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ABSTRACT

Horvath, Daniel C. Ph.D., Purdue University, August 2019. Analysis and Design
of Electric Machines Using 2D Method of Moments. Major Professor: Steven D.
Pekarek.

Recently, researchers have pointed their attention toward Method of Moments

(MoM)-based approaches to model low frequency magnetic devices (i.e. transformers

and inductors). This has been prompted by the use of population-based design (PBD)

methods wherein the performance of large numbers (on the order of millions) of

candidate designs must be evaluated. MoM is attractive for such problems due to the

fact that only the magnetic material is discretized. In addition, for the case in which

the magnetic material is linear, only a surface mesh is required. In this research,

point-matching and Galerkin-based MoM formulations are utilized for the design of

electric machinery. In the formulations considered, the model inputs are the free

currents of machine windings and the bound currents of permanent magnets. The

unknowns are the magnetizations within the magnetic material which are used to

compute winding inductance, electromagnetic torque, and core loss.

The proposed Galerkin formulation has been utilized in the PBD of a surface-

mount permanent magnet machine with favorable results. Specifically, it is shown

that a machine’s performance can be evaluated on a time scale expected of a practi-

cal design tool. This is achieved in part through judicious exploitation of the periodic

structure and excitation of machines to reduce the size of the system matrix. It

is shown how the exploitation of periodic structure may be extended to the point-

matching formulation for use in nonlinear analyses. Finally, alternative hybrid ap-

proaches that combine surface and volume meshing are explored for the analysis of
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an internal permanent magnet machine. It is shown that such a combination holds

promise as a tool for rapid evaluation of machine performance.
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1. INTRODUCTION

Modeling tools available to the electric machine designer typically exhibit a tradeoff

between accuracy and computational expense. On one end of the spectrum, lumped

parameter models offer rapid prediction of a machine’s performance. However, many

assumptions/approximations are made in their derivation, potentially compromising

their accuracy. On the other end, methods such as finite element analysis (FEA)

provide a numerical solution to the differential equations governing the system. The

underlying physics used to derive a finite element model is uncompromised until a

relatively simple field variation is assumed (linear field variation for example) within

each element of the solution domain. Although accurate, the relatively large element

count in this method yields a large system of equations (commonly on the order of

10,000 unknowns for 2D FEA) which is computationally more expensive to form and

solve than analytical models.

The Method of Moments (MoM) is an alternative numerical method for solving

electromagnetic fields. In contrast to FEA, which is based upon solving differential

equations, MoM is based upon solving integral equations. A further distinction be-

tween the two methods is that FEA solves for the field distribution in the meshed

domain whereas MoM solves for the sources which create the fields. In the case of

linear magnetic materials, these sources reside on the boundary of the magnetic ma-

terial. In the case of nonlinear magnetic materials, the sources may reside within the

active magnetic material. Since no sources may reside in vacuum/air regions, MoM

has an advantage that only the active material is meshed. As a result, the num-

ber of unknowns can be greatly reduced compared to FEA. Additional advantages

include that any combination of polygons can be used to establish the mesh, and

the nodes are not required to be coincident. Thus for machine design one can use

pre-meshed building blocks and readily assemble them to generate candidate designs.



2

Furthermore, only a surface mesh is required when the materials are magnetically

linear.

MoM has traditionally been utilized in the field of high-frequency computational

electromagnetic [1–3], while it has perhaps been under-utilized in low frequency mag-

netics. The lack of utilization of MoM is likely due to the complexity of integral eval-

uations needed to populate the MoM system matrix. The integrals have traditionally

been evaluated using numerical techniques, leading to significant computational cost

especially since MoM system matrices are dense (not sparse) in nature. However, re-

cently in [4] closed form expressions are derived for all integrals required in a Galerkin

formulation of 2D magnetostatics problems, which enhances the attractiveness of the

method. Herein, a focus is on the MoM, including the foundation of its derivation

and a review of the existing state of its use in low frequency magnetics.

1.1 Introduction to the Method of Moments

The Method of Weighted Residuals (MWR) may be used to derive the MoM. A

general integro-differential equation may be represented as

Lϕ = f (1.1)

where f is a known forcing function, L represents a linear operator (e.g. a differenti-

ation or integration) and ϕ is the unknown. Since only the simplest problems can be

solved analytically, we resort to numerical methods for problems of practical interest

wherein we introduce approximations. The unknown function ϕ can be represented

approximately by ϕ̄ using a set of N basis functions scaled by constants:

ϕ̄ =
N∑
j=1

cjvj (1.2)

where vj are small support basis functions and cj are constants which now take on the

role of the unknowns in the solution procedure. If using the approximate solution,
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some amount of error is expected. This error is termed the “residual” and is defined

as

R , Lϕ̄− f (1.3)

In the MWR, R is minimized indirectly by weighting it and setting the weighted

residual to zero. That is, with the inner product defined as

〈ξ, w〉 ,
∫

Ω0

ξwdΩ (1.4)

the residual is weighted (or tested) and set to zero:

〈R, w〉 =

∫
Ω0

(Lϕ̄− f)wdΩ = 0 (1.5)

Substituting (1.2) and evaluating (1.5) over the entire solutions domain Ω,

N∑
n=1

cn

∫
Ω

wmL(vn)dΩ =

∫
Ω

wmfdΩ (1.6)

Hence, evaluating (1.6) for m = 1, 2, . . . , N , yields an equation system.

The choice of different test and basis functions are often utilized to delineate nu-

merical formulations within the literature of computational electromagnetics. There

are several options. When test and basis functions are the same, the MWR is called

Galerkin’s method.

The MWR may be used to numerically solve differential or integral equations, but

in the latter case L is an integral operator. A MWR in which the weighted residuals

are set to zero and which involves an integral operator may be called a “Method

of Moments” [2]. According to Harrington [5], the name “Method of Moments”

originates from taking the nth moment of continuous function F as∫
xnF (x)dx. (1.7)

however this terminology has been kept to describe the case where xn is replaced with

a general weighting function wn. A final note on the method naming: it is suggested

in [6] that the name Method of Moments came about to describe the cases of the

MWR in which the test and basis functions are not the same, and the inconsistent

usage of the terms MWR and MoM is elaborated further therein.
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1.2 Literature Review

Various integral equation methods appear throughout the literature for the quasi-

static study of magnetic devices, differing in many aspects. The methods differ in

their choice of: method name, integral equation, unknown and testing/basis functions.

The use of closed-form expressions to evaluate integrals as opposed to numerically

integrating them to populate system matrices is yet another way to categorize the

methods. The literature review in [4] extensively discusses many of the integral

equation methods employed in modeling low-frequency electromagnetic devices in

general, categorized by the choice of unknown in the formulation. That literature

review will not be repeated in its entirety herein, however the notable sources that

are most similar to the formulations used herein are highlighted.

In chronological order, MoM formulations using magnetization as the unknown are

found in [7–10]. The program GFUN is documented in [7] wherein 2D and 3D fields

are computed using analytical expressions to populate system matrices, assuming

constant magnetization within polygon (2D) elements and triangular or rectangular

prisms (3D). The calculations correspond to the field calculation at an observation

point. Hence, pulse (delta) basis (testing) functions are used. In [8, 9], the program

RADIA is described, born out of the need to compute 3D magnetic fields and their

integrals in particle accelerators. The 3D magnetostatic field solution is found by

solving the unknown magnetizations in discretized iron regions and the influence ma-

trix is populated using analytical expressions. The magnetic field is computed at the

center of observation elements due to a polyhedron region with constant magnetiza-

tion. Hence this amounts again to a point matching scheme using delta test and pulse

basis functions. The field prediction matches closely to measurements. The magne-

tostatic MoM is reviewed in [10]. The magnetic fields in 3D space are computed at

the element center due to regions of constant magnetization. Numerical integration

is used to populate the system matrices.
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A formulation similar to those utilizing magnetization as the unknown is the

surface current method (SCM) found in [11]. A compact notation is introduced

which represents the x- and y- components together using complex numbers, which

also reduces the sizes of system matrices. A closed-form Galerkin expression for pulse

bases is presented. An adaptive meshing procedure is presented. Two methods for

nonlinear analysis are discussed. The first involves a volume mesh while the second

involves sampled points within the active material. The methods are applied in the

analysis of two electric machines. Reasonable agreement with FEA is obtained.

The application of various MoM formulations specifically in the analysis of electric

machinery is found in [12]. In [12], researchers extend the 2D form of the method

first described in [7], a point-matching formulation, to use the auxiliary field as the

unknown and develop the method in terms of polar coordinates which aids in the vol-

ume mesh generated therein, consisting of radial and tangential lines. The method

was used to solve the nonlinear fields in a wound rotor synchronous machine using a

modified Newton-Raphson method, converging in 10 or fewer iterations under heavy

saturation. Computation times of 20-30 minutes are given, but this must be con-

sidered in the context of the computing power available at the time of publication

(1988).

The boundary element method (BEM) is an integral equation method related to

MoM which has been investigated by several researchers for use in the analysis of

low-frequency electromagnetic devices. A review of the use of the BEM to analyze

low-frequency electromagnetic devices is provided in [13]. The BEM transforms a

differential equation into its equivalent integral equation form through use of Green’s

functions/integral theorems. Some authors claim the BEM and MoM are equivalent

[14] or are so only in certain contexts [15], yet others distinguish one from the other

[16, 17]. Indeed, BEM and MoM are both integral equation numerical methods and

share the property of having full system matrices but they differ largely in their

derivations. In the 2D magnetostatic BEM, the unknown vector is comprised of

the vector potential and its normal derivative, thus the system matrix is a tableau
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that couples the effects of the two types of unknowns. In contrast, MoM utilizes a

single unknown vector in its formulation, thus clearly defining the role of the system

matrix – a mapping of currents to field values, affecting a summation of the individual

contributions.

In [14] BEM formulations are discussed for 2D magnetostatic and eddy current

problems as well as for 3D eddy current problems. In the 2D formulations, the mag-

netic vector potential is the unknown. The formulations are established via appropri-

ate selection of Green’s function for first the Poisson and then the diffusion equation

for static and eddy current problems respectively. A 3D eddy current formulation is

described that is formulated in terms of the direct field quantities E and H where the

unknowns are surface electric and magnetic currents. Only linear magnetic materials

are considered, therefore time-harmonic forms are utilized in the eddy current forms

of both 2D and 3D. Linear base/testing functions are used in the 2D formulations but

the matrix entries are populated using numerically-evaluated integrals. The 2D form

is used to evaluate a C-I core actuator and both methods are used to model a simple

inductor. Run times are discussed for the 3D formulation only, but are prohibitive

to utilization within an optimization loop, as even using the coursest mesh of a C-I

actuator, the solution takes approximately 940 s for a single design.

In [16], BEM formulations are discussed for 2D magnetostatic problems. Therein

analytical solutions are derived for all integrals required in the assembly of the system

matrix in Galerkin’s method for delta, pulse and linear base/test functions. The dual

reciprocity method is evaluated as a means to model nonlinear behaviour in a quasi-

meshless fashion. Results match FEA in lightly saturated conditions. A similar

result is reported when the method is used for analysis of a wound-rotor synchronous

machine in [18].

Since a focus of this research is to explore the feasibility of utilizing MoM within

population-based design/optimization, research that documents the use of FEA to

evaluate designs within optimizations is of interest in order to make comparisons with

total computation times. In [19] researchers set forth two optimizations to maximize
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average torque while minimizing pulsating torque in switched reluctance machines.

The overall rotor and stator tooth face shapes are degrees of freedom in the optimiza-

tions. One of the optimizations is GA-based, evaluating 6400 candidate designs using

FEA, meshing the stator and rotor only once for each design and remeshing only

the airgap at each rotor position. Torque is computed at 15 rotor positions in each

design where parallel processing is utilized to divide the workload. The researchers

report a total computation time of 20 hours for magnetically linear materials and

approximately 40 hours for magnetically nonlinear materials using programs written

in MATLAB.

In [20] researchers detail the so-called “computationally efficient FEA” (CE-FEA)

in which the goal is to obtain accurate machine performance information with a min-

imum number of magnetostatic FEA evaluations, as opposed to using the compu-

tationally expensive time stepping FEA. Using the FEA solutions at several rotor

positions, flux linkages in the windings and flux densities in each mesh element are

computed. Periodicity arguments are invoked allowing the construction of pertinent

waveforms over one electrical cycle. A Fourier decomposition of the waveforms is

then computed. Subsequently, torque is computed analytically based on expressions

utilizing the flux linkage Fourier coefficients as opposed to a numerical torque eval-

uation such as the Maxwell Stress Tensor (MST) [21], presumably in order to save

computation time. Core loss is evaluated using expressions mapping the square of flux

density harmonics and its Fourier coefficients to loss densities in each mesh element.

In one design study of a fractional-slot concentrated-winding machine, response sur-

faces are generated over three design parameters. The researchers report that 100

designs may be evaluated in 20 minutes using the program MagNet and the afore-

mentioned Fourier-based post-processing schemes. Each design evaluation required

magnetostatic FEA solutions at 5 rotor positions. Comparisons with time-stepping

FEA agree well and the researchers report that using time-stepping FEA to pro-

duce the same results would require a computation time of approximately 40 hours.

Researchers in [22] use CE-FEA to perform an optimization for synchronous reluc-
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tance machines with and without permanent magnets. The optimization is performed

using differential evolution (DE), an optimization method similar to a genetic algo-

rithm (GA). The researchers report that 10,000 candidate designs were evaluated in

“hours.”
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2. BACKGROUND

The 2D MoM presented in [4] is briefly summarized to set the stage for the research

herein. The derivation in [4] does not start with the statement of the governing

differential- or integral-equations; rather it is established based on elementary physics

that relates line current to flux density in free space. The method builds on this rela-

tionship to accommodate the influence that a magnetic material has on flux density.

From these relationships, a system of equations is formed in which unknowns are

the magnetization in the elements and the inputs are free current. The modeling of

magnetically nonlinear materials is also summarized.

Following the solution of the equation system, the resultant magnetic field and

bound/free current distribution may be used to determine other quantities of inter-

est, which is commonly referred to as post-processing. The post-processing steps to

compute force and inductance derived in [4] are summarized in this chapter in order

to establish the basis for developments in the following chapter.

Keeping with most modern texts [23], [24], the field B will be referred to as

the “magnetic field,” (or sometimes “flux density”) throughout this research and the

field H as the “auxiliary field.” Terms such as “magnetic induction” for B and “field

intensity” for H are avoided.

2.1 System of Equations

In a MoM formulation in which the system is characterized with linear materials,

the material boundary is discretized into edge elements (i.e. a surface mesh). If the

relationship between magnetic field and auxiliary field is nonlinear, the material is

volume-meshed. An example of the respective discretizations are shown in Figs. 2.1a

and 2.1b for a representative inductor. As shown in Figure 2.1, inert regions, including
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Fig. 2.1.: Example of mesh requirements in representative inductor.

the region inside and surrounding the inductor, are not meshed in the MoM, as there

are no sources in inactive regions. In [4], the formulation was derived for static fields

where free current is known and the element magnetization is the unknown. A key

observation that the formulation [4] hinges on is that the total magnetic field, Btot, at

an arbitrary observation point is the summation of the magnetic field contributions

from all sources; namely, free currents If and bound currents Ib present in the system.

Bound currents exist at the boundary of linear magnetic materials and are found by

taking the curl of the magnetization field M [23]:

∇×M = Jb (2.1)

M × n̂ = Kb (2.2)

where Jb and Kb are bound volume and surface current density, respectively and n̂

is the outward normal unit vector at the edge of the magnetized region. Only the

component of magnetization tangent to the edge element contributes to the bound
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current, therefore the unknown in the linear formulation is Mtan. The total magnetic

field within an element j can be expressed as

Btan,tot(j) =
N∑
i=1

fBM(j, i)Mtan(i) +

Nf∑
k=1

fBIf (j, k)If (k) (2.3)

where N is the number of unknown element magnetizations and Nf is the number of

free current sources. Within element j the constitutive relation Mj = χjHj is used

to algebraically eliminate H yielding an alternative expression for the total magnetic

field:

Btan,tot(j) = µ0(Htan(j) + Mtan(j))

= µ0

(
χj + 1

χj

)
Mtan(j)

=
µ0µr,j
µr,j − 1

Mtan(j) (2.4)

where µr,j = χj + 1. Enforcing equality between (2.3) and (2.4) yields

µ0µr,j
µr,j − 1

Mtan(j) =
N∑
i=1

fBM(j, i)Mtan(i) +

Nf∑
k=1

fBIf (j, k)If (k) (2.5)

Evaluating (2.5) for each element (i.e. for j = 1 . . . N) yields a system of equations,

written symbolically in matrix form as

fBtotMMtan = fBMMtan + fBIf If (2.6)

that can be expressed in a form:

[
fBtotM − fBM

]
Mtan = fBIf If (2.7)

It is noted that in this research, MATLAB’s backslash operator (otherwise known

as “mldivide”) is used to solve the linear system of equations, although specialized

solvers have been developed for integral equation methods which yield improved com-

putational complexity over generic linear matrix equations solvers [3]. It is also noted

that the matrix notation used herein indicates the type of mapping that occurs within
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the subscripts. For instance, the matrix fBtotM is the matrix which maps the unknown

element magnetization M to the total magnetic field Btot.

The system of equations (2.6) is representative of formulations in which any basis

and weighting functions are chosen. The following two sections summarize matrix

entries for all matrices appearing in (2.6), wherein each subsection utilizes a different

basis/testing function choice.

2.2 MoM Matrix Elements

The two formulations utilized herein both assume constant magnetization in the

element. Categorizing the two formulations in terms of basis and testing functions,

this corresponds to the use of a pulse basis function. By observing the magnetic

field at a single point within an element, for example the center point of an element,

corresponds to using Dirac delta functions as test functions, referred to as “point

matching” [1]. Delta test functions are a common choice due to the relative simplic-

ity encountered when computing their integrals. In contrast, the calculation of the

average magnetic field at an observation element corresponds to the use of a pulse test

function. Since the test and basis functions are equivalent we refer to this method as

a “Galerkin” MoM.

Prior to deriving the expressions used to populate the system matrices, it is helpful

to review the expression for the magnetic field resulting from a filamentary current

source. A filamentary current source extending infinitely in the ẑ direction with

magnitude I produces a magnetic field in the x-y plane that is independent of z, at a

distance r =
〈
rx, ry

〉
away from the current source. The magnetic field is expressed

as [23]

B(r) =
µ0I

2π‖r‖2

(
−ryx̂+ rxŷ

)
(2.8)
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2.2.1 Point-Matching MoM

The population of all matrices appearing in (2.6), in order of increasing complexity,

begins with fBtotM , which, by the characterization of the magnetic material as in (2.4),

is simply a diagonal matrix with dimensions N ×N . Entries of fBtotM are given by

fBtotM(i, i) =
µ0µr,i
µr,i − 1

Mtan,i (2.9)

Entries of the N ×Nf matrix fBIf require no integration and are found by taking

the component of the magnetic field due to an infinite line current tangent to element

j:

fBIf (j, i) =
µ0

2π

 −(yj,obs−yIf ,i)
(xj,cen−xIf ,i)

2+(yj,obs−yIf ,i)
2

xj,obs−xIf ,i
(xj,cen−xIf ,i)

2+(yj,obs−yIf ,i)
2


T lx,j

ly,j

 1∥∥lj∥∥ (2.10)

The matrix fBM is populated by first separating it into the matrix product fBM =

fBIfIM , where the diagonal matrix fIM relates the element magnetization vector Mtan

to element bound current Ib. Since the magnitude of bound current density is the

ratio of element current and element length:

∥∥Kb,i

∥∥ =
Ib,i
li

(2.11)

then by (2.2),

Kb,i = Mtan,i × n̂i = −
∥∥Mtan,i

∥∥ = −ẑ Ib,i
li

(2.12)

and therefore Ib = fIMMtan where the N ×N diagonal matrix entries fIM(i, i) = −li.

Entries in the N × N matrix fBI are found by integrating the magnetic field at the

observation location j, denoted (xj,obs, yj,obs ) due to a finite sheet current in source

element i. The components of (2.8) are integrated along the length of the observation

element

B′j,i =
〈
B′j,i,x, B

′
j,i,y

〉
=

∫ x′i,2

0

B′i(r
′(t))dt (2.13)

The integration setup is illustrated in Figure 2.2. The primed quantities indicate a

reference frame in which the source element i is collinear with the x′- axis and its first
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Fig. 2.2.: Geometry used to establish fBI entries in the Point Matching formulation.

point coincident with the origin as shown in Figure 2.2. In this reference frame, the

x and y components of the magnetic field are

B′j,i,x = f ′j,i,xIb(i)

= − µ0

2πx′i,2

arctan

(
x′i,2 − x′j,obs

y′j,obs

)
− arctan

(
−x′j,obs

y′j,obs

) Ib(i) (2.14)

B′j,i,y = f ′j,i,yIb(i)

= − µ0

4πx′i,2
ln

(
(x′i,2 − x′j,obs)

2 + y′2j,obs

x′2j,obs + y′j,obs

)
Ib(i) (2.15)

Rotating to the global system of coordinates yields the matrix entriesfj,i,x
fj,i,y

 =

cos(φi) − sin(φi)

sin(φi) cos(φi)


f ′j,i,x
f ′j,i,y

 (2.16)

where φi is the angle initially used to perform the integration in the reference frame

of the source element i. Taking the component tangent to the observation element

yields:

fBIb(j, i) =

[
fj,i,x fj,i,y

]lx,j
ly,j

 1∥∥lj∥∥ (2.17)
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Fig. 2.3.: Geometry used to establish fBIf entries in Galerkin formulation.

This subsection highlighted the point-matching formulation derived in [4], wherein

it was shown that inaccuracy is encountered when using materials with high magnetic

permeability with geometries whose magnetic circuit include a large airgap. Another

such linear point matching formulation in [4] utilized a volume mesh in the interior of

the active material wherein the observation location is the centroid of each triangular

mesh element. This formulation has similar accuracy to a Galerkin formulation,

presented in the next subsection, but requires a greater unknown count due to the

volume mesh. Since the derivation in this section is readily applied to a volume mesh,

it will be utilized for analysis of nonlinear analysis in the following section.

2.2.2 Galerkin MoM

This section describes the matrix entries in the case in which both the basis and

weighting functions of unknown elements are pulse bases, which is termed a Galerkin

formulation. As discussed earlier in this Chapter, the Galerkin solution has improved

accuracy over the point-matching formulation. The terms in fBtotM remain unchanged

from (2.9). In the case that the free current If (i) is a filament, the corresponding
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column of the N×Nf matrix fBIf has entries determined by integrating the magnetic

field tangent to the observation element j due to filament source i:

B̄′j,i =
1

x′j,2

∫ x′i,2

0

B′tan,i(r
′(t))dt (2.18)

The integration is performed in the reference frame of the observation element [4],

which is indicated using the prime symbol. In this reference frame, the first node of

the observation element is coincident with the origin and the observation element lies

along the x-axis, as shown in Figure 2.3. Within Figure 2.3 the filamentary current

with magnitude If (i) is located at point (x′i,If , y
′
i,If

) in a direction out of the page.

The closed form solution to (2.18) is [25]:

B̄′j,i = fBIf (j, i)If (i)

=
µ0

2πlj

tan−1

(
x′2,j − x′If ,i

y′If ,i

)
− tan−1

(
−
x′If ,i

y′If ,i

) If (i) (2.19)

In the case in which free current If (i) is a sheet current, an alternative expression

is required to populate the corresponding column, a description of which is provided

next.

The matrix fBM is populated by first expressing it in terms of its components

fBM = fBIfIM . The diagonal matrix fIM relates the element magnetization vector

Mtan to element bound current, i.e. Ib = fIMMtan. Then, identical to the point

matching formulation, fIM(i, i) = −li. The matrix fBI then relates the bound currents

Ib to the magnetic fields they produce at the locations of all other bound current

elements. Since both source and observation bound current elements are finite sheet

currents in the Galerkin formulation, the bound current density in the source element

is uniform along its length. Such a source/observation pair (l1/l2) is depicted in

Figure 2.4. Likewise, we are now interested in observing the magnetic field due to

the sheet current source (itself the result of an integration) not at a single point, but

along the entire observation element, in the average sense. Therefore it is necessary to

integrate the magnetic field a second time - this time along the observation element.
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Fig. 2.4.: Geometry used to establish fBI entries in the Galerkin formulation.

The following is a summary of analytical solutions to this double integral, derived

in [4].

fBI(j, i) = − µ0

2πl2l21



l1 · l2atan2∗(l5 ×2 l6, l5 · l6)

+l1 · l3atan2∗(l5 ×2 l3, l5 · l3)

+l1 · l4atan2∗(l4 ×2 l6, l4 · l6)

+l1 ×2 l2 ln∗(l6/l5)

+l1 ×2 l3 ln∗(l3/l5)

+l1 ×2 l4 ln∗(l6/l4)


(2.20)

where

atan2∗(α, β) =


π
2

α = β = 0

atan2(α, β) else

(2.21)

ln∗(α) =


0 α = 0, α→∞

ln∗(α) else

(2.22)

Several notes are in order regarding (2.20) - (2.22). In (2.20) the operator ×2 is

the scalar form of the cross product for vector arguments both in the same 2D plane.

Source element i corresponds to the vector l1 while observation element j corresponds
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to the vector l2. From l1 and l2, the vectors l3 - l6 are defined as shown in Figure

2.4, which define the relative positioning of the respective endpoints of l1 and l2.

Singularities arise in certain cases, such as when elements are adjacent or coincident,

and require special attention and analysis of each of the cases [25]. In the coincident

element case, j = i, or more generally (l3 → 0)∧(l6 → 0), and the limit of the integral

goes to fBI(j, i) = −µ0/(2/l2). Adjacency occurs when (l3 → 0) ⊕ (l4 → 0) ⊕ (l5 →

0)⊕(l6 → 0), where ⊕ is the exclusive-or logical operation. With the functions atan2∗

and ln∗, the form in (2.20), as is, handles element adjacency singularities effectively

when (l3 → 0) ⊕ (l4 → 0). However when (l5 → 0) ⊕ (l6 → 0), l1 is replaced by

l1,ex = −l1 and l2 is replaced by l2,ex = −l2. Subsequently l3 - l6 are recomputed

using the exchanged endpoints and the negation of (2.20) is used for fBI(j, i). The

expression (2.20) may also used to populate the column of fBIf when free current

If (i) is a sheet current.

2.3 Nonlinear Materials

'y

'xO element i
,1 ,1( ' , ' )i ix y ,2 ,2( ' , ' )i ix y

,cen ,cen( ' , ' )j jx y

r

Fig. 2.5.: Geometry used to establish fBI entries in the Point Matching formulation.

In the case in which a material is characterized by a nonlinear relationship between

B and H , the MoM formulation described above is altered in two ways. First, the

material volume (as opposed to the material edge) must be meshed. Second, the
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magnetization within each volume has two vector components (as opposed to simply

Mtan). In the present example, triangles form the volume mesh, although any polygon,

or combination of polygons can be applied. Indeed, 4-sided polygons are utilized in

the volume mesh in Chapter 5. Furthermore, the nodes defining the triangle (polygon)

vertices do not need to be coincident.

The unknown magnetization vector becomes

M(2i− 1) = Mx,i (2.23)

M(2i) = My,i (2.24)

Nonlinearity is introduced through fBtotM , which becomes a function of M due to

the dependence of permeability on magnetization. The system of equations in the

nonlinear formulation becomes

fBtotM(M) = fBMM + fBIf If (2.25)

Hence, entries of fBtotM are given by

fBtotM(2i− 1, 2i− 1) = fBtotM(‖Mi‖)
Mx,i

‖Mi‖

fBtotM(2i, 2i) = fBtotM(‖Mi‖)
My,i

‖Mi‖

where the function fBtotM(||Mi||) maps ||Mi|| to ||Btot,i|| using a lookup table with

linear interpolation and ||Mi|| =
√
M2

x,i +M2
y,i.

The matrix fBM is populated by first separating it into its components fBM =

fBIfIM , where the diagonal matrix fIM relates the element magnetization vector M

to element bound current Ib. Since the bound current density is the ratio of side

bound current and element length:

Kb,i,k =
Ib,i(k)∥∥li,k∥∥ , (2.26)

then by (2.2)

Ib,i(k) =
∥∥li,k∥∥ 〈Mx,i,My,i

〉
× 1∥∥li,k∥∥ 〈yi,k+1 − yi,k,−(xi,k+1 − xi,k)

〉
. (2.27)
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where
∥∥li,k∥∥ is the length of side k of polygon i and is given by∥∥li,k∥∥ =

√
(yi,k+1 − yi,k)2 + (xi,k+1 − xi,k)2. (2.28)

Utilizing this relationship for each k ∈ [1 . . . Si],

Ib,i(1 : Si) =


(xi,2 − xi,1) (yi,2 − yi,1)

...
...

(xi,1 − xi,Si) (yi,1 − yi,Si)


Mx,i

My,i

 = fIM,i

Mx,i

My,i

 (2.29)

Hence fIM is a SiN × 2N block diagonal matrix whose diagonal blocks are fIM,i

where Si is the number of sides of the polygon. The nonlinear solution is found by

first arranging the system of equations into the nonlinear residual form (not to be

confused with the residual associated with the MWR):

g(M) = fBMM + fBIf If − fBtotM(M). (2.30)

Subsequently, any one of a number of nonlinear solvers can be applied. In this re-

search, a Newton-Raphson (N-R) procedure has been applied in which the goal is

to determine a magnetization vector M∗ such that g(M∗) = 0. The N-R procedure

iterates on the solution according to the rule

xk+1 = xk − J
(
xk
)−1

g
(
xk
)

(2.31)

where x = M and the Jacobian matrix J(x) is given by

J =
∂g

∂x
(2.32)

=



∂g1
∂x1

∂g1
∂x2

. . . ∂g1
∂xN

∂g2
∂x1

∂g2
∂x2

. . . ∂g2
∂xN

...
...

. . .
...

∂gN
∂x1

∂gN
∂x2

. . . ∂gN
∂xN


(2.33)

The Jacobian matrix entries are found by differentiating (2.30):

∂

∂x
g(x) =

∂

∂M
g(M) = fBM −

∂

∂M
fBtotM(M) (2.34)
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Substituting (2.26) into (2.34), the entries in the last term of (2.34) are

∂

∂M
fBtotM(M)(2i− 1, 2i− 1) =

d

dMx,i

fBtotM(‖Mi‖)
Mx,i

‖Mi‖
∂

∂M
fBtotM(M)(2i− 1, 2i) =

d

dMy,i

fBtotM(‖Mi‖)
Mx,i

‖Mi‖
∂

∂M
fBtotM(M)(2i, 2i− 1) =

d

dMx,i

fBtotM(‖Mi‖)
My,i

‖Mi‖
(2.35)

∂

∂M
fBtotM(M)(2i, 2i) =

d

dMy,i

fBtotM(‖Mi‖)
My,i

‖Mi‖
∂

∂M
fBtotM(M)(else) = 0

Evaluating the derivatives in (2.35) yields

d

dMx,i

fBtotM(‖Mi‖)
Mx,i

‖Mi‖
=

M2
x,i

‖Mi‖2f
′
BtotM(||Mi||) +

M2
y,i

‖Mi‖3fBtotM(||Mi||)

d

dMy,i

fBtotM(‖Mi‖)
Mx,i

‖Mi‖
=
Mx,iMy,i

‖Mi‖2 f ′BtotM(||Mi||)−
Mx,iMy,i

‖Mi‖3 fBtotM(||Mi||)

d

dMx,i

fBtotM(‖Mi‖)
My,i

‖Mi‖
=

d

dMy,i

fBtotM(‖Mi‖)
Mx,i

‖Mi‖
(2.36)

d

dMy,i

fBtotM(‖Mi‖)
My,i

‖Mi‖
=

M2
y,i

‖Mi‖2f
′
BtotM(||Mi||) +

M2
x,i

‖Mi‖3fBtotM(||Mi||)

Lookup tables for fBtotM(‖Mi‖) and f ′BtotM
(‖Mi‖) terms in (2.36) are required in order

to implement the N-R process. The lookup table for fBtotM(‖Mi‖) is formed by first

sampling the continuous function rBM which represents the ratio between magnetic

field (in T) and magnetization (in T) [26]. The sampled M and B are then related

by

Msample =
Bsample

µ0rBM(Bsample)
(2.37)

where Msample and Bsample are respectively the input and output data of the lookup

table. Subsequently the lookup table for f ′BtotM
(‖Mi‖) is formed by numerically com-

puting the derivative of the lookup table for fBtotM(‖Mi‖), i.e. the first order finite

difference.
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2.4 Electromagnetic Force

Following the solution of (2.6) or (2.30), the free and bound current distributions

are fully known, which in turn enables the evaluation of the magnetic field at any

point in space. Knowledge of the magnetic field and current enables the calculation

of the Lorentz force

F = I ×B. (2.38)

In the MoM formulation considered herein, currents may either be filaments or sheets,

whose 2D cross sections are respectively points and lines. Therefore it is desired to

be able to compute the force on: line elements by line sources, line elements by point

sources, point elements by line sources and point elements by point sources. One

need only to consider the force on each current of the movable member, or the rotor

in the case of electric machines, by sources on the stationary member, i.e. the stator.

This is true since by Newton’s first law, a rigid body can not exert a force on itself.

2.4.1 Force Exerted on Line Elements by Line Sources

The force on observation element l2 by source element l1 is evaluated by integrating

the force on the point p(t), shown in Fig. 2.4, where t is a variable parameterizing

the line segment l2. Source element l1 carries current I1, distributed uniformly along

its length, which creates the magnetic field B1(p) at point p. Observation element

l2 carries a current I2 distributed uniformly along its length. In the 2D formulation

considered herein, the currents exist only in the ẑ direction and hence the magnetic

fields exist only in the x-y plane. With I2 and B1(p), the Lorentz force integral is

expressed mathematically from (2.38) as

F|| =
I2

l2

∫
l2

ẑ ×B1(p)dp

=
I2

l2

∫ 1

0

ẑ ×B1(p)

∥∥∥∥ ddtp(t)

∥∥∥∥ dt
=I2

∫ 1

0

ẑ ×B1(p)dt

(2.39)
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Closed form solutions to this integral were derived in [4] for the x- and y- components

of force:

Fx,|| =
µ0I1I2

2πl21l
2
2



−l1l2l2 sin(φ2−φ2−φ1)atan2(l5 ×2 l6, l5 · l6)

−l1l2l3 sin(φ3−φ2−φ1)atan2(l5 ×2 l3, l5 · l3)

−l1l2l4 sin(φ4−φ2−φ1)atan2(l4 ×2 l6, l4 · l6)

+l1l2l2 cos(φ2−φ2−φ1) ln
(
l6/l5

)
+l1l2l3 cos(φ3−φ2−φ1) ln

(
l3/l5

)
+l1l2l4 cos(φ4−φ2−φ1) ln

(
l6/l4

)


(2.40)

Fy,|| = −
µ0I1I2

2πl21l
2
2



l1l2l2 cos(φ2−φ2−φ1)atan2(l5 ×2 l6, l5 · l6)

+l1l2l3 cos(φ3−φ2−φ1)atan2(l5 ×2 l3, l5 · l3)

+l1l2l4 cos(φ4−φ2−φ1)atan2(l4 ×2 l6, l4 · l6)

+l1l2l2 sin(φ2−φ2−φ1) ln
(
l6/l5

)
+l1l2l3 sin(φ3−φ2−φ1) ln

(
l3/l5

)
+l1l2l4 sin(φ4−φ2−φ1) ln

(
l6/l4

)


(2.41)

It is noted that the difference φ2 − φ2 appears in several terms of (2.40) and (2.41).

Although equal to zero, expressing the difference is useful since one can then generalize

the calculation of all the angle difference cosine and sine terms found in (2.40) and

(2.41). Specifically, one can show that for a set of vectors given in Cartesian and

polar coordinates by:

lα = 〈xα, yα〉 = 〈lα cosφα, lα sinφα〉

lβ =
〈
xβ, yβ

〉
=
〈
lβ cosφβ, lβ sinφβ

〉
lγ =

〈
xγ, yγ

〉
=
〈
lγ cosφγ, lγ sinφγ

〉 (2.42)
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where each angle φi and respective vector li is shown in Fig. 2.4, the cosine and sine

terms can be solved directly using:

lαlβlγ cos(φγ − φβ − φα) = lα ·
〈
lβ · lγ, lβ ×2 lγ

〉
=

 xαxβxγ + xαyβyγ

+yαxβyγ − yαyβxγ

 (2.43)

lαlβlγ sin(φγ − φβ − φα) = lα ×2

〈
lβ · lγ, lβ ×2 lγ

〉
=

 xαxβyγ − xαyβxγ

−yαxβxγ − yαyβyγ

 .
(2.44)

2.4.2 Force Exerted on Point(Line) Elements by Line(Point) Sources

( )tp

1:sourcel

3 5=l l

4 6=l l

( ),: c cc d x y=

,:( )b bb yx

:( , )a aa x y

O x

y
2:observationp

(a)

,:( )c cc yx

( )tp
1
:sourcep

3 4=l l

5 6=l l

,:( )d dd yx

O x

y 2
:observationl

( , ): a aa b x y=

(b)

Fig. 2.6.: Force/torque (a) on p2 by l1 and (b) on l2 by p1.

The force exerted on point observation element p2 by line source l1, as shown in

Fig. 2.6a, is determined using the expressions

Fx,·| =
µ0I1I2

2πl1

 sin(φ1)atan2(l5 ×2 l6, l5 · l6)

+ cos(φ1) log

(
l6
l5

)
 (2.45)



25

Fy,·| = −
µ0I1I2

2πl1

 cos(φ1)atan2(l5 ×2 l6, l5 · l6)

− sin(φ1) log

(
l6
l5

)
 (2.46)

The force exerted on observation line element l2 by point source p1, as shown in Fig.

2.6b, is determined using the expressions

Fx,|· = −
µ0I1I2

2πl2

 sin(φ2)atan2(l4 ×2 l6, l4 · l6)

+ cos(φ2) log

(
l6
l4

)
 (2.47)

Fy,|· =
µ0I1I2

2πl2

 cos(φ2)atan2(l4 ×2 l6, l4 · l6)

− sin(φ2) log

(
l6
l4

)
 (2.48)

where the integration and simplification steps are included in Appendix A.

2.4.3 Force Exerted on Point Element by Point Source

In the case where both source and observation elements are points, the force

exerted on point element p2 = (xc, yc) by point element p1 = (xa, ya) is determined

using

Fx,·· =
µ0I1I2

2π((xc − xa)2 + (yc − ya)2)
(xa − xc) (2.49)

Fy,·· =
µ0I1I2

2π((xc − xa)2 + (yc − ya)2)
(ya − yc) (2.50)

2.5 Calculation of Inductance

2.5.1 Definition of Partial Inductance

Before discussing the method for computing inductance detailed in [4], the term

partial inductance is described, adapted from the discussion in [27]. Two circuits,

each divided into individual segments 1 - 4 , are shown in Figure 2.7. Current in

in circuit n produces the magnetic field Bn. Integrating Bn over the open surface



26

1

2

3

4Circuit m Circuit n

1

2

3

4

mi ni

Fig. 2.7.: Current loops divided into segments.

bounded by circuit m allows the mutual inductance between the two circuits to be

expressed as

Lmn =

∫
Sm

Bn · dSm
in

(2.51)

Since B = ∇ × A, and using Stoke’s theorem, the mutual inductance may be ex-

pressed as

Lmn =

∫
Sm

(∇×An) · dSm

in
(2.52)

=

∮
Cm

An · dlm
in

(2.53)

To account for each segment’s contribution, the integration is separated into integrals

for the individual contours C1-C4 for the respective segments 1 - 4 of circuit m

Lmn =
1

in

[∫
Cm1

An · dlm1 +

∫
Cm2

An · dlm2 +

∫
Cm3

An · dlm3 +

∫
Cm4

An · dlm2

]
(2.54)

Further dividing the problem, the vector potential An may be separated into compo-

nents due to each segment of circuit n. For example, the first term in (2.54) may be

expanded as

1

in

∫
Cm1

An · dlm1 =
1

in

∫
Cm1

(An1 + An2 + An3 + An4) · dlm1 (2.55)

Each term in (2.55) corresponds to a partial inductance, expressed as the ratio

Lp,i,j =

∫
Cmi

Anj · dlmi
inj

(2.56)
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Designations such as “self” and “mutual” also serve to describe the partial inductance

expressions. Self partial inductances describe the contribution to the vector potential

integral (2.56) when the source and path are coincident, or when m = n and i = j.

Mutual partial inductances describe the contribution to the vector potential integral

(2.56) when the source and path are distinct, or when m 6= n or when m = n and

i 6= j.

2.5.2 Definition of Free Space Inductance

The method for computing inductance detailed in [4] is now presented. Therein,

partial inductances were utilized to quantify the contributions to the total magnetic

flux that links conductors carrying free currents produced by each of the bound cur-

rents. The mutual inductance (2.51) between circuits m and n may be rewritten

as

Lmn =
λmn
in

(2.57)

In order to quantify the flux in circuit m due only to circuit n, all other current

sources present in the system must be unexcited. Yet, bound currents that establish

themselves in a magnetic material in response to the sole excitation source in are also

contributors to the flux and must be accounted for. To this end, the distinction is

made that all other free current sources (i.e. all except in) must be unexcited while

the fields of bound currents must be included in the linked flux. This can be expressed

mathematically as

λmn = Lfsmnin +
N∑
i=1

Lfs
miIb(i) (2.58)

where Ib is the vector of bound currents in the edge elements and the superscript

“fs” stands for “free space.” Each of the free space inductances Lfs
mi separately maps

the flux linking circuit n due to bound current Ib(i) as if there were only the bound

current and circuit n in free space. The free space inductance must be found with all

other currents (free and bound) set to zero. In (2.58), the term Lfsmn is the mutual

(or self when m = n) inductance of the conductor carrying free current by itself in
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free space. As an example, consider the simple bar magnet shown in Figure 2.8. The

flux linking the winding defined by free current carrying conductors m and m′ may

be expressed as

λmm = Lfsmmim +
N∑
i=1

LfsmiIb(i) (2.59)

Using partial inductances, Lfsmm, the free space inductance of the winding m and m′

m m'

Fig. 2.8.: Simple bar electromagnet.

may be expressed as

Lfsmm = Lp,m,m + Lp,m,m′ + Lp,m′,m + Lp,m′,m′ (2.60)

The remaining flux linking the winding, i.e. that attributable to the bound currents,

is found by determining Lfsmi for each bound current indexed by i:

Lfsmi = Lp,m,i + Lp,m′,i (2.61)

It is noted that terms Lp,m,m and Lp,m′,m′ are both self partial inductances and Lp,m′,m

and Lp,m,m′ are both mutual partial inductances.

2.5.3 Partial Inductance Expressions

Considering again the simple bar magnet of Fig. 2.8, and the path integral (2.56),

since the direction is the same for the current and integration path in the case of Lp,m,m
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Fig. 2.9.: Reference frame of sheet partial inductance calculation.

and Lp,m′,m′ , the dot product in (2.56) has positive sign. Similarly, since the direction

is opposite for the current and integration path in the case of Lp,m′,m and Lp,m,m′ ,

the dot product in (2.56) has negative sign. In [4], the vector potential produced

by a filamentary current, which has negative sign in the expression, is integrated as

in (2.56). With the sign convention just considered, the resultant partial inductance

between filaments may be expressed as

Lp,i,j,fil =


−µ0

2π
ln
(
ρ
ρ0

)
, current / path same direction

µ0
2π

ln
(
ρ
ρ0

)
, current / path opposite direction

(2.62)

where ρ is the distance between the filamentary currents i and j. The constant ρ0

results from eliminating a diverging term from the integration and it is used to further

select an offset that conveniently cancels other offsets in the integral evaluations that

follow. This is permissible since the vector potential may have a chosen offset without

affecting the magnetic field B (since ∇× ρ0 = 0). Furthermore, it is noted that any

constant offset present in a partial inductance expression will always be cancelled

in the final inductance result. The partial inductance between two sheets currents

is found by integrating the filamentary partial inductance expressions along lines
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forming the sheet cross sections. The lines are first translated into a reference frame

convenient for integration, shown in Fig. 2.9. Subsequently, performing the integral

Lp,i,j =
1

w1w2

∫ c1

d1

∫ c2

d2

Li,j,fildx2dr1 (2.63)

=
1

w1w2

∫ c1

d1

∫ c2

d2

ln

(
ρ

ρ0

)
dx2dr1 (2.64)

=
1

w1w2

∫ c1

d1

∫ c2

d2

ln
(
(x2 − csr1)2 + (snr1 + b1)2

)
dx2dr1, (2.65)

where from Fig. 2.9

ρ =
√

(x2 − x1)2 + (0− y1)2, (2.66)

yields the following expression for the partial inductance:

Lp,i,j = − µ0

4πw1w2


1

−1

1

−1



T



X1.
∗(snX1 + 2b1)

.∗ tan−1

 (X2 − csX1)

./(snX1 + b1)


+(2b1csX2 + sn(X2.

2 − b2
1))

.∗ tan−1

(X1 + b1sn − csX2)

./(snX2 + b1cs)


+
(
cs
2

(b2
1 −X1.

2 −X2.
2) +X2.

∗(X1 + b1sn)
)

.∗ ln((X2 − csX1).2 + (snX1 + b1).2)



(2.67)

where the operations using periods mimic the notation used in MATLAB to perform

element-wise operations. Before translating into the reference frame of Fig. 2.9, the

endpoints of sheet i were (xi,1, yi,1) and (xi,2, yi,2), and the endpoints of sheet j were

(xj,1, yj,1) and (xj,2, yj,2). The following equation set summarizes the procedure to
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translate the sheets into the reference frame and determine the remaining quantities

needed to evaluate (2.67):

φ = atan2(yj2 − yj1, xj2 − xj1)

tempx =

 (xi2 − xj1) cos(−φ)− (yi2 − yj1) sin(−φ)

−(xi1 − xj1) cos(−φ) + (yi1 − yj1) sin(−φ)


tempy =

 (xi2 − xj1) sin(−φ) + (yi2 − yj1) cos(−φ)

−(xi2 − xj1) sin(−φ)− (yi2 − yj1) cos(−φ)


c1 =

√
temp2

x + temp2
y

d1 = 0

c2 =

 (xi2 − xj1) cos(−φ)− (yi2 − yj1) sin(−φ)

−(xi1 − xj1) cos(−φ) + (yi1 − yj1) sin(−φ)


d2 = −(xi1 − xj1) cos(−φ) + (yi1 − yj1) sin(−φ)

w1 = c1 − d1

w2 = c2 − d2

b1 = (xi1 − xj1) sin(−φ) + (yi1 − yj1) cos(−φ)

cs =
tempx
c1

sn =
tempy
c1

X1 =

[
c1 c1 d1 d1

]T
X2 =

[
c2 d2 d2 c2

]T
.

(2.68)
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3. EXTENDING MOM TO THE ANALYSIS OF

ELECTRIC MACHINERY

The preceding chapter forms the basis of the MoM formulations considered herein

based on the work of Howard [4], [25], [28]. Extensions from the magnetostatic mod-

eling of general electromagnetic devices to the modeling of electric machinery are

derived in this chapter. These include the derivation of closed-form magnetic field

integral expressions supplementing those already described, modeling of permanent

magnet materials, the calculation of electromagnetic torque, and accounting for the

distributed nature of conductors that are placed within stator and rotor slots in the

inductance calculation.

In a single PBD run, the MoM-based magnetic field analysis will be conducted

many times, potentially millions. Therefore it is important to minimize the compu-

tational cost of each instance of the magnetic field analysis - a savings which will

compound throughout an optimization run. This chapter also details two techniques

which may be used to reduce the number of unknowns in the equation system. One

such technique eliminates the redundancy in the boundary mesh between two neigh-

boring magnetic materials by combining into a single meshed boundary. The other

technique exploits the periodic nature inherent in the geometry of electric machinery

to significantly reduce the size of the system matrix.

3.1 Closed-Form Magnetic Field Integral Expressions

Equation (2.20) in Chapter 2 represents the average tangential magnetic field as

a simplified closed form expression. That expression is key to the Galerkin MoM for-

mulation’s solution using pulse bases, offering computational performance gains over

the numerically computed integral. Similar closed form expressions for the average
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x, average y and average normal magnetic field components are useful throughout

the machine design process. For example, the additional expressions are needed for

determining the average normal magnetic field at observation locations which are not

part of the original solution domain such as in, for example, a tooth or backiron cross

section. This section establishes such closed-form integral expressions using similar

parameterization, integration and simplification steps as detailed in [4].

3.1.1 Calculating B̄x and B̄y

,:( )c cc yx

( )tp
1l

2l

3l

4l
6l

5l

,:( )d dd yx

,:( )b bb yx

,:( )a aa yx
O x

y

il
if

(a)

y

xO

2l

1l

( )r t

( )p t

: ( , )a aa x y

: ( , )b bb x y

: ( , )c cc x y

: ( , )d dd x y

1

2

x

x

y

'x'y

(b)

Fig. 3.1.: Geometry used to establish magnetic field integrals.

As shown in Figure 2.4, the magnetic field at point p(t) on observation element

l2 due to the sheet current in source element l1 was established by Howard [4] to beBx,s(p(t))

By,s(p(t))

 =

cosφ1 − sinφ1

sinφ1 cosφ1


B′x,s(r′(t))
B′y,s(r

′(t))

 (3.1)

where

r(t) =

rx
ry

 = p(t)−

xa
ya

 (3.2)
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r′x(t) = cosφ1rx(t) + sinφ1ry(t)

= cosφ1

(
(xd − xc)t+ (xc − xa)

)
+ sinφ1

(
(yd − yc)t+ (yc − ya)

)
(3.3)

r′y(t) = − sinφ1rx(t) + cosφ1ry(t)

= − sinφ1

(
(xd − xc)t+ (xc − xa)

)
+ cosφ1

(
(yd − yc)t+ (yc − ya)

)
(3.4)

B′x,s(r
′) =

−µ0I1

2πl1

tan−1

(
l1 − r′x
r′y

)
− tan−1

(
−r′x
r′y

) (3.5)

B′y,s(r
′) =

−µ0I1

4πl1
ln

(
(l1 − r′x)2 + r′2y

r′2x + r′2y

)
(3.6)

where the subscript “s” indicates that the field is due to the source, which in this

case is the current I1 distributed uniformly along the length of element l1. Equations

(3.5) and (3.6) are established through integration, performed in the reference frame

of the source element as indicated by the prime symbol. The source/observation pair

is transformed into this reference frame by first translating the pair such that the first

endpoint of the source element is coincident with the origin. The source/observation

pair is then rotated such that the x′ axis is collinear with the the source element.

The average value of the magnetic field is obtained by integrating the magnetic

field at p(t) over observation line element l2 and subsequently dividing by its length,

l2. Performing this integration procedure on the x-component of the magnetic field

in (3.1) yields

B̄x,s =
1

l2

∫
l2

Bx,s(p)dp

=
1

l2

∫ 1

0

Bx,s(p(t))

∥∥∥∥ ddtp(t)

∥∥∥∥ dt
=

∫ 1

0

(
cos(φ1)B′x,s(r

′(t))− sin(φ1)B′y,s(r
′(t))

)
dt

(3.7)

where since the domain of l2 is described parametrically with the variable t ∈ [0, 1],

p(t) =

xd − xc
yd − yc

 t+

xc
yc

 , t ∈ [0, 1], (3.8)
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then ∥∥∥∥ ddtp(t)

∥∥∥∥ =

∥∥∥∥∥∥∥
xd − xc
yd − yc


∥∥∥∥∥∥∥

=
√

(xd − xc)2 + (yd − yc)2

=l2.

(3.9)

Closed-form solutions to the integrals in (3.7) were derived in Howard [4] as

(H.A.47):∫ 1

0

B′x,s(r
′)dt =

−µ0I1

2πl1

∫ 1

0

tan−1

(
l1 − r′x(t)
r′y(t)

)
− tan−1

(
−r′x(t)
r′y(t)

)
dt

=
−µ0I1

2πl1



atan2(l5 ×2 l6, l5 · l6)

+ l4 cos(φ4−φ2)
l2

atan2(l4 ×2 l6, l4 · l6)

− l3 cos(φ3−φ2)
l2

atan2(l3 ×2 l5, l3 · l5)

+ l4 sin(φ4−φ2)
2l2

ln
(
l26
l24

)
− l3 sin(φ3−φ2)

2l2
ln
(
l25
l23

)


(3.10)

and (H.A.78):∫ 1

0

B′y,s(r
′)dt =

−µ0I1

4πl1

∫ 1

0

ln

(
(l1 − r′x)2 + r′2y

r′2x + r′2y

)
dt

=
−µ0I1

4πl1



−2l4 sin(φ4−φ2)
l2

atan2(l4 ×2 l6, l4 · l6)

+2l3 sin(φ3−φ2)
l2

atan2(l3 ×2 l5, l3 · l5)

+ l4 cos(φ4−φ2)
l2

ln
(
l26
l24

)
− l3 cos(φ3−φ2)

l2
ln
(
l25
l23

)
+ ln

(
l26
l25

)


(3.11)
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Substituting (3.10) and (3.11) into (3.7) and collecting terms,

B̄x,s =
−µ0I1

2πl1l2



l2

 cos(φ1) cos(φ2 − φ2)

+ sin(φ1) sin(φ2 − φ2)

atan2(l5 ×2 l6, l5 · l6)

+l3

 cos(φ1) cos(φ3 − φ2)

+ sin(φ1) sin(φ3 − φ2)

atan2(l5 ×2 l3, l5 · l3)

+l4

 cos(φ1) cos(φ4 − φ2)

+ sin(φ1) sin(φ4 − φ2)

atan2(l4 ×2 l6, l4 · l6)

+l2

 cos(φ1) sin(φ2 − φ2)

− sin(φ1) cos(φ2 − φ2)

 ln

(
l6
l5

)

+l3

 cos(φ1) sin(φ3 − φ2)

− sin(φ1) cos(φ3 − φ2)

 ln

(
l3
l5

)

+l4

 cos(φ1) sin(φ4 − φ2)

− sin(φ1) cos(φ4 − φ2)

 ln

(
l6
l4

)



(3.12)

where the expressions cos(φ2− φ2) = 1 and sin(φ2− φ2) = 0 are used in the first and

fourth terms in order to have coefficients which follow a pattern. The angle difference

formulae are used to simplify the coefficients in (3.12):

B̄x,s =
−µ0I1

2πl1l2



l2 cos(φ2 − φ2 − φ1)atan2(l5 ×2 l6, l5 · l6)

+l3 cos(φ3 − φ2 − φ1)atan2(l5 ×2 l3, l5 · l3)

+l4 cos(φ4 − φ2 − φ1)atan2(l4 ×2 l6, l4 · l6)

+l2 sin(φ2 − φ2 − φ1) ln
(
l6/l5

)
+l3 sin(φ3 − φ2 − φ1) ln

(
l3/l5

)
+l4 sin(φ4 − φ2 − φ1) ln

(
l6/l4

)


(3.13)
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Multiplying each coefficient in (3.12) by l1l2 while factoring l1l2 into the denominator:

B̄x,s =
−µ0I1

2πl21l
2
2



l1l2l2 cos(φ2 − φ2 − φ1)atan2(l5 ×2 l6, l5 · l6)

+l1l2l3 cos(φ3 − φ2 − φ1)atan2(l5 ×2 l3, l5 · l3)

+l1l2l4 cos(φ4 − φ2 − φ1)atan2(l4 ×2 l6, l4 · l6)

+l1l2l2 sin(φ2 − φ2 − φ1) ln
(
l6/l5

)
+l1l2l3 sin(φ3 − φ2 − φ1) ln

(
l3/l5

)
+l1l2l4 sin(φ4 − φ2 − φ1) ln

(
l6/l4

)


(3.14)

A similar procedure is applied to obtain the y-component, yielding

B̄y,s =
−µ0I1

2πl21l
2
2



−l1l2l2 sin(φ2 − φ2 − φ1)atan2(l5 ×2 l6, l5 · l6)

−l1l2l3 sin(φ3 − φ2 − φ1)atan2(l5 ×2 l3, l5 · l3)

−l1l2l4 sin(φ4 − φ2 − φ1)atan2(l4 ×2 l6, l4 · l6)

+l1l2l2 cos(φ2 − φ2 − φ1) ln
(
l6/l5

)
+l1l2l3 cos(φ3 − φ2 − φ1) ln

(
l3/l5

)
+l1l2l4 cos(φ4 − φ2 − φ1) ln

(
l6/l4

)


(3.15)

the coefficients of (3.14) and (3.15) may be evaluated using dot and cross products

relationships (2.43) and (2.44) from the force calculation in 2.4. As an aside, expres-

sions (3.14) and (3.15) appear in the force expressions for Fx,|| and Fy,||, and these

forces may be interpreted as the average magnetic field multiplied by the current in

the observation element.

3.1.2 Calculating B̄normal

Regular Case

In [4] it was shown that the component of the magnetic field at point p(t) tangent

to the observation element is

Btan,s(p(t)) = Bx,s(p(t)) cos(φ2) +By,s(p(t)) sin(φ2) (3.16)



38

Therein, the Galerkin MoM matrix entry (2.20) was obtained by integrating (3.16).

In a similar fashion, the component of the magnetic field at point p(t) normal to the

observation element can be expressed as

B⊥,s(p(t)) = −Bx,s(p(t)) sin(φ2) +By,s(p(t)) cos(φ2) (3.17)

where the subscript “⊥” indicates the normal component and and the angles φ1 and

φ2 are defined in Figure 3.1b. There are two choices for the normal direction. The

direction chosen herein is 90 degrees counter clockwise from l2, corresponding with

(3.17). The average normal magnetic field over element l2 is then

B̄⊥,s =
1

l2

∫
l2

B⊥,s(p)dp (3.18)

This integral is performed by first parameterizing the vector p in terms of a new

variable t which ranges from 0 to 1. Referring to coordinates in Figure 2.4, the

integration path can then be described in terms of p and t as

p(t) =

xp
yp

 =

xd − xc
yd − yc

 t+

xc
yc

 , t ∈ [0, 1] (3.19)

The integration can then be expressed as [29]

B̄⊥,s =
1

l2

∫ 1

0

B⊥,s(p)

∥∥∥∥ ddtp(t)

∥∥∥∥ dt (3.20)

Since ∥∥∥∥ ddtp(t)

∥∥∥∥ =

∥∥∥∥∥∥∥
xd − xc
yd − yc


∥∥∥∥∥∥∥ =

√
(xd − xc)2 + (yd − yc)2 = l2 (3.21)

the coefficient in front of the integral in (3.20) is cancelled. Now substituting (3.17)

and (3.1) into (3.20), we have

B̄⊥,s =

∫ 1

0

−
(

cosφ1B
′
x,s(r

′(t))− sinφ1B
′
y,s(r

′(t)
)

sinφ2

+
(

sinφ1B
′
x,s(r

′(t)) + cosφ1B
′
y,s(r

′(t)
)

cosφ2

 dt (3.22)
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The trigonometric coefficients do not depend on t, so they are factored out. Collecting

terms, we have

B̄⊥,s =


(sinφ1 cosφ2 − cosφ1 sinφ2)

∫ 1

0

B′x,s(r
′(t))dt

+ (sinφ1 sinφ2 + cosφ1 cosφ2)

∫ 1

0

B′y,s(r
′(t))dt

 (3.23)

Applying the angle difference formulae,

B̄⊥,s = sin(φ1 − φ2)

∫ 1

0

B′x,s(r
′(t))dt+ cos(φ1 − φ2)

∫ 1

0

B′y,s(r
′(t)dt (3.24)

Substituting (3.10) and (3.11),

B̄⊥,s =
−µ0I1

2πl1
sin(φ1 − φ2)



atan2(l5 ×2 l6, l5 · l6)

+ l4 sin(φ4−φ2)
2l2

ln
(
l26
l24

)
− l3 sin(φ3−φ2)

2l2
ln
(
l25
l23

)
+ l4 cos(φ4−φ2)

l2
atan2(l4 ×2 l6, l4 · l6)

− l3 cos(φ3−φ2)
l2

atan2(l3 ×2 l5, l3 · l5)


(3.25)

+
−µ0I1

4πl1
cos(φ1 − φ2)



−2l4 sin(φ4−φ2)
l2

atan2(l4 ×2 l6, l4 · l6)

+2l3 sin(φ3−φ2)
l2

atan2(l3 ×2 l5, l3 · l5)

+ l4 cos(φ4−φ2)
l2

ln
(
l26
l24

)
− l3 cos(φ3−φ2)

l2
ln
(
l25
l23

)
+ ln

(
l26
l25

)


(3.26)
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Factoring out the exponent from natural logarithm terms, rearranging the order of

terms within atan2 and ln functions to obtain favorable sign flips, simplifying and

collecting terms, this becomes

B̄⊥,s =
−µ0I1

2πl1l2



l2 sin(φ1 − φ2)atan2(l5 ×2 l6, l5 · l6)

+l3

 sin(φ1 − φ2) cos(φ3 − φ2)

− cos(φ1 − φ2) sin(φ3 − φ2)

atan2(l5 ×2 l3, l5 · l3)

+l4

 sin(φ1 − φ2) cos(φ4 − φ2)

− cos(φ1 − φ2) sin(φ4 − φ2)

atan2(l4 ×2 l6, l4 · l6)

+l2 cos(φ1 − φ2) ln

(
l6
l5

)

+l3

 sin(φ1 − φ2) sin(φ3 − φ2)

+ cos(φ1 − φ2) cos(φ3 − φ2)

 ln

(
l3
l5

)

+l4

 sin(φ1 − φ2) sin(φ4 − φ2)

+ cos(φ1 − φ2) cos(φ4 − φ2)

 ln

(
l6
l4

)



(3.27)

Applying angle difference formulae, the coefficients of atan2 and ln terms can be

simplified, yielding

B̄⊥,s =
−µ0I1

2πl1l2



−l2 sin(φ2 − φ1)atan2(l5 ×2 l6, l5 · l6)

−l3 sin(φ3 − φ1)atan2(l4 ×2 l3, l5 · l3)

−l4 sin(φ4 − φ1)atan2(l4 ×2 l6, l4 · l6)

+l2 cos(φ2 − φ1) ln
(
l6
l5

)
+l3 cos(φ3 − φ1) ln

(
l3
l5

)
+l4 cos(φ4 − φ1) ln

(
l6
l4

)


(3.28)

The following relationships are useful in the further simplification of the normal mag-

netic field integral expression:

lα · lβ = lαlβ cos(φα − φβ) (3.29)

lα ×2 lβ = lαlβ sin(φβ − φα) (3.30)
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Multiplying (3.28) by l1/l1 and distributing into the terms inside parentheses of (3.28),

(3.29) and (3.30) may be applied yielding

B̄⊥,s =
−µ0I1

2πl21l2



−l1 ×2 l2atan2(l5 ×2 l6, l5 · l6)

−l1 ×2 l3atan2(l5 ×2 l3, l5 · l3)

−l1 ×2 l4atan2(l4 ×2 l6, l4 · l6)

+l1 · l2 ln
(
l6
l5

)
+l1 · l3 ln

(
l3
l5

)
+l1 · l4 ln

(
l6
l4

)


. (3.31)

Note that the pattern of inputs to the · and ×2 operations in the coefficients of

terms in (3.31) is different from the Galerkin tangent flux density integral (2.20) -

the pattern is flipped and/or negated. The pattern of inputs to the atan2 and ln

functions is the same as (2.20).

Coincident and Adjacent Singular Cases

As was the case for the average tangent integral (2.20), it is possible that in using

the expression (3.31), singularities may be encountered depending on the relative

orientation of l1 and l2. Handling singularities arising in (3.31) is similar to their

handling in (2.20), but there are some differences. First, coincidence is considered.

Recalling two useful identities from [25]:

lim
α→0

α ln(α2) = 2α ln(α) = 0 (3.32)

lim
α,f(α),g(α)→0

αatan2(f(α), g(α)) = 0 (3.33)

One additional identity becomes useful:

lim
α→0

α ln(1/α) = −α ln(α) = 0 (3.34)

Considering the coincident case, the source and observation are separated a distance

ε from each other, referring to Fig. 3.2, and the limit of (3.31) is evaluated as ε→ 0.
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Fig. 3.2.: Coincident elements case for B̄⊥

Equivalently, l3, l6 → 0 and l4 → −l1 and l5 → −l2. In this case, the limit evaluates

to

B̄⊥,s = lim
ε→0

−µ0I1

2πl21l2



− l1 ×2 l2︸ ︷︷ ︸
=0

atan2(l5 ×2 l6, l5 · l6)︸ ︷︷ ︸
π/2

= 0

− l1 ×2 l3︸ ︷︷ ︸
→0

atan2(l5 ×2 l3, l5 · l3)︸ ︷︷ ︸
π/2

→ 0

− l1 ×2 l4︸ ︷︷ ︸
→0

atan2(l4 ×2 l6, l4 · l6)︸ ︷︷ ︸
−π/2

→ 0

+ l1 · l2︸ ︷︷ ︸
=l1l2

ln

(
l6
l5

)
︸ ︷︷ ︸
→−∞

→ −∞

+ l1 · l3︸ ︷︷ ︸
=0

ln

(
l3
l5

)
︸ ︷︷ ︸
→0

→ 0

+ l1 · l4︸ ︷︷ ︸
→−l1l2

ln

(
l6
l4

)
︸ ︷︷ ︸
→−∞

→∞



. (3.35)

Conveniently, the two diverging terms cancel and we are left with

B̄⊥,s(i, i) = 0 (3.36)

This matches our intuition since a sheet current has only fields tangential to the

surface near the surface of the current.

The case of element adjacency, i.e. when (l3 → 0)⊕(l4 → 0)⊕(l5 → 0)⊕(l6 → 0),

is handled in the same way as in (2.20). Recall that the starred versions of the atan2
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and ln functions given by (2.21) and (2.22) may be used to exactly determine the limit

of (3.31) in the two cases (l3 → 0) ⊕ (l4 → 0). Therefore the following expression

represents the final form used for B̄⊥,s:

B̄⊥,s = − µ0I1

2πl21l2



−l1 ×2 l2atan2∗(l5 ×2 l6, l5 · l6)

−l1 ×2 l3atan2∗(l5 ×2 l3, l5 · l3)

−l1 ×2 l4atan2∗(l4 ×2 l6, l4 · l6)

+l1 · l2 ln∗
(
l6
l5

)
+l1 · l3 ln∗

(
l3
l5

)
+l1 · l4 ln∗

(
l6
l4

)


(3.37)

In the two cases that (l5 → 0) ⊕ (l6 → 0), the endpoints of l1 and l2 are exchanged

(l1 becomes l1,ex = −l1 and l2 becomes l2,ex = −l2), l3 - l6 are recomputed using the

new endpoints and then (3.37) is evaluated again and the result is negated.

Intersection Special Case

In the course of using (3.37) to determine the average flux density in critical

machine locations (for example, in a stator tooth cross section), when volume meshing

is used it was found that when a source mesh element l1 intersects the observation

element l2, the form (3.37) does not produce the correct average normal magnetic

field, even with the special cases identified thus far. In particular, the intersection

region must be excluded from the integration domain, as r → 0 there. The value of

the integral in the intersection case is finite - i.e. a singularity does not exist there

- but the integral result is incorrect. This was discovered by comparing the result

with a numerically-averaged normal field, computing the magnetic field at many finite

points along the line and averaging the normal component of these field vectors.

Consider a source l1 which intersects an observation element l2. The source is

split at the intersection point into lower and upper parts, l1,l and l1,u respectively,

which are each separated a distance ε from the observation line along the line of the

source. This case is depicted in Fig. 3.3. As we let ε approach 0, we expect/desire



44

3, 3l =l l

O x

y

e

e

1,ll
5, 5l =l l

6,ll

2l
5,ul

6,
6

u
=l
l

4,ll

3,ul

4,

4

u =
l

l
1,ul

Fig. 3.3.: Source intersecting with observation, split at intersection point.

the lower and upper parts of the split source to contribute together the same total

magnetic field as the whole source. The lower and upper parts of the split source now
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carry respective currents (l1,l/l1)I1 and (l1,u/l1)I1. Adding together the effects of the

split sources, the average normal magnetic field in the observation element is

B̄⊥,s = − µ0

2πl2



1

l21,l

(
l1,l
l1
I1

)


−l1,l ×2 l2atan2∗(l5,l ×2 l6,l, l5,l · l6,l)

−l1,l ×2 l3,latan2∗(l5,l ×2 l3,l, l5,l · l3,l)

−l1,l ×2 l4,latan2∗(l4,l ×2 l6,l, l4,l · l6,l)

+l1,l · l2 ln∗
(
l6,l
l5,l

)
+l1,l · l3,l ln∗

(
l3,l
l5,l

)
+l1,l · l4,l ln∗

(
l6,l
l4,l

)


+

1

l21,u

(
l1,u
l1
I1

)


−l1,u ×2 l2atan2∗(l5,u ×2 l6,u, l5,u · l6,u)

−l1,u ×2 l3,uatan2∗(l5,u ×2 l3,u, l5,u · l3,u)

−l1,u ×2 l4,uatan2∗(l4,u ×2 l6,u, l4,u · l6,u)

+l1,u · l2 ln∗
(
l6,u
l5,u

)
+l1,u · l3,u ln∗

(
l3,u
l5,u

)
+l1,u · l4,u ln∗

(
l6,u
l4,u

)





(3.38)

Multiplying (3.38) by l1/l1 and utilizing the following relationships

l1
l1,l
l1,l

= l1l̂1,l = l1 (3.39)

l1
l1,u
l1,u

= l1l̂1,u = l1, (3.40)

each l1,l and l1,u in operations×2 and · in the atan2∗ and ln∗ coefficients is converted to

l1. Realizing that the vectors on the outer perimeter of the split system are equivalent

to the original system where l1 is not split:

l3,l = l3

l4,u = l4

l5,l = l5

l6,u = l6

, (3.41)
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the expression (3.38) may be manipulated to obtain

B̄⊥,s = − µ0I1

2πl21l2





−l1 ×2 l2atan2∗(l5 ×2 l6,l, l5 · l6,l)

−l1 ×2 l3atan2∗(l5 ×2 l3,l, l5 · l3,l)

−l1 ×2 l4,latan2∗(l4,l ×2 l6,l, l4,l · l6,l)

+l1 · l2 ln∗
(
l6,l
l5

)
+l1 · l3 ln∗

(
l3,l
l5

)
+l1 · l4,l ln∗

(
l6,l
l4,l

)


+



−l1 ×2 l2atan2∗(l5,u ×2 l6, l5,u · l6)

−l1 ×2 l3,uatan2∗(l5,u ×2 l3,u, l5,u · l3,u)

−l1 ×2 l4atan2∗(l4 ×2 l6, l4 · l6)

+l1 · l2 ln∗
(

l6
l5,u

)
+l1 · l3,u ln∗

(
l3,u
l5,u

)
+l1 · l4 ln∗

(
l6
l4

)





. (3.42)

Since [4]

φβ − φα = atan2(sin(φβ − φα), cos(φβ − φα))

= atan2(lα ×2 lβ, lα · lβ)
, (3.43)

then each of the atan2∗(·) terms may be expanded, where the like coefficients of all

terms are regrouped (likewise for the ln∗ terms) so that the original expression (3.37)
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is recovered along with six correction terms which represent the effect of excluding

the intersection region:

B̄⊥,s = − µ0I1

2πl21l2





−l1 ×2 l2atan2∗(l5 ×2 l6, l5 · l6)

−l1 ×2 l3atan2∗(l5 ×2 l3, l5 · l3)

−l1 ×2 l4atan2∗(l4 ×2 l6, l4 · l6)

+l1 · l2 ln∗
(
l6
l5

)
+l1 · l3 ln∗

(
l3
l5

)
+l1 · l4 ln∗

(
l6
l4

)



+



−l1 ×2 l2atan2∗(l5,u ×2 l6,l, l5,u · l6,l)

−l1 ×2 l3,uatan2∗(l5,u ×2 l3,u, l5,u · l3,u)

−l1 ×2 l4,latan2∗(l4,l ×2 l6,l, l4,l · l6,l)

+l1 · l2 ln∗

(
l6,l
l5,u

)

+l1 · l3,u ln∗

(
l3,u
l5,u

)

+l1 · l4,l ln∗
(
l6,l
l4,l

)





(3.44)

Viewing Fig. 3.3, it is apparent that as ε→ 0, the differences in angles

φ6,l − φ5,u = atan2∗(l5,u ×2 l6,l, l5,u · l6,l)→ 0 (3.45)

but the difference in angles

φ3,u − φ5,u = atan2∗(l5,u ×2 l3,u, l5,u · l3,u)→ π (3.46)

φ6,l − φ4,l = atan2∗(l4,l ×2 l6,l, l4,l · l6,l)→ π. (3.47)

However, when ε = 0 exactly, the angles φ3,u − φ5,u and φ6,l − φ4,l are ambiguously-

defined to be ±π. The numerical manifestation of this subtlety is a discontinuity
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which occurs at this argument combination, i.e. ±π = atan2(±0,−1), since the cross

and dot products are computed on anti-parallel lines. With this subtelty in mind, as

ε→ 0

l5,u → l6,l (3.48)

l3,u → l4,l. (3.49)

With (3.45)-(3.47), (3.48) and (3.49), the correction terms of (3.44) may be manipu-

lated to show that

lim
ε→0



−l1 ×2 l2atan2∗(l5,u ×2 l6,l, l5,u · l6,l)→ 0

−l1 ×2 l3,uatan2∗(l5,u ×2 l3,u, l5,u · l3,u)

−l1 ×2 l4,latan2∗(l4,l ×2 l6,l, l4,l · l6,l)

→ |l1 ×2 l4,l|2π

+l1 · l2 ln∗

(
l6,l
l5,u

)

+l1 · l3,u ln∗

(
l3,u
l5,u

)

+l1 · l4,l ln∗
(
l6,l
l4,l

)


∑
→ 0



= |l1 ×2 l4,l|2π.

(3.50)

where the absolute value is used as a result of considering all possible cases of the

relative orientation between l1 and l2.

In practice, a check is made to find any intersection of the line segments of source

l1 and observation l2. If an intersection exists, the intersection point enables the

calculation of l4,l and the correction term |l1 ×2 l4,l|2π is added to the six original

terms in (3.37) inside the parenthesis.

3.2 Permanent Magnet Sources

It is widely-known that permanent magnet materials exhibit a hysteretic relation-

ship between B and H, an example of which is shown in Fig. 3.4. In a properly-

designed machine, the magnet will operate in the second quadrant of the hysteresis
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H

B

Fig. 3.4.: Hysteretic relationship between B and H in permanent magnet materials.

curve, again referring to Fig. 3.4, where a linear approximation is often valid. In

permanent magnet materials, the equation B = µ0(H + M) holds true, as with all

magnetic materials. However, in the linearly-approximated region of PM materials,

M can be separated into two components, where a portion of the magnetic dipoles

are induced in response to magnetic fields while the other remains fixed:

M = Mind + Mfixed (3.51)

According to the constitutive relationship of the PM material, Mind = χPMH . The

magnetic field in the PM material can then be expressed as

B = µ0(H + Mind + Mfixed)

B = µ0(1 + χr,PM)H + µ0Mfixed (3.52)

B = µ0µr,PMH + µ0Mfixed (3.53)

where µr,PM is the relative permeability of the PM material, often referred to as the

relative “recoil permeability.” Hence, the B-H line does not pass through the origin

but is instead affine, typically operating in the second quadrant. This is known as

the “straight line” relationship [21] (red line in Fig. 3.4). The respective x- and y-
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intercepts of the straight line relationship are the points (Hc, 0) and (0, Br). Hc is

termed the “coercive force,” given by setting B to zero in (3.53):

Hc = − Br

µ0µrec
(3.54)

where Br is termed the “residual flux density,” given by

Br = µ0Mfixed. (3.55)

The straight line relationship to the hysteresis curve is valid provided the PM does

not de-magnetize. De-magnetization occurs when the auxiliary field becomes more

negative than the limit, typically near the value Hc. Once the auxiliary field surpasses

the limit, the fixed magnetization term is no longer constant.

Representation of PMs in the MoM can be accomplished by either of two methods.

In one method, the PM flux source is represented by an equivalent fixed free current

source, amounting to an additional source in the equation system inputs. In the

second method, an additional source term is required in the equation system inputs,

similar to the first method, while a further addition to represent the fixed magnetic

field component Br in the PM material is also required. In either method, the PM

material responds to the fields present from all sources present in the system, accord-

ing to the constitutive relation of the PM material. Hence, as for any magnetizable

material in the MoM, the boundary of the PM material is meshed, creating additional

unknown magnetizations.

3.2.1 Equivalent Free Current Source Method

In this method, the fixed magnetization (3.55) is replaced with a fixed free current

source, effectively contributing an additional magnetic field source in the inputs of

the system of equations (2.6). Therefore the system of equations becomes[
fBtotM − fBM

]
Mtan = fBIf If + fBIPM IPM (3.56)

It remains to assign the proper value of free current to the term IPM . Viewing (3.53), it

is tempting to attribute the equivalent free current source magnitude IPM to the term
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Br = µ0Mfixed alone such that ‖Kb‖ =
∥∥Mfixed × n̂

∥∥ = IPM/lPM and subsequently

IPM = BrlPM/µ0. However, this leads to slightly incorrect results as a weaker free

current source is required to achieve the correct operating characteristic. To see

why, consider the material/equivalent free current source placed in a test fixture, the

core of which is assumed to have infinite permeability. Invoking Ampere’s law in a

closed path around the test fixture, the H field in the infinitely permeable material

vanishes. With the airgap in the test fixture set to zero, in the language of magnetic

equivalent circuits (MECs) this is considered a “short-circuited” condition. Under

these conditions, H is only nonzero in the PM material:

HPM lPM = If,enclosed. (3.57)

In the equivalent source the B-H characteristic is B = µ0µr,PMHPM . Substituting

this into (3.57), we have that

B

µ0µr,PM
lPM = If,enclosed. (3.58)

Hence, the magnitude of free current required to source a magnetic field of B = Br

in this short-circuited condition is

‖IPM‖ = If,enclosed =
Br

µ0µr,PM
lPM . (3.59)

Since in the equivalent source the B-H characteristic is B = µ0µr,PMHPM , the B-H

characteristic is not affine, as a PM material truly is, but is effectively shifted into

the first quadrant. However, if one wishes to calculate the actual H field in the PM

material, for example to compare against demagnetizing limits, the flux density in

the PM material solved using (3.56) is input into (3.52) from which H can be solved.

There is an alternative PM representation presented in the next subsection in which

the PM B-H characteristic correctly operates in the second quadrant.
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3.2.2 Fixed Magnetization Method

Similar to the formation of the fBtotM matrix, the auxiliary field can be alge-

braically eliminated from the B-H characteristic of PM material (3.53)

B = µ0(H + Mind + Mfixed)

= µ0

(
1 + χr,PM
χr,PM

)
Mind + µ0Mfixed

=
µ0µr,PM
µr,PM − 1

Mind + µ0Mfixed

B = Btot = fBtotMMind + µ0Mfixed

= fBtotMMind + Br (3.60)

Using this result, the system of equations can be modified to be

fBtotMMtan + Br = fBMMtan + fBIf If + fBIPM IPM[
fBtotM − fBM

]
Mtan = fBIf If + fBIPM IPM −Br (3.61)

where the entries in Br are only nonzero for PM elements oriented along the direction

of Mfixed. Hence for all other elements the equation system is unchanged from the

first method.

In contrast to the equivalent free current source of the previous method, the

bound current source IPM in this method is of greater magnitude. To see why, again

consider the PM material in a test fixture in the short-circuit condition. Invoking

Ampere’s law around the same path, the current source is bound, not free, hence

HPM lPM = If,enclosed = 0 and therefore HPM = 0. This means that in the short-circuit

condition, the induced dipoles are not making contributions to the flux density in this

case. SubstitutingHPM = 0 into (3.60), we have that B = µ0Mfixed = Br. Hence, the

fixed magnetization alone is sourcing the magnetic field. The corresponding bound

current source magnitude is given by

‖Kb‖ =
∥∥Mfixed × n̂

∥∥ =
IPM
lPM

(3.62)∥∥IPM(i)
∥∥ =

Br

µ0

lPM (3.63)
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Recall that in the previous method, since the auxiliary field is nonzero in the short-

circuit condition, induced magnetic dipoles in addition to a weaker free current source

are acting together to source the total magnetic field. Since in this method the current

source is a bound current due to the fixed magnetization component, the offset in the

B-H relationship remains and it is therefore affine. Hence, modeling permanent

magnets using this second method properly attains second quadrant operation.

Although the discussion herein focused on the simple case of a rectangular mag-

net with magnetization parallel to its sides, the methods discussed are applicable for

arbitrary magnetization direction, PMs within electric machinery are often radially-

magnetized. Under this condition, the PM source sheets are placed along the radial

lines forming the magnet sides. Furthermore, researchers have determined current

distributions which model commonly-used permanent magnet shapes and more com-

plicated magnetization patterns [30]. These methods could be used within the MoM

by placing the bound current sources where the curl of magnetization is nonzero,

even within the interior of the PM material if necessary. This may be accomplished

without the need for additional mesh elements so that the original surface mesh of

the PM material is still utilized.

3.3 Computing Torque

The electromagnetic torque is often a quantity of interest in the design of elec-

tromechanical devices. Several methods exist to facilitate this calculation. Herein

methods involving direct field quantities are considered, leaving untouched any energy-

based approaches such as the Virtual Work and Global Co-energy. Although there is

no known restriction preventing the investigation of such energy-based approaches,

in the MoM, since there is no airgap mesh which may be virtually distorted by taking

an analytical derivative, we are left with taking the finite difference-based derivative

of co-energy, which has been long considered unattractive due to potential numerical
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error. The two torque approaches considered herein based on direct field quantities

are the Maxwell Stress Tensor (MST) method and the Lorentz torque method.

3.3.1 Maxwell Stress Tensor Method

A common post-processing approach to calculating electromagnetic force/torque

acting on the rotor of an electric machine is the Maxwell Stress Tensor (MST) method

[21]. Therein the dot product of the MST and surface normal is integrated over a

surface enclosing the movable member. The surface integral becomes a line integral in

the 2D case, yielding the normal and tangential components of force per unit length

as

F =
1

µ0

∮ (
1
2
(B2

n −B2
t )n̂+BnBtt̂

)
dl (3.64)

and the electromagnetic torque per unit length is

T =
1

µ0

∮ (
〈rn, rt〉 × (1

2
(B2

n −B2
t )n̂+BnBtt̂)

)
dl (3.65)

where n̂ and t̂ are respectively the unit vectors normal and tangent to the differential

integration path dl. Utilizing the solution of (2.6), one can compute the total fields

Bn and Bt by summing the individual contributions of all free and bound currents,

using (3.31) and (2.20) respectively, to observation elements placed along an airgap

surface that encloses the rotor.

The integration is performed numerically using a mesh that is iteratively refined

until further resolution yields negligible change in computed torque. For each it-

eration, the computation required is proportional to O((Nb + Nf )Nag) where Nag

represents the mesh resolution of the airgap line. Disadvantages of using the MST

within MoM include the need to introduce a mesh into a previously unmeshed region

(airgap) and the need to numerically integrate and iterate. An attractive alternative

that eliminates these shortcomings is a Lorentz force approach.
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3.3.2 Lorentz Torque - Midpoint Approximation Method

Using the appropriate expressions for force described in 2.4, the torque can be

computed using the cross product

Tmid = rmid × Fmid (3.66)

wherein it is assumed that the force Fmid is concentrated at the element midpoint and

the radius rmid is the vector from the origin (rotational axis of machine) to element

midpoint.

This method is quite simple and produces torque values which are reasonably

accurate. However, the assumption that the radius and force vary little over the

element is reasonable provided the elements are small or far from the origin. In

the case of the bound current sheets constituting the fixed excitation of permanent

magnet materials, this assumption is poor. As will be shown in the following section,

for little additional computational expense, the torque may be integrated along the

observation line, taking into account the varying radius.

3.3.3 Lorentz Torque - Analytical Integration Method

Similar to Section 2.4, we may wish to compute the torque on: line elements by

line sources, line elements by point sources, point elements by line sources, and point

elements by point sources. The closed-form expressions required to evaluate these

torques are provided in this subsection.

Torque Exerted on Line Elements by Line Sources

The torque exerted on observation element l2 by source element l1 is evaluated

by integrating the torque on point p as shown in Fig. 2.4. Source element l1 carries

a current I1, distributed uniformly along its length, which creates the magnetic field

B1(p) at point p. Observation element l2 carries a current I2 distributed uniformly

along its length. In the 2D formulation considered herein, the current exists only in
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the ẑ direction and hence the magnetic fields exist only in the x-y plane. With I2

and B1(p) the Lorentz torque integral is expressed mathematically from (3.66) as

T|| =
I2

l2

∫
l2

p× ẑ ×B1(p)dp

=
I2

l2

∫ 1

0

p(t)× ẑ ×B1(p(t))

∥∥∥∥ ddtp(t)

∥∥∥∥ dt
=I2

∫ 1

0

〈
px, py

〉
× ẑ ×

〈
Bx,1(p), By,1(p),

〉
dt

(3.67)

The full derivation of the integral evaluation and simplification steps is provided

in Appendix A. The final expression for the torque T|| is

T|| = −µ0I1I2

4πl21l
2
2



 l1l2l2lc cos(φ1+φ2−φ2−φc)

+l1l2l2ld cos(φ1+φ2−φ2−φd)

atan2 (l5 ×2 l6, l5 · l6)

+

 l1l2l3lc cos(φ1+φ2−φ3−φc)

+l1l2l3la cos(φ1+φ2−φ3−φa)

atan2 (l5 ×2 l3, l5 · l3)

+

 l1l2l4lc cos(φ1+φ2−φ4−φc)

+l1l2l4lb cos(φ1+φ2−φ4−φb)

atan2 (l4 ×2 l6, l4 · l6)

−

 l1l2l2lc sin(φ1+φ2−φ2−φc)

+l1l2l2ld sin(φ1+φ2−φ2−φd)

 log

(
l6
l5

)

−

 l1l2l3lc sin(φ1+φ2−φ3−φc)

+l1l2l3la sin(φ1+φ2−φ3−φa)

 log

(
l3
l5

)

−

 l1l2l4lc sin(φ1+φ2−φ4−φc)

+l1l2l4lb sin(φ1+φ2−φ4−φb)

 log

(
l6
l4

)



(3.68)

Again the zero-valued quantity φ2− φ2 appears in several of the coefficients in (3.68)

as in Section 2.4. Expressing the difference is useful since one can then generalize the

calculation of all the angle difference cosine and sine terms found in (3.68). Specif-
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ically, one can show that the cosine and sine terms can be solved directly using:

(3.68):

lαlβlγlδ cos(φα + φβ − φγ − φδ)

=
(lα · lδ)(lβ · lγ)

−(lα ×2 lδ)(lβ ×2 lγ)

=

 xαxβxγxδ + yαxβxγyδ + xαyβyγxδ + yαyβyγyδ

+xαyβxγyδ − yαyβxγxδ − xαxβyγyδ + yαxβyγxδ

 (3.69)

lαlβlγlδ sin(φα + φβ − φγ − φδ)

=
−(lβ · lγ)(lα ×2 lδ)

−(lβ ×2 lγ)(lα · lδ)

=

−xαxβxγyδ − xαyβyγyδ + yαxβxγxδ + yαyβyγxδ

−xαxβyγxδ + xαyβxγxδ − yαxβyγyδ + yαyβxγyδ

 (3.70)

At first glance, the expression (3.68) may appear tedious to implement in a com-

puter program. However, the sequence of inputs to (3.69) and (3.70) γ = (2; 2) →

(3; 3)→ (4; 4) and δ = (c; d)→ (c; a)→ (c; b) may be used to compute the respective

atan2 coefficients in (3.68), where α = 1 and β = 2. The same sequence may be

used to compute the log coefficients. Compared with the midpoint approximation

method, the number of operations in the analytical integration of torque is roughly

the same. Each coefficient of the atan2 and ln functions in (3.68) has twice as many

terms as each coefficient in (2.40) and (2.41), but the combined effort of evaluating

Fx,|| and Fy,|| using (2.40) and (2.41) and subsequently taking the cross product ren-

ders the midpoint approximate and analytical integral torque methods equal from

the perspective of computational burden. However, the atan2 and ln functions are

evaluated only once each in (3.68). In fact, the computation times are observed to be

slightly lower for the analytical integration method, and as expected, improved accu-
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racy is achieved over the midpoint approximation method, as shown in the following

subsection.

Torque Exerted on Point(Line) Elements by Line(Point) Sources

Referring to Figs. 2.6a and 2.6b, the torque exerted on observation point element

p2 = (xc, yc) by line source l1 is determined using the expression

T·| = −
µ0I1I2

2πl1



 xc cos(φ1)

+yc sin(φ1)

atan2

l5 ×2 l6,

l5 · l6)


−xc sin(φ1)

+yc cos(φ1)

 log

(
l6
l5

)


(3.71)

and the torque on observation line element l2 by point source p1 = (xa, ya) is deter-

mined using the expression

T|· =
µ0I1I2

2πl2



 xa cos(φ2)

+ya sin(φ2)

atan2

l4 ×2 l6,

l4 · l6)


−xa sin(φ2)

+ya cos(φ2)

 log

(
l6
l4

)


. (3.72)

Torque Exerted on Point Elements by Point Sources

In the case where both source and observation elements are points, the torque

exerted on point element p2 = (xc, yc) by point element p1 = (xa, ya) is given by

T·· =
µ0I1I2

2π((xc − xa)2 + (yc − ya)2)
(xcya − xayc) (3.73)

3.3.4 Comparison of Torque Calculation Methods

Using either the midpoint approximation or the closed-form integral expression,

computing the torque between each rotor element and each stator element and sum-
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ming yields the total torque. Under the condition that the mesh elements are located

in a rotationally-periodic fashion, the periodicity of the machine geometry can be ex-

ploited by computing only the torque on elements of a single rotor pole by the stator

elements of all poles and subsequently multiplying by the pole count.

To validate the expressions for force and torque, an MoM-based model of an

SPMSM “Design 50” was utilized. Design 50 was taken from the Pareto optimal front

of a PBD study detailed in Chapter 4. Its design/geometric parameters and excitation

are provided in Table 4.4 and its conductor density is listed in Table 4.5. The results

are compared to those obtained using a commercial Finite Element Analysis (FEA)

package COMSOL [31]. The mesh of the FEA model was adaptively refined so that

calculated quantities could serve as the reference solution. Within the MoM, remanant

radial magnetization in the PMs is modeled using a pair of sheet currents along the

edges of each magnet—with current magnitude set to IPM = dmBr/(µ0µm). The total

ampere-turns of stator current in each slot is modeled as a free current point source

located at the center of each respective slot. The torque was also computed using

the MST method where the numerical integration was performed using MATLAB’s

built-in quadgk function.

The x- and y-components of force were calculated using (2.45)-(2.46) and (2.49)-

(2.50) in Chapter 2 and the torque acting at the midpoint of each element using

(3.66). The net torque calculated directly using the force expressions is listed as the

“MoM Midpoint” torque within Figures 3.5 - 3.7.

The torque obtained as a function of rotor position is shown in Fig. 3.5. The

MoM mesh for this comparison utilized 6,330 elements per pole and the FEA was set

to adaptively refine its mesh, eventually reaching 388,644 elements per pole. Visually

inspecting the waveforms in Fig. 3.5, is is apparent that the MoM torque integral

agrees well with FEA whereas some error is present in the midpoint torque waveform.

Not shown in Fig. 3.5 are data representing the MST-based torque waveform.

This is because the MoM Lorentz and MST methods matched nearly exactly in all

cases. The average percent error was 1.8×10−11% between MST and Lorentz over the
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32 rotor positions in computing the torque waveform in Fig. 3.5. This should come

as no surprise since the starting point for deriving the MST is the Lorentz force [23].

The error in the average torque as a function of MoM element count is shown

in Fig.3.6. It is interesting that the error in average torque is relatively small even

with few elements in either the integrated or the midpoint torque calculations, yet

the integrated torque outperforms the midpoint torque method save for one point.

The error in the peak-peak torque is shown with respect to element count in Fig.

3.7. At low element counts, the peak-peak error is rather large for both MoM torqu

predictions, and the midpoint torque gets no lower than 2% at high element counts.

Note that the MoM mesh is refined on all surfaces except for the permanent magnet

source sheets since these are best represented as a single sheet with uniform sheet

current density. This is the source of the steady state error in the midpoint method.

Hence, the MoM Midpoint torque provides a means to gauge the error resulting from

neglecting the force/radius variation across an element.

0 /72 2 /72

740

750

760

770

780

Fig. 3.5.: Torque waveforms over one slot pitch at high mesh resolution.



61

0 1000 2000 3000 4000 5000 6000 7000
0

0.05

0.1

0.15

0.2

0.25

Fig. 3.6.: Percent error in average torque calculation, compared with converged FEA

solution.
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Fig. 3.7.: Percent error in peak-peak torque calculation, compared with converged

FEA solution.
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3.4 Inductance of Distributed Windings

as2' as3'as1' as2 as3as1

Nas1 Nas2 Nas3 Nas4 Nas5 Nas6 -Nas1 -Nas2 -Nas3 -Nas4 -Nas5 -Nas6

Fig. 3.8.: Distributed windings in stator.

In the design process, it is often desired to evaluate the inductances associated

with distributed windings of electric machinery. One may use the inductances within

a lumped parameter model such as a qd model of an electric machine [32] to evaluate

its performance. In this research, inductances are used in the calculation of required

line-line voltage for a given stator current, applied within the optimization study in

Chapter 4. In this section, the inductance calculation method from [4], as summarized

in Section 2.5, can be extended to the case in which the conductors in a winding are

spatially-distributed within stator slots, as shown in Fig. 3.8.

Aside from the distributed nature of the conductors, electric machinery are typ-

ically wound with round stator conductors, hence it is desired to represent the con-

ductors as filaments, rather than sheets as was the focus in Section 2.5. Furthermore,

stator conductors are not truly filaments but have a finite radius that must also be

accounted for. The partial inductance expression (2.67), denoted Lp|| in this section,

quantifies the flux linking a sheet conductor where the flux produced is via a bound

sheet current. For electric machinery, a partial inductance expression denoted Lpm·| is

derived in this section which quantifies the flux linking a filamentary stator conductor

due to a bound current sheet (subscript denotes mutual partial, sheet to filament).

Additionally, two expressions denoted Lps· and Lpm·· are derived in this section, which

respectively quantify the flux linking a filamentary stator conductor due to that fila-
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mentary stator conductor itself (subscript denotes self partial of filament) and due to

other filamentary stator conductors making up the winding (subscript denotes mutual

partial, filament to filament).

3.4.1 Partial Inductance Expressions

Expression (2.67) for Lp|| was derived by integrating the filament-filament partial

inductance expression (2.62) over the lines representing the source and observation

sheet cross sections, which amounts to a double integral. We may stop short of

integrating the second sheet in (2.63) to obtain the sheet to filament mutual partial

inductance as

Lpm·| = −
µ0

4πw2


(xL22 − xL1 ) ln((xL22 − xL1 )2 + (yL1 )2)

+2yL1 tan−1
(
xL22−xL1
yL1

)
−(xL21 − xL1 ) ln((xL21 − xL1 )2 + (yL1 )2)

−2y1 tan−1
(
xL21−xL1
yL1

)


(3.74)

O x

y

21 21( , )x y

22 22( , )x y

1 1( , )x y
if

(a)

O x

y

22( , 0)Lx21( , 0)Lx

1 1( , )L Lx y

(b)

Fig. 3.9.: Sheet and point in original global reference frame (a) and reference frame

of Lpm.| (b).

where xL1 , yL1 , xL21 and xL22 are variables which are transformed from the global

reference frame, shown in Fig. 3.9a, into a particular reference frame convenient for
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evaluating the integration, shown in Fig. 3.9b, using shift and rotation operations.

The transformed coordinates are given by

(xL1 , y
L
1 ) =


0,

− sin(φi)(x1 − x21)

+ cos(φi)(y1 − y21)

 (3.75)

(xL21, y
L
21) =

− cos(φi)(x1 − x21)

+ sin(φi)(y1 − y21) ,0

 (3.76)

(xL22, y
L
22) =

li− cos(φi)(x1 − x21)

+ sin(φi)(y1 − y21) ,0

 (3.77)

where the superscript “L” indicates that the quantities have been transformed into

the reference frame as shown in Fig. 3.9b. Expression Lp|| has no self or mutual

designation because it can represent either case, depending on the coordinates of the

sheets. In contrast, although it is possible to allow the filament path to lie along the

sheet cross section, i.e. the filament coincides with one point along the sheet cross

section, this lacks meaning. Hence, this inductance expression is designated strictly

as a mutual partial inductance since the sheet source and filament path will never

spatially coincide, and therefore the subscript “pm” is given.

To determine the self partial inductance of a filament, setting ρ = 0 in Lp,i,j,fil of

(2.62) isn’t feasible since the result goes to infinity. Paul [33] takes the integral of

the vector potential evaluated at the conductor radius rw using an expression for the

vector potential which is dependent on the length of the wire. We may apply this

approach instead using Lp,i,j,fil to obtain

Lps· = −
µ0

2π
ln

(
rw
ρ0

)
(3.78)

where it remains to select ρ0. Since this is an arbitrary choice, herein it is selected

to be ρ0 = 1. To include the effect of the flux linked within the conductor itself,

Paul suggests using the concept of internal inductance, which for round wires is given

per-unit-length by

Linternal =
µ0

8π
(3.79)
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(which is, interestingly, independent of the wire radius), so that the final expression

for Lps· is

Lps· =
µ0

8π
− µ0

2π
ln(rw) (3.80)

The concept of internal inductance has also been used in the modeling of power system

transmission lines such as in [34].

The mutual partial inductance for filaments is determined by setting ρ = d with

ρ0 = 1 in (2.62), where d is the between filaments, so that

Lpm·· = −
µ0

2π
ln(d). (3.81)

3.4.2 Distributed Winding Inductance: Example Calculation

The following example demonstrates an inductance calculation of the SPMSM

“Design 50.” Design 50 was taken from the Pareto optimal front of a PBD study

detailed in Chapter 4. Its design/geometric parameters and excitation are provided

in Table 4.4 and its conductor density is listed in Table 4.5. The relative permeability

of the permanent magnet material was altered to be µrm = 2.0 so that an enhanced

saliency would be present. In the inductance calculation example herein, it has been

assumed that the ampere-turns in each slot are segregated by phase, but within each

phase group are assumed concentrated at a single point distinct from the other phases

in the slot. The remaining parameters and setup are unchanged from that presented

in Chapter 4.

The a-phase winding is excited with 1 A and phases b and c are left unexcited.

Consider coil as1 having Nas(3) turns, whose coil sides are represented by � as1′

and ⊗ as1 in Fig. 3.8. Note that the prime superscript in this section denotes the

coil side with current direction out of the page, as is common in electric machinery

notation [32], not a quantity which has been transformed to the reference frame of

some element, as is used throughout the rest of this dissertation. The total flux

linking coil as1 has several contributors. They are: all bound currents in the system,

conductors in phase a in pole 1, conductors in phase a in poles 2−P , and conductors
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from other phases b and c in all poles. To capture the flux linking coil a1 due to

all bound currents in the system, the sheet to filament mutual partial inductance

expression (3.74) is utilized to find the free space inductance

Lfs
as(i) = Lpm|.(x

L1
21 , x

L1
22 , x

L1
1 , yL1

1 )− Lpm|.(x
L2
21 , x

L2
22 , x

L2
1 , yL2

1 ) (3.82)

for each bound sheet current i = 1 . . . Nb in the system, where the super script “L1”

refers to the reference frame of bound current sheet i and the as1′ coil side and the

superscript “L2” refers to the reference frame of bound current sheet i and the as1

coil side. Each of the coordinate sets in the global reference frame are transformed

to the aforementioned respective reference frames using (3.75)-(3.77).

To capture the flux linking coil a1 due to all free currents in the system, the

filament to filament mutual partial inductance expression (3.81) is used to find the

free space inductance of the coil

Lfsas1,f (j) =


Lpm··(das1′)− Lpm··(das1) , ∀j 6= jas1′ , jas1

Lps·(rw)− Lpm··(das1′) , j = jas1′

Lpm··(das1)− Lps·(rw) , j = jas1

(3.83)

for each free current j = 1 . . . Nf , where das1′ and das1 are the distance between the

free current and the respective coil sides as1′ and as1. The special cases for j = jas1′

and j = jas1 account for flux linking the winding due to the winding itself, hence

the self partial filament expression is used in place of the mutual partial filament

expression. In the case that we are determining the flux linking an unexcited coil,

such as bs1 when calculating Lbsas, the special cases are not needed since the winding

that creates flux is not the winding from which we are measuring flux. The total flux

linking the coil as1 is calculated using

λas1 = Nas(3)

([
Lfs
as1,b

]T
Ib +

[
Lfs
as1,f

]T
If

)
. (3.84)

It is important to note that the vector of free current If is that used in the MoM

equation system (2.6) and therefore it is not populated with the phase currents but
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the ampere turns NI of stator excitation. The prior calculation is repeated for the

remaining coils as2-as3 using the respective turns counts Nas(4) and Nas(5) and the

total flux linkage in pole 1 is their sum:

λas,p=1 = λas1 + λas2 + λas3. (3.85)

A P pole machine has P/2 sets of coils for the whole machine in such a consequent

pole winding arrangement, therefore the total flux linkage is multiplied by P/2:

λas = P
2
λas,p=1. (3.86)

With Lasas and Lbsas, it is assumed that the remaining terms of the surface PMSM

machine’s inductance matrix may be populated by applying appropriate phase shifts,

as in an inductive lumped parameter machine model. Such relationships are best

illustrated by listing the inductance matrix of a synchronous machine [32]:

Ls =


Lasas Lasbs Lascs

Lbsas Lbsbs Lbscs

Lcsas Lcsbs Lcscs



= Lls


1 0 0

0 1 0

0 0 1

+ LA


1 −1

2
−1

2

−1
2

1 −1
2

−1
2
−1

2
1



− LB


cos (2θr) cos 2

(
θr−

π
3

)
cos 2

(
θr+

π
3

)
cos 2

(
θr−

π
3

)
cos 2

(
θr−

2π
3

)
cos 2(θr+π)

cos 2
(
θr+

π
3

)
cos 2(θr+π) cos 2

(
θr+

2π
3

)

 .

(3.87)

Next, using the reference frame transformation to the rotor [32]

Kr
s =

2

3


cos θr cos

(
θr − 2π

3

)
cos
(
θr + 2π

3

)
sin θr sin

(
θr − 2π

3

)
sin
(
θr + 2π

3

)
1
2

1
2

1
2

 (3.88)
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Fig. 3.10.: as winding self inductance vs rotor position.

and its inverse

[Kr
s]
−1 =


cos θr sin θr 1

cos
(
θr − 2π

3

)
sin
(
θr − 2π

3

)
1

cos
(
θr + 2π

3

)
sin
(
θr + 2π

3

)
1

 (3.89)

the q- and d-axis inductances are then given by
Lq 0 0

0 Ld 0

0 0 Lls

 = Kr
sLs [Kr

s]
−1 . (3.90)

The inductance calculation procedure previously described was applied to the

modified Design 50 machine. The MoM mesh utilized 1014 elements per pole. The

rotor was swept across an angular span corresponding to two pole pitches divided

into 48 positions where the inductance calculation procedure was applied at each

rotor position. The MoM-predicted self inductance of the stator a-phase winding,

Lasas, is shown in Fig. 3.10 and is compared against the FEA prediction of the same

inductance. The MoM-predicted mutual inductance between the stator a-phase and

b-phase, Lbsas, is shown in Fig. 3.11 and is compared against the FEA prediction of

the same inductance. The MoM-predicted q- and d- axis inductances are shown in

Fig. 3.12. The same transformation is applied to the FEA-predicted inductances, and

they are compared with the MoM inductance. The waveforms are in good agreement.
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Fig. 3.11.: as-bs mutual inductance vs rotor position.
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Fig. 3.12.: Inductances Ld and Lq vs rotor position.
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As noted above, in the inductance calculation example herein, it has been assumed

that the ampere-turns in each slot are segregated by phase, but within each phase

group are assumed concentrated at a single point distinct from the other phases in

the slot. This assumption minimizes the sizes of influence matrices associated with

stator conductors and mesh elements. This assumption does not introduce significant

error and for the purpose of exploration of a large design space with many degrees of

freedom, some compromise is necessary between accuracy and computational burden.

In the case that a higher fidelity model is desired, such as near the end of the design

phase, the MoM may be used to analyze windings with multi-conductor coils in

the slot where each turn is represented by a distinct filament. In order to avoid

the computational burden of computing all partial inductances associated with each

distinct filament comprising a winding, one may find the concept of geometric mean

radius (GMR) and geometric mean distance (GMD) to be useful – concepts used

in transmission line modeling in terrestrial power systems [34] – so that only the

aggregate effect of the inductance between bundles of conductors is considered.

3.5 Eliminating Redundancy in Material Boundaries

Based on the MoM formulations presented in Chapter 2, one might choose to

mesh a shared boundary dividing two magnetizeable materials twice, where the mesh

encircles the volume of each material. An example of two materials with different

permeabilities is shown in the inductive ring structure in Figure 3.13. Therein, two

materials of different permeabilities constitute the inductive core where the winding

is represented as a red dot/cross pair. Shown in Figure 3.13a is the approach using

a dual mesh layer, where the mesh elements are anti-coincident, but are shown with

separation to better illustrate the arrangement. This double layer of mesh elements

is redundant, and can be reduced to a single layer as will be demonstrated. Shown

in Figure 3.13b is the same inductive ring using only a single layer of mesh elements.
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(a) Redundant boundary mesh.
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(b) Boundary meshed using only a single

layer of elements.

Fig. 3.13.: Material boundary with redundant elements.

tan1 tan1,M B

tan 2 tan 2,M B

1r
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Fig. 3.14.: Example geometry of boundary between magnetizeable materials.

Similar to Ampere’s law, the closed-path integral of magnetization gives the en-

closed bound current: ∮
~M · d~l = Ib,enclosed (3.91)

The closed path taken in integral (3.91) is shown in Figure 3.14 around the two anti-

coincident elements. Evaluating the closed path integral as the height ε → 0, the

following relationship is established:

−Mtan 1l1 −Mtan 2l2 = Ib1 + Ib2 (3.92)
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With l1 = l2 = l, and noting from Chapter 2 that Btan tot = fBtotMMtan, (3.92) can be

expressed as
Btan 1
µ0µr1
µr1−1

+
Btan 2
µ0µr2
µr2−1

= −Ib1 + Ib2
l

(3.93)

A similar Amperian loop to that shown in Figure 3.14 can be traversed for the aux-

iliary field, yielding the enclosed free current [23]:∮
~H · d~l = If,enclosed (3.94)

Taking the closed path integral (3.94) around the redundant elements as the height

ε→ 0, the following relationship is established:

−Htan 1l1 −Htan 2l2 = If,enclosed = 0 (3.95)

Substituting the relationship B = µH for the respective materials, with l1 = l2 = l:

Btan 1

µ0µr1
= −Btan 2

µ0µr2
(3.96)

Rearranging (3.96) and substituting into (3.93),

−µr1
µr2

Btan 2
µ0µr1
µr1−1

+
Btan 2
µ0µr2
µr2−1

= −Ib1 + Ib2
l

(3.97)

Rearranging, solving for Btan 2 and simplifying,

Btan 2 =

(
µ0µr1µr2

µr1µr2 − µ2
r1

)(
−Ib1 + Ib2

l

)
(3.98)

=

(
µ0

µr2
µr1

µr2
µr1
− 1

)(
−Ib1 + Ib2

l

)
(3.99)

If instead of separately modeling the anti-coincident bound currents, we model their

combination as a single current Ic, then Ic = Ib1 + Ib2, Mtan c = −Ic/l and in terms of

the combined current,

Btan 2 =

(
µ0

µr2
µr1

µr2
µr1
− 1

)(
−Ic
l

)
=

(
µ0µrc
µrc − 1

)
Mtan c (3.100)

where the combined relative permeability µrc is defined as

µrc =
µr2
µr1

(3.101)
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In summary, the mesh representing a boundary between two magnetizeable materials

can be transformed from one which has two anti-coincident layers to one having only

a single layer of mesh elements. The elements in the single mesh layer have a relative

permeability which models the combined effect of both materials. Finally, for the

single layer of mesh elements, the relationship fBtotM becomes

fBtotM(i, i) =
µ0µrc
µrc − 1

(3.102)

This element reduction technique has been utilized to model the boundary between

the permanent magnets and the outer rotor steel diameter.

Although this analysis has only considered elements and their corresponding nodes

which are anti-coincident, it is possible to generate a mesh along such a boundary in

which the two mesh layers are not coincident in any fashion. Such a mesh may lead

to elements which intersect. Such a situation is problematic, as it has no physical

interpretation. Interestingly, no singularities have been encountered when populating

matrix entries in fBM corresponding to two intersecting elements. Nonetheless, the

element reduction technique described herein avoids the need to consider intersecting

elements on shared material boundaries.

3.6 Exploitation of Geometric Periodicity

The geometry of electric machinery exhibits angular periodicity about the machine

axis. Such a structure is referred to as a discrete body-of-revolution (DBOR). For

example, a machine with integer slot/pole/phase has a geometric period of one pole

because the geometry repeats itself once every pole. It is the goal of this section to

demonstrate how to take advantage of this periodicity in order to decrease the compu-

tation time. Such techniques are utilized in the analysis of electromagnetic scattering

problems [2, 35–37] in addition to BEM-based acoustics problems [38]. In contrast,

within FEA-based electric machine models, the concept of exploiting the geometric

periodicity is achieved through the use of so-called periodic boundary conditions [21].

By exploiting periodicity within FEA, a volume mesh of only a single pole is required,
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hence reducing the largest component of the FEA solution considerably, roughly by a

factor of 1/P . The only additional computational cost is “the expense of a somewhat

larger bandwidth” [21], that is that the system matrix is altered slightly, although

the sparseness is affected little. The DBOR reduction procedure will be derived in

the following subsection for the linear Galerkin formulation. In the subsequent sub-

section, the DBOR reduction for the Galerkin formulation is extended to the case of

the point-matching formulation. Lastly, it is shown how the DBOR reduction of the

point-matching formulation may be applied to model nonlinear materials/equation

systems.

3.6.1 DBOR Reduction for Galerkin Formulations

The N ×N system of equations to be solved in the MoM procedure is represented

as Ax = b. In the equation system, A = (fBtot − fBM), x = Mtan and b =

fBIfIf + fBMPM
MPM . By organizing the N unknowns within the equation system

so that they are grouped by pole then it is apparent that the system influence matrix

happens to be block-circulant, and can be written in terms of sub-matrices [A]1 –

[A]P as 

[A]1 [A]2 [A]3 · · · [A]P

[A]P [A]1 [A]2 · · · [A]P−1

[A]P−1 [A]P [A]1 · · · [A]P−2

...
...

...
. . .

...

[A]2 [A]3 [A]4 · · · [A]1





{x}1

{x}2

{x}3

...

{x}P


=



{b}1

{b}2

{b}3

...

{b}P


(3.103)

for a machine with P poles where each pole is meshed into NP elements. Such

an organization of the unknowns is consistent with the notion of meshing only one

pole and subsequently applying rotation operations to form the mesh of the remaining

poles. In fact it is a requirement that the mesh have the property of being rotationally

periodic to apply the DBOR reduction process. Also note that the ordering of the

elements within each respective pole must be the same. Further note that each sub-
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matrix [A] has dimensions NP × NP , each sub-vector {x} and {b} have dimensions

NP×1 where NP = N/P . All the unique information is contained within sub-matrices

[A]1 - [A]P , and so it is desired to avoid repeating this information by assembling

the entire system matrix. Simply computing the elements of the entire system matrix

and storing them in computer memory is often the most time-consuming component

of the MoM procedure, regardless of having closed form expressions to populate each

matrix entry given in [4]. The dense or full nature of system matrices in integral

equation methods is mostly to blame for these long computation times.

It is well-known that a generic n × n circulant matrix C is diagonalized by the

discrete Fourier transform (DFT) matrix [39]:

C =


c1 c2 . . . cn

cn c1 . . . cn−1

...
...

. . .
...

c2 c3 . . . c1


= FΛF−1 (3.104)

where F (j, k) = e−i
2π
n

(j−1)(k−1) is the n × n DFT matrix, j = 1 . . . n, k = 1 . . . n

and i =
√
−1. In (3.104) the matrix Λ has only diagonal elements which are the

eigenvalues of C, given by 
λ1

λ2

...

λn


= F


c1

c2

...

cn


(3.105)

In the case of block-circulant matrices, the Kronecker product can leverage the DFT

matrix to act on the sub-matrices. The Kronecker product, symbolized by ⊗, is

defined as follows:

D ⊗E =


d11E d12E . . . d1nE

d21E d22E . . . d2nE
...

...
. . .

...

dm1E dm2E . . . dmnE


(3.106)
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for the m× n matrix D and the p× q matrix E. The Kronecker product D⊗E is a

block matrix with dimensions mp× nq. Using this tool, the entire system matrix A

can be block-diagonalized:

A = (F ⊗ INP )


[Ã]1 0 . . . 0

0 [Ã]2 . . . 0
...

...
. . .

...

0 0 . . . [Ã]P


(F−1 ⊗ INP ) (3.107)

where INP is the identity matrix of dimensions NP × NP , NP is the number of

unknowns per pole, and F is now the P × P DFT matrix with entries F (j, k) =

e−i
2π
P

(j−1)(k−1). By utilizing the Kronecker product in this way, the block equation

system may be treated in a more general way whereby sub-matrices and sub-vectors

are treated as individual elements in a larger matrix (as in the case where the identity

matrix INP = 1).

By substituting (3.107) into (3.103), only P independent systems need to be

solved: 
[Ã]1 0 . . . 0

0 [Ã]2 . . . 0
...

...
. . .

...

0 0 . . . [Ã]P




{x̃}1

{x̃}2

...

{x̃}P


=


{b̃}1

{b̃}2

...

{b̃}P


(3.108)

where 
{x̃}1

{x̃}2

...

{x̃}P


= (F−1 ⊗ INP )


{x}1

{x}2

...

{x}P


(3.109)

and 
{b̃}1

{b̃}2

...

{b̃}P


= (F−1 ⊗ INP )


{b}1

{b}2

...

{b}P


(3.110)
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and analogous to (3.105), [Ã]1 -[Ã]P are given by
[Ã]1

[Ã]2
...

[ÃP


= (F ⊗ INP )


[A]1

[A]2
...

[A]P


(3.111)

which requires fewer computer operations than by directly block-diagonalizing using

(F−1 ⊗ INP )A(F ⊗ INP ). More importantly, directly block-diagonalizing A would

require the assembly of the entire system matrix, which we have set out to avoid

doing in the first place.

A procedure to solve the entire system of equations Ax = b, without assembly of

the entire influence matrix A, is as follows:

1. Compute {b̃}1 - {b̃}P using (3.110).

2. Compute [Ã]1 - [Ã]P using (3.111).

3. Solve the P individual sub-systems for {x̃}1 - {x̃}P as in (3.108).

4. The solution to the entire system of equations Ax = b is given by transforming

{x̃}1 - {x̃}P back to {x}1 - {x}P using the relationship in (3.109). It should be

noted that due to the properties of the Kronecker product, the inverse relation-

ship of (3.109) is given readily by (F−1⊗INP )−1 = ((F−1)−1)⊗I−1
NP

= F ⊗INP .

Moreover, the inverse of the P × P DFT matrix is F−1 = 1
P
F ∗.

A note on the implementation of the preceding procedure: although the quantities

(F ⊗INP ) and (F−1⊗INP ) help to demonstrate the block-diagonalization procedure,

there is a better way to perform these “block transforms” from the perspective of

computation. In particular, MATLAB has built-in Fast Fourier Transform (FFT)

functions which perform the DFT with O(n log n) operations, rather than the O(n2)

operations of the matrix-vector product approach in (3.110)-(3.109). For example,

in MATLAB the command b t i l d e mtx = i f f t ( b mtx , [ ] , 2 ) will take the
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inverse DFT of each row of b mtx, where b mtx is a matrix with columns {b}1 −

{b}P . Then the output b t i l d e mtx is a matrix with columns {b̃}1 − {b̃}P .

One further simplification can be made to the DBOR reduction process, accompa-

nied with further reduction in computation time. The angular period of the machine

geometry is a single pole, and under normal electric machinery operating conditions

the excitation is periodic in nature, with angular period of two poles. In particular,

the input vector b can be written in terms of only {b}1, alternating in sign:

b =



{b}1

−{b}1

{b}1

−{b}1

...

{b}1

−{b}1


(3.112)

In which case, when multiplied together with (F−1 ⊗ INP ), only one block-row is

nonzero:

(F−1 ⊗ INP )



{b}1

−{b}1

{b}1

−{b}1

...

{b}1

−{b}1


=



0
...

0

{b̃}P/2+1

0
...

0


=



0
...

0

{b}1

0
...

0


(3.113)

This result is evident if one considers the input vector to be a cosine wave, sampled

only at its extrema, with amplitude {b}1, i.e. b = {b}1 cos(πk) for k = 1 . . . P ; the

DFT of which is the discrete impulse function δ[n− (P/2 + 1)] scaled by {b}1. Since

only {b̃}P/2+1 is nonzero, only the solution of sub-system P/2 + 1 is nonzero, and

therefore of {x̃}1 - {x̃}P only {x̃}P/2+1 is nonzero. Restated for emphasis, only the
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subsystem of index P/2 + 1 need be solved. Consequently, the solution of the entire

system is given by

(F ⊗ INP )



0
...

0

{x̃}P/2+1

0
...

0


=



{x̃}P/2+1

−{x̃}P/2+1

{x̃}P/2+1

−{x̃}P/2+1

...

{x̃}P/2+1

−{x̃}P/2+1


(3.114)

In summary, with periodic excitation, the solution procedure can be simplified to the

following:

1. Perform only one block-row of the transform in (3.111), yielding [Ã]P/2+1. Or

equivalently, [Ã]P/2+1 =
∑P

k=1(−1)(k−1)[A]k. Note that a complete DFT need

not be performed since it is known a priori that only one block-row of the DFT

is non-zero.

2. Solve the single system [Ã]P/2+1{x̃}P/2+1 = {b}1.

3. The solution to the entire system of equations is a vector composed of {x̃}P/2+1,

alternating in sign, as in (3.114).

Using Fourier analysis combined with the Kronecker product, we have shown that

this block circulant system will yield a periodic bound current solution provided that

the input is also periodic. Using this “20/20” hindsight, in the simple example of a

4-pole machine, substituting the periodic excitation and solution, the entire system

of equations can be represented as
[A]1 [A]2 [A]3 [A]4

[A]4 [A]1 [A]2 [A]3

[A]3 [A]4 [A]1 [A]2

[A]2 [A]3 [A]4 [A]1





{x}1

−{x}1

{x}1

−{x}1


=



{b}1

−{b}1

{b}1

−{b}1


(3.115)
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Expanding, each block-row of (3.115) comes out to be

([A]1 − [A]2 + [A]3 − [A]4){x}1 = {b}1 (3.116)

therefore only one sub-system must be solved to find {x}1. Equation (3.116) suc-

cinctly represents the simplified DBOR reduction procedure given above.

Some computation time comparisons are now given for the DBOR solver. An

example 12 pole machine, meshed with NP = 194 elements per pole, requires 1.879 s

to assemble the required matrices in MATLAB for the case of the entire system and

0.234 s for the DBOR solver. This is an 8-fold decrease in computation time. It should

be noted that the improvement is expected to be proportional to the pole count, since

this is the proportion of the entire system matrix that must be populated in order to

apply the DBOR reduction.

3.6.2 DBOR Reduction for Linear Point Matching Formulations

The unknown quantity in the Galerkin MoM formulations used herein is the tan-

gential magnetization vector, Mtan, where it is understood that the tangent compo-

nent of magnetization is with respect to the local coordinate system of the bound

current element. As a consequence of this local coordinate system, as in (3.115), the

solution of the entire system is comprised of the single pole solution alternating in

sign every pole. However, in the point-matching MoM formulations used herein, the

unknown quantity is Mxy - the x- and y- component of magnetization - where the x-

and y- components are with respect to the global coordinate system. Hence, we do

not expect the Mxy solution to exhibit the same direct periodicity as the Mtan solu-
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tion, but we can expect the Mxy solution of the adjacent pole to be related through

a series of rotation operations, that is we expect that

Mxy =



{Mxy}1

{Mxy}2

...

{Mxy}P−1

{Mxy}P


=


[R]1 0

[R]2
. . .

0 [R]P


︸ ︷︷ ︸

R



{Mxy}1

−{Mxy}1

...

{Mxy}1

−{Mxy}1


︸ ︷︷ ︸

Mxy,periodic

= RMxy,periodic

(3.117)

In (3.117), each of the submatrices [R]1-[R]P within R are themselves block-diagonal

matrices, the diagonal blocks of which are rotation matrices:

[R]i =



cos(θi) − sin(θi)

sin(θi) cos(θi)

 0cos(θi) − sin(θi)

sin(θi) cos(θi)


. . .

0

cos(θi) − sin(θi)

sin(θi) cos(θi)




(3.118)

for i = 1 . . . P and θi = 2π(i−1)
P

. In a similar fashion to Mxy, the total magnetic field

in the 1st pole may be related to the field in the remaining poles of the machine by

Bxy,tot = R



{Bxy,tot}1

−{Bxy,tot}1

...

{Bxy,tot}1

−{Bxy,tot}1


= RBxy,tot,periodic (3.119)
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The equation system (2.6) in the point matching formulation may be expressed in a

simplified way as

Bxy,tot = fBtotMMxy = fBMMxy + Bxy,source (3.120)

where Bxy,source represents the magnetic field contribution of any sources present, i.e.

free current sources, PM sources, or a combination of both. Substituting (3.117) and

(3.119) into (3.120), we have that

RBxy,tot,alt = fBtotMRMxy,periodic = fBMRMxy,periodic + Bxy,source (3.121)

Multiplying all sides by R−1 on the left,

Bxy,tot,periodic = R−1fBtotMRMxy,periodic = R−1
(
fBMRMxy,periodic + Bxy,source

)
(3.122)

Rearranging (3.122) yields the equation system

R−1 (fBtotM − fBM) RMxy,periodic = R−1Bxy,source (3.123)

Further note that as is typically the case, the magnetic fields due to the sources will

be periodic with respect to rotation, that is to say the magnetic field source Bxy,source,

similar to (3.119), may be written as

Bxy,source = R



{Bxy,source}1

−{Bxy,source}1

...

{Bxy,source}1

−{Bxy,source}1


= RBxy,source,periodic (3.124)

Substituting (3.124) into (3.123) yields

R−1 (fBtotM − fBM) RMxy,periodic = Bxy,source,periodic (3.125)

Note that the resultant system matrix R−1 (fBtotM − fBM) R is block-circulant. Al-

though not shown explicitly herein, it has been verified numerically that this is the
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case, and indeed we can expect the matrix to be block circulant as this structure is

required to map the alternating input Mxy,periodic to an alternating output Bxy,periodic.

Hence (3.125) has the proper structure that we may now exploit the periodicity,

solving this system using a similar procedure as the previous subsection. Letting

A = R−1 (fBtotM − fBM) R for the remainder of this analysis, in order to utilize the

DBOR reduction procedure described in the prior section, it is required to compute

only one block-row of A. It is shown in the following expansion that this may be

accomplished by computing only one block-row of the matrix f = fBtotM − fBM , hence

retaining the computational benefits of the DBOR reduction procedure. First, since

it is straightforward to show that

R−1 =


[R]−1

1 0
[R]−1

2

. . .

0 [R]−1
P


, (3.126)

then expanding A yields

A =


[R]−1

1 0
[R]−1

2

. . .

0 [R]−1
P




[f ]11 [f ]12 . . . [f ]1P

[f ]21 [f ]22 . . . [f ]2P
...

...
. . .

...

[f ]P1 [f ]P2 . . . [f ]PP




[R]1 0

[R]2
. . .

0 [R]P


.

(3.127)

In performing the multiplication of the two matrices on the right, the submatrices

[R]1-[R]P act to scale the columns of f , yielding

A =


[R]−1

1 0
[R]−1

2

. . .

0 [R]−1
P






[f ]11

[f ]21

...

[f ]P1


[R]1,


[f ]12

[f ]22

...

[f ]P2


[R]2, . . . ,


[f ]1P

[f ]2P
...

[f ]PP


[R]P ,


.

(3.128)



84

Expanding further, the submatrices [R]−1
1 -[R]−1

P act to scale the rows of fR, yielding

A =




[R]−1

1 [f ]11

[R]−1
2 [f ]21

...

[R]−1
P [f ]P1


[R]1,


[R]−1

1 [f ]12

[R]−1
2 [f ]22

...

[R]−1
P [f ]P2


[R]2, . . . ,


[R]−1

1 [f ]1P

[R]−1
2 [f ]2P

...

[R]−1
P [f ]PP


[R]P ,


. (3.129)

Viewing (3.129), it is apparent that the first block-row of A depends only on the first

block-row of f . We have the block-diagonal structure of R and R−1 to thank for

this. Furthermore, since [R]1 = I, then [R]−1
1 = I and the first block-row of (3.129)

becomes[
[A]1 [A]2 . . . [A]P

]
=

[
[f ]11 [f ]12 . . . [f ]1P

]
R

=

[
[f ]11[R]1 [f ]12[R]2 . . . [f ]1P [R]P

]
.

(3.130)

Hence, the DBOR reduction procedure in the prior section involving the periodic

summation may be used provided that [A]1-[A]P are given by (3.130) and where, since

[R]1 = I, then {b}1 = {Bxy,source,periodic}1 = [R]1{Bxy,source}1 = {Bxy,source}1. Again

using “20/20 hindsight,” the result (3.130) should match our intuition - with a change

of variables now having periodic structure, the rotation information is embedded into

the new system matrix, or equivalently, it becomes block circulant.

3.6.3 DBOR Reduction for Nonlinear Point Matching Formulations

Utilizing the DBOR reduction process to solve a nonlinear equation system such as

the nonlinear point matching MoM formulation in Section 2.3 is now a straightforward

extension of the prior derivation. The nonlinear equation system (2.30) is rewritten

as

fBtotM(Mxy) = fBMMxy + Bxy,source (3.131)

where Bxy,source may represent known source terms due to free or bound current, such

as fBIf If and/or fBIPM IPM for example. Because the unknown vector Mxy may not
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be factored from the left-hand side of (3.131) as in (3.125), then from (3.131) we may

rewrite (3.122) as

Bxy,tot,periodic = R−1fBtotM(Mxy) = R−1
(
fBMRMxy,periodic + RBxy,source,periodic

)
= R−1fBMRMxy,periodic + Bxy,source,periodic

= AMxy,periodic + Bxy,source,periodic

(3.132)

where since the matrix A is block-circulant, then invoking similar arguments to the

prior derivations, A is computed using (3.130) with f = fBM and it is only necessary

to solve for one block-row of (3.132). Hence, the nonlinear residual for block-row 1 of

the system may be written as

{g({Mxy}1)}1 = ˜[A]P/2+1{Mxy}1 + {Bxy,source}1 − {fBtotM({Mxy}1)}1 (3.133)

where from the DBOR reduction procedure,

[Ã]P/2+1 = [A]1 − [A]2 + · · ·+ [A]P−1 − [A]P . (3.134)

The solution to the nonlinear equation system (3.133) may be found by utilizing

the N-R procedure in Section 2.3 to find {Mxy}∗1 – the magnetization unknown of

block-row 1 that achieves a residual that is below the desired tolerance. Therein, the

analytical expressions in Section 2.3 used to populate the associated Jacobian matrix

are modified as follows. The Jacobian matrix entries are found by differentiating

(3.133) with respect to the unknown {Mxy}1:

∂

∂x
{g(x)}1 =

∂

∂{Mxy}1

{g({Mxy}1)}1 = [Ã]P/2+1 −
∂

∂{Mxy}1

{fBtotM({Mxy}1)}1

(3.135)

It should be noted that since [Ã]P/2+1 is a constant matrix, only the partial derivative

terms of (3.135) are updated on every iteration. Conveniently, these partial derivative

terms correspond to updating only the main, sub- and super- diagonal elements of
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the Jacobian matrix, for which the expressions in Section 2.3 are used. Finally, the

solution of the entire system is given by

M∗
xy = R



{Mxy}∗1
−{Mxy}∗1

...

{Mxy}∗1
−{Mxy}∗1


. (3.136)
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4. DESIGN OF PERMANENT MAGNET

SYNCHRONOUS MACHINES

A goal of the research herein is to evaluate the performance of MoM within the

population-based design (PBD) of electric machinery. As an example, the multi-

objective design of a PMSM is considered. Herein, parameters describing the machine

geometry, winding function and material properties are all used as genes in a GA.

A prime motivation behind exploring MoM-based electromechanical analysis is its

potential usefulness in population-based design. In the last two decades, computing

power has improved dramatically, enabling the large-scale problem of finding optimal

designs of electric machinery in which potentially millions of designs are evaluated

in order to identify the tradeoff among the competing design objectives. Analytical

models are commonly used to evaluate design fitness within PBD routines. The

analytical models often take a great deal of time and effort to initially derive but

the benefits are then reaped within the PBD routine due to their extremely rapid

evaluation. However, the topology is essentially fixed because of the assumptions

imposed. Thus a major advantage inherent in numerical models such as MoM or FEA

is their generality, despite the larger computational expense. This chapter explores

the use of MoM to perform the magnetostatic analysis inside a PBD routine. In

particular, the simplified design study of a PMSM based on the procedure set forth

in Chapter 9 in [40] is repeated. Results such as accuracy and computation time are

discussed.

4.1 Description of Design Problem

Herein, the simplified design study of a PMSM based on the procedure set forth in

Chapter 9 in [40] is repeated. The problem setup, including design parameter ranges
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and encoding types as well as design constraints and specifications, is unchanged

from [40], although these quantities are all repeated herein for convenience in the

tables that follow. Different from [40], the magnetic field analysis herein is performed

using the MoM. The complete details and explanations of the models needed to

perform the volume/mass calculations and inductance/winding voltage will not be

repeated herein, the interested reader is referred to [40].

An electromagnetic field analysis is the basis for much of the design calculation

in the optimization. The field analysis is conducted at several rotor positions which

evenly span a slot pitch. Using the computed flux densities at said rotor positions, flux

density waveforms are constructed which correspond to one electrical cycle. Peak flux

density, PM demagnetization and torque constraints are evaluated for each design.

With the flux density waveforms, the core loss in the teeth and backiron is computed.

First, the machine geometry description is discussed, where the variables defining it

are introduced.

It is assumed that the machine is being operated in a manner in which the stator

currents can be controlled by a 3-phase inverter, provided there is sufficient dc-link

voltage. The specifications for the design are listed in table 4.1.

The variables describing the machine geometry constitute most of the degrees of

freedom within the design. Listed in Table 4.2 are parameter names of the degrees

of freedom, descriptions and the ranges allowed in the GA along with encoding type

of each variable (integer, linear and logarithmic). The parameters relate to the SPM

geometry as shown in Fig. 4.1 (figure not shown to the scale of parameters in Table

4.2).

Design Constraints

During fitness evaluation, candidate designs are checked against constraints to

ensure the designs are viable. The order in which the constraints are checked is such

that the most time-consuming design analyses are saved for the latest part of the
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Table 4.1.: Design Specifications

Parameter Value Description

vdc 400 V dc-link voltage

T ∗e 20 N ·m Commanded torque

ω∗rm 5000 rpm Commanded rotor speed

nspp 2 Number slots/pole/phase

km 0.75 Demagnetization factor

kpf 0.5 packing factor

leo 1 cm length of end winding offset

rrs 2 cm shaft radius

vfs 2 V Forward switch drop of semiconductors

J 3 Number of discrete rotor positions evaluated

φss,1 π/Ss rad location of stator slot 1

Mmxa 10 kg Maximum allowed mass

Pmxa 1 kW Maximum allowed loss

αtar 10 Maximum tooth aspect ratio

αso 1.5 Slot opening factor
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Table 4.2.: Degrees of freedom in design

Description Encoding Min Max

st Stator steel type int 1 4

rt Rotor steel type int 1 4

ct Conductor type int 1 2

mt Magnet type int 1 7

Pp Pole pairs lin 4 6

di Depth of inert region (m) lin 0 10−1

drb Depth of rotor backiron (m) lin 10−3 5 · 10−2

dm Depth of magnet (m) log 10−3 5 · 10−2

g Air gap (m) lin 5 · 10−4 5 · 10−2

dtb Depth of tooth base (m) log 10−3 5 · 10−2

αt Tooth fraction lin 5 · 10−2 95 · 10−2

dsb Depth of stator backiron (m) log 10−3 5 · 10−2

αPM Magnet Fraction lin 5 · 10−2 95 · 10−2

l Machine length (m) log 10−2 5 · 10−1

N∗s1 Peak fundamental conductor density (cond/rad) log 101 103

α∗3 Coefficient of third harmonic conductor density lin 10−1 7 · 10−1

Ir∗qs Q-axis current (A) log 10−1 50

Ir∗ds D-axis current (A) lin −50 0
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Fig. 4.1.: Machine parameter definitions.

fitness evaluation, so that computationally expensive analyses are not performed if

the design isn’t viable. The constraints are listed in Table 4.3. They are numbered so

that they correspond to the order in which they are applied. Constraint c1 concerns

the limitation of the ratio of tooth width to tooth length. Constraint c2 ensures that

the conductor diameter does not exceed the slot opening, so that the conductor may

be radially inserted into the slot during construction. A simple alternative to using a

thermal model to limit the maximum temperature in the machine is to constrain the

current density in the stator, accomplished using constraint c3. Constraint c4 prevents

excessively massive machines from being considered, while constraint c17 prevents

excessively lossy machines from being considered. Together, these two constraints

frame the window of the Pareto-optimal front. Constraint c5 determines whether the
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Table 4.3.: Design Constraints

Constraint Description

c1 = lte(dst, αtarwtb) Tooth aspect ratio

c2 = lte(dcαso, wso) Conductor size less than slot opening

c3 = lte(Is/ac, Jlim) Current density

c4 = lte(M,Mmxa) Mass of machine

c5 = lte(vll,pk, vdc − 2vfs) Line-line voltage

c6 = lte(‖Bt1cnc‖max , Bs,lim) Magnetic field stator tooth 1

c7 = lte(‖Bb1cnc‖max , Bs,lim) Magnetic field stator yoke 1

c8 = lte(Brbtnc,mx, Br,lim) Tangential magnetic field rotor backiron

c9 = lte(Brbrnc,mx, Br,lim) Radial magnetic field rotor backiron

c10 = gte(Hmnnc, Hlim) Auxiliary field in PM

c11 = lte(‖Bt1c‖max , Bs,lim) Magnetic field stator tooth 1

c12 = lte(‖Bb1c‖max , Bs,lim) Magnetic field stator yoke 1

c13 = lte(Brbt,mx, Bs,lim) Tangential magnetic field rotor backiron

c14 = lte(Brbr,mx, Br,lim) Radial magnetic field rotor backiron

c15 = gte(Hmn, Hlim) Auxiliary field in PM

c16 = gte(Tec, T
∗
e ) Electromagnetic torque

c17 = lte(Pl, Plmxa) Power loss

GA-selected Q- and D-axis stator currents can be achieved without low-frequency

harmonics using the specified dc-link voltage, where

V r
qs = rsI

r
qs + ωr(LdI

r
ds + λ′rm) (4.1)

V r
ds = rsI

r
ds − ωrLqIrqs (4.2)

vll,pk =
√

3
√
V r
qs

2 + V r
ds

2 (4.3)
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Following completion of the magnetic field analysis, the flux density in critical loca-

tions of the machine is known. Constraints c6-c15 concern the magnetic field limits in

these locations. During the fitness evaluation, the magnetic field analysis is conducted

first using zero stator current (only PM excitation), following which constraints c6-

c10 are checked. If these constraints are met, the magnetic field analysis is conducted

again using the stator currents selected by the GA. Subsequently constraints c11-c15

are checked. Finally, with the torque and magnetic field computed during the second

magnetic field analysis, the corrected torque may be computed according to (4.4) and

the losses may be evaluated using (4.10) - (4.9). Subsequently, constraints c16 and c17

may be evaluated.

Tec =


Te, ωrm = 0

Te − Pc
ωrm

, ωrm 6= 0

(4.4)

where Tec represents the corrected torque, which is the computed electromagnetic

torque adjusted by the amount Pc/ωrm and Pc is the core loss. The core loss Pc is

determined using the combined loss model of the Modified Steinmetz Equation (MSE)

in conjunction with the eddy current loss. Hysteresis power loss density is given by

ph = kh

(
feq
fb

)α−1(
∆B

2Bb

)β
f

fb
(4.5)

where ∆B = 2 max(B), fb = 1, Bb = 1 and the integral

feq =
2

∆B2π2

∫ T

0

(
dB

dt

)2

dt (4.6)

is evaluated numerically using the respective dB/dt waveforms which are outputs of

the magnetic field analysis. Using a similar numerical integration, the eddy current

loss density is determined from the flux density waveforms using

pe = kef

∫ T

0

(
dB

dt

)2

dt (4.7)

Using (4.5) and (4.6), the hysteresis loss density is computed in one stator tooth and

backiron yoke, denoted respectively by pht and phb. Using (4.7), the eddy current loss
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density is computed in one stator tooth and backiron yoke, denoted respectively by

pet and peb. The total core loss in the teeth and backiron of the stator is given by

Pc =
(
(pht + pet)vt + (phb + peb)vb

)
Ss (4.8)

where vt and vb represent the volume of one stator tooth and one backiron yoke,

respectively. The total power loss is then given by

Pl = Pr + Ps + Pc (4.9)

where the stator winding resistive loss is given by

Pr = 3rsI
2
s (4.10)

and the semiconductor loss of the inverter is given by

Ps =
6
√

2

π
vfsIs. (4.11)

The mass of the machine is computed using analytical formulae [40]. The power loss

is computed using (4.5)-(4.11). Finally, the design fitness is determined by

f =


ε[1 1]T

(
Cs−Nc
Nc

)
Cs < CI[

1
M

1
Pl

]T
Cs = Nc

(4.12)

4.2 Observation Locations for Machine Design

In the linear Galerkin MoM formulation, the bound current sources Ib at the

material boundaries are solved. Subsequently the total magnetic field Btot is evaluated

using the matrix-vector product Btot = fBtotMMtan. Recall that Btot is the magnetic

field tangent to the respective edge elements. As a post-processing step, the magnetic

field anywhere else may subsequently be computed. This includes the magnetic field

as a vector with x- and y- components, or the field normal to a surface. The locations

at which the magnetic field is desired are referred to herein as observation locations.

Since all sources are known following the solution of the equation system, any fur-

ther equation system solution is not required. However, an additional set of influence
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Fig. 4.2.: Magnetic field observation locations within machine cross section.

matrices must be populated, and subsequently a matrix-vector product is evaluated

which yields the magnetic field at the observation locations:

Bobs = fBobsMM + fBobsIf If + fBobsIPM IPM (4.13)

In order to adhere to optimization constraints, in particular the magnetic field limits,

a convenient set of observation locations must be selected. The locations within the

machine which best serve as the observation locations are described herein.

Observation sheets are placed across the stator teeth and yoke cross sections in

one pole. Subsequently, the closed form expression (3.31) for the average normal flux

density is used to populate the matrices in (4.13). Following evaluation of (4.13),

the elements of Bobs corresponding to these sheets correspond to Bt1 and Bb1. Hence

constraints c6, c7 may be evaluated in the case of an unexcited stator winding. In the

case of nonzero stator excitation, constraints c11 and c12 may be evaluated. Referring

to Figure 4.2, the tooth observation locations correspond to the red arrows in the

stator teeth and the yoke observation locations correspond to the yellow arrows in

the stator backiron.
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Observation sheets are placed in the rotor backiron, oriented so that the sheets

traverse the rotor backiron radially. Using these, (3.31) is used to populate the

matrices in (4.13). Following evaluation of (4.13), the elements of Bobs corresponding

to these sheets correspond to Brbt, hence constraints c8 and c13 may be evaluated.

Referring to Figure 4.2, the rotor tangential field observation locations correspond to

the yellow arrows in the rotor backiron.

The line elements making up the mesh of the underside of the PM may be used

without creating new observation elements. However, the expression (3.31) must

still be used to populate the matrices in (4.13). Following evaluation of (4.13), the

elements of Bobs corresponding to these elements correspond to Brbr, hence constraints

c9 and c14 may be evaluated. Referring to Figure 4.2, the rotor radial field observation

locations correspond to the red arrows at the underside of the PM.

The line elements making up the outside surface of the PM mesh may be used

without creating new observation elements. the expression (3.31) must still be used

to populate the matrices in (4.13). Following evaluation of (4.13), the elements of

Bobs corresponding to these elements correspond to BPM . Subsequently, HPM =

1
µ0µrPM

(BPM − Br). Hence constraints c10 and c15 may be evaluated. Referring to

Figure 4.2, the PM demagnetization field observation locations correspond to the

green arrows at the outer surface of the PM.

4.3 Optimization Results

The linear Galerkin formulation detailed in Section 2.2.2 was utilized within a

population-based design study performed in MATLAB using GOSET [41]. The

DBOR solver was utilized for the magnetic field analysis. Each machine was evaluated

at 4 rotor positions, over which the mean torque was evaluated. The Pareto-Optimal

front of the design study is shown in Figure 4.3. The run utilized a population size

of 500 individuals over 500 generations. The computation time required to complete

the design study was 11.4 hours on a simulation workstation with an Intel Xeon
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Fig. 4.3.: Pareto-optimal front of Design Study 1.

E5-2687W v2 3.4 GHz processor and 32 GB RAM. The optimization was performed

using the option of parallel processing within MATLAB/GOSET, which used 8 phys-

ical cores/16 logical ones.

A machine on the Pareto front, Design 50, was selected for evaluation of the

the MoM accuracy. Its cross section is shown in Figure 4.4. The geometry and

operating point parameters are listed in Table 4.4 and conductor density in Table

4.5. A comparison of the computed flux density in the tooth and back-iron with

that obtained using FEA is shown in Figure 4.6. The FEA was performed using the

commercial package ANSYS Electronics Desktop, which required more than 10,000

unknowns per pole on average, whereas the nonlinear Point Matching MoM required

828 unknowns per pole and the Linear Galerkin MoM required only 190 unknowns per

pole. An approximate FEA unknown count is given since the geometry is re-meshed

at each rotor position. To obtain Figure 4.6, the spatial average of the component

normal to the respective cross sections were calculated for zero stator current. The

FEA model used for comparison utilized an energy-based mesh refinement, set to

converge within 0.01%. Within the plot, both the linear Galerkin and nonlinear point
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Fig. 4.4.: Cross section of Design 50.
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Fig. 4.5.: Flux density waveforms in teeth and backiron, zero stator current - PM

flux only.
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Fig. 4.6.: Flux density waveforms in teeth and backiron, rated stator current.
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Fig. 4.7.: Flux density waveforms in teeth and backiron, saturating conditions.
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Fig. 4.8.: Torque waveform over two slot pitches in Design 50.
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Fig. 4.9.: Comparison of Pareto-optimal Fronts, Torque Ripple Constrained.

matching MoM formulations are compared with an FEA model. The comparison was

repeated for the condition of rated stator excitation where and and are shown in

Figure 4.6. Therein, it can be observed that the waveforms closely match that of

the FEA. To view the accuracy of the nonlinear MoM, the stator excitation is set to

275% of rated and the model comparison is again repeated and is shown in Fig. 4.7.

As shown, the nonlinear MoM formulation agrees well with the FEA model, whereas

the linear MoM formulation exhibits inaccuracies as the iron saturates.

The torque computed using the Linear Galerkin MoM formulation is shown in

Figure 4.8, wherein the designations “Analysis Resolution” and “Design Resolution”

indicate respective mesh resolutions of 760 and 190 elements per pole. Furthermore,

the “Analysis Resolution” waveform was computed across 32 rotor positions span-

ning two slot pitches, whereas the “Design Resolution” torque was computed across 8

rotor positions spanning two slot pitches and subsequently averaged. Also shown for

comparison is the torque waveform obtained from a nonlinear FEA. The FEA again

required more than 10,000 elements per pole on average when an adaptive meshing

procedure was set to converge on torque to within 0.1%. The MoM “Analysis Res-
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Table 4.4.: Design 50 Parameters

Description Symbol Value

Phases Nphase 3

Poles P 12

Slots Ss 72

Shaft radius rrs 20 mm

Depth of inert region di 56.750 mm

Depth of inner backiron rrb 8.069 mm

Depth of magnet dm 5.181 mm

Airgap g 2.000 mm

Depth of tooth base dtb 14.856 mm

Depth of stator backiron dsb 15.581 mm

Length of machine l 27.05 mm

Relative permeability of stator iron µrs 32.566× 103 H/m

Relative permeability of rotor iron µrr 27.403× 103 H/m

Relative permeability of magnet µrm 1.02 H/m

Remanent flux density of magnet Br 0.9 T

Tooth fraction αt 0.4512

PM fraction αPM 0.721

Q-axis current Irqs 32.403 A

D-axis current Irds −8.566 A

olution” and FEA torque waveforms are in reasonable agreement with one another.

Visually inspecting the “Design Resolution” average torque, it is apparent that the

“Design Resolution” is sufficient to represent the average of the two higher-resolution

waveforms. Hence, one is reassured that the Linear Galerkin formulation is of suffi-

cient fidelity to predict the average torque in the design fitness evaluation.
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Table 4.5.: Design 50 Conductor Density

Winding Conductor Density (1 pole)

Nas

Nbs

Ncs


0 0 6 11 6 0

−6 −11 −6 0 0 0

6 0 0 0 −6 −11



A second study was performed in which a torque ripple constraint was applied.

After the second magnetic analysis, if the average torque passed constraint c16 a third

magnetic analysis was performed using a higher mesh resolution, as justified in Figure

4.8. In particular, the number of rotor positions per slot pitch was doubled to 8, and

the number of elements per pole was increased to 468. Subsequently, the pk-pk torque

ripple was constrained to be less than 1% of the average. A comparison between the

Pareto-optimal fronts of the original and torque-constrained optimizations are shown

in Figure 4.9. As shown, the torque-ripple constrained designs incur a mass penalty

that is quite significant. The mass penalty is roughly a factor of 1.4. The increased

torque waveform resolution comes at a cost of increased CPU time; the study required

40.1 hours to finish.

It is noted that a comparison was made between a PBD run using the DBOR

solver and one which computed the entire system matrix. The computation times for

the entire system and DBOR are respectively 76.9 h and 10.7 h for a Population ×

Generation size of 500× 500. This corresponds to a computation time improvement

of a factor of roughly 7.

An evaluation of the CPU time was performed on a design chosen at random in the

design process. The breakdown of the tasks involved in the solution is shown in Table

4.6. One can observe that the primary bottleneck in the MoM solution procedure

is the population of the dense system matrix. Indeed, the procedure of creating
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Table 4.6.: CPU Time Breakdown of MoM Field Analysis

Task CPU Time (%)

Meshing 6.57

Matrix Assembly 60.36

Solve 1.84

Observation 21.73

Torque Calculation 9.49

Total 1.025132 s

observation locations and observing the fields there, another Matrix Assembly-heavy

task, is the second most time-consuming component.

4.4 Time Comparison with FEA-based model

In this section, the computational performance of MoM is considered relative to

FEA. FEA-based field predictions presented in previous sections were generated using

the commercial FEA package ANSYS Electronics Desktop [42]. However, comparing

the computational performance of the MATLAB-based MoM implementation with a

commercial FEA package is not very meaningful for several reasons. Chief among

them, the commercial package is compiled into machine code for rapid execution, and

it has been optimized by teams of engineers over several decades. In contrast, the

MoM toolbox is written in MATLAB, an interpreted language, by a single author

without many years to optimize it. In addition to the underlying field analysis, the

commercial FEA package has a computational burden that includes, for example, the

graphical user interface and geometry interaction with the user. Further muddying

the comparison is the possible use of advanced programming techniques such as par-

allelization within the commercial package. For these reasons, the FEA utilized in
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this section, like the MoM toolbox, is a custom implementation written in MATLAB

- a step toward the goal of a meaningful comparison. The basis for the code is the

course notes from ECE 625 taught at Purdue University [43].

It is common for FEA and MoM (or, more generally, differential equation- and

integral equation-based numerical methods) to be compared on the basis of compu-

tational complexities associated with each essential step. In such a comparison, it

is well-known that in the FEM, the meshing and matrix assembly steps respectively

scale in proportion to O(N2) and O(N). It is also well-known that in the MoM the

mesh and matrix assembly steps respectively scale in proportion to O(N) and O(N2).

The computational cost of the solution of the N × N linear system of equations

for each FEA and the MoM depends heavily on the specific algorithm. Direct solu-

tion algorithms applied to the FEM can achieve computationally efficient solutions

provided that node re-orderings take place so that the stiffness matrix has a band-like

structure similar to the 2D Finite Difference method which is able to be solved in

O(N) operations [44]. Iterative solution algorithms, such as the conjugate gradient

method [45] applied to the FEM can achieve computational complexities of O(N1.5)

and multi-resolution type solutions may achieve O(N) complexity [46]. Direct meth-

ods for the solution of dense matrices, such as those encountered in integral equation

numerical methods, are typically unable to escape the O(N3) computational cost,

and therefore most dense matrix solutions utilize iterative methods. Some iterative

methods, such as the Fast Multipole Method [47], are able to achieve O(N logN)

computational cost but must be tailored to a specific problem. While MATLAB is

capable of detecting general sparse matrices and employing some appropriate algo-

rithms to solve them, it is unable to apply the specialized solvers required for the

efficient solution of integral equation methods.

While, as previously discussed, the MoM certainly requires fewer elements, it is the

sparse or full nature of the respective matrices and in turn the associated linear system

solve algorithms that drive the computational complexity differences. Therefore it is



106

perhaps more meaningful to consider a specific example machine and mesh it with

an appropriate number of elements for either FEA or MoM.

Similar to the MoM-based design evaluation, in the FEA-based design evaluation

the problem is meshed once, then the fields are solved at 4 rotor positions which evenly

span one slot pitch. More specifically, the rotor and stator are meshed separately

using the freely-available Triangle utility [48]. Stiffness matrices are formed for the

stator and rotor meshes, which are subsequently adjoined to form a global stiffness

matrix. The adjoining takes place within the matrix rows/columns corresponding to a

compatible set of nodes in the airgap. As the rotor angle is advanced, this stator/rotor

node connection is shifted. Note that in the FEM, the nodes of the aigrap interface

between stator and rotor dictate the discrete values that the rotor angle can take. In

other words, if a different rotation angle value is desired, then the airgap (or possibly

the entire domain) must be re-meshed. In constrast, no such airgap mesh exists in the

MoM and the rotor can be rotated by any desired angle, provided that the influence

matrix has been updated to reflect the new position of the rotor elements.

Whereas the boundary conditions are automatically satisfied in the MoM formula-

tion utilized herein, FEA requires the deliberate application of boundary conditions

to the system matrix and input vector in order to form a matrix equation with

a unique solution. Similar to the MoM design evaluation, the FEA code meshes

and computes the field distribution of a single pole of the machine. However, sim-

ply truncating the domain in which the field is solved will yield incorrect results.

The correct field distribution is only achieved through the application of additional

boundary conditions on the edges of the truncated domains. Specifically, the condi-

tion Az(φ = 0) = −Az(φ = 2π
P

) is enforced in the stator domain, and similarly the

condition Az(φ = θrm) = −Az(φ = θrm + 2π
P

) is enforced in the rotor domain. These

boundary conditions are called “anti-periodic” since they force the field solution to

repeat itself every pole, alternating in sign. Finally, the Dirichlet boundary condition

Az = 0 is applied at the outer domain boundary.
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Fig. 4.10.: MATLAB FEA of SPM machine: mesh (a) and zoomed mesh, with flux

lines (b).

0 2
-1.5

-1

-0.5

0

0.5

1

1.5

Fig. 4.11.: MATLAB FEA: Tooth and Yoke flux density waveforms.

Shown in Fig. 4.10a is the mesh of the problem region in the MATLAB-based

FEA. The outer radius of the problem region was selected to be a multiple of twice

the outer radius of the machine. The mesh resolution impacts the problem size and

hence the computation time, and must not be selected arbitrarily. To best compare

with the MoM design evaluation, the mesh resolution ought to yield a solution that is

balanced between accuracy and computational labor. The procedure used herein for
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Fig. 4.12.: MATLAB FEA: Torque waveforms.

selecting the mesh resolution was as follows. As a strong basis for an accurate torque

prediction, a high mesh density was first enforced within the airgap region, as shown

in 4.10b in addition to the flux lines of the θrm = 0 solution superimposed; this was

accomplished by specifying a reasonably high node density on the rotor and stator

teeth surfaces and airgap mid-lines. Subsequently, an area constraint was further

placed on all triangles and the area was reduced until the average torque prediction

was within 2% of the “converged” average torque predicted by the commercial FEA

package. The mesh resolution utilized herein for the comparison study yielded a

system with 4151 unknown node potentials.

Shown in Fig. 4.12 is the torque vs rotor position predicted by the MATLAB-

based FEA (points 1-4 were computed and point 1 is repeated after these points

for waveform visual continuity). Shown in Fig. 4.11 is the flux density waveforms

predicted by the MATLAB-based FEA. These predictions are in good agreement

with predictions of the MoM and the commercial FEA package reported in the prior

sections.

The computation time breakdown of the MATLAB-based FEA is reported in

Table 4.7, it is apparent that the MoM and FEA computation times are of similar

magnitude. Note that the computation time dedicated to the application of boundary
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Table 4.7.: CPU Time Breakdown of MATLAB-based FEA

Task CPU Time (%)

Meshing 15.59

Matrix Assembly 32.61

Solve 2.01

Observation 44.20

Torque Calculation 5.6

Total 2.686 s

conditions to the system matrix and right-hand side is included within the Matrix

Assembly portion.

In the case of FEA, the observation component of computation time consists of a

routine wherein the list of triangles is searched to identify the triangles that encircle

specific points at which one wishes to observe the magnetic fields. These points are

triangles in the six stator teeth and six stator yokes. Subsequent to the identification

of indices, the magnetic field inside these specific triangles is computed from the

magnetic vector potential, i.e. B = ∇×A. Shown in Fig. 4.11 are the observed flux

density waveforms in the stator teeth and yokes which were reconstructed in a similar

fashion to the MoM design evaluation. The waveforms are in good agreement with

the commercial FEA and MoM waveforms shown in Fig. 4.6.

A slight issue in the comparison is the fact that the meshing utility, Triangle, is a

compiled program. The meshing process takes as inputs a list of unique node locations

and a list of node pairs that define the boundaries of each domain. The MATLAB

code which produces these lists is a modified form of the MoM meshing routine.

Hence, the meshing time required in FEA can be no less than the MoM meshing

time, and were the meshing utility written in MATLAB, one can expect the FEA

meshing time to be longer than reported in table 4.7. Writing code that implements
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surface meshing is a manageable task for a computer programmer. However a surface

meshing routine such as Triangle is more specialized and is written by experts in the

field of meshing. Hence, this discussion highlights the fact that there is a greater ease

in meshing a geometry for MoM-based analysis than FEA.

Based on the comparison presented in this section, the MoM and FEA appear to

be close in overall computation time. However, the backslash operator, “\” or “ml-

divide”, is used within MATLAB herein to solve both systems. MATLAB is capable

of detecting the sparseness of the FEA stiffness matrix applying a suitable compu-

tationally efficient solver. In contrast, the full MoM system matrix cannot escape

the O(N3) complexity without the use of specialized solvers. With this difference in

mind, if an integral equation fast solver were to be used, such as the Fast Multipole

Method [47], the possibility of further reducing the MoM computation time may be

open.
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5. HYBRID NONLINEAR MODEL FOR V-SHAPE

INTERIOR PMSM

The nonlinear MoM formulation in Section 2.3 was first derived by Howard [4] to

account for bound currents that reside within the volume of nonlinear materials.

Therein, volume meshing of the magnetic material becomes necessary, increasing the

element count of the mesh and consequently the computational effort of the MoM.

In addition, the equation system becomes nonlinear, requiring an iterative solution.

In an attempt to reduce the computational effort, herein a focus is to develop a

hybrid method in which surface and volume meshing are combined. The concept

of hybridization has been considered in [4]. Therein, linear and nonlinear elements

co-occupy the same volume and the associated bound currents are in superposition.

Herein, a primary difference is that the surface and volume elements do not act

in superposition. Rather, magnetic material regions are partitioned into linear and

nonlinear sub-regions and subsequently solved simultaneously.

To demonstrate the approach, a V-shaped Interior PM (IPM) is utilized. The ma-

chine features regions of significant local saturation within the so-called PM “bridges”

in the rotor. Thus, a hybrid model which selectively applies volume meshing only at

the locations that are saturated is an interesting prospect for this machine.

Prior to implementing the hybrid model, the machine is analyzed using a linear

Galerkin formulation. This formulation is first used to show that a nonlinear MoM

is indeed necessary and to foreshadow the difficulty of accurate torque predictions of

the IPM. The mathematical structure of the hybrid model is then considered. This

includes modifications to the N-R algorithm in Section 2.3 that are required for the

hybrid model to converge within relatively few iterations. Subsequently the hybrid

model of the IPM is used to examine its feasibility for PBD purposes. In doing so,

several alternative combinations of linear and nonlinear elements are applied. The
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Fig. 5.1.: Diagram of rotor geometry in IPM machine.

accuracy and computational performance are compared in order to determine whether

hybrid models show promise.

5.1 Motivating Nonlinear Analysis

A cross section of the IPM rotor is shown in Fig. 5.1 (reprinted with permission

[49]). The IPM machine is a topology that is challenging to analyze because the

so-called “bridges” of the rotor steel are heavily saturated at all times where the

rotor steel presents a “short circuit” path to the PM flux. As a consequence of this

saturation, the flux distribution in the airgap due to the PM is heavily dependent

upon the nonlinear operating point of the rotor bridges, and thus a proper analysis

of IPM machines must take bridge saturation into account.

As a first step sanity check, the MoM was used to analyze the IPM topology in

the magnetically linear case utilizing the Galerkin formulation in Chapter 2 and the

accompanying DBOR reduction in Chapter 3. To establish a linear model, the relative

permeability in all steel elements was set to a constant 32,565.75 for M19 steel acting

in the linear region. The stator excitation was set to rated, wherein Irqs = 10.57 A,
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and Irds = −8.68 A. The MoM mesh, shown in Fig. 5.3a required 8,418 elements per

pole in order to reach reasonable agreement with the FEA-prediced torque. The FEA

was set to adaptively refine its mesh until the change in torque was less than .01%.

The MoM mesh was manually refined wherein the rotor outer surface and tooth tip

surfaces were the main targets of the refinement, since one might expect that the

proximity of these geometric members will impact the torque value. The flux density

vs rotor position in tooth 1 and yoke 1, respectively, is shown in Fig. 5.3a and 5.3b

for both the MoM and FEA. The normal and tangential components of flux density

in the airgap are shown in Figs. 5.4a and 5.4b, respectively, for both MoM and FEA.

The torque vs rotor position is shown in Fig. 5.5. Inspecting visually, the agreement

among the flux density waveforms is respectable, yet there is noticeable disagreement

in the predicted torque. This is interesting since both the MoM and FEA meshes

for this study are considered to be of rather fine resolution. The torque mismatch is

corroborated by examining the convergence of the respective torque calculations as

their meshes are refined, as shown in Figure 5.6. The MoM torque was computed at

θrm = 0.0654 rad (the location of greatest mismatch) as the mesh was indiscriminately

refined on all surfaces. One may notice that even with MoM element counts which

are fairly high (1,000-5,000 elements per pole) there is extreme mismatch in the

torque calculation, roughly by an order of magnitude. At very high element counts,

although the MoM torque appears to not yet be converged, the storage requirement of

the system matrix, even when utilizing the DBOR reduction, exceeded the available

memory of 32 GB and computation times were reaching as high as 30 minutes per

mesh resolution.

The mismatch in the torque waveform (Fig. 5.5) is unexpected since a good torque

waveform agreement with FEA was observed with the SPM machine. The low value of

average torque obtained is the result of the short circuiting of the PM flux. Without

saturation of the flux bridge, there is very little flux from the permanent magnet

crossing the airgap. Indeed, it will be shown in the next sections that nonlinear
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models are required in order to obtain the expected average torque under rated stator

current, which is approximately 33 Nm.

0.08 0.09 0.1 0.11 0.12 0.13 0.14 0.15

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

Fig. 5.2.: Linear MoM model of IPM machine: Single pole mesh of IPM machine;

8414 elements per pole.
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Fig. 5.3.: Linear MoM model of IPM machine: Flux density vs rotor position com-

parison in (a) tooth 1 and (b) yoke 1.
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Fig. 5.4.: Linear MoM model of IPM machine: Airgap flux density comparison at

θrm = 0 of (a) ρ component and (b) φ component.
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Fig. 5.5.: Linear MoM model of IPM machine: Torque vs rotor position.
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Fig. 5.6.: Linear MoM model of IPM machine: Convergence of torque calculations at

θrm = 0.0654 rad.
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5.2 Hybrid Method Description

(a) (b)

Fig. 5.7.: Hybrid MoM mesh: linear/nonlinear elements occupying separate domains

(a) and in superposition(b).

5.2.1 Mesh and Nonlinear Characteristic

The hybrid model utilized in this research is one in which the linear and nonlinear

elements occupy separate spatial domains. This is illustrated in Fig. 5.7a wherein a

single nonlinear element (blue region) has been placed at a flux bottleneck adjacent to,

but distinct from, the material meshed with linear elements (red regions on either side

of the bottleneck). The separation of the domains is apparent due to the redundant

boundary mesh vectors at the ports of the flux bottleneck and is exaggerated in

the figure with a small separation (small white region) to further emphasize the

separation. One drawback of the separate-domains formulation is that it requires the

modification of an existing linear Galerkin mesh to de-enclose a region in which a

nonlinear region is to be introduced and subsequently meshed.

In [4] a hybrid model was proposed in which linear and nonlinear elements co-

occupy a single domain such that their respective bound currents are in superposition

within the magnetic material. This is illustrated in Fig. 5.7b wherein the demag-

netizing material (blue region) is superimposed upon the linear material (single red

region now including the bottleneck and adjacent ports) to form the region with su-

perimposed bound currents (purple region). The superposition hybrid formulation is
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attractive since any pre-existing linear Galerkin mesh may be utilized and a selec-

tive volume mesh of the local saturation regions may be superimposed upon it where

saturation is expected. Hence no modification of the linear Galerkin mesh, or a com-

puter program to generate one, is required. This choice of model affects the material

nonlinear characteristic that must be used. Specifically, the volume-meshed elements

must act to de-magnetize only when flux densities near saturation. In attempting to

implement this method, it was observed that such a nonlinear characteristic causes

poor convergence of nonlinear equation solvers, hence the separate-domains hybrid

method was chosen over it.

5.2.2 Matrix Equation

To form the hybrid model, the linear and nonlinear MoM formulations are com-

bined. From the linear equation system (2.6) and the nonlinear residual form (2.30),

the residual of the hybrid system isgL(x)

gNL(x)

 =

fBLML
fBLMNL

fBNLML
fNLMNL

x +

Bsource,L

Bsource,NL

−
fBtotML

ML

fBtot(MNL)

 (5.1)

where the unknown vector

x =

ML

MNL

 (5.2)

now contains both the linear and nonlinear material magnetization vectors and the

source magnetic field contributions to the linear and nonlinear elements due to known

free and bound current sources are given byBsource,L

Bsource,NL

 =

fBLIf

fBNLIf

 If +

fBLIPM

fBNLIPM

 IPM (5.3)

The Galerkin formulation is used for the linear material equations and the point-

matching formulation is used for the nonlinear materials equations. Hence, the un-

known vector ML is the tangent component of magnetization and the unknown vector
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MNL is the x- and y- component of magnetization, although, for sake of clarity, this

information is not contained within the subscripts.

Application of the DBOR reduction to the hybrid system is accomplished by

applying DBOR reductions to the linear and nonlinear portions of the hybrid tableau

using the respective procedures in Sections 3.6.1 and 3.6.3. It is desired to reduce the

linear and nonlinear components of (5.1) to one block-row each. Applying the DBOR

reductions yields{gL(x)}1

{gNL(x)}1

 =

[ÃL,L]P/2+1 [ÃL,NL]P/2+1

[ÃNL,L]P/2+1 [ÃNL,NL]P/2+1

x+

{Bsource,L}1

{Bsource,NL}1

−
[fBtotML

]1{ML}1

fBtot({MNL}1)


(5.4)

where due to the DBOR reduction process, each of the four matrices within the system

matrix tableau are given by

[ÃL,L]P/2+1 = [AL,L]1 − [AL,L]2 + · · ·+ [AL,L]P−1 − [AL,L]P

[ÃL,NL]P/2+1 = [AL,NL]1 − [AL,NL]2 + · · ·+ [AL,NL]P−1 − [AL,NL]P

[ÃNL,L]P/2+1 = [ANL,L]1 − [ANL,L]2 + · · ·+ [ANL,L]P−1 − [ANL,L]P

[ÃNL,NL]P/2+1 = [ANL,NL]1 − [ANL,NL]2 + · · ·+ [ANL,NL]P−1 − [ANL,NL]P

(5.5)

where each of which are comprised, respectively, of the blocks within block-row 1 of

the matrices

AL,L = fBLML

AL,NL = R−1fBLMNL
R

ANL,L = fBNLML

ANL,NL = R−1fBNLMNL
R.

(5.6)

The relationship (3.130) is used to form the first block-row of each AL,NL and ANL,NL.

5.2.3 Modified Newton-Raphson Algorithm

The Newton-Raphson (N-R) method is a popular choice for solving systems of

nonlinear equations due to its quadratic convergence property. This quality is enjoyed
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provided the initial guess is in the vicinity of the solution. Otherwise, taking the “full”

Newton step

xk+1
full = xk − J−1g

(
xk
)

(5.7)

at each iteration may cause failure of convergence. A common means to prevent such

a failure is to relax, or dampen, the Newton step by using a weighted sum of the old

iterate (index k) and full Newton step (index k + 1):

xk+1
relaxed =αxk+1

full + (1− α)xk

=xk − αJ−1g
(
xk
) (5.8)

where α ∈ (0, 1] is termed the “relaxation factor.”

In applying the N-R process of Section 2.3, it was observed that the solution

trajectory would often venture into regions with extremely high magnetic fields – in

excess of 1× 104 T – and subsequently many iterations (hundreds) were required to

attain convergence, with some trajectories failing to converge. A relatively straight-

forward method of overcoming this was found by detecting any large change in flux

density. Specifically, the change in flux density is monitored between each iteration

by computing

∆Bk+1 = fBtot(M
k+1
NL )− fBtot(M

k
NL) (5.9)

When a large change in magnetic field is observed, the progress made by the prior

full Newton step is adjusted along its original direction:

xkrelaxed = αxk + (1− α)xk−1

xk = xkrelaxed

(5.10)

using a small value for α - a process known as back-tracking [50]. It was found that

a back-tracking step with α = 0.05 tends to correct the solution trajectory in the

vast majority of cases encountered. This modified N-R process may be viewed as a

binary variant of the globally convergent N-R method [50]. A flowchart of the N-R

process is depicted in Fig. 5.8. In this research, the linear solution of the hybrid

model was used as an initial guess, however the respective relative permeabilities
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used in the fBtotM diagonal entries are computed using functions [26] which depend

on flux density, wherein the flux density is set to a value on the saturation knee of

the material.

5.3 Comparison of Hybrid Models

In this section, four hybrid models are used to compute the relevant information

needed for a fitness evaluation in a PBD design run; this information includes torque

vs rotor position, and flux densities vs rotor position in one stator tooth and backiron

segment over the angular span of two slot pitches. The core loss is predicted using

the flux density waveforms as was done in the design study in Chapter 4. The models

are compared in terms of their accuracy in torque and loss predictions and in terms

of their computation time components. The particular machine design studied is

“IPM Design 284” operating under condition “OP 1” from [49]. For convenience,

the geometry and operating condition parameters for this machine/study are listed

in Table 5.1.

All four hybrid models in the comparison utilize the separate-domains hybrid

method for their mesh and nonlinear material characteristic and all models use the

modified N-R algorithm of Section 5.2.3 to solve the nonlinear matrix equation. The

magnetic material properties/nonlinear characteristics were taken from the Power

Magnetic Material Toolbox [26] for the respective materials in Table 5.1. The four

hybrid models differ in the degree to which they are volume meshed, ranging from a

full volume mesh of all steel to only the rotor bridges having a volume mesh. The

hybrid models are used to compute flux density and the torque waveforms. Each

model utilizes both a low resolution (LR) and high resolution (HR) mesh to examine

the effect of element count on accuracy. A comparison table is provided following the

waveform comparisons of each hybrid model. The table is used to report the compu-

tation time breakdown of each hybrid model and resolution as well as the linear and

nonlinear element counts, maximum iterations required and error in average torque
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Initial guess x0

% Update NL Flux Density

Bxy,NL,prev = Bxy,NL;

Bxy,NL = fBtotM(xk); % (2.26)

∆B = Bxy,NL −Bxy,NL,prev;

∆B >

Thresh?

% Heavy Relaxation

α = .05;

% Back-track along Newton dir.

xkrelaxed = αxk + (1− α)xk−1;

xk = xkrelaxed;

% Update NL Flux Density

Bxy,NL = fBtotM(xk); % (2.26)% Update Jacobian

(3.135),(5.5)

% Full Newton Step

α = 1;

xk+1 = xk − αJ−1g
(
xk
)
;

k = k + 1;

∥∥xk+1 − xk
∥∥ <

Abs/Rel Tol?

Terminate

N-R

yes

no

no

yes

Fig. 5.8.: Flow chart for selective relax N-R process.
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and loss. FEA-based predictions of the same quantities for the same machine/condi-

tions are used as the basis of the comparisons.

A final note is made on the error calculation of flux density waveforms. In the MSE

loss calculation, the derivatives of flux density waveforms are established via numer-

ical differentiation and are subsequently squared. This process leads to a nonlinear

mapping of the error in the waveforms to the error in the loss prediction. Instead of

percent error in calculated loss, the error in the flux density waveforms is established

using a Mean Relative Error:

MREBT1
= 1

N

N∑
i=1

|BT1,MoM(i)−BT1,FEA(i)|
max(BT1,FEA)

(5.11)

MREBY 1
= 1

N

N∑
i=1

|BY 1,MoM(i)−BY 1,FEA(i)|
max(BY 1,FEA)

(5.12)

where instead of using the denoninator |BFEA(i)|, as is standard, we use the maximum

of the “reference” waveform as the denominator to avoid introducing artificial error

near zero crossings. The quantity MREB = 100
2

(MREBT1
+MREBY 1

) is reported as

a percentage in the following comparison tables.

5.3.1 All Steel Nonlinear: Model A

In this hybrid method, the stator and rotor steel are fully volume meshed with

triangles using the PDE Toolbox [51]. The linear PM material is meshed with a

logarithmically-spaced surface mesh. Results predicted using both low and (rela-

tively) high mesh resolution MoM hybrid methods are compared with similar results

predicted by FEA. The LR and HR meshes are shown in Figs. 5.9a and 5.9b. A

closer view of the rotor bridge mesh for the LR and HR cases is shown in Figs. 5.10a

and 5.10b. The predicted flux density waveforms in a stator tooth over rotor posi-

tions spanning two poles for the LR and HR cases is shown in Figs. 5.11a and 5.11b.

Surprisingly, the LR case is visually determined to be in better agreement with FEA

than the HR case. The predicted flux density waveforms in a stator backiron yoke
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Table 5.1.: Comparison Conditions “OP 1” and Parameters for “Design 284” [49]

Parameter Value Unit Description

Irqs 10.75 A Q-axis stator current

Irds −8.68 A D-axis stator current

M19 Stator Steel Type

M19 Rotor Steel Type

Ferrite AC-12 Permanent Magnet Type

P 16 Pole count

Nas [0 4 13 13 4 0] a-phase conductor density (1 pole)

ωrm 104.72 rad/s rotor speed, mechanical

Ss 96 Number of stator slots

l 34.2 mm Machine length

l′bi 1.3 mm Length of flux barrier

rrs 20.0 mm Rotor shaft radius

rri 105.9 mm Radius to inner rotor backiron

rrb 108.3 mm Radius to inside corner of inner flux barrier

rbo 116.9 mm Radius to underside of outer bridge

wbo 0.5 mm Width of outer bridge

g 0.5 mm Airgap

rst 117.9 mm Radius to stator tooth tips

rsb 130.59 mm Radius to stator backiron

rss 136.99 mm Outer radius of machine

αtt 0.6 Tooth fraction

αpm 0.8357 PM fraction

αdm 0.2502 Depth of PM fraction

θlm 0.1495 rad PM angle of inclination



125

over rotor positions spanning two poles for the LR and HR cases is shown in Figs.

5.12a and 5.12b. Respectable agreement is attained in both. The torque waveforms

predicted over rotor positions spanning two slots for the LR and HR cases is shown

in Figs. 5.13a and 5.13b. The torque waveform visually differs from FEA, yet in

the average sense both the LR and HR cases appear to agree well with FEA. This

is somewhat expected considering the discussion of the linear IPM model in Section

5.1. The computational performance is listed in Table 5.2. Notable is the accuracy in

average torque in both LR and HR cases, although the computation times are both

relatively high.

As the mesh is refined, it is expected that FEA and MoM will improve their

agreement with one another. The flux density waveform BT1 of the HR case stands

out as there are two regions of obvious disagreement, going against expectations.

The reason for this disagreement is not yet known, except to say that further mesh

refinements did not improve the agreement and the disagreement became stationary.

It is currently thought that using a volume integral to establish the influence between

edge and polygon elements may be a possible remedy.
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Fig. 5.9.: Hybrid MoM model of IPM machine: low (a) and high (b) mesh resolution

cases - all steel nonlinear NL.
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Fig. 5.10.: Hybrid MoM model of IPM machine: low (a) and high (b) mesh resolution

cases - all steel nonlinear (zoomed view of bridge/teeth).
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Fig. 5.11.: Hybrid MoM model of IPM machine: Magnetic field vs rotor position in

stator tooth 1 in low (a) and high (b) mesh resolution cases - all steel nonlinear.
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Fig. 5.12.: Hybrid MoM model of IPM machine: Magnetic field vs rotor position in

stator yoke 1 in low (a) and high (b) mesh resolution cases - all steel nonlinear.

0 0.02 0.04 0.06 0.08 0.1 0.12
10

12

14

16

18

20

22

24

(a)

0 0.02 0.04 0.06 0.08 0.1 0.12
12

14

16

18

20

22

24

(b)

Fig. 5.13.: Hybrid MoM model of IPM machine: Torque vs rotor position in stator

tooth 1 in low (a) and high (b) mesh resolution cases - all steel nonlinear.
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Table 5.2.: Computational Performance Comparison - All Steel Nonlinear

Low Resolution High Resolution

Metric Value Value Unit

Mesh 0.95 .66 s

Matrix population 23.47 213.26 s

Solve 5.78 29.34 s

Observation 21.55 45.97 s

Torque 6.53 28.88 s

Total CPU Time 58.29 318.11 s

Max NL Iterations 17 23

Error Avg. Torque 4.90 0.904 %

MREB 1.85 2.22 %

Elements/pole 104(L)+422(NL) 240(L)+952(NL)
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5.3.2 Nonlinear Rotor Bridges and Full Stator: Model B

In this hybrid method, the stator and rotor bridges are volume meshed using

4-sided polygons, which was manually programmed in order to have control over

local mesh density. The linear PM material is meshed with a logarithmically-spaced

surface mesh. Results predicted using a low and (relatively) high mesh resolution

MoM hybrid method are compared with similar results predicted by FEA. The LR

and HR meshes are shown in Figs. 5.14a and 5.14b. A closer view of the rotor bridge

mesh of the LR and HR cases is shown in Figs. 5.15a and 5.15b. The predicted flux

density waveforms in a stator tooth over rotor positions spanning two poles for the LR

and HR cases is shown in Figs. 5.16a and 5.16b. Neither waveform matches FEA well,

although the HR case achieves an improvement. The predicted flux density waveforms

in a stator backiron yoke over rotor positions spanning two poles for the LR and HR

cases is shown in Figs. 5.17a and 5.17b. Again neither waveform matches FEA

well, although the resolution mesh achieves an improvement. The torque waveforms

predicted over rotor positions spanning two slots for the LR and HR cases is shown

in Figs. 5.18a and 5.18b. The torque waveforms have similarly poor agreement and

additionally visually disagree in the average torque. The computational performance

is listed in Table 5.3. Notable is the low computation time of the LR method and low

nonlinear iterations of both LR and HR cases. Also notable is the poor performance

in every other metric.
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Fig. 5.14.: Hybrid MoM model of IPM machine: low (a) and high (b) mesh resolution

cases - rotor bridges and stator NL.
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Fig. 5.15.: Hybrid MoM model of IPM machine: low (a) and high (b) mesh resolution

cases - rotor bridges and stator NL (zoomed view of bridge/teeth).
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Fig. 5.16.: Hybrid MoM model of IPM machine: Magnetic field vs rotor position in

stator tooth 1 in low (a) and high (b) mesh resolution cases - rotor bridges and stator

NL.
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Fig. 5.17.: Hybrid MoM model of IPM machine: Magnetic field vs rotor position in

stator yoke 1 in low (a) and high (b) mesh resolution cases - rotor bridges and stator

NL.
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Fig. 5.18.: Hybrid MoM model of IPM machine: Torque vs rotor position in stator

tooth 1 in low (a) and high (b) mesh resolution cases - rotor bridges and stator NL.

Table 5.3.: Computational Performance Comparison - Rotor Bridges and Stator Non-

linear

Low Resolution High Resolution

Metric Value Value Unit

Mesh 0.31 0.45 s

Matrix population 2.78 44.44 s

Solve 2.38 4.36 s

Observation 5.88 31.00 s

Torque 1.25 15.68 s

Total CPU Time 12.6 95.93 s

Max NL Iterations 12 13

Error Avg. Torque 52.16 15.47 %

MREB 35.33 8.65 %

Elements/pole 208(L)+45(NL) 494(L)+405(NL)
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5.3.3 Nonlinear Rotor Bridges and Stator Teeth: Model C

In this hybrid method, the stator (teeth only) and rotor bridges are volume meshed

using 4-sided polygons, which was manually programmed in order to have control over

local mesh density. The linear PM material is meshed with a logarithmically-spaced

surface mesh. Results predicted using a low and (relatively) high mesh resolution

MoM hybrid method are compared with similar results predicted by FEA. The LR

and HR meshes are shown in Figs. 5.19a and 5.19b. A closer view of the rotor bridge

mesh of the LR and HR cases is shown in Figs. 5.20a and 5.20b. The predicted flux

density waveforms in a stator tooth over rotor positions spanning two poles for the

LR and HR cases is shown in Figs. 5.21a and 5.21b. The agreement is reasonable

in both cases with a slight improvement achieved in the HR case. The predicted

flux density waveforms in a stator backiron yoke over rotor positions spanning two

poles for the LR and HR cases is shown in Figs. 5.22a and 5.22b. It is visually

examined that the LR waveform has higher harmonic content than FEA and the

HR case improves on this to attain a reasonable agreement. The torque waveforms

predicted over rotor positions spanning two slots for the LR and HR cases is shown

in Figs. 5.23a and 5.23b. The torque waveforms have agreeable average values and

visually have disagreement in the peak-peak torque. The computational performance

is listed in Table 5.4. Notable is the low computation time of the LR method, low

nonlinear iterations of both LR and HR cases and good average torque agreement.
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Fig. 5.19.: Hybrid MoM model of IPM machine: low (a) and high (b) mesh resolution

cases - only rotor bridges and stator teeth NL.

0.112 0.114 0.116 0.118 0.12 0.122 0.124

-2

0

2

4

6

8

10

10-3

(a)

0.112 0.114 0.116 0.118 0.12 0.122 0.124

-2

0

2

4

6

8

10

10-3

(b)

Fig. 5.20.: Hybrid MoM model of IPM machine: low (a) and high (b) mesh resolution

cases - only rotor bridges and stator teeth NL (zoomed view of bridge/teeth).
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Fig. 5.21.: Hybrid MoM model of IPM machine: Magnetic field vs rotor position in

stator tooth 1 in low (a) and high (b) mesh resolution cases - only rotor bridges and

stator teeth NL.
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Fig. 5.22.: Hybrid MoM model of IPM machine: Magnetic field vs rotor position in

stator yoke 1 in low (a) and high (b) mesh resolution cases - only rotor bridges and

stator teeth NL.
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Fig. 5.23.: Hybrid MoM model of IPM machine: Torque vs rotor position in stator

tooth 1 in low (a) and high (b) mesh resolution cases - only rotor bridges and stator

teeth NL.
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Table 5.4.: Computational Performance Comparison - Rotor Bridges and Stator Teeth

Nonlinear

Low Resolution High Resolution

Metric Value Value Unit

Mesh 0.20 0.26 s

Matrix population 3.45 26.83 s

Solve 2.81 3.81 s

Observation 5.95 24.03 s

Torque 1.11 13.04 s

Total CPU Time 13.52 67.97 s

Max NL Iterations 14 10

Error Avg. Torque 3.54 2.65 %

MREB 7.71 5.69 %

Elements/pole 280(L)+27(NL) 638(L)+243(NL)
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5.3.4 Nonlinear Rotor Bridges Only: Model D

In this section, the most bare bones hybrid model is examined. In this hybrid

method, the stator (teeth only) and rotor bridges are volume meshed using 4-sided

polygons, which was manually programmed in order to have control over local mesh

density. The linear PM material is meshed with a logarithmically-spaced surface

mesh. Results predicted using a low and (relatively) high mesh resolution MoM

hybrid method are compared with similar results predicted by FEA. The LR and HR

meshes are shown in Figs. 5.24a and 5.24b. A closer view of the rotor bridge mesh of

the LR and HR cases is shown in Figs. 5.25a and 5.25b. The predicted flux density

waveforms in a stator tooth over rotor positions spanning two poles for the LR and

HR cases is shown in Figs. 5.26a and 5.26b. The agreement is reasonable in both cases

with a slight improvement achieved in the HR case. Both waveforms overestimate

the flux density. The predicted flux density waveforms in a stator backiron yoke over

rotor positions spanning two poles for the LR and HR cases is shown in Figs. 5.27a

and 5.27b. Again the waveforms overpredict the flux density. The torque waveforms

predicted over rotor positions spanning two slots for the LR and HR cases is shown

in Figs. 5.28a and 5.28b. The torque waveforms have agreeable average values and

visually have disagreement in the peak-peak torque. The computational performance

is listed in Table 5.5. Notable is the low computation time of the LR method, low

nonlinear iterations of both LR and HR cases and good average torque agreement.
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Fig. 5.24.: Hybrid MoM model of IPM machine: low (a) and high (b) mesh resolution

cases - only rotor bridges NL.
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Fig. 5.25.: Hybrid MoM model of IPM machine: low (a) and high (b) mesh resolution

cases - only rotor bridges NL (zoomed view of bridge/teeth).
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Fig. 5.26.: Hybrid MoM model of IPM machine: Magnetic field vs rotor position in

stator tooth 1 in low (a) and high (b) mesh resolution cases - only rotor bridges NL.
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Fig. 5.27.: Hybrid MoM model of IPM machine: Magnetic field vs rotor position in

stator yoke 1 in low (a) and high (b) mesh resolution cases - only rotor bridges NL.
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Fig. 5.28.: Hybrid MoM model of IPM machine: Torque vs rotor position in stator

tooth 1 in low (a) and high (b) mesh resolution cases - only rotor bridges NL.

Table 5.5.: Computational Performance Comparison - Only Rotor Bridges Nonlinear

Low Resolution High Resolution

Metric Value Value Unit

Mesh 0.46 0.34 s

Matrix population 4.54 22.77 s

Solve 2.44 3.38 s

Observation 6.61 18.23 s

Torque 1.40 6.98 s

Total CPU Time 15.45 51.73 s

Max NL Iterations 11 12

Error Avg. Torque 3.98 2.71 %

MREB 7.32 7.27 %

Elements/pole 388(L)+12(NL) 998(L)+48(NL)
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5.4 Comparing Computation with FEA

Similar to section 4.4, a direct computational comparison with a MATLAB-based

FEA of the IPM machine is presented in this section. Herein the differences are

highlighted, but the reader is referred to Section 4.4 for more complete details. The

FEA is evaluated at 8 rotor positions which evenly span two slot pitches. The FEA

solution employs the Newton-Raphson method to solve the nonlinear equation system

[43]. The mesh refinement procedure was equivalent to that used in Section 4.4. The

mesh is shown in Fig. 5.29 with flux lines of the θrm = 0 solution superimposed. The

corresponding global stiffness matrix involves 15,105 unknown potentials.

The computation time breakdown of the MATLAB-based FEA design evaluation

is shown in Table 5.6. Note that within the Newton-Raphson solve, the stiffness

matrix is updated every iteration; the solve time reported in Table 5.6 represents

only the linear equation system solve time within each nonlinear iteration and the

matrix assembly time represents initial assembly and all updates that occur to the

stiffness matrix within nonlinear iterations, including the enforcement of boundary

conditions.

The flux density waveforms in the stator teeth and backiron are shown in Figs.

5.31a and 5.31b. The Torque waveform is shown in Fig. 5.30 (points 1-8 were com-

puted and point 1 is repeated after these points for waveform visual continuity).

These waveforms are in strong agreement with those reported in the prior sections

by both MoM and the commercial FEA package.

5.5 Discussion

Based on the results comparison of the four hybrid models, there are two models

which may be suitable for a PBD application, namely Models C and D. Reasonably

low computation time and average torque agreement render the models promising.

Although the computation times reported for all hybrid models are at least an

order of magnitude larger than those reported for SPM Design 50 in Chapter 4, it
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Fig. 5.29.: MATLAB FEA of IPM machine: zoomed in mesh with flux lines.
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Fig. 5.30.: MATLAB FEA of IPM: Torque waveforms.

is not necessarily fair to directly compare the computational performance of these

two machines. Aside from the impacts that volume meshing and nonlinear equation

solving have on computational performance, several other factors are at play. Since

the pole count is higher in IPM Design 284, more blocks are present in block-row 1

of the DBOR reduction, hence increasing the total element count and computational

expense. Further impacting hybrid method computational performance is the fact
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Fig. 5.31.: MATLAB FEA of IPM machine: flux waveform density in teeth (a) and

backiron (b).

Table 5.6.: CPU Time Breakdown of MATLAB-based FEA of IPM Machine

Task CPU Time (%)

Meshing 0.46

Matrix Assembly 95.25

Solve 2.65

Observation 1.024

Torque Calculation 0.62

Total 220.907 s

Max NL Iterations 13

that the IPM has more boundaries requiring a mesh than the SPM which impacts

the per-pole element count. Any mesh elements on a redundant boundary may not

be eliminated in the nonlinear case, as was done in Chapter 3.



145

6. SUMMARY AND CONCLUSIONS

This research focused on the use of the MoM in the design and analysis of electric

machinery. Several extensions to the MoM formulations described in [4] were derived

herein. These include the contribution of closed-form magnetic field integral expres-

sions supplementing those derived in [4], closed-form torque integral expressions, the

calculation of distributed winding inductance and a method that exploits the geomet-

ric periodicity inherent in electric machines. The formulations and extensions were

utilized within the magnetic field analysis of a PBD routine to determine the Pareto-

optimal mass/loss front for surface mount PMSMs. The computational performance

of the PMSM design study led to the conclusion that the linear Galerkin MoM is a

useful magnetic field analysis tool for PBD purposes. Finally, the linear Galerkin and

nonlinear point-matching formulations were combined into a hybrid method which

was used to model an IPM machine in order to examine the hybrid formulation for

use within PBD.

6.1 Suggested Future Work

The suggested future research following this dissertation is centered around the

theme of further reduction of the computational expense of each magnetostatic solu-

tion to increase the attractiveness of employing the MoM within PBD optimization.

This goal may be approached along several fronts. The importance of algebraic sim-

plification to attain compact closed-form integral solutions was stressed in [4] and

was carried forward in this research. Aside from simplifying the underlying mathe-

matical expressions, there is almost always room for improvement in the computer

code that implements the expressions. The MATLAB code for the MoM toolbox de-

scribed herein was written with efficiency in mind, taking advantage of vectorization
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to the extent possible. However, moving the core matrix population functions to C

MATLAB Executable (MEX) functions will retain the unimpeded rapid development

granted by interpreted languages such as MATLAB while also benefiting from the

reduction of computational effort provided by a compiled language such as C.

An MoM formulation utilizing higher order basis/testing functions in the influence

matrices, such as linear or quadratic functions, typically leads to a given accuracy

with fewer unknowns than the formulation utilizing pulse/delta bases used herein.

The closed-form expressions recently developed in [16] may be useful toward this goal.

Utilizing the higher order formulations would also entail the derivation of compatible

force, torque and inductance expressions. In this research, the DBOR reduction

eliminated the need to compute the entire influence matrix by the exploitation of

geometric periodicity and its corresponding equation system structure. Exploring the

exploitation of any remaining geometric periodicity, such as among the stator teeth,

is of interest to further reduce the number of influence matrix elements explicitly

computed during the matrix assembly stage.

A modified Newton-Raphson-based algorithm was developed in this research which

solved the hybrid formulation nonlinear equation system in relatively few iterations.

More advanced algorithims my lead to a further reduction in the iteration counts

required for convergence. Perhaps avoidance of iteration altogether is possible. One

such non-iterative nonlinear solution method is the Holomorphic Embedded Load

Flow Method (HELM) [52]. It is interesting to consider the use of such a non-iterative

method, or the principles on which it is based, outside the context of the load flow

problem, and used to solve nonlinear MoM problems.

Finally, it is recognized that many so-called “fast algorithms” have been devel-

oped to solve the matrix equations in integral-equation-based numerical methods.

Some, such as the Fast Multipole Method (FMM), are based on the principle that

the field contributions of a group of far-field sources in close proximity to one another

may be lumped together into a single influence matrix element, introducing sparsity

into the influence matrix. In fact, it is claimed that the FMM [47] transforms the
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storage requirements from O(N2) to O(N). Since the effect of grouping sources is

only approximately true, the sparsity comes at the cost of introduced error. Yet the

error may be controlled by the degree to which sources are grouped and the distance

to the influenced element. Since the components of electric machine geometries are

interacting at relatively close distances compared to radiation and scattering prob-

lems, it would be interesting to explore the tradeoff between increased sparsity and

introduced error. Since it was found in this research that the matrix population time

is the largest component of computational effort, it is hoped that employing the FMM

will significantly reduce the total computational effort.
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A. ANALYTICAL EVALUATION OF TORQUE

INTEGRAL

The force on an observation element was shown in Section 2.4 to be derived from the

Lorentz force and is expressed

F (~p) = ~I(~p)× ~B(~p) (A.1)

The force is integrated to obtain the total force on element l2:

Fl2 =

∫
l2

(
Il2
l2
ẑ

)
× ~Bs(~p)dp (A.2)

In Section 2.4, it was shown that in order to compute the torque contribution of one

edge element, one may assume that the force is concentrated at the midpoint of the

element, and then compute the cross product ~τ = ~r × ~F , where ~r is the vector from

the origin to the observation element midpoint. In the approach detailed herein, the

torque at point ~p in element l2 is integrated along l2. Hence no assumption is made

about the concentration of the force at the element’s midpoint. The integral of the

torque is expressed as

~T (~p) = ~p×
(
~I(~p)× ~B(~p)

)
(A.3)

~Tl2 =

∫
l2

~p×
(
Il2
l2
ẑ

)
× ~Bs(~p)dp (A.4)

where again the magnetic field at point ~p is related through rotation by

~Bs(~p) =

Bx,s(~p)

By,s(~p)

 =

cosφ1 − sinφ1

sinφ1 cosφ1


B′x,s(~r′)
B′y,s(~r

′)

 (A.5)

The integration is performed using a parameterization of the vector ~p by the variable

t, then the integral becomes

~Tl2 =
Il2
l2

∫ 1

0

~p(t)× ẑ × ~Bs(~p(t))

∥∥∥∥ ddt~p(t)
∥∥∥∥ dt (A.6)
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Cancelling terms and expanding yields

~Tl2 = Il2

∫ 1

0

〈
px(t), py(t), 0

〉
× 〈0, 0, 1〉 ×

〈
Bx,s(~p(t)), By,s(~p(t)), 0

〉
dt

= Il2 ẑ

∫ 1

0

px(t)Bx,s(~p(t)) + py(t)By,s(~p(t))dt (A.7)

Substituting the components of (A.5) into (A.7),

Tl2 = Il2

∫ 1

0

 px(t)
(

cosφ1B
′
x,s(~r

′(t))− sinφ1B
′
y,s(~r

′(t))
)

+py(t)
(

sinφ1B
′
x,s(~r

′(t)) + cosφ1B
′
y,s(~r

′(t))
)
 dt (A.8)

Substituting expressions for the components of ~p(t) from (3.19), the integral may be

expanded as

Tl2 = Il2



(xc cosφ1 + yc sinφ1)

∫ 1

0

B′x,s(~r
′(t))dt

+ (−xc sinφ1 + yc cosφ1)

∫ 1

0

B′y,s(~r
′(t))dt

+
(
(xd − xc) cosφ1 + (yd − yc) sinφ1

) ∫ 1

0

tB′x,s(~r
′(t))dt

+
(
−(xd − xc) sinφ1 + (yd − yc) cosφ1

) ∫ 1

0

tB′y,s(~r
′(t))dt


(A.9)

The first two integrals in (A.9) are given in Ch. 3 by (3.10) and (3.11) respectively.

The remainder of this appendix will be devoted to obtaining closed form expressions

for the evaluation of the latter two integrals. The resultant combined analytical

expression for Tl2 will then be simplified to obtain a final expression amenable to

rapid computer evaluation.

A.1 Third Integral Term

Substituting the expression (3.5) for the magnetic field x′ component, the 3rd

integral in (A.9) may be expressed as

Tint3 =

∫ 1

0

tB′x,s(~r
′(t))dt

= −µ0Il1
2πl1

∫ 1

0

t tan−1

(
l1 − r′x(t)
r′y(t)

)
− t tan−1

(
−r′x(t)
r′y(t)

) dt (A.10)
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Substituting (3.3) and (3.4) for r′x and r′y, respectively and simplifying, the integral

(A.10) can be expressed as

Tint3 = −µ0Il1
2πl1


∫ 1

0

t tan−1

(
a1t+ b1 + l1
c1t+ d1

)
dt

−
∫ 1

0

t tan−1

(
a1t+ b1

c1t+ d1

)
dt

 (A.11)

where the following substitutions have been made:

a1 = − cosφ1(xd − xc)− sinφ1(yd − yc)

b1 = − cosφ1(xc − xa)− sinφ1(yc − ya)

c1 = − sinφ1(xd − xc) + cosφ1(yd − yc)

d1 = − sinφ1(xc − xa) + cosφ1(yc − ya)

(A.12)

A closed form solution to the integrals appearing in (A.11) is [16]∫ 1

0

x tan−1

(
ax+ b

cx+ d

)
dx

=
1

2


tan−1

(
a+b
c+d

)
− ad−bc

a2+c2

+ (ab+cd)(ad−bc)
(a2+c2)2

ln
(

(a+b)2+(c+d)2

b2+d2

)
− (ab+cd)2−(ad−bc)2

(a2+c2)2
atan2(ad− bc, ab+ cd+ b2 + d2)

 (A.13)

By observing Fig.3.1a it is apparent that

xd − xc = l2 cos(φ2)

yd − yc = l2 sin(φ2)
(A.14)

Hence, with (A.14) and the angle difference formulae:

sin (α + β) = sin (α) cos (β) + cos (α) sin (β)

cos (α + β) = cos (α) cos (β)− sin (α) sin (β)

sin (α− β) = sin (α) cos (β)− cos (α) sin (β)

cos (α− β) = cos (α) cos (β) + sin (α) sin (β)

(A.15)
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substitutions (A.12) may be simplified to

a1 = −l2 cos(φ2 − φ1)

b1 = −l3 cos(φ3 − φ1)

c1 = l2 sin(φ2 − φ1)

d1 = l3 sin(φ3 − φ1)

(A.16)

Utilizing (A.13), (A.11) may be expanded as

Tint3 =

− µ0Il1
4πl1


tan−1

(
a1+b1+l1
c1+d1

)
− a1d1−(b1+l1)c1

a21+c21

+ (a1(b1+l1)+c1d1)(a1d1−(b1+l1)c1)

(a21+c21)2
ln
(

(a1+(b1+l1))2+(c1+d1)2

(b1+l1)2+d21

)
− (a1(b1+l1)+c1d1)2−(a1d1−(b1+l1)c1)2

(a21+c21)2

·atan2(a1d1 − (b1 + l1)c1, a1(b1 + l1) + c1d1 + (b1 + l1)2 + d2
1)



+
µ0Il1
4πl1


tan−1

(
a1+b1
c1+d1

)
− a1d1−b1c1

a21+c21

+ (a1b1+c1d1)(a1d1−b1c1)

(a21+c21)2
ln
(

(a1+b1)2+(c1+d1)2

b21+d21

)
− (a1b1+c1d1)2−(a1d1−b1c1)2

(a21+c21)2

·atan2(a1d1 − b1c1, a1b1 + c1d1 + b2
1 + d2

1)


(A.17)

The expressions appearing inside (A.17) are simplified in the following develop-

ment, making use of the law of cosines, the angle difference formulae (A.15) and the

following identities derived in [4]:

lα cos (φα − φζ) + lβ cos (φβ − φζ) + lγ cos (φγ − φζ) = 0 (A.18)

lα sin (φα − φζ) + lβ sin (φβ − φζ) + lγ sin (φγ − φζ) = 0 (A.19)

where the selection of vectors lα, lα and lα is restricted such that their sum is zero,

i.e.

lα + lβ + lγ = 0, (A.20)

and no restriction is placed on the common vector lζ and its angle φζ with the x-axis.
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Substituting expressions in (A.16), utilizing the angle difference formulae (A.15)

and the vector identities (A.18), the expressions appearing in (A.17) may be simplified

as follows, in the order in which they appear:

a1 + b1 + l1
c1 + d1

=
−l2 cos (φ2 − φ1)− l3 cos (φ3 − φ1) + l1

l2 sin (φ2 − φ1) + l3 sin (φ3 − φ1)

=
−l5 cos (φ5 − φ1) + l1 cos (φ1 − φ1)

l2 sin (φ2 − φ1) + l3 sin (φ3 − φ1)

=
−l6 cos (φ6 − φ1)

l5 sin (φ5 − φ1)− l1 sin (φ1 − φ1)

= − l6 cos (φ6 − φ1)

l6 sin (φ6 − φ1)

= −cos (φ6 − φ1)

sin (φ6 − φ1)

(A.21)

−a1d1 − (b1 + l1)c1

a2
1 + c2

1

=

−

 −l2l3 cos (φ2 − φ1) sin (φ3 − φ1)

−(−l3 cos (φ3 − φ1) + l1)l2 sin (φ2 − φ1)


l22(cos2 (φ2 − φ1) + sin2 (φ2 − φ1))

=

−


−l2l3 cos (φ2 − φ1) sin (φ3 − φ1)

+l2l3 sin (φ2 − φ1) cos (φ3 − φ1)

−l1l2 sin (φ2 − φ1)


l22

=
l3 sin (φ3 − φ2)− l1 sin (φ1 − φ2)

l2

=
l4
l2

sin (φ4 − φ2)

(A.22)
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(a1(b1 + l1) + c1d1)(a1d1 − (b1 + l1)c1)

(a2
1 + c2

1)2

=
(a1b1 + a1l1 + c1d1)(a1d1 − b1c1 − l1c1)

(a2
1 + c2

1)2

=


−l1l2 cos(φ2 − φ1)

+l2l3 cos(φ2 − φ1) cos(φ3 − φ1)

+l2l3 sin(φ2 − φ1) sin(φ3 − φ1)




−l1l2 sin(φ2 − φ1)

−l2l3 cos(φ2 − φ1) sin(φ3 − φ1)

+l2l3 cos(φ3 − φ1) sin(φ2 − φ1)


(l22 cos2(φ2 − φ1) + l22 sin2(φ2 − φ1))2

=

−l1 cos(φ1 − φ2)

+l3 cos(φ3 − φ2)


 l1 sin(φ1 − φ2)

−l3 sin(φ3 − φ2)


l22

= − l
2
4

l22
cos (φ4 − φ2) sin (φ4 − φ2)

(A.23)
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(a1 + b1 + l1)2 + (c1 + d1)2

(b1 + l1)2 + d2
1

=

 a2
1 + b2

1 + c2
1 + d2

1 + l21

+2a1b1 + 2b1l1 + 2a1l1 + 2c1d1


b2

1 + d2
1 + l21 + 2b1l1

=


l22 cos2(φ2 − φ1) + l22 sin2(φ2 − φ1) + l23 cos2(φ3 − φ1)

+l23 sin2(φ3 − φ1) + l21 + 2l2l3 cos(φ2 − φ1) cos(φ3 − φ1)

−2l1l3 cos(φ3 − φ1)− 2l1l2 cos(φ2 − φ1) + 2l2l3 sin(φ2 − φ1) sin(φ3 − φ1)


l23 cos2(φ3 − φ1) + l23 sin2(φ3 − φ1) + l21 − 2l1l3 cos(φ3 − φ1)

=

 l21 + l22 + l23 + 2l2l3 cos(φ2 − φ3)

−2l1l3 cos(φ3 − φ1)− 2l1l2 cos(φ2 − φ1)


l21 + l23 − 2l1l3 cos(φ3 − φ1)

=

l21 + l22 + l23 + 2l2l4 cos(φ4 − φ2)

−2l1l3 cos(φ3 − φ1)


l24

=
l24 + l22 + 2l2l4 cos(φ4 − φ2)

l24

=
l24 + l22 − 2l2l4 cos(π − (φ4 − φ2))

l24

=
l26
l24

(A.24)
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− (a1(b1 + l1) + c1d1)2 − (a1d1 − (b1 + l1)c1)2

(a2
1 + c2

1)2

=−


−l1l2 cos(φ2 − φ1)

l2l3 cos(φ2 − φ1) cos(φ3 − φ1)

+l2l3 sin(φ2 − φ1) sin(φ3 − φ1)


2

−


−l1l2 sin(φ2 − φ1)

−l2l3 cos(φ2 − φ1) sin(φ3 − φ1)

+l3l2 cos(φ3 − φ1) sin(φ2 − φ1)


2

(l22 cos2(φ2 − φ1) + l22 sin2(φ2 − φ1))2

=−

l22

−l1 cos(φ2 − φ1)

+l3 cos(φ2 − φ3)


2

− l22

−l1 sin(φ2 − φ1)

+l3 sin(φ2 − φ3)


2

(l22)2

=−
(
l4 cos(φ4 − φ2)

)2 −
(
−l4 sin(φ4 − φ2)

)2

l22

=− l24
l22

cos(2(φ4 − φ2))

(A.25)

a1d1 − (b1 + l1)c1 =


−l1l2 sin(φ2 − φ1)

−l2l3 cos(φ2 − φ1) sin(φ3 − φ1)

+l3l2 cos(φ3 − φ1) sin(φ2 − φ1)


=l2

(
l1 sin(φ1 − φ2)− l3 sin(φ3 − φ2)

)
=− l2l4 sin(φ4 − φ2)

(A.26)
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a1(b1 + l1) + c1d1 + (b1 + l1)2 + d2
1

= a1b1 + a1l1 + c1d1 + b2
1 + l21 + 2b1l1 + d2

1

=


l2l3 cos(φ2 − φ1) cos(φ3 − φ1)− l1l2 cos(φ2 − φ1)

+l2l3 sin(φ2 − φ1) sin(φ3 − φ1) + l23 cos2(φ3 − φ1)

+l21 − 2l3l1 cos(φ3 − φ1) + l23 sin2(φ3 − φ1)


=

l2(l3 cos(φ2 − φ3)− l1 cos(φ2 − φ1))

+l23 + l21 − 2l3l1 cos(φ3 − φ1)


= l2l4 cos(φ4 − φ2) + l24

= l4(l2 cos(φ4 − φ2) + l4 cos (φ4 − φ4))

= l4l6 cos (φ6 − φ4)

(A.27)

a1 + b1

c1 + d1

=
−l2 cos(φ2 − φ1)− l3 cos(φ3 − φ1)

l2 sin(φ2 − φ1) + l3 sin(φ3 − φ1)

=
−l5 cos(φ5 − φ1)

l5 sin(φ5 − φ1)

= −cos(φ5 − φ1)

sin(φ5 − φ1)

(A.28)

−a1d1 − b1c1

a2
1 + c2

1

= −−l2l3 cos(φ2 − φ1) sin(φ3 − φ1) + l2l3 cos(φ3 − φ1) sin(φ2 − φ1)

l22 cos2(φ2 − φ1) + l22 sin2(φ2 − φ1)

= − l2l3 sin(φ2 − φ3)

l22

= − l3
l2

sin(φ2 − φ3)

(A.29)

(a1b1 + c1d1)(a1d1 − b1c1)

(a2
1 + c2

1)2

=

 l2l3 cos(φ2 − φ1) cos(φ3 − φ1)

+l2l3 sin(φ2 − φ1) sin(φ3 − φ1)


−l2l3 cos(φ2 − φ1) sin(φ3 − φ1)

+l2l3 cos(φ2 − φ1) sin(φ3 − φ1)


(l22 cos2(φ2 − φ1) + l22 sin2(φ2 − φ1))2

=
l23
l22

cos(φ2 − φ3) sin(φ2 − φ3)

(A.30)



161

(a1 + b1)2 + (c1 + d1)2

b2
1 + d2

1

=
a2

1 + b2
1 + c2

1 + d2
1 + 2a1b1 + 2c1d1

b2
1 + d2

1

=

l22 cos2(φ2 − φ1) + l23 cos2(φ3 − φ1) + l22 sin2(φ2 − φ1) + l23 sin2(φ3 − φ1)

+2l2l3 cos(φ2 − φ1) cos(φ3 − φ1) + 2l2l3 sin(φ2 − φ1) sin(φ3 − φ1)


l23 cos2(φ3 − φ1) + l23 sin2(φ3 − φ1)

=
l22 + l23 + 2l2l3 cos(φ2 − φ3)

l23

=
l22 + l23 − 2l2l3 cos(π − (φ2 − φ3))

l23

=
l25
l23

(A.31)

−(a1b1 + c1d1)2 − (a1d1 − b1c1)2

a2
1 + c2

1

= −

 l2l3 cos(φ2 − φ1) cos(φ3 − φ1)

+l2l3 sin(φ2 − φ1) sin(φ3 − φ1)


2

−

−l2l3 cos(φ2 − φ1) sin(φ3 − φ1)

+l3l2 cos(φ3 − φ1) sin(φ2 − φ1)


2

(l22 cos2(φ2 − φ1) + l22 sin2(φ2 − φ1))2

= −
l22l

2
3

(
cos2(φ2 − φ3)− sin2(φ2 − φ3)

)
(l22)2

= − l
2
3

l22
cos(2(φ2 − φ3))

(A.32)

a1d1 − b1c1 = −l2l3 cos(φ2 − φ1) sin(φ3 − φ1) + l2l3 cos(φ3 − φ1) sin(φ2 − φ1)

= l2l3 sin(φ2 − φ3)
(A.33)
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a1b1 + c1d1 + b2
1 + d2

1 =


l2l3 cos(φ2 − φ1) cos(φ3 − φ1)

+l2l3 sin(φ2 − φ1) sin(φ3 − φ1)

+l23 cos2(φ3 − φ1) + l23 sin2(φ3 − φ1)


= l2l3 cos(φ2 − φ3) + l23

= l3(l2 cos(φ2 − φ3) + l3 cos(φ3 − φ3))

= l3l5 cos(φ5 − φ3)

(A.34)

Substituting (A.21)-(A.34) into (A.17),

Tint3 =

µ0Il1
4πl1



−atan

(
−cos (φ6 − φ1)

sin (φ6 − φ1)

)
− l4
l2

sin (φ4 − φ2)

+
l24
l22

cos (φ4 − φ2) sin (φ4 − φ2) ln

(
l26
l24

)

+
l24
l22

cos(2(φ4 − φ2))atan2(−l2l4 sin(φ4 − φ2), l4l6 cos (φ6 − φ4))

atan

(
−cos(φ5 − φ1)

sin(φ5 − φ1)

)
+
l3
l2

sin(φ3 − φ2)

− l
2
3

l22
cos(φ3 − φ2) sin(φ3 − φ2) ln

(
l25
l23

)

− l
2
3

l22
cos(2(φ2 − φ3))atan2(l2l3 sin(φ2 − φ3), l3l5 cos(φ5 − φ3))


(A.35)

The 1st argument in each respective atan2 function in (A.35) may be manipulated

using (A.18) as

−l2l4 sin(φ4 − φ2) = l2l4 sin(φ2 − φ4)

= l4(l2 sin(φ2 − φ4) + l4 sin(φ4 − φ4)︸ ︷︷ ︸
0

)

= l4l6 sin(φ6 − φ4)

(A.36)
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l2l3 sin(φ2 − φ3) = l3(l2 sin(φ2 − φ3) + l3 sin(φ3 − φ3)︸ ︷︷ ︸
0

)

= l3l5 sin(φ5 − φ3)

(A.37)

A difference of 2-quadrant arctangent functions may be converted to the 4-quadrant

arctangent function [4]. Specifically, since

atan
(

cos(φα−φζ)

sin(φα−φζ)

)
=atan(cot(φα − φζ)

=atan(tan(π
2
− (φα − φζ))

=π
2
− (φα − φζ)

(A.38)

then,

atan
(

cos(φα−φζ)

sin(φα−φζ)

)
− atan

(
cos(φβ−φζ)

sin(φβ−φζ)

)
= π

2
− (φα − φζ)− π

2
+ (φβ − φζ)

= φβ − φα.

(A.39)

The resultant angle φβ − φα was found to range from −π to π [4] which matches the

use case of the 4-quadrant arctangent function atan2, hence

φβ − φα = atan2(sin(φβ − φα), cos(φβ − φα))

= atan2(lα ×2 lβ, lα · lβ)
(A.40)

where it is readily shown that

lα ×2 lβ = sin(φβ − φα) (A.41)

lα · lβ = cos(φβ − φα). (A.42)

Utilizing (A.36)-(A.41), invoking the exponent property of logarithms, reordering

terms for favorable sign flips and factoring l22 from the denominator, Tint3 may now

be written as
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Tint3 = (A.43)

− µ0Il1
4πl1l22



l22atan2(l5 ×2 l6, l5 · l6)

−l24 cos(2(φ4 − φ2))atan2(l4 ×2 l6, l4 · l6)

−l23 cos(2(φ2 − φ3))atan2(l5 ×2 l3, l5 · l3)

−2l24 cos (φ4 − φ2) sin (φ4 − φ2) ln

(
l6
l4

)
+2l23 cos(φ3 − φ2) sin(φ3 − φ2) ln

(
l3
l5

)
−l3l2 sin(φ3 − φ2) + l4l2 sin (φ4 − φ2)



(A.44)

A.2 Fourth Integral Term

Substituting the expression (3.6) for the magnetic field y′ component, the 4th

integral term in (A.9) may be expressed as

Tint4 =

∫ 1

0

tB′y,s(~r
′(t))dt

= −µ0Il1
4πl1

∫ 1

0

t ln

(
(l1 − r′x)2 − r′2y

r′2x + r′2y

)
dt

= −µ0Il1
4πl1

∫ 1

0

(
t ln
(

(l1 − r′x)2 − r′2y
)
− t ln

(
r′2x + r′2y

))
dt (A.45)

Substituting (3.3)-(3.4) for r′x and r′y, respectively and simplifying, the integral (A.45)

can be expressed as

Tint4 = −µ0Il1
4πl1

(∫ 1

0

t ln
(
a2t

2 + b2t+ c2

)
dt−

∫ 1

0

t ln
(
a3t

2 + b3t+ c3

)
dt

)
(A.46)
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where, utilizing (A.16), the following additional substitutions have been made:

a2 = a2
1 + c2

1

= l22

b2 = 2a1(b1 + l1) + 2c1d1

= 2l2l4 cos(φ4 − φ2)

c2 = d2
1 + (b1 + l1)2

= l24

a3 = a2

= l22

b3 = 2a1b1 + 2c1d1

= 2l2l3 cos(φ3 − φ2)

c3 = b2
1 + d2

1

= l23

(A.47)

A closed form solution to the integrals appearing in (A.46) is [16]∫ 1

0

x ln(ax2 + bx+ c)dx

=

 2a2−b2+2ac
4a2

ln(a+ b+ c) + b2−2ac
4a2

ln(c)

− b
√

4ac−b2
2a2

atan2
(√

4ac− b2, 2c+ b
)

+ b
2a
− 1

2

 (A.48)

Utilizing (A.48), (A.46) may be expanded as

Tint4 = −µ0Il1
4πl1

 2a22−b22+2a2c2
4a22

ln(a2 + b2 + c2) +
b22−2a2c2

4a22
ln(c2)

− b2
√

4a2c2−b22
2a22

atan2
(√

4a2c2 − b2
2, 2c2 + b2

)
+ b2

2a2
− 1

2


+
µ0Il1
4πl1

 2a23−b23+2a3c3
4a23

ln(a3 + b3 + c3) +
b23−2a3c3

4a23
ln(c3)

− b3
√

4a3c3−b23
2a23

atan2
(√

4a3c3 − b2
3, 2c3 + b3

)
+ b3

2a3
− 1

2


(A.49)
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The expressions appearing inside (A.49) are simplified in the remainder of this sec-

tion, making use of the law of cosines, the angle difference formulae (A.15), and the

identities (A.18) and substitutions (A.16). In the order in which they appear:

2a2
2 − b2

2 + 2a2c2

4a2
2

=
2l42 − 4l22l

2
4 cos2(φ4 − φ2) + 2l22l

2
4

4l42

=
l22 − l24 cos(2(φ4 − φ2))

2l22

(A.50)

a2 + b2 + c2 = l22 + 2l2l4 cos(φ4 − φ2) + l24

= l22 + l24 − 2l2l4 cos(π − (φ4 − φ2))

= l26

(A.51)

b2
2 − 2a2c2

4a2
2

=
4l22l

2
4 cos2(φ4 − φ2)− 2l22l

2
4

4l42

=
l24(−1 + 2 cos2(φ4 − φ2))

2l22

=
l24
2l22

cos(2(φ4 − φ2))

(A.52)

− b2

√
4a2c2 − b2

2

2a2
2

= −2l2l4 cos(φ4 − φ2)
√

4l22l
2
4 − 4l22l

2
4 cos2(φ4 − φ2)

2l42

= −2l2l4 cos(φ4 − φ2)
√

4l22l
2
4 sin2(φ4 − φ2)

2l42

= −4l22l
2
4 cos(φ4 − φ2) sin(φ4 − φ2)

2l42

= − l
2
4

l22
sin(2(φ4 − φ2))

(A.53)

√
4a2c2 − b2

2 =
√

4l22l
2
4 − 4l22l

2
4 cos2(φ4 − φ2)

= 2l2l4 sin(φ4 − φ2)
(A.54)

2c2 + b2 = 2l24 + 2l2l4 cos(φ4 − φ2)

= 2l4(l4 cos(φ4 − φ4) + l4 cos(φ4 − φ2))

= 2l4l6 cos(φ6 − φ4)

(A.55)
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b2

2a2

− 1

2
=

2l2l4 cos(φ4 − φ2)

2l22
− 1

2

=
l4
l2

cos(φ4 − φ2)− 1

2

(A.56)

2a2
3 − b2

3 + 2a3c3

4a2
3

=
2l42 − 4l22l

2
3 cos2(φ3 − φ2) + 2l22l

2
3

4l42

=
l22 + l23(1− 2 cos2(φ3 − φ2))

2l22

=
l22 − l23 cos(2(φ3 − φ2))

2l22

(A.57)

a3 + b3 + c3 = l22 + l23 + 2l2l3 cos(φ3 − φ2)

= l22 + l23 − 2l2l3 cos(π − (φ3 − φ2))

= l25

(A.58)

b2
3 − 2a3c3

4a2
3

=
4l22l

2
3 cos2(φ3 − φ2)− 2l22l

2
3

4l42

=
l23
2l22

(−1 + cos2(φ3 − φ2))

=
l23
2l22

cos(2(φ3 − φ2))

(A.59)

−b3

√
4a3c3 − b2

3

2a2
3

= −2l2l3 cos(φ3 − φ2)
√

4l22l
2
3 − 4l22l

2
3 cos2(φ3 − φ2)

2l42

= −2
l23
l22

cos(φ3 − φ2) sin(φ3 − φ2)

= − l
2
3

l22
sin(2(φ3 − φ2))

(A.60)

√
4a3c3 − b2

3 =
√

4l22l
2
3 − 4l22l

2
3 cos2(φ3 − φ2)

= 2l2l3 sin(φ3 − φ2)
(A.61)
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2c3 + b3 = 2l23 + 2l2l3 cos(φ3 − φ2)

= 2l3(l3 cos(φ3 − φ3) + l2 cos(φ2 − φ3))

= 2l3l5 cos(φ5 − φ3)

(A.62)

b3

2a3

− 1

2
=

2l2l3 cos(φ3 − φ2)

2l22
− 1

2

=
l3
l2

cos(φ3 − φ2)− 1

2

(A.63)

Substituting (A.50)-(A.63) into (A.49),

Tint4 = −µ0Il1
4πl1



l22 − l24 cos(2(φ4 − φ2))

2l22
ln(l26) +

l24
2l22

cos(2(φ4 − φ2)) ln(l24)

− l
2
4

l22
sin(2(φ4 − φ2))atan2

(
2l2l4 sin(φ4 − φ2), 2l4l6 cos(φ6 − φ4)

)
+
l4
l2

cos(φ4 − φ2)− 1

2

− l
2
2 − l23 cos(2(φ3 − φ2))

2l22
ln(l25)− l23

2l22
cos(2(φ3 − φ2)) ln(l23)

+
l23
l22

sin(2(φ3 − φ2))atan2
(
2l2l3 sin(φ3 − φ2), 2l3l5 cos(φ5 − φ3)

)
− l3
l2

cos(φ3 − φ2) +
1

2


(A.64)

Splitting logarithm coefficients and combining like terms,

Tint4 = −µ0Il1
4πl1



− l
2
4

l22
sin(2(φ4 − φ2))atan2

(
2l2l4 sin(φ4 − φ2), 2l4l6 cos(φ6 − φ4)

)
+
l23
l22

sin(2(φ3 − φ2))atan2
(
2l2l3 sin(φ3 − φ2), 2l3l5 cos(φ5 − φ3)

)
+

1

2

(
ln(l26)− ln(l25)

)
+
l24
2l22

cos(2(φ4 − φ2))
(
ln(l24)− ln(l26)

)
+
l23
2l22

cos(2(φ3 − φ2))
(
ln(l25)− ln(l23)

)
+
l4
l2

cos(φ4 − φ2)− l3
l2

cos(φ3 − φ2)


(A.65)
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Utilizing (A.36)-(A.37) for the arguments of atan2 functions, combining difference

of logarithm terms, invoking the exponent property of logarithms, utilizing (A.41),

rearranging terms to obtain favorable sign flips and factoring l22 from the denominator,

(A.65) may be rewritten as

Tint4 = − µ0Il1
4πl1l22



l24 sin(2(φ4 − φ2))atan2 (l4 ×2 l6, l4 · l6)

+l23 sin(2(φ3 − φ2))atan2 (l5 ×2 l3, l5 · l3)

+l22 ln

(
l6
l5

)
−l24 cos(2(φ4 − φ2)) ln

(
l6
l4

)
−l23 cos(2(φ3 − φ2)) ln

(
l3
l5

)
−l3l2 cos(φ3 − φ2) + l4l2 cos(φ4 − φ2)



(A.66)

A.3 Combining Integral Terms

Substituting (A.14) into the coefficients of the integrals appearing in (A.9) and

using angle difference formulae, (A.9) may be rewritten as

Tl2 = Il2



(xc cosφ1 + yc sinφ1)

∫ 1

0

B′x,s(~r
′(t))dt

+ (−xc sinφ1 + yc cosφ1)

∫ 1

0

B′y,s(~r
′(t))dt

+l2 cos(φ2 − φ1)

∫ 1

0

tB′x,s(~r
′(t))dt

+l2 sin(φ2 − φ1)

∫ 1

0

tB′y,s(~r
′(t))dt


(A.67)

Substituting expressions (3.10), (3.11) with expanded coefficients using relationships

for · and ×2 in (A.41) and substituting (A.43) and (A.66), (A.67) may be written as
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Tl2 =
−µ0Il1Il2

4πl1l22



2

 xc cosφ1

+yc sinφ1





l22 cos(φ2 − φ2)atan2(l5 ×2 l6, l5 · l6)

+l4l2 cos(φ4 − φ2)atan2(l4 ×2 l6, l4 · l6)

+l3l2 cos(φ3 − φ2)atan2(l5 ×2 l3, l5 · l3)

−l2l4 sin(φ2 − φ4) ln

(
l6
l4

)
−l2l3 sin(φ2 − φ3) ln

(
l3
l5

)



+2

−xc sinφ1

+yc cosφ1





l2l4 sin(φ2 − φ4)atan2(l4 ×2 l6, l4 · l6)

+l2l3 sin(φ2 − φ3)atan2(l5 ×2 l3, l5 · l3)

+l22 ln

(
l6
l5

)
+l2l4 cos(φ2 − φ4) ln

(
l6
l4

)
+l2l3 cos(φ2 − φ3) ln

(
l3
l5

)



+l2 cos(φ2 − φ1)



l22atan2(l5 ×2 l6, l5 · l6)

−l24 cos(2(φ4 − φ2))atan2(l4 ×2 l6, l4 · l6)

−l23 cos(2(φ2 − φ3))atan2(l5 ×2 l3, l5 · l3)

−2l24 cos (φ4 − φ2) sin (φ4 − φ2) ln

(
l6
l4

)
+2l23 cos(φ3 − φ2) sin(φ3 − φ2) ln

(
l3
l5

)
−l3l2 sin(φ3 − φ2) + l4l2 sin (φ4 − φ2)



+l2 sin(φ2 − φ1)



l24 sin(2(φ4 − φ2))atan2 (l4 ×2 l6, l4 · l6)

+l23 sin(2(φ3 − φ2))atan2 (l5 ×2 l3, l5 · l3)

+l22 ln

(
l6
l5

)
−l24 cos(2(φ4 − φ2)) ln

(
l6
l4

)
−l23 cos(2(φ3 − φ2)) ln

(
l3
l5

)
−l3l2 cos(φ3 − φ2) + l4l2 cos(φ4 − φ2)




(A.68)
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Observing (A.68), it is apparent that the final expression for Tl2 will be of the form

Tl2 = C



Catan56atan2 (l5 ×2 l6, l5 · l6)

+Catan46atan2 (l4 ×2 l6, l4 · l6)

+Catan53atan2 (l5 ×2 l3, l5 · l3)

+Cln56 ln

(
l6
l5

)
+Cln46 ln

(
l6
l4

)
+Cln53 ln

(
l3
l5

)
+K



(A.69)

Collecting terms in (A.68), simplified expressions for the coefficients C, Catan56 - Cln53

and constant K follow.

Catan56 = l32 cos(φ2 − φ1) + 2l22 (xc cosφ1 + yc sinφ1)

= l2l
2
2

l1 · l2
l1l2

+ 2l2 · l2 (xc cosφ1 + yc sinφ1)

=
1

l1

(
(l2 · l2)(l1 · l2) + 2l1(l2 · l2) (xc cosφ1 + yc sinφ1)

) (A.70)

The term 1/l1 will be factored out from all coefficients Catan56-Cln35 into the coefficient

C, therefore

Catan56 = (l2 · l2)(l1 · l2) + 2l1(l2 · l2) (xc cosφ1 + yc sinφ1) (A.71)

Collecting terms in (A.68),

Catan46 =



2l4l2 (xc cosφ1 + yc sinφ1) cos(φ4 − φ2)

+2l2l4 (−xc sinφ1 + yc cosφ1) sin(φ2 − φ4)

−l2l24 cos(φ2 − φ1) cos(2(φ4 − φ2))

+l2l
2
4 sin(φ2 − φ1) sin(2(φ4 − φ2))


(A.72)
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The last two terms in (A.72) may be simplified further as −l2l24 cos(φ2 − φ1)(2 cos2(φ4 − φ2)− 1)

+l2l
2
4 sin(φ2 − φ1)2 sin(φ4 − φ2) cos(φ4 − φ2)


=

−2l2l
2
4 cos(φ4 − φ2)

(
cos(φ1 − φ2) cos(φ4 − φ2) + sin(φ1 − φ2) sin(φ4 − φ2)

)
+l2l

2
4 cos(φ2 − φ1)


=

−2l2l
2
4 cos(φ4 − φ2) cos(φ4 − φ1)

+l2l
2
4 cos(φ2 − φ1)



=


−l2l24 cos(φ4 − φ2) cos(φ4 − φ1)

−l2l24 cos(φ4 − φ2) cos(φ4 − φ1)

+l2l
2
4 cos(φ2 − φ1)



=


−l2l24 cos(φ4 − φ2) cos(φ4 − φ1)

−l2l24(cos(φ2 − φ1)− sin(φ2 − φ4) sin(φ1 − φ4))

+l2l
2
4 cos(φ2 − φ1)


=

−l2l24 cos(φ4 − φ2) cos(φ4 − φ1)

+l2l
2
4 sin(φ2 − φ4) sin(φ1 − φ4)


(A.73)

Utilizing (A.41), Catan46 may be expressed as

Catan46 =
1

l1



2l1l4 · l2 (xc cosφ1 + yc sinφ1)

+2l1l4 ×2 l2 (−xc sinφ1 + yc cosφ1)

−(l4 · l2)(l4 · l1)

+(l4 ×2 l2)(l4 ×2 l1)


(A.74)
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Finally, factoring the 1/l1 term into C:

Catan46 =



2l1l4 · l2 (xc cosφ1 + yc sinφ1)

+2l1l4 ×2 l2 (−xc sinφ1 + yc cosφ1)

−(l4 · l2)(l4 · l1)

+(l4 ×2 l2)(l4 ×2 l1)


(A.75)

A similar procedure yields a similar expression for Catan53, this may be arrived at

simply by exchanging subscripts ’4’ for ’3’ in (A.75):

Catan53 =



2l1l3 · l2 (xc cosφ1 + yc sinφ1)

+2l1l3 ×2 l2 (−xc sinφ1 + yc cosφ1)

−(l3 · l2)(l3 · l1)

+(l3 ×2 l2)(l3 ×2 l1)


(A.76)

Collecting terms in (A.68),

Cln56 =



2 (xc cosφ1 + yc sinφ1) (0)

+2 (−xc sinφ1 + yc cosφ1) (l22)

+l2 cos(φ2 − φ1)(0)

+l2 sin(φ2 − φ1)(l22)


=

1

l1

2l1l2 · l2 (−xc sinφ1 + yc cosφ1)

+(l2 · l2)(l1 ×2 l2)


(A.77)

Finally, factoring the 1/l1 term into C:

Cln56 =

2l1l2 · l2 (−xc sinφ1 + yc cosφ1)

+(l2 · l2)(l1 ×2 l2)

 (A.78)
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Collecting terms in (A.68),

Cln46 =



2 (xc cosφ1 + yc sinφ1) (−l2l4 sin(φ2 − φ4))

+2 (−xc sinφ1 + yc cosφ1) (l2l4 cos(φ2 − φ4))

+l2 cos(φ2 − φ1)(−2l24 cos (φ4 − φ2) sin (φ4 − φ2))

+l2 sin(φ2 − φ1)(−l24 cos(2(φ4 − φ2)))


(A.79)

The last two terms in (A.79) may be simplified as+l2 cos(φ2 − φ1)(−2l24 cos (φ4 − φ2) sin (φ4 − φ2))

+l2 sin(φ2 − φ1)(−l24 cos(2(φ4 − φ2)))


=

−2l2l
2
4 cos(φ2 − φ1) cos (φ4 − φ2) sin (φ4 − φ2)

−l2l24 sin(φ2 − φ1)(2 cos2(φ4 − φ2)− 1)


=

−2l2l
2
4 cos(φ4 − φ2)(cos(φ1 − φ2) sin(φ4 − φ2)− cos(φ4 − φ2) sin(φ1 − φ2))

+l2l
2
4 sin(φ2 − φ1)


=

−2l2l
2
4 cos(φ4 − φ2) sin(φ4 − φ1)

+l2l
2
4 sin(φ2 − φ1)



=


−l2l24 cos(φ4 − φ2) sin(φ4 − φ1)

−l2l24 cos(φ4 − φ2) sin(φ4 − φ1)

+l2l
2
4 sin(φ2 − φ1)



=


−l2l24 cos(φ4 − φ2) sin(φ4 − φ1)

−l2l24(sin(φ2 − φ1)− sin(φ2 − φ4) cos(φ1 − φ4))

+l2l
2
4 sin(φ2 − φ1)


=

 −l2l24 cos(φ4 − φ2) sin(φ4 − φ1)

+l2l
2
4(sin(φ2 − φ4) cos(φ1 − φ4))


=

1

l1

(
(l1 · l4)(l4 ×2 l2) + (l2 · l4)(l4 ×2 l1)

)
(A.80)
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Finally, factoring the 1/l1 term into C:

Cln46 =


2l1l2 ×2 l4 (xc cosφ1 + yc sinφ1)

2l1l2 · l4 (−xc sinφ1 + yc cosφ1)

(l1 · l4)(l4 ×2 l2) + (l2 · l4)(l4 ×2 l1)

 (A.81)

A similar procedure yields a similar expression for Cln53, this may be derived simply

by exchanging subscripts ‘4’ for ‘3’ in (A.81):

Cln53 =


2l1l2 ×2 l3 (xc cosφ1 + yc sinφ1)

2l1l2 · l3 (−xc sinφ1 + yc cosφ1)

(l1 · l3)(l3 ×2 l2) + (l2 · l3)(l3 ×2 l1)

 (A.82)

K =

 l2 cos(φ2 − φ1)(−l3l2 sin(φ3 − φ2) + l4l2 sin (φ4 − φ2))

+l2 sin(φ2 − φ1)(−l3l2 cos(φ3 − φ2) + l4l2 cos(φ4 − φ2))


=

 l2 cos(φ2 − φ1)(−l2l1 sin(φ1 − φ2))

+l2 sin(φ2 − φ1)(−l2l1 cos(φ1 − φ2))


= 0

(A.83)

Since we have factored l1 from the denominator in all coefficients,

C =
−µ0Il1Il2

4πl21l
2
2

(A.84)
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Substituting the previously derived coefficients of all terms, the torque may be written

as

Tl2 =
−µ0Il1Il2

4πl21l
2
2



2l1(l2 · l2) (xc cosφ1 + yc sinφ1)

+(l2 · l2)(l1 · l2)

atan2 (l5 ×2 l6, l5 · l6)

+



2l1l4 · l2 (xc cosφ1 + yc sinφ1)

+2l1l4 ×2 l2 (−xc sinφ1 + yc cosφ1)

−(l4 · l2)(l4 · l1)

+(l4 ×2 l2)(l4 ×2 l1)


atan2 (l4 ×2 l6, l4 · l6)

+



2l1l3 · l2 (xc cosφ1 + yc sinφ1)

+2l1l3 ×2 l2 (−xc sinφ1 + yc cosφ1)

−(l3 · l2)(l3 · l1)

+(l3 ×2 l2)(l3 ×2 l1)


atan2 (l5 ×2 l3, l5 · l3)

+

2l1l2 · l2 (−xc sinφ1 + yc cosφ1)

+(l2 · l2)(l1 ×2 l2)

 ln

(
l6
l5

)

+


2l1l2 ×2 l4 (xc cosφ1 + yc sinφ1)

2l1l2 · l4 (−xc sinφ1 + yc cosφ1)

(l1 · l4)(l4 ×2 l2) + (l2 · l4)(l4 ×2 l1)

 ln

(
l6
l4

)

+


2l1l2 ×2 l3 (xc cosφ1 + yc sinφ1)

2l1l2 · l3 (−xc sinφ1 + yc cosφ1)

(l1 · l3)(l3 ×2 l2) + (l2 · l3)(l3 ×2 l1)

 ln

(
l3
l5

)


(A.85)

The atan2 and ln coefficients may be further simplified to more closely resemble the

Lorentz force formulas. Defining lc =< xc, yc > and since l1 =< l1 cosφ1, l1 sinφ1 >=<
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l1x, l1y >, the l1 term may be absorbed and the coefficient Catan56 may be rewritten

as

Catan56 = (l2 · l2)(l1 · l2 + 2lc · l1)

= (l2 · l2)(l1 · (l2 + lc︸ ︷︷ ︸
ld

+lc))
(A.86)

By (3.29) and (3.30), this may be expanded as

Catan56 = l22l1ld cos(φ2 − φ2) cos(φ1 − φd) + l22l1lc cos(φ2 − φ2) cos(φ1 − φc) (A.87)

The coefficient is unchanged by adding the term 0 = l22l1ld sin(φ2− φ2) sin(φ1− φd) +

l22l1lc sin(φ2 − φ2) sin(φ1 − φc), and by doing so the coefficient may be cast into the

form

Catan56 =l22l1ld cos(φ2 − φ2) cos(φ1 − φd) + l22l1lc cos(φ2 − φ2) cos(φ1 − φc)

l22l1ld sin(φ2 − φ2) sin(φ1 − φd) + l22l1lc sin(φ2 − φ2) sin(φ1 − φc)

= l1l2l2lc cos(φ1+φ2−φ2−φc)

+ l1l2l2ld cos(φ1+φ2−φ2−φd)

(A.88)

The expression involves a difference in angles φ2− φ2: although zero, it is convenient

to write in this form since the remaining coefficients are of similar form, as will be

shown.

The coefficient Catan46 may be written as

Catan46 =

 (l4 · l2) (2l1 · lc − l1 · l4)

+(l4 ×2 l2) (2l1 ×2 lc − l1 ×2 l4)



=


(l4 · l2)

(
l1 · (lc + lc − l4)

)
+(l4 ×2 l2)(l1 ×2 (lc + lc − l4︸ ︷︷ ︸

lb

)


(A.89)

By (3.29) and (3.30), this may be expanded as

Catan46 = l4l2l1lc cos(φ4 − φ2) cos(φ1 − φc) + l4l2l1lb cos(φ4 − φ2) cos(φ1 − φb)

+l4l2l1lc sin(φ4 − φ2) sin(φ1 − φc) + l4l2l1lb sin(φ4 − φ2) sin(φ1 − φb)
(A.90)
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By the angle difference formulae, this may be written compactly as

Catan46 =l1l2l4lc cos(φ1+φ2−φ4−φc)

+l1l2l4lb cos(φ1+φ2−φ4−φb)
(A.91)

A similar simplification process may be applied to Catan53 by exchanging subscripts

‘4’ for ‘3’ and ‘b’ for ‘a’. The coefficient Cln56 may be written as

Cln56 = (l2 · l2)(2l1 ×2 lc + l1 ×2 l2)

= (l2 · l2)(l1 ×2 (lc + lc + l2︸ ︷︷ ︸
ld

))
(A.92)

Cln56 may be expanded as

Cln56 = −l2l2l1lc cos(φ2 − φ2) sin(φc − φ1)− l2l2l1ld cos(φ2 − φ2) sin(φd − φ1) (A.93)

Adding the term 0 = −l2l2l1lc sin(φ4−φ2) cos(φ1−φc)−l2l2l1lb sin(φ2−φ2) cos(φ1−φd)

leaves the coefficient unchanged, yielding

Cln56 = −l2l2l1lc cos(φ2 − φ2) sin(φ1 − φc)− l2l2l1ld cos(φ2 − φ2) sin(φ1 − φd)

−l2l2l1lc sin(φ4 − φ2) cos(φ1 − φc)− l2l2l1lb sin(φ2 − φ2) cos(φ1 − φd)

= −l1l2l2lc sin(φ1+φ2−φ2−φc)

−l1l2l2ld sin(φ1+φ2−φ2−φd)

(A.94)

The coefficient Cln46 may be written as

Cln46 = (l2 ×2 l4)(2l1 · lc − l1 · l4)

+(l2 · l4)(2l1 ×2 lc − l1 ×2 l4)

= (l2 ×2 l4)(l1 · (lc + lc − l4))

+(l2 · l4)(l1 ×2 (lc + lc − l4︸ ︷︷ ︸
lb

))

(A.95)

By (3.29) and (3.30), this may be expanded as

Cln46 = −l2l4l1lc sin(φ2 − φ4) cos(φ1 − φc)− l2l4l1lb sin(φ2 − φ4) cos(φ1 − φb)

−l4l2l1lc cos(φ2 − φ4) sin(φ1 − φc)− l4l2l1lb cos(φ2 − φ4) sin(φ1 − φb)
(A.96)
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By the angle difference formulae, this may be written compactly as

Cln46 = −l1l2l4lc sin(φ1+φ2−φ4−φc)

−l1l2l4lb sin(φ1+φ2−φ4−φb)
(A.97)

A similar simplification process may be applied to Cln53 by exchanging subscripts ‘4’

for ‘3’ and ‘b’ for ‘a’. Substituting these coefficients yields the following final form

for the torque expression:

Tl2 = −µ0I1I2

4πl21l
2
2



 l1l2l2lc cos(φ1+φ2−φ2−φc)

+l1l2l2ld cos(φ1+φ2−φ2−φd)

atan2

l5 ×2 l6,

l5 · l6


+

 l1l2l3lc cos(φ1+φ2−φ3−φc)

+l1l2l3la cos(φ1+φ2−φ3−φa)

atan2

l5 ×2 l3,

l5 · l3


+

 l1l2l4lc cos(φ1+φ2−φ4−φc)

+l1l2l4lb cos(φ1+φ2−φ4−φb)

atan2

l4 ×2 l6,

l4 · l6


−

 l1l2l2lc sin(φ1+φ2−φ2−φc)

+l1l2l2ld sin(φ1+φ2−φ2−φd)

 log

(
l6
l5

)

−

 l1l2l3lc sin(φ1+φ2−φ3−φc)

+l1l2l3la sin(φ1+φ2−φ3−φa)

 log

(
l3
l5

)

−

 l1l2l4lc sin(φ1+φ2−φ4−φc)

+l1l2l4lb sin(φ1+φ2−φ4−φb)

 log

(
l6
l4

)



(A.98)
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B. MESH GENERATION

, 1r i 

element i ,1 ,1( , )i ix y,2 ,2( , )i ix y

(a) Linear formulation.

, 1r i 

element i

,1 ,1( , )i ix y

,2 ,2( , )i ix y

(b) Nonlinear formula-

tion.

Fig. B.1.: Mesh element orientation.

In a meshing procedure, the collection of nodes and lines are created which dis-

cretely approximate the geometry of the device under study. In this research, the

geometry of electric machines is defined in terms of lines and arc segments.

In order to mesh a line in the linear Galerkin formulation, a MATLAB function

was written which takes as its primary arguments 1) the points defining the line, 2)

the number of nodes to divide the line into and 3) a flag to select logarithmically-

or linearly-spaced nodes. This option may be used to select the node spacing such

that the points meshing the distance from the line midpoint to the one end point are

related logarithmically and the points from midpoint to the opposite end point mirror

them. An example of each type of node spacing is shown in Figure B.2, where the

concentration of nodes is greatest near the outside corners, achieved using logarithmic

spacing, whereas since the inside edge has rounded corners, linearly-spaced nodes

suffice. Using the logarithmically-spaced node option, the bound current distribution

is allowed to change more abruptly near corners in the geometry. In order to mesh

an arc segment in the linear Galerkin formulation, a MATLAB function was written

which takes as its primary arguments 1) the arc center point, 2) the arc radius, 3)
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Fig. B.2.: Example of linearly- and logarithmically- spaced nodes.

two angles which define the beginning and end of the arc segment and 4) a flag to

select logarithmically- or linearly-spaced nodes.

In the linear Galerkin formulation, the points defining edge element i, pi,1 =

(xi,1, yi,1) and pi,2 = (xi,2, yi,2), must be such that as one traverses along the material

boundary in the direction of the vector ~ai = ~pi,2−~pi,1 while the magnetizeable material

is on the left, as depicted in Figure B.1a.

In the case of the nonlinear point matching formulation, the nodes defining each

line must be such that the vectors formed circulate around the polygon in a counter

clockwise fashion, as shown in Figure B.1b. Although shown with triangles, the

nonlinear mesh can consist of any combinations of polygons, which can be convenient

as a tool for designing machines using pre-meshed geometries. The use of triangles

is common due to widely available meshing tools for FEA. The triangular volume

meshes were formed in this research using the Partial Differential Equation Toolbox

available from Mathworks [51].
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