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ABSTRACT

Park, Hogun Ph.D., Purdue University, August 2020. Neural Representation Learn-
ing for Semi-Supervised Node Classification and Explainability. Major Professor:
Jennifer Neville.

Many real-world domains are relational, consisting of objects (e.g., users and pa-

pers) linked to each other in various ways. Because class labels in graphs are often

only available for a subset of the nodes, semi-supervised learning for graphs has been

studied extensively to predict the unobserved class labels. For example, we can pre-

dict political views in a partially labeled social graph dataset and get expected gross

incomes of movies in an actor/movie graph with a few labels. Recently, advances in

representation learning for graph data have made great strides for the semi-supervised

node classification. However, most of the methods have mainly focused on learning

node representations by considering simple relational properties (e.g., random walk)

or aggregating nearby attributes, and it is still challenging to learn complex inter-

action patterns in partially labeled graphs and provide explanations on the learned

representations.

In this dissertation, multiple methods are proposed to alleviate both challenges

for semi-supervised node classification. First, we propose a graph neural network

architecture, REGNN, that leverages local inferences for unlabeled nodes. REGNN

performs graph convolution to enable label propagation via high-order paths and

predicts class labels for unlabeled nodes. In particular, our proposed attention layer

of REGNN measures the role equivalence among nodes and effectively reduces the

noise, which is generated during the aggregation of observed labels from distant

neighbors at various distances. Second, we also propose a neural network archi-

tecture that jointly captures both temporal and static interaction patterns, which



xiii

we call Temporal-Static-Graph-Net (TSGNet). The architecture learns a latent rep-

resentation of each node in order to encode complex interaction patterns. Our key

insight is that leveraging both a static neighbor encoder, that learns aggregate neigh-

bor patterns, and a graph neural network-based recurrent unit, that captures complex

interaction patterns, improves the performance of node classification. Lastly, in spite

of better performance of representation learning on node classification tasks, neural

network-based representation learning models are still less interpretable than the pre-

vious relational learning models due to the lack of explanation methods. To address

the problem, we show that nodes with high bridgeness scores have larger impacts

on node embeddings such as DeepWalk [1], LINE [2], Struc2Vec [3], and PTE [4]

under perturbation. However, it is computationally heavy to get bridgeness scores,

and we propose a novel gradient-based explanation method, GRAPH-wGD, to find

nodes with high bridgeness efficiently. In our evaluations, our proposed architectures

(REGNN and TSGNet) for semi-supervised node classification consistently improve

predictive performance on real-world datasets. Our GRAPH-wGD also identifies

important nodes as global explanations, which significantly change both predicted

probabilities on node classification tasks and k-nearest neighbors in the embedding

space after perturbing the highly ranked nodes and re-learning low-dimensional node

representations for DeepWalk and LINE embedding methods.
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1 INTRODUCTION

This dissertation is concerned with learning node representations for attributed or

non-attributed graphs and providing explanations of the representations. In a large

network such as Facebook social graphs and IMDB actor/movie graphs, our methods

find the low-dimensional representation of each user or each movie for semi-supervised

node classification and provide explanations that show who contributed the most to

the learned representations.

First of all, semi-supervised node classification aims to classify unknown class la-

bels in a partially-labeled graph by leveraging information about both the labeled and

unlabeled nodes. The semi-supervised learning exploits the dependencies in the data

to jointly make predictions about unlabeled nodes and has been extensively studied

in recent years (e.g., [5, 6]) in relational data applications such as social, citation,

and biological networks. Recent advances in representation learning for graph data

have made great strides for the semi-supervised node classification. Representation

learning for semi-supervised node classification is illustrated as in the Figure 1.1 be-

low. We note that an input graph set G = {G1, ..., GT} is given, which is composed

of T number of temporal network snapshots. As in the figure, d-dimensional repre-

sentation of each node v in G is learned from node representation learning methods

(e.g., [1,7]) with (or without) observed class labels YL and an attribute matrix X. The

representations are leveraged to learn a classifier for node classification. For example,

in a Facebook social graph, its task is to predict the political views of unlabeled users.

Prior work on semi-supervised learning in graphs has typically defined relational

features via aggregation over the information of neighboring nodes, and then un-

known class labels are inferred iteratively using approximate inference algorithms

(e.g., Gibbs sampling [8] and composite-likelihood EM [9]). Meanwhile, recent graph

neural network models [5, 10, 11] learn relational features using LSTM and CNN-
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Figure 1.1.: Illustration of representation learning for node classification tasks. An
example of node classification is to predict political views of unlabeled users in a
Facebook social graph.

like architectural components. In particular, graph neural networks (GNNs) provide

powerful deep neural network architectures, which exploit convolution operators for

learning based on nearby neighbors’ attributes. For example, the graph convolution

operator [5] sums attributes of all the neighbors of nodes with a linear transforma-

tion. By stacking multiple layers, it learns a low-dimensional representation of each

node. However, recent methods have mainly focused on learning node representa-

tions by considering simple relational properties (e.g., random walk) or aggregating

information from direct neighbors, and it is still challenging to leverage more complex

interaction patterns and provide explanations on the learned representations.

In this dissertation, to move beyond direct neighbors and exploit longer range

information in sparse graphs, we consider high-order (or kth order) proximity ma-

trices and extend the existing high-order-based GCNs to leverage inferences about

unlabeled nodes via neighborhood at various distances. Since the reasoning with

higher-order paths (i.e., larger k) increases the computational complexity of learn-

ing. When considering direct links in sparse graphs, the time complexity for learning

GCNs is O(|E|) ' O(|V |). We note that |V | is the number of vertices and |E| is

the number of edges of an input graph. However, as higher-order paths connect dis-

tant nodes, its complexity becomes O(|V |2), we propose a more efficient mini-batch
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learning method. Incorporating higher-order paths can increase the relational signal

by considering nearby but not directly linked nodes, however, it can also increase

noise due to spurious connections as neighborhood size increases. To account for this

and enable the model to learn which distant nodes are more relevant, we propose a

novel attention mechanism based on role equivalence, a social network property that

quantifies similarity among nodes based on their relational context. The attention

mechanism is used to merge the multiple node representations learned from the set

of high-order-based GCNs.

Moreover, network interactions are often changing and evolving over time in real-

world domains. For example, users develop their connections to each other in social

networks while communicating with others, which could be potentially useful for

identifying their class labels such as political views and genders. Nonetheless, it is

difficult to leverage the dynamics of temporal interactions for node classification. In

particular, when the interaction edges are very sparse in each temporal snapshot or

a node’s neighborhood is biased toward a particular class label in different temporal

snapshots, the use of temporal patterns may not be useful for predicting class labels.

In these cases, static and aggregated patterns may help to offset these issues. Our

proposed model can not only learn temporal interaction patterns but also model the

aggregated neighborhood for node classification.

Finally, while graph representation models have increased the performance of

many relational tasks such as node classification and link predictions, it compro-

mises their ease of interpretation. Providing interpretable explanations is a crucial

criterion when the embedding models are applied in time-critical and cost-intensive

areas such as biology [12] and medicine [13]. Recently, similar research questions have

been raised by researchers, and many explanation methods are proposed to provide

explanations with salient features [14,15] or make the models more transparent [16].

However, most of them have focused on providing explanations for predictive learn-

ing models on simple sequenced or grid inputs. Moreover, since graph representation

learning methods such as DeepWalk [1], LINE [2], Struc2Vec [3], and PTE [4] are
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typically trained in an unsupervised and transductive fashion, the previous explana-

tion tools is not directly applicable. Recently, while GNNExplainer [17] is proposed

to provide explanations for Graph Neural Network models (e.g., GCN [5]) w.r.t. a

single prediction, and it is still required to have a specified end-task and requires addi-

tional computationally heavy learning (= O(|V |2) in the worst case). Moreover, it has

not been evaluated with real-world graphs. In this dissertation, we propose a novel

explanation method for finding globally important nodes to the embeddings, which

are learned from the aforementioned models. Our analysis and proofs reveal that

node-level importance in DeepWalk could be measured by bridgeness under cluster-

aware local perturbation, and we provide an efficient gradient-based method, which

we call GRAPH-wGD, to approximate the bridgeness-based ranking. To evaluate our

proposed methods, our graph neural network architectures (REGNN and TSGNet)

consistently improve predictive performance on real-world datasets. Highly ranked

nodes, which are found by our GRAPH-wGD, also have more impacts on (1) changing

predicted probabilities for node classification and (2) assigning different local neigh-

bors in the embedding space when we perturb them and re-learn low-dimensional

node representations.

1.1 Problem Statement

In this dissertation, we aim to provide new neural network architectures and an ex-

planation method for learned node representations in semi-supervised learning tasks.

More specifically, we intend to either answer or provide insights to these questions:

1. With respect to exploiting local inferences with high-order paths in graph neural

network for semi-supervised learning, we initially compute high-order (or k-th

order) proximity matrices from the input data. The high-order matrices provide

long-range path information that is often helpful for sparse graphs. However,

the k-th order matrices could become quickly dense and label inference could

be biased by increased noisy information. We would like to verify whether the
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role equivalence among nodes can reduce the noise and evaluate whether our

proposed architecture could be learned using a mini-batch training for better

efficiency.

2. With respect to learning both temporal and static interaction patterns, we

proposed a graph neural network architecture that jointly finds latent repre-

sentations of nodes. In this work, how to learn these two different interaction

patterns effectively is explored for enhancing graph neural networks.

3. Finally, we investigate how to provide global explanations by finding nodes

who contributed the most to learned representations. We study whether nodes

with high bridgeness have larger impacts on the learned node representations

after perturbing the nodes and training the graph again. Moreover, we in-

vestigate how to approximate the ranking using the bridgeness to avoid high

time-complexity on computing bridgeness for all nodes.

1.2 Main Hypothesis and Proposed Research

The goal of this dissertation is to verify the following hypothesis. (1) The noise

from high-order path-based Graph Neural Networks (GNNs) can be reduced by our

proposed role equivalence attention layer, and its learning can be also improved by the

importance sampling-based mini-batch training. (2) To learn both temporal and static

interaction patterns effectively, a neural network architecture who includes GNN-based

temporal encoder and static encoder on aggregated neighborhoods can enhance the

existing static GNNs and temporal node embedding methods. However, learned node

representations are usually less interpretable than the previous relational learning

models due to the lack of explanation methods. To address the problem, we also

verify that (3) Nodes with high bridgeness have larger impacts on the learned node

representations under perturbation with respect to pair-wise distances and ranking of

bridgeness can be approximated using a gradient-based method for better efficiency.
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1.2.1 Proposed Research

This dissertation is divided into 3 components.

1. The first part presents a role equivalence attention-based graph neural network

architecture for higher-order label propagation.

2. The second part is to propose a graph neural network architecture that can

jointly learn both temporal and static interaction patterns.

3. The third part shows the impact of high bridgeness on learned node represen-

tation under perturbation and proposes a gradient-based explanation method

to efficiently approximate bridgeness-based ranking.

This document is organized as follows. First, we introduce the background of

important concepts that are needed to discuss further ideas. Second, we propose a

high-order path-based graph neural network architecture for exploiting local infer-

ences via labels. Third, a GNN architecture is explained for learning both temporal

and static interaction patterns. Lastly, we show a theoretical study and propose a

novel gradient-based explanation method, which we call GRAPH-wGD, for finding

globally important nodes to the embeddings, which are learned from node represen-

tation learning methods such as DeepWalk [1], LINE [2], Struc2Vec [3], and PTE [4].
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2 BACKGROUND

2.1 Semi-Supervised Learning for Node Classification

In this dissertation, we consider the problem of classifying nodes in a graph, where

labels are only available for a small subset of nodes. The main idea of semi-supervised

learning is to leverage unlabeled nodes to improve prediction performance. Based on

both labeled and unlabeled nodes, the problem of semi-supervised learning is defined

as learning a classifier with or without attributes. This problem can be framed as

graph-based semi-supervised learning, where label information is smoothed over the

graph via some form of explicit graph-based regularization. The initial attempts are

described in the following subsection.

2.1.1 Graph-based Semi-Supervised Learning

Previous graph-based semi-supervised node classification algorithms such as [8,

18–21] learn a model to predict class labels of a set of unlabeled nodes, VU . They

assume that nearby nodes are likely to have the same labels. Their loss functions are

formulated as:

Lsemi.classification = L(X, YL) + λLreg (2.1)

L(X, YL) is a supervised loss with respect to the features, X, and the known labels,

YL. The second term is a loss for regularization with respect to the graph structure.

For example, Label Propagation [18] and ICA [8] estimate labels of unlabeled nodes

using the local inference by a local classifier or the propagation of neighboring nodes’

information. ManiReg [19] explicitly has the loss function of SVM for the supervised

loss. We show analytically how one of our proposing GNN architectures extends
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the label propagation [18] via high-order paths and attention—the relationship is

described in Section 3.4.2. Joint prediction methods via optimization with local

conditional models are also relevant works. They seek to use predictions of unknown

node labels in their learning procedures (e.g., [9, 22]). The approaches utilize the

whole network to simultaneously estimate model parameters while predicting labels of

unknown nodes. For example, Pseudolikelihood Expectation Maximization (PLEM)

[9] proposed an expectation maximization (EM) method to estimate parameters and

perform predictions in an iterative fashion. PLEM also utilizes Maximum Entropy

constraints in the inference step to produce highly calibrated probability estimates.

2.1.2 Node Embedding Approaches

Graph embedding methods learn low-dimensional node representations of nodes in

a continuous vector space. The idea generally shows better performance for node clas-

sification when the input graph is sparse. The aim is to learn a dictionary Z ∈ R|V |×d

where d is a size of representation and |V | is the number of nodes. In particular, the

random walk-based models (e.g., Node2Vec [7]) exploit Skip-Gram architecture or

negative sampling to maximize the posterior probability of observing a neighboring

vertex in a random walk. They have shown usefulness for many relational learning

tasks like node classification and link predictions. High-order path information also

has been utilized in many relational embedding methods. For example, LINE [2] pro-

posed a graph embedding algorithm that uses first-order and second-order proximity

information. The algorithm proposed a new objective function to the two proxim-

ity information and showed promising results for node classification. Planetoid [6]

also proposed a neural network architecture for semi-supervised learning with graph

embeddings. They developed both transductive and inductive learning methods, but

it is limited for modeling diverse relational properties such as structural similarity

and high-order paths. Meanwhile, GraRep and Stuc2Vec were proposed to exploit

the properties in order to learn latent representations. GraRep [23] attempts to learn
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low-dimensional representations of nodes with the SVDs of high-order matrices. How-

ever, it is not scalable for large-scale network data. NEU [24] is another recent work

that uses high-order paths for node classification. Their approach is to enhance the

trained node embedding representations using high-order path information. By simple

post-updating steps, they achieved considerable enhancement. Struc2Vec [3] models

a graph to reflect isomorphism among nodes and captures structural similarities by

the Skip-Gram architecture. It is also computationally infeasible because it computes

structural similarity using pair-wise degree sequences. Recently, VERSE [25] was

developed to learn over many different similarities including structural similarity, at

the same time using scalable sampling techniques.

2.1.3 Graph Neural Networks (GNNs)

In addition, deep learning architectures also have attracted a lot of attention.

The prominent examples for node classification are Convolutional Neural Networks

(CNNs) [26] and Graph Convolutional Networks (GCNs) [5]. Initially, CNNs were

generalized for graphs in the spectral domain using Chebyshev polynomials which

could be trained in a form of stacked neural networks [26]. Then, GCNs [5] simpli-

fied the spectral graph convolution using normalization techniques, which improved

accuracy and efficiency over [26]. GCNs use the connectivity structure of the graph

as a filter to perform neighborhood aggregation and construct low-dimensional repre-

sentations of nodes. This can be understood as a special case of the message-passing

framework [27], which is also called Graph Neural Networks (GNNs).

Again, GNNs also use the graph structure and node features to learn a represen-

tation vector of a node, hv. Many of GNN architectures [5,10,26,28] follow a specific

neighborhood aggregation strategy, and the representation of a node is iteratively

updated by a
(k)
v as below. After k iterations of aggregation, a node’s representation

captures the structural information within its k-hop network neighborhood, and self-
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representation of the node is combined using a COMBINE function. Formally, the

k-th layer of a GNN is defined as:

a(k)
v = AGGREGATE(k)({h(k−1)

u : u ∈ N (v)})

h(k)
v = COMBINE(k)(h(k−1)

v , a(k)
v ),

(2.2)

where h
(0)
v is set to an input feature matrix Xv, and N (v) is defined as a set of nodes

adjacent to v.

The AGGREGATE and COMBINE functions are differently defined depending

on the relational assumption of each method. For example, in GCN [5], mean-pooling

is used for aggregating nearby information, and, in GraphSAGE [10], other strategies

such as max-pooling and LSTM are used for updating the representation.

Recently, high-order path information was also incorporated into GNNs. HA-

GCN [29] initially proposed to expand the GCN. It uses an element-wise matrix

product instead of a linear transformation of GCN, and their experiments showed

promising results on node classification.

2.1.4 Attention-based Graph Neural Networks

Graphs are often complex and noisy, so many researchers have incorporated the

concept of “attention” [30] into semi-supervised classification. The attention mecha-

nism allows a model to place more importance on task-relevant parts of the graph. In

particular, message-passing frameworks [31–33] have been proposed to moderate the

effects of neighboring nodes depending on their self-representation and local graph

structure. Similar to GNNs, after k iterations of aggregation, the aggregation function

of attention-based graph neural networks at k-th layer can be generalized as:

h(k)
v = ATTENTION AGGREGATE(k)({z(α(k)

u,v, h
(k−1)
u ) : u ∈ N (v)}), (2.3)
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where h
(0)
v is set to an input feature matrix Xv, and N (v) is defined as a set of nodes

adjacent to v. The function z decides the final representation of u before aggregation,

and α
(k)
u,v is used for assigning the weighted importance of each u to v. We note that

the COMBINE function of attention-based graph neural networks is often integrated

to the ATTENTION AGGREGATE function. For example, GAT [31] proposed a

self-attention-based graph neural network, which computes a weighted sum using the

representation of edges. GAT at the k-th layer sets αu,v and z(α
(k)
u,v, h

(k−1)
u ) as:

α(k)
u,v =

exp (LeakyReLU((a(k))T [W
(k)
ATTh

(k−1)
u ||W (k)

ATTh
(k−1)
v ]))∑

m∈N (v) exp (LeakyReLU((a(k))T [W
(k)
ATTh

(k−1)
m ||W (k)

ATTh
(k−1)
v ]))

z(α(k)
u,v, h

(k−1)
u ) = α(k)

u,vW
(k)
ATTh

(k−1)
u ,

(2.4)

where a(k) is a trainable attentive vector at the k-th layer. We note that W
(k)
ATT is

a trainable variable for the attention layer and the aggregation function of GAT.

However, the edge representation of GAT is a simple concatenation of the latent

representation of the incident source and target nodes. Meanwhile, VAIN [33] also

proposed a kernel-based attention mechanism for multi-agent modeling, and they

exploited the similarity between nodes based on communication vectors (thus, at-

tributes.) In the case of VAIN, they model the interaction among |V | agents, and

the output can be either be a prediction for every agent or a system-level prediction.

αu,v and z(α
(k)
u,v, h

(k−1)
u ) at the k-th layer of VAIN are defined as:

α(k)
u,v = Softmax(−|h(k−1)

u − h(k−1)
v |2)

z(α(k)
u,v, h

(k−1)
u ) = α(k)

u,ve(h
(k−1)
u ),

(2.5)

where e is a communication embedding function for an agent u.

In Chapter 3, a new kernel-based attention approach is proposed to learn latent

representations via high-order path information. While previous attention mecha-

nisms have focused on moderating the relative importance of direct neighbors, our

approach considers a larger set of neighbors (i.e., determined through high-order
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paths) and uses a notion of role equivalence. We compare ours to GAT [31] and

show that our proposed attention mechanism offers significant improvement in node

classification.

2.2 Interpreting Outputs of Machine Learning (ML) Models

2.2.1 Notion of “Importance”

Many researchers have suggested methodologies to interpret the outputs of their

target ML models by finding the most contributed (or important) features and have

used the concept of “importance” from various perspectives. The importance of fea-

tures in ML networks can be understood from three different categories: degradation

of prediction scores after perturbing the features, humans’ participation, and design

principles of data. We note that most of the works take non-graph inputs such as im-

ages and sentences and find which features (e.g., pixels or words) are contributed the

most to the learned ML models. In this subsection, we briefly overview the previous

methods in order to review how to define the notion of “importance”.

Importance from Degradation of Prediction after Perturbing Importance

Features Many previous methods [14, 34–38] define the concept of importance by

leveraging the degradation of prediction after perturbing candidate features such as

pixels and words. Their proposed importance function g could be generalized as

below:

g(wj|x, c) = p(ŷ = c|x)− p(ŷ = c|ẋwj
). (2.6)

p(ŷ = c|x) is a predicted probability given the input feature x for a class label

c, and p(ŷ = c|ẋwj
) is the new prediction after the perturbation of a partial feature

wj. However, the predictions (e.g., soft-max outputs) are often not calibrated well as

in [39]. For example, it overestimates the model’s confidence when making predictions

on inputs that fall outside the training distribution.
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Importance from Human Participation The best way to define the concept

of importance is to ask people to participate only if there are objective and specific

criteria. In particular, defining important features through human participation has

often been used for image classification and object detection tasks. For example, [40]

used the ImageNet localization challenge to determine important pixels for identifying

labels, and [41] evaluates deep neural networks with the number of unique objects,

given by humans. [42] also employed the datasets which contain the label of image

segments with the location provided by people’s direct participation. However, this

method is often complicated to say which nodes are more important when the input

graph lacks domain knowledge.

Importance from Design Principles of Synthetic Data Generating synthetic

data with important features specified by domain experts is also an excellent way to

evaluate. For example, [16] is a recent interpretation method for finding the exact

decision boundary to interpret a specific type of neural network. For assessing the

algorithm, the authors used a synthetic input that is composed of two class labels.

Their decision boundary was evaluated to compare the found set of linear boundary

functions. Second, [43] also generates synthetic data to evaluate their interpretation

methods by re-generating data under specific assumptions from the existing datasets.

One example of their methods is to sampling a DNA sequence and to create another

sequence dataset from the existing DNA datasets. They assume that a sequence

of motifs is essential to identify a protein. Similarly, [44] made a set of rules to

assign labels for generating synthetic data. For instance, if pixels at all corners

have the same colors, they put “1” s as labels. Another example can also be found

in [45]. They generated synthetic data which are conditionally independent to n-

dimentional gaussian features. While many ideas have been proposed for non-graph

inputs, however, there is little work done for relational machine learning models that

take graph inputs.



14

2.2.2 Interpretation Methods for Machine Learning Models

A variety of relevant studies can also be analyzed in terms of methodology for

interpretation. We’ve divided it into three main categories, and they are as follows:

hidden neuron analysis, model mimicking methods, and local interpretation methods.

We also note that they mainly aim to understand the outputs of ML models that take

non-graph inputs.

Hidden Neuron Analysis The hidden neuron analysis allows us to interpret a

trained deep neural network by model-specific methods. Yosinski et al. [46] attempted

to visualize the learned features for convolutional neural networks and proposed a

regularized optimization to produce a better interpretation. Cao et al. [47] showed

the activation status using attention on its target objects by a feedback loop. Li et

al. [48] visualized the compositionality of clauses by analyzing the outputs of hidden

neurons in a neural model for natural language processing.

Model Mimicking Methods Approaches [16, 49–51] for mimicking neural net-

works help to build a transparent model. Due to the transparent model and inter-

pretable parameters, the approaches give ways to explain predictions while preserving

their classification accuracy. Ba et al. [49] proposed a model compression method to

train a shallow mimic network using the training instances labeled by one or more

deep neural networks. Hinton et al. [50] proposed a knowledge transfer method that

distills the knowledge of a large neural network by training a relatively smaller net-

work. This can be seen as replicating the prediction probabilities of the original large

network. Zhu et al. [51] built a forest model on top of a deep feature embedding

network. The forest model provides more interpretability, but it is still difficult to

understand representation learning with respect to raw data. The above models are

more straightforward to interpret than deep neural networks. However, due to the

reduced model complexity, there is no theoretical guarantee for verifying how much

the interpretation is trustable.
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Local Interpretation Methods The local interpretation methods compute and

visualize the important features for an input instance by analyzing the predictions

of their local perturbations. For example, LIME [14] learns a local decision function

by perturbing potentially important features. Their subsequent work [52] expands

the LIME by providing sufficient conditions to provide more precise interpretation.

SHAP [15] also generalizes LIME by exploiting the concept of Shapley value in game

theory and proves that there is a unique solution under desirable conditions. The

local interpretation methods generate an insightful individual interpretation for each

input instance. However, they have not applied to relational domains, and the naive

perturbation would take too many resources.

Interpretation Methods for Graph-based Machine Learning Models The

previous methods mainly aim to provide explanations to the ML models who take

non-graph inputs. To understand outputs from graph-based ML models, recently, a

few existing studies were proposed. First, GNNExplainer [17] has been proposed to

provide local explanations for graph neural network models (GNNs) by learning soft-

masks. For example, the local explanations here represent important edges or features

which are contributed the most to predicting labels of a specific node. However, the

method does not have the capability of providing global explanations for the node

embedding itself. GNNs are also interpreted in [53] as well using contrastive gradient-

based (CG) saliency maps [54], Class Activation Mapping (CAM) [55], and Excitation

Backpropagation (EB) [55], and their variants. However, they also focus only on

the specific graph neural networks, and could not be extended to node embedding

models or others. Taxonomy induction method [37] and XGNN [56] are also relevant

to this work, but they interpret node embeddings only by identifying clusters in the

embedding space or providing a model-level interpretation with a graph generation,

respectively.
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2.2.3 Comparison to Related Work

We summarize the theoretical and empirical contributions of this dissertation. Ta-

ble 2.1 shows how this dissertation is related to the existing works such as Label Prop-

agation (LP) (e.g., [57]), Probabilistic Approach (e.g., [22]), Node Embedding Models

(e.g., [1,58]), and GCN [5]. In the Table, “Learning static graph” and “Learning tem-

poral graph” represent which methods are used for learning an aggregated graph and

a set of temporal graphs, respectively. Collective inference and high-order path mean

whether the method supports collective inference and leverages high-order paths, re-

spectively. Explainability indicates how the output of the corresponding work can

be explained. While LP and Probabilistic Approach in the table are not based on

representation learning, however, they support collective inference for static graphs.

Node embedding methods show promising results in many relational learning tasks,

but most of them are limited for learning temporal graphs. Some models (e.g., [59])

attempted to learn temporal graphs for node classification, but they model specific

temporal patterns only.

In this dissertation, first, our proposed REGNN expands the GCN to exploit the

labeled information with collective inference via high-order paths. In particular, the

architecture is useful when attributes are not given, and it is theoretically related to

Label Propagation [57]. Second, our TSGNet proposed a graph neural network ar-

chitecture to additionally learn temporal interactions. The two different encoders are

learned jointly and could overcome temporal sparsity or ambiguities on the aggregated

Table 2.1.: Summary of contributions: comparison to related work

Learning
Static Graph

Learning
Temporal Graph

Collective
Inference

High-Order
Path

Explainability

LP (e.g., [57]) X × X × -
Prob. Approach (e.g., [22]) X × X × -
Node Embedding (e.g., [1]) X 4 × × GRAPH-wGD

GCN [5] X × × × -
REGNN X × X X -
TSGNet X X × × -
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graph. Third, our GRAPH-wGD provides global explanations to Skip-gram-based

node embedding models, and the theoretical relationship to bridgeness is provided.
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3 ROLE EQUIVALENCE ATTENTION FOR LABEL PROPAGATION IN

GRAPH NEURAL NETWORKS

3.1 Motivation

Prior work on semi-supervised learning in graphs has typically defined relational

features via aggregation over the information of neighboring nodes, and then un-

known class labels are inferred iteratively using approximate inference algorithms

(e.g., Gibbs sampling [8] and composite-likelihood EM [9]). Meanwhile, recent graph

neural network models [5,10,11,60–62] learn relational features using LSTM and CNN-

like architectural components. In particular, graph convolution networks (GCNs) [5]

provide a powerful deep neural network architecture, which exploits convolution op-

erators for learning based on nearby neighbors’ attributes. The graph convolution

operator sums attributes of all the neighbors of nodes with a linear transformation.

By stacking multiple layers, it learns a low-dimensional representation of each node.

However, GCNs mainly aims to learn via neighbor attribute patterns—they are not

typically used in partially-labeled graphs with few attributes, where local inference is

needed during learning, so that patterns in neighbor class labels can also be used in

the model. In this section, we propose another graph neural network architecture for

semi-supervised learning in this setting, and we call the architecture, REGNN.

Our proposed approach initially computes high-order (or k-th order) proximity

matrices from the input data. The high-order matrices provide long-range path in-

formation that is often helpful for sparse graphs. The k-th order matrices contain

statistics from k-step random walks in the graph, so they are useful to learn complex

patterns from different levels of local neighborhoods. High-order paths have been

utilized recently for many relational learning tasks [23, 29]. This includes variants of

GGN [29], but the method simply concatenates representations from different GCN
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layers and learns the architecture for node classification. As such it is likely still

dependent on the availability of observed attributes, since it was not designed for

semi-supervised learning contexts. In contrast, we focus on semi-supervised learn-

ing in partially labeled graphs and how to moderate the high-order paths with an

attention mechanism in the architecture.

The idea of attention mechanisms was originally developed for machine trans-

lation [30, 63] in order to consider the weighted average of all the previous states

for deciding the next state. Similarly, attention mechanisms for graphs [31, 32, 64]

have been proposed to moderate the effects of neighboring nodes when learning low-

dimensional representations. However, these prior methods use relatively simple at-

tention mechanism based primarily on the neighbor/edge representation, e.g., simple

simply concatenating the representations of both source and target nodes [31] or con-

sidering direct edges only for adjusting the weights [32]. Our key insight is to develop

an attention mechanism that can be moderated by the relationship between the two

nodes, specifically their structural role equivalence.

Node equivalence measures are often used in social network analysis to quantify

the similarity between a pair of nodes based on their link structure. Two nodes are

regularly equivalent if they have the same neighbors. Meanwhile, they are structurally

equivalent if their neighbors have the same roles (see Section 3.4.1 for definitions).

The concepts were originally proposed in social science [65–68], and they have re-

cently been applied to graph embedding methods [3,25] to improve classification and

clustering.

We conjecture that attention mechanisms based on role equivalence will more

effectively exploit long-range path information in the network, by allowing the model

to identify the more useful distant neighbors during aggregation. However, it is

computationally intensive to use role equivalence for attention over high-order paths

in a semi-supervised learning context, because the density of the matrices increases

with k. To address this issue, we outline a mini-batch training approach that uses

importance sampling to downsample possible neighbors on each epoch.
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3.2 Motivating Examples

Figure 3.1.: Examples of capturing roles: (a) by High-order paths (b) by Similarity-
based attention

Figure 3.1a-b show examples that high-order path and attention can help to cap-

ture roles in the label propagation scenarios. Each node and edge indicate a user and

an interaction during a semester, respectively. Note that colors represent class labels,

yellow for student, blue for faculty, and green for staff. In Figure 3.1a, we are trying

to predict the label of a user D, who is a faculty. When we use just direct neighbors,

it is not possible to predict the true label of node D by label propagation. However,

as the high-order paths from 2nd order neighbors are considered, the label of D could

be successfully predicted. Like this example, high-order paths are potentially useful

to learn the underlying hierarchical roles such as advisor-student and admin-member

relationships in a citation network and a University group on Facebook, respectively.

Meanwhile, if a user is surrounded by nodes that have diverse class labels, it often

misleads its prediction just by magnitudes of nearby labels. In this case, if latent

representations, which are trained in advance, are similar, we can put more impor-

tance when considering neighbors. In Fig. 3.1b, we are trying to predict the label

of node F, who is also a faculty member. Although the node F has more students

or staffs as neighbors, node G and H are likely to have similar representations to

the representation of node F in the latent space, so that they can have more impor-

tance when aggregating. In this chapter, to address the first case, label propagations

are attempted via high-order paths and latent representations are learned. Then,

additional propagation is performed in an attention layer.
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Figure 3.2.: Architecture for REGNN

3.3 Notation

We have an undirected graph G = (V,E) with V = |V | vertices and E = |E|

edges where each vertex vi is associated with a label yi ∈ {0, 1}C . A is an adjacency

matrix of the graph G. We assume the number of classes C is known, and all classes

are present in the labeled data. For a node v ∈ V , N (v) = {u|(v, u) ∈ E} is the

set of its neighborhoods. V is composed of VL (labeled vertices) and VU (unlabeled

vertices). Our goal is to estimate class labels of VU from class labels of VL and A,

which is a transductive learning setting.

3.4 REGNN for Node Classification

In this section, we present the major components of our proposed model REGNN.

There are two key components to the architecture: (1) a set of k-th order Graph

Convolution Network layers, and (2) a self-attention layer. First, k-th order graph

convolution network layers learn the complex neighborhood by exploiting not only

direct edges and but also implicit relationship among nodes from k-order proximity
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information. As in Figure 3.2, K ×M convolutional operators learn labels in local

neighborhoods, where M refers to the number of GCN layers and K is the number of

high-order matrices, which is pre-selected. Colors represent the most probable class

labels, which are inferred by convolutional operators. Convolutional operators learn

the labels jointly using high-order path information, and predict the label of unlabeled

nodes (e.g. a grey node in the figure.) Then the representations are concatenated and

aggregated by the weighted sum using a self-attention mechanism. Our high-order

path attention layer determines the final representations for predicting class labels.

The details of these components are described below.

3.4.1 REGNN Architecture

Given an undirected graph G = (V,E), where V is a set of vertices and E is a

set of edges. A is an adjacency matrix of G. V is composed of VL (labeled vertices)

and VU (unlabeled vertices). YL is constructed as a |V | × C class label matrix. For

each labeled node i ∈ YL with class label yi = c, we set YL[i, c] = 1 and YL[i, ·] = 0

otherwise. For example, node i is labeled as 1, then YL[i] = [0, 1, 0, 0, 0, ..., 0]. If node

j is in VU , we set YL[j, :] = 0. This YL will be fed to our REGNN with the adjacency

matrix A. Thus, the goal of REGNN is to estimate the class labels of VU from YL

and A.

k-th Order Graph Convolution Network layers Motivated by the GCN [5], we

propose k-th order Graph Convolution Network layers. For the layers, we make use

of adjacency matrices, A,A2, ..., AK , which have different orders. Ak is obtained by

the k-times multiplication of the adjacency matrix A. In other words, the (i, j) entry

of it k-th product Ak is the number of k-hop paths from i to j. With these high-order

adjacency matrices A, we can define a K-th order convolution operator as follows.

The node representations in layer m with an adjacency matrix Ak are formulated as

H
(m+1)
k = ReLU

(
ÂkH

(m)
k Wm

k

)
, (3.1)
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where

Âk = min
(
D̂
−1/2
k

(
Ak + I

)
D̂
−1/2
k , 1

)
(3.2)

In Equation (3.1), H
(1)
k = YL, and YL represents class label inputs. Wm

k is a trainable

weight matrix for the m-th layer in the k-th order GCN, and D̂ =
∑

j Âij. The

symmetric normalizing trick in Eq. (3.2) takes the average of neighboring nodes’

representation from each of high-order adjacency matrices. Again, YL represents label

inputs from training data. Note that Wm
k ∈ RC×C , which means that propagated

labels are transformed by the matrix multiplication.

When the representation of the last GCN layer, H
(M+1)
1 , is additionally passed

through another softmax function to consider the labels on the direct edges more,

performance tends to improve. In practice, we find this idea improves the classifica-

tion accuracy for REGNN as well, so in Figure 3.2, act1 we use softmax(ReLU). In

[act2, .., actk] we use the ReLU representation directly.

Concatenation Layer Outputs from the previous high-order GCNs are concate-

nated before they are fed into a self-attention layer. There are K outputs, one from

each of the high-order GCNs: HM+1
1 , ..., HM+1

K . These are concatenated along with

the node ID. Let qki ∈ RC be a latent representation of node i from HM+1
k . Thus,

HM+1
k [i, :] = qki . After the concatenation, qconcati is:

qconi =
K

‖
k=1

qki . (3.3)

Self-Attention Layer Another important part of our proposing architecture is the

self-attention layer. Our self-attention layer measures the degree of role equivalence

among nodes to place more importance on structurally similar neighbors. First,

the mathematical definitions of structural equivalence [66] and regular equivalences

[65,67] are given below.
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Definition 1. (Structural Equivalence) A pair of nodes u and v is structurally equiv-

alent, if the neighbors of node u and v are the same. Thus, u and v are structurally

equivalent if and only if N (u) = N (v).

Definition 2. (Regular Equivalence) A pair of nodes u and v is regularly equivalent

if the roles of their neighbors are the same. Let r(i) be the role of node i. Thus, u

and v are regularly equivalent if and only if
{
r(i) | i ∈ N (u)

}
=
{
r(j) | j ∈ N (v)

}
.

In other words, regular equivalence states that nodes play the same role if they

have similar connections to nodes of other roles [68, 69]. There might be many valid

ways of grouping nodes into equivalence role sets for a given graph, and regular

equivalence is often defined recursively.

Based on the above definitions, we can approximate the notion of regular equiva-

lence based on roles in latent space.

Definition 3. (Role Equivalence in latent (embedding) space) A pair of nodes u and

v are role equivalent in latent space if their set of neighbors in latent space are the

same. If neighbors are defined by distance in latent space, then u and v will have the

same neighbors if their representations are equal. Let f(i) be the latent representation

of node i. Thus, u and v are role equivalent in latent space if and only if f(u) = f(v).

According to Definition 3, we propose an attention layer based on role equivalence

among nodes. The intermediate representations of the last high-order GCN layers is

used for defining the role, thus f(i) := qconi .

In this layer, by considering role equivalence, we can incorporate structural in-

formation into node classification. To measure the degree of role equivalence, we

additionally define a quantitative measure of role equivalence in latent space with

RE
(
f(i), f(j)

)
, and use it in the attention layer below.

Our self-attention layer takes inputs from the concatenation layer and produces a

new vector q′i ∈ RK·C as:

q′i = ReLU

 ∑
j∈N (i)

RE
(
qconi , qconj

)
· qconj

 , (3.4)
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where RE
(
f(i), f(j)

)
= (1/Z)eβcos

(
f(i),f(j)

)
, cos refers to cosine similarity, Z =∑

j∈N (i) e
βcos
(
f(i),f(j)

)
, and β is a variable that moderates attention (which we es-

timate during learning). Note that we do not consider self-loops for computing the

similarity. The RE
(
f(i), f(j)

)
models how close to role equivalent node j is to node i

(i.e., if the latent representations are unit vectors, then the two are equal when their

cosine similarity is 1).

Final Softmax Layer To predict class labels of nodes, a final softmax function

is used. Here, ŷi is the output of the softmax function, and each dimension of the

ŷ represents the predicted probability of the corresponding labels for the class given

inputs, Wfinal ∈ RK·C×C :

ŷi = softmax
(
Wfinal

~q′i + bfinal

)
.

For learning, like the original GCN, we use categorical cross-entropy as a loss

function at the final layer.

LREGNN(L, Y ) = −
∑
VL

C−1∑
j=0

yjlog(ŷj) (3.5)

In Eq. (3.5), C is the number of class labels. Since all activation functions are differ-

entiable, learning is simply done via back-propagation. During the back-propagation,

all Ws (Wm
k and Wfinal) and β are trained. To predict class labels for unlabeled nodes

VU , the ŷi will be used for predictions.

3.4.2 Relationship to Label Propagation

In this section, we provide additional analytical characterization of REGNN, com-

pared to Label Propagation [57].

Label Propagation (LP) Assume that YL ∈ R|V |×C is a label input matrix. Same

as the previous notion of YL, for each labeled node i ∈ VL with class label yi = c,
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we set YL[i, c] = 1 and YL[i, .] = 0 otherwise. If node j is in VU , we set YL[j, :] = 0.

Let Ŷ be a prediction matrix, and Ŷ[i, :] for each node i ∈ VU will be used for actual

prediction. The prediction is from arg maxjŶ[i, j]. According to [57], the prediction

will converge as in the equation below. α is a parameter in (0, 1) and specifies the

relative amount of the information from its neighbors and the initial label information.

ŶLP = (I − αA′)−1
YL

= (I − α(I − L))−1YL

= ((1− α)I + αL)−1YL

(3.6)

Here A′ is a normalized adjacency matrix of A and L is a normalized Laplacian

matrix. We can refer to the eigen-decomposition of the normalized Laplacian matrix

as L = ΦΛΦ−1. The Laplacian matrix, L, can be modified using the frequency

response [70] as L′ = Φp(Λ)Φ−1 where p(·) is called the frequency response function

of the graph. p(Λ) can further be written as diag(p(λ1), ..., p(λn)). The graph L′ is

linear shift-invariant, if and only if there exists a function p(·) : R → R. The ŶLP

can then be reformulated from the perspective of eigen-decomposition as below. At

last, the ŶLP can be composed as a function (F) of the frequency response, pLP(Λ),

and an input matrix, YL.

ŶLP = (I − αA′)−1
YL

= Φ((1− α)I + αΛ)−1Φ−1YL

= F (pLP(Λ), YL)

(3.7)

In this ŶLP , pLP(λi), the frequency response function of LP, is equal to 1
(1−α)+αλi

.

Graph Convolution Neural Network (GCN) Similarly, we can reformulate the

high-order GCN of REGNN. Again, GCN take inputs from Â = A+ I , D̂ = D + I,
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and L̂ = Laplacian matrix of Â. Its normalized Laplacian matrix L̂s can also be

composed as below.

Â = D̂−1/2ÂD̂1/2

Â = I − D̂−1/2L̂D̂1/2 = I − L̂

L̂ = ΦΛ̂Φ−1

(3.8)

Using the above notation, we can reformulate two-layered GCN as:

ŶGCN = Â ReLU (ÂYLW
0)W 1

≈ Â(ÂYLW
0)W 1

= Â2(YLW
0)W 1

= (I − L̂)
2
(YLW

0)W 1

= (Φ(I − Λ̂)Φ−1)
2
(YLW

0)W 1

= Φ(I − Λ̂)
2
Φ−1YL(W 0W 1)

= F (pGCN(Λ̂), YL)(W 0W 1).

(3.9)

Here pGCN(λ̂i) = (1− λ̂i)
2

and GCN with k-th order matrix uses pGCN(k)(λ̂i) =

(1− λ̂i)
2k

. This indicates that the high-order GCN suppresses the small eigenval-

ues around 1 more. In addition, when LP [57] uses the following frequency response

function, p(λi) = (1− λi)2 with two linear transformations, the new Ŷ′LP would be

same as ŶGCN . Thus, ŶGCN ≈ ŶLP ′(W 0W 1). Similarly, when the response function,

pGCN(k)(λ̂i), is used for LP, it could also approximate the GCN with the correspond-

ing k-order paths. As a result, we can see that our REGNN learns outputs from

different response filters jointly and aggregates the neighbor’s representations using

role equivalence.
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3.4.3 Importance Sampling for Scalability

To calculate Equation 4.7, REGNN needs to compute the representation of all the

nodes together. Batch algorithms cannot handle large-scale datasets because their

slow convergence and difficulty to fit the whole graph in GPU memory. In addition,

due to the lack of dynamic graph configuration capabilities in Tensorflow-like deep

learning libraries, we have to create a |V |×|V | pair-wise dense matrix to compute the

self-attention score. Specifically, even though the attention mechanism only considers

neighboring nodes (i.e., O(|E|)), without a dynamic data pipeline construction in

Tensorflow, we are required to use a static O(|V |2) construction. This is what limits

the scalability of edge attention-based algorithms like [31,33,64].

To overcome the limitation, we propose an efficient sampling-based learning. First,

we note that in the full REGNN:

(ÂkH
(m)
k )u = |V |

|V |∑
v=1

1

|V |
Âk[u, v]H

(m)
k [v, :]. (3.10)

Importance sampling was originally proposed in FASTGCN [71]. We can use a similar

approach to approximate Eq.3.10 with |S| samples, v1, ..., vs ∈ V for node u as follows:

(ÂkH
(m)
k )u ≈

|V |
|S|

∑
vs∼q(v)

1

q(vs)
Âkred gcn[u, vs]H

(m)
k [vs, :] (3.11)

with the importance distribution q(v) = ||Â[:, v]||
2
/
∑

v′∈V ||Â[:, v′]||
2
. The |S| sam-

ples {vs} are used in all k-order GCN layers as well as the attention layer to update

weights as in Algorithm 1. At every epoch, all nodes are divided to create a batch, B.

B is used for reducing the dimensionality of Âk and Â1. Instead of Âk ∈ R|V |×|V | for

computing Equation 3.1-3.2, we use the reduced adjacency matrices Âkred gcn for all k,

which corresponds to R|V |×|S|. Similarity, a reduced matrix Âred att ∈ R|S|×|S| is used

for identifying neighbors for Equation 3.4. This can help to avoid storing all dense

k-order matrices during training and greatly reduces the computational burden. The

reduced adjacency matrices are induced each epoch during training.
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Algorithm 1: REGNN’s mini-batched training (one epoch)

For each vertex u, compute sampling probability q(u)
for each batch, B do

Sample |S| vertices, v1, ..., vs ∈ V according to distribution q from node set B
Induce Âkred gcn = Âk[:, S] for all k

Induce Âred att = Â1[S, S]
Update W l

k, Wfinal, bfinal, and β
end for
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Table 3.1.: Comparison of various semi-supervised learning algorithms in the trans-
ductive setting

Methods Local-Inf. Scalable H-Order Reg.Equ.
ICA [8] X × × ×
Node2Vec [7] × X × ×
Struc2Vec [3] × × X X
GraRep [23] × × X ×
NEU [24] × X X ×
GCN [5] X × × ×
HA-GCN [29] X × X ×
GAT [31] X × × ×
REGNN X X X X

3.4.4 Complexity Analysis

When the batch size |B| is considered, the time complexity of learning REGNN

(before importance sampling) is O(|B||E|C2 + |B||E|C), where C is the number

of class labels, and |V | and |E| are the numbers of nodes and edges in the graph,

respectively. |B| = |VL| before importance sampling. This complexity is on par with

GCN and GAT. We note that |B| is chosen using validation node sets.

After we apply importance sampling, the time complexity isO(|S||ES|C2+|S||ES|C).

Here |S| is the size of the sample set and is usually chosen from 32 to 256, so

|S| << |V |. ES is the set of edges among the sampled |S| vertices. Again |ES| << |E|.

Regarding space complexity, we note that all k-order matrices are preprocessed

and do not need to be stored in the main memory. Then, (|V | × |S|) and (|S| × |S|)

matrices are indexed depending on the sample S. Therefore, despite the density of

original k-order matrices, the space complexity of learning depends on the number of

edges in Âkred gcn, which is at most O(|V ||S|).

3.5 Properties of REGNN Compared to Related Work

Tabel 3.1 categorizes our model and previous approaches based on five desirable

properties for node classification tasks. The properties are defined as follows:
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Local Inference (Local-Inf.): Able to combine the estimated class labels of unla-

beled nodes for learning. This property helps the model to learn homophily patterns

using the entire graph structure in order to make predictions. ICA uses a local clas-

sifier to make predictions at each iteration, and GCN/GAT sums nearby information

with a linear transformation.

Scalable: Able to process large-scale networks. We assume time complexity larger

thanO(|V |2) is not scalable. GraRep is computationally heavy due to eigen-decomposition.

GCN and GAT are corresponding to O(|V ||E|) when batch learning is used. When

we assume |E| = O(|V |), which is a common definition for a sparse graph, it still

corresponds to O(|V |2)

High-Order (H-Order): Exploits high-order path information. NEU, GraRep, and

REGNN uses k-order adjacency matrices, and Struc2Vec also learns degree sequences

among nodes using k-hop proximity.

Regular Equivalence (Reg.Equ.): Leverages regular/role equivalence to boost

performance. This property additionally enables the model to learn roles and posi-

tions in the embedding space. REGNN uses role equivalence to adjust the relative

importance of neighbors at the attention layer, and Struc2vec is a node embedding

algorithm that forces nodes to have similar embeddings when structural distances of

nodes are similar.

Tabel 3.1 shows how the properties of REGNN compare to previous state-of-the-

art methods.

3.6 Experimental Evaluation

3.6.1 Data

We use five real-world network datasets for evaluation. Table 3.2 reports brief

statistics for each network. In the table, |V | and |E| are the numbers of vertices and

edges in each dataset. Cora, Citeseer, PubMed, and NELL are from [6,8]. For NELL
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data, the ratio of labeled nodes is 10 percent. The Facebook network was scraped

from a University group. In particular, each user (node) of the Facebook dataset is

associated with political views for their class labels. An edge is formed when a user

writes a post to his or her friend’s wall. We did not count self-posts. The data were

randomly sampled to make its class labels’ proportion to 50/50 from [9].

Table 3.2.: Data Statistics

Dataset Nodes (|V |) Edges (|E|) Classes (C)
Cora 2,708 5,429 7
Citeseer 3,327 4,732 6
Facebook 4,038 65,794 2
PubMed 19,717 44,338 3
NELL 65,755 266,144 210

3.6.2 Experimental Setup

LR Logistic regression is performed using neighbor vectors with L1 regularization.

This allows us to compare how GCN’s convolutional operators improve performance.

GhostEdge GhostEdge [21] is a relational classifier which exploits personalized

PageRank to create additional implicit edges. For this experiment, we use GhostEd-

geNL, and it decides labels of nodes based on the class labels of neighboring nodes

after quantifying node proximity. This was simple but effective on node classification.

ICA ICA [8] is one of the representative approximate inference algorithms for semi-

supervised learning. SVM is also used for its local classifier and takes labels of neigh-

bor nodes as inputs. The learning was stopped when all class labels had stabilized.

GCN GCN [5] is an original graph convolution network architectures, which is

proposed for semi-supervised learning. To evaluate whether it could be used for label

propagation, we also tested this architecture with label inputs, YL, and we call it as



33

GCN(Label) in the later sections. This is to compare how K-th Order inputs and

attention layer can increase the performance.

Node2Vec Node2Vec [7] is a graph embedding algorithm for node classification.

For learning its parameters, we set d = [32, 64, 128], r = 10, l = 80, k = 10, and p

and q were searched over [0.5, 1, 2].

GraRep GraRep [23] takes into account high-order matrices to learn node embed-

ding. For learning its parameters, we set d = [32, 64, 128], and K was searched over

[2, 3, 4].

NEU NEU [24] is another recent work which learns high-order proximity for node

classification. In this experiment, Node2Vec is used for its base algorithm, and we

set λ1 = 0.5, λ2 = 0.25, T=3 for its hyper-parameters. These parameters showed

the best performance for NEU [24]’s datasets including Cora, so we followed the

authors’ recommendation. This puts more importance on the direct edges using λ1.

Hyper-parameters of the base algorithm were searched as the Node2Vec did above.

Struc2Vec Struc2Vec [3] is to learn node representations in order to capture struc-

tural identity. To see its maximum performance, we do not utilize their optimization

options. Other parameters for Skip-Gram architecture are the same as Node2Vec’s

ones.

VERSE VERSE [25] is a scalable embedding algorithm that learns many different

similarities among nodes including structural similarity. For learning its parameters,

we set d = [32, 64, 128], and other parameters were chosen as what the authors used.

Personalized PageRank is exploited for the similarity function in VERSE.

GAT GAT [31] is a recent attention-based neural network architecture for graphs.

The architecture exploits another self-attention mechanism to model the complex

neighborhood on the graph. This is to compare how our attention layer works. We



34

had tested multi-head attention (K=1or 2) with averaging and concat options. In

this algorithm, we did use importance sampling. When we tested GAT without

importance sampling, the performance was almost similar.

HA-GCN Authors of HA-GCN [29] proposed a K-th order convolution operator

under the GCN framework. For the node-centric learning like our problem definition,

HA-GCN without the adaptive filtering showed better accuracy, so we followed the

experimental setting.

3.6.3 Evaluation Methodology

We train the models on training/validation sets and report results on the test set.

Every result we report is from the average of 10 trials using randomly shuffled node

sets. Note that the entire graph is known before learning; 10% of node labels are used

for testing and 10% of the remaining labels are leveraged for validation. The number

of nodes of training is varied depending on experimental conditions. In the REGNN,

the class labels from labeled nodes are only utilized for learning architecture. For

all neural network models, the max epochs are set to 1000, and if the accuracy on

the validation dataset does not increase during 100 epochs, learning stops. We also

use dropout regularization (0.2). For optimization, we use the adam optimizer to

update variables. For GCN, and HA-GCN, the number of hidden nodes is searched

over [8, 16, 32, 64]. In the case of GAT, all experimental conditions are the same

as REGNN except the attention layer. In order to choose learning parameters, after

searching over [0.001, 0.005, 0.01, 0.03], 0.01 was used for learning our models. For

selecting K-th order for REGNN and high-order neural network baselines, [2, 3, 4,

5] are considered and selected using the loss scores from the validation dataset. The

number of GCN layers for all baselines and REGNN is 2. For importance sampling,

the number of samples is chosen from [32, 64, 128, 256]. We choose the best sample

size using validation node sets.
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(a) Input Karate network (b) GCN (Label) (c) REGNN

Figure 3.3.: Visualization of node representations from the mirrored Karate network

3.6.4 Results: Synthetic Data

The Karate club network [72] is a graph that is composed of 34 nodes and 78

edges. Each node presents a member, and edges mean interaction among members.

To interpret how our REGNN works, we construct a network, which is composed

of two copies of the network as in Figure 3.3a. The two networks are connected

between node 32 and 66. The colors in the graph were chosen according to community

IDs after community detection [73]. Figure 3.3b and Figure 3.3c show the learned

representations of nodes from GCN and REGNN, respectively. Similar to GCN [5]’s

experiment with the Karate network, a hidden layer with size 2 was inserted before the

final softmax layer for the immediate 2-D visualization of latent representations. The

representations of the second layer are directly visualized in Figure 3.3a. Labels for

training data were chosen from two nodes per each community ID (total 8 nodes.) In

the result, while GCN fails to distinguish red and green nodes (i.e., the communities

overlap), while REGNN separated the nodes from the two communities better. GCN

aggregated nearby labels based on direct edges, so it could not learn from the role

similarity among nodes in the graph. Meanwhile, our attention layer in REGNN

successfully learned and exploited role equivalence by adaptive aggregation.
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3.6.5 Results: Real-world Data

Tables 3.3-3.7 show REGNN node classification performance on the Citeseer, Cora,

Facebook, PubMed, and Friendster data as proportion of labeled nodes is varied, com-

pared to other baselines. For GCN, Node2Vec, GraRep, Struct2Vec, VERSE, and

NEU, we directly obtain results from official implementations. Classification results

of all methods are averaged at each proportion. Bold scores represent the correspond-

ing model is significantly better than the others by paired t-tests (p-value<0.05). In

all datasets, REGNN has consistently good results across all label proportions. On

the other hand, N-GCN is similar to GCN and LP in Citeseer and Cora, in particular.

This indicates that the high-order path information did not help to find better node

representations, but the attention over high-order paths helped to increase perfor-

mance when only known labels are given. Node2Vec and GhostEdge exhibit similar

results in most of the datasets, and both achieve good performance at lower label

proportions. However, their relative performance often decreases when more labels

are available (e.g., in Cora). Struct2Vec and VERSE are not as good as Node2Vec.

Since Struct2Vec considers structural similarity only, it does not perform well on most

of the datasets. VERSE also learns similarities from Personalized PageRank, which is

not helpful for our citation and social network datasets. For PubMed and Friendster,

due to the heavy computation cost on the large edges, Struct2Vec, and GhostEdgeNL

are not included.

Table 3.8 shows classification performance on the NELL knowledge graph. The

result is from the same train/test/validation sets as in [6]. REGNN shows the best

performance but is almost on par with Node2Vec and VERSE. However, the exe-

cution time for training was much faster than Node2Vec and VERSE. In particular,

Node2Vec and NEU incur a great deal of overhead to generate random walks (4,327.43

seconds), and their training time to learn embeddings after the generation was also

slower than REGNN. We also tested N-GCN with our importance sampling but the

accuracy was still lower than REGNN.
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Table 3.3.: Accuracy (%) on Citeseer

% Labeled 10 20 30 40 50
REGNN 55.03 59.05 63.18 66.84 68.74
N-GCN 51.92 56.84 60.62 64.23 66.07
GCN 51.47 57.40 61.75 65.03 67.36
LP 53.80 57.78 61.37 63.98 66.33

NEU 49.29 55.26 57.54 59.05 59.98
GraRep 50.08 51.97 52.59 52.87 53.48
VERSE 36.28 39.63 40.30 40.66 40.63

Struct2Vec 36.65 39.67 41.97 43.35 43.54
Node2Vec 52.64 54.50 56.05 56.87 57.49
GEdgeNL 50.12 53.94 56.26 58.39 59.49

Table 3.4.: Accuracy (%) on Cora

% Labeled 10 20 30 40 50
REGNN 76.04 80.04 82.37 84.19 85.45
N-GCN 72.31 78.16 80.91 81.55 84.33
GCN 71.75 77.60 80.93 82.80 84.89
LP 73.55 77.91 80.32 82.81 84.31

NEU 72.28 76.16 79.72 81.55 83.15
GraRep 72.85 74.71 75.02 75.16 75.26
VERSE 57.02 61.53 63.44 63.82 64.32

Struct2Vec 53.81 58.34 61.24 63.38 63.95
Node2Vec 76.44 77.88 79.24 80.20 80.04
GEdgeNL 72.22 75.16 77.19 78.79 79.39

Table 3.5.: Accuracy (%) on Facebook

% Labeled 10 20 30 40 50
REGNN 59.85 60.75 61.53 61.39 62.05
N-GCN 58.27 59.87 60.31 60.49 61.62
GCN 55.72 56.47 59.06 59.17 59.87
LP 56.25 57.36 58.45 59.54 59.83

NEU 56.29 58.52 59.94 60.23 60.88
GraRep 57.48 58.09 59.73 59.50 59.71
VERSE 53.94 56.67 57.09 56.89 57.40

Struct2Vec 53.32 54.47 54.75 54.86 53.56
Node2Vec 57.20 58.07 59.95 59.70 60.36
GEdgeNL 56.28 57.54 58.99 59.61 59.83

Table 3.6.: Accuracy (%) on Pubmed

% Labeled 10 20 40 60 80
REGNN 79.95 82.00 83.21 83.30 84.10
N-GCN 78.24 81.04 81.41 82.72 83.23
GCN 77.94 80.73 83.33 83.77 84.36
LP 78.97 80.62 82.12 82.75 83.28

NEU 75.59 76.71 77.52 77.94 77.86
GraRep 79.14 79.68 79.90 80.04 80.07
VERSE 80.44 81.01 81.15 81.29 81.18

Node2Vec 79.42 80.28 80.86 80.82 81.03

Table 3.7.: Accuracy (%) on Friendster

% Labeled 10 15 20 25 30
REGNN 34.62 36.18 36.7 36.93 37.02
N-GCN 28.93 28.54 32.03 32.55 31.89
GCN 29.7 29.74 30.2 30.18 31.82
LP 27.13 26.32 25.74 24.43 24.43

NEU 30.28 30.75 31.09 31.13 31.4
GraRep 33.53 33.93 34.22 34.53 34.72
VERSE 32.41 33.33 34.01 33.9 34.32

Node2Vec 31.81 32.58 32.8 33.27 33.36

Table 3.8.: Accuracy (%) on NELL

Method Accuracy Execution Time (Secs)
REGNN 85.6 740.45

N-GCN with IS 84.22 682.23
GCN 79.56 523.27
LP 82.67 1445.41

NEU 81.25 2787.72 (training only)
GraRep 79.25 2339.96
VERSE 85.43 1908.54

Node2Vec 84.41 2501.8 (training only)

Effect of Attention Mechanism.

REGNN uses role-based attention to leverage high-order paths. In this section,

we report how high-order paths or role-based attention contributes to increasing

REGNN’s performance. Fig. 3.4 shows comparisons from an ablation study. We

compare REGNN (Order=4), which is the best performing order chosen during pa-

rameter selection on the validation data, to REGNN (Order=1), which denotes a

simplified REGNN that still use the role-based attention but does not consider high-

order paths. N-GCN and GAT (Order=4) correspond to versions of our model where

the role equivalence attention is replaced by the mixing layer used in [74] and the edge-
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(a) Citeseer (b) Cora

(c) Facebook (d) PubMed

Figure 3.4.: Effect of attention mechanism (Y-axis: Accuracy).

wise attention of [31], respectively. For the mixing layer, column-wise concatenation

is used. We also compared with the softmax attention of [74] in our experimental

setting, but the concatenation-based mixing layer was more accurate.

In the ablation experiments, REGNN (Order=4) again achieved the best results

across all datasets. Specifically, it performed significantly better (assessed by paired

t-tests) than REGNN (Order=1), GAT (Order=4), and GAT (Order=1). In this
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ablation study, before computing the attentive weights, high-order GCNs are used

in the same way for the GAT for fair comparison, but the result is still worse than

REGNN (Order=4). We tested different numbers of multi-headed attentions for GAT,

but it did not help much. This means that our attention mechanism can identify more

meaningful neighbors than the one used in GAT—at least in our application settings,

which focus on label propagation in graphs with few attributes. In addition, when

high-order GCNs are not used, REGNN (Order=1) is worse than the simple GCN

(Order=1) in Citeseer and Cora. This indicates that it is more effective when REGNN

combines its latent representations with high-order paths.

3.6.6 Effect of Importance Sampling

REGNN uses importance sampling to increase scalability. Figure 3.5 shows classi-

fication results with different sampling sizes, S. The results were recorded from one of

the cross-validation sets, and the ratio of labeled nodes is 10 percent. The curves on

the plots are from the accuracy of prediction for validation node sets during training.

Each line represents the result of different sampling size, and ”exact” means the re-

sult of REGNN without importance sampling. In the figure, the learning results with

small sampling sizes show good convergence. For example, the experiment of Citeseer

shows faster convergence at size 64, compared to ”exact”, and others converge later.

In Cora and PubMed datasets, we cannot distinguish the difference across results

from different sampling sizes, and validation accuracies with small sizes converged

slightly faster. Validation accuracies on Facebook dataset also show faster conver-

gence when a sample size of 128 is used, and it was even better than ”exact”. In

the full experiment with cross-validation, this was better than results using ”exact”.

This implies that the class labels of individuals in the Facebook dataset could be

effectively learned better by sampling structurally similar high-degree nodes. Over-

all, the results show that importance sampling can achieve similar performance even

though it is much more space and time-efficient than the original batch learning.
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(a) Citeseer (b) Cora

(c) Facebook (d) PubMed

Figure 3.5.: Validation accuracy with respect to number of epochs: Each line shows
result of different sampling size, S.

3.7 Concluding Remarks

In this chapter, we described REGNN, a neural network architecture that can learn

jointly from static and temporal neighborhood structure. The architecture exploits

the interactions among local neighbors over time, by learning the temporal evolution

of a low-dimensional embedding from a GCN, and models its static neighborhood

with a densely connected NN. REGNN is able to improve classification performance

by utilizing both patterns in social interactions over time and the set of nodes in the

aggregate relational neighborhood.
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4 EXPLOITING INTERACTION LINKS WITH GRAPH NEURAL NETWORK

FOR NODE CLASSIFICATION

Node classification has been an important problem in relational machine learning. In

complex network domains, node classification methods have used different types of

relational information such as direct neighbors [75] and autocorrelation of class labels

[76]. While these methods have shown the effectiveness of using neighbor information

to improve node classification, the majority of real-world network datasets have sparse

link structure which limits the amount of neighbor information. Recent work [2, 5,

7, 77–80] on low-dimensional node embeddings and neural network architectures for

graphs has shown promising results on node classification for addressing the sparsity

problem in static graphs. In particular, GCN [5] learns individual node embeddings

by passing, transforming, and aggregating node feature information in an end-to-end

fashion and shows promising results on node classification.

However, in real-world domains, network interactions are often changing and

evolving over time. For example, users develop their connections to each other in

social networks while communicating with others, which could be potentially useful

for identifying their class labels (e.g., political view.) Nonetheless, it can be difficult

to leverage the dynamics of temporal interactions for node classification. In par-

ticular, when the interaction edges are very sparse in each temporal snapshot or a

node’s neighborhood is biased toward a particular class label in different temporal

snapshots, the use of temporal patterns may not be useful for predicting class labels.

In these cases, static and aggregated patterns may help to offset these issues. Our

proposed model can not only learn temporal interaction patterns, but also model the

aggregated neighborhood for node classification.

In this chapter, we first propose a novel deep neural network architecture for se-

quences of interaction graphs, which is called TSGNet. Our TSGNet leverages the
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strengths of both the GCN to discover interaction patterns at each temporal snapshot

and a recurrent unit, LSTM [81], to capture complex long-term dependencies. For

learning the temporal representation more efficiently, a mini-batched training via im-

portance sampling is also proposed. The importance sampling reduces the recursive

neighborhood expansion across layers and helps to decrease time complexity while

maintaining its performance. Moreover, TSGNet learns a second node representa-

tion from a static summary of each node’s neighborhood, using a neighbor encoder.

The static and temporal components of the model are jointly estimated. For eval-

uation, we conduct extensive experiments on both synthetic and five different types

of real-world networks with or without attributes, and we observe significant per-

formance gains compared to state-of-the-art methods. Moreover, a careful ablation

study is conducted and shows that our architecture design is most robust across all

experimental settings using different static and temporal components.

4.1 Motivation

Figure 4.1 shows examples of interactions in complex networks. Each node and

edge indicate an author and a co-author event, respectively. Note that colors rep-

resent class labels, yellow for NLP and grey for Database group. In Figure 4.1a,

user A and B have the same coauthors (neighbors) when they are aggregated. In

this context, the existing graph embedding approaches (i.e., Node2Vec [7] or Graph

Convolutional Network (GCN) [5]) will end up learning similar latent representations

for the two nodes. However, their temporal interaction patterns could be different.

When author A collaborates with other authors differently over time, compared to

author B, their representations should be modified accordingly. Meanwhile, if node

A and B show similar interaction patterns over time, then it may be difficult to

determine the correct class labels through temporal patterns only. In Figure 4.1b,

although the temporal coauthoring patterns around author A and B are similar, their

neighborhoods on the aggregated graph are entirely different. In that case, using the
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Figure 4.1.: Examples of interactions over time (k): (a) User A and B have same
neighbors when aggregated, but different interaction patterns over time (b) User A
and B have same interaction patterns over time but different neighborhood patterns
when aggregated.

aggregated neighborhoods (which are static features) class labels of node A and B

could be identified.

In this work, our goal is to jointly learn patterns in both interactions over time and

in static neighbor sets—for node classification. In order to model both properties, we

propose a neural network model, TSGNet. The details are described in Section 4.4.

4.2 Notation

We define a graph sequence as a set of graphs such that G = [G1, G2, ..., Gm].

Each Gk has the same set of nodes, vi ∈ V where ∀i ∈ [1, n], but a different set of

edges, Ek ⊆ V × V such that Gk = 〈V,Ek〉. If eij ∈ Ek, there is an edge between vi

and vj at time k, otherwise there is not. Alternatively, let A = [A1,A2, ...,Am] be

the set of adjacency matrices for G, where Ak[i, j] = 1 if eij ∈ Ek, 0 otherwise.

While the network structure does change over time, we assume that the node

attributes do not change over time.1 Let F be the feature (attribute) set over the

nodes. Each vi ∈ V has a corresponding feature vector fi ∈ F describing each node.

Y is the label set over the nodes. Only a subset of the nodes, vi ⊆ V , have a class

label, yi ∈ R|C|, where C is a set of class labels. The goal is to learn a model from the

1The setting is realistic for many social and interaction graphs because their attributes available
are from basic profiles, resources, or given properties, so they are mostly static. For example, in
Facebook, gender and religious views could be attributes, and pre-determined values like contents-
rating and budgets could be used for attributes of a social network from IMDB.
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partially labeled network and use the model to make predictions ŷ for the unlabeled

nodes {vi}s.t.yi /∈ Y . In this work, we assume that Y can be multi-labeled. Moreover,

each prediction ŷi for vi has an estimated probability.

4.3 Related Work

Supervised Node Classification for Temporal Graph There is some work on

relational models that consider temporal patterns with the aim of improving node

classification. TVRC [82] attempts to model temporal structures through a two-

step process. The key idea behind the TVRC is to model the temporal patterns

through an exponential weight decay kernel, where the implicit assumption is that

network structure in recent past is more important than the structure in the earlier

past. In addition, DDRC [83] proposed a convolutional neural network architecture

with max-pooling for node classification, which models temporal interactions among

a node’s neighbors. DDRC shows stable performance in spite of different variability of

neighbor vectors. However, its effectiveness was partially shown in long and relatively

denser graph sequences. Our TSGNet is evaluated from more diverse and larger graph

datasets and shows better performance in our experiment.

Dynamic Node Embedding Recently, dynamic network embedding approaches

were proposed by [84–86] by using spectral updates over time for general relational

tasks including node classification. However, they are evaluated in a synthetic set-

ting, in which two temporal snapshots are created by assigning a random timestamp

to each edge. Moreover, attributes are also not exploited for learning temporal rep-

resentations. DynamicTriad [59] also attempted to learn nodes’ evolutions through

representation learning for general relational learning tasks using multiple temporal

graph snapshots, but their effectiveness on node classification is still not clear. For

example, they are limited to a specific type of evolution strategies, and attributes are

also not used for learning. In our evaluation, the Dynamictriad is compared to our

TSGNet.
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Model Categorization Table 4.1 categorized TSGNet and other baseline models

according to the types of relational information they use (w.r.t. edges and attributes)

as inputs to their models. TSGNet uses dynamic interaction edges with or without

attributes. In our experiments, we compare TSGNet to all the listed models. Logis-

tic Regression (LR) and Multi-layered Neural Network (NN), Node2Vec [7], and an

attributed node embedding, ASNE [87], are also employed to model static edges. See

Section 4.5 for more detail. The colors in the table will be used later in the experi-

ments to highlight the performance achieved using each type of relational input.

Table 4.1.: Models categorized w.r.t., the types of relational information they use as
inputs.

No Attr. Static Node Attr.

Dynamic Edges
TSGNet,
DynamicTriad

TSGNet, DDRC

Static Edges Node2Vec, LR, NN
GCN, GraphSAGE,
ASNE, LR, NN

No Graph not applicable LR, NN

4.4 TSGNET for Node Classification

Figure 4.2 represents the overall architecture for TSGNet. The TSGNet is com-

posed of (1) a static neighbor encoder and (2) multiple layers of GCN for modeling

interaction graphs at each time step k. The details of each are described below.

GCN layers We use GCN as a basic component for modeling each temporal graph,

A = [A1,A2, ...,Am]. Before the data is fed into the GCN, we use the symmetric

normalizing trick described in [5]. Dk is the diagonal degree matrix of Ak + I, and I

is an Identity matrix:

Ǎk = Dk
−1/2(Ak + I)Dk

−1/2. (4.1)
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Figure 4.2.: Architecture for TSGNet

Each GCN layer produces node-level output H
(l+1)
k ∈ R|V |×Z(l)

where |V | is the num-

ber of nodes and Z(l) is the size of output representation per a node, which is deter-

mined by W
(l)
k . The outputs are generated at each time step, k.

H
(l+1)
k = f(H

(l)
k , Ǎk)

= (ReLU(ǍkH
(l)
k )W

(l)
k ))

(4.2)

Note that each GCN layer has its own W
(l)
k at each time stamp. Moreover, GCN [5]

originally uses the attribute matrix for H
(1)
k . In this work, we also support a non-

attribute option. In this case, the identity matrix is used for H
(1)
k .

Let L be the number of GCN layers for each time step, then the final output for

each time step will be an input for an LSTM cell. I.e., H
(L+1)
k for each time step k,

is the temporal input for the kth cell in the LSTM sequence. In Eq. (4.3) below, oi

returns the final output vector for vi in the LSTM. The output oi is projected a final

time using the weight matrix Wlstm and bias vector blstm. This will be added to the
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neighbor encoder for vi below. If the interaction of vi ends before the last step, m, it

still uses the same Wlstm and blstm to generate the output o′i.

oi =LSTM(H
(L+1)
1,...,m(vi))

o′i =softmax(Wlstmoi + blstm)
(4.3)

Neighbor Encoder (NE) The neighbor encoder uses an aggregated matrix Ǎagg

as input. Ǎagg is created by aggregating all elements in [A1,A2, ...,Am] and nor-

malizing in the same way described above. The static component reduces the dimen-

sionality for node vi from its neighbor vector in Ǎagg, using stacked fully-connected

layers.

NE
(2)
i = ReLU(W(1)(Ǎagg[i, :]� hi) + b(1))

= ...

NE
(L′+1)
i = softmax(W(L′)NE

(L′)
i + b(L′)),

(4.4)

where � means the Hadamard product, hi = {hi,j}|V |j=1. Here, if Ǎagg[i, j] > 0,

hi,j = β (for β ≥ 1). Otherwise, hi,j will be equal to 0. This Hadamard product

is used to overcome sparsity in the adjacency matrix. If β is 1, it is the same as

the adjacency matrix. Otherwise, it puts more weight on non-zero elements in the

matrix. It is expected that β will make larger outputs and offset issues from sparsity.

In experiments, we set β = 20, and using this we observe up to 4% of improvement

in accuracy.

Addition Layer The element-wise addition layer combines the outputs from the

GCN-LSTM and the Neighbor Encoder. Specifically, we compute v̂i as the element-

wise addition of the outputs from the GCN-LSTM (Eq. 4.3) and the Neighbor Encoder

(Eq. 4.4):

v̂i = NE
(L′+1)
i + o′i. (4.5)

The addition layer enables a joint representation learned from both the static

and temporal neighborhoods around the node. An additional benefit is that the
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addition layer does not introduce extra parameters, nor does it increase computational

complexity. Then, the output v̂i is put though another softmax layer for classification:

ŷi = softmax(Wfinalv̂i + bfinal). (4.6)

Here, ŷi is the vector output of the softmax function, and each dimension ŷi,j rep-

resents the predicted probability of the corresponding class j, given the inputs. For

learning, we use categorical cross-entropy (over VL, the set of labeled nodes) as a loss

function at the final layer as:

L = −
∑
i∈VL

|C|∑
j

yi,jlog(ŷi,j). (4.7)

Since all activation functions are differentiable, learning is simply done via back-

propagation.

Importance Sampling When we use multiple GCN layers, the recursive neigh-

borhood expansion across layers poses time and memory challenges for training with

large graphs. To overcome this limitation, we leverage the importance sampling again

here, which is introduced in Section 3.4.3 in Chapter 3. In short, at every epoch, all

nodes are randomly divided to create a mini-batch set, B, which is composed of mul-

tiples of γ nodes. We set γ = 1024. B provides a candidate node set for sampling |S|

later. When it comes to a new mini-batch, Ãk is induced from Ǎk according to the

S. Similarity, the input matrix of neighbor encoder, Ǎagg, is replaced by Ãagg. The

inner for-loop for Ǎagg retains only the edges in S, but maintains the dimensionality

of the NE.

Complexity Analysis Recall that m is the number of temporal GCNs and |F | is

the number of node attributes. Then assuming the number of hidden units in LSTM,

GCN, and NE is constant, the computational complexity of TSGNet is O(|V | + m ·

|F | · |E|), where O(|V |) is from neighbor encoder and O(m · |F | · |E|) is from the set
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of temporal GCNs. Because m and |F | are typically much smaller than |E|, the time

complexity is linear in the number of edges, i.e., O(|E|). With importance sampling,

the complexity becomes O(|V | + |ES|), where |ES| is the number of edges induced

in S. When the non-attribute option is chosen, the complexity is still O(|V | + |ES|)

because the input identity matrix is sparse, thus |F | = 1 in the sparse representation,

and can be considered as a constant with sparse-dense matrix multiplication.

4.5 Experimental Results

4.5.1 Data

We use three real-world network datasets for evaluation. Table 4.2 reports brief

statistics for each network.

Table 4.2.: Network data statistics. m is the number of time windows, and other
notations are from Section 4.2.

|V | |E| m |F | |C|
Facebook 2,716 22,712 55 2 2
DBLP 17,191 318,735 18 2,997 2
IMDB G 5,043 43,494 65 73 2
IMDB R 92,611 472,630 14 - 2

Facebook The Facebook network was scraped from a University group [9]. Each

user (node) is associated with political views for their class labels. An edge is formed

when a user writes a post to his or her friend’s wall. Users who posted more than 1

times a week during at least 7 weeks are chosen. A time window is defined with 2

weeks. Attributes for Facebook are religious views and gender.

DBLP For this dataset, a co-authorship network is extracted from DBLP, and an

edge is created when two authors published one paper together at the time step.

Thus, nodes represent authors. Publication venues are selected from AI/NLP and
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DB conferences2. Authors are selected when they have at least 7 years of publication

history, and the most published area is chosen for the class label of each author. For

attributes, term vectors from titles of each user’s published papers were used.

IMDB G (Gross Income) We use Kaggle’s IMDB (Internet Movie Database)

5,000 movie dataset. An edge is formed when two movies share an actor or actress

at each year. All movies have a least 2 temporal edges. A movie has a positive label

if the movie gross is larger than 10 million dollars. For this work, we choose budgets,

content rating, the number of faces in a movie poster, and genres as features. The

budgets are quantized from 0 to 9 using percentiles. Each feature is transformed into

one-hot encoding representation.

IMDB R (Rating) This dataset is from the whole IMDB database3, and all par-

ticipants including actors and writers are imported. An edge is formed when two

movies share any crew each year. When a movie’s rating is larger than 7.0, it is cho-

sen as a positive label. The periods of all movies are from 2005 and 2018. There are

many missing values to consider all movies, so attributes are ignored in this dataset.

All movies have at least 11 temporal edges.

4.5.2 Comparison Models

Logistic Regression (LR) Logistic regression is performed using neighbor vectors

with L1 regularization. This allows us to compare how relational and temporal pat-

terns improve performance. The aggregated (binary or degree normalized (weighted))

graph of all temporal graphs is used for training.

2AI/NLP: IJCAI, AAAI, SIGIR, ECIR, CLEF, CHIIR, AIRS, ACL, EMNLP, and COLING; DB:
ICDE, VLDB, SIGMOD/PODS, and EDBT from 2000 to 2017.
3The IMDB dataset was downloaded in November 2018
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LSTM We use the TSGNet’s input representation for the LSTM, but the GCN

layers and the neighbor encoder are not used in the architecture. For inputs, the

first-hop neighbors at each time window are fed directly into the LSTM layer.

GCN and GraphSAGE To compare TSGNet with Graph neural networks, GCN

[5] and GraphSAGE [10] are evaluated with the aggregated (binary) static graph

input. Attributes are used in the same way with TSGNet. We used an LSTM

aggregator for GraphSAGE. Because other aggregators for the GraphSAGE such as

GCN, mean, and pool are worse than LSTM, the results are not reported here.

Node2Vec For learning a static node embedding method, Node2Vec, we set d =

[16, 32, 64], r = 10, l = 80, k = 10, and p and q were searched over [0.5, 1, 2]. The

aggregated (binary) matrix is used for its training.

ASNE ASNE [87] is a recent attributed node embedding method. We used the

same hyper-parameter search criteria as in [87].

DDRC DDRC [83] is a CNN-baed temporal classifier, which considers interactions

over time. This does not have a neighbor encoder or GCN component. The inputs

are used as in LSTM above.

Multi-layered Neural Network (NN) For NN, the neighbor encoder of TSGNet

is used for training and testing.

TempGCN (GCN+LSTM) This is a version of the TSGNet without the neighbor

encoder (NE) component where we use GCN to model the temporal graphs with an

LSTM.

DynamicTriad A dynamic node embedding method, DynamicTriad [59], is also

tested with all combinations of parameters as in [59]. Both unweighted graphs and
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weighted graphs were used for learning, and, edges are weighted by the number of

common neighbors during each period.

4.5.3 Evaluation Methodology

Every result we report is from the average of 10 trials using randomly shuffled node

sets. Note that the entire graph is known before learning, and 70%, 20%, and 10% of

node labels are used for training, testing, and validation, respectively. If the accuracy

on the validation dataset does not increase during 5 epochs, learning stops. We also

use dropout regularization (0.2) and rectified linear units for activation functions.

For optimization, we use the adam optimizer [88] to update variables. For TSGNet,

LSTM, and GCN, the number of hidden nodes is searched over [8, 16, 32, 64], and

the numbers of hidden nodes in the neighbor encoder are 512 and 128 at each layer.

In addition, there are three GCN layers for TSGNet. For importance sampling, the

sampling size |S| is chosen from [8, 16, 32, 128, 256].

4.5.4 Results: Synthetic Data

To evaluate the concept of TSGNet, we generate synthetic data from two simplified-

Dynamic Stochastic Block Models (DSBM) [89] to evaluate our model. We set the

number of users to 100, and the length of time-windows for each node is determined

by 25 + uniform(0, 1) × 25. The first DSBM (Dense Block Model) is composed of 4

different partitions, P1, .., P4, at time(k)%2 == 1. Each partition is composed of

50×50 nodes. In all other time-windows, edges are generated from 9 partitions, P ′1,

.., P ′9. Each partition has different edge probabilities, as in Figure 4.3. The second

model (Sparse Block Model) is designed to generate sparse DSBM with low probabil-

ity. All other conditions are the same, but each probability is 10 times sparser than

the dense block model. For class labels, 0 is assigned for the first half of nodes (thus,

senders of P1 and P2), and 1 is set to the second half.
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Figure 4.3.: Dense Block Model used to generate synthetic networks. Sparse Block
model is 10 times sparser than the Dense Block Model.

Node classification accuracy (and standard errors) on the synthetic data are shown

in Table 4.3. Bold numbers indicate statistically significant top results. For data from

both sparse and dense block models, our proposed model exhibited good performance.

While DynamicTriad, DDRC, and LSTM show better performance than TSGNet in

the dense data, they are worse in the sparse block model. Meanwhile, other classifiers

(GCN, LR, and NN), which were originally designed for static graphs, showed worse

performance than TSGNet’s results. Node2Vec works well for the sparse data, but it

is worse than TSGNet (p-value < 0.05 in paired t-test).

Table 4.3.: Classification accuracy on synthetic data. Values in ( ) denote standard
errors. Colors indicate type of relational input used by the model from Table 4.1.

Dense Block Model Sparse Block Model
TSGNet 0.89 (0.0299) 0.884 (0.0282)
DynamicTriad 1.0 (0.0) 0.615 (0.0316)
DDRC 1.0 (0.0) 0.705 (0.026)
LSTM 1.0 (0.0) 0.530 (0.0376)
GCN 0.519 (0.0272) 0.504 (0.0277)
Node2Vec 0.494 (0.036) 0.771 (0.026)
LR 0.429 (0.0164) 0.63 (0.227)
NN 0.485 (0.0212) 0.688 (0.0326)
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4.5.5 Results: Real-world Data

Performance Without Node Attributes Table 4.4 shows the classification re-

sults for the three different real-world datasets. Note that bolded numbers indicate

statistically significant top results. (Weighted) in LR refers to versions where the

input matrices of the corresponding methods are normalized by the number of edges

per each node. In the experiment, TSGNet exhibited the best performance over other

alternatives for all datasets and shows comparable performance to TSGNet w/o IS

(Importance Sampling). While simple static classifiers such as LR and NN return

good performance for Facebook (FB) and DBLP due to the high correlation between

neighbor vectors and class labels, however, they are still worse than our TSGNet.

These characteristics make TempGCN more difficult to model the data because it is

too complex to learn the simple neighborhood. Despite that, the neighbor encoder

component of the TSGNet helps it learn the hidden dependencies among nodes and

their static neighborhood well. As a result, it produces a significant gain in perfor-

mance. DDRC and LSTM showed poor performance because the data is also very

sparse. DynamicTriads are better than GCN and GraphSAGE in IMDB G but still

worse than TempGCN and TSGNet. Overall, TSGNet produces an average reduction

in classification error of 16%, compared to GraphSAGE, which is the best competitor.

Figure 4.4 shows learning curves on the three datasets as we vary the amount

of training data. The learning curves compare the performance as the number of

training nodes increases. Note that the set of nodes for testing and validation is same

across all range of x-axis. Although the number of training nodes was controlled to

calculate the supervised loss, the complete adjacency matrices at each time step for

the GCN layers were fixed for the experiment. The experimental assumption was also

applied to all other alternatives, TempGCN, Node2Vec, and LR. For Node2Vec, the

compete network structure is known for learning representation, and the number of

nodes is controlled when its supervised classifier is trained. Therefore, all results with

the small training data were not poor. In the Facebook and DBLP datasets, TSGNet
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Table 4.4.: Classification accuracy on real-world datasets. Colors indicate relational
input type from Table 4.1. Results of DDRC and LSTM for IMDB R are ignored due
to the learning time limit (≥1 day). Bolded numbers indicate statistically significant
top results from the paired t-test (p-value<0.05).

FB DBLP IMDB G IMDB R
TSGNet 0.68 0.97 0.78 0.78
TSGNet w/o IS 0.688 0.97 0.786 0.771
TempGCN 0.646 0.734 0.77 0.591
DynamicTriad W 0.542 0.652 0.732 0.657
DynamicTriad 0.534 0.633 0.730 0.645
DDRC 0.554 0.542 0.717 -
LSTM 0.514 0.538 0.696 -
GraphSAGE 0.645 0.963 0.712 0.752
GCN 0.521 0.665 0.719 0.568
Node2Vec 0.515 0.96 0.7 0.768
NN 0.623 0.83 0.716 0.726
LR 0.593 0.939 0.699 0.665
LR W 0.613 0.955 0.689 0.673

was consistently better than the others. For IMDB G dataset, TSGNet improved in

performance as the size of training set increased.

Performance With Node Attributes Table 4.5 shows classification results when

node attributes are incorporated into the models. The result for TSGNet with at-

tributes was better than the other alternatives which used attributes in their input.

Moreover, the performance of TSGNet without attributes was even better than the

result of the best model which uses attributes. Note that, for the DDRC without

attributes, an identity matrix is concatenated to the input neighbor vector. This

result indicates that it can learn a good representation with the only structural in-

teractions. (attr. + neighbor) means the concatenated input between attribute and

neighborhood vectors. ASNE, LR, and NN with the new input show good results in

general, but they are worse than TSGNet. ASNE was bad for DBLP because it could

not utilize labels to learn the embedding. Also, GCN did not work well both with and

without attributes. GCN is based on a 1-layer perceptron, which is not a universal
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(a) Facebook (b) DBLP

(c) IMDB G (d) IMDB R

Figure 4.4.: Learning curves for each dataset as amount of training data is varied.

approximator [90]. The 1-layer perceptron in the GCN works like a linear mapping,

so the layers may degenerate into simply summing over neighborhood features [28].

With this reason, GraphSAGE with LSTM aggregator can model interaction better

than GCN for Facebook and DBLP. Overall, TSGNet with or w/o attributes reduces

classification error up to 24% and produces an average reduction in classification error

of 10%, compared to GraphSAGE.
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Table 4.5.: Classification accuracy on real-world datasets with node attributes. Colors
indicate relational input type from Table 4.1. Bolded numbers indicate statistically
significant top results from the paired t-test (p-value<0.05).

FB DBLP IMDB G
With Static Attributes
TSGNet 0.675 0.96 0.777
DDRC 0.554 0.938 0.749
GraphSAGE 0.655 0.967 0.717
GCN 0.483 0.881 0.720
ASNE 0.525 0.601 0.734
LR (attr. + neighbor) 0.664 0.96 0.744
NN (attr. + neighbor) 0.645 0.955 0.759
LR (attr. only) 0.63 0.891 0.756
NN (attr. only) 0.63 0.886 0.735

Temporal Sequence Randomization: Impact on Performance To see the ef-

fect of temporal sequence’s randomization, the time-windows were randomly shuffled

and used for training. The order of words in language models for NLP and speech

recognition is quite important to represent sentences, but the temporal order of so-

cial interactions could be reversed and often spontaneously happen. In order words,

the randomized temporal sequences are likely to represent another instance of evolu-

tion. As in Table 4.6, TSGNet and TempGCN also worked well in the randomized

inputs and not significantly different from the results of original inputs. These results

are also related to Janossy pooling [91], which can make the LSTM a permutation-

invariant function. This explains why the randomized inputs often work better with

LSTM when there is general dependency among input sequences. For example, col-

lective classification using LSTM [11] shows their effectiveness from the randomized

sequences.

Ablation Study of Model Components TSGNet uses GCNs for learning tem-

poral interactions and a NN neighbor encoder for learning the aggregated static first-

neighbors. However, we could have chosen other architectures for either component.

Note that we did not use importance sampling to see the true effect of each compo-
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Table 4.6.: Classification accuracy with different temporal inputs. Colors indicate
relational input type from Table 4.1.

Facebook DBLP IMDB G IMDB R
TSGNet 0.688 0.97 0.786 0.78
TSGNet (RandOrder) 0.679 0.96 0.774 0.772
TempGCN 0.646 0.734 0.771 0.591
TempGCN (RandOrder) 0.658 0.735 0.750 0.573
DDRC 0.554 0.542 0.717 -
DDRC (RandOrder) 0.573 0.54 0.718 -
LSTM 0.514 0.538 0.696 -
LSTM (RandOrder) 0.480 0.53 0.693 -

Table 4.7.: Effect of different joint learning approaches: N-Encoder (N-En) and
T-Encoder (T-En) refer to neighbor encoder and temporal encoder, respectively.
Bolded numbers indicate statistically significant top results from the paired t-test
(p-value<0.05).

N-En T-En FB DBLP IMDB G IMDB R
NN GCN 0.688 0.97 0.786 0.771
NN NN 0.676 0.953 0.776 0.711
GCN GCN 0.672 0.652 0.788 0.707
– GCN 0.646 0.734 0.771 0.591
– NN 0.647 0.732 0.769 0.707
GCN – 0.521 0.665 0.719 0.658
NN – 0.623 0.83 0.716 0.726

nent. Table 4.7 shows the results for different variants of the architecture, with the

original components of TSGNet in the first row. Instead of the GCN in TSGNet,

when we use regular densely-connected NN, its performances decrease in DBLP, as

shown in the second row of the table. When the GCN is missing in TSGNet like the

last row of the table, it also does not work well. Similarly, when the NN in TSGNet

is replaced with GCN layers or an empty layer, we can observe a significant drop

in Facebook and DBLP. This represents that our NN-based neighbor encoder helps

to jointly learn the temporal network’s interaction well if we use GCN layers. In

summary, we could see that our TSGNet is never worse than other alternatives.
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Parameter Sensitivity We note that the parametrization of the model depends

on m, the number of time windows in the data. Figure 4.5 shows how performance

varies as we vary how many recent time-windows are used for training. We observe

the accuracy of TSGNet seems to plateau after 40 percent of time-windows are used.

We also note that performance does degrade as more time windows are used, which

indicates that the model is not overfitting to the use of additional temporal interac-

tions.

We also evaluated the sensitivity of TSGNet to β. We searched over values [1-

30] for each dataset. For IMDB G, the accuracy varied from 0.78 to 0.81, and the

accuracies of IMDB R are from 0.761 to 0.78.

Facebook’s accuracy also changed from 0.68 to 0.705 depending on the β. For

DBLP’s the accuracy did not vary much. This indicates that model performance is

relatively insensitive to the choice of β.

Figure 4.5.: Classification accuracy as m is varied.
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4.6 Concluding Remarks

While label propagation has been widely used to improve the performance for

semi-supervised learning, existing deep neural networks have not greatly explored the

property. In this chapter, we described TSGNet, a graph neural network architecture

that exploits label propagation in a message-passing framework. TSGNet not only

learns from high-order path information but also adaptively aggregates the hidden

representation of neighboring nodes using role equivalence. In our experimental re-

sults, TSGNet consistently showed improved performance for semi-supervised node

classification. We assess the significance of the gains using paired t-tests and deter-

mine that TSGNet significantly outperforms the best alternative (N-GCN) across all

label proportions on five real-world network datasets.
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5 GENERATING EXPLANATIONS FOR NODE REPRESENTATION

LEARNING BY IDENTIFYING IMPORTANT NODES WITH BRIDGENESS

Node Representation learning methods (or Node embedding methods) have aroused

considerable research interests in recent years. The fundamental problem is how to

find low-dimensional representations while preserving the inherent relational prop-

erties in an embedding space. (i.e., if neighbors of two vertexes are similar in the

original network, they should have similar embedding vectors.) Prior works have

demonstrated that, besides the pairwise edges, high-order proximities or structural

similarities between nodes are of importance in capturing the underlying structure of

the network [1–4] and thus can provide valuable information for learning the embed-

ding vectors.

While the node embedding models have increased the performance of many rela-

tional tasks such as node classification and link predictions, it compromises their ease

of interpretation. Providing interpretable explanations is a crucial criterion when

the embedding models are applied in time-critical and cost-intensive areas such as

biology [12] and medicine [13]. Recently, similar research questions have been raised

by researchers, and many explanation methods have been proposed to provide ex-

planations with salient features [14, 15] or make the models more transparent [16].

However, most of them have focused on providing explanations for predictive learning

models on simple sequenced or grid inputs.

Moreover, since node embedding models such as DeepWalk [1], LINE [2], Struc2Vec

[3], and PTE [4] are typically trained in an unsupervised and transductive fashion,

the previous explanation methods are not directly applicable to them. Recently,

while GNNExplainer [17] is proposed to provide explanations for Graph Neural Net-

work models (e.g., GCN [5]) w.r.t. a single prediction, and it is still required to

have an end-task with additional heavy learning. Moreover, it has not been evalu-
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ated with real-world graphs. In this chapter, we propose a novel explanation method

for finding globally important nodes to the embeddings, which are learned from the

aforementioned models. Our analysis and proofs reveal that node-level importance

in DeepWalk could be measured by bridgeness under cluster-aware local perturba-

tion. The bridgeness of a node is usually defined by considering how the node is

connected to different clusters, and one example of high bridgeness nodes is people

in management positions who initiate collaborations between different departments

such as software development and marketing. You can refer to its formal definition in

Def. 6. We also provide an efficient gradient-based method, which we call GRAPH-

wGD, to approximate the bridgeness-based ranking. We evaluate our method with

five different real-world graphs, and the importance ranks found by GRAPH-wGD

show high rank correlations to bridgeness in all datasets. Moreover, GRAPH-wGD

shows consistently better results than recent alternatives w.r.t. prediction change and

new neighbors’ emergence after perturbation of the discovered importance nodes and

relearning the embedding.

5.1 Related Work

Previous methods mainly aim to provide explanations to the ML models who take

non-graph inputs. To understand outputs from graph-based ML models, Degree and

PageRank can provide useful information to many downstream tasks. For example,

high degree nodes are often regarded as popular nodes [92] in Twitter, and nodes

who have high PageRank scores [93] are still highly ranked in modern search engines

or recommendation engines. However, they are not post-hoc interpretation methods,

and, depending on ML models, the theoretical relationships between the models and

the properties are not clear. In particular, although random walk-based node em-

beddings like DeepWalk heavily rely on high-degree nodes, high-degree nodes are not

guaranteed to have the highest global impact on the learned model. For example,

in the worst case, if the high degree nodes are placed in a single cluster, and the
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perturbation on the nodes may not change label prediction or clustering much in the

embedding space.

Recently, GNNExplainer [17] has been proposed to provide explanations for graph

neural network models (GNNs) with respect to the prediction of a single node. How-

ever, the method does not have the capability of providing global explanations for

the node embedding itself. Taxonomy induction method [37] and XGNN [56] are also

relevant to this work, but they interpret node embeddings only by identifying clus-

ters in the embedding space or providing a model-level interpretation with a graph

generation, respectively. Other methods for ML models which take non-graph inputs

are discussed in the Section 2.2.2 of Chapter 2.

5.2 Importance and the Impact of High Bridgeness in Node Embeddings

5.2.1 Node Importance

To measure the importance of nodes in embeddings, we generalize the well-known

pairwise distance [94,95] to measure the impact on the learned node embeddings after

perturbing a graph. Let A be the adjacency matrix of an undirected and weighted

graph G, and di =
∑

j Aij be the degree of vi. V is a set of vertices in G. We

assume that a learned embedding W takes vi ∈ V to return low-dimensional vector

~wi ∈ Rk. We first define the importance of each node in the learned embedding using

Degree-Normalized Pairwise Distance (DNPD):

Definition 4. (Node importance in latent space) Let G be an input graph with vertices

V and let G′ be a perturbed version of G. Let W ∈ R|V |×k and W ′ ∈ R|V |×k be latent

representations learned from G and G′, respectively. Then the importance of vb in

the latent space is:

Importance (vb|W,W ′) = ||DNPD(W )−DNPD(W ′)||

=

∣∣∣∣∣∣
∣∣∣∣∣∣
∑

vi,vj∈V

∣∣∣∣∣
∣∣∣∣∣ ~wi√di − ~wj√

dj

∣∣∣∣∣
∣∣∣∣∣
2

−
∑

vi,vj∈V

∣∣∣∣∣
∣∣∣∣∣ ~w′i√di − ~w′j√

dj

∣∣∣∣∣
∣∣∣∣∣
2
∣∣∣∣∣∣
∣∣∣∣∣∣ .
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Definition 4 provides a conceptual node importance measure for vb in any latent

representation under perturbation. In the next section, we propose a specific per-

turbation strategy to explore properties of node importance on both spectral and

DeepWalk embeddings.

5.2.2 Cluster-Aware Perturbation for Spectral Embeddings

First, we define a degree/volume-preserving cluster-aware perturbation method.

We note that the initial set of clusters is given before perturbation. We use spectral

clustering to get the set of clusters, {C1, ..., Ck}, for ease of theoretical analysis

(described next). There are several objective functions that capture the clusters,

and we focus on finding eigenvectors to maximize the relaxed normalized association

Nasso(Ci|G) = assoc(Ci,Ci|G)
assoc(Ci,V |G)

[96].

Definition 5. (Degree/Volume-Preserving Cluster-Aware Perturbation) Given a graph

G and its set of clusters C = {C1, ..., Ck}, we define a function Perturb(G, vb) = G′−vb

to perturb inter-cluster edges around vb as follows:

1. Set Vcand = {vi|vi ∈ Ci, A[b, i] > 0}

2. Sample Q, where is composed of α · |Vcand| number of vertices, from Vcand

3. For ∀vq ∈ Q, // Remove inter-cluster edge e(vb, vq) and e(vq, vb), adjust by

adding self-edges

A[q, q] = A[q, q] + A[b, q], A[b, b] = A[b, b] + A[b, q]

A[b, q] = 0, A[q, b] = 0

4. Return G′−vb = A.

Using the Perturb function, we can analyze how Nasso(Ci|G) will change after the

perturbation.
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Lemma 1. Given a graph G, its set of clusters C = {C1, ..., Ck}, and an arbitrary

node vb ∈ V , let G′−vb = Perturb(G, vb) from Definition 5. If vb ∈ V has at least one

inter-cluster edge, then Nasso(Ci|G) ≤ Nasso(Ci|G′−vb) for ∀Ci ⊂ C.

See appendix for all proofs. Now we introduce the definition of Bridge Node

[97–99]. In agreement with earlier findings in [100–102], we assume that bridge nodes

have more inter-modular positions than community cores. The existence of bridge

nodes often leads to more inter-cluster edges. The “bridge” connects the clusters and

can enhance the integration of the whole network, and its formal definition is:

Definition 6. (Bridge Node and Bridgeness) [99] Given C = {C1, ..., Ck} in G,

when a node vb ∈ Cb connects at least two different clusters including Cb, it is called

a Bridge Node. The Bridgeness of vb is:

Bridgeness(vb ∈ Cb|C,G) = γ(Cb) · dinterb , (5.1)

where dinterb is the inter-cluster degree of node vb ∈ Cb, which is computed from G

and C. γ(Cb) represents the importance of the clusters Cb. For γ(Cb), the number

of its neighboring clusters to Cb is used in [99], and the distance to each cluster have

also used [98,103]. In this chapter, we set γ(Cb) = 1 for simplicity.

The following Lemma shows that the difference in Nasso is maximized after per-

turbing the node with the largest bridgeness.

Lemma 2. Let V be the nodes in graph G with clusters C, and G′−vj = Perturb(G,

vj) using Def. 5 with the perturbation ratio α = 1.0 If we define

vb = arg max
vj∈V

(Nasso(C1, ..., Ck|G′−vj)−Nasso(C1, ..., Ck|G)),

then vb is the node with largest Bridgeness.

Now we can derive which node has the largest Importance in a spectral embedding

(eigenvector U from D−1/2AD−1/2) under perturbation as:
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Theorem 1. Let V be a node set in G, and we have k clusters {C1, ..., Ck} in G.

G′−vj = Perturb(G, vj) using Def. 5 with the perturb ratio α = 1.0, and eigenvectors

U ∈ R|V |×k and U ′−vj ∈ R
|V |×k are given from G and G′−vj . Then, we have

arg max
vj∈V

Importance(vj|U,U ′−vj) = arg max
vj∈V

Bridgeness(vj|C,G).

5.2.3 Connection to Node Embedding Models

Similarly, here we consider DeepWalk embedding to see which node has the largest

Importance under perturbation. We denote Dii =
∑

j Aij as the diagonal degree

matrix, T is the window size, b is the number of negative samples, and vol(A) =∑
vi,vj∈V Aij is the volume.

Theorem 2. Let V be a node set in G, and there are k clusters {C1, ..., Ck}. G′−vj =

Perturb(G, vj) using Def. 5 with α = 1.0, and eigenvectors Û ∈ R|V |×k and Û ′−vj ∈

R|V |×k from DeepWalk embeddings are given from G and G′−vj . Then,

arg max
vj∈V

Importance(vj|Û , Û ′−vj) = arg max
vj∈V

Bridgeness(vj|C,G).

Other embedding models such as LINE, PTE, and Struc2Vec could be analyzed in the

same way. For LINE and PTE, similar theoretical approximations were studied in [78].

As in Table 1 in [78], we can expect the same result under the same perturbation in

both LINE [2] and PTE [4] because our perturbation method does not change degree

matrices and other constants. Struc2Vec [3] learns low-dimensional representations

using Skip-Gram architecture on the context graph, which is constructed by structural

similarity among nodes. When we assume input adjacency is the context graph, its

bridge nodes are still important as in DeepWalk.
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(a) Eigenvector (b) (Approx.) DeepWalk (c) DeepWalk

Figure 5.1.: Averaged importance over bridgeness from Eigenvectors, (Approx.)
DeepWalk, and DeepWalk

5.2.4 Verifying Theorems using LFR Benchmark Networks

LFR benchmark [104] is an algorithm that generates realistic benchmark networks,

which has been used for evaluating community (or cluster) detection methods. The

advantage of the benchmark is that it accounts for the heterogeneity in the distribu-

tions of node degrees using a power-law distribution p(x) ∝ x−τ1 , and the size of the

communities are also taken from the distribution with an exponent τ2. There is a

mixing parameter µ, which is the average fraction of neighboring nodes of a node that

do not belong to any community that the benchmark node belongs to. We set the pa-

rameters to |V | = 500, the minimum number of nodes in each cluster min(Ck) = 20,

τ1 = 2.5, τ2 = 1.5. Figure 5.1 shows the result of averaged importance after perturb-

ing nodes that have different bridgeness using Definition 4. The scores are computed

on the different latent spaces: (a) Eigenvector of G, (b) Eigenvector of M in Theorem

2 ((Approximated) DeepWalk), and (c) DeepWalk. As we derived in Theorems 1-2,

the importance scores of nodes increase when they have more bridgeness.

5.3 Proposed Gradient-Based Method to Find Bridge Nodes

In the previous section, we explored that bridge nodes play important roles in

terms of the change of node importance in the DeepWalk embedding. However, ex-
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isting methods to find bridge nodes are O(|E|+ |V |2.367) due to inter-community de-

gree computation (O(|E|)) after spectral graph clustering (O(|V |2.367)). In particular,

spectral clustering relies on eigenvector decomposition (EVD), and to our knowledge,

the time complexity of the fastest EVD solver is O(|V |2.367) or O(nnz(A)) [105].

O(nnz(A)) = O(A2) if A is dense, where nnz(A) denotes the number of non-zero

entries in A.

To mitigate this burden, we propose a gradient-based method to find the bridge

nodes. First, we derive a measure by exploiting the magnitude of the gradient, which

is also called Sensitivity [54]. We note that the magnitude is measured after learning

the corresponding embedding model1. For example, in order to learn the Skip-Gram

architecture, hierarchical softmax takes a pair of nodes, a target (input) node and

one of the context nodes, for updating the embedding vector in turn. In the case of

negative-sampling, the two nodes could be used for positive pairs to get the gradient.

To measure the Sensitivity for embedding models, we outline an initial gradient-

based measure, which we call GRAPH-GD. Again, W ∈ R|V |×k are learned latent

representations, and ~wi ∈ Rk is the embedding vector of vi ∈ V from W .

GRAPH-GD(vb,W,N ,L) = MEAN

{∣∣∣∣∂L(vb, vi)

∂ ~wi

∣∣∣∣ , vi ∈ N (vb)

}
Here N returns neighbors given a node and L is the loss function of the correspond-

ing embedding models, which takes a target (input) node and a context node, vb, vi,

respectively. ∂L/∂ ~wi is a sensitivity function to return the magnitude of its gradient

w.r.t. any ~wi ∈ W . For example, the loss function of hiearchical softmax-based em-

bedding methods (e.g., DeepWalk and Struc2Vec) has Lhs(vb, vi) = −log f(v = vi|vb),

where f is a learned function from the embedding model to have the likelihood of

vi given vb to appear. In the negative sampling-based embedding methods such

as LINE and Node2Vec, their loss functions can be generalized as Lns(vb, vi) =

1While learning node embeddings such as DeekWalk and LINE, the magnitude of gradient updates
do not converge to very small values. This is due to the fact that while relative positions of nodes
converge, absolute locations of nodes in the embedding space never converge in practice because of
the pair-wise update nature of hierarchical softmax or negative sampling [58,106].
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−log σ(~wTi ~wb) −
∑

vz∈Vneg
log σ(−~wTz ~wb), where Vneg is a sampled negative node-

set. This means that our GRAPH-GD can be applied to most hiearchical softmax

and negative sampling-based embedding methods. The magnitudes are aggregated

over neighbors of vb, and, in this work, we uniformly sample a fixed-size (ψ) set of

neighbors for vb, instead of using full neighborhood sets for N (vb) above. The the-

oretical relationship between GRAPH-GD and bridge nodes is described in Section

5.4.1.

While GRAPH-GD enables finding bridge nodes by averaging the magnitudes of

gradient updates with a potential bridge node vb and one of neighboring (context)

nodes vi ∈ N (vb), it does not consider the relative impact of each neighboring node

vi to vb. In other words, by measuring how the neighboring nodes are differently

placed on the embedding space, compared to both the potential bridge node vb and

other nodes in the corresponding cluster, which is being bridged by vb, we can aggre-

gate them adaptively to find better bridgeness-based importance. From the intuition

above, we propose our gradient-based measure, GRAPH-wGD:

GRAPH-wGD(vb,W,N ,L)= MEAN

{
h(vb, vi)·

∣∣∣∣∂L(vb, vi)

∂ ~wi

∣∣∣∣ , vi ∈ N (vb)

}
,

where the weight function h(vb, vi) = 1 + cos(~wb − ~wi,−∂L(vb,vi)
∂ ~wi

) and cos returns the

cosine similarity value if the value is positive, otherwise 0. The theoretical analysis

in Section 5.4.2 shows how GRAPH-wGD improves GRAPH-GD.

5.3.1 Algorithm

Algorithm 2 shows our procedure to discoverm important nodes who have bridging

roles. Given the learned embedding model and other inputs, GRAPH-wGD is used

for computing node-level importance, and top m nodes are returned.
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5.3.2 Complexity Analysis

The time complexity of GRAPH-GD and GRAPH-wGD depends on the number

of vertices |V |, the computation of gradient, and the size (ψ) neighbor sampling set

N . The computation of gradient (as in [106, 107]) in the Skip-Gram architecture

corresponds to the size of the embedding vector’s dimension k, so the complexity is

O(kψ|V |). Because k and ψ are constants, the complexity can be reduced to O(|V |).

Note that we set ψ = 100 in experiments.

5.4 Theoretical Analysis

5.4.1 Relationship between GRAPH-GD and Bridge Nodes

Let vi be the context node of vb in Skip-Gram architecture, and ~wi is the em-

bedding of vi. ~̂wi be the expected embedding in the latent space to predict vi given

vb with the perfect probability. We assume that
∣∣∣∂L(vb,vi)

∂ ~wi

∣∣∣ = d(~wi, ~̂wi|~wb), where the

distance function d is to measure the distance between ~̂wi and ~wi given the source

node’s embedding ~wb for updating ~wi. The assumption is still applicable for both

hierarchical softmax and negative samplings-based embeddings. The distance is used

for deciding the error to update the embedding vector for ~wi. In order to show how

GRAPH-GD finds bridge nodes, we need to assume the learned embedding is “Good

Embedding” as follows:

Algorithm 2: Procedure to find Top m important nodes using GRAPH-
wGD

Input: A set of vertices V , Neighbor function N ;
Input: Embeddings W , Loss function L from a trained embedding model,

The number of top nodes to return m;
1 Init an array, I, which has |V | elements. ;
2 Set I [j]=GRAPH-wGD(vj,W,N ,L) for ∀vj ∈ V ;
3 Return indices who have top m highest scores in I ;
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Definition 7 (Good Embedding). Let W be an embedding learned from a graph G,

and a set of clusters C is given. We define W as a “good embedding” when it satisfies

the following condition, d(~wi, ~̂wi, |~wb) < d(~wk, ~̂wk, |~wb) where ~wi, ~wb, and ~wk are the

embeddings of vi, vb, and vk. Here vi, vb ∈ Cb and vk ∈ Cn(6=b).

Based on the definition above, the following shows that GRAPH-GD enables the

identification of bridge nodes vb, compared to any node vc who has the same degree

but less bridgeness. Notations (W , N , L) in GRAPH-GD do not change in this

analysis, so they are dropped below.

Lemma 3. Let G be a graph with a set of clusters C and associated embedding

W . Let vb ∈ Cb be a bridge node and vc ∈ Cb be a node with the same degree but

fewer inter-community edges (thus, lower bridgeness) than vb. Suppose that W is a

“good embedding” as in Definition 7. Then if GRAPH-GD considers all edges without

sampling, GRAPH-GD(vb) > GRAPH-GD(vc).

5.4.2 Comparison between GRAPH-wGD and GRAPH-GD

Def. 8, Def. 9, and Lemma 4 describe how GRAPH-wGD works. Then, Lemma 5,

Lemma 6, and Theorem 3 show that GRAPH-wGD can find nodes who have higher

bridgeness in a larger gap than GRAPH-GD. First, we introduce the definition of

support node.

Definition 8 (Support Node). Assume that in graph G with clusters C, vb is a bridge

node. Let B-Cluster(vb) be the set of clusters that are bridged by vb. Then let cluster

Ci ⊂ B-Cluster(vb) and let ~wb be the embedding of vb, ~wCi
be the centroid of nodes in

Ci in the embedding space, and ~wb be on a plane πb. The plane πb is perpendicular to

~wb− ~wCi
. If both ~wCi

and the embedding (~wi) of vi ∈ Ci are placed over πb, then vi is

a support node for giving vb the bridging role for Ci.

Figure 5.2a shows the illustration of support nodes. If both a subset of nodes in

Ci and Centroid(Ci) are over the plane πb, then nodes (vi) in the subset are support
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(a) Example with Support Nodes. (b) Gradient update in Lemma 4

Figure 5.2.: Illustration of Lemma 4. Best viewed in Color.

nodes, which are colored red. Note that ~wb is on πb and is perpendicular to ~wb− ~wCi
.

The support nodes provide more meaningful evidences to identify the bridge role of

~wb for Ci. than non-support nodes.

We expect that identifying support nodes is helpful to measure the bridgeness-

based importance because they are placed closer to both ~wb and ~wCi
on the embedding

space, so that they can provide more meaningful evidence about the relationship be-

tween vb and Ci, which is potentially helpful to enhance GRAPH-GD. Now we define

the weighting method in GRAPH-wGD. In the weighting method, (1) ~wi’s gradient

update with vb and vi and (2) their difference vector, ~wi− ~wb, on the embedding space

is used for deciding the weight values. The formal definition of directional weight is

given as:

Definition 9 (Directional Weight). Let vb be a bridge node and vi be one of context

nodes from vb. ~wb is the embedding of vb. ~wb and ~wi are the embeddings of vb and

vi, respectively. −∂L(vb,vi)
∂ ~wi

represents the gradient update of ~wi using vb and vi. We

define a directional weight function, h(vb, vi) = 1 + cos
(
~wb − ~wi,−∂L(vb,vi)

∂ ~wi

)
, where

cos returns the cosine similarity value if the value is positive, otherwise 0.

Based on Definition 9 above, the following Lemma shows that the directional

weight is able to find support nodes.
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Lemma 4. Let vb be a bridge node and B-Cluster(vb) is a set of clusters that are

bridged by vb. Assume there is a cluster Ci ⊂ B-Cluster(vb) where the nodes in Ci are

densely connected to each other. If vi is a support node for giving vb the bridging role

for Ci, then h(vb, vi) > 1. If vi is a not support node for Ci and vb, then h(vb, vi) = 1.

Using Definition 8, Definition 9, and Lemma 4 above, we can explain how the weight

of GRAPH-wGD works. Again, notations (W , N , L) in GRAPH-wGD are dropped

for clarity.

Lemma 5. Let vb be a bridge node and B-Cluster(vb) is a set of clusters that are

bridged by vb. Assume there is a cluster Ci ⊂ B-Cluster(vb) where the nodes in Ci are

densely connected each other. If vb is a bridge node and its context nodes include at

least one support node, then GRAPH-wGD(vb) > GRAPH-GD(vb).

We can also see how GRAPH-GD compares to GRAPH-wGD with nodes that have

no support node. Nodes with no support node mean that their context nodes are

placed in the other direction against the centroid of the cluster connected. Thus, the

node has no bridging role to the corresponding cluster.

Lemma 6. When context nodes of a node vc ∈ V do not include support nodes,

GRAPH-GD(vc) = GRAPH-wGD(vc).

The following theorem shows that the directional weight of GRAPH-wGD helps to

find nodes who have higher bridgeness in a larger gap than GRAPH-GD.

Theorem 3. Let G be a graph with a set of clusters C and associated embedding W .

We denote vb ∈ Cb be a bridge node and vc ∈ Cb be a node with the same degree

but fewer inter-community edges (thus, lower bridgeness) than vb. Assume that the

context nodes of vb include at least one support node, and the context nodes of vc

do not include a support node. If W is a “good embeddings” (Def. 7), nodes in Cb

are densely connected with each other, and GRAPH-wGD and GRAPH-GD consider

all edges without sampling, then GRAPH-wGD(vb) > GRAPH-GD(vb) > GRAPH-

GD(vc) = GRAPH-wGD(vc).
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From the Theorem above, now we can expect GRAPH-wGD to assign importance

scores that correlate more closely with bridgeness.

5.5 Experimental Settings

5.5.1 Data: Real-world Network Data

To evaluate our method, five real-world networks are used. First, Wikipedia

(Wiki) [108] is a co-occurrence network of words appearing in a Wikipedia dump,

which is composed of 4,777 nodes, 184,812 edges, and 40 different labels. Second,

BlogCatalog [109] is a network of social relationships of the bloggers listed on the

BlogCatalog website. The network has 10,312 nodes, 333,983 edges, and 39 different

labels. Third, Enron network data [110] is composed of 150 nodes and 1,853 edges

(after unifying 517,431 emails). For class labels, employees in management positions

are used and they are also used for evaluating our method. Fourth, NeurIPS dataset is

pre-processed from a Kaggle repository (benhamner/nips-papers), and co-authorship

edges are extracted from their papers between 1987 and 2017. It has 9,784 vertices

and 22,198 edges. NeurIPS is used for visualization and qualitative analysis. Lastly,

we also use the Karate Network data for visualization and rank correlation analysis.

5.5.2 Evaluation Measures

Spearman’s Rank Correlation The Spearman correlation coefficient is defined

as the Pearson correlation coefficient between the rank variables. This is to evaluate

how similar the ranking of nodes by the importance scores of other methods is to the

ranking by bridgeness.

Prediction Change (PC) This measure is to see how much predicted probability

is changed in node classification tasks after perturbing edges of important nodes. For

this, top k% of important nodes from each method are perturbed as in Def. 5. The
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final score is computed by the sum of the absolute difference in probabilities of all

class labels after perturbing the graph and relearning the embedding. For this, Wiki,

BlogCatalog, and Enron, whose labels are available, are used.

Emergence (EM) When we perturb more important node(s), we expect the near-

est neighboring nodes of each node to be changed more. To measure how much the

new neighbors are newly appeared after perturbing edges of vj, we use the following

measure, Emergence as:

(New neighbors′) Emergence(vj) = 1−
|Nvj ∩Nperturb

vj
|

|Nvj |
,

where Nvj is the number of n-nearest neighbors of a node vj on the latent space.

Nperturb
vj

is the number of n-nearest neighbors of a node vj after perturbation. There-

fore, we can measure how much of the neighboring nodes are changed based on the

number of nodes shifted on the space. n is set to 5% of |V |. The perturb function

from Def. 5 is used.

5.5.3 Comparison Models to Determine Node Importance

Bridgeness We first learn node embedding and then capture nodes’ bridgeness

scores, which is based on found clusters on the learned embedding using spectral

clustering. Here bridgeness is defined as in Equation (5.1).

Degree Degree is leveraged to find important nodes.

Personalized PageRank (PPR) PPR is also used as a baseline method. We use

default parameters in NetworkX 2.1.

Greedy The sum of absolute changes in predictions over all labels from an input

graph G and a perturbed graph G′−vi by vi is leveraged for the importance score of

vi as in the Equation (2.6). The perturbation strategy still follows the same Def. 5.
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LIME LIME [14] measures how much nearby nodes are locally important to predict

the label of a node. We use the same learning parameters as in [14]. The final

importance for a node vi is from the averaged importance of the neighboring nodes,

{vc ∈ N (vi)}.

GNNExplainer We use the same objective function of GNNExplainer [17] to quan-

tify the importance of each node. Thus, the mutual information between predictions

from an input graph and a perturbed graph by vi is leveraged for the importance

score of vi. In this case, we assume that nodes who return low mutual information

value are more important.

5.5.4 Experimental Setting

For learning DeepWalk for Wiki and BlogCatalog, we set all the parameters as

in [7] with hierarchical softmax because they experimented with the same datasets.

For Enron and Karate networks, we set its random walk size as 5, the window size =

5, and the size of embedding vector = 8. For NeurIPS, all parameters are set as in

the Wiki dataset. For learning LINE, we also use the same sizes of embedding vector.

Learning rates for both embeddings are set as the original papers for all datasets. To

get the magnitude of gradient on LINE, the gradient of 1st-order proximity embedding

is exploited because they don’t have joint loss function. For the perturbation ratio,

we set α = 0.4. When we perturb edges, clusters are found from spectral clustering

on the learned embedding and the number of clusters is given from the number of

their class labels. For classification, a fully-connected neural network with 2 layers

is used for multi-label or single-label prediction. The hidden node size is defined as

two times of the class label size of each dataset. ADAM is chosen for optimization

and learning weight is 1e-5. Regarding node-set splits, top 40% of high-degree nodes

are chosen for a testing node-set (i.e., for rank correlation, PC, and EM). 10% of

nodes from the remaining node-set are randomly selected for training, and another

10% are leveraged for validation. We note that the training and validation node-sets
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Figure 5.3.: Top 5 Important Nodes in DeepWalk embedding by GRAPH-wGD.
Visualization is from t-SNE. Each color represents cluster ID after spectral clustering
except oranges.

are used only for Greedy, LIME, and GNNExplainer, and the results are averaged

after 3 different random training/validation node-set selections.

5.6 Experimental Results

5.6.1 Experiment 1: Visualization and Rank Correlation Analysis with Karate Graph

In this experiment, Zachary’s Karate club network is used to show how the rank-

ing from our methods, GRAPH-GD and GRAPH-wGD, work by measuring rank

correlation to the ranking from Bridgeness and visualizing top nodes for qualitative

analysis. Table 5.1 shows the result of Spearman’s rank correlation coefficient (ρ)

Table 5.1.: Spearman’s Rank Correlation in Karate, Wiki, and BlogCatalog. (Bold
means the best score.)

Karate Wiki BlogCatalog
DW LINE DW LINE DW LINE

Greedy 0.175 0.350 0.160 0.056 0.140 0.010
LIME 0.175 0.359 0.177 0.072 0.185 0.141

GNNExplainer 0.175 0.350 0.193 0.098 0.196 0.160
GRAPH-GD 0.634 0.607 0.197 0.158 0.268 0.141

GRAPH-wGD 0.683 0.634 0.392 0.458 0.368 0.334
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Table 5.2.: Prediction Change (PC) after the Perturbation of
Top 3, 5, 7% Nodes in Wiki. (Bold means the best score and Bridgeness provides
theoretical upper bounds.)

DeepWalk LINE
3% 5% 7% 3% 5% 7%

Bridgeness 2.03 1.65 1.84 37.23 38.38 38.88

Degree 1.00 1.46 1.41 25.28 25.55 27.44
PPR 1.12 1.04 1.17 26.45 26.86 28.00

Greedy 1.11 1.06 1.14 29.30 29.99 33.61
LIME 1.15 1.10 1.19 25.34 32.41 37.84

GNNExplainer 1.35 1.37 1.42 25.94 26.57 30.63
GRAPH-GD 1.45 1.09 1.25 24.31 26.94 34.06

GRAPH-wGD 1.98 1.59 1.68 34.25 35.88 43.14

Table 5.3.: Prediction Change (PC) after the Perturbation of Top 3, 5, 7% Nodes in
BlogCatalog. (Bold means the best score and Bridgeness provides theoretical upper

bounds.)

DeepWalk LINE
3% 5% 7% 3% 5% 7%

Bridgeness 2.73 2.76 2.75 41.29 40.92 38.95

Degree 2.32 2.15 2.29 37.54 36.12 38.09
PPR 2.30 2.03 2.27 38.72 39.10 37.62

Greedy 2.15 2.27 2.19 34.87 38.19 36.52
LIME 2.20 1.98 2.33 37.07 38.14 38.65

GNNExplainer 2.48 2.54 2.71 37.50 37.73 38.38
GRAPH-GD 2.60 2.34 2.77 37.42 37.78 37.17

GRAPH-wGD 2.57 2.74 2.76 40.73 40.98 39.48

using two node embeddings, DeepWalk (DW) and LINE. In both embeddings, our

GRAPH-wGD shows the best performance in finding bridge nodes, and p-values for

our methods were less than 0.05.

In Figure 5.3, we can see the visualization of the Karate network with the top

5 important nodes that are found by GRAPH-wGD. Node 0, 2, 33, 18, and 20 are

chosen as important nodes by GRAPH-wGD, and they are serving as bridge nodes

on the learned latent space. The result also corresponds to bridge nodes found in

other studies (e.g., [97]).
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Table 5.4.: Emergence (EM) after the Perturbation of
Top 3, 5, 7% Nodes in Wiki. (Bold means the best score and Bridgeness provides
theoretical upper bounds.)

DeepWalk LINE
3% 5% 7% 3% 5% 7%

Bridgeness 0.706 0.705 0.707 0.644 0.659 0.665

Degree 0.260 0.295 0.290 0.375 0.399 0.411
PPR 0.284 0.284 0.216 0.381 0.405 0.421

Greedy 0.544 0.572 0.513 0.549 0.574 0.591
LIME 0.514 0.527 0.584 0.539 0.582 0.611

GNNExplainer 0.680 0.679 0.674 0.548 0.563 0.572
GRAPH-GD 0.682 0.689 0.691 0.523 0.534 0.555

GRAPH-wGD 0.689 0.689 0.697 0.564 0.590 0.630

Table 5.5.: Emergence (EM) after the Perturbation of Top 3, 5, 7% Nodes in BlogCat-
alog. (Bold means the best score and Bridgeness provides theoretical upper bounds.)

DeepWalk LINE
3% 5% 7% 3% 5% 7%

Bridgeness 0.682 0.642 0.668 0.624 0.628 0.632

Degree 0.422 0.475 0.504 0.346 0.351 0.359
PPR 0.328 0.350 0.383 0.343 0.349 0.357

Greedy 0.508 0.509 0.527 0.498 0.510 0.518
LIME 0.463 0.510 0.521 0.484 0.510 0.523

GNNExplainer 0.443 0.521 0.546 0.497 0.509 0.517
GRAPH-GD 0.639 0.654 0.659 0.487 0.488 0.502

GRAPH-wGD 0.650 0.651 0.661 0.510 0.518 0.541

5.6.2 Experiment 2: Correlation Analysis and Measurement of the Impact of Found

Important Nodes in Wiki and BlogCatalog

In this experiment, we evaluate the ranking from our methods by getting the rank

correlation to Bridgeness-based ranking and verify the impact of found important

nodes w.r.t. changes in label prediction and neighboring nodes.

Table 5.1 shows Spearman’s Rank Correlation to Bridge Nodes. In the experi-

ments, our GRAPH-wGD outperforms other methods. In particular, GRAPH-GD

works better than other alternatives in rank correlation, but our GRAPH-wGD
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showed better performance than the GRAPH-GD. This indicates that capturing sup-

port nodes helps to find bridge nodes. Other prediction probability-based methods

such as Greedy and GNNExplainer are not much correlated to Bridgeness-based

ranking. GNNExplainer shows better correlations than other baselines, but the cor-

relations are still smaller than GRAPH-wGD’s result.

Table 5.2 and 5.3 show the changes in prediction after the graph is perturbed and

the embedding is relearned. In the tables, 3, 5, and 7% of important nodes, which

are found from each method, are perturbed to see the effect w.r.t. the change of

prediction. Comparing to LINE, DeepWalk shows relatively smaller changes because

the two datasets are relatively dense and the characteristics of random walks diminish

the effect of perturbation. Here we note that Bridgeness provides empirical upper

bounds to all methods as we expected from Theorem 2. However, we note that it

is computationally intensive to calculate Bridgeness, and the top nodes identified by

GRAPH-wGD more efficiently perform similarly.

In Table 5.4 and 5.5, emergence (EM) is reported to show how many new neighbors

appear in a node’s neighborhood after perturbing each method’s 3, 5, and 7 % top

nodes and relearning the embedding. Again, GRAPH-wGD shows more changes in

Emergence than other alternatives.

5.6.3 Experiment 3: Finding Important Nodes and Measuring the Impact of Found

Nodes in Enron

In this experiment, we explore how the discovered important nodes are associated

with organizational positions. By leveraging the known position information of each

person in the Enron dataset, we first measure how much of the importance score

from each method is effective to find people who are in management positions. For

this, we regard management people as important and find the precision@k% from the

importance ranking for each method. We note that GRAPH-wGD shows high rank

correlations (>0.6). In Table 5.6, the precision@k(=20% nodes) results are reported.
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The result shows that our GRAPH-wGD is also effective to find management people.

This indicates that the management roles are also highly correlated to bridging roles

in communication.

Table 5.7 shows the top important people from Degree and GRAPH-wGD. While

Degree finds globally important people such as the CEO and Chairman, GRAPH-

wGD finds more locally important nodes like people who worked as VP and managers.

This also implies that identifying bridging people helps to understand the data and

the learned embedding.

For Enron dataset, we also investigate the impact of found nodes. As in the Table

5.8, GRAPH-wGD is able to find more prediction changes and emergences when their

top nodes are perturbed. In particular, the emergence in Deepwalk embedding shows

significantly better results than other alternatives.

5.6.4 Experiment 4: Visualization with NeurIPS

On the NeurIPS data, we report the top eight discovered important people in

Table 5.9. For GRAPH-wGD with DeepWalk, it finds many interdisciplinary re-

searchers such as R. Rosales (Machine Learning Scientist who works on Text Mining,

Computer Vision, Graphics, and Medicine) and I. Guyon (Machine learning consul-

tant who works on machine learning theory, handwriting recognition, and biomedical

research for genomics, proteomics, cancer). The result is also visualized in Figure 5.4.

The visualization is from t-SNE algorithm with the default parameters in scikit-learn.

Table 5.6.: Precision@20% in finding management nodes in Enron. (Bold means the
best score.)

DeepWalk LINE
Greedy 0.25 0.30
LIME 0.40 0.45

GNNExplainer 0.45 0.30
GRAPH-GD 0.45 0.45

GRAPH-wGD 0.60 0.75
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Table 5.7.: Top 5 nodes in Enron

Top 5 Nodes

Degree
L. Taylor, S. Beck, J. Lavorato (CEO),
K. Lay (Chairman), L. Kitchen (President)

GRAPH-wGD
S. Scott, F. Sturm (VP), J. Williams (VP),
K. Lay (Chairman), P. Allen (Manager)

Table 5.8.: Prediction Change (PC) and Emergence (EM) in Enron. (Bold means
the best score and Bridgeness provides theoretical upper bounds.)

PC EM
DeepWalk LINE DeepWalk LINE
30% 40% 30% 40% 30% 40% 30% 40%

Bridgeness 7.14 7.34 0.13 0.12 0.574 0.578 0.085 0.081

Degree 6.35 6.49 0.10 0.10 0.359 0.361 0.002 0.002
PPR 5.75 5.73 0.10 0.10 0.369 0.370 0.005 0.004

Greedy 3.13 3.96 0.08 0.08 0.420 0.424 0.052 0.050
LIME 0.51 0.45 0.08 0.08 0.061 0.061 0.053 0.053

GNNExplainer 3.39 3.43 0.10 0.10 0.440 0.439 0.053 0.056
GRAPH-GD 4.71 4.68 0.10 0.09 0.536 0.536 0.083 0.079

GRAPH-wGD 6.75 6.72 0.11 0.10 0.526 0.526 0.085 0.086

Table 5.9.: Top 8 nodes in NeurIPS

Top 8 Nodes

Degree
G. Hinton, Y. Bengio, M. Jordan, Z. Ghahramani,
K. Muller, B. Scholkop, A. Ng, R. Salakhutdinov

GRAPH-wGD
R. Rosales , I. Guyon , M. Figueired, C. Scott,
M. Zibulevsky, A. McCallum, E. Xing, R. Vogelstein

Colors in the Figure represent Cluster IDs by K-Means on the learned embeddings.

Names of the top 8 people are placed in their positions, and they are located near

the center or boundaries of clusters. This indicates that the people are likely to have

bridging roles across research communities. Researchers such as A. McCallum and

E. Xing are also identified in the central positions because they have contributed to

the foundation of ML/NLP while collaborating in many application domains. Sur-

prisingly, the top Degree nodes do not overlap with the top nodes of GRAPH-wGD.
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This indicates that while they may be the most prolific researchers, they have less

global impact on the learned embedding, particularly if they publish only with a small

number of collaborators in the same area. Figure 5.5 also shows the Top 8 people who

Robert J. Marks II

I. Guyon

Michael Zibulevsky

Romer Rosales
Mario Figueiredo

Clayton Scott
Eric P. Xing

R. J. Vogelstein

Andrew McCallum

Figure 5.4.: Visualization of Top 8 important authors, which are found by GRAPH-
wGD for the NeurIPS dataset.

G. Hinton
Y. Bengio

M. Jordan

Z. Ghahramani

K. Muller

B. Schottky

A. Ng

R. Salakhutdinov

Figure 5.5.: Visualization of Top 8 important authors, which are found by Degree for
the NeurIPS dataset.
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Table 5.10.: Ablation study: Spearman’s rank correlation

Wiki BlogCatalog
DeepWalk LINE DeepWalk LINE

GRAPH-GD 0.197 0.158 0.268 0.141

GRAPH-wGD (+ and -) 0.292 0.122 0.195 0.181
GRAPH-wGD (abs) 0.189 0.197 0.122 0.225

GRAPH-wGD 0.392 0.458 0.368 0.334

Table 5.11.: Prediction Change (PC) and Emergence (EM) after the perturbation of
Top 3% nodes in Wiki and BlogCatalog.

Wiki BlogCatalog
PC EM PC EM

DW LINE DW LINE DW LINE DW LINE

GRAPH-GD 1.45 24.31 0.682 0.523 2.60 37.42 0.523 0.487

GRAPH-wGD (+ and -) 1.36 30.83 0.685 0.561 2.35 37.98 0.561 0.508
GRAPH-wGD (abs) 1.08 32.79 0.665 0.525 1.97 35.69 0.525 0.511

GRAPH-wGD 1.98 34.25 0.689 0.564 2.57 40.73 0.564 0.510

have the highest degrees by using the same t-SNE visualization. Different from the

results of GRAPH-wGD, many of them are located toward the center of local clusters

rather than the boundary. For example, G. Hinton, M.Jordan, and Y. Bengio are

located in the central positions at purple, red, and orange clusters, respectively. This

implies that they take more community-core-like roles in the learned embedding.

5.7 Ablation Study and Runtime Analysis

5.7.1 Ablation Study

In our proposing GRAPH-wGD, we might have used other weighting functions by

changing our assumptions w.r.t support nodes. In this section, we compare different

variants of GRAPH-wGD on Wiki and BlogCatalog datasets. Here, the variants

include modification to the cosine similarity function in GRAPH-wGD:
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GRAPH-wGD (+ and -): h(vb, vi) = 1 + cos

(
~wb − ~wi,−

∂L(vb, vi)

∂ ~wi

)
,

GRAPH-wGD (abs): h(vb, vi) = 1 +

∣∣∣∣cos(~wb − ~wi,−
∂L(vb, vi)

∂ ~wi

)∣∣∣∣ .
GRAPH-wGD (+ and -) let negative angular distance offset the importance when

aggregating scores, and GRAPH-wGD (abs) denotes that negative and positive sup-

port nodes are handled in the same way. They are compared to our proposed weight-

ing function in Section 5.3.1. We note that our function leverages positive support

nodes only. Table 5.10 and 5.11 show results on Spearman’s Rank Correlation, Pre-

diction Change (PC), and Emergence (EM). In the results, GRAPH-wGD (+ only),

our proposed method, shows better results in most settings. This implies that support

nodes help to identify bridging nodes and have more impact on changes in prediction

and local neighbors. Moreover, Table 5.10 shows that our choice of GRAPH-wGD is

better than GRAPH-GD and all other variants in Spearman’s Rank Correlation. The

observation also indicates that identifying support nodes improves the identification

of bridge nodes.

5.7.2 Runtime Comparison

In Table 5.12, we report the runtime of our method on Wiki and BlogCatalog

datasets. Our method was implemented in Python and was executed on an Intel

Table 5.12.: Elapsed time in Wiki and BlogCatalog

Wiki BlogCatalog
DeepWalk LINE DeepWalk LINE

Bridgeness 748.41 sec 748.41 sec 10,039.59 sec 10,039.59 sec
Greedy 214.32 hours 28.72 hours 902.24 hours 68.57 hours
LIME 156.69 days 12.65 days 582.56 days 381.03 days

GNNExplainer 192.20 hours 29.78 hours 850.03 hours 70.49 hours
GRAPH-wGD 23.30 sec 67.41 sec 141.93 sec 233.44 sec
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Xeon Gold 6126 CPU@2.60GHz server with 192GB RAM. The reported running

time is measured by assuming that the code is run by a single process. We note

that all the methods are executed by multiple processes and merged in the actual

computations. As in Table 5.12, our algorithm scales greatly, compared to other al-

ternatives. In particular, Greedy, LIME, and GNNExplainer need to re-learn node

embedding every time they need perturbation. Thus, in the case of DeepWalk with

the Skip-Gram Architecture, which takes O(|V |log|V |), and Greedy and GNNEx-

plainer take O(|V |2log|V |) due to the node-wise perturbations. Similarly, LIME takes

O(|V |3log|V |) to consider additional local neighbor perturbations. For Bridgeness, we

run both embedding and eigenvector decomposition and it takes o(|V |2.367). There-

fore, it takes a large amount of time. Meanwhile, our method does not need to learn

the graph again and takes only O(|V |).

5.8 Concluding Remarks

We have demonstrated the theoretical relationship between node embeddings in-

cluding DeepWalk and LINE and bridgeness and have proposed a new algorithm,

GRAPH-wGD, for efficiently measuring bridgeness-based importance to generate ex-

planations to learned embeddings. In particular, our GRAPH-wGD shows superior

performance than other alternatives on 5 different datasets.
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6 CONCLUSION

While previous work in semi-supervised learning provides many promising results, it

is still limited in leveraging complex interaction patterns and local inferences over

high-order paths. In this dissertation, we first proposed a graph neural network ar-

chitecture to leverage local inferences with labels over high-order paths. While label

propagation has been widely used to improve the performance for semi-supervised

learning, existing deep neural networks have not much explored the property. In

this work, we described REGNN, a graph neural network architecture that exploits

label propagation in a message-passing framework. REGNN not only learns from

high-order path information but also adaptively aggregates the hidden representation

of neighboring nodes using role equivalence. In our experimental results, REGNN

consistently showed improved performance for semi-supervised node classification in

graphs without node attributes. Specifically, REGNN produces significant gains com-

pared to the best competitor (GCN)—reducing classification error up to 26% and an

average of 5.4% for all label proportions/datasets.

The second contribution is a neural network architecture (TSGNet) which can

learn jointly from static and temporal neighborhood structure. The architecture

exploits the interactions among local neighbors over time, by learning the tempo-

ral evolution of a low-dimensional embedding from a GCN, and models its static

neighborhood with a densely connected NN. TSGNet is able to improve classification

performance by utilizing both patterns in social interactions over time and the set of

nodes in the aggregate relational neighborhood. Experimental results show that TS-

GNet reduces classification error up to 24% across three real-world social interaction

datasets that are composed on temporal graph snapshots, compared to state-of-the-

art models. Moreover, compared to the best competitor (GraphSAGE), TSGNet with

or w/o attributes produces an average reduction in classification error of 10%.
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Finally, in the third component of this dissertation, the theoretical relationship

between node embeddings including DeepWalk and LINE and bridgeness is explored,

and we have proposed a new algorithm, GRAPH-wGD, for efficiently measuring brid-

geness-based importance to generate explanations for learned embeddings. This al-

lows us to have a better understanding of representation learning by providing globally

important nodes.

6.1 Theoretical and Empirical Contribution

We summarize the theoretical and empirical contributions of this dissertation

below:

• Models and Frameworks

– Development of REGNN — a semi-supervised node classification method

for supporting collective inference and leveraging higher-order paths to

consider more distant neighbors in static graphs

– Development of TSGNET — a semi-supervised node classification method

to learn over temporal interaction graphs

– Development of perturbation-based importance scoring framework to gen-

erate explanations of learned node embeddings

• Algorithmic Contributions

– Development of importance sampling-based mini-batch learning methods

for REGNN and TSGNET

– Development of role equivalence-based attention mechanism for REGNN

– Development of GRAPH-wGD measure to efficiently find global impor-

tance of nodes on the learned embedding.

• Theoretical Contributions



89

– Theoretical study about the relationship between GCN and Label propa-

gation when the same observed label input is given

– Investigation about the theoretical connection between node importance

with respect to the impact on node embedding and bridge scores of nodes

in graphs

– Analysis on the effect of the weighting function and the gradient magnitude

in GRAPH-wGD measure with respect to approximating bridgeness scores

of nodes

• Evaluation

– Development of several evaluation criteria to explore the utility of the

explanations found for learned node embeddings

6.2 Future Work

There are several directions to pursue after the completion of this dissertation.

First, we can improve the label propagation in GNNs using different types of walks.

For example, labels can be propagated by leveraging newly generated edges that are

found from structural similarities or role similarity in latent space. This information

provides complementary information with existing direct edges, which can be used to

model more complex interactions.

Second, we can explore more theoretical properties on TSGNet. TSGNet currently

learns both static and temporal aspects at the same time, and it is still not clear which

temporal aspects are actually learned or which patterns are being considered more

favorably. In addition, other pre-training strategies (e.g., [111]) can be studied to

overcome temporal sparsity across temporal graphs. Because GNNs often suffer from

less amount of labeled data and fewer domain-specific features, the lack of temporal

interactions may bother to learn TSGNet. Moreover, the effect of randomization

should be studied more. TSGNet shows similar performance to the same model with
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randomized graph inputs w.r.t. time window IDs. Therefore, we can explore the

effect of the randomization more and attempt to learn temporal graphs by regarding

them as a set of sub-graphs using permutation-invariant functions [91].

Third, the findings of GRAPH-wGD give more ideas to enhance the explanations

of GRAPH-wGD and generate better explanations for node embeddings. One of the

future works is to generate explanations as a sub-graph to learned embeddings. While

finding single nodes provides valuable information in small graphs, sub-graphs may

help us to give more high-level information in large-scale networks. Moreover, local

explanations can be explored instead of global explanations. It will be potentially

useful to provide more ego-centric interpretation to a single node-based prediction

and decide whether the corresponding node embedding is the right choice or not.

Another direction is to leverage observed class labels to have a confidence interval of

each node embedding. Because there is no general statistical framework to interpret

representation learning, we can propose new statistical testing methods to provide a

confidence interval of each node embedding. Supporting other embeddings such as

GNNs and Hyperbolic embedding [112] is also one of promising directions. While

GNNexplaner [17] reported a preliminary result on GNNs, but it does not provide

theoretical explanations and has not evaluated using real-world datasets. From the

perspective of evaluation, human participation should also be encouraged to do a more

accurate analysis of the generated explanations. Depending on downstream tasks, the

global explanations can be evaluated from human participation to confirm whether

the explanations are relevant to the tasks. Lastly, the theoretical relationship be-

tween node embedding and bridgeness can be used for developing privacy-preserving

techniques. In particular, edge-based differential privacy computing can leverage this

finding to choose which nodes should be stored on edge and local servers.
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A APPENDIX

Lemma 1. Given a graph G, its set of clusters C = {C1, ..., Ck}, and an arbitrary

node vb ∈ V , let G′−vb = Perturb(G, vb) from Definition 5. If vb ∈ V has at least one

inter-cluster edge, then Nasso(Ci|G) ≤ Nasso(Ci|G′−vb) for ∀Ci ⊂ C.

Proof. By definition, Nasso(Ci|G) = assoc(Ci,Ci|G)
assoc(Ci,V |G)

. After the degree-preserving pertur-

bation, the denominator of assoc(Ci, V |G) is unchanged, and the numerator assoc(Ci, Ci|G),

which considers edges only among Ci, increases or stays the same. We note that the

increase happening to Ci includes vb or vq.

Lemma 2. Let V be the nodes in graph G with clusters C, and G′−vj = Perturb(G,

vj) using Def. 5 with the perturbation ratio α = 1.0 If we define

vb = arg max
vj∈V

(Nasso(C1, ..., Ck|G′−vj)−Nasso(C1, ..., Ck|G)),

then vb is the node with largest Bridgeness.

Proof. By definition, Nasso(Ci|G) = assoc(Ci,Ci|G)
assoc(Ci,V |G)

. As in the proof of Lemma 1, when

vi ∈ Ci has inter-cluster edges and the vi is perturbed, Nasso(Ci|G) increases. When

α = 1.0, the increase is from Σvq∈Ninter(vb,C)A[b, q], where Ninter(vb, C) is a set of

inter-cluster neighbors of vb. Therefore, vb who has the highest Bridgeness (thus, the

highest inter-cluster degrees) increase at most for Nasso(C1, ..., Ck|G′−vj).
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Theorem 1. Let V be a node set in G, and we have k clusters {C1, ..., Ck} in G.

G′−vj = Perturb(G, vj) using Def. 5 with the perturb ratio α = 1.0, and eigenvectors

U ∈ R|V |×k and U ′−vj ∈ R
|V |×k are given from G and G′−vj . Then, we have

arg max
vj∈V

Importance(vj|U,U ′−vj) = arg max
vj∈V

Bridgeness(vj|C,G).

Proof. We note that L = D − A and Lsym = D−1/2LD−1/2 and Asym = I − Lsym.

According to the Proposition 3 of [113],

k∑
m=1

UT
:,mLsymU:,m ≈

1

2

∑
vi,vj∈V

∥∥∥∥∥Ui,1:k√
di
− Uj,1:k√

dj

∥∥∥∥∥
2

. (A.1)

Using the proposition above, UT
:,mAsymU:,m could be decomposed as:

k∑
m=1

UT
:,mAsymU:,m =

k∑
m=1

UT
:,m(1− Lsym)U:,m

=
k∑

m=1

(UT
:,mU:,m − UT

:,mLsymU:,m) =
k∑

m=1

(I − UT
:,mLsymU:,m)

≈
k∑

m=1

(I)− 1

2

∑
vi,vj∈V

∥∥∥∥∥Ui,1:k√
di
− Uj,1:k√

dj

∥∥∥∥∥
2

by Equation (A.1)

=
k∑

m=1

(I)− 1

2
DNPD(U) ≈ Nasso(C1, ..., Ck|G).

The last line above is from the objective function of spectral clustering, which

finds U for maximizing
∑k

m=1 U
T
:,mAsymU:,m s.t. UTU = I, and it is equivalent to

maximizingNasso(C1, ..., Ck|G) [96]. Now we expect thatNasso and DNPD move in the

same way. From Lemma 2, the difference in Nasso under perturbation is maximized

by vb who has the highest bridgeness. Therefore, the difference in DNPD under

perturbation is also maximized by the same vb so it can have the highest importance.
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Theorem 2. Let V be a node set in G, and there are k clusters {C1, ..., Ck}. G′−vj =

Perturb(G, vj) using Def. 5 with α = 1.0, and eigenvectors Û ∈ R|V |×k and Û ′−vj ∈

R|V |×k from DeepWalk embeddings are given from G and G′−vj . Then,

arg max
vj∈V

Importance(vj|Û , Û ′−vj) = arg max
vj∈V

Bridgeness(vj|C,G).

Proof. In [78], the DeepWalk could be approximated by top-k largest singular val-

ues/vectors of M = vol(A)
T ·b S where S = (

∑T
r=1 P

r)D−1 and P = D−1A. Û is gotten

from M . We note that the quality of the factorization under perturbation is closely re-

lated to the change of eigenvectors [114]. In the factorization, S could be decomposed

as below:

S =
(∑T

r=1
P r
)
D−1 =

(∑T

r=1
(D−1A)r

)
D−1

= D−1/2
∑T

r=1
(D−1/2AD−1/2)rD−1/2

= D−1/2
∑T

r=1
(Asym)rD−1/2.

(A.2)

Meanwhile, we have Asym = UΛUT to get U and find clusters in spectral cluster-

ing. From this, we can get
∑T

r=1(Asym)r = U(
∑T

r=1 Λr)UT . Because the additional

normalization in S by D−1/2 is not likely to change the final cluster IDs much, we have∑k
m=1 Û

T
:,mSÛ:,m ≈ Nasso(C1, ..., Ck|G), as in Theorem 1. Therefore, the difference in

its DNPD under perturbation is also maximized by vb who has the highest bridgeness

and the perturbation from vb has the largest difference in DNPD. Thus, vb has the

highest Importance value in the eigenvector of DeepWalk.

Lemma 3. Let G be a graph with a set of clusters C and associated embedding

W . Let vb ∈ Cb be a bridge node and vc ∈ Cb be a node with the same degree

but fewer inter-community edges (thus, lower bridgeness) than vb. Suppose that W

is a “good embedding” as in Definition 7. Then if GRAPH-GD considers all edges

without sampling, GRAPH-GD(vb) > GRAPH-GD(vc).

Proof. We can decompose GRAPH-GD(vb) using cluster memberships as below:
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GRAPH-GD(vb) = MEAN({d(~wi, ~̂wi|~wb), vi ∈ N (vb))})

= MEAN({d(~vi, ~̂wi|~wb), vi ∈ N (vb) ∩ Cb}+

{d(~wk, ~̂wk|~wb), vk ∈ N (vb) ∩ C/Cb})

Meanwhile, GRAPH-GD(vc) is also described as:

GRAPH-GD(vc) = MEAN({d(~wi, ~̂wi|~wc), vi ∈ N (vc))})

= MEAN({d(~wi, ~̂wi|~wc), vi ∈ N (vc) ∩ Cb}+

{d(~wk, ~̂wk|~wc), vk ∈ N (vc) ∩ C/Cb})

In equations above, |{N (vb) ∩ C/Cb}| > |{N (vc) ∩ C/Cb}| by the assumption about

inter-community edges. Using the definition 7 and the same degree constraint for vb

and vc, we can see that GRAPH-GD(vb)−GRAPH-GD(vc) > 0.

Lemma 4. Let vb be a bridge node and B-Cluster(vb) is a set of clusters that are

bridged by vb. Assume there is a cluster Ci ⊂ B-Cluster(vb) where the nodes in Ci are

densely connected to each other. If vi is a support node for giving vb the bridging role

for Ci, then h(vb, vi) > 1. If vi is a not support node for Ci and vb, then h(vb, vi) = 1.

Proof. As in Figure 5.2b, there exist a sum of gradients generated by pairs, {(vi, vj)|vj ∈

Ci, vj ∈ N (vi)}, and the gradient update by them becomes ~wCi
− ~wi under the as-

sumption of the dense edges among nodes in Ci. In other words, the update makes ~wi

move to the centroid of the cluster and we call it as ~p. Meanwhile, when the gradient

generated only by a pair (vi, vb) is ~q, the final gradient update becomes ~q − ~p, which

means that the gradient update from (vi, vb) is subtracted by the gradients from all

pairs from vi. Thus, the final update ~q − ~p = ~wb − ~wCi
. If vi is a support node,

then the angular distance between ~wb− ~wi and ~wb− ~wCi
is always between −90◦ and

90◦. As a result, its cosine distance is larger than 0, and h(vb, vi) > 1. Similarity,

If vi is not a support node for Ci and vb, its cosine distance is negative. Therefore,

h(vb, vi) = 1.
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Lemma 5. Let vb be a bridge node and B-Cluster(vb) is a set of clusters that are

bridged by vb. Assume there is a cluster Ci ⊂ B-Cluster(vb) where the nodes in Ci

are densely connected each other. If vb is a bridge node and its context nodes include

at least one support node, then GRAPH-wGD(vb) > GRAPH-GD(vb).

Proof.

GRAPH-wGD(vb)−GRAPH-GD(vb)

= MEAN

{∣∣∣∣∂L(vb, vi)

∂ ~wi

∣∣∣∣ · (h(vb, vi)− 1), vi ∈ N (vb)

}
> 0 from Lemma 4.

Therefore, GRAPH-wGD(vb) > GRAPH-GD(vb).

Lemma 6. When context nodes of a node vc ∈ V do not include support nodes,

GRAPH-GD(vc) = GRAPH-wGD(vc).

Proof. As in Lemma 4, if there is no support node in vc’s context node set, {vi ∈

Context(vc)}, then h(vc, vi) = 1 for any vi. Therefore, GRAPH-GD(vc) = GRAPH-

wGD(vc).

Theorem 3. Let G be a graph with a set of clusters C and associated embedding

W . We denote vb ∈ Cb be a bridge node and vc ∈ Cb be a node with the same

degree but fewer inter-community edges (thus, lower bridgeness) than vb. Assume

that the context nodes of vb include at least one support node, and the context nodes

of vc do not include a support node. If W is a “good embeddings” (Def. 7), nodes

in Cb are densely connected with each other, and GRAPH-wGD and GRAPH-GD

consider all edges without sampling, then GRAPH-wGD(vb) > GRAPH-GD(vb) >

GRAPH-GD(vc) = GRAPH-wGD(vc).

Proof. Using Lemma 5 and Lemma 3, we can see that GRAPH-wGD(vb) > GRAPH-

GD(vb) and GRAPH-GD(vb) > GRAPH-GD(vc), respectively. In addition, Lemma 6

shows that GRAPH-wGD(vc) = GRAPH-wGD(vc) under the assumption that context
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nodes of vc do not include support nodes. As a result, we can prove that GRAPH-

wGD(vb) > GRAPH-GD(vb) > GRAPH-GD(vc) = GRAPH-wGD(vc).
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