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ABSTRACT

Xu, Chengyi Master, Purdue University, August 2020. Derivation and Analysis of
Behavioral Models to Predict Power System Dynamics. Major Professor: Steven D.
Pekarek.

In this research, a focus is on the development of simplified models to represent
the behavior of electric machinery within the time-domain models of power systems.
Toward this goal, a generator model is considered in which the states include the
machines active and reactive power. In the case of the induction machine, rotor slip
is utilized as a state and the steady-state equivalent circuit of the machine is used
to calculate active and reactive power. The power network model is then configured
to accept the generator and induction machine active and reactive power as inputs
and provide machine terminal voltage amplitude and angle as outputs. The potential
offered by these models is that the number of dynamic states is greatly reduced
compared to traditional machine models. This can lead to increased simulation speed,
which has potential benefits in model-based control. A potential disadvantage is
that the relationship between the reactive power and terminal voltage requires the
solution of nonlinear equations, which can lead to challenges when attempting to
predict system dynamics in real-time optimal control. In addition, the accuracy of
the generator model is greatly reduced with variations in rotor speed. Evaluation
of the models is performed by comparing their predictions to those of traditional

machine models in which stator dynamics are included and neglected.



1. INTRODUCTION

1.1 Motivation

The power system is coupled to nearly every aspect of modern life. Thus, ensur-
ing power is provided where desired despite faults, rapid changes in demand, and the
potential variability of the energy available from renewable resources is of significant
importance. One can argue that in much of the developed world, the engineering
community has designed their respective power systems effectively. Indeed, outages
are relatively rare events and the cost of electricity remains relatively low. How-
ever, the increased reliance on renewables, the integration of wide-bandwidth power
electronics in both loads and sources, and the coupling of electrical and transporta-
tion infrastructures is increasing the complexity of the system. As a result, many
researchers have been considering the role that model-based control methods such
as model-predictive control can play in optimizing the performance of the evolving
power system [1]. Examples of MPC-based methods applied to power systems in-
clude [2], [3], [4], and [5].

One of the critical aspects of model-based control methods is establishing models of
components and systems upon which the control can be established. In general, there
is a tradeoff between model complexity and its computational requirements. In this
research, an initial focus has been placed on developing full-detailed models of a power
system proposed in [6] that can serve as a reasonable test case to assess alternative
control methods. The system consists of an infinite bus, a turbine generator with
associated governor and exciter, a tap-changing transformer, and several transmission
lines between the 5 system busses. Loads include those with constant impedance in
parallel with induction machines. Herein, the word ’detailed’ is used to indicate that

the fast (stator) dynamics that are typically neglected in the models of larger power



systems, are represented. Within the models of the machines, the state variables are
the stator flux linkages. The inputs to these models are the stator voltages. The
network dynamics are represented using a m-based model for each transmission line.

Subsequent to the detailed model derivation, a reduced-order model of the system
is created in which the stator dynamics of the machines and transmission lines are
neglected [7]. In this form, an algebraic relationship is established between stator
terminal voltage and stator current of each machine. Coupling the machine models
is performed by representing the stator voltage as a model output and the stator
current as a model input. Steady-state forms of the transmission line models are used
to establish a network admittance matrix that relate network voltage and current.
The traditional advantage of the reduced-order model structure is that it has enabled
power system analysts to use a larger time-step when simulating power systems [7].
A similar advantage is likely in MPC-based control.

Finally, to potentially further reduce computational complexity, simplified behav-
ioral models of the turbine generator and induction machine are considered. In the
case of the turbine generator, the active and reactive power are utilized as state vari-
ables. In the case of the induction machine, rotor slip is utilized as a state variable
and the steady-state equivalent circuit of the machine is used to calculate active and
reactive power. The network model is then configured to accept the generator and
induction machine active and reactive power as input and provide machine terminal
voltage amplitude and angle as outputs. The potential offered by these models is
that the number of dynamic states is greatly reduced. This can lead to increased
simulation speed. In addition, in the case of the turbine generator, the number of
model parameters is significantly reduced. Indeed, the only parameters in the be-
havioral model are several time constants in the machine, governor and exciter. A
potential disadvantage is that the relationship between the reactive power and termi-
nal voltage requires the solution of a nonlinear equation, which can lead to challenges

in MPC-based control.



In this research, the details of each of the models is provided along with their

implementation structure within MATLAB.



1.2 Description of 5-Bus System

130 km 20 km
X=032ohm/km X/R=10 wC/2= 1.5 microS/km
1 3 4
fl1_3l| “3_4"
" I-Sb" n3_4bn
225 kV
500 MVA
X=0.15 pu
250 MVA
X=0.15 pu 231.75/15 kV/kV

222.75/20 kV/kV

2 20 kV 5 15 kv

Fig. 1.1.: 5-bus System

The 5-bus system that is considered in this research has a one-line diagram shown
in the Figure 1.1 and is described in [6]. The reason the system was selected is
that it has several key traditional power system components and the parameters of
all components and controls are provided. As shown, the 5-bus system consists of
an infinite bus 1, a load bus 2, a generator bus 5 and transmission lines coupling
bus 3 and bus 4. In addition, there is a load tap changing transformer between bus
3 and bus 2, and a fixed turns transformer between bus 4 and bus 5. The machine
sources and loads are highlighted in subsequent chapters. Some details of the network

components are highlighted in the following subsections.

1.2.1 Infinite Bus

The infinite bus represents an ideal AC source voltage with a voltage magnitude

and frequency independent of the bus current. In 3-phase electrical circuit analysis,



it is convenient to use reference frame theory to transform systems into a frame in
which steady-state currents and voltages are constant [8]. This allows one to solve
algebraic expressions for steady-state operating points. In addition, It also provides
convenience for controls, since the input variables are constant in the steady-state,
rather than time-varying. As a result, the infinite bus would provide the synchronous

reference angle for the utilization of the reference-frame theory.

1.2.2 Generator Bus

At bus 2, there are three components: a wound-rotor synchronous machine with
excitation and governor. The excitation system controls the field voltage to the
generator. There are various types of excitation systems [9], in the [6] a DC excitation
system is utilized. For the governor system, there are multiple types of governors,
including steam- gas-, and hydro-turbine-based. In the thesis, a steam governor
system is considered . For the wound-rotor synchronous generator, the machines is
a three-phase, wye-connected, salient-pole model with two damper windings on the

g-axis, one damper winding on the d- axis and one field winding on the d-axis.

1.2.3 Load Bus

Load bus 2 includes two induction machines and a constant-impedance load.
Based on [10], this combination is common practice in American power system re-
search. For the constant-impedance load, a symmetrical three-phase wye-connected
series-connected RC load is assumed. The use of the induction as part of the load
model is based on three factors [11]: first, it is a fast-restoring load in the time
frame of a second; second, it is a low power factor load with a high reactive power
demand; third, it is prone to stalling when the voltage is low, or the mechanical
load is increased, which can lead to issues of power system stability. For the induc-
tion machines, both are three-phase, wye-connected, symmetrical induction machines.

The main difference between the two machines is their inertia. One has an inertia



consistent with a large-power machine. The second has a lower inertia that is repre-
sentative of many smaller-power machines connected to a bus, which often occurs in

manufacturing plants.

1.2.4 Transmission Line

For the network, a m model of the transmission lines is used, as described in
[12]. Physically, between bus 1/2 and bus 3/4, there is a conductor that is modeled
using a 7 circuit. Hence for the system, there are twelve 7 circuits representing the
transmission lines. The m model of the transmission is shown in Figure (1.2). The
per-unit impedance (value of R;, X;) and admittance (;) for the transmission lines
are the same; the differences are their length. The lines between bus 1 and bus 3 are

longer than the lines between bus 3 and bus 4.

I, R, JXi ];
O_FJ\/\/\/_NYY\;A_O
+ +
A— %= v
= -

Fig. 1.2.: Transmission Line m-Equivalent Circuit

1.2.5 Transformer

A load-tap-changer transformer (LTC) is used to step the voltage from transmis-
sion levels to distribution levels and regulate bus 2 voltage. A fixed-turn transformer
is used to step the voltage from transmission to distribution levels at bus 5. The
only difference between the two transformers is that the LTC can vary its turns ratio,
whereas the fixed-turn transformer has a fixed value. In this research, both trans-
formers are modeled using the circuit shown in Figure 1.3. Therein, one can observe

that the input-to-output relationship consists of an ideal turns ratio in series with a



reactance that is representative of the transformer’s leakage reactances. As shown,
all both primary and secondary resistances are assumed negligible. Similarly, the

transformer magnetizing reactance is assumed to be sufficiently large that it can be

Vi

neglected. Again, for the load tap changer between bus 3 and bus 4, 32 varies in
order to control V,,; to a desired value.
T, IR T
+ + +
‘Z/ Ny Ny ‘Z Vout
= _ -

Fig. 1.3.: Transformer Equivalent Circuit



2. DETAILED MODEL

2.1 Introduction

In this chapter, the detailed model for each of the components is described. For
all electrical components, the state equations are represented in a suitable reference-
frame. Brief details of reference frame transformation are provided in the Appendix.
For the transmission lines, transformers and constant admittance loads, the corre-
sponding differential equations are based upon equivalent circuits described in [12].
In the generator and induction machines, model details are provided in [8] and [11].
Herein magnetic saturation in all machines is neglected. All models are built based

on the per-unit quantities for all the variables. Parameters described in the appendix.



2.2 Infinite Bus
Description

The infinite bus 1 provides phase voltages expressed (2.1) in per-unit form:

Vging = Vs c0s (wet) (2.1a)
2

Uping = Vs cos (wet — %) (2.1b)
2

Veing = Vi cos (wet + g) (2.1¢)

Transforming the infinite bus voltage to the synchronous reference frame using
equation (B.1) with 8, = w.t, the infinite bus is modeled in the synchronous reference

frame can be expressed as:

Vging = Vs (2.2a)
Vding = 0 (2.2b)
Vging = 0 (2.2¢)

Simulink Implementation

The infinite bus voltage magnitude and electrical frequency are constant. As a
result, the bus voltage in the ¢d0 variables and the synchronous reference frame angle

6. can be calculated. Hence the Simulink block diagram is shown in Figure 2.1



@—b Vsmag q‘.

vinf vinfinity

we

vgdOinf

D

vqdOinf

2%pi

w|=

theta_e

Fig. 2.1.: Infinite Bus Simulink Implementation
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2.3 Detailed Generator Model
2.3.1 Wound-Rotor Synchronous Machine

The detailed model for the generator utilized is fully described in [7] page 42. The
derivation of the model starts from the cross section of a two-pole, three-phase, wye-
connected salient-pole synchronous machine depicted in Figure 2.2. Analysis of the
relationship between winding current and magnetic flux and voltage and current is
used to generate the ordinary differential equations (ODEs) used to predict machine
performance. Reference frame theory is then applied to establish the common Park’s

equivalent circuit described in [8] that can be modeled using ODEs of the form:

hs-axis

C5-axis .
d-axis

Fig. 2.2.: Two-pole, three-phase, wye-connected salient-pole synchronous machine
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(2.3a)
(2.3b)

(2.3¢)
(2.3d)
(2.3e)

(2.3f)

(2.3g)

where v is used to represent respective winding voltage, r winding resistance, and w;,

is the rotor electrical angular velocity. The variable A is used for winding flux linkage.

The winding flux linkages can be expressed in terms of winding currents using (2.4):

o _
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r - -7 S S
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- - o L
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v 11 -7 S e
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~~ —
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—~ )
N
W
@]

ro
B
—

In (2.3) and (2.4), the subscripts s and r refer to stator and rotor quantities

respectively. The superscript r is used to indicate the variables are in the rotor frame

of reference, and the prime ' is used to indicate that the respective winding is referred

to the stator winding through an appropriate turns ratio. The inductances in (2.4)
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with a subscript [ are leakage values of the respective winding while those with a
subscript md and mgq are the d- and g-axis magnetizing values, respectively. Since
the parameters of the synchronous machine are often provided in terms of reactances
rather than inductances, it is convenient to multiply (2.3) and (2.4) on both sides by

a base angular velocity w. and express the result in a state model form:

1 drwfs -7 Wr T T
w— dtq = rS/LqS _— w_wds “I'_ qu (25&)
1 dl/}gs -7 Wr r r
1 dipos .
o 3; = ryips + Vos (2.5¢)
1 dify o
w_d_“tf - _T}dlfd + de (25d)
1 dyy” oo

w__dfd = —Thalya + Vka (2.5¢)

1 diyl, o
o dtq = —Thgrirg T Vg (2.5f)

1 dyr, .,
w_ dtq - _T;cq2lkq2 + Vkq2 (25g)

where

Uy = = Xisihy + Xong(—ils + i1 + i3s) (2.6a)
w:ls = _Xlsigs + de<_?‘gs + Zl;ﬂd + i;crd) (26b>
¢05 = _XlSiOS (26C)
Vg = Xipalfg + Xma(—igs + 154+ igy) (2.6d)
Uy = Xiaing + Xoma(—il3, + Z'/fd + i) (2.6e)
wkcn = Xl/kqliqul + qu(_zgs + ?:qul + Z.l€r(12> (26f>
)

Uz = Xigalige T Xma (=10, + 1 +i0) (2.6g



To continue the description, it is convenient to define several reactances

machine. The d- and g-axis reactances are expressed:

X4 2 Xis + Xna

X, 2 Xpo + Xong

The d- and g-axis transient reactances are expressed:

A 1
X/:Xls_f_ﬁ

de Xllfd
1

A
X, 2 Xt

7
Xmgq Xlkq

Finally, the d- and g-axis subtransient reactances are expressed:

n A 1
Xg = Xis + 1 1 1
X + X/ + X/
md 1fd lkd
n A 1
Xq =Xis+ 1 1
qu Xllkql Xl’kq?

The transient and subtransient time constants are defined as:

X/
7 A Aisd
éO

/
wefr.fd

!
7 A X
qo R

/
WeT kg1

1 1
T" é X!
do —welr‘;gd ka T —ﬁ .

/"
Ty=—7—

>3
&
4]
—_
=~
(Y]
/N
2%
Z
[\]
_|_
<
E [l
—_
o
~_—

14

of the

(2.7a)
(2.7b)

(2.8a)

(2.8D)

(2.9a)

(2.9b)

(2.10a)

(2.10D)

(2.10¢)

(2.10d)
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Finally, three additional variables associated with the rotor windings are defined:

A de

B2 Zmdyr (2.11a)
q led f
Xm

E} 2 . Sy (2.11D)
fd
Xpg 0

By S -y (2.11¢)
Xlkql at

These are substituted into (2.5) and (2.6), and the result rearranged to establish
a final detailed model:

Wr r r
—pw = Tsigs = — Wi + Vg (2.12a)
1 r T Wr T r
w—epwds = Tsigs + w—equ + Vg, (2.12b)
1
—Pos = Tsios + Vos (2.12¢)
‘ X! — X" )
TopEq = —Eq + (Xg = X))lig, — M(%’éz + (Xg — Xis)igs + Eg)] (2.12d)
q s
T, @bqu @b;:;z — By — (X, — Xu,)ig, (2.12e)
Xl X//
/ / / IN[T -y / /
Toop By = —Eq — (Xa — Xg)ligs — W(@/’kd (Xg — Xis)ig, — Eq)] + By
(2.12f)
Thpty = =+ By — (X — Xis)ig, (2.12g)
Pd = Wy — W (2.12h)
2
Jﬁpwr =Ty —T, (2.12i)
3P 1 o .
Te = 2 2 (wds Lgs — quds) (212J)

where 0 is the rotor angle with respect to the synchronous reference frame, .J is
the rotor inertia, T, is the electromagnetic torque, P is the number of poles of the

machine, T}, is the mechanical torque, and p is the ; operator.



16

This model can be expressed in a per-unit form:

1 T T Wr T T
w—@pqu = Tylgs — w—e@/}ds + vg, (2.13a)
1
w—p¢ds Tslgs + ¢ + vy, (2.13b)
1
ququ)Os = T'slos + Vos (213C)
, , , Xl _ X/l
T pEy = —E;+ (Xq — X] )[ qs WWW ( Xls) + E3)] (2.13d)
TPt = — Ui — By — (X} — Xu)ip, (2.13¢)
/ / / I\[;T X/ X” / -7 / /
TypE, = —E, — (Xq — X})[ig, — W<wkd (Xg — Xis)igs — Eg)] + B}y
(2.13f)
Thpty = = + By — (X — X1)ig, (2.13g)
pd = wr — we (2.13h)
2H
pwr =Ty — T (2.131)
T 2bds qs gsigs (213J>

The per-unitization assumes that base voltage is the peak value of the rated phase
voltage, base power is the machine volt-ampere rating, and base rotor angular velocity
is w,=377 rad/s. The corresponding current base, torque base and impedance base is
calculated from the base voltage, power, and angular velocity. These are then used to
rewrite (2.12a)- (2.12g), to form (2.13a)-(2.12g). For the rotor mechanical dynamics,
(2.121)-(2.12j), the base torque is first expressed:

Pg

= o/P

(2.14)

Subsequently, (2.12i) is expressed in terms of per-unit values of speed and torque,

which yields the inertia constant defined as:

COEE-OEE e
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Equations (2.13a)-(2.13j) represents the state model of the synchronous machine.

Within the machine detailed model, the following expressions are used to relate wind-

ing currents to the states:

1 ; "X, I
qs — _//(_ qs (i _ E/ + (/1 K wkqQ)
X X — X X Xis
q S
. X" — X, X’ Xg;
lis = X//( ¢ds X(/i _ Xls E«; + X(/i 1/’/«1)

Z’T’

. 1
l0s = —X—ls%s
, X/ Xl/

(X Xls) + Eél]

i) = (B (X — XY, — )]

Xmg
. X=XV |
s — X Xs r El
Ukd X, — X.,)? Xls)g[@/’kd + (X 1s)igs + £y
‘/T’ 1 - ‘/T’
Liqg = X_d[E‘; + (X — X)) (igs — )]

The active and reactive power are also calculated in per-unit using:

P = ’quzqs + ’Udslds + 21}05208

T T T T
Q - ,qulds Udslqs

2.3.2 Generator Exciter system

(2.16a)
(2.16b)
(2.16¢)
(2.16d)
(2.16e)
(2.16f)

(2.16g)

(2.17a)

(2.17b)

The exciter model used comes from [6]. A block diagram of the exciter model is

shown in Figure 2.3. The output of the exciter system is the field winding voltage

E%,, which labeled as vy in Figure 2.3. The field winding voltage value is expected to

be 1 per-unit when the generator operates unloaded at rated speed with a 1 per-unit

terminal voltage.

The control input to the exciter model is the V{ in Figure 2.3, which is used

to control the stator terminal voltage magnitude of the synchronous machine. By
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Power System Stabilizer (PSS)

w K58 1+ sTh 1+ sT3
- ]
1+ sT, 1+ 5T, 1+ 8Ty

Ve

1+ sT,
G].-‘rSTb

slim
lf 2

transient
gain
reduction exciter

1
8T el

L

slim

1 OverExcitation Limiter (OEL)

Fig. 2.3.: Exciter System

using the measured machine stator terminal phase voltage magnitude, labeled as V/,

a relation among E%,;, Vo and V' can be expressed under steady state:

/ Ta

The control described in (2.18) is commonly referred as an Automatic Voltage
Regulator(AVR), which is used to control the field winding voltage value based on
the measured machine stator terminal voltage. In Figure 2.3, also shown are the
control sections in the top part of the figure labeled Power System Stabilizer (PSS),
transient gain reduction, and another control section in the bottom part of the figure
labeled OuverExcitation Limiter (OEL),which is related to the field winding current
limit.

To briefly explain the OEL, z‘?gnl is the field current limit that is established by
the generator manufacturer. Under normal operation, if the field current, labeled 75
in Figure 2.3, is lower than the field current limit, a negative value is input into the
min block. Since ilfig‘z is a positive number, a negative signal of iy — ilfigﬂ results as
an inmput to the integrator. Since the output of the OEL is bounded between 0 to
L3, the output of the OEL is then 0 under normal operation. However, when the field

current exceeds @'%”1, the signal that goes to the OEL integrator is based on the min
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gate. In the end, the more the field current exceeds the limit, the higher the output
of the OEL will be.

The transient gain reduction is used to limit the overshoot in the terminal voltage
following a step disturbance. The Bode response of this block is shown in Figure 2.4. If
the frequency of the input signal to the block is greater than 1Hz, the output is reduced
by 8 dB. Otherwise the gain is fixed at G. Thus, any low frequency disturbances receive

greater response compared to high frequency disturbances.

Frequency Response Transient Gain Reduction Block

NG

Magnitude (dB)

Phase (deg)

N /
.

Frequency (rad/s)

Fig. 2.4.: Frequency Response for Transient Gain Reduction Block

The PSS uses rotor electrical speed w, as an input. It includes a high pass filter
and two identical lead filters in cascade. The overall PSS transfer function is shown
in Figure 2.5. As shown, it filters signals at very low frequencies (below 0.01 rad/s)

while providing significant gain to signals above 100 rad/s.

2.3.3 Governor System

The governor model system is a steam turbine based model, shown in Figure 2.6.
It also comes from [11]. In the bottom half of the figure, one can observe that the
steam turbine is divided into three different pressure stages (labeled LP, MP, HP)
which add to yield commanded mechanical torque.

From the top of Figure 2.6 one can observe that the model accepts the rotor

mechanical speed (shown as w) and desired generator electrical power (shown as P,)
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Frequency Response for PSS
q - g =
g . /
=2
3 /
2 2 ———
= e
g P
= _./"
/\
& 00 b—0 ‘
k=2 ~.
§ \\. / \.._\
£ 45 \ d \
o S / h-4
& 10° 10
Frequency (rad/s)

Fig. 2.5.: Frequency Response for Power System Stabilizer

P, 3
. “mazx
+ Zmazx I~
w_,o 1 1 1 1 z
— -] = - - > — > =
+ I 1+ 8Tomes | — | Tom s
* o =7 control valve opening
1 Zmin
1 1 1 Pm LP
- L | ——— {1 — fn, —
1+ HT],I, 1+ sT, 1+ STI]: frp fmp
high pressure stage reheater low pressure stage
and medium . +
pressure stage 100 i
intercept bt Pm MP
valve opening
fr
v Pm HP

Fig. 2.6.: Governor System

as inputs. The valve open z is added to the speed error. This results in a droop-
type of action between power and speed. Specifically, assuming steady-state, one can

assume the input to the valve opening integrator is 0. Under this condition, one can

express

1 —
s=P oy (2.19)
g

Assuming no loss in the mechanical system, it can be shown that T,, = z = P,. As

speed varies away from 1, the load torque varies from the commanded power.
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2.3.4 Detailed Generator/Infinite Bus Implementation

Infinite Bus Synchronous Machine
Vasb L
Roan
Vbsb L
"o ro—@ T
| Vesb L
-+ 00
|
| +
- Ynmb

Fig. 2.7.: Detailed Generator/Infinite Bus Implementation

With the infinite bus and the generation system described, a simple system in-
cluding an infinite bus and a generator can be readily developed, shown in Figure
2.7. Such a system is often used for the purpose of generator stability studies and ex-
citation/governor control design. In subsequent behavioral model development, this
system is used for model derivation and characterization. Hence, a Simulink model
of an infinite/bus generator has been constructed. The Simulink model of the gener-
ator accepts as inputs the qd stator terminal voltage expressed in the rotor reference
frame, the load torque (from the governor model) and the field voltage excitation
E%, (from the excitation system model). In addition to the states, the simulation is
used to solve for field winding current, d- and g-axis stator currents, electromagnetic
torque, rotor angular velocity, rotor angle, active and reactive power and the termi-
nal voltage magnitude. The machine is connected to the infinite bus through a 0.15
per-unit series reactance X. This enables implementation of the Exciter system to
control the machine terminal voltage (machine terminal voltage magnitude would be

the infinite bus voltage without this reactance).
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Within the Simulink model, the series reactance is incorporated within the syn-
chronous machine model by adding its value to the leakage reactance of each phase.
From the definition of the parameters in (2.9) and (2.8), it can be shown that equation
(2.13) does not need to change with the addition of the series reactance, since the
terms involving the parameters of the wound-rotor machine do not rely on its leak-
age inductance. However, it is important to note that the stator voltage and stator
flux linkage per second in (2.8) is influence by the series reactance since the lumped
leakage reactance is the infinite-bus voltage and the total flux linkage per second af-
ter including the series reactance. Hence, in addition to use the equation (2.13) to
calculate the states variables, further calculation is needed for the calculation of the
machine terminal voltage and stator flux linkage per second.

The infinite bus voltage is expressed:

06 = Wet (220)
Vi cos(6.)
Vabesh = ‘/1 COS(&G — 2%) (221)

Vicos(f. + %)

where V; is the peak voltage of the infinite bus and

0. = wet (2.22)

Using Kirchhoff’s law around the loop from nb to nm the relationship between the

infinite bus voltage and the machine terminal voltage can be expressed:

1

X dia cs
- b + Vabes + 1 Unmb (223)

we dt

Vabesb = —

1
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Transforming (2.23) and (2.21) to the rotor reference frame yields:

T X dirS X -7 T
Vg o dzqf Wl + vgg (2.24a)
r X dirs X -7 r
Vg = "o di + wrw—ezqs + vl (2.24Db)
X digs
Vosb = _W_e di + Vos + Unmb (224C)

As shown in the equation (2.64), the derivatives of the generator stator currents
are needed for the calculation of the generator stator voltage. The derivatives can be

calculated based on equation (2.16) by using the derivative operator < on both sides.

1 X! - X, . Xl—X!

DPlgs = X”< pqu - mpEd + m]ﬂﬁkqg) (2.25&)
-7 1 r X// - Xls X/ X

pzds = ﬁ<_pwd3 + XZ _ XlspEl + = X/ Xls wkd) (225b)
) s — s 2.25

Plo Xlsp% ( c)

Where p = & and all the terms on the right hand sides with p are the states and

_t
their derivatives are calculated based on the equation (2.13).

In addition, it is assumed the machine windings are balanced and wye-connected,
in which case one can show that v,,,, = 0. These steps enable one to express the
transformed stator phase voltages in terms of the infinite bus voltage as:

vy = Vi cos(0) (2.26a)

v = Visin(0) (2.26Db)
Vos = 0 (2.26¢)
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Simulink Implementation

The overall implementation of the generator/infinite bus in Simulink is shown in
Figure 2.8. At the source function block, the infinite bus voltage vy, in the rotor
frame of reference is calculated using (2.26) and where the angle difference is the state

variable §.

iqdOsr » [:]
wr s
Tl Tl

@ o wr » [:]
governor
delta » [:]

(2 P vqdOse

vqdOine

h 4

‘ wgdOsbr P vqdOsbr pwr
source

delta

»
Ref. Frame Transformation vadose i

Efd Efd

h 4

Vo

exciter

Full Detialed Gen

Fig. 2.8.: Detailed Generator/Infinite Bus System Simulink Implementation

Inside the governor block and exciter block, the dynamics of the governor and
exciters are implemented. The implementation of the governor dynamics are shown in
Figure 2.9, Figure 2.10 and Figure 2.11; the implementation of the exciter dynamics
are shown in Figure 2.12, Figure 2.13 and Figure 2.14.

Inside the Full Detailed Gen block, the dynamics of the generator are imple-

mented, which is shown in Figure 2.15.
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wr
z L a4
o
(2) gl T
2 Ll P*
= Steam Turbine model

Speed Governor

Fig. 2.9.: Governor Simulink Implementation

5 6
i
@
)

di=Ax+Bu ;/i\ J
W () 1G0v.droos ot T ‘ 11GOV. Tsm
wr

Fig. 2.10.: Speed Governor Simulink Implementation

2 -ﬁmb\\

GOV.ivo

GOV.fhp

Fig. 2.11.: Steam Turbines Simulink Implementation

In the ElectricalDynamics and MechanicalDynamics function block,(2.13)
are implemented. In the Current function block, (2.16) are used to calculate the
stator and damper windings currents. In the Additional Info block, shown in Figure

2.16. In the Voltage function block, the machine voltage is calculated using (2.24).
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) > b dvpss ——

PSS

J ocs O w Ly
Efd

OEL

Fig. 2.12.: Exciter Simulink Implementation

pwr . .
‘ " 1 X=Ax+Bu i=Ax+ Bu /
pwr - P s y=Cx+Du y=Cx+Du

Fig. 2.13.: PSS Simulink Implementation

Fig. 2.14.: OEL Simulink Implementation

In the synchV function block, the stator terminal voltage is transformed back to the

synchronous reference frame for the bus information calculation.
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Fig. 2.15.: Generator Simulink Implementation
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Fig. 2.16.: Generator Subblock Simulink Implementation
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2.4 Load Model
2.4.1 Constant RC Load

The constant impedance load modeled in this section is a three phase symmet-
rical wye-connected series RC load. In the physical abc variable representation, the

equations:

VabeLoad = RiabcR + Vabeo (227&)

iabcC’ - vaabcC ( 2.2 7b)

are used to relate load voltage and current. In (2.27), the v and i are vectors of voltage
and current, respectively. The variable p is the d/dt operator, and R and C are three-
by-three square diagonal matrices with diagonal entries R and C. The load model can
be transformed to the synchronous reference frame using the transformation (B.3),

resulting in:

U;load = ZgRR + /U;C (228&)
Vitoad = tarTt + Ve (2.28Db)
Voload = torF + Voo (2.28¢)
where
e lqc ¢
PUc = "5~ Welic (2.29a)
PUSe = %0 + wevle (2.29D)
pUe = ZES’ (2.29¢)

In (2.29), the currents with subscript C' are the capacitor currents. Since the load

is series connected, then igipor = igac = igdorc-
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For the constant admittance, with the load currents given, the load voltages can

be calculated using (2.28). The Simulink diagram is shown in Figure 2.17.

vqdOce

‘ pvqdOce

Capacitor

1 iqdOce

iqdORCe

1
s

iqdOloade

4 vqdOloade

Load
vqd0Ce

&

vqdOloade

Fig. 2.17.: Constant Admittance Simulink Implementation

2.4.2 Detailed Induction Machine Model

The induction machine model used is derived in [8] based upon the cross section

of the two-pole, three-phase, wye-connected symmetrical induction machine shown

in Figure 2.18. Similar to the synchronous generator described in Section 2.3, the

relationship between winding current, magnetic flux, and voltage is used to express

the ODEs used to predict machine performance. The ODEs expressed in the abe

variables are described in detail in [8] starting from page 216. Since the model used

in this work is all based on reference-frame theory, the ODEs in machine abc variables

are not discussed here. Rather, the common ¢d0 representation of the induction

machine in the synchronous reference frame is expressed in (2.30).
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Fig. 2.18.: Two-pole, Three-phase, Wye-connected Symmetrical Induction Machine

e

Vs = Tslgs T WeAgs + d;s
AN\
Vs = Tslgs — WeAgs + d;ls
. d)\()s
Vos = T'slos + ——
0 0 I
! 7 ! dA/e
Vgy = Trigy  (We — wp) A g, + dgr
, / AN
Vg = Ty — (We — wr))‘qer + Wdr

/

dXy,
dt

’ ;.
Vor = Trlor +

(2.30a)
(2.30D)
(2.30¢)
(2.30d)
(2.30¢)

(2.30f)
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where v is used to represent respective winding voltage, r winding resistance, w, is
the synchronous electrical angular velocity from the infinite bus, and w, is the rotor
electrical angular velocity. The variable X is used for winding flux linkage. The

winding flux linkages can be expressed in terms of winding currents using (2.31):

Xe, = Lygic, + Lag(icy +i2) (2.31a)

€ = LigiS, 4 L (iS + .5 (2.31b)
Nos = Lisios (2.31c)
Ao = Ljit + Ly (i, +i.%) (2.31d)
N = Ligig, + Lu (i, + i) (2.31e)
Nor = Liyio, (2.31f)

Subscripts s and r refer to stator and rotor quantities respectively. The superscript
e is used to indicate the variables are in the synchronous frame of reference, and the
prime " is used to indicate that the respective winding is referred to the stator winding
through an appropriate turns ratio. The inductances in (2.31) with a subscript [ are
leakage values of the respective winding while those with a subscript M magnetizing
values. Since the parameters of the induction machine are often provided in terms of
reactances rather than inductances, it is convenient to multiply (2.30) and (2.31) on

both sides by a base angular velocity w, and express the result in equations (2.32):

Welgs = WeTslgs + Welgs + Pgg (2.32a)
Welgs = WeTslgy — Wellgs + Pty (2.32D)
Welos = WeT'stos + PYos (2.32¢)
Welge = WeTyig + (We = Wr) U + Py (2.32d)
et = iy — (e — S+ (2.32)
Well, = WeTig, + Py, (2.32f)



Where p is the % operator and:

Vs = Xislgs + X (g, + Z;«)
Vs = Xiaiy + Xor (i, + iy
thos = Xistos

o = Xivigr + X (ig, + i)
Vi = Xiyigy + Xaa(if + ;)

’

’ ;.
wOr - XZT‘ZOT

In (2.33), the currents can be readily calculated using (2.34).

1 e e
qu = Xls( qs mq)

e

1 e
tgs = E(d)ds - md)

. 1

los = XZS?/JOS

! 1 !

iy = 7 (Ugr — Vg
q Xl,r q q

e 1 ’e e
Lar = X_I/T(,[?Z}dr - md)
_ 1
lor = X—l,rwm

where ¢y, and 9] ; are defined as:

e A .e e
wmq = XM (qu + qu)

A . .
a = X (i3, + i)
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(2.34a)
(2.34b)
(2.34¢)
(2.34d)
(2.34¢)

(2.34f)

(2.35a)
(2.35b)
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and ¢, in terms of the states in the equations (2.32) and

the reactances for Simulink implementation:

e ‘e

€ = X, (=L 4 T 2.36
mq q(Xls + Xl/r ) ( a)
Vi Y
cd = Xa 54 e 2.36b
d d<Xls XZ/T) ( )
where
A1 1 1.,
Xog = Xoa = (— — 2.37
0= X2 (et 5+ 5 (237)
With vy, and 9,4, (2.32) can be readily written in a form:
pqu = we[ Ugs wds _l(wfnq - 25)] (238&)
s e e
pdjgs we[vgs + ¢;s + E( md ¢ds)] (238b)
s — We|U0s — - s 2.38
Pthos = we[vo X, Yos) ( c)
o e We—Wr s, Th
p¢q'r - we[vqr - We Qﬁdr X/ ( mq ¢qr)] (238d)
/ ’ We !
pl/}di = We [Ud?" + qr X/ (wmd wdr)] (2386)
TT
Por = Welvy, — Wgr] (2.38f)
lr
The rotor dynamics of the machine can be expressed using:
2 dw
L =Ty-T. 2.
P dt M ( 39&)

where J is the rotor inertia, P the number of poles, T); the mechanical torque, and

T, the electromagnetic torque that can be expressed in terms of stator flux linkages

and currents as:

3P 1

Te (wds qs - quzds)

55 (2.40)
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The induction machine implemented within the power system is in per-unit. The
per-unitization applied assumes that base voltage is the peak value of the rated phase
voltage, base power is the machine volt-ampere rating, and base rotor angular velocity
is w,=377 rad/s. The corresponding current base, torque base and impedance base is
calculated from the base voltage, power, and angular velocity. To apply to the rotor

mechanical dynamics in (2.39), the base torque is first expressed:

Ip = (Q/Ij,ﬁ (2.41)

Subsequently, (2.39) is expressed in terms of per-unit values of speed and torque,

which yields

2H

pwr =T —Te (2.42a)

e

T. = ¢§sigs - ;sifls (242b)

OISO =

The active and reactive power are also calculated in per-unit using:

where

P = g g, + vggigs + 205470, (2.44a)
Qe = Vg ig, — Vgsleg (2.44b)

Simulink Implementation

The Simulink implementation of the induction machine is shown in Figure 2.19.
In the dynamics block, the states equations (2.38) are calculated. In the current

block, the stator and rotor currents are calculated based on equation (2.34). In the
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torque block, the torque and rotor speed are calculated. In the loadtorque block,

the load torque is calculated, which is in the general form of:
Ty = T0(0.5w* 4 0.5) (2.45)

Where w are the per-unit rotor speed, o

vadOse

1 iqd0se
s psin

ppsigdose

&

™

Fig. 2.19.: Induction Machine Detailed Model Simulink Implementation
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2.5 Transmission Line

As mentioned in Chapter 1, the 7 circuit is used to model the transmission line. In
Figure 1.1, there are twelve transmission lines, where six of them are connecting bus
1 and bus 3 with two transmission lines for each phase; the other six are connecting
bus 3 and bus 4. For simplicity, only the phase a connection is shown in Figure 2.20.

To model parallel lines, the values of resistance and inductance of the individual

Ri3 L3 Ry L3y
074\/\/\/ Y YY) /\/\/\/ Y YY) o
—__ O Ch_—_— C,—_— e
O O

Fig. 2.20.: 5-Bus System Transmission Line Equivalent Circuit

conductors are divided by two and the values of the capacitance are multiplied by
two.

In the implementation, the capacitors across bus 3 share the same voltages as the
primary side of the LTC transformer. Therefore, the capacitors with admittance b;3
and b4 are combined to form a single capacitance. In addition, within the Simulink
implementation to avoid algebraic loops, and based upon the fact the the capacitor
should not directly connect to a voltage source (the infinite bus) because of the
continuity of capacitive voltage, a small resistor is added between the infinite bus and

the transmission line. Hence, the final topology shown in Figure 2.21 is used.

o

YirTC
Ling Ring R Ly i | o 34 L3y Liran
+T T VVVT VVV T VVV T+
Vinf ver —— G Ci+Cy —— vrre Co”"—  Vc2
_ _ Yim o3y Yico
O O

Fig. 2.21.: 5-Bus Transmission Line Implementation Model
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Currents in inductor L3

In the Figure 2.21, the currents and voltages can all be calculated. For the inductor

L3, the equations for the currents states in abc variables are: (2.46):

Vabell = VabeLTC — VabeCl (2.46a)

Vabert = Ligplabenn + Ruslapenn (2.46b)

Where Lq3 and R;3 are three-by-three square diagonal matrices with diagonal entries
Ly3 and Rq3 respectively. To transform the abc variables to gd0 variables, a reference
frame transformation to the synchronous reference frame is applied, yielding a state

model of the form:

V€ — V¢ — Ryaif
.e __ “qLTC qC1 13%qi1 .e
Pign = T — WelGyy (2.47a)
13
V8 — V5~ — Ry315
e _ Yarre dc1 13%q11 e
Py = Los + Welg) (2.47b)
e [+ N
e Vorre — Yoor — Rasign
Do = (2.47c)
L3

In (2.47), voltages with subscript LT'C' are calculated based on the capacitor in
Figure 2.21 labeled with C; + Cy; voltages with subscript C; are calculated based
on the capacitor in Figure 2.21 labeled with C}, and the currents are states for the

inductor L;.
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Currents in inductor L3y

In the same fashion, the currents in the transmission lines connecting bus 3 and

bus 4 can be calculated. First of all, the voltage in the lines can be calculated:

Vabel2 = VabeLTC — VabeC?2 (2.484a)

Vaberz = Lisapiaperz + Raalapern (2.48b)

Following the same procedure described for the calculation of current in L3, the
derivatives of the currents through the L3y can be calculated in the equation (2.49)

in the synchronous reference frame.

e e se
Ygrre — VYq02 — R34qu2

Pigy = T — Welgpy (2.49a)
. v — Ve — R34ie .
pigy = 1 f?j Py ity (2.49D)
Ve — Vg — R3q1¢
pig, = 1 zcgj L (2.49c¢)

In the equation (2.49), voltages with subscript LT'C will be calculated based on the
capacitor in Figure 2.21 labeled with C} + C5; voltages with subscript Cy will be
calculated based on the capacitor in Figure 2.21 labeled with C5, and the currents

are states for the inductor Ls.

Voltages in shunt capacitor C + C,

With the currents through the inductor calculated, the voltage across the capaci-

tors can also be calculated. For the capacitor C; + Cs,

lobeC3 = YabeLTC — labell — label2 (2503)

iabcC3 - (Cl + CZ)pvabcLTC' (250b)
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These can be transformed to the the synchronous reference frame, yielding (2.51)

ye N N
Lypre T Y T g2

pv;LTC = Cy + C, - wengTC (2.51&)
e larre ~ tan — a e

Parrc = o (1)2 2+ weVire (2.51b)
e borre ~ ton — o

PYorre = Cr+ Gy (2.51c)

In (2.51), currents with subscript LT'C' are calculated based on the LTC model, which
will be described in later sections.Currents with subscript /; and [ are calculated using

(2.47) and (2.49) respectively, and the voltages are states for the capacitor Cy + Cs.

Voltages in shunt capacitor

For the capacitor (', the model in abc variables can be expressed in the form:

(2.52)

labeC1 = labeinf + Laben (2523)

iabcCl - ClpvabcCI (252b)

Transforming (2.52) to the synchronous reference frame and expanding the equa-

tion, the derivatives can be calculated as:

e e
Zqinf + qul

PUger = e WeV5e (2.53a)
1
Vgins T 15
PG = dinf " WeVgen (2.53Db)
Ch
pUgey = L1 (2.53¢)
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In (2.53), currents with subscript inf are those through through the resistor R;,/,
placed between the infinite bus and the capacitor of the transmission line. These

currents are determined using:

ve. . — V¢
isz — %f‘lm (2.54a)
m
V8. — VG
s f “ (2.54b)
mn
VS . — U
iGing = = f = (2.54c)
mn

The currents with subscript L, are calculated based on equation (2.47).

Voltages in shunt capacitor C,

Similarly, for the capacitor C5, the equations in abc variables can be expressed in

the form: (2.55)

iabcCQ = iabctran + iabcl2 (2553)

iabcCZ = C2pvabcCQ (255b)

Transforming these equations (2.52) to the synchronous reference frame and ex-

panding yields:

/l:e ran + /[:6

PUgcy = “atran _ 7ql2 WeV5on (2.56a)
Cy
e Z'2157"(171 + icellQ e

v = —= + W 2.56b
PUgco Cs qC2 ( )

e /[;6 ran + /l:e
DU = 02 2 = (2.56¢)

In (2.56), currents with subscript tran are calculated based on the transformer model,
which will be described in a later section. Currents with subscript Ly are calculated

using (2.49).
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Simulink Implementation

As all the equations describing the currents and voltages are shown, one can notice
that there are only three quantities shown in the Figure 2.21 that are not states:
igiorrc, igdotran and Veqoims. These quantities are used as input to the transmission
line subsystem. Specifically, iq0r.7¢ are calculated from the Load-tap-changer section,
igdotran are calculated from the transformer section and vgqpins are calculated in the
infinite bus section. The outputs are the vyq0r7c, which are used in the LTC system
(between bus 2 and bus 3), and vggce2, which are used in the transformer system
(between bus 4 and bus 5). The implementation of the transmission line is shown in

Figure 2.22.

(@D, ] igdoLTC piqdDIt » L
igdoLTC |
{2 P igdOtran
igdOtran ]
) pigd0i2 » L
] igd0l1 l s
] iqdniz
4 pugdoLTC > _1? 1)
(3 ) W vadgint Transmission [ vgdoLTC
vadlinf
P vodOLTC 1
pvqd0C1 L2
| 5
| vod0C1

vgdoc2 pvgdoc2 » L » 2 )
L= vqd0C2

Fig. 2.22.: Transmission Line Simulink Implementation
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2.6 Transformer Model
Transformer

The transformer model is shown in Figure 1.3. To aid description, the same figure
with additional current labels are shown in Figure 2.25. The model is derived from
an analysis of two magnetically coupled coils shown in Figure 2.23 from [8]. With sat-
uration neglected. An T-equivalent circuit for the transformer can be derived shown
in Figure 2.24 with a detailed described in [8] page 2-7.In power system analysis, the
resistance in the windings, namely 1 and r, in Figure 2.24, are assumed negligible.
In addition, it is assumed the permeability of the core is relatively large compared
to the air so that the magnetizing inductance [,,,; is relatively large compared to the
leakage inductances L;; and L;5. Thus, the shunt impedance of the L,,; is ignored.
In the end, the transformer is modeled using a single inductor with the two leakage
inductances lumped together. To accommodate the LTC, where the turns ratio can
be varied, the left part in the Figure 2.25 is added. By changing the turns ratio of

Vin

%, the voltage ratio 3 is changed accordingly. Hence the left of the Figure 2.25

acts as a voltage regulator.

_ . -
e —
¢’nr| __.-f ;{, \%"-.__Dm:
. P
. | | " P/ | R
b q__| | |'IIJ . I_r L n
¥ '\'r- r_1__; o + 'T { _|____ | N> V2
' ++ | QRS i
' n
] A0
I'n\ I\ _."I )
\\x__ ————— ~ ":_//j

Fig. 2.23.: Two Wingdings Magnetically Coupled Circuits
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Fig. 2.24.: Transformer T-Equivalent Circuit

L tran 1

Fig. 2.25.: Transformer Implementation

Finally, in assuming there is no coupled between the phase leakages of a 3-phase

transformer, the voltages equations in abc variables can be expressed as: (2.57).

N
Vabein = F:Vabct (2573)
Vabet — Vabcout = (Ltran)piabcl (257b)

Where the Ly, is a diagonal matrix with entries of the lumped leakage inductance
of the transformer. Using a transformation to the synchronous frame of reference,

the model can be expressed:

Uem e e e

pwgl = ( I; qun - quut - 1/}dl)we (2583)
Uei" e e e

p¢§ll = ( j” Viin — VYdout — ¢dl)we (25813)

e

qin e

P%l = - Voin — Ugout (2580)
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where r = %, and
2

wsl = Xtranifu (259b)
¢0l - Xtraniﬂl (2590)

With the inductors obtained by solving the state model, the input currents and
can also be calculated. On the input side, there is a voltage regulator, with the
relationship shown in equation (2.57a). Based on the conservation of energy, i.e., the

input power should equal to the output power, the currents can be expressed:

iabcin = _iabcl (260)

Furthermore, from the direction of the i;,, the input currents are expressed in the

synchronous reference frame as:

i = —2 (2.61a)
T

o =l (2.61b)
T

Uoin = —Z%’ (2.61c)

Simulink Implementation

The Simulink implementation of the transformer is shown in Figure 2.26. In the
PsiCalculation block, (2.58) is utilized. In the CurrentCal block, (2.59) and (2.61)

are used.

LTC Tap-Changing Mechanism

The LTC tap-changing mechanism is developed from [13]. The LTC is able change

its turn ratios in distinct steps to regulate the output voltage magnitude within a
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vaddine

&

[

PsiCalculation

vadooute

Fig. 2.26.: Transformer Simulink Implementation

desired range. The typical parameters of the LTC include the maximum and minimum
turns ratio, i, and 7, respectively, the tap position Ny, a voltage dead-band
Vy, a delay time before the first tap change t41, a delay time between subsequent tap
change t4, and a voltage sampling time ;.

The % can vary and the number of the tap position specifies how much the turns
ratio can vary between each tap position. The incremental turns ratio change ér, due

to change of one tap position, is calculated based upon:

r — T'mi
Sr — mazx min 2 62
e A (2.62)

The voltage dead-band is the control objective of the LTC. Typically, the voltage
dead band represents the objective voltage V, &+ V; in per-unit, which means the LTC
measures the voltage V,,; shown in Figure 2.25 and the tap changes if V,,; does not
fall into the voltage dead-band. The last two parameters are used as time delay for
the tap-position change to prevent the LTC making unnecessary tap-changing due to
transient voltage responses. To be more clear, the LTC checks V,,; at every sampling
time t,. At these sampling times, if the V,,; is within the voltage dead-band, the LTC

does not make any changes. However, if V,,; is not within the voltage dead band, the
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LTC changes its turns ratio by £0r after a time delay of t4. If V,,; is in the voltage
dead-band as desired after the first tap-change, the the LTC stops making changes
and checks the voltage again after t;. However, if V,,,; is still not in the voltage dead-
band after the first tap-change, it makes subsequent changes after a time delay of
to.

In Simulink, since there is no direct time domain delay block to be conveniently
used in the LTC operation, a combination of a triangle signal 7" and hit crossing check
block is used to mimic the LTC signal sampling and time delay. The magnitude of the
triangle signal is set to a value T,,,, and the frequency of the triangle signal is varied
based on V,,;. The LTC makes necessary changes to its turns ratio and the slope kr
of the signal when the triangle signal T hits its maximum value 7,,,,,. Even though
the voltage magnitude V,,; can be calculated at every time step in the simulation, it
is not used in the LTC operation decision until the triangle signal T hits its maximum
value T},... The slope of the triangle signal kr is based on the V,,; and the delay
or the sampling time. The operation flow chart is shown in Figure 2.28. The inputs
to the LTC operation are LTC turns ratio r, output voltage V,,;, triangle signal T,
and the slope of the triangle signal k7 and the outputs are the LTC turns ratio » and

triangle signal slope k7.

Simulink Implementation

The Simulink implementation of the tap-changing mechanism is shown in Figure
2.27. The TapChaning block contains the logic described in Figure 2.28, with an
additional signal e, which represents the condition “V,—V; <V, < V,+V;7?”. On the
right hand side, there is an integrator used to create the triangle signal, which resets

to 0 when it reaches 1. The hit crossing block is used for the condition “T" = T},,4,.7".
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Fig. 2.27.: LTC Tap-changing Mechanism Simulink Implementation
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Fig. 2.28.: LTC Flow Chart
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2.7 System Level Simulink Implementation
2.7.1 Simulink Block Diagram

The overall 5-bus system Simulink block diagram is shown in Figure 2.29, which
is a combination of all the aforementioned components. The inputs to the system
is the infinite bus voltage, P, for the generator governor and Vj generator exciter.
Furthermore, the input and output voltages and currents of each bus are all in the

synchronous reference frame.

[icgenzvol

eeeeeeeeeeeee

i
ﬁ
[

aaaaaaa

Fig. 2.29.: 5-bus System Detailed Model Simulink Implementation

For each bus, an info block is added in addition to blocks described in previous
sections. This block uses a busdata function block, shown in Figure 2.30, to calculate
the bus information in steady state. The bus voltage and current magnitude, voltage
and current angle are obtained based on the (B.9) in the Appendix.Then the active
and reactive power are calculated based on (C.2). Hence, the inputs to this block are
the bus voltages and currents in the synchronous reference frame, and the outputs are

the steady-state voltage magnitude, voltage angle, active power and reactive power.
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info

busdata info

Fig. 2.30.: Bus Information Simulink Implementation

Infinite Bus

The Inf block is shown in Figure 2.1. The inputs to this block are the fixed infinite
bus voltage magnitude and the electrical frequency. The outputs are the infinite bus

voltage in the synchronous frame reference.

Transmission Line

The Transmission Line block is shown in Figure 2.22 with an additional info
calculation. Hence, the inputs to the block are the currents of the LTC between bus
2 and bus 3, currents of the transformer between bus 4 and bus 5 and the infinite bus
voltages. The outputs of the block are the LTC input voltages and the transformer

input voltages.

Generator System

The generator and the transformer are lumped into a single in the Simulink imple-
mentation, similar to the generator/infinite bus implementation. Since the reactances
of the transformer are series connected to the generator, they are treated as part of

the leakage reactances of the generator. Hence, the transformer reactance is incor-
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porated within the synchronous machine model by adding its value to the leakage
reactance of each phase.

Similar to the generator /infinite bus implementation described in section 2.3.4, the
correct machine stator terminal voltage needs to be calculated. The series connected
transformer and the generator can be described by using Kirchhoff’s law from the
transformer input terminal to the generator terminal. The relationship between the

transformer input voltage and the machine terminal voltage can be expressed:

Vabein = TVabet (263&)
X diabcs

abct — — abcs 263b

Vabet o dt + Vap, ( )

Where the voltage with subscript in are the transformer input terminal voltage shown
in Figure 2.25, the voltages with subscript ¢ are the transformer internal voltage after
the voltage regulator and the quantities with subscript s are the generator stator
quantities.

Transforming (2.63) to the rotor reference frame:

Vigin = TVgst (2.64a)
Vdsin = TVt (2.64D)
Vosin = TV0st (2.64c)
Vpgr = —w{e d;% — wrgeigs + Vg (2.64d)
Uget = —w{e d;% + wrw%igs + vy, (2.64e)
Vost _w% d;(;s + Vos (2.64f)

The overall implementation in Simulink is shown in Figure 2.31. At the upper
right corner, a constant block represents the constant tap setting r is used for the

transformer, as shown in equations (2.64a) to equation (2.64c).



52

iqdtine > )
iqdCine
o igdOsr i ‘
Trans|
iadse
T n
wrp— currentTransformation
o -
3
govemor
deita
>
@ L 4 s qdOtr par
vaddine source
Ref. Frame Transformation vadise
4w
o owr busdata P
v v a0
Efd
—®id
(D' »lvo itd
Vo
exciter
Full Detialed Gen

Fig. 2.31.: Generator/Transformer Simulink ITmplementation

All the sub-blocks are the described in section 2.3.4. hence they are not discussed
further. The inputs to the generation system block are the commanded power P, for
the governor, V; for the exciter and the input is the transformer input voltages The
output of the system is the bus information for bus 4 and bus 5, and the transformer

input currents in the synchronous reference frame.

Load Bus

The load bus includes three components as described, which is implemented as
shown in Figure 2.32.

The three blocks on the left are the constant admittance load,induction machine
1 and induction machine 2. The constant admittance load is shown in Figure 2.17.

The inputs are the load currents and the outputs are the load voltages. The details of
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Fig. 2.32.: Load Bus Simulink Implementation

induction machine blocks are shown in Figure 2.19. Both blocks use the same model
with different machine parameters. Inputs to the induction machine blocks are the
machine stator voltages and the outputs are the machine stator currents.

The RCcurrent function block is used to calculate the input currents to the

constant admittance block, which is based on KCL and can be expressed as:

e ___ € e e
itaore = lgaotoad — (gdoingt + igdoindz) (2.65)

Where the currents with subscript ¢nd are the induction machines currents, the cur-
rents with the subscript load are the total currents at the load bus.

The busV function block is used to calculate the voltage magnitude, which is

Vi = /e 4+ vg? (2.66)

calculated based on:
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And three more businfo blocks are used to calculate the induction machine ter-
minal information and the bus information.

Therefore, the inputs to the load bus are the LTC output currents and the outputs
are the bus load voltage magnitude, the load voltage in the synchronous reference

frame, and three info for the load bus and induction machine.

LTC

The LTC block is shown in Figure 2.33. Underneath sub-block, shown in Figure
2.34), is the transformer dynamics, shown in Figure 2.26, and the tap position control

mechanism, shown in Figure 2.27.

bvlnad igdOine » 1)

vload iqdOine

bquOlne iqdole p 2 )

vqdOloade igdOle

3 P vqdOoute r ‘r| C]

vqdOoute

P{ vqdo

info 7

busdata info3

igdo

Fig. 2.33.: LTC Simulink Implementation

The inputs to the LTC block are the load voltage magnitude at bus 3, the input
and output voltages of the LTC in the synchronous reference frame. The outputs for
the LTC blocks are the input and output currents of the LTC in the synchronous

reference frame.
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Fig. 2.34.: LTC Subblock Simulink

2.7.2 State Initial Condition

The initial conditions of all states are calculated based on the power flow solution
described in the Appendix. Using the bus voltages and complex power, the initial
condition of the states in each components is calculated. The main idea is to use
the power flow solution as known quantities, and solve the differential equations
mentioned in this chapter with the derivative terms set to 0. All zero sequence
quantities are set to zero because it is assumed that all the currents, voltages and

flux linkage are balanced.

Infinite Bus

The infinite bus block only has a state, 6., which is angle of the synchronous

reference frame. The initial condition of this state is set to 0.
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Synchronous Generator

There are 9 states for the wound-rotor synchronous machine, 5 states for the
governor system, and 5 states for the exciter. From the Matpower solution, the
generator terminal voltage phasor and the complex electrical power produced by the
generator are obtained. In the power system generator steady-state analysis, the
angle 0 is used for the power and rotor stability studies. From [8], chapter 5 starting
from page 160, the steady-state equations relating the angle § and the voltages and

currents in steady state are shown to be:

E, = [(Xa = X )5, + Xnal 3% (2.67a)

Voo = —(ry + jX,) s + Eq (2.67b)

Using (C.2) from the Appendix, the f:s is calculated based on the Matpower
solution, and the ¢ is calculated based on the angle of E;
From the equation (B.11), the g- and d- axis quantities can be calculated. After

expansion:

Vo = | Vs cos (6, — 0)
Vo = —|Vas| sin (6, — 6)
ino = |1aa| cos (6; — 0)

ifis0 = —|Las| sin (6; — 6)

Where 6, and 0; are the voltage and current phasor angle respectively. The subscript
0 represents initial condition at ¢ = 0Os.

As mentioned in the Simulink Implementation section, the transformer connecting
the generator and the rest of the power system network is lumped into the generation

block. The reactance of the transformer, shown in Figure 2.25, is added to the leakage
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reactance of the synchronous machine. Hence, the stator flux linkage per second in
the implementation is the total flux linkage per second including the generator and
the transformer. Letting the subscript ¢ represent the transformer input terminal

voltage. From equation (2.5):

Ugsto = Vaso (2.69a
Vgsto = —Vgso (2.69b
Vosto = 0 (2.69¢
U}Tdo = T}di/frdo (

Usdo = Thdlido (2.69
Uk:;m = r;cqliqulo (2.69f
kaﬂo = r.;chiquQO (2.69¢
Since the rotor windings kql, kq2 and kd are short circuits, the currents in these

windings are 0 in the steady state.

From (2.13), (2.16) and using the fact that the the winding currents are zero:

Ego = (Xq — Xg)igso (2.70a)
w;:qzo = _E:io - (X(; - Xls)'igso (2'70]0)
Eq = —(Xa = X)igeo + Efao (2.70¢)
@D;fdo = Ezlzo - (X(/i - Xls)igso (2-70d)
w0 = w, (2.70e)
Ty =T, (2.70f)

Based on (2.70), the initial conditions of the £, w;JqQ, Ey, w;;d and w, can be calculated

if the initial condition of the E%;, is known.
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From the equation (2.6), and the definition of the X,, Xy and E},, the g- and

d-axis voltage is calculated based on:

Viso = Xqlgso (2.71b)

From (2.17) and (2.71), the excitation voltage is calculated using:

Peoy — (Xq - Xd)igsoigso (2 72)

/
E fdo — i
qs0
Where P, is the same as the commanded P, in the exciter if the stator resistance r; is

neglected. If the stator resistance is not 0, there are power losses in the stator, which

can be calculated:

iso = 4/ Z'2302 + i’ (2.73a)

PlossO = 2307“5 (273b)
Then the electrical power produced by the generator (2.72) is:
PeO = Po - PlossO (274)

To this end, the initial conditions for the synchronous generators are all calculated

except ], V4. and (. The initial condition of the stator flux linkage per second is

T
qs’

calculated from: (2.64):

U;sto = _Xigso + U;SO (275&)
U:lstO = XiZSO + ,UZSO (275b)

Vosto — V0s0 (275C)
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Hence, by plugging (2.75) into (2.69):

1/}3;30 = _Xigs(] - Uz;sO (2768‘)
w:lso = _XiZsO + Ugso (276b)
woso =0 (276C)

Governor System

In the governor, there are several first order transfer functions. To specify the
initial condition for these transfer functions, the state model form of these transfer
functions are used. For the first block, which is used to control the valve opening, the
initial condition for the first transfer function is assumed 0 and the initial condition
for the integral of the valve opening z is set to the commanded power P,. For the
second block of the governor system, all the initial condition for the transfer functions

are set to be the commanded power P, multiplied with their respective time constant.

Excitation System

In the excitation system, there are three components. To specify the initial con-
dition for these transfer functions, their state space versions are used. The initial
conditions for all the transfer functions in the power system stabilizer is set to zero.
For the first high pass filter, the state in this block is the derivative of the rotor speed,
which is zero under steady state. For the two lead filters, the state initial condition
is 0. In the OEL block, the initial condition for the integrator is 0 as explained in the
previous sections. In the last exciter integrator, the initial condition is E}d calculated

in (2.72).
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Transmission Lines, Transformer and Constant Admittance

The initial conditions of transmission lines, transformer states and constant ad-
mittance at the load are readily calculated using the power flow solution. For the
voltage states at the capacitors, the initial condition of the voltage is calculated based
on (B.9) with the corresponding steady-state voltage phasor; and setting the initial
condition for the zero-sequence quantites to zero. For example, for the initial con-
dition for the voltages described in (2.51), the voltage at bus 3 is found from the

solution of Matpower. Then the initial conditions are:

Virre = V3] cos By (2.77a)
Ve = —|Vs| sin B, (2.77b)

Where V; is the voltage phasor at bus 3 and 6,3 is the voltage phasor angle.
Similarly, for the currents, the first step is to find the current phasor. However,
since Matpower only provides solution of the complex power flow and the voltage

phasor, the currents are calculated using:

Where the §Z is the corresponding complex power flow of the current and * is the
conjugate operator. With the current phasor, the ¢qd0 states initial condition are

calculated using (B.9).
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Induction Machine

The induction machine initial conditions are calculated using (2.32) and (2.33).
From (2.33), the currents can be expressed in terms of the flux linkages per second

matrix form:

-225- [ X, 0 0 Xy 0 0 11 ;s_

i, 0 X, 0 0 —Xy 0] v
fos| 1 0 0 £ 0 0 0 | |%os (2.79)

il Dl-xy 0 0 Xo 0 0] |uf

i 0 —Xu 0 0 X, 0] v

iy | 0 0o 0 0 0 ;l’ | Yos |

Where

Xos = Xis + Xy (2.80a)
X, =X+ Xu (2.80b)
D= X, X!, — X3, (2.80c)

By substituting (2.79) into (2.32), the voltages are expressed in terms of the flux

linkages per second in the matrix form:

e rs X7y _rs Xy e
ve, X 10 —=Xu 0 0 |y
e _ rs Xop _rs Xy e
Uds 1 D 1 0 D 0 wds
Vos 1 0 0 )?_j 0 0 0 ¢05 (2 81)
‘e o B T;X]\/[ r:«Xss ‘e ’
Vyr +5 0 0 5 s 0 e
‘e T;NX]\/[ T;Xss ‘e
Vgr 0 == 0 = == 0] |Y
’ T; ’
| Yor | I 0 0 0 0 0 x| _1/)0 s |
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Where s is the slip in the induction machine, defined as:

(2.82)

To solve (2.81) the initial conditions of the induction machine electrical states (all
the flux linkage per second in the stator and rotor), the steady-state slip is needed.
This is calculated based on the torque speed relationship, described in detail in [8].
Under steady state, the electrical torque created by the machine equals the load

torque. From [8], the relationship used to calculate the slip in steady state is:

X371 Vas
[rsr) + S(ij\/[ — X X)) 2+ (11 X + 87X,

T, = (2.83)
Where s is the initial slip, HZSI is the induction machine terminal voltage magnitude.
From (2.83), the initial condition is solved using the MATLAB non-linear equation
solver command fsolve given the load torque T; and T, = T} under steady state.

The initial rotor speed is then calculated:
wro = we(l — o) (2.84)

Where w, is synchronous speed.

To summarize, the initial conditions of all the states of the induction machine
are calculated based on the machine voltages in the synchronous reference frame. To
calculate these voltages, the power flow solution from the Matpower is used. Again,
the stator voltages are calculated based on the induction machine terminal voltage

phasor from the Matpower and (B.9) with zero-sequence quantity set to zero.

2.7.3 Representative System Response

With the mathematical model of the system components and Simulink Implemen-

tation described, a study is done to provide some details on quantities that are of
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interest and can be predicted using the model. In this study, starting with the system
at steady state at the operating point described in the Appendix, with the constant
admittance bus drawing 60% of the load power, the two induction machines each
drawing 20% of the load power. Subsequently, at 50 s, A change in the power com-
mand P, is made. Specifically, the commanded power of the generator steps from 0.6
per-unit to 0.4 per-unit. Under normal operation, power system operators attempt
to keep the voltages and the frequencies of each bus within a fixed range to ensure

stability of the system. The results are shown in Figure 2.35 and Figure 2.36.

Generator Bus Active Power Generator Bus Reactive Power
0.65 0.12
0.6 ! — 0.115
1
|
__ 055 \ 01
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Fig. 2.35.: Detailed Model Simulation Results due to Generator Commanded Power
Change(a)

In Figure 2.35, the simulation results for the active power and reactive power of

both the generator and the infinite bus are plotted. One can observe that before 50s
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Fig. 2.36.: Detailed Model Simulation Results due to Generator Commanded Power
Change(b)

each component in the system is operating at steady state, which validates initial
steady-state condition calculations. At 50s, when the commanded power drops for
the generator, the active power produced by the generator drops and reaches the
commanded power. Due to the 0.2 per-unit active power decrease in the generator
output, the infinite bus must increase its output power to keep the power balance in
the system. For the reactive power, since the control of the active power does not
directly related to the control of the reactive power, the reactive power of both the
generator and the infinite bus does not change significantly. The minor change (0.005
per-unit for the generator and 0.015 per-unit for the infinite bus) is caused by the
network power flow changes. In the Figure 2.36, some dynamics of the generator are

plotted. As a result of the change in the commanded power, the mechanical torque
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also changes as expected. Hence, a small transient can be seen in the rotor speed. As
the load torque decreases, the rotor reduces its speed until the electrical torque and
the load torque are equal. In addition, the change in the rotor angle ¢ is caused by the
rotor speed change based on equation (2.13h). Last but not least, since the voltage
regulator keeps the voltage at the generator machine terminal relatively fixed, the q-
and d- axis currents are reduced so that the output active power of the generator
is reduced to the commanded value. Apart from a step change in power command,
many different types of studies can performed using the detailed model. This will
be demonstrated in Chapter 5, where several studies are considered to compare the

performance of alternative models.
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3. REDUCED-ORDER MODEL

In traditional power system analysis, the so-called fast dynamics of the electrical sys-
tem are often neglected [7]. In machine models, formal methods based upon singular
perturbation techniques have been applied to derive the reduced forms [14]. Alter-
natively, reference frame theory has been used to justify the reference frame where
derivatives of state variables are most appropriately neglected [8]. The reduction
of the electrical dynamics of the stators of machines is typically applied in tandem
with a reduced-order representation of the electrical network. Reduced-order network
models typically consist of sinusoidal-steady-state phasor forms of the transmission
line circuits. In this chapter, reduced-order forms of the detailed models described
in Chapter 2 are provided. The means of coupling the component models to form a
system-level model of the microgrid of Figcure 1.1 is then described. A representative

study is used to highlight the model dynamics under changes in system input.
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3.1 Reduced-Order Generator Model

To establish a reduced-order model of the generator, the stator electrical transients
are neglected, which enables one to utilize larger time steps when solving the ODEs.
This in turn leads to a faster model that is typically utilized in transient stability
studies. A formal process to derive a reduced-order model from a detailed model
utilizes a mathematical technique referred to as singular perturbation theory [14] For
the generator, the reduced-order model is obtained by setting the terms with the
derivative p to 0 and w, = w, in (2.13) [8] for stator equations. This yields the

per-unit reduced-order model:

0 = ryip, — Py, + Vg (3.1a)
0 = ryig, + ¥y, + v, (3.1b)
0= Tsigs + Vgs (31C)
X' — X" )
ToopEs = —Eq+ (X = X)igs — <75 (Voo + (Xg = Xio)ige + Eg)] (3.1d)
(X! — Xis)
Tégpw;&z = —w;;,z — By — (X§ — Xis)ig (3.1e)
X, =Xy
/ / / I\[;T T / T / /
TaopEq = —Eq — (Xa — Xo)lig, — 57— 53 (ia + (Xg — Xis)ig, — )] + EYy
(Xd Xls)
(3.1f)
Tioptia = =i + By — (Xg = Xu,)ig, (3.1g)
PO = W, — We (3.1h)
2H
pw, =Ty — T, (3.1i)
We

Te = wgslgs - gsigs (31.])
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3.1.1 Reduced-Order Generator/Infinite Bus Implementation

Similar to the detailed model, a reduced-order form of the generator/infinite-bus
system, shown in Figure 2.7is convenient to consider machine dynamics/performance.
The implementation of the reduced-order model is similar to the detailed model,
described in the Chapter 2 in Section 2.3.4; however, there are changes in the cal-
culation of stator currents. Specifically, to obtain an expression for the currents,
(2.16a)-(2.16b) is substituted into (3.1a)-(3.1b) and the g- and d-axis currents are
solved using:

X/+X - N I AR (32)
—rs =X —X| |ig Ups — Ul
where X is the series reactance between the machine and infinite bus and where

¢(’1’;“ and 1" are the last 2 term of (2.16a)-(2.16b):

" _ Xy - XZSE’ N X — Xé/w'r (3.3)
as X=X 4 XL — X M '

Xp— X oy Xy X

; 3.3b
+X(/i X, T X Xls¢kd (3.3b)

1
%g =

The machine stator terminal voltage is calculated from the stator currents and
infinite bus voltage using the relationships in (3.4), which are derived from (2.24) by

setting the derivative terms to 0 and w, = w,.

Vggp = —Xigg + v, (3.4a)
Ugsb = XZZS + v:ls (34b)
Vosb — Vos (34C)

The Simulink Implementation of the generator/infinite-bus system is shown in
Figure 3.1. In the Figure 3.1, the governor and the exciter blocks are identical to

those used in the detailed model and described in Chapter 1. The source function
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block transforms the infinite bus voltage from the synchronous to the rotor reference

frame based on (2.2). Inside the Reduced Order Gen subsystem, the generator

reduced-order model is implemented, shown in Figure 3.2

The ElectricDynamic function block is used to calculate the state variables of

the rotor electrical system. In the same block, the stator currents are also calculated

based on (3.2). In the MechanicalDynamic function block, the electromagnetic

torque and rotor speed are calculated. In the Current function block, the damper

winding currents, the active and reactive power are established. Within the psis

function block, the stator flux linkages per second and the stator voltages are all

calculated. Last, inside delta Calculation block, the rotor angle with respect to the

synchronous reference frame 9 is calculated, shown in Figure 3.3 .
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3.1.2 Generator Detailed Model and Reduced-Order Model Comparison

Up to this point, two models have been constructed for the generator/infinite-

bus system. Hence, a study has been performed to compare the two models. The
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parameters used for the study are provided in the Appendix. The study consists of
step changes in infinite bus voltage, the commanded power P, and V. To be more
specific, the infinite bus voltage magnitude drops from 1 per-unit to 0.9 per-unit at
50s and returns to 1 per-unit at 70s; the 1} increases 0.1 per-unit at 100s; and finally,
the P, steps from 1 per-unit to 0.6 per-unit at 200s. The results are shown in Figure
3.4.

From the results, one can observe that as the infinite bus voltage drops, the
machine d-axis voltage drops as well. As a result, the g-axis current drops as shown.
However, since the commanded power is maintained at 1 per-unit, the d-axis current
increases so that the generator will generate sufficient power. Another result of the
drop in bus voltage is that the electric torque is less than the load torque, which leads
to a decrease in the rotor speed and rotor angle. After the disturbance on the infinite
bus voltage at 70s, one observes that all quantities go back to the pre-disturbance
value, as expected. At 100s, an increase in the V{ results in an increase in the machine
terminal voltage, which proves the effectiveness of the exciter. Further, at 200s, an
decrease in the P, results in an decrease in the machine electrical power output, which
demonstrates the control in the generator governor acts as expected.

From the step responses shown in Figure 3.4, it can be observed that detailed
model has more high-frequency oscillation compared with a frequency of 60Hz that
the reduced-order model does not capture. This is due to the neglecting of the fast
stator transient in the reduced-order models. One notes that the slower dynamics are
nearly identical. Comparing the simulation time, the time required for detailed model
using a Simulink built-in ODE4(Runge-Kutta) algorithm, with a time-step of 1lms is
9.02s, whereas the reduced-order model with the same algorithm, but a time-step
of 10ms is 1.21s. Hence, reduced-order model can be used to represent the slower
dynamics of the generator electrical and mechanical systems, with an improvement

in the simulation speed.
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Fig. 3.4.: Generator/Infinite Bus Model Comparison for Detailed and Reduced-Order
Model,blue lines are reduced-order model results and red lines are detailed model

results
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3.1.3 Structuring Models for Coupling to Network

A goal of using reduced-order models is to ignore the fast dynamics of the stator
of the generators and induction machines, and the network. To couple the machine
models to the network models, it is assumed that the voltages and the currents of the
machine stator and the network are in steady state, details can be found in Purdue
ECE 6330 lecture notes from Prof. Aliprantis. Thus, to integrate the generator
reduced-order model in a system level, a phasor representation of the machine is used
in the network calculation. To be more specific, in the per-unit system, by using

(B.10):

‘/as - (vgs - jvgs)ej(s (35&)

Ias - (ng - jigs)ej(s (35b)

Where ¢ is the angle between the synchronous reference frame and the local machine
rotor reference frame, one can couple the generator and network models.

To represent the machine in phasor form, one can use (3.1), to express

nir Xq’ — Xy X' Xq
qu - _Xq qs X/ — Xl E + X, _ wkq2 (36&)
q S

r - X(/i/ — Xls Xd
Vas = —Xata, + +X,,1 — X5 By + X, — Xis

wkd (3.6b)
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Using (3.1a) to (3.1b), (3.6) and (3.5), a phasor voltage can be expressed:

—

%S :(vgs - jv:ls)ejé

X' — X, X, — XV
:{(_Xc/l,zds + v v X/ Xl E + X/ . wkd)
X=X, X’ o
o [ ( X(/I/ qs Xq/ _ Xl + X/ _ q djkq?) Tszals]}e](s
q S

X;; Xls X, — X"

X// . jo —E
(TS +.7 )( jzds)e + {(Xcll . Xls + X/ Xlswk:d) (37)
. X// . Xls X' — X" ., .

X// Xls X/ X/l
X/ Xl Ell] X/ : wkd)
— X X, — /
q S q i
qs X(; _ Xls + X/ _ X wkq2>]}€‘j

— (rs +]X”) as T {<

+ (X7 — XJ)ig

Defining a new phasor variable /E\;, the voltage can be expressed

XI/ Xls X/ X// X/l _ Xls Xl

X"
E.s = {WEZ] + X/ Xl ¢kd X(i _ Xl Eél + X/ — Xq wkqQ}eﬂs (38)
S S q S q

which can be expressed

Vs = —(rs + 5 X)) s + §(XY) — XI)il e + By (3.9)

and can be rearranged to express the phasor current as

—~ 1 P
I,=—""[j(X!— X"Ni" & + E,, — V,, 3.10
(Ts + .]XC/D []( d q )que + ] ( )

From these expressions, one can observe that the generator terminal voltage phasor
can be calculated as the summation of an internal voltage source and the voltage
and S = j(X[] — X/)ir €7, the

across a series RL impedance. Defining Y, = W

voltage can be expressed in a form:

—~ —~

Ias = }/S<S + Eas - ‘/as> (311>
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3.2 Load Model

Identical to the detailed system model, in the reduced-order system model, the
constant admittance and two induction machines. To couple to the network model,

the three components are treated as distinct load buses.

3.2.1 Constant Admittance Model

The constant admittance (RC) load is added to the system admittance matrix as
shown in the Appendix equation (C.12). The constant admittance is the load that is
connected to ground, described by Y;.

3.2.2 Reduced-Order Induction Machine Model

To establish a reduced-order model of an induction machine, which is similar to
a reduced-order model of a synchronous machine, the stator transients are neglected.
This is done by setting the p to 0 and w, = w, in (2.32). This yields the model in

per-unit form:

Vgs = Tslgs + Y (3.12a)
Vs = Tslgs — Vi (3.12b)
Vos = Tslos (3.12¢)
Welgy = Wel gy + (We — wrh. + pU: (3.12d)
Weldy = Wiy — (We — W)y + DU, (3.12¢)
Wellr = WeTyior + Doy (3.12f)
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To couple the machine and network models, the phasor relationship:

Vas = (vgs — JUgs) (3.13a)
j(\z; = (iZs - .Tlils) (313b)

is utilized. Using (3.12a) to (3.12c), (2.33), and (3.13), one can express the phasor

voltge as:

—~

Vas = (Vg — Jv5)
= e, 4 Vg, — J(reig, — U5,
= ry(ig, — jigs) + V5, + g
= rlus + (U5, — jU5) (3.14)
= rolus + J[ Xty + Xarie — (Xt + Xarig,)]
= olas + §(Xoslas + Xariil — j Xnrig.)
= (rs + j Xos) s + X0 (05 — jirg.)
where X, = X5 + X

From (2.33), the rotor winding currents can be expressed in terms of the rotor

flux linkages per second and the stator currents:

e — X,
qu = qX—TTq (315&)
, ‘e X 1,16
ie — de—M'Ld (3.15h)

Where X/, = X + Xy.
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Substituting (3.15) into (3.14):

‘//Z/S = (/U:;S - jv25>
( XMqu) - j(wdr XMZfls)

= (Ts + szs)Ias + ,]XM X/

v T XM e e e e
- (7’5 + ]Xss)]as + J X7 [¢qr - jwdr - XM(qu - ]st>]
' — Xy, N (3.16)
= (Ts + ]Xss)]as + ]X, ( o jwdr - XM[as)
: Xy~ . Xy
= (rs ""]Xss_]X_],V[)]as +]X, ( - 77bdr)
X2 —~ X
(Ts +]Xss - X, )] X, wdr +]X, qr
Defining a phasor variable Ea/s, where
— XM
E. = wdr I Var (3.17)
the voltage can be expressed:
—~ 2 —~
Vas = (rs + j Xos — X, M o5 + Eus (3.18)
which can be rearranged to express the stator current as:
— 1 N
I,s = : 7 [—Eus + Vas] (3.19)
rs + 7 Xes — I3

So far it has been assumed that positive stator current is defined into the machine.
For model implementation, it is useful to define that the current is defined positive

out of the machine, similar to the generator. This results in induction machine loads
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acting as power sources to the network with a negative power injection. With the

direction of positive currents reversed: (3.19) is revised:

—~ 1
l,s = [ Fas — Vas] (3.20)

Ts +szs _]i_/M

From the phasor voltage equations, one can observe that the induction terminal volt-

age phasor can be calculated as the summation of an internal voltage source and the

voltage across a series RL impedance. Defining Y, = %X, current can be

rstjXss—J ng
rr

expressed using the voltage and impedance as:

Is = Y(Eus — Vi) (3.21)
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3.3 Infinite Bus

The infinite bus is a constant voltage source with its qd0 voltages fixed. However,
as mentioned in detailed model, there exists a small resistance between the infinite

bus and the transmission system as shown in Figure 2.21. Thus, by defining the

admittance to RL

e the current phasor out of the infinite bus can be expressed in a
form: (3.21):

Is = Y(Eus — Vi) (3.22)

where /E:S is the infinite bus voltage, which is fixed and 17;3 is the voltage after the

small resistance between the infinite bus and the transmission line.
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3.4 Simulink Implementation of Reduced-Order System Model
3.4.1 Energy Source/Load General Form

From (3.11), (3.21), and (3.22), all of the components of the microgrid can be inte-
grated to express the stator and network currents in terms of voltages and impedances

in a form:

I=Y,(S+E-V) (3.23)

where I is a column vector that contains all the phasor currents, Yy is a diagonal
matrix with corresponding components Y, E is a column vector that contains all
the bus /E; term, and V is a column vector that contains all the bus voltage phasor
V.s. The S is also a column vector, whose entry is S if it is a generator bus (3.11),
and 0 if it is the induction machine bus or infinite bus. Importantly, the E matrix
entries are the outputs of state models for the generator and the induction machines,
or a constant, for the infinite bus. This property allows the system to be simulated
without any algebraic loops.

One can express the voltage versus current relationship of the network using an
admittance model, as shown in (C.1) in the Appendix. Equating the currents of (C.1)
and those of (3.23), results in

YV=Y,(S+E-V) (3.24a)
(Y+Y,)V=Y,(S+E) (3.24Db)
V=(Y+Y,) 'Y, (S+E) (3.24¢)

where Y is the original network admittance matrix.

Plugging (3.24c) into (3.23):
I=Y,J[l—(Y+Y,) 'Y J(S+E) (3.25)

where [ is the identity matrix.
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To simplify (3.25), the Woodbury matrix identity is used [15]:
(Y+Y) ' =Y - Y (Y +Y D! (3.26)

Plugging (3.26) into (3.25)

I=Y,(I-IT+Y (Y '+Y ) H)(S+E) (3.27a)
= (Y '+Y )" YS+E) (3.27b)
=Y,ew(S+ E) (3.27c)

In the 5-bus system, since only the infinite bus, the generator and the induction
machines are injecting power to the network as described in the previous section,
these 4 buses are referred to as energy sources. As a result, the input currents of
busses that do not contain energy sources 0. Expanding (C.1) in the Appendix for
the 5-bus system:

Ling Yii Yio Yig Y | Yis | | Vias
[gen }/21 }/22 }/23 Yv24 Y25 e ‘/gen
Tinar _ Y31 Yz Yaz Yau|Yizs | | Viea (3.28)
Linaz Yoo Yo Yiz Yag | Yis | | Vieae
0 Ysi Yso Ysz Yasu | Yss Vs
and placing it in a simpler form yields:
1., A ‘ B| (V..
7= ! (3.29)

0 C‘D Vo

Since the lower part of the I vector are all 0, it is useful to represent Ieng in the
form:

Lng = YengVeng (3.30)
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From (3.29), the Yeng can be solved by first expressing (3.29):

L., = AV, + BV, (3.31a)
0 = CV.,, + DV, (3.31b)
and then using (3.31b):
Vo =-D"'CV,,, (3.32)
Plugging (3.32) into (3.31a):
I., = AV.,,, — BD'CV.,, (3.33a)
I, = (A —BD'C)V., (3.33)

Hence, Yeng = A — BD'C.
Summarizing, by equating (3.30) and (3.27¢c), the current phasor of the energy
sources can be obtained by first calculating Y,, from Y., using the partitioned-

matrices A, B, C and D, and then setting V.,,, = [S + E]. As a result:
L., = (A —BD'C)(S+E) (3.34)

Since the matrix E is calculated from the states of each energy sources, and
derivatives of each of the states are calculated from the - and d-axis currents of
each energy sources, it is convenient to express equation (3.34) in terms of the - and
d-axis currents. To do additional matrices are utilized.

The first matrix is defined as T, which is used to relate the current phasor of the

energy sources to the g- and d-axis currents

Lo, = T(I, — j1,) (3.35a)
T = diag{e’?} (3.35D)
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Where I, and I, are current column vectors for each of the energy source.The matrix
is derived in (B.9) and (B.10) in the Appendix.
The next matrix utilized, S, is defined in terms of g-axis currents and machine

subtransient reactances as:

S = jS,TI, (3.36a)
S, = diag{X} — X/} (3.36b)

" . .
where X; and X", are the wound-rotor synchronous machine subtransient reactances.

Using these matrices, (3.30) can be expressed in term of the g- and d-axis currents:
T(I, — jIi) = Yeng(7S,. TI, + E) (3.37)

After rearranging the terms, (3.37) can be expressed:
(I —5YengS,)TI, — jTI; = Y, E (3.38)

For the convenience of the calculation and implementation, (3.38) is decomposed

into real and imaginary parts:

(L = jYengS:)T =a+jb (3.39a)
jT=c+jd (3.39h)
Yo, E =+ jf (3.39¢)

Hence, the currents of each energy source are solved by the linear system:

- (3.40)

Once the g- and d-axis currents are solved, they can be used to update the state

derivatives. In addition, by using (3.28), the voltages of each buses is obtained.



84

3.4.2 Block Diagram

The overall Simulink implementation of the reduced-order microgrid model is
shown in Figure 3.5. The inputs to the model are the infinite bus voltage, P, for

the generator governor and Vj generator exciter.

Admittance Matrix

vinf
iqd0se1 f—

igdOsr|

LS
[OO0rg

vioad

Bus terminal value calculation
2 Induction machine load

Fig. 3.5.: 5-bus System Reduced-Order Model Implementation

Admittance Matrix

At the top part of Figure 3.5, an Admittance Matrix block, detailed in Fig-
ure 3.6, is used to calculate the system admittance matrix and the Y., described
above. The admittance matrix are based on the system parameters and the details
are explained in the Appendix. Due the existence of the LTC, the admittance can
vary once the tap setting changes. Hence the tap-changing mechanism control block

described in the Chapter 2 is included.
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Fig. 3.6.: Reduced-Order Model Admittance Matrix subblock

Generator

Underneath the Generator subsystem, the generator reduced-order model is im-

plemented, as shown in Figure 3.7.

wr
wr
Tl > T
@ P delta @
P delta
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\
2 P iqdOsr
iqdOrs
pwr F—
pwr
ifd
Vv
Efd P exfd
ifd
(3) Vo Eas_gen
Vo
Exciter Reduced Order Gen

Fig. 3.7.: Generator Reduced-Order Model in 5-bus System

The implementation is similar to the generator/infinite-bus system. The difference

is that the model here uses the currents as inputs, whereas in the generator/infinite-
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bus system, the model uses the voltage as inputs. Underneath the Reduced Order
Gen block in Figure 3.7, the machine rotor dynamics are implemented, as shown in

Figure 3.8.
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x Eas
Efd O
Eas
exfd v
v

Electric Dynamics Additional Info

Fig. 3.8.: Reduced-Order Model Generator subblock

The Additional Info block in Figure 3.8 is used to calculate the rotor angle o
and the internal voltage E,; in (3.11), shown in Figure 3.9.

As can be observed from the block diagram, the inputs to the generator block
are generator control inputs P, and Vj, and the generator stator currents in the rotor
reference frame. The outputs of the generator block are the generator internal voltage

and the rotor angle.

Induction Machine

There are two induction machines underneath the induction machine load model
as described in the 5-bus system. For each of the induction machines, the subsystem
is shown in Figure 3.10.

The dynamics function block is used to calculate the states for the induction
machine in (3.12), the EasCal function block calculates the internal voltage of the

induction machine, defined in (3.17). The loadtorque block calculates the load
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Fig. 3.9.: Reduced-Order Model Generator Addition Info block
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Fig. 3.10.: Reduced-Order Model Induction Machine Simulink Implementation

torque based on the rotor speed characterized by (2.45). The torque is used to
calculates the rotor electromagnetic torque and the rotor angular velocity. To sum-

marize, similar to the generator model, the inputs to the induction machine are the
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stator currents in the synchronous reference frame, and the outputs are the induction

machine internal voltage.

Currents Calculation

The Currents function block creates all the matrix S, T and E for the calculation
of the energy source currents based on (3.39) and (3.40). The inputs to this function
are the internal voltage for each of the energy sources, the rotor angle for the generator
and the modified admittance matrix Y,,.,. The outputs are the generator currents in
the rotor reference frame, the induction machine currents in the synchronous reference
frame, and the currents of the induction machine, generator, and infinite bus in phasor

form.

Businfo

With all the currents calculated for the energy sources, the bus information can be
calculated. The voltages of each bus can be calculated based on the equation (3.28),
and as a results, the complex power can be calculated. Apart from the bus voltages,
currents and power calculation, the block output the load bus voltage for the LTC to
control the tap setting.

3.4.3 States Initial Conditions

The initial conditions of the states are calculated in a manner similar to the
detailed model. This is described in Chapter 2 and thus is not discussed further in
this chapter. However, it is noted that since the reduced-order models neglect all
stator transient, initial conditions for stator states are not calculated in the reduced-

order model.
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3.4.4 Representative System Response of Reduced-Order Model

Using the model of the system components and Simulink Implementation de-
scribed, the study highlighted in Chapter 2 is repeated. Specifically, starting with
the system at steady state at the operating point described in the Appendix, with the
constant admittance bus drawing 60% of the load power, the two induction machines
each drawing 20% of the load power, the commanded power of the generator steps
from 0.6 per-unit to 0.4 per-unit at 50s. The the results are shown in Figure 3.11 and
Figure 3.12.
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Fig. 3.11.: Reduced-Order Model Simulation Results due to Generator Commanded
Power Change(a)

From the responses of the reduced-order model, it can be observed that behavior
predicted is almost identical to the ones shown in detailed model, which proves the
validity of the reduced-order model. The results shown in the figures again proves
the effectiveness of the controls in the governor and LTC. Due to the control in the

governor of the generator, the generator active power output tracks the commanded



90

Rotor Angle Generator Rotor Speed
0.9 377 T
\
0.8 'II 377.05
— | @
=} 1
E 07 ' B am S
\ E I". l'I
\ \
0.6 SN 376.95
0.5 376.9
] 50 100 ] 50 100
i(s) i(s)
Generator g-axis Current Generator d-axis Current
0.36
\ 0.5 .
0.34 | .
\ 0.45 i
— | —
= 0.32 | = '|
= | 2 p4 |
il 1 ] 1
=< 03 =~ \
0.36
0.28 e
0.3 I
0.26
] 50 100 ] 50 100
i(s) i(s)

Fig. 3.12.: Reduced-Order Model Simulation Results due to Generator Commanded
Power Change(b)

power. Due to the LTC, the induction machine terminal voltage stays within 1 +
0.01 per-unit so that the load power does not change, which also keeps the total
active power output of the infinite bus and generator stays at 0.8 per-unit constantly.
Since there is no huge disturbance on the stator voltages in either the generator or
the induction machine, there is no fast dynamics related to the stator transients in
the simulation response. By using the Simulink variable step solver ODE23tb with
maximum time-step 2s, the simulation for the same study in detailed model using
the is 8.73s, but the simulation time for reduced-order model is 3.37s. Hence, for the
power command changes, reduced-order model can be a great alternative to detailed
model. However, as shown in the Figure 3.4, when the machine stator voltages
changes, there is a great amount of oscillations with frequency of 60Hz that reduced-
order model fails to capture. Therefore, reduced-order model is not useful for control
designs or studies that are related to these transient oscillations. Apart from the step

changes for the power command and voltage command in the generator, other types
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of study can be done by using the reduced-order model. More details of the models
can be found in the Chapter 5, where different studies are done and the conclusions

are drawn based on the model responses.
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4. BEHAVIORAL MODEL

The reduced-order models developed in Chapter 4 are commonly used to model power
systems. Further reductions of the models have been explored in order to facilitate
their use in model-based control [7], [16]. Specifically, in [7], the researchers have
focused on applying singular-perturbation techniques to eliminate some rotor electri-
cal dynamics. In [16], the researchers have placed the models in a structure that is
tailored for efficient computation within the algorithms used to solve MPC problems.
In this chapter, simplified behavioral models are considered as an alternative to the
those based upon traditional electric machine models. Specifically, for the generator
a goal is to consider whether the dynamics of the machine, governor, and exciter can
be accurately described in an aggregate sense using simplified first-order models in
tandem with corresponding limits and rate-of-change limits. To do so, the behav-
ioral model of the generator system is structured to utilize real and reactive power
as states. In the case of the induction machine, a behavioral model is considered
in which the real and reactive power are estimated using a steady-state equivalent
circuit with the rotor slip selected as a state variable. In this chapter, both models,

and the means to couple them to the network model, are derived.
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4.1 Generation System

As mentioned in previous chapters, the generation system has two control inputs,
the P, to the governor and the Vj to the exciter. To derive the behavioral model
of the generation system, the generator/infinite bus system is used. The response of
the active and reactive power step to changes P, and Vj, were observed. Example
responses, where the P, was stepped from 0.6 per-unit to 0.7 per-unit, and V, was
stepped from 1.023 per-unit to 1.033 per-unit are shown in Figures 4.1 and Figure
4.2, respectively.
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Fig. 4.1.: PQ step response to P,

From Figure 4.1, one can observe that the real power out of the generator has
the characteristics of a first-order response to P,. Exploring the time-constant of the
response, it is consistent with that of the reheater in the governor, T,.. From Figure
4.2, one can observe that the real power out of the generator changes with a step in
V,. However, considering the overall change in power level, it is relatively minor. In
addition, the response is consistent with the fast stator dynamics, which are typically

ignored in power system models. Moreover, the change in V,, does not create a change
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Fig. 4.2.: PQ step response to V;

in steady-state power. From these observations, a behavioral transfer function of the
real power out of the generator is expressed:

g b

Pl = 4.1
beh 1+T.s (4.1a)

Further investigations have shown that this model is reasonable, provided one does
not exceed the slew rate limits that are present in the governor.

Considering the reactive power, shown in Figure 4.1, one can see that it indeed
changes with the commanded P,. Here, one notes that the reactive power initially
increases prior to decreasing in a manner consistent with a first-order response on
a time-scale of T, to a new steady-state. This behavior appears as a non-minimum
phase-type response. Considering the reactive power response to the step in V, ,
one can see there is a relatively rapid step to a new steady state.This dynamic is

approximated as a first-order transfer function with a time constant consistent with
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the d-axis transient time constant. Combining the responses, a transfer function

relating reactive power to system inputs is expressed:

g gs + Spl;qeh <4 28,)
b T 1+ Ths 1+ Ts '

In 4.2, Y, is the steady-state reactive power. It provides the relationship between
the reactive power and V,. Specifically, to obtain ()Y,, the expression for reactive
power in terms of qd variables, (2.5) in Chapter 2, is used. In per unit, assuming
steady state the relationship between reactive power, stator current, and field voltage

is expressed:

:Zs = _XCIIZ;SZ - degsz + IgsE}d (43)

where [, and I, are the machine stator currents. Considering the exciter model
expressed in Chapter 2, if one neglects the PSS and OEL blocks, E%; can be expressed

as a first-order transfer function

/ G(Vgen B VO)

by = ——"—"°7+-= 4.4
Fa L+ Ts (4.4)

The missing parts of (4.3) and (4.4) are the generator terminal voltage and stator
currents, which will be calculated based on a restructuring of the network equations

to accept generator real and reactive power.

4.1.1 Generator Terminal Voltages and Currents Calculation

To compute the generator terminal voltage and stator current, the power flow
model of the network described in Chapter 3 is reconfigured to accept real and reactive
power as inputs. Specifically, the generator is represented as a ‘PQ’ bus, similar to
that of a load. The details of the power flow model are in the Appendix.

To implement within the simulation, this is performed by coupling the machine
model in Simulink with the network model, which is implemented in Matpower. It is

noted is that in a typical PQ bus, which normally is a load drawing power from the
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grid, the input to the Matpower is the positive power consumed by the load. However,
in the behavioral model of the generation system, the generation bus provides power
to the system; thus, the input power to Matpower is the negative value of the power
generated by the generator bus.

By using the Matpower described above, the generator terminal voltage phasor
can be calculated, which is used in the exciter behavioral representation in (4.4),
where the Vi, is the magnitude of the phasor. At the same time, using the terminal
voltage phasor and the machine complex power, the current phasor at the generator
terminal is obtained by

~ P+3jQ

Is = ( 7 )* (45)

Where the * is the complex conjugate operator.
Using the bus information of the power, voltage, and current, the machine rotor

angle ¢ is calculated using:

5 = angle(Vay + (ry + jXq)j:S) (4.6)

Using reference-frame theory, the current phasor is expressed in terms of g- and

d-axis currents in the synchronous reference frame, using (B.9) in the Appendix:
Ios = ’Iab“& = 158 — J1g (4-7)

Transforming to the rotor reference frame, the respective currents are calculated
using:

I, = It cos§ — 5 sind (4.8a)

q

Ih, = It sind + I3, cos § (4.8b)

S

These currents are used in (4.3) to calculate the generator steady-state reactive power.
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To summarize, the generation system behavioral has only four states representing
the transfer function of the active power, reactive power, and the field excitation volt-
age. Compared with the detailed- or reduced-order model described in the previous

chapters, the number of states is significantly reduced.

4.1.2 Behavioral Model Generator/Infinite Bus Implementation

The generator/infinite-bus system is modeled using the transfer function described

above, and the simulink implementation of the system is shown in Figure 4.3.
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vinf Network Calculation
Vgen
Efd
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Exciter System

Fig. 4.3.: Behavioral Model Generator/Infinite Bus Implementation

In the Machine Behavioral Model block, the transfer functions for the active
and reactive power are implemented in as state models. Details of the blocks are
shown in Figure 4.4. After the calculation of the active power derivative, a slew rate
limiter is used to limit the rate of change of the active power. The slew rate is set to the
slew rate of the valve opening control in the governor. In the Network Calculation
block, the generator bus terminal voltage, the steady-state reactive power, and the
rotor angle are all calculated. The Simulink diagram is shown in Figure 4.5.

In Figure 4.5, the Network function block uses Matpower to solve for the bus

voltages. The iascal function block is used to calculate the bus current magnitude
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Fig. 4.5.: Behavioral Model Network Calculation Implementation

and angle. The rotorangle function block calculates the rotor angle. In the Cur-
rentsinqgd function block, the g- and d-axis currents of the generator in the rotor
reference frame are calculated so that the steady-state reactive power can be calcu-

lated.
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In Figure 4.3, the exciter system block calculates the field voltage to the generator.

The implementation is shown in Figure 4.4.

Efd

Vo
Vg

Vgen

Fig. 4.6.: Behavioral Model Exciter Implementation

Based on the Simulink model described above, a study has been done to observe
the predictions of the behavioral model and compare them to the reduced-order model.
The study performed is similar to that shown in Chapter 3 where several step changes
are made: the infinite bus voltage magnitude drops from 1 per-unit to 0.7 per-unit at
50s and returns to 1 per-unit at 70s; the 1} increases 0.1 per-unit at 100s; and finally,
the P, steps from 1 per-unit to 0.6 per-unit at 200s. The results of the reduced-order
model and behavioral model are shown in Figure 4.7, where the blue lines are the
reduced-order model predictions.

Considering the response, the shape of the behavioral model agrees with the
reduced-order model. There is some difference, as the behavioral model does not
include some of the the faster dynamics shown in the reduced-order model. This is
expected since the behavioral model is a further model reduction from the reduced-
order model. Comparing the simulation speed, the reduced-order model requires 10.14
seconds to simulate the 300s study using the Simulink variable step solver ODE23tb
with a maximum time-step of 5s. The behavioral model requires only 3.32s using the
same solver.

Based on the results, it is shown that the behavioral model represents the power
output of the generator, the bus voltage, and the rotor angle reasonably well with

appreciable improvement in the simulation speed. This is achieved by directly char-
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acterizing the transfer function representing the power output based on the machine
inputs without considering the machine internal dynamics.

Historically, a common generator study is to consider a fault response and evaluate
the potential instability using simulation and analytical techniques such as the equal-
area criterion [12]. The equal-area criterion is an old graphical method to predict
the critical fault clearing time, which is the time required to keep the generator from
losing synchronism (pole slipping). Specifically, when there is a fault that causes the
synchronous machine terminal voltage to drop so that the electrical torque of the
generator is less than the load torque in the governor, the rotor starts to accelerate.
If the fault is not cleared in time, the rotor cannot come back to synchronous speed
once the fault is removed. To further consider the behavioral model, a second study is
done to check to evaluate the behavioral model predictions in such a large transient.
In the study, a fault in simulated by setting the infinite bus voltage magnitude to 0.1
per-unit at 20s and subsequently removing the fault by restoring the bus voltage to
1 per-unit at 20.3s. The results are shown in Figure 4.8. From the results, it can be
observed that, after the fault, the reduced-order model predicts sustained oscillations,
which means that the system is not stable after the fault. Further, Figure 4.9, it can
be observed that the machine loses synchronism. In this case, one can observe that
after the fault the behavioral model does predict significant oscillations in the rotor
angle, but eventually returns to a pre-fault value. Thus, it fails to predict the correct
system response. This is not unexpected as behavioral model was characterized with
disturbances in which the rotor speed stayed nearly constant. In addition, the rotor
dynamics are not represented within the behavioral model. Thus, from this and
subsequent studies it is found that model accuracy degrades as the rotor speed varies
appreciably from synchronous.Here, the variable w, may be a means to gauge model

accuracy.
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4.2 Induction Machine

For the induction machine, a similar concept, to represent its active and reactive
power behavior is considered. The difference in developing the model is that the power
dynamics of the machine are not characterized using a set of dynamic studies. Rather,
the steady-state equivalent circuit, in tandem with the rotor mechanical dynamics,
are used to predict the power behavior. This is partially justified by the fact that
the induction machine does not have the ancillary equipment (governor, exciter) of
the generator. The behavioral model is based upon models considered in [11] and is

derived from the induction machine steady-state circuit shown in Figure 2.83. Within

Aj;; Ts Xls Xllr
+
—~ )
Vas Xu o
_o
A’

Fig. 4.10.: Induction Machine Steady-State Equivalent Circuit

the circuit, 5 and r]. are the stator and rotor resistances, X;; and X/, are the stator
and rotor leakage reactances, X, is the magnetizing reactance and s is the slip defined
in (2.82).

From the Figure 4.10, a Thevenin equivalent circuit can be obtained from AA’,
which is shown in Figure 4.11. In Figure 4.11, the impedance of r. and X, in steady
state are dependant on s and their sum is expressed as:

3 X (s + X))

o) Xs) = (4.9)

Furthermore, the stator current versus terminal voltage relationship is expressed:

~ V.
T s re(s)] + 51X + Xe(s)]

(4.10)
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Fig. 4.11.: Thevenin Equivalent circuit seen from AA’

Using the steady-state circuit model, all of the electrical dynamics are neglected in

the behavioral model. The only state used is slip, with a state representation:

E_Te
S =
b= "on

(4.11)

Where p is the % operator; s is the slip; 1} is the load torque and T, is the elec-
tromagnetic torque. The electromagnetic torque is calculated using the steady-state
equation for torque (2.83) in Chapter 2 .

Using (4.10) and (C.2), the complex power of the induction machine is calculated.

After equating the real part and the imaginary part of the complex power, the active

and reactive power is found using:

_ [rs +1re(s)]|Vas|?
[rs 4+ re(s)]? + [ X iXe(s)]Q

o Xt XV
(15 + 7e(5)]2 + [Xs + Xe(9)]?

(4.12a)

(4.12b)

To summarize, the main equations governing the behavioral model of an induction
machine are given in (4.11) and (4.12). With the system model, the active and reactive
power of the induction machine are input to the network for the calculation of the

bus voltages.
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Direct Online Start

To validate the behavioral model, a study of an induction machine is performed.
Within the study the initial rotor speed is 0 rad/s when the stator terminals are con-
nected to the voltage source. Once the machine reaches a steady-state, the magnitude
of the bus voltage is reduced from 1 to 0.9 pu. The Simulink Model for the study is
shown in Figure 4.12. The parameters used are those of induction machine 1 in the
Appendix. The results are shown, along with those predicted using the reduced-order

model in Figure 4.13.
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Fig. 4.12.: Induction Machine Direct Online Startup Simulink Implementation

Comparing responses, it is clear that the power predicted by the behavioral model
closely matches that of the reduced-order model and startup and the bus voltage
disturbance.

Using ODE23tb solver, with a maximum time-step of 0.5s, the simulation time for
the reduced-order model is 0.97s and for the behavioral model is 0.88s by using the
same solver with same maximum time-step setting. Although there is not significant
difference between the simulation speed of behavioral model and the reduced-order

model, this difference can be amplified if there are multiple machines.
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4.3 Simulink Implementation

4.3.1 Block Diagram

The Simulink Block diagram of the behavioral model of the overall system is shown

in Figure 4.15.

Vgen

\—b vgen
Efd
p

ICgen.v0 » VO
Exciter System foax
a
Induction Machine Behavioral Model

Fig. 4.15.: Behavioral Model for 5-bus System Simulink Implementation

The Generator Behavioral Model block is the same as shown in Figure 4.4 and
the Induction Machine Behavioral Model block is the same as shown in Figure
4.12. In the Network block is shown in Figure 4.16. The inputs to the Network
block are the power inputs from the generator and the induction machines, and the
induction machine terminal voltage used for the LTC tap setting. The outputs for
the block is the rotor angle, generator terminal voltage and the steady-state reactive

power for the generator.

4.3.2 States Initial Conditions

Since the number of states included in behavioral model is greatly reduced, the

calculation of the initial condition is simplified. For the generation system, the states
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are generator active and reactive power, the change of the machine active power
and the field voltage E%;. The active power initial condition is calculated based
on the commanded power; and the reactive power is from the power flow solution.
The change of the active power initial condition is 0 and the E; initial condition is
calculated following the same procedure described in the Chapter 2. For the induction
machine, the only state is the slip of the machine, which is also described in the

Chapter 2; hence it is not discussed further in this chapter.

4.3.3 Sample Response

With the mathematical model of the system components and Simulink Imple-
mentation described, a sample study is performed. The study is the same as as that
shown in Chapters 2 and 3. The results are shown in Figure 3.11 and Figure 3.12.

From the responses of behavioral model, it can be observed that they are almost
identical to the responses shown in the detailed model and reduced-order models,
which provides some validation of the approach. The simulation time for the behav-

ioral model using a Simulink variable step solver ODE23tb with maximum time-step
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Fig. 4.17.: Behavioral Model Simulation Results to Generator Commanded Power Step(a)

2s requires 1.02s, which is less than the 8.73s and 3.37s for the detailed- and reduced-

order models using the same solver. Further assessment of the behavioral model is

provided in the following chapter.
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5. SIMULATION RESULTS
5.1 Model Comparison

In this research, three models are derived for a 5-bus power system microgrid.
The most complicated model is a detailed model, which includes all stator and rotor
states of the generator and induction machines. The total number of states is 48. In
the reduced-order model, the stator transients of the induction machines, the gener-
ators, and the network are all neglected based on utilizing a mathematical technique
referred to as singular perturbation theory. In the reduced-order model, only the
rotor dynamics and the generator governor and exciter dynamics are included, which
results in a reduction to 18 states for the system. In the last model proposed, the
dynamics of the real and reactive power of the generator and induction machine are
included, which reduces the number of states to six. In this chapter, the responses
of the models to several system perturbations are compared. Prior to comparing, it
is noted that some abbreviations are used to simplify descriptions: FD stands for
the detailed model, RO stands for the reduced-order model and BH is the behavioral

model.
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5.2 Results Comparison
5.2.1 Study 1: Step Changes in Generator Inputs

In the first study, the system is operated in a steady state with load drawing 0.6
per-unit active, 0.106 per-unit reactive power, and P, set to 0.6 pu and the voltage V,,
set to 1 pu. The commanded power is then stepped from 0.6 per-unit to 0.4 per-unit
at 30s, and the 1} is increased by 0.01 per-unit. The results of the study are shown
in Figure 5.1 and Figure 5.2. Simulation is performed by using the Simulink built-in
variable step solver ODE23tb with maximum time-step 2s for all the models.

From the results it is shown that all the models begin and end at the same steady
state, which means the initial-value calculations in each model are correct. At 50s,
when the commanded power of the generator drops, the generator bus active power
starts to drop to the commanded value, which shows the control in the governor is
effective. Moreover, since the generator power drops, to ensure the power balance of
the system, the infinite bus active power increases. Furthermore, due to the control
of LTC, the induction machine is not affected by the power step change so that the
power generated by the induction machine stays at its original value. In the Figure
5.2, some quantities of the generator are also plotted. As the commanded power drops,
the generator rotor speed reduces down until the electrical torque of the generator
equals the mechanical torque from the governor, which also leads to a decrease in
the rotor angle. The - and d-axis currents of the generator all drop to reduce the
output active power. At 80s, the voltage control signal in the exciter V| increases,
which results is an increase in the excitation voltage £, Based on (2.71a), the g-
axis voltage also increases. However, as shown in Figure 5.2, the generator terminal
voltage does not vary significantly, so that the d-axis voltage must decrease as a result.
Based on (2.71b), the g-axis current would decrease. To keep the generator output
active power stays at the commanded value, the d-axis current must increase. All the
description here agrees with the responses shown in Figure 5.1 and in Figure 5.2. In

addition, the three models have similar shapes, but the FD and RO do possess some



Generator Bus Active Power

—FD
0.6 By
RO
0.55 1
=
[=N
VE 0.5
o
o
0.45
0.4
0 20 40 60 80 100
t(s)
Infinite Bus Active Power
0.6 . . . .
FD
0.5 BH| T
RO| |
0.4 ]
=)
(=%
~ 03
oF
0.2
0.1
0 |
0 20 40 B0 B0 100
i(s)
Induction Machines Active power
0.34
FD
0.335 ——BH|
RO
0.33 1
=
a
D_E 0.325 — o
0.32
0.315
0.31 *
0 20 40 60 80 100

QgfPV)

0.18

0.14

Generator Bus Reactive Power

——FD
| |——BH
RO /
i kﬁ'- i i i
0 20 40 60 80 100

Infinite Bus Reactive power

Induction Machines Reactive power

0.59
0.585 | FD
BH
RO
0.58
0.575
L
0.57 - : - -
0 20 40 60 80 100

Fig. 5.1.: 5-Bus System Inputs Step Responses(Part a)

115

higher order dynamics compared to the BH. In this study, the FD requires 33.23s to

complete the 100s simulation, while RO requires 3.67s, and BH requires 1.29s.

5.2.2 Study 2: Induction Machines Startup Response

In the BH chapter, a single machine startup response is shown in the representative

system study. Therein a single machine is connected to the infinite bus. Here, a
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study is performed for the full system in which both machines undergo a startup at
the load bus. The predicted performance of the three models are shown in Figure 5.3
and Figure 5.4. Simulation is performed by using the Simulink built-in variable step
solver ODE23tb with maximum time-step 5s for all the models.

The results in both figures show that all the models predict similar dynamics. In
Figure 5.3, the induction machines reach their final steady states at 50s and 170s;

at the same time, the total active power of the induction machine shows two small
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transients as they exceed the breakpoint torque and approach synchronous speed.

In the results shown, there are staircase-shape responses in the induction machine

terminal voltage, which shows that the controls in the LTC are changing its turn-

ratio to regulate the load voltage within 1 & 0.01 per-unit. For the study, the FD

requires 106.46s to run the 300 simulation, the RO requires 40.63s and the BH requires

26.55s.
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5.2.3 Study 3: Line Fault
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A line fault study is performed to further examine the models. Within the study,

one of the lines, shown in Figure 1.1 between bus 3 and bus 4, is opened. For the

FD model, the opening is performed by changing the parameters of the line inductor,

resistor and the shunt capacitor in the corresponding states equations. For the RO and

BH, the admittance matrix of the system are modified accordingly. The results are

shown in Figure 5.5 and Figure 5.6. Simulations is performed by using the Simulink

built-in variable step solver ODE23tb with maximum time-step 0.5s for all the models.

As shown, although all three models reach the same steady state post disturbance,

there are differences in their transient responses. For example, in the real and reactive
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Fig. 5.5.: 5-Bus System Line Fault Responses (Part a)

power of the generator, there is a transient oscillation predicted by both the FD and
RO models that is not predicted by the BH. Similarly, there are oscillations in the
rotor angle and the g- and d-axis currents not captured by the BH. Close inspection
reveals that the scale of the difference between models is relatively modest. For
example, the change in rotor angle over the transient is less than 2 percent. Thus,
although different, the difference between models is modest. The simulation time for

the FD was 11.92s, 1.32s for the RO and 0.89s for the BH.
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The last study performed is one in which a fault is placed on the infinite bus and

subsequently cleared. The study is performed twice. In the first case, a fault is placed

on the system and cleared after 10 electrical cycles. In the second, a fault is placed

on the system and cleared after 100 cycles. When the fault is cleared after 10 cycles,

the system recovers back to its initial steady-state. When cleared after 100 cycles,

the system does not recover as the generator is not able to return to synchronous

speed. Simulations are performed by using the Simulink built-in variable step solver
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ODE23tb with maximum time-step 0.5s for all the models.The results of the 10 cycle

clearing are shown in Figure 5.7 and Figure 5.8.
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The results of the 100 cycle clearing are shown in Figure 5.9 and Figure 5.10.
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Based on the observations of the results shown from Figure 5.7 to 5.10, the BH
responses in both cases differ from the FD and RO models. For the 10 cycle study,
the values predicted during the transient interval do not match, but the final steady-
state values are in agreement. The BH model predicts a return to a pre-fault steady
state. For the 100 cycle study, the BH fails to capture the transient dynamics and
also fails to predict that the system will not return to steady-state as the machine
fails to return to synchronization.This inability to capture the dynamics under this
large disturbance results from the inability of the model to capture internal dynamics
of the machine. As mentioned in Chapter 4, the BH is characterized assuming a small
change in angular velocity and does not include speed dynamics as a state. Comparing

computational performance, for the 10 cycle case, the FD requires 11.35s, RO 1.66s
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and the BH takes 22.10s. For the 100 cycle case, the FD requires 172.21s, RO requires
2.23s and BH 25.76s. The BH requires more time due to the fact that when solving
the network system, the input power and voltage have very large excursions, as shown
in Figure 5.10. During these large changes, the algorithm requires many iterations

to converge, which results in an additional computational time. This again shows
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that BH is not a suitable representation for cases in which the rotor angualr velocity

changes appreciably.
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5.3 Conclusions

A summary of the models described in this work is shown in table (5.1).

Table 5.1.: Model Summary

FD | RO | BH
Stator Transient Yes | No | No
Rotor Transient Yes | Yes | No
Network Transient Yes | No | No
# of states for Generator 17 | 14 | 4
# of states for Induction Machine | 7 4 1
# of states in the 5-bus system 48 | 18 | 6

Based on the results provided in the previous sections, some conclusions can be
drawn. First of all, FD is useful in all the studies mentioned, and it provides the
most details of the power system components. However, the disadvantage of FD is
the computational efficiency. Since FD contains all of the dynamics of the components
in the power system, it takes a lot efforts to solve and simulate all the ODEs. The
alternative to FD is the RO, which ignore the stator transient of the machines and
the transient of the network components (transmission lines and transformers) and it
is based on the singular perturbation theory. Based on the results shown in previous
section, RO shows a great improvement in the computational speed with a small
sacrifice in the some fast transient, and it is valid in all the studies mentioned.

However, both of the aforementioned models require a significant number of pa-
rameters, which can be difficult to obtain and it is often useful to have the ability to
further reduce computational effort when attempting to model performance in real
time. As a results, the BH models are is derived and discussed. After a closer look of
the responses of BH in study 1,3 and 4, it can be observed that the responses of BH is
reasonably accurate if the rotor speed of the generator does not vary an appreciable

amount.



126

5.4 Future Recommendations
5.4.1 Components Model Improvements

For the generation system, the governor and exciter used in this work are from [11].
Hence, to improve the model generality, other types of exciter, examples are in [9],
and governors, examples are in [17] and [18], should be considered. In addition, in
all three models, saturation of the synchronous generator and the induction machine
are not included. Therefore, in order to simulate power system responses under the
condition that the machine is saturated, the models can be improved to include this
nonlinear behavior. Furthermore, the transmission lines models used are only the
m-equivalent circuit. However, to model the medium and long transmission lines, the
propagation constant of the transmission lines should be included, the details can be
found in [12]. For the transformer, since the model for the transformer used is only
the lumped leakage reactance of the transformer, the magnetizing components of the
transformer can be included for further fidelity. Similarly for the LTC, the model
used is an ideal device, whose tap setting can be changed instantaneously. However,

more details can be modeled based on the LTC mechanical geometry.

5.4.2 System Model Improvements

Apart from detailed model and the reduced-order model, other types of models
of the power system components can be developed. For example, in [14], three more
models of the generator/infinite bus system are developed based on different mathe-
matical techniques. Moreover, as mentioned in the previous section, the behavioral
model is not suitable for the rotor transient stability studies. Hence, one potential im-
provement is to include the rotor dynamics in the behavioral model for the generator.
In addition, currently the network algebraic equation are solved by using the Mat-

power, which is a multi-function package in MATLAB. However, since in the network
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calculation in behavioral model, only the network bus voltages are calculated, a faster

solver with this specific target can be written to improve the simulation efficiency.

5.4.3 Model Potential Application

The studies using the models developed in this work only show the models’ func-
tionality of simulating different disturbances or operating points. However, an even-
tual goal of the modeling effort is to support research related to power system control
designs. In our current research group, some promising progresses has been made by
using the reduced-order model as the MPC prediction model to control the plant.
Ongoing research is to consider the use of the behavioral models as the prediction

model.
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A. PARAMETERS & SAMPLE OPERATING POINT

Model Parameter

The parameter used in this work is also from [6]. The parameters of the syn-
chronous generator machine, exciter, governor and induction machine are shown in
tables below. All the parameter below are in per-unit(pu), with the power base 500
MVA for the generator and 50MVA for the induction machine. The voltage base is
15KV for the generator and 20KV for induction machines. The parameters of the

transmission lines and transformers are shown in Figure 1.1.

Table A.1.: Synchronous Machine Parameters

Parameter | Value
Ts Opu
Xy 0.15pu
X4 2.00pu
X4 2.20pu
X, 0.40pu
X} 0.30pu
X, 0.20pu
X, 0.20pu
T, 7.00pu
T, 0.05pu
qu? 1.50pu
Ty 0.05pu
H 4s
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Table A.2.: Steam Governor Parameters

Parameter | Value

o 0.04

Trnes 0.1s

Tom 0.4s

Zmin -0.05 pu/s
Zmax 0.05 pu/s
Zmin 0 pu
Zimaz 1 pu

Thyp 0.3s

Irp 0.4

T, 0s

fp 0.3

Ty, 0.3s

100 1

Table A.3.: Induction Machine Parameters

Parameter | Machine 1 | Machine 2
Ts 0.031pu 0.013pu
Xis 0.1pu 0.067pu
X, 0.18pu 0.17pu
X 3.2pu 3.8pu

T 0.018pu 0.009pu
H 0.7s 1.5s




Table A.4.: Exciter Parameters

Parameter | Value Parameter | value

G 70 C 0.06pu

T, =T, 1s i 2.9pu

T, 0.4s iy 1.0pu

v}”m 0 Toer 8s

Ve S5pu Koel 2.0

Kpss 50 Ly -1.1

T, 5s Lo 0.1

T =13 0.323s | L3 0.2

Ty =T, 0.0138s

Table A.5.: LTC Tap-Setting Parameters
Parameter | value | Parameter | value
Niap 33 ts 9s
T'min 0.88 tdl 20s
Tmaz 1.2 tao 10s
Vy 0.01pu | V, 1pu
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Representative Operating Point

The representative operating point used in this work is also from [6], which is

shown in Figure A.1.

1.0146
1 3 4
-2.1 1.0180

-1.0

1.0500
0.0
voltage magnitudes (pu)
voltage phase angles (deg) - 0597999 5 l-gOC

101
60
active power (MW) 2 5 T ggo
reactive power (Mvar) 400
80

Fig. A.1.: Sample Operating Point

This operating in the figure shows an infinite bus voltage 1.05 per-unit, and the
load voltage is fixed at 1 per-unit by the LTC and the voltage at the generator is 1
per-unit as well. On the power side, the load active power consumption is 400MW
and the reactive power is 80 Mvar. The generator active power is 300MW and the
reactive power is 53 Mvar. Based on the Figure 1.1, the operating tap-setting is
0.99 for the LTC, which will can be altered if a different operating point is chosen.

However, for the transformer, the turns ratio setting is fixed at 1.03.
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B. REFERENCE-FRAME THEORY

Reference Frame Variable Transformation

The reference-frame theory is used throughout the whole thesis, which allows
change of variables including voltages, currents and flux linkages from the three phase
abc variables to gd0 variables. The reference-frame theory allows the AC quantities
to transform to DC quantities when analysis is performed. The way the change
of variables is performed is by referring the variable to a frame of reference. The

transformation can be expressed in the equation (B.1).

fqus = stabcs (B]')
Where
T
fqd()s - [qu qu qu] (BQa)
T
fabcs = [fas fbs fcsi| <B2b)
) cos@ cos (0 — %”) COS(9+2§)
K, = 3 sinf sin(0 — %) sin(0+ %) (B.2¢)
1 1 1
2 2 2

In the detailed model, quantities like currents, voltages and flux linkages of the
transmission line, LTC, transformer, induction machines, constant RC load and the
infinite bus all calculated in the global synchronous reference frame, which has the
frequency defined by the infinite bus w,, and # = w.t. However, in the synchronous
generator, all the quantities are in the synchronous machine rotor reference frame,

where 0 = w,t.
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Similarly, the reverse transformation can be done by using equation (B.3)

fabcs - (Ks)_lfquS (BS)
Where
cos 0 sin 6 1
(Ks)™' = |cos 6 — %’r) sin (6 — 2?”) 1 (B.4)
cos (0 +3) sin(0+3) 1

Change Between Two Reference Frame

One more important relationship to be used in the models in this document is
about the variables change between different reference frames. As mentioned above,
the synchronous generator is modelled in the rotor reference frame. It is important to
change the quantities in the synchronous machine rotor reference frame to the global
synchronous reference frame for the calculation globally. In general, based on the
reference frame angle difference 6,, = 0, — 0,, a transformation from the x reference

frame to y reference frame is done by using the equation:

f(:]UdOS = Kgscy ;bcs (B5>
Where
fé/doS = K¢Y ;d()s (B-6)
costly, —sinf,, 0
K = |sinf,, cosf,, 0 (B.7)

0 0 1
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Steady-State Relations

The reference frame theory is also used when the steady-state values are calculated
for voltage and current. The complete derivation of the relation between the phasor
representation and the synchronous reference frame representation of a balance set
of voltages and current can be found in the chapter 3 of [8]. In the thesis, some key
relations are used as described below.

For each phasor J/C:s in per-unit:
Foi = | Fail 050 = | Fail (cOS Opai + j sin Opg;) (B.8)

Where f is either the voltages or the currents. The ¢ represents bus number. The
voltage and current calculated is the quantity in phase a. The equation above is
the phasor in per-unit for the phase a quantities since all the components in this
document is assumed to be symmetrical, with phase b and phase ¢ 120 degrees lagging
and leading, respectively.

The main relation used in this work is that in the per-unit quantities:

The equation (B.9) is very useful for the initial condition calculation of the states for
all the models.

The other important relation between the phasor and the reference frame angle is
also from [8], chapter 5, and the details can be found in starting from page 160. It is
used in the analysis of the synchronous machine in thesis. Since the rotor angle 9§ is
important for the machine analysis, and it is used to represent the steady-state phsor

quantities in terms of the rotor reference frame as well, it is convenient to express



137

the phasor representation of the currents and voltages in term of quantities in rotor

reference frame and the rotor angle ¢:

Fui= (F; - chZ‘)ejé (B.10)
One important thing about the equations above is that the angle ¢ is the angle
between the rotor angle of the machine 6, and the synchronous reference frame 6..
Hence, by using the equation (B.8) and equation (B.10), the ¢- and d-axis quantites

in the synchronous machine rotor reference frame can be calculated:

Fl = |Fuy| cos (Opai — 0) (B.11a)
F) = —|Fy| sin (Opa; — 6) (B.11b)

The equation (B.11) and equation (B.10) are used in the initial condition calculation
in the synchronous machine in the detailed and reduced-order model, and they are
also used heavily in behavioral for the synchronous machine algebraic calculations

described in chapter (4).
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C. POWER FLOW BY MATPOWER
Problem Formulation

The main objective of the power flow problem is to obtain per-unit voltages phase
a phasor of each bus in a power system network based on given information about
each bus. Since, again, a balanced set of three phase voltages are assumed in each bus,
once phase a voltages are obtained, phase b and phase ¢ voltage can be calculated
easily. Hence, in all the description in this section, it is assumed that the phasor
are all in phase a. Due to the non-linearity of the phasor, it is difficult to find a
analytical solution for the problem. However, several numerical approaches are used
to find the final solution within an desired tolerance. In general, there are three
kinds of buses in a power flow study. In all the generator buses, typically the one
generator with the highest power level rating are treated as a slack bus, where the
voltage magnitude and angle are known. In the 5 bus system, it is the infinite bus
at bus 1. However, all the other generator buses are treated as a PV bus, where the
active power and the voltage magnitude are known, and the unknowns are the voltage
angle. The reason why the active power and the voltage magnitude are known is that
two inputs to the generation system is the commanded power P, in the governor,
and AVR input 1} in the exciter. The third kind of buses are the load buses, where
the active and reactive power(P and @) consumption are known, and the unknowns
are the voltage magnitude and angle. Hence, the load buses are called PQ buses. To
solve these unknowns, the power balance equations at each buses are used. The power
balance means that all the active power and reactive power go into each bus ¢ must
be consumed by the bus ¢ or that all the active power and reactive power come out

of each bus ¢ must be generated by the bus i. On a system level, the power balance
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means all the active and reactive power generated by the generator buses or the slack
bus must be consumed by the load buses and the loss on the transmission line.
In the power system study, the bus voltages phasor of each buses are calcu-

lated.The relationship between the voltage and the currents are:
I=YV (C.1)

Where I is a column vector contains all the bus current phasor, Y is the admittance

matrix of the network, and V is a column vector contains all the bus voltage phasor.
The complex power generated/consumed at each bus are calculated based on the

equation:

Si=Wil; (C2)

Where the * is the conjugate operator of a complex number.

With the complex power equation illustrated, for a system with number of N
buses with number of G generators, the number of unknowns are G of the generator
voltage angles plus 2(N — G — 1) of load voltage magnitude and angles; hence, the
number of unknowns are 2N — G — 2. For each generator buses, there are GG equations
for the active power balance; for each of the load buses, there are 2(N — G — 1)
equations for the active and reactive power balances; hence a number of 2N — G — 2

equations can be used to solve all the unknowns.

Admittance Matrix

The admittance matrix is a size N x N square matrix, built based on the ad-
mittance between each buses, where N is the number of buses. The entries in the
admittance matrix are based on the transmission lines and the transformers connect-

ing two buses.
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For transmission lines, the model used is the per-phase nominal-m model, shown
in Figure 1.2 from [12]. Between bus i and bus 7, the relationship between the voltage

phase phasor and the current phasor is:

~ ~ o~ 1 -
Iz’ = (V;—Vj)Rl_i_—jX,l"i‘V;]bl (C3)

Where the I; is the current bus i injects to the power system network; V; and ‘7] are

the voltage at bus ¢ and bus 7; are the admittance of the line connecting the

1
Ri+jX;
bus ¢ and bus 7; and jb; is the admittance of the shunt capacitor of the line. Even
though the equation (C.3) only represents the relationship of voltage and current
between two buses on one line, a more general form of Y can be derived. The entry

at row ¢, column j is:

Y, = k=1,2,...,N:k# (C.4)

Yy, ifi# ]

Where y;, are the admittance of the shunt capacitors of all the transmission lines
connected to the bus 7; y;; is the admittance of the transmission line connecting the
bus ¢ and bus j.

For the transformer, the model used is the simplified per-phase nominal reactance
shown in Figure 1.3. The nominal turns ratio % of the transformer is 1. However,
to incorporate the voltage regulator on the left side of the Figure 1.3 into the form of
the equation (C.12) when the turn’s ratio is not 1, some modifications are made to
the model. The input complex power and the output complex power of the voltage

regulator are calculated based on:

Si=Wil (C.5b)
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Where
~ Ny~
Vi= Fl‘/i (C.6a)
Ii=-1, (C.6b)

Since the voltage regulator is assumed to be ideal. i.e., no power loss: g'l = §t

Let r = %—;, and r will be a real number based on the turns ratio. A relation between

the input currents and output current can be obtained based on equations (C.5) and
equation (C.6):

I = —rl, (C.7)

Another equation can also be used to calculate the output current based on the

voltage after the voltage regulator:

Where YV, = -

iXy:

Plug equation (C.7) into equation (C.8):

-~ -,
L=V v (C.9)

T r

According to the equation (C.9) and equation (C.8):

Ll | % -4
o I A N S (C.10)
o 2 vl

Based on the equation (C.10), the m-equivalent circuit can be obtained:

With the modified transformer m-equivalent circuit, the LTC transformer can be
updated in the admittance matrix in the same fashion as the transmission line -
equivalent circuit described previously, and corresponding entries to the admittance

matrix can be expressed in the same form as shown in equation (C.4).
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~ v =
oyt 2228 4o
+ S+
v; (G = DY (=Y V;
— =

Fig. C.1.: Transformer m-Equivalent Circuit

The constant admittance at one bus can also be included in the admittance matrix.
Since the constant admittance are connected to the grounded directly, it is similar
to the shunt admittance of the transmission lines and transformers, which can be
described by:

I; = VY, (C.11)

Where Y; is the admittance at bus ¢ connected to the ground.
After adding the influence of the constant admittance at the bus ¢ from equation

(C.11), the admittance matrix can be calculated based on:

Yij _ k=1,2,...,N;k# (012)

Matpower

Matpower [19] is a package of Matlab m-files for solving power flow and power
flow related problems. The manual of the package can be found in [20]. In this work,
only part of the Matpower functions are used, which is to solve a power flow using
the NewtonRaphson method to solve for the steady-state AC power flow of the 5 bus
system. The inputs to the Matpower are the parameters of the system and the known
quantities of each bus as described in the previous section.

To be more specific, in the 5-bus system shown in Figure 1.1, for the infinite bus,

which is chosen to be the slack bus, the voltage magnitude and the angle are the
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inputs; for the generator bus at bus 5, the active power and the voltage magnitude
are the inputs. For the load bus at bus 2, the total active and reactive power of the
loads consumed by the two induction machines and the constant admittance are the
inputs. For bus 3 and bus 4, which are not generating power for the system, it is
treated the same way as the load bus with active and reactive power consumption set
to 0. In addition, the transmission lines and the LTC transformer admittance used to
generate the admittance matrix is also provided as branch information between buses.
The sample input script for the sample operating point described in the appendix A

are shown next page.
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The useful output of the Matpower in this work are all the bus information includ-
ing voltage magnitude and angle of each, the complex power the bus generates/con-
sumes and the power flow on each branches (transmission lines and the transformer)
after the command runpf. For example, The output of the sample operating point
is:

MATPOWER Version 7.0, 20-Jun-2019 -- AC Power Flow (Newton)

Newton’s method power flow (power balance, polar) converged in 4 iterations.

Converged in 0.00 seconds

Converged in 0.00 seconds

System Summary

How many? How much? P (MW) Q (MVAr)
Buses 5 Total Gen Capacity 1500.0 -600.0 to 600.0
Generators 2 On-line Capacity 1500.0 -600.0 to 600.0
Committed Gens 2 Generation (actual) 401.2 112.9
Loads 1 Load 400.0 80.0

Fixed 1 Fixed 400.0 80.0

Dispatchable 0 Dispatchable -0.0 of -0.0 -0.0
Shunts 0 Shunt (inj) -0.0 0.0
Branches 4 Losses (I"2 * Z) 1.19 81.30
Transformers 2 Branch Charging (inj) - 48.4
Inter-ties 0 Total Inter-tie Flow 0.0 0.0
Areas 1

Minimum Maximum
Voltage Magnitude 1.000 p.u. @ bus 3 1.050 p.u. @ bus 1
Voltage Angle -7.66 deg @ bus 3 4.21 deg @ bus 2
P Losses (I"2xR) - 0.63 MW @ line 1-5
Q Losses (I"2*X) - 41.61 MVAr @ line 5-3
Bus Data
Bus Voltage Generation Load

# Mag(pu) Ang(deg) P (MW) Q (MVAr) P (MW) Q (MVAr)




1 1.050 0.000% 101.19 60.36 - -
2 1.000 4.212 300.00 52.58 - -
3 1.000 -7.655 - - 400.00 80.00
4 1.018 -1.013 - - - -
5 1.015 -2.055 - - - -
Total: 401.19 112.94 400.00 80.00
Branch Data
Brnch  From To From Bus Injection To Bus Injection Loss (I"2 * Z)
# Bus Bus P (MW) Q (MVAr) P (MW) Q (MVAr) P (MW) Q (MVAr)
1 1 5 101.19 60.36  -100.55 -96.12 0.633 6.33
2 5 4  -299.45 -25.49 300.00 24.75 0.554 5.54
3 5 3 400.00 121.61 -400.00 -80.00 -0.000 41.61
4 4 2  -300.00 -24.75 300.00 52.58 0.000 27.83
Total: 1.187 81.30
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By using the bus and branch information above, the initial condition of the states can

be calculated based on the description each of the models. The other command used

in this work is the makeYbus, which will give the admittance matrix of the system

and it is used in the reduced-order model. In addition, in the behavioral model, the

power flow is being solved repeatedly at at each sample with updated initial guesses.



