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ABSTRACT

Casey, Alex D. Ph.D., Purdue University, August 2020. Predicting Energetic Material
Properties and Investigating the Effect of Pore Morphology on Shock Sensitivity via
Machine Learning. Major Professors: Steven F. Son, Ilias Bilionis, School of Mechanical
Engineering.

An improved understanding of energy localization (“hot spots”) is needed to improve

the safety and performance of explosives. In this work I establish a variety of experimen-

tal and computational methods to aid in the investigation of hot spots. In particular,

focus is centered on the implicit relationship between hot spots and energetic material

sensitivity. To begin, I propose a technique to visualize and quantify the properties

of a dynamic hot spot from within an energetic composite subjected to ultrasonic me-

chanical excitation. The composite is composed of an optically transparent binder and

a countable number of HMX crystals. The evolving temperature field is measured by

observing the luminescence from embedded phosphor particles and subsequent applica-

tion of the intensity ratio method. The spatial temperature precision is less than 2% of

the measured absolute temperature in the temperature regime of interest (23-220 ◦C).

The temperature field is mapped from within an HMX-binder composite under periodic

mechanical excitation.

Following this experimental effort I examine the statistics behind the most prevalent

and widely used sensitivity test (at least within the energetic materials community) and

suggest adaptions to generalize the approach to bimodal latent distributions. Bimodal

latent distributions may occur when manufacturing processes are inconsistent or when

competing initiation mechanisms are present.

Moving to simulation work, I investigate how the internal void structure of a solid

explosive influences initiation behavior – specifically the criticality of isolated hot spots

– in response to a shock insult. In the last decade, there has been a significant modeling

and simulation effort to investigate the thermodynamic response of a shock induced pore
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collapse process in energetic materials. However, the majority of these studies largely

ignore the geometry of the pore and assume simplistic shapes, typically a sphere. In this

work, the influence of pore geometry on the sensitivity of shocked HMX is explored. A

collection of pore geometries are retrieved from micrographs of pressed HMX samples

via scanning electron microscopy. The shock induced collapse of these geometries are

simulated using CTH and the response is reduced to a binary “critical” / “sub-critical” re-

sult. The simulation results are used to assign a minimum threshold velocity required to

exhibit a critical response to each pore geometry. The pore geometries are subsequently

encoded to numerical representations and a functional mapping from pore shape to a

threshold velocity is developed using supervised machine-learned models. The resulting

models demonstrate good predictive capability and their relative performance is ex-

plored. The established models are exposed via a web application to further investigate

which shape features most heavily influence sensitivity.

Finally, I develop a convolutional neural network capable of directly parsing the 3D

electronic structure of a molecule described by spatial point data for charge density

and electrostatic potential represented as a 4D tensor. This method effectively bypasses

the need to construct complex representations, or descriptors, of a molecule. This is

beneficial because the accuracy of a machine learned model depends on the input rep-

resentation. Ideally, input descriptors encode the essential physics and chemistry that

influence the target property. Thousands of molecular descriptors have been proposed

and proper selection of features requires considerable domain expertise or exhaustive

and careful statistical downselection. In contrast, deep learning networks are capable of

learning rich data representations. This provides a compelling motivation to use deep

learning networks to learn molecular structure-property relations from “raw” data. The

convolutional neural network model is jointly trained on over 20,000 molecules that are

potentially energetic materials (explosives) to predict dipole moment, total electronic

energy, Chapman-Jouguet (C-J) detonation velocity, C-J pressure, C-J temperature,

crystal density, HOMO-LUMO gap, and solid phase heat of formation. To my knowl-

edge, this demonstrates the first use of the complete 3D electronic structure for machine

learning of molecular properties.
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1. INTRODUCTION

1.1 Motivation

It is commonly accepted that the initiation of energetic materials originates from

localized regions within the material that are at elevated temperature. Even for circum-

stances that appear to have non-thermal beginnings – such as impacting the material

– the pervading theory is that the input energy is converted to thermal energy subse-

quently raising the temperature of the material above that required for ignition. The

localized high temperature regions are widely referred to as “hot spots”. Although the

theory of hot spots has been generally embraced since the 1950s, hot spots remain an

extremely active area of research.

The major difficulty in describing hot spot formation processes and their subsequent

growth is that there is no single dominant process since the mechanism or mechanisms

which operate depend on the energy input (stimulus type) and the physical properties of

the explosive. Additionally, since many hot spots occur in extremely small spatial and

temporal regimes it is difficult to observe them experimentally. Due to this complexity,

over the last decade, there has been a strong movement to simulate hot spot ignition

and growth with high fidelity continuum, mesoscale, and molecular dynamics models.

Throughout the literature hot spots are implicitly linked to the sensitivity of energetic

materials. That is, energetic materials that are sensitive, or that respond (initiate, react)

to low stimulus levels, have a greater propensity to form hot spots. There are a variety of

sensitivity tests designed to provide a simple measure of an energetic material’s initiation

threshold. Again, because the underlying mechanisms leading to hot spot formation are

dependent on the stimulus type, these sensitivity tests generally take the form of isolating

and applying a single stimulus and noting the stimulus level that results in the sustained

reaction and consumption of the test specimen. While these tests are crucial in quickly

screening novel energetic materials for safety concerns they have proven too unreliable
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to directly investigate hot spots. Part of this unreliability stems from the fact that these

tests are unaware of material microstructure.

A major goal of the recent surge in modeling and simulation efforts is to provide hot

spot and sensitivity linkages over the full variety of stimulus types, bulk and molecular

properties, and observed microstructure. Often, the simulations are computationally

expensive and are restricted to small domains and idealized systems. Additionally, in

accordance with good experimental design these simulations are narrowly focused. The

confluence of these factors means that furthering the understanding of hot spots is a

time intensive process.

While machine learning has existed in some form over the last century, recent ad-

vances in graphics processing units (GPUs) for computation and significant successes in

long-standing artificial intelligence problems have heralded its adoption by nearly ev-

ery scientific field. At a basic level, machine-learned models can approximate arbitrary

functional mappings and can be formed to essentially copy physics-based simulations.

Once an initial computational price has been paid to train the machine-learned models,

these models can make rapid predictions on new items. As such, machine-learned mod-

els can be used to augment and increase the throughput of conventional physics-based

simulations.

1.2 Overview and Organization

The scope of this work was broadly defined to gain insights into hot spot formation

and energetic material sensitivity. To this end, the initial focus of this work centered on

experimentally visualizing a hot spot in situ. While the existence of hot spots is backed

by a myriad of experimental evidence very little work as been conducted to actually

“see” a hot spot. To be clear, stunning visualizations of hot spots have been produced

using simulation tools but real images of physical reacting systems are essentially non-

existent. A hot spot, as defined, is a localized high temperature region. Therefore,

experimental hot spot visualization is equivalent to the task of visualizing an evolving
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temperature field. Direct observation of the temperature field was made using phosphor

thermography on a specific, single-particle, visually-clear energetic system.

The work then shifted to explore the statistics used in parameter estimation of com-

mon sensitivity tests. Specifically, it was noted that the underlying assumption that the

stimulus level latent distribution is unimodal may be incorrect for some materials.

The final efforts develop machine learning surrogate models to replicate the sensi-

tivity of a collapsing pore under shock loading as produced by a hydrocode simulation.

Furthermore, a deep learning model is produced capable of predicting energetic material

detonation properties after learning a numeric representation of an energetic molecule.

The remaining chapters of the work are organized to emphasize a single topic. Chap-

ters 2 and 3 of this text provide background information on initiation of energetic mate-

rials and their safety metrics, and statistical (or machine) learning, respectively. These

chapters are not intended to be exhaustive reviews as each of the topics covered merits a

panoply of textbooks, however, these chapters serve to provide the reader the requisite

background information to understand the remaining chapters. That is, the basic con-

cepts and methods used in in the latter chapters are explicitly addressed in Chapters 2

and 3.

Chapter 4 deals with hot spot formation under periodic mechanical input. In particu-

lar this chapter demonstrates a novel method for experimentally visualizing the dynamic

temperature field of an evolving hot spot within a mock polymer bonded explosive.

Chapter 5 discusses the statistical tests developed since the 1930’s for estimating

sensitivity parameters. The Neyer algorithm, which is the dominant test in the field of

energetic materials, is described in detail. Potential adaptions to the Neyer algorithm

to accommodate bimodal latent distributions are also proposed.

Chapter 6 explores the effect of shape on the sensitivity (hot spot formation) of col-

lapsing pores under shock loading. Machine learned-surrogate models are trained using

sensitivity labels generated via the simulation of thousands of realistic pore structures

acquired via scanning electron microscopy (SEM). This portion of work was conducted

in partnership with the Air Force Research Laboratory (AFRL) at Eglin Air Force Base

(AFB).
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Chapter 7 details the creation of a convolutional neural network (CNN) developed

to make predictions on energetic material detonation performance metrics. This work

takes advantage of a deep neural networks ability to learn rich feature representations

and novelly acts directly on the electronic structure of a molecule; eliminating the need

to hand craft, or select, a suite of molecular descriptors. This effort was produced in

collaboration with the Army Research Laboratory (ARL) located at Aberdeen, MD.

A summary of the conclusions is presented in Chapter 8. Finally, as supplemen-

tal information to Chapter 5, the derivation of the maximum likelihood estimates and

information matrix for a mixture of two Gaussians is given in Appendix A.
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2. ENERGETIC MATERIALS SAFETY

A universally accepted definition of combustion is difficult, if not impossible, to prescribe.

Throughout the 18th century combustion was generally described as the “bonding” of

combustible materials (typically hydrocarbons) with oxygen. Many, if not most, com-

bustible systems of practicality and interest can be reduced to three broad components;

fuel, oxidizer, and ignition source.

Energetic materials are generally described as the set of combustible materials which

do not rely on any additional (or external) source for an oxidizer. Some may burn with

air, because they are ‘fuel rich’, but the reaction is self-sustaining in an inert (non-

oxidizing) environment. Energetic materials are loosely grouped into three application

based categories, namely: propellant, explosives, and pyrotechnics.

The field of energetic materials incorporates a variety of sciences including chemistry,

thermodynamics, fluid dynamics, aerodynamics, mechanics, electricity, electronics, and

even meteorology, biology, and physiology [1]. Consequently, the field provides a rich

area of research consisting of difficult problems to which the solutions often require in-

terdisciplinary efforts to elucidate. Two major sub-areas of research within the field deal

in understanding how the energetic material reactions are started (ignition/initiation),

and how unwanted initiation can be prevented (safety).

2.1 Initiation Mechanisms

In combustion, the reaction rate is the speed at which products are turned into

reactants. Considering a simple reaction, such as

aA+ bB −→ cC (2.1)

a common functional form for the reaction rate is

r = k(T )[A]x[B]y (2.2)
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where [A] and [B] are the molar concentrations of species A and B, respectively, and the

exponents x and y are the partial orders of reaction (typically determined experimen-

tally). The prefactor k is the rate constant. A common expression for the rate constant

is the Arrhenius equation given by

k(T ) = A(T )e
−Ea
kbT , (2.3)

or

k(T ) = A(T )e
−Ea
RT (2.4)

where, A(T ) is the pre-exponential factor, Ea is the activation energy (units depend on

which form of the equation is used), kb is the Boltzmann constant, R is the universal

gas constant, and T is the absolute temperature in Kelvin.

While the equations 2.2, 2.3, and 2.4 were described herein as common, it must be

noted that the origin of these equations lies in the chemical kinetics of gases and that

these equations are often not representative of the reaction processes that occur in a

large number of energetic materials systems. For example, the Arrhenius equation can

typically be applied to homogeneous explosives but generally fails to accurately describe

heterogeneous explosives. That said, the Arrhenius equation is listed here because it pro-

vides a good historical framework for the discussion of initiation mechanisms of energetic

materials.

The Arrhenius equation has origins dating back to as early as 1878 as an experimental

relationship developed by Hood [2]. Later, van’t Hoff [3] and Arrhenius [4] demonstrated

that the relationship was consistent with the principles of thermodynamics. Within this

equation, the physical meaning of the activation energy and the pre-exponential factor

have been the subject of much debate. In 1969, Menzinger and Wolfgang [5] discussed

a more modern interpretation of these terms under collision theory but note that the

original interpretation of the activation energy as proposed by Arrhenius was “the height

of the energy barrier which has to be overcome by the relative translational motion of the

reactants in order for reaction to occur”. This original interpretation of a “barrier to be

overcome” alongside the functional form of the Arrhenius equation instill in one’s mind
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the a deep notion that combustion processes have a discrete, or critical, temperature at

which the reaction “turns on”.

To further illustrate this point, consider the case of the decomposition rate of RDX

which can be approximated by the Arrhenius equation and has the experimentally de-

termined values of 3.5575× 1018 (s−1) and 24027 (K) for the pre-exponential factor and
Ea
R
, respectively [1]. A plot of equation 2.4 for decomposing RDX as a function of tem-

perature is given in Figure 2.1. As seen in this figure, RDX has a distinct temperature

(T ≈ 550 K) at which the onset of significant decomposition occurs. When dealing with

‘Arrhenius-like’ rate expressions, the initiation of a self-sustaining reaction results when

the combustion products reach a critical temperature (or other threshold).
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Figure 2.1. Decomposition rate of RDX. A′ is the amount of RDX that
has not yet decomposed and A is the starting amount of RDX.

Again, while Arrhenius type expressions do not govern all energetic materials, the

paradigm of a critical temperature is deeply etched in the theories of ignition and ini-



8

tiation. To date, the major agreement is that underlying mechanism for ignition and

growth in energetic materials is thermal in nature [6–8].

For initiation mechanisms that appear to have non-thermal origins (for example, im-

pacting the material), the French chemist Bertholot was the first to propose an initiation

mechanism; namely, that the kinetic energy of impact is converted to heat subsequently

raising the temperature of the material above that required for ignition [9]. Later studies

by Taylor and Weale in the 1930’s demonstrated that the mechanical work dissipated

in a solid explosive as heat was much less than that required to raise the temperature

of the whole sample to that required for ignition [10]. From this observation stemmed

the hypothesis of energy localization which later became known as the formation of “hot

spots”. Bowden and Yoffe attested the hot spot hypothesis by adding grits to explo-

sives [6]. For example, they observed that by adding a grit with a low melting point to

the explosive, the maximum local temperature is limited to the grit melting point and

hot spot initiation is attenuated before ignition. This work promoted greater safety in

explosives and increased efficiency in propellants. Additionally, they showed that hot

spot formation affects the reaction growth and deflagration speeds.

Despite these observations, and having a widely accepted working theory for initi-

ation, many more questions remain in regards to hot spot formation mechanisms and

today this remains a highly active area of research. Modernly, Asay notes, “Once initi-

ated, a hot spot can either fail, survive for short amount of time, or progress and grow.

This is the problem of criticality, and without knowing how this process occurs, it is

impossible to understand and predict the outcome of an initiation event” [11].

The major difficulty in describing hot spot formation processes and their subsequent

growth is that there is “no single dominant process since the mechanism or mechanisms

which operate depend on the energy input and the physical properties of the explosive"

as noted in a landmark review paper by Field [8]. In the same paper Field outlined ten

proposed hot spot ignition mechanisms:

(i) adiabatic compression of trapped gas spaces
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(ii) other mechanisms involving cavity collapse such as viscous or plastic heating of the

surrounding matrix material or, for very high shock collapse pressures, hydrody-

namic shock focusing

(iii) friction between sliding or impacting surfaces, or between explosive crystals and/or

grit particles in an explosive

(iv) localized adiabatic shear of the material during mechanical failure

(v) viscous heating of material rapidly extruded between impacting surfaces

(vi) heating at crack tips

(vii) heating at dislocation pileups

(viii) spark discharge

(ix) triboluminescent discharge

(x) decomposition, followed by Joule heating of metallic filaments.

In order to determine which mechanisms are at play in a specific material for a

given type of input energy, a plethora of tests have been developed. These test seek

to characterize, qualitatively or quantitatively, the energetic material properties, and

behaviors, and their sensitivity to various stimuli.

2.2 Material Property and Sensitivity Tests

In order prevent accidental ignition, it is critical to understand the behaviors and

sensitiveness of energetic materials. To emphasize, this is a difficult task because:

Whatever method we use to predict possible accidents, we have one fun-

damental problem. The substances can be subjected to so many different

situations, each with its own pattern of different kinds of stress, that it is

impossible to imagine them all. With more understanding, we can make

predictions of risks in more and more situations, but a wholly complete
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understanding and description of all potential risk situations will never be

possible [12].

As such, a wide variety of tests have been developed in order to mimic potential situations

that an energetic material may experience in the field and also to describe potentially

relevant material proprieties. A non-exhaustive list of tests can be loosely grouped into

five categories as shown in Figure 2.2.

For the sensitivity tests, most report a binary response (successful reaction or not;

‘go’ or ‘no-go’) given a simple measure of input (drop weight height, input pressure,

etc.). Intuitively, these tests are designed to focus on a single type of energy input, but

unfortunately many initiation mechanisms are often compounded. Additionally, with

respect to explosives, Smith [13] notes

The sensitivity of an explosive is not a well-defined property of the material,

expressible as a single number, say, but is, instead a complex pattern of

behavior. Different sensitivity tests, even when intended to measure the

same property, will frequently produce different orders of relative sensitivity

for a given series of explosives. In other words, there is not even a unique

qualitative scale of sensitivity. In most sensitivity tests, the response of an

explosive varies in seemingly random fashion over some range of severity of

the applied stimulus. That is, there is no sharp threshold above which the

explosive will always explode, below which it will never explode.

As an example, consider the drop weight impact test. Simply described, a drop

weight impact test consists of an apparatus which drops (gravity driven) a weighted

striker from a prescribed height onto a small explosive sample. Throughout the 20th

century at least six drop weight impact sensitivity tests were developed [14–19]. The

reason that so many testing variations and apparatuses were created is because consistent

agreement on the sensitivity of explosives has not been achieved. This is in part because

the underlying initiation mechanism is not fully understood [19], but also because the

testing machines often produce spurious results; usually between “identical” apparatuses

but in different locations (i.e. at different laboratories). Despite the inherit drawbacks
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associated with drop-weight sensitivity tests, and other sensitivity tests in general, they

are still commonly used to quantify material sensitivity to impact.
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Figure 2.2. A non-exhaustive list of material behavior/property and sensitivity tests.
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Diving further into this example, Table 2.1 lists the result, explosion or no explosion,

for HMX at various drop weight heights [13]. Table 2.1 demonstrates that these tests

have statistical structure. This structure is more fully revealed when the results are

plotted as in Figure 2.2. As seen, the probability of explosion increases with drop weight

height. This probability of explosion as a function of height is a very useful predictive

tool. However, many times in practice, an attempt to estimate the probability function

is not made and only the L50, or stimulus level at which 50% of the samples are predicted

to explode, is reported. There is danger present in comparing the sensitivity of multiple

explosives using only their reported L50 values as it is possible for a material to have a

higher L50 but still result in more explosions at a lower stimulus level when compared

to another material.

Another interesting artifact contained in Table 2.1 is that 60 HMX specimens needed

to be tested in order to accurately estimate the drop height sensitivity. Testing this many

samples may prove to be costly when considering the cost of synthesis and safe handling

of an energetic material; or even impossible for novel materials. Additionally, the test is

only informative if the tested stimulus levels are not well into the 0% ‘go’ or 100% ‘go’

regions. That is, testing at levels that always result in an explosion or that never result

in an explosion are not very useful. For a new material, discovering these bounds may

require lots of trial and error and consequently waste time, money, and effort.

Since the 1930’s, a handful of statistical tests have been developed to calculate, or

rather estimate, the L50 or probability function associated with sensitivity tests. Some

of these tests also attempt to minimize the number of specimens that need to be tested

by prescribing a sequential design of experiments. These methods are one of the main

discussions of this work and further information is found in Chapter 5.
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Table 2.1. Drop weight test results for HMX. Type 12 Tools. E =
Explosion, N = No explosion

Height (cm) Results

40.5 E E E E E E E E E E

36.0 E N E E E E N E E E

32.0 E E N E E E N E N E

28.5 N E N N E N N N E N

25.5 N N N N N N E N N N

22.5 N N N N N N N N N N
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Figure 2.3. Drop weight test results for HMX.
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3. STATISTICAL LEARNING

Statistical learning, broadly defined, is the extraction of patterns and insight from a

set of data. This is commonly referred to as “learning from data”. The learning prob-

lems can be roughly categorized as either supervised, unsupervised, self-supervised, or

reinforcement learning. [20–23]. In supervised learning, the goal is to predict an out-

come based on a number of input measures having previously observed a set of inputs

and their associated labelled outputs. For unsupervised learning, no outcome measure

is provided, or such a measure does not exist, and the goal is to describe associations

and patterns present in the inputs [22]. Self-supervised learning is like unto supervised

learning but the output labels are not human annotated but rather generated from the

input data. In reinforcement learning, an agent views its environment and chooses an

action to maximize a reward [21].

The result of running a learning algorithm can be expressed as a function y(x) which

receives an input (a vector for multiple inputs) and outputs a prediction y which may

be a single value or a vector [20]. The form of the function is determined by the learning

algorithm. This phase is most often referred to as the learning, training, tuning, or

fitting phase and operates on a set of training data. The training set is simply a data

set of inputs, and labelled outputs in the case of supervised learning, that is believed to

be representative of a larger data set (population) or representative of inputs/outputs

that will be observed in the future. Once the learning algorithm has trained a model

(function y) it can produce predictions on a newly seen data set (inputs) known as a

test set.

Learning algorithms require an evaluation metric to determine if the model is working

properly (better than a baseline model) and to compare models against each other. For

many algorithms this evaluation occurs by scoring the models based on their performance

on an set of inputs for which the correct outcomes are known, but that were not used
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during the training phase. This set of inputs is called the hold-out, or validation data

set. The performance measure, or score, is often defined by a prediction error, cost, loss,

or accuracy function.

For supervised (and self-supervised) learning problems an additional classification is

based on the whether the output variable(s) is discrete (also referred to as categorical

or qualitative) or continuous (also commonly described as quantitative). If the output

is continuous the learning task is called regression and for discrete outputs the problem

is known as classification. Sometimes a third output type is specified as ordered if the

categorical values have an intuitive ordering; such as small, medium, and large [22].

Learning problems, and their associated algorithms, can often be further divided into

categories such as online or offline learning, batch size (mini, batch, stochastic), and

more.

For most practical applications, the input variables require pre-processing or fea-

ture extraction in preparation to be passed to the learning algorithm [20]. There are

many instances where the input data may require pre-processing, such as: to speed up

the computational efficiency of the algorithm, to transform the inputs to more useful

representations, handling missing values, etc.

Finally, a widely accepted academic definition of statistical, or machine learning, is

attributed to Professor Tom Mitchell at Carnegie Mellon University’s School of Com-

puter Science and is stated as follows [24]:

To be more precise, we say that a machine learns, with respect to a particular

task T, performance metric P, and type of experience E, if the system reliably

improves its performance P at task T, following experience E. Depending on

how we specify T, P, and E, the learning task might also be called by names

such as data mining, autonomous discovery, database updating, program-

ming by example, etc.



17

3.1 Terminology

The phrases “artificial intelligence” (AI), “data science”, “data mining”, “statistical

learning”, “machine learning”, “deep learning”, and “patter recongnition” and their def-

initions are often convoluted, interchanged, and used synonymously. This ambiguity

arises because the modern field of “learning from data” was developed disjointedly and

simultaneously by a number of classical fields like computer science, mathematics, and

statistics. Also, in recent years, the concepts and near-future possibilities associated

with AI, machine learning, and data science have been over-hyped in the public me-

dia [21]. The rapid dissemination of information stemming from technology-minded,

but non-expert, publications has fueled the compounding of the terminology. Today,

attempts to concisely define and relate these phrases have been made, but no general

consensus exists as these relationships also spawn from different contexts.

François Chollet, in his book Deep Learning with Python [21], distinguishes between

AI, machine learning, and deep learning with the diagram shown in Figure 3.1. He defines

AI broadly as “the effort to automate intellectual tasks normally performed by humans”,

machine learning as “a system that is trained rather than explicitly programmed”, and

deep learning as a subset of machine learning which transforms the input data to outputs

through more than one successive transformation.

Another relational paradigm is given by Robinson [25] and is shown in Figure 3.2.

Robinson proposed a self-described oversimplified definition of the difference between the

fields of data science, machine learning and artificial intelligence. He notes that AI is the

oldest, largest, and hardest field to define and that, like described by Chollet, is often

represented as encompassing the other fields. That said, Robinson believes that machine

learning has “broken off” from AI as it has a strong focus on prediction whereas AI is

modernly defined as an agent taking autonomous actions based on inputs it observes

(like a self-driving car). He places deep learning as straddling the fields of machine

learning and AI because deep learning models often return predictions but also these

models have seen a wide variety of success when applied to agent-centric reinforcement

problems like game-playing algorithms. He also notes that overlap between any of the
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Artificial Intelligence

Machine Learning

Deep Learning

Figure 3.1. A proposed relationship between AI, machine learning, and deep learning.

fields as presently defined can occur and that some problems may involve aspects of all

three fields.

• Statistical inference

• Data visualization

• Experiment design

• Domain knowledge

• Communication

Data Science Machine Learning Artificial Intelligence

• Training data

• Prediction accuracy

over model

interpretability

• Autonomy

Insights ActionsPredictions

Field:

Produces:

Emphasizes:

Deep Learning

Figure 3.2. A proposed relationship between common statistical learning terms.

Beyond the nonchalant interchanging and synonymous usage of the field names them-

selves, each field has developed its own nomenclature for the basic variables and common

data types. The reader may have noticed in the chapter introduction that many names

for the same object exist; for example, qualitative, categorical, and ordered can all be
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used to indicate that the outputs are discrete. In the literature, the choices made to

describe the problem are often due to the historical origin of the problem, the objective

of the work, or the use of certain classes of algorithms [26]. A small example list of

synonymous terms is provided in Table 3.1.

Table 3.1. A non-exhaustive list of terms used throughout the literature
which refer to the same data object or statistical learning concept.

Field

Machine Learning Statistics Mathematics Computer Science

Te
rm

s inputs predictors independent variables features

outputs targets dependent variables responses

While studying learning models it very likely that one will come across all forms of

the terminology. Consequently, the avid student should be familiarized with the different

terms and be readily able to change descriptions as required. Throughout the entirety

of this text no attempt is made to use consistent nomenclature, however, notation is

introduced as encountered.

3.2 Machine Learning Stack

Most of the computations for the machine learning problems addressed herein are

performed on a HP Spectre x360 Convertible 15-bl0XX Processor ultra notebook. This

notebook has a Intel(R) Core(TM) i7-7500U CPU @ 2.70GHz, 2904 Mhz, 2 Core(s), 4

Logical Processor(s) processor and a NVIDIA GeForce 940MX graphics card.

Occasionally, high performance computing resources are used. The simulations con-

ducted in Chapter 6 use three hundred and twenty Intel Xeon E5-2698 v3 cores. The

convolutional neural network developed in Chapter 7 is trained using forty eight Intel

Xeon Platinum 8168 processors alongside a NVIDIA Tesla P100 GPU.

For deep learning, Figure 3.3 shows the hardware and software stack used in this

work. Keras is a well-estabilished and user-friendly application programming interface
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Keras

Tensorflow / Theano / CNTK

GPU

CUDA / cuDNN BLAS, Eigen

CPU

Figure 3.3. Deep learning hardware and software stack.

(API) which provides buidling blocks for building deep-learning models. For the backend,

Keras can interface with either Tensorflow (developed by Google), Theano (developed

by the MILA lab at the Université de Montréal), or the Microsoft Cognitive Toolkit

(CNTK) (developed by Microsoft). For the present workflow, the Tensoflow backend is

used except when the models are deployed to a web server; which use Theano on the

backend. The backends can run on either a GPU or CPU. When running on the CPU

the backend wraps around library for tensor operations called Eigen. Additionally the

models will run faster if a Basic Linear Algebra Subprogram (BLAS) is installed. When

using the GPU, NVIDIA has produced a set of drivers and a library which allow for the

GPU to run a low-level parallel language for parallel computing with highly optimized

routines. CUDA is the set of drivers; CUDA was originally an acronym for Compute

Unified Device Architecture but NVIDIA has since stopped promoting that name and

now the drivers are simply branded as CUDA. cuDNN is the library of deep learning

primitives and stands for NVIDIA CUDA Deep Neural Network.

The shallow machine learning algorithms are implemented with scikit-learn [27] un-

less otherwise specified.
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4. VISUALIZATION OF HOT SPOTS

4.1 Introduction and Motivation

Under mechanical excitation, energy is known to localize within an energetic ma-

terial resulting in ‘hot spot’ formation [8]. Initiation mechanisms are closely linked to

energy input type such as impact, ultrasonic excitation [28, 29], etc. Additional insight

into heat dissipation mechanisms, the effect of binder/crystal interfaces, and prediction

capabilities can be gained by visualizing the initiation and growth of hot spot sites and

their relative intensity, spatially and temporally.

Historically, efforts to visualize hot spot formation made use of high-speed photog-

raphy [8, 30, 31] or infrared arrays [32]. Recently, surface limited infrared [33, 34] and

high-speed thermal microscopy [35,36] have been employed. This work seeks to augment

those methods, at potentially higher speeds and precision, with phosphor thermography.

Phosphor thermography is a well established temperature sensing technique wherein

an object’s surface temperature is obtained by collecting the temperature dependent

luminescence of an optically excited phosphor [37]. Typically, the phosphor is excited

by a laser. If sufficient excitation energy is provided, a phosphor’s electrons are elevated

to higher energy states. In order for the electrons to return to ground state the phosphor

must release energy. This energy can be released via radiation, i.e., quantized photon

emission, or by other non-radiative means, such as vibrational relaxation. For many

phosphors, the probability of de-excitation occuring radiatively (and the nature of this

radiation, e.g., luminescence lifetime and power spectrum), as opposed to other non-

radiative relaxation paths, is temperature dependent. The exploitation of this fact gives

these phosphors their temperature sensing, or thermographic, property.

Phosphor thermography poses several advantages over other temperature sensing

techniques and devices such as pyrometry and thermocouples because it is semi-invasive,

capable of producing two-dimensional measurements with high spatial resolution, and is
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robust to blackbody radiation and chemiluminescence [37,38]. There are multiple ways

to relate the phosphor luminescence to temperature [39,40]; however, two methods – the

lifetime decay method, and the intensity ratio method – are most popularly employed.

The lifetime decay method temporally resolves the decay of the phosphor lumines-

cence after excitation. The decay is typically approximated as mono-exponential [41].

The lifetime of the decay can be characterized by the time constant, τ , in

I(t) = I0 exp

(
− t
τ

)
(4.1)

where I0 is the initial phosphor luminescence intensity. The characteristic lifetime is

calibrated to temperature.

The intensity ratio method compares the relative intensity of phosphor luminescence

at two spectrally separated bands as a function of temperature. The absolute signal

intensity bounded by wavelengths λ1 and λ2 can be approximated by a function as [39,41]

Sλ2
1
(T ) ≈

∫ λ2

λ1

CλtexpTλI0 exp

(
−∆Eλ
kT

)
dλ. (4.2)

In the preceding equation, Cλ is the efficiency of the detector and Tλ is the optical filter

transmission at wavelength λ, texp is the exposure time, I0 is the initial pulse intensity,

∆Eλ is the energy of the emitting state above ground state, k is the Boltzmann constant,

and T is temperature. However, absolute signal intensities are difficult to measure and

are plagued by non-repeatable factors such as the local thickness of phosphor coating,

optical alignment, etc [41]. Many of these factors are mitigated, or eliminated, by

dividing the signal obtained by one band of wavelengths by that of another band as

given by

R(T ) =
Sλ2

1
(T )

Sλ4
3
(T )

=

∫ λ2

λ1
CλTλ exp

(
−∆Eλ

kT

)
dλ∫ λ4

λ3
CλTλ exp

(
−∆Eλ

kT

)
dλ

(4.3)

= (constant) exp

(
−∆E

kT

)
.

Analogous to the lifetime decay method, the ratio R defined in Eq. 4.3 can be calibrated

to temperature and referenced in subsequent measurements.

Overall, the lifetime decay method is considered more precise (by several orders of

magnitude) and more robust to external changes (variation in laser intensity, optical
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alignment, etc.) than the intensity ratio method [42]. Due to the difference in precision

and overall robustness, the intensity ratio method is best considered when measuring

fast moving objects [40], or objects with fast temperature transients, where the lifetime

decay method may prove inadequate.

In the present work, the intensity ratio method is demonstrated for measurement

of the dynamic temperature field occurring during internal heating within an energetic

composite. A octahydro 1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) crystal is embed-

ded within Sylgard 184, an optically transparent binder, to form a simplified composite

polymer bonded explosive (PBX). Gallium doped zinc-oxide (ZnO:Ga) phosphors are

embedded in a plane in the vicinity of the HMX crystal within the Sylgard binder. Zinc

oxide phosphors (ZnO:Ga, ZnO:Zn, ZnO) [43, 44] are well characterized and are highly

sensitive to temperature [39]. The intensity ratio of two detection bands is employed to

map the temperature field while the sample undergoes ultrasonic mechanical excitation.

Although, in the presented experiment, the hot spot heating rate does not exceed the

limitations of the lifetime decay approach and the object of interest is stationary, the

intensity ratio method is developed herein for later use with more general testing condi-

tions where the lifetime decay method would be inapt due to short the short time scales

of hot spot formation (Bowden and Yoffe determined hot spot durations to be on the

order of 10−5 10−3s [6]); e.g. drop weight impact, shock, etc. This study aims to estab-

lish the feasibility of this approach for potential measurements of internal temperature

fields during highly dynamic events, such has high speed impact loading, for which the

intensity ratio method is well suited. Confounding factors such as the transmissivity

of Sylgard and the affect of laser fluence are considered. The objective of this work is

to demonstrate a high precision, real-time, dynamic temperature measurement within a

simplified PBX and to characterize its performance for the first time.
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4.2 Experimental details

4.2.1 Sample preparation

The simplified PBX sample tested consisted of a countable number of HMX crystals

placed on a plane of ZnO:Ga, all suspended within a Sylgard binder. To create this

sample, first, a base layer of Sylgard was poured (10:1 base to curative) and cured

under vacuum to remove trapped air bubbles. Next, the phosphor was mixed with

Sylgard (1:15, by weight) and the mixture was spin coated (MTI Corp. VTC-50A) onto

the base layer. Once the phosphor-Sylgard layer was cured, the HMX crystal(s) was

placed on top of the sample and a ‘capping’ layer of Sylgard was poured and cured.

The sample was then cut to size and applied to an ultrasonic transducer (Steiner &

Martins, Inc. SMD10T2R111) with ultrasonic couplant (Sonotech Soundsafe) according

to the desired orientation. Sample dimensions and tested orientations are shown in Fig.

4.1. Microscopic imaging of the sample cross-section (Hirox KH-8400) revealed that the

applied phosphor-Sylgard layer was approximately 30 µm thick.

Figure 4.1. Sample geometry. a) Phosphor layer is parallel to trans-
ducer. Laser excitation enters through the top surface and the tempera-
ture field is visualized through the same. b) Phosphor layer is orthogonal
to transducer. Laser incidence and camera view can be on the same side
(‘in reflection’) or opposing sides (‘in transmission’). c) Depiction of the
relative size of the HMX crystal and the phosphor layer.
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4.2.2 Setup and phosphorescence imaging

The phosphor was illuminated by a 10 Hz Nd:YAG laser operating at its third har-

monic (355 nm, 8 ns pulse width). A waveplate and polarizer were placed in the beam

path and allowed for control of the applied laser fluence. A diffuser was placed in front

of the sample to homogenize the beam profile before incidence. Depending on the ori-

entation of the sample on the transducer, the laser beam can either contact the sample

‘in reflection’ or ‘in transmission’. The former is described as the beam contacting the

sample from the same side as viewed by the camera. ‘In transmission’ refers to the beam

contacting the sample from the side opposite the viewpoint of the camera; that is, the

sample is placed directly between the beam and the camera system. The ‘in reflection’

mode provides greater signal, whereas, the ’in transmission’ mode allows for perfect or-

thogonality between the beam, phosphor plane, and camera system – mitigating angular

dependence of the beam profile and detection system.

The ultrasonic transducer received an amplified sinusoidal signal (Agilent N9310A,

MiniCircuits LZY-220, Keysight E3634A) near a resonance frequency of 210.5 kHz [28].

The amplifier was fixed at +43 dB and the function generator was set to −3 dBm

supplying 10 W to the transducer. The signal and its duration were recorded on an

oscilloscope (Tektronix DPO 4034). The phosphor luminescence was collected and spec-

trally separated into two images by a custom stereoscope and a single attached lens that

allowed imaging of the temperature distribution occuring within sum-mm hot spots.

The selected filters were 390±5 nm (CW, FWHM) and 420+ nm (cut-on wavelength).

The two images were placed onto a single camera detector by the same stereoscope.

Details on the stereoscope are provided in Fig. 4.2. The images were recorded by a

CMOS camera (Vision Research Phantom V7.3) synchronized with the leading edge of

the laser source with a 100µs exposure time. The entire experimental setup is seen in

Fig. 4.3. After the images were acquired, a background image was subtracted and the

images were spatially registered via a MATLAB program. The images were divided to

form an intensity ratio image and flat fielded by division with a reference intensity ratio
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image at room temperature. Example camera images of a multi-crystal sample before

and after observed heating are shown in Fig. 4.4.

Figure 4.2. Built-in-house stereoscope. a) lens mount, b) 50:50 beam-
splitter and knife edge, c) converging lens, d) filter mount, e) high
transmission mirror, f) right-angle mirror, g) converging lens, h) camera
mount. Colored lines: simplified image path.

4.2.3 Sylgard transmission and laser fluence

The transmissivity of Sylgard was explored as a potential confounding factor in

temperature evaluation. Absorption of the incident UV laser beam through the volume

of the sample could result in laser induced heating. To observe laser induced heating a

test sample was placed in the beam path and the transducer was not engaged. During

this time the sample was observed by an infrared camera (FLIR A320) operating at 30

Hz with an assumed emissivity of 1. The surface temperature was noted to rise ≈ 25◦C
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Figure 4.3. Experimental setup.

over a time period of ≈ 90s before reaching steady state. This rate of heating could be

significant for some cases but does not affect the conclusion for short-time dynamics.

Additionally, the Sylgard could absorb the phosphor luminescence. Preferential

transmission of one spectral band over another could adversely affect sensitivity to tem-

perature for a given filter selection. To explore this effect, a clear block of Sylgard (with-

out phosphor) was placed in a spectrophotometer (Agilent Cary 6000i UV-Vis-NIR) and

a transmission efficiency profile was generated. The spectrophotometer chamber tem-

perature was varied between 0◦C and 100◦C. The transmission profile was relatively flat

over the near-UV and visible wavelengths and did not change with temperature over the

prescribed range. Consequently, we concluded that Syglard is an acceptable candidate

for making phosphor thermography measurements from within the sample volume.

Laser fluence has been identified as a confounding factor in temperature measure-

ments for many phosphors. Abram et al. [44] investigated the effect of laser fluence on

ZnO phosphor and its effect was briefly considered here. The ZnO:Ga intensity ratio
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Figure 4.4. Example image of a mult-crystal sample. The left side of
both images is the sample visualized through the 420+ nm filter and
the right side is the image replicated (and reflected) through the 390±5
nm filter. Top: before activation of transducer. Bottom: 10 s after
activation of transducer. Internal heating heating is observed where
the right image pane becomes darkened relative to the left image pane
(relative decrease in 390±5 nm filtered signal strength compared to 420+
nm filtered signal). Sample height is approximately 4 mm.



29

was recorded at various temperatures and laser fluences by both the experimental setup

previously described – with a stereoscope and camera – and with a spectrometer (Ocean

Optics USB2000+UV-VIS). When determining the intensity ratio with the spectrom-

eter, the power spectrum was numerically integrated over the filter bands assuming a

perfect band profile and the results are given in Fig. 4.5. The intensity ratio determined

by the camera system agreed with the spectrometer results after multiplication by a

constant scalar. The discrepancy between spectrometer and camera intensity ratios is

attributed to non-perfect filters and poor transmission efficiency of the 390nm light in

the stereoscope. Conforming with Abram et al. we observed that the intensity ratio is

dependent on laser fluence, and moreover point out that the phosphor is less sensitive

to temperature at lower fluences. For the presented tests, the laser fluence was kept at

49 mJ
cm2 .

Figure 4.5. Effect of laser pulse energy on intensity ratio. Beam diameter was 2cm.

4.2.4 Calibration

Developing a calibration curve relating observed intensity ratio to temperature re-

quires accurate knowledge of temperature. To this end, a custom, optically accessible

furnace was procured (Mellen Company) allowing precise temperature control with few
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spatial variations. A calibration sample was surrounded by a copper block containing

three type-K thermocouples embedded in close proximity to the sample. The copper

block served to dampen any spatial or temporal fluctuations in temperature. The tem-

perature, indicated by the thermocouples, was recorded at each shot while the furnace

was slowly heated. Use of the copper block and automated calibration routine was in-

spired by Nada et al. [45]. The thermocouple readings were never observed to differ by

more than 1◦C. For each image, a histogram of intensity ratios was generated and the

average thermocouple temperature was recorded. A top-down view of these histograms

evolving with temperature is given in Fig. 4.6. Select histograms are also called out

in the figure inset. A calibration curve was created by fitting the mean intensity ratio

of each image against temperature. With the calibration curve, the intensity ratio of

100 averaged images at various temperatures (determined by the thermocouples) were

converted to temperature and subsequent temperature histograms. That is, each his-

togram is composed from the pixel ratio values after averaging of 100 images acquired

at a single temperature. A selection of these histograms are seen in Fig. 4.7 alongside

the thermocouple temperature.

The normalized standard deviation of the phosphor-determined temperature is also

given in Fig. 4.7. Although there is greater variation in intensity ratios at elevated

temperatures, the phosphor also has greater sensitivity in this range. Consequently, the

normalized variation in temperature determined by the phosphor system is nearly con-

stant over the given temperature range. The authors note that because the 100 images

were averaged, the presented normalized standard deviation only serves as an uncertainty

estimate spatially. Also, this estimate is optimistic because it and the calibration curve

were generated by the same data. In the future, the authors prescribe compiling (as

opposed to averaging) the intensity ratios over a range of shots at selected temperatures

on a new calibration sample. This method would provide an accurate estimate of the

temperature uncertainty accounting for both spatial and temporal variations. Finally,

an optical rail system was used so that the calibration sample could be slid out of the

furnace and the sample for testing could be slid into the same spot as the calibration
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Figure 4.6. Top-down view of intensity ratio histograms to temperature.
Breaks in curve occur when the camera systems stops recording to save
data. Inset: Alternative view of histograms at select temperatures show
narrower distributions at lower temperatures.

sample (with the furnace off and cool) so that no readjustment or refocusing was needed

between calibration and testing.

4.3 Results and discussion

An example image of a hot spot evolving near an HMX crystal under ultrasonic

mechanical excitation is shown in Fig. 4.8. In this case, the laser beam is illuminating

the phosphors ‘in transmission’ and the phosphor plane is oriented vertically – orthogonal
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Figure 4.7. Left axis: Temperature histograms of 100 averaged frames at
select thermocouple temperatures. Right axis: (symbol: •) Normalized
standard deviation.

to the transducer. The temperature is seen to rise in the vicinity of the HMX crystal,

and this event occurs at elevated temperatures and in a short time span indicating that

heat conduction from the transducer surface is not yet significant.

For the same example, Fig. 4.9 demonstrates how the hot spot evolves in time. In this

figure, before the hot spot is initiated, the average sample temperature and the spatial

standard deviation are plotted. Once hot spot initiation has occurred, the maximum

temperature over the sample is shown. Before the hot spot initiates, the mean sample

temperature steadily increases. The rate of the bulk temperature increase is on the same

order as that observed by an infrared camera while testing for laser induced heating,

and is subsequently attributed to slight laser heating. It is also noted that while the

spatial standard deviation of the recorded temperature (width of the errorbars) remains

fairly constant during this period, the temperature varies by 1-2◦C from frame-to-frame.

This is likely due to shot-to-shot fluctuations in laser energy, which was not accounted

for during testing. This could be corrected using procedures outlined by Abram et

al. [44]; however, even with this temporal deviation, the error in temperature is small
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compared to the hot spot temperature and the relaxed precision still marks a significant

improvement over other measurement attempts.

Figure 4.8. Visualized temperature field at selected frames. Frame field
of view is 4mm by 4mm.

4.4 Conclusion

The intensity ratio method of phosphor thermography was performed in order to

remotely measure temperature from within a simplified PBX undergoing mechanical ex-

citation. Sylgard 184 was used as the binder in the PBX due to its optical clarity and

was not shown to have adverse affects on the temperature measurement or sensitivity.

ZnO:Ga phosphor sensitivity and calibration are shown to be dependent on incident

fluence and should be considered in future designs. Spatially, the pixel-to-pixel standard

deviation was shown to be less than 2% for the prescribed temperatures ≤ 220 ◦C. The

temporal, frame-to-frame, standard deviation was not computed, but observed measure-

ment fluctuations are likely attributed to shot-to-shot fluctuations in laser energy and

can be corrected in future tests. The spatially and temporally resolved temperature field



34

Figure 4.9. Plot detailing the temporal history of the hot spot. Inset:
Magnified view of the average temperature and standard deviation before
hot spot occurrence.

of an evolving hot spot can be used to shed light on the underlying physical phenomena

governing hot spot initiation and growth.
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5. SENSITIVITY TESTS

5.1 Neyer Sensitivity Test

Sensitivity tests are commonly used to estimate hidden (or latent) distribution pa-

rameters. For example, upon producing a batch of explosives it is assumed that each

explosive specimen has a critical threshold value that, upon surpassing, will result in a

positive response (detonation, a ‘go’). The critical threshold values are assumed to be

a continuous variable with an unknown probability density function. The difficulty of

this problem arises because the critical threshold of each specimen cannot be directly

measured. Consider the case of determining the yield or fracture threshold of a given

material. These thresholds can be directly measured by slowing increasing the stress

(or rather force) applied to the specimen with a tensile testing machine and noting the

stress at which yielding or fracture occurs. An analogous test does not exist when trying

to determine the critical threshold values of explosives.

When testing the sensitivity of explosives to impact or shock, one can impose a

non-varying stress level (input pressure, drop-weight height, etc.) on the test article

(explosive specimen) and note whether a response (detonation, ‘go’ or ‘no-go’) occurs.

Unlike the fracture case, the input level cannot be slowly augmented until detonation is

achieved. Additionally, if a positive response is not achieved the specimen cannot simply

be re-tested at a higher input level because the specimen may have been damaged by

the original test. Damage (void creation, phase change, etc.) is theorized to alter the

sensitivity, or critical threshold, of the specimen – which is obviously unwanted since

this is exactly the value one wishes to measure.

Thus, sensitivity tests are herein defined as methods to estimate the pa-

rameters which prescribe the probability density function of critical threshold

values; where these critical thresholds cannot be directly measured (hidden,

latent).
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In 1989, Barry T. Neyer published a paper outlining a ‘new sensitivity’ test and

detailed its advantages over previous methods such a Probit, Bruceton, Robbins-Monro,

and Langlie [46]. Later, in 1994, Neyer published an updated version of his sensitivity

test; altering the sequential design algorithm (described later) [47]. The test assumes

that the distribution of critical thresholds is modelled by a normal or logistic probability

density function (pdf), or can be easily transformed to make the distribution normal.

Normal and logistic distributions are parameterized by two variables, µ and σ. Neyer

estimates these parameters using maximum likelihood estimators. As a point of notation,

µ̂ and σ̂ are the estimates or estimators of the true parameters µ and σ. An in-depth

description of the maximum likelihood estimation to sensitivity tests is attributed to

Cornfiled and Mantel [48] and Golub and Grubbs [49] - with the method originating

in earlier publications by Dixon and Mood [50] and by Finney [51], Bliss [52], and

Fisher [53].

Once the maximum likelihood estimates (MLEs) have been calculated, Neyer pro-

posed a sequential design in which the next stimulus level to be tested is that which

maximizes the determinate of the Fisher information matrix [47]. This essentially at-

tempts to simultaneously minimize the variances of the estimated parameters, µ̂ and σ̂,

by decreasing the Cramér-Rao lower bound (CRLB) of said parameters. Although, as

will be described later, the MLE of σ is not unbiased - and therefore is not bounded

by the CRLB - minimizing the CRLB will generally decrease the variance of σ̂ because

they are computed from the same likelihood function.

‘Unique’ maximum likelihood estimates will not be obtained unless the stimulus

level of the smallest positive response is less than the stimulus level of the greatest non-

response (no “overlap" in responses) [54]. That is, the MLE will return a value of zero for

σ̂ and any value between the greatest non-response level and smallest positive response

level for µ̂. Neyer’s sequential design algorithm overcomes this deficiency by using an

expandable binary-search algorithm to test points until overlap is achieved.

While much of the information outlined in Neyer’s papers - in terms of the statistics

- was previously published, Neyer greatly impacted the field by bringing the test to

the energetic materials community, comparing the test to all other known methods,
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creating a robust sequential design algorithm, and producing a commercial software

implementation of the test [55].

Specific descriptions of the maximum likelihood estimators, the information matrix,

and the sequential design algorithm are given below.

5.1.1 Maximum Likelihood Estimators

Here, we will used the notation used by Neyer and the previous authors. In sec-

tion 5.2, the notation will be modernized.

Let L(i) represent the stimulus level to be tested on specimen i. The standardized

level is then given by z(i) = L(i)−µ
σ

, where µ and σ are the parameters that describe

the assumed normal distribution of critical threshold values. Then the probability of

observing a positive response in a randomly selected specimen is

p(z(i)) =

∫ z(i)

−∞
f(t)dt (5.1)

where,

f(t) =
1√
2π
e

−t2
2 (5.2)

Let y(i) represent the observed response at stimulus level L(i); and let y(i) = 1 and

y(i) = 0 for a positive and negative response (‘go’, ‘no go’), respectively. Because the

response is described by a binary variable, the likelihood function follows the form of a

binomial model

L(µ, σ) =
n∏
i=1

p(z(i))y(1− p(z(i)))1−y (5.3)

where n is the number of specimens tested. If the same stimulus level is tested more

than once then let N (i) andM (i) represent the number of positive and negative responses

observed at L(i), respectively. Then, the total number of test performed at level L(i) is

equal to (N (i) +M (i)). Using this notation, equation 5.3 can be written as

L(µ, σ) =
n∏
i=1

(
N (i) +M (i)

N (i)

)
p(z(i))N

(i)

(1− p(z(i)))M
(i)

(5.4)
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Additionally, (1− p(z(i))) is equivalent to p(−z(i)) and can be referred to as q(i) so that

the likelihood function is

L(µ, σ) =
n∏
i=1

(
N (i) +M (i)

N (i)

)
p(z(i))N

(i)

q(z(i))M
(i)

(5.5)

The values of µ and σ that maximize the likelihood function for the data set

{(L(1), N (1),M (1)), (L(2), N (2),M (2)), . . . (L(n), N (n),M (n))} are the MLEs µ̂ and σ̂.

Note that in the notation of equation 5.5, n now represents the number of unique stimulus

levels tested and not the total number of tests performed.

The parameters that maximize the likelihood function are the same as those that

maximize the natural logarithm of the likelihood function because the natural logarithm

is a monotonically increasing function. The log-likelihood function is often easier to work

with analytically, and additionally, it is the log-likelihood function that is used in the

definition of the Fisher information matrix used later. Thus, the log-likelihood function

is

l = log(L) =
n∑
i−1

[
log

(
N (i) +M (i)

N (i)

)
+N (i)log

(
p(z(i))

)
+M (i)log

(
q(z(i))

)]
. (5.6)

The first order partial derivatives of equation 5.6 are useful to compute the MLE, as

all of the first order partial derivatives must equal zero when l is maximized. The are

derived as follows:

∂l

∂µ
=

n∑
i=1

[
N (i)∂

(
log(p(z(i))

)
∂p(z(i))

∂p(z(i))

∂z(i)

∂z(i)

∂µ
+M (i)∂

(
log(q(z(i))

)
∂q(z(i))

∂q(z(i))

∂z(i)

∂z(i)

∂µ

]
(5.7)

∂l

∂σ
=

n∑
i=1

[
N (i)∂

(
log(p(z(i))

)
∂p(z(i))

∂p(z(i))

∂z(i)

∂z(i)

∂σ
+M (i)∂

(
log(q(z(i))

)
∂q(z(i))

∂q(z(i))

∂z(i)

∂z(i)

∂σ

]
(5.8)

As seen, equations 5.7 and 5.8 are derived by the continuous, albeit tedious, appli-

cation of the ‘chain rule’ in calculus. The partial derivatives found in these equations

are formulated as
∂
(
log(p(z(i)))

)
∂p(z(i))

=
1

p(z(i))
(5.9)

∂
(
log(q(z(i)))

)
∂q(z(i))

=
1

q(z(i))
(5.10)
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∂p(z(i))

∂z(i)
= f(z(i)) (5.11)

∂(z(i))

∂z(i)
= −f(z(i)) (5.12)

∂z(i)

∂µ
=
−1

σ
(5.13)

∂z(i)

∂σ
=
−(L(i) − µ)

σ2
(5.14)

Substituting equations 5.9 – 5.14 into equations 5.7 and 5.8 yields

∂l

∂µ
=

n∑
i=1

[
N (i) 1

p(z(i))
f(z(i))

−1

σ
+M (i) 1

q(z(i))
f(z(i))

1

σ

]
(5.15)

∂l

∂σ
=

n∑
i=1

[
N (i) 1

p(z(i))
f(z(i))

−(L(i) − µ)

σ2
+M (i) 1

q(z(i))
f(z(i))

L(i) − µ
σ2

]
(5.16)

These derivatives are useful as they will almost certainly be used in any optimization

routine or algorithm in order to calculate the parameter values which maximize l.

5.1.2 Information Matrix

The Fisher information matrix is defined as

INF = −E [H[log(L)]] (5.17)

where E[·] is the expectation operator, H[·] is the Hessian, and L is the likelihood

function. The log-likelihood function was previously defined as l and the Hessian is a

matrix of second partial derivatives. The partial derivatives are taken with respect to

the parameters being estimated; in this case, µ and σ. Therefore,

H [log(L)] = H [l] =

 ∂2l
∂µ2

∂2l
∂σ∂µ

∂2l
∂µ∂σ

∂2l
∂σ2

 (5.18)

Let the elements of the information matrix be described as

INF =

a11 a12

a21 a22

 (5.19)
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and the inverse of the information matrix be

[INF ]−1 =

b11 b12

b21 b22

 (5.20)

Under this description b11 and b22 are the Cramér-Rao lower bounds (CRLBs) for µ̂

and σ̂, respectively. However, the CRLB only applies to estimators that are unbiased. If

µ̂ is the estimator for µ and σ̂ for σ, then µ̂ and σ̂ are unbiased estimators of µ and σ if

E[µ̂] = µ and E[σ̂] = σ. Rather than attempt to solve for µ̂ and σ̂ when equations 5.15

and 5.16 are equal to zero and then take the expectation of those expressions, a simple

simulation is run with synthetic data.

Consider the latent random variable, which represents the critical threshold values,

to be given by a normal distribution ∼ N(µ, σ). For the simulation, let µ = 40 and

σ = 3. n stimulus levels are tested; stimulus levels are spaced equidistant from each

other between the range of [41, 49]. The outcome of each test is decided randomly via

a Monte-Carlo simulation. For every value of n the MLE of µ̂ and σ̂ is calculated and

this simulation is repeated 2000 times (holding n constant); the values of µ̂ and σ̂ are

averaged together in order to estimate E[µ̂] and E[σ̂]. The results for n = 3 to 39 are

shown in Figure 5.1.2. This figure demonstrates that µ̂ is an unbiased estimator but σ̂

is a biased estimator; although the bias decreases with increasing sample size n. Neyer

estimated the bias of σ̂ over a wide variety of designs [47](permutations of good and

poor initial guesses of the parameters) and approximated the relative bias as

relative bias =
−3.5

n
. (5.21)

However, despite the biasedness of σ̂, minimizing the CRLB will decrease the variance

of σ̂ since both the CRLB and σ̂ are derived from the same likelihood function.

Moving forward, minimizing the variance of µ̂ and σ̂, or decreasing the values of b11

and b22, is related to maximizing the values of a11 and a22 in the information matrix (see

last paragraph of this section). Referring back to equations 5.17 and 5.18, it can be seen

that these terms are

a11 = −E
[
∂2l

∂µ2

]
(5.22)
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Figure 5.1. Expected values of estimators σ̂ and σ̂ for simulated data

a22 = −E
[
∂2l

∂σ2

]
(5.23)

recalling that l is the log-likelihood function given by equation 5.6. A derivation of the

a11 term is provided here starting from equation 5.15. The end result of the a12 and a22

terms are given but an explicit derivation is not provided as these follow a similar form

to the derivation of a11.

∂2l

∂µ2
=

n∑
i=1

N (i)−1

σ

∂
(
f(z(i))

p(z(i))

)
∂µ

+M (i)−1

σ

∂
(
−f(z(i))

q(z(i))

)
∂µ

 (5.24)

∂
(
f(z(i))

p(z(i))

)
∂µ

=
1

p(z(i))

∂
(
f(z(i))

)
∂µ

+ f(z(i))
−1

(p(z(i)))
2

∂
(
p(z(i))

)
∂µ

(5.25)

∂
(
−f(z(i))

q(z(i))

)
∂µ

=
−1

q(z(i))

∂
(
f(z(i))

)
∂µ

+ f(z(i))
1

(q(z(i)))
2

∂
(
q(z(i))

)
∂µ

(5.26)
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∂
(
f(z(i))

)
∂µ

=
∂f(z(i))

∂z(i)

∂z(i)

∂µ
= z(i)f(z(i))

1

σ
(5.27)

∂
(
p(z(i))

)
∂µ

=
∂
(
p(z(i))

)
∂z(i)

∂z(i)

∂µ
= f(z(i))

−1

σ
(5.28)

∂
(
q(z(i))

)
∂µ

=
∂
(
q(z(i))

)
∂z(i)

∂z(i)

∂µ
= f(z(i))

1

σ
(5.29)

Making the substitutions results in

∂2l

∂µ2
=

n∑
i=1

{
N (i)−1

σ

[
1

p(z(i))
z(i)f(z(i))

1

σ
+ f(z(i))

1

(p(z(i)))
2f(z(i))

1

σ

]
+

M (i)−1

σ

[
−1

q(z(i))
z(i)f(z(i))

1

σ
+ f(z(i))

1

(q(z(i)))
2f(z(i))

1

σ

]}
.

(5.30)

And now, after some simplification the expression becomes

∂2l

∂µ2
=

n∑
i=1

{
N (i) 1

σ2

1

p(z(i))
f(z(i))

[
−z(i) − f(z(i))

p(z(i))

]
+

M (i) 1

σ2

1

q(z(i))
f(z(i))

[
+z(i) − f(z(i))

q(z(i))

]}
.

(5.31)

Applying the expectation operator and negating

−E
[
∂2l

∂µ2

]
=

n∑
i=1

{
E[N (i)]

1

σ2

1

p(z(i))
f(z(i))

[
+z(i) +

f(z(i))

p(z(i))

]
+

E[M (i)]
1

σ2

1

q(z(i))
f(z(i))

[
−z(i) +

f(z(i))

q(z(i))

]}
.

(5.32)

and noting that

E[N (i)] = p(z(i))(N (i) +M (i)) (5.33)

E[M (i)] = q(z(i))(N (i) +M (i)) (5.34)

after substitution the expression becomes

−E
[
∂2l

∂µ2

]
=

n∑
i=1

{
(N (i) +M (i))

1

σ2
f(z(i))

[
z(i) +

f(z(i))

p(z(i))
− z(i) +

f(z(i))

q(z(i))

]}
. (5.35)

This expression is further simplified to its final form

a11 = −E
[
∂2l

∂µ2

]
=

n∑
i=1

{
(N (i) +M (i))

1

σ2
f(z(i))2

[
1

p(z(i))
+

1

q(z(i))

]}
. (5.36)
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The a12 (same as a21) and a22 terms are given as

a12 = −E
[
∂2l

∂µ2

]
=

n∑
i=1

{
(N (i) +M (i))

z(i)

σ2
f(z(i))2

[
1

p(z(i))
+

1

q(z(i))

]}
. (5.37)

a22 = −E
[
∂2l

∂µ2

]
=

n∑
i=1

{
(N (i) +M (i))

(
z(i)
)2

σ2
f(z(i))2

[
1

p(z(i))
+

1

q(z(i))

]}
. (5.38)

Next, these ‘a terms’ (a11, a12, a22) are plotted in Figure 5.1.2 for a single specimen.

This plot demonstrates that a11 and a22 cannot be maximized simultaneously. However,

a good amount of information about µ and σ is achieved if the test is conducted at µ±σ.

Quoting directly from Neyer [47],

A D-optimal result will be obtained when the determinant of the information

matrix is maximized.

. . .

Since the off-diagonal terms [a12 and a21 here] of the matrix are typically

small compared to the diagonal terms, a D-optimal test will also approxi-

mately minimize the the product of the asymptotic variances of both µ and

σ.

Thus, when choosing the next stimulus level to test in a sequential design of experiments,

Neyer’s algorithm elects the level which maximizes the determinate of the information

matrix because this relates to minimizing the variances of µ̂ and σ̂.

5.1.3 Sequential Design

As noted in section 5.1.2, Neyer’s sensitivity test chooses the stimulus level which

maximizes the information matrix. However, in order to compute the information ma-

trix, at least one point needs to be tested and estimates of µ and σ are required.

When beginning an experiment, it is possible that the experimenter has no prior

knowledge about µ or σ; this scenario becomes more likely when testing a new material.
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Figure 5.2. Values of the elements in the information matrix for a single specimen

Additionally, as mentioned, unique maximum likelihood estimators will only occur if

there is overlap in the test outcomes. Neyer’s algorithm is robust and overcomes these

deficiencies and a brief summary of its is provided here.

To initialize the algorithm, the user needs only to provide a guess as to the lower

and upper bounds of the expected µ and a guess for σ. The algorithm begins with an

binary search between the given bounds. The bounds are updated so that lower bound

becomes the maximum stimulus level that produced a negative response and the upper

bound is the minimum stimulus level that provides a positive response. This procedure

is repeated until difference in the bounds (upper bound minus lower bound) becomes

less than the guess provided for σ. It should be noted that if the algorithm only detects

a single type of response, the bounds are automatically adapted to increase the search

length until mixed responses are observed.
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Next, the algorithm uses the midpoint between highest stimulus level returned a

negative response and the lowest stimulus level that returned a positive response as an

estimate for µ. This µ along with the original guessed σ, σguess, and the data taken

thus far (set of stimulus levels and their respective responses) are used to maximize the

determinate of the information matrix. The stimulus level that maximizes the determi-

nate of the information matrix is the next level tested. This procedure is repeated until

overlap is achieved, and on each repetition σguess is updated by σguess = 0.8 ∗ σguess. It

should be noted that since σguess is decreasing, it is possible that the difference ([low-

est stimulus that resulted in a positive response] - [highest stimulus that resulted in a

negative response]) becomes greater than σguess. In this case, the algorithm resumes a

binary search until this difference becomes less than the updated σguess or until overlap

is achieved.

Once overlap is achieved, the guessed values for µ and σ are no longer used, but

the maximum likelihood estimates are calculated. The algorithm performs a brief check

to ensure that these estimates are not ‘wild’ and then uses these to determine the in-

formation matrix. Again, the stimulus level which maximizes the determinate of the

information matrix is suggested as the next tested level. From this point, the algo-

rithm continues on indefinitely until the experimenter as tested as sufficient number of

specimens or until the set of specimens have been depleted.

As a visual aid, Figure 5.3 gives a slightly adapted flowchart of Neyer’s sequential

design of experiments algorithm. In the original version, the maximum likelihood es-

timates of µ and σ are computed after the binary search has terminated regardless of

whether overlap has been achieved. Without overlap, non-unique estimates are returned

and σ̂ should be zero. σ̂ = 0 is used as a decision flag: if true, then the current guesses

of µ and σ are provided to the information matrix; and if false, the unique maximum

likelihood estimates are passed to the information matrix (after ‘wild’ check, of course).

However, I did not wish to rely on the MLE of σ to be zero as numerical precision or

the choice of optimizer may preclude σ̂ from being precisely zero. In my adapted algo-

rithm, which is represented by the flowchart, the MLEs of µ and σ are only calculated

if overlap is achieved. The occurrence of overlap is determined by simply looking at



46

the difference between the highest negative level and lowest positive level; a quantity

which is already calculated and stored. If this difference is negative, then overlap in the

data is present. Without presenting proof, I believe this alteration will provide a more

stable decision block between various coding languages, machine types, and choice of

optimization routine.
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5.2 Modernized (Generalized) Notation

In the preceding works, the distribution of the hidden variable is quickly assumed to

be normal or logistic. Once this assumption is made, the subsequent derivations mostly

focus on the maximum likelihood estimators, their properties, and numerical procedures

for their calculation. However, a more general picture of the problem – estimating

the latent distribution in a sensitivity test – emerges when no assumption about the

distribution is made.

Using ‘plate’ notation, the current problem framework is shown graphically in Fig-

ure 5.4. In this figure i is the specimen number and there are n total specimens to be

tested. xi is the stimulus level at which specimen i is tested and yi is the specimen

response (binary response). hi is the actual threshold of specimen i, and all of the spec-

imens are assumed to have threshold values that originate from a distribution uniquely

determined by two parameters, µ and σ.

Under this model the probability yi is easily described as

p(yi = 1|xi, hi) =

1, if xi ≥ hi

0, otherwise
(5.39)

or

p(yi = 0|xi, hi) =

1, if xi < hi

0, otherwise .
(5.40)

Now, maintaining generality, it’s assumed that the distribution hi is given by a set

of parameters ~θ, which is written as p(hi|~θ). Following the rules of probability, the joint

distribution of yi and hi is

p(yi, hi|xi, ~θ) = p(yi|xi, hi)p(hi|~θ). (5.41)

hi can be marginalized out to produce a probability measure for yi that is given given

xi and ~θ as

p(yi|xi, ~θ) =

∫ ∞
−∞

p(yi|xi, hi)p(hi|~θ)dhi. (5.42)
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Now, a ‘nested’ description of p(yi|xi, hi) could be produced, but it is easier to work with

the case of p(yi = 1|xi, hi) which was intuitively formed and shown in equation 5.39.

Making this substitution into equation 5.42 yields

p(yi = 1|xi, ~θ) =

∫ ∞
−∞

p(yi = 1|xi, hi)p(hi|~θ)dhi. (5.43)

According to equation5.39, p(yi = 1) is equal to one when xi ≥ hi and is zero otherwise.

Thus, in the integral of equation 5.43 the integrand is zero for all values hi > xi so that

xi can replace ∞ as the integral upper limit.

p(yi = 1|xi, ~θ) =

∫ xi

−∞
(1)p(hi|~θ)dhi. (5.44)

Once p(yi = 1) is known, p(yi = 0) is simply given by 1 − p(yi = 1) and the likelihood

function can be formed. As mentioned, the previously listed works assume that hi is

described by either a normal or logistic distribution parameterized by µ and σ. If the

the normal distribution assumption is made then p(hi) ∼ N(µ, σ) and equation 5.44

becomes

p(yi = 1|xi, ~θ) =

∫ xi

−∞
N(µ, σ)dhi = Φ(xi|µ, σ) (5.45)

where Φ(xi|µ, σ) is the cumulative distribution function (cdf) of a normal distribution

with given parameters µ and σ. Likewise, if a logistic distribution assumption is made

then equation 5.44 reduces to

p(yi = 1|xi, ~θ) =

∫ xi

−∞
Logistic(µ, σ)dhi = S(xi|µ, σ) (5.46)

where S(xi|µ, σ) is the cdf of the logistic distribution;

S(xi|µ, σ) =
1

1 + exp
(
−(xi−µ)

σ

)
.

(5.47)

Using this generalized model, and starting from either equation 5.42 or 5.44 opens up the

application of additional statistical methods such as expectation maximization, Bayesian

analysis, and Gaussian processes; as demonstrated in subsequent sections.
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5.3 Proposed Methods

In an effort to update – or at least provide more testing options to – the currently

used sensitivity tests, additional tests, alongside their derivation and performance, are

presented here.

5.3.1 Conjugate Neyer

Neyer’s sequential design of experiments algorithm, as described in section 5.1.3,

elects the next stimulus level for testing by maximizing the determinate of the informa-

tion matrix. The process of maximizing the determinate maximizes information about

both parameters µ and σ simultaneously. However, the stimulus level that simulta-

neously maximizes both parameters is most likely not the same stimulus level that

maximizes the information (or minimizes the CRLB) of either parameter µ or σ when

considered individually. This test is a simple adaption of Neyer’s sequential design of

experiments wherein the next stimulus level is chosen as best suited with respect to a

single parameter for a given test. For each new test, the parameter µ or σ is alternated

so that no single estimator completely dominates the experiment design.

5.3.2 Maximum Likelihood Estimation Applied to Mixture of Gaussians

One major drawback to most of the aforementioned sensitivity tests is that the un-

derlying threshold is assumed to be either normally or logistically distributed. While

this assumption is valid for many real systems and materials, when it is not true, discov-

ery of the actual latent variable distribution is not possible. Thus, a more generalized

approach is desirable – which can return a normal distribution when applicable but also

return an arbitrary distribution that is more representative of the probability structure.

One potential case of interest occurs when the threshold distribution is bimodal, like

that produced by a mixture of two Gaussian distributions. This scenario arises in a

variety of situations, including: when two physical mechanisms are competing to govern

the material sensitivity (e.g. two initiation mechanisms), or when specimen preparation
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yields two batches of samples where each batch has a unique mean threshold value. For

the latter case discovery of the bimodal distribution would serve as a useful anomaly

detection or quality control tool.

It should be noted that when a the latent threshold values are distributed bimodally

the application of a normal (or logistic) assumption will result in an estimate for µ that

is between the two modes and an estimate for σ that is too large. In other words, this

assumption will fit a broad normal (or logistic) distribution that encompasses the entirety

of the bimodal distribution. Also, when using Neyer’s sequential design of experiments

algorithm, σ̂ will require more runs to stabilize. To illustrate these points, Figure 5.5

is an example bimodal threshold distribution alongside its accompanying cumulative

density function (cdf).

Figures 5.6 to 5.8 show the evolution of the estimates µ̂ and σ̂ when the Neyer sequen-

tial design of experiments algorithm is applied to the latent distribution of Figure 5.5.

The response, ‘go’ or ‘no-go’, of each tested stimulus level was determined via a simple

Monte Carlo simulation. In these figures the black lines indicate the actual pdf and cdf,

the red lines indicate the current estimated distributions, the vertical ‘carrot’ symbols

indicate the location of the next requested stimulus level, the x-axis is the stimulus level

(a.u.), and the tested points and their results are shown in blue and green points.

As expected, figures 5.6 to 5.8 demonstrate that a normal assumption results in

a normal distribution that is broad and cannot capture the fine details of the actual

distribution and its cdf. This affect is exacerbated when greater separation between the

Gaussians is present as seen in figures 5.9 to 5.12.

As a first step toward generalizing sensitivity testing to a richer set of distributions,

the maximum likelihood estimators and the information matrix criteria for stimulus

level selection – or the method described by Neyer and predecessors – is expanded to the

bimodal (mixture of two Gaussians) case. It will be demonstrated shortly that maximum

likelihood estimation is a poor method of choice for a mixture of Gaussians.

The derivation of the MLEs and information matrix for a mixture of two Gaussians

is lengthy. As such, it is not reproduced here but can be found in appendix A. Assuming

the underlying distribution given in Figure 5.5, and testing at 30 equidistant stimulus
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levels from 45 to 59, inclusive, the result of the maximum likelihood estimators are shown

in Figure 5.13.

Intuition into this result is gained by considering the estimators assuming a normal

hidden distribution when no overlap is present in the data. This is the ‘non-unique’

case as described earlier which returns estimates σ̂ = 0 and µ̂ = (midpoint between

highest negative response and lowest positive response). If plotted, these estimates

would appear as a single spike in the pdf centered at µ̂ and a step from 0 to 1 in the

cdf, again centered at µ̂. Figure 5.13 has a similar profile but with two ‘steps’ centered

over µ̂1 and µ̂2 respectively. So, the bimodal MLEs are simply ‘fits’ to the two regions

of non-overlapping data; which will always be present. Upon recognizing the failure

mode of the currently described MLE framework it is not hard to find resources which

explain other methods to approximate the MLEs of a mixture of Gausians. For example,

Rossi [56] states that the E-M algorithm is the only reliable way to compute maximum

likelihood estimates for the mixture of normals model.

Sequential Design

Despite the drawbacks of estimating the parameters of a mixture of normals with

the maximum likelihood method, the information matrix may prove to be useful in

determining which stimulus levels to test. In this model, the information matrix is

composed of 25 terms; 15 of which are unique. The derivation of these terms is lengthy

and is provided in appendix A. For now, it suffices to plot the information matrix terms

like in Figure 5.1.2 for the unimodal case. Plotting all 15 terms at once is crowded so only

the 5 terms on information matrix diagonal are shown in Figure 5.14. In this figure, the

terms a11, a22, a33, a44, a55 are related to the variances of the estimators µ̂1, σ̂1, µ̂2, σ̂2,

and π̂1, respectively. Figure 5.15 plots only terms a11 and a22 and is provided for clarity.

As seen in Figure 5.14, simultaneous maximization of information about the estimators

is impossible, like unto the unimodal case, and moreover, a suitable compromise point

does not exist.
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If no single stimulus level can serve as an adequate compromise to maximize the

information about all the estimators then a ‘conjugate’, or alternating, design should

be used. This design would elect the stimulus level which maximizes information about

µ̂1 (a11), then σ̂1 (a22), and so on. It should be noted that maximizing the information

about a term, like a11, is related to, but not equivalent to, minimizing the variance of

µ̂1. Consequently, the design can be further altered to alternate between stimulus levels

which minimize V [µ̂1], V [σ̂1], and so forth.
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Figure 5.3. Flowchart of Neyer’s sequential design algorithm
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Figure 5.3. continued
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∼ N(54, 2.5). The prefactors of the left and right Gaussian distributions
are .4 and .6, respectively. Right: the cumulative density function of
bimodal distribution shown in the left pane.
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Figure 5.7. Continued: Neyer sequential design of experiments algo-
rithm applied to a bimodal latent distribution.
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Figure 5.9. Neyer sequential design of experiments algorithm applied to
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Figure 5.10. Continued: Neyer sequential design of experiments algo-
rithm applied to a disperse bimodal latent distribution.
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Figure 5.11. Continued: Neyer sequential design of experiments algo-
rithm applied to a disperse bimodal latent distribution.
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Figure 5.12. Continued: Neyer sequential design of experiments algo-
rithm applied to a disperse bimodal latent distribution.
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6. MACHINE LEARNING OF THE SIMULATED COLLAPSE OF PORE

GEOMETRY IN HMX UNDER SHOCK LOADING

6.1 Collaborators

The work performed in this chapter was done in collaboration with the Air Force

Research Laboratory (AFRL) at Eglin Air Force Base. Specifically, the coauthors are

Barrett Hardin (AFRL), Jesus Mares (AFRL), Ilias Bilionis (Purdue), and Steven Son

(Purdue).

6.2 Introduction

It is widely accepted that the initiation of energetic materials occurs through energy

localization near material heterogeneities. The energy localization causes regions of

high temperature referred to as hot spots [57]. While many mechanisms of hot spot

formation have been proposed – such as friction [58], shear, adiabatic heating [59, 60],

areas of dislocation pile-up [61] – it is believed that under shock loading hot spots formed

in the vicinity of collapsing pore spaces are crucial to the initiation process [62].

Over the last decade, investigation of pore collapse has been performed on a wide

variety of energetic materials [63–66], material models [67], input pressures [68], 3D

effects [69, 70], initiation modes [71, 72], and pore morphologies [73–75]. In studies

concerning the effect of pore morphology, a number of simple pore geometries have been

examined; however, no rigorous study has yet been performed on realistic pore shapes

occurring in real energetic material microstructures. Furthermore, no efforts have been

made to compare the relative differences in the shock loading response of realistic pore

shapes and the idealized geometries considered within these studies.

In this work, we first simulate the shock loading response of simple elliptical pore

structures within HMX (cyclo-tetramethylene-tetranitramine, C4H8N8O8). This is done
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to establish an in-house baseline of idealized pore geometries to which we can compare

the results of realistic pores. We repeat the simulation process using realistic pore

shapes retrieved from the microstructure of a pressed HMX sample obtained via scanning

electron microscopy (SEM). The simulation results are reduced to a single scalar value

by noting the minimum incoming flyer velocity required to obtain a “critical” outcome.

All pore shapes are normalized to the same area – to either 150 nm or 300 nm

equivalent circular diameters – to remove the effect of size. We then develop numerical

representations of the pore geometries. Using these pore representations and the associ-

ated critical velocities, random forest (RF), extreme gradient boosted machine (XGB),

and convolutional neural network (CNN) machine-learned (ML) models are trained and

act as surrogates to the simulation process. The performance of these models is strongly

related to the input representation indicating the amount of useful information each

representation contains – with respect to the learning task at hand. Finally, we provide

an interactive interface to these models to make the exploration of the effect of pore

shape to shock sensitivity more accessible.

6.3 Extracting Void Shapes

In order to examine realistic pore geometries, high resolution images of a single

pressed pellet of Class 5 HMX were obtained via scanning electron microscopy (SEM).

The pellet was pressed to a nominal density of 94% theoretical maximum density (TMD)

and sectioned with a Hitachi IM 4000Plus argon ion-milling system. The pellet surface

was further polished and the images collected with as ZEISS Crossbeam 340 focused ion

beam scanning electron microscope (FIB-SEM). The resulting image resolution was 9.77

nm per pixel.

Images were analyzed in a Python environment. First, the void space and material

were distinguished within the image using a modified Otsu’s threshold technique [76]

based on the grayscale intensities to produce a binary image. An example SEM image

and its binary representation are provided in Figure 6.1. From the binarized image,
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a) b)

20 �m

Figure 6.1. a) An image of a sectioned and polished surface of a single
pressed class 5 HMX sample acquired via FIB-SEM. b) The binarized
representation of image shown in a). White indicates HMX and black is
void space.

individual void regions were identified using the scikit-image [77] package and the void

contours were extracted using the OpenCv [78] library.

The geometric properties of aspect ratio, solidity, and circularity were calculated for

each void. The aspect ratio is determined by identifying the minimum area rectangle (or

bounding box) which fully encompasses the void space and dividing the length of the

larger side of said rectangle by the length of the smaller side. Circularity is defined as

the ratio of the perimeter of the void space to the perimeter of a circle with equivalent

area. Solidity is defined as the ratio of the area of the void to the area of the bounding

box. Using these properties the voids were separated into two categories; namely, "pore

shapes" and "crack networks". A void was classified as a pore shape if its aspect ratio

was less than 7.0, its solidity was greater than 0.3, and its circularity was greater than

or equal to 0.65; otherwise, the void was categorized as a crack. For this work, we only

analyzed voids deemed pore shapes and did not consider crack networks. Using the

aforementioned metrics, 55 FIB-SEM acquired images were parsed resulting in 179,207

pore shapes.
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6.3.1 Simple Shape Geometries

Although the primary goal of this work is to understand how realistic pore geometries

influence shock sensitivity, it is useful to examine how simple geometries affect the

simulation outcome. To this end, we created a set of pores structured after ellipses with

varying aspect ratios and orientations. For ellipses, the aspect ratio is defined as the

ratio of the major axis to the minor axis. All ellipses are centered to the underlying

coordinate system and the ellipse orientation is defined as the angle the major axis with

respect to the positive x-axis measured counter-clockwise. Ellipses with aspect ratios of

1 to 4 in .15 increments and orientations of 0 to 90 degrees in 5 degree increments were

produced. In total, 381 ellipses are contained within the set because an ellipse with an

aspect ratio of 1 is a circle and does not change with orientation.

6.3.2 Removing the Effect of Size

It is well known that the pore size is heavily related to shock sensitivity. To remove

the effect of size – and focus on pore shape – the pore contours and ellipse structures

are scaled to same internal area.

Here, we choose to reference a specified area by noting the diameter of a circle with

equal area. For example, rather than state that the pore shapes were “normalized to an

area of 70,685.83 nm2” (π
(

300
2

)2), we simply say that the pore shapes were “normalized

to an equivalent circular diameter of 300 nm” (or just “equivalent diameter”). Herein,

the extracted realistic pore shapes and the simple pore ellipses are scaled to equivalent

diameters of 150 nm and 300 nm constituting two different data sets aptly named the

“150 nm data set” and the “300 nm data set”, respectively.

To maintain consistency, each pore has been shifted such that its centroid is coin-

cident with the underlying coordinate system. Furthermore, like unto the ellipse, we

reference the pore orientation as the angle of the longer side of the bounding box with

respect to the positive x-axis measured counter-clockwise.
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6.4 CTH Simulation

Armed with the contours of thousands of realistic pore geometries and simple ellipses,

we shift to determining if a pore shape will contribute and sustain an incoming shock

wave upon collapse. We simulate the pore collapse using the hydrocode CTH (version

12.0) developed by Sandia National Laboratory.

Each simulation consists of a rectangular slab of HMX containing a single, empty pore

structure. The slab domain has a width and height of 10 µm and 5 µm, respectively,

with a mesh resolution of 5 nm. After proper scaling, the pore structure is inserted

into the HMX material. The centroid of the pore is placed 2.5 µm into the HMX slab

measured from the bottom and left edges.

The HMX material is modeled using distinct equations of state (EOS) for the unre-

acted material and the reaction products. The unreacted material uses a tabular EOS

corresponding to published experimental data and also accounts for the temperature

dependence of the heat capacity and the pressure dependence of the melt temperature.

The reaction product EOS is defined with the Jones-Wilkins-Lee (JWL) formula which

has the form

P = A

(
1− ωV0

V R1

)
e

−R1V
V0 +B

(
1− ωV0

V R2

)
e

−R2V
V0 +

ωe

V
, (6.1)

where P , e, and V correspond to pressure, specific energy, and volume, respectively,

V0 is the initial volume, ω is the Grüneisen coefficient, and A, B, R1, R2 are parameters.

The parameter values are summarized in Table 6.1.

The reaction progress follows an Arrhenius reactive burn model

dλ

dt
= (1− λ)Fe

−Θ
T , Θ = Θ0(1 + APP ) (6.2)

where λ is the reaction progress, t is time, T is temperature, and P is pressure. The

remaining parameters are material specific: Θ0 is the activation temperature, F is the

frequency factor, AP is the pressure derivative of ln(Θ). The actual values used are

provided in Table 6.1.
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Table 6.1. Equation of state parameters for the detonation products
and the reaction rate parameters.

JWL EOS Arrhenius Reactive Burn

Parameter Value Parameter Value

R1 4.6240 Θ0 (K) 17871

R2 1.4705 F (s−1) 5.6e12

A 9.639914e12 AP 0.0

B 2.14317e11

ω 0.4319
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In the simulation the HMX material is considered perfectly plastic with a yield

strength of 0.37 GPa and Poisson’s ratio of 0.20.

The shock loading is applied by specifying the velocity of an incoming flyer plate

composed of inert HMX. The flyer plate has a width and height of 5 µm and impacts

the HMX slab from the left. The simulation is stopped after a fixed time period of 2 ns

after the flyer plate contacts the HMX slab.

In coupled thermal and mechanical hydrocode simulations it has been observed that

the thermal conductivity calculation can lead to vanishingly small Courant time steps

near the pore structure prior to complete collapse. To implement a thermal diffusion

model while avoiding numerical instabilities, conduction is not considered until 0.91 ns

into the simulation to ensure the pore has fully collapsed. A constant thermal conduc-

tivity of 3.62975 W
m·K is applied to HMX up to a temperature of 1160 K, after which it

is assumed to go to zero.

During the simulation the spatial field variables of temperature, reacted mass, and

pressure are tracked. The evolution of the temperature field surrounding a pore is

displayed in Figure 6.2. In particular, the reacted mass field is used to determine whether

the pore reached “criticality”, as explained in the following section.

Unfortunately, due to clerical errors, the yield strength, Poisson ratio, and thermal

conductivity employed in the CTH simulation are not in agreement with reported values

[79–81]. The aggregate effect of these errors was investigated and the difference between

critical threshold values attained when using the correct HMX properties was found to

be less than 10 m/s than those reported here. This difference is trivial and does not

affect any conclusions drawn from this work.

6.4.1 Criticality Criterion

At the end of the simulation period the reacted mass field variable is integrated over

the domain to calculate the total reacted mass. If the total reacted mass exceeds 1.343e-

11 grams then we state that the hot spot will progress into a thermal run-away scenario

(critical condition), otherwise the reaction is quenched due to the heat transfer away
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Figure 6.2. Example of the time evolution of the temperature field for
a pore collapse simulation in CTH. The incoming flyer plate velocity
was 2528 m/s. Equivalent circular diameter: 150 nm. Explicit pore id
number: 106028.
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from the heated material overcoming the heat generation due to the chemical reaction

(sub-critical). The reacted mass threshold was chosen to correspond to the mass of a

critical hot spot with an equivalent diameter of 30 nm using the methodology of Tarver

et. al. [80] for the determination of a critical hot spot.

The initial flyer plate velocity is adjusted using an adaptive binary search algorithm

until criticality is achieved within 1 m/s of a sub-critical result. Thus, the outcome of

the entire simulation process is reduced to a single threshold velocity which corresponds

to the minimum required velocity of the incoming flyer necessary for the pore to reach

a critical state.

6.4.2 Data Sets

On average, a single pore collapse simulation takes 6.35 minutes to run using 320

Intel Xeon E5-2698 v3 processors. The binary search algorithm typically required 10

simulations to determine the critical threshold velocity with 1 m/s uncertainty. There-

fore, approximately 338.6 compute-hours are consumed to assign a critical threshold

velocity for a single pore.

Although we extracted 179,207 pore shapes, it is computationally prohibitive to

simulate all of them in CTH; nor is it likely necessary to simulate all pores to adequately

fit machine-learned surrogate models. As mentioned, the pore collapse simulations were

performed at two equivalent circular diameters creating two sets of data.

The first data set consists of 6,258 pore shapes scaled to an equivalent diameter of

150 nm. The pores were selected at random so long as they were resolved by at least 25

pixels. The second set is comprised of pore shapes scaled to 300 nm equivalent diameter.

Any pore resolved by at least 100 pixels in the 150 nm data set (1,452 pores) is also

contained in the 300 nm data set. The remaining pores in the 300 nm data set were

randomly selected as long as they were resolved by 100 pixels. There are a total of 6,152

pores in the 300 nm data set. Again, we note that the set of ellipses were also scaled

to equivalent diameters of 150 nm and 300 nm for direct comparison with the realistic

pores data sets.
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6.5 ML Models

Constructing an effective ML model first requires developing a suitable machine-

readable representation of the input object [82,83]. These representations are commonly

referred to in the literature as “descriptors", “features", “fingerprints", or “profiles". The

input representation to the ML models produced here take one of four forms: 1) an array

of just the aspect ratio and orientation of the pore as determine by the Fourier ellipse

method; 2) an array of aspect ratio and orientation augmented with the remaining simple

metrics of perimeter, mean diameter, circularity, and solidity; 3) the Fourier coefficients;

4) the 2D standardized array. Descriptions of these representations are given in the

following subsections.

6.5.1 Pore Representations

Aspect Ratio and Orientation

After normalization, an ellipse is fully described by specifying its aspect ratio and

orientation. Likewise, the bounding box of a realistic pore shape can be used to assign

an aspect ratio and orientation to each pore. An array of just the aspect ratio and ori-

entation is the first numeric representation of the shape geometries. We note that these

features minimally encode the "bulk" form of the shape effectively reducing the pore

shape to an equivalent ellipse. ML models that use this input are given the appendage

“ARO” for aspect ratio and orientation.

However, a caveat to this representation that will be shown later, is that the orienta-

tions of bounding boxes are biased toward discrete values. To overcome this deficiency

the orientation and aspect ratio of realistic pores are instead determined by their Fourier

ellipse described in Section 6.5.1.
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Simple Metrics

Another way to describe the encountered pore shapes is with the descriptive metrics

of perimeter, circularity, solidity, and mean diameter. The mean diameter is the multiple

of 2 and the average distance between the pore centroid and its contour. These metrics

are appended to the array of orientation and aspect ratio to create a new numeric input

representation referred to as the simple metrics. While relatively cheap to compute,

these simple metrics fail to uniquely define realistic pore shapes (two different shapes

can have the same metrics) and cannot be inverted to reproduce the original shape. ML

models that use this input will be associated with the word “Simple.”

Fourier Coefficients

Another manner in which each pore shape is represented is through complex Fourier

series coefficients [84–87]. For this method, the x-y coordinates of the shape contour are

sampled at equidistant distances with respect to contour length. It should be noted that

this sampling procedure ensures that the x versus distance and y versus distance signals

are periodic. Recalling that the coordinate system of the shape contours is centered

on the shape centroid, we sampled the shape contours starting at the intersection of

the contour and the positive x-axis, proceeding in the counter-clockwise direction, using

1,023 points. If the more than one contour and x-axis intersection existed, then sampling

began at the intersection with the largest x-value.

The x- and y-distance information can be considered simultaneously as a single com-

plex signal where the real and imaginary components are the x and y coordinates,

respectively. Under this formulation, the periodic, complex-valued function can be rep-

resented as a Fourier series wherein the Fourier coefficients, Ci, encode all the infor-

mation required to reproduce the original shape contour. The Fourier coefficients are

the frequency spectrum of the shape, and because the shape was sampled with 1,023

points, discrete Fourier transform routines return Fourier coefficients ranging from C−511

to C511. The Fourier coefficients are complex-valued and note that because the original
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x- and y-distance signal is complex-valued the Fourier coefficients need not be complex

conjugates as is the case when dealing with strictly real signals. Most ML models cannot

readily accept complex values. As such, the Fourier coefficients are further processed

by splitting them into real and imaginary components before ingestion by ML models.

If all the Fourier coefficients are used, C−511 to C511 then this representation will be an

array of length 2048.

The Fourier coefficients demonstrate a number of useful properties. We note that

simple transformations can be applied to the Fourier coefficients to translate, rotate,

and scale the original contour. Additionally, the lower order harmonics describe the

“bulk” form of the shape, whereas the higher order harmonics contain information about

the finer spatial details of the shape. Consequently, the higher order harmonics can be

filtered out to produce a smoothed version of the shape. In particular, when only the

first harmonic is used (number of harmonics, nh, equals 1) the shape contour is reduced

to an ellipse, herein described as the “Fourier ellipse”. This suggests an alternate method

to identify the shape aspect ratio and orientation by referencing the Fourier ellipse of the

shape instead of the bounding box. A comparison of the aspect ratios and orientations

returned by the bounding box and Fourier ellipse methods is provided in Figures 6.3a

and 6.3b, respectively, for a set of realistic pore geometries scaled to an equivalent

diameter of 150 nm. As seen, the values for aspect ratio are in good agreement, but

the orientations returned by the bounding box method are biased toward values of 0,

45, 90, and 135 degrees whereas the orientations determined by inspecting the Fourier

ellipse are continuous. The tendency of the bounding box to assume discrete orientations

is associated with the task of placing a rectangular box into image (pixelated) space.

As such, for the remainder of this work the Fourier ellipse values for aspect ratio and

orientation are used when referencing the simple descriptive metrics.

Great care should be used when using the Fourier coefficients as they also encode

information about the x and y signal mean (which is not necessarily the shape centroid)

and the starting location of the parameterized path (here, the positive x-axis).

At a high level, machine learning data sets are categorized as either "structured"

(tabular) or "unstructured" (image or signal-like). In structured data, column identifiers
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Figure 6.3. Comparison of a) aspect ratio and b) orientation of realistic
pore geometries scaled to an equivalent diameter of 150 nm using the
bounding box and Fourier ellipse methods. Clusters in the upper left
and lower right quadrants of b) are an artifact of phase wrapping and
are not indicative of gross disagreement between the methods.
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are constant for all training instances. In unstructured data, for example, an image, every

pixel need not represent the same thing. That is, in an image there is no guarantee that

some arbitrary pixel – say row 2 column 40 – corresponds to the same object (like a

tree, or a car) in every image.

The pore images and paths are unstructured. Thus, the Fourier series and resultant

coefficients can be consider as a way of converting the pore path to a structured rep-

resentation. This is useful because many machine learning models require structured

data.

The utility of the Fourier coefficient representation of shapes in pattern recognition

and machine learning tasks was recognized as early as the 1970s to classify hand-written

characters and digits [88, 89]. Interestingly, Zahn and Roskies [89] found that even

just the amplitudes of two Fourier coefficients were sufficient to separate some digits

into differentiable clusters. This suggest that for some tasks, the Fourier descriptors

may provide all the feature engineering required to adequately perform classification

and regression tasks. As a more recent example, Rice et. al. [90] classified colloidal

nanocrystals into basic shapes – such as rod, pentagon, triange, etc. – using Fourier

coefficients.

While the Fourier coefficients uniquely encode the complete shape contour (that

is, the shape can be reproduced to its original form from the Fourier coefficients) and

the frequency representation of the pores may effectively featurize the shape, they are

difficult to interpret. Although each Fourier coefficient can be independently determined,

when they coalesce to construct a shape small changes in a coefficient can drastically

alter the final contour. As such, it is difficult to prescribe a meaning to relative changes

in Fourier coefficients for all but basic shapes (square, triangle, rod, etc.).

Finally, we note that a strong visual interpretation exists for the Fourier coefficients:

because the coefficients are complex valued each can be considered a vector on the

complex plane. To retrieve the original shape contour, each vector will rotate and

“trace” out a circle according to its periodicity. For example, the coefficient C1 is the

first positive harmonic and will rotate in the counter-clockwise direction, completing one

rotation every period. C−3 is the third negative harmonic and completes 3 rotations per
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period in the clockwise direction. Note that the direction of rotation (positive coefficients

rotate counter-clockwise) is a direct consequence of how the shape contour was sampled.

The summation of the rotating vectors will trace out the shape contour over the course

of one period.

Standardized Array

Deep learning (DL) is distinguished as a set of specialized algorithms constructed of

layers of nonlinear processing units. The interconnected layers form a network capable

of learning rich data representations [91, 92]. Thus, deep neural networks (DNNs) can

learn from “raw" data without having to explicitly construct a representation of the

input object. A main benefit to this approach is that the model can remain relatively

free from bias introduced by the choice of input representation.

Convolutional neural networks (CNNs), a type of deep learning network, are par-

ticularly apt at image processing tasks such as object detection and segmentation. At-

tempting to hand-craft a robust set of feature detectors designed to detect, segment,

or classify an object is a difficult task. For example, accommodating slight changes in

object orientation, shading, and location necessitate the creation of additional detection

rules. CNNs overcome these issues by learning local patterns in the data and building on

these patterns in a hierarchically fashion to learn increasingly complex and abstract con-

cepts [93]. Recently, CNNs have been applied to microstructure images to successfully

investigate microstructure-property linkages [94–96].

The pore shapes are originally extracted as images. These images can be minimally

processed and used as inputs to a convolutional neural network. The original binary

images of the pore shapes are, by definition, not normalized to size and have different

widths and heights in terms of pixels. While there are algorithmic adaptions such that

a CNN can make use of dissimilar input sizes the simplest approach is to standardize

the input array.

To this end, we elected a standard grid of 64 by 64 square elements. The extent

(physical size) of the grid is chosen so that the largest pore path (scaled contour) – while
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only considering the training set – fits within the inner 62 by 62 grid elements. Once

the grid extent is determined, pore paths are effectively “stamped” into the grid. For

a single pore the result is an array (pixelated image) composed of 64 by 64 elements

representing the scaled pore shape. It is emphasized that under the standardized array

approach, relative differences in pore height and width are preserved even after pores

are normalized to the same equivalent circular diameter.

Pore Representation Summary

For an example pore, the binary array and contour extracted from the SEM image are

shown in Figures 6.4a and b, respectively. The pore path, after scaling, along with the

pore shape when all but the first nh harmonics are filtered out is given in Figure 6.4c.

As seen, the lower harmonics capture the bulk of the shape and when only the first

harmonic is retained, the shape is reduced to its Fourier ellipse. The Fourier ellipse is

used to assign an aspect ratio and orientation to the pore when using said values to

describe the pore or when using the full set of simple metrics. Finally, Figure 6.4d shows

the example pore as a standardized array to be used as an input for the CNN.
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Figure 6.4. a) The original binary image of an example pore. b) The
extracted pore contour. c) The black line is the scaled path such that
the pore has an equivalent circular diameter of 300nm. The salmon
colored line is the scaled pore path when carrying only the first harmonic
(nh=1, the “Fourier ellipse”). The navy colored line is the scaled pore
path using the first three harmonics (nh=3). d) The standardized binary
representation of the example pore. Dataset: 300 nm. Implicit pore id
number: 400.
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6.5.2 Model Types

While the resultant critical threshold velocities of pore geometries acquired via CTH

simulations are insightful, determining the threshold velocity of a new pore shape re-

quires another simulation. Additionally, we hypothesize that certain small perturbations

in the pore contour can considerably shift the critical threshold velocity. To quickly as-

sess the critical threshold velocity of a new pore, or an altered version of a previously

simulated pore, we developed machine-learned surrogate models.

We used three types of machine learning models; a random forest (RF) implemented

with scikit-learn [77], an extreme gradient boosting machine (XGB) through the XG-

Boost [97] package, and a convolutional neural network (CNN) modeled using Keras [98].

All of these algorithms are for supervised learning tasks. The critical threshold velocities

served as the data labels (or annotations) during model fitting.

For training and evaluation, each data set (150 nm or 300 nm) was considered sepa-

rately and randomly split into training, validation, and test sets. The training, valida-

tion, and test sets contained 80%, 10%, and 10% of the original data, respectively.

For each data set, random forest models were trained using aspect ratio and orienta-

tion (ARO), full set of simple metrics (Simple), and Fourier coefficients as model inputs.

The hyperparameters were optimized using Hyperopt [99] to explore and exploit the

hyperparameter space while evaluating the mean squared error of the validation set on

the fitted model over 500 trials. To kick off the optimization process a prior distribution

is applied to each hyperparameter that is allowed to vary. The hyperparameter prior

distributions for the RF models are summarized in Table 6.2. In this table distribution

bounds are listed in square brackets as [lower bound, upper bound, step size]; the step

size is only applicable to discrete distributions. Curly braces indicate a choice between

items in a set and all items are initially equally weighted. For the model using the the

Fourier coefficients as inputs, the number of harmonics retained is treated as an addi-

tional hyperparameter. For example, nh=3 signifies that the Fourier coefficients from

C−3 to C3 are supplied to the model.
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Table 6.2. The initial range of the random forest model hyperparameters.

Hyperparameter Initial Distribution

max depth uniform [1, 100, 1]

number of trees uniform [50, 300, 5]

minimum samples per leaf uniform [1, 10, 1]

max features choice {’all’, ’sqrt’, ’log2’}

number of harmonics, nh uniform [1, 511, 1]

The XGB model was applied to both data sets but using only the Fourier coefficient

representation of the pore shapes. Similar to the RF models, the XGB hyperparame-

ters were tuned using Hyperopt with respect the validation set. The initial parameter

specifications are provided in Table 6.3.

The CNN was the last model implemented. This network was composed of four

sequential 3x3 convolutional kernels and 2x2 max pooling layers followed by densely

connected neural network with 3 layers. The neural network layers had 64, 32, and 1

units, respectively, with the last unit providing the network’s predicted critical threshold

velocity. Both the convolutional kernels and fully connected layers were followed by

Table 6.3. The initial range of the extreme gradient boosting machine
hyperparameters.

Hyperparameter Initial Distribution

max depth uniform [1, 20, 1]

minimum loss reduction, γ log uniform [log(0.0001), log(10)]

learning rate log uniform [log(0.05), log(0.1)]

L1 regularization, α uniform [0.0, 3.0]

L2 regularization, λ uniform [0.0, 3.0]

column sample by tree uniform [0.6, 1.0]

number of harmonics, nh uniform [1, 511, 1]
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the exponential linear unit (ELU) activation; with the exception of the final neural

network unit which was followed with a linear activation. Despite the large number

choices available when designing a deep network acrhitecture – such as: number of layers,

type of activation functions used, size of convolutional kernels, type and magnitude of

regularization – the initial architecture yielded performance on par with the tuned RF

and XGB models. For this reason, and because deep neural networks require longer

training times, the CNN hyperparameter space was not further explored.

6.6 Results and Discussion

6.6.1 Ellipse Simulations

The critical threshold velocities for the elliptical pore structures scaled to equivalent

diameters of 150 nm and 300 nm at various orientations and aspect ratios are given in

Figure 6.5. Recall that the shock enters the simulation domain from the left and that

pore orientation is measure counter-clockwise from the positive x-axis to the major axis

of the ellipse. Also, due to the symmetry of true ellipses, orientations from 90 to 180

degrees would mirror ellipses with orientations from 90 to 0 degrees so simulations are

not needed in this range.

We describe pores with low critical threshold velocities as “sensitive” because they

require a lower flyer plate velocity – and thus a lower shock pressure – to trigger the

critical criterion. Immediately, a trend is observed wherein sensitivity increases (lower

critical threshold velocities) with high aspect ratio pores with their major axis parallel

to the incoming shock (0 degree orientation). Furthermore, high aspect ratio elliptical

pores oriented at 90 degrees (major axis is perpendicular to the incoming shock) are the

least sensitive.

When comparing across pore sizes (150 nm or 300 nm equivalent diameter), as ex-

pected, the smaller pores require higher incoming flyer plate velocities to achieve critical-

ity. Figures 6.5b and c are slices (or views) into Figure 6.5a. These figures reveal some

interesting trends: pore sensitivity generally decreases with orientation with the 300 nm
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equivalent diameter pores exhibiting a sharp transition around 50 degrees; and aspect

ratio can either have a sensitizing or desensitizing effect depending on the orientation of

the pore.
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Figure 6.5. The critical velocity thresholds for various ellipses scaled to
equivalent diameters of 150 nm (left) and 300 nm (right). a) The critical
threshold velocity with respect to ellipse aspect ratio and orientation.
b) The critical threshold velocity with respect to orientation for select
aspect ratios. c) The critical threshold velocity with respect to aspect
ratio for select orientations.
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6.6.2 Distribution of Critical Thresholds

Moving to the simulation outcomes of the realistic pore geometries, the critical

threshold velocities for all pores are plotted as a histogram in Figures 6.6a and b for pore

sizes of 150 nm and 300 nm, respectively. The critical velocities of pores scaled to 150 nm

equivalent diameter appear to have a limit on the maximum threshold achievable near

3200 m/s. This indicates that no pore, regardless of its shape, can remain sub-critical

when presented with incoming flyer plate velocities in excess of 3200 m/s at this pore

size. We expect that this upper bound will increase as the equivalent pore diameter

decreases approaching the “homogeneous” limit, defined as the flyer plate velocity that

would result in a critical condition (initiation of material and sustainment of a shock

wave) even in the absence of a pore heterogeneity.

The critical threshold velocity of a similarly scaled circular shape is displayed on

all parts of Figure 6.6 as a dashed line. The circle critical threshold velocity is at

the 76.6th percentile and 87.5th in the distribution for the 150 nm and 300 nm data

sets, respectively. This suggests that simulations which use a circle as an idealized

pore geometry significantly underestimate the sensitivity when compared to actual pore

shapes.

Figure 6.6c compares the probability density functions for the two pore equivalent

diameters. This plot only considers the common pore shapes between the data sets.

Further inspection reveals that when moving from 150 nm to 300 nm equivalent diameter

all pores experience a reduction in reported critical velocity threshold with the average

reduction being 860 m/s; again illustrating the strong influence of pore size.
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Figure 6.6. a) Distribution of critical velocity thresholds for realistic
pores scaled to 150 nm equivalent diameter. b) Distribution of critical
velocity thresholds for realistic pores scaled to 300 nm equivalent diam-
eter. c) Distributions of critical velocity thresholds at 150 nm and 300
nm equivalent diameters only considering the pore shapes share between
the two data sets (1452 pores).
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6.6.3 Realistic Pore Aspect Ratio and Orientation

The results of the simulations conducted on elliptical pores demonstrate that the

aspect ratio and orientation are strong drivers of pore sensitivity. To compare this

result to realistic pore geometries, the realistic pore critical threshold velocities are

plotted according to their aspect ratio and orientation as shown in Figure 6.7. The

same general trend found in the elliptical pores exists here in that high aspect ratio

pores with their major axis aligned with the incoming shock (orientations of either 0 or

180 degrees) have the lowest critical velocity thresholds. Likewise, vertical (90 degree

orientation) pores have the highest critical velocity thresholds with an increase in aspect

ratio actually serving to decrease sensitivity.

However, unlike the elliptical pores, aspect ratio and orientation alone are not enough

to specify the critical threshold velocity. This is evident because multiple pores with

different critical threshold velocities occupy the same region in aspect ratio - orientation

space. Intuitively, the difference in critical threshold velocities experienced by pores

with the same aspect ratio and orientation is attributed to the “fine” or “higher order”

shape features; that is, the deviations from the idealized elliptical shape and contour

roughness.
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Figure 6.7. The critical threshold velocities of realistic pores with respect
to their measured aspect ratio and orientation. a) The data set of pores
scaled to 150 nm equivalent diameter. b) The data set of pores scaled
to 300 nm equivalent diameter.
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6.6.4 Model Comparison

The performance of the machine-learned models is measured using the R2 score, mean

squared error (MSE), and the mean absolute error (MAE). These evaluation measures

are reported on the training, validation, and test sets. While common procedure, it bears

repeating that the models weights were fit while accessing the training set, the model

hyperparameters were tuned to maximize performance while evaluating the validation

set, and the test set was only evaluated once after final model selection. Therefore, the

test set scores serve as the best approximation of the models ability to generalize to

unseen instances (new data). The performance measures for the 150 nm and 300 nm

equivalent diameter data sets are tabulated in Tables 6.4 and 6.5, respectively.
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Table 6.4. R2, MSE, and MAE performance metrics for all models on
pores scaled to 150 nm equivalent diameter categorized by set designation
– train, validation, or test.

R2 Mean Squared Error Mean Absolute Error

Train Valid Test Train Valid Test Train Valid Test

RF ARO 0.6969 0.5951 0.6256 9061.72 11357.40 11244.87 70.25 80.94 79.49

RF Simple 0.7695 0.6272 0.6721 6892.02 10458.29 9847.84 60.25 76.50 72.59

RF 0.9748 0.8168 0.8236 752.07 5139.79 5298.39 19.32 51.83 53.37

XGB 0.9999 0.8192 0.8274 2.10 5072.21 5185.57 1.02 49.38 50.85

CNN 0.8919 0.8306 0.8487 3230.68 4752.13 4545.63 42.38 50.10 49.92
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Table 6.5. R2, MSE, and MAE performance metrics for all models on
pores scaled to 300 nm equivalent diameter categorized by set designation
– train, validation, or test.

R2 Mean Squared Error Mean Absolute Error

Train Valid Test Train Valid Test Train Valid Test

RF ARO 0.5832 0.5297 0.4747 42376.85 51712.36 50969.87 157.88 176.75 173.03

RF Simple 0.6706 0.5835 0.5685 33489.94 45792.87 41865.06 138.89 164.66 156.02

RF 0.9642 0.8271 0.7834 3643.97 19011.74 21016.85 44.23 106.59 108.36

XGB 0.9870 0.8484 0.8061 1319.61 16669.59 18811.32 25.77 99.55 102.81

CNN 0.9400 0.8693 0.8564 6094.67 14365.54 13932.92 60.67 89.92 88.03
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The relative ranking of the models is similar for both data sets. The random forest

model trained using only the pore aspect ratio and orientation has the lowest perfor-

mance with R2 scores of 0.63 and 0.48 on the test sets – depending one which data set

is referenced. This in not unexpected as Figure 6.7 already demonstrated that critical

threshold velocities are not distinguishable using solely these descriptors. When the re-

maining simple metrics of solidity, circularity, perimeter, and mean diameter are added

to the random forest model the model performance improves. The test set R2 increases

by roughly 7 percentage points which equates to a reduction of the mean absolute er-

ror by 7 m/s on the 150 nm equivalent diameter pores and by 17 m/s on the 300 nm

equivalent diameter pores.

The RF and XGB models using the Fourier coefficient representation of the pore as

inputs showed significant performance gains on both pore sizes. Interestingly, for all

four models the optimal number of harmonics, nh, as determined by the hyperparameter

optimization process was three. This is not entirely surprising, as already noted, the

bulk of the pore information is contained in the lower order harmonics. The lower order

harmonics prescribe the basic outline of the shape. Higher order harmonics recreate

the actual pore contour by adding small deviations from the base outline. Generally,

sequentially higher ordered harmonics add successively smaller deviations. As more

higher order harmonics are retained the pore contour will approach the original con-

tour extracted from the SEM-obtained images, however, at some point, the hydrocode

outcome will no longer change with the increased resolution of the correct pore shape.

That is, the hydrocode is not able to capture the differences made by small deviations

in the pore contour – if physically present at all. This effect is slightly exacerbated by

the fact that the CTH outcomes are reduced to a single critical threshold velocity for

each pore and because the this velocity is only resolved to within 1 m/s. As a brief

aside, the choice to resolve the critical threshold velocity to 1 m/s was made: 1) to

reduce the number of simulations required, 2) because 1 m/s is small relative to the

range of critical thresholds observed in preliminary tests, and 3) because the numerical

limit of the hydrocode, in this regard, has not yet been approximated. Returning to the

discussion at hand, we emphasize that retaining only the first three harmonics severely
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smooths the pore contour (see Figure 6.4c). Furthermore, the performance gain seen by

using Fourier coefficient input representation reveals that even just the bulk pore shape

carried by the first three harmonics possesses more discriminative information than the

full set of simple metrics. The RF and XGB models also exhibit high R2 scores on the

training, in both the absolute sense and relative the validation and test sets. This sug-

gests that, despite the hyperparameter optimization to the validation set, these models

are overfitting the training data. None of the final model hyperparameters are at, or

near, the bounds set by the prior distribution so it cannot be said that the models were

unable to reduce model complexity (by adding regularization or decreasing tree depth).

The convolutional neural network, which acts on the standardized array representa-

tion of the pores (Figure 6.4d), manifests performance on par with the Fourier descriptor

RF and XGB models on the 150 nm data set and surpasses these models on the 300 nm

data set. Specifically, on the 300 nm data set the CNN reduces the test set mean absolute

error by nearly 15 m/s relative to the XGB model. Recall that the CNN did not undergo

hyperparameter tuning. As such, this model has potential for further improvement.

Overall, larger prediction errors exist on pores scaled to 300 nm equivalent diameter

compared to those scaled to 150 nm equivalent diameter. This is likely because the

range of critical threshold values observed on the 300 nm data set is greater than that

on the 150 nm data set; approximately 1800 m/s to 1000 m/s. However, additional

investigation is required to state this with certainty.

Finally, a partial depiction of model results is provided in Figure 6.8 by plotting the

predicted critical threshold velocities to those obtained from the CTH simulations for the

300 nm data set random forest models using the aspect ratio-orientation, simple metrics,

and Fourier coefficient input representations; subfigures a, b, and c, respectively. This

figure only contains the pore shapes listed in the test set. As acknowledged, the RF

model prediction error decreases when using the simple metrics and more so with the

Fourier coefficients.
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a)

b)

c)

Figure 6.8. The random forest model critical threshold velocity predic-
tions on the test set versus the reference velocities obtained via CTH for
pores scaled to 300 nm equivalent diameter when using a) the aspect ra-
tio and orientation, b) the simple metrics, and c) the Fourier coefficients
as model inputs.
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6.6.5 Additional Viewpoints

A primary goal of this work is to identify which shape features increase or decrease

pore sensitivity to shock loading. The influence of aspect ratio and orientation immedi-

ately fall out when considering pores idealized as ellipses and these trends generally hold

for realistic pores. Moreover, we observe that models with access to more pore shape

information demonstrate better predictive performance. However, determining exactly

which aspects of a realistic pore contribute to sensitivity is a difficult task.

For example, CNNs typically have greater interpretability than their deep learning

counterparts. Because the CNN acts on image data (at least herein), the learned con-

volutional kernels can be visualized. Additionally, the activations can be tracked as a

pore shape propagates through the network and theoretical pore shapes which maximize

filter activations can be generated. These techniques provided assurance that the CNN

was learning increasingly complex patterns built from simple learned line and edge de-

tectors, however, no single shape feature stood out from the pack. The CNN can also

be decomposed into two parts, the convolutional base and the model “head”. The con-

volutional base consists the of convolution kernels (thus its namesake) with associated

ELU activation functions and max pooling operations. The convolutional base output

units are “flattened” and fed to the simple forward feed neural network which acts as the

CNN head. The convolutional base acts as a feature extractor and transforms the input

into a representation more suitable for machine learning. Rather than pass this learned

representation onto the neural network head we intercept it for interrogation. That is,

all of the pores are passed through the CNN base and collected as a new pore represen-

tation. For our CNN architecture, the learned pore representation, after flattening, is

an array of length 1,056.

To explore the 1,056th dimensional feature space we reduced the space to two di-

mensions via a t-distributed stochastic neighbor embedding (tSNE) implemented with

scikit-learn (version 0.23.1 with default settings). For the 300 nm data set the pore

contours are plotted according to their spatial location in the 2D embedding as seen in

Figure 6.9. The 2D tSNE can be thought of as a complex manifold through the high-
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dimensional CNN-extracted feature space. Due to the complexity of the manifold, and

because the meaning of the dimensions in the CNN feature space is unknown, the axes in

Figure 6.9 have no physical meaning. What should be emphasized is that t-distributed

stochastic neighbor embedding preserves distance. Therefore, pore-to-pore distance in

the figure directly corresponds to pore similarity in the CNN-extracted feature represen-

tation. Qualitatively, adjacent pores have striking similarities indicating that the CNN

has learned useful filters.

A color scheme is also applied to the pores in Figure 6.9. The internal, or “fill”, color

of the pore denotes the CTH simulation critical threshold velocity and the outline, or

“border”, color marks the predicted critical threshold velocity produced by the CNN. The

border and fill colors are, generally, in good agreement again illustrating the predictive

power of the CNN. Note that the tSNE algorithm has no knowledge of the critical

threshold velocities. This is important because it aligns with our intuition that similar

pores should have similar critical threshold velocities. Here, pore adjacency (ie; similarity

as viewed from the CNN feature space) varies smoothly with observed critical threshold

velocities. This method of plotting actual pore contours according to their location

in a 2D space is not unique to the embedding of the CNN-extracted representation.

In fact, the aspect ration and orientation representation of the pore is already two-

dimensional and does not require an embedding. Like unto Figure 6.9, the 150 nm and

300 nm equivalent diameter pore shapes are plotted according to their aspect ratio and

orientation in Figure 6.10. This figure is essentially a recreation of Figure 6.7 except now

the pore shapes are subsampled so that they do not overlap. Again, the fill color indicates

the simulation determined critical threshold velocity and the border color displays the

predicted critical threshold velocity using the RF ARO model. Examination of the pore

shape border colors in Figures 6.7a and b show that the RF ARO model output varies

smoothly and continuously over the aspect ratio - orientation domain. Here, adjacent

pores are, by definition, similar in aspect ratio and orientation. While pores with nearly

identical aspect ratios and orientations definitely look similar, the authors argue that

the adjacent pores (similar pores) in Figure 6.9 have common features beyond aspect

ratio and orientation. This is called out in greater detail in Figure 6.11.
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Critical Threshold Velocity (m/s)

1237.0 1604.7 1972.3 2340.0 2707.6 3075.3

Figure 6.9. The 2D t-distributed stochastic neighbor embedding of the
of 300 nm equivalent diameter pores represented in the CNN-learned
feature space. Pore fill color indicates the critical threshold velocity
obtained from the CTH simulations and pore border color marks the
predicted critical threshold velocity from the CNN. The figure is sup-
plied in vector format so that if viewed electronically it can be enlarged
indefinitely. Not all pores shapes are displayed; pores are subsampled
randomly so that pore shapes do not overlap.
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a) b)

Figure 6.10. Pore shape plotted according to their location in aspect
ratio - orientation space for a) the data set of pores scaled to 150 nm
equivalent diameter and b) the data set of pores scaled to 300 nm equiv-
alent diameter. Pore fill color indicates the critical threshold velocity
obtained from the CTH simulations and pore border color marks the
predicted critical threshold velocity from the CNN. The figure is sup-
plied in vector format so that if viewed electronically it can be enlarged
indefinitely. Not all pores shapes are displayed; pores are subsampled
randomly so that pore shapes do not overlap.
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Both Figures 6.9 and 6.10b have a region encompassed by an square box. Figure 6.11a

shows the pores taken from Figure 6.10b (RF ARO model) and are given labels 1 through

9. Likewise, Figure 6.11b contains the pores from the boxed region of Figure 6.9 (tSNE

and CNN model) and are also labelled 1 through 9. The pores in these regions are from

the 300 nm data set. These region are called out, specifically, because in each set the

pore labelled as number 5 is the same pore. This pore is interesting because both the

RF ARO and CNN model under predict the critical threshold velocity with large error.

These regions, while not otherwise unique, also serve to highlight some points already

discussed. The border colors in Figure 6.11a do not vary much from pore to pore within

this regions. This is because, as discussed, the RF ARO model predictions vary smoothly

over the aspect ratio - orientation domain such that adjacent pores are assigned the same

predicted value. However, pores with similar aspect ratios and orientations need not have

the same critical threshold velocities as demonstrated by the variance in fill colors seen in

these pores. This discrepancy in fill colors is not unexpected because beyond orientation

and aspect ratio these pores do not posses many common features. It could be argued

that in Figure 6.11a, only pores 4 and 9 closely resemble pore 5. The disparity between

border color and fill color (prediction and reference critical threshold velocity) among

these pores represents that the RF ARO model predictions are in error on every pore

shape in this region.

Shifting to Figure 6.11b, it is immediately seen that the border color and fill color are

in close alignment in accordance with the accuracy of the CNN predictions. Additionally,

it could be argued that pores 1, 7, 8, and even pores 4 and 2 are similar to pore 5 in

features beyond aspect ratio and orientation. Again, providing evidence that the CNN

has extracted pore shape characteristics and can group them appropriately. Finally, the

pore border colors vary significantly from pore to pore indicative the increased model

flexibility held by the CNN.
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Critical Threshold Velocity (m/s)

1237 1604 1965 2329 2693 3055

Figure 6.11. Enlarged versions of the regions called out in a) Fig-
ure 6.10b and b) Figure 6.9.
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6.6.6 Web App

It is of the authors’ opinion that much more information about the effect of pore

shape on shock sensitivity can be gleaned from this work. In an effort to make the

research accessible, the complete data sets of pore representations and simulated critical

threshold velocities will be published on a web site. In addition to the data, the web

site will expose the machine-learned models described in this work via an interactive

graphical user interface (GUI). The GUI will allow the users to fetch all pore shapes

from the data sets, perturb, alter and create pore contours at will, and get live critical

threshold velocities from the models.

6.7 Conclusion and Future Work

We have shown that pore geometry significantly influences the sensitivity of shocked

HMX. Pore orientation and aspect ratio are strong drivers of shock sensitivity. Generally

speaking, elliptical pores with their major axis aligned with the incoming shock are the

most sensitive while those elliptical pores with the major axis perpendicular to the

incoming shock are the least sensitive. Despite its usefulness, the metrics of aspect

ratio and orientation alone do not adequately capture the deviations in shock sensitivity

of realistic pore geometries. Machine-learned models trained on the simulated collapse

of realistic pore shapes can predict sensitivity with good accuracy but interrogation of

these models to understand the exact effect of shape features is difficult. Of the models

tested, the convolutional neural network (CNN) acting on a standardized binary image

representation of the pore shapes demonstrated the best performance. Furthermore, the

shape features extracted by the CNN align with human intuition in that pore shapes of

similar appearance are adjacent in feature space and have comparable critical threshold

velocities. The data generated by this work and the produced surrogate models will be

made publicly available through an interactive web application.

Future work may address opportunities for model improvement; namely, work to

quantify the uncertainty of the model predictions will greatly enhance the models’ utility.
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Additional simulations can be run to augment the existing data set with an increased

number of pores sizes so that surrogate models can directly compare and investigate the

relative importance of pore size and pore shape. Finally, the collected distribution of

critical threshold velocities (relating to pore sensitivity) could be used to inform full-scale

stochastic continuum models.
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7. PREDICTION OF ENERGETIC MATERIAL PROPERTIES FROM

ELECTRONIC STRUCTURE USING 3D CONVOLUTIONAL NEURAL

NETWORKS

7.1 Collaborators

The work in this chapter was conducted in coordination with the Army Research Lab-

oratory (ARL) at Aberdeen, MD. Specifically, the coauthors are Brian Barnes (ARL),

Ilias Bilionis (Purdue), and Steven Son (Purdue).

7.2 Introduction

In recent years, machine learning (ML) has been increasingly applied to a wide variety

of problems in computational chemistry, physics, and materials science [92,100]. Greater

accessibility to improved computational resources coupled with large-scale data have

contributed to the success of ML in applications such as synthesis planning [101–104],

reaction optimization [105,106], drug design and discovery [91,107], materials discovery

[108,109], property (or activity) predictions [110], quantum mechanical calculations [111–

115], and more [116].

Quantitative structure–activity relationships (QSAR) and quantitative structure–

property relationships are quantitative methods that deal with finding a model to re-

late chemical structural features to their biological activity or physical/chemical prop-

erties, respectively [117]. Both methods are considered subfields of chemometrics or

chemoinformatics and are associated with a large number of publications. Commonly

modelled activities/properties are bioactivity (absorption, distribution, metabolism, ex-

cretion, and toxicity), aqueous solubility, and melting point [118]. Properties that do

not lend themselves well to machine learning are dipole moments, polarizabilities, and

vibrational frequencies.
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Other, related terms also present in the literature are: quantitative structure—

reactivity relationships (QSRR), quantitative structure—chromatography relationships

(QSCR) and, quantitative structure—toxicity relationships (QSTR), quantitative structure—

electrochemistry relationships (QSER), and quantitative structure—biodegradability re-

lationships (QSBR) [117].

Machine learning, broadly defined, is the extraction of patterns and insight from data

[20, 93, 119, 120]. This is commonly referred to as “learning from data." For supervised

ML algorithms the data are composed of “input" and “output" pairs, wherein the goal

of the algorithm is to learn the input-output mapping. The result of such a learning

algorithm can be expressed as a function f(x) which receives an input, often a numeric

vector which encodes information about the input object, and outputs a prediction y

which may be a single value or a vector [20].

Constructing an effective ML model first requires developing a suitable machine-

readable representation of the input object [82, 83, 114]. These representations are

commonly referred to in the literature as “descriptors", “features", “fingerprints", or

“profiles". In short, molecular descriptors are formal mathematical representations of

a molecule. In other words, the molecular descriptor is the final result of a procedure

which transforms chemical information encoded within a symbolic representation of a

molecule into a useful number [121].

In their book Understanding the basics of QSAR for applications in pharmaceuti-

cal sciences and risk assessment, Roy, Kar, and Das dedicate a chapter to molecular

descriptors [122]. Some key points that they note are:

A single molecule can be described in many ways and it is possible to com-

pute thousands of numerical descriptors. The selection of relevant descriptors

is a well-known problem. . . . A set of descriptors may efficiently encode the

chemical information perfectly for the small molecules, but the same set of

descriptors may not be able to encode the required features for polymers,

protein structures, and inorganic molecules. Thus, not only the calculation

but also the selection of suitable descriptors requires a lot of knowledge and
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experience. The descriptors may be physicochemical (hydrophobic, steric, or

electronic), structural (based on frequency of occurrence of a substructure),

topological, electronic (based on molecular orbital calculations), geometric

(based on a molecular surface area calculation), or simple indicator parame-

ters (dummy variables). . . . Counts of types of atoms or bonds can be consid-

ered as constitutional descriptors that only consider atom and bond labels of

the compound. Topological descriptors take into account connectivity and

labeled graph theory.

Many molecular structure representations have been used: Coulomb matrix [113,123],

fragment descriptors [124], Waber–Cromer pseudopotential radii, Pauling electronega-

tivity, metallic radius, valence electron number (VEN), Clementi’s atomic radii, Pettifor

chemical scale [108], eigenvalues of the molecule’s connectivity matrix [125], Simplified

Molecular Input Line Entry System (SMILES), Voronoi tessellation [126], to name only

a few. As an example, an old fingerprint type is the MACCS keys which consists of 166

bits which can either take on a value of 0 or 1. Each bit corresponds to the presence of

a molecular feature, such as the presence of a carbonyl group (key 154) [127]. Another

type of fingerprint is the Morgan fingerprint. This fingerprint is circular in nature as

each atom’s environment and connectivity is analyzed up to a given radius [127]. Thus,

circular fingerprints explore the the atom types and connectivity within a molecule while

MACCS keys simply note the presence of a predefined feature. Recently, Ward et. al.

used 145 physical attributes – categorized as either stoichiometric attributes, elemental

property statistics, electronic structure attributes, or ionic compound attributes – as a

set of descriptors [128]. Furthermore, the chemical informatics community has devel-

oped thousands of attributes for predicting the properties of molecules [129,130] and the

broader development of effective descriptors that can index a large number of molecular

structures has been the subject of investigation for decades [125].

Given the enormous pool of candidate representations, the ideal descriptor should,

intuitively, uniquely define each material in the data and encode the essential physics

and chemistry that influence the target property [116, 128]. Additionally, an ideal rep-
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resentation follows the same symmetry relations as the prediction target and is invari-

ant to permutations (e.g., ordering of the atoms), translation, and rotation [92, 131].

This is especially relevant as numerous investigations have shown that selection of the

molecular descriptor can influence model accuracy more than the choice of the ML al-

gorithm [132, 133]. While recent advances have produced models which are covariant

by construction, [134–136] conventional ML models, which are widely applied, are lim-

ited by the need to properly select molecular features – a process that that requires

considerable domain expertise – and to approximate permutation invariances.

Once a suitable set of molecular descriptors has been selected alongside the property

of interest most QSPR (or QSAR) problems fall squarely in the realm of supervised

machine learning. Due to the vastness of literature in this field [117], it is likely not an

exaggeration to state that every known statistical learning model has, at some point,

been applied to a chemoinformatics problem. In a review paper, Mitchell [118] cites the

use of neural network, random forest, support vector machine, k-nearest neighbor, and

naïve Bayes algorithms within the field and still notes the application of at least a dozen

more esoteric algorithms.

Deep learning (DL), often considered a subset of ML, is distinguished as a set of

specialized algorithms constructed of layers of nonlinear processing units. The intercon-

nected layers form a network capable of learning rich data representations [91,92]. Each

layer in a deep neural network (DNN) transforms its input to increase the selectivity and

invariance of the representation [137]. With multiple layers extremely delicate features

can be abstracted and the network can universally approximate any arbitrary map-

ping [138]; with the caveat that large or augmented data sets may be required to learn

symmetries in the input data if the input features or network are not explicitly invari-

ant. Thus, DNNs can learn from “raw" data without labor-intensive feature extraction

and the resulting model can remain relatively free from bias introduced by the choice of

descriptor. For example, Jha et. al. developed a DNN capable of predicting formation

enthalpies using only elemental compositions as the input [82]. Their approach outper-

formed all conventional ML methods; including those with selected physical attributes.
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Additionally, Yang. et. al. introduced a graph convolutional model that consistently

matched or outperformed models using fixed molecular descriptors [139].

Convolutional neural networks (CNNs), a type of deep learning network, are par-

ticularly apt at image processing tasks such as object detection and segmentation. At-

tempting to hand-craft a robust set of feature detectors designed to evaluate the presence

of an object is a difficult task. For example, accommodating slight changes in object

orientation, shading, and location require the user to encode additional detection rules.

CNNs overcome these issues by learning local patterns (inducing spatial invariance) in

the data and further connecting these patterns hierarchically to learn increasingly com-

plex and abstract concepts [93]. Recently, CNNs have been used to successfully explore

microstructure-property linkages [94–96, 140]. Additionally, while CNNs are most com-

monly associated with analysis of 2D image data, they can be applied to image-like

arrays or data with local correlations; such as 1D signal and sequence data or 3D video

or volumetric image data. Notably: Stepniewska-Dziubinska et. al. created a novel 3D

CNN to estimate the binding affinity of ligand-receptor complexes where each com-

plex was represented with 19 features on a 3D grid [141]; Torng et. al. demonstrated

that 3D CNNs applied to structure-based protein analysis outperformed models using

hand-engineered descriptors [142]; Kajita et. al. increased prediction performance over

proposed theoretical descriptors using a 3D CNN on a voxel descriptor encoded from

electron density [143]; and Zhou et. al. employed a 3D CNN to learn the relationship

between the quasi-local electron density and exchange-correlation potential [144].

Machine learning for prediction of detonation properties and select other properties

of interest to energetic materials has recently been investigated by Barnes et. al. [145,146]

and Elton et. al. [147]. Their respective works demonstrated ML’s capability to learn

chemical information from carefully selected molecular representations – even on small

datasets.

Historically, processing a novel energetic material from conception to fielding has re-

quired a monumental investment in both time and money; often decades of research and

millions of dollars. In the search for the next generation of explosives and propellants,

a seemingly infinite number of molecules can be proposed as potential candidates. Of



108

these candidate molecules relatively few will meet the required performance criteria upon

production to render them of practical utility. Due to the cost required to evaluate new

materials — even at early research stages — screening methods and heuristics capable

of discerning feasible molecules for further study are of great practical importance.

In this work, we develop a convolutional neural network capable of directly parsing

the 3D electronic structure of a molecule described by spatial point data for electron

charge density and electrostatic potential concatenated into a 4D tensor. We stress that

the input does not contain additional information such as atomic nuclei types, positions,

etc. The network is jointly trained on over 20,000 molecules that are potentially energetic

materials to predict total electronic energy, dipole moment, HOMO-LUMO gap, crystal

density, solid phase heat of formation, Chapman-Jouguet (C-J) detonation velocity, C-J

pressure, and C-J temperature. In particular, crystal density, heat of formation and C-J

detonation velocity, pressure, and temperature are known key indicators of energetic

performance.

The target properties used for training are computed using a physics-based workflow,

however, it is emphasized that the learned model, nor the model training process, relies

on any physics-informed features and the prediction accuracy is a consequence of learning

representations on the “raw" data. Previous works have stated that the electron density

of an entire molecule is “an impractical amount of information to provide a neural net-

work" and have opted to use sub-regions of the charge density as inputs to deep neural

networks [148]. While preparing this manuscript, we became aware of a preprint that

seeks to predict electron densities using a DNN where the only input is an approximate

electron density [149]. Otherwise, to our knowledge, this work demonstrates the first

use of complete 3D electronic structure for machine learning of molecular properties.
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Nomenclature

The following naming nomenclature is used in subsequent equations unless otherwise

specified.

σ Standard deviation of a sample

f A neuron identification number

k An element of the set of targets

K The set of target outputs; herein: {total electronic energy, dipole moment, HOMO-

LUMO gap, crystal density, solid phase heat of formation, C-J detonation velocity,

C-J detonation pressure, C-J temperature}

m A numbered orientation, or rotation, of the input tensor

n An single entry, or example, in the data set

N The number of examples, or items, in the data set

θ The learned model weights

x Tensor representation of an instance in the data; the electronic structure of a

single molecule

yn,k True value of target k for example n

ŷ
(m)
n,k Predicted (by the model) value of target k using orientation m for example n

ŷ
(m̄)
n,k Final prediction of target k for example n (averaged over orientations)
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a) b) c)

Figure 7.1. Distribution of a) molecular weight, b) oxygen balance,
and c) molecular extent for the data set of 26,265 selected molecules.
Molecular extent is simply defined as the length of the bounding box in
each direction (x, y, z) as output by Gaussian when describing spatial
point data. For c, the red dotted line represents the length of each edge
in the inerpolated bounding box.

7.3 Methodology

7.3.1 Data Curation

Typically, CNNs have millions of training parameters. In order to mitigate overfitting

a large training data set is preferable. In this work, molecules were procured from the

GDB database [150–153] and initially screened to consider only those with ‘energetic

potential’ (candidate explosives) according to oxygen balance (OB)

OB = −1600
2NC + NH

2
−NO

MW
(7.1)

where NC , NH , NO represent the number of carbon, hydrogen, and oxygen atoms present

in the molecule and MW is the molecular weight.

This screening resulted in a reduced data set of 26,265 potentially energetic molecules.

The distribution of molecular weight and oxygen balance of this data set are shown in

Figures 7.1a and 7.1b, respectively.

Beyond selecting molecules of interest, convolutional neural networks require that

each molecule have an associated “input" and “output". In order to bypass feature se-

lection, we have proposed that the CNN learn a mapping directly from the electronic
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structure of a molecule – described by 3D spatial point data for charge density and

electrostatic potential stacked into a 4D tensor – to target material properties of inter-

est. For energetic materials, these target properties are total electronic energy, dipole

moment, HOMO-LUMO gap, crystal density, solid phase heat of formation, Chapman-

Jouguet (C-J) detonation velocity, C-J detonation pressure, and C-J temperature. The

electronic structure and target properties are not listed in the GDB database and must

be calculated.

Currently, physics-based workflows can accurately estimate many material properties

and performance metrics of a candidate molecule. A simple diagram of the physics-based

workflow used by CCDC Army Research Lab (ARL) at Aberdeen Proving Ground is

shown in Figure 7.2. This framework begins with a sketch of a molecule, which is rep-

resented in the computer with its associated SMILES string. The molecule SMILES

string is pre-processed with RDKit [154] to generate 1000 random conformers which

are each energy-minimized using the MMFF94 force field. The atomic coordinates of

the minimum energy conformer are used as an initial geometry and these coordinates

are randomly perturbed to break any potential symmetry. Using this atomic coordi-

nate representation, the electron density surrounding the molecule and the correspond-

ing electrostatic potential were calculated using Density Function theory (DFT) at the

B3LYP/6-31G** level as implemented in the Gaussian 16 package. [155]. Gaussian

outputs many molecular properties; those used in this work are the molecule’s total

electronic energy, HOMO-LUMO gap, dipole moment, and 3D point grids of electron

density and electostatic potential. The 3D electron density and electrostatic potential

point grids may be further leveraged to predict the material crystal density and solid

phase heat of formation via analysis as developed by Byrd, Rice, and Hare [156–158]

(diagrammed here as “ARL Toolkit"). With estimated values for the crystal density

and solid phase heat of formation, the workflow can be further extended to estimate

Chapman-Jouguet (C-J) detonation velocity, C-J detonation pressure, and C-J temper-

ature using the thermochemical code Cheetah v. 8.0 [159].

For this work, the physics-based workflow was applied to the 26,265 energetic molecules

to generate a database of electrostatic potentials, charge densities, and target material
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Figure 7.2. Physics-based workflow. A sample molecule 2-nitrofuran
is originally represented by a SMILES string. The string is processed
by RDKit to produce atomic coordinates for a conformation near the
molecule’s minimum total electronic energy. Gaussian 16 is called and
outputs, among other things, estimates of the molecule’s total electronic
energy, HOMO-LUMO gap, dipole moment, and 3D point grids of elec-
tron density and electrostatic potential. The ARL Toolkit further ma-
nipulates the electronic density and electostatic potential point grids to
estimate the molecule’s crystal density and solid phase heat of formation.
With these properties, the thermochemical code Cheetah v. 8.0 is used
to estimate Chapman-Jouguet (C-J) detonation velocity, C-J detonation
pressure, and C-J temperature.

properties. Each molecule was processed using 40 cores (Intel Xeon E5-2698v4 Broad-

well) requiring 20 to 180 minutes of wall time. A reduced version of this database has

been provided as Supporting Information.

7.3.2 Input Standardization

Although the major goal of this work is to make predictions on the “raw" input

data, some pre-processing is required. Notably, the 3D spatial point grids produced
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by Gaussian, also known as cube files, are not constant in either number of points or

spacing between points for every molecule (at least under default settings). Additionally,

Gaussian orients the molecule such that the direction requiring the most points to resolve

its structure is defined as the x-axis. Similarly, the y-axis is chosen so that it has at

least as many points as the z-axis. Thus, the resulting 3D spatial point grids are cuboids

with side lengths and point spacing varying between molecules. The side lengths provide

a naive measure of molecular “extent" and the distributions of the Gaussian grid side

lengths are shown in Figure 7.1c. While there are algorithmic adaptions to make use of

dissimilar input sizes the simplest approach is to standardize the input shape.

We elected a standard grid of 64 by 64 by 64 points with a point spacing of 0.4 Å;

creating a cube with side lengths of 25.6 Å. These parameters were chosen in order

to adequately bound most of the molecules considered while maintaining small point

spacing (higher structure resolution) and a minimal total number of points (to reduce

the size of the model input). For each molecule, standard cubes were centered on the

rectangular electron density and electrostatic potential point grids and the values at

each standard point were calculated using linear interpolation. It should be noted that

an artifact of this choice is that some molecules were “clipped" in the x direction as

demonstrated by the red dotted line in Figure 7.1c.

It is a common practice to scale all the inputs to the minimum and maximum values

found within the data set. However, for the case at hand, when a 3D spatial grid point is

near the center of an atom, the electron density and electrostatic potential can acquire

very high values relative to the rest of the data points. Thus, a simple min-max or

z-score standardization would effectively eliminate fine differences electronic structure.

To resolve this issue we bounded the maximum value that the electron density and

electrostatic potential 3D spatial point grids can take to the 99th percentile of the data

set. These limits were 0.16 and 0.6 for the electron density and electrostatic potential,

respectively.

An example of this process applied to the electron density of 2-nitrofuran is provided

in Figure 7.3. For both subfigures 3a and 3b, the left hand side is the original represen-

tation of the electron charge density as produced by Gaussian and the right hand side is
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Figure 7.3. Vector graphic of the electron charge density 3D spatial
point grid of an example molecule, 2-nitrofuran, before and after star-
dardization. a) The original (output by Gaussian) and stardardized grid
shapes. b) A 2D slice showing the location of the grid points (grey dots)
before and after interpolation. Note that the colorbar applies to both
subfigures.

the representation after processing. Figure 7.3a shows the 3D spatial grid extent while

Figure 7.3b displays a 2D slice and the grid point locations (grey dots) before and after

interpolation.

The resulting stardardized input consists of two identically shaped (64x64x64) 3D

spatial point grids, one for electron charge density and one for the electrostatic potential,

stacked for form a 4D tensor of shape (64x64x64x2) which can be viewed as a 3D image

with two channels.

7.3.3 Approximating Rotational Invariance

The standardized electrostatic potential and charge density arrays used as inputs to

the model are cubic. Consequently, a 90 degree rotation about an axis also produces a

valid input array. For cubes, via a series of 90 degree rotations, 24 unique orientations

can be produced. Because the original orientation of these input arrays is arbitrarily
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determined by Gaussian, the data set was augmented to include all 24 unique orientations

of the electrostatic potential and charge density arrays. Including these rotations aids the

model in learning approximately rotationally invariant features [141] and increases model

generalizability. It should be noted that typical usage of the term “data augmentation"

among DL literature implies that a different (usually randomly perturbed) representation

of each input example is fed to the model once per epoch, however, here we distinguish

that all 24 orientations of each molecule were included during each epoch – effectively

increasing the total size of the data set to 625,560 examples.

7.3.4 Model Architecture

Many choices are made when designing a deep network architecture; such as: num-

ber of layers, type of activation functions used, size of convolutional kernels, type and

magnitude of regularization. To select the optimal model, many architectures must be

trained, evaluated, and compared. We tried three architectures: an Inception-like [160]

network, a ResNet-like [161] network, and a "standard" network. With the initial hy-

perparameters the Inception and ResNet networks failed to reduce the loss function and

were not further pursued. The standard network successfully minimized the loss func-

tion. This network was composed of sequential 3x3x3 convolutional kernels and 2x2x2

max pooling layers followed by multiple fully connected layers. Additionally, 8 fully con-

nected layer blocks (referred to as FC heads) are appended, each one reducing down to

a single neuron, to make a prediction on each target quantity producing a multi-target

network. With the exception of the final output neurons (one for each target variable)

both the convolutional kernels and fully connected layers were followed by the rectified

linear unit (ReLU) activation. The ReLU activation function was selected to speed up

the training process. This architecture, show in Figure 7.4, shares a convolutional base

which serves to greatly reduce the amount of inputs seen by the final eight fully con-

nected layer blocks. Additionally, the joint learning provides a means for the network

to learn a richer set of representations.
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Figure 7.4. Selected model architecture. An example molecule, 2-
nitrofuran, is represented by a standardized input consisting of two
stacked 3D spatial point grids each of shape (64, 64, 64) – one for the
electron charge density and one for the electrostatic potential – to form
a 4D tensor of shape (64, 64, 64, 2). A convolutional kernel of shape (3,
3, 3) is applied to the input followed by ReLU activation function and
a (2, 2, 2) max pooling operation. This process is repeated increasing
the number of “filters" while decreasing the data shape. The result is
flattened and passed to a series of fully connected layers, each followed
by ReLU activation. Finally, an additional 8 sets of fully connected lay-
ers (again followed by ReLU activations) are used to reduce the output
down to 8 neurons (with linear activation) – one for each target quantity.
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7.3.5 Training

For training and evaluation, the set of molecules (26,265) was scaffold split using the

deepchem package [162] into a training set composed of 21,012 molecules, a validation

set with 2,626 molecules, and a test set containing 2,627 molecules (an 80/10/10 split).

Scaffold splitting partitions the molecules based on their two-dimensional structural

frameworks – intentionally forming dissimilar train, validation, and test sets – creating

a greater challenge for the learning algorithm than a random split. [163, 164] The suc-

cess of the splitting procedure was verified manually by inspecting the two-dimensional

structures of the molecules in their respective sets. Examples of molecules in the train-

ing, validation, and test sets are shown in Figure 7.5. While only a small subset of

the 26,265 molecules can be visualized here, Figure 7.5 demonstrates that each group

contains structurally similar molecules while remaining distinct from the other groups.

The aforementioned network was modelled in Keras [98]. Beyond trying three differ-

ent architectures no hyperparameter optimization was conducted. The Adam optimizer

was used with hyperparameters: learning rate = 0.001, β1 = 0.9, β2 = 0.999, AMSGrad

= False, and a batch size of 64 examples per minibatch.

The loss function L to be minimized was defined as the weighted summation of

squared errors summed over each target quantity shown by:

L(θ) =
∑
k

1

σ2
k

N∑
n=1

24∑
m=1

(
yn,k − ŷ(m)

n,k (x; θ)
)2

. (7.2)

For each target variable, the squared errors yn,k − ŷ(m)
n,k (x; θ)2 are summed over all ex-

amples n and molecular orientations m and weighted by the inverse of the variance of

the target quantity 1
σ2
k
. The weighting term 1

σ2
k
is computed only considering the train-

ing set. This weighting helps ensure that the model does not preferentially learn one

target property relative to the others. Explicit inclusion of the model weights θ and the

electronic structure tensor x in Equation 7.2 is meant to emphasize that the loss is a

function of the model weights and that the model prediction ŷ(m)
n,k receives, as input, the

tensor representation of the molecule and is parameterized by the model weights. The

loss function was monitored throughout training and was evaluated on the test set at
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Figure 7.5. Examples of the two-dimensional structural frameworks of
molecules present in the train, validation, and test sets after scaffold
splitting.
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Figure 7.6. Loss history of the model during training. The joint MSE
is the loss function described in Eq. 7.2. During each epoch the model
encountered 21,012·24=504,288 examples.

the end of each epoch. The model was trained for 16 epochs using a NVIDIA Tesla

P100 GPU and the completion of each epoch required roughly two hours. The complete

loss history is provided in Figure 7.6. The model corresponding to the 14th epoch was

selected because it had the lowest loss on the validation set.

7.4 Results and discussion

7.4.1 Rotational Invariance

If, by viewing multiple orientations of an input, the network learned approximately

rotationally invariant features then the convolutional base output activations (a) would

have the same value for each orientation. These activations correspond to the final dense

layer in the “information integration" section of the network. This layer has 64 neurons,

which are arbitrarily assigned identifications (f) 1-64. The activation value for each

neuron and each orientation is plotted for two molecules – one from the training set and

one from the validation set – in Figure 7.7.

In this figure, inactive neurons (a = 0) are designated with the color white. As seen,

not all neurons are activated; indicative that some features learned by the network are not
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b)

a)

Figure 7.7. Activations (a) for each orientation
of molecules a) 2-nitrofuran (training set), and b)
CC1=COC(=N)C(=O)C(O)=NC=C(N1)[N+]([O-])=O (validation set,
shown in Figure 7.5). White indicates an inactive neuron; i.e. a = 0.



121

present in the given molecule. Orientation-to-orientation dependence of feature detection

is an unwanted attribute. While it is difficult to quantify the degree of orientation

independence, we state that Figure 7.7 represents that the activated neurons are very

likely to display a similar response across rotations.

7.4.2 Orientation Correlation

Given that the array of extracted features is not perfectly constant between orien-

tations for a given molecular input, we wished to explore the correlation between input

orientations. The error between the true value and predicted value for each target quan-

tity, example, and orientation is

ε
(m)
n,k = yn,k − ŷ(m)

n,k . (7.3)

The errors were grouped according to target quantity such that, for a given target, the

errors can be considered a matrix with N rows (one for each molecule) and 24 columns

(one for each orientation). For each target quantity the orientation columns were com-

pared pairwise using both the Pearson and Spearman correlation metrics to check for

linear and non-linear relationships. An example of the error correlation strengths be-

tween orientations is given in Figure 7.8a for the C-J detonation pressure target. The

error correlation strength matrices for the remaining target quantities were very similar

to that of C-J detonation pressure and are not shown here. However, the maximum

error correlation coefficient for each target and the pair of orientations that produced

it are listed in Table 7.1. It is noteworthy that the lowest correlation coefficient (Pear-

son or Spearman) for any target variable was 0.339; that is, there were no negative

correlation relationships. A few orientation pairs are repeated in Table 7.1, but since

no single pair of orientations is consistently dominant throughout the target quantities

these relationships were not further examined.

Strong correlation of errors between orientations would be another indicator of rota-

tional invariance simply because each orientation would make the same prediction and

thus the same error. The orientation pairs for each target exhibit moderate strength;
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Figure 7.8. Prediction errors of C-J detonation pressure. a) Matrix
displaying the correlation strength of prediction error between pairs of
input tensor orientations. The upper triangle of the matrix specifies the
correlation using the Pearson metric and the lower triangle of the matrix
uses the the Spearman correlation metric. The red squares highlight the
orientation pairs with the highest correlation using either the Pearson or
Spearman method. b) Kernel density estimates of the distributions of C-
J detonation pressure prediction error for each input tensor orientation
(24) and their average.
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Table 7.1. Maximum values for the Pearson (P) and Spearman (S)
correlation coefficients for each target quantity and the associated pair
of orientations that produced it.

Target max(P) (orient. pair) max(S) (orient. pair)

Total Electronic Energy 0.601 (14, 15) 0.537 (15, 14)

HOMO-LUMO Gap 0.643 (5, 8) 0.623 (20, 4)

Dipole Moment 0.558 (6, 7) 0.485 (24, 23)

Crystal Density 0.557 (4, 20) 0.525 (20, 4)

Solid Phase Heat of Formation 0.519 (11, 14) 0.482 (14, 11)

C-J Temperature 0.530 (15, 16) 0.501 (16, 15)

C-J Detonation Pressure 0.604 (2, 24) 0.507 (24, 2)

C-J Detonation Velocity 0.564 (2, 24) 0.521 (22, 10)
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while this does not demonstrate perfect rotational invariance it does suggest that pre-

diction error can be decreased overall by taking the average of the predicted values for

each orientation. That is, the final prediction for target k on molecule n is ŷ(m̄)
n,k =

1
24

∑24
m=1 ŷ

(m)
n,k . This reduction in error is demonstrated in Figure 7.8b; again using the

C-J detonation pressure target as an example. In this figure the Gaussian kernel density

estimates (KDE) of the prediction errors for each orientation are plotted alongside the

KDE of the error after averaging the predictions. For all orientations – and the average

– the error distributions were assumed to be normal. Under this assumption the optimal

KDE bandwidth (bw) is that which minimizes the mean integrated square error and is

provided as

bw =

(
4σ̂5

3N

) 1
5

. (7.4)

For a given target quantity, the KDE bandwidth was held constant for all orientations

(and the average) by fixing σ̂ to the average standard deviation of the errors at each

orientation – described mathematically as σ̂ = 1
24

∑24
m=1 σ

(m)
ε . Thus, differences in error

distributions in Figure 7.8b are not due to varying bandwidths in the KDEs. KDE plots

for the errors of the remaining targets were all similar in form to the C-J detonation

pressure – including a reduction in error when using the average orientation prediction

– and are not displayed here for brevity.

7.4.3 Prediction Accuracy

Using the average orientation prediction ŷ(m̄)
n,k as the final model prediction on target

t for molecule n, the model prediction is plotted against the true value for each target

in Figures 7.9-7.12. Because the train, validation, and test sets consist of 21,012, 2,626,

and 2,627 molecules, respectively, these are easily cluttered. To promote visualization

the plot domain is binned hexagonally and the quantity of points contained within a

bin is represented by color. Additionally, measures of prediction accuracy, namely, the

root mean sqaured error (RMSE) and R2, are provided with each plot. Of the model

predictions, the HOMO-LUMO gap target has the lowest performance with a test set
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R2 of 0.838. Otherwise the lowest test set R2 reported is 0.943 on the crystal density

target indicating excellent model prediction capabilities.

It is worth restating that the various target properties were calculated at different

stages in the physics-based model workflow (Figure 7.2). The molecule’s total electronic

energy, HOMO-LUMO gap, and dipole moment were first calculated via DFT using

Gaussian. Afterwards, the crystal density and solid phase heat of formation were calcu-

lated using the ARL toolkit. Finally, the Chapman-Jouguet (C-J) detonation pressure,

velocity, and temperature were computed using Cheetah. While targets produced in

this manner are themselves estimates and should be further validated by comparison

to experimental data where available, we note that the machine-learned model perfor-

mance does not deteriorate when making predictions on target quantities calculated at

later stages of the physics-based workflow. Greater interrogation of the machine-learned

model is required to distinguish if the model is learning direct relationships between a

molecule’s electronic structure and late-stage properties such as the C-J detonation ve-

locity or if the model, due to the joint training procedure, is capitalizing on correlations

between these late-stage properties and other target quantities. In either case, a major

advantage of the machine-learned model is its ability to provide simultaneous predic-

tions on a wide array of targets which otherwise would require the coupling of multiple

physics-based theories and codes.

7.4.4 Comparison to ECFP4 and Random Forest

Extended-connectivity fingerprints (ECFPs) are a representation of molecular struc-

ture. [165] In particular, ECFP4 perceives elements up to 4 bonds around each atom.

Using deepchem [162], we produced ECFP4 vectors of length 1024 for each molecule in

the training, validation, and test sets. These descriptors served as the input for a joint

random forest (RF) model – implemented with scikit-learn [27] – with the same eight

target outputs as previously used in the CNN. Although scikit-learn allows for custom

weighting of loss and scoring functions when evaluating models, this feature is not cur-

rently accessible during model training. As such, the targets were first normalized by
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Figure 7.9. Predicted value (CNN) vs. actual value (physics-based work-
flow estimate). For both subfigures the top plot references the training
set, the middle plot consists of the validation set, and the bottom plot
contains the test set. The red line indicates an exact prediction (pre-
dicted equals actual). Each subfigure corresponds to a different target
output: a) total electronic energy, b) HOMO-LUMO gap.
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Figure 7.10. Predicted value (CNN) vs. actual value (physics-based
workflow estimate). For both subfigures the top plot references the train-
ing set, the middle plot consists of the validation set, and the bottom
plot contains the test set. The red line indicates an exact prediction (pre-
dicted equals actual). Each subfigure corresponds to a different target
output: a) dipole moment, b) crystal density.
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Figure 7.11. Predicted value (CNN) vs. actual value (physics-based
workflow estimate). For both subfigures the top plot references the train-
ing set, the middle plot consists of the validation set, and the bottom
plot contains the test set. The red line indicates an exact prediction (pre-
dicted equals actual). Each subfigure corresponds to a different target
output: a) solid phase heat of formation, b) Chapman-Jouguet detona-
tion temperature.



129

a) b)

T
ra
in

V
al
id
at
io
n

Te
st

Figure 7.12. Predicted value (CNN) vs. actual value (physics-based
workflow estimate). For both subfigures the top plot references the train-
ing set, the middle plot consists of the validation set, and the bottom
plot contains the test set. The red line indicates an exact prediction (pre-
dicted equals actual). Each subfigure corresponds to a different target
output: a) Chapman-Jouguet detonation pressure, b) Chapman-Jouguet
detonation velocity.



130

subtracting their respective mean and dividing by their standard deviation. This process

ensures that no target is given preferential treatment and is analogous to the use of the

weighting factor in Equation 7.2.

The random forest hyperparameters were optimized using hyperopt [99] to explore

and exploit the hyperparameter space while evaluating the mean squared error of the

validation set on the fitted model over 1000 trials. The initial probability distribution

over each hyperparameter that was allowed to vary is given in Table 7.2.

The performance of the tuned, jointly trained random forest model on each task is

measured with R2 and the mean absolute error (MAE). These results are tabulated in

Tables 7.3 and 7.4, respectively. While the joint random forest model does fairly well

on the training set, its performance is severely degraded on the test set. For example,

the crystal density training set R2 is 0.851 whereas the test set R2 is 0.326. Interest-

ingly, the total electronic energy validation R2 and MAE are -2.567 and 39.031 Hartree,

respectively. This indicates that model struggled to translate learned features from the

training set to the validation set on this target. Because the joint RF is attempting

to fit all targets simultaneously we hypothesized that removing the total electronic en-

ergy target from the model would improve performance. To this end, using the same

training and hyperparameter optimization process, we developed another jointly trained

random forest without the total electronic energy target. Additionally, we produced

eight independent random forests – one for each target. The only difference being that

the independent random forests’ hyperparameter optimization was conducted with 300

trials. The R2 and MAE scores for these models, alongside the CNN, are also listed in

Tables 7.3 and 7.4.

The joint RF without the total electronic energy target and the independent random

forests achieved greater performance than the original joint RF model. However, the

previously developed 3D CNN outperformed all the ECFP4 RF models on every task. In

fact, the MAE for the CNN is typically half (or less) than the MAE for the RF models.
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Table 7.2. The random forest hyperparameters that were allowed to vary
and their prior distributions. Brackets indicate a discrete distribution
with support [lower bound, upper bound, step size] and curly braces
indicate a choice between values.

Hyperparameter Initial Distribution

max_depth uniform [2, 100, 1]

n_estimators uniform [5, 200, 5]

min_samples_leaf uniform [1, 10, 1]

max_features uniform
{None, log2,

sqrt}
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Table 7.3. R2 scores for all eight prediction tasks broken down by model and set designation (train, validation, or test).

Total

Electronic

Energy

HOMO-

LUMO

Gap

Dipole

Moment

Crystal

Density

Heat of

Formation

C-J

Temperature

C-J

Detonation

Pressure

C-J

Detonation

Velocity

Joint RF

Train 0.951 0.793 0.658 0.851 0.947 0.951 0.925 0.935

Validation -2.567 0.418 0.065 0.222 0.713 0.670 0.611 0.644

Test 0.786 0.402 0.137 0.326 0.763 0.814 0.704 0.739

Joint RF

(no energy)

Train 0.867 0.790 0.902 0.964 0.967 0.951 0.957

Validation 0.422 0.071 0.213 0.718 0.673 0.612 0.646

Test 0.407 0.148 0.318 0.767 0.818 0.706 0.742

Independent

RFs

Train 0.928 0.879 0.768 0.905 0.973 0.973 0.941 0.950

Validation -2.472 0.460 0.100 0.322 0.751 0.713 0.627 0.678

Test 0.784 0.473 0.243 0.426 0.797 0.840 0.718 0.757

CNN

Train 0.990 0.946 0.988 0.985 0.992 0.991 0.987 0.991

Validation 0.726 0.850 0.959 0.925 0.972 0.962 0.954 0.963

Test 0.981 0.838 0.973 0.943 0.979 0.978 0.965 0.974
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Table 7.4. Mean absolute errors for all eight prediction tasks broken
down by model and set designation (train, validation, or test).

Total

Electronic

Energy

(Hartree)

HOMO-

LUMO

Gap

(eV)

Dipole

Moment

(Debye)

Crystal

Density

(g/cc)

Heat of

Formation

(kcal/mol)

C-J

Temperature

(K)

C-J

Detonation

Pressure

(GPa)

C-J

Detonation

Velocity

(km/s)

Joint RF

Train 17.885 0.252 0.923 0.020 14.957 129.681 0.933 0.154

Validation 39.031 0.560 1.562 0.035 40.976 260.154 1.536 0.327

Test 35.629 0.536 1.523 0.038 37.686 259.756 1.859 0.313

Joint RF

(no energy)

Train 0.200 0.716 0.016 12.221 104.948 0.744 0.124

Validation 0.558 1.554 0.036 40.403 258.598 1.529 0.326

Test 0.532 1.510 0.039 37.331 258.313 1.854 0.313

Independent

RFs

Train 20.900 0.182 0.739 0.016 9.585 90.755 0.796 0.120

Validation 38.065 0.536 1.529 0.033 38.120 244.547 1.514 0.315

Test 35.628 0.493 1.409 0.035 34.187 241.329 1.802 0.303

CNN

Train 10.260 0.131 0.155 0.006 5.595 57.022 0.351 0.057

Validation 14.389 0.277 0.292 0.011 12.918 89.516 0.499 0.103

Test 12.702 0.273 0.232 0.011 11.250 90.029 0.584 0.096
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Interestingly, the greatest difference between validation and test set performance

measures occurred on the total electronic energy task and was observed in both the RF

and CNN models. To explore this difference in greater detail, we plot the histogram of

total electronic energy values grouped by set designation in Figure 7.13a. As seen, the

validation set molecules all have total electronic energies less than -700 Hartree. While

this is unique, there are plenty of instances within the training set with similar values.

Using the naive measure of molecular "extent" (as output from Gaussian) to roughly

describe a molecule’s size, the distribution of extent along the x-axis is given for the

training, validation, and test sets in Figure 7.13b. This figure demonstrates that the

molecules in the validation set are generally bigger than those in the training and test

sets. Recall that, for the CNN, the input standardization process truncates all electronic

structure information beyond 25.6 Å. Consequently, inspection of Figure 7.13b reveals

that 47.8% of the molecules in the validation set have truncated electronic structures.

The percentage of truncated molecules in the training and test sets are 21.5% and 34.5%,

respectively. Given that the validation set molecules are generally larger in size, and

nearly half of these molecules are missing components of their electronic structures, it is

impressive that the CNN was reasonably accurate when predicting the total electronic

energy (R2=0.726, MAE=14.389 Hartree (1.93%)).

7.4.5 y-Randomization

In addition to estimating the generalization error by evaluating the model perfor-

mance on the test set, we compared the performance of the final CNN model to a

“straw" model developed with y-randomization. A straw model is a similar variant of

the working model but it excludes the working hypothesis by design [166]. Logical rea-

soning dictates that if the proposed model cannot significantly outperform straw models

then it should not be accepted.

For y-randomization, the target labels of the training set are randomly shuffled be-

fore the model is trained [167]. This procedure effectively ablates any chemical infor-

mation available to the model and, by definition, cannot generalize to new or unseen
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a)

b)

Figure 7.13. a) Stacked histograms of total electronic energy values
present in the training, validation, and test sets. b) Probability distri-
butions of extent along the x-axis. The dashed black line represents the
outer limit of the input standarization bounding box.
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instances [168]. A model trained under these conditions is a straw model wherein any

predictive performance it attains on either the training, validation, or test sets can only

be attributed to chance correlations between the inputs and targets [167].

Ideally, multiple y-randomized models are produced in order to estimate the expecta-

tion and variance of the straw model performance. A statistically significant increase in

performance of the proposed model compared to that of the straw models serves as strong

evidence that the proposed model learned actual, physically-relevant, information.

Due to the computational costs of training a large model, we only developed one

y-randomized variant. Upon completion of training (following the same procedures as

the proposed model), inspection of the model revealed that the model learned to simply

predict the mean value of the training set for each target. That is, the randomized model

proved incapable of learning even chance correlations or noise between the electronic

structure of the molecule and the target properties and “settled" for predicting the

target mean. By definition, the straw model R2 scores for both the training and test

sets are approximately zero for all targets and are not shown here. Likewise, the root

mean squared errors are also omitted for concision as these are simply the standard

deviations of the target outputs.

Although only one y-randomized model variant was trained, we submit that the stark

contrast in model performance between the straw model and original model provides

sufficient validation that the proposed model has extracted physical information from

the molecular structures.

7.4.6 Effect of Extent Cutoff

As noted in Methodology, due to the size of the stardardized input cube the electron

charge density and electrostatic potential 3D spatial point grids of some molecules will

be clipped in the “x" direction (longest principal direction as dictated by Gaussian). In

order to compare the effect of this clipping on the target predictions while considering all
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target quantities simultaneously a joint scaled error was computed by taking the mean

of the weighted absolute errors over the target set

1

|K|
∑
k∈K

(
|εn,k|
σk

)
. (7.5)

Here the error is taken as the difference between the actual target value and the final

model prediction (averaged over orientations); εn,k = yn,k− ŷ(m̄)
n,k . The quantity described

by Equation 7.5 is herein referred to as the mean scaled absolute error (MSAE) and serves

as a measurement of the effective error across all target quantities.

Note that in Equation 7.5, the absolute value of the error is taken so that only the

magnitude, and not the direction, of the error is considered. Additionally, the absolute

error is scaled by the inverse standard deviation of the true values for the target variable

k (σk) considering the complete data set. Including the train, validation, and test sets

in the calculation of σk keeps the scaling factor constant between these sets.

The MSAE for each molecule is plotted against the original (pre-standardization)

length of the molecule’s 3D spatial point grids in the x direction; shown in Figure 7.14.

As seen, the prediction error is generally higher for those molecules with clipped

information and there is some correlation between molecular extent in the x direction

and absolute error.

7.5 Conclusion and Future Work

We have shown that a 3D convolutional neural network can effectively parse the

electron charge density and electrostatic potential of a molecule to make high accuracy

predictions on material properties without the need to hand-craft molecular descriptors.

The 3D CNN model, without any hyperparameter tuning, outperforms tuned random

forest models using ECFP4 descriptors. This model attains excellent generalization

error even when making predictions on structurally dissimilar molecules as observed

with scaffold-based splitting.

Future work may address opportunities for model improvement; namely: increasing

the size of the bounding box so that no electronic structure information is clipped; ap-
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Figure 7.14. Average scaled absolute error vs. input pre-standardization
x direction extent for a) training, b) validation, and c) test sets. Red
dotted line indicates extent cutoff.
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plying data augmentation using any arbitrary, randomly selected, molecular orientation

during model training (i.e. not limited to 90 degree rotations); increasing the maximum

value limits imposed on the electron density and electrostatic potential. This last point

is reinforced by observing that much of the molecule’s internal electronic structure was

“capped" by these limits being set too low as seen in Figure 7.3b.

Additionally, the model may be coupled with other machine learned models capable

of estimating the electronic structure of a molecule so that the physics-based workflow

is entirely bypassed – augmenting material screening and accelerating discovery. This

outcome could be further improved by adapting the model for sequential design so that

new molecules can be proposed for synthesis followed by experimental validation and

testing. With transfer learning applied to the convolutional base of the network, the

model could be adapted to make predictions on target quantities for which no physics-

based workflow exists and where limited experimental data are available; for example,

explosive sensitivity testing. Finally, work to quantify the uncertainty of the model

predictions will greatly enhance the model’s utility.
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8. CONCLUSION

In order to visualize an emerging hot spot in a real energetic system, the intensity ratio

method of phosphor thermography was performed to remotely measure temperature

from within a simplified PBX undergoing mechanical excitation. Sylgard 184 was used

as the binder in the PBX due to its optical clarity and was not shown to have adverse

affects on the temperature measurement or sensitivity. ZnO:Ga phosphor sensitivity and

calibration are shown to be dependent on incident fluence and should be considered in

future designs. Spatially, the pixel-to-pixel standard deviation was shown to be less than

2% for the prescribed temperatures ≤ 220 ◦C. The temporal, frame-to-frame, standard

deviation was not computed, but observed measurement fluctuations are likely attributed

to shot-to-shot fluctuations in laser energy and can be corrected in future tests. This

work was useful because the spatially and temporally resolved temperature field of an

evolving hot spot can be used to shed light on the underlying physical phenomena

governing hot spot initiation and growth.

A review of the maximum likelihood estimation process for the normal and logistic

latent distributions commonly employed in sensitivity tests was provided. The underly-

ing assumption that the latent distribution is unimodal greatly simplifies the parameter

estimation procedure but cannot generalize to more complex latent distributions. An

updated estimation procedure applicable to bimodal latent distributions was motivated

and detailed.

The influence of simple and realistic pore geometries on the sensitivity of shocked

HMX was shown to be significant. Pore orientation and aspect ratio are strong drivers

of shock sensitivity. Generally speaking, elliptical pores with their major axis aligned

with the incoming shock are the most sensitive while those elliptical pores with the

major axis perpendicular to the incoming shock are the least sensitive. Despite their

usefulness, the metrics of aspect ratio and orientation alone do not adequately capture
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the deviations in shock sensitivity of realistic pore geometries. Machine-learned models

trained on the simulated collapse of realistic pore shapes can predict sensitivity with

good accuracy but interrogation of these models to understand the exact effect of shape

features is difficult. Of the models tested, the convolutional neural network (CNN)

acting on a standardized binary image representation of the pore shapes demonstrated

the best performance. Furthermore, the shape features extracted by the CNN align

with human intuition in that pore shapes of similar appearance are adjacent in feature

space and have comparable critical threshold velocities. The data generated by this work

and the produced surrogate models are made publicly available through an interactive

web application. This work can continue to augment research surrounding pore collapse

by using the trained surrogate models to directly compare and investigate the relative

importance of pore size and pore shape. Additionally, the collected distribution of

critical threshold velocities (relating to pore sensitivity) could be used to inform full-

scale stochastic continuum models.

Finally, it was demonstrated that a 3D convolutional neural network can effectively

parse the electron charge density and electrostatic potential of a molecule to make high

accuracy predictions on material properties without the need to hand-craft molecular

descriptors. The 3D CNN model, without any hyperparameter tuning, outperformed

tuned random forest models using conventional ECFP4 descriptors. The model attained

excellent generalization error even when making predictions on structurally dissimilar

molecules as observed with scaffold-based splitting. Promoting advancement, the model

can be coupled with other machine learned models capable of estimating the electronic

structure of a molecule so that the physics-based workflows are entirely bypassed –

augmenting material screening and accelerating discovery. This outcome could be further

improved by adapting the model for sequential design so that new molecules can be

proposed for synthesis followed by experimental validation and testing. With transfer

learning applied to the convolutional base of the network, the model could be adapted

to make predictions on target quantities for which no physics-based workflow exists and

where limited experimental data are available; for example, the explosive sensitivity

testing mentioned throughout this work.
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A. DERIVATION OF MAXIMUM LIKELIHOOD ESTIMATORS AND

INFORMATION MATRIX FOR A MIXTURE OF TWO GAUSSIANS

Maximum likelihood estimators are a poor choice when estimating the parameters for a

mixture of Gaussians. However, their derivation is provided here for reference.

A Gaussian (normal) distribution is parameterized by two variables; aptly named

mu (µ, representing the center of the distribution) and sigma (σ, identifying the spread

of the distribution).

The probability density function (pdf) of a single Gaussian distribution is given by

p(x|µ, σ2) =
1√

2πσ2
e−

(x−µ)2

2σ2 (A.1)

and a mixture of two Gaussian distributions is defined as

p(x|µ1, µ2, σ
2
1, σ

2
2) = π1 p(x|µ1, σ

2
1) + π2 p(x|µ2, σ

2
2) (A.2)

where the coefficients π1 and π2 must be greater than or equal to zero and sum to one.

Following the notation used in section 5.1, the following variables and functions are

defined:

z
(i)
1 =

L(i) − µ1

σ1

(A.3)

z
(i)
2 =

L(i) − µ2

σ2

(A.4)

f(t) =
1√
2π
e−

t2

2 (A.5)

P (i) = π1

∫ z
(i)
1

−∞
f(t)dt+ π2

∫ z
(i)
2

−∞
f(t)dt = π1

∫ z
(i)
1

−∞
f(t)dt+ (1− π1)

∫ z
(i)
2

−∞
f(t)dt (A.6)
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where L(i) is the stimulus level L applied to test article i. z(i)
1 and z(i)

2 are the z-scores of

stimulus level L(i) standardized with parameters (µ1, σ1) and (µ2, σ2). f(t) is the pdf

of a standard normal distribution (Gaussian distribution with µ = 0 and σ = 1). And

P (i) is the probability of observing a ‘go’ for a randomly selected test article at stimulus

level L(i).

Additionally, N (i) and M (i) are the number of ‘goes’ and ‘no-goes’ observed at stim-

ulus level L(i), respectively.

With this information, the likelihood function for a binary dataset (‘go’, ‘no-go’) at

n stimulus levels is given by

L(µ1, µ2, σ1, σ2, π1) =
n∏
i=1

(
N (i) +M (i)

N (i)

)
(P (i))N

(i)

(Q(i))M
(i)

(A.7)

where Q(i) is equal to 1− P (i).

The natural logarithm of likelihood function is

log(L) = l =
n∑
i−1

[
log

(
N (i) +M (i)

N (i)

)
+N (i)log(P (i)) +M (i)log(Q(i))

]
. (A.8)

First Partials - MLEs

The values of µ1, µ2, σ1, σ2, and π1 that produce a maximum value of equation A.8

are the maximum likelihood estimators for those parameters. The maximum value of

eq. A.8 occurs when the partial derivatives of eq. A.8 with respect to the parameters are

all equal to zero.

The first order partial derivatives of l with respect to µ1, µ2, σ1, σ2, and π1 are

given by

∂l

∂µ1

=
n∑
i−1

[
N (i)∂(log(P (i)))

∂P (i)

∂P (i)

∂z
(i)
1

dz
(i)
1

dµ1

+M (i)∂(log(Q(i)))

∂Q(i)

∂Q(i)

∂z
(i)
1

dz
(i)
1

dµ1

]
(A.9)

∂l

∂µ2

=
n∑
i−1

[
N (i)∂(log(P (i)))

∂P (i)

∂P (i)

∂z
(i)
2

dz
(i)
2

dµ2

+M (i)∂(log(Q(i)))

∂Q(i)

∂Q(i)

∂z
(i)
2

dz
(i)
2

dµ2

]
(A.10)
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∂l

∂σ1

=
n∑
i−1

[
N (i)∂(log(P (i)))

∂P (i)

∂P (i)

∂z
(i)
1

dz
(i)
1

dσ1

+M (i)∂(log(Q(i)))

∂Q(i)

∂Q(i)

∂z
(i)
1

dz
(i)
1

dσ1

]
(A.11)

∂l

∂σ2

=
n∑
i−1

[
N (i)∂(log(P (i)))

∂P (i)

∂P (i)

∂z
(i)
2

dz
(i)
2

dσ2

+M (i)∂(log(Q(i)))

∂Q(i)

∂Q(i)

∂z
(i)
2

dz
(i)
2

dσ2

]
(A.12)

∂l

∂µ2

=
n∑
i−1

[
N (i)∂(log(P (i)))

∂P (i)

∂P (i)

∂π1

+M (i)∂(log(Q(i)))

∂Q(i)

∂Q(i)

∂π1

]
. (A.13)

The derivatives in equations A.9 to A.13 are obtained as

∂log(P (i))

∂P (i)
=

1

P (i)
(A.14)

∂log(Q(i))

∂Q(i)
=

1

Q(i)
(A.15)

∂P (i)

∂z
(i)
1

= π1f(z
(i)
1 ) (A.16)

∂P (i)

∂z
(i)
2

= (1− π1)f(z
(i)
2 ) (A.17)

∂Q(i)

∂z
(i)
1

= −π1f(z
(i)
1 ) (A.18)

∂Q(i)

∂z
(i)
2

= −(1− π1)f(z
(i)
2 ) (A.19)

∂z
(i)
1

∂µ1

=
−1

σ1

(A.20)

∂z
(i)
2

∂µ2

=
−1

σ2

(A.21)

∂z
(i)
1

∂σ1

=
−(L(i) − µ1)

σ2
1

(A.22)
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∂z
(i)
2

∂σ2

=
−(L(i) − µ2)

σ2
2

(A.23)

∂P (i)

∂π1

= I =

∫ z
(i)
1

−∞
f(t)dt−

∫ z
(i)
2

−∞
f(t)dt (A.24)

∂Q(i)

∂π1

= −I = −
∫ z

(i)
1

−∞
f(t)dt+

∫ z
(i)
2

−∞
f(t)dt. (A.25)

Substituting equations A.14 – A.25 into equations A.9 – A.13 yields

∂l

∂µ1

=
n∑
i=1

[
N (i) 1

P (i)
π1f(z

(i)
1 )
−1

σ1

+M (i) 1

Q(i)
π1f(z

(i)
1 )

1

σ1

]
(A.26)

∂l

∂µ2

=
n∑
i=1

[
N (i) 1

P (i)
(1− π1)f(z

(i)
2 )
−1

σ2

+M (i) 1

Q(i)
(1− π1)f(z

(i)
2 )

1

σ2

]
(A.27)

∂l

∂σ1

=
n∑
i=1

[
N (i) 1

P (i)
π1f(z

(i)
1 )
−(L(i) − µ1)

σ2
1

+M (i) 1

Q(i)
π1f(z

(i)
1 )

(L(i) − µ1)

σ2
1

]
(A.28)

∂l

∂σ2

=
n∑
i=1

[
N (i) 1

P (i)
(1− π1)f(z

(i)
2 )
−(L(i) − µ2)

σ2
2

+M (i) 1

Q(i)
(1− π1)f(z

(i)
2 )

(L(i) − µ2)

σ2
2

]
(A.29)

∂l

∂π1

=
n∑
i=1

[
N (i) 1

P (i)
I −M (i) 1

Q(i)
I

]
(A.30)

Second Partials - Information Matrix

The information matrix is defined as the negative of the expectation of the Hessian

of the log likelihood function with respect to the parameters. That is,

INF = −E[H(l)]. (A.31)
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The Hessian of the log likelihood function is a matrix composed of the second partial

derivatives of said function taken with respect to the parameters.

H =



∂2l
∂µ2

1

∂2l
∂σ1∂µ1

∂2l
∂µ2∂µ1

∂2l
∂σ2∂µ1

∂2l
∂π1∂µ1

∂2l
∂µ1∂σ1

∂2l
∂σ2

1

∂2l
∂µ2∂σ1

∂2l
∂σ2∂σ1

∂2l
∂π1∂σ1

∂2l
∂µ1∂µ2

∂2l
∂σ1∂µ2

∂2l
∂µ2

2

∂2l
∂σ2∂µ2

∂2l
∂π1∂µ2

∂2l
∂µ1∂σ2

∂2l
∂σ1∂σ2

∂2l
∂µ2∂σ2

∂2l
∂σ2

2

∂2l
∂π1∂σ2

∂2l
∂µ1∂π1

∂2l
∂σ1∂π1

∂2l
∂µ2∂π1

∂2l
∂σ2∂π1

∂2l
∂π2

1


(A.32)

The matrix H is symmetric so only the terms given by the upper or lower diagonal

need specified to determine the entire matrix.

Determining the second partial derivatives of the log likelihood function, and then

applying the expectation operator and negating the subsequent expression, is straight-

forward - albeit tedious. As an example the full derivation of the term −E
[
∂2l
∂µ2

1

]
is given

here:

∂2l

∂µ2
1

=
n∑
i−1

N (i)−π1

σ1

∂

(
f(z

(i)
1 )

P (i)

)
∂µ1

+M (i)π1

σ1

∂

(
f(z

(i)
1 )

Q(i)

)
∂µ1

 (A.33)

The expanded derivatives in equation A.33 are

∂

(
f(z

(i)
1 )

P (i)

)
∂µ1

=
1

P (i)

∂f(z
(i)
1 )

∂µ1

+ f(z
(i)
1 )

−1

(P (i))2

∂P (i)

∂µ1

(A.34)

∂

(
f(z

(i)
1 )

Q(i)

)
∂µ1

=
1

Q(i)

∂f(z
(i)
1 )

∂µ1

+ f(z
(i)
1 )

−1

(Q(i))2

∂Q(i)

∂µ1

(A.35)

Continuing the application of the chain rule

∂f(z
(i)
1 )

∂µ1

=
∂f(z

(i)
1 )

∂z
(i)
1

∂z
(i)
1

∂µ1

= −z(i)
1 f(z

(i)
1 )
−1

σ1

(A.36)

∂P (i)

∂µ1

=
∂P (i)

∂z
(i)
1

∂z
(i)
1

∂µ1

= π1f(z
(i)
1 )
−1

σ1

(A.37)
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∂Q(i)

∂µ1

=
∂Q(i)

∂z
(i)
1

∂z
(i)
1

∂µ1

= −π1f(z
(i)
1 )
−1

σ1

(A.38)

Substituting equations A.36 – A.37 into equations A.34 and A.35 and then further

substituting those equations into A.33 produces

∂2l

∂µ2
1

=
n∑
i−1

[
N (i)−π1

σ1

(
1

P (i)

z
(i)
1 f(z

(i)
1 )

σ1

+
f(z

(i)
1 )

(P (i))2

rf(z
(i)
1 )

σ1

)

+M (i)π1

σ1

(
1

Q(i)

z
(i)
1 f(z

(i)
1 )

σ1

− f(z
(i)
1 )

(Q(i))2

rf(z
(i)
1 )

σ1

)]
.

(A.39)

Applying the expectation operator will only affect the N (i) and M (i) variables. N (i)

will become (N (i) + M (i))P (i) and M (i) will become (N (i) + M (i))Q(i). Therefore, after

some elimination and regrouping of terms

−E
[
∂2l

∂µ2
1

]
=

n∑
i=1

(N (i) +M (i))
π2

1f(z
(i)
1 )2

σ2
1

(
1

P (i)
+

1

Q(i)

)
. (A.40)

The other terms in both the Hessian and Information matrix are derived similarly.

Defining the information matrix

INF = −E[H(l)] =


a11 a12 . . .
... . . .

a51 a55

 (A.41)

the elements of the information matrix are:

a11 =
n∑
i=1

(
N (i) +M (i)

)( 1

P (i)
+

1

Q(i)

)
π2

1f(z
(i)
1 )2

σ2
1

a12 =
n∑
i=1

(
N (i) +M (i)

)( 1

P (i)
+

1

Q(i)

)
π2

1f(z
(i)
1 )2

σ2
1

z
(i)
1

a13 =
n∑
i=1

(
N (i) +M (i)

)( 1

P (i)
+

1

Q(i)

)
π1(1− π1)

f(z
(i)
1 )f(z

(i)
2 )

σ1σ2
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a14 =
n∑
i=1

(
N (i) +M (i)

)( 1

P (i)
+

1

Q(i)

)
π1(1− π1)

f(z
(i)
1 )f(z

(i)
2 )

σ1σ2

z
(i)
2

a15 =
n∑
i=1

(
N (i) +M (i)

)( 1

P (i)
+

1

Q(i)

)
f(z

(i)
1 )

σ1

(−π1)I

a22 =
n∑
i=1

(
N (i) +M (i)

)( 1

P (i)
+

1

Q(i)

)
π2

1f(z
(i)
1 )2

σ2
1

(z
(i)
1 )2

a23 =
n∑
i=1

(
N (i) +M (i)

)( 1

P (i)
+

1

Q(i)

)
π1(1− π1)

f(z
(i)
1 )f(z

(i)
2 )

σ1σ2

z
(i)
1

a24 =
n∑
i=1

(
N (i) +M (i)

)( 1

P (i)
+

1

Q(i)

)
π1(1− π1)

f(z
(i)
1 )f(z

(i)
2 )

σ1σ2

z
(i)
1 z

(i)
2

a25 =
n∑
i=1

(
N (i) +M (i)

)( 1

P (i)
+

1

Q(i)

)
f(z

(i)
1 )

σ1

(−π1)Iz
(i)
1

a33 =
n∑
i=1

(
N (i) +M (i)

)( 1

P (i)
+

1

Q(i)

)
(1− π1)2f(z

(i)
2 )2

σ2
2

a34 =
n∑
i=1

(
N (i) +M (i)

)( 1

P (i)
+

1

Q(i)

)
(1− π1)2f(z

(i)
2 )2

σ2
2

z
(i)
2

a35 =
n∑
i=1

(
N (i) +M (i)

)( 1

P (i)
+

1

Q(i)

)
f(z

(i)
2 )

σ2

(−1)(1− π1)I

a44 =
n∑
i=1

(
N (i) +M (i)

)( 1

P (i)
+

1

Q(i)

)
(1− π1)2f(z

(i)
2 )2

σ2
2

(z
(i)
2 )2

a45 =
n∑
i=1

(
N (i) +M (i)

)( 1

P (i)
+

1

Q(i)

)
f(z

(i)
2 )

σ2

(−1)(1− π1)Iz
(i)
2

a55 =
n∑
i=1

(
N (i) +M (i)

)( 1

P (i)
+

1

Q(i)

)
I2


