AN ANNOTATED, DIPLOMATIC EDITION OF LEONARD DIGGES'S
 a PROGNOSTICATION OF RIGHT GOOD EFFECT FRUITFULLY AUGMENTED ... OF 1555

by
Jack B. Gorden, III

A Dissertation
Submitted to the Faculty of Purdue University
In Partial Fulfillment of the Requirements for the degree of

Doctor of Philosophy

Department of English
West Lafayette, Indiana
August 2020

THE PURDUE UNIVERSITY GRADUATE SCHOOL STATEMENT OF COMMITTEE APPROVAL

Dr. Michael Johnston, Chair
Department of English
Dr. Shaun F. D. Hughes
Department of English
Dr. Dorsey Armstrong
Department of English
Dr. Richard Johnson-Sheehan
Department of English

Approved by:
Dr. MANUSHAG POWELL

Dedicated with love to the memory of

Mary Jo Gorden
My mother
Jack Tarpley
My father-in-law

For their love, support, and guidance-and for their constant, patient belief in me ... a belief they kept safe for me when I thought I'd lost it.

ACKNOWLEDGMENTS

It is both my obligation and very great pleasure to acknowledge the assistance and support of several people without whom this project could never have been completed. First, the members of my committee: Professor Shaun F. D. Hughes, who provided me with the inspiration and impetus to begin this project, and who patiently guided it through several early changes of direction; Professor Dorsey Armstrong, whose steady advice allowed me to arrive at "a done dissertation"; Professor Richard Johnson-Sheehan, who provided the indispensable eye of a rhetorician to a rhetoric project undertaken by a literary scholar; and especially my chairman, Professor Michael Johnston, who translated the Latin, and without whose encouragement, careful discernment, and guidance this project would still be sitting on my hard drive. Thank you all for your years of patient, learned, generous, and frankly fascinating mentorship. A debt of gratitude is also due my writing buddies, Professor Ashley M. Purpura and my dear friend Dr. J. Case Tompkins, whose coffee, advice, and companionship put me back on the path to completion.

I would also like to thank my family—my father, Jack Jr.; my mother-in-law, Sally; my wife, Laura; and my daughter, Addie-who have come with me on this journey, and whose love and support has sustained me. I love you all.

TABLE OF CONTENTS

Introduction vii
The text xi
Leonard Digges's life xxv
Note on Thomas Digges xxxii
Conventions used in this edition xl
A Prognostication of Right Good Effect Fruitfully Augmented 1
Conjectural emendations 67
Textual notes 69
Glossary 71
Latin passages found in the copy-text 78
Bibliography of primary sources 83
Bibliography of secondary sources 85
Historical notes 88

Introduction

Who would use a science text as a teaching tool in an English class? Scientific texts are abstruse. They require a kind of engagement on the part of their readers that stymies relaxation. They are not "fun"-and are we not trying to instill in our students the axiom that "Reading is an Adventure"? Many students might say that the works of fiction in the academic canon are not much fun, either, but science texts don't even try! When I started my sophomore-level Russian Translation class as an undergraduate, I was exasperated to learn that we would be dealing primarily with science texts, at least to start out. I was an avid reader, and Chekhov in Russian sounded exciting. Expurgated papers about oxygen levels at a variety of altitudes sounded not only dull but hard.

Soon, though, I began to see the sense in my professor's syllabus. Science texts eliminate a great deal of the ambiguity that is the stock-in-trade of skilled poets and novelists. A good science writer seeks to be as clear and unambiguous as possible, exactly what first- and secondyear language students need. The point of the translation class was to focus on grammar, and science was the perfect tool. So, go ahead. Embrace the tedium. It is educational, after all.

But let us not be too hasty. There is a genre of science text that moonlights in fun. Medieval and early-modern technical and scientific literature may not be Le Morte Darthur, but it is also not a typical school science textbook. These older works are quirky, full of a mysticism that seems, to our sensibilities, out of place in a text about science. Sometimes, despite the great names we all know (Bacon, Newton, Kepler), our twenty-first century perspective can lead us to some naïve assumptions that make wonderful object lessons for students of the humanities. These authors seem to modern readers to be dead wrong in sometimes amusing ways, and this
view offers a springboard for teachers in a humanities classroom. We can be pulled into the texts by their exotic perspective, but when we read more closely the concepts these authors are struggling with, when we think about the resources they have to work with and the historical and cultural baggage they (like all scientists, even today) have to grapple with in order to arrive at their conclusions, we begin to appreciate that science is always contingent and, inevitably, exists in and serves cultural context. We gain an appreciation for the difficult intellectual work the writers of these texts are doing, and of the fact that we owe our current vantage to their ingenuity and insight. We begin to realize that this vantage of ours only seems lofty to us because we lack four hundred years of distance from it. Slowly an unexpected realization takes us by surprise: People are smart, and they always have been. This is the kind of insight reading in the humanities offers.

And that gets us to close reading. I propose to create a curriculum for university freshmen centered around creating editions, and the early-modern scientific text is an excellent way to begin. One thing reading does for us is move us out of ourselves and into the experiences of someone else. Editing does that doubly. When we edit a text, we have, as Wells and Taylor would have it, "taken the [author's] place." ${ }^{, "}$ But we are working in two directions. It is amusing to refer to editors as "the pimps of discourse,," but that implies a kind of gatekeeping that, while perhaps inevitable, should certainly not be our goal. Perhaps better to think of ourselves as "the unacknowledged civil servants who promulgate and administer" ${ }^{3}$ an author's work. An editor is an advocate for both author and reader.

[^0]This two-pronged advocacy deepens the editor's experience with the text, pushing her or him to delve for a deeper insight than a casual reading would inspire. It also gives students an opportunity to create a useful tool and send it out to the community, strengthening their bond with a wider world that extends both forward and backward in time.

The text I have selected for this project is the earliest extant version of Leonard Digges's influential book, A Prognostication of right good effect fruitfully augmented, containing plain, brief, pleasant, chosen rules, to judge the weather forever, by the Sun, Moon, Stars, Comets, Rainbow, Thunder, Clouds, with other Extraordinary tokens, not omitting the Aspects of Planets, with a brief judgement forever, of Plenty, Lack, Sickness, Death, Wars, etc. Opening also many natural causes, worthy to be known. ${ }^{4}$ One previous printed edition is said to have predated it, having been published in 1553, but this 1555 edition is the earliest to survive (no manuscript remains). Digges published during his lifetime one more edition, in 1556. All subsequent editions are heavily edited and augmented by his son, Thomas Digges. So, why did I select the 1555 edition as my copy-text?

Philip Gaskell takes us through his procedure for selecting a copy-text, considering all the possible witnesses available and selecting the one that best "represent[s] the text as the author wanted it to be read[.]"5 Clearly, this criterion will eliminate from consideration any posthumously published edition redacted by Thomas. For his project, Gaskell settles on a copytext that represents "that printed edition which is closest in line of descent to the author's

[^1]manuscript." ${ }^{"}$ We will do likewise, but our reasons are different from his, because our priorities are slightly different. While we also are concerned with accidentals, substantives, and teasing out authorial intent, we have a more pressing pedagogical goal.

Using the earliest extant witness as our copy-text means that we cannot collate previous printings; the 1555 edition as it stands is the closest we can come to the author's holograph copy. Furthermore, unlike Gaskell, we do not intend to consult the subsequent edition. This solves two of the practical problems created by producing an edition with a class of undergraduates. First, it eliminates the need for journeyman editors to engage in the complex and time-consuming work of comparing witnesses. They can get on to the task at hand, that being a very close reading of the copy-text as it exists in front of them. The second reason is the most practical of all: that is, the 1555 edition is freely available to students on Google Books. The 1556 printing is not. Being able to use Google Books enables students to access the copy-text easily wherever they have access to an internet connection. The instructor can project it onto a screen. Students can magnify the pages, move easily through the document and, perhaps best of all, they do not have to be careful with it. The situation is ideal for the undergraduate classroom.

That doesn't mean there are no problems. At sixty-five printed pages, this text is longer than one might want for an undergraduate English class. Fortunately, the Prognostication is broken up into sections of widely varying lengths, and because this is a scientific text, there is no narrative throughline to suffer if the sections are disarticulated. This means that the creative instructor can divide the text up in any of a number of ways, using some sections for short, inclass exercises and using others for longer homework assignments or group activities. One could

[^2]even divide the document up among a large class and have the students produce, among them, a single complete edition by the end of a semester.

The text

This book was republished several times over the course of Digges's lifetime and that of his highly celebrated son, Thomas, who acted as a sort of literary executor after his father's death. Thanks in large part to Thomas's faithful edits and augmentation over the years, the Prognostication was able to remain relevant, popular, and highly influential for decades, increasing not only Thomas's own fame as a mathematician, but that of his father, too.

The Prognostication was a foundational work that helped to establish the epistemology of the modern era by prioritizing empiricism, clarity, and praxis. Under the capable stewardship of the younger Digges, it played a pivotal role in introducing England to the heliocentric model of Nicolaus Copernicus. It went far beyond this, though. As we shall see later, the younger Digges also used his father's Prognostication as a venue to establish that the universe is infinite and filled with stars and worlds innumerable. And the Prognostication does all this in language understandable to an audience with moderate education and little skill in Latin.

But is this truly the mission of the Prognostication, to create a book "easy of all willing ingenious to be perceived," as Digges states in his "Note to the Reader" (p. 5)? In the introduction to his Tectonicon, Digges laments that technical knowledge is too often "locked vp in straunge toungues," ${ }^{, 7}$ and he purposes to publish something suitable for "the Landemeater*, Carpenter, or Mason." ${ }^{8}$ He goes on to say that "For theyr sakes I am here prouoked not to hide,

[^3]but to open, and so encrease the talent which I haue receyued." This seems a pretty clear statement of his intention. The Tectonicon was published in 1556, the year after the Prognostication, and the two do have similar statements in their introductions. Surely we can take an author at his word on so simple a matter.

This democratizing impulse, though, is complicated by certain details of the presentation. Most conspicuously, modern readers will be quick to notice the presence of Latin throughout. It is certainly far from the primary language of the Prognostication, but it is hard to ignore, especially in the earlier pages. Latin begins its intrusion immediately after the introduction, in a curious prefatory essay Digges titles, "Against the reprovers of Astronomy, and sciences Mathematical" (pp. 6-7 of this edition). It is impossible to read it without noticing the envenomed tone.

The first Latin passage in the book is a quote in the second sentence of the essay, "Scientia non habet inimicum nisi ignorantem" (Science does not have an enemy unless he/she is ignorant). Just to the right of this passage is the book's first marginal notation, "Vituperant, qui simpliciter eas ignorant" (They who simply don't understand them censure them). Perhaps the less learned are not off to a very good start with Digges's book. One could be forgiven for concluding that he is mocking them behind their backs.

In this prefatory essay, Digges takes an opportunity to defend the science of astronomy from those who disparage it. Its tone is scathing; he seeks to discredit the ideas of those who accuse astronomers of practicing unholy arts, and he does this by citing numerous scholars, all of whom have written in Latin. Digges is using these scholars as a cudgel. He seeks to discredit the detractors of his profession by citing sources of such weight that his enemies will be forced to accept his defense, or failing that, that readers whose opinions are at issue will be convinced that
these charges have been roundly answered. The use of Latin is, here, inevitable if he wishes to mount a scholarly argument. Latin is the language of scholarship, and because he wishes to argue with scholars, he must do so with Latin. But let us not be too hasty in excusing his use of Latin in this prefatory essay as isolated and unavoidable. He has some more turns of phrase that need to be examined if he is to escape charges of elitism.

Just seven lines down from the top of the essay, shortly after his imprecation in Latin against the ignorant, Digges writes, "I refer all of that sort, which have tasted any learning (the rest not regarded) to the first part of famous Guido Bonatti ..." There is no way for us to soften it, this is dismissive of the unlearned—and in plain English! A closer examination, however, reveals that Digges takes care to soften the blow. Near the bottom of page 6, speaking of the concepts he is preparing to bestow on the reader in the main body of his book, he writes, "for thy encouragement in these, thus I say and truly, the ingenious learned, and well experienced circumspect student mathematical receiveth daily in his witty practices, more pleasant joy of mind, than all thy goods (how rich so ever thou be) can at any time purchase." While the term "student mathematical" does not unambiguously include the uneducated reader, it could be construed to do so. This passage could be read as the author extending his hand to anyone who accepts his defense of the mathematical arts, inviting them to join the ranks of the friends of "that learned Guido, that excellent Guido Bonatti ..." Later on near the middle of page 7 he asks us, his "loving Reader," how it is that this "noble science ... is counted vain, and of so small strength. The secret truths and most pleasant profits therein not desired, yea, utterly despised, and of some busy biting bodies rejected as very lies." He answers his own question: "Let no man doubt ignorance, the great enemy of all pure learning hath wrought this." But by now, we're part
of his team. We have rejected the "nice divines," and we have come over to the side of the learned. We are not the ignorant ones, they are.

Now that we have joined the ranks of the learned, we should examine a bit more closely his case "Against the reprovers of Astronomy, and sciences Mathematical." Digges maintains that defending the mathematical arts is unnecessary, but he is, nevertheless, at pains to call to account those who "of late have in writing dispraised these goodly arts [astronomy]," calling their objections "foolish rashness, and rash foolishness." He then sends them to Guido Bonatti to be schooled, referring them to his De utilitate Astronomiae in communi, which amounts to the first tractate of his Liber Astronomiae. In this work, Guido has a similar project to Digges, so it is perhaps natural that Digges should quote him. ${ }^{9}$ Digges then agrees with Melancthon's assessment that it is fruitless to even speak to such people; rather, "Sinamus ... una cum Epicuro ineptire" (Let's ... play the fool with an Epicurean). He calls their criticism "manifestum insaniæ genus" (a manifest type of insanity) and declares of the task of arguing with them "Quod magis opus habent Medicis, quam Geometris" (This is a job more for a doctor than a geometer). What prompted this outburst?

Cohen tells us that "England was something of a technological backwater until the midsixteenth century," first due to its isolation, and then because of the Dissolution of the Monasteries in the 1530s. ${ }^{10}$ But this phenomenon seems to have been going on for a while. Roger Bacon, in 1267, "lamented that mathematics was regularly counted among the seven 'Black Arts. ${ }^{\prime}{ }^{11}$ And while things had started to improve by the time Digges was writing this

[^4]essay for inclusion in his Prognostication, the social stigma didn't completely go away in his lifetime. Even in the seventeenth century, "some parents [at Oxford] opted not to send their children there because they were concerned" that the new mathematical faculty chairs might exert a corrupting influence. ${ }^{12}$

Apparently, Digges was not the only astronomer to feel the need to defend himself from accusations of necromancy. John Dee, as might be imagined, had similar problems. ${ }^{13}$ The frustration must have been hard to stomach, and the desire to lash out irresistible. Even the outspoken Menancthon does not escape persecution. Digges also references Melancthon's letter to Simon Grynaeus. This letter served as a prologue to the 1531 edition of Johannes de Sacrobosco's De sphaera until, ironically, it was removed by censors.

One of the epithets Digges uses stands out: "Epicurean Theologians." It seems hard to square with what we know about Epicureans, with their notion that the gods do not involve themselves in human affairs. But Melancthon used that same term to describe the detractors of the mathematical arts. In a clever reversal, considering the religious dogmatism that seemed to drive his detractors, Melancthon concludes that anyone who would deny the efficacy of judicial astrology is an atheist because, he says, such a person denies the providence of the Almighty. ${ }^{14}$ It is this argument of Melancthon that Digges cites when he speaks of "how far wide they allege the scriptures against the Astronomer, which make wholly with the Astronomer." In other words, the detractors say that the scriptures teach against astronomy when scripture, in fact, wholly supports it. Digges is content to leave it at Melancthon, however, and not dig, himself, into the scriptural supports to his art.

[^5]Rather than get into the scriptural weeds, Digges's next stratagem, at the bottom of page 6, is to issue a challenge to the nay-sayers. He directly addresses these "enemies of all good doctrine" in the second person, challenging them to "give an overthrow, and that with your pen." If Guido or Melancthon's arguments do not silence his opponents, then Diggs himself, with the present volume, will "take some pain in publishing the wonderful unknown pleasant profits of these dispraised high knowledges, and by that means to enforce silence." This might seem a strong ending for such a volley, but another tactic of Digges in this essay bears examination.

As part of his enumeration of the joys of studying mathematics, discussed above, Digges goes on to discuss the art in more ecstatic terms, and for this, he quotes yet another mathematician, Joachimus Fortius Ringelbergius, from 1529 in Antwerp. ${ }^{15}$ Digges quotes, "Id tantum quod pulchrum est, quod purum est quod divinum est, nihil mortale sapiens dulci ardore amplectitur" (With sweet passion the wise man embraces that thing which is beautiful, which is pure, which is divine, and which is in no way mortal). This passage is almost touching in its apparent earnestness. Having just quoted Aristotle to say that "scientia est notitia vera conclusionum, quibus propter demonstrationem firmiter assentimur" (science is a true concept of conclusions, by which, on account of a demonstration we might firmly assent), an eloquent enough precis of an early-modern scientist's faith in his art, Digges is moved to passion, quoting such words as pulchrum, purum, and divinum. To finish up with nihil mortale leaves little room for doubt about why Digges believes humanity studies the heavens.

The passion, both opprobrium and ardor, of the prefatory essay does not carry on into the rest of the book, however. Turning to the body of the Prognostication, we find that Digges

[^6]adopts a more staid tone with his reader, and while the Latin does not disappear by any means, it does become less frequent and less intrusive. A fair bit of the Latin is to be found in the marginalia. These marginalia take a few forms. The first we encounter on page 8 is, effectively, a restatement of the heading. It reads, "De observandis meteoris" (On observing meteors). All this does is introduce the adjacent paragraph, which is headed, "How to Judge Weather by the Sun Rising, or Going Down." But this is the only Latin example of this form of marginal note. Most of these marginal "headings" are in English, including several particularly redundant examples. This one from page 11, "Common tokens of weather, meet for all manner wits," is in the left margin adjacent to the heading "Now ensueth extraordinary tokens for the knowledge of weather." There are not many of this type of note. Even in English there are only six.

A type of note closely akin to these is the note that flags information covered in the adjacent paragraph that might not be readily obvious from the heading of the section. These notes serve a similar function to tabs. They are waypoints, too, but they serve a more practical function than those previously mentioned that simply rephrase a heading. On page 12 , under the heading "Now ensueth extraordinary tokens for the knowledge of weather," Digges includes a paragraph wherein he describes the phenomena that accompany the rising of Canis Minor. In the margin, he has included the note "Canis minoris efficatia" (Rising of the little dog). Again, the number of these in English (107) is vastly greater than the number in Latin (23). Curiously, of these twenty-three, thirteen are of a type that otherwise exists mostly in English, and for which the language is of only minor importance. These notes summarize the contents of a paragraph, but these notes use astronomical symbols to communicate their contents in a sort of shorthand version of what is described in the main text. An example in English follows from page 15:
$\hbar \sigma \square, \&$ The conjunction, quadrature*, or opposition, of Saturn, with Mars, in watery signs, 0° with 0°
declare in summer, rain, often showers, with hail, thunder and lightning. This marginal note, as can be seen, is an index of what is contained in the main text. It does not summarize or restate the text, which goes on to enumerate the meaning of the signs. The note only serves as a way for the reader to index the information. An example of the Latin variety appears on page 27 as follows:

The conjunction, sextile, trine, quadrature*, or opposition of Jupiter with the
Moon, showeth a fortunate day, chiefly to obtain suits of Kings, noble Princes,
Prelates \&c, of Lawyers, and Religious persons: and a meet time to study, to journey, to take an honest mater in hand.

This is the first in a series of such notes in Latin, and it follows on after a long series of other types of notes almost exclusively in the same language. The language here, though, is almost completely immaterial to understanding; anyone with even a cursory knowledge of Latin can easily make the translation. Those with no Latin at all can quickly glean the meaning from context and comparison with the previous such notes in English. It almost seems like the language of these notes might have been incidental, a force of habit from having set the preceding fourteen-odd notes in Latin, except that there are some few intervening notes in English.

Another form of marginal note in the Prognostication is the restatement. These notes differ from the previous type in that they offer a summary of the contents of the adjacent paragraph rather than a simple index of the topic at hand. The first example of this type of note appears at the bottom of page 8 .

Luna rubens If the Moon in the third of her change*, yea three days before the full, or in the ventat, pallor pluit, Alba serenat midst of the quarter, be found of pure light: no thing compassing her, the end
direct up, she promiseth fair weather, but bent to red color, provoketh wind. The
Moon pale, or somewhat inclined to black, obscure or thick, threateneth rain.
The English translation of the marginal note used in the text of this edition is "If the moon is red [wind] blows; if it's pale, it rains; if it's white, it will be calm." This is a fairly literal, if not very detailed, summation of the contents of the body text. There are nine such notes in the Prognostication, and they appear only in Latin. Why include such a note? Surely a Latin-literate reader could just as easily read the English and gain a more complete understanding of the material, and the inability to understand this note will deprive the less-educated reader of no important information. The answer, at least in some instances, is that this is a citation. In searching for this same phrase, I found it appearing several times, but other than Digges the earliest instance I found was from Guglielmo Gratarolo's Gulielmi Grataroli Bergomatis Artium \& medicine doctoris opuscula. Quorum Cathalogum versa Pagella Indicat, ${ }^{16}$ published in Lyon in 1558, three years after Leonard Digges published the Prognostication. While it is possible that Gratarolo was quoting Leonard Digges three years later in Lyon, I find it more likely that they, and those who followed them in the use of this phrase, were all citing an earlier author whom I was unable to find.

There are four marginal notes in the text that offer additional information not available in the main body of the text, two in English and two in Latin. One of the Latin notes appears on page 10, adjacent to a section titled "Of Thunders: What they Signify." The note reads "Signum futurorum bellorum" (A sign of future wars). Nowhere in the accompanying text is there mention

[^7]of wars of any kind. Many terrors are foretold, such as "slaughter of a great man," "horrible murders," and even "other bloodshed," but no specific mention of war. The other Latin instance is on page 25 .

Universalis est Eclipsis Lunæ Non semper in novilunio, sed in capite, et cauda

The Sun being in the contrary point to the full Moon, enforceth the shadow of the earth, then directly put between the Sun and the Moon, towards the Moon, hiding more or less of the Moon, as she differeth from the Ecliptical.

The Latin, again using the translation included in this edition, says "The eclipse of the moon is common, not always in the new moon, but in the caput and cauda." Caput and cauda refer to the "head" and "tail," the highest and lowest points (respectively) of the moon in relation to the ecliptic. ${ }^{17}$ In neither of these examples is the information in the marginal note to be found in the main text. Both Latin phrases might be fairly simple for an English speaker with a modest background in Latin to work out, but that cannot be relied upon.

There are two examples in the marginal notes of references, where Digges refers readers to another work. These appear on pages 10 and 23, and both are in Latin. The former refers the reader to book 4, fol. 83 of Cardano's De subtilitate, the latter to Pliny's Natural History, Book 2. In both cases, Digges is simply sending the curious reader to another source for additional information.

Thus far these notes, for the most part, seem to fulfill the criteria set out by William Slights when he writes about marginalia's, "concrete materiality, repetitive verbal formulas, and other techniques designed to render recalled events immediately present ... ${ }^{י 18} \mathrm{He}$ sees marginal notes as boiling ideas down, concentrating them, mapping them out, and making them more

[^8]consumable. "Complicated periodic sentence structures from the text," he explains, "are reduced in the margins to catalogues of topoi, lists of dates, and abbreviated comments. Such headings or sidings - also serve as visual reference points. This indexing function is specifically part of the iconology of the page. ${ }^{י 19}$ We see these marginalia performing these functions. Digges uses his long indexing lists of phenomena, not even expressed in words, oftentimes, but in astronomical symbols glued together with prepositions. These visual reference points, mostly in English, serve to guide the reader. There are a few instances where the non-Latin speaking student might miss something. For the most part, though, the notes do their job.

One more type of marginal note needs to be addressed, however, that doesn't serve this function as well. There are two notes wherein Digges might be seen to be using Latin to "talk over the heads" of his less-educated readers. The first instance is on page 25, and it reads, "Hæc incredibilia videntur tantum hiis, qui mathematicis demonstrationibus non assueue runt, \&c." (These things seem incredible only to those not accustomed to mathematical proofs, \&c.). The second, on page 33, says, "Hæc diligentissime observare oportet solertem Medicum, nisi majora pericula cogant" (It is fitting for a skillfull doctor to observe these things diligently, and if not then worse dangers will come). While the latter almost qualifies as additional information, it only serves, really, to intensify the importance of the information already given. Therefore, while it will go over the heads of a less-educated reader, the omission is fairly inoffensive. In the former case, however, one can't help wondering why Digges included it. All it seems to do is establish an in-group and an out-group among his readers, not only in the note's content, but also in its language.

[^9]The instances of Latin in the body of the work, seven in number, should not be ignored. Mary Thomas Crane claims, in her book Losing Touch with Nature: Literature and the New Science in Sixteenth-Century England, that "Digges provides Latin citations only when making claims about the supernatural significance of natural events." ${ }^{20}$ Perhaps, but the dichotomy between "natural" and "supernatural" is a slippery concept. For example, on page 25, Digges cites the famous statement from Pseudo-Dionysius the Areopagite from the moment of Christ's death. At this moment a darkness falls across the Earth that Pseudo-Dionysius can see in Egypt. Digges quotes him as saying, "Aut Deus naturæ patitur, aut mundi machina dissoluitur" (Either the God of nature suffered, or creation was destroyed). We can say without much fear of contradiction that these dark portents would have indeed been "natural events" with a "supernatural significance." However, another example of a Latin citation in the body of the text is on page 35 . Here, Digges discusses the dangers of cutting hair during a waning moon. He writes, "Cutting, shaving, clipping, in the wane, causeth baldness: what is then cut, groweth little." He supports this statement with a citation from Cardano, "Calvitium prohibet oleum tartari" (The oil of tartar prevents baldness). Do the vagaries of hair growth constitute a supernatural significance? From our twenty-first century perspective, perhaps the linking of nearly any earthly phenomenon to the waning of the moon would seem supernatural. But whether an English person of Digges's day would have seen it this way is a much more open question.

Interestingly, in an essay published a year before, titled "Marlowe and the New Science," Crane had already begun examining the reasons for the use of Latin in these texts and come to the conclusion that reticence, possibly even obfuscation, is at least part of the reason for its use.

[^10]On page 24 of the Prognostication, Digges discusses earthquakes that follow quiet times. He explains that when winds retreat below the earth they eventually cause earthquakes, but that while they are in the process of gathering there the weather becomes still because of their absence. Digges supports this with the Latin phrase, "Signum est futurorum bellorum" (A sign of future wars). (This is, incidentally, almost identical to the marginal note on thunder at the bottom of page 10, "Signum futurorum bellorum.") While Crane, in her book, names "Signum est futurorum bellorum" as an illustration of her claim that the Latin indicates a desire to mitigate a claim of supernatural significance, ${ }^{21}$ in her essay from a year prior she states the case a little more directly.

In sixteenth-century England, ... Protestant belief that God's miraculous interventions in nature had ceased meant that writers increasingly cast doubt on the supernatural interpretation of "meteors."... Leonard Digges, writing in his Prognostication Everlasting (1556), repeats the belief that earthquakes foretell wars but casts some doubt by citing this belief in Latin $\ldots{ }^{22}$

This is not the whole of Crane's understanding of Latin in early modern science texts, but if softening the impact of potentially dangerous, or at least distasteful, ideas is a reason for using Latin in science texts, what would their ubiquity in these texts mean about the attitudes toward stellar portents? Belief in judicial astrology was not universal, of course. Even Chaucer, over a century and a half before, said of the casting of horoscopes that they are, "observances of judicial

[^11]matere and rytes of payens, in which my spirit hath no faith.... ${ }^{, 23}$ In spite of this statement, Chaucer's actual attitude toward judicial astrology is hotly debated. ${ }^{24}$ However, whether we believe Chaucer's denial or not, the fact remains that he wrote those words for a reason, and this fact leads us to the inescapable conclusion that at the end of the fourteenth century, skepticism of astrology was working its way into the culture of England. We have no reason to believe that, on the threshold of the Copernican revolution, those doubts would have entirely gone away.

While Crane has shown us that Digges's use of Latin wasn't unusual in his day, there is something else about the Prognostication that makes it stand out and might make it somewhat less attractive to those without advanced degrees. The market for almanacs had been growing steadily throughout the first half of the sixteenth century. Starting around 1540, a market had emerged for a disposable almanac, one that fulfilled a popular desire "for a small, easily portable book to assist with daily tasks. ${ }^{25}$ These almanacs offered their users a handy resource for keeping track of their daily lives. They had generous margins for recording notes and they provided at a glance information that people wanted. They gave specific "dates of eclipses, the dates of important feasts, the golden number"*26 and numerous other handy references. One boasted "a paragraph at the bottom of each page giving for every year the length of time between Christmas and Shrovetide. ${ }^{127}$ One almanac went so far as to provide price predictions for various commodities. ${ }^{28}$ The almanac was finding its way into the purses of the common people. Erler places Leonard Digges firmly into a different category. His Prognostication is a book that

[^12]teaches the reader how almanacs work. It doesn't tell us what days this year will be best for cutting the cow's hair; it tells us how to figure it out for ourselves. She credits Digges with creating "the fullest paradigm for later manuals" with his "scientific book." ${ }^{29}$ He was not, however, aiming his book at the ordinary person who needs to buy barley flour.

Leonard Digges's life

Leonard Digges was born into an ancient Kentish family ${ }^{30}$ sometime around 1515. The family name, alternately spelled "Digg," "Diggs," and "Digges," resided at this time at Barham, at the manor of Brome. Leonard's father, James, left Brome to Leonard in 1535, ${ }^{31}$ but in 1547 Leonard sold it and removed to Wooton, also in Kent, which he would eventually leave to his own son, Thomas. ${ }^{32}$ James Digges sent Leonard to Oxford, though the speculation that Leonard may have been a member of University College is, apparently, unfounded. ${ }^{33}$ We do know that he began studying at Lincoln's Inn in 1537. We also know he had an interest in military matters because he wrote about them, as we shall see, and he was involved in militia activity in defense of the eastern coast of Kent in $1545,{ }^{34}$ around the time of his fateful association, in 1554 , with Wyatt's Rebellion, ${ }^{35}$ an attempt to stop the marriage of Mary I to Philip I of Spain. His decision to involve himself in this uprising would haunt him for the rest of his short life.

[^13]For his part in the rebellion, Digges was sentenced to death, but, most likely thanks to the intervention of his kinsman, Lord Clinton ${ }^{36}$ (to whom he dedicates the Prognostication you now hold in your hands), he was reprieved and received a pardon later that year, though his property continued to be held. He paid a recognizance of $£ 49$ 17s 8 d for return of his movable goods, and another of 400 marks ($£ 26613 \mathrm{~s} 4 \mathrm{~d}$) to redeem his lands, which he apparently discharged the year before his death at approximately the age of forty-four years. ${ }^{37}$

It would be easy to imagine, in light of these events, that Digges spent what should have been the best years of his life trying to recover from the consequences of these earlier adventures, throwing himself into his scholarship, mostly in mathematics, optics, and astronomy, in an attempt to recover his reputation and his fortune. ${ }^{38}$ Perhaps he did, but he seems to have been energetic and engaging in his pursuit of knowledge even before the rebellion. Our first mention of Leonard Digges is in 1542, in the context of his stay at Guisnes, in Calais, which was at the time England's last continental holding. Sir John Wallop, the captain of Guisnes, had written to Thomas Cheney, Warden of the Cinque Ports, to tell of the marvelous show of wit and learning to which Digges and his companions had treated their host, and asking the Warden to give them leave to travel abroad. We do not have Cheney's reply, "but it was certainly the case that at a later date Leonard Digges showed himself familiar with a wealth of Continental writings on the subject which he had made his own,, ${ }^{39}$ so perhaps someone might have given him permission to travel.

[^14]It is likely, though, that some of the writings he cites might have come, not from his travels, but from the library of his friend, Dr. John Dee. ${ }^{40}$ It is easy to imagine how Dee's collection must have fascinated Digges. Dee's library, called the Bibliotheca Mortlacensis after Dee's home at Mortlake, which contained works by such great names as Witelo, ${ }^{41}$ Pecham, ${ }^{42}$ and Grosseteste, ${ }^{43}$ still retains its mythic power, even if only in memory. To this day it is widely regarded as
one of the great monuments of English Renaissance culture. By the time it was catalogued in 1583, Dee had assembled England's largest and—for many subjects, at least-most valuable collection of books and manuscripts. Its dispersal, which began even while he lived, was perhaps the most significant redistribution of textual resources since the dissolution of the monasteries. ${ }^{44}$

[^15]Perhaps most importantly, Dee's library held more books by Roger Bacon ${ }^{45}$ than those by any other author, ${ }^{46}$ and Bacon's Opus Majus was indispensable to Digges's work on optics, ${ }^{47}$ which we shall further discuss below.

But Digges was indebted to Dr. Dee for more than the use of his library. Digges's relationship to Dee was sufficiently close that, when Digges was implicated in Wyatt's Rebellion, he appointed his friend, should Digges die early, to carry on his own work in bringing up his son, Thomas, in the mathematical arts. This was a wise contingency on Digges's part, as, despite his ultimate pardon, he would die when Thomas was only thirteen years of age.

But before he died, he was a very busy man. Leonard Digges has been credited with the invention of two instruments for which the world is in his debt. One of these is the theodolite, a surveying instrument used to measure horizontal - and today usually vertical - angles.

Confusingly for modern readers, the instrument Digges describes as a theodelitus in his
Pantometria, published by his son Thomas after the elder Digges's death, only measures the horizontal ${ }^{48}$ and was in use before Digges, having been illustrated in 1512 in a book by Waldseemüller. ${ }^{49}$ But this is not the instrument that represents Digges's contribution to the field of land surveying. Immediately thereafter he describes another instrument, which he terms an instrument topographicall. This is a device "of such perfection, that no manner altitude, latitude, longitude, or profundity can offer itself, howsoever it be situate, which you may not both readily

[^16]and most exactly measure. ${ }^{" 50}$ Though primitive, this "instrument topographicall" is a theodolite in the modern sense, that measures both the horizontal and vertical, and his is its first description.

In addition to the theodolite, Digges may also be the first to have built a working telescope. There is much controversy over who might have constructed the first working "perspective glass," as the instrument was sometimes called before the word "telescope" appeared in the seventeenth century. Thomas, in publishing Leonard's Pantometria, states, my father ... hath by proportional Glasses duly situate in convenient angles, not only discovered things far off, read letters, numbered pieces of money with the very coin and superscription thereof, cast by some of his friends of purpose upon Downes in open fields, but also seven miles off declared what hath been done at that instant in private places $\ldots{ }^{51}$

Colin A. Ronan argues that this passage is evidence that Leonard Digges had managed to construct a working telescope before his death in 1559, decades before Dutch optician Hans Lippershey presented his in 1608. Ronan triangulates this data point with statements from John Dee and from some of the other works of Thomas Digges to construct a compelling argument for Leonard Digges as the builder of the first telescope. ${ }^{52}$ While we may never get a definitive answer to whether he was the first, the evidence at least proves conclusively that Leonard was involved with the technology at a very early stage.

While his contributions to practical instrumentation have been long-lasting, he is perhaps best remembered for his writing. Leonard Digges claimed, in all of his works, to "bring within the reach of the artisan and the master-craftsman a knowledge of the mathematical arts which

[^17]had hitherto been 'locked up in strange tongues'. ${ }^{,{ }^{53}}$ But the shadow of his rebellion still pursued him. After his attainder, Digges found it difficult to locate English printers who would work with him. ${ }^{54}$ While this must have been galling initially, it ultimately drove him into the shop of Thomas Gemini of Blackfriars, a Flemish printer and engraver who had established himself in London several years earlier. ${ }^{55}$ Gemini was not primarily a printer, he was a mathematical instrument maker of rare skill; two of his intricately engraved astrolabes are still on display today at the Royal Belgian Observatory and England's National Maritime Museum. ${ }^{56}$ Such finely wrought instruments must have impressed Digges, and the two struck up a relationship that resulted in Gemini printing the second and third Prognostication and the Tectonicon, as well as "making and supplying the instruments the author recommended. ${ }^{, 57}$ Gemini does not seem to have been a very active printer. A search of the British Library's English Short Title Catalogue, which is an extensive electronic listing of English and American books published between 1473 and 1800, has few listings for Thomas Gemini. ${ }^{58}$ Five are printing jobs for Leonard Digges: two editions of the Prognostication, 1553 (STC 435.35) and 1555 (STC 435.39), and one of the Tectonicon, 1556 (STC 6849.5). With the exception of his first, 1553 edition of the Prognostication, these Gemini printings were the only books we know of that Digges would publish during his lifetime. Gemini's other two Digges jobs are later editions of the Tectonicon published after Digges's death (STC 6849.8 and 6850). The remaining ESTC entries do not represent printing jobs at all, but engravings-one, a map of the British Isles Gemini did for a George Lily in 1555, another, an anatomy book printed by George Herford in 1559.

[^18]Interestingly, the entry for the Tectonicon designated STC 6850 boasts two entries in the Stationers Register. The first (Entry SRO359) records the purchase by one Lucas Haryson of "his lycense for pryntinge of Dygges pronostication and his Tyctonycon."59 The next (Entry SRO440) bears two notes of particular interest. The first: "Recevyd of Thomas marshe for his lycense for pryntinge of Dygges pronostication and his tectonicon which he boughte of lucas haryson." The second note reads, "This is the first instance in the Registers of the purchase by one printer of another of what we should now call the 'copyright' of a book." ${ }^{60}$

The Prognostication is the text edited here, and his Tectonicon, published the next year, deals with mensuration, the measuring of things, especially the surveying of land. Digges also wrote two books that were not published during his lifetime, but were, rather, edited and published by his son, Thomas. These were Pantometria and Stratioticos. Pantometria is a follow-on to Tectonicon, in which he introduces his instrument topographicall, as mentioned above. Stratioticos is a book on military mathematics, for which Thomas takes a bit more credit, describing it on the title page as, "Long since attempted by Leonard Digges Gentleman, Augmented, digested, and lately finished, by Thomas Digges, his Son. ${ }^{י{ }^{61} \text { While Thomas Digges }}$ has brought us two of his father's works that we might otherwise not have because of Leonard's untimely death, his continued work on the Prognostication has been particularly illuminating, as we shall see.

[^19]
Note on Thomas Digges

Research on Leonard Digges is complicated by the ubiquity of his more famous son, Thomas, who not only published two of his father's scientific works after the elder Digges's death, but was also himself a prolific writer of scientific texts. Confusingly for researchers, Thomas had a son, also named Leonard, a well-regarded translator and poet who was a contemporary of William Shakespeare and one of the Bard's early enthusiasts. Since Leonard the Younger's oeuvre does not interact directly with that of his grandfather, this section will focus on Thomas, who was his father's student until the age of 13, when Leonard died, and Leonard's effective literary executor after the latter's death.

As mentioned previously, Leonard Digges died early, sometime around 1559, when his son Thomas was only thirteen years old. As the two men had agreed, Thomas came under the care of Dr. John Dee after his father's death. The relationship was very fruitful. Dee referred to Thomas as "my most worthy mathematical heir," and, for his part, Thomas called Dr. Dee his "revered second mathematical father." ${ }^{" 2}$ The two frequently collaborated, and they seem to have complemented one another's styles of scholarship, with Dee famously fascinated by magic and metaphysical pursuits (although Sherman makes the case that his reputation as a "magus" is overblown and essentializing ${ }^{63}$) while Thomas took more of an interest in experimentation and practical application. Certainly, Dee's young protégé would have availed himself of Dee's renowned library.

[^20]Roughly four years after his father's death, on Saturday, March 13, 1563, Leonard and Thomas Digges were "restored in blood by an act of parliament." ${ }^{" 64}$ It is possible that the protestant Elizabeth I's recent ascension to the throne might have facilitated this. This, restoration, along with his association with Dee, must have had the effect of alleviating any lingering troubles he might have had in getting his father's work published.

His first publication, in 1571, was his father's Pantometria, which Thomas had completed and to which he had appended his own A Mathematicall Discourse of Geometricall Solids, which Stephen Johnston calls "the most self-consciously advanced and novel work on geometry published in sixteenth-century England. ${ }^{י{ }^{65}}$

In 1572 , a new star appeared in the heavens to much interest. It was a supernova, of course, and Thomas wrote his Alae seu scalae mathematicae of 1573, his only Latin work, in part to publish his observations. ${ }^{66}$ The new "star" was in Cassiopeia, and like all supernovae, did not long remain visible to earthly observers. But the great Tycho Brahe, ${ }^{67}$ in comparing Digges's observations with his own, concluded that the former "did not make adequate allowance for the effect of parallax* in using his instrument." With current technology we can see that, in fact, Digges's observations were much more accurate even than Tycho's. ${ }^{68}$ Digges's Alae seu scalae

[^21]mathematicae served as the companion volume to Dee's Parallaticae commentationis praxeosque nucleus quidam of the same year. ${ }^{69}$

In 1576 he published a new edition of his father's Prognostication with the addition of his own A Perfit Description of the Caelestiall Orbes according to the most aunciente doctrine of the Pythagoreans, latelye reuiued by Copernicus and by Geometricall Demonstrations approued, which was "the first exposition in English of the Copernican System of the world." ${ }^{\text {" }}$ Perhaps more impressive, this work by Thomas Digges was also the first to declare "an infinite universe no longer bounded by the eighth, ninth or tenth sphere.."71 This represents a departure from previous editions of the Prognostication, which propounded the Ptolemaic, geocentric model of the cosmos. This model, as will be evident from reading the Prognostication, differed from the model we are familiar with today.

In the Ptolemaic system the universe consists of a series of nested spheres made of a perfect substance called aether. There is no space between the spheres, and a body or a number of bodies is embedded in each sphere. It can be helpful to envision these nested spheres as the layers of an onion, with a speck of some object embedded in most.

These spheres can be divided into two sets, the sublunary and aetheric spheres; the sublunary was anything that existed below the moon, while the aetheric included the moon and everything above it. The sublunary spheres start with the inner-most sphere, that of Earth. Above the sphere of earth is the sphere of Water, which would float above the sphere of Earth if God did not raise the land up above the water in places. Above water is air, and above air is Fire. It should be noted that sublunary substances seek to join their sphere of origin. This is why stones

[^22]and water seek to fall and air and fire seek to rise. The sublunary realm is where we live out our lives.

The aetheric spheres begin with the sphere of the Moon. Above that is the sphere of Mercury, then above that the sphere of Venus, then the Sun, Mars, Jupiter, and Saturn. Saturn is the most distant planet anyone knew about before the discovery of Uranus in the eighteenth century, but it is not the last sphere. There are three more. Outside of the sphere of Saturn is the sphere of the Fixed Stars. All those objects traditionally called stars are suspended, more-or-less stationary, in a spinning sphere, moving about the earthly center but fixed in relation to each other. Outside the sphere of the Fixed Stars is the Primum Mobile, the prime mover, that sets all the other spheres in motion and keeps them that way. Outside of that, we have the Empyrion, the dwelling place of God, the Angels, and all the Elect. This is a very basic picture of Ptolemaic astronomy that will serve to introduce you to that model of reality. ${ }^{72}$ Thomas Digges, taking Copernicus as his starting point, is about to strike a blow to this harmonious notion of how the universe works.

Thomas's model even outstrips Copernicus himself in scope. While Copernicus accounted for the absence of detectable parallax* by proclaiming that the sphere of the fixed stars possessed "a diameter vastly greater than that assigned to it by previous astronomers," he otherwise retained the model of the stars put forth in Ptolemy, with the stars fixed on the surface of that sphere. On the question of the infinity of the universe, Copernicus remains agnostic.

[^23]Digges, on the other hand, commits himself to an infinite universe, with numberless stars spread throughout endless space. ${ }^{73}$

It is difficult to overstate the impact of Thomas's publication of this conclusion in his home country and in his native language. Johnson and Larkey, in their seminal work, "Thomas Digges, the Copernican System, and the Idea of the Infinity of the Universe in 1576" declare his Description of the Caelestiall Orbes to be "the principal English treatise on the Copernican system to be printed before the second quarter of the seventeenth century," and they point out that Thomas Digges's contemporaries considered him the "foremost English mathematician of the first thirty years of Elizabeth's reign, with the possible exception of John Dee,, ${ }^{74}$ which stands as a bold statement of Thomas Digges's notability.

William Gilbert is generally credited with being "the first English scientist of note to give his support to the Copernican system. ${ }^{,{ }^{75} \text { But not only was he clearly not more notable than }}$ Digges, it was not until his De Mundo nostro Sublunari Philosophia Nova was posthumously published in 1651 that Gilbert finally embraced the orbiting of the Earth about the Sun. Even if we accept the date of 1600, when, in his De Magnete he accepted the notion of the Earth's rotation on its axis, Digges still predates Gilbert by twenty-four years. ${ }^{76}$

The scientist most often credited with first publicly proclaiming "in England the new Copernican theory of the universe and also the first to add, as a corollary to the new system, the idea that the universe was infinite in extent ${ }^{977}$ is Giordano Bruno. ${ }^{78}$ But Bruno did not come to

[^24]England until 1583, seven years after Digges published his Description of the Caelestiall Orbes, which should disqualify him immediately. Add to this the fact that he did not understand English, published exclusively in Latin and Italian, and was virtually unknown in England during his brief, two-year stay, ${ }^{79}$ and the notion that he proclaimed his discovery in England is rendered a technicality, at best.

But for all the significance of Digges's writing in his Description of the Caelestiall Orbes, perhaps the feature of that work that made the greatest impact was the diagram he placed at the beginning.

[^25]
i A perfit defcription of the Caleftiall Orbes, according to the most auncient dectrine of the
 Pythagoreans. ©cc.

Figure 1 (Thomas Digges, Francis R. Johnson and Sanford V. Larkey, "Thomas Digges, the Copernican System, and the
Idea of the Infinity of the Universe in 1576," The Huntington Library Bulletin, no. 5 (April 1934): pp. 69-117,
https://doi.org/10.2307/3818095, 78)
As you can see from Figure 1, the fixed stars are not entombed in the ether of a
crystalline sphere. Rather, beyond the eighth sphere an infinity of stars scatters at various
distances from a central sun. While Digges's published defense of infinite stars in connection
with Copernicanism was certainly unique in England at the time, until the middle of the
seventeenth century " $[\mathrm{n}] \mathrm{o}$ astronomer outside England ... appears to have published a plan of the universe which contains the essential feature of Digges' diagram" either. ${ }^{80}$

With all this discussion of infinity, it bears pointing out that there wasn't anything particularly surprising in the sixteenth century about an infinite universe. The idea had been part of metaphysical speculation for at least a century. Digges's contribution was the idea that Copernicus's system could provide "physical proof of ideas that had hitherto been purely metaphysical speculations." ${ }^{, 81}$ Digges was bringing his brilliant, empirical methodology, based on experimentation and painstaking collection of data, to a problem, thereby taking it from the world of philosophical musing to the realm of praxis. Nothing Thomas could have done-even his repeated and faithful reissuing of his father's Prognostication, keeping it ever abreast of the latest advances in knowledge-could better have carried on his father's work. Leonard Digges had devoted his all-too-short, twice-interrupted career (once suspended by punishment and then cut short by an untimely death) to elucidating mathematics and science in practical terms. Even though he died when Thomas was still quite young, the father's work had clearly made a great impression on the son. For, despite his beloved master's devotion to the metaphysical and theoretical, Thomas maintained his father's devotion to the practical.

Johnson and Larkey have speculated, based on the excellence of his Alae seu scalae mathematicae and his own statements about his planned future projects, that had he not been "forced to lay aside his astronomical studies," he may have "anticipated by a quarter of a century the discoveries made by Kepler and Galileo. ${ }^{\circ 82}$ As it is, his 1579 text on military mathematics,

[^26]known as Stratioticos, was his last major composition. His career thereafter was increasingly devoted to social and political duties.

Conventions used in this edition

This edition has two chief objectives. We have already covered the primary pedagogical objective at some length, above. The other objective is to provide the reader with a clear, comprehensible text that nevertheless provides an aesthetically immersive approximation of what Digges's ideal audience might have experienced in encountering the Prognostication. With that in mind, we would do well to specify what we mean by the terms "ideal audience" and "aesthetically immersive experience."

To begin with the former, Digges seeks to convey to his audience a readable text full of practical information. Modern readers, however, will have difficulty with some of the idiosyncratic spellings, odd letter forms, and unfamiliar vocabulary, not to mention his namedropping of famous writers who are no longer familiar to us. Obviously, few modern readers can fairly be said to be his ideal audience.

But Digges's text has some other issues for modern readers that may have stymied some of his contemporaries, too. In spite of his sometimes-stated goal of making his writing accessible, he seems unable to resist the urge to present at least some text that remains "locked up in strange tongues, ${ }^{" 83}$ as he himself said. There is a fair bit of Latin sprinkled into the Prognostication, and, while some of it simply repeats things already said elsewhere in English, it still forms a barrier to comprehension for many readers, both now and in the sixteenth century.

With this in mind, it seems Digges's ideal audience is someone curious about matters of astronomy and mathematics, someone with enough Latin to be able to understand short passages,

[^27]but who can appreciate having things spelled out in English. This reader should be able to understand the English text as written and follow along with the sixteenth-century cultural assumptions. While none of us will ever experience the Prognostication through the eyes of a London reader of the sixteenth century, this edition will do what it can. To that end, it employs several conventions designed to at least counteract somewhat the effect of four intervening centuries, while still providing an aesthetically immersive experience. By this, I mean the text should be pleasurable to read because it is beautiful and gives a reader the agreeable impression of intuitung, however fleetingly, the reading experience of a fairly educated English commoner of the sixteenth century.

The following is a list of the conventions used in making this edition. Priority has been given to making the product as readable as possible while preserving the layout of the original. Wherever it was deemed necessary, endnotes, keyed to the text with lowercase Roman numerals, provide historical details and important names. Unfamiliar terms are flagged with an asterisk and explained in a glossary, and a list of conjectural emendations provides notes where the text is in some way defective. These emendations are set off in the text with [brackets]. Textual notes are set off with a dagger (\dagger) and have their own section, as well.

The copy-text has a few handwritten notes near the beginning. In each case, these notes are cryptic, illegible, or offer no real clarity concerning the text. As such, they have been omitted.

Latin text has been translated into English and set off with \{braces\}, preserving the style, Roman or Italic. An attempt has been made, where possible, to preserve page layout in light of changes in line length and word order between the two languages.

Original punctuation has been preserved except where it might impede understanding. Where uncontroversial, changes have been made silently to avoid cluttering the page with minutiae. If a change is conjectural, it is treated as any other conjectural emendation.

Because they can be difficult, even confusing, to read, archaic letterforms have been silently modernized. When the original printing has used a "VV" to represent a "W," this edition silently changes this to a "W."

The edition maintains the capitalization of the original because, while sixteenth-century capitalization seems strange to modern readers, it does not inhibit readability and helps to preserve the feeling of reading a book from an earlier time. One could also imagine that this information might be useful to a later scholar studying typography. This edition does, however, seek to regularize the spacing between words. Typesetters in the sixteenth century had to keep their text-blocks justified, and adjusting spacing was one way to achieve that. However, these accidental variations are difficult to measure, and the effort of doing so would neither enhance the reading experience nor provide any particularly valuable information to scholars.

For ease of reading, this edition modernizes spelling, including the closing of open compounds, such as changing "to day" to "today." However, in order to preserve somewhat the flavor of the original, the original verb forms, such as followeth, have been retained, though their spelling has been regularized.

Despite the tendency to modernize spelling, the edition attempts to keep archaic words. Their spelling has been modernized using the Oxford English Dictionary as the model, and where their meaning is unclear a definition from the OED has been included in the glossary.

In the original, the dedication and note to the reader are printed entirely in an italic typeface. For the sake of readability, these two sections of Digges's front matter have been rendered in a Times New Roman font.

Thomas Gemini, the printer, has justified the margins of the text block, as was standard and necessary when working with movable type. In order to preserve the line breaks, this edition dispenses with justification, which is neither necessary nor particularly desirable in the current format. Some care has been exercised in preserving where words break across lines. Gemini is inconsistent in his hyphenation at linebreaks, either out of carelessness or necessity. This edition preserves such inconsistencies.

The running head of the original has in all cases been omitted.
Gemini uses an overbar to signal when he abbreviates words by dropping a nasal consonant. In all such cases, the edition has expanded these abbreviations and signaled this by underlining the missing letter and the letter that supported the overbar.

Printed marginalia are placed in the margin in a manner imitating as closely as possible their placement in the original.

Catchwords appear inconsistently throughout. This edition reproduces them at the end of the page when they appear in the text. An attempt has been made to place them in relation to the text block as nearly as possible to their original position, as typography allows.

A PROGNOSTICATION OF RIGHT GOOD effect fruitfully augmented, containing plain, brief, pleasant, chosen rules, to judge the weather forever, by the Sun, Moon, Stars, Comets, Rainbow, Thunder, Clouds, with other Extraordinary tokens, not omitting the Aspects of Planets, with a brief judgement forever, of Plenty, Lack, Sickness, Death, Wars, etc. Opening also many natural causes, worthy to be known. To these and others, now at the last are adjoined, diverse general pleasant Tables: forever manifold ways profitable, to all manner men of understanding: therefore again published by Leonard Digges

Gentleman, in the year of our Lord 1555.
(*) (*)

Imprinted at London, within the black Friars, by Thomas Gemini. 1555.

Gorden 2

THE CONTENTS

FIrst you have many pleasant chosen rules for ever, to judge alteration of weather, by the Sun, Moon, Stars, Comets, Rainbow, Thunder, Clouds, with many tokens extraordinary: not omitting the Conjunctions, Quadratures*, and Oppositions of Planets, among them selves, and with the Moon also: and their combustion*, in the .12. signs celestial.

2 Then ensue natural causes of such alteration, according to Aristotle: first of the Rainbow, then of Rain, Dew, Snow, Hail, Wind, Earthquakes, Thunders, and Lightnings.

3 The causes and operations of Comets, Flames, and other horrible fiery sights, appearing in the air.

4 The natural causes, and significations of Eclipses, both of Sun and Moon, with the true proportion of all the Planets, and fixed Stars, unto the earth.

5 Causes natural of many Suns and Moons, appearing at one time on the earth.
[6] Then ensue the Aspects of the Moon, and her signification, in the 12. celestial signs, conducing to all manner affairs.
[7] A table, declaring what sign the Moon is in, forever: con[ta]ining the aptest time to let blood, to take purgations, and to bathe.
8 How to know at all times, what the Moon differeth from the Sun: I mean what signs and degrees of the Zodiac are between them.
9 You have a conducible* note of all the evil days in every month: with other necessaries: for letting blood also, with the dominion of the Moon in man's body: for purging, and bathing, more largely than by the Table before ${ }^{\dagger}$ said.

10 Of inundations or floods, with the meetest time of Timber felling, Sowing, Planting, Grafting, Hairclipping ${ }^{\dagger}$, Shaving, and [Gelding].

* ij. For

11 For further knowledge in things following the Sunday letter and Leap year, is briefly declared by a Table, at no time to be altered.

12 A table, as general for the Prime* and Epact*.
13 A table to find the movable feasts forever.
14 Then is opened plainly the age of the Moon* at all times, the full, and quarter, forever.

15 A table showing continually the true time of ebbing and flowing, in most coasts of England.

16 Here is also declared forever, how long time the Moon shi neth, when she riseth and seteth, with her continuance on the Horizon, or earth.

17 A Table for the break of the day, and twilight, and for this country the true hour and very minute of the Sun rising, and going down, with the just quantity or length of every day in the year, and the length of the night also.

18 The hour of the night is known by the Moon, and diversely.

19 The hour of the day doth plainly appear by rig[ht sha-] dow: that is, by anything directly standing up, and also by sha[dow] Geometrical, which is square shadow.

20 The exact hour of the night is pleasantly searched by Stars and Tables calculated, with an instrument appointed for that practice. This instrument is a perfect Dial for the day, of all other the ground, whose making, rearing*, placing, and use is plainly opened.

21 Before the peculiar Calendar, you have a brief Calendar general, containing things commonly desired.

Here endeth the contents.

To the right honorable, Sir Edward Fines, of the noble order of the Garter Knight, Lord Clinton and Saye, etc.

Leonard Digges wisheth continuance
of health, and daily increase of honor. (,:,)

SIth* my late troubles (right honorable, and singular good lord) my duNty hath made me careful to procure, that some fruit of my studies might declare me thankfully minded, toward your lordship, among other honorable, to whom I owe myself, with all my endeavor, and fruits of study. For the performance whereof, not only your lordship's late talk of a Prognostication, seemed to make that argument fittest: but also the manifest imperfections, and manifold errors yearly committed, did crave the aid of some that were both willing, and able to perform the truth in like matters. I thought it therefore worthy the labor, truly and briefly to collect many things, both necessary, and pleasant, as well for Nobility as others: and to adjoin them to my general Prognostication, imprinted the year 1553. augmenting diverse ways the same: and more orderly placing such as were before set forth. Your honor shall here receive, in this little book, by infallible rules taught for ever, a truth of all such things as heretofore have been put forth of other for one year's profit only, compelled thereby of necessity to make a yearly renewing of them: whereupon errors many increased. You shall have diverse other conclusions general, of none before attempted. These (right honorable lord) according unto my duty, I do present, and beseech you in good worth to receive: and have willed them to pass under protection of your Lordship's name: that if to any, any commodity ensue thereby, such as receive it, may have cause to further me, in yielding thanks to your honor.

To the Reader.

TO avoid (Gentle reader) the yearly care, travails*, and pains of other, with the confusions, repugnancies, and manifold errors, partly by negligence, $\&$ often through ignorance, committed: I have again briefly set forth a Prognostication general, forever to take effect: adjoining thereto divers profitable collections, \& many pleasant conclusions, easy of all willing ingenious to be perceived Here note (Reader) whereas the elevated Pole, \& Meridian should be considered: in this work it is performed for London: because [I wish by] this Meridian, Situation, or Clime the exact truth of things. If any yearly practices in like matters, agree not with my calculations: be assured, they are false, or at the least for other Elevations, or Meridians supputated*, and therefore little serving thy purpose. And that the late rude inventions, and gross* devices of some (this year, and two years past, published) might be of them perceived, then filed, and so serve to some profit: I have purposed even now to put forth a book named Panauges ${ }^{\dagger}$, well serving their turn, and so generally and most exactly all Europe, pleasant, profitable to the learned, and no small delight to all manner men. Another book is also ready to come to thy hands, titled Tectonicon, a treasure unto the Masons, Carpenters, and Land-meters: correcting their old errors, wrongfully reckoned of them as infallible grounds: teaching faithfully, sufficiently, and very briefly, the true mensuration* of all manner land, timber, stone, board, glass, etc.: and at the end containing an Instrument Geometrical, appointed to their use. Take in good worth these labors (Loving reader) and look shortly for the pleasant fruits Mathematical, even such as have been promised by my friends, and partly by me. Neither shall my desire to profit here stay: but intendeth farther to proceed, if these seem accepted As the good will of Printers not had, hath kept the aforesaid from you: so I trust the willing mind and excellency of Thomas Gemini, shall bring them shortly unto you. Certes* my hope is, while life remaineth, not to be unfruitful to this commune wealth, with study, and practice.

Against the reprovers of Astronomy, and sciences Mathematical.

I Am diversely occasioned, loving Reader, somewhat to write in the commendation of the Mathematicals, which needed not: but only to open the foolish rashness, and rash foolishness of such, which of late have in writing dispraised these goodly arts. It is an old said saw, and true: \{Science does not have an enemy unless he/she is ig-
norant $\}$. But to avoid tediousness, and chiefly for the more satisfy-
\{They who ing, I refer all of that sort, which have tasted any learning (the rest not regarded) to the first part of famous Guido Bonatti, de utilitate Astronomiae in communi ${ }^{i}$. where he writeth \{against those who say that the scisimply don't understand them censure them.\} ence of stars cannot be known by anyone; ${ }^{i i}$ against those who have said that the science of stars is not useful but rather is damnable, etc; iii against those who contradict the judgments of Astronomy and who detest them, ignorant of their dignity because it is not lucrative $\left.^{i v}\right\}$. Also for brevity, I appoint all nice divines, or (as Melancthon ${ }^{v}$
termeth them) \{Epicureans of Theology\}, to his high commendations touching Astronomiæ, uttered in his epistles to Simon Grynaeus ${ }^{v i}$, to Schonerus ${ }^{v i i}$, and at the peroration of Cardano ${ }^{\text {viii }}$ five books, where he showeth how far wide they allege the scriptures against the Astronomer, which make wholly with the Astronomer. Melancthon writeth and affirmeth, \{It is arrogance joined to the height of foolishness to hunt for any ceremony of glory from the pursuit of arts, which are from the grave authority of the doctors etc., and which are the prescriptionsof prudent people $\}$. He calleth it \{a manifest type of insanity $\}$, declaring $\{$ this is a job more for a doctor than a geometer $\}$, advising the learned not to give ear unto their folly. \{Let's (he said) play the fool with an Epicurean\}. Which counsel lo, I follow. Now therefore, you enemies of all good doctrine, either give an overthrow, and that with your pen, or let famous Guido, or learned Melancthon satisfy. If neither: certes* I will shortly (God sparing life) take some pain in publishing the wonderful unknown pleasant profits of these dispraised high knowledges, and by that means to enforce silence. Now in few, for thy encouragement in these, thus I say and truly, the ingenious learned, and well experienced circumspect student mathematical receiveth daily in his witty practices, more pleasant joy of mind, than all thy goods (how rich so ever thou be) can at any time purchase. \{With sweet passion the wise man embraces that thing which is beautiful, which
\{The foolish despise this and fight a gainst it: Those who contradict it are seeking advancement, and those who curse it are silly.\}
which is pure, which is divine, and which is in no way mortal. To say much in few words (believe me) it will be sweet to be. Now to end, that learned Guido, that excellent Guido Bonatti, showeth what Astrology or Astronomy is, and ought not sayeth he, by any mean to be reprehended, in that the most wisest, yea, the holy fathers have practiced that science. He proveth it one of the chief sciences Mathematical, by the authority of the best learned, and by Aristotle in his Posteriorum ${ }^{i x}$. How cometh it to pass loving Reader, saying it is a noble science, \{and science is a true concept of conclusions, by which, on account of a demonstration ${ }^{\dagger}$ we might firmly assent $\}$, that it is counted vain, and of so small strength. The secret truths and most pleasant profits therein not desired, yea, utterly despised, and of some busy biting bodies rejected as very lies. Let no man doubt ignorance, the great enemy of all pure learning hath wrought this. \{For the common people call this an uncertain art, on account not of any errors in the art itself, but rather in the ignorance of unlearned men, who think with fear and who everywhere blabber on about their own delights $\}$. Thus

I leave indigestly* farther to trouble: favor me as I tender the furtherance of good learnings, profitable to a commonwealth.
Fare most heartily
well, unfeigned
good Chri-
stian Rea-
der.

HOW TO JUDGE WEATHER by the Sun rising, or going down.

He Sun in the Horizon, or rising, clear and bright, showeth a pleasant day: but thinly over-
\{On observing meteors*.\} cast with a cloud, betokeneth foul weather. Also at the going down, the body diverse colored or red, and about dispersed with like clou ds, the beams red, and of length, pronounce great winds the next day from that part. Blackness in the Sun or Moon betokeneth water: red, signifieth wind. The element red in the evening, the next day fair: but in the morning red, wind and rain. Also the Sun beams spotted, green, pale, or black, gathered to a cloud, signify rain. Further the Sun at the setting plainly seen without any cloud, decla reth a fair night to ensue. Here note, Ptolemy ${ }^{x}$ willeth us diligently to observe the circle, or circles about the Sun. If it be clear, and the circle of no continuance, behold fair weather: if many of them, wind. Winds more vehement are signified, if that the circles be somewhat red, here and there broken: but these obscured, thick, and black, look for cold, wind, and snow. What is spoken of the Sun, touching the circles, the same is meant of the Moon. Note here that greater winds chance in the day, than in the night.

How weather is declared by the color of the Moon: and by the nature of the sign wherein she is.

TF the Moon in the third of her change*, yea three days before the full, or in the midst of the quarter, be found of pure light: no thing compassing her, the end direct up, she promiseth fair weather, but bent to red color, provoketh wind. The Moon pale, or somewhat inclined to black, obscure or thick, threateneth rain. Al-
\{If the moon is red [wind] blows; if it's pale, it rains; if it's white, it will be calm.\} so by the nature of the sign, weather may be judged, thus, according to Stöffler, ${ }^{x i}$ Monteregius, ${ }^{\text {xii }}$ Leupoldus ${ }^{\text {xiii }}$, and famous Guido Bonati, with others well-travailed* in the mutations of air. Consider the

B natu-

hot,
$\succ \mathrm{mp}$
earthy.
$\square \Omega \%$
windy.
๑ m 00 watery.
\{When the greatest things appear, then indeed the middle atmosphere grows in moisture.\}
nature of the sign where the Moon is, at the change*, quarter, and full. If she be in hot \& dry signs, as Aries, Leo, Sagittarius, in winter a good token of fair weather: in summer, a great signification of immoderate heat: if in earthy, cold and dry signs, as Taurus, Virgo, and Capricorn, in winter judge cold, frost, and snow to ensue: but in Summer temperate weather. In airy and windy signs, as Gemini, Libra, and Aquarius, much wind. If in watery cold and moist signes, as Cancer, Scorpius, and Pisces, in winter wet weather: in summer a pleasant temperature.

Also, the Sun in Aquarius: the Moon, at the change* there, or in Sagittarius, or at the full in Leo: betokeneth rain. The Sun, in Pisces, or in Aries: the Moon, in Virgo, Libra, or Sagittarius: signifieth rain, especially in watery dwellings. The Moon in Aquarius, or Pisces, look for change of weather: then chiefly she troubleth the air. The Moon also at the change*, or rather at the full, in Aries, Libra, Scorpio, or Pisces, tempestuous weather followeth. The Sun in Aquarius, in Aries, Libra, or Scorpio, but chiefly in Leo: the Moon, then at the full, and that after rain or mistings: look for lightning, thundering. \&c. Also the Sun, or Moon found in Pisces, without all help of Mars, it betokeneth abundance of rain, lightning, thunder. \&c. To conclude the Moon, in Cancer, Leo, Capricorn, or Aquarius, aided with any aspect, but chiefly with the opposition or quadrate of Venus, rain followeth.

The judgment of weather by stars.

BEhold the stars whose magnitude you know best. If they appear of much light, in bigness great, more blazing than they are commonly, it betokeneth great wind or moisture in that part where they show: in winter, cold and frost. When stars seem to run in the element, it showeth wind. Affirm also alteration of weather if they be few in number, cloudy, and of little light. Further when dim stars appear with long fiery tails, judge winds, and great drought: the more in number, the greater effect. When stars in the night (as it is said) shoot, or seem to fall, it argueth wind in that part: If in diverse places, inordinate winds: if in all places, then pronounce Winds, Thunder, Lightnings, yea weather most tempestuous.

The signification of Comets

Comets signify corruption of the air. They are signs of earth- \{Concerning the Comets signify corruption of the air. They of comets, quakes, of wars, changing of kingdoms, great dearth of corn, yea a common death of man, and beast. ${ }^{\text {xiv }}$

How by the clouds change of weather is perceived.

IF thick clouds resembling flocks, or rather great heaps of wool, be gathered in many places, they show rain. Also when gross*, thick, dark clouds, right over the north part, or somewhat declining to the west, are close with the earth, immediately followeth rain. If they appear like hills, somedeal from the earth, a good token of weather overpassed. Black clouds, signify rain: white clouds appearing in winter, at the Horizon, two or three days together, prognosticate cold, and snow.

Of the rainbow and his effect, touching alteration of air..

IF in the morning the rainbow appear, it signifyeth moistu1re, unless great drought of air work the contrary. If in the evening it show itself, fair weather ensueth: so that abundant moist air take not away the effect. Or thus.

The rainbow appearing, if it be fair, it betokeneth foul weather: if foul, look for fair weather. The greener, the more rain: redder, wind.

Of Thunders: what they signify.

THunders in the morning signify wind: about Noon, rain: in the evening great tempest. [Some] write (their ground
\{There will not be a rainbow unless it [stands] before the sun. It will not appear unless the clouds become less dense or thicken. $\}$
\{A sign of future wars.\}

I see not) that Sunday's thunder should bring the death of learned men, Judges, and others: Monday's thunder, the death of women: Tuesday's thunder, plenty of grain: Wednesday's thunder, the death of harlots, and other bloodshed: Thursday's thunder, plenty of sheep, \& corn: Friday's thunder the slaughter B. ii. of a
of a great man, and other horrible murders. Saturday's thunder a general pestilent plague, and great death.

> How weather is known after the change* of every Moon, by the prime days.

C Unday prime, dry weather. Monday prime moist weather. Tuesday prime, cold and windy. Wednesday prime, wonderful. Thursday prime fair and clear. Friday prime, mixed weather. Saturday prime, moist weather.

Now ensueth extraordinary tokens for the knowledge of weather.

Common to-
kens of weather, meet for all manner wits.

C Ome have observed evil weather to follow, when watery fowls N leave the sea, desiring land: the fowls of the land flying high: the crying of fowls about waters, making a great noise with their wings: Also the seas swelling with unaccustomed waves: If beasts eat greedily: if they lick their hooves: if they suddenly move here and there, making a noise, breathing up to the air with open nostrils: rain followeth. Also the busy heaving of moles, the appearing or coming out of worms: hens resorting to the perch ${ }^{\dagger}$ or rest covered with dust, declare rain. The ample working of the spinner in the air: the ant busied with her eggs: the bees in fair weather not far wandering: the continual prating of the crow, chiefly twice or thrice quick calling, show tempest. When the crow or raven gapeth against the sun, in summer, heat followeth. If they busy themselves in preening or washing, and that in winter, look for rain. The unaccustomed noise of poultry, the noise of swine, of peacocks, declare the same. The swallow flying and beating the water: the chirping of the sparrow in the morning, signify rain. Rain suddenly dried up: woody coverings straighter than of custom: bells heard further than commonly: the wallowing of dogs: the alteration of the cock crowing: all declare rainy weather. I leave these, wanting the good ground of the rest. If the learned be desirefull of the toforsayd, let them read grave Virgil primo Georgicorum At Bor. \&c. ${ }^{x \nu}$ There be a multitude of other not extraordinary but of the best
known
known causes: many for brevity here omitted: the more part not mentioned, because they pass the capacity of the common sort, upon all the which the Astronomer doth well and learnedly conclude. I doubt not there be also some time unknown matters, mitigating the aforesaid, or provoking tempests unlooked for, which neither experience, nor learning hath established. How unkind (these considered) yea how far from worthy thanksgiving are they, which in general headily do blame, checking bitterly the Astrologer, with these judiciary maters, (the least part among a number of his most certain doings) when things fortune contrary to expectation? Understand gentle reader: the consent of a multitude famously learned is their buckler, even in these maters judiciary: who have weighed a long time prudently, the great strengthen, the vehement force, and marvelous natures, of all erratical and celestial constellations, with their Angles, Radiations, Aspects, Affections, Stations, Progressions, Defections, Dispositions, Applications, Preventions, Refranations*, Contrarieties, Abscissions* Conjunctions, Quadratures*, and Oppositions. \&c. Therefore extreme folly, yea mere madness doth he utter, which embraideth* or backbiteth these knowledges, not remembering the great, and manifold benefits, had through them, and that with most certainty in all other doings.

What Meteoroscoper*, yea who learned in maters astronomical, noteth not the great effects at the rising of the star called the

Little dog? Truly the consent of the best learned do agree of
\{Rising of the little dog.\} his force: yea Pliny, in his history of nature ${ }^{\mathrm{xvi}}$ affirmeth the seas then most fierce, wines to flow in cellars, standing waters to move, dogs inclined to madness then most wood*. Farther these constellations, Orion, Arcturus, Corona, rising provoke tempestuous weather: the Kid and Goat, winds. Hyades or Succulae rain. What Meteorologer consenteth not to the great alteration and mutation of air at the conjunction, opposition, or quadrate aspect of Saturn, with either two lights? Who is ignorant, yea meanly travailed* in Astronomy, that Jupiter, with Mercury, or with the Sun, enforceth rage of winds? what is he that perceiveth not the fearful thunders, lightnings, and rains, at the meeting of Mars, and Venus, or Jupiter, and Mars? \&c. Leave for shame to impugn these judicials strongly authorized. He that any other part carpeth may seem more than mad. All truth, all experience, a multitude of infal-
B.iii. lible
lible grounded rules are against him. \{It is clear to all what is known, that the motion of the sky, the rising \& setting of signs ${ }^{\dagger}$, the aspect, \& conjunction of planets, the eclipses of lights. \&c have a certain, determinate and infallible cause. Who of sane mind denies that their effects often reveal, naturally, wars, hunger, hailstorms, perturbations of the air, commotions of the elements, movements of the earth, ${ }^{\dagger}$ and other like things? With their natural causes arranged, \& not impeded, the effect follows. \}

The learned that listeth* ingeniously to prognosticate of weather, will not only discreetly weigh all before written, but consider also with them the Strength and Aspects of the Planets following, and their Combustion* in the .12. Signs, with the Conjunctions of fixed Stars, Mansions of the Moon, the Ascendent, Climes. \&c. Also the times or quarters of the year must be noted diligently, (as ensueth) and judgment accordingly pronounced.

Of the year divided in four quarters.

の૪II power of the breast.

Gor 17 power over yellow colors.
$\Omega m, \quad$.万om power over all flames.

THe springtime is hot, and moist: and continueth so long as the Sun is in Aries, Taurus, and Gemini: which is from the tenth of March unto the twelfth of June. The summer is hot and dry, counted from the beginning of Cancer, to the end of Virgo, that is, from the twelfth of June, to the fourteenth of September. Harvest is cold and dry: that is from the beginning of Libra, unto the end of Sagittarius: counted from the .xiiii. of September to the twelfth of December. Winter is cold and moist: continued from the beginning of Capricorn, to the end of Pisces: that is from the twelfth of December, to the tenth of March.

Now follow the aspects of the planets, for the better judgement of weather. Before I declare of planets, and the signification of aspects, it behooveth briefly to open what I call planets, and what aspects, and how they are charactered and figured. Understand there be seven moveable stars, pleasant to the sight, called planets. The highest Saturn .ћ. Then Jupiter .ㅚ.ᅬ. Mars .§. Sun \odot. Venus . . . Mercury $\underset{\text {. }}{ }$. and the Moon D next to the earth. Now when I desire to express Saturn, I write this figure \hbar : for Jupiter, this 기: For Mars, this δ^{λ}. Thus of the others as their characters declare. All radiations or aspects are expressed as follow. A Conjunction thus figured δ : and it is, when another planet is joined with the Sun, or Moon, or others among themselves, within one degree, or
less.
less. The Sextile aspect or radiation is thus expressed $\boldsymbol{*}$: and it is within 60. degrees the one from the other. The Quadrate aspect thus $\square: 90$ degrees distant. The Trine thus \triangle : separated .120 .
degrees. The Opposition thus $\delta^{\circ}: 180$. degrees, the one distant from the other. Lo here they follow in order: the characters of the Planets: and Signs also.

to 0 ，with $2 /$

ちロ＊，\＆
0_{0}° with 21

市 σ ，\＆

市 $\sigma \square, \&$

市 $\circ \square, \&$
$\hbar 0, \square \& 0^{\circ}$, with \ddagger

210，$\square \&$
∞° ，with o
$210, \square 8$
ς° ，with \odot
$210, \square \&$
ρ° ，with $\%$

THe conjunction or meeting of Saturn with Jupiter，in fiery si－ gns，enforceth great drought：in watery signs，floods，con－ tinual rain，general overflowings．\＆c．in airy signs，plenty of winds．The quadrature＊，sextile，or opposition of Saturn，with Jupi－ ter in moist signs causeth troubled air，by hail，wind，rain， thunder，\＆c．before and after．

The conjunction，quadrature＊，or opposition，of Saturn，with Mars，in watery signs，declare in summer，rain，often showers，with hail，thunder and lightning．

The conjunction，quadrature＊，or opposition of Saturn，with the Sun，chiefly in cold signs，show dark weather，hail，rain， thunder，and cold days．

The conjunction，quadrature＊，or opposition of Saturn，with Venus， in winter，engender cold and rain，principally in moist signs： in summer，mitigation of heat．

The conjunction，quadrature＊，and opposition of Saturn，with Mercury，in watery signs bring rain：in hot or dry signs，drought： in summer，thunder，lightnings，and tempest．

The conjunction，quadrature＊，or opposition of Jupiter，with Mars，in moist signs，declare thunders lightnings，and rain：in winter，snow，or cloudy thick weather．

The conjunction，quadrature＊，or opposition of Jupiter，with the Sun，great and most vehement winds．

The conjunction，quadrature＊，or opposition of Jupiter，with Venus，in moist signs，cold and mistings：in the rest signs，fair weather．

The

The conjunction, quadrature* or opposition of Jupiter, with $2 / \sigma \square \&$ Mercury, great winds.

The conjunction, quadrature* or opposition of Mars, with the $\quad \sigma^{\circ} \sigma, \square \&$ Sun, in fiery signs, drought: in watery, thunder, rain.

The conjunction, quadrature* or opposition of Mars, with Venus, in moist signs, rain, and tempest.

The conjunction, quadrature* or opposition of Mars, with Mercury. in hot signs, great heat: in dry signs, drought: in watery, rain: sometimes thunders, lightnings, with sudden fierce winds.

The conjunction, quadrature* or opposition of Venus, with Mercury causeth rain: in summer they provoke tempest, the more if they agree in watery signs. Note what is said of the conjunction, quadrature* or opposition, the same is also meant of the Sextile and Trine: but they are of less signification, so the learned noteth.

A declaration of weather by aspects of the Moon with planets.

THe conjunction quadrature* or opposition of the Moon, with Saturn, in moist signs, bringeth a cloudy day, cold air, according to the nature of the sign: if she go from Saturn, to the Sun, by conjunction or otherwise, harder weather ensueth.

The conjunction, quadrature* or opposition of the Moon with Jupiter in Aries, or Scorpio showeth fair, white dispersed clouds.

The conjunction, quadrature* or opposition of the Moon with
20, $\square \&$ Mars in watery signs rain: in hot signs, diverse colored red clou 0° with σ^{*} ds are made, all the element over: in summer, often thunder.

The conjunction, quadrature* or opposition of the Moon with the Sun in moist signs, rainy weather: the more if the Moon go from the Sun to Saturn.

$$
\text { C } \quad \text { The }
$$

$20 \square \&$
∞° with
\hbar in \wp. What these terms combust Oriental, and Occidental, mean.

The conjunction, quadrature*, or opposition of the Moon with Mercury, in moist signs showeth rain and wind, the more when the Moon passeth from Mercury to Jupiter: then great winds follow.

How weather is judged by the Oriental and Occi-
 dental station of Planets, with their combustion in the .12. signs celestial.
 First of the planets in Aries.

SATURN in Aries, under the beams of the Sun, that is to $\mathbf{S}_{\text {say, combust* }}$, maketh a cloudy dark troubled air: Oriental, I mean in the morning appearing before the Sun, fair weather: Occidental, that is to say, showing himself after the Sun going down, betokeneth great winds.
$2 /$ in P
σ^{*} in P

ϕ in \odot

\nLeftarrow in \odot
Jupiter in Aries combust*, a token of rain: being Occidental, it bringeth clouds, and dews: Oriental, fair, pleasant weather.

Mars in Aries combust* and Occidental, good weather: contrary Oriental.

Venus in Aries combust*, Occidental moistness, great winds: Oriental thunders, and rains.

Mercury in Aries combust* tempe[st], Occidental, and Oriental, fair windy weather.

Of the planets [in] Taurus.

ちin γ

2 in γ
orin γ
ρ in γ

CATURN in Taurus combust*, a[n]d stationary, bringeth thick clouds, thunders, and troubleso[m]e weather.

Jupiter in Taurus combust*, indifferent [w]eather: Occidental, pleasant showers.

Mars in Taurus combust*, a quiet air: but [O]riental wind.
Venus in Taurus combust* thunders, \&c. Occ[id]ental fair. ${ }^{\dagger}$
Of the

Of the planets in Gemini.

ATURN in Gemini combust*, and Occidental, drought.	\% in III
Jupiter in Gemini combust*, a good signification.	$2 /$ in III
Mars in Gemini combust* and Occidental, heat.	osin II
Venus in Gemini combust* Occidental, wind.	9 in II
Mercury in Gemini combust*, wind.	¢̧in III
Of the planets in Cancer.	
© ATURN in Cancer combust*, dark weather, great winds and troublesome weathers: Occidental calmer.	ちin $\boldsymbol{6}$
Jupiter in Cancer combust* bringeth calm pleasant weather.	21 in 6
Mars in Cancer combust*, great heat.	$0^{\text {a }}$ in $0^{\text {c }}$
Venus in Cancer combust*, a quiet calm time.	¢ in $\sqrt{\text { g }}$
Mercury in Cancer combust*, tempestuous weather, chiefly on the sea: Occidental calmer.	¢in 6

Of the planets in Leo.

A ATURN in Leo combust*, maketh winds and mis- \hbar in 8
tinges.
Jupiter in Leo combust*, pleasant winds. $2 / \operatorname{ind}$
Mars in Leo combust*, Occidental, drought. o^{x} in 8
Venus in Leo combust*, drought. 9 in 8
Mercury in Leo combust*, winds. \nsucc in Ω
Of the planets in Virgo.
SATVRN in Virgo combust*, is a significator of infir- mities.

$$
\begin{array}{lll}
C & \text { ii. Jupiter }
\end{array}
$$

2 in mp Jupiter in Virgo combust＊，manifesteth abundance of things．
ơin ml Mars in Virgo combust＊，like unto Saturn．
¢ in me Venus in Virgo combust＊drought：Oriental contrary．

ఛin $n_{又}$ Mercury in Virgo combust＊，drought，raging seas：Occidental drought．
Of the Planets in Libra．
\hbar in Ω ATURN in Libra combust＊，showeth infirmity of sight：
Oriental，cold winds．
2 in Ω Jupiter in Libra combust＊，indifferent weather．
orin Ω Mars in Libra combust＊，bringeth moisture．
¢in $\Omega \quad$ Venus in Libra combust＊，moist air．
$\not \begin{aligned} & \text { in } \Omega \\ & \text { Mercury in Libra combust＊，winds．}\end{aligned}$
Of the Planets in Scorpio．
\hbar in m ATURN in Scorpio ${ }^{\dagger}$ combust＊，cold air：Occidental frost： O Oriental cold，North winds．
$2 /$ in m
Jupiter in Scorpio combust＊rain：Occidental，bitter weather＊
ơ in M．Mars in Scorpio combust＊，declareth moisture：Oriental，winds．
\＆in m Venus in Scorpio combust＊rain，both Occidental and Oriental．
छ in m Mercury in Scorpio combust＊，raging weather，chiefly Oriental．
Of the Planets in Sagittarius．
\hbar in $\boldsymbol{\nearrow}$（ATURN in Sagittarius combust＊，cold，rainy air：Oriental cold and frost．

ノ in $\boldsymbol{\nearrow}$ Jupiter in Sagittarius combust＊，rain：Oriental worse weather．
σ^{*} in $\underbrace{7}$ Mars in Sagittarius combust＊，drought．
¢ in $\not \boldsymbol{J}^{7}$ Venus in Sagittarius combust＊，rain：Occidental，wind，and cold．
ఛ゙in $\boldsymbol{\wedge}^{7}$ Mercury in Sagittarius combust＊rain：Occidental，clear air．
Of the

Of the Planets in Capricorn.

ATURN in Capricorn combust*, signifieth dark weather with $\quad \begin{aligned} & \text { in } n_{0}\end{aligned}$ South winds: Occidental cold: Oriental North winds.

Jupiter in Capricorn ${ }^{\dagger}$ combust* moist air: Occidental, increasing the same. $2 /$ in n_{0} Mars in Capricorn combust*, cloudy: Occidental some heat. or in no Venus in Capricorn combust*, cold air. Oriental rain. \quad in n_{0} Mercury in Capricorn combust* rain, both Oriental and Occidental. छin ท Of the Planets in Aquarius.

QATURN in Aquarius combust* cold air: Occidental dan-
\% in m gerous seas: Oriental rain.

Jupiter in Aquarius combust*, Occidental rain. $\quad 2 /$ in m
Mars in Aquarius combust* drouth: Occidental and Oriental plenty ơin m of winds.

Venus in Aquarius combust*, cloudy: Occidental hot: Oriental rain. ρ in m
Mercury in Aquarius combust*, snow: Occidental more cold: Orien- \quad in m tal rain.

Of the planets in Pisces.

©ATURN in Pisces combust*, bringeth clouds: Occidental rain.

Jupiter in Pisces combust*, Oriental, calm waters. $\quad 2$ in\#
Mars in Pisces combust*, Occidental, drought: Oriental lightning, and ooin H thunders.

Venus in Pisces combust*, cold: Occidental disposed to snow. of int
Mercury in Pisces combust*, moist air. gint
Thus much of the judgment of weather.
C iii Seeing

CEEING that I have now sufficiently declared how, by what rules and tokens, weather is judged: I think it convenient to adjoin here a brief collection, how Plenty, Scarcity, Sickness, Death, Alterations, Troubles, wars, $\& c$. are forever perceived.

A rule to prognosticate the aforesaid, by the falling of New Year's Day.

Sunday.

Monday.

Tuesday.

Wednesday

Thursday.

T T is affirmed of some, when New Year's day falleth on the Sunday, then a pleasant Winter doth ensue: a natural Summer: fruit sufficient: Harvest indifferent, yet some wind and rain: many marriages: plenty of wine and honey: death of young men, and cattle: robberies in most places: news of prelates, of Kings: and cruel wars in the end.

On Monday, a winter somewhat uncomfortable: Summer temperate: no plenty of fruit: many fancies and fables opened: Agues shall reign: Kings and many others shall die: marriages shall be in most places: and a common fall of gentlemen.

On Tuesday a stormy Winter: a wet Summer: a diverse Harvest: Corn, and fruit indifferent: yet herbs in gardens shall not flourish: great sickness of men, women and young children: Beasts shall hunger starve, and die of the botch*: many ships, Galleys, and Hulks, shall be lost: and the bloody fluxes shall kill many men: all things dear, save corn.

On Wednesday, Lo a warm Wynter: in the end, snow and frost: a cloudy Summer: plenty of fruit, of corn, Hay, Wine, and Honey great pain to women with child, and death to infants: good for sheep: news of Kings: great wars: battle and slaughter toward the mids*.

On Thursday, Winter and Summer windy: a rainy Harvest: therefore we shall have overflowings: much fruit: plenty of Honey: yet flesh shall be dear: Cattle in general shall die:
great trouble, wars \&c: With a licentious life of the feminine sex.

On Friday, Winter stormy. Summer scant pleasant: Harvest indifferent: little store of fruit, of Wine, and Honey: Corn dear: many bleary eyes: youth shall die: Earthquakes are perceived in many places, plenty of thunders, lightnings, and tempests: with a sudden death of cattle,

On Saturday, a mean Winter: Summer very hot: a late Harvest, Saturday. good cheap garden herbs: much burning: plenty of Hemp, Flax, and Honey: old folk shall die in most places: Fevers and Tertians* shall grieve many people: great muttering of wars: murders shall be suddenly committed in many places, for light matters.

NOw that I have opened diverse ways, both for the lear1 ned and unlearned, how weather to come at all times may be well judged and known \&c: I thought it meet, for farther knowledge therein, not to omit here, the natural causes of such and so many alterations of air. Lo, therefore orderly they follow.

> Natural causes, conducing to all the aforesaid, ever to be had in memory of the wise: and first of the Rainbow.

THe Rainbow is the shining, and rebounding of beams of light, that turn to the contrary vapor again, in the cloud. It declareth sometime rain, and many times fair weather: when the one, and how the other, is before opened.

Of Rain.
Rain
\{Why it rains stones, read Pliny, bk, 2, Ch. 44.3

RAin is a cold vapor. an earthy humor: or fumosities, out of waters or earth drawn up by the virtue of the Sun, to the nether part of the middle space of the air: there through cold thickened, then dissolved: thus engendered falleth on the earth. Here I leave to speak of miraculous rains, as Milk, Blood, Flesh, Yarn Wool, \&c. For more satisfying in these, read Pliny in the second book .58. Chapter. ${ }^{\text {xvii }}$

Of Frost and Dew.
\{Dew in summer Becomes frost In winter.\}

A Cold moist vapor, a little way drawn up in the day, thro ugh faint heat of the Sun, descendeth in the night, dissolved on the earth, there congealed, or resolved into water, the one called Frost, the other Dew. The last is a sign of fair weather, in the spring or Harvest.

Of Snow.

\{Snow is moderate moisture condensed.\}

T is a moist vapor, drawn up to the middle region of the Lair, then thickened, and frozen into the body of a cloud. So congealed, descendeth.

Of Hail.

\{Hail is rain that congeals upon falling.\}

A Cloud resolved into water, in the fall congealed, maketh Hail. The higher it cometh from above, and the longer it tarrieth in the air, the rounder hail.
Of winds.
\{Material of wind therefore, is a hot \& dry exhalation.\}
$W_{\text {earthi a and above ot the earth, entatoreces here and }}^{\text {ind there }}$.
Wind is a multitude of dry exhalations, drawn up from the earth: and above the earth, enforced here and there.

Of earthquakes, in the most quiet time.
$\{J u s t$ as there is thunder in a cloud, there is a tremor in the earth.\}

PLenty of winds, entered into holes, cones, or caves of the earth, which absent from above the earth, causeth quietness: the violent bursting out of them (the earth closed again) is the earth-
earthquake: $\{A$ sign of future wars $\}$.
Tokens of earthquakes to come.

AFiery cloud, appearing in the element, like a little pillar, is a token of earthquakes to come. The obscurity or darkness of the Sun, without clouds, and strangely colored, bloody or otherwise, is a token of earthquakes.

Also, when Well water and others are troubled, or salt, or infec ted by savor \&c.

A great quietness of air, by land and sea, and chiefly the long absence of winds.

Also, strange noises heard, as clamors of men, rushing of harness, mournings, lamentations \&c. All these have been observed, to signify earthquakes at hand.

> Of Thunders and lightnings.

THunder is the quenching of fire, in a cloud. Or thunder is, an exhalation hot and dry, mixed with moisture, carried up to the middle region, there thickened and wrapped into a cloud: of this hot matter, coupled with moistness, closed in the cloud, groweth a strife, the heat beating and breaking out the sides of the cloud, with a thundering noise: the fire then dispersed, is the lightning. Thus for the learned: \{The sound of thunder is what is emitted when a
\{/t is certain that although lightning, is discerned before thunder is heard, they happen simultaneously, Pliny
bk. 2. Ch. 56.
contra Aristotle.\} breath strikes a cloud. Lightning is a flame or sudden fire which is born from the collision or rupture of clouds \}. Aristotle affirmeth the lightning after the thunder: but the fire doth first appear, in that the sight is before the hearing. If this satisfy not, read the second of his Meteoron. ${ }^{\text {xviii }}$ Here followeth a note of lightnings.

There be three kinds of lightnings, dry, moist and clear.

DRy do not burn, but cleave, depart, or divide. Moist burn Dnot, but alter color. The clear are of marvelous natures. Full barrels by it are emptied. It melteth money in the purse, it breaketh the sword, the purse and scabbard not perished, yea, wax in them unmolten.

D Of Come-

Of the Comets, or flames in the night.
\{Cause of winds\}

Miracle,

\{The eclipse of the moon is common, not always in the new moon, but in the caput and cauda.?
\{Size of all planets in relation to the Earth.\}
\{These thingsseem incredible only to those not accustomed to mathematical proofs, \&c.\}

AComet is a flame, working in a dry, hot, slimy exhalation, drawn up to the highest part of the air. His matter or substance after it is burnt, dispersed provoketh winds.

The natural cause of the Sun eclipsed.

N_{b}Othing else is the Eclipse of the Sun, but the direct putting the body of the Moon, between the Sun and the earth, or between our sight and the Sun: which chanceth only at the change*.

A Corollary.

BY this gather the darkness at Christ's death, not to stand by natural ecliptical cause: but by supernatural, or miracle. For it was at the full Moon, the scriptures witness: which enforced Dionysius Areopagita, at the time of his passion, to speak thus: \{Either the God of nature suffered, or creation was destroyed $\}.{ }^{\text {xix }}$

The cause of the Moon eclipsed.
THe Sun being in the contrary point to the full Moon, enforceth the shadow of the earth, then directly put between the Sun and the Moon, towards the Moon, hiding more or less of the Moon, as she differeth from the Ecliptical. Some observe pestilent plagues, sudden battle, great dearth, to ensue these eclipses: which all I desire God to avert from his chosen. Many other things by this Eclipse are gathered, as Longitudes of countries: the quantity of the Sun, containing the bigness of the earth 162 times: the compass of the earth 21600 . miles: whose thickness, according to Archimedes rule ${ }^{\mathrm{xx}}$ is, 6872 miles and 8 elevenths of a mile. The quantity of the Moon is the 43 part of the earth. The Sun containeth the globe of the Moon 7000 times. Saturn comprehendeth the bigness of the earth 91 times. Jupiter 95 times. Mars 1 and 10. sixteenths. Venus one 37 part. Mercury one 32000 part of the earth. Note here, that Alfraganus ${ }^{x x i}$ affirmeth the least fixed star, perfectly seen, as big, as the whole earth.
\{These things\}
$\left\{\mathrm{T}_{\text {Hese things will not be marveled at, if you look for the size }}\right.$ of the earth from the longitude of the diameter. The diameter of the sun contains five and a half times the diameter of the earth. And it is in proportion to the diameter of the sun to the diameter of the earth which is of the number eleven to two, five to one half. The cube of the sun contains one thousand three hundred thirty-one such parts while the earth contains eight. A cube of eleven is one thousand three hundred thirty-one. A cube of two, which is the earth, has eight. However often this might be calculated, the cube of the earth is less and the cube of the sun is greater, the proportion of the cube of the sun to that of earth is known, and how much greater the sun is than the earth. We find therefore eight hundred sixty-six in one thousand three hundred thirty-one.\}

ब $\{$ The diameter of the earth encompasses the diameter of the moon thrice, $\&$ two portions of its diameter are five. And so the proportions of the diameter of the earth to the diameter of the moon, which is seventeen to a fifth of triple five. The cube of the number seventeen is four thousand nine hundred thirty. The cube of the number five is one hundred twenty-five. With the greater cube divided by the lesser, we find the number one hundred twenty-five, thirty times nine in four thousand nine hundred thirty: which differs a little from the observations above.\}

How many miles the Moon is from the earth: and every planet from other.

\{The diameter of the sun to the earth measures 11 to 2.)
\{The cube 1331 of the earth is 8.$\}$

AS some have published, it is from the earth to the Moon. 15750. miles.
From the Moon to Mercury, is 12812. miles.
From Mercury to Venus, as many miles.
From Venus to the Sun, is 23437. miles, and a half.
From the Sun to Mars, is 15725 . miles.
From Mars to Jupiter, is 78721. miles.
From Jupiter to Saturn, as many miles.
From Saturn to the firmament 120485 miles.
The whole sum, from the earth to the firmament is, 280734.
miles, and a half.
The natural causes of many Suns or Moons.

THese come to pass, when a thicker cloud is gathered toward the side of the Sun or Moon: in the which the broken beams of the Sun, do leave the fashion and very form of that Sun. The first is the very Sun: the second and third come of the breaking of the Sun beams in the cloud, on the side of the Sun. Thus as followeth, sayeth Pliny in his second book, of the history of nature, and 31. Chapter. No more Suns are perceived in our time than three: and they are never seen, either above or beneath the Sun, but on the sides: never in the night, but only at the Sun rising, or going down. D ii What

Milichius noteth the king of [Poland] to have seen 6 Suns at once.

What is to be chosen or avoided, under every aspect of, the moon: with her signification, in the .xii. signs, touching the same.

$\begin{aligned} & \text { ino } \square \text { or } \\ & \sigma^{\circ} \text { with } \end{aligned}$	THE conjunction, quadrature*, or opposition of Saturn with the Moon, causeth an evil unlucky day, for all matters. Leave therefore to have to do any manner way: nothing shall prosper, or come well to pass then attempted. Yet the sextile or Trine of
$\begin{aligned} & \{\hbar * \& \Delta \Delta \\ & \text { with })\} \end{aligned}$	Saturn, with the Moon declareth a convenient time to till, delve or dig, to sow, to lay foundations, to erect or repair houses yea, a meet time to obtain suits of fatherly farmers. The Moon in
$\left\{D\right.$ in n_{0} or in	Capricorn or Aquarius, bringeth this later effect of the sextile and trine.
\{2\|0, * $\Delta \square$ or σ° with or	The conjunction, sextile, trine, quadrature*, or opposition of $J u$ piter with the Moon, showeth a fortunate day, chiefly to obtain suits of Kings, noble Princes, Prelates \&c, of Lawyers, and Re-
$\begin{aligned} & \{D \text { in } \gamma \Omega \\ & \text { or } \left.\gamma^{\prime}\right\} \end{aligned}$	ligious persons: and a meet time to study, to journey, to take an honest mater in hand. The Moon in Taurus, in Leo, or Sagittarius, showeth the same.

The conjunction, sextile, trine, quadrature* or opposition of Mars with the Moon, warneth thee not to match thyself that day with warriors: notwithstanding very good, and most meet to finish all manner fiery works: naught to journey: yet most convenient for valiant captains, to work their feat, to lead, encourage, or stomach their soldiers: most unmeet to treat peace, to take servants, or to seek friendship.

The conjunction, quadrature* or opposition of the Sun with
$\{\odot \sigma, \square$, or ∞° with $)$ \}
$\{D$ in $T\}$
\{oo, *,
$\Delta \square$ or 0° with D.\} the Moon, declareth a very unhappy day, for all matters: therefore attempt nothing, not any manner suit: neither plant, build, nor journey. Yet the sextile and trine are very fortunate, especially to obtain suit of Kings, Princes, and other Nobles. The Moon in \uparrow enfor ceth the effect of this later part.

The conjunction, sextile, trine, quadrature*, or opposition of Venus with the Moon, causeth a day most apt to obtain all suits of women:
women: good to woo, to attempt marriage, and to follow all manner pleasures, and pleasant pastimes: not unmeet to hire servan-
$\{D$ in Ω ts, to let blood \&c. The Moon in Libra or Pisces, provoketh the like.

The conjunction, sextile, trine quadrature*, or opposition of Mercury with the Moon, promiseth a fortunate happy day, to buy and sell: very good to enter children in liberal arts: an apt time for the versifier: good to use merchandise, to journey, to send embassage, to give accounts, and such like.

The Moon in Gemini, Cancer or Virgo, inclineth even to the same aforesaid.

The Moon with the Dragon's head, showeth a lucky day for
\{ $\wp 0$, *,
Δ, \square, or
\circ° with 2$\}$ all matters: with the tail joined, contrary.

Now ensueth a Table showing what sign the Moon
is in, and shall be forever: declaring also the meetest time to let blood, to purge, and to bathe.

THIS Table following, hath at the head seven titles. The first months: the second days: then the prime*: the .12 . signs:
the titles to let blood, to purge, and to bathe. Here it is to be noted, that those days are good for these purposes, which be signed with this letter G: and those evil days, that are noted with B. Now ensueth the Table, and the whole use of it, and first for the sign, where the Moon is.
D iii.

How to find by this Table, the sign where the
 Moon is forever.

SEek out under the titles of the months, the name of the month, whose day you must look out, right against the month, under the title of days: and there begin to tell downwards, one, two, three, \&c. to the end, if it so require. And then from the beginning, if need be, until you have reckoned the number of the day that you seek. Look what number it falleth upon in this table, under the title of days: that number keep in mind. Then seek [under] the title of the prime*, the golden number* for that year: right [against] that leftward, under the title of days, begin to tell down[wards], one, two, three, four, \&c, until you have reckoned the number, [which] you did keep in mind. Against that downwards, on [your] right hand, under the title of Signs, is the sign wherein the [Moon] shall be that day. Even then under the other titles, you shall find in right order, for letting blood, for purging, and bathing, according as they be noted with G . which is good, and B. signifying bad. Example. The sixth day of March in the year of our Lord 1555, I desire to know what celestial sign the Moon doth then occupy. I find first the name of the Month, that is, March: and the day as followeth, in the next order of this table. I begin here to tell, right against my month, at the figure of .2. saying: one, two, three, \&c. so I have at the end, and count off six days this figure 7. which I keep in mind. Now I must seek out the golden number*, for the year aforesaid, under the title of the prime* here, that is 17: against the which, on the left syde is 6 . There you must begin again to count, one, two, three, \&c. until you come unto your number 7. So on your right hand, in the row, or order, you shall see Virgo, the celestial sign, that the Moon, is in: and after that these three letters, $\mathrm{b}, \mathrm{b}, \mathrm{b}$, which declare bad or evil to let blood, to purge or bathe, agreeable to the titles in the head. G, there had signified good.

To know what the Moon differeth
 from the Sun.

D. iiii. Multiply

MUltiply the age of the Moon,* by 4, and divide by .10: the quotient showeth the signs, that the Moon differeth from the Sun: the remainder augmented by .3 , bringeth degrees to be added.

Now shall follow, what days in every month are unmeet to let blood, dangerous to suffer wounding, perilous to fall sick, deathly to journey, evil to marry, and naught to take any matter in hand. The whole year after this count following, hath .33 . evil days.

The year hath. xxxiii. evil days, general forever.
ANUARY hath eight such days, the .i, t[he .ii, the] $\int_{\text {iiii, the .v, the .x, the .xv, the .xvii, the .xxix. Drink white }}$ wine this month.

February hath three days, the .viii, the .x, the .[xvii]: these not so evil, the .xxvi, the .xxvii, the .xxviii. Eat no [po]tage of oats, or mallows: they are venomous.

March three days, the .xv, the .xvi, the .xix: this not so evil, the xxviii. day. This month, all sweet meats are good.

April two days, the .xvi, the .xxi: these not so evil, the .vii, the viii, the .x, the .xx. Use hot meats, of light digestion.

May three days, the vi, the .xv, the .xx: these not so evil, the iii, the .vi. Rise early, and use breakfast.

June two, the .iiii, the .vii: these not so evil, the .x, the .xv, the .xxii. Sage and lettuce are good to eat. Cold water fasting hurteth not.

July two days, the ,xv, the .xx. Abstain from carnality.
August two days, the .xix, the .xx: these not so evil, the first, the xxix, the xxx. It hurteth not to abstain from potage, and all hot meats, and drinks of spicery.

September two days the .vi, the .vii: these not so evil, the .iii, the iiii, the .xxi, the .xxii. Eat good fruit.

October

October one day, the vi: these not so evil, the. iii, the .xvi, the xxiiii. Good wine is wholesome this month.

November two days, the .xv, the .xix: these not so evil, the. v, the vi, the .xxviii, the .xxix. Bleed not.

December three days, the .vi, the .vii, the .ix: these days not so evil, the .xv, the .xvii, the .xxii. Bleed not over much. Warm not thy legs at the fire.

A conducible* note for letting blood.

LEt blood at no time, without great cause: for it bringeth weakness, and many infirmities. If you do, see it be after good digestion, and fasting, in a fair temperate day. Beware before of all manner exercise, bathings, watchings. and carnal copulation \&c. After, use fine meats, of light digestion: abstaining from all the aforesaid, until the fourth daye.

These signs are most dangerous for bloodletting, the Moon being in them: Taurus, Gemini, Leo, Virgo, and Capricorn, with the last half of Libra, and Scorpio. The rest are all good, so the Moon bear no
\{For evil to be diminished, use purgations when it is hot, on account of the lack of moisture.\}

I/I to let blood in $ర, I I, \Omega$ m, 鸟。 dominion in that member, which you cut: as followeth.

Behold the figure.

Aries.

Pisces.

The dominion of the Moon in man's body.

Aries.		Head, and face.
Taurus.		Neck.
Gemini.		Arms, hands, shoulders.
Cancer.		Breast, stomach, ribs.
Leo.		Heart, back.
Virgo.	The.	Bowels, belly.
Libra.		Reins*, navel, buttocks.
Scorpio.		Secret members.
Sagittarius.		Thighs.
Capricorn.		Knees.
Aquarius.		Shins, legs.
Pisces.		Feet.

Rom the change*, to the first quarter, a meet time to let young
men's blood.
From the first quarter, to the full, good for middle age.
From the full, to the last quarter, apt for aged folk.
From the last quarter, to the change*, best for old men.
\{/t is fitting for a skillfull doctor to observe these things diligently, and if not then worse dangers will come.\}

Signs meet for the complexions.
$\left.\begin{array}{l}\text { ARIES. } \\ \text { Sagittarius. }\end{array}\right\}$ for the phlegmatic: the head, and thighs excepted.
$\left.\begin{array}{l}\text { Libra. } \\ \text { Aquarius. }\end{array}\right\}$ for melancholic: buttocks, and legs excepted.
Cancer.
$\left.\begin{array}{l}\text { Scorpio } \\ \text { Pisces. }\end{array}\right\}$ for choleric: breast, members, and feet excepted.
For the sanguine, all be apt that before are named good.
In the spring time let blood at the right side. In Harvest time at the left side.

The learned Physician will consider, besides all that is said, the Conjunctions, Oppositions, and quadrate aspects of the Planets: with many other things Astronomical, most necessary, both in bloodletletting
letting, purging, bathing, \&c.
For to take purgations, and to bathe,

THe meetest time to take purgations \&c. is neither in hot, nor cold days: that is, from the tenth of March, to the twelfth of June.

Further, by rules Astronomical, it must be performed when the Moon is in cold, moist, and watery signs, as Cancer, Scorpio and Pisces: comforted by aspects, and radiations, of planets fortifying the virtue of the body expulsive.

The Moon in Aries, Taurus, and Capricorn, naught. One cause of vomiting the purgation, is the Moon having aspect to any planet retrograde.

The Moon in these signs following, very good to bathe: Aries, Leo, Sagittarius, Cancer, Scorpio \& Pisces.

These ensuing are evil to bathe: Taurus, Virgo, and Capricorn.
Of inundations, or floods: of timber felling: sowing:
planting: grafting: hair clipping: shaving:
and gelding.

THe flood is biggest at the full: because then dispersing her virtue, she filleth all places with moisture. By common experience, joined with learning, I know, at the full the Moon loadeth all bodies with humors: and so are emptied, growing to the change*. Of this, some gather the fall of timber at the change*, more to the purpose than other times: wanting then superfluous moisture, the cause of putrefaction. \{All decay has its origin in humid moisture.\} ${ }^{\text {xxii }}$ Schoner willeth from the. xv. day unto the. xxii. day of the Moon, trees to be felled, and that after Midsummer to January. So timber is strong, sound, and devoid of worms.

To sow, Taurus, Cancer, Virgo, Libra, and Capricorn are best, in the increase of the Moon.

To Plant or Graft, best is when the Moon hath her being in any fixed sign: either in Taurus or Aquarius, in the increase.

Good to purge σ, M, H

Bad to purge. r, γ, n_{0}.

Good to bathe
T, Ω, x,
©. \boldsymbol{T}. H.

Bad to bathe.子, mp, n_{0}

The fall of timber.

To plant or graft 8 , m

To cut hair. Hair cut groweth well, the Moon increasing, being in Taurus, $\gamma, 7 p, \Omega$. Virgo, or Libra.
Cutting, shaving, clipping, in the wane, causeth baldness: what is then
Good to geld ढ, m, н. cut, groweth little. \{The oil of tartar prevents baldness. $\}^{\text {xxiii }}$

The best time of Gelding is in Cancer, Scorpio or Pisces, in the wane.

This round Table above, and that also, which ensueth: conduce to the rest following.

Hereafter ensueth a table for the moveable feasts:
whose use is thus briefly declared.

THe Table following, containeth in the first title the Prime*: in the second, the Dominical letter: in the third, Lent: in the fourth,
Easter day: in the fifth, Rogation day: in the sixth, whitsunday: in the seventh, how many weeks and days are between whitsunday and Midsummer. Which all appear by their titles.

E iii. The

The use is this.

You shall consider by the Table before put forth, what number the prime* is that year, whereof you require to know all these aforesaid: and seek that number under the first title of this Table ensuing. Then seek under the second, the Dominical letter, next after the prime* for that year: which title ensueth the prime*. Directly against the same Dominical letter, towards your right hand, in the same line, you shall find under the titles, what month and day, every one of these aforesaid shall happen.

Ensample.

I would know this year of our Lorde 1555. these moveable feasts: the first Lent sunday, Easter day, Rogation days, Whitsunday, and how many weeks betwixt Whitsunday, and Midsummer day. First I
find the prime* this year 17. Which 17, I look out under the title of prime* in this table. Then I seek in the next order, and after the prime*, for the Dominical letter
that year. Now in right order, according to the titles, I find the third of Marche to be the
first Lent sunday:, the 14. of April
Easter day: the 19. of May, Rogation:
the .2. of June, Whitsunday:
and .3. weeks, and

1. day betwixt

Whitsunday, and
Midsummer day.
Thus for ever.

How to know the age of the Moon*: then the change*, and quarter, forever.

FIrst learn the Epact*, as I have instructed, for that year you seek to know the age of the Moon*: then reckon how many days is past of that month, which day you desire to know the age. Put that number to the Epact*. Then begin at March, and reckon for every month from them orderly one, until your said day, including both the month of March, and also the month of your said day. Add all these days, unto your former number: putting away as many thirty days, as you find. The rest, is the age of the Moon*. But January and February are counted from March backward, as above is said. The age found, the change* is known. If you add 7. days to the change*, you have the first quarter: then 7. days, and somewhat more, showeth the full: and so to it adding 7. and more, bringeth the last quarter: thus by 7 . unto the new Moon.

Now ensue two perfect Tables, declaring the true hour and minute of Ebbing and Flowing, in most coasts of England.

Of Ebbing and Flowing.

When you will know the full sea, seek out the name of the place, where you desire the full water, in the head of the Tables following: or learn the points of the compass there noted: or if you list*, know of some mariner, what Moon maketh a full sea there: a Southwest, or South Moon \&c. Then the age of the Moon* found under the place or point of the compass, showeth in right order, the hour, and minute of the full water. The ebb then is manifest. Example. I desire to know the full water at London bridge, the year of our Lord 1555. the 6. day of February. I find by rules before put forth, the 6 . day of February, the year aforesaid, the Moon to be 14. days old. I see also under the title where London is S.W. which letters signify, that a Southwest Moon maketh a full sea there: and that is at 2 . of the clock, and 12. minutes past. This is well perceived, if you run down in the Table, to the 14. day of the age of the Moon*, under London title. Behold the Tables.

To know how long the Moon shineth.

FOr her shining in the increase, multiply the age of the [Mo]on by 4. In the wane augment the rest of the age, which she la[ck] -eth of 30 . by 4 : and divide by 5 . The Quotient showeth the h[ou-] res. The Remainder, if there be any, multiplied by 12. bringeth minu[tes] to be added.

Here followeth for the going down, and rising of the Moon: with her continuance on the earth.

NOte diligently after the change*, and before the full of the Moon, what hour the Sun goeth down: and add to that same so many hours and minutes, as the Moon shineth that night: for that hour and minute, she goeth down. Then hath she continued as long time on the earth, as the Sun would have done, being in that sign where she is. Therefore, her rising is known by subduction of that Arc. Note after the full, the Moon riseth so many hours before the Sun, as she shineth that night.

Now shall follow a Table, at all times plainly and briefly declaring, what day the Sun is entered the first degree of every sign.

It showeth the break of the day: the hour, and mi-
nute of the Sun rising: the just length of the
day: the length of the night also; the
very minute of the Sun set-
ting: and the Twilight.

Example.

The first day of January, I desire all the aforesaid: that is, the break of the day: the very minute of the Sun rising: the length of the day, and also of the night: the Sun going down: and the twilight. I find on the right hand of January, these numbers running down, $1,10,20$, which declare the first day, the tenth day, and twentieth, of that month. Now to my purpose, I require the break of the day \&c. The first of January, in the Table, under that title, on the right hand of this figure 1 . I see 5 . hours, and 54 . minutes, that is, 6. of the clock wanting 6 . minutes. The rising of the Sun in that order, is just at 8 . as this figure 8 . there declareth, under that title, in the row. The length of the day, 8 . hours: the length of the night, 16. hours: the Sun setting is at 4: the twilight, at 6. and 6. minutes. Even thus, for the tenth day, and also for the twentieth of that month, in the rows according to their titles, in the head of my Table.
The entry of the \odot is before omitted, to avoid in the Table, confusion, and so much the rather, because it sufficiently appeareth, in the general Calendar following.

How to work by proportion, when the day
is not found.

IWould know all the aforesaid, the first day of January. I take for example the break of the day. Remember the first day of Janua $-r y$, I did find the break, to be at 5 . of the clock, and 54 minutes: and the tenth day I may find, the break of the day to be at 5 , and 44 . minutes, that is, 10 minutes less. I see now 10 . days do give me 10. minutes less. I say therefore (by proportion) the fifth day must give 5 . minutes less then 5 . hours 54 . minutes: which is 5 . hours, 49. minutes, my request. Thus for all the other titles.

To know the hour of the night, by the Moon: and that diversely.

$\mathrm{T}_{n}^{\text {nim}}$He hour of her rising known, as is opened, and a mark made for it, in any true fixed, or movable Sun Dial, the hours

How by the Moon, the

F iii. And
and minutes from that mark all the night after, are to be added to her rising. If more than 12 . surmount, only that above 12 . showeth the true hour and minute. If at the rising she maybe not be seen, then by the Sun rising, in that very sign (with the help of this Almanac) you may perceive what hour she would note at her rising. Therefore from that mark count.

Another way.

WHen the Moon is at the full, look what hour her shadow showeth in any Dial, that is the hour of the night. After she be past the full 28 . hours, ye must add one hour: but afore the full, pull one from that you find in the Dial. If twice 28 , two hours \&c. So have you the hour of the night.

How the hour of the day, by right shadow, that is by anything directly standing up, is known: and by square shadow also.

FIrst it behooveth you to have a staff, or any other thing, divided in twelve equal parts: and each portion in 6. other: so are those last parts 10. minutes apiece. When you list* to have the hour, set up directly your divided staff, on a plane level ground, or board \&c. Note the just length of that shadow, what parts and minutes it containeth. With those, enter your month in the peculiar Calendar following: beholding diligently under the name of that month, the small enclosed Tables: considering well, which of those small Tables are nearest unto your day: and that judge by the sign, or day there noted. That table serveth your purpose: where you must look out the parts and minutes of the shadow afore found, or near unto it: under or over the which the hour is set, before, or after noon. Note that two pricks there signify half a part more than is noted: one prick, half a part less. Here it is also to be noted, that every Table hath within, two rows of figures: the upper is for the staff: the other for the square shadow And whatsoever is before said of the one, that same is meant here of the other, saving of the composition. For the square must be divided
from the inward angle, to the end of one side, in 12. equal parts: even so from that angle, the other side into 24. like parts, as this figure showeth. These to the witty suffice.

The composition of an instrument, for the hour of the night: which is also a perfect Dial for the day.

THe taking of an Altitude supposed, I could exactly in few (and that without an instrument) satisfy. And for want of
 that knowledge, make upon a plain board, or rather fine plate, a circle: the bigger the better: part it into 360 . portions, thus.

The circle made, divide it in 6 . not moving the compass: then every of them in 6: and each of those last in 10: so have you 360. par ts. Then Character it, beginning at the North thus, 10. 20.30. \&c. (as in the figure) toward the East, ending with 360 . Now lay a ruler on the center, even with some divisions, drawing through to the extremes of the circle, a line. Then cross that with another. These two must divide your circle in 4 . equal parts: which lines show the very East, West, North, and South, when by a Meridian or square Dial, with a needle rectified, they are placed. Now to end, set a small straight wire, a foot or more long, plumb upright in the center: and there fasten it. Thus this instrument is finished, to be fixed about your house, equidistant or level with the Horizon: having a needle, if you list*, in it, truly to plage* it, when and where you will. That it may be also a Dial, you must pull straight lines from the center, to every fif-
teenth part: decking them with Characters in the inward margin, conveniently as you see the figure. Thus when the

Sun shineth, the shadow of the wire, showeth the true hour $\& \mathrm{c}$.
being truly plaged*, well placed,
and reared*, as followeth.
s. A perfect instrument for the day, and the night.

The right rearing*, and placing, of the Dial before mentioned.

LIft up handsomely, your instrument or Dial, toward t[he] North, in some meet place, the side of a square lying on it, until the plummet and line, centered in the extreme upper part of the other side of your square like long, cut all that square side, which lieth on your instrument, the fifth part only except. Then move your instrument, hither and thither, this or that way, until the shadow of the wire fall upon the hour of the day, keeping diligently your height before. Your Dial thus fixed declareth, all the year long, the exact hour and parts thereof.
No Dial in truth excelleth this. Have in remembrance, that this instrument must lie level, nothing at all reared*, for the hour of the night by star.

To get the exact hour by two stars of the first light, with an instrument or circle, before divided, first of me invented, calculated and practiced.

THe instrument, equidistantly set and plaged*, as is declared in the composition, ye ought to lay the edge of a ruler unto the wire, the other nether end touching the instrument, moving here and there, still touching the wire, until either Star doth offer itself with that edge, and that by the judgment of the eye. Then put down discretely your ruler (ever touching the wire) the hinder end not moved, observing how many parts are cut from the North, to the edge of the ruler. Enter with them the pe culiar Calendar following: seeking out your month, placed in the midst of every Table: then the day of that month must be there found.

Note that, every table hath on the sides, the days thus ordered 1.5.10.15.20.25.30. Know, that order or row of figures, which is right against, or nearest your day, serveth the turn. The number or parts before cut by the Ruler, and now found in that row of your table, showeth the precise hour. If it be too little, that hour over the head or under is not yet come: if contrary, it is past.

How these two bright stars, being of the first light are found: the one called Aldebaran: the other Alramech. ${ }^{\text {xxiv }}$

THe best way is thus: The month and day known, with the true hour of the night, enter your Table, considering that month and day: observe what parts belong there to that

The way to
find the hourof the night.

By what means these stars are known. Star and hour. Then resort to your instrument, laying the edge of your ruler, as many parts from the North, Eastward, circumspectly lifting up that edge, close by the wire: so the fair Star shineth even with that edge.

Or thus grossly.
Adebaran is ever a meet rod, and more to the eye under the $\begin{aligned} & \text { Another way } \\ & \text { to find them }\end{aligned}$ is contrary to him plaged*, accompanied with a little dim Star, an ell* from him, by the judgment of the sight.

Now followeth a brief, pleasant, necessary, general Calendar: divided in two parts. Whereof the first containeth six months, from January to June: the second table the other six months, from July to December. In this Calendar are set forth the Festival days: the entering of the Sun into the Signs celestial: the evil Days within every month \& c. (*)

NOte here, that the evil days in each month are all marked with a Colon, that is a double or twopricked point: some, that be more meanly evil, are marked with one full point, set afore them.

N
Ote also: that some Terms ensuing moveable Feasts, are moveable, and so could have no certain place in the Calendar, for their beginning and ending. Know therefore, that Easter Term always beginneth the 13. day after Easter, reckoning Easter day for one; and endeth the Monday next after the Ascension day.

Trinity Term beginneth the Friday next after Corpus Christi day: and endeth the Wednesday fortnight after.

Michaelmas Term beginneth the 9. or 10. day of October: and endeth the 28 . or 29 . of November.

Hilary Term beginneth the 23. or 24. day of January: and endeth the 12. or 13. day of February.

Tanuaric. \|	1 Feboruarie	Marcb.	\|	Dajes	\|laprit.	\|May.	frate,	
А Сїrcüg. 1	1	$1 / 1$	11.1	$1 / \mathrm{g}$	16 Pb.lac.	,		
:b	- Parifi	le	2	$1 / 1$	If	$1 f$		
c	If ${ }^{\text {¢ }}$	If	\|	3		16	$1 . d$	18
d	\underline{z}	18	\|1 4	46	18	$1: \wedge$		
\%	$1 /$	$1 / 1$	115	14	if	16		
F Epipb.	b	b	6	c	$1 \cdot g$	16		
2	16	$\frac{1}{6}$	7	$1 . f$	1:d	: ${ }^{\text {d }}$		
A	$1: d$	d.	8 I	\%	b	${ }^{\text {c }}$		
b	le $\odot i^{\text {m }} \mathrm{K}$	le	9	1 A	6	f		
\% © in ms		If	to	. 6	14	$1 . g$		
	g	190 in V	11	c)in 6	$1 \cdot$	A Barma.		
-	$1 \pm$	11	12	d	$\|f \bigcirc \mathrm{~mm}\|$	$6 \bigcirc$ in ${ }^{6}$		
f Hilar.	5×1	16	13	e	13	c		
g	c Valent.	l	14	$f^{\text {fint }}$	A	431		
\therefore A	14	\|:d	15.11	$1 / \mathrm{g}$:6	.		
\bar{b}	1 l	:e	16	: 1	16	f		
\%	1:f	If	17	16		g		
d	18	g.	118	${ }_{4} 6$		A		
-	12	: A	19	d	f	b		
f	16	b	20	.e	:8	18		
g	c	5	21	P5	A	4		
A	$1 d$	1	22	g	5	, e		
b	c	¢	23	A Gearg.	c	If		
c	f.Mat. f	f	184	b	\|diva	g loă bap.		
8Co.Pia.	Ig	\% Annzin.	25	c Marsal	1	¢ 4 ¢		
e	A	\wedge	26	d	f	16		
f	. 6	b	27	e	18	16		
π^{8}	1.	, ${ }^{4}$	1128	f	\vec{A}	18		
		d	\|	-29	$\underline{3}$	b.	1ePr.ig.	
6	ITM e	e	30	\checkmark	c 1.1	f		
c		f	31		¢			

Ow ensueth the needful, necessary, peculiar Calendar tofore mentioned: with Instruments belonging thereto.
The composition, and appliance of the said Tables, with the pleasant use of them, are before sufficiently,
opened: therefore farther de-
claration here, might
seem super-
fluous.

Necessary instruments, to find exactly the hour
of the day and night, diverse
ways, with help of
this peculiar
Calen-
dar.

Aii.

1	7	8	9	10	11	12		
	266	278	289	299	82	93.		3
51015202530	269	280	291	303	84	96		者
	273	284	294	306	88	100		動．
	276	286	298	80	92	104		㜢
	279	290	302	83	94	107		点
	283	294	305	87	99	114	1	E．
	2.87	297	179	190	［172	117		\％
	September hath．$\times x$ ．dayes．							
	105	119	136	159	184			1
	109	123	142	165	191			5
	183	129	149	173	199			10
	117	135	155	188	205			15
	122	140	163	189	212			20
	128	147	171	197	219			25
	13］	153	179	204	225			30
	1	2	3	4	56			

Conjectural emendations

Following is a list of the modifications this edition has made in places where the copytext is unclear. These have been set off in the edition with [brackets]. This list is organized by the page number of the modification.

Page 2:
The numerals that precede items 6 and 7 seem to have been omitted or erased. In the copy-text, a 6 appears to have been written faintly in line with the other numbers. There is no visible sign of a 7. In item 7, the portion of the word "conteyninge" that appears at the left margin looks as though it bears signs of partial erasure consistent with the numeral 7 having been erased just above it. Why the 6 and 7 here would have been erased is difficult to fathom.

Originally "Geidlng," presumed to be a misprint.

Page 3:
"Right shadow" and "shadow Geometrical" are partially cut off. The page has crumbled here and been repaired.

Page 5:
Originally "I wiss he". I am treating the "h" as a misprint for "b". The expression "I wiss" could, of course, represent ywis (certainly), but this modification would do nothing to clarify the intended sense.

Page 17:
From the word "tempest" to the bottom of the page there is a tear in the leaf that appears to have been mended. This tear misaligns the text on either side on this page, as reflected in the
bracketed emendations running down the page, making the text to the reader's right appear half a line lower than that on the left. While this tear is visible on the recto of the leaf (the previous page), its effect on the text there is minimal, suggesting that perhaps the person who repaired the tear may have done so while looking at the recto.

Page 26:

In the margin, Poland is originally "Pole." OED s.v. "Pole, n.3" under Etymology states, "Recorded earlier as the name of the country Poland (now archaic in this sense, rare after the 17th cent.)"

Page 30:
On the left side of the page there is damage resembling a burn that obliterates several words. it appears on the verso of the leaf, as well, but the damage is less severe.

Page 31

The damage on the recto of the leaf appears here also, but less severely.

Page 42
Along the right margin, several words look to have been excised, or perhaps an imperfection in the paper prevented the ink from properly adhering.

Textual notes

This section is reserved for notes dealing with the text itself. Such notes are marked in the edition with a dagger (\dagger), and correspond to their page number here.

Page 2:

before: Originally "tofore"
hairclipping: Originally "hearclipping." The OED, in the Etymology section for hair, lists "hear" as an anomalous spelling.

Page 5:

Panauges: Digges died before he could write Panauges.

Page 7:

demonstration: The original Latin word here is demonstrationem, which, in this context, refers to syllogism.

Page 11:
perch: Originally spelled pche, but with a macron over the p.

Page 13:
signs: i.e. signs of the zodiac.
movements of the earth: i.e. earthquakes

Page 17:
fair: The copy-text omits Mercury in Tarurs.

Page 19:

Scorpio: Elsewhere in this text, including the heading in this section, Digges spells this constellation's name as "Scorpione," which this edition modernizes to "Scorpio." In the body of this section, however, Digges consistently spells it "Scorpio."

Page 20:

Capricorn: Usually Digges writes "Capricorno," which this edition modernizes to "Capricorn," but for the last four items in this list, Digges switches to "Capricorn."

Glossary

This is an alphabetical glossary of terms and names that readers might find unfamiliar. Proper names are not included, but are, rather, included in the historical notes. Terms in the edition that have an entry in this glossary will be marked with an asterisk*.

Abscission: OED s.v. "abscission" The action or process of cutting off or separating something; an instance of this.

1555 L. Digges Prognostication of Right Good Effect sig. Biiiv With theyr Quadratures, and Oppositions..Abscissions.

Age of the moon: The age of the Moon is a measure of the phase of the Moon, counting the number of days since the last new moon. ${ }^{84}$

Botch: OED s.v. "botch n.1" def, 2. b. specifically. A swelling, boil, or ulcer affecting a hawk or a domestic animal, esp. a horse. Obsolete.

1566 T. Blundeville Order curing Horses Dis. cvi. f. 78, in Fower Offices
Horsemanshippe The humors will resort into the weakest parts, and theyr gather together, and brede a botch.

Certes: OED s.v. "certes" Archaic. Of a truth, of a certainty, certainly, assuredly. Used to confirm a statement.
c1449 R. Pecock Repressor (1860) 8 Wherfore certis if eny man can be sikir for eny tyme that these ij. premyssis be trewe.
c 1557 in W. C. Hazlitt Remains Early Pop. Poetry Eng. III. 121 Many a man certesse.

[^28]Change: OED s.v. "change" def. 13. More fully change of the moon. The arrival of the moon at a different phase, spec. the appearance of a new moon; the period of time at which this occurs.

Combustion: Orig. conbustion. OED s.v. "combustion" def. 4. Astrol. Obscuration of a planet or star by proximity to the sun. Obs. (In the OED there is no entry for "conbustion." However, "combustion contains the definition above, supported by an example from 1556. In addition, there is an example from pathology, supported by an example from 1541, that uses the "conbustion" spelling. The dating of the examples supports the idea that this alternate spelling was current.

Conduce: OED s.v. "conduce" def. 6. a. To be profitable or advantageous (to). Obs. 1655 T. Stanley Hist. Philos. I. iii. 119 These conduce much to the wise.

Conducible: OED s.v. "conducible" def. 2. Conducive to the desired end; advantageous, expedient, serviceable, beneficial.
a1680 J. Corbet Humble Endeavour (1683) i. ix. 7 Sin..cannot be willed of God as a thing convenient or conducible (c.f. "conduce," above).

Ell: OED s.v. "ell n. 1" Forty-five inches. Originally, an ell was the distance between two parts of the upper body, such as shoulder to fingertip. By Digges's time, the measure had been standardized to the current length.

1543 R. Record Ground of Artes i. sig. N.v 3 foote and 9 ynches make an elle.
Embraid: OED s.v. "embraid" To upbraid, taunt, mock; ... Also, to reproach one with, 'cast in one's teeth'.

1548 Princess Elizabeth \& J. Bale tr. Queen Margaret of Angoulême Godly Medytacyon Christen Sowle f. 21 With..wordes (whom I knowe to be folyshe) I imbrayded the.

1573 T. Tusser Points Huswifrie (new ed.) f. 26v, in Fiue Hundreth Points Good Husbandry (new ed.) If ye be friends, embraid me not.

Epact: OED s.v. "epact" def. 1. b. The number of days in the age of the moon* on the first day of the year (now Jan. 1st, but formerly March 1st or 22nd).

Golden number: The golden number represents when the new moon appears in the lunar, 19-year Metonic cycle. This number is important in computus, and astronomers continue to use it to this day. The golden number is found by dividing the year by 19. Adding 1 to the remainder reveals the golden number for that year. For example, the golden number for the year 2020 is 7, calculated as follows: $\left(2020 \div 19=106^{6} / 19\right.$. So, the remainder is 6 . Adding one returns 7). If there is no remainder, then the golden number is 19 . Interestingly, the same number is returned if we add the one to the year first, then divide by 19 .

Gross: OED s.v. "gross" def. 4. Modifying nouns of evil import, and serving as an intensive of their meaning: Glaring, flagrant, monstrous. def. 4.a. with nouns denoting vices, errors, faults, etc.

1581 J. Bell tr. W. Haddon \& J. Foxe Against Jerome Osorius 4 Or as though this your tedious quarell about this word Private did ought els, but bewray your grosse ignorance?

Indigestly: OED s.v. "indigest, adj. and n." def. A. a. Undigested; crude, immature; shapeless, confused; unarranged.

Landmeater: OED s.v. "land-meter" Obsolete. A land-measurer or surveyor.
1582 E. Worsop (title) A discouerie of sundrie errours and faults daily committed by landemeaters..to the damage..of many her Maiesties subiects.

List: OED s.v. "list v. 1" def. 2b. To wish, desire, like, choose.
1563 2nd Tome Homelyes Agst. Idolatry ii, in J. Griffiths Two Bks. Homilies (1859) ii.
209 The Bishop of Rome..did in all the West Church...what he lust.
a1586 Sir P. Sidney Arcadia (1590) ii. xxvi. sig. Ff3v Your grieues, and desires whatsoeuer, \& whensoeuer you list, he wil consider of.

Mensuration: OED s.v. "mensuration" def. 1. a. The action, process, or art of measuring; measurement.
?a1560 L. Digges Geom. Pract.: Pantometria (1571) i. xxi. sig. F iv. v. If there happen any error in the situation thereof, great inconuenience maye followe in your mensurations.

Meteor: "... all atmospheric phenomena-that is, all natural processes that occurred in the region of Air: clouds, dew, winds, lightning, comets, rainbows, and associated weather processes. ${ }^{785}$

Meteoroscope: OED s.v. "meteoroscope" Astronomy. Obsolete. def. 1. An instrument for making observations of celestial objects.

1615 T. Tomkis Albumazar ii. v. sig. Ev With Astralobe [sic], and Meteoroscope, Il'e finde the Cuspe [etc.].

One assumes that a meteoroscoper is one who uses such a device.
Mids: OED s.v. "mids" def. A. 1. The middle, the middle part or point; the midst. ... Usually with reference to space, but occasionally with temporal reference.

1549 Bk. Common Prayer (STC 16267) Svpper of the Lorde f. cxxjv The Priest standing humbly afore the middes of the Altar.

[^29]1583 B. Melbancke Philotimus (new ed.) sig. Dd4 v Now brighte Hyperion was in middes of skie.

Parallax: OED s.v. "parallax" def. 1. a. Difference or change in the apparent position or direction of an object as seen from two different points; (Astronomy) such a difference or change in the position of a celestial object as seen from different points on the earth's surface or from opposite points in the earth's orbit around the sun.

Plage: to calibrate. OED s.v. "plage, n.1" def. 2. Each of the four principal directions or quarters of the compass; the corresponding areas of the celestial sphere. Obsolete. The OED lists the word only as a noun, whereas Digges is using it as a verb here. The sense seems to be that an instrument is calibrated to the four quarters of the sky.

Prime: Synonym for the golden number (q.v.).
Quadrature: OED s.v. "quadrature" def. 3a Astron. The aspect of an object in the solar system when situated 90 degrees from the sun as seen from earth (formerly also †quadrature aspect); a similar aspect between any two celestial objects or zodiacal signs; frequently in quadrature. Also: each of the two points at which the moon is 90 degrees from the sun as seen from the earth, i.e. midway between the points of conjunction and opposition.

Rear: Orig. reringe. OED s.v. "rear, v." def. II. To construct, bring into existence, breed, bring up.
9. a. transitive. To construct, esp. by building up; = raise v. 18 . Also figurative.

1548 Hall's Vnion: Henry VIII f. lxxiij A tower..rered by great crafte.
1590 Spenser Faerie Queene iii. x. sig. Mm8 Amongst the hiues to reare An hony combe.

Refranation: OED s.v. "refranation" Astrology. Now historical. The prevention of a conjunction of two planets by the retrogression of one of them.

1583 T. Heth Manifest Confut. Astrol. Disc. Although they bee in application, yet is the same..preuented by refranation, afore they come to the full conjunction.

Reins: OED s.v. "reins" The OED, under def. I defines the reins as the loins or area of the kidneys.
$? 1533$ G. Du Wes Introductorie for to lerne Frenche sig. Ddiv v Gyrte thy raynes as a man.

1560 J. Daus tr. J. Sleidane Commentaries xiii. f. clxxviij These Palles, which..hange downe from the shoulders to the midde breast, and to the Reines of the backe, like a stoale.

Sith: OED s.v. "sith" def. 4. a. Seeing that, given that; for the reason that, because. ... Since ... a1500 (\bullet ? 1450) Merlin x .143 Seth it is so, we shall delyuer yow the rynge.

Supputate: OED s.v. "supputate" To calculate, compute, reckon;
1555 L. Digges Prognostication Right Good Effect sig. *iiiv For other Eleuations, or Meridians supputated.

Tertian: OED s.v. "tertian, adj. and n." def. A. 1. Pathology. Of a fever or ague: Characterized by the occurrence of a paroxysm every third (i.e. every alternate) day.

1398 J. Trevisa tr. Bartholomew de Glanville De Proprietatibus Rerum (Bodl.) vii. xxxix A Feuere Terciane..greuep fro pe prid daye to the prid and namelich aboute pe prid houre.

1625 J. Hart Anat. Urines i. v. 48 During her husbands sicknesse, being a long and tedious, first Tertian, then double Tertian feauer.

Travailed: OED s.v. "travailed" def. 2. Experienced, versed, or learned in a subject, matter, etc., as a result of hard work or study. Frequently (and earliest) with preceding modifying adverb.

1551 T. Wilson Rule of Reason Epist. to Kyng sig. Av Your grace [Edw. VI]..litle nedeth any helpe.., beyng so well trauailed both in the Greke \& in the Latine.

Wood: OED s.v. "wood, adj., n.2, and adv." def. A. 1. a. Out of one's mind, insane, lunatic. $? 1529$ R. Hyrde tr. J. L. Vives Instr. Christen Woman i. x. sig. Lv They be bytten of ye woode dogge the deuyll: and be fallen woode theyr selfe.

Latin passages found in the copy-text

Following is a list of the Latin passages translated in the edition. They are organized by page number in the order in which they appear. Marginalia are labelled "margin," and follow the other entries for the page. Marginal notes consisting mostly of astronomical symbols, with only one to three Latin prepositions, are not included.

Page 6:

- Scientia non habet inimicum nisi ignorantem
- contra illos, qui dicunt quod Scientia stellarum non potest sciri ab aliquo: contra illos, qui dixerunt quod scientia stellarum non est utilis, sed potius damnosa \&c. contra illos, qui contradicunt judiciis Astronomiae, \& qui reprehendunt eam, nescientes dignitatem eius, eo quod non est lucrative
- Epicurei Theologi
- Arrogantiam esse cum summa stultitia coniunctam, venari choragium aliquod gloriae, ex insectatione artium, quae sunt graui autoritate doctorum \&c. prudentium receptae
- manifestum insaniæ genus
- quod magis opus habent Medicis, quam Geometris
- Sinamus (ait) una cum Epicuro ineptire
- Id tantum quod pulchrum est, quod purum est quod divinum est, nihil mortale sapiens dulci ardore amplectitur. Ut multa paucis (crede mihi) extingui dulce erit Mathematicarum artium labore
- margin: Vituperant, qui simpliciter eas ignorant

Page 7:

- et scientia est notitia vera conclusionum, quibus propter demonstrationem firmiter assentimur
- Nam incertam vocat hanc artem vulgus, propter errores nou arti, sed bominum indoctissorum inscitie, et temeritati putandos, qui citra delectum omnia effutiunt
- margin: Stulti negligunt et continunt: Qui contradicit, ambitiosus est, Qui maledicit, fatuus

Page 8:

- margin: De observandis meteoris
- margin: Luna rubens ventat, pallor pluit, Alba serenat.

Page 9:

- margin: Cum majora apparent, tum enim Humore medius crassescit aer

Page 10:

- margin: De cometarum peodigiis, lege Cardanum, lib. 4. fol. 83 .
- margin: Arcus niss sole aduerso non fiunt. Non apparet nisi cum Vapores rarificantur, vel inspis santur.
- margin: Signum futurorum bellorum.

Page 12:

- margin: Canis minoris efficatia
- margin: Orionis, Arcturi, Coronae, caprae, succularum effectus. ћ. ठ. $\square \& \circ^{\circ}$ cum \odot aut D.

Page 13:

- Certum est omnibus que notum, quod caeli motus, signorum ortus, \& occasus, planetarum aspectus, \& conjunctiones, luminarium eclypses. \&c certissimam, determinatam, ac infallibilem habent causam. Quis iam sanae mentis negabit eorum effectus saepe innotescere, vipote bella, fames, grandines, aeris perturbationes, elementoum commotiones, terrae motus, \& similia? Pesitis causis naturalibus, \& non impeditis, sequitur effectus.

Page 23:

- margin: Quare lapides pluant, lege Pli, lib, 2, Ca. 44.
- margin: Ros estate, pruina hieme fit.
- margin: Nix humor modice concretus.)
- margin: Grando, pluvia in discensu congelata.
- margin: Ventorum ergo materia, calida \& sicca exhalatio.
- margin: Quemadinodum in nube tonitruum, sic in terra tremor.

Page 24:

- Signum est futurorum bellorum
- Tonitruum sonitus est, qui editur quando nubem rumpit balitus (halitus?). Fulmen flamma vel repentinus est ignis, qui ex collisione nubium, aut ruptura nascitur.
- margin: Signa terrae motus
- margin: Fulgetrum prius cerni, quam tonitrum audiri, cum simul fiant, certum est, Pli.
lib. 2. Ca. 56. contra Aristo.

Page 25:

- Aut Deus naturæ patitur, aut mundi machina dissoluitur.
- margin: Ventorum causa
- margin: Uniuersalis est Eclipsis Lunæ Non semper in novilunio, sed in ca, et cauda
- margin: Omnium planetarum ad terram magnitudo.
- margin: Hæc incredibilia videntur tantum hiis, qui mathematicis demonstrationibus non assueue runt, \&c.

Page 26:

- HÆc non erunt admirationi, si globi capacitatem ex longitudine diametri quaesieris. Continet enim solis dimetiens terrae dimetientem quinquies \& semissem. Estque propertio diametri solis ad terrae dimetientem, quae est numeri undecim ad duo, quintupla sesquialtera. Cubus solis mille tercentum unam \& triginta partes tales continet, cuiusmodi terrae cubus octonas conplectitur. Cubus enim numeri undecim, est mille tercentum unum \& triginta. Cubus vero binarii, qui est terrae, octo. Subducto quoties id fieri potest, minore cu-bo' qui est terrae, à majore qui est solis, cognoscitur cubi ad cubum proportio, \& quanto Sol ma-jor, terra sit. Invenimus ergo octo centies, sexagies sexies, in mille tercentum uno \& triginta.
- Terrae Diametros Lunae dimetientem complectitur ter, \& duas eius diameti i portiones quintas. Est \{que\} ea proportio, dimetientis terrae ad Lunae diametrum, quae est septen decim ad quin $\{$ que $\}$ tripla superbipartiens quintas. Cubus numeri septendecim, quater mille nongenta tredecim. Cubus numera quin \{que\}, est centum viginti quin \{que\}. Majore cubo per minorem distributo, repe-rimus numerum centum vigintiquin \{que\}, tricies novies in quater mille nongentis tredecim: quod paululum à superioribus observationibus diftert.
- margin: Dimetiens \odot ad terrae dime tientem 11 ad 2.
- margin: Cubus 1331 Terrae .8.
- margin: Note 3: Dimetiens terrae ad diam: D.17, ad 5. Cubus terrae 4913. Cubus D 125.

Page 32:

- margin: Malum minui, vel purgatio-nibus uti, tem pore caloris, propter defectum humoris Page 33:
- margin: Haec diligentissime observare oportet solertem Medi cum, nisi majora pericula cogant.

Page 34:

- Omnis putredo ab aqueo humido ortum habet

Page 35:

- Caluitium prohibet, oleum Tartari

Bibliography of primary sources

Aristotle, Erwin Wentworth Webster, and J. A. Smith. "Meteorologica." Essay. In The Works of Aristotle, edited by W. D. Ross, 338a-390b. Oxford: Clarendon Press, 1931.
Bonatti, Giudo. Liber Astronomiae: Part 1. Edited by Robert Hand. Translated by Robert Zoller. Berkely Springs, WV: Golden Hind Press, 1994.
Cardano, Girolamo. "De Subtilitate, Book 13." Corpus Corporum. University of Zurich. Accessed July 5, 2020. http://www.mlat.uzh.ch/MLS/xfromcc.php?tabelle=Cardanus_Hieronymus_cps4.
Chaucer, Geoffrey. A Treatise on the Astrolabe. Edited by Sigmund Eisner. 6. Vol. 6. A Variorum Edition of the Works of Geoffrey Chaucer. Norman, OK: University of Oklahoma Press, 2002.
Digges, Leonard. A boke named Tectonicon briefely shewynge the exacte measurynge, and speady reckenynge all maner lande, squared tymber, stone, steaples, pyllers, globes. [et]c. Further, declaringe the perfecte makinge and large vse of the carpenters ruler, conteyninge a quadrant geometricall: comprehendinge also the rare vse of the squire. And in thende a lyttle treatise adioyned, openinge the composicion and appliancie of an instrument called the profitable staffe. With other thinges pleasaunt and necessary, most conducible for surueyers, landemeaters, ioyners, carpenters, and masons. EEBO. London: Printed by Thomas Gemini, 1556.
https://quod.lib.umich.edu/e/eebo/A20450.0001.001/1:2?rgn=div1;view=fulltext
__. A Prognostication of right good effect fruitfully augmented, containing plain, brief, pleasant, chosen rules, to judge the weather forever, by the Sun, Moon, Stars, Comets, Rainbow, Thunder, Clouds, with other Extraordinary tokens, not omitting the Aspects of Planets, with a brief judgement forever, of Plenty, Lack, Sickness, Death, Wars, etc. Opening also many natural causes, worthy to be known. Google Books. London: Printed by Thomas Gemini, 1555.
Digges, Leonard, and Thomas Digges. A Geometrical Practice Named Pantometria diuided into three bookes, longimetra, planimetra, and stereometria, containing rules manifolde for mensuration of all lines, superficies and solides: with sundry straunge conclusions both by instrument and without, and also by perspectiue glasses, to set forth the true description or exact plat of an whole region: framed by Leonard Digges gentleman, lately finished by Thomas Digges his sonne. Who hathe also thereunto adioyned a mathematicall treatise of the fine regulare Platonicall bodies, and their Metamorphosis or transformation into fiue other equilater vniforme solides Geometricall, of his owne inuention, hitherto not mentioned of by any geometricians. Proquest. London: Henrie Bynneman, 1571.
——. An Arithmeticall Militare Treatise, Named Stratioticos: Compendiously Teaching the Science of Numbers, as Vvell in Fractions as Integers, and so Much of the Rules and Equations Algebraicall and Arte of Numbers Cossicall, as Are Requisite for the Profession of a Soldiour. Together with the Moderne Militare Discipline, Offices, Lawes and Dueties in Euery Wel Gouerned Campe and Armie to Be Obserued. Proquest. London: Printed by Henrie Bynneman, 1579.
Goulart, Simon. A Learned Summary upon the Famous Poeme of William of Saluste Lord of Bartas. Translated by Thomas Lodge. London: J. Grismand, 1621.

Gratarolo, Guglielmo. Gulielmi Grataroli Bergomatis Artium \& Medicine Doctoris Opuscula. Google Books. Lyon: Gabriel Coteri, 1558.
Pliny the Elder. "Pliny the Elder's Natural History - Book 2." Lacus Curtius. Accessed June 25, 2020. https://penelope.uchicago.edu/Thayer/L/Roman/Texts/Pliny_the_Elder/2*.html.
——. Translated by Philemon Holland. "The Second Booke of Plinies Naturall History." University of Chicago. Accessed June 25, 2020. http://penelope.uchicago.edu/holland/pliny2.html.
Ptolemy, Claudius. Ptolemy's Quadripartite: or, Four Books Concerning the Influences of the Stars, Faithfully Render'd into English from Leo Allatius ... ; to Which Is Added Variety of Notes ... and Also an Appendix ... Concerning Part of Fortune. Translated by John Whalley and Leone Allacci. Gale, Eighteenth Century Collections Online. London: John Sprint, 1701.
Ringelbergius, Joachimus Fortius. The Celebrated Treatise of J.F. Ringelbergius. De Ratione Studii. Translated by George Butler Earp. Google Books. London: Simpkin and Marshall, 1830.

Virgil. "Georgics, Book 1." Edited by J. B. Greenough. Perseus Project. Accessed June 25, 2020. http://www.perseus.tufts.edu/hopper/text?doc=urn:cts:latinLit:phi0690.phi002.perseus-eng1:1.204-1.230.

Bibliography of Secondary Sources

Abdukhalimov, Bahrom. "Ahmad Al-Farghani And His Compendium Of Astronomy," Journal of Islamic Studies 10, no. 2 (January 1999): pp. 142-158, https://doi.org/10.1093/jis/10.2.142.
Andersen, Kirsti. The Geometry of an Art: the History of the Mathematical Theory of Perspective from Alberti to Monge. New York: Springer, 2008.
Buhler, Curt F. "Sixteenth-Century Prognostications: Libri Impressi Cum Notis Manuscriptis-Part II." Isis 33, no. 5 (March 1942): 609-20. https://doi.org/10.1086/358625.
Burtt, Edwin A. The Metaphysical Foundations of Modern Physical Science. London: Routledge, 1924.
"Caput." $\Lambda О Г Е І О N . ~ U n i v e r s i t y ~ o f ~ C h i c a g o . ~ A c c e s s e d ~ J u n e ~ 26, ~ 2020 . ~$ https://logeion.uchicago.edu/caput.
Clark, David H., and F. Richard Stephenson. "The New Star of Tycho Brahe." Essay. In The Historical Supernovae. The Study of Supernova Remnants Based on Historical Observations, 172-90. Oxford: Pergamon Press, 1976.
Clucas, Stephen. John Dee: Interdisciplinary Studies in English Renaissance Thought. Dordrecht: Springer, 2006.
Cohen, Adam Max. Shakespeare and Technology: Dramatizing Early Modern Technological Revolutions. NY, NY: Palgrave Macmillan, 2006.
Crane, Mary Thomas. Losing Touch with Nature: Literature and the New Science in SixteenthCentury England. Baltimore, MD: Johns Hopkins Univ. Press, 2014.
__. "Marlowe and the New Science." Essay. In Christopher Marlowe in Context, edited by Emily Carroll Bartels and Emma Smith, 252-61. Cambridge, MA: Cambridge University Press, 2013.
Dante. Inferno. Edited by Robert Hollander. Translated by Jean Hollander. New York: Random House, 2000.
d'Ewes, Simonds. "Journal of the House of Commons: March 1563," in The Journals of All the Parliaments During the Reign of Queen Elizabeth. (Shannon, Ire: Irish University Press, 1682), 86-90. British History Online, accessed June 19, 2020, http://www.british-history.ac.uk/no-series/jrnl-parliament-eliz1/pp86-90.
Emden, Alfred Brotherston. A Biographical Register of the University of Oxford, A.D. 1501 to 1540. Oxford: Clarendon Press, 1974.

Erler, Mary C. "The Laity." Essay. In A Companion to the Early Printed Book in Britain, 14761558, edited by Vincent Gillespie and Susan Powell, 134-49. Cambridge: D.S. Brewer, 2014.

Evans, James. The History and Practice of Ancient Astronomy. New York, NY: Oxford University Press, 1998.
Ford, Dominic. "Age Of Moon." In-The-Sky.org. Accessed July 5, 2020. https://in-thesky.org/article.php?term=age_of_moon.
Giglioni, Guido, "Girolamo [Geronimo] Cardano", The Stanford Encyclopedia of Philosophy (Summer 2019 Edition), Edward N. Zalta (ed.), URL = https://plato.stanford.edu/archives/sum2019/entries/cardano/.
"Grynaeus or Grunaeus, Simon." McClintock and Strong Biblical Cyclopedia Online. Accessed July 24, 2020. https://www.biblicalcyclopedia.com/G/grynaeus-or-grunaeus-simon.html.
"Guglielmo Gratarolo, The Castle of Memory (1562)." Cambridge Core. Cambridge University Press, August 2016. https://www.cambridge.org/core/books/memory-arts-in-renaissance-england/guglielmo-gratarolo-the-castle-of-memory1562/DB398CA352F382DE167948C6F3DE196F.
Hackett, Jeremiah, "Roger Bacon", The Stanford Encyclopedia of Philosophy (Summer 2020 Edition), Edward N. Zalta (ed.), URL = https://plato.stanford.edu/archives/sum2020/entries/roger-bacon/.
Hasted, Edward. "Parishes: Barham." In The History and Topographical Survey of the County of Kent: Volume 9. (Canterbury: W Bristow, 1800), 350-358. British History Online, accessed June 18, 2020, http://www.british-history.ac.uk/survey-kent/vol9/pp350-358.
Heidarzadeh, Tofigh. A History of Physical Theories of Comets, from Aristotle to Whipple. Dordrecht: Springer, 2013.
Heninger, S. K. A Handbook of Renaissance Meteorology: with Particular Reference to Elizabethan and Jacobean Literature. New York, NY: Greenwood, 1968.
Heninger, S. K. "Tudor Literature of the Physical Sciences." Huntington Library Quarterly 32, no. 2 (February 1969): 101-33. https://doi.org/10.2307/3816682.
Johnson, Francis Rarick. Astronomical Thought in Renaissance England. New York, NY: Octagon, 1968.
Johnson, Francis R., Sanford V. Larkey, and Thomas Digges. "Thomas Digges, the Copernican System, and the Idea of the Infinity of the Universe in 1576." The Huntington Library Bulletin, no. 5 (April 1934): 69-117. https://doi.org/10.2307/3818095.
Johnston, Stephen. "Digges, Thomas (c. 1546-1595), Mathematician and Member of Parliament." In Oxford Dictionary of National Biography, edited by Lawrence Goldman, September 23, 2004. https://www.oxforddnb.com/view/10.1093/ref:odnb/9780198614128.001.0001/odnb-$9780198614128-\mathrm{e}-7639$.
—_. "Like Father, like Son? John Dee, Thomas Digges and the Identity of the Mathematician." Essay. In John Dee: Interdisciplinary Studies in English Renaissance Thought, edited by Stephen Clucas, 65-81. Dordrecht, NL: Springer, 2006.
Knox, Dilwyn, "Giordano Bruno", The Stanford Encyclopedia of Philosophy (Summer 2019 Edition), Edward N. Zalta (ed.), URL = https://plato.stanford.edu/archives/sum2019/entries/bruno/.
Kusukawa, Sachiko. The Transformation of Natural Philosophy: The Case of Philip Melanchthon. Cambridge: Cambridge University Press, 2011.
Lewis, Neil, "Robert Grosseteste", The Stanford Encyclopedia of Philosophy (Summer 2019 Edition), Edward N. Zalta (ed.), URL = https://plato.stanford.edu/archives/sum2019/entries/grosseteste/.
Loades, D. M. Two Tudor Conspiracies. London: Cambridge University Press, 1965.
Ronan, Colin A. "Leonard and Thomas Digges." Endeavour 16, no. 2 (1992): 91-94. https://doi.org/10.1016/0160-9327(92)90008-d.
. "The Origins of the Reflecting Telescope." Journal of the British Astronomical Association 101, no. 6 (1991): 335-340.
Sherman, William H. John Dee: The Politics of Reading and Writing in the English Renaissance. Amherst, MA: University of Massachusetts Press, 1995.

Slights, William W. E. "Back to the Future -- Littorally: Annotating the Historical Pagge." Essay. In The Future of the Page, edited by Peter Stoicheff and Andrew Taylor, 71-89. Toronto: University of Toronto Press, 2004.
Smith, Robin. "Aristotle's Logic." Stanford Encyclopedia of Philosophy. Stanford University, February 17, 2017. https://plato.stanford.edu/entries/aristotlelogic/?PHPSESSID=6b8dd3772cbfce0a28a6b6aff95481e8.
Stationers' Register Online. Accessed July 5, 2020. https://stationersregister.online.
Stiglmayr, Joseph. "Dionysius the Pseudo-Areopagite." Catholic Encyclopedia: Dionysius the Pseudo-Areopagite, 1909. https://www.newadvent.org/cathen/05013a.htm.
Taylor, E. G. R. "A Regional Map of the Early XVIth Century." The Geographical Journal 71, no. 5 (1928): 474-79. https://doi.org/10.2307/1783281.
—_. The Mathematical Practitioners of Tudor \& Stuart England. (Published for the Institute of Navigation.). New York, NY: Cambridge, 1954.
Unguru, Sabetai. "Witelo and Thirteenth-Century Mathematics: An Assessment of His Contributions." Isis 63, no. 4 (1972): 496-508. https://doi.org/10.1086/350999.
Van Duzer, Chet. "The Reluctant Cosmographer: Johannes Stöffler (1452-1531) and the Discovery of the New World." Terrae Incognitae 49, no. 2 (2017): 132-48. https://doi.org/10.1080/00822884.2017.1351647.
Wells, Stanley, and Gary Taylor. William Shakespeare: A Textual Companion. New York, NY: W.W. Norton, 1997.

Historical notes

These are notes of historical relevance, including descriptions of famous persons. These entries are keyed to the text using lowercase Roman numerals.

[^30]${ }^{\text {ix }}$ Aristotle's Posterior Analytics is part of his Organon. The Posterior Analytics, "contains [Aristotle's] account of demonstrations and their role in knowledge," (Robin Smith, "Aristotle's Logic," Stanford Encyclopedia of Philosophy [Stanford University, February 17, 2017], https://plato.stanford.edu/entries/aristotlelogic/?PHPSESSID=6b8dd3772cbfceOa28a6b6aff95481e8.) which, in the context of Digges's point about Guido, means syllogistic reasoning.
x Here, Digges refers to Ptolemy's Tetrabiblos (also known as the Quadripartitum) book 2, chapter 7. In it, Ptolemy discussed the appearance of the Sun and what it can mean, much as Digges does here. Claudius Ptolemaeus, Ptolemy's Quadripartite: or, Four Books Concerning the Influences of the Stars, Faithfully Render'd into English from Leo Allatius ... ; to Which Is Added Variety of Notes ... and Also an Appendix ... Concerning Part of Fortune, trans. John Whalley and Leone Allacci (London: John Sprint, 1701), 85.
xi Stöffler, Johannes: (1452-1531) Originally Staeflerinus. He was a "geographer ... mathematician, astronomer, astrologer, and priest" who taught Philip Melancthon, among other famous thinkers, at the University of

Tubingen. (Chet Van Duzer, "The Reluctant Cosmographer: Johannes Stöffler (1452-1531) and the Discovery of the New World," Terrae Incognitae 49, no. 2 (2017): pp. 132-148, https://doi.org/10.1080/00822884.2017.1351647, 135.)
xii Regiomontanus: (1436-1476) Originally Monteregius. Born in Königsberg (now Kaliningrad), Regiomontanus is an astronomer perhaps best known for his work on calendar reform. Hartmann has suggested that Regiomontanus may have originated the concept of the revolving Earth and introduced it to Copernicus through Regiomontanus's student, and Copernicus's teacher, Novara.
xiii Little is known of Leupoldus other than that he wrote an influential treatise known as Compilatio de astrorum scientia, a work that deals with celestial signs and their portents. (Curt F. Buhler, "Sixteenth-Century Prognostications: Libri Impressi Cum Notis Manuscriptis--Part II," Isis 33, no. 5 (March 1942): pp. 609-620, https://doi.org/10.1086/358625, 613.)
${ }^{\text {xiv }}$ In the margin: Here Digges cites De subtilitate, a work by Girolamo Cardano. (Girolamo Cardano, "De Subtilitate, Book 13," Corpus Corporum (University of Zurich), accessed July 5, 2020,
http://www.mlat.uzh.ch/MLS/xfromcc.php?tabelle=Cardanus_Hieronymus_cps4.)
${ }^{x v}$ This refers to the first book of Virgil's Georgics. Here, the poet discusses agriculture and weather. In particular, lines 204-258 treat celestial lore and its bearing on weather and planting practices. The reference to "At Bor." refers to a line earlier in Book 1, line 93, where the poet refers to the frigidity of the north wind. (Virgil, "Georgics, Book 1," ed. J. B. Greenough, Perseus Project, accessed June 25, 2020, http://www.perseus.tufts.edu/hopper/text?doc=urn:cts:latinLit:phi0690.phi002.perseus-eng1:1.204-1.230.)
${ }^{\text {xvi }}$ Refers to the Naturalis Historia, by Pliny the Elder. In chapter XL of book 2, he speaks of all these phenomena occurring at the rise of the Little Dog. (Pliny the Elder, "Pliny the Elder's Natural History - Book 2," Lacus Curtius, accessed June 25, 2020, https://penelope.uchicago.edu/Thayer/L/Roman/Texts/Pliny_the_Elder/2*.html.)
xvii Pliny, trans. Philemon Holland, The Second Booke of Plinies Naturall History (University of Chicago), accessed July 4, 2020, http://penelope.uchicago.edu/holland/pliny2.html, Chapter XXXVIII. As can be seen here, the chapter referenced in the marginal note is 38 , not 44 . I consulted both this English edition and the following in Latin: Pliny the Elder, "Pliny the Elder's Natural History - Book 2," Lacus Curtius, accessed June 25, 2020, https://penelope.uchicago.edu/Thayer/L/Roman/Texts/Pliny_the_Elder/2*.html. Both agree.
xviii In his Meteorologica, book 2, chapter 9, Aristotle does indeed maintain that thunder precedes lightning, but that it appears otherwise to us because "sight is quicker than hearing." (Aristotle, "Meteorologica," in The Works of Aristotle, ed. W. D. Ross (Oxford: Clarendon Press, 1931), pp. 338a-390b, 369b.)
${ }^{\text {xix }}$ Dionysius Areopagita is a pagan astronomer who is said to have been in Egypt when Christ was crucified. When he witnessed the celestial events Digges writes of, he uttered the words translated in the text. (Simon Goulart, A Learned Summary upon the Famous Poeme of William of Saluste Lord of Bartas., trans. Thomas Lodge (London: J. Grismand, 1621), 198, STC 21666.
https://books.google.com/books?id=xGxjAAAAcAAJ\&dq=Aut+Deus+natur\�\�+patitur,+aut+mundi+machina +dissoluitur\&source=gbs_navlinks_s.) Dionysius is now known as Pseudo-Dionysius the Areopagite, as the writings we have from this author are pseudepigraphically attributed to Dionysius. (Joseph Stiglmayr, "Dionysius the Pseudo-Areopagite," Catholic Encyclopedia: Dionysius the Pseudo-Areopagite, 1909, https://www.newadvent.org/cathen/05013a.htm.)
${ }^{x x}$ Digges refers here to Archimedes' derivation of the formula πr^{2} for determining the area of a circle.
${ }^{\text {xxi }}$ Alfraganus (born c. A.D. 797) is an astronomer about whom little is known. He was most likely born in what is today Uzbekistan. (Bahrom Abdukhalimov, "Ahmad Al-Farghani And His Compendium Of Astronomy," Journal of Islamic Studies 10, no. 2 (January 1999): pp. 142-158, https://doi.org/10.1093/jis/10.2.142, 143.) He is best known for writing Elements of Astronomy, a work in Arabic that comprises "a short introductory course in astronomy based on Ptolemy's Almagest." In chapter 4, he lays out the case for the small size of the Earth in relation to the stars. (ibid., 148-149.)
xxii Girolamo Cardano, "De Subtilitate, Book 13," Corpus Corporum (University of Zurich), accessed July 5, 2020, 504, http://www.mlat.uzh.ch/MLS/xfromcc.php?tabelle=Cardanus_Hieronymus_cps4.
xxiii Girolamo Cardano, "De Subtilitate, Book 21," Corpus Corporum (University of Zurich), accessed July 5, 2020, 466, http://www.mlat.uzh.ch/MLS/xfromcc.php?tabelle=Cardanus_Hieronymus_cps4.
${ }^{\text {xxiv }}$ Today more popularly known as Arcturus, brightest star in the Northern Hemisphere.

[^0]: ${ }^{1}$ Stanley Wells and Gary Taylor, William Shakespeare: A Textual Companion (New York, NY: W.W. Norton, 1997), 7.
 ${ }^{2}$ ibid.
 ${ }^{3}$ ibid.

[^1]: ${ }^{4}$ Leonard Digges, A Prognostication of right good effect fruitfully augmented, containing plain, brief, pleasant, chosen rules, to judge the weather forever, by the Sun, Moon, Stars, Comets, Rainbow, Thunder, Clouds, with other Extraordinary tokens, not omitting the Aspects of Planets, with a brief judgement forever, of Plenty, Lack, Sickness, Death, Wars, etc. Opening also many natural causes, worthy to be known. (London: Thomas Gemini, 1555), Ai r. https://search-proquest-com.ezproxy.lib.purdue.edu/docview/2240950422/Sec0002. STC 435.35.
 ${ }^{5}$ Philip Gaskell, A New Introduction to Bibliography (New Castle: Oak Knoll Press, 2009), 339.

[^2]: ${ }^{6}$ ibid., 340.

[^3]: ${ }^{7}$ Leonard Digges, A boke named Tectonicon briefely shewynge the exacte measurynge, and speady reckenynge all maner lande, squared tymber, stone, steaples, pyllers, globes. [et]c. (London: Thomas Gemini, 1556; Ann Arbor: Text Creation Partnership, 2011), https://quod.lib.umich.edu/e/eebo/A20450.0001.001/1:2?rgn=div1;view=fulltext, STC 6849.5.
 ${ }^{8} \mathrm{ibid}$.

[^4]: ${ }^{9}$ Giudo Bonatti, Liber Astronomiae: Part 1, ed. Robert Hand, trans. Robert Zoller (Berkely Springs, WV: Golden Hind Press, 1994), 1.
 ${ }^{10}$ Adam Max Cohen, Shakespeare and Technology: Dramatizing Early Modern Technological Revolutions (NY, NY: Palgrave Macmillan, 2006), 22-23.
 ${ }^{11}$ ibid., 24.

[^5]: 12 ibid.
 ${ }^{13}$ ibid., 23-24.
 ${ }^{14}$ Sachiko Kusukawa, The Transformation of Natural Philosophy: The Case of Philip Melanchthon (Cambridge: Cambridge University Press, 2011), 129.

[^6]: ${ }^{15}$ Joachimus Fortius Ringelbergius, The Celebrated Treatise of J.F. Ringelbergius. De Ratione Studii, trans. George Butler Earp (London: Simpkin and Marshall, 1830), xix, 127. Ringelbergius was a Belgian mathematician and engraver who wrote widely on mathematics, mysticism, and astrology. (Kirsti Andersen, The Geometry of an Art: the History of the Mathematical Theory of Perspective from Alberti to Monge (New York: Springer, 2008), 166.)

[^7]: ${ }^{16}$ Guglielmo Gratarolo, Gulielmi Grataroli Bergomatis Artium \& Medicine Doctoris Opuscula. (Lyon: Gabriel Coteri, 1558), 208. Guglielmo Gratarolo (1516-1568) was a popular and prolific Italian writer on the subjects of medicine, philosophy, and alchemy. He converted to Protestantism later in life and fled to Basil, in Switzerland. ("Guglielmo Gratarolo, The Castle of Memory (1562)," Cambridge Core (Cambridge University Press, August 2016), https://www.cambridge.org/core/books/memory-arts-in-renaissance-england/guglielmo-gratarolo-the-castle-of-memory-1562/DB398CA352F382DE167948C6F3DE196F.)

[^8]: 17 "Caput," ^OГEION (University of Chicago), accessed June 26, 2020, https://logeion.uchicago.edu/caput. ${ }^{18}$ William W. E. Slights, "Back to the Future -- Littorally: Annotating the Historical Page," in The Future of the Page, ed. Peter Stoicheff and Andrew Taylor (Toronto: University of Toronto Press, 2004), pp. 71-89, 79.

[^9]: ${ }^{19}$ ibid.

[^10]: ${ }^{20}$ Mary Thomas Crane, Losing Touch with Nature: Literature and the New Science in Sixteenth-Century England (Baltimore, MD: Johns Hopkins Univ. Press, 2014), 28.

[^11]: ${ }^{21}$ ibid.
 ${ }^{22}$ Mary Thomas Crane, "Marlowe and the New Science," in Christopher Marlowe in Context, ed. Emily Carroll Bartels and Emma Smith (Cambridge, MA: Cambridge University Press, 2013), pp. 252-261, 255. Crane cites Digges's 1556 edition of the Prognostication, but the section she cites is identical to the corresponding section of our 1555 edition, with the only difference being that Digges changes 1555 's "Plenty of winds, entered into holes ..." on page 24, to 1556 's "Plenty of winds, sucked into holes...."

[^12]: ${ }^{23}$ Geoffrey Chaucer, A Treatise on the Astrolabe, ed. Sigmund Eisner, vol. 6 (Norman, OK: University of Oklahoma Press, 2002), II. 518-519.
 ${ }^{24}$ For an excellent discussion of the scholarly conversation around Chaucer's belief in astrology, see ibid., 37-40, and n . II. 517-19.
 ${ }^{25}$ Mary C. Erler, "The Laity," in A Companion to the Early Printed Book in Britain, 1476-1558, ed. Vincent Gillespie and Susan Powell (Cambridge: D.S. Brewer, 2014), pp. 134-149, 139.
 26 ibid., 138.
 27 ibid.
 28 ibid.

[^13]: ${ }^{29}$ ibid.. 139.
 ${ }^{30}$ D. M. Loades, Two Tudor Conspiracies (London: Cambridge University Press, 1965), 81.
 ${ }^{31}$ Edward Hasted. "Parishes: Barham," in The History and Topographical Survey of the County of Kent: Volume 9, (Canterbury: W Bristow, 1800), 350-358. British History Online, accessed June 18, 2020, http://www.british-history.ac.uk/survey-kent/vol9/pp350-358.
 ${ }^{32}$ Edward Hasted. "Parishes: Wootton," in The History and Topographical Survey of the County of Kent: Volume 9, (Canterbury: W Bristow, 1800), 364-373. British History Online, accessed June 18, 2020, http://www.british-history.ac.uk/survey-kent/vol9/pp364-373.
 ${ }^{33}$ Alfred Brotherston Emden, A Biographical Register of the University of Oxford, A.D. 1501 to 1540 (Oxford: Clarendon Press, 1974), 169.
 ${ }^{34}$ E. G. R. Taylor, The Mathematical Practitioners of Tudor \& Stuart England (Published for the Institute of Navigation.) (New York, NY: Cambridge University Press, 1954), 166.
 ${ }^{35}$ Loades, Two Tudor Conspiracies, 81.

[^14]: ${ }^{36}$ Colin A Ronan "The Origins of the Reflecting Telescope" Journal of the British Astronomical Association 101, no. 6 (1991): 337.
 ${ }^{37}$ Loades, Two Tudor Conspiracies, 120.
 ${ }^{38}$ Taylor, The Mathematical Practitioners of Tudor \& Stuart England, 166.
 ${ }^{39}$ ibid., 22.

[^15]: ${ }^{40}$ John Dee remains a controversial figure in early-modern English science to this day. He is held, variously, as "a 'progressive' Renaissance scientist, whose work contributed to the fitful beginnings of the scientific revolution in England," as well as a dabbler in spiritualism and the occult whose interest detracted from any contribution he may have made to the progress of science. (Stephen Clucas, John Dee: Interdisciplinary Studies in English Renaissance Thought (Dordrecht: Springer, 2006), 1-2.)
 ${ }^{41}$ Witelo was "a natural philosopher and perspectivist of the second half of the thirteenth century." He is best known for his work on optics, known as the Perspectiva. (Sabetai Unguru, "Witelo and Thirteenth-Century Mathematics: An Assessment of His Contributions," Isis 63, no. 4 (1972): pp. 496-508, https://doi.org/10.1086/350999, 496.)
 ${ }^{42}$ Colin A Ronan, "Leonard and Thomas Digges," Endeavour 16, no. 2 (1992): 91. Johm Pecham, along with Witelo and Bacon, was a natural philosopher of the thirteenth century who published on optics, his own work being titled Perspectiva communis.
 ${ }^{43}$ Francis Rarick Johnson, Astronomical Thought in Renaissance England (New York, NY: Octagon, 1968), 79-80. Robert Grosseteste (ca. 1168-1253) Bishop of Lincoln. Grosseteste is credited by some with pioneering the Scientific Method. (Neil Lewis, "Robert Grosseteste", The Stanford Encyclopedia of Philosophy (Summer 2019 Edition), Edward N. Zalta (ed.), URL = https://plato.stanford.edu/archives/sum2019/entries/grosseteste/.) ${ }^{44}$ William H. Sherman, John Dee: The Politics of Reading and Writing in the English Renaissance (Amherst, MA: University of Massachusetts Press, 1995), 30

[^16]: ${ }^{45}$ Roger Bacon (1220?-1292) was a thirteenth-century Franciscan Friar with an interest in "experimental-scientific concerns." He devised a new system of study for the universities and the "model of an experimental science." He seems to have been condemned by the Franciscans, possibly because of his study of astrology and alchemy. (Jeremiah Hackett, " Roger Bacon", The Stanford Encyclopedia of Philosophy (Summer 2020 Edition), Edward N. Zalta (ed.), URL = < https://plato.stanford.edu/archives/sum2020/entries/roger-bacon/>.)
 ${ }^{46}$ Johnson, Astronomical Thought in Renaissance England, 79-80.
 ${ }^{47}$ Ronan, "Leonard and Thomas Digges," 91.
 ${ }^{48}$ Leonard Digges and Thomas Digges, A Geometrical Practice Named Pantometria... (London: Henrie Bynneman, 1571), Hiv r-v. https://search-proquest-com.ezproxy.lib.purdue.edu/docview/2240950422/Sec0002, STC 6858.
 ${ }^{49}$ E. G. R. Taylor, "A Regional Map of the Early XVIth Century," The Geographical Journal 71, no. 5 (1928): 474-479. https://doi.org/10.2307/1783281, 479.

[^17]: ${ }^{50}$ Digges and Digges, A Geometrical Practice Named Pantometria, Ki v.
 ${ }^{51}$ ibid., Aiii v.
 ${ }^{52}$ For more information, see Ronan, "Leonard and Thomas Digges," 91-94, and idem, "The Origins of the Reflecting Telescope" Journal of the British Astronomical Association 101, no. 6 (1991): 335-342.

[^18]: ${ }^{53}$ Taylor, The Mathematical Practitioners of Tudor \& Stuart England, 23.
 ${ }^{54}$ ibid., 166-67.
 ${ }^{55}$ ibid., 20.
 ${ }^{56}$ ibid., 166
 ${ }^{57}$ ibid.
 ${ }^{58}$ In order to see all entries, it is necessary to search under both Thomas Gemini and Thomas Geminus.

[^19]: 59 "L haryson," Stationers' Register Online, accessed July 5, 2020, https://stationersregister.online/entry/SRO359.
 60 "T marshe," Stationers' Register Online, accessed July 5, 2020, https://stationersregister.online/entry/SRO440.
 ${ }^{61}$ Leonard Digges and Thomas Digges, An Arithmeticall Militare Treatise, Named Stratioticos... (London: Henrie Bynneman, 1579), Ai r. https://search-proquestcom.ezproxy.lib.purdue.edu/docview/2248531401/pageLevellmage/4C5D6A61D6A24959PQ/1?accountid=13360\& imgSeq=1, STC 6848.

[^20]: ${ }^{62}$ Stephen Johnston, "Like Father, like Son? John Dee, Thomas Digges and the Identity of the Mathematician," in John Dee: Interdisciplinary Studies in English Renaissance Thought, ed. Stephen Clucas (Dordrecht, NL: Springer, 2006), 65.
 ${ }^{63}$ William H. Sherman, John Dee: The Politics of Reading and Writing in the English Renaissance (Amherst, MA: University of Massachusetts Press, 1995), 12-19.

[^21]: ${ }^{64}$ Simonds d'Ewes. "Journal of the House of Commons: March 1563," in The Journals of All the Parliaments During the Reign of Queen Elizabeth, (Shannon, Ire: Irish University Press, 1682), 86-90. British History Online, accessed June 19, 2020, http://www.british-history.ac.uk/no-series/jrnl-parliament-eliz1/pp86-90.
 ${ }^{65}$ Stephen Johnston, "Digges, Thomas (c. 1546-1595), mathematician and member of parliament," in Oxford Dictionary of National Biography, ed. Lawrence Goldman, September 23, 2004, https://www.oxforddnb.com/view/10.1093/ref:odnb/9780198614128.001.0001/odnb-9780198614128-e-7639. ${ }^{66}$ S. K. Heninger, "Tudor Literature of the Physical Sciences," Huntington Library Quarterly 32, no. 2 (February 1969): 101-133, 125, https://doi.org/10.2307/3816682.
 ${ }^{67}$ Tycho Brahe (1546-1601) a Danish astronomer, astrologer, and alchemist, has been called "the greatest giant of observational astronomy since Hipparchus." Burtt has also called him "the first competent mind in modern astronomy to feel ardently the passion for exact empirical facts." (Edwin A. Burtt, The Metaphysical Foundations of Modern Physical Science (London: Routledge, 1924), 49-50.) This last may be an overstatement, in light of what we know of Thomas Digges. Nevertheless, Tycho's is a name to conjure with in heliocentric astronomy.
 ${ }^{68}$ David H. Clark and F. Richard Stephenson, "The New Star of Tycho Brahe," in The Historical Supernovae. The Study of Supernova Remnants Based on Historical Observations (Oxford: Pergamon Press, 1976), pp. 172-190, 185.

[^22]: ${ }^{69}$ Heninger, "Tudor Literature of the Physical Sciences," 125.
 ${ }^{70}$ E. G. R. Taylor, The Mathematical Practitioners of Tudor \& Stuart England, 323.
 ${ }^{71}$ ibid.

[^23]: ${ }^{72}$ For an excellent introduction to the Ptolemaic system of the cosmos, see Chapter 2 of James Evans's, The History and Practice of Ancient Astronomy (New York, NY: Oxford University Press, 1998), 75-128.

[^24]: ${ }^{73}$ Francis R. Johnson, Sanford V. Larkey, and Thomas Digges, "Thomas Digges, the Copernican System, and the Idea of the Infinity of the Universe in 1576," The Huntington Library Bulletin, no. 5 (April 1934): pp. 69-117, https://doi.org/10.2307/3818095, 72.
 ${ }^{74}$ ibid., 71.
 ${ }^{75}$ ibid., 69. Emphasis mine.
 76 ibid., 70.
 77 ibid., 69.
 ${ }^{78}$ Despite Digges's having preceded him in this, Giordano Bruno deservedly remains a giant in the field of earlymodern astronomy. As "one of the most adventurous thinkers of the Renaissance" (Dilwyn Knox, "Giordano

[^25]: Bruno", The Stanford Encyclopedia of Philosophy (Summer 2019 Edition), Edward N. Zalta (ed.), URL = https://plato.stanford.edu/archives/sum2019/entries/bruno/.), he roundly disproved many of the concepts outlined above in my summation of the Ptolemaic cosmos, such as the desire of the sublunary elements to return to their spheres and the structure of the aetheric realms from incorruptible aether. (ibid.)
 ${ }^{79}$ ibid., 69-70.

[^26]: ${ }^{80}$ ibid., 97.
 ${ }^{81}$ ibid., 105.
 ${ }^{82}$ ibid., 97.

[^27]: ${ }^{83}$ Digges, A boke named Tectonicon. A1. v.

[^28]: ${ }^{84}$ Dominic Ford, "Age Of Moon," In-The-Sky.org, accessed July 5, 2020, https://in-thesky.org/article.php?term=age_of_moon.

[^29]: ${ }^{85}$ S. K. Heninger, A Handbook of Renaissance Meteorology: with Particular Reference to Elizabethan and Jacobean Literature (New York, NY: Greenwood, 1968), 3-4.

[^30]: ' This is the title of the first chapter of Guido Bonatti's Liber Astronomiae. Written ca. 1277, it was a sweeping, encyclopedic work. Bonatti does not write any string of running text that says these things. The phrases that follow are the titles of some of the subheadings of his Liber Astronomiae that follow "De utilitate." (Giudo Bonatti, Liber Astronomiae: Part 1, ed. Robert Hand, trans. Robert Zoller [Berkely Springs, WV: Golden Hind Press, 1994], 1.) Guido the "domestic astrologer to Guido da Montefeltro," is placed in the eighth circle of Hell by Dante, with his head twisted around backward on his body for the sin of trying to see into the future. (Dante, Inferno, ed. and trans. Robert Hollander, trans. Jean Hollander (New York: Random House, 2000), I. 118 and note.)
 ${ }^{i i}$ Bonatti, ch. IV, pp. 7-11.
 iii Bonatti ch IX, pp. 18-24.
 ${ }^{\text {iv }}$ Bonatti, ch. VIII, pp. 15-17.
 ${ }^{v}$ Melancthon, Philip: (February 15, 1497-April 19, 1560) a humanist thinker, educator, and theologian. Although he was the author of many works, his Augsburg Confession is likely his best known. (Encyclopædia Britannica (2020), s.v. "Philipp Melanchthon.")
 vi Grynaeus was an outspoken Protestant and an advocate for educational improvement in German universities. In 1538, he published a Latin translation of Ptolemy's Almagest. ("Grynaeus or Grunaeus, Simon," McClintock and Strong Biblical Cyclopedia Online, accessed July 24, 2020, https://www.biblicalcyclopedia.com/G/grynaeus-or-grunaeus-simon.html.)
 vii Schöner, Johannes: (1477-1547) A Catholic priest, publisher, astronomer, and mathematician, Schöner is perhaps best known as a maker of globes and other astronomical instruments.
 viii Cardano, Girolamo: (1501-1576) Originally Cardanus. Cardano was an extremely prolific writer, but here Digges cites his work on comets, wherein he concludes that comets exist above the moon, that they produce their tails by refracting the sun's light, and that they have "three different motions ... east-west ... west-east ... and a motion in latitude." (Tofigh Heidarzadeh, A History of Physical Theories of Comets, from Aristotle to Whipple (Dordrecht: Springer, 2013), 39.) Cardano maintained that there were three elements (earth, water, and air) plus "celestial heat," which flowed from God and which formed "the connective element between heaven and earth." (Guido Giglioni, "Girolamo [Geronimo] Cardano", The Stanford Encyclopedia of Philosophy (Summer 2019 Edition), Edward N. Zalta (ed.), URL = https://plato.stanford.edu/archives/sum2019/entries/cardano/.)

