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ABSTRACT

Mathison, Chase O. Ph.D., Purdue University, August 2020. Microlocal Analysis and
Applications to Medical Imaging. Major Professor: Plamen Stefanov.

This thesis is a collection of the three projects I have worked on at Purdue. The

first is a paper on thermoacoustic tomography involving circular integrating detectors

that was published in Inverse Problems and Imaging [21]. Results from this paper

include demonstrating that the measurement operators involved are Fourier integral

operators, as well as proving microlocal uniqueness in certain cases, and also stability.

The second paper, submitted to the Journal of Inverse and Ill-Posed Problems, is much

more of an application of sampling theory in [27] to the specific case of thermoacoustic

tomography. Results from this paper include demonstrating resolution limits imposed

by sampling rates, and showing that aliasing artifacts appear in predictable locations

in an image when the measurement operator is under sampled in either the time

variable or space variables. We also show an application of a basic anti aliasing scheme

based on averaging of data. The last project moves slightly away from microlocal

analysis and considers the uniqueness in medical imaging of the restricted Radon

transform in even dimensions. This is the classical interior problem, and we show a

characterization of the range of the Radon transform, and from this are able to obtain

a characterization of the kernel of the restricted Radon transform. We include figures

throughout to illustrate results.
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1. Introduction

1.1 An Overview of Microlocal Analysis

Classical analysis, or local analysis, is the study of functions defined in a neighbor-

hood of a point x ∈ Rn. The usual tools of classical analysis are in general ineffective

when studying singularities of a function. Microlocal analysis attempts to extend the

ideas of classical analysis to gain more information about a function in the phase

space. This is accomplished by first looking at the Fourier transform of a function,

and the properties of this transform. In this way, we can learn about singularities of a

function near a point (the ”local” of microlocal analysis) and near a certain direction

(the ”micro” of microlocal analysis). We present some of the basic ideas of microlocal

analysis which largely follows Chapter I of [34].

1.1.1 The Fourier Transform

The Fourier transform is defined for functions in L1(Rn) as follows

F(f(·))(ξ) :=

∫
Rn
e−ix·ξf(x) dx. (1.1)

The inverse Fourier transform is defined in a similar way for functions in L1(Rn)

F−1(g(·))(x) :=
1

(2π)n

∫
Rn
eix·ξg(ξ) dξ. (1.2)

If a function has more regularity than simply being in the class L1(Rn), then this

will manifest in decay at infinity of Fourier transform of the function. The converse

is also true, and is the basis for microlocalization and studying functions and their

singularities in the phase space. As an example of a function with certain smoothness
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exhibiting decay in its Fourier transform, if f ∈ L1(R) ∩ C1(R) and f ′ ∈ L1(R) then

we have (formally, using integration by parts)

F(f)(ξ) =

∫
R
e−ixξf(x) dx

=− −1

iξ

∫
R
e−ixξf ′(x) dx,

from which we see that |F(f)(ξ)| = O(|ξ|−1). For convenience, we will denote f̂(ξ) :=

F(f)(ξ). Continuing this process, we can see that if f ∈ L1(R) ∩ Ck(R) and f (j) ∈

L1(R) for each 0 ≤ j ≤ k, then

|F(f)(ξ)| = O(|ξ|k),

where we’ve used the traditional “Big-O” notation which has the following meaning:

f(x) = O(g(x)) means ∃r > 0 and M > 0 such that for x > r, we have |f(x)| ≤

M |g(x)|.

1.1.2 Solving a PDE

Microlocal analysis extends the usual ideas of classical analysis to the phase space,

or more generally, to the cotangent bundle of a smooth manifold. We begin with a

simple motivating example. Suppose we wish to solve the PDE in Rn:

(1−∆)u = f.

Here ∆u = Σn
i=1∂

2
xi
u. One method that might first come to mind is to try to solve

this PDE using the Fourier transform as so:

(1−∆)u = f =⇒ (1 + |ξ|2)û = f̂ ,

and from this we see that because 1 + |ξ|2 6= 0 for any ξ ∈ Rn, we may take as a

solution for u

u(x) =
1

(2π)n

∫
Rn
eix·ξ

f̂(ξ)

1 + |ξ|2
dξ.
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This was obtained by applying the inverse Fourier transform to û. In doing this,

we have implicitly assumed that u and f are members of the space of tempered

distributions S ′(Rn), which is the dual space to the Schwartz class of functions S(Rn)

which is defined as

S(Rn) = {g ∈ C∞(Rn) | sup
x

∣∣xα∂βg(x)
∣∣ <∞ for all multi indices α and β} (1.3)

1.1.3 Finding a Parametrix

In the previous example, we divided by a quantity that was always positive. If we

change the PDE slightly, then we’ll run into trouble when we try to solve it using the

Fourier transform. Let’s examine solutions to the PDE, this time in R2

−∆u = f

where again we will assume that u and f are in S(R2). Using the same method as

before, we arrive at the following “solution” for u,

u(x) =
1

(2π)2

∫
R2

eix·ξ
f̂(ξ)

|ξ|2
dξ.

But here we have an issue: 1/|ξ|2 is not integrable at the origin in R2. To remedy

this, we’ll find a solution that’s accurate up to a smooth error. Let χ(ξ) be a smooth

function with support contained in a small ball centered at the origin Bδ(0) of radius

δ > 0. Further, suppose χ ≡ 1 for |ξ| < δ/2. Then, because f̂ = χf̂ + (1− χ)f̂ , if we

set

v(x) =
1

(2π)2

∫
R2

eix·ξ
(1− χ(ξ))f̂(ξ)

|ξ|2
dξ,

then we can show that v solves not the PDE in question, but the PDE −∆v =

f −R(x), where R is a smooth function. To see this, note that

∂xiv(x) =
1

(2π)2

∫
R2

iξie
ix·ξ (1− χ(ξ))f̂(ξ)

|ξ|2
dξ

and from this it is clear that

∂2
xi
v(x) = − 1

(2π)2

∫
R2

ξ2
i e
ix·ξ (1− χ(ξ))f̂(ξ)

|ξ|2
dξ
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which gives

−∆v(x) =
1

(2π)2

∫
R2

|ξ|2eix·ξ (1− χ(ξ))f̂(ξ)

|ξ|2
dξ

=
1

(2π)2

∫
R2

eix·ξ(1− χ(ξ))f̂(ξ) dξ

=f −Rf(x)

where Rf(x) = 1
(2π)2

∫
R2 e

ix·ξχ(ξ)f̂(ξ) dξ. This is the inverse Fourier transform of a

compactly supported function (so also, a function that decays at infinity faster than

any polynomial in ξ), which means that Rf(x) ∈ C∞(R2). But why do we care

that v(x) solves the PDE −∆v = f − Rf(x) when we were interested in the PDE

−∆u = f? If −∆v = f + Rf and Rf is smooth, then we know that f and f + Rf

have the same singularities, for Rf cannot contribute to singularities of f + Rf , as

Rf ∈ C∞(R2). This makes this calculus very useful in situations such as medical

imaging, where we might not care about an exact reconstruction of the interior of a

patient, but we do care about the “singularities”, which might represent the presence

of a tumor, or the interface between tissues of different types.

Note that if we define the operator

Kf =
1

(2π)2

∫
R2

eix·ξ
(1− χ(ξ))f̂(ξ)

|ξ|2
dξ

then what we calculated above shows that −∆(Kf) = (I+R)f , where R is a smooth-

ing operator. In other words −∆ ◦ K = I + R, which is what we will take as the

definition of a right parametrix for the operator −∆, and in general, for any operator

P , we define a right parametrix K as an operator such that P ◦K = I +R where R

is a smoothing operator. We may define a left parametrix in a similar way.

We can generalize the above method to find a parametrix for a linear partial

differential operator

P (x,D) =
∑
|α|≤m

aα(x)Dα,

where aα ∈ C∞(Rn), provided the principal symbol

Pm(x, ξ) =
∑
|α|=m

aα(x)ξα,
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satisfies the condition

Pm(x, ξ) 6= 0 if ξ 6= 0.

A linear partial differential operator that satisfies this condition is called elliptic.

1.1.4 The calculus of pseudodifferential operators

The symbol class Sm1,0(Ω,RN)

In the above discussion, we were able to “invert” up to a smooth error some

operators of the form

Au(x) =
1

(2π)n

∫
Rn

eix·ξa(x, ξ)û(ξ) dξ

where X ⊂ Rn and · is the standard inner product on Rn. The symbol a(x, ξ) in the

above problems has some key defining features that we will mention now so that we

may deal with operators of the above form in a less ad hoc way.

Definition 1.1.1 (Symbol of order m) Let Ω ⊂ Rn. A smooth function a ∈

C∞(Ω × Rn) will be called a symbol of order m ∈ R if given a compact set K ⊂ Ω

and multiindexes α and β, there exists Cα,β,K > 0 such that

|∂αx∂
β
ξ a(x, ξ)| ≤ Cα,β,K(1 + |ξ|)m−|β|

for all (x, ξ) ∈ K × Rn. The space of symbols of order m will be denoted

Sm1,0(Ω,Rn)

or when it’s clear from context, simply

Sm(Ω)

We note that there is a more general symbol class Smρ,δ(Ω,Rn), with 0 < ρ ≤ 1 and 0 ≤

δ < 1, but the standard symbol class defined above will be sufficient for our purposes.

For later, we denote the spaces S−∞(Ω) = ∩m∈RSm(Ω) and S(Ω) = ∪m∈RSm(Ω).

Symbols are important because they allow us to define pseudodifferential operators

(ΨDOs for short)
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Definition 1.1.2 (Pseudodifferential Operator of order m) Let Ω ⊂ Rn be an

open set and let a(x, ξ) ∈ Sm1,0(Ω,Rn). Let u ∈ C∞0 (Ω), then the operator Op(a)

defined by

Op(a)u =
1

(2π)n

∫
Rn
eix·ξa(x, ξ)û(ξ) dξ (1.4)

is called a (standard) pseudodifferential operator of order m on Ω. We denote the

space of pseudodifferential operators of order m on Ω by Ψm(Ω).

A priori, because a(x, ξ) ∈ C∞(Ω × Rn), we know that Op(a) : C∞0 (Ω) → C∞(Ω).

Using standard functional analysis arguments and the transpose operator, it can be

shown that Op(a) may be extended to a continuous linear operator Op(a) : E ′(Ω)→

D′(Ω). And in fact, it can be shown (see Theorem 2.1 in [34]) that if a ∈ Sm(Ω),

then Op(a) : Hs
c (Ω) → Hs−m(Ω), for any real number s. We denote the spaces

Ψ−∞(Ω) = ∩m∈RΨm(Ω) and Ψ(Ω) = ∪m∈RΨm(Ω). It is a fact that if P ∈ Ψ−∞(Ω)

then P : E ′(Ω) → C∞(Ω), or in other words Ψ−∞(Ω) is the space of regularizing

operators. In the microlocal calculus, we consider two ΨDOs A and B equivalent if

A−B ∈ Ψ∞(Ω).

One question one might ask about the definition of a ΨDO is: is this even well

defined? In other words, does the integral in question even converge? This is clear

because by assuming u ∈ C∞0 (Rn), it is a fact [30] that given any N ∈ N, we have

lim
|ξ|→∞

|ξ|N |û(ξ)| = 0.

So then, for any N ∈ N, there is some RN > 0 such that for |ξ| > max{1, RN}, we

have |û(ξ)| ≤ |ξ|−N ≤ C
(1+|ξ|)N , where C ≥ 2N . We also know |a(x, ξ)| ≤ (1 + |ξ|)m.

So, taking N large enough so that m−N < −(n+1), we see that the integral defining

Op(a) is absolutely convergent.

Very often we will work with so called classical symbols. These are symbols written

as an asymptotic expansion

a(x, ξ) ∼
∞∑
j=0

am−j(x, ξ),
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where am−j(x, ξ) ∈ C∞(R2n) with am−j(x, ξ) positively homogeneous of order m− j

in the ξ variable for |ξ| > 1. The sum is asymptotic in the sense that

a(x, ξ)−
N∑
j=0

am−j(x, ξ) ∈ Sm−N−1(Ω),

for each N ≥ 0.

A more general way to define ΨDOs is to make use of the Fourier transform to

write

Op(a)(u(·))(x) =
1

(2π)n

∫
Rn×Ω

ei(x−y)·ξa(x, ξ)u(y) dy dξ

where we either require that the integration be performed as noted, or the integral

to be interpreted in the oscillatory sense. From this representation, it’s clear that

we could also allow a to depend on y as long as it satisfies a similar semi-norm

estimate as above, i.e., given compact K ⊂ Ω × Ω and α, β, γ multiindexes, there

exists C(α, β, γ,K) > 0 such that

|∂αx∂βy ∂
γ
ξ a(x, y, ξ)| ≤ C(1 + |ξ|)m−|γ|,

for all (x, y) ∈ K and ξ ∈ Rn. We then call those a(x, y, ξ) ∈ C∞(Ω × Ω × Rn)

satisfying these semi-norm estimates amplitudes of order m, but we will mostly only

be interested in symbols, and use amplitudes only when their use simplifies proofs.

By Theorem 4.1 in [34], there is no loss in using either symbols or amplitudes, as

symbols are simply amplitudes independent of y, and given an amplitude a(x, y, ξ),

there exists a symbol ã(x, ξ) such that Op(a) = Op(ã) + R where R is a smoothing

operator, which is considered negligible in the microlocal calculus.

Note that a differential operator is of the form

P (x,D) =
∑
|α|≤m

aα(x)Dα

and by virtue of the inverse Fourier transform, we may write (formally)

P (x,D)u(x) =
∑
|α|≤m

1

(2π)n
aα(x)Dα

x

(∫
Rn
eix·ξû(ξ) dξ

)
=
∑
|α|≤m

1

(2π)n

∫
Rn
eix·ξaα(x)ξαû(ξ) dξ.
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From this, it’s clear (as long as aα(x) ∈ C∞(Rn)) that P (x,D) is a pseudodifferential

operator of integer order m ≥ 0, and so ΨDOs are generalizations of (linear) differen-

tial operators. We also saw that the parametrix above for the operator −∆ is a ΨDO

of order −2, and the fact that the order of this parametrix is negative indicates that

it is not a partial differential operator.

1.1.5 Transposition, Composition of ΨDOs

Given inner product spaces X, Y , and a linear operator L : X → Y , the transpose

Lt : Y ∗ → X∗ is defined so that the following equation holds for all u ∈ X, v ∈ X∗,

〈Lu, v〉 = 〈u, Ltv〉.

In particular, if a ∈ Sm(Ω,Ω,Rn) and u, v ∈ C∞0 (Ω), then

〈Op(a)u, v〉 =
1

(2π)n

∫∫∫
R3n

ei(x−y)·ξa(x, y, ξ)u(y)v(x) dx dy dξ

=

∫∫∫
R3n

ei(y−x)·ξa(y, x, ξ)u(x)v(y) dy dx dξ

=

∫∫∫
R3n

ei(x−y)·(−ξ)a(y, x, ξ)v(y)u(x) dy dx dξ

=

∫∫∫
R3n

ei(x−y)·ξa(y, x,−ξ)v(y)u(x) dy dx dξ

=〈u,Op(a)tv〉

which shows that the transpose of a ΨDO of order m is again a ΨDO of order m. Its

amplitude is clearly given by b(x, y, ξ) = a(y, x,−ξ). In order to compose two ΨDOs,

we notice

A ◦Bu(x) =

∫
Rn
ei(x−y)·ξa(x, y, ξ)Bu(y) dy dξ

=

∫
ei(x−y)·ξa(x, y, ξ)

∫
ei(y−z)·ηb(y, z, η)u(z) dz dη dy dξ

=

∫∫
ei(x−y)·ξ+i(y−z)·ηa(x, y, ξ)b(y, z, η)u(z) dz dη dy dξ

From this we see immediately from the first line that in order for ABu to be defined,

we need for Bu to be compactly supported. This leads to the following definition:



9

Definition 1.1.3 The ΨDO B is called properly supported if Bu and Btu have com-

pact support.

Given a ΨDO P ∈ Ψm(Ω), it is always possible to find a properly supported ΨDO

P̃ ∈ Ψm(Ω) such that P − P̃ ∈ Ψ−∞(Ω), so we assume throughout that all ΨDO’s

are properly supported. We then wish to write ABu in the following form

ABu =

∫
ei(x−y)·ξc(x, y, ξ)u(y) dy dξ

with c an amplitude of order to be determined. We note that

ABu =

∫∫
ei(x−y)·ξ+i(y−z)·ηa(x, y, ξ)b(y, z, η)u(z) dz dη dy dξ

=

∫∫
ei(x−z)·ξ+i(z−y)·ηa(x, z, ξ)b(z, y, η)u(y) dy dη dz dξ

=

∫∫
ei(x−y)·ξk(x, y, ξ)u(y) dy dξ

where

k(x, y, ξ) =

∫∫
ei(y−z)·(ξ−η)a(x, z, ξ)b(z, y, η) dz dη.

In the second line we swapped y and z in the integral. The integration in the formula

for k(x, y, ξ) is understood as an oscillatory integral. By differentiating k(x, y, ξ) it’s

possible to show that k(x, y, ξ) ∈ Sm+m′(Ω,Ω) where a ∈ Sm(Ω,Ω) and b ∈ Sm′(Ω,Ω).

Composition allows us to define a parametrix for a ΨDO, and in turn elliptic

ΨDOs:

Definition 1.1.4 (Elliptic ΨDO) A ΨDO P ∈ Ψm(Ω) will be called elliptic if there

exists Q ∈ Ψ−m(Ω) such that PQ ≡ QP ≡ I mod Ψ−∞. The operator Q will be

called a parametrix of P .

There is an equivalent way to defined elliptic ΨDO’s in terms of symbols, similar to

the definition of an elliptic partial differential operator, but we’ll make use of the

definition above.
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1.1.6 The wave front set of a distribution

Definition 1.1.5 (Conic subset of Rn) A conic set Γ ⊂ Rn is any set that is

closed under dilations, i.e. for all λ > 0,

y ∈ Γ =⇒ λy ∈ Γ

Definition 1.1.6 (Wave front set of a distribution) Let u ∈ D′(Ω) with Ω ⊂

Rn. We say that the point (x0, ξ0) ∈ Ω × Rn is not in the wave front set of the

distribution u, denoted WF(u), if there exists a φ ∈ C∞0 (Ω) with φ(x0) = 1 and an

open cone Γ ⊂ Rn 3 ξ0 such that for every N there exists some CN > 0 with

|F(φu)(ξ)| ≤ CN(1 + |ξ|)−N

for all ξ ∈ Γ. Elements (x, ξ) ∈WF(u) are called singularities of u.

The wave front set of a distribution is a refinement of the singular support of a

distribution, which is the complement of the largest open set on which u is smooth.

One of the key features of ΨDOs is how they affect the wave front sets of distributions.

Lemma 1.1.1 Properly supported Pseudodifferential operators do not increase wave

front sets of distributions, i.e. if A ∈ Ψm(Ω) and u ∈ E ′(Ω), then

WF(Au) ⊂WF(u)

This is a generalization of the pseudolocal property for pseudodifferential operators,

which states that sing supp(Au) ⊂ sing supp(u), where sing supp(u) is the singular

support of u. If A is an elliptic ΨDO, then because we can find a parametrix B

such that AB − I ∈ Ψ−∞(Ω), this implies that WF (Au) = WF (u), and similarly

sing supp(Au) = sing supp(u).

All of these definitions and concepts have natural generalizations to pseudodiffer-

ential operators on smooth manifolds. We refer the reader to Chapter I, section 5

of [34] for more information.
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1.1.7 Geometrical optics

ΨDOs are useful when dealing with elliptic operators, but in some cases we wish

to deal with hyperbolic operators, such as the wave operator �c = ∂2
t −c2(x)∆, where

c ∈ C∞(Rn), c > 0 and c ≡ 1 outside of some compact set K ⊂ Rn. Note that when

c ≡ 1, it is easy to see that the initial value problem given by
�u(x, t) = 0 (x, t) ∈ Rn × R+,

u(x, t) |t=0= f x ∈ Rn,

∂tu(x, t) |t=0= g x ∈ Rn

has the solution (for appropriate f and g)

u(x, t) =
1

(2π)n

(∫
Rn
eix·ξ−t|ξ|

(
f̂ +

ĝ

i|ξ|

)
dξ +

∫
Rn
eix·ξ+t|ξ|

(
f̂ − ĝ

i|ξ|

)
dξ

)
.

It is from this representation for the solution to the constant speed wave equation

that we get the geometric optics ansatz [32]. Suppose we wish to solve the variable

speed wave equation: 
�cu(x, t) = 0 (x, t) ∈ Rn × R+,

u(x, t) |t=0= f x ∈ Rn,

∂tu(x, t) |t=0= g x ∈ Rn.

(1.5)

The geometric optics ansatz states that the solution to this PDE will be of the

following form:

u(x, t) =
∑
σ=±

1

(2π)n

∫
Rn
eiφσ(x,t,ξ)

(
a1,σ(x, t, ξ)f̂(ξ) + a2,σ(x, t, ξ)

ĝ(ξ)

|ξ|

)
dξ (1.6)

where φ is assumed to be positive homogeneous of order 1 as in the constant speed

case and aj,σ are each classical symbols of order 0, again as in the constant speed case.

We actually seek aj,σ ∼
∑∞

k=0 a
k
j,σ(x, t, ξ) where each akj,σ is positive homogeneous of

order −j in ξ for |ξ| large. In other words, we take aj,σ to be classical symbols

of order 0. Now the idea is to substitute this ansatz into the wave equation and
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cancel terms of the same homogeneity degree. Doing this gives special information

about φσ, namely that φσ solves the eikonal equation (∂tφσ)2 = c2(x)|∇xφσ|2 with

initial conditions φσ(0, x, ξ) = x · ξ. This process also gives information about each

akj,σ, namely that they solve specific transport equations that only depend on alj,σ for

0 ≤ l ≤ k. Because of this, we are able to solve for each akj,σ recursively. We use this

process explicitly in Chapter 2, and implicitly in Chapter 3.

1.1.8 Local theory of Fourier integral operators (FIOs)

The form of the solution in (1.6) is an example of what is known as a Fourier

integral operator. In general, Fourier integral operators have the form

Au(x) =

∫
eiφ(x,y,ξ)a(x, y, ξ)f(y) dy dξ

where a is an amplitude (or symbol) and φ(x, y, ξ) must satisfy the following three

conditions:

1. φ(x, y, ξ) is real valued

2. φ(x, y, ξ) is positive homogeneous of order 1 in ξ

3. φx,ξ 6= 0 and φy,ξ 6= 0 for ξ 6= 0

Any C∞(X ×Y × (RN \ 0)) function satisfying the above conditions is called a phase

function. It is clear that ΨDOs are special instances of FIOs with phase function

φ(x, y, ξ) = (x− y) · ξ. In fact, some authors, such as [7], first define Fourier integral

operators, and then define pseudodifferential operators as special cases of FIOs.

We require φ to satisfy the conditions above so that we may apply the method of

stationary phase to show that the kernel I(φ; a) =
∫
eiφ(x,y,ξ)a(x, y, ξ) dξ is C∞ away

from the characteristic manifold associated with A defined by

Σφ =
{

(x, y, ξ) ∈ X × Y × RN \ 0 | φξ = 0
}
. (1.7)

In other words, the integral above must be interpreted in the oscillatory integral sense.
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1.1.9 The canonical relation associated with an FIO

Assuming φ satisfies the above conditions and a(x, y, ξ) is an amplitude with conic

support contained in Σφ, there is a natural relation associated with the operator A

called the canonical relation. The conditions on φ imply that the map

Σφ 3 (x, y, ξ) 7→ (x, φx(x, y, ξ), y,−φy(x, y, ξ)) ∈ T ∗(X × Y ) \ 0 (1.8)

is an immersion, whose image we’ll call Cφ. This image is a conic Lagrangian sub-

manifold of T ∗(X × Y ) \ 0 and is called the canonical relation associated with A.

1.1.10 The effect of FIOs on wave front sets

In general, given an FIO, call it A, with canonical relation C, and a distribution

u, we have the following inclusion:

WF(Au) ⊂ C ◦WF(u),

which is analogous to the statement on ΨDOs and wave front sets. Really, this is

a generalization of the statement for ΨDOs, because viewing a ΨDO as a special

instance as an FIO, it is the case that the canonical relation associated with a ΨDO

is the identity relation. In [14], it is shown that if A is an elliptic FIO (that is, if

A can be inverted up to a smooth error), then, denoting C as the canonical relation

associated with A, given any distribution u ∈ E ′, it is the case that

WF(Au) = C ◦WF(u). (1.9)

In other words, singularities of u are moved by the canonical relation in a predictable

way. This makes the microlocal calculus very useful in solving inverse problems related

to the recovery of singularities, such as in medical and geological imaging.
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2. Thermoacoustic tomography with circular integrating

detectors and variable wave speed1

Thermoacoustic Tomography is a medical imaging method in which a short pulse of

electromagnetic radiation is used to excite cells in some object we wish to image, typi-

cally the organs of a patient. Upon absorbing the EM radiation, the cells in the patient

in turn vibrate, creating ultrasonic waves that then propagate out of the patient and

are measured by any number of methods. Using this measured data, we then try to

reconstruct, in some sense, an image of the inside of the patient. This is a hybrid imag-

ing method which uses high contrast, low resolution EM radiation to excite the cells,

and low contrast, high resolution ultrasound waves as measurement [23]. The hope

is to be able to get an image with good contrast and resolution by combining these

two types of waves. The case of point-wise measurements with constant and variable

wave speed in the region of interest has been studied extensively [18, 28, 35]. Other

methods of measurement of the ultrasonic waves include measurements with linear

integrating detectors [17], planar integrating detectors [10, 29] and circular integrat-

ing detectors or cylindrical stacks of circular integrating detectors [36, 37]. Circular

integrating detectors have a few advantages over linear integrating detectors and pla-

nar integrating detectors, including compactness of the experimental setup [36]. The

case of planar integrating detectors was studied in [29], and that work focused on the

problem with a smooth, variable wave speed. The case of circular (and cylindrical)

integrating detectors with constant wave speed has been studied in [36,37]. In those

works, explicit formulae are given for reconstruction of an initial pressure density us-

ing full measurements, i.e. measurements for every circular integrating detector of a

fixed radius with center on the unit circle, for all time. That reconstruction is stable

1This chapter was submitted to and published in the journal Inverse Problems and Imaging [21]
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in the case that the object being imaged is contained in the interior of the circular

integrating detectors, but is unstable for the case that the object lies entirely outside

of the circular integrating detector. The present work focuses on the case of circular

integrating detectors in the plane with a 2 dimensional region of interest, i.e. we are

focusing on the 2 dimensional problem. Further, we do not make a constant wave

speed assumption, we only assume that the wave speed c(x) > 0 is smooth in all of R2

and is 1 outside of a compact subset of R2. We show that the measurement operator

in this case is a Fourier Integral Operator and compute its canonical relation, which

happens to be a local diffeomorphism, thus allowing us to determine how singularities

in initial data propagate to the measurement data. We also show that this operator

is injective and prove stability of the measurement operator, and in addition we prove

what singularities in the initial data are visible from a fixed open subset of the set

of points on the circle where the measurements are taken in a given time interval.

Lastly, we provide numerical results obtained through simulation in Matlab using

both full and partial data that support our findings.

2.1 Setup

We begin by defining the space of distributions that our initial pressure distribu-

tion must be in. Let

HD(Ω) =

{
f ∈ E ′(Ω) |

∫
Ω

|∇f |2 dx <∞
}
,

where Ω ⊂ R2 is open and E ′(Ω) is the space of distributions compactly supported

in Ω. This is the natural space in which to take f when the energy of the system

is taken into consideration. Let ‖f‖2
HD(Ω) =

∫
Ω
|∇f |2 dx. The space HD(Ω) is the

completion of C∞0 (Ω) under the given norm. We know C∞0 (Ω) is a normed space

taken with this norm for any open Ω so that HD(Ω) is indeed a normed space with

this norm for any Ω open, and we only work with Ω open and bounded. We further

suppose that Ω̄ ⊂ B1(0) where B1(0) is the unit ball in R2 centered at the origin. We

view f as an initial pressure distribution of some object to be imaged represented by
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Ω. Then, after exposing Ω to microwave radiation, the ultrasonic waves created solve

the acoustic wave equation given by
∂2
t u(t, x) = c2(x)∆u(t, x), (t, x) ∈ R× R2

u(0, x) = f(x), f(x) ∈ HD (Ω)

∂tu(t, x) |t=0= 0, x ∈ R2

(2.1)

where 0 < c(x) ∈ C∞(R2) is the smooth wave speed, assumed to be known. Outside

of Ω, c ≡ 1. The problem of interest is to detect these waves, solutions u(t, x) to the

above wave equation, with detectors located outside of BR(0), and then using these

measurements, reconstruct the initial pressure distribution f . As mentioned in the

introduction, extensive research has been done in the constant speed case (c(x) ≡ 1

for all x ∈ R2) and variable speed case with point detectors in which we assume

access to u |U×Γ where Γ ⊂ S1 is open and U ⊂ R is some time interval. Research

has also been done for linear and planar integrating detectors in both the constant

and variable speed case, and also circular and cylindrical integrating detectors in the

constant wave speed case. When imaging with these integrating detectors, instead of

assuming direct access to u on some open subset of the boundary of Ω, the measured

data is an average of u over a circular detector of radius r centered on the boundary

of the ball of radius R (which we will choose later), and data is assumed to be

collected on an open subset of of this boundary, not necessarily the entirety of the

boundary. The present work considers the problem with variable speed in Ω, and

circular integrating detectors. We will have two cases to consider, which we will call

the large radius detector case and the small radius detector case, which are depicted

in Figure 2.1. The large radius detector case is the experimental setup in which Ω

is on the “inside” of the circular integrating detectors, and the small radius detector

case is the setup in which Ω is on the “outside” of the circular integrating detector.

We note as in [36] that since it is possible to fabricate optical fibers out of materials

which have nearly the same acoustical density as the surrounding fluid in which they

are contained, there should be little refraction effects expected, and so we will neglect
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any interference in ultrasonic waves caused by interaction with the circular integrating

detectors.

2.2 Construction

We are interested in seeing what singularities we can recover from rotating a

circular integrating detector around some object that has been heated via microwaves.

To start, we recall that solving the wave equation (as above) up to a smooth error, for

x ∈ R2, can be accomplished by use of the geometric optics construction (see Section

3 of [32] or Example 2.1 of chapter VI in [34]). The geometric optics ansatz is that

the solution to (2.1) is of the form

u(t, x) =
1

(2π)2

∑
σ=±

∫
eiφσ(t,x,ξ)aσ(t, x, ξ)f̂(ξ) dξ,

where each aσ(t, x, ξ) is a classical symbol of order 0, and each φσ is positive homo-

geneous of order 1 in ξ, i.e. φ(t, x, λξ) = λφ(t, x, ξ) for λ > 0. The motivation behind

this ansatz comes from looking at solutions to (2.1) for the case c ≡ 1, in which case

the solution to (2.1) is of the form

u(t, x) =
1

(2π)2

(∫
ei(x·ξ+t|ξ|)

f̂(ξ)

2
dξ +

∫
ei(x·ξ−t|ξ|)

f̂(ξ)

2
dξ

)
.

After substituting our ansatz into (2.1), we obtain the following condition: φσ solves

the eikonal equation: ((φσ)t)
2 = c2(x)|∇xφσ|2 with initial condition φσ(0, x, ξ) = x · ξ.

The eikonal equation is only solvable locally in time, which results in our solution

u(t, x) being only a local solution in time. This will not actually be an issue however,

as we can follow a procedure outlined in the proof of Proposition 3 in [28] to construct

an Fourier integral operator that is defined for all time. The Fourier Integral Operator

that results from this construction is then actually a composition of Fourier Integral

Operators. Because of this, we may assume that the eikonal equation is solvable until

geodesics intersect circular integrating detectors.
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We assumed that aσ was a classical symbol of order 0, so we may write

aσ(t, x, ξ) ∼
∑
j≥0

a(j)
σ (t, x, ξ),

where a
(j)
σ (t, x, ξ) is positively homogeneous of order −j for |ξ| large. Because of this,

after substituting the geometric ansatz solution for u into 2.1, we find a
(0)
σ (t, x, ξ)

solves the transport equation(
(∂tφσ)∂t − c2(x)(∇xφσ) · ∇x +

1

2
(∂2
t − c2(x)∆x)φσ

)
a(0)
σ = 0

with initial conditions a
(0)
σ (0, x, ξ) = 1/2. The last term on the left hand side of this

equation acts on a
(0)
σ by multiplication. The lower order terms can be calculated

recursively in a similar way.

Note that we may assume that aσ = 0 for |ξ| < R for some R > 0, as this only

affects our solution for u(t, x) by a smooth error [34]. To see this, let χ(ξ) ∈ C∞0 (R2)

with χ ≥ 0, and χ = 1 for |ξ| < R and χ = 0 for |ξ| ≥ R + ε for some R and ε

positive. Then the operator M ′ defined by

M ′
σf(t, x) =

∫
eiφσ(t,x,ξ)aσ(t, x, ξ)χ(ξ)f(ξ) dξ,

is smooth in (t, x), because for m ∈ N and α a multi-index,

∂mt ∂
α
x

(
eiφσ(t,x,ξ)aσ(t, x, ξ)χ(ξ)

)
is smooth by assumption on φ, a and χ, and compactly supported in ξ, so that the

integral defining M ′ is well defined for any m and α. We then note that

u(t, x) =
∑
σ

1

(2π)2

(∫
eiφσ(t,x,ξ)(1− χ(ξ))a(t, x, ξ)f̂(ξ) dξ +M ′

σf(t, x)

)
And (1−χ(ξ)a(t, x, ξ) ≡ 0 in a neighborhood of ξ = 0. So, modulo a smooth function,

we may assume that a(t, x, ξ) ≡ 0 in a neighborhood of ξ = 0.

Now in the situation of Thermoacoustic Tomography using circular integrating

detectors around the object we wish to image, the measurements at the detector are

given by the circular Radon transform:
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Mf(t, θ) =
1

2π

∫ 2π

0

u(t, C(θ, α)) dα,

where C(θ, α) = R(cos θ, sin θ) + r(cosα, sinα) is a parametrization of the circular

detector, R is the distance from the origin to the center of the circle, r is the radius of

the circular detector, θ is the angle made between the positive horizontal axis and the

ray from the origin to the center of the circle, and u(t, x) is the solution to the IVP

(2.1). The radius of the circular integrating detector, r, must be chosen so that the

detector does not intersect Ω. To accomplish this, we must have either r small enough

so that R−r ≥ 1, guaranteeing the detector does not intersect Ω ⊂ B1(0), or, we could

fix R = 1 and choose r ≥ 2, in which case Ω is contained in the interior of the disc

defined by the detector (see Figure 2.1). For convenience, we define θ = (cos θ, sin θ).

We can rewrite Mf by using the δ distribution:

Mf(t, θ) =
1

π

∫
R2

u(t, x)δ(|x−Rθ|2 − r2) dx.

We now plug in our solution for u obtained via the geometric optics construction

and denote by M+ and M− the operators taking σ = + and σ = − respectively after

substituting the geometric optics solution in Mf(t, θ). Then Mf = M+f + M−f ,

where

M+f(t, θ) =
1

4π3

∫∫
R2×R2

eiφ+(t,x,ξ)a+(t, x, ξ)f̂(ξ) dξδ(|x−Rθ|2 − r2) dx

M−f(t, θ) =
1

4π3

∫∫
R2×R2

eiφ−(t,x,ξ)a−(t, x, ξ)f̂(ξ) dξδ(|x−Rθ|2 − r2) dx.

We drop subscripts in the integral for now and consider only M+,

M+f(t, θ) =
1

4π3

∫∫
R2×R2

eiφ(t,x,ξ)a(t, x, ξ)f̂(ξ) dξδ(|x−Rθ|2 − r2) dx.

We make use of the fact that 1
2π

∫
eiλ(|x−Rθ|2−r2)dλ = δ(|x−Rθ|2 − r2) to say

M+f(t, θ) =
1

8π4

∫∫∫
R2×R×R2

eiφ(t,x,ξ)+iλ(|x−Rθ|2−r2)a(t, x, ξ)f̂(ξ) dξ dλ dx.
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Lastly, we unpack the Fourier transform of f to get

M+f(t, θ) =
1

8π4

∫∫∫∫
R7

eiφ(t,x,ξ)+iλ(|x−Rθ|2−r2)−iy·ξa(t, x, ξ)f(y)dy dξ dλ dx,

where we have identified R2 × R2 × R × R2 with R7. This is an indication that the

measurement operator M+ is a Fourier Integral Operator with phase function

Φ(t, θ, y;λ, x, ξ) = φ(t, x, ξ) + λ(|x−Rθ|2 − r2)− y · ξ.

One issue with the phase function is that Φ is not homogeneous of degree one

in the fiber variables (λ, x, ξ), but this can be fixed by making a change of variable.

Let x̃ := x |(ξ, λ)|, where |(λ, ξ)| =
√
λ2 + ξ2

1 + ξ2
2 , and define Φ̃(t, θ, y;λ, x̃, ξ) :=

Φ(t, θ, y;λ, x̃
|(ξ,λ)| , ξ). This makes Φ̃ homogeneous of degree one in the variables (λ, x̃, ξ).

Further, the derivatives Φ̃t,θ,λ,x̃,ξ and Φ̃y,λ,x̃,ξ are nonzero for (λ, x̃, ξ) 6= 0, and so this

is a true phase function and we can proceed. After making this change of variable,

we now write M+ as

M+f(t, θ) =
1

8π4

∫∫∫∫
R7

eΦ̃(t,θ,y;λ,x̃,ξ)ã(t, x̃, ξ, λ)f(y) dy dξ dλ dx̃

where

ã(t, x̃, ξ, λ) = a

(
t,

x̃

|(ξ, λ)|
, ξ

)
|(ξ, λ)|−2.

Note that because we assume a(t, x, ξ) ≡ 0 near ξ = 0, there is no singularity caused

by the factor of |(λ, ξ)|2 in ã(t, x̃, ξ, λ). Also, because a is an amplitude of order 0,

we can see that ã(t, x̃, λ, ξ) is an amplitude of order −2, and by [13], M+ is a Fourier

integral operator of order −1/2. Note that this change of variable does not affect the

characteristic manifold for Φ, which is defined as the variety

Σ = {(t, θ, y;λ, x, ξ) | Φλ,x,ξ = 0} .
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To see that this set is unaffected, note that

Φ̃λ = Φλ + Φx ·
(

x̃

|(ξ, λ)|

)
λ

,

Φ̃x̃ = Φx
1

|(ξ, λ)|
,

Φ̃ξ = Φξ + Φx ·
(

x̃

|(ξ, λ)|

)
ξ

,

so that Φ̃x̃ = 0 if and only if Φx = 0, from which it is clear that Φ̃λ,x̃,ξ = 0 if and only

if Φλ,x,ξ = 0.

We wish to find the characteristic manifold and canonical relation associated with

the measurement operator M+. Taking the derivative of Φ with respect to (λ, x, ξ),

we see that this gives the system of equations

|x−Rθ|2 − r2 = 0

φx + 2λ(x−Rθ) = 0

φξ − y = 0

We’ve made no assumption on which experimental setup we’ve chosen to examine

so far. There are two different cases, as mentioned above: (1)R − r ≥ 1, which we

will call the small radius case, and (2)R = 1 with r ≥ 2, which we will call the large

radius case. The analysis of these two cases are largely the same, but with a few key

differences. We examine both cases.

2.2.1 Case 1: Small Radius

From the system of equations obtained by looking at the characteristic manifold

of the FIO, we see that φξ = y, and by the geometric optics construction, x lies on

the geodesic γy,ξ̂(t) issued from (y, ξ̂) where ξ̂ = ξ/(c|ξ|) is the unit covector in the

metric identified with a unit vector, and (γy,ξ̂(t), c|ξ|γ̇y,ξ̂(t)) = (x, φx). Now from the
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first equation, we know that x = (x1, x2) must lie on the circular integrating detector

of radius r with center Rθ. So x is the intersection of the geodesic γy,ξ̂ with the

circle defined by |x − Rθ|2 = r2. There are two of these points of intersection in

general (we will show that the geodesic does not intersect the circular integrating

detector tangentially if the singularity is to be detected), which we label x+,1(y, ξ)

and x+,2(y, ξ). Also denote the times at which these intersections occur t+,1(y, ξ) > 0

and t+,2(y, ξ) > 0 respectively.

Finally, we have from the second equation φx = 2λ(Rθ − x). This tells us that

γ̇y,ξ(t) is parallel to x − Rθ, provided that λ 6= 0 (in which case γy,ξ̂(t) intersects

the circular integrating detector tangentially). Supposing for a moment that λ = 0,

then taking magnitudes on both sides of the equation φx(t, x, ξ) = 2λ(Rθ − x), we

obtain |φx(t, x, ξ)| = 0 =⇒ c(y)|ξ||γ̇y,ξ̂(t)| = 0. This in turn means |γ̇y,ξ̂(t)| = 0 as

c(y) 6= 0 for any y ∈ R2 and ξ is a non zero vector. But we know near the integrating

detectors, that |γ̇y,ξ̂(t)| = 1, a contradiction, so λ 6= 0 on the characteristic manifold.

And so the geodesic intersects the circular detector perpendicularly. We know that

φx = c|ξ|γ̇y,ξ̂(t), And c ≡ 1 outside of the region of interest, so that

|λ+,i| := c(y)/(2r)|ξ||(γ̇y,ξ̂(t+,i))| = c(y)/(2r)|ξ|.

Note that λ+,1 > 0 and λ+,2 < 0, so that λ+,1 = c(y)/(2r)|ξ| and λ+,2 = −λ+,1. We’ll

simply denote λ+ := λ+,1. Because γy,ξ̂(t) intersects the circular integrating detector

perpendicularly, it must go through the center of the circular integrating detector, as

outside of Ω, we know that c ≡ 1 implies that γy,ξ̂ is a straight line near the integrating

detectors, and so we see that θ = γy,ξ̂(t+,1(y, ξ) + r)/R = γy,ξ̂(t+,2(y, ξ)− r)/R, where

r is the fixed radius of the circular integrating detector. This gives then the entire

characteristic manifold parameterize by (y, ξ), giving a smooth manifold of dimension

4 consisting of 2 connected parts. Define

Σ+,1 = {(t+,1(y, ξ),θ(y, ξ), y;λ+(y, ξ), x+,1(y, ξ), ξ) | (y, ξ) ∈ T ∗(Ω) \ {0}} ,

and

Σ+,2 = {(t+,2(y, ξ),θ(y, ξ), y;−λ+(y, ξ), x+,2(y, ξ), ξ) | (y, ξ) ∈ T ∗(Ω) \ {0}} .
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Then Σ+ = Σ+,1 ∪ Σ+,2 as a disjoint union.

(y, ξ)
θ

x+,1
x+,2r

R
θ

(y, ξ)

x+

r

1Ω Ω

Figure 2.1. Two different experimental setups shown depending on the
radius of the integrating detector. On the left is the small radius case,
and on the right is the large radius case.

The maps given by

Σ+ 3 (t,θ, y;λ, x, ξ) 7→ (t,θ, y; Φt,Φθ,Φy)

are calculated as

Σ+ 3 (t,θ, y;λ, x, ξ) 7→ (t,θ, y;−c(y)|ξ|,−R
r
c(y)|ξ|(x− (x · θ)θ),−ξ)

The analysis for σ = − is the same giving us t−,i(y, ξ) < 0, x−,i(y, ξ) for i = 1, 2

and θ−. We also see that λ−,1 < 0 and λ−,2 > 0. Denote λ− := λ−,1. We see that the

maps

Σ± 3 (t,θ, y;λ, x, ξ) 7→ (t,θ, y;∓c(y)|ξ|,∓R
r
c(y)|ξ|(x− (x · θ)θ),−ξ)

are smooth and of rank 4 making M a non-degenerate FIO (see [34] chapter VIII).

This means the canonical relations associated to the operators M+ and M− are local

graphs given by



24

C± := {(t,θ,Φt,Φθ; y,−Φy) | (t,θ, y;λ, x, ξ) ∈ Σ±}

=

{(
t±,i,θ±,∓c(y)|ξ|,∓R

r
c(y)|ξ|(γy,ξ̂(t±,i)− (x±,i · θ±)θ±); y, ξ

)}
such that (y, ξ) ∈ T ∗(Ω) \ 0, where i = 1, 2. Here, θ+ = γy,ξ̂(t+,1(y, ξ) + r)/R and

θ− = γy,ξ̂(t−,1(y, ξ)− r)/R. Writing this as a mapping, we have

C± : (y, ξ) 7→
(
t±,1,θ±,∓c(y)|ξ|,±R

r
c(y)|ξ|

(
(x±,1 · θ±) γy,ξ̂(t±,1 ± r)− γy,ξ̂(t±,1)

))
(
t±,2,θ±,∓c(y)|ξ|,∓R

r
c(y)|ξ|

(
(x±,2 · θ±) γy,ξ̂(t±,2 ∓ r)− γy,ξ̂(t±,2)

))
Where x±,i = x±,i(y, ξ), θ± = θ±(y, ξ), and t±,1 = t±,1(y, ξ) and similarly, t±,2 =

t±,2(y, ξ). The canonical relations for the operators M+ and M− are each one to two

and of the above form. The above has shown the following:

Theorem 2.2.1 For R − r ≥ 1, the operator Mf = M+f + M−f defined above is

a Fourier Integral Operator of order −1/2 associated with the graphs of canonical

relation given by

C = C+ ∪ C−,

where

C± ={(
t±,i,θ±,∓c(y)|ξ|,±(−1)i

R

r
c(y)|ξ|

(
γy,ξ̂(t±,i)− (x±,i(y, ξ) · θ±)θ±

)
; y, ξ

)}
,

(t±,i = t±,i(y, ξ) and θ± = θ±(y, ξ)) with (y, ξ) ∈ T ∗(Ω) \ 0 and i = 1, 2.

Note that this canonical relation is locally one to four.
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2.2.2 Case 2: Large Radius

In this case, the analysis is almost entirely the same, except there is only one point

of intersection of the geodesic γy,ξ̂(t) with the circular integrating detector defined by

|x−θ| = r (see Figure 2.1). We then have Σ± = {(t±(y, ξ),θ±(y, ξ), y;±λ(y, ξ), x±(y, ξ), ξ) |

(y, ξ) ∈ T ∗(Ω) \ {0}}, and the canonical relations are given by

C± ={
((t±,θ±,∓c(y)|ξ|,∓1

r
c(y)|ξ|(γy,ξ̂(t±)− (x± · θ±)θ±); y, ξ) | (y, ξ) ∈ T ∗(Ω) \ 0

}
.

Here t± = t±(y, ξ), θ± = θ±(y, ξ) and x± = x±(y, ξ). The canonical relations are

each (local) graphs in this case, and we have an analogous result as in the first case:

Theorem 2.2.2 For R = 1 and r ≥ 2, the operator Mf = M+f + M−f defined

above is a Fourier Integral Operator of order −1/2 associated with the graph of the

canonical relation given by

C = C+ ∪ C−,

where

C± ={
((t±,θ±,∓c(y)|ξ|,∓1

r
c(y)|ξ|(γy,ξ̂(t±)− (x± · θ±)θ±); y, ξ) | (y, ξ) ∈ T ∗(Ω) \ 0

}
,

with t± = t±(y, ξ), θ± = θ±(y, ξ) and x± = x±(y, ξ).

This canonical relation is locally one to two, as each individual canonical map is

locally one to one.

Note that the maps C+ and C− are not globally one to 1, although each are locally

one to one, for suppose (looking only at C+ for a moment)

(t(y1, ξ1),θ(y1, ξ1), τ(y1, ξ1), ω(y1, ξ1)) = (t(y2, ξ2),θ(y2, ξ2), τ(y2, ξ2), ω(y2, ξ2))

where τ(y, ξ) = −c(y)|ξ| and ω(y, ξ) = −1
r
c(y)|ξ|(x−(x·θ)θ(y, ξ)) and x = γy,ξ̂(t(y, ξ)).

We’ll call xi = x(yi, ξi) for i = 1, 2. Then clearly we have t(y1, ξ1) = t(y2, ξ2) and
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θ(y1, ξ1) = θ(y2, ξ2), which we’ll just label t and θ respectively. We also clearly

have c(y1)|ξ1| = c(y2)|ξ2|. Suppose for a moment that (x1 − x2) · θ⊥ = 0 where

θ⊥ = (− sin(θ), cos(θ)) is the unit vector perpendicular to θ. Then note that

ω(y1, ξ1)− ω(y2, ξ2) =x1 − (x1 · θ)θ − (x2 − (x2 · θ)θ)

=(x1 − x2)− [(x1 − x2) · θ]θ

Now note that (ω(y1, ξ1)−ω(y2, ξ2))·θ = 0 and (ω(y1, ξ1)−ω(y2, ξ2))·θ⊥ = 0. Because

θ and θ⊥ are linearly independent, this shows that ω(y1, ξ1) − ω(y2, ξ2) = 0 or in

other words that ω(y1, ξ1) = ω(y2, ξ2). This shows that, provided t(y1, ξ1) = t(y2, ξ2),

θ(y1, ξ1) = θ(y2, ξ2), c(y1)|ξ1| = c(y2)|ξ2| and (x1 − x2) · θ⊥ = 0, that (y1, ξ1) and

(y2, ξ2) get mapped to the same point under the canonical relation. However, for c

close enough to 1, this will not happen locally.

2.3 Injectivity

2.3.1 Case 1: Small Radius

Let u(t, x) be the solution to (2.1) and Γ ⊂ S1 be open. In local coordinates,

suppose Γ is the open interval given by Γ = (θ1, θ2), with 0 ≤ θ1 < θ2 < 2π. Then,

for θ = (cos(θ), sin(θ)) ∈ Γ, we have

Mf(t, θ) =
1

2π

∫ 2π

0

u(t, R0 cos(θ) + r cos(α), R0 sin(θ) + r sin(α)) dα

Where R0 is the distance from the origin to the center of the circular integrating

detector. For fixed r > 0, we may view R as variable with R ≥ R0 ≥ 1 + r (i.e.

we may translate the circular integrating detectors away from the region of interest).

We denote this by letting Mf(t, θ) vary with R and denote the operator then as
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Mf(t, θ;R) and note Mf(t, θ) = Mf(t, θ;R0). Let P (t, θ, R) = Mf(t, θ;R). Then

we see that

R2Ptt(t, θ, R)−R(RPR(t, θ, R))R − Pθθ(t, θ, R) = 0 (t, θ, R) ∈ R+ × Γ̃,

P (t, θ, R0) = Mf(t, θ) |θ∈Γ, (t, θ) ∈ R+ × Γ,

P (0, θ, R) = 0, (θ, R) ∈ Γ̃,

Pt(0, θ, R) = 0, (θ, R) ∈ Γ̃,

(2.2)

where Γ̃ = Γ × [R0,∞). This can be seen as follows: first note to save space, u

and all of its partial derivatives are understood to be evaluated at (t, R cos(θ) +

r cos(α), R sin(θ) + r sin(α)). We have

Pθ(t, θ, R) =
1

2π

∫ 2π

0

(−R sin(θ))ux + (R cos(θ))uy dα,

and so we have

Pθθ =

1

2π

∫ 2π

0

R2 sin2(θ)uxx − 2R2 sin(θ) cos(θ)uxy +R2 cos2(θ)uyy

−R cos(θ)ux −R sin(θ)uy dα.

Noting that

R2 sin2(θ)uxx +R2 cos2(θ)uyy

=R2 sin2(θ)uxx +R2 cos2(θ)uxx +R2 sin2(θ)uyy +R2 cos2(θ)uyy

− (R2 cos2(θ)uxx +R2 sin2(θ)uyy)

=R2∆u− (R2 cos2(θ)uxx +R2 sin2(θ)uyy),

we see that

Pθθ(t, θ, R) =

1

2π

∫ 2π

0

R2∆u− (R2 cos2(θ)uxx +R2 sin2(θ)uyy + 2R2 sin(θ) cos(θ)uxy

+R cos(θ)ux +R sin(θ)uy) dα.



28

Remembering that ∆u above is evaluated at (t, R cos(θ) + r cos(α), R sin(θ) +

r sin(α)), where c ≡ 1, we have

Pθθ(t, θ, R) =

1

2π

∫ 2π

0

R2c2∆u− (R2 cos2(θ)uxx +R2 sin2(θ)uyy + 2R2 sin(θ) cos(θ)uxy

+R cos(θ)ux +R sin(θ)uy) dα,

so that

Pθθ(t, θ, R) =
1

2π
R2

∫ 2π

0

utt dα−

1

2π

∫ 2π

0

(R2 cos2(θ)uxx +R2 sin2(θ)uyy + 2R2 sin(θ) cos(θ)uxy+

R cos(θ)ux +R sin(θ)uy) dα,

and
1

2π

∫ 2π

0

utt dα =
1

2π

(∫ 2π

0

u dα

)
tt

= Ptt(t, θ, R).

So we only need to show that

R(RPR)R =

1

2π

∫ 2π

0

(R2 cos2(θ)uxx +R2 sin2(θ)uyy + 2R2 sin(θ) cos(θ)uxy+

R cos(θ)ux +R sin(θ)uy) dα.

This follows from direct calculation and the chain rule.

Rewriting (2.2) in a more standard form, we have:

Ptt(t, θ, R)− 1
R

(RP (t, θ, R)R)R − 1
R2Pθθ(t, θ, R) = 0, (t, θ, R) ∈ R+ × Γ̃,

P (t, θ, R0) = Mf(t, θ) |θ∈Γ, (t, θ) ∈ R+ × Γ,

P (0, θ, R) = 0, (θ, R) ∈ Γ̃,

Pt(0, θ, R) = 0, (θ, R) ∈ Γ̃.

(2.3)

where again Γ̃ = Γ × [R0,∞). We note that (2.3) simply says that P (t, θ, R) is a

solution to the constant speed wave equation in polar coordinates with initial condi-

tions P (0, θ, R) = 0 for R ≥ R0 > 1 + r, Pt(0, θ, R) = 0 and P (t, θ, R0) = Mf(t, θ)
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for t ≥ 0 and θ ∈ Γ. It is well known that the wave equation on an open subset

of R2 has a unique solution (See Chapter 6, Section 2 of [33] or Chapter 5, Section

1(d) of [15]), and so the solution to (2.3) is unique. To show then that Mf(t, θ) |θ∈Γ

uniquely determines f , we need to show that Mf(t, θ) |θ∈Γ= 0 =⇒ f(x) = 0 by

the linearity of M . So then, we assume that Mf(t, θ) ≡ 0 for t ∈ R+ and θ ∈ Γ.

By the uniqueness of solutions to the wave equation, this tells us that P (t, θ, R) ≡ 0

for any (t, θ, R) ∈ R+ × Γ × [R0,∞). Let T ∈ R. We may extend u(t, x) in an even

way for |t| < T so that u is still a solution to the wave equation, and so we may

extend P (t, θ, R) in an even way such that P (t, θ, R) = 0 for |t| < T . By finite speed

of propagation, we know that supp u(T, ·) ⊂ B1+T (0). Let θ0 ∈ Γ. Note that the

set A = {(θ, R) | θ ∈ Γ, R > R0} is open and connected in R2, because Γ ⊂ S1 is

an open interval. We know that the circular Radon transform of u(T, ·) is 0 for any

θ ∈ Γ and for any R > R0. Further, because the interior of these circular integrat-

ing detectors is just D(θ, R) = Br(Rθ), we can take R > R0 large enough so that

supp u(T, ·) ∩ D(θ0, R) = ∅, because supp u(T, ·) is contained in a bounded set. It

follows then by Theorem 1.2 in [25] that supp u(T, ·) is disjoint from ∪(θ,R)∈AD(θ, R).

So in particular, there is a neighborhood V of x0 = R0θ0 such that u(T, x) = 0 on V .

T was chosen arbitrarily, so this result holds for all |t| < T , and so by Tataru’s unique

continuation, u(t, x) ≡ 0 in the domain of influence |t| + dist(x, x0) < T . So, taking

T large enough so that dist(x, x0) < T for all x ∈ Ω, we see that u(0, x) = f(x) ≡ 0,

and so Mf(t, θ) |[0,T ]×Γ uniquely determines f .

2.3.2 Case 2: Large Radius

Again, we consider u(t, x) a solution to (2.1). We consider only the full data case

Γ = S1. Then in this case, in which R = 1, we have that the measurement operator

Mf(t, θ) is given by

Mf(t, θ) =
1

2π

∫ 2π

0

u(t, cos(θ) + r0 cos(α), sin(θ) + r0 sin(α)) dα
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where r0 ≥ 2 is the fixed radius of the circular integrating detector. We may however

view r as variable, noting the operator with variable detector radius by

Mf(t, θ; r) =
1

2π

∫ 2π

0

u(t, cos(θ) + r cos(α), sin(θ) + r sin(α)) dα

Where r ≥ r0 ≥ 2. Let P (t, θ, r) = Mf(t, θ; r), where θ ∈ Γ and r ≥ r0 > 2. Note

that P (t, θ, r0) = Mf(t, θ) for θ ∈ Γ. It follows then that P (t, θ, r) solves the following

PDE: 

Ptt(t, θ, r)− 1
r
(rPr(t, θ, r))r = 0 (t, θ, r) ∈ R+ × Γ× [r0,∞)

P (t, θ, r0) = Mf(t, θ) (t, θ) ∈ R+ × Γ

P (0, θ, r) = 0 (θ, r) ∈ Γ× [r0,∞)

Pt(0, θ, r) = 0 (θ, r) ∈ Γ× [r0,∞)

(2.4)

We see this as follows: (Again note that u and all of its partial derivatives are under-

stood to be evaluated at (t, cos(θ) + r cos(α), sin(θ) + r sin(α)).) We have

Pr(t, θ, r) =
1

2π

∫ 2π

0

cos(α)ux + sin(α)uy dα.

We integrate by parts to get

Pr(t, θ, r) =
1

2π

∫ 2π

0

(r sin2 α)uxx − 2r cos(α) sin(α)uxy + (r cos2(α))uyy dα.

Then, we use the fact that

r sin2(α)uxx + r cos2(α)uyy = r∆u− r cos2(α)uxx − r sin2(α)uyy,

to obtain

Pr(t, θ, r) =
1

2π

∫ 2π

0

r∆u− r(cos2(α)uxx + 2 cos(α) sin(α)uxy + sin2(α)uyy) dα.

We recall that u and its derivatives are evaluated at (t, cos(θ) + r cos(α), sin(θ) +

r sin(α)) where c ≡ 1, so that ∆u = utt there and we see that
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Pr(t, θ, r)

=r
1

2π

∫ 2π

0

utt dα− r
1

2π

∫ 2π

0

cos2(α)uxx + 2 cos(α) sin(α)uxy + sin2(α)uyy dα

=rPtt(t, θ, r)− r
1

2π

∫ 2π

0

cos2(α)uxx + 2 cos(α) sin(α)uxy + sin2(α)uyy dα

=rPtt(t, θ, r)− rPrr(t, θ, r).

The last line can be seen by direct calculation of Prr(t, θ, r). Rearranging we see

rPtt = rPrr + Pr and (2.4) then follows. This partial differential equation is the

wave equation with axial symmetry in an open subset of R2, and so solutions to this

equation are again unique by [15,33].

To show that Mf(t, θ) determines f uniquely for θ ∈ Γ, by the linearity of M , we

need only show that Mf(t, θ) = 0 for all (t, θ) = [0, T )×Γ =⇒ f = 0. We note that

Mf(t, θ) = 0 for all (t, θ) ∈ [0, T )×Γ =⇒ P (t, θ, r) ≡ 0, because P (t, θ, r) ≡ 0 clearly

solves the PDE (2.4) in this case, and this solution is unique. For any T ∈ R, we know

that supp u(T, ·) ⊂ B1+T (0), and so for any finite T , u(T, ·) has bounded support.

Let θ0 ∈ Γ, T ∈ R+. Let r1 = sup{r ≥ r0 | C(θ0, r)∩supp u(T, ·) 6= ∅}, where C(θ0, r)

is the circle centered at θ0 with radius r. We know, because supp u(T, ·) ⊂ B1+T (0),

that {r ≥ r0 | C(θ0, r) ∩ supp u(T, ·) 6= ∅} is bounded above by 2 + T . Assume that

this set is nonempty so that r1 ≥ r0 is finite. Then we have C(θ0, r1)∩supp u(T, ·) 6= ∅

by the compactness of supp u(T, ·). Let x ∈ C(θ0, r1) ∩ supp u(T, ·), and let (x, ξ) ∈

N∗(C(θ0, r1)). By construction, supp u(T, ·) is on one side of C(θ0, r1) at x, so that

by Theorem 8.5.6 in [14], we have that (x, ξ) ∈ WFA(u(T, ·)). Note that as in the

terminology of [25], it is impossible for x to be a C(θ0, r1) self mirror point, for

tracing (x, ξ) back along the geodesic defined by (x, ξ), we see that the geodesic never

intersects the interior of B1(0), which is impossible. So then, there are two cases

we must consider. First we consider the case where the C(θ0, r1) mirror point of

x, which we will call x̃, is not in the intersection C(θ0, r1) ∩ supp u(T, ·). Then, by

the compactness of supp u(T, ·), we have u(T, ·) = 0 in a neighborhood of x̃. We

also have P (T, θ, r) = 0 in a neighborhood of (θ0, r1) ∈ Γ × [r0,∞). It then follows
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by Proposition 2.4 of [25] that (x, ξ) 6∈ WFA(u(T, ·)), a contradiction to (x, ξ) ∈

WFA(u(T, ·)). It follows that {r ≥ r0 | C(θ0, r) ∩ supp u(T, ·) 6= ∅} is empty and so

supp u(T, ·) ⊂ B̄r0(θ0).

The second case we consider is that x̃ is in the intersection C(θ0, r1)∩supp u(T, ·).

We’ll show that there then exists θ1 ∈ S1 and r2 > r1, such that

C(θ1, r2) ∩ supp u(T, ·) = {x̃}.

Assume for now that this is the case, and let (x̃, ξ̃) ∈ N∗(C(θ1, r2)). Then again,

we have by construction that supp u(T, ·) is on one side of C(θ1, r2) at x̃ and so

(x̃, ξ̃) ∈WFA(u(T, ·)). It also follows as before that u(T, ·) is zero in a neighborhood

of the C(θ1, r2) mirror point of x̃. We then see again from Proposition 2.4 of [25] that

(x̃, ξ̃) 6∈ WFA(u(T, ·)), a contradiction. It follows again that supp u(T, ·) ⊂ B̄r0(θ0).

That f is zero then follows from Tataru’s unique continuation as in the small radius

case.

Now we show the existence of the circle C(θ1, r2) with property that

C(θ1, r2) ∩ supp u(T, ·) = {x̃},

mentioned above. We let C(θ0, r1), and x, x̃ be as above. We define the sets C−(θ0, r1) =

{y ∈ C(θ0, r1) | (y−θ0) ·θ0 ≤ 0}, and C+(θ0, r1) = {y ∈ C(θ0, r1) | (y−θ0) ·θ0 ≥ 0}.

It is clear that B1(0) is contained in the interior of the region bounded by C−(θ0, r1)∪

L(θ0, r1), where L(θ0, r1) is the diameter of C(θ0, r1) defined by the vector θ⊥0 . We

may assume without loss of generality that x ∈ C−(θ0, r1), for if not, we may simply

swap the roles of x and x̃ in what follows. Now x ∈ C−(θ0, r1) =⇒ x̃ ∈ C+(θ0, r1),

because x cannot be a C(θ0, r1) mirror point, as we have shown. The line `(t) defined

by

`(t) = θ0 + t(x̃− θ0)

intersects S1 at 2 points: θ0 and

θ1 = θ0 −
2θ0 · (x̃− θ0)

r2
1

(x̃− θ0).
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This implies there are two distinct circles with centers on S1 such that (x̃, (x̃− θ0))

is in the conormal bundle to these circles, namely C(θ0, r1) and C(θ1, r2), where

r2 = |x̃− θ1|. Note that

r2 =

∣∣∣∣x̃− (θ0 −
2(x̃− θ0) · θ0

r2
1

(x̃− θ0)

∣∣∣∣
=

∣∣∣∣(x̃− θ0)

(
1 +

2(x̃− θ0) · θ0

r2
1

)∣∣∣∣
=r1

∣∣∣∣1 +
2(x̃− θ0) · θ0

r2
1

∣∣∣∣ > r1

where the last inequality follows because

x̃ ∈ C+(θ0, r1) =⇒ 2(x̃− θ0) · θ0

r2
1

> 0,

so that

1 +
2(x̃− θ0) · θ0

r2
1

> 1.

From this we see then that r2 = r1 + 2(x̃−θ0)·θ0

r1
. Now, we need only show that

C(θ1, r2)∩ supp u(T, ·) = {x̃}. Clearly by construction, x̃ is in this intersection. Also

note that by the choice of r1, that C(θ0, r) ∩ supp u(T, ·) = ∅ for all r > r1. So let

y ∈ C(θ1, r2). Then, we have using the triangle inequality

|y − θ0| ≥|y − θ1| − |θ1 − θ0|

=r2 −
∣∣∣∣2(x̃− θ0) · θ0

r2
1

(x̃− θ0)

∣∣∣∣
=r1,

so that |y − θ0| ≥ r1, and equality holds only when y − θ0 = α(θ1 − θ0) for some

α > 0, but this is only the case when y = x̃. So, we’ve shown that y ∈ C(θ1, r2) =⇒

|y − θ0| > r1 if y 6= x̃. In other words, y 6= x̃ =⇒ y ∈ C(θ0, r) for some r > r1, so

that so that y 6∈ supp u(T, ·), and in particular, y 6∈ C(θ1, r2) ∩ supp u(T, ·) if y 6= x̃.

This completes the proof in the large radius case for full data.
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2.4 Stability

It is natural to take f ∈ HD(Ω) ⊂ H1
0 (Ω) when taking conservation of energy

into consideration. By the above theorems, in both the small and large radius cases,

we have that Mf(t, θ) is an elliptic FIO of order −1/2. We will model finite time

measurements in [0, T ] by premultiplying Mf(t, θ) by χ ∈ C∞0 (R) with supp χ ⊂

[−1, T1] for T < T1 < ∞, and χ ≡ 1 on [0, T ]. Now because M is an FIO of order

−1/2 associated with the graph of the canonical relation C, we have M∗ is also an

FIO of order −1/2, and it is associated with the canonical relation C−1. M∗χM then

is an elliptic pseudodifferential operator of order −1. This implies that a parametrix

B, which necessarily is an elliptic ΨDO of order 1, exists such that

BM∗χM = Id−R,

where R is a regularizing operator. We may assume that B is a properly supported

ΨDO, which means B,Bt : E ′(Ω)→ E ′(Ω). From this we see that

‖f‖H1(Ω) ≤ ‖BM∗χMf‖H1(Ω) + ‖Rf‖L2(Ω).

B is a continuous linear operator, so we have

‖f‖H1(Ω) ≤ C‖M∗χMf‖H2(Ω) + ‖Rf‖L2(Ω),

for some C > 0, independent of f . And lastly, M∗ is a continuous linear operator, so

we have from [14], Cor. 25.3.2.,

‖f‖H1(Ω) ≤ C ′‖χMf‖H3/2([0,T ]×S1) + ‖Rf‖L2(Ω).

Note that because we’ve multiplied Mf(t, θ) by χ and Mf(t, θ) has θ support in S1,

which is a compact manifold, that χMf(t, θ) has compact support in (0, T ) × S1,

and so the norm above in H3/2([0, T ] × S1) is finite. By virtue of the injectivity of

χMf(t, θ), we may then write (at the cost of possibly increasing C ′)

‖f‖H1(Ω) ≤ C ′‖χMf‖H3/2([0,T ]×S1).

This gives stability of the measurement operator M .
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Theorem 2.4.1 Let f ∈ HD(Ω), and Mf(t, θ) be defined as the either of the mea-

surement operators above. If χ ∈ C∞0 (R) with χ ≡ 1 on [0, T ], then we have the

following stability estimate:

‖f‖H1(Ω) ≤ C‖χMf‖H3/2([0,T ]×S1).

2.4.1 Visible Singularities

A singularity (y, ξ) ∈WF(f) is called visible on an open subset U×Γ of R×S1 for

M if it creates a singularity in the measurement data Mf |U×Γ. Now because Mf is

an elliptic FIO associated with a local canonical graph C (See Theorems 2.2.1,2.2.2),

we know by [14]

WF(Mf) = C ◦WF(f).

Let (t0,θ0) ∈ R × S1 and let U × Γ be an open neighborhood of (t0,θ0). By

the above arguments (Theorems 1 and 2), we know that singularities (y, ξ) ∈WF(f)

split and travel along geodesics
(
γy,ξ̂(t), c(y)|ξ|γ̇y,ξ̂(t)

)
, and that this will create a

singularity at (t0,θ0) if and only if the geodesic intersects the circular integrating

detector with center θ0 perpendicularly at time t0, with no singularity to mask it

intersecting the circular integrating detector at mirror points on the circle (i.e. an

antipodal point in the small radius case, and a C(θ, r) mirror point in the large radius

case). Therefore, to determine those singularities of f that are visible from U × Γ,

we simply trace all geodesics that go through Rθ back to Ω and see if they have

nonempty intersection with WF(f), see Figure 2.2.

For each (t,θ) ∈ U × Γ, λ ∈ R \ 0, let

A+
t,θ,λ =

{(
γ(x,x−Rθ

r
)(t), λ

ˆ̇γ(x,x−Rθ
r

)(t)
)
| |x−Rθ| = r, (x−Rθ) · θ > 0

}
and

A−t,θ,λ =
{(
γ(x,x−Rθ

r
)(t), λ

ˆ̇γ(x,x−Rθ
r

)(t)
)
| |x−Rθ| = r, (x−Rθ) · θ < 0

}
.
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Γ Γ
θ0 θ0

Ω Ω

Figure 2.2. Singularities that may be visible from θ0 ∈ Γ in both the cases
(left) R − r > 1 and (right) R = 1, r > 2 will lie on the geodesics issued
from the integrating detectors.

These are the sets of all points on geodesics intersecting the half circle C+(θ, r)

(respectively, C−(θ, r)) perpendicularly at time t, with tangent vector of magnitude

λ. For (
γ(x,x−Rθ

r
)(t), λ

ˆ̇γ(x,x−Rθ
r

)(t)
)
∈ A±t,θ,λ,

define

∼
(
γ(x,x−Rθ

r
)(t), λ

ˆ̇γ(x,x−Rθ
r

)(t)
)

=
(
γ(x̃, x̃−Rθ

r
)(t), λ

ˆ̇γ(x̃, x̃−Rθ
r

)(t)
)
∈ A∓t,θ,λ,

where x̃ is the appropriate mirror point on the circular integrating detector, depending

on the experimental setup. Now, (y, ξ) ∈WF(f) is visible from (t, θ) ∈ U × Γ if and

only if (y, ξ) ∈ A±(t,θ,λ) for some (t, θ, λ) ∈ U × Γ× (R \ 0) and ∼ (y, ξ) 6∈WF(f). Let

B±t,θ,λ =
{

(y, ξ) | (y, ξ) ∈ A±t,θ,λ ∩WF(f) and ∼ (y, ξ) 6∈WF(f)
}
.

It then follows from the above arguments that the set of visible singularities is given

by ⋃
(t,θ,λ)∈U×Γ×(R\0)

B+
t,θ,λ ∪B

−
t,θ,λ.

We have shown the following:
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Theorem 2.4.2 Let U × Γ ⊂ R × S1 be an open subset, and for each (t, θ, λ) ∈

U ×Γ× (R \ 0) let A±t,θ,λ and B±t,θ,λ be defined as above. Then in both the small radius

detector case and the large radius detector case, the singularities of f that are visible

from U × Γ in the restricted data Mf |U×Γ are given by⋃
(t,θ,λ)∈U×Γ×(R\0)

B+
t,θ,λ ∪B

−
t,θ,λ.

From this we see that if Γ = S1 and (0, T ] ⊂ U , where

T = sup
x∈Ω

inf
θ∈[0,2π)

dist(x,C(θ, r)),

(where the distance is the geodesic distance), then all singularities of f are visible

assuming T <∞.

2.5 Numerical Results

To simulate the collection of forward data, we numerically solve the wave equa-

tion with variable wave speed using the implementation of Perfectly Matched Layers

(PML) found in [8] for a number of different smooth initial conditions. This ensures

that measured data will only come from signals inside the region of interest, and not

from reflections at the boundary of the window of computation. Then, we collect sim-

ulated measurement data on the unit circle Mf(t, θ) for 0 ≤ θ < 2π and 0 ≤ t < 5,

for a specific initial condition. In general, the amount of time that we collect data

should depend on the wave speed inside the medium we are imaging, and for the wave

speed we have chosen of 1+0.3 sin(8x) cos(5y)η(x, y) with η(x, y) ∈ C∞0 (B1(0)), t=5s

suffices as an appropriate time range. We’ve shown the graph of the wave speed in

Figure 2.3. We then use an iterative solver to reconstruct the smooth initial condition

using the simulated data over the given time interval. The reconstruction shown in

Figure 2.4 was made using the model R = 1 and r = 2 (the large radius detector

model), with data taken on the full unit circle. An almost identical reconstruction is

obtained if we use the small radius integrating detector model with full data.
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We also run numerical simulations with data taken on an open subset of the unit

circle. Here we take data for θ ∈ (−π/2, 0), with the same wave speed interior to

the object. We then multiply by a smooth cutoff function so as to not introduce new

singularities into the reconstruction. Results for the partial data case are shown in

Figures 2.5 and 2.6.

1.2

1.1

1

0.9

0.8

Variable wave speed

c(x, y) = 1 + 0.3 sin(8x) cos(5y)η(x, y)

1.3

0.7

Figure 2.3. Variable wave speed of 1 + 0.3 sin(8x) cos(5y)η(x, y), where
η(x, y) ∈ C∞0 (B1(0)).
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Figure 2.4. Results of reconstruction using R = 1 and r = 2 model (Large
radius detector model). This reconstruction was made using full data.
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Figure 2.5. Result of reconstruction with partial data using R = 2, and
r = 0.8 (Small radius detector model). This reconstruction was for θ ∈
(−π/2, 0). Shown in the figure are the set on which data is collected as
well as some representative circular integrating detectors.
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Figure 2.6. Result of reconstruction with partial data using R = 1, and
r = 2 (Large radius detector model). This reconstruction was for θ ∈
(−π/2, 0). Shown in the figure are the set on which data is collected as
well as some representative circular integrating detectors.

2.6 Conclusion and Future Work

We’ve shown in the 2D case that measured data

Mf(t, θ) =
1

2π

∫ 2π

0

u(t, r cos(α) +R cos(θ), r sin(α) +R sin(θ)) dα

can be used to reconstruct f uniquely, up to a smooth error. We showed this for

partial data in the small radius detector case, and for full data in the large radius

detector case. We’ve also shown stability of the measurement operator for both the

large and small radius case and provided numerical evidence of these findings in both

the large and small radius detector cases. In [36], the 3D case of circular integrating
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detectors in a cylindrical stack (in both the large and small radius cases) is considered.

Microlocally, this problem will be fundamentally different from the 2D analysis a few

ways. For one, it is clear that not all microlocal singularities will be detected, even

if the cylinder has infinite height and the wave speed is constant. This is because

singularities leaving Ω vertically will never intersect a detector. Second, in the more

practical case of a cylindrical stack of finite height, singularities may leave Ω that do

not intersect the cylinder, even if they do not leave Ω vertically. These challenges will

be addressed in further work.
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3. Sampling in Thermoacoustic Tomography1

3.1 Introduction

This work builds on the theory laid out in [27] on sampling Fourier Integral Op-

erators (FIOs). We discuss the specific application of Thermoacoustic Tomography,

in which case the measurement operator M is an FIO under suitable conditions. We

discuss the theoretical resolution of f given the sampling rate of Mf and then discuss

aliasing and averaged data. Lastly we will show empirical evidence of our findings

using numerical simulations.

The experimental set up with regards to thermoacoustic tomography will be

largely the same as in 2, with the exception that the measurement operator M :

C∞0 (Ω)→ C∞(0)((0, T )× Γ) will simply be defined by

Mf(t, y) = u(t, y), (t, y) ∈ (0, T )× Γ,

where u(t, x) solves the acoustic wave equation (2.1). Note that the measurements

are simply the solution to the wave equation at the boundary instead of the circu-

lar integrating detector set up from the previous chapter. We note that the space

C∞(0)((0, T )×Γ) is the space of smooth functions φ on (0, T )×Γ such that φ(t, y) = 0

near t = 0.

1This chapter has been submitted to appear in the Journal of Inverse and Ill-Posed Problems



42

3.1.1 M as an FIO

To obtain an oscillatory integral representation of M , we may use the geometric

optics construction to solve for u(t, x) in (0, T )×Rn up to a smooth error (see [28,32]

for more details). This construction leads to the representation

u(t, x) =
1

(2π)n

∑
σ=±

∫
eiφσ(t,x,ξ)aσ(t, x, ξ)f̂(ξ) dξ,

where φσ are solutions to the eikonal equation (∂tφσ)2 = c2(x)|∇xφσ|2g0
with initial

conditions φσ(0, x, ξ) = x · ξ. Note that solutions to the eikonal equation are local in

nature, and so this representation of u(t, x) is only valid until some time T1. However,

we may then solve (2.1) with “initial” conditions ũ(0, x) = u(T1, x) and ∂tũ(t, x) |t=0=

∂tu(t, x) |t=T1 using the same geometric optics construction. In this way, we can obtain

an “approximate” solution to (2.1) for all (t, x). Note by approximate, we mean up

to a smooth error term. This error term could be quite large in the L∞ sense, but

because it is a smooth term, it is negligible in the calculus of FIOs. It can be shown

that M = M+ + M− is a sum of elliptic FIOs of order 0 associated with locally

diffeomorphic canonical relations that are each (locally) one-to-one mappings (see

i.e. [27, 28]). We record the canonical relations C+ and C− here for later use:

C± : (x, ξ) 7→
(
s±(x, ξ), γx,ξ(s±(x, ξ)),∓|ξ|g, γ̇′x,ξ(s±(x, ξ))

)
. (3.1)

Here, we have s±(x, ξ) is the exit time of the geodesic starting at x in the direction

±g−1ξ, γx,ξ(t) is the point on the geodesic issued from (x, ξ) at time t and γ̇′x,ξ(t) is

the orthogonal (in the metric) projection of γ̇x,ξ(t) onto T∂Ω (the tangent bundle of

the boundary of Ω, so implicitly, we assume that ∂Ω is a at least a C1 manifold). We

assume that the metric induced by g := c−2(x)g0 is non trapping, so that |s±(x, ξ)| <

∞ for all (x, ξ) ∈ T ∗Ω. Note that because each of the canonical relations C+ and C−

are one-to-one, the full canonical relation of the FIO M given by C = C+∪C− is one-

to-two, which makes intuitive sense as singularities split and travel along geodesics

according to propagation of singularities theory.
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3.2 Preliminary definitions and theorems

3.2.1 Semiclassical analysis

The main definitions and theorems of semiclassical analysis and sampling that we

use come from [27, 38]. For a more complete background on semiclassical analysis,

see [38]. Also, for sampling theory relating the thermoacoustic tomography in the

case of a constant speed, we refer the reader to [11]. In sampling the measurement

operator Mf , we are interested in how the sampling rates affect our ability to resolve

singularities with high frequency. To model this, we will rescale co-vectors ξ by a

factor of 1/h where h is a small parameter. We then examine families of functions (or

distributions) fh that satisfy certain growth conditions as h becomes small. Because

of this, instead of considering the classical wave front set of a distribution, we consider

the semiclassical wave front set, denoted WFh(f). Note that f is understood here

to be a family of functions fh depending on the parameter h, but we will drop this

subscript when it will not cause confusion. A key tool in analyzing the behavior of the

measurement operator M will be the semiclassical Fourier Transform, defined below.

Definition 3.2.1 (Semiclassical Fourier Transform) The semiclassical Fourier

transform of an h-dependent family of distributions is defined as

Fhfh(ξ) =

∫
e−ix·ξ/hfh(x) dx.

If we denote the classical Fourier Transform by F , then we have

Fhfh(ξ) = Ffh
(
ξ

h

)
.

Much like in classical analysis, we can use the semiclassical Fourier transform to define

Sobolev norms on certain classes of functions or distributions.

Definition 3.2.2 (h-Tempered family of distributions) The h-dependent fam-

ily fh of distributions in S ′ is said to be h-tempered if

‖fh‖2
Hs
h

:= (2πh)−n
∫
〈ξ〉2s |Fhf(ξ)|2 dξ

is such that ‖fh‖Hs
h

= O(h−N) for some s and N . Here, we have 〈ξ〉 =
√

1 + |ξ|2.
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Another key tool we will use is the idea of the semiclassical wave front set of an

h-dependent family of distributions.

Definition 3.2.3 (Semiclassical Wave Front Set) The semiclassical wave front

set WFh(fh) of the h-tempered family fh is defined to be the complement of the set of

(x0, ξ0) ∈ R2n such that there exists φ ∈ C∞0 (Rn) with φ(x0) 6= 0 so that

Fh(φfh) = O(h∞) (in L∞)

for ξ in a neighborhood of ξ0.

This set plays a similar role as the classical wave front set from microlocal analysis,

however in general there is no sort of inclusion between these two sets. As an example

[38], the coherent state

fh(x) = e−|x−x0|2/(2h)eix·ξ0/h,

has an empty wave front set in the classical sense, as it is a smooth function in both

x and ξ, however its semiclassical wave front set is WFh(fh) = {(x0, ξ0)}. Note also

that the zero section is allowed to be a part of the semiclassical wave front set, unlike

in the classical case. Also, we do not require the semiclassical wave front set to be a

conic set, which is another way that this set differs from the classical wave front set.

We call elements of WFh(fh) singularities.

Definition 3.2.4 (h-ΨDO) We will use the standard quantization to define semi-

classical pseudodifferential operators. Fix m and k ∈ R and let a(x, ξ) ∈ C∞(R2n)

satisfy the following: For every α and β multi-indices and every compact set K ⊂ Rn

there exists some Cα,β,K > 0 such that

|Dα
xD

β
ξ a(x, ξ)| ≤ Cα,β,Kh

k〈ξ〉m

for all x ∈ K and ξ ∈ Rn. We then say a(x, ξ) is a semiclassical symbol of order

≤ m. Then we define the semiclassical pseudodifferential operator a(x, hD) by

a(x, hD)f(x) := (2πh)−n
∫∫

R2n

ei(x−y)·ξ/ha(x, ξ)f(y) dy dξ.
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Definition 3.2.5 (Localization in phase space) The h-tempered family fh is said

to be localized in phase space if for every N ∈ N, there exists some ψ ∈ C∞0 (R2n) and

some h0 > 0 and CN > 0, such that for 0 < h ≤ h0

sup
x∈Rn
|xα∂βx (Id− ψ(x, hD)) fh| ≤ CNh

N

for all multi-indices α and β. In other words,

pα,β((Id− φ(x, hD))fh) ≤ CNh
N

for every seminorm pα,β on S(Rn). We then say (Id− φ(x, hD))fh = OS(h∞).

Note that because the functions we work with are semiclassically band limited (see

definition 3.2.7), that all functions we work with can be assumed to be localized in

phase space unless otherwise stated.

Definition 3.2.6 (Semiclassical Frequency Set) For each tempered h-dependent

distribution fh localized in phase space, set

Σh(fh) = {ξ | (x, ξ) ∈WFh(fh) for some x ∈ Rn} .

This is simply the projection of WFh(fh) onto the second variable.

Definition 3.2.7 (Semiclassically Band Limited Functions) We say that fh ∈

C∞0 (Rn) is semiclassically band limited (in B) if

1. supp fh is contained in an h-independent set,

2. fh is tempered,

3. there exists a compact set B ⊂ Rn such that for every open U ⊃ B, we have for

every N there exists CN such that

|Fhfh(ξ)| ≤ CNh
N〈ξ〉−N for ξ 6∈ U.

Semiclassically band limited functions are those functions that can be recon-

structed up to a smooth error from their samples, much like the band limited func-

tions are those that can be perfectly reconstructed from their samples in the classical

Nyquist Sampling theorem given a small enough sampling rate [19].
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3.2.2 Sampling

The main theorem used in [27] is the following:

Theorem 3.2.1 Assume that Ω ⊂ Rn, B ⊂ Rn are open and bounded. Let fh ∈

C∞0 (Ω) satisfy

‖(Id− ψ(x, hD))fh‖Hm
h

= O(h∞)‖fh‖Hm
h
, ∀m� 0, (3.2)

for some ψ ∈ C∞0 (R2n) such that suppξψ ⊂ B. Let χ̂ ∈ L∞(Rn) be such that supp χ̂ ⊂

B and χ̂ = 1 near suppξψ.

Assume that W is an invertible matrix so that the images of B under the transla-

tions ξ 7→ ξ + 2π(W ∗)−1k, k ∈ Zn, are mutually disjoint. Then for every s ∈ (0, 1],

fh(x) = | detW |
∑
k∈Zn

fh(shWk)χ
( π
sh

(x− shWk)
)

+OHm
h

(h∞)‖fh‖Hm
h
, (3.3)

for every m ≥ 0, and

‖fh‖2
Hm
h

= | detW |(sh)n
∑
k∈Zn
|fh(shWk)|2 +O(h∞)‖f‖2

Hm
h
. (3.4)

The proof of this theorem essentially follows from the classical Nyquist sampling

theorem and can be found in [24, 27]. For all applications in this paper, we take the

matrix W above to be the identity matrix.

We also make use of the following corollary, found in [27]:

Corollary 3.2.2 Let fh be semiclassically band limited with Σh(f) ⊂
∏

(−Bj, Bj)

for some Bj > 0. Let χ̂j ∈ L∞(R) be supported in [−1, 1]n and χ̂j(ξj/Bj) = π for

ξ ∈ Σh(f). If 0 < sj ≤ π/Bj, then

fh(x) =
∑
k∈Zn

fh(s1hk1, . . . , snhkn)
∏
j

χj

(
π

sjh
(x− sjhk)

)
+OS(h∞).

The key take away of this corollary is that if sj ≤ π/Bj, then fh will be accurately

reconstructed from samples up to a small error. Finally, we make heavy use of the

following theorem which relates how classical FIOs effect semiclassical wavefront sets

from [27], where the reader can find the proof.
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Theorem 3.2.3 Let A be an FIO in the class Im(Rn2 ,Rn1 ,Λ) where Λ ⊂ T ∗(Rn1 ×

Rn2) \ 0 is a Lagrangian manifold and m ∈ R. Then for every fh localized in phase

space,

WFh(Af) \ 0 ⊂ C ◦WFh(f) \ 0, (3.5)

where C = Λ′ is the canonical relation of A.

This theorem shows how classical FIOs affect the semiclassical wavefront set away

from the zero section. In particular, the semiclassical wavefront set of Af away from

the zero section transforms in the same way the classical wavefront set does: it is

transformed by the canonical relation associated with A. The main assertion in [27]

is that the sampling requirements of Mf given WF(f) are determined by C, the

canonical relation associated with Mf .

3.3 Resolution limit of f given sampling rate of Mf

Suppose we wish to sample the Mf at some fixed sampling rates st and syj . Here

we don’t assume that we know any information about Σh(f), we only wish to see how

fixing a sampling rate on Mf affects our ability to resolve singularities of f . Avoiding

aliasing of Mf is equivalent to (by Corollary 3.2.2)

(τ, η) ∈ Σh(Mf) =⇒ |τ | ≤ π

st
, |ηj| ≤

π

syj
,

where τ is the dual variable to t, and η is the dual variable to y, with ηj the jth

component of η. Note that the norms |τ | and |η| are taken in the corresponding

metric. In particular, |η| is taken in the induced norm on the tangent space to the

boundary, which we’ll call g0,∂Ω. We may use the canonical relation (3.1) C associated

with M to write the inequalities above as

|ξ|g =

√
c2gij0 ξiξj ≤

π

st
, |γ̇′x,ξ(s±(x, ξ))j|g0,∂Ω

≤ π

syj
.

From this we can see that we have that avoiding aliasing is equivalent to

c(x)|ξ|g0 ≤
π

st
, |γ̇′x,ξ(s±(x, ξ))j|g0,∂Ω

≤ π

syj
(3.6)
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For most of the paper, we will assume that g0 is Euclidean, although more general

results hold.

3.3.1 The effect of st on resolution

Consider the first inequality in (3.6) and assume that syj is taken small enough so

as to not effect resolution of singularities of f . The first inequality indicates that the

sampling rate st imposes a limit on the resolution of f such that for fixed x, there

will be higher resolution of singularities of f at points (x, ξ) where the wave speed

c(x) is slower, and likewise the resolution will be worse at those points (x, ξ) where

the wave speed is faster. In particular, given the relative sampling rate st, we cannot

resolve singularities at x with frequency greater than

|ξ| = π

c(x)st
.

This is a local result. A global estimate for the maximum frequency of a singularity

that is guaranteed to be resolved anywhere given the sampling rate st is given by

|ξ| = π

cmaxst
. (3.7)

This is illustrated in Figures 3.1 and 3.2 below.

A note on figures

All numerical examples before Figure 3.11 were constructed with an initial image

on a 800 × 800 grid in a computational window representing the square [−4, 4]2.

This gives a value of ∆x = 8/800 = 0.01 before any sort of undersampling occurs.

Additionally, the initial image in most figures is composed of either sums of coherent
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states, or simply cosine functions multiplied by a smooth cutoff function. The wave

speed is taken to be one of the following:

c(x, y) ≡ 1 (Constant speed case)

c(x, y) = 1− 0.5e−
((x+1)2+y2)

2

0.25 (Slow speed case)

c(x, y) = 1 + 0.5e−
((x+1)2+y2)

2

0.25 (Fast speed case),

with the exception of Figure 3.3, where the speed is c(x, y) = 1+0.5 exp(−((x−1)2 +

(y + 0.5)2)2)/0.25). In the first and second cases, we take ∆t = ∆x/
√

2 ≈ 0.0071,

which ensures when we solve the wave equation, the CFL condition is satisfied for the

finite difference scheme we are using, which is the leap frog scheme, in combination

with the PML scheme found in [8]. In the third case, we take ∆t = ∆x/(1.5
√

2) ≈

0.00629, again to make sure that the CFL condition is satisfied. We take h = 0.02 in

Figures 3.1 through 3.10 . Also in all of the images before Figure 3.11, the maximum

(euclidean) length covector in the image is |ξ| = 1. We then solve the forward wave

equation in these examples collecting data on the boundary of the square [−2, 2]2

until T = 6 seconds in the constant and fast speed cases, and until T = 12 seconds

in the slow speed case. The values of ∆t and ∆x have been chosen so that there is

guaranteed to be no aliasing in the collected data before we simulate undersampling.

We then simulate undersampling by taking every mth sample either in the space or

time variable, where m depends on the specific figure we look at and is specified in the

caption of the image. After simulating undersampling in this way, we resize the image

of the data to its orginal size using the lanczos3 option in the imresize function

of Matlab. We then use a time reversal reconstruction to arrive at our reconstructed

image with aliasing. Depending on the particular image, we may calculate sy and st

explicitly, which then allows us to compute where the aliasing artifacts will be in the

image by using the canonical relations. For example, in Figure 3.6, we undersample

by taking every 6th time sample and then resize the image back to it’s original size.

This gives st ≈ 4.7059 and π/st ≈ 0.6676. Using this, we can calculate where a pair
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(x, ξ) will be mapped under the canonical relation associated with the measurement

operator composed with the shift operator.

For Figures 3.11 through 3.15, photo credit for the zebra image used in these

figures is given by: “Mountain Zebra (Equus zebra)” by berniedup is licensed under

CC BY-SA 2.0. We first cropped the original image (which was 1023 × 616) to a

size of 500 × 500. We sample on a finer grid in these examples, 1200 × 1200. From

there we resized the image so that in our 1200× 1200 grid, the image would lie in the

square [−1.9, 1.9]2. Lastly. we multiplied by a smooth cutoff function to smooth the

edges of the image. This is to avoid aliasing artifacts that come from the image edge

instead of the image itself when we collect and undersample data. We solve the wave

equation using constant speed c(x, y) = 1, and collect data on the boundary of the

square [−2, 2]2 as in all other examples. We then simulate undersampling by taking

either every 20th space sample or every 12th time sample, and then resize the image

back to its original size, again using the lanczos3 option in the imresize function of

Matlab. In Figure 15, we then average the data in the space variable using a gaussian

image filter to mitigate the effects of undersampling. We then use time reversal to

arrive at an image reconstruction of the original image, having aliasing artifacts that

are described by the theory in this paper.

3.3.2 The effect of syj on resolution

Assume now that st is chosen small enough so as to not effect resolution of singu-

larities of f . The second inequality in (3.6)

|γ̇′x,ξ(s±(x, ξ))j|g0,∂Ω
≤ π

syj
,

tells us that the sampling rate syj imposes a limit on the resolution of f such that

singularities (x, ξ) that intersect the boundary ∂Ω nearly perpendicularly will have

higher resolution than those that hit the boundary nearly tangentially (at a large

angle to the normal vector to ∂Ω at the point of intersection). Also, because |γ̇x,ξ(t)|g
is constant along the geodesic γx,ξ, we know in particular that |γ̇′x,ξ(s±(x, ξ))j|g0,∂Ω

≤
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Original Image Time reversal
reconstruction

Wave speed with
fast spot

−2
−2

2

2
−2
−2

2

2
−2
−2

2

2

Figure 3.1. Resolution of f given a fixed sampling rate st of Mf(t, y).
The wave speed here c(x, y) = 1 + 0.5 exp(−((x + 1)2 + y2)2/0.25) has
a fast spot centered at x = −1. We can see that this is precisely where
the reconstruction of f has poor resolution when under sampled in the t
variable, as explained above. Undersampling is simulated by taking every
7th time sample, and then resizing the image of the data to its original
size.

|γ̇′x,ξ(s±(x, ξ))|g0,∂Ω
= |ξ|g cos(θ) where θ is the angle (in the metric) between γ̇x,ξ(s±(x, ξ))

and γ̇′x,ξ(s±(x, ξ)). This tells us that to avoid aliasing, we must have

|ξ|g cos(θ) ≤ π

syj
.

We recall that |ξ|2g = c2(x)gij0 ξiξj, and in the case that g0 is Euclidean, we get

c(x)|ξ| cos(θ) ≤ π

syj
.

For a fixed relative sampling rate syj , we cannot resolve singularities (x, ξ) of f of

frequency greater than

|ξ| = π

syjc(x) cos(θ)
.

Note in particular that if θ = π
2

(i.e. the geodesic γx,ξ hits the boundary ∂Ω per-

pendicularly), then c(x)|ξ| cos(θ) = 0 < π/syj , and we will always be able to resolve

the singularity at (x, ξ). Also note that this is a local result, and as is the case for

st “slow spots” in the speed c(x) give better resolution of singularities in general.
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Original Image Time reversal
reconstruction

Wave speed with
slow spot
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Figure 3.2. Resolution of f given a fixed sampling rate st of Mf(t, y).
The wave speed here c(x, y) = 1 − 0.5 exp(−((x + 1)2 + y2)2/0.25) has a
slow spot centered at x = −1. We can see that this is precisely where the
reconstruction of f has the best resolution when under sampled in the t
variable, as explained above. Undersampling is simulated by taking every
7th time sample.

Because c(x) ≤ cmax, we also get the following estimate for the maximum frequency

of a resolvable singularity, regardless of location:

|ξ| = π

cmaxsyj cos(θ)
.

Finally, because 0 < θ ≤ π/2, we know 0 ≤ cos(θ) < 1, and we have the following

(worst case) global estimate for the maximum frequency of a singularity of f that can

be resolved:

|ξ| = π

cmaxsyj
. (3.8)

We note that if one wants to be able to resolve singularities of f with frequency

K, then by considering (3.7) and (3.8), the sampling rates st and syj of Mf should

be taken to be at least

st = syj ≤
π

Kcmax

,
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where cmax is defined as before. In particular, we recover the result from [27] that for a

semiclassically band limited fh with essential maximum frequency B in the Euclidean

case that we need to take sampling rates of Mf satisfying

st ≤
π

Bcmax

, syj ≤
π

Bcmax

,

to avoid aliasing. These effects are shown in Figure 3.3.

3.3.3 CFL condition

We can relate this analysis to numerical solvers of the wave equation. When

solving the wave equation numerically, a typical approach is to discretize the space

and time domain, and use a finite difference scheme. Suppose we wish to simulate

an experiment using a rectangular grid in the space coordinates and we collect data

on the boundary of a square. Further, we assume that g0 is Euclidean, and because

the boundary is a rectangle, also the metric induced on the boundary is Euclidean.

Suppose we have fixed each sxj = ∆xj/h ≤ π/(Bcmax) with a common value sx =

∆x/h, where B is the essential band limit on f , i.e. Σh(f) ⊂ [−B,B]n. Note that by

our choice of sx, there will not be aliasing of Mf , provided st is chosen well, as on

the boundary in this rectangular grid, we have sy = sx, where all of the syj as above

have a common fixed step size sy. In order to choose st, we recall that the frequency

set Σh(Mf) is contained in the set {(τ, η) | |η| ≤ |τ |}. Because f has a semiclassical

band limit of B, we know that π2(Σh(Mf)) ⊂ {|η| ≤
√
nBcmax}, where π2 is the

projection onto the second factor. We know this because each |ηj| ≤ Bcmax. Also,

by the analysis above, we know that |τ | = |ξ|g, but |ξ|g ≤ max |ξ|cmax. We also know

that max |ξ| <
√
nB, so that the largest possible size of |τ | given the band limit on

f , is
√
nBcmax. It is then clear that we need st ≤ π/(

√
nBcmax)) to avoid aliasing.

This tells us that we should take ∆t ≤ πh/(
√
nBcmax) = ∆x/

√
n. Now, the CFL

condition for the leapfrog finite difference scheme ( [1,4,31]) tells us that given a step

size ∆x and wave speed c(x), that we should take the time step ∆t ≤ ∆x/(
√
ncmax) to

ensure stability of the finite difference scheme. But ∆x/(
√
ncmax) ≤ ∆x/

√
n, because
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cmax ≥ 1. This means, that if we’ve chosen ∆x ≤ πh/(Bcmax), and we choose ∆t

satisfying the CFL condition for the leapfrog finite difference scheme, then there will

be no aliasing in the measured data Mf at the boundary. Also, if cmax = 1, then the

CFL condition is identical to the conditions on ∆x and ∆t required to avoid aliasing

of the measured data Mf . This only holds however when the CFL condition is as

above, and this is not the case in all numerical schemes.

Original Image Time reversal
reconstruction

Wave speed with
fast spot

−2
−2

2

2
−2
−2

2

2
−2
−2

2

2

Figure 3.3. Resolution of f given a fixed sampling rate syj of the space
variables on the boundary ∂Ω. We can see that the blurring effect is
roughly uniform for points near the fast spot in the wave speed c(x, y) =
1+0.5 exp(−((x−1)2 +(y+0.5)2)2)/0.25), but that there are singularities
in the region where c ≈ 1 far from the fast spot that are also highly
affected. These singularities hit the boundary with a larger angle to the
outward pointing normal vector, and so we expect lower resolution there.
Undersampling is simulated by taking every 12th space sample.

3.4 Aliasing and artifacts

Now suppose that we know that fh is a semiclassically band limited function with

essential band limit B, so that Σh(f) ⊂ [−B,B]n. In order to avoid of Mfh, as

mentioned above, we need

c(x)|ξ|g0 ≤
π

st
|γ̇′x,ξ(s±(x, ξ))j|g0,∂Ω

≤ π

syj
.
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We know that |ξ| ≤ B. We also saw above that |γ̇′x,ξ(s±(x, ξ))j|g0,∂Ω
≤ |ξ|g cos(θ) ≤

c(x)|ξ|g0 . Letting g0 be Euclidean (again, more general results hold), so that |ξ|g0 =

|ξ|, we see that c(x)|ξ| ≤ cmaxB, so, given the band limit B on Σh(f), we are guaran-

teed to avoid aliasing if

st ≤
π

Bcmax

, syj ≤
π

Bcmax

.

3.4.1 Under sampling in t

Suppose that we have chosen st such that st >
π

Bcmax
. Then, by [27] there will

be aliasing of Mf . The error in the reconstruction can be modeled by the frequency

shift operator

Sk : τ → τ +
2πk

st
.

This operator is valid as long as τ + 2πk/st ∈ [−π/st, π/st] (see Figure 3.4 (right)).

If we have not under sampled Mf too critically in the t variable, we would expect to

η

τ

η

τ
BSk

- π
st

π
st

Figure 3.4. The characteristic cone in which Σh(Mf) must lie. The cone
on the left shows the possible range of the covector (η, τ) which is deter-
mined by the canonical relation associated with M . The image on the
right shows the possible range of covectors (η, τ) after under sampling (in
t). Note that the red regions have been shifted up and down from the
original frequency set by translation due to under sampling.

only see this added error for k = −1, 1, with more terms added as the under sampling
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becomes worse. As explained in [27], by Egorov’s Theorem, we expect to see artifacts

in a reconstruction of f that can be calculated by the canonical relation

C−1 ◦ Sk ◦ C : (x, ξ)→ (x̃, ξ̃),

where x̃ and ξ̃ can be calculated by finding the operator on the left, and C = C+∪C−
as in (3.1). Note that because

C±(x, ξ) = (s±(x, ξ), γx,ξ(s±(x, ξ)),∓|ξ|g, |γ̇′x,ξ(s±(x, ξ))|),

that the sign of τ = ∓|ξ|g plays an important role when we apply the inverse canonical

transformation. We now calculate C−1 ◦ Sk ◦ C for C+ (We just write C−1 instead

of C−1
+ , as the inverse canonical relation that we apply will depend on the sign of

−|ξ|g + 2πk/st):

C−1 ◦ Sk ◦ C+(x, ξ) = C−1 ◦ Sk(s+(x, ξ), γx,ξ(s+(x, ξ)),−|ξ|g, γ̇′x,ξ(s+(x, ξ)))

= C−1(s+(x, ξ), γx,ξ(s+(x, ξ)),−|ξ|g +
2πk

st
, γ̇′x,ξ(s+(x, ξ)))

= (γy,−ζ(s+(x, ξ)),−γ̇y,−ζ(s+(x, ξ))) ,

where y = γx,ξ(s+(x, ξ)) is the point of intersection of the geodesic issued from (x, ξ)

with ∂Ω, and ζ = γ̇′x,ξ(s+(x, ξ))+βkη
⊥ where βk = ±

√
(|ξ|g − 2πk/st)2 − |γ̇′x,ξ(s+(x, ξ))|2,

where we choose the sign of βk that matches the sign of |ξ|g − 2πk/st, and

η⊥ =
γ̇x,ξ(s+(x, ξ))− γ̇′x,ξ(s+(x, ξ))

|γ̇x,ξ(s+(x, ξ))− γ̇′x,ξ(s+(x, ξ))|
.

Aliasing artifacts are found using this mapping in Figures 3.5 and 3.6 below. The

mapping C−1 ◦ Sk ◦ C− is calculated in almost an identical fashion, however we have

a change in sign in the τ variable.

We include a more complicated image reconstruction in Figure 3.12 along with

the collected data in Figure 3.13.

3.4.2 Under sampling in y

Now suppose that we have under sampled the y variable, i.e. we have chosen

syj >
π

Bcmax
for some j = 1, . . . , n. Then again, we will have aliasing and the error in
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Original Image Reconstructed Image

Figure 3.5. Tracing the aliasing artifacts by using geodesics. We have used
the constant wave speed c ≡ 1 for this example. Here we have under sam-
pled in t and show the image of the singularity (x, ξ) under the canonical
relations given by C−1

± ◦ S1 ◦C±. Note that the low frequency singularity
does not cause artifact, but the high frequency singularity vanishes in the
reconstruction and causes aliasing artifacts. Undersampling is simulated
by taking every 12th time sample.

the reconstruction will involve the frequency shift operator, but now Sk will act on

ηj as

Sk : ηj 7→ ηj +
2πk

syj
.

This operator is valid as long as ηj + 2πk
s
yj
∈ [−π/syj , π/syj ]. The canonical relation of

the h-FIO (see [20] or [9] for details and definitions regarding h-FIOs) that operates

on Mf as a reconstruction of f will then be given by (again, we only consider C+

here)

C−1
+ ◦ Sk ◦ C+(x, ξ) = C−1

+ (s+(x, ξ), γx,ξ(s+(x, ξ)),−|ξ|g, γ̇′x,ξ(s+(x, ξ)) +
2πk

syj
ej),

where ej is the unit vector in the yj direction. Note that because the shift operator

here does not affect the sign of τ = −|ξ|g, that we would not expect to see artifacts

coming from the “mixed” canonical relations C−1
∓ ◦ Sk ◦C±, as we do in the previous
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Original Image Reconstructed Image

Figure 3.6. Artifacts in a reconstructed image with Mf under sam-
pled in time variable and a variable wave speed of c(x, y) = 1 −

0.5 exp(−((x+1)2+y2)
2

0.25
). We trace the geodesics to find the image of (x, ξ)

under the map C± ◦ Sk ◦ C± as explained above. Undersampling is simu-
lated by taking every 12th time sample.

case of undersampling in the time variable. Also note that, in particular, the form of

C−1
+ ◦ Sk ◦ C+ implies that the artifacts will have the same frequency as that of the

original image, but perhaps with a space shift. Also, because this operator is valid as

long as ηj + 2πk/syj ∈ [−π/syj , π/syj ], if the geodesic emanating from (x, ξ) hits the

boundary ∂Ω perpendicularly, then the point (x, ξ) will be unaffected by this shift in

the reconstruction, i.e. there will be no artifacts that come from (x, ξ). This is true

because if the geodesic emanating from (x, ξ) hits ∂Ω perpendicularly, then ηj = 0

and 2πk/syj 6∈ [−π/syj , π/syj ] for any k 6= 0. Finding these artifacts in practice

follows in much the same way as finding where artifacts occur for under sampling in

the time variable. We illustrate this for the constant speed, Euclidean case in Figure

3.7 and see Figure 3.8 for the variable speed case.

We again include a more complicated image reconstruction in Figure 3.14 along

with the collected data in Figure 3.15.
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Original Image Reconstructed Image

(x, ξ) (x, ξ)

(x̃, ξ̃)

Figure 3.7. Artifacts in a reconstructed image with Mf under sampled in
space variables. Here we take c ≡ 1. Specifically, Mf here was under sam-
pled on the left and right edges of the square. We simulate undersampling
by taking every 15th space sample. Note that there is no artifact in the
reconstructed image coming from the pattern in the upper right corner
of the square, because singularities from this pattern hit the boundary of
the square perpendicularly. Note also that the original singularity still
remains with half its amplitude because we did not under sample along
the bottom edge of the square.

3.5 Averaged data

Suppose that the collected data Mf(t, y) has been averaged in the t or y variables

for some reason (in practice this can be done to try to avoid aliasing, or in an attempt

to reduce the noise in data). This can be modeled in a few ways, including taking

a convolution φh ∗Mf with a smooth function φh = hnφ(·/h) that decreases away

from the origin to 0. To model localized averaging however, we will consider data of

the form QhMf(t, y), where Qh is an h-ΨDO with a principal symbol of the form

q0(t, y, τ, η) = ψ(a|τ |2 + b|η|2) where ψ ∈ C∞0 (R) is decreasing. The effect of Qh is

to limit WFh(Mf), which will in principle remove the high frequency singularities of

Mf which will have a smoothing effect. From [27], we know that because M is a FIO
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Original Image Reconstructed Image

Figure 3.8. Artifacts in a reconstructed image with Mf under sam-
pled in space variables and a variable wave speed of c(x, y) = 1 −

0.5 exp(−((x+1)2+y2)
2

0.25
). Specifically, Mf here was under sampled on the

top and bottom edges of the square. The artifacts in the reconstruction
have the same frequency as the original, but with a space shift due to
under sampling. We simulate heavy undersampling by taking only every
30th space sample.

associated with the canonical map C = C+ ∪ C−, that the composition QhMf can

be written

QhMf = MPhf +O(h∞)f,

where Ph is a h-ΨDO with principal symbol p0 = q0 ◦ C where q0 is the principal

symbol of Qh. So, for Qh, q0, we may calculate

p0(x, ξ) =
1

2
(q0 ◦ C+(x, ξ) + q0 ◦ C−(x, ξ))

=
1

2

(
ψ(a|ξ|2g + b|γ̇′x,ξ(s+(x, ξ))|2g0,∂Ω

) + ψ(a|ξ|2g + b|γ̇′x,ξ(s−(x, ξ))|2g0,∂Ω
)
)
.

Suppose we only average the time data in Mf(t, y). This corresponds to taking

b = 0 above to give p0(x, ξ) = ψ(a|ξ|2g). This symbol takes its minimum values where

|ξ|2g = c2(x)gij0 ξiξj is maximized. Assuming for a moment that g0 is Euclidean, this

means that we expect more blurring at points (x, ξ) where the wave speed is “fast”.
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Additionally, we expect singularities (x, ξ) with large frequencies |ξ| to be blurred

more than smaller frequencies where the wave speed is the same. These effects can

both be seen in Figure 3.9.

Original Image Wave speed with

fast spot

Reconstructed image with

data averaged in t variable.

Figure 3.9. Reconstructed image from data that has been averaged in
time variable by applying a 1D gaussian image filter to the t data. We
can see that the reconstructed image is most blurred at the points where
the speed c(x) is fast, and there is less blurring where c(x) = 1.

Suppose now that we only average data in the spatial variable y. This corresponds

to taking a = 0 above and we get the principle symbol of p0 to be

p0(x, ξ) =
1

2

(
ψ(b|γ̇′x,ξ(s+(x, ξ))|2) + ψ(b|γ̇′x,ξ(s−(x, ξ))|2)

)
.

Here the norm is the induced norm on the boundary, which we have noted in this pa-

per as g0,∂Ω. This symbol takes its smallest values when |γ̇′x,ξ(s±(x, ξ))|2 is large,

i.e. when the geodesic issued from (x, ξ) intersects the boundary ∂Ω at a large

angle. In addition, we expect singularities that hit the boundary ∂Ω perpendicu-

larly to be affected far less by averaging of data in the y variable. In addition,

because |γ̇′x,ξ(s±(x, ξ))|2 = |ξ|2g cos2(θ±) where θ± is the angle between γ̇′x,ξ(s±(x, ξ))

and γ̇x,ξ(s±(x, ξ)) we expect to see more blurring at points with faster speeds or higher

frequency. For constant speeds c, the effect of averaging data in t is uniform in Ω,

but the effect is local for averaging in y, due to the blurring depending on the angle
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of intersection made by geodesics. In addition, with a variable speed singularities in

“slow spots” of c will have higher resolution when blurring Mf(t, y) in the y-data,

but their resolution will still depend on how geodesics hit the boundary. The result

is a roughly uniform blurring in fast spots of c, and local blurring elsewhere in the

image depending on the geometry determined by c−2g0. This can be seen in Figure

3.10 below.

Original Image Wave speed with

fast spot

Reconstructed image with

data averaged in y variable.

Figure 3.10. Reconstructed image from data that has been averaged in
space variable by applying a 1D gaussian image filter to the y data. We can
see from the drawn in geodesics, that singularities that hit the boundary
at a larger angle to the normal vector to the boundary are blurred more
in the reconstructed image after averaging the collected data. Meanwhile,
those singularities that hit the boundary nearly perpendicularly are largely
unaffected by the averaging of the data, at least on one side.

3.6 Anti-aliasing

We can use the above discussion to propose an anti-aliasing scheme. Averaging

the measured data Mf(t, y) in the space variable can be accomplished in practice in

many ways, whether by using small averaging detectors, or by vibrating the boundary

∂Ω where we are taking pointwise measurements. We know then that this can be

modeled by applying the h-ΨDO Qh to Mf where is as in the previous section. This
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then allows us to say that QhMf(t, y) = MPhf(t, y) + O(h∞)f . In other words, by

averaging the data in y, we measure Phf(x, ξ), where Ph is an h-ΨDO with principle

symbol p0(x, ξ) = q0 ◦ C(x, ξ) and C is the canonical relation of M , plus some error

term with low order frequencies. We then expect that if we average Mf(t, y) in the

y variable before sampling, this should remove some of the shifting aliasing artifacts

that appear when Mf(t, y) has been under sampled in y, perhaps at the cost of some

loss of resolution. See Figure 3.11 for an example of this anti-aliasing scheme in

action.

As a final note, we point out that under sampling in the time variable t can

cause data in F(Mf) to shift outside of the characteristic cone, and from this, one

should be able to recover some high frequency singularities from data Mf(t, y) under

sampled in t by shifting these singularities back out into the characteristic cone where

they necessarily originated (see Figure 3.4). However, we can only recover a small

fraction of the high frequency singularities in this way uniquely in special cases, and

in general we cannot recover the singularities without adding high frequency artifacts

to the reconstructed image.

Original Image Reconstruction from

undersampled y data

Reconstruction using

anti-aliasing scheme

Figure 3.11. Example showing anti-aliasing scheme in which we first av-
erage the data Mf(t, y) in the y variable and then sample this blurred
version given by QhMf(t, y) in the above notation. We can see that some
of the aliasing artifacts have been removed at the cost of some loss of
resolution.
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Original Image Reconstructed Image

(Undersampled in t)

Figure 3.12. Image of a zebra along with reconstruction from under sam-
pled (in t) data. The wave speed here is constant. High frequencies are
lost due to this under sampling and the result is a heavily blurred image
with aliasing artifacts.

Collected Data

(Top edge)

Undersampled

Data

F(Mf) F(Mf)

(undersampled)

Figure 3.13. Collected data and under sampled data in t along with
the associated Fourier transform data for the zebra image above. Note
that the high frequencies in F(Mf) have be shifted so that they are
approximately in the band −π/st < τ < π/st, which is what results in
the blurring in the reconstruction.
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Original Image Reconstructed Image

(Undersampled in y)

Figure 3.14. Image of a zebra along with reconstruction from under sam-
pled (in y) data. The wave speed here is constant. Note that the sin-
gularities that hit the boundary of the square nearly perpendicularly are
preserved, but there are also a lot of high frequency artifacts in the recon-
structed image.

Collected Data

(Top edge)

Undersampled

Data

F(Mf) F(Mf)

(undersampled)

Figure 3.15. Collected data and under sampled data in y along with
the associated Fourier transform data for the zebra image above. Under
sampling has resulted in the shifting of frequencies in F(Mf) so that
−π/syj < η < π/syj . This moves high frequencies but does not destroy
them, which is what causes the high frequency artifacts in the recon-
structed image above.
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4. Non-uniqueness in the region of interest problem for the

Radon transform

4.1 Introduction

The Radon transform is a classical integral transform that takes a function f ∈

S(Rn) and maps it to integrals over all n − 1 dimensional hyperplanes in Rn. This

transform was first studied by Johann Radon in 1917 in his paper [26]. It has since

then been used extensively in the applied sciences especially in medical imaging [5,22].

We can see one of these uses in the case of X-ray imaging, which uses a special instance

of the Radon transform. In the case that we want to recover the X-ray attenuation

f(x) ∈ S(R2) in some object, we have, by definition, X-rays travelling a small distance

∆x at x suffer an intensity loss of

∆I

I
= −f(x)∆x.

From this, it’s clear that if we send X-rays through this object with an initial intensity

I0 and measure the resulting intensity I1 (which depends on the direction that the

rays are sent) on the other side of the object, we would obtain

I1(L)∫
I0

dI

I
= −

∫
L

f(x) ds

⇒ I1(L)

I0

= exp

−∫
L

f(x) ds


where L is the line along which the X-rays travel. From this it’s clear that the mea-

surements involved are directly related to the Radon transform (which coincides with

the X-ray transform in n = 2 dimensions). Recovery of f(x) given the measurements

I1(L) then is motivation for studying the inverse Radon (and X-ray) transform. We
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are interested in determining when we can recover a local reconstruction of some

function f given information only about the hyperplanes that intersect some neigh-

borhood containing the support of f . This is the so called interior problem for the

Radon transform. It is of interest in medical imaging for instance, where one may

wish to obtain an image of only some region of interest inside the patient. Is it suf-

ficient to only know the Radon transform for hyperplanes intersecting the region of

interest to obtain an image of that region? We will show that in even dimensions,

this is not the case, but in odd dimensions, it is indeed sufficient to obtain an image

of the region of interest.

4.2 Background and definitions

4.2.1 Special functions

We will make use of a few special functions in what follows. Specifically, we will

use spherical harmonics and Gegenbauer polynomials. References for both of these

special functions can be found in Chapter 7 of [22].

Spherical Harmonics

Let Pl be the space of all polynomials on Rn, homogeneous of degree l. That is,

if p ∈ Pl, then for any λ ∈ R, we have

p(λx) = λlp(x).

Polynomials p ∈ Pl must have the form

p(x) =
∑
|α|=l

cαx
α,

where α is a multiindex. We then let Al ⊂ Pl be the subspace of Pl consisting of

polynomials that are homogeneous of order l that are also harmonic. Recall that a
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function f is called harmonic if ∆f = 0, where ∆ is the usual Laplacian operator on

Rn defined by

∆f =
n∑
j=1

∂2
j f.

For n = 1, the only homogeneous, harmonic polynomials are p0(x) ≡ C, where

C is a constant, and p1(x) = mx, where m is constant. For n = 2, the spaces Al

(l 6= 0) can always be spanned by 2 linearly independent functions, namely pl,1(x, y) =

rl cos(lθ) and pl,2(x, y) = rl sin(lθ) where x = r cos(θ) and y = r sin(θ). That these are

indeed polynomials in x and y can be seen by using trigonometric identities or basic

complex analysis. In higher dimensions, there are even more homogeneous harmonic

polynomials of degree l. Let Hl then be the space of functions defined on Sn−1 that

are obtained by those functions in Al by restricting x to the unit sphere. That is,

Hl = {φ | φ = p |Sn−1 where p ∈ Al}.

A function in Hl will be called a surface harmonic. It’s clear that Hl is a vector space

over C. The dimension of Hl is given by [30]

N(n, l) =

(
n+ l − 1

n− 1

)
−
(
n+ l − 3

n− 1

)
.

Further, Hl can be made into a Hilbert space with the usual inner product on Sn−1,

〈f, g〉 =

∫
Sn−1

fḡ dω.

So then, because we know that we can find N(n, l) linearly independent surface

harmonics in Hl, by the Gram-Schmidt orthogonalization procedure, we may say

that

Hl = span{Yl,k}N(n,l)
k=1 ,

where 〈Yl,k, Yl,k′〉 = 0 for k 6= k′. By construction, Yl,k are eigenfunctions for the

operator ∆Sn−1 , the Laplacian on the unit sphere. Because of this, we also have

〈Yl,k, Yl′,k′〉 = 0 for l 6= l′. These Yl,k will be called spherical harmonics of degree l

and order k.
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Gegenbauer polynomials

The other special functions we use are the Gegenbauer polynomials, denoted by

C
(n−2)/2
l (x). This is the normalized Gegenbauer polynomial of degree l. In general,

the Gegenbauer polynomials Cλ
l , (λ > −1/2) are defined in such a way as to be

orthogonal with respect to the inner product

〈f, g〉 =

∫ 1

−1

f(x)g(x)(1− x2)λ−1/2 dx.

They are normalized by requiring Cλ
l (1) = 1 (this is not a standard normalization,

and is specific to [22]). Some specific cases of Gegenbauer polynomials are Chebyshev

polynomials of the first kind (λ = 0), which are denoted Tl(x), Chebyshev polynomials

of the second kind (λ = 1), which are denoted Ul(x) and Legendre polynomials

(λ = 1/2), which are denoted Pl(x).

Calculation of these polynomials may be accomplished by the following recurrence

relations [6, Table 18.9.1] (for λ 6= 0 and λ > −1/2):

Cλ
0 (x) =1

Cλ
1 (x) =2λx

Cλ
l (x) =

1

l

(
2x(l + λ− 1)Cλ

l−1(x)− (l + 2λ− 2)Cλ
l−2(x)

)
.

From these recurrence relations, we can see that Cλ
l (x) is a polynomial of degree l

in x. It can also be shown from these relations that if l is even, then Cλ
l (x) is an

even function of x, and if l is odd, then Cλ
l (x) is an odd function of x. Note also

that these recurrence relation give the standard normalization of Cλ
l (1) = (2λ)n/n! [6,

Table 18.6.1], where (x)n is the Pochhammer symbol

(x)n = x(x+ 1)(x+ 2) · · · (x+ n− 1),

and (x)0 = 1 by definition. So to get the normalization of Cλ
l (x) that we desire, we

may simply use the above relations and then divide each Cλ
l (x) by (2λ)l/l! to give

Cλ
l (1) = 1. As mentioned above, the special case λ = 0 gives rise to the Chebyshev
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polynomials of the first kind Tl(x), which may be defined by the following functional

equation for |x| ≤ 1:

Tl(x) = cos(l arccosx).

In other words, the Chebyshev polynomials of the first kind satisfy the equation

Tl(cos(x)) = cos(lx).

For |x| > 1, we may take the alternate definition

Tl(cosh(x)) = cosh(lx).

4.2.2 The Radon transform

As mentioned in the introduction, the Radon transform is a transform that takes

a function f ∈ S(Rn) to its integrals over n− 1 dimensional hyperplanes:

Definition 4.2.1 (Radon transform) For f ∈ S(Rn), the Radon transform R is

defined as

Rf(ω, p) =

∫
x·ω=p

f(x) dS

where dS is the Lebesgue surface measure on Rn. Here, ω ∈ Sn−1 and p ∈ R.

Note that because x · ω = p ⇐⇒ x · (−ω) = −p, it must be the case that

Rf(−ω,−p) = Rf(ω, p). The classical inversion formula for the Radon transform

is proved in [22] and given below

Theorem 4.2.1 (Inversion of Radon transform) Let f ∈ S(Rn) and g = Rf .

Then, letting Iα be the operator defined by

(̂Iαf) = |ξ|−αf̂(ξ),

and letting R# be the dual transform of the Radon transform defined by

R#(g)(x) =

∫
Sn−1

g(θ, x · θ) dθ,
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then we have for any α < n

f =
1

2(2π)n−1
I−αR#Iα−n+1g.

In particular, letting α = n− 1, we obtain the inversion formula

f =
1

2(2π)n−1
I1−nR#g.

The operator I1−n is simply another way of writing (−∆)(n−1)/2, which is a local

operator when n is odd, but non local when n is even. In [2,3], Cormack showed that

if we expand f(x, y) in a Fourier series (letting r = |(x, y)| and θ = arg(x+ iy)):

f(x, y) =
∞∑

l=−∞

fl(r)e
ilθ, (4.1)

and also expand g(ω, p) = Rf(ω, p) in a Fourier series:

g(ω, p) =
∞∑

l=−∞

gl(p)e
ilω, (4.2)

then the Radon transform is a diagonal operator. That is, fl only depends on gl, and

vice versa. The relations between the two are given by the following theorem

Theorem 4.2.2 (Cormack, 1963,1964) Let f ∈ S(R2) and g = Rf . Letting r =

|(x, y)| and θ = arg x+ iy, and expanding f and g as in (4.1) and (4.2) respectively,

then we have the following relations:

fl(r) =− 1

π

d

dr

∞∫
r

rgl(s)Tl(s/r) ds

(s2 − r2)1/2s
,

gl(p) =2

∞∫
p

fl(s)Tl(p/s)s ds

(s2 − p2)1/2
.

This is generalized in [22]

Theorem 4.2.3 Let f ∈ S(Rn) and expand f(x) as

f(x) =
∞∑
l=0

N(n,l)∑
k=1

fl,k(|x|)Yl,k(x/|x|).



72

Further, let g = Rf and expand g(ω, p) as

g(ω, p) =
∞∑
l=0

N(n,l)∑
k=1

gl,k(p)Yl,k(ω).

Then we have

fl,k(r) =c(n)r2−n
∫ ∞
r

(s2 − r2)(n−3)/2C
(n−2)/2
l

(s
r

)
g

(n−1)
l,k (s) ds, (4.3)

gl,k(p) =|Sn−2|
∫ ∞
p

C
(n−2)/2
l

(p
r

)(
1− p2

r2

)(n−3)/2

fl,k(r)r
n−2 dr. (4.4)

where

c(n) =
(−1)n−1

2πn/2
Γ((n− 2)/2)

Γ(n− 2)
,

Γ(z) is the usual Gamma function, and for n = 2, we take the limit

lim
n→2+

c(n) = −1/π.

We will use these formulas to construct examples of nonuniqueness in the interior

problem for the Radon transform.

The Radon transform is closely related to the X-ray transform, and in n = 2

dimensions they coincide.

Definition 4.2.2 (X-ray transform) For f ∈ S(Rn), the X-ray transform X is

defined as

Xf(`) =

∫
x∈`

f(x) ds

where ` is any line in Rn.

This chapter will primarily be concerned with the Radon transform, but the results

for the X-ray transform will be similar. As mentioned above, the Radon transform

appears in applications such as medical imaging in which we wish to reconstruct an

image of the interior of a patient given projections obtained by exposing the patient

to X-rays, for instance [5]. These projections are simply the surface integral (line

integral in this case) of the density function f representing the absorption coefficient

of the cells of the patient.
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In [12], it is shown that the Radon transform maps

S(Rn)→ SH(Pn),

bijectively, where

SH(Pn) =

{
φ ∈ S(Pn) |

∫
R
pmφ(ω, p) dp

is a homogeneous poly-

nomial of order m in ω.

}
,

and

S(P n) =
{
φ ∈ S(Sn−1 × R) | φ(−ω,−p) = φ(ω, p)

}
,

and finally

S(Sn−1 × R) ={
φ ∈ C∞(Sn−1 × R) | sup

∣∣∣∣(1 + |p|k) d
l

dpl
(Dφ)(ω, p)

∣∣∣∣ <∞, ∀l, k ∈ Z+

}
.

In other words, given g ∈ SH(Pn), there is a unique f ∈ S(Rn) such that g = Rf .

The proof of this is nontrivial, and we will use this result to prove the main result of

this chapter. In practice, the condition that µm(Rf) be a homogeneous polynomial

of order m in ω can be tricky to work with, and so we will characterize the range of

the Radon transform in a more practically applicable way.

4.3 Main Results

Theorem 4.3.1 Let g(ω, p) ∈ S(Sn−1 × R). Further, let

g(ω, p) =
∞∑
l=0

N(n,l)∑
k=1

gl,k(p)Yl,k(ω)

be the spherical harmonics expansion of g, where Yl,k(ω) is the kth basis spherical

harmonic in Hl. Then we have g = Rf for some unique f ∈ S(Rn) if and only if

1. For every l ∈ Z+, we have

gl,k(−p) = (−1)lgl,k(p)

for each k = 1, 2, . . . , N(n, l), and
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2. For every l ∈ Z+, we have

µmgl,k =

∫ ∞
−∞

pmgl,k(p) dp = 0

for 0 ≤ m < l and each k = 1, 2, . . . , N(n, l).

Proof (⇐) If condition 1 holds, then because each Yl,k(ω) =
∑
|α|=l cα,kω

α, it’s clear

that

g(−ω,−p) =
∞∑
l=0

N(n,l)∑
k=1

gl,k(−p)Yl,k(−ω)

=
∞∑
l=0

N(n,l)∑
k=1

(−1)lgl,k(p)(−1)lYl,k(ω) = g(ω, p),

so that g is an even function of (ω, p) as is required for g to be in the range of the

Radon transform. Next we need to show that µmg(ω, p) is a homogeneous polynomial

in ω of order m restricted to the unit sphere. By condition 2, and the fact that the

spherical harmonics expansion converges uniformly to g(ω, p) [16], we have

µmg =
∞∑
l=0

N(n,l)∑
k=1

µmgl,kYl,k(ω) =
m∑
l=0

N(n,l)∑
k=1

µmgl,kYl,k(ω)

Assume for the moment that m is even. Then µmgl,k = 0 for every odd l, so the above

sum becomes

µmg =

m/2∑
j=0

N(n,l)∑
k=1

µmg2j,kY2j,k(ω).

We are interested in this when |ω| = 1, so we write this sum adding factors of |ω|2 to

see this as

µmg =

m/2∑
l=0

N(n,l)∑
k=1

µmg2j,kY2j,k(ω)|ω|2(m/2−j)

And because m/2 is an integer, each term above is still a homogeneous polynomial

in ω, and it’s easy to see that the order of each term now is m, so that µmg is indeed

a homogeneous polynomial of order m.

Assume now that m is odd. Then µmgl,k = 0 for l even, so we see that

µmg =

(m+1)/2∑
j=0

N(n,l)∑
k=1

µmg2j−1,kY2j−1,k(ω).
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Using the same idea as in the m even case, we’ll rewrite this as (remembering |ω| = 1)

µmg =

(m+1)/2∑
j=0

N(n,l)∑
k=1

µmg2j−1,kY2j−1,k(ω)|ω|2((m+1)/2−j).

Written this way, each term in the sum is clearly a homogeneous polynomial of order

m, and so µmg is a homogeneous polynomial of order m in ω restricted to Sn−1. This

then shows that conditions 1 and 2 imply that g ∈ SH(Pn) and therefore g = Rf for

some f ∈ S(Rn).

(⇒) If g(ω, p) = Rf for some f ∈ S(Rn), then g ∈ SH(Sn−1 × R), i.e. g(ω, p) is

even in (ω, p) and for each m ≥ 0,

µmg =

∫ ∞
−∞

pmg(ω, p) dp

is a homogeneous polynomial of order m in ω restricted to the unit sphere. Note

that it is a fact [30] that a homogeneous polynomial of order m, call it P (x), may be

written uniquely as

P (x) = Pm(x) + |x|2Pm−2(x) + . . .+

|x|
mP0(x) m even,

|x|m−1P1(x) m odd,

where each Pj(x) is a homogeneous polynomial of order j that is harmonic. These

polynomials when restricted to the Sn−1 are surface harmonics, and so they can be

written as finite sums of spherical harmonics, say Pm−2k =
∑N(n,m−2k)

j=0 αm−2k,jYm−2k,j.

Assume for now that m is even. Then

µmg =Pm(ω) + |ω|2Pm−2(ω) + . . .+ |ω|mP0(ω)

=Pm(ω) + Pm−2(ω) + . . .+ P0(ω)

=

N(n,m)∑
j=0

αm,jYm,j(ω) +

N(n,m−2)∑
j=0

αm−2,jYm−2,j(ω) + . . .+ α0,1Y0,1(ω)

We also have, using the spherical harmonics decomposition of g(ω, p):

µmg =
∞∑
l=0

N(n,l)∑
k=1

µmgl,kYl,k(ω).
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So then, using the fact that
∫
Sn−1 Yl,k(ω)Yl′,k′(ω) dω = 0 for l 6= l′ and k 6= k′, if l > m,

we see by integrating both sides of the previous equation against Yl,k0(ω) over Sn−1

that

0 =

N(n,l)∑
k=1

µmgl,k

∫
Sn−1

Yl,k(ω)Yl,k0(ω) dω

And then because {Yl,k}N(n,l)
k=1 is an orthonormal basis for Hl, we see that we get

0 = µmgl,k0

for each k0 = 1, . . . , N(n, l). The proof that condition 2 holds is almost identical if m

is odd.

Now all that’s left to show is that for each l, gl,k(−p) = (−1)lgl,k(p) for each

k = 1, . . . , N(n, l). We know because g = Rf for some f ∈ S(Rn) that

g(−ω,−p) = g(ω, p).

We also know that

g(−ω,−p) =
∞∑
l=0

N(n,l)∑
k=1

gl,k(−p)Yl,k(−ω)

But Yl,k(−ω) = (−1)lYl,k(ω), so by combining the previous two equations, we get

∞∑
l=0

N(n,l)∑
k=1

gl,k(−p)(−1)lYl,k(ω) =
∞∑
l=0

N(n,l)∑
k=1

gk(p)Yl,k(ω).

Condition 1 then follows again by the orthogonality of the Yl,k(ω) for different l and

k.

4.3.1 Application: Non-uniqueness in the interior problem

The classical inversion formula for the Radon transform on Rn involves the oper-

ator (−∆)(n−1)/2, which is a local operator for n odd, but not in the case of n even.

We’ll look for the moment at n = 2. Because this operator is non local, a natural

question arises: If we wish to construct an image of a specific region of interest inside
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some object, is it enough to know Rf(ω, p) for only the hyperplanes (lines in this

case) going through that region? This is known as the interior problem, or region

of interest problem. When n is odd, the answer to this question is yes, because the

inversion formula involves only local operators. In n = 2 however, we will be able to

construct examples where this result proves false. We begin with the inversion for-

mulas for R when f and g are given in terms of a spherical harmonics decomposition

which are shown in (4.3) and (4.4).

Theorem 4.3.2 (Non-uniqueness for n = 2 in the interior problem) Fix a >

0, and let gl ∈ S(R) for each l ∈ Z be such that

1. gl(−p) = (−1)lgl(p)

2. µmgl = 0 for 0 ≤ m < |l|

3. gl(p) ≡ 0 for |p| ≤ a.

Then, letting

fl(r) = − 1

π

∞∫
r

(s2 − r2)−1/2Tl

(s
r

)
g′l(s) ds

and f(x) =
∑∞

l=−∞ fl(|x|)eil arg x, we have

Rf(ω, p) ≡ 0

for |p| ≤ a. In particular, there exists f ∈ S(R2) with |f(x, y)| > 0 for some (x, y)

with |(x, y)| < a such that Rf(ω, p) ≡ 0 for |p| < a.

Proof Conditions 1 and 2 guarantee that there exists f ∈ S(R2) such that Rf = g

where g(ω, p) =
∑∞

l=−∞ gl(p)e
ilω. Clearly by construction, g(ω, p) = 0 for |p| ≤ a.

The formula for fl(r) is given by [22] and taking f(x, y) =
∑∞

l=−∞ fl(|(x, y)|)eilθ where

θ = arg(x+ iy), we have f ∈ S(R2) and Rf = g. All that’s left is to show that there

exists a nontrivial f ∈ S(R2) such that Rf(ω, p) = 0 for |p| ≤ a. We know that
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g0(p) is some even function in S(R) that is 0 in the region |p| < a. Then clearly

g(ω, p) = g0(p) satisfies the conditions in Theorem 4.3.1, so that g0 = Rf0 for

f0(r) = − 1

π

∫ ∞
r

(s2 − r2)−1/2T0

(s
r

)
g′0(s) ds.

Note that T0(x) ≡ 1, so this becomes

f0(r) = − 1

π

∫ ∞
r

(s2 − r2)−1/2g′0(s) ds.

Now, for 0 ≤ s < a, we have g′0(s) ≡ 0 by assumption, so for 0 ≤ r < a, we may write

f0(r) = − 1

π

∫ ∞
a

(s2 − r2)−1/2g′0(s) ds.

Integration by parts then yields for 0 ≤ r < a

f0(r) = − 1

π

∫ ∞
a

s(s2 − r2)−3/2g0(s) ds.

From this we see that if g0(p) ≥ 0 for all p, and g0(p) > 0 for a < p < R for some

R > a, then f0(r) > 0 for some 0 ≤ r < a. This shows that only having Rf(ω, p) for

lines intersecting the region of interest |p| < a is not sufficient to determine f uniquely

in the region of interest. We show a more general example of non-uniqueness for n = 2

below in Figure 4.1.

In n = 3 dimensions, and in general in odd dimensions, the inverse Radon trans-

from involves the operator (−∆)(n−1)/2 which is local, and so we do not expect to

have non-uniqueness in the interior problem for odd n. This is easy to see in for l = 0

in the n = 3 case. Suppose g0(p) satisfies the conditions of Theorem 4.3.1 for n = 3,

and suppose g0(p) = 0 for |p| < a. Then for 0 ≤ r < a,

f0(r) =c(3)r−1

∫ ∞
r

g
(2)
0 (s) ds

=c(3)r−1

∫ ∞
a

g
(2)
0 (s) ds

=− c(3)r−1g′0(a) = 0.

For even dimensions though, we show a nontrivial example of non-uniqueness below.
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Theorem 4.3.3 (Non-unqiueness for n = 2m) Fix a > 0, and let gl,k ∈ S(R) for

each l ∈ Z+ and 1 ≤ k ≤ N(n, l) be such that

1. gl,k(−p) = (−1)lgl,k(p)

2. µmgl,k = 0 for 0 ≤ m < l and each 1 ≤ k ≤ N(n, l)

3. gl,k(p) ≡ 0 for |p| ≤ a for each l and k.

Then, letting

fl,k(r) = c(n)r2−n

∞∫
r

(s2 − r2)(n−3)/2C
(n−2)/2
l

(s
r

)
g

(n−1)
l,k (s) ds

and f(x) =
∑∞

l=0

∑N(n,l)
k=1 fl,k(|x|)Yl,k(x/|x|), we have

Rf(ω, p) ≡ 0

for |p| ≤ a. In particular for each m = 2, 3, . . ., there exists f ∈ S(R2m) with

|f(x)| > 0 for some x with |x| < a such that Rf(ω, p) ≡ 0 for |p| < a.

Proof That g(ω, p) =
∑∞

l=0

∑N(n,l)
k=1 gl,k(p)Yl,k(ω) is in the range of the Radon trans-

form is again clear by conditions 1 and 2 and Theorem 4.3.1. So there exists a unique

f ∈ S(Rn) such that Rf = g. Expanding f(x) in a spherical harmonics expansion,

we have

f(x) =
∞∑
l=0

N(n,l)∑
k=1

fl,k(|x|)Yl,k(x/|x|)

where the fl,k(r) are given by the formula in the theorem which is proved in [22].

By construction then, because each gl,k(p) = 0 for |p| ≤ a, it must be the case that

Rf(ω, p) = 0 for |p| ≤ a.

To show that f(x) could be non trivial in the region of interest in even dimensions,

suppose n = 2m for some integer m ≥ 2. Then by direct calculation, we can show

that

dn−1

dsn−1

(
(s2 − r2)(n−3)/2

)
= (−1)m

(n− 3)!!(n− 1)!!rn−2s

(s2 − r2)(n+1)/2
,
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where the double factorial n!! is defined recursively by n!! = n(n − 2)!! with 0!! =

1!! = 1. If we take g0(s) ∈ S(R) such that g0(−s) = g0(s) and g0(s) = 0 for |s| ≤ a,

then for any δ > 0, we have for 0 ≤ r ≤ a− δ

f0(r) =c(n)r2−n

∞∫
r

(s2 − r2)(n−3)/2g
(n−1)
0 (s) ds

=c(n)r2−n

∞∫
a

(s2 − r2)(n−3)/2g
(n−1)
0 (s) ds

=(−1)n+m−1c(n)(n− 3)!!(n− 1)!!

∞∫
a

s

(s2 − r2)(n+1)/2
g0(s) ds

where the last line follows by repeated integration by parts along with the fact that

g
(β)
0 (a) = 0 for any β a non-negative integer, and lims→∞ s

αg
(β)
0 (s) = 0 for any α and

β that are non-negative integers. It is then clear, because s/(s2 − r2)(n+1)/2 > 0 for

s > a, that if we take g0 ≥ 0 and g0(s) > 0 for some s > a, then f0(r) 6≡ 0 for

0 ≤ r < a− δ. This shows an example of non-uniqueness for the interior problem in

every Rn for n even.

To show general non-uniqueness, we may take any gl,k(p) satisfying the conditions

of Theorem 4.3.1 with gl,k(p) = 0 for |p| < a for some a > 0 and |gl,k(p)| > 0 for

some p > a. Then using the formulas above for fl,k and gl,k, we can show in a similar

manner as we did for f0 that fl,k(r) 6= 0 for some r < a.

Because the Radon transform is a linear operator, we may also construct additional

examples of non-uniqueness by taking linear combinations of previously constructed

functions that given non-uniqueness.

A note about Figure 4.1

We make a note about how Figure 4.1 is constructed. To construct the g(ω, p)

shown, we start by taking φ ∈ C∞0 ((−1, 1)) such that φ(p) = 0 for |p| < 0.3 and
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φ(p) = φ(−p). We also take φ ≥ 0 on its support, and φ(s) ≈ 1 for 0.4 < |s| < 0.6.

From there we take

g(ω, p) =
10∑
l=0

gl(p) cos(lω),

where we have

gl(p) = sgn(pl)φ(p)

(
cos(lπp) +

l−1∑
k=0

bk cos(kπp)

)
.

We solve for the the bk so that we are guaranteed to have µmgl(p) = 0 for 0 ≤ m < l

as is required by Theorem 4.3.1. Note that the linear system of equations that are

obtained from the moment conditions

(µ0gl)(b1, . . . , bl) =0

(µ1gl)(b1, . . . , bl) =0

...

(µl−1gl)(b1, . . . , bl) =0

is under determined, because µmgl = 0 automatically if m + l is odd, so we have

some freedom in choosing the bk. We note also that the factor of sgn(pl) does not

effect the differentiablitiy of gl, as gl(p) = 0 near p = 0, but does ensure that gl(−p) =

(−1)lgl(p) as is required. The top right image in Figure 4.1 was constructed by taking

R−1(g(ω, p)). We accomplish this by using the iradon function from the skimage

module in Python. The bottom left image is simply the top right image multiplied

by a smooth cutoff to show that it is indeed the case that R−1(g(ω, p)) 6≡ 0 inside the

region of interest 0 ≤ r < 0.3.
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4.4 Conclusion and future work

We showed a more practical characterization of the Radon transform as an oper-

ator R : S(Rn) → SH(Pn) which can be used to construct elements of the kernel of

the restricted Radon transform

R ||p|<a: S(Rn)→ SH(Pn)

f 7→ Rf(ω, p) ||p|<a .

This is achieved by using classical integral formulas for f and Rf in terms of spherical

harmonics, in which case the Radon transform is a diagonal operator. These formulas

take the form in Rn:

gl,k(p) =|Sn−2|
∫ ∞
p

C
(n−2)/2
l

(p
r

)(
1− p2

r2

)(n−3)/2

fl,k(r)r
n−2 dr,

fl,k(r) =c(n)r2−n
∫ ∞
r

(s2 − r2)(n−3)/2C
(n−2)/2
l

(s
r

)
g

(n−1)
l,k (s) ds,

where c(n) and C
(n−2)/2
l (x) are defined as above, and the gl,k and fl,k are the co-

efficients in the spherical harmonics expansions of g and f respectively. For future

work, we would like to use these integral formulas alone to show a similar result to

Theorem 4.3.1. It’s possible using the Funk-Hecke theorem to show that applying

the formula for fl,k(r) to the gl,k(p) shown above does indeed give back fl,k(r). We

hope in the future to use the conditions in the hypothesis of Theorem 4.3.1 to show

that fl,k(r) given above has some regularity properties, which will give a result with

weaker assumptions on g(ω, p). Experimentally, this seems to be the case.
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Example of non-uniqueness for R on R2
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Figure 4.1. (Top left) Function g(ω, p) =
10∑
l=0

algl(p)e
ilω constructed so

that g = Rf for some f ∈ S(R2). This function was constructed so that
µmgk = 0 for 0 ≤ m < k in the Fourier series expansion of g, as is required
by Theorem 4.3.1. (Top right) Inverse Radon transform of g. (Bottom
left) R−1(g) for |(x, y)| < 0.3. Note that R−1(g)(x, y) is not identically 0
here. (Bottom right) R ◦ R−1(g), which we can see is the same as in the
top left.
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‖g(ω, ·)−R ◦R−1g(ω, ·)‖L2(R)
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Figure 4.2. Error in R ◦R−1g for the function shown in Figure 4.1
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Examples of non-uniqueness for R in ROI problem on R2

Figure 4.3. Simple examples of non-uniqueness for the region of interest
problem. Both f0 and f1 are nonzero in the region of interest |(x, y)| < 0.3,
but Rf0 and Rf1 are zero for |p| < 0.3.
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