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ABSTRACT 

Cognitive control is accomplished by a set of higher-order cognitive processes that are 

recruited to aid in the completion of various tasks. A popular proposed mechanism is the Dual 

Mechanisms of Control (Braver, Gray, & Burgess, 2007), proposing proactive and reactive 

mechanisms. While neuroscience studies provide evidence that these are two distinct processes, it 

remains unclear whether the processes are competing, or whether they can be used together. That 

is, are the two processes able to both be enacted to some degree? Further, whether these 

mechanisms can be titrated to produce a gradient-like use of control on a trial-level basis is 

unknown. These are the two primary pursuits of this dissertation. Experiment 1 shows the titrated 

pattern of control use, indicating (a) sensitivity to task demands, and (b) dynamic use of proactive 

and reactive control at the trial level, in a new task. Further, a novel contribution is the observation 

of ability to titrate the use of control. Additional experiments relate performance on this task to 

working memory (Experiment 2), replicate the findings in an online format (Experiment 3), and 

differentiate performance from distance effects commonly seen in relative judgment tasks 

(Experiment 4). This work has implications for the understanding of how cognitive control 

functions and how dynamically the use of these mechanisms can be adjusted. 
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INTRODUCTION 

Individuals have some ability to direct goal-relevant cognitive processes. Throughout the 

history of psychological research, these control functions have been given a number of names and 

hypothesized mechanisms. Attention control, executive control, and cognitive control are 

frequently interchangeably used to describe such processes (for a recent review, see Gratton, 

Cooper, Fabiani, Carter, & Karayanidis, 2017). As Gratton and colleagues describe, these terms 

are used with slightly different implications, at least some of the time. They describe these 

distinctions as largely implying the timescale at which relevant mechanisms are being evaluated, 

with the broadest executive function describing long-term goal maintenance, cognitive control 

describing task-level adjustments, and attention control describing adjustments at the trial level. 

However, opinions on this distinction vary. 

Various mechanisms for these control processes have been proposed, and further theories 

for when and why these processes are recruited have been explored. Some have posited that these 

processes can be explicitly controlled, changing with strategy instructions (Braver, Paxton, Locke, 

& Barch, 2009). Others have questioned whether these processes can be influenced by automatic 

processes (Verbruggen & Logan, 2009) or whether the processes are volitional at all, going so far 

as to consider cognitive control a self-regulating byproduct of associative learning (Abrahamse, 

Braem, Notebaert, & Verguts, 2016). While this topic has been studied for much of the history of 

psychology, many questions remain. 

The theories for what cognitive control entails have varied over the years. Early on, 

Kahneman (1970) described attention control as a mechanism to resist distraction, focusing 

primarily of allocation or orienting of the control mechanism. Posner and Petersen (1990) built on 

this orienting theory with the introduction of an alerting mechanism to describe a broader executive 

control process. Miyake et al. (2000) replaced orienting with shifting attention and proposed that 

orienting, updating, and inhibition encompass the diverse aspects of a unified cognitive control 

system. Curtis and D’Esposito (2003) more broadly suggested control was maintenance of the 

information in working memory over sustained periods of time. As Gratton et al. (2017) point out, 

these researchers were also evaluating cognitive control along different timescales, leading to some 

of the variations in processes and naming schemes. However, all of these researchers are describing 

the direction of attention in the face of or expectation of interference.  
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There is some additional discussion regarding which processes, such as conflict monitoring, 

may be part of cognitive control, rather than interacting with it. Kerns et al. (2004) consider conflict 

monitoring to be a process by which the need for cognitive control is signaled in the anterior 

cingulate cortex, somewhat less directly part of the cognitive control mechanism. Botvinick, 

Braver, Barch, Carter, & Cohen (2001) considered monitoring for conflict and then making 

appropriate adjustments to be a primary function of cognitive control. Aron (2011) described 

proactive control as a mechanism by which subjects respond to conflict by preparing to stop, 

slowing just enough after conflict to make a decision about the next stimulus before responding. 

This is considered to be different from reactive control where the stopping mechanism is much 

more heavily relied on. Somewhat similarly, Brown (2013) proposed that the conflict monitoring 

activity observed in the anterior cingulate cortex was not simply monitoring, but proactively 

evaluating possible responses and directly supports cognitive control.  

Germane to the current work, another theory combined aspects of some of these earlier 

theories and modeled a proposed system of two types of cognitive control – proactive, addressing 

expectation, and reactive, addressing presence of interference and conflict separately (Braver, 

Gray, & Burgess, 2007; De Pisapia & Braver, 2006). This theory was named the Dual Mechanisms 

of Control framework. Like Kahneman, Braver et al. were interested in the allocation of control, 

investigating a timescale for when control would be enacted. According to Braver et al, proactive 

control is a top-down process that involves maintaining goal-relevant information in anticipation 

of use in upcoming situations that may involve interference. In the context of a task, this may 

involve cognitive and motor preparation in anticipation of a target given a particular cue (e.g., task-

switching, prospective memory, continuous performance tests). Reactive control, conversely, is a 

bottom-up process involving waiting for interference to occur before thinking back to goal-

relevant information to inform necessary responding. In a task context, this would present as 

waiting for the target before thinking back to the cue to determine the necessary response. In an 

update regarding this framework, Braver (2012) stated that it might be possible to use some 

combination of these processes simultaneously as they may be separate processes, with neural 

correlates in different brain regions.  
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Neurophysiological Correlates of Control 

The dual mechanisms of control framework has support from the neuroscience literature. 

While cognitive control generally has been hypothesized to be supported by an entire network of 

neural components (see Cole & Schneider, 2007), the dual mechanisms of control framework 

makes very specific predictions about where and when proactive and reactive control should be 

evident in the brain. Different regions of the brain are more active during proactive control use 

than during reactive control use. During proactive control use, functional Magnetic Resonance 

Imaging (fMRI) shows longer activation in anterior lateral prefrontal regions above baseline (De 

Pisapia & Braver, 2006), and event related potential (ERP) data shows medial frontal negativity 

(West & Bailey, 2012). Conversely, with reactive control use, transient activation in the anterior 

cingulate cortex and lateral prefrontal cortex are implicated by fMRI (De Pisapia & Braver, 2006), 

and medial posterior negativity emerges in ERP (West & Bailey, 2012), overlapping with 

processes involved in dealing with conflict adaptation and interference. Lesion studies have also 

supported the involvement of these brain regions. For example, anterior cingulate cortex damage 

has been found to cause a variety of symptoms that indicate cognitive control deficits (Bush, Luu, 

& Posner, 2000). However, Fellows and Farah (2005) proposed that the anterior cingulate cortex 

might not be necessary for cognitive control as they found performance remained intact for patients 

with damage in that area.  

Critical for the functionality of the dual mechanisms of control framework, temporal 

dissociations have also been found such that proactive control is associated with activity in the 

prefrontal cortex in the time between the cue and target, whereas reactive control is associated with 

prefrontal cortex activation after target onset (Braver, Paxton, Locke, & Barch, 2009). Braver and 

colleagues even showed shifts in these regions toward proactive and toward reactive control 

activation patterns with strategy instructions and rewards or penalties. Together with the 

physiological dissociations, these findings support the dual mechanisms of control framework in 

that there does seem to be separation neurologically and temporally in relation to behavioral 

outcomes that have been proposed to reflect proactive and reactive control.  

Further, there is neural evidence for the flexible use of proactive and reactive control. 

Braver et al. (2009) showed shifts in neural signatures in both younger (to reactive) and older 

adults (to proactive) from the beginning of the task to the end of the task with reward and penalty 

manipulations. Supporting the argument that this network is flexible, a monitor has been proposed 
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to direct the use of these mechanisms. After reinforcement learning the anterior insula and inferior 

frontal gyri have shown elevated activity posited to retain the control demands of the task and send 

signals to the anterior cingulate cortex and dorsolateral prefrontal cortex where control is taking 

place (Jiang, Beck, Heller, & Egner, 2015). As the various theories of cognitive control differ on 

timescale, it is important to evaluate the flexibility of cognitive control over the course of different 

time scales, particularly at the trial level.  

Previous Tasks  

Many tasks have been used to investigate cognitive control broadly, such as go/no-go, stop-

signal, flanker, and Stroop tasks. The go/no-go and stop-signal tasks are typically considered 

sustained attention or inhibition tasks, depending on trial type frequencies. Control is seen in these 

tasks in that preparation is key to fast responding on most trials, and inhibition is key to 

withholding a response to infrequent no-go or stop-signal trials as a reaction to a designated 

stimulus or signal. Preparation is a key component of several of the cognitive control accounts 

(Braver, 2012; Posner & Peterson, 1990), as is inhibition (Miyake et al., 2000). The flanker task 

is a selective attention task where subjects must respond to the qualities of the central stimulus 

only in the presence of flanking congruent or incongruent distractors. These distractors, when 

incongruent, give information that would indicate the opposite response to the correct response, a 

conflict. Therefore, cognitive control is used to direct or orient attention to only the task-relevant 

stimulus and inhibit the irrelevant and conflicting information (Verbruggen, Notebaert, Liefooghe, 

& Vandierendonk, 2006). Similarly, the Stroop task is thought to elicit cognitive control due to the 

incongruent/conflict trials, particularly in versions where the incongruent trials occur less often 

than the congruent trials (Appelbaum, Boehler, Davis, Won, & Woldorff, 2014).  

Within the dual mechanisms of control framework, the go/no-go and stop-signal tasks 

would indicate proactive control with fast responding that is very accurate in the go and regular 

trials but very inaccurate in the no-go and stop-signal trials. In contrast, reactive control would be 

indicated by slow but accurate performance across trial types. Therefore, global speed/accuracy 

tradeoffs would be conflated with changes in proactive and reactive control use (Fellows & Farah, 

2005). In the flanker task, reactive control is used when incongruent trials follow congruent trials, 

and proactive control is elicited when an incongruent trial follows another incongruent trial 

because the preparation will begin after the first incongruent trial in expectation of incongruency 
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in subsequent trials (Suzuki & Shinoda, 2015). The Stroop task is similar in that reactive control 

is considered sufficient for congruent trials, but proactive control is beneficial for incongruent 

trials, particularly when they are infrequent (Appelbaum et al., 2014).  

The aforementioned tasks have been widely studied in broader cognitive control theories, 

but the dual mechanisms of control framework is perhaps more easily studied when the task is 

structured in a way that performance benefits from each proactive and reactive control in separate 

trial types. Accordingly, studies investigating the dual mechanisms of control framework have 

largely used the ‘AX’ version of a ‘continuous performance task’ (AX-CPT). A bit of a misnomer, 

the task is not truly continuous, as cue-probe pairs are demarcated with an inter-stimulus interval 

(ISI) between the trials. The distinction between proactive and reactive control plays out 

reasonably well in the AX-CPT because specific responses can be prepared based on the cue 

information. This type of preparation is not possible, at least to the same degree, in the other 

cognitive control tasks like Stroop, flanker, and go/no-go.  

The AX-CPT is derived from other continuous performance tasks. This task requires 

subjects to respond to all stimuli with a given keypress unless that stimulus is an X that followed 

an A cue, in which case an alternate response is made (Figure 1). Typically, the A-X pairing 

appears on 70% of trials, encouraging subjects to use the A cue to prepare the A-X response, as 

only 10% of trials (A-Y trials) violate this pattern. In preparing for and expecting, the X that 

follows the A most of the time, subjects are using proactive control. This preparation is beneficial 

for performance the majority of the time a subject sees an A, but can be costly on the few trials 

where that expectation is violated. In these instances of violated expectation (A-Y trials), reactive 

control is the more beneficial strategy, as a Y-probe never indicates a target response should be 

made.  

The other 20% of trials, B-Y and B-X trials, have a non-A cue, indicating that no matter 

what follows, a non-A-X keypress is required, also allowing for preparation. Proactive control is 

beneficial in such a case, because the expectations are predictive 100% of the time following a B-

cue, allowing fast and accurate responding. For the B-Y trials, reactive control may be somewhat 

slower but should be equally reliable as again the Y-probe never requires a target response. 

However, reactive control may be less efficient on B-X trials, as an X-probe usually elicits a target 

response and accuracy would depend on memory to recall whether the cue was an A or a B, which 

may or may not lead to more errors, but certainly costs more time. 
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Figure 1. Depiction of AX-CPT trial types and example corresponding response box keypresses. 
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Findings From the AX-CPT Literature 

The AX-CPT has been a useful tool in evaluating cognitive control, particularly within the 

dual mechanisms of control framework. Proactive and reactive control use has been shown to vary 

between individuals on several dimensions. For example, older age (Paxton, Barch, Storandt, & 

Braver, 2006), patient status such as having schizophrenia (Edwards, Barch, & Braver, 2010), and 

lower working memory (Redick, 2014) are all associated with more reactive and less proactive 

control use. Use of proactive and reactive control has also been shown to vary with training (Braver, 

Paxton, Locke, & Barch, 2009) and practice (Paxton, et al., 2006).  

Cognitive control use can also vary within an individual. Munakata, Snyder, and Chatham 

(2012) found that as children grow, they begin to respond to external pressures to enact reactive 

control, and then shift to proactive control. Further, they found there was a later shift from relying 

on external cues to developing internal cues for control use. In healthy young adults, proactive 

control has been shown to increase and reactive control to decrease, with time on the task even in 

the absence of instructional cues to focus on proactive control, with trial type frequencies that 

encourage proactive control use (Wiemers & Redick, 2018). Analogous shifts are seen for older 

adults, who are also initially inclined to use reactive control more often, when given extended 

practice with or without directed strategy training (Paxton et al., 2006). 

Braver (2012) posits that cognitive control developed partly to manage and prepare for 

instances of interference or conflict. For instance, when A-X happens the majority of the time, 

seeing a Y after an A (an A-Y trial) produces conflict because it is contrary to the expectation. 

Accordingly, conflict monitoring has been evaluated in the AX-CPT, similarly to the way it has 

been evaluated in other tasks that have incongruent trials. Conflict adaptation has been found in 

the AX-CPT such that A-X trials that follow conflict (A-Y) trials are slower than no-conflict (B-

Y) trials (Wiemers & Redick, 2018). This finding is in line with post-conflict and post-error 

adjustments seen in other cognitive control tasks such as flanker and Stroop (Clayson & Larson, 

2011; Unsworth, Redick, Spillers, & Brewer, 2012).  

Just as the presence of conflict can alter behavior, trial type frequencies play a large role in 

performance. The proportions of congruent and incongruent trials in tasks like flanker and Stroop 

were already discussed as eliciting different amount of proactive and reactive control (Appelbaum 

et al., 2014). Similarly, in the AX-CPT, trial-type frequencies alter the amounts of proactive and 
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reactive control needed. Redick (2014) found that large proportions of A-X or the otherwise 

typically conflicting A-Y trials elicited more overall proactive control use. In an A-X-majority 

task, this results in fast and accurate responding to A-X trials and lower accuracy on A-Y trials. In 

the A-Y-majority task, the expectation is reversed such that the non-target response is expected 

and prepared for, resulting in fast and accurate A-Y responses, and lower accuracy on the 

infrequent A-X trials. However, a version with equal proportions of A-X and A-Y trials made 

reactive control the optimal performance choice for A-cue trials. A further investigation by 

Richmond, Redick, and Braver (2015) equated the frequency of the A-X and B-Y trials. This 

method equated the proportions of A- and B-cues and the X- and Y-probes, to further investigate 

the use of proactive and reactive control, and resulted in some individuals maintaining proactive 

control use, resulting in fast and accurate A-X responses and slower and less accurate A-Y 

responses, in this additional version while others did not. Namely, those higher in working memory 

capacity, an individual differences measure related to variety of higher order cognitive processes, 

were much more likely to use proactive control than their lower working memory peers.  

Shortcomings of the AX-CPT 

The AX-CPT is sufficient for showing global differences in cognitive control, and to some 

degree dynamic changes in cognitive control use, such as a shift toward proactive control on a task 

in which proactive control is beneficial the majority of the time (Wiemers & Redick, 2018). 

However, due to the nature of the task in the standard version, there are very few of the B-X and 

A-Y trials, which are most useful for looking at proactive and reactive control. These trials occur 

only 10% of the time each. With these proportions, it can become cumbersome to collect sufficient 

data to evaluate the infrequent B-X and A-Y trials. Further, this task is limited in that cognitive 

control is evaluated as a dichotomous process as only trial types that investigate these two 

possibilities are available. That is, the process is talked about as being proactive or reactive, with 

no possibility for ‘somewhat proactive’ or ‘more reactive’, for example. If the process is not 

dichotomous, or if there are two processes but they can work simultaneously and are not mutually 

exclusive, as has been suggested by some (e.g., Braver, 2012; Mäki-Marttunen, Hagen, & Espeseth, 

2019), then the AX-CPT would not capture that.  
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A more sensitive measure would be necessary to answer such questions. In an effort to 

mitigate these problems, I propose a new task that has similar structure, but moves through trials 

more  quickly  because each  stimulus is the  cue for the next  stimulus, in  contrast to the explicit  

cue-probe trial structure of the AX-CPT. This design cuts down the presentation time of a given 

trial by essentially overlapping them. Critically, the task design creates a range of predictability 

based on the ‘cue’, and cognitive control may vary as a function of the stimulus’s predictive 

validity. This would provide an opportunity to measure the extent of subjects’ dynamic control.  

Analytically, the AX-CPT is limited, too. Signal detection indices (bias and sensitivity), 

indicating overall preference for making a target response, have been used to index control (Cohen, 

Barch, Carter, Servan-Schreiber, 1999; Gonthier, Macnamara. Chow, Conway, & Braver, 2016; 

Redick & Engle, 2011, Wiemers & Redick, 2018). However, measures like d’ (sensitivity) and C 

(bias), can be difficult to interpret in tasks where trial type frequencies are so imbalanced 

(Thomson, Besner, & Smilek, 2016). Instead, evaluating the levels of proactive and reactive 

control often rely solely on accuracy and response time (RT) patterns. For example, fast and 

accurate responding to frequent target trials (A-X) or non-target conflict (B-X) trials indicates 

proactive control, whereas slow but accurate responding to infrequent A-Y trials indicates more 

reactive control.  

Other indices of control have also been used in the AX-CPT. For example, a ratio can be 

calculated with the formula [(AY-BX)/(AY+BX)] to measure control because proactive control 

use would result in poor A-Y performance and better B-X performance (Edwards, Barch, & Braver, 

2010; Paxton et al., 2006). However, this calculation is based on the lowest frequency trials, and 

small changes in accuracy can affect this calculation dramatically. Further, this calculation has no 

way of comparing proactive and reactive control use. Increased reactive control use would result 

in better A-Y performance, but B-X performance would rely on an additional memory component.  

More sensitive analyses would be helpful to determine how proactive and reactive 

processes function. That is, to be able to answer my primary question about the use of both 

proactive and reactive control together to some degree, a new task is needed that has trial types 

that do not have optimal strategies that are primarily proactive or primarily reactive, but some 

middle level where more dynamic use would be most beneficial for performance.  
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The New Task 

This new task involves presenting Arabic numerals 1 through 9. The participant’s task is 

to press one button if the current number is larger than the previous and a different button if the 

current number is smaller than the previous (Figure 2). These instructions have the benefit of being 

much more intuitive than the arbitrary letter pairings of the AX-CPT. This paradigm also allows 

all stimuli to be both the probes and the cues, doubling the number of trials presented in a given 

length of time. This also increases the number of trials that are indicative of each type of control.  

An ideal subject would be sensitive to the probabilities of particular responses in this task 

and use proactive control to the extent it is beneficial for task performance. For example, proactive 

control would be most beneficial for trials where there is a 1 followed by another number (1-N) or 

a 9 followed by another number (9-N), as the current stimulus would always be more than 1 and 

less than 9, respectively. However, 2-1 and 8-9 trials would be similar to A-Y trials, where there 

is an expectation of an X following an A, in that a subject is expecting a number larger than 2 and 

smaller than 8, respectively. A 1 following a 2 (or a 9 following an 8) violates this expectation of 

a larger (or smaller) number, similar to a Y violating the expectation of an X following an A.  

 

Figure 2. Depiction of new task and example response box keypresses. 
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 Conversely, where no trials cue the use of reactive control in the standard AX-CPT, a 5 in 

the new task should elicit reactive control as the optimal response strategy, because it does not 

allow for accurate preparation of a specific response; the following number is equally likely to be 

larger (6 to 9) or smaller (1 to 4). Further, trials with 3-N, 4-N, 6-N, and 7-N are intermediates, not 

analogous to any AX-CPT trials. These new types of trials could be particularly informative as to 

the intricacy of dynamic control. Subjects may adjust the strength of proactive control, manifesting 

as a smooth gradient of RTs with the fastest at the poles (1 and 9) and slowing closer to 5. 

Alternatively, it could be that proactive and reactive control are two separate processes that cannot 

overlap. This would lead to abrupt groupings with distinctly different outcomes. Such a pattern 

would be indicated by the data from 1-N, 2-N, 8-N, and 9-N trials being very similar – fast and 

consistent RTs and high accuracy. A separate grouping of data from 4-N, 5-N, 6-N trials would 

exhibit less accurate responses and slower and more variable RTs. It is uncertain what would 

happen with 3-N and 7-N trials in such a situation. Trials with 3- and 7-cues would likely cluster 

with either the trials where the predictive validity is high or where it is equivocal. Because 3-N 

and 7-N performance may vary for different individuals, there could be large between-subject 

variability in both accuracy and RTs. 

These various trials are critical to the goal of evaluating a dynamic use of cognitive control. 

With this task providing a stairstep of benefit from proactive to reactive back to proactive as 

stimulus identity increases (from 1 to 5 to 9), it is possible that I could capture dynamic use of 

proactive and reactive control. This rapid collection of trial responses allows for more trials in the 

same amount of time the AX-CPT takes to complete. Especially when considering that the trials 

could be collapsed symmetrically about 5, the current task increases the number of trials available 

for evaluating reactive control.  

One major concern with the new task is the sensitivity to differentiate between the proposed 

titration hypothesis, where use of proactive control increases as cues move away from 5, and a 

numerical distance account, where time to respond depends on how close to the reference point 

(cue) the number is. Distance effects have been studied extensively since Moyer and Landauer 

(1967) reported them in an initial study examining how relative size judgements were made. The 

main finding is that relative size decisions are faster and more accurate the further apart the 

numbers are. For example, the decision “smaller or larger than 5” is easier to make for 9 than for 

6. Many of the studies since these initial findings have held the reference point constant, evaluating 
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the conditions in which distance effects are elevated or dampened. However, distance effects are 

particularly of concern in the present task because the reference point changes on each trial 

complicating the comparison of one trial type to another, which is critical for the cognitive control 

predictions.  

Some of the predictions of the titration model rely on the use of the cue to prepare for a 

response, which suggests the responding should be influenced significantly by the cue, or reference 

point for the judgement. Holyoak (1978) describes similar findings due to reference point 

judgments and magnitudes. Holyoak found that increased distance from the reference point was 

usually related to extended response times. Further, pairs of the same distance were found to be 

judged slower and less accurately the larger they were. For example, the pair 8-9 was judged slower 

than the pair 1-2, even though both pairs are different by 1. The relative difference is smaller for 

8 and 9 making them ‘seem’ closer.  

From the task-switching literature, similar relative numerical judgement tasks with 

changing reference points have been used to investigate distance effects in relation to switch costs. 

Schneider and Logan (2007) used two reference points, 2 and 7, so that some digits (those outside 

of 2-7) would be consistently mapped to a response while others (those between 2 and 7) would 

vary depending on the reference point. They found that distance effects, slower RTs for closer 

targets, were present for each reference point. Additionally, responses were slower to varied targets 

regardless of reference point, and distance effects were still seen within these varied targets, as 

well. One implication for the current task is that N-1 and N-9 trials are consistently mapped, where 

N-2 through N-8 trials are variably mapped, which according to Schneider and Logan could lead 

to different effects between these trial types. Specifically, the N-1 and N-9 trials could be 

particularly fast because of their consistent mapping.  

The key concern is whether the pattern attributed to the proactive and reactive control 

differences is sufficiently explained by the distance effects. The cognitive control account and 

distance effect account give subtle but important differences in the model and these models can 

therefore be compared to evaluate the relative fit. If the data are fit better by the distance effect 

model, there would be doubt cast on the control account being necessary to explain behavior in 

this task. However, if the titrated control model fits the data better, it would suggest that the 

distance model is not sufficient, and the control account better describes the behavior. There is no 

question as to whether distance effects will be present, but rather whether they are sufficient.  
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The titration hypothesis makes several specific predictions that would not result from a 

distance effect alone. The trials that should look most like the distance effect are the 5-N trials, 

where no predictive value comes from the cue and the cue-target pair must be fully considered 

together, as in a typical relative number judgement task. Conversely, on 1-N and 9-N trials, the 

predictive validity from the cue is 100%, so fast and accurate responses should occur to the target 

regardless of the target identity or distance from the cue. 2-N and 8-N trials are not 100% predictive 

but are highly predictive, with 87.5% of targets being larger or smaller respectively. Consequently, 

subjects would prepare to make the majority response and be relatively fast and accurate when a 

majority-response target appears. Critically, for a 2-1 trial or an 8-9 trial, that expectation is 

violated, so despite being only 1 digit from the reference point, responses would be particularly 

slow to these targets. 

Further predictions of the titration hypothesis include the symmetry of trials based on 

predictiveness of the cue. The magnitude effects noted by Holyoak (1978) imply that rather than 

being symmetrical about 5, the cues larger than 5 in the digit task may result in slower responding 

to targets than those smaller than 5, particularly for targets that are also larger than 5. Conversely, 

cue-target pairs that are both below 5 may be particularly fast. The titration hypothesis would 

predict fairly symmetrical response times about 5 because they would be based on the predictive 

validity of the cue, rather than the identity of the cue. For example, 2-N trials would roughly mirror 

8-N trials such that 2-3 and 8-7 would be equivalent and 2-6 and 8-4 would be equivalent. While 

these differences sometimes work against one another, generally the distance effect is expected to 

be present. However, it is not expected to be sufficient to describe the data, particularly in these 

key areas where the predictions diverge.  
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EXPERIMENT 1 

There were two major aims for Experiment 1. The first goal was to demonstrate that this 

task is a sensitive measure with which to investigate cognitive control mechanisms. Comparisons 

to the AX-CPT literature are made to show the similar performance based on proactive and reactive 

control. Additionally, the new intermediate trial types allow for a more nuanced evaluation of this 

question than the AX-CPT.   

The second goal was to address the question of whether the titrated or grouped pattern 

emerges, indicating how dynamically these control processes can be used and possibly whether 

they can interact. As discussed, proactive and reactive control are often considered separate 

processes, with distinct neural signatures physiologically and temporally. In contrast, some work 

has shown simultaneous use and improvement in both, indicating that these separate processes can 

be enacted at the same time (e.g., Cinullera, Fuentemilla, Brignani, Cucrell, & Miniussi, 2014; 

Mäki-Marttunen, et al., 2019). However, these studies have not shown titrated use at the trial level, 

but rather trial-to-trial or block-to-block dynamic use. 

The hypothesis is that a titrated pattern will emerge indicating that both processes can be 

enacted simultaneously, and that they can modulate each other proportionally to task demands. 

The alternative, dichotomous, pattern would indicate that these processes cannot be enacted 

simultaneously, or they are simultaneous but competitive in nature.  

Method 

Experiment 1 was preregistered at osf.io/h6x3y. I adhered to the preregistration, except for 

the additional exploratory analyses for the proactive index. The idea for this index was developed 

after data collection but before analyses. Additionally, a hybrid model and a distance model were 

added after preregistration to further evaluate the titration hypothesis.  

Participants 

A total of 103 young adults completed the study for either partial course credit toward their 

introductory psychology course or for $10 USD. Two subjects did not complete the session due to 

crashing the program by hitting the Windows key, and a third subject chose to leave early. 
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Therefore, there are complete data for N = 100 subjects. However, 5 subjects had low responding 

or low accuracy (less than 50% accuracy on 3 or more blocks) that was substantial enough to 

warrant exclusion because there would be too few trials for analyses of correct RTs. This occurred 

for a few reasons: not understanding the response deadline component until several blocks into the 

task, lack of effort including texting during the blocks, or falling asleep. Ultimately, the data 

analyzed are from the remaining N = 95 subjects. As my preregistered goal of N = 100 accounted 

for potential exclusion of subjects, N = 95 is sufficient for my purposes. All subjects who 

completed the study were between the ages of 18-30 years old and reported normal or corrected-

to-normal vision and fluency in English.  

Task 

The task was created for this project using E-Prime 2.0. Subjects saw digits 1-9 appear one 

at a time in the center of the screen and were asked to make a ‘z’ key response with their left index 

finger if the current number was smaller than the previous number and a ‘?/’ key response with 

their right index finger if the current number was larger than the previous number. Before 

completing the task, there was a 10-trial practice section, for which feedback was given after each 

stimulus. For each of ten blocks, there was a starting number for reference to which no response 

was made, and then 80 additional numbers to which a response was made. A number appeared for 

500 ms before a fixation cross took its place and remained onscreen for 2000 ms. Responses were 

recorded up to 1000 ms from the onset of the number. After each block, a break screen appeared 

giving the subjects feedback on their accuracy and how many responses were too slow (see Figure 

3). Responses that were too slow were counted as inaccurate. 

Procedure 

Groups of 1 to 11 subjects completed the session together in a shared lab space with 

cubicles for each individual. After consenting and completing a brief demographic questionnaire, 

subjects completed the task. The session took about 45 minutes to complete. Whenever each 

individual finished, they were given a debriefing form and allowed to quietly exit. 
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Figure 3. Depiction of example feedback screen subjects saw during each break. 

Analyses 

The first question this study was intended to answer was how sensitive individuals were to 

trial-level differences in the need for proactive control. As an initial look at the sensitivity to task 

demands, the data were visualized by plotting the grand mean RT for correct responses separated 

by current and previous stimulus. If cognitive control is more of a titrated ability, the data would 

look more like the hypothetical data in Figure 4A. The 2-N trials, which elicit right responses 87.5% 

of the time, would look not quite like either the 1-N trials, which elicit right responses 100% of 

the time of 5-N trials, which correspond to right responses 50% of the time, but would fall 

somewhere in between. Similarly, the trials with incrementally lower probabilities of ‘larger’ 

responses (2-N > 3-N > 4-N) would look incrementally more similar to the 50% trials. However, 

if cognitive control was dichotomous and competitive, the pattern of data would look like the 

hypothetical data in Figure 4B. On trials where there is an 87.5% chance of a larger number, either 

proactive control would win and be enacted to prepare for a ‘larger’ response or reactive control 

would win and be enacted based on the target that appears. If proactive control won, the trial would 

look exactly like a trial where the previous number was a 1 and all following stimuli would be 

larger. If reactive control won, the trial with 87.5% ‘larger’ responses would look more like the 

trials with equal prediction (5-N). 
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A 

 

B 

 

Figure 4. Hypothetical results for Titrated (A) and Dichotomous (B) processes. 

Previous Stimulus 
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In addition to this visualization, the models were compared for the two hypothesized 

patterns to determine which pattern fit the data better when considering trial-level data. One model 

was constructed to predict RTs based on the previous trial stimulus. That is, the distance of the 

previous trial stimulus from 5 was the sole predictor of performance. This model looks at the 

strength of the cue alone but does not account for the full pattern of interest. Accordingly, 

corresponding models with target effects and cue-target interactions were evaluated for each 

theory. This model allows for the gradient pattern expected, considering each level of proactive 

control benefit as a separate predictor and the cue-target interaction which is critical for examining 

both proactive and reactive control use. The alternate model groups previous stimuli by whether 

proactive or reactive would be most likely if they were more dichotomous. Here, 1-N, 2-N, 8-N, 

and 9-N were grouped as more proactive, and 3-N through 7-N as more reactive. It was unclear, a 

priori, what performance on 3-N and 7-N might look like, but as there is more uncertainty in these 

trials, I anticipated they might be grouped with the more reactive trials. As there is a very low 

probability of the 2-1 and 8-9 trials, I anticipated 2-N and 8-N might show performance similar to 

the 1-N and 9-N trials. 

To compare to previous work with the AX-CPT task, some simpler questions were 

investigated through more traditional analyses. Accuracy and RT means and variabilities were 

evaluated. The trials most analogous to “AY” conflict trials in the AX-CPT were reviewed in the 

new task. These are the trials where there was a 1 following a 2 or a 9 following an 8. In the 

standard AX-CPT, ‘Y’ only follows ‘A’ on 12.5% of the trials where an ‘A’ cue has occurred; in 

the current task, 1 only follows 2 on 12.5% of the trials where a 2 has occurred. These are both 

situations where expectation is violated and reactive control actually benefits the participant, by 

being able to choose the correct response despite the lower probability that such response would 

be needed. Subjects who are enacting proactive control on these types of trials will prepare the 

incorrect response, leading to either quick false responses or slower correct responses due to the 

need to disengage the incorrect, but more probable, response. If a subject were being completely 

reactive across trial types, no difference in speed or accuracy would be found on these trials versus 

any others. 

Finally, in an effort to quantify the overall gradient pattern for use in individual differences 

research, I created a proactive index. Because the 5-N trials (trials where 5 is the digit that precedes 

the current stimulus) indicate an equal likelihood of the two response options, these trials can be 
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considered a reactive control baseline. The degree to which a subject is inclined to enact proactive 

control then can be measured by comparing this reactive baseline to the 1-N and 9-N trials, where 

proactive control leads to fast and accurate responses 100% of the time. If a subject is never 

engaging proactive control, these trials will look very similar to the 5-N trials, whereas proactive 

control use would lead to a larger difference. First, I averaged the 1-N and 9-N trials together, and 

then subtracted that average from the 5-N trials. For correct RTs, reactive control leads to slower 

responding, so a larger positive number in this index suggests more proactive control use. This 

index is for RTs, rather than the accuracy or the d’ sensitivity measure used with the AX-CPT. 

This is because the comparison here is quite different. The d‘ measure taking into account hit rates 

(A-X target responses) and false alarms (B-X incorrect target responses) in the AX-CPT is focused 

on the target X, where in this control index, the cue is the key determinant of performance due to 

the level of proactive control that it may elicit. 

Results 

Descriptive Statistics  

Correct RT means are summarized in Table 1, and correct RT individual standard 

deviations are summarized in Table 2. Responses were particularly fast when the previous stimulus 

was 1 (1-N) or 9 (9-N), which follows from a proactive control account such that ability to prepare 

should be beneficial on these trials. This finding is also in line with previous findings regarding 

mapping consistency. Though the mapping for the specific targets is not consistent, the mapping 

is consistent for any target following a 1 or a 9. The presence of this strong mapping effect further 

supports the presence of proactive, rather than reactive control for these trials. Responses were 

progressively slower approaching previous stimulus 5 (5-N). That is, responses to 2-N trials were 

generally faster than responses to 3-N trials and so on. This pattern suggests that subjects were 

sensitive to the varying benefit of using proactive control in the task, and the lack of benefit of 

proactive control use for 5-N trials.  

Variability in RTs, as measured by individual standard deviations, were similar across trial 

types. However, responses tended to increase in variability toward the diagonal in the table. That 

is, responses were more variable when the current stimulus was close in numerosity to the previous 

stimulus. Overall, individual standard deviations (ISDs) were larger moving away from 5-N trials. 
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Proactive control is not useful in the 5-N trials, so most participants should be treating those trials 

similarly – waiting until the digit appears, and then choosing the appropriate response. In contrast, 

individuals may be more or less likely to use proactive control than other subjects even when it is 

most useful, leading to higher variability in these trials. 

The average error rate across trial types was 11%. Errors for individual trial type 

combinations are listed in Table 3. This error rate encompasses both incorrect responses and non-

responses or past-deadline responses. Non-responses occurred in approximately 2.7% of total trials 

in the final sample. The majority of any one subject’s non-responses came from the same block 

and usually their first block.  

Pattern 

The hypothesized pattern for a titrated relationship between proactive and reactive control 

was somewhat supported. While there is a jump from 1-N/9-N to the other trial types, the overall 

observed pattern (Figure 5A) does show this incremental pattern of the titration hypothesis (Figure 

4A).  

While the pattern does not perfectly match the hypothesized pattern, it is clear that there is 

some level of sensitivity to the task demands. There is a clear separation of the 1-N and 9-N trials 

from the rest. However, the remaining trials do not group tightly together as they would in the 

dichotomous model. Rather, there are clear separations in the predicted titrated pattern within these 

trial types. With the exception of the added benefit afforded to 1-N and 9-N trials, this pattern fits 

well visually with the titrated model.  

Not wanting to rely on visual patterns, mathematical models were developed to compare 

these two hypotheses, titrated versus dichotomous. To prepare for this, the following data 

transformations occurred: 1. Data were collapsed such that Previous Trial folded symmetrically at 

five (e.g., 7’s were recoded as 3’s and 6’s recoded as 4’s). 2. The new folded variable was 

subtracted from 5 so that 5 was a meaningful zero intercept, and the effect of the distance from 5 

could be more easily interpreted. 3. Dummy variables were created to group trials in “Proactive” 

and “Reactive” for Model 2.  
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Table 1. Response Time Means and Standard Deviations for Previous Stimulus and Current Stimulus for 
Experiment 1 

_____________________________________________________________________________________________ 

Previous   Current Stimulus   Overall  

Stimulus 1 2 3 4 5 6 7 8 9 Mean SD 
_____________________________________________________________________________________________ 

 1  373 360 370 357 356 358 363 356 362  7 

   (89) (76) (88) (71) (76) (71) (74) (68)  

 2 472  463 436 427 430 434 434 424 440 18 

  (60)  (73) (77) (66) (75) (69) (68) (55)  

 3 479 478  450 447 449 445 445 434 453 16 

  (62) (66)  (69) (78) (71) (69) (64) (59) 

 4 474 469 475  459 460 457 446 453 462 10 

  (72) (71) (67)  (69) (64) (61) (59) (54) 

 5 465 462 464 475  459 460 445 434 464  6 

  (62) (71) (74) (68)  (68) (66) (67) (55) 

 6 452 453 456 473 491  479 470 466 467 14 

  (58) (71) (67) (74) (79)  (66) 67) (58) 

 7 440 437 452 473 473 494  477 476 465 20 

  (59) (65) (68) (78) (75) (78)  (61) (61) 

 8 431 429 442 449 466 473 457  466 452 17 

  (60) (70) (70) (74) (80) (71) (84)  (53) 

 9 360 358 356 367 375 368 363 379  366  8 

  (66) (72) (73) (69) (86) (77) (85) (99) 
_____________________________________________________________________________________________ 

Mean 446 432 434 437 437 436 433 434 442 437  5 

SD  39  44  48  44  48  50  47  42  39  42  
_____________________________________________________________________________________________ 
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Table 2. Response Time Individual Standard Deviation Mean for Previous Stimulus and Current Stimulus for 
Experiment 1 

_____________________________________________________________________________________________ 

Previous    Current Stimulus   Overall  

Stimulus 1 2 3 4 5 6 7 8 9 Mean ISD SD 
_____________________________________________________________________________________________ 

 1  133 128 121 113 117 111 119 104 118  9 

   (60) (62) (56) (49) (47) (51) (54) (40) 

 2  84  126 109 101 105 106 102  90 103 13 

  (42)  (55) (46) (47) (51) (52) (46) (43) 

 3  86  92  110 107  99  95  95  87  96  9 

  (47) (45)  (46) (44) (49) (49) (41) (43) 

 4  87  92 103  113 105  98  88  92  97  9 

  (42) (45) (46)  (50) (47) (46) (46) (42) 

 5  86  96  99  98  101 101  93  85  95  6 

  (40) (45) (53) (44)  (44) (47) (45) (39) 

 6  88 100 100 110 115  104  94  82  99 11 

  (45) (48) (50) (51) (49)  (43) (50) (39) 

 7  78  95  98 110 112 116  101  87 100 13 

  (35) (44) (46) (50) (50) (54)  (46) (45) 

 8  79 101 105 102 119 113 116   83 102 14 

  (32) (49) (43) (47) (51) (46) (46)  (43) 

 9 110 114 113 124 138 126 127 136  123 10 

  (50) (46) (53) (52) (62) (53) (53) (62) 
_____________________________________________________________________________________________ 

Mean  87 103 109 111 115 110 107 104  89 104 10 

SD   10  14  12   9  11   9  10  16   7  10 
_____________________________________________________________________________________________ 
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Table 3, Mean Percent Error and Standard Deviations for Previous Stimulus and Current Stimulus for Experiment 1 

_____________________________________________________________________________________________ 

Previous   Current Stimulus   Overall  

Stimulus 1 2 3 4 5 6 7 8 9 Mean SD 
_____________________________________________________________________________________________ 

 1   12  13   8   6   6   5   4   4  7 4 

   (13) (14) (12) (10)  (9)  (9)  (9)  (8) 

 2  17   20  13   8   7   7   5   5 10 6 

  (15)  (17) (12) (11) (10)  (9)  (7)  (7) 

 3  14  17   18  11   9   8   5   6 11 5 

  (14) (17)  (15) (11) (14) (11)  (9)  (8) 

 4  11  17  18   15  15  10  10   7 12 3 

  (13) (13) (16)  (14) (12) (12) (11)  (8) 

 5  10   9  13  16   16  17  10   9 13 3 

  (11) (12) (13) (15)  (15) (15) (12) (10) 

 6   8  10  12  15  24   18  12  14 14 5 

  (12) (12) (14) (15) (17)  (16) (12) (13) 

 7   6   9   9  12  19  24   15  14 13 6 

  (10) (11) (11) (13) (14) (18)  (13) (14) 

 8   4   7   7  10  15  17  22    16 12 6 

   (8) (10) (11) (12) (16) (17) (16)  (16) 

 9   4   4   6   8   7   9  12  15   8 4 

   (8)  (8)  (9) (11) (10) (10) (13) (17) 
_____________________________________________________________________________________________ 

Mean   9  10  12  12  13  13  12   9   9 11 2 

SD    5   4   5   4   6   6   6   4   5  2 
_____________________________________________________________________________________________ 
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The titrated model (Model 1) allows the previous stimulus to load separately but ordered, 

accounting for proactive and reactive control in a titrated pattern. Of note, PreviousStimulus is a 

coded variable such that the cue stimuli are collapsed about 5 then given a number for their distance 

from 5. This allows the model to use 5 as a reference point and distance from 5 as progressively 

more influential, as the titrated model would predict. All models include a random intercept for 

Subject, accounting for individual differences in overall speed of responding. 

For Model 2, first, trials 1-N, 2-N, 8-N, and 9-N were grouped as ‘proactive’ according to 

the initial alternative hypothesis (Model 2a). However, upon viewing the data pattern, it was 

clear that this would inhibit the model from fitting well, and a second grouping of 1-N and 9-N 

versus the rest (Model 2b) was made to adjust the alternate model to something that more closely 

approximated the observed data. Therefore, the following three models were compared: 

(1) Titrated model: ResponseTimei = (b0 + b0i) + (b1)PreviousStimulus + ri  

(2a) Dichotomous model: ResponseTimei = (b0 + b0i) + (b1)Grouping1289 + ri 

(2b) Dichotomous model: ResponseTimei = (b0 + b0i) + (b1)Grouping19 + ri 

These models were run using the lme4 package in R. As they are not nested models, the 

comparison is not a hypothesis test, but rather comparing AIC and BIC values. Table 4 presents 

these values. Lower values suggest better model fit. The model grouping 1-N and 9-N by 

themselves (Model 2b) fit much better than the model grouping 2-N and 8-N with 1-N and 9-N 

(Model 2a), suggesting the post-hoc adjustment was appropriate. However, Model 2b also fit better 

than the titrated model (Model 1).  
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Table 4. Model Comparison for Experiment 1 

____________________________________________________________________ 

  Cue   Cue-Target  

Model   AIC  BIC  AIC  BIC 
____________________________________________________________________ 

Titrated model (1, 3) 836097 836134 835193 835248 

Dichotomous model (2a, 4a) 837273 837310 836400 836455 

Dichotomous model (2b, 4b) 833878 833915 833296 833351 

Hybrid model (H1, H2) 833679 833724 833275 833339 
____________________________________________________________________ 

Note. Smaller numbers indicate better model fit, but the units of these measures 

themselves are meaningless. 

Models 1 and 2 only consider the effect of the cue, but the target also plays a role, especially 

when reactive control is enacted. Target is coded as the distance from the cue, retaining a positive 

or negative sign to indicate the direction from the cue as these are expected to be different in the 

titrated model. For example, a 2-1 trial is very different than a 2-3 trial in the titrated model, and 

this coding scheme accounts for that. Model 3 adds a main effect of target as well as a cue-target 

interaction term to the titrated model, and Model 4a and Model 4b do the same for the dichotomous 

models:  

(3) Titrated model: ResponseTimei = (b0 + b0i) + (b1)PreviousStimulus + (b2)Target 

+ (b3)PreviousStimulus*Target + ri 

(4a) Dichotomous model: ResponseTimei = (b0 + b0i) + (b1)Grouping1289 + 

(b2)Target + (b3) Grouping1289*Target + ri 

(4b) Dichotomous model: ResponseTimei = (b0 + b0i) + (b1)Grouping19 + 

(b2)Target + (b3) Grouping19*Target + ri 
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As with the simpler models, AIC and BIC were compared to evaluate which model better 

fits the data. These values are again reported in Table 4. The dichotomous model is preferred, with 

the lowest AIC and BIC of the three models. Further, Model 4b is preferred to Model 2b, which 

shows that the addition of target information helps the model. Figure 5 shows the averaged 

estimates for the titrated interaction model (Figure 5B) and the dichotomous interaction model 

(Figure 5C).  

Bayesian model comparisons were also used to evaluate the models. These were also run 

in R, using the generalTestBF function. The models were otherwise identical to the frequentist 

models. However, as the post-hoc adjustment to the dichotomous model was well established, only 

the Grouping19 versions were used. Table 5 shows the Bayes Factors for both the Cue and Cue-

Target interaction models. They have been named with ‘B’ then the name of the corresponding 

frequentist model. So, Model B1 is the cue-only model for the titrated hypothesis, Model B2 is the 

cue-only dichotomous model, Model B3 is the titrated interaction model and Model B4 is the 

dichotomous interaction model. Larger Bayes Factors indicate stronger evidence for a given model 

against a null, intercept-only model. The relative Bayes Factor of one model over the other shows 

the strength of evidence for the numerator model if greater than 1 and evidence for the denominator 

model if between 0 and 1. Models are specified as follows: 

(B1) Bayes Titrated model: ResponseTimei = (b0 + b0i) + (b1)PreviousStimulus + ri 

(B2) Bayes Dichotomous model: ResponseTimei = (b0 + b0i) + (b1)Grouping19 + ri 

(B3) Bayes Titrated model: ResponseTimei = (b0 + b0i) + (b1)PreviousStimulus + 

(b2)Target + (b3)PreviousStimulus*Target + ri 

(B4) Bayes Dichotomous model: ResponseTimei = (b0 + b0i) + (b1)Grouping19 + 

(b2)Target + (b3)PreviousStimulus*Target + ri 
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Table 5. Bayesian Model Comparisons for Experiment 1 

_______________________________________________________ 

Model Cue Cue-Target 
_______________________________________________________ 

Titrated model (B1, B3) 1.92e922 6.19e1080 

Dichotomous model (B2, B4) 4.70e1328 1.28e1438 

Hybrid model (BH1, BH2) 1.99e1363 1.12e1436 

_______________________________________________________ 

Comparison  
_______________________________________________________ 

Titrated/Dichotomous 4.08e-407 4.82e-358 

Hybrid/Dichotomous 4.25e34 0.01 
_______________________________________________________ 

Note. Large and small values have been reported in scientific 

notation. For the comparisons, values above one favor the numerator 

model and values between zero and 1 favor the denominator model. 

Both the Cue and Cue-Target model comparisons show decisive evidence in favor of the 

dichotomous model versus the titrated model, indicating that the dichotomous hypothesis more 

accurately reflects the behavior observed. Figure 5 shows the observed averaged data for each cue 

and target pairing (Figure 5A). It also shows averaged estimates for the titrated model (Figure 5B) 

and the dichotomous model (Figure 5C). It is clear from these projections that neither model is 

capturing the whole pattern, as the titrated model is clearly incapable of producing the gap between 

1-N and 9-N trials and the remaining trials and the dichotomous model is not fully capturing the 

separation occurring in the 2-N through 8-N grouping. 

Hybrid Model 

The titration process, however, could still be occurring, and therefore be an important 

component for accurately modeling the behavior. It is possible that the titration component is 

necessary to describe behavior in the 2-N through 8-N trials, but the grouping factor from the 

dichotomous model is necessary to capture some additional phenomenon that may be occurring. 

To investigate this possibility, an additional model was estimated. This model is a post hoc 
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adjustment to the titration model and should be considered exploratory. It was not included in the 

preregistration and was specified after seeing the results from the models that had been 

preregistered. The idea for this model is that the titration hypothesis may describe the majority of 

the pattern, but the 1-N and 9-N trials have something additional going on that requires a grouping 

factor to accommodate this gap. That is, both the titration factor and the grouping factor are needed 

to accurately reflect the behavior. So, the grouping factor “Group19” from the dichotomous models 

was added on to the titration models as a main effect only. This factor simply allows the model to 

boost the 1-N and 9-N trials closer to the observed performance level without affecting the other 

trial types. Both cue-only and cue-target interaction models were estimated as both frequentist and 

Bayesian models. Other than the addition of the Group19 main effect, they are the same as the 

titration models described previously. Frequentist hybrid models have been numbered with an H 

and Bayesian hybrid models have been numbered with BH. Models are specified as follows: 

(H1) Hybrid model: ResponseTimei = (b0 + b0i) + (b1)PreviousStimulus + 

(b2)Group19 + ri 

(H2) Hybrid model: ResponseTimei = (b0 + b0i) + (b1)PreviousStimulus + (b2)Target 

+ (b3)PreviousStimulus*Target + (b4)Group19 + ri 

(BH1) Hybrid model: ResponseTimei = (b0 + b0i) + (b1)PreviousStimulus + 

(b2)Group19 + ri 

(BH2) Hybrid model: ResponseTimei = (b0 + b0i) + (b1)PreviousStimulus + 

(b2)Target + (b3)PreviousStimulus*Target + (b4)Group19 + ri 

The AIC and BIC for models H1 and H2 are presented in Table 4. They produce the lowest 

AIC and BIC of the four models. This is in line with the visual discrepancy in Figure 5, that neither 

the titration nor the dichotomous models capture the pattern fully. This suggests that the 

information in the titration model is preferred when the addition of a grouping factor allows 1-N 

and 9-N trials to deviate from the group. The modeled data are presented in Figure 5D, which  
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illustrates the additional information allows the model to be visually much more similar to the 

observed data.  

The Bayesian model comparisons are presented in Table 5. The results are in line with the 

frequentist models in that the hybrid model is preferred above the dichotomous model for the cue-

only model. Again, this supports the idea that the titration hypothesis is supported if 1-N and 9-N 

trials are allowed to deviate. However, the cue-target model disagrees with the frequentist models 

and the cue-only model and instead favors the dichotomous model. A BF = 0.01 favors the 

comparison model (in this case the dichotomous model) to the degree of a BF = 100. While this 

seems like a very weak number compared to the others in the analyses, which have been orders of 

magnitude larger, a 100 is generally considered very convincing.  

Distance Effect 

Bayesian models were employed for this analysis. This comparison was not preregistered, 

but it is critical to the understanding of feasibility of a titration hypothesis. For the Directional 

model, the Target is classified with the plus or minus indicating the direction from the cue, in 

addition to the numerical distance (e.g., 2-3 = 1, 2-1 = -1) from the cue, as it was for the titrated 

models. This is renamed TargetDirectionalDistance for this comparison for clarity. For the 

Distance only model, the Target is classified by the absolute value of the distance (e.g., 2-3 = 1, 2-

1 = 1) from the cue, taking into account the distance but not direction from the cue. This is named 

TargetAbsoluteDistance for this comparison, for clarity. Table 6 lists Bayes Factors for Directional 

(Model B5) and Distance only (Model B6) for a Target-only model and Directional (Model B3) 

and Distance only (Model B7) for a Cue-Target interaction model. The Directional Cue-Target 

model is identical to the titration Cue-Target model (Model B3), so it has not been renamed.  

(B5) Bayes Directional model: ResponseTimei = (b0 + b0i) + 

(b1)TargetDirectionalDistance + ri 

(B6) Bayes Distance Only Model: ResponseTimei = (b0 + b0i) + 

(b1)TargetAbsoluteDistance + ri 
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(B7) Bayes Distance Model: ResponseTimei = (b0 + b0i) + (b1)PreviousStimulus + 

(b2)TargetAbsoluteDistance + (b3)PreviousStimulus*TargetAbsoluteDistance + 

ri 

There is a strong preference for the directional model for the Target-only model (Model 5) 

and the Cue-Target interaction model (B3). This indicates that distance alone is not sufficient to 

describe the pattern of data and that the directional information is important, as predicted with the 

titration hypothesis. 

Table 6. Bayesian Model Comparison of Directional Versus 
Distance Effect for Experiment 1 

_____________________________________________________ 

Models Experiment 1 Target Cue-Target 
_____________________________________________________ 

Directional model (B5, B3) 1.51e494 1.29e1080 

Distance Only model (B6, B7) 5.14e410 1.82e1033 

_____________________________________________________ 

Relative BF 2.95e83 3.40e45 

_____________________________________________________ 

Proactive Index  

Reactive control should lead to optimal performance, as fast and accurate as possible, for 

the trials where the previous trial was a 5, as the 5 provides no predictive information. Preparation 

of a response, which is often a result of using proactive control, would be detrimental in that the 

prepared response would be accurate only 50% of the time, and inhibiting an initial response in 

favor of a corrected response would be more costly to performance. Therefore, with the expectation 

that proactive control produces faster responding, more proactive subjects should have a larger 

difference from the reactive baseline performance on 5-N trials than less proactive individuals. 

Subjects were generally more proactive on the 1-N and 9-N trials (1- or 9-N M = 364 ms, SD = 65 

ms) than the 5-N trials (5-N M = 464 ms, SD = 55 ms), with an average difference index of 100  
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ms (SD = 48 ms). However, they were quite variable from one another, with scores ranging from 

1 ms to 223 ms. The distribution of this index is shown in Figure 6. 

 

Figure 6. Distribution of proactive index scores for Experiment 1. 

Comparison to AX-CPT  

To compare to the previous literature, the trials most similar to critical trials in the AX-

CPT were analyzed. Analogous to B-X trials are those where proactive control leads to highly 

accurate quick responding, because a B-cue never indicates a target press for the subsequent letter. 

However, reactive control leads to lower accuracy and possibly slower responses, as the subject 

must think back from the X to determine whether the cue was A (meaning the X is a target) or a B 

(meaning the X is not a target). Trials analogous to B-X trials are the trials where the current 

stimulus would typically require a particular response but requires the opposite response due to 

the cue: 1-2, 1-3, 2-3, 8-7, 9-7, and 9-8. Conversely, proactive control leads to poorer performance 

on A-Y trials, where the expectation of an X has been induced by the cue A, but the Y then violates 

that expectation and a non-target response is required. Analogous to this trial type are those trials 

where the cue strongly predicts a particular response, but the other response is required: 2-1, 3-2, 

3-1, 8-9, 7-8, and 7-9.  

To compare the effects of these trials, the 6 mentioned trial type combinations were 

collapsed. Paired samples t-tests were employed to determine if there were differences in these 

two groups of trials. For the error rates, (‘B-X’ M = 16%, SD = 10%; ‘A-Y’ M = 17%, SD = 10%), 
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there was no difference between the ‘B-X’ grouping and the ‘A-Y’ grouping, t(94) = 0.03, p = .861. 

However, the mean RTs were different between the two trial type groups, t(94) = 18.28, p < .001, 

with the ‘B-X’ trials being faster (M = 397 ms, SD = 65 ms) than the ‘A-Y’ trials (M = 473 ms, 

SD = 50 ms). This provides some evidence for proactive control use, as faster B-X trials would 

follow from preparing a non-target response in the AX-CPT. Similarly, fast and accurate 

responding to the less-frequent response in the Digit Decision task also indicates use of the cue to 

prepare the appropriate response. The error rates have large variabilities, which may indicate that 

on an individual level some individuals would have higher ‘B-X’ or higher ‘A-Y’ errors, but there 

is large person-to-person variability in the sample. 

Discussion 

The pattern of mean RTs suggests that both proactive and reactive mechanisms are being 

used on appropriate trials, at least the majority of the time. As these trials are intermixed, either 

both mechanisms are enacted together, or subjects are able to rapidly switch between them. The 

gradient or titrated pattern suggests that both may be active at the same time to varying degrees. I 

opt for this explanation over a continuum explanation due to work by Braver that suggests 

neurophysiological evidence for separate mechanisms, rather than a single mechanism that is more 

or less proactive at a given time. These two mechanisms then would both be active, but the 

proactive mechanism may have priority. However, to catch conflict trials, such as a 1 following a 

2, when the expectation is that 87.5% of numbers following a 2 will be larger, would require that 

there be an inhibitory mechanism at the ready for such occasions. Is this the reactive mechanism?  

The overall pattern was not fit particularly well by either the original titration model or the 

dichotomous model. Of the two hypothesized models, the dichotomous model was preferred, likely 

because the residuals resulting from the missing separation in the 2-N through 8-N trials were 

much smaller than the large residuals that would remain from the 1-N and 9-N trials not being 

allowed to deviate in the initial titration model. Unsatisfied with either model, a new model was 

evaluated post hoc. This new model added the grouping component to the titration model and was 

then preferred to either model for both the cue-only and cue-target interaction models for the 

frequentist models, and the cue-only model for the Bayesian models. However, it was not preferred 

to the dichotomous model for the Bayesian analysis. So, the hybrid model is generally, but not 

unanimously, favored. 
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Despite being called the ‘hybrid’ model due to the way it is specified, it is unclear what the 

grouping mechanism would necessarily be estimating. It seems unlikely that there would be two 

sets of mechanisms for control, one of which is dichotomous and the other titrated. Rather, it seems 

more likely that something like the mapping effect would be causing the special status of the 1-N 

and 9-N trials moving away from the otherwise titrated pattern of behavior. This mapping effect 

is seen consistently throughout relative number judgement tasks. However, it would generally be 

expected to influence targets (e.g., N-1 and N-9 trials, which are consistently mapped) rather than 

the cue, which itself is consistently mapped but is not necessarily followed by consistently mapped 

stimuli.  

This seems to be a special case of the mapping effect where proactive control is used to 

impose a mapping effect onto otherwise variably mapped stimuli. That is, after a 1-cue, a 2-target 

may appear. A 2 usually elicits a “smaller” judgment, but requires a “larger” judgement in this 

case. It is variably mapped, and further is mapped mostly to the opposite of the necessary response 

in this instance. However, due to the proactive control afforded by the 1-cue, that participant can 

ignore the target identity, which would have variable mapping, and prepare to make a specific and 

correct response. This consistent mapping only occurs for the 1-N and 9-N trials, and is therefore 

a likely candidate for the mechanism behind their special status. The Group19 main effect would 

sufficiently account for this component.  

Another concern regarding the feasibility of the titration hypothesis was the distance effect. 

Differences in RTs occur for number comparison judgements due to numerical distance effects. 

For example, it is easier to pick the larger of 4 and 9 than it is to pick the larger of 4 and 5. As 

numbers get closer, RTs slow. This effect was anticipated in this task. However, the degree to 

which it can explain the full behavior pattern was the key concern. If the distance effect was 

sufficient to cause the behavior, there would be no need to discuss the effect of cognitive control 

on the data. However, the titration models were preferred to the distance effect models, indicating 

that the distance effects present were not sufficient to describe the pattern and that the titration 

model added important information such that it was better able to fit the observed data.  

The proactive index is of particular interest. The amount of variability in this index is 

promising for use as a measure of individual differences. Some subjects clearly are not showing a 

difference at all between 5-N and 1- and 9-N trial RTs, where others are showing very large 

differences. This indicates that some individuals may not use proactive control even when it is 
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beneficial, resorting to reactive control for all trials, indiscriminately (Figure 7A), or in the grouped 

pattern (Figure 7B). However, others, who are showing large differences, may be more inclined to 

use more proactive control when it is useful, and perhaps more dynamic shifting between proactive 

and reactive (Figure 7C).  
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Figure 7. Exemplar subject data for subjects more inclined toward overall reactive control (A), 
reactive control except on 1-N and 9-N, and more proactive or more dynamic control (C). 
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EXPERIMENT 2 

As the pattern has been established to show subjects are capable of sensitivity to the 

differences in benefit of using proactive versus reactive control at the trial level, one question that 

follows is how individuals vary in this sensitivity. Experiment 1 showed substantial variability in 

the proactive index measure, and these differences are confirmed by looking at example 

individuals with varying patterns (Figure 7). These individual differences make sense in the 

context of the vast literature on working memory relationships with cognitive control ability. 

Working memory has been proposed to relate to many higher-order cognitive constructs. 

Working memory was at one time thought to be interchangeable with short-term memory until 

modeling methods provided evidence for their distinctiveness (Engle, Tuholski, Laughlin, & 

Conway, 1999). Working memory has also been proposed to be interchangeable with intelligence 

or g, but similarly is not quite the same despite high correlation (Ackerman, Beier, & Boyle, 2005). 

Individual variability in working memory capacity has even been proposed to be due to cognitive 

control variation, although evidence from visual search and task-set switching tasks do not often 

support this close relationship (Kane, Conway, Hambrick, & Engle, 2007). More recently, working 

memory has been thought to reflect maintenance of task-relevant information compared to 

intelligence reflecting disengagement when information becomes irrelevant, with both relying on 

cognitive control (Shipstead, Harrison, & Engle, 2016; Engle, 2018). 

Though working memory and cognitive control are not entirely the same, they are highly 

related in many situations. Across cognitive control tasks, higher working memory has been 

associated with greater proactive control use and low working memory has been associated with 

greater reactive control use. This is evident in the Stroop task where only high working memory 

individuals showed maintained use of proactive control across many trials to anticipate conflict 

from incongruent stimuli (Hutchison, 2011; Kane & Engle, 2003). Working memory is also 

consistently related to performance on the go/no-go task where cognitive control is necessary for 

fast and accurate responding to frequent go trials and crucially to manage infrequent no-go trials 

(Redick, Calvo, Gay, & Engle, 2011; Wiemers & Redick, 2019).  

In the AX-CPT, working memory is also consistently related to performance. Higher 

working memory individuals tend to use more proactive control, resulting in faster and more 

accurate responding the majority of the time, particularly on A-X and B-X trials (Ball & Brewer, 
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2018; Redick, 2014; Redick & Engle, 2011; Richmond, Redick, & Braver, 2015; Stawarczyk, 

Majerus, Catale, & D’Argembeau, 2014; Wiemers & Redick, 2018). However, individuals with 

low working memory are just as capable of using proactive control, evidenced by equally fast and 

accurate performance in the fastest quantile of RTs on A-X trials (Wiemers & Redick, 2018). They 

seem to use it less consistently, as evidenced by a much slower slowest quantile of RTs compared 

to higher working memory individuals.  

Beyond the overall performance boost with which higher working memory is typically 

associated, several additional findings have occurred. Individuals with low working memory have 

difficulty maintaining the cue information across predictive proportions. Redick (2014) 

manipulated the frequencies of A-cue trials to try to determine the source of the deficit for low 

working memory individuals. A standard AX-CPT-70 was used where 70% of the trials are A-X 

trials. Then, proportions of A-X (now 10%) and A-Y (now 70%) were flipped resulting in the AX-

CPT-10. In the AX-CPT-10, 90% of trials had a non-target response, but A-cues were equally 

predictive of a specific response. Additionally, an AX-CPT-40 with 40% A-X trials and 40% A-

Y trials, was created, making the A-cue not predictive and erasing the benefit of using proactive 

control on A-cue trials. The results showed lower working memory individuals had higher error 

rates on A-X trials no matter what the proportions of trials were, and had higher B-X errors on the 

AX-CPT-70 and AX-CPT-40, where A cued X the majority of the time or equally as often as it 

cued Y. These results lead to the conclusion the low working memory individuals are not as likely 

as high working memory individuals to engage in proactive control use.  

Richmond, Redick, and Braver (2015) followed up on low working memory individuals’ 

AX-CPT behavior by investigating whether a new “C-X” trial type, requiring a third response, 

would alter their performance. They found that this additional response shows low working 

memory individuals are using reactive control, rather than using the response frequencies to make 

a decision about the correct response. Together, these findings show a clear picture that higher 

working memory individuals are more likely to maintain cue information and enact proactive 

control. Additionally, while lower working memory individuals can use proactive control, they are 

more likely to rely on reactive control use the majority of the time.  

Working memory was not accounted for in the model in Experiment 1 in the current 

research, which may account for some difficulty modeling the data. A random intercept for subject 

accounted for individual differences, but it does not have the ordered nature of the working 
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memory variable. Experiment 2 remedies that issue by including working memory measures to 

capture this individual differences component. This addition also allows more connections to be 

drawn to previous work involving the AX-CPT task. Further, this additional information advances 

the understanding of lower working memory behavior concerning proactive and reactive control 

use. While the AX-CPT studies have revealed a lower propensity for proactive control use, that is 

not the only possibility.  

With the understanding that proactive and reactive control can work together in this titrated 

manner, two possibilities emerge. Lower working memory individuals could be using proactive 

control less often or they could be using less proactive control overall. The additional trial types 

in the new digit decision task will allow this distinction to be made. Less frequent proactive control 

use would result in RTs being just as fast and accurate as their higher working memory peers some 

of the time, but less frequently resulting in slower and less accurate responding that is more 

variable at the aggregate level. However, consistent but quantitatively less proactive control use 

would result in less variable performance but still not as fast and accurate as their higher working 

memory peers overall who would be consistently using more proactive control. 

Present Study 

The goal for Experiment 2 is to determine the relationship between working memory and 

cognitive control as measured within the new digit decision task I created and tested in Experiment 

1. As higher working memory has generally been associated with more proactive control use, and 

low working memory has been associated with more reactive control use, several specific 

predictions follow. Low working memory individuals will be less sensitive to the benefits of using 

proactive control in certain trial types more than others, leading to less variability across trial types 

(similar to Figure 7A). Without as much proactive control use, in either frequency or quantity, low 

working memory individuals will be less accurate overall and more variable in RTs within trial 

types as they use control mechanisms less consistently. High working memory individuals should 

use more proactive control overall, resulting in faster and more accurate overall performance. High 

working memory individuals are also more likely to be sensitive to the predictive validity of the 

various digits and would be more likely to show the titrating pattern (similar to Figure 7C). It is 

perhaps the middle working memory individuals who would show enough proactive control use  
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to have fast and accurate 1-N and 9-N trials, but with more reactive control performance on the 

rest, resulting in a pattern more similar to Figure 7B. 

Method 

Methods for Experiment 2 were preregistered at osf.io/s5uhz, and have been followed 

closely. As noted, the hybrid model and distance model were not preregistered.  

Participants 

To investigate the working memory and cognitive control relationship in the new task, a 

new group of 143 subjects were asked to complete two complex span working memory tasks in 

addition to the control task. This allowed for replication of Experiment 1 and extension to 

investigate working memory differences in this task. These subjects were from the same subject 

pool as Experiments 1, receiving partial course credit for participating, but had not participated in 

Experiment 1. Of the 143 subjects who participated, 2 did not finish the session, and 5 additional 

subjects had poor accuracy and were removed from the data set. As in Experiment 1, this cut was 

made for subjects whose accuracy was below chance, 50%, on 3 or more blocks. As a result, 136 

subjects remained in the final sample and are included in the following analyses.  

Tasks 

Operation span (Redick et al., 2012; Unsworth, Heitz, Schrock, & Engle, 2005). This 

complex span task asks subjects to recall a series of letters in order. Interleaved between the 

presentation of each letter, shown individually onscreen, is a math problem and a proposed solution 

that subjects are asked to verify as a true or a false solution. There are 3 each of set sizes 3 to 7 

accumulating in a total possible score of 75. Subjects are asked to maintain a math problem 

accuracy of 80%. The length of time the math problems are presented is calculated based on the 

average time that  subject took to answer math  problems in a section of  practice with only  math 
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problems (no letters to remember) before the start of the task. This timing discourages strategy 

use of withholding response on the math problems to allow for verbal repetition of the to-be-

remembered items. This task is depicted in Figure 8. 

Symmetry span (Redick et al., 2012; Unsworth, Redick, Heitz, Broadway, & Engle, 

2009). This task is a spatial version of the operation span task in which subjects are asked to recall 

a series of red square locations in a grid that were presented interleaved with black and white grid 

images for which subjects were asked to verify whether the black and white image was 

symmetrical. There are 3 each of set sizes 2, 3, 4, and 5 resulting in a total possible score of 42. 

The presentation times are calculated in the same way as in the operation span task, and subjects 

are told not to use physical representations such as touching the screen or desk to mark locations 

with their fingers. This task is depicted in Figure 9. 

Digit task. This task was largely the same as the one used in Experiment 1. However, to 

minimize the loss of observations and subjects due to slow responding, the fixation cross turned 

red when the subject had failed to respond in time. In Experiment 1, an average of 2.7% of trials 

were lost due to slow responding in the final sample, with the largest losses occurring in block 1. 

Rather than feedback only at the breaks regarding how many trials were too slow, this gives 

subjects immediate feedback and encourages faster correction of this error. Generally, subjects did 

not have this issue after the first block or so, after the first feedback screen in which too-slow 

responses started to occur more frequently. So, more immediate feedback might minimize this 

issue. Additionally, the practice was adjusted to repeat if accuracy is less than 80%, to further 

mitigate this concern.  
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Figure 8. Illustration of the Operation Span Task. 

 

 

Figure 9. Illustration of the Symmetry Span Task. 
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Procedure 

As in Experiment 1, groups of 1 to 11 subjects completed the session together in a shared 

lab space with cubicles for each individual. After consenting and completing a brief demographic 

questionnaire, subjects completed the operation span task, symmetry span task, and digit task. The 

session took about 60 to 75 minutes to complete. When each individual finished, they were given 

a debriefing form and allowed to quietly exit. 

Analyses 

Analyses were essentially the same as in Experiment 1, except where working memory 

was added. Analyses of accuracy, RT means and individual standard deviations, and proactive 

index were evaluated with the covariate working memory. Variables were also correlated with 

working memory. Models were also similar to Experiment 1, with the exception of the addition of 

working memory. Working memory was added to the models to evaluate the impact of individual 

differences.  

Results 

Descriptive Statistics  

The overall pattern of correct RTs closely replicated the pattern from Experiment 1. 

However, there was a shift such that RTs in Experiment 2 were about 20 ms on average slower 

than in Experiment 1. Correct RTs for Experiment 2 are summarized in Table 7. RT ISDs are 

summarized in Table 8. The accuracy by trial type interaction replicates in pattern but is shifted to 

slightly higher accuracy in Experiment 2 from Experiment 1. Error rates for Experiment 2 are 

summarized in Table 9.  
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Table 7. Response Time Means and Standard Deviations for Previous Stimulus and Current Stimulus for 
Experiment 2 

_____________________________________________________________________________________________ 

Previous   Current Stimulus   Overall  

Stimulus 1 2 3 4 5 6 7 8 9 Mean SD 
_____________________________________________________________________________________________ 

 1  390 397 391 389 392 391 387 382 390  4 

   (105) (103) (109) (98) (98) (103) (97) (90) 

 2 489  493 475 459 464 457 452 444 467 18 

  (76)  (94) (90) (77) (82) (77) (79) (71) 

 3 494 497  496 476 482 483 465 469 483 12 

  (76) (82)  (86) (82) (86) (81) (77) (76) 

 4 489 494 496  493 486 491 485 479 480  6 

  (75) (78) (80)  (84) (83) (82) (77) (73) 

 5 476 487 491 505  495 495 488 490 491  8 

  (76) (79) (80) (84)  (77) (71) (74) (76) 

 6 478 475 481 490 518  511 505 497 494 16 

  (79) (83) (80) (79) (86)  (75) (76) (74) 

 7 472 468 485 492 511 522  508 500 495 19 

  (73) (74) (86) (79) (86) (79)  (75) (73) 

 8 454 456 458 470 486 506 498  499 478 21 

  (74) (79) (81) (77) (83) (82) (89)  (71) 

 9 377 377 389 388 394 402 404 413  393 13 

  (92) (101) (94) (103) (103) (108) (114) (121) 
_____________________________________________________________________________________________ 

Mean 466 456 461 463 466 469 466 463 470 464  4 

SD  38  46  44  47  50  48  45  44  40  42 
_____________________________________________________________________________________________ 
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Table 8. Response Time Individual Standard Deviation Mean for Previous Stimulus and Current Stimulus for 
Experiment 2 

_____________________________________________________________________________________________ 

Previous    Current Stimulus   Overall  

Stimulus 1 2 3 4 5 6 7 8 9 Mean ISD SD 
_____________________________________________________________________________________________ 

 1  136 137 137 125 126 124 126 111 128  9 

   (60) (57) (62) (58) (52) (48) (52) (43) 

 2  89  126 117 109 108 100  93  87 104 14 

  (44)  (57) (48) (52) (48) (49) (44) (37) 

 3  85  98  118 112 111 101  95  92 101 11 

  (41) (39)  (46) (51) (50) (46) (43) (41) 

 4  86 103 102  111 106 103 102  88 100  9 

  (40) (53) (48)  (46) (45) (51) (44) (40) 

 5  82  97 103 104  108 102 100  88  98  9 

  (44) (47) (46) (48)  (47) (45) (44) (41) 

 6  83  94 104 103 110  111  96  88  99 10 

  (44) (46) (48) (50) (48)  (51) (45) (42) 

 7  91  91 106 105 112 117  100  84 101 11 

  (43) (42) (49) (49) (48) (51)  (42) (37) 

 8  90 104  99 104 110 118 121   86 104 12 

  (44) (45) (44) (50) (49) (46) (47)  (41) 

 9 112 125 131 124 137 139 145 153  133 13 

  (42) (48) (50) (47) (50) (57) (60) (64) 
_____________________________________________________________________________________________ 

Mean  90 106 113 114 116 117 114 108  91 108 10 

SD    9  16  15  12  10  11  16  21   8  13 
_____________________________________________________________________________________________ 
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Table 9. Mean Percent Error and Standard Deviations for Previous Stimulus and Current Stimulus for Experiment 2 

_____________________________________________________________________________________________ 

Previous   Current Stimulus   Overall  

Stimulus 1 2 3 4 5 6 7 8 9 Mean SD 
_____________________________________________________________________________________________ 

 1   15  10   9   5   4   5   3   3  7 4 

   (16) (12) (13)  (9)  (7)  (8)  (6)  (6) 

 2  13   18  11   7   6   7   4   3  9 5 

  (14)  (16) (14) (10)  (9) (11)  (7)  (7) 

 3  11  14   17  10  10   8   6   4 10 4 

  (12) (14)  (14) (13) (11)  (9)  (8)  (8) 

 4   9  10  15   12  11  11   9   6 10 2 

  (13) (12) (14)  (12) (12) (11) (10)  (9) 

 5   8   8   9  15   14  14  10   8 11 3 

  (11) (11) (11) (15)  (13) (13) (12) (11 

 6   6   7   9  13  20   18  12   9 12 5 

   (8) (11) (12) (13) (16)  (15) (14) (10) 

 7   6   6   7   9  13  18   14  10 11 4 

   (8) (10) (10) (12) (12) (15)  (15) (11) 

 8   3   4   6   6   9  14  16   12  9 5 

   (7)  (8)  (9) (10) (12) (14) (14)  (12) 

 9   3   4   4   5   7   6  10  13   6 3 

   (7)  (8)  (8)  (9)  (9)  (9) (15) (15 
_____________________________________________________________________________________________ 

Mean   7   9  10  11  11  10  11   9   7  9 2 

SD    3   4   5   4   5   5   5   4   3  2 
_____________________________________________________________________________________________ 
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Pattern 

The pattern in the RTs closely resembles that of Experiment 1. Again, this pattern, seen in 

Figure 10, does not perfectly resemble either of the proposed patterns, but has a titrated pattern for 

2N through 8N with a gap between all of those and 1-N and 9-N, which are together at a shorter 

RT. The observed RTs are depicted in Figure 10A.  

The titrated and dichotomous models specified in Experiment 1 were fit to the Experiment 

2 data to again investigate this pattern. The modeled data are presented in Figure 10 for both the 

titrated (B) and dichotomous (C) models. Similar to Experiment 1, the lowest AIC and BIC in this 

comparison is Model 2b, the dichotomous model with 1-N and 9-N grouped together and the 

remaining trial types grouped together. The interaction models were also compared. Similar to the 

simple models and Experiment 1 models, the dichotomous model is preferred. Table 10 shows the 

AIC and BIC for both the cue-only and the interaction models. 

The Bayesian models specified in Experiment 1 were also used to compare the hypothesis 

models’ fit for Experiment 2. The Bayes Factors for these models are reported in Table 11. For the 

relative Bayes Factor, numbers greater than 1 show evidence for the titrated model. The Bayesian 

models show preference for the dichotomous model for both the Cue (Model B2) and Cue-Target 

(Model B4) models. These results suggest the dichotomous pattern does a better job of describing 

the observed data than the titrated pattern.   

Table 10. Model Comparison of Cue Models for Experiment 2 

________________________________________________________________________ 

  Cue   Cue-Target  

Model AIC BIC AIC BIC 
________________________________________________________________________ 

Titrated model (1, 3) 1228490 1228528 1226899 1226956 

Dichotomous model (2a, 4a) 1229915 1229953 1228569 1228626 

Dichotomous model (2b, 4b) 1225427 1225465 1224696 1224753 

Hybrid model (H1, H2) 1225144 1225192 1224521 1224587 
________________________________________________________________________ 
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Table 11. Bayesian Model Comparison of Cue and Cue-Target 
Models for Experiment 2 

____________________________________________________ 

Model  Cue Cue-Target 
____________________________________________________ 

Titrated model (B1, B3) 6.73e1125 1.05e1375 

Dichotomous model (B2, B4) 3.07e1634 7.41e1747 

Hybrid model (H1, H3) 5.87e1674 8.87e1768 

____________________________________________________ 

Comparison   

____________________________________________________ 

Titrated/Dichotomous 2.19e-509 1.41e-373 

Hybrid/Dichotomous 1.91e40 1.27e21 

____________________________________________________ 

Hybrid Model 

As with Experiment 1, this model is a post-hoc model that was not preregistered. The 

models are identical to those specified in Experiment 1. The pattern of RTs projected by this model 

is shown in Figure 10D. As with Experiment 1, the hybrid model more closely approximates the 

observed data. Model H1, the hybrid cue-only model, was compared to Model 2b, the preferred 

dichotomous model. The AIC and BIC are reported in Table 10 and show that the hybrid model is 

again preferred over the dichotomous and titrated models. The cue-target models (H2 and 4b) were 

also compared, and again the hybrid model has the lowest AIC and BIC.  

Bayesian models were also run for the hybrid model and are reported in Table 11. Decisive 

evidence is found in favor of the hybrid models over the dichotomous models for both the cue-

only model (H1) and the cue-target model (H3). Again, these results suggest that while the 

dichotomous model fit better than the original titrated model, a titrated model is preferred when 

the 1-N and 9-N trials are allowed to deviate from the rest.  
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Distance Effect 

Bayesian models from Experiment 1 were again employed for this analysis. Table 12 lists 

Bayes Factors for Directional (Model B5) and Distance only (Model B6) for a Target model and 

Directional (Model B3) and Distance-only (Model B7) for a Cue-Target interaction model. In 

Experiment 2, the preference for the directional model is again clear. There is decisive evidence 

in favor of the directional model (Models B5, B7) for the Target-only model and for the Cue-

Target interaction model.  

Table 12. Bayesian Models for Experiment 2 Comparing 
Directional and Distance Only 

___________________________________________________ 

Model  Target Cue-Target 
___________________________________________________ 

Directional model (B5, B3) 2.01e587  2.32e2414 

Distance Only model (B6, B7) 1.30e562  4.08e1299 
___________________________________________________ 

Relative BF 1.55e25  2.57e75 

___________________________________________________ 

Proactive Index 

Proactive index scores are shown in Figure 11. As in Experiment 1, the distribution is fairly 

normal and there is a range of scores. Subjects were generally more proactive on the 1-N and 9-N 

trials (1- or 9-N M = 391 ms, SD = 91 ms) than the 5-N trials (5-N M = 490 ms, SD = 67 ms), with 

an average proactive index score of 99 ms (SD = 46 ms). However, they were quite variable from 

one another ranging from the smallest change at -55 ms to the largest change at 241 ms.  
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Figure 11. Distribution of proactive index scores for Experiment 2. 

Working Memory 

Working memory was correlated with the variables to assess relationships with overall 

performance. Working memory was calculated by taking the average of the two z-scores from the 

operation span task and symmetry span task for each individual. These scores were correlated at r 

= .45, t(134) = 5.81, p < .001, BF = 359990. This aggregate score was then used for all correlations. 

Correlations were evaluated using correlationBF in R. As expected, working memory was 

negatively correlated with errors, r = - .27, t(134) = -3.24, p = .002, BF = 24.87. Working memory 

was not correlated with grand mean RTs, r = .06, t(134) = 0.66, p = .51, BF = 0.244, or RT ISDs, 

r = - .16, t(134) = -1.86, p = .066, BF = 1.01. Critically for the current project, working memory 

was not related to the proactive index measure, r = - .12, t(134) = -1.43, p = .156, BF = 0.52.  

The lack of performance differences as a function of working memory can be seen in the 

overall pattern. Three possible patterns were proposed, which can be visualized by averaging the 

RTs by trial type for the top, middle, and lower third of working memory. Figure 12 shows these 

averaged RTs by working memory level, and shows that the patterns are very consistent across 

working memory.  
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Figure 12. Correct response time patterns averaged by tertile of working memory. 
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To quantify these observations, models with and without working memory are compared 

to evaluate the impact of working memory on the model performance. Models are the same as the 

titration cue-target interaction models described previously except that working memory has been 

added as a main effect and interaction term. Models were specified as follows:  

(5) Titrated Working Memory Model: ResponseTimei = (b1)PreviousStimulus + 

(b2)Target + (b3)WorkingMemory + (b4)PreviousStimulus*Target + 

(b5)PreviousStimulus*WorkingMemory + (b6)WorkingMemory*Target + 

(b7)WorkingMemory*PreviousStimulus*Target + ri 

(B8) Titrated Working Memory Model: ResponseTimei = (b0 + b0i) + 

(b1)PreviousStimulus + (b2)Target + (b3)WorkingMemory + 

(b4)PreviousStimulus*Target + (b5)PreviousStimulus*WorkingMemory + 

(b6)WorkingMemory*Target + (b7)WorkingMemory*PreviousStimulus*Target 

+ ri 

These comparisons are listed in Table 13. Model 5 is the same as Model 3, reported earlier, 

except that working memory has been added as a main effect and interaction term. The AIC was 

lower for Model 5 (AIC = 1226870) versus Model 3 (AIC = 1226899) indicating that the addition 

of working memory improves the model. Interestingly, the BIC is lower for Model 3 (BIC = 

1226956) versus Model 5 (BIC = 1226965). Looking at Model 5, the main effect of working 

memory was not significant, t(137.76) = 0.45, p = 0.96. The three-way interaction and the 

interaction with target were also not significant, t(98565) = 1.11, p = 0.27 and t(98565) = 1.00, p 

= 0.32, respectively. However, the interaction between working memory and cue was significant, 

t(98565) = 3.43, p < 0.001. These results taken together show that working memory may be 

influential, but not likely to the degree it was expected. 
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Table 13. Model Comparison With and Without 
Working Memory 

________________________________________ 

  Cue-Target  

Model  AIC  BIC 
________________________________________ 

Titrated (3) 1226899 1226956 

Titrated*WM (5) 1226870 1256965 
________________________________________ 

Bayesian versions of these models were also compared, as shown in Table 14. Model B8 

is the same as the earlier reported Model B3 except that the main effect and interactions with 

working memory were added. Model B8 is decisively preferred to Model B3, indicating that 

working memory greatly improves the model. However, when using generalTestBF, all model 

possibilities are generated, and the best fitting model of those generated was not the full model. 

Somewhat in line with the frequentist model, the best model had the three main effects, the two-

way interaction between cue and target and the two-way interaction between cue and working 

memory (BF = 5.44e1392). This was not the hypothesized model and accordingly will not be 

interpreted further.  

Table 14. Bayesian Model Comparison 
With and Without Working Memory 

_______________________________ 

Model Cue-Target 
_______________________________ 

Titrated*WM (B8) 1.07e1390 

Titrated (B3) 1.05e1375 

Relative BF 1.02e15 

_______________________________ 
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Discussion 

In replicating Experiment 1, this study further provides evidence that this task is sensitive 

to changes in cognitive control at the trial level. Further, the dichotomous model was again 

preferred to the titrated model, but the hybrid model provided the best fit. This also replicates 

Experiment 1 findings and shows that the titration hypothesis holds with the exception of the 1-N 

and 9-N separation. Again, it is not yet clear what that mechanism is, as it also did not appear to 

be affected by working memory in any way, with all three working memory tertiles showing very 

similar patterns overall. The distance effects were again present but not sufficient to explain the 

behavior observed without cognitive control. That is, the titration model was again preferred to the 

distance-only model.  

A typical relationship between working memory and overall task accuracy was found such 

that higher working memory corresponded with higher accuracy. However, RTs and variability, 

the control-related performance measures, were largely not influenced by working memory. In 

earlier AX-CPT work, I showed that lower working memory subjects were equally capable of 

using proactive control to produce fast and accurate responses, they were just much less likely to 

do so (Wiemers & Redick, 2018).  

Accordingly, it was somewhat surprising not to see similar relationships to working 

memory in Experiment 2. The models suggested that working memory was important for the 

models generally, but the relationship was inconsistent at best, with the BIC showing preference 

for the non-working memory model and there being no main effect of working memory. However, 

the AIC and Bayesian comparisons showed preference for the working memory model. Further, 

the correlation expected with the critical proactive index measure was not found. If working 

memory is important for these relationships, then the proactive index is not the way to discover it.  

While working memory may not be the critical individual difference factor for these 

investigations, a deeper look at the interplay of proactive and reactive control is still a reasonable 

next step. As working memory was not related in the expected ways, the further investigations 

move away from that line of questioning and focus back in on the digit task and what can be 

discovered about control based on Digit Task performance. Particularly, what adjustments to the 

task might lead to predictable changes in the use of proactive and reactive control? Critically, can 

these changes further rule out alternate explanations such as the distance effect explanation?  
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EXPERIMENT 3 

Before further investigation could be done, a global pandemic led to restrictions on in-

person data collection. Accordingly, the follow-up experiment to Experiments 1 and 2 needed to 

be moved online. This change posed several difficulties, as this task had not been used outside of 

the lab before. Experiment 3 attempts to replicate Experiment 1 in the remote online format. Online 

data collection is quickly becoming a critical tool for researchers, as in-lab data collection becomes 

increasingly challenging or undesirable due to restrictions on access to populations needed for 

individual differences research. 

However, online data collection inevitably requires relinquishing the careful control of the 

cognitive psychology laboratory setting. Necka, Cacioppo, Norman, and Cacioppo (2016) 

surveyed what may be considered problematic behaviors in research and found that online 

participants were more likely to multitask and take breaks to go do something else before coming 

back to the task later. These types of behaviors are problematic because they inherently mean that 

the task is not completed in the same conditions as other subjects who solely focus on the task for 

the duration asked of them. These differences could lead to variation other than that of primary 

interest to the researchers. 

Taking research out of the lab also often involves technologies that are potentially less 

sensitive when recording behavioral measures such as response times. However, recent studies 

have found that home-based studies replicate lab-based findings very closely including for 

measures that require high precision such as response time (Miller, Schmidt, Kirschbaum, & Enge, 

2018). Miller et al. tested three RT-based attention tasks within-subjects both in the lab and at 

home and found that performance was consistently highly correlated. So, while challenging, it is 

feasible to successfully collect attention-based research data online. Experiment 3 addresses 

whether the challenges associated with online data collection lead to changes in proactive and 

reactive control.  

Method 

The methods for Experiment 3 are very similar to Experiment 1, with the major exception 

of being transferred to an online format, built in Psycopy and run via the Pavlovia.com and 
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gitlab.com online platform. Experiments 3 and 4 were run concurrently due to time constraints, 

but the interpretation of Experiment 4 depends on Experiment 3, so Experiment 3 is discussed first.  

Experiment 3 was not formally preregistered, but was intended to be a replication of 

Experiments 1 and 2 and accordingly closely follows methods from the previous experiments. 

Slight adjustments to the task are described below, but analyses are the same as Experiment 1.  

Participants 

Participants were students receiving partial course credit for participation from the same 

pool as Experiments 1 and 2 but having not participated in either, and paid participants recruited 

via twitter, reddit (r/Purdue), and university message boards. These recruitment strategies were 

intended to largely appeal to the same university students and community members that may have 

participated in a traditional lab version of this study. While 100 individuals were sought, many 

challenges arose from online data collection leading to a lower useable sample than would 

otherwise occur at that participation level. Data collection was stopped instead when the time 

available for the project had run out.  

All participants were required to be between the ages of 18 and 30 years old, have normal 

or corrected-to-normal vision, and be fluent in English. Of the 113 participants for whom data files 

were generated, 2 chose to exit early after doing several task blocks, 2 chose to leave after initiating 

a session but before beginning the task, 1 was removed for initially reporting they fit the age 

requirement but later stating they were actually 45, 10 had poor accuracy according to the same 

rule used previously (some of which were close to zero percent after pressing buttons for only a 

few trials then letting the task run on without ever responding again), 1 additional had low accuracy 

due to pressing only one key for three entire blocks after pressing no buttons for one block, and 5 

took an extremely long time during breaks that were requested to be kept to 10 seconds, extending 

the session past a reasonable point. The reasonable timepoint rule was intended to remove those 

who took such a long break that it essentially could have been considered two sessions, so those 

with 40 minutes or more for their longest break time were removed. These criteria resulted in a 

final sample of 92 individuals for the analyses.  
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Task 

The digit task was as close as possible to the Eprime task described in Experiment 2. 

Working from the Eprime task, the task was recreated in Psycopy, a free download platform for 

experiment building, which uses primarily Python and Javascript, with additional drag and drop 

functions. Once programmed, it was uploaded to gitlab where it can interface with Pavlovia, an 

experiment hosting site.   

The task was essentially the same as Experiment 2 for the subjects participating for credit. 

However, a slight change was made as participation shifted to paid subject recruitment due to the 

number of individuals who simply opened the task and let it run to completion without ever 

pressing a button. To avoid this temptation, a response was required on each trial, though recorded 

differently than an on-time response. This change ensures that participants do the task asked of 

them, but that it can also be scored the same as it was previously. Additionally, due to programming 

constraints, the practice section of the task was made a standard 20 trials, instead of repeating the 

initial 10 trials only if poor accuracy occurred.  

Procedure 

Via email, before signing up, participants were asked to use a browser other than Firefox 

due to a compatibility issue identified early in the data collection. They were also asked to keep 

the built-in breaks to their intended length of just a few seconds. Instructions included finding a 

quiet space and avoiding cell phone use during the task. In this email, participants were also given 

a link to Sona, a website that manages participant signups. From Sona, participants were directed 

to the experiment site, which opened as a full screen browser window on their computer. 

Participants were then asked to fill in basic demographic information, were presented with the 

consent information, and then began the task.  

At the end of the task, participants were presented debriefing information onscreen. Then, 

they were redirected back to the sign-up page where participation was recorded. Participants were 

aware that to opt out, they could press the escape (ESC) key at any time, where they would be 

redirected back to the sign-up page to record participation. Participants receiving credit were 

automatically granted credit. Participants receiving payment were emailed an Amazon gift credit 

at a rate of $10 USD per hour.  
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Analyses 

Analyses were identical to Experiment 1.  

Results 

Descriptive Statistics  

Experiment 3 seems to fit right between Experiments 1 and 2 in terms of grand mean RT 

of 458 ms (versus 437 ms in Experiment 1 and 464 ms in Experiment 2). Grand mean error rates 

are close with 9% in Experiments 2 and 3 and 11% in Experiment 1. Interestingly, Experiment 3 

has the lowest grand mean ISD RT at 95 ms (versus 104 ms in Experiment 1 and 108 ms in 

Experiment 2). While Experiment 3 showed generally similar RTs to Experiment 2, the critical A-

Y analogous trials, 2-1, 3-2, 3-1, and 8-9, 7-9, and 7-8, were all particularly fast compared to 

Experiment 2, more similar to the overall faster Experiment 1 RTs. Correct mean RTs are 

summarized in Table 15, RT ISDs in Table 16, and error rates in Table 17. 

Pattern 

The pattern of average correct RTs looks similar to the patterns found in Experiments 1 

and 2 (Figure 13A). However, it seems possibly less distributed in the 2N-8N grouping, which 

would suggest less of the titrated pattern. This would follow from having an overall smaller ISD 

RT in Experiment 3.  

Again, the models used in Experiments 1 and 2 were used to evaluate the pattern according 

to the alternative hypotheses. Because the Grouping 19 dichotomous model has consistently 

outperformed the Grouping 1289 model in Experiments 1 and 2, only the Grouping19 dichotomous 

model is compared moving forward. First, the titration (1 and 3) and dichotomous (2 and 4) models 

were compared for both cue-only and cue-target interaction models. As reported in Table 18, the 

dichotomous model is favored, having lower AIC and BIC, for both the cue only and cue-target 

interaction models. This is in line with the previous two experiments.  
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Table 15. Response Time Means and Standard Deviations for Previous Stimulus and Current Stimulus for 
Experiment 3 

_____________________________________________________________________________________________ 

Previous   Current Stimulus   Overall  

Stimulus 1 2 3 4 5 6 7 8 9 Mean SD 
_____________________________________________________________________________________________ 

 1  395 398 397 383 389 385 383 379 389  7 

   (110) (108) (95) (96) (88) (90) (84) (82) 

 2 460  491 481 458 466 467 457 442 465 14 

  (65)  (85) (104) (84) (92) (85) (80) (72) 

 3 479 478  493 469 474 464 426 456 472 11 

  (65) (75)  (87) (72) (76) (77) (67) (65) 

 4 480 480 494  476 482 490 477 466 481  8 

  (71) (74) (75)  (73) (86) (74) (69) (65) 

 5 474 475 480 491  484 494 480 476 482  7 

  (62) (62) (69) (72)  (77) (72) (72) (65) 

 6 465 464 482 487 509  492 492 478 484 14 

  (66) (67) (70) (78) (81)  (70) (80) (63) 

 7 463 458 474 486 501 506  487 480 482 16 

  (67) (74) (68) (70) (82) (78)  (76) (68) 

 8 454 453 460 480 482 496 512  464 475 20 

  (67) (73) (83) (89) (85) (93) (98)  (64) 

 9 384 381 387 389 398 402 402 410  394 10 

  (84) (88) (93) (93) (102) (105) (108) (125) 
_____________________________________________________________________________________________ 

Mean 457 448 458 463 460 462 463 456 455 458  4 

SD  31  38  42  43  46  43  46  39  33  38 
_____________________________________________________________________________________________ 
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Table 16. Response Time Individual Standard Deviation Mean for Previous Stimulus and Current Stimulus for 
Experiment 3 

_____________________________________________________________________________________________ 

Previous    Current Stimulus   Overall  

Stimulus 1 2 3 4 5 6 7 8 9 Mean ISD SD 
_____________________________________________________________________________________________ 

 1  141 129 126 121 116 119 118 104 122 10 

   (64) (50) (49) (47) (42) (50) (52) (44) 

 2 126   85 105 103 101  93  82  83  97 14 

  (34)  (30) (71) (68) (62) (62) (49) (54) 

 3  67  96   79  89 105  99  92  88  89 11 

  (42) (30)  (41) (42) (48) (44) (44) (49) 

 4  87  79  97   74  92  97 104  95  91  9 

  (42) (40) (29)  (40) (53) (41) (47) (42) 

 5  98  95  79  99   85  93  94 100  93  7 

  (51) (49) (40) (29)  (45) (43) (41) (49) 

 6  90  94  89  83  98  .71 .83 .98  88  9 

  (38) (46) (44) (41) (27)  (37) (39) (53) 

 7  98 103 100  91  79  98   72  83  91 11 

  (44) (47) (46) (40) (47) (28)  (39) (42) 

 8  83  95 101 103  90  84  98   64  90 12 

  (42) (49) (53) (43) (42) (42) (29)  (39) 

 9  81  79  89  94 106 106  86  96   92 10 

  (53) (45) (64) (63) (61) (56) (28) (27) 
_____________________________________________________________________________________________ 

Mean  91  98  96  98  93  98  94  93  90  95  3 

SD   17  19  15  15  15  11  14  14  13  10 
_____________________________________________________________________________________________ 
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Table 17. Mean Percent Error and Standard Deviations for Previous Stimulus and Current Stimulus for Experiment 
3 

_____________________________________________________________________________________________ 

Previous   Current Stimulus   Overall  

Stimulus 1 2 3 4 5 6 7 8 9 Mean SD 
_____________________________________________________________________________________________ 

 1   19  12   9   6   4   5   3   4  8 5 

   (16) (12) (11)  (8)  (7)  (8)  (6)  (8) 

 2   9   23  17   7   5   6   5   4 10 6 

   (9)  (20) (21) (13) (11) (13) (10) (10) 

 3  10  10   20  11   7   7   5   6  9 4 

  (14) (12)  (18) (12) (10) (10) (10)  (9) 

 4   7   9  13   12   9  10   7   6  9 2 

  (11) (12) (14)  (14) (12) (13) (11) (11) 

 5   7   6  10  13   13  13   8   7 10 3 

  (10)  (8) (12) (14)  (14) (14) (10) (10) 

 6   6   5   7  10  17   13   8   8  9 4 

  (11)  (9) (10) (11) (15)  (12) (11) (10) 

 7   6   6   8   9  14  20    9   7 10 4 

  (10) (12) (11) (10) (13) (16)  (10) (11) 

 8   5   4   6   8  13  12  20    9 10 5 

  (11)  (9) (12) (14) (20) (15) (21)   (7) 

 9   3   3   4   5   8   8  11  17   8 5 

   (6)  (7)  (7)  (8) (10) (11) (13) (16) 
_____________________________________________________________________________________________ 

Mean   7   8  10  11  11  10  11   8   6  9 2 

SD    2   5   6   5   4   5   5   4   2  1 
_____________________________________________________________________________________________ 
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Table 18. Model Comparison for Experiment 3 Models 

___________________________________________________________________ 

  Cue   Cue-Target  

Model  AIC  BIC  AIC  BIC 
___________________________________________________________________ 

Titrated model (1, 3) 825952 825988 824907 824962 

Dichotomous model (2, 4) 823742 823779 823607 823662 

Hybrid model (H1, H2) 823612 823658 823505 823569 
___________________________________________________________________ 

Note. Smaller numbers indicate better model fit, but the units of these measures 

themselves are meaningless. 

Bayesian models previously specified in Experiment 1 were also used to evaluate this 

comparison. These results are reported in Table 19. For both cue-only and cue-target interaction 

models, there is a strong preference for the dichotomous model. Again, this replicates the previous 

experiments.  

Table 19. Bayesian Model Comparison for Experiment 3 

____________________________________________________ 

Model Cue Cue-Target 
____________________________________________________ 

Titrated model (B1, B3) 1.23e839  3.38e1012 

Dichotomous model (B2, B4) 3.09e1208  2.13e1226 

Hybrid model (H1, H3) 1.05e1226  2.29e1241 

____________________________________________________ 

Comparison 
____________________________________________________ 

Titrated/Dichotomous 4.98e-370  1.59e-214 

Hybrid/Dichotomous 4.23e17  1.07e15 

____________________________________________________ 

Note. Large values have been reported in scientific notation. 
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Hybrid Model 

Once again, the observed data (Figure 13A) is not closely matched by the projected data of 

either of the proposed models. The titration model projection (Figure 13B) does not capture the 

separation of 1-N and 9-N trials from the rest, and the dichotomous model projection (Figure 13C) 

does not capture the separation among the 2-N through 8-N trials. The same hybrid models 

previously specified for Experiment 1 were used. The AIC and BIC for model H1 and H3 are 

reported in Table 18 with the comparable frequentist models. The hybrid model shows the lowest 

AIC and BIC again for both the cue-only and the cue-target models suggesting that it more closely 

describes the observed data than either the dichotomous or titrated models.  

Comparable Bayesian models (BH1 and BH2), previously specified in Experiment 1, were 

again used to compare to the Bayesian dichotomous hypothesis models. These relative Bayes 

Factors are presented in Table 19. As in Experiments 1 and 2, the hybrid model is strongly 

preferred to the dichotomous model.  

Distance Effect 

The same Bayesian models were used as in Experiments 1 and 2 to evaluate whether the 

distance effect was sufficient to explain the pattern of behavior or whether the addition of 

directional information, as predicted to be important in the titration model, would be beneficial for 

model fit. Target (B5 and B6) and Cue-Target interaction (B3 and B7) models were compared and 

are reported in Table 20. Both comparisons show strong evidence for the directional model over 

the distance model. This suggests the titration model is providing additional information above 

and beyond the distance effect that is important for fitting the model. 
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Table 20. Bayesian Model Comparison of Directional Versus 
Distance Effect for Experiment 3 

____________________________________________________ 

Models Experiment 3  Target Cue-Target 
____________________________________________________ 

Directional model (B5, B3) 8.09e395  3.38e1012 

Distance Only model (B6, B7) 1.67e382  1.53e972 

____________________________________________________ 

Relative BF 4.83e13  2.21e40 
____________________________________________________ 

Proactive Index  

The proactive index was also replicated nicely in Experiment 3. The distribution had a 

range of scores again and looked somewhat normal, though the distribution is shifted slightly to 

the left compared to the previous experiments (Figure 14). Subjects were generally more proactive 

on the 1-N and 9-N trials (1- or 9-N M = 335 ms, SD = 88 ms) than the 5-N trials (5-N M = 481 

ms, SD = 59 ms), with an average proactive index score of 90 ms (SD = 54 ms). However, they 

were quite variable from one another, the smallest change being -27 ms and the largest change 

being 305 ms.  

 

Figure 14. Distribution of proactive index scores for Experiment 3. 
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Discussion 

Experiment 3 closely replicates Experiments 1 and 2, making the critical leap from the 

highly-controlled lab space to less-controlled online data collection environments, despite data 

collection challenges and concerns about lack of control over the sessions. RTs and error rates 

were generally similar to the previous experiments. Particularly, the mean RTs and error rates are 

close to those found in Experiment 2, which were shifted slightly slower and more accurate 

compared to Experiment 1. Mean RTs were faster for the critical 2-1 and 8-9 trials in Experiment 

3 than Experiment 2, though they were similar to Experiment 1. These critical trials also had 

somewhat lower error rates than Experiment 1, though these are more in line with Experiment 2. 

RT ISDs, however, are somewhat smaller in Experiment 3 than Experiments 1 and 2. Of note, the 

closer procedures are in Experiments 1 and 3, as participants in Experiment 2 were given the 

complex span tasks prior to beginning the digit task. Model comparisons were all in agreement 

with the previous 2 experiments.  

Overall, this suggests that the transition from the lab to online did not dramatically alter 

performance. The one concern is the number of subjects that were dropped (21 of 113) versus the 

previous experiments (Experiment 1: 8 of 103; Experiment 2: 7 of 143). However, this certainly 

seems to be a general concern of online data collection rather than a difference in task performance. 

Those who were not meeting accuracy requirements were generally not responding at all or 

pressing a single key for entire blocks.  

This performance would not occur in the lab because a gentle reminder that a button press 

is necessary on each trial would be given if someone were to stop responding or a reminder to use 

both hands (and subsequently both keys) would be given if one were idly pressing the same key 

and doing something else with their then free hand. In the lab, participants can be asked to leave 

for blatantly disregarding instructions, or they can ask questions if there is a lack of understanding. 

Neither are easily implemented in online data collection, though email was closely monitored to 

trouble-shoot any technical difficulties that occurred during the sessions whenever possible. 

Online data collection can only be controlled to a much lesser degree than the lab space. However, 

efforts were made to structure the task, including adding the required response, in such a way that 

would mitigate these concerns whenever possible without affecting the integrity of the task or 

session. In summary, Experiment 3 closely replicates the previous lab experiments despite the 

somewhat challenging circumstances surrounding online data collection. 
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EXPERIMENT 4 

There was strong evidence for the hybrid model across Experiments 1, 2, and 3. The hybrid 

model adds a grouping component to the titration model, with the resulting model consistently 

outperforming the other models. However, there remained the possibility that the observed pattern 

could also be largely explained by distance effects. This was tested previously by model 

comparison, which resulted in consistently favoring the titration model over the distance effect 

only model. However, it had not yet been investigated through a task manipulation. Experiment 4, 

accordingly, involves manipulating the task such that proactive control is no longer a beneficial 

strategy for key trial types, specifically 2-N and 8-N. The distribution of smaller and larger targets 

on these trials was changed from 12.5% / 87.5% to 50% / 50%. 

If proactive control is playing a key role in behavior, as proposed in the titration hypothesis, 

and subjects use less proactive control in this modified task, the behavior will look quite different 

in Experiment 4 from those before it. Specifically, the 2-N and 8-N trials would look much more 

similar to the 5-N trials, as the cues are now equally uninformative. If proactive control were 

maintained in this task, the expectation would be that 2-1 and 8-9 trials, in relation to other 2-N 

and 8-N trials, would show elevated error rates due to the preparation of the opposite response and 

slow RTs due to needing to inhibit the prepared response and switch to the correct response.  

If the distance effect is sufficient to explain the pattern of data, and proactive control is 

successfully diminished in this task, the performance on either side of the reference point would 

be more symmetrical. Further, trials would have similar distance effects to those seen in 5-N trials. 

For example, a 2-4 trial should look more similar to a 5-7 trial. However, these may still be scaled 

slightly to the reference point as magnitude effects are also common in this type of task. Model 

results would then favor the distance effect model over the titration hypothesis model. 

Method 

Participants 

Participants were again both students participating for credit recruited through their course 

and students and community members for $10/hour recruited through online advertisements and 
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emails. Again, none of the participants in Experiment 4 had participated in Experiments 1, 2, or 3. 

The same rules from Experiment 3 were used for inclusion. Of 105 generated files, these criteria 

resulted in the removal of 5 participants who chose to exit the session early, 5 who stopped or 

never started pressing any buttons during the task, and 7 who did not meet the accuracy 

requirement. These criteria resulted in a final sample of 88 participants for the analyses. 

Task 

The task was the same as Experiment 3 except that the selection weight for stimuli was 

manipulated on certain trials, instead of being equal probability. Specifically, after a 2 or an 8 there 

was a 50% chance that the next number would be smaller or larger. With 800 trials, there are about 

89 trials per cue. With a 12.5% chance of a 1 following a 2 in the original task, this leads to about 

11 instances of smaller versus 78 instances of larger numbers following the 2. With a 50% chance, 

there are then about 44 instances of each smaller and larger numbers following a 2. This increase 

in the number of instances was intended to impact the amount of proactive control enacted on these 

trials. The proportions of selections of other trials were not affected. However, there were 

inherently more 1N and 9N trials because of the increased probability of a 1 occurring after a 2 

and a 9 occurring after an 8. Additionally, an instruction was added during the instructions screens 

to indicate that this expectation that holds for other cues would be intentionally violated for these 

two trial types.  

Procedure 

Procedures were identical to Experiment 3, as the recruitment happened concurrently, and 

the same task site and program selected the experiment (3 or 4) randomly for each subject. The 

task session was identical to Experiment 3 and took about 45 minutes to complete.  

Analyses 

Analyses were identical to Experiments 1 and 3.  
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Results 

Descriptive Statistics  

Experiment 4 correct mean RTs were fairly similar to Experiments 2 and 3. Mean error 

rates, however, were slightly higher, more similar to Experiment 1. RT ISD was similar to 

Experiments 1 and 2. Correct mean RTs are summarized in Table 21, RT ISDs in Table 22, and 

error rates in Table 23.    

Pattern 

The general pattern of correct mean RTs is fairly similar to those observed previously. 

However, the 1-N and 9-N trials are slightly shifted slower than in the previous experiments. 

Regardless, there is still a clear pattern of titration in the 2-N through 8-N group and a gap 

separating them from the 1-N and 9-N trials (Figure 15A).  

Again, the same models were used to evaluate this pattern. First, to compare the titrated 

and dichotomous alternative hypotheses, both cue-only and cue-target interaction models were 

compared. Table 24 reports the AIC and BIC values for these models. In both the cue-only and the 

cue-target models, the dichotomous model is favored, having a lower AIC and BIC.  

Equivalent Bayesian models were again evaluated and are reported in Table 25. As has 

been the case previously, the Bayesian models for cue-only and cue-target interaction both favor 

the dichotomous model over the initial titration model. This suggests that despite the slightly 

slower 1-N and 9-N trials in the current experiment, the gap between them and the remaining trials 

is still more influential to the model fit than the separation among the 2-N through 8-N trials that 

is missing in the dichotomous model. Again, it is clear from Figure 15 that the titrated (B) and 

dichotomous (C) model projections both have not particularly closely reflected the observed data 

(A).  
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Table 21. Response Time Means and Standard Deviations for Previous Stimulus and Current Stimulus for 
Experiment 4 

_____________________________________________________________________________________________ 

Previous   Current Stimulus   Overall  

Stimulus 1 2 3 4 5 6 7 8 9 Mean SD 
_____________________________________________________________________________________________ 

 1  404 413 414 402 400 408 394 396 404  7 

   (134) (122) (125) (119) (106) (101) (100) (95) 

 2 492  483 478 460 458 467 457 446 468 15 

  (76)  (103) (85) (82) (85) (78) (88) (80) 

 3 488 498  502 471 474 476 472 467 481 13 

  (69) (87)  (89) (81) (82) (80) (76) (74) 

 4 483 483 500  493 486 483 483 468 485  9 

  (64) (75) (80)  (90) (82) (80) (79) (72) 

 5 481 480 489 500  498 499 484 485 489  8 

  (65) (79) (73) (85)  (90) (83) (72) (76) 

 6 473 472 487 493 522  505 493 487 492 15 

  (65) (74) (81) (89) (87)  (76) (76) (66) 

 7 474 466 477 491 512 520  499 491 49f1 17 

  (75) (81) (82) (86) (99) (94)  (71) (68) 

 8 457 452 460 474 495 508 498  487 479 20 

  (70) (81) (76) (86) (89) (95) (101)  (74) 

 9 384 387 391 404 407 399 409 414  399 10 

  (92) (99) (106) (109) (114) (124) (126) (132) 
_____________________________________________________________________________________________ 

Mean 466 455 463 470 470 468 468 462 466 465  4 

SD  35  40  39  39  45  46  39  38  32  37 
_____________________________________________________________________________________________ 
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Table 22. Response Time Individual Standard Deviation Mean for Previous Stimulus and Current Stimulus for 
Experiment 4 

_____________________________________________________________________________________________ 

Previous    Current Stimulus   Overall  

Stimulus 1 2 3 4 5 6 7 8 9 Mean ISD SD 
_____________________________________________________________________________________________ 

 1  135 131 130 122 122 123 118 116 125  6 

   (65) (58) (57) (51) (54) (58) (59) (54) 

 2  90  119 113 101  95 103  91  89 100 10 

  (44)  (49) (51) (47) (47) (43) (43) (40) 

 3  82  97  119 106 105  95  96  87  98 11 

  (43) (43)  (46) (53) (44) (45) (45) (42) 

 4  83  88  99  102 102  89  97  81  93  8 

  (42) (44) (41)  (45) (45) (40) (44) (42) 

 5  88  91  96  98  102 105 100  87  96  6 

  (41) (43) (40) (41)  (51) (54) (53) (44) 

 6  80  91  94 100 105  100  92  81  93  8 

  (45) (45) (41) (45) (50)  (42) (44) (41) 

 7  82  91  98 103 105 112   94  82  96 10 

  (40) (42) (46) (50) (51) (43)  (40) (37) 

 8  92  87  95 101 110 117 115   86 100 11 

  (46) (43) (44) (45) (49) (53) (52)  (46) 

 9 105 110 120 125 130 129 136 145  125 12 

  (53) (48) (52) (63) (56) (55) (58) (65) 
_____________________________________________________________________________________________ 

Mean  88  99 106 111 110 110 108 104  88 103  9 

SD    8  17  15  12  10  11  16  19  11  13 
___________________________________________________________________________________________ 
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Table 23. Mean Percent Error and Standard Deviations for Previous Stimulus and Current Stimulus for Experiment 
4 

_____________________________________________________________________________________________ 

Previous   Current Stimulus   Overall  

Stimulus 1 2 3 4 5 6 7 8 9 Mean SD 
_____________________________________________________________________________________________ 

 1   22  17  14   8   5   6   5   4 10 6 

   (22) (19) (16) (11)  (9)  (9)  (9)  (7) 

 2  15   23  17  10   7   6   6   5 11 6 

  (14)  (18) (17)  (9) (11)  (8) (10)  (9) 

 3   9  14   22  12   9  10   8   7 11 5 

  (12) (14)  (17) (13) (12) (12) (11) (10) 

 4  10  11  16   14  10  11   7   7 11 3 

  (11) (13) (14)  (15) (11) (12) (10)  (9)  

 5   8  10  12  16   15  15  11   9 12 3 

  (10)  (9) (12) (13)  (14) (16) (13) (12) 

 6   7   7  10  14  23   15  12   9 12 5 

   (9) (11) (130 (14) (19)  (14) (13) (12) 

 7   4   7   8  11  20  25   12  10 12 6 

   (8) (11) (11) (15) (18) (20)  (14) (13) 

 8   5   6   7   9  14  19  25   14 12 6 

  (11) (12) (12) (12) (16) (19) (19)  (13) 

 9   3   6   6   7  10  11  14  20  10 5 

   (7)  (9) (11) (11) (17) (15) (17) (20) 
_____________________________________________________________________________________________ 

Mean   8  10  12  14  14  13  13  10   8 11 2 

SD    4   5   6   5   5   6   6   5   3  1 
_____________________________________________________________________________________________ 
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Table 24. Model Comparison for Experiment 4 

____________________________________________________________________ 

   Cue    Cue-Target  

Model  AIC  BIC  AIC  BIC 
____________________________________________________________________ 

Titrated model (1, 3) 774092 774128 773288 773342 

Dichotomous model (2, 4) 772344 772380 771974 772028 

Hybrid model (H1, H2) 772214 772260 771911 771974 
____________________________________________________________________ 

Note. Smaller numbers indicate better model fit, but the units of these measures 

themselves are meaningless. 

 

Table 25. Bayesian Model Comparison for Experiment 4 

____________________________________________________ 

Model Cue Cue-Target 
____________________________________________________ 

Titrated model (B1, B3) 2.45e604 1.20e711 

Dichotomous model (B2, B4) 3.09e882 1.55e932 

Hybrid model (BH1, BH2) 3.81e903 4.51e937 

____________________________________________________ 

Comparison   

____________________________________________________ 

Titrated/Dichotomous 7.90e-279 7.76e-222 

Hybrid/Dichotomous 1.23e21 291928 
____________________________________________________ 

Note. Large values have been reported in scientific notation. 
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Hybrid Model 

The hybrid model was again evaluated to investigate whether the titration pattern is better 

if the 1-N and 9-N trials are allowed to deviate from the rest. Both frequentist (Models H1 and H2) 

and Bayesian models (Models BH1 and BH2) were evaluated. The AIC and BIC values are 

reported in Table 24 and show that for both the cue-only and the cue-target interaction models, the 

hybrid model is preferred to the dichotomous model. The equivalent Bayesian models are 

compared in Table 25. Again, for both the cue-only and cue-target models, the hybrid model is 

strongly preferred to the dichotomous model.  

Distance Effect 

The distance effect was also evaluated by comparing models, described in Experiment 1. 

The Bayes factors for these models are reported in Table 26. For both the target-only model and 

the cue-target interaction model, the directional model was again strongly favored. Where this 

result was expected in Experiments 1 through 3, it was somewhat surprising here given the 

manipulation of 2-N and 8-N trials to rely less on proactive control.  

Table 26. Bayesian Model Comparison of Directional Versus 
Distance Effect for Experiment 4 

____________________________________________________ 

Models  Target Cue-Target 
____________________________________________________ 

Directional model (B5, B3) 1.14e294 1.20e711 

Distance Only model (B6, B7) 1.48e283 1.56e680 

____________________________________________________ 

Relative BF 7.70e10 7.70e30 
____________________________________________________ 
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Proactive Index  

While the proactive index scores are generally similar to the previous experiments, with a 

broad and fairly normal distribution, Experiment 4 produced the most negative and near-zero 

proactive index scores, possibly indicating a shift toward less-proactive performance in this task 

versus in the previous experiments (Figure 16). Despite this shift, subjects were generally more 

proactive on the 1-N and 9-N trials (1- or 9-N M = 398 ms, SD = 100 ms) than the 5-N trials (5-N 

M = 488 ms, SD = 67 ms), with an average difference index of 89 ms (SD = 61 ms). However, 

they were quite variable from one another ranging from -31 ms to 252 ms.  

 

Figure 16. Distribution of proactive index scores for Experiment 4. 

Manipulation 

The key difference in Experiment 4 from the others is that 2-N and 8-N trials had a 50% 

chance of N being a smaller or larger number. In Experiments 1 through 3, a 1 only followed a 2 

12.5% of the time, and the same for 9 following 8. The remaining 87.5% of the time, N was larger 

than 2, or smaller than 8, respectively. The expectation was that subjects would use less proactive 

control on these trials, making them more similar to 5-N trials. Being more reactive should result 

in slower but accurate responding. Certainly, the 2-N and 8-N trials in this experiment are 

somewhat slower than in Experiments 1 and 2. They are very close with the 2-N and 8-N trials for  
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Experiment 3, with the exception of the 2-1 and 8-9 trials. These critical 2-1 and 8-9 trials are 

slower in Experiment 4, which could be indicative of more reactive control.  

Though accuracy should be high for reactive control use, it is not necessarily more or less 

so than proactive overall. Accordingly, the slightly higher overall error rates for Experiment 4 do 

not necessarily speak to control use. Error rates would be expected to be lower specifically on the 

2-1 and 8-9 trials, which when approached with proactive control may result in higher errors. That 

is, reactive control, which would be more beneficial with the trial proportions in Experiment 4, 

could result in fewer errors given that expectations are not present to inflict incorrect anticipatory 

responses. However, reactive control also relies more on memory due to thinking back to the cue 

rather than preparing the response when the cue has been presented. The mean error rate for 2-1 

trials in 15% (SD = 14%) and for 8-9 is 14% (SD = 13%), which is actually higher than the most 

comparable study, Experiment 3 (2-1 M = 9%, SD = 9%; 8-9 M = 9%, SD = 7%). This would not 

be expected unless memory errors were playing an unusually strong role.   

Discussion 

Experiment 4 provided an opportunity to further investigate the possibility of the distance 

effect explaining a large portion of the behavior seen in the digit task. The distance effect was a 

prominent concern for interpreting the results because it is a well-established effect seen in relative 

number judgment tasks similar to the digit task used in this project. While it was expected, then, 

that the distance effect would occur, it was a concern whether this effect would be sufficient to 

describe behavior without needing to incorporate control. The previous 3 experiments showed 

preference for the titrated model above the distance-only model. In Experiment 4, the task was 

manipulated to further explore this possibility. Specifically, the 2-N and 8-N trials were altered to 

remove predictive value by setting the probability of the target response being smaller or larger to 

50%. 

Experiment 4 seems to agree with the previous experiments, perhaps more than might be 

expected given the manipulation. It is of course entirely possible that participants either did not 

read the instruction that specified that proactive control would not be beneficial for 2-N and 8-N 

trials, forgot about it, or thought it was a trick and prepared in a proactive manner, regardless. 

However, given the overall pattern of modeling results in Experiment 4, it seems more likely that 

the effect of the manipulation was just too small. Experiment 4 certainly shows notable differences 
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from the previous three experiments, including being overall slower and less accurate than the 

most comparable, Experiment 3. However, these differences were not large enough or in the 

specific places needed to affect the model comparison outcomes. Perhaps this makes sense, given 

only 2 of the 9 cues were manipulated. Slower and less accurate overall responding may indicate 

slightly less proactive control overall, but not a complete lack of it. It would still be beneficial on 

several trial types, so it is likely that at least some of the subjects are still using proactive control 

on some or even most of the task. 

One potential concern with Experiment 4 is that it may not have been a strong enough 

manipulation, or it was too nuanced and therefore taxing for participants to keep track of the extra 

information. This may have led to a lack of change in performance for some or all subjects. That 

is, subjects may have ignored or been unable to maintain this altered expectation and assumed the 

typical expectancy anyway due to the structure of the majority of the task. Further, because 2-1 

trials made up half of the 2-N trials, participants saw fewer of each of the remaining 2-N targets 

than they normally would. It is possible that instead of registering the distribution as half smaller 

and half larger, the participants could have been maintaining the probability as mostly 2-1, and 

only a few of anything else following 2. While the responses are distributed evenly, the visual 

stimuli are not and could bias participants toward expecting 1 after a 2, instead of removing the 

expectation.  

Accordingly, it is possible that participants even took a strategy that was more proactive 

than expected in response to the increase in 2-1 and 8-9 trials. They may have prepared for a 2-1 

or an 8-9 as those were then individually most frequent despite only happening 50% of the time. 

This would be similar to preparing for the full set of smaller digits after a 5, but is a much smaller 

task set (1 versus 4) to watch for. Despite being more similar to the 5-N trials than they were 

previously, the 2-N and 8-N trials were not entirely analogous due to this affordance of strategy 

use. While this would reflect a different type of proactive strategy than was previously afforded 

by the 2-N and 8-N trials, it is still proactive in a way.  

To target this distance effect comparison, a future study may need to implement a stronger 

manipulation that takes away all expectancy and therefore any benefit of using proactive control. 

This could then be compared to the present studies to evaluate how much of the pattern may be 

due to the distance effects rather than cognitive control. However, it is clear from this study that 

cognitive control is used in this task and is beneficial to the models above a distance effect alone. 
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GENERAL DISCUSSION 

The primary goals of this project were to expand the understanding of the dynamic use of 

cognitive control and to establish this digit task as a new and nuanced method for doing so. The 

hypotheses were rooted in the Dual Mechanisms of Control framework of Braver et al. (2007), but 

have implications for the broader field studying cognitive control. Further, relationships with 

working memory were evaluated. 

Experiment 1 provided an initial investigation into the feasibility of using this ‘greater or 

less than’ digit task to study cognitive control. The results indicate that the participants were 

sensitive to the task demands. However, while the dichotomous model was supported over the 

initial titration model, neither hypothesized pattern was particularly satisfying in regard to the 

observed data. The hybrid model was developed post-hoc to account for the possibility that the 

titration model may still best describe the behavior for the 2-N through 8-N trials, needing an 

additional component to allow for the 1-N and 9-N trials then to deviate from the remaining group. 

This model was preferred over both hypothesized models. A distance effect model was also 

explored in an effort to determine whether the distance effect would be sufficient to describe the 

behavior observed, without consideration of cognitive control. It was not, as the titration model 

was highly preferred to the distance model. The proactive index was calculated to investigate the 

extent of individual difference in the task, which showed a range of scores that looked promising 

for future comparison to individual differences measures such as working memory.   

Experiment 2 measured working memory in addition to digit task performance to evaluate 

the relationships between working memory and cognitive control. While these relationships have 

been found in prior studies using other tasks, the relationships were somewhat mixed with the digit 

task. Working memory is often related to both speed and accuracy but was only related to accuracy 

in the current study. It was especially surprising, given previous work with the AX-CPT, that 

working memory was not related significantly to the proactive index measure. Experiment 2 

otherwise closely replicated Experiment 1, finding again that the dichotomous model was preferred 

to the titration model, but the hybrid model was favored over both. Additionally, the distance effect 

was evaluated again and was again not preferred over the titration model.  
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Experiment 3 was a necessary replication of Experiment 1 due to a shift in data collection 

from the lab space to online data collection. The transition initially held some challenges, such as 

participants leaving the task running without ever pressing a button. However, simple adjustments, 

like requiring a response to move on, helped mitigate these data collection issues. Despite the 

drastic differences in level of control between the lab and presumably quite variable home 

environments in which these studies took place, Experiment 3 again nicely replicated Experiment 

1, and the non-working memory parts of Experiment 2. This outcome provides the assurance that, 

while not ideal, online data collection for cognitive control studies is a feasible option that will 

likely yield interpretable results.  

In Experiment 4, the task was manipulated to further explore the possibility of a distance 

effect explaining a large part of the pattern of behavior. Specifically, the 2-N and 8-N trials were 

manipulated to remove the expectation of a larger or smaller response, respectively. Rather than 

occurring the majority of the time, the larger and smaller responses were made equally probable 

on these trials, equal to 5-N trials. While the actual predictive value was removed, the expectation 

of particular individuals cannot be guaranteed. Therefore, the similarity in behavior between 

Experiment 4 and the previous three experiments could be due to a lack of fidelity to the 

instructions. It is not clear whether the few performance differences in this task were substantial 

enough to suggest the manipulation had the intended effect. The pattern is overall quite similar to 

the previous experiments and the models still agree that the titration hypothesis model is preferred 

to the distance effect-only model. Accordingly, further research may be needed before fully ruling 

out the distance effect as an explanation for the pattern of behavior seen in these experiments. 

Together these experiments provide some initial insight into an alternative to the 

dichotomous view of the dual mechanisms of control. The preference for the hybrid model across 

all four experiments is ultimately a preference for a titrated control pattern. An additional 

component, separating the 1-N and 9-N trials from the remaining trials is needed. However, the 

remaining components of the model are the titration model components. So, ultimately this project 

shows strong evidence that cognitive control can be used more dynamically than has been 

generally proposed in the DMC framework. The DMC framework has largely been evaluated in 

the AX-CPT task that only affords talk of proactive control in some instances and reactive control 

in others. The task created and tested in the current project allows for additional possibilities that 

reveal this titration pattern. These results expand on the idea of proactive and reactive control 
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mechanisms by showing that these mechanisms can be dynamically implemented to degrees 

appropriate for a nuanced task. This project also has implications for broader understanding control 

mechanisms.  

Similar ideas to proactive and reactive control are found across many literatures. 

Prospective memory, for example, is often broken down into ‘monitoring’ accounts and 

‘spontaneous retrieval’ accounts. Monitoring involves maintaining preparation of the intended 

action or maintaining a search for the cue that requires that action, similar to proactive control. 

Spontaneous retrieval is less well-understood, but Bugg, McDaniel, and Einstein (2013) propose 

that it likely involves reactive control in that control would suddenly be required to facilitate the 

task switch from the ongoing task to the prospective memory task, at least. Reactive control could 

also be seen to be a response to the conflicting task goals that are induced by this key stimulus, 

even if monitoring/proactive control was in use to detect this stimulus. This idea would be in 

conflict with a strict dual mechanisms interpretation where the control mode must ‘switch’, but 

could be accommodated by the titration hypothesis where there is the possibility that levels of 

control within each proactive and reactive control could be independently increased.  

The present studies’ results also have interesting implications for the number judgement 

literature, highly relevant due to the nature of the digit task used in the present experiments, in that 

they seem to go against some very common findings. For example, Holyoak (1978) discusses 

magnitude effects, where RTs are slower for deciding between two relatively larger numbers 

versus two relatively smaller numbers. This requires the use of magnitude ratios, rather than 

distance to account for the differing RTs between otherwise equidistant pairs. In the present work, 

a magnitude effect pattern is not found. Trials with 9 as the cue are faster than 8-N trials, which 

are faster than 7-N trials. The opposite would be true in the presence of magnitude effects.  

Dehaene (1989) proposes that moving or imbalanced reference points eliminate magnitude 

effects because the judgments are made relative to an internal reference point at either end of the 

full range. Dehaene found that when a reference point was closer to one end, the judgments for 

numbers between the reference point and the end were faster than those beyond the reference point 

in relation to the closer end. For example, a reference point of 35 in a range of 20-99 would have 

a faster comparison to 20 than to 50. Schneider and Logan (2007) found the same pattern in a task 

more somewhat more similar to the present work using 0-9, and changing the reference point 

between 2 and 7. In their task, 2-1 was faster than 2-3. However, in the current project, 2-1 is 
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slower than 2-3. The typical symbolic distance effect and magnitude effect patterns are not found. 

This only makes sense if the subjects in the current project were aware of the trial type probabilities 

and preparing for them by implementing some level of proactive control. Together with the 

modeling results, this lends further argument against a distance effect account and in favor of the 

titration account of the pattern of RTs in the present studies. 

Many potential follow-ups could further specify, explore, and test the mechanisms needed 

for this proposed dynamic control system. If proactive and reactive control processes were 

mutually exclusive and competing, or perhaps opposite ends of the same process, they would be 

inversely related. That is, increased proactive control use would lead to decreased reactive control 

use. However, if they are truly separate, independent, processes that can be flexibly used 

simultaneously, it should be possible for use of each to increase without cost to the other process.  

Other mechanisms for increasing proactive or reactive control have been investigated. For 

example, Janowich and Cavanagh (2018) found via meta-analysis that designs with varied ISIs 

lead to more reactive control overall than studies that used consistent (predictable) ISIs. However, 

comparing the results from AX-CPT-70 from Redick (2014), with a predictable 4500 ms ISI, to 

the variable ISI (5000 and 1000 mixed) of Redick and Engle (2011) which were otherwise similar 

tasks and procedures, the meta-analysis is not painting a full picture. For low working memory 

subjects in Redick and Engle (2011), the variable ISI resulted in longer RTs (indicative of reactive 

control) for both short and long ISI trials within the mixed blocks when compared to the low 

working memory subjects from Redick (2014). However, high working memory subjects showed 

faster RTs (indicative of proactive control) on B-Y and B-X trials on the long ISI trials in the 

mixed blocks.  

As mentioned, I showed in an earlier study that in the AX-CPT-70, a task where proactive 

control was beneficial for overall performance, time on a task lead to increased overall proactive 

control use for low working memory subjects (Wiemers & Redick, 2018). In addition to time on 

task, explicit instructions and strategy training or practice can increase proactive control use 

(Braver, Paxton, Locke, & Barch, 2009; Paxton et al., 2006). These types of improvements follow 

from an initial relationship such that low working memory individuals use proactive control less 

often than high working memory individuals. However, in Experiment 2 of the current project, the 

working memory relationships were less clear. Working memory was related to overall error rates  
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and improved the models, but was not related to RTs or the proactive index, critical to determining 

levels of control use.  

It is possible that proactive control use in this more dynamic task has levels that are more 

readily available for lower working memory individuals in a way that is not afforded by the AX-

CPT. The performance on 1-N and 9-N trials being so starkly different from 2-N and 8-N trials 

could reflect strongly different levels of proactive control as is suggested by the titration account, 

or it could be reflecting a different type of proactive control use. Anecdotally, in the AX-CPT 

participants are asked to keep their fingers on the buttons at all times but sometimes can be seen 

lifting the finger that corresponds to a future incorrect response to physically prepare to make only 

the correct response, with no risk of forgetting and making the incorrect response. This type of 

physical preparation is afforded in the ‘B-X’ and ‘B-Y’ trials with 100% accuracy, similar to the 

1-N and 9-N trials in the current task. This physical preparation could be less dramatic, with a 

slight pressure on the anticipated response key mentally and physically marking the future correct 

response without technically ‘breaking the rules’, too. In either case, this is likely a very different 

preparation than the more mentally taxing preparation involved in being ‘mostly’ prepared to hit 

the ‘larger’ key for a 2-N trial. For example, on a 2-N trial, one might be preparing for the ‘larger’ 

response, but they could also be preparing to inhibit this response for the infrequent 2-1 trials. The 

mental preparation could be analogous to the dialogue, “2 means probably larger, prepare to press 

right” or “Is it a 1 or not? Yes = left, No = right”.  

The mental preparation is present in both cases, but physical preparation may only be 

present in the first instance. These are both forms of proactive control, which would lead to the 

lack of correlation between control use and working memory as measured by RTs because low 

working memory individuals could be using as much or almost as much proactive control, just of 

a different type. Future studies would be needed to explore this possibility.  

However, less physical preparation would likely result in slower RTs that would not show 

this nicely graded pattern. Though, if the mental preparation on 2-N trials is to compare to 1, then 

on 3-N trials the mental preparation could be “Is it a 1 or 2?”, which would take a little longer, and 

so on. In that framing, this pattern of RTs could also be thought of as reflecting increasing task 

sets. However, this thinking is still preparatory in nature and would fall under the realm of 

proactive control.   
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While the idea of the current project was to delve into the nuances of control use, the 

separability of proactive and reactive control was not addressed. Other factors not considered in 

the present work have been shown to influence control use and have been used to try to disentangle 

these two processes. Rewards (manipulating motivation) and task-informative cues have been 

shown to increase proactive control use (e.g., Boehler, Schevernels, Hopf, Stoppel, & Krebs, 2014; 

Chiew & Braver, 2016). Strategy training has also been used to influence proactive and reactive 

control use (e.g., Gonthier, Macnamara, Chow, Conway, & Braver, 2016). Motivation, cues, and 

strategy training were all used to investigate whether shifts in proactive and reactive control could 

be induced. These studies resulted in an understanding that control was a flexible mechanism that 

could be shifted from one to another dynamically.  

However, these efforts do not speak to whether these processes could be manipulated 

separately. While the current project aims to further the understanding of how dynamically control 

can be implanted, it also does not ultimately determine whether both can simultaneously be 

dynamically used. In fact, to date, very few studies have attempted to manipulate proactive and 

reactive control either together or without detriment to the other process (reactive or proactive 

control). One such attempt by Mäki-Marttunen, et al. (2019) found some evidence of proactive 

control increase via reward with lower A-Y accuracy, but not corresponding higher B-X accuracy. 

Standard and high-load versions of the AX-CPT were used, and point rewards were offered. 

Participants were asked to try to get as many points as possible, and their score would be given to 

them at the end. RTs were faster in the reward condition, which also points to proactive control 

use. They also used load conditions to induce reactive control, with higher cognitive load intended 

to induce more reactive control, though it is unclear why this would be the case. Proactive control 

would be more beneficial in a high-cue-load paradigm due to the memory component of reactive 

control. B-X errors increased under high load regardless of reward, which could simply be due to 

a memory constraint, rather than reactive control use. Further, the study has a hallmark problem 

of the AX-CPT-70 in that only 15 trials are being evaluated for each of the critical trial types (A-

Y and B-X each at 10% of 150 trials).  

The present work focused on whether proactive control could be used in a more nuanced 

way, with an assumption that reactive control would be similarly used to balance performance. 

That is, on the middle-predictive trials like 3-N and 4-N, some proactive and some reactive control 

would both be employed to result in a sort of somewhat proactive/somewhat reactive middle 
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ground appropriate to the level of uncertainty. In the present project however, this is mostly framed 

in levels of proactive control, avoiding this two-sided framing, as it is more difficult to determine 

how to look at both at once in the current task structure.  

Some evidence from the current project does suggest this may be the case, however. 

Certain “B-X” analogous trials, such as 2-1 or 8-9 trials, sometimes showed performance 

indicative of reactive control (i.e., fewer errors and faster RTs) compared to trials where the more 

frequent response was correct (“A-X” analogous trials such as 2-3 or 8-7). While the relative speed 

on these 2-N and 8-N trials would suggest overall proactive control use, the relatively strong 

performance on the 2-1 and 8-9 trials would normally be interpreted as indicating reactive control 

performance. So, one possible interpretation is that both are being employed to a high degree on 

these trials. However, it is also possible that this performance pattern is reflecting a different type 

of proactive control that involves preparing for these ‘B-X’ analogous trials instead of being 

surprised by them. More work would need to be done to investigate these alternative possibilities 

and disentangle these control mechanisms in this situation before claiming that both proactive and 

reactive are represented strongly in these trials. 

As such, it remains a question for future studies, whether proactive and reactive control 

can be truly separated behaviorally, consistent with their suggested neurophysiological separation, 

and whether they can be flexibly employed simultaneously. Future experiments with versions of 

this new digit task will need to show whether both proactive and reactive control can be improved 

simultaneously, without detriment to the other mechanism. These are questions that could be 

explored using this new digit task in a very nuanced way not afforded by other tasks such as the 

AX-CPT. Remaining questions also include whether the hybrid model is accounting for a mapping 

effect or a different additional necessary factor, whether the distance effect alone would show a 

similar pattern if proactive control could be removed entirely, and whether proactive and reactive 

control can be manipulated independently. The development of this task lays a foundation on 

which these questions can be studied.  

In conclusion, the goal for this project was to show four things. 1. I developed a new task 

that is more sensitive to the nuances of cognitive control mechanisms, specifically when 

investigating within the dual mechanisms of control framework. 2. I advanced the knowledge 

regarding how differences in working memory affect the use of cognitive control. 3. I determined 

that  online  data  collection is  feasible  despite the  challenges of  studying  cognitive  control  in  
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low-control settings. 4. I ensured that the titration pattern could not be reduced to a misreading of 

numerical distance effects. These contributions to the field have implications for the understanding 

of the dual mechanisms of control framework and more generally the understanding of cognitive 

control mechanisms, positing that these mechanisms may be more flexible than previously thought, 

and introduce a task that allows for further exploration of this theory.  
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