multiplied with their respective time constant.

Excitation System

In the excitation system, there are three components. To specify the initial con-

dition for these transfer functions, their state space versions are used. The initial

conditions for all the transfer functions in the power system stabilizer is set to zero.

For the first high pass filter, the state in this block is the derivative of the rotor speed,

which is zero under steady state. For the two lead filters, the state initial condition

is 0. In the OEL block, the initial condition for the integrator is 0 as explained in the

previous sections. In the last exciter integrator, the initial condition is E ′fd calculated

in (2.72).



60

Transmission Lines, Transformer and Constant Admittance

The initial conditions of transmission lines, transformer states and constant ad-

mittance at the load are readily calculated using the power flow solution. For the

voltage states at the capacitors, the initial condition of the voltage is calculated based

on (B.9) with the corresponding steady-state voltage phasor; and setting the initial

condition for the zero-sequence quantites to zero. For example, for the initial con-

dition for the voltages described in (2.51), the voltage at bus 3 is found from the

solution of Matpower. Then the initial conditions are:

veqLTC = |Ṽ3| cos θv3 (2.77a)

vedLTC = −|Ṽ3| sin θv3 (2.77b)

ve0LTC = 0 (2.77c)

Where Ṽ3 is the voltage phasor at bus 3 and θv3 is the voltage phasor angle.

Similarly, for the currents, the first step is to find the current phasor. However,

since Matpower only provides solution of the complex power flow and the voltage

phasor, the currents are calculated using:

Ĩi = (
S̃i

Ṽi
)∗ (2.78)

Where the S̃i is the corresponding complex power flow of the current and ∗ is the

conjugate operator. With the current phasor, the qd0 states initial condition are

calculated using (B.9).
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Induction Machine

The induction machine initial conditions are calculated using (2.32) and (2.33).

From (2.33), the currents can be expressed in terms of the flux linkages per second

matrix form:

ieqs

ieds

i0s

i
′e
qr

i
′e
qr

i
′
0r


=

1

D



X ′rr 0 0 −XM 0 0

0 X ′rr 0 0 −XM 0

0 0 D
Xls

0 0 0

−XM 0 0 Xss 0 0

0 −XM 0 0 Xss 0

0 0 0 0 0 D
X′lr





ψeqs

ψeds

ψ0s

ψ
′e
qs

ψ
′e
ds

ψ
′
0s


(2.79)

Where

Xss = Xls +XM (2.80a)

X ′rr = X ′lr +XM (2.80b)

D = XssX
′
rr −X2

M (2.80c)

By substituting (2.79) into (2.32), the voltages are expressed in terms of the flux

linkages per second in the matrix form:

veqs

veds

v0s

v
′e
qr

v
′e
qr

v
′
0r


=

1

D



rsX′rr
D

1 0 − rsXM

D
0 0

−1 rsX′rr
D

1 0 − rsXM

D
0

0 0 rs
Xls

0 0 0

− r′rXM

D
0 0 r′rXss

D
s 0

0 − r′rXM

D
0 −s r′rXss

D
0

0 0 0 0 0 r′r
Xls





ψeqs

ψeds

ψ0s

ψ
′e
qs

ψ
′e
ds

ψ
′
0s


(2.81)
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Where s is the slip in the induction machine, defined as:

s =
ωe − ωr
ωe

(2.82)

To solve (2.81) the initial conditions of the induction machine electrical states (all

the flux linkage per second in the stator and rotor), the steady-state slip is needed.

This is calculated based on the torque speed relationship, described in detail in [8].

Under steady state, the electrical torque created by the machine equals the load

torque. From [8], the relationship used to calculate the slip in steady state is:

Te =
X2
Mr
′
rs|Ṽas|2

[rsr′r + s(X2
M −XssX ′rr)]

2 + (r′rXss + srsX ′rr)
2

(2.83)

Where s is the initial slip, |Ṽas| is the induction machine terminal voltage magnitude.

From (2.83), the initial condition is solved using the MATLAB non-linear equation

solver command fsolve given the load torque Tl and Te = Tl under steady state.

The initial rotor speed is then calculated:

ωr0 = ωe(1− s0) (2.84)

Where ωe is synchronous speed.

To summarize, the initial conditions of all the states of the induction machine

are calculated based on the machine voltages in the synchronous reference frame. To

calculate these voltages, the power flow solution from the Matpower is used. Again,

the stator voltages are calculated based on the induction machine terminal voltage

phasor from the Matpower and (B.9) with zero-sequence quantity set to zero.

2.7.3 Representative System Response

With the mathematical model of the system components and Simulink Implemen-

tation described, a study is done to provide some details on quantities that are of
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interest and can be predicted using the model. In this study, starting with the system

at steady state at the operating point described in the Appendix, with the constant

admittance bus drawing 60% of the load power, the two induction machines each

drawing 20% of the load power. Subsequently, at 50 s, A change in the power com-

mand Po is made. Specifically, the commanded power of the generator steps from 0.6

per-unit to 0.4 per-unit. Under normal operation, power system operators attempt

to keep the voltages and the frequencies of each bus within a fixed range to ensure

stability of the system. The results are shown in Figure 2.35 and Figure 2.36.

Fig. 2.35.: Detailed Model Simulation Results due to Generator Commanded Power
Change(a)

In Figure 2.35, the simulation results for the active power and reactive power of

both the generator and the infinite bus are plotted. One can observe that before 50s
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Fig. 2.36.: Detailed Model Simulation Results due to Generator Commanded Power
Change(b)

each component in the system is operating at steady state, which validates initial

steady-state condition calculations. At 50s, when the commanded power drops for

the generator, the active power produced by the generator drops and reaches the

commanded power. Due to the 0.2 per-unit active power decrease in the generator

output, the infinite bus must increase its output power to keep the power balance in

the system. For the reactive power, since the control of the active power does not

directly related to the control of the reactive power, the reactive power of both the

generator and the infinite bus does not change significantly. The minor change (0.005

per-unit for the generator and 0.015 per-unit for the infinite bus) is caused by the

network power flow changes. In the Figure 2.36, some dynamics of the generator are

plotted. As a result of the change in the commanded power, the mechanical torque
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also changes as expected. Hence, a small transient can be seen in the rotor speed. As

the load torque decreases, the rotor reduces its speed until the electrical torque and

the load torque are equal. In addition, the change in the rotor angle δ is caused by the

rotor speed change based on equation (2.13h). Last but not least, since the voltage

regulator keeps the voltage at the generator machine terminal relatively fixed, the q-

and d- axis currents are reduced so that the output active power of the generator

is reduced to the commanded value. Apart from a step change in power command,

many different types of studies can performed using the detailed model. This will

be demonstrated in Chapter 5, where several studies are considered to compare the

performance of alternative models.
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3. REDUCED-ORDER MODEL

In traditional power system analysis, the so-called fast dynamics of the electrical sys-

tem are often neglected [7]. In machine models, formal methods based upon singular

perturbation techniques have been applied to derive the reduced forms [14]. Alter-

natively, reference frame theory has been used to justify the reference frame where

derivatives of state variables are most appropriately neglected [8]. The reduction

of the electrical dynamics of the stators of machines is typically applied in tandem

with a reduced-order representation of the electrical network. Reduced-order network

models typically consist of sinusoidal-steady-state phasor forms of the transmission

line circuits. In this chapter, reduced-order forms of the detailed models described

in Chapter 2 are provided. The means of coupling the component models to form a

system-level model of the microgrid of Figcure 1.1 is then described. A representative

study is used to highlight the model dynamics under changes in system input.
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3.1 Reduced-Order Generator Model

To establish a reduced-order model of the generator, the stator electrical transients

are neglected, which enables one to utilize larger time steps when solving the ODEs.

This in turn leads to a faster model that is typically utilized in transient stability

studies. A formal process to derive a reduced-order model from a detailed model

utilizes a mathematical technique referred to as singular perturbation theory [14] For

the generator, the reduced-order model is obtained by setting the terms with the

derivative p to 0 and ωr = ωe in (2.13) [8] for stator equations. This yields the

per-unit reduced-order model:

0 = rsi
r
qs − ψrds + vrqs (3.1a)

0 = rsi
r
ds + ψrqs + vrds (3.1b)

0 = rsi0s + v0s (3.1c)

T ′qopE
′
d = −E ′d + (Xq −X ′q)[irqs −

X ′q −X ′′q
(X ′q −Xls)2

(ψ
′r
kq2 + (X ′q −Xls)i

r
qs + E ′d)] (3.1d)

T ′′qopψ
′r
kq2 = −ψ′rkq2 − E ′d − (X ′q −Xls)i

r
qs (3.1e)

T ′dopE
′
q = −E ′q − (Xd −X ′d)[irds −

X ′d −X ′′d
(X ′d −Xls)2

(ψ
′r
kd + (X ′d −Xls)i

r
ds − E ′q)] + E ′fd

(3.1f)

T ′′dopψ
′r
kd = −ψ′rkd + E ′q − (X ′d −Xls)i

r
ds (3.1g)

pδ = ωr − ωe (3.1h)

2H

ωe
pωr = TM − Te (3.1i)

Te = ψrdsi
r
qs − ψrqsirds (3.1j)
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3.1.1 Reduced-Order Generator/Infinite Bus Implementation

Similar to the detailed model, a reduced-order form of the generator/infinite-bus

system, shown in Figure 2.7is convenient to consider machine dynamics/performance.

The implementation of the reduced-order model is similar to the detailed model,

described in the Chapter 2 in Section 2.3.4; however, there are changes in the cal-

culation of stator currents. Specifically, to obtain an expression for the currents,

(2.16a)-(2.16b) is substituted into (3.1a)-(3.1b) and the q- and d-axis currents are

solved using: X ′′q +X −rs
−rs −X ′′d −X

irqs
irds

 =

vrds + ψ
′′r
qs

vrqs − ψ
′′r
ds

 (3.2)

where X is the series reactance between the machine and infinite bus and where

ψ
′′r
qs and ψ

′′r
ds are the last 2 term of (2.16a)-(2.16b):

ψ
′′r
qs = −

X ′′q −Xls

X ′q −Xls

E ′d +
X ′q −X ′′q
X ′q −Xls

ψ
′r
kq2 (3.3a)

ψ
′′r
ds = +

X ′′d −Xls

X ′d −Xls

E ′q +
X ′d −X ′′d
X ′d −Xls

ψ
′r
kd (3.3b)

The machine stator terminal voltage is calculated from the stator currents and

infinite bus voltage using the relationships in (3.4), which are derived from (2.24) by

setting the derivative terms to 0 and ωr = ωe.

vrqsb = −Xirds + vrqs (3.4a)

vrdsb = Xirqs + vrds (3.4b)

v0sb = v0s (3.4c)

The Simulink Implementation of the generator/infinite-bus system is shown in

Figure 3.1. In the Figure 3.1, the governor and the exciter blocks are identical to

those used in the detailed model and described in Chapter 1. The source function
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Fig. 3.1.: Reduced-Order Generator/Infinite Bus Implementation

block transforms the infinite bus voltage from the synchronous to the rotor reference

frame based on (2.2). Inside the Reduced Order Gen subsystem, the generator

reduced-order model is implemented, shown in Figure 3.2

The ElectricDynamic function block is used to calculate the state variables of

the rotor electrical system. In the same block, the stator currents are also calculated

based on (3.2). In the MechanicalDynamic function block, the electromagnetic

torque and rotor speed are calculated. In the Current function block, the damper

winding currents, the active and reactive power are established. Within the psis

function block, the stator flux linkages per second and the stator voltages are all

calculated. Last, inside delta Calculation block, the rotor angle with respect to the

synchronous reference frame δ is calculated, shown in Figure 3.3 .
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Fig. 3.2.: Generator Reduced-Order Model Implementation

Fig. 3.3.: Generator Reduced-Order Model Rotor Angle calculation

3.1.2 Generator Detailed Model and Reduced-Order Model Comparison

Up to this point, two models have been constructed for the generator/infinite-

bus system. Hence, a study has been performed to compare the two models. The
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parameters used for the study are provided in the Appendix. The study consists of

step changes in infinite bus voltage, the commanded power Po and V0. To be more

specific, the infinite bus voltage magnitude drops from 1 per-unit to 0.9 per-unit at

50s and returns to 1 per-unit at 70s; the V0 increases 0.1 per-unit at 100s; and finally,

the Po steps from 1 per-unit to 0.6 per-unit at 200s. The results are shown in Figure

3.4.

From the results, one can observe that as the infinite bus voltage drops, the

machine d-axis voltage drops as well. As a result, the q-axis current drops as shown.

However, since the commanded power is maintained at 1 per-unit, the d-axis current

increases so that the generator will generate sufficient power. Another result of the

drop in bus voltage is that the electric torque is less than the load torque, which leads

to a decrease in the rotor speed and rotor angle. After the disturbance on the infinite

bus voltage at 70s, one observes that all quantities go back to the pre-disturbance

value, as expected. At 100s, an increase in the V0 results in an increase in the machine

terminal voltage, which proves the effectiveness of the exciter. Further, at 200s, an

decrease in the Po results in an decrease in the machine electrical power output, which

demonstrates the control in the generator governor acts as expected.

From the step responses shown in Figure 3.4, it can be observed that detailed

model has more high-frequency oscillation compared with a frequency of 60Hz that

the reduced-order model does not capture. This is due to the neglecting of the fast

stator transient in the reduced-order models. One notes that the slower dynamics are

nearly identical. Comparing the simulation time, the time required for detailed model

using a Simulink built-in ODE4(Runge-Kutta) algorithm, with a time-step of 1ms is

9.02s, whereas the reduced-order model with the same algorithm, but a time-step

of 10ms is 1.21s. Hence, reduced-order model can be used to represent the slower

dynamics of the generator electrical and mechanical systems, with an improvement

in the simulation speed.
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Fig. 3.4.: Generator/Infinite Bus Model Comparison for Detailed and Reduced-Order
Model,blue lines are reduced-order model results and red lines are detailed model
results
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3.1.3 Structuring Models for Coupling to Network

A goal of using reduced-order models is to ignore the fast dynamics of the stator

of the generators and induction machines, and the network. To couple the machine

models to the network models, it is assumed that the voltages and the currents of the

machine stator and the network are in steady state, details can be found in Purdue

ECE 6330 lecture notes from Prof. Aliprantis. Thus, to integrate the generator

reduced-order model in a system level, a phasor representation of the machine is used

in the network calculation. To be more specific, in the per-unit system, by using

(B.10):

Ṽas = (vrqs − jvrds)ejδ (3.5a)

Ĩas = (irqs − jirds)ejδ (3.5b)

Where δ is the angle between the synchronous reference frame and the local machine

rotor reference frame, one can couple the generator and network models.

To represent the machine in phasor form, one can use (3.1), to express

ψrqs = −X ′′q irqs −
X ′′q −Xls

X ′q −Xls

E ′d +
X ′q −X ′′q
X ′q −Xls

ψ
′r
kq2 (3.6a)

ψrds = −X ′′d irds + +
X ′′d −Xls

X ′d −Xls

E ′q +
X ′d −X ′′d
X ′d −Xls

ψ
′r
kd (3.6b)
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Using (3.1a) to (3.1b), (3.6) and (3.5), a phasor voltage can be expressed:

Ṽas =(vrqs − jvrds)ejδ

={(−X ′′d irds +
X ′′d −Xls

X ′d −Xls

E ′q +
X ′d −X ′′d
X ′d −Xls

ψ
′r
kd)− rsirqs

− j[−(−X ′′q irqs −
X ′′q −Xls

X ′q −Xls

E ′d +
X ′q −X ′′q
X ′q −Xls

ψ
′r
kq2)− rsirds]}ejδ

=− (rs + jX ′′d )(irqs − jirds)ejδ + {(X
′′
d −Xls

X ′d −Xls

E ′q +
X ′d −X ′′d
X ′d −Xls

ψ
′r
kd)

+ j[(X ′′d −X ′′q )irqs −
X ′′q −Xls

X ′q −Xls

E ′d +
X ′q −X ′′q
X ′q −Xls

ψ
′r
kq2)]}ejδ

=− (rs + jX ′′d )Ĩas + {(X
′′
d −Xls

X ′d −Xls

E ′q +
X ′d −X ′′d
X ′d −Xls

ψ
′r
kd)

+ j[(X ′′d −X ′′q )irqs −
X ′′q −Xls

X ′q −Xls

E ′d +
X ′q −X ′′q
X ′q −Xls

ψ
′r
kq2)]}ejδ

(3.7)

Defining a new phasor variable Ẽas, the voltage can be expressed

Ẽas = {X
′′
d −Xls

X ′d −Xls

E ′q +
X ′d −X ′′d
X ′d −Xls

ψ
′r
kd −

X ′′q −Xls

X ′q −Xls

E ′d +
X ′q −X ′′q
X ′q −Xls

ψ
′r
kq2}ejδ (3.8)

which can be expressed

Ṽas = −(rs + jX ′′d )Ĩas + j(X ′′d −X ′′q )irqse
jδ + Ẽas (3.9)

and can be rearranged to express the phasor current as

Ĩas =
1

(rs + jX ′′d )
[j(X ′′d −X ′′q )irqse

jδ + Ẽas − Ṽas] (3.10)

From these expressions, one can observe that the generator terminal voltage phasor

can be calculated as the summation of an internal voltage source and the voltage

across a series RL impedance. Defining Ys = 1
(rs+jX′′d )

and S = j(X ′′d −X ′′q )irqse
jδ, the

voltage can be expressed in a form:

Ĩas = Ys(S + Ẽas − Ṽas) (3.11)
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3.2 Load Model

Identical to the detailed system model, in the reduced-order system model, the

constant admittance and two induction machines. To couple to the network model,

the three components are treated as distinct load buses.

3.2.1 Constant Admittance Model

The constant admittance (RC) load is added to the system admittance matrix as

shown in the Appendix equation (C.12). The constant admittance is the load that is

connected to ground, described by Yi.

3.2.2 Reduced-Order Induction Machine Model

To establish a reduced-order model of an induction machine, which is similar to

a reduced-order model of a synchronous machine, the stator transients are neglected.

This is done by setting the p to 0 and ωr = ωe in (2.32). This yields the model in

per-unit form:

veqs = rsi
e
qs + ψeds (3.12a)

veds = rsi
e
ds − ψeqs (3.12b)

v0s = rsi0s (3.12c)

ωev
′e
qr = ωer

′
ri
′e
qr + (ωe − ωr)ψ

′e
dr + pψ

′e
qr (3.12d)

ωev
′r
dr = ωer

′
ri
′e
dr − (ωe − ωr)ψ

′e
qr + pψ

′e
dr (3.12e)

ωev
′

0r = ωer
′
ri
′

0r + pψ
′

0r (3.12f)
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To couple the machine and network models, the phasor relationship:

Ṽas = (veqs − jveds) (3.13a)

Ĩas = (ieqs − jieds) (3.13b)

is utilized. Using (3.12a) to (3.12c), (2.33), and (3.13), one can express the phasor

voltge as:

Ṽas = (veqs − jveds)

= rsi
e
qs + ψeds − j(rsieds − ψeqs)

= rs(i
e
qs − jieds) + ψeds + jψeqs

= rsĨas + j(ψeqs − jψeds)

= rsĨas + j[Xssi
e
qs +XM i

′e
qr − j(Xssi

e
ds +XM i

′e
dr)]

= rsĨas + j(XssĨas +XM i
′e
qr − jXM i

′e
dr)

= (rs + jXss)Ĩas + jXM(i
′e
qr − ji

′e
dr)

(3.14)

where Xss = Xls +XM .

From (2.33), the rotor winding currents can be expressed in terms of the rotor

flux linkages per second and the stator currents:

i
′e
qr =

ψ
′e
qr −XM i

e
qs

Xrr

(3.15a)

i
′e
dr =

ψ
′e
dr −XM i

e
ds

Xrr

(3.15b)

Where X ′rr = X ′lr +XM .
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Substituting (3.15) into (3.14):

Ṽas = (veqs − jveds)

= (rs + jXss)Ĩas + jXM

(ψ
′e
qr −XM i

e
qs)− j(ψ

′e
dr −XM i

e
ds)

X ′rr

= (rs + jXss)Ĩas + j
XM

X ′rr
[ψ
′e
qr − jψ

′e
dr −XM(ieqs − jieds)]

= (rs + jXss)Ĩas + j
XM

X ′rr
(ψ
′e
qr − jψ

′e
dr −XM Ĩas)

= (rs + jXss − j
X2
M

X ′rr
)Ĩas + j

XM

X ′rr
(ψ
′e
qr − jψ

′e
dr)

= (rs + jXss − j
X2
M

X ′rr
)Ĩas +

XM

X ′rr
ψ
′e
dr + j

XM

X ′rr
ψ
′e
qr

(3.16)

Defining a phasor variable Ẽas, where

Ẽas =
XM

X ′rr
ψ
′e
dr + j

XM

X ′rr
ψ
′e
qr (3.17)

the voltage can be expressed:

Ṽas = (rs + jXss − j
X2
M

X ′rr
)Ĩas + Ẽas (3.18)

which can be rearranged to express the stator current as:

Ĩas =
1

rs + jXss − j
X2

M

X′rr

[−Ẽas + Ṽas] (3.19)

So far it has been assumed that positive stator current is defined into the machine.

For model implementation, it is useful to define that the current is defined positive

out of the machine, similar to the generator. This results in induction machine loads
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acting as power sources to the network with a negative power injection. With the

direction of positive currents reversed: (3.19) is revised:

Ĩas =
1

rs + jXss − j
X2

M

X′rr

[Ẽas − Ṽas] (3.20)

From the phasor voltage equations, one can observe that the induction terminal volt-

age phasor can be calculated as the summation of an internal voltage source and the

voltage across a series RL impedance. Defining Ys = 1

rs+jXss−j
X2

M
X′rr

, current can be

expressed using the voltage and impedance as:

Ĩas = Ys(Ẽas − Ṽas) (3.21)
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3.3 Infinite Bus

The infinite bus is a constant voltage source with its qd0 voltages fixed. However,

as mentioned in detailed model, there exists a small resistance between the infinite

bus and the transmission system as shown in Figure 2.21. Thus, by defining the

admittance to 1
Rinf

, the current phasor out of the infinite bus can be expressed in a

form: (3.21):

Ĩas = Ys(Ẽas − Ṽas) (3.22)

where Ẽas is the infinite bus voltage, which is fixed and Ṽas is the voltage after the

small resistance between the infinite bus and the transmission line.
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3.4 Simulink Implementation of Reduced-Order System Model

3.4.1 Energy Source/Load General Form

From (3.11), (3.21), and (3.22), all of the components of the microgrid can be inte-

grated to express the stator and network currents in terms of voltages and impedances

in a form:

I = Ys(S + E−V) (3.23)

where I is a column vector that contains all the phasor currents, Ys is a diagonal

matrix with corresponding components Ys, E is a column vector that contains all

the bus Ẽas term, and V is a column vector that contains all the bus voltage phasor

Ṽas. The S is also a column vector, whose entry is S if it is a generator bus (3.11),

and 0 if it is the induction machine bus or infinite bus. Importantly, the E matrix

entries are the outputs of state models for the generator and the induction machines,

or a constant, for the infinite bus. This property allows the system to be simulated

without any algebraic loops.

One can express the voltage versus current relationship of the network using an

admittance model, as shown in (C.1) in the Appendix. Equating the currents of (C.1)

and those of (3.23), results in

YV = Ys(S + E−V) (3.24a)

(Y + Ys)V = Ys(S + E) (3.24b)

V = (Y + Ys)
−1Ys(S + E) (3.24c)

where Y is the original network admittance matrix.

Plugging (3.24c) into (3.23):

I = Ys[I − (Y + Ys)
−1Ys](S + E) (3.25)

where I is the identity matrix.
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To simplify (3.25), the Woodbury matrix identity is used [15]:

(Y + Ys)
−1 = Y−1

s −Y−1
s (Y−1 + Y−1

s )−1 (3.26)

Plugging (3.26) into (3.25)

I = Ys(I − I + Y−1
s (Y−1 + Y−1

s )−1)(S + E) (3.27a)

= (Y−1 + Y−1
s )−1(S + E) (3.27b)

= Ynew(S + E) (3.27c)

In the 5-bus system, since only the infinite bus, the generator and the induction

machines are injecting power to the network as described in the previous section,

these 4 buses are referred to as energy sources. As a result, the input currents of

busses that do not contain energy sources 0. Expanding (C.1) in the Appendix for

the 5-bus system:



Iinf

Igen

Iind1

Iind2

0

...


=



Y11 Y12 Y13 Y14 Y15 ...

Y21 Y22 Y23 Y24 Y25 ...

Y31 Y32 Y33 Y34 Y35 ...

Y41 Y42 Y43 Y44 Y45 ...

Y51 Y52 Y53 Y54 Y55 ...

... ... ... ... ... ...





Vinf

Vgen

Vind1

Vind2

V5

...


(3.28)

and placing it in a simpler form yields:Ieng

0

 =

A B

C D

Veng

V0

 (3.29)

Since the lower part of the I vector are all 0, it is useful to represent Ieng in the

form:

Ieng = YengVeng (3.30)



82

From (3.29), the Yeng can be solved by first expressing (3.29):

Ieng = AVeng + BV0 (3.31a)

0 = CVeng + DV0 (3.31b)

and then using (3.31b):

V0 = −D−1CVeng (3.32)

Plugging (3.32) into (3.31a):

Ieng = AVeng −BD−1CVeng (3.33a)

Ieng = (A−BD−1C)Veng (3.33b)

Hence, Yeng = A−BD−1C.

Summarizing, by equating (3.30) and (3.27c), the current phasor of the energy

sources can be obtained by first calculating Yeng from Ynew using the partitioned-

matrices A, B, C and D, and then setting Veng = [S + E]. As a result:

Ieng = (A−BD−1C)(S + E) (3.34)

Since the matrix E is calculated from the states of each energy sources, and

derivatives of each of the states are calculated from the q- and d-axis currents of

each energy sources, it is convenient to express equation (3.34) in terms of the q- and

d-axis currents. To do additional matrices are utilized.

The first matrix is defined as T, which is used to relate the current phasor of the

energy sources to the q- and d-axis currents

Ieng = T(Iq − jId) (3.35a)

T = diag{ejφ} (3.35b)
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Where Iq and Iq are current column vectors for each of the energy source.The matrix

is derived in (B.9) and (B.10) in the Appendix.

The next matrix utilized, S, is defined in terms of q-axis currents and machine

subtransient reactances as:

S = jSxTIq (3.36a)

Sx = diag{X ′′d −X ′′q } (3.36b)

where X
′′

d and X ′′q are the wound-rotor synchronous machine subtransient reactances.

Using these matrices, (3.30) can be expressed in term of the q- and d-axis currents:

T(Iq − jId) = Yeng(jSxTIq + E) (3.37)

After rearranging the terms, (3.37) can be expressed:

(I − jYengSx)TIq − jTId = YgenE (3.38)

For the convenience of the calculation and implementation, (3.38) is decomposed

into real and imaginary parts:

(I − jYengSx)T = a+ jb (3.39a)

−jT = c+ jd (3.39b)

YengE = e+ jf (3.39c)

Hence, the currents of each energy source are solved by the linear system:a c

b d

Iq

Id

 =

e
f

 (3.40)

Once the q- and d-axis currents are solved, they can be used to update the state

derivatives. In addition, by using (3.28), the voltages of each buses is obtained.
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3.4.2 Block Diagram

The overall Simulink implementation of the reduced-order microgrid model is

shown in Figure 3.5. The inputs to the model are the infinite bus voltage, Po for

the generator governor and V0 generator exciter.

Fig. 3.5.: 5-bus System Reduced-Order Model Implementation

Admittance Matrix

At the top part of Figure 3.5, an Admittance Matrix block, detailed in Fig-

ure 3.6, is used to calculate the system admittance matrix and the Ynew described

above. The admittance matrix are based on the system parameters and the details

are explained in the Appendix. Due the existence of the LTC, the admittance can

vary once the tap setting changes. Hence the tap-changing mechanism control block

described in the Chapter 2 is included.
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Fig. 3.6.: Reduced-Order Model Admittance Matrix subblock

Generator

Underneath the Generator subsystem, the generator reduced-order model is im-

plemented, as shown in Figure 3.7.

Fig. 3.7.: Generator Reduced-Order Model in 5-bus System

The implementation is similar to the generator/infinite-bus system. The difference

is that the model here uses the currents as inputs, whereas in the generator/infinite-
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bus system, the model uses the voltage as inputs. Underneath the Reduced Order

Gen block in Figure 3.7, the machine rotor dynamics are implemented, as shown in

Figure 3.8.

Fig. 3.8.: Reduced-Order Model Generator subblock

The Additional Info block in Figure 3.8 is used to calculate the rotor angle δ

and the internal voltage Eas in (3.11), shown in Figure 3.9.

As can be observed from the block diagram, the inputs to the generator block

are generator control inputs Po and V0, and the generator stator currents in the rotor

reference frame. The outputs of the generator block are the generator internal voltage

and the rotor angle.

Induction Machine

There are two induction machines underneath the induction machine load model

as described in the 5-bus system. For each of the induction machines, the subsystem

is shown in Figure 3.10.

The dynamics function block is used to calculate the states for the induction

machine in (3.12), the EasCal function block calculates the internal voltage of the

induction machine, defined in (3.17). The loadtorque block calculates the load
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Fig. 3.9.: Reduced-Order Model Generator Addition Info block

Fig. 3.10.: Reduced-Order Model Induction Machine Simulink Implementation

torque based on the rotor speed characterized by (2.45). The torque is used to

calculates the rotor electromagnetic torque and the rotor angular velocity. To sum-

marize, similar to the generator model, the inputs to the induction machine are the
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stator currents in the synchronous reference frame, and the outputs are the induction

machine internal voltage.

Currents Calculation

The Currents function block creates all the matrix Sx, T and E for the calculation

of the energy source currents based on (3.39) and (3.40). The inputs to this function

are the internal voltage for each of the energy sources, the rotor angle for the generator

and the modified admittance matrix Ynew. The outputs are the generator currents in

the rotor reference frame, the induction machine currents in the synchronous reference

frame, and the currents of the induction machine, generator, and infinite bus in phasor

form.

Businfo

With all the currents calculated for the energy sources, the bus information can be

calculated. The voltages of each bus can be calculated based on the equation (3.28),

and as a results, the complex power can be calculated. Apart from the bus voltages,

currents and power calculation, the block output the load bus voltage for the LTC to

control the tap setting.

3.4.3 States Initial Conditions

The initial conditions of the states are calculated in a manner similar to the

detailed model. This is described in Chapter 2 and thus is not discussed further in

this chapter. However, it is noted that since the reduced-order models neglect all

stator transient, initial conditions for stator states are not calculated in the reduced-

order model.
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3.4.4 Representative System Response of Reduced-Order Model

Using the model of the system components and Simulink Implementation de-

scribed, the study highlighted in Chapter 2 is repeated. Specifically, starting with

the system at steady state at the operating point described in the Appendix, with the

constant admittance bus drawing 60% of the load power, the two induction machines

each drawing 20% of the load power, the commanded power of the generator steps

from 0.6 per-unit to 0.4 per-unit at 50s. The the results are shown in Figure 3.11 and

Figure 3.12.

Fig. 3.11.: Reduced-Order Model Simulation Results due to Generator Commanded
Power Change(a)

From the responses of the reduced-order model, it can be observed that behavior

predicted is almost identical to the ones shown in detailed model, which proves the

validity of the reduced-order model. The results shown in the figures again proves

the effectiveness of the controls in the governor and LTC. Due to the control in the

governor of the generator, the generator active power output tracks the commanded
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Fig. 3.12.: Reduced-Order Model Simulation Results due to Generator Commanded
Power Change(b)

power. Due to the LTC, the induction machine terminal voltage stays within 1 ±

0.01 per-unit so that the load power does not change, which also keeps the total

active power output of the infinite bus and generator stays at 0.8 per-unit constantly.

Since there is no huge disturbance on the stator voltages in either the generator or

the induction machine, there is no fast dynamics related to the stator transients in

the simulation response. By using the Simulink variable step solver ODE23tb with

maximum time-step 2s, the simulation for the same study in detailed model using

the is 8.73s, but the simulation time for reduced-order model is 3.37s. Hence, for the

power command changes, reduced-order model can be a great alternative to detailed

model. However, as shown in the Figure 3.4, when the machine stator voltages

changes, there is a great amount of oscillations with frequency of 60Hz that reduced-

order model fails to capture. Therefore, reduced-order model is not useful for control

designs or studies that are related to these transient oscillations. Apart from the step

changes for the power command and voltage command in the generator, other types
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of study can be done by using the reduced-order model. More details of the models

can be found in the Chapter 5, where different studies are done and the conclusions

are drawn based on the model responses.
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4. BEHAVIORAL MODEL

The reduced-order models developed in Chapter 4 are commonly used to model power

systems. Further reductions of the models have been explored in order to facilitate

their use in model-based control [7], [16]. Specifically, in [7], the researchers have

focused on applying singular-perturbation techniques to eliminate some rotor electri-

cal dynamics. In [16], the researchers have placed the models in a structure that is

tailored for efficient computation within the algorithms used to solve MPC problems.

In this chapter, simplified behavioral models are considered as an alternative to the

those based upon traditional electric machine models. Specifically, for the generator

a goal is to consider whether the dynamics of the machine, governor, and exciter can

be accurately described in an aggregate sense using simplified first-order models in

tandem with corresponding limits and rate-of-change limits. To do so, the behav-

ioral model of the generator system is structured to utilize real and reactive power

as states. In the case of the induction machine, a behavioral model is considered

in which the real and reactive power are estimated using a steady-state equivalent

circuit with the rotor slip selected as a state variable. In this chapter, both models,

and the means to couple them to the network model, are derived.
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4.1 Generation System

As mentioned in previous chapters, the generation system has two control inputs,

the Po to the governor and the V0 to the exciter. To derive the behavioral model

of the generation system, the generator/infinite bus system is used. The response of

the active and reactive power step to changes Po and V0, were observed. Example

responses, where the Po was stepped from 0.6 per-unit to 0.7 per-unit, and V0 was

stepped from 1.023 per-unit to 1.033 per-unit are shown in Figures 4.1 and Figure

4.2, respectively.

Fig. 4.1.: PQ step response to Po

From Figure 4.1, one can observe that the real power out of the generator has

the characteristics of a first-order response to Po. Exploring the time-constant of the

response, it is consistent with that of the reheater in the governor, Tr. From Figure

4.2, one can observe that the real power out of the generator changes with a step in

Vo. However, considering the overall change in power level, it is relatively minor. In

addition, the response is consistent with the fast stator dynamics, which are typically

ignored in power system models. Moreover, the change in Vo does not create a change
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Fig. 4.2.: PQ step response to V0

in steady-state power. From these observations, a behavioral transfer function of the

real power out of the generator is expressed:

P g
beh =

Po
1 + Trs

(4.1a)

Further investigations have shown that this model is reasonable, provided one does

not exceed the slew rate limits that are present in the governor.

Considering the reactive power, shown in Figure 4.1, one can see that it indeed

changes with the commanded Po. Here, one notes that the reactive power initially

increases prior to decreasing in a manner consistent with a first-order response on

a time-scale of Tr to a new steady-state. This behavior appears as a non-minimum

phase-type response. Considering the reactive power response to the step in Vo ,

one can see there is a relatively rapid step to a new steady state.This dynamic is

approximated as a first-order transfer function with a time constant consistent with
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the d-axis transient time constant. Combining the responses, a transfer function

relating reactive power to system inputs is expressed:

Qg
beh =

Qg
ss

1 + T ′dos
+

sP g
beh

1 + Trs
(4.2a)

In 4.2, Qg
ss is the steady-state reactive power. It provides the relationship between

the reactive power and Vo. Specifically, to obtain Qg
ss, the expression for reactive

power in terms of qd variables, (2.5) in Chapter 2, is used. In per unit, assuming

steady state the relationship between reactive power, stator current, and field voltage

is expressed:

Qg
ss = −XqI

r
qs

2 −XdI
r
ds

2 + IrdsE
′
fd (4.3)

where Irqs and Irds are the machine stator currents. Considering the exciter model

expressed in Chapter 2, if one neglects the PSS and OEL blocks, E ′fd can be expressed

as a first-order transfer function

E ′fd =
G(Vgen − V0)

1 + Tes
(4.4)

The missing parts of (4.3) and (4.4) are the generator terminal voltage and stator

currents, which will be calculated based on a restructuring of the network equations

to accept generator real and reactive power.

4.1.1 Generator Terminal Voltages and Currents Calculation

To compute the generator terminal voltage and stator current, the power flow

model of the network described in Chapter 3 is reconfigured to accept real and reactive

power as inputs. Specifically, the generator is represented as a ‘PQ’ bus, similar to

that of a load. The details of the power flow model are in the Appendix.

To implement within the simulation, this is performed by coupling the machine

model in Simulink with the network model, which is implemented in Matpower. It is

noted is that in a typical PQ bus, which normally is a load drawing power from the
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grid, the input to the Matpower is the positive power consumed by the load. However,

in the behavioral model of the generation system, the generation bus provides power

to the system; thus, the input power to Matpower is the negative value of the power

generated by the generator bus.

By using the Matpower described above, the generator terminal voltage phasor

can be calculated, which is used in the exciter behavioral representation in (4.4),

where the Vgen is the magnitude of the phasor. At the same time, using the terminal

voltage phasor and the machine complex power, the current phasor at the generator

terminal is obtained by

Ĩas = (
P + jQ

Ĩas
)∗ (4.5)

Where the ∗ is the complex conjugate operator.

Using the bus information of the power, voltage, and current, the machine rotor

angle δ is calculated using:

δ̃ = angle(Ṽas + (rs + jXq)Ĩas) (4.6)

.

Using reference-frame theory, the current phasor is expressed in terms of q- and

d-axis currents in the synchronous reference frame, using (B.9) in the Appendix:

Ĩas = |Ĩas| θi = Ieqs − jIeds (4.7)

Transforming to the rotor reference frame, the respective currents are calculated

using:

Irqs = Ieqs cos δ − Ieds sin δ (4.8a)

Irds = Ieqs sin δ + Ieds cos δ (4.8b)

These currents are used in (4.3) to calculate the generator steady-state reactive power.
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To summarize, the generation system behavioral has only four states representing

the transfer function of the active power, reactive power, and the field excitation volt-

age. Compared with the detailed- or reduced-order model described in the previous

chapters, the number of states is significantly reduced.

4.1.2 Behavioral Model Generator/Infinite Bus Implementation

The generator/infinite-bus system is modeled using the transfer function described

above, and the simulink implementation of the system is shown in Figure 4.3.

Fig. 4.3.: Behavioral Model Generator/Infinite Bus Implementation

In the Machine Behavioral Model block, the transfer functions for the active

and reactive power are implemented in as state models. Details of the blocks are

shown in Figure 4.4. After the calculation of the active power derivative, a slew rate

limiter is used to limit the rate of change of the active power. The slew rate is set to the

slew rate of the valve opening control in the governor. In the Network Calculation

block, the generator bus terminal voltage, the steady-state reactive power, and the

rotor angle are all calculated. The Simulink diagram is shown in Figure 4.5.

In Figure 4.5, the Network function block uses Matpower to solve for the bus

voltages. The iascal function block is used to calculate the bus current magnitude
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Fig. 4.4.: Generator Behavioral Model Implementation

Fig. 4.5.: Behavioral Model Network Calculation Implementation

and angle. The rotorangle function block calculates the rotor angle. In the Cur-

rentsinqd function block, the q- and d-axis currents of the generator in the rotor

reference frame are calculated so that the steady-state reactive power can be calcu-

lated.
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In Figure 4.3, the exciter system block calculates the field voltage to the generator.

The implementation is shown in Figure 4.4.

Fig. 4.6.: Behavioral Model Exciter Implementation

Based on the Simulink model described above, a study has been done to observe

the predictions of the behavioral model and compare them to the reduced-order model.

The study performed is similar to that shown in Chapter 3 where several step changes

are made: the infinite bus voltage magnitude drops from 1 per-unit to 0.7 per-unit at

50s and returns to 1 per-unit at 70s; the V0 increases 0.1 per-unit at 100s; and finally,

the Po steps from 1 per-unit to 0.6 per-unit at 200s. The results of the reduced-order

model and behavioral model are shown in Figure 4.7, where the blue lines are the

reduced-order model predictions.

Considering the response, the shape of the behavioral model agrees with the

reduced-order model. There is some difference, as the behavioral model does not

include some of the the faster dynamics shown in the reduced-order model. This is

expected since the behavioral model is a further model reduction from the reduced-

order model. Comparing the simulation speed, the reduced-order model requires 10.14

seconds to simulate the 300s study using the Simulink variable step solver ODE23tb

with a maximum time-step of 5s. The behavioral model requires only 3.32s using the

same solver.

Based on the results, it is shown that the behavioral model represents the power

output of the generator, the bus voltage, and the rotor angle reasonably well with

appreciable improvement in the simulation speed. This is achieved by directly char-
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acterizing the transfer function representing the power output based on the machine

inputs without considering the machine internal dynamics.

Historically, a common generator study is to consider a fault response and evaluate

the potential instability using simulation and analytical techniques such as the equal-

area criterion [12]. The equal-area criterion is an old graphical method to predict

the critical fault clearing time, which is the time required to keep the generator from

losing synchronism (pole slipping). Specifically, when there is a fault that causes the

synchronous machine terminal voltage to drop so that the electrical torque of the

generator is less than the load torque in the governor, the rotor starts to accelerate.

If the fault is not cleared in time, the rotor cannot come back to synchronous speed

once the fault is removed. To further consider the behavioral model, a second study is

done to check to evaluate the behavioral model predictions in such a large transient.

In the study, a fault in simulated by setting the infinite bus voltage magnitude to 0.1

per-unit at 20s and subsequently removing the fault by restoring the bus voltage to

1 per-unit at 20.3s. The results are shown in Figure 4.8. From the results, it can be

observed that, after the fault, the reduced-order model predicts sustained oscillations,

which means that the system is not stable after the fault. Further, Figure 4.9, it can

be observed that the machine loses synchronism. In this case, one can observe that

after the fault the behavioral model does predict significant oscillations in the rotor

angle, but eventually returns to a pre-fault value. Thus, it fails to predict the correct

system response. This is not unexpected as behavioral model was characterized with

disturbances in which the rotor speed stayed nearly constant. In addition, the rotor

dynamics are not represented within the behavioral model. Thus, from this and

subsequent studies it is found that model accuracy degrades as the rotor speed varies

appreciably from synchronous.Here, the variable ωr may be a means to gauge model

accuracy.
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Fig. 4.7.: Generator/Infinite Bus Model Comparison for Detailed and Behavioral
Model, blue lines are reduced-order model results and red lines are behavioral model
results
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Fig. 4.8.: Generator/Infinite Bus Model Comparison for Detailed and Behavioral
Model, blue lines are reduced-order model results and red lines are behavioral model
results
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Fig. 4.9.: Generator Rotor Speed
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4.2 Induction Machine

For the induction machine, a similar concept, to represent its active and reactive

power behavior is considered. The difference in developing the model is that the power

dynamics of the machine are not characterized using a set of dynamic studies. Rather,

the steady-state equivalent circuit, in tandem with the rotor mechanical dynamics,

are used to predict the power behavior. This is partially justified by the fact that

the induction machine does not have the ancillary equipment (governor, exciter) of

the generator. The behavioral model is based upon models considered in [11] and is

derived from the induction machine steady-state circuit shown in Figure 2.83. Within

A’

r′r
s

XM

X ′lrXls

−

+

Ṽas

AĨas
rs

Fig. 4.10.: Induction Machine Steady-State Equivalent Circuit

the circuit, rs and r′r are the stator and rotor resistances, Xls and X ′lr are the stator

and rotor leakage reactances, XM is the magnetizing reactance and s is the slip defined

in (2.82).

From the Figure 4.10, a Thevenin equivalent circuit can be obtained from AA’,

which is shown in Figure 4.11. In Figure 4.11, the impedance of re and Xe in steady

state are dependant on s and their sum is expressed as:

re(s) + jXe(s) =
jXM( r

′
r

s
+ jX ′lr)

r′r
s

+ j(XM +X ′lr)
(4.9)

Furthermore, the stator current versus terminal voltage relationship is expressed:

Ĩas =
Ṽas

[rs + re(s)] + j[XM +Xe(s)]
(4.10)
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A’

Xls +Xe(s)

−

+

Ṽas

AĨas
rs + re(s)

Fig. 4.11.: Thevenin Equivalent circuit seen from AA’

Using the steady-state circuit model, all of the electrical dynamics are neglected in

the behavioral model. The only state used is slip, with a state representation:

ps =
Tl − Te

2H
(4.11)

Where p is the d
dt

operator; s is the slip; Tl is the load torque and Te is the elec-

tromagnetic torque. The electromagnetic torque is calculated using the steady-state

equation for torque (2.83) in Chapter 2 .

Using (4.10) and (C.2), the complex power of the induction machine is calculated.

After equating the real part and the imaginary part of the complex power, the active

and reactive power is found using:

P =
[rs + re(s)]|Ṽas|2

[rs + re(s)]2 + [Xs +Xe(s)]2
(4.12a)

Q =
[Xs +Xe(s)]|Ṽas|2

[rs + re(s)]2 + [Xs +Xe(s)]2
(4.12b)

To summarize, the main equations governing the behavioral model of an induction

machine are given in (4.11) and (4.12). With the system model, the active and reactive

power of the induction machine are input to the network for the calculation of the

bus voltages.
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Direct Online Start

To validate the behavioral model, a study of an induction machine is performed.

Within the study the initial rotor speed is 0 rad/s when the stator terminals are con-

nected to the voltage source. Once the machine reaches a steady-state, the magnitude

of the bus voltage is reduced from 1 to 0.9 pu. The Simulink Model for the study is

shown in Figure 4.12. The parameters used are those of induction machine 1 in the

Appendix. The results are shown, along with those predicted using the reduced-order

model in Figure 4.13.

Fig. 4.12.: Induction Machine Direct Online Startup Simulink Implementation

Comparing responses, it is clear that the power predicted by the behavioral model

closely matches that of the reduced-order model and startup and the bus voltage

disturbance.

Using ODE23tb solver, with a maximum time-step of 0.5s, the simulation time for

the reduced-order model is 0.97s and for the behavioral model is 0.88s by using the

same solver with same maximum time-step setting. Although there is not significant

difference between the simulation speed of behavioral model and the reduced-order

model, this difference can be amplified if there are multiple machines.
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Fig. 4.13.: Induction Machine Direct Online Startup Comparison
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Fig. 4.14.: Induction Machine Torque Speed Curve
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4.3 Simulink Implementation

4.3.1 Block Diagram

The Simulink Block diagram of the behavioral model of the overall system is shown

in Figure 4.15.

Fig. 4.15.: Behavioral Model for 5-bus System Simulink Implementation

The Generator Behavioral Model block is the same as shown in Figure 4.4 and

the Induction Machine Behavioral Model block is the same as shown in Figure

4.12. In the Network block is shown in Figure 4.16. The inputs to the Network

block are the power inputs from the generator and the induction machines, and the

induction machine terminal voltage used for the LTC tap setting. The outputs for

the block is the rotor angle, generator terminal voltage and the steady-state reactive

power for the generator.

4.3.2 States Initial Conditions

Since the number of states included in behavioral model is greatly reduced, the

calculation of the initial condition is simplified. For the generation system, the states
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Fig. 4.16.: Behavioral Model for 5-bus System Network Sub-block

are generator active and reactive power, the change of the machine active power

and the field voltage E ′fd. The active power initial condition is calculated based

on the commanded power; and the reactive power is from the power flow solution.

The change of the active power initial condition is 0 and the E ′fd initial condition is

calculated following the same procedure described in the Chapter 2. For the induction

machine, the only state is the slip of the machine, which is also described in the

Chapter 2; hence it is not discussed further in this chapter.

4.3.3 Sample Response

With the mathematical model of the system components and Simulink Imple-

mentation described, a sample study is performed. The study is the same as as that

shown in Chapters 2 and 3. The results are shown in Figure 3.11 and Figure 3.12.

From the responses of behavioral model, it can be observed that they are almost

identical to the responses shown in the detailed model and reduced-order models,

which provides some validation of the approach. The simulation time for the behav-

ioral model using a Simulink variable step solver ODE23tb with maximum time-step
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Fig. 4.17.: Behavioral Model Simulation Results to Generator Commanded Power Step(a)

2s requires 1.02s, which is less than the 8.73s and 3.37s for the detailed- and reduced-

order models using the same solver. Further assessment of the behavioral model is

provided in the following chapter.
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Fig. 4.18.: Behavioral Model Simulation Results to Generator Commanded Power Step(b)
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5. SIMULATION RESULTS

5.1 Model Comparison

In this research, three models are derived for a 5-bus power system microgrid.

The most complicated model is a detailed model, which includes all stator and rotor

states of the generator and induction machines. The total number of states is 48. In

the reduced-order model, the stator transients of the induction machines, the gener-

ators, and the network are all neglected based on utilizing a mathematical technique

referred to as singular perturbation theory. In the reduced-order model, only the

rotor dynamics and the generator governor and exciter dynamics are included, which

results in a reduction to 18 states for the system. In the last model proposed, the

dynamics of the real and reactive power of the generator and induction machine are

included, which reduces the number of states to six. In this chapter, the responses

of the models to several system perturbations are compared. Prior to comparing, it

is noted that some abbreviations are used to simplify descriptions: FD stands for

the detailed model, RO stands for the reduced-order model and BH is the behavioral

model.
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5.2 Results Comparison

5.2.1 Study 1: Step Changes in Generator Inputs

In the first study, the system is operated in a steady state with load drawing 0.6

per-unit active, 0.106 per-unit reactive power, and Po set to 0.6 pu and the voltage Vo

set to 1 pu. The commanded power is then stepped from 0.6 per-unit to 0.4 per-unit

at 30s, and the V0 is increased by 0.01 per-unit. The results of the study are shown

in Figure 5.1 and Figure 5.2. Simulation is performed by using the Simulink built-in

variable step solver ODE23tb with maximum time-step 2s for all the models.

From the results it is shown that all the models begin and end at the same steady

state, which means the initial-value calculations in each model are correct. At 50s,

when the commanded power of the generator drops, the generator bus active power

starts to drop to the commanded value, which shows the control in the governor is

effective. Moreover, since the generator power drops, to ensure the power balance of

the system, the infinite bus active power increases. Furthermore, due to the control

of LTC, the induction machine is not affected by the power step change so that the

power generated by the induction machine stays at its original value. In the Figure

5.2, some quantities of the generator are also plotted. As the commanded power drops,

the generator rotor speed reduces down until the electrical torque of the generator

equals the mechanical torque from the governor, which also leads to a decrease in

the rotor angle. The q- and d-axis currents of the generator all drop to reduce the

output active power. At 80s, the voltage control signal in the exciter V0 increases,

which results is an increase in the excitation voltage E ′fd. Based on (2.71a), the q-

axis voltage also increases. However, as shown in Figure 5.2, the generator terminal

voltage does not vary significantly, so that the d-axis voltage must decrease as a result.

Based on (2.71b), the q-axis current would decrease. To keep the generator output

active power stays at the commanded value, the d-axis current must increase. All the

description here agrees with the responses shown in Figure 5.1 and in Figure 5.2. In

addition, the three models have similar shapes, but the FD and RO do possess some
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Fig. 5.1.: 5-Bus System Inputs Step Responses(Part a)

higher order dynamics compared to the BH. In this study, the FD requires 33.23s to

complete the 100s simulation, while RO requires 3.67s, and BH requires 1.29s.

5.2.2 Study 2: Induction Machines Startup Response

In the BH chapter, a single machine startup response is shown in the representative

system study. Therein a single machine is connected to the infinite bus. Here, a
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Fig. 5.2.: 5-Bus System Inputs Step Responses(Part b)

study is performed for the full system in which both machines undergo a startup at

the load bus. The predicted performance of the three models are shown in Figure 5.3

and Figure 5.4. Simulation is performed by using the Simulink built-in variable step

solver ODE23tb with maximum time-step 5s for all the models.

The results in both figures show that all the models predict similar dynamics. In

Figure 5.3, the induction machines reach their final steady states at 50s and 170s;

at the same time, the total active power of the induction machine shows two small
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Fig. 5.3.: Induction Machine System Startup responses (Part a)

transients as they exceed the breakpoint torque and approach synchronous speed.

In the results shown, there are staircase-shape responses in the induction machine

terminal voltage, which shows that the controls in the LTC are changing its turn-

ratio to regulate the load voltage within 1 ± 0.01 per-unit. For the study, the FD

requires 106.46s to run the 300 simulation, the RO requires 40.63s and the BH requires

26.55s.
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Fig. 5.4.: Induction Machine System Startup responses (Part b)

5.2.3 Study 3: Line Fault

A line fault study is performed to further examine the models. Within the study,

one of the lines, shown in Figure 1.1 between bus 3 and bus 4, is opened. For the

FD model, the opening is performed by changing the parameters of the line inductor,

resistor and the shunt capacitor in the corresponding states equations. For the RO and

BH, the admittance matrix of the system are modified accordingly. The results are

shown in Figure 5.5 and Figure 5.6. Simulations is performed by using the Simulink

built-in variable step solver ODE23tb with maximum time-step 0.5s for all the models.

As shown, although all three models reach the same steady state post disturbance,

there are differences in their transient responses. For example, in the real and reactive
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Fig. 5.5.: 5-Bus System Line Fault Responses (Part a)

power of the generator, there is a transient oscillation predicted by both the FD and

RO models that is not predicted by the BH. Similarly, there are oscillations in the

rotor angle and the q- and d-axis currents not captured by the BH. Close inspection

reveals that the scale of the difference between models is relatively modest. For

example, the change in rotor angle over the transient is less than 2 percent. Thus,

although different, the difference between models is modest. The simulation time for

the FD was 11.92s, 1.32s for the RO and 0.89s for the BH.
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Fig. 5.6.: 5-Bus System Line Fault Responses (Part b)

5.2.4 Study 4: Rotor Transient Stability

The last study performed is one in which a fault is placed on the infinite bus and

subsequently cleared. The study is performed twice. In the first case, a fault is placed

on the system and cleared after 10 electrical cycles. In the second, a fault is placed

on the system and cleared after 100 cycles. When the fault is cleared after 10 cycles,

the system recovers back to its initial steady-state. When cleared after 100 cycles,

the system does not recover as the generator is not able to return to synchronous

speed. Simulations are performed by using the Simulink built-in variable step solver
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ODE23tb with maximum time-step 0.5s for all the models.The results of the 10 cycle

clearing are shown in Figure 5.7 and Figure 5.8.

Fig. 5.7.: 5-Bus System Transient Study 1 (Part a)

The results of the 100 cycle clearing are shown in Figure 5.9 and Figure 5.10.
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Fig. 5.8.: 5-Bus System Transient Study 1 (Part b)

Based on the observations of the results shown from Figure 5.7 to 5.10, the BH

responses in both cases differ from the FD and RO models. For the 10 cycle study,

the values predicted during the transient interval do not match, but the final steady-

state values are in agreement. The BH model predicts a return to a pre-fault steady

state. For the 100 cycle study, the BH fails to capture the transient dynamics and

also fails to predict that the system will not return to steady-state as the machine

fails to return to synchronization.This inability to capture the dynamics under this

large disturbance results from the inability of the model to capture internal dynamics

of the machine. As mentioned in Chapter 4, the BH is characterized assuming a small

change in angular velocity and does not include speed dynamics as a state. Comparing

computational performance, for the 10 cycle case, the FD requires 11.35s, RO 1.66s
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Fig. 5.9.: 5-Bus System Transient Study 2 (Part a)

and the BH takes 22.10s. For the 100 cycle case, the FD requires 172.21s, RO requires

2.23s and BH 25.76s. The BH requires more time due to the fact that when solving

the network system, the input power and voltage have very large excursions, as shown

in Figure 5.10. During these large changes, the algorithm requires many iterations

to converge, which results in an additional computational time. This again shows
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Fig. 5.10.: 5-Bus System Transient Study 2 (Part b)

that BH is not a suitable representation for cases in which the rotor angualr velocity

changes appreciably.
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5.3 Conclusions

A summary of the models described in this work is shown in table (5.1).

Table 5.1.: Model Summary

FD RO BH
Stator Transient Yes No No
Rotor Transient Yes Yes No
Network Transient Yes No No
# of states for Generator 17 14 4
# of states for Induction Machine 7 4 1
# of states in the 5-bus system 48 18 6

Based on the results provided in the previous sections, some conclusions can be

drawn. First of all, FD is useful in all the studies mentioned, and it provides the

most details of the power system components. However, the disadvantage of FD is

the computational efficiency. Since FD contains all of the dynamics of the components

in the power system, it takes a lot efforts to solve and simulate all the ODEs. The

alternative to FD is the RO, which ignore the stator transient of the machines and

the transient of the network components (transmission lines and transformers) and it

is based on the singular perturbation theory. Based on the results shown in previous

section, RO shows a great improvement in the computational speed with a small

sacrifice in the some fast transient, and it is valid in all the studies mentioned.

However, both of the aforementioned models require a significant number of pa-

rameters, which can be difficult to obtain and it is often useful to have the ability to

further reduce computational effort when attempting to model performance in real

time. As a results, the BH models are is derived and discussed. After a closer look of

the responses of BH in study 1,3 and 4, it can be observed that the responses of BH is

reasonably accurate if the rotor speed of the generator does not vary an appreciable

amount.
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5.4 Future Recommendations

5.4.1 Components Model Improvements

For the generation system, the governor and exciter used in this work are from [11].

Hence, to improve the model generality, other types of exciter, examples are in [9],

and governors, examples are in [17] and [18], should be considered. In addition, in

all three models, saturation of the synchronous generator and the induction machine

are not included. Therefore, in order to simulate power system responses under the

condition that the machine is saturated, the models can be improved to include this

nonlinear behavior. Furthermore, the transmission lines models used are only the

π-equivalent circuit. However, to model the medium and long transmission lines, the

propagation constant of the transmission lines should be included, the details can be

found in [12]. For the transformer, since the model for the transformer used is only

the lumped leakage reactance of the transformer, the magnetizing components of the

transformer can be included for further fidelity. Similarly for the LTC, the model

used is an ideal device, whose tap setting can be changed instantaneously. However,

more details can be modeled based on the LTC mechanical geometry.

5.4.2 System Model Improvements

Apart from detailed model and the reduced-order model, other types of models

of the power system components can be developed. For example, in [14], three more

models of the generator/infinite bus system are developed based on different mathe-

matical techniques. Moreover, as mentioned in the previous section, the behavioral

model is not suitable for the rotor transient stability studies. Hence, one potential im-

provement is to include the rotor dynamics in the behavioral model for the generator.

In addition, currently the network algebraic equation are solved by using the Mat-

power, which is a multi-function package in MATLAB. However, since in the network
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calculation in behavioral model, only the network bus voltages are calculated, a faster

solver with this specific target can be written to improve the simulation efficiency.

5.4.3 Model Potential Application

The studies using the models developed in this work only show the models’ func-

tionality of simulating different disturbances or operating points. However, an even-

tual goal of the modeling effort is to support research related to power system control

designs. In our current research group, some promising progresses has been made by

using the reduced-order model as the MPC prediction model to control the plant.

Ongoing research is to consider the use of the behavioral models as the prediction

model.
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A. PARAMETERS & SAMPLE OPERATING POINT

Model Parameter

The parameter used in this work is also from [6]. The parameters of the syn-

chronous generator machine, exciter, governor and induction machine are shown in

tables below. All the parameter below are in per-unit(pu), with the power base 500

MVA for the generator and 50MVA for the induction machine. The voltage base is

15KV for the generator and 20KV for induction machines. The parameters of the

transmission lines and transformers are shown in Figure 1.1.

Table A.1.: Synchronous Machine Parameters

Parameter Value
rs 0pu
Xls 0.15pu
Xq 2.00pu
Xd 2.20pu
X ′q 0.40pu

X ′d 0.30pu

X
′′
q 0.20pu

X
′′
q 0.20pu

T ′do 7.00pu

T
′′

do 0.05pu
T ′qo 1.50pu

T
′′
qo 0.05pu

H 4s
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Table A.2.: Steam Governor Parameters

Parameter Value
σ 0.04
Tmes 0.1s
Tsm 0.4s
żmin -0.05 pu/s
żmax 0.05 pu/s
zmin 0 pu
zmax 1 pu
Thp 0.3s
fhp 0.4
Tr 5s
fmp 0.3
Tlp 0.3s
ivo 1

Table A.3.: Induction Machine Parameters

Parameter Machine 1 Machine 2
rs 0.031pu 0.013pu
Xls 0.1pu 0.067pu
X ′lr 0.18pu 0.17pu
XM 3.2pu 3.8pu
r′r 0.018pu 0.009pu
H 0.7s 1.5s
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Table A.4.: Exciter Parameters

Parameter Value Parameter value
G 70 C 0.06pu
Ta = Tb 1s ilimf1 2.9pu

Te 0.4s ilimf2 1.0pu

vminf 0 Toel 8s

vmaxf 5pu Koel 2.0

Kpss 50 L1 -1.1
Tw 5s L2 0.1
T1 = T3 0.323s L3 0.2
T2 = T4 0.0138s

Table A.5.: LTC Tap-Setting Parameters

Parameter value Parameter value
Ntap 33 ts 5s
rmin 0.88 td1 20s
rmax 1.2 td2 10s
Vd 0.01pu Vo 1pu
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Representative Operating Point

The representative operating point used in this work is also from [6], which is

shown in Figure A.1.

Fig. A.1.: Sample Operating Point

This operating in the figure shows an infinite bus voltage 1.05 per-unit, and the

load voltage is fixed at 1 per-unit by the LTC and the voltage at the generator is 1

per-unit as well. On the power side, the load active power consumption is 400MW

and the reactive power is 80 Mvar. The generator active power is 300MW and the

reactive power is 53 Mvar. Based on the Figure 1.1, the operating tap-setting is

0.99 for the LTC, which will can be altered if a different operating point is chosen.

However, for the transformer, the turns ratio setting is fixed at 1.03.
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B. REFERENCE-FRAME THEORY

Reference Frame Variable Transformation

The reference-frame theory is used throughout the whole thesis, which allows

change of variables including voltages, currents and flux linkages from the three phase

abc variables to qd0 variables. The reference-frame theory allows the AC quantities

to transform to DC quantities when analysis is performed. The way the change

of variables is performed is by referring the variable to a frame of reference. The

transformation can be expressed in the equation (B.1).

fqd0s = Ksfabcs (B.1)

Where

fqd0s =
[
fqs fqs fqs

]T
(B.2a)

fabcs =
[
fas fbs fcs

]T
(B.2b)

Ks =
2

3


cos θ cos (θ − 2π

3
) cos (θ + 2π

3
)

sin θ sin (θ − 2π
3

) sin (θ + 2π
3

)

1
2

1
2

1
2

 (B.2c)

In the detailed model, quantities like currents, voltages and flux linkages of the

transmission line, LTC, transformer, induction machines, constant RC load and the

infinite bus all calculated in the global synchronous reference frame, which has the

frequency defined by the infinite bus ωe, and θ = ωet. However, in the synchronous

generator, all the quantities are in the synchronous machine rotor reference frame,

where θ = ωrt.
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Similarly, the reverse transformation can be done by using equation (B.3)

fabcs = (Ks)
−1fqd0s (B.3)

Where

(Ks)
−1 =


cos θ sin θ 1

cos (θ − 2π
3

) sin (θ − 2π
3

) 1

cos (θ + 2π
3

) sin (θ + 2π
3

) 1

 (B.4)

Change Between Two Reference Frame

One more important relationship to be used in the models in this document is

about the variables change between different reference frames. As mentioned above,

the synchronous generator is modelled in the rotor reference frame. It is important to

change the quantities in the synchronous machine rotor reference frame to the global

synchronous reference frame for the calculation globally. In general, based on the

reference frame angle difference θxy = θy − θx, a transformation from the x reference

frame to y reference frame is done by using the equation:

fyqd0s = Kxy
s fxabcs (B.5)

Where

fyqd0s = Kxy
s fxqd0s (B.6)

Kxy
s =


cos θxy − sin θxy 0

sin θxy cos θxy 0

0 0 1

 (B.7)
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Steady-State Relations

The reference frame theory is also used when the steady-state values are calculated

for voltage and current. The complete derivation of the relation between the phasor

representation and the synchronous reference frame representation of a balance set

of voltages and current can be found in the chapter 3 of [8]. In the thesis, some key

relations are used as described below.

For each phasor f̃as in per-unit:

F̃ai = |F̃ai| θFai = |F̃ai|(cos θFai + j sin θFai) (B.8)

Where f is either the voltages or the currents. The i represents bus number. The

voltage and current calculated is the quantity in phase a. The equation above is

the phasor in per-unit for the phase a quantities since all the components in this

document is assumed to be symmetrical, with phase b and phase c 120 degrees lagging

and leading, respectively.

The main relation used in this work is that in the per-unit quantities:

F̃ai = F e
qi − jF e

di (B.9)

The equation (B.9) is very useful for the initial condition calculation of the states for

all the models.

The other important relation between the phasor and the reference frame angle is

also from [8], chapter 5, and the details can be found in starting from page 160. It is

used in the analysis of the synchronous machine in thesis. Since the rotor angle δ is

important for the machine analysis, and it is used to represent the steady-state phsor

quantities in terms of the rotor reference frame as well, it is convenient to express
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the phasor representation of the currents and voltages in term of quantities in rotor

reference frame and the rotor angle δ:

F̃ai = (F r
qi − jF r

di)e
jδ (B.10)

One important thing about the equations above is that the angle δ is the angle

between the rotor angle of the machine θr and the synchronous reference frame θe.

Hence, by using the equation (B.8) and equation (B.10), the q- and d-axis quantites

in the synchronous machine rotor reference frame can be calculated:

F r
qi = |F̃as| cos (θFai − δ) (B.11a)

F r
di = −|F̃as| sin (θFai − δ) (B.11b)

F0i = 0 (B.11c)

The equation (B.11) and equation (B.10) are used in the initial condition calculation

in the synchronous machine in the detailed and reduced-order model, and they are

also used heavily in behavioral for the synchronous machine algebraic calculations

described in chapter (4).
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C. POWER FLOW BY MATPOWER

Problem Formulation

The main objective of the power flow problem is to obtain per-unit voltages phase

a phasor of each bus in a power system network based on given information about

each bus. Since, again, a balanced set of three phase voltages are assumed in each bus,

once phase a voltages are obtained, phase b and phase c voltage can be calculated

easily. Hence, in all the description in this section, it is assumed that the phasor

are all in phase a. Due to the non-linearity of the phasor, it is difficult to find a

analytical solution for the problem. However, several numerical approaches are used

to find the final solution within an desired tolerance. In general, there are three

kinds of buses in a power flow study. In all the generator buses, typically the one

generator with the highest power level rating are treated as a slack bus, where the

voltage magnitude and angle are known. In the 5 bus system, it is the infinite bus

at bus 1. However, all the other generator buses are treated as a PV bus, where the

active power and the voltage magnitude are known, and the unknowns are the voltage

angle. The reason why the active power and the voltage magnitude are known is that

two inputs to the generation system is the commanded power Po in the governor,

and AVR input V0 in the exciter. The third kind of buses are the load buses, where

the active and reactive power(P and Q) consumption are known, and the unknowns

are the voltage magnitude and angle. Hence, the load buses are called PQ buses. To

solve these unknowns, the power balance equations at each buses are used. The power

balance means that all the active power and reactive power go into each bus i must

be consumed by the bus i or that all the active power and reactive power come out

of each bus i must be generated by the bus i. On a system level, the power balance
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means all the active and reactive power generated by the generator buses or the slack

bus must be consumed by the load buses and the loss on the transmission line.

In the power system study, the bus voltages phasor of each buses are calcu-

lated.The relationship between the voltage and the currents are:

I = YV (C.1)

Where I is a column vector contains all the bus current phasor, Y is the admittance

matrix of the network, and V is a column vector contains all the bus voltage phasor.

The complex power generated/consumed at each bus are calculated based on the

equation:

S̃i = ṼiĨi
∗

(C.2)

Where the ∗ is the conjugate operator of a complex number.

With the complex power equation illustrated, for a system with number of N

buses with number of G generators, the number of unknowns are G of the generator

voltage angles plus 2(N − G − 1) of load voltage magnitude and angles; hence, the

number of unknowns are 2N−G−2. For each generator buses, there are G equations

for the active power balance; for each of the load buses, there are 2(N − G − 1)

equations for the active and reactive power balances; hence a number of 2N −G− 2

equations can be used to solve all the unknowns.

Admittance Matrix

The admittance matrix is a size N × N square matrix, built based on the ad-

mittance between each buses, where N is the number of buses. The entries in the

admittance matrix are based on the transmission lines and the transformers connect-

ing two buses.
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For transmission lines, the model used is the per-phase nominal-π model, shown

in Figure 1.2 from [12]. Between bus i and bus j, the relationship between the voltage

phase phasor and the current phasor is:

Ĩi = (Ṽi − Ṽj)
1

Rl + jXl

+ Ṽijbl (C.3)

Where the Ĩi is the current bus i injects to the power system network; Ṽi and Ṽj are

the voltage at bus i and bus j; 1
Rl+jXl

are the admittance of the line connecting the

bus i and bus j; and jbl is the admittance of the shunt capacitor of the line. Even

though the equation (C.3) only represents the relationship of voltage and current

between two buses on one line, a more general form of Y can be derived. The entry

at row i, column j is:

Yij =


∑

k=1,2,...,N ;k 6=i Yik, if i = j

−Yij, if i 6= j

(C.4)

Where yik are the admittance of the shunt capacitors of all the transmission lines

connected to the bus i; yij is the admittance of the transmission line connecting the

bus i and bus j.

For the transformer, the model used is the simplified per-phase nominal reactance

shown in Figure 1.3. The nominal turns ratio N1

N2
of the transformer is 1. However,

to incorporate the voltage regulator on the left side of the Figure 1.3 into the form of

the equation (C.12) when the turn’s ratio is not 1, some modifications are made to

the model. The input complex power and the output complex power of the voltage

regulator are calculated based on:

S̃i = ṼiĨi
∗

(C.5a)

S̃t = ṼtĨt
∗

(C.5b)
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Where

Ṽt =
N2

N1

Ṽi (C.6a)

Ĩt = −Ĩj (C.6b)

Since the voltage regulator is assumed to be ideal. i.e., no power loss: S̃i = S̃t.

Let r = N1

N2
, and r will be a real number based on the turns ratio. A relation between

the input currents and output current can be obtained based on equations (C.5) and

equation (C.6):

Ĩj = −rĨi (C.7)

Another equation can also be used to calculate the output current based on the

voltage after the voltage regulator:

Ĩj = (Ṽj −
Ṽi
r

)Yl = −Ṽi
Yl
r

+ ṼjYl (C.8)

Where Yl = 1
jXl

.

Plug equation (C.7) into equation (C.8):

Ĩi = Ṽi
Yl
r2
− Ṽj

Yl
r

(C.9)

According to the equation (C.9) and equation (C.8):

Ĩi
Ĩj

 =

 Yl
r2
−Yl

r

−Yl
r

Yl

Ṽi
Ṽj

 (C.10)

Based on the equation (C.10), the π-equivalent circuit can be obtained:

With the modified transformer π-equivalent circuit, the LTC transformer can be

updated in the admittance matrix in the same fashion as the transmission line π-

equivalent circuit described previously, and corresponding entries to the admittance

matrix can be expressed in the same form as shown in equation (C.4).
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−

+

Ṽj

Ĩj

−

+

Ṽi

Ĩi

1
r
(1
r
− 1)Yl

Yl
r

(1− 1
r
)Yl

Fig. C.1.: Transformer π-Equivalent Circuit

The constant admittance at one bus can also be included in the admittance matrix.

Since the constant admittance are connected to the grounded directly, it is similar

to the shunt admittance of the transmission lines and transformers, which can be

described by:

Ĩi = ṼiYi (C.11)

Where Yi is the admittance at bus i connected to the ground.

After adding the influence of the constant admittance at the bus i from equation

(C.11), the admittance matrix can be calculated based on:

Yij =

Yi +
∑

k=1,2,...,N ;k 6=i Yik, if i = j

−Yij, if i 6= j

(C.12)

Matpower

Matpower [19] is a package of Matlab m-files for solving power flow and power

flow related problems. The manual of the package can be found in [20]. In this work,

only part of the Matpower functions are used, which is to solve a power flow using

the NewtonRaphson method to solve for the steady-state AC power flow of the 5 bus

system. The inputs to the Matpower are the parameters of the system and the known

quantities of each bus as described in the previous section.

To be more specific, in the 5-bus system shown in Figure 1.1, for the infinite bus,

which is chosen to be the slack bus, the voltage magnitude and the angle are the
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inputs; for the generator bus at bus 5, the active power and the voltage magnitude

are the inputs. For the load bus at bus 2, the total active and reactive power of the

loads consumed by the two induction machines and the constant admittance are the

inputs. For bus 3 and bus 4, which are not generating power for the system, it is

treated the same way as the load bus with active and reactive power consumption set

to 0. In addition, the transmission lines and the LTC transformer admittance used to

generate the admittance matrix is also provided as branch information between buses.

The sample input script for the sample operating point described in the appendix A

are shown next page.
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The useful output of the Matpower in this work are all the bus information includ-

ing voltage magnitude and angle of each, the complex power the bus generates/con-

sumes and the power flow on each branches (transmission lines and the transformer)

after the command runpf. For example, The output of the sample operating point

is:

MATPOWER Version 7.0, 20-Jun-2019 -- AC Power Flow (Newton)

Newton’s method power flow (power balance, polar) converged in 4 iterations.

Converged in 0.00 seconds

Converged in 0.00 seconds

================================================================================

| System Summary |

================================================================================

How many? How much? P (MW) Q (MVAr)

--------------------- ------------------- ------------- -----------------

Buses 5 Total Gen Capacity 1500.0 -600.0 to 600.0

Generators 2 On-line Capacity 1500.0 -600.0 to 600.0

Committed Gens 2 Generation (actual) 401.2 112.9

Loads 1 Load 400.0 80.0

Fixed 1 Fixed 400.0 80.0

Dispatchable 0 Dispatchable -0.0 of -0.0 -0.0

Shunts 0 Shunt (inj) -0.0 0.0

Branches 4 Losses (I^2 * Z) 1.19 81.30

Transformers 2 Branch Charging (inj) - 48.4

Inter-ties 0 Total Inter-tie Flow 0.0 0.0

Areas 1

Minimum Maximum

------------------------- --------------------------------

Voltage Magnitude 1.000 p.u. @ bus 3 1.050 p.u. @ bus 1

Voltage Angle -7.66 deg @ bus 3 4.21 deg @ bus 2

P Losses (I^2*R) - 0.63 MW @ line 1-5

Q Losses (I^2*X) - 41.61 MVAr @ line 5-3

================================================================================

| Bus Data |

================================================================================

Bus Voltage Generation Load

# Mag(pu) Ang(deg) P (MW) Q (MVAr) P (MW) Q (MVAr)

----- ------- -------- -------- -------- -------- --------
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1 1.050 0.000* 101.19 60.36 - -

2 1.000 4.212 300.00 52.58 - -

3 1.000 -7.655 - - 400.00 80.00

4 1.018 -1.013 - - - -

5 1.015 -2.055 - - - -

-------- -------- -------- --------

Total: 401.19 112.94 400.00 80.00

================================================================================

| Branch Data |

================================================================================

Brnch From To From Bus Injection To Bus Injection Loss (I^2 * Z)

# Bus Bus P (MW) Q (MVAr) P (MW) Q (MVAr) P (MW) Q (MVAr)

----- ----- ----- -------- -------- -------- -------- -------- --------

1 1 5 101.19 60.36 -100.55 -96.12 0.633 6.33

2 5 4 -299.45 -25.49 300.00 24.75 0.554 5.54

3 5 3 400.00 121.61 -400.00 -80.00 -0.000 41.61

4 4 2 -300.00 -24.75 300.00 52.58 0.000 27.83

-------- --------

Total: 1.187 81.30

By using the bus and branch information above, the initial condition of the states can

be calculated based on the description each of the models. The other command used

in this work is the makeYbus, which will give the admittance matrix of the system

and it is used in the reduced-order model. In addition, in the behavioral model, the

power flow is being solved repeatedly at at each sample with updated initial guesses.


