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ABSTRACT 

To continue the shift from batch operations to continuous operations for a wider range of products, 

advances in real-time process management (RTPM) are necessary. The key requirements for 

effective RTPM are to have reliable real-time data of the critical process parameters (CPP) and 

critical quality attributes (CQA) of the materials being processed, and to have robust control 

strategies for the rejection of disturbances and setpoint tracking.  

 

Real-time measurements are necessary for capturing process dynamics and implement feedback 

control approaches. The mass flow rate is an additional important CPP in continuous 

manufacturing compared to batch processing. The mass flow rate can be used to control the 

composition and content uniformity of drug products as well as an indicator of whether the process 

is in a state of control. This is the rationale for investigating real-time measurement of mass flow 

of particulate streams. Process analytical technology (PAT) tools are required to measure 

particulate flows of downstream unit operations, while loss-in-weight (LIW) feeders only provide 

initial upstream flow rates. A novel capacitance-based sensor, the ECVT sensor, has been 

investigated in this study and demonstrates the ability to effectively measure powder mass flow 

rates in the downstream equipment. 

 

Robust control strategies can be utilized to respond to variations and disturbances in input material 

properties and process parameters, so CQAs of materials/products can be maintained and the 

amount of off-spec production can be reduced. The hierarchical control system (Level 0 equipment 

built-in control, Level 1 PAT based PID control and Level 2 optimization-based model predictive 

control) was applied in the pilot plant at Purdue University and it was demonstrated that the use of 

active process control allows more robust continuous process operation under different risk 

scenarios compared to a more rigid open-loop process operation within predefined design space. 

With the aid of mass flow sensing, the control framework becomes more robust in mitigating the 

effects of upstream disturbances on product qualities. For example, excursions in the mass flow 

from an upstream unit operation, which could force a shutdown of the tablet press and/or produce 

off-spec tablets, can be prevented by proper control and monitoring of the powder flow rate 

entering the tablet press hopper. 
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In this study, the impact of mass flow sensing on the control performance of a direct compaction 

line is investigated by using flowsheet modeling implemented in MATLAB/Simulink to examine 

the control performance under different risk scenarios and effects of data sampling (sampling time, 

measurement precision). Followed by the simulation work, pilot plant studies are reported in which 

the mass flow sensor is integrated into the tableting line at the exit of the feeding-and-blending 

system and system performance data is collected to verify the effects of mass flow sensing on the 

performance of the overall plant-wide supervisory control. 
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 INTRODUCTION 

1.1 Background of Pharmaceutical Manufacturing  

 

Pharmaceutical manufacturing is generally divided into upstream manufacturing and  downstream 

manufacturing. Upstream manufacturing aims to produce drug substances, also known as active 

pharmaceutical ingredients (API), and typically includes one or more chemical synthesis steps 

followed by several separation unit operations such as crystallization, filtration, and drying. 

Downstream manufacturing serves to produce drug products by combing APIs and inactive 

ingredients, called excipients, to create a dosage form humans can take. The oral solid dosage, 

tablet and capsule,  is the most common dosage form because it is convenient for people to take 

and relatively simple for manufacturers to make, store, and distribute. Depending on material 

properties,  tablets can be produced via different processing routes, including wet granulation, dry 

granulation or direct compaction. 

 

Drug product manufacturing plays a key role in the part of the healthcare sector that deals with 

medications. However, while pharmaceutical companies use cutting-edge science to discover new 

medicines, they have been manufacturing them using out-of-date techniques [2]. Conventional 

tablet manufacturing mostly relies on batch processes, in which materials are tested off-line after 

each batch unit operation. If the critical quality attributes (CQAs) of the samples meet the 

specifications approved by the Food and Drug Administration (FDA), the materials can be sent to 

the next processing step. However, if the specifications are not met, then the whole batch must be 

discarded given its potential negative impact on human health. These wasted batches constitute 

enormous loss of money for pharmaceutical companies. Moreover, inefficient manufacturing can 

lead to drug shortages for the whole society. Therefore, how to efficiently utilize materials like 

APIs and maintain CQAs at the same time becomes an important issue for manufacturing research. 

 

Continuous manufacturing provides a more promising approach to efficiently utilize materials than 

batch manufacturing, especially with the application of advanced process design, monitoring and 

control methods [3, 4]. For example, when using on-line monitoring of quality only intermediate 
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materials with acceptable characteristics would be advanced to the next unit operation in a 

continuous process. If some intermediate materials didn’t meet the FDA expectations, then the 

continuous process could discard only those unqualified parts of the material flow and adjust 

control variables to ensure CQAs of the continuing materials in the process line, rather than 

shutting down the entire production line. Moreover, scale-up is relatively easy for continuous 

manufacturing because by simply increasing process time more products can be produced, which 

means neither larger equipment and space nor different operation conditions taking into account 

scale-up are needed [5]. However, continuous manufacturing is a very new idea for the 

pharmaceutical industry and only six solid oral drugs produced via continuous tablet 

manufacturing have been approved by the FDA to date [6-8]. Obviously, continuous 

manufacturing still faces some challenges such as online property measurement, modeling of 

integrated processes and supervisory control [3]. This research will focus on how to monitor 

powder mass flow rate in real-time and utilize mass flow measurement to improve control 

performance of a continuous solid oral dosage process. 

 

The mass flow rate is an important critical process parameter (CPP) which affects the concentration 

and the content uniformity of final products. Those attributes depend on the relative amounts of 

APIs and excipients which are combined into the powder blend. Although loss-in-weight (LIW) 

feeders can deliver granular materials at specified set points, the actual mass flow measurements 

are still required to mitigate flow disturbances by applying strategies such as ratio control [9]. 

Moreover, the mass flow rate is an indicator of whether the process is in a state of control and is 

not subject to material losses or materials accumulations. Besides, the exit flow rate from the 

blender is a disturbance variable for downstream unit operations. Process variation caused by mass 

flow variation can be mitigated if the mass flow is measured and controlled in real time. Therefore, 

this research is focused on how to utilize sensors to capture the real-time mass flow, which is a 

prerequisite for effective real-time process management. 
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1.2 Research Objectives 

 

The first objective is to investigate the application and comparative effectiveness of an Electric 

Capacitance Volume Tomography (ECVT) sensor and an X-ray based sensor for real-time 

measurement of mass flow of powder/granular flows.  

 

The second objective is to investigate the impact of mass flow sensing on the control performance 

of a direct compaction line by using flowsheet modeling implemented in MATLAB/Simulink. 

Further, pilot plant studies are reported in which the mass flow sensor is integrated into the 

tableting line at the exit of the feeding-and-blending system and system performance data is 

collected to verify the effect of mass flow sensing on the performance of the overall plant-wide 

supervisory control. 
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 REAL-TIME MASS FLOW MONITORING 

2.1 Introduction 

 

Process analytical technology (PAT) tools are required to measure particulate flows of downstream 

unit operations, since loss-in-weight (LIW) feeders can only provide the initial upstream flow rates 

in continuous tablet manufacturing. Methodologies developed to measure mass flow rate can be 

divided into direct methods and inferential methods including measurement of instantaneous 

particle velocity and instantaneous volume fraction. Direct measurement methods only provide the 

mass flow rate, such as thermal methods depending on the proportional relationship between mass 

flow and the ratio of the heat input to the temperature change. Another example is the active 

charging and detecting method, where the mass flow rate is proportional to the electrical current. 

Inferential methods are used in this research because they can provide more information than direct 

methods. For example, the measured velocity can be used not only in the calculation of the mass 

flow rate but also in fault monitoring.  The inferential method can be represented as Eq. 2.1 [10]: 

 

𝑀𝑠(𝑡) = 𝜌𝑠𝐴𝑉𝑠(𝑡)𝛽𝑠(𝑡)    Eq. 2.1 

 

where Vs(t) is the velocity, βs(t) is the volume fraction and Ms(t) is the mass flow rate of solids. 

True density of solids ρs can be assumed to be a constant and the cross-sectional area A of the pipe 

is known. Based on different physical principles, several PAT tools have been proposed to measure 

the particle velocity and the volume fraction. The X-ray based sensor and the ECVT sensor will 

be discussed in this research. 

 

The X-ray sensor is based on attenuation of a monochromatic electromagnetic wave through a 

particulate medium coupled with cross-correlation velocimetry. The X-ray attenuation follows 

Beer-Lambert’s law as given by Eq. 2.2 [11] : 

 

      β𝑠 =
−𝑙𝑛(I/𝐼0)

𝐿𝑐μ
     Eq. 2.2 
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where I0 and I are the intensities of the incident and transmitted X-ray respectively, Lc is the length 

of the chord across the pipe section, and μ is linear attenuation coefficient of the solid material. 

Higher particle volume fraction (βs) is reflected in the attenuated intensity (I) of the transmitted X-

ray. When the X-ray based sensor, manufactured by Enurga Inc., (West Lafayette, IN) was used 

in measuring powder blends composed of different proportions of APAP, MCC, lactose, 

magnesium stearate and silicon dioxide, the research reported by Ganesh et al [12] indicated that 

the mass flow rate could be measured within an accuracy of 5% of the actual mass flow rate in the 

pilot plant at Purdue University. While the measurement accuracy was acceptable, the location of 

the X-ray sensor is limited because of the requirement for bulky and heavy lead shielding. This 

limitation has motivated the investigation of alternative technologies. 

 

The ECVT sensor is based on the principle of parallel-plate capacitor as defined by Eq. 2.3 [13] 

where the dielectric permittivity of dilute solid-gas mixtures can be represented by Eq. 2.4 [14]:  

 

       C = ε
𝐴𝑝

𝑑
      Eq. 2.3 

 

      ε = β𝑠 𝜀𝑠 + (1 - β𝑠) 𝜀𝑎𝑖𝑟    Eq. 2.4 

 

where ε, εs and εair are the permittivity of mixture, solids and air respectively. C is capacitance, Ap 

is the area of the plate, d is the distance between two plates and βs is the volume fraction of solids. 

A higher mass flow rate is reflected in higher permittivity and thus capacitance. 

 

According to the literature [10], variations in particle size influence the operation of most sensors 

except those based on capacitance and radiometric principles.  However, these sensors are very 

sensitive to moisture content. For instance,  a variation of 1% moisture in coal has been reported 

to result in a 25-30% variation in the measured solid fraction obtained by utilizing capacitance-

based sensors. This indicates that while particle size may not be an important factor, moisture can 

have an important negative effect on the accuracy of the measurement. Nonetheless, capacitance-

based sensors are widely used in systems involving pneumatically conveyed particles [15-17], but 

are rarely used in the pharmaceutical industry. Guo et al [18] reported that the accuracy of mass 

flow measurement of pulverized coal conveyed pneumatically in downward flow orientation was 
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within 5% while Li et al [19] indicated the error of mass flow measurement of gravity-fed glass 

beads ranged between -3% to 8%. These reports suggest that the ECVT sensor should be able to 

perform to comparable error limits when used with pharmaceutical powder blends. 

 

2.2 Materials and Methods 

2.2.1 Materials 

 

Acetaminophen Grade 0048 (APAP) was purchased from Mallinckrodt (Raleigh, NC). Avicel 

microcrystalline cellulose Grade PH-102 (MCC-102) and Grade PH-200 (MCC-200) were 

purchased from FMC BioPolymer (Philadelphia, PA). Lactose monohydrate Grade 310 was 

purchased from Kerry Inc. (Jackson, WI). Silicon dioxide was used as glidant. All powder blends 

were prepared by using a 5L Tote blender for 30 min. 

2.2.2 ECVT Sensor Description 

 

The Electrical Capacitance Volume Tomography (ECVT) sensor, offered by Tech4Imaging LLC, 

(Columbus, OH), is a non-invasive sensing technology with fast data acquisition. Figure 2.1a 

shows the structure of one example of the ECVT sensor. In the design used in these experiments, 

the sensor consists of 12 small plates, where 4 of those 12 plates are disconnected and each 2 small 

plates of the other 8 plates are combined into a large plate. The plate 1 and the plate 2 can be 

viewed as a top parallel-plate capacitor, while the plate 3 and the plate 4 can function as a bottom 

parallel-plate capacitor. 
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Figure 2.1 Sensor configuration: (a) ECVT sensor (b) stand-alone system 

 

2.2.3 Experimental Setup 

 

A stand-alone system consisting of a K-Tron KT20 loss-in-weight (LIW) feeder, the ECVT sensor 

and an independent Mettler-Toledo ME 4001E weighing scale for gravimetric measurement is 

shown in Figure 2.1b. The ECVT sensor does not provide the actual capacitance, as only 

normalized capacitance can be measured, following Eq. 2.5 where intensity (I) is an integer value 

between -65536 and 65535. During initial calibration of the ECVT sensor, the normalized 

capacitance of the empty pipe is 0 and that of the pipe filled with solid materials is 1. The AC 

excitation frequency is set to 62.5 kHz during initial calibration. When experiments are performed, 

the powders are loaded into the hopper of the LIW feeder, then fed into an ID 6.35 cm acrylic pipe 

that is surrounded by the ECVT sensor. At each measurement, one minute of no flowing material 

at the beginning and in the end are used to detect the extent of measurement drift and fouling.  

 

𝐶𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =  
𝐼𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑−𝐼𝑒𝑚𝑝𝑡𝑦

𝐼𝑓𝑢𝑙𝑙−𝐼𝑒𝑚𝑝𝑡𝑦
=  

1

𝑘
 

𝐶−𝐶𝑎𝑖𝑟 

𝐶𝑠−𝐶𝑎𝑖𝑟
=  

1

𝑘
 β𝑠     Eq. 2.5 
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2.2.4 Data Analysis 

 

The measurement of the velocity of solids is based on cross-correlation velocimetry, which 

transforms the time delay of signal between the top capacitor and the bottom capacitor into velocity 

as shown in Figure 2.2a. Due to mass balance, areas under the curves of mass flow rate versus time 

from the weighing scale and those from the ECVT sensor should be the same. However, given 

sensor baseline drift problems and fouling problems, this calibration method can cause 

underestimation of mass flow rates from the ECVT sensor. Therefore, in this study, the capacitance 

data are used to compute differences between the values when there is no flow of materials and 

the values recorded during flow of materials, shown as values  C1 or C2 in Figure 2.2b. The average 

of C1 and C2 is used in sensor calibration similarly to determining a scaling factor, as shown in Eq. 

2.5. The transient velocity is relatively stable, so the averaged velocity can be used in sensor 

calibration. 

 

 

Figure 2.2 Illustration of how to analyze (a) velocity and (b) capacitance 
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2.3 Results and Discussions 

 

2.3.1 Effects of L/D Ratio 

 

The ECVT sensor must be located in an appropriate position in the pipe because the length (L) 

between the exit of the LIW feeder and the sensor affects the velocity measurement. As shown in 

Figure 2.3, when MCC-200 was fed into the pipe with inner diameter (D) 6.35 cm at flow rate 5 

kg/hr, the velocity measurement from the sensor setup with length 104.8 cm (L/D = 16.5) was 

more stable than results from the same setup with length 33.5cm (L/D = 5.3). This is attributed to 

the fact that a low L/D ratios there is insufficient time for free-falling powders to achieve a stable 

terminal velocity in the downward direction [20]. 

 

 

Figure 2.3 Effects of length to diameter ratio on the velocity measurement 
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2.3.2 Effects of  Mass Flow Rates 

 

The model material MCC-200 was fed at various flow set points from 2 kg/hr to 10 kg/hr. The 

capacitance increased with increased mass flow rates because the increased amount of MCC-200 

powders increased permittivity of the gas-solid mixture within the sensing space as shown in 

Figure 2.4a. The velocity when the setpoint was between 6 kg/hr and 10 kg/hr was close to the 

same value of around 1.1 m/s as shown in Figure 2.4b. However, the velocity variation was too 

large to be viewed as a robust velocity when set points were too low, such as situations with set 

points below 4 kg/hr. The velocity sometimes could drop to zero, such as in  the situation of the 

set point equal to 2 kg/hr, and that could be attributed to failure of cross-correlation velocimetry, 

which means signals from top and bottom capacitors were not similar enough so time delay found 

by the algorithm was 0 s, and thus the computed velocity approached infinity. Therefore, the 

algorithm was modified so that the infinity value was reset to zero to indicate a failure in velocity 

measurement using the velocity of 0. 

 

 

Figure 2.4 Time series data (a) normalized capacitance and (b) velocity at different set points 

2.3.3 Effects of Powder Properties  

 

To test the effects of powder bulk density, particle size, and API concentration, five kinds of 

powders given in Table 2.1. True density of the particle is its density excluding any pores and is 

the density of the solid material, which is assumed to be a constant. Bulk density of a powder is 
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the density when the powder is in a state of incipient fluidization, which means a loose or poured 

powder is used in bulk density measurement. The variation in bulk density is the largest among all 

kinds of density, because bulk density can be easily affected by slight shaking, humidity, pressure, 

or the height where the powder is delivered. That’s the reason to investigate the effects of the bulk 

density. Tapped density of a powder is the bulk density of the powder after it has been subject to 

a prescribed style of tapping over a prescribed period of time. Tapped density can be used to 

calculate Hausner Ratio, which is defined as the ratio of the tapped density to the bulk density and 

is the most commonly used quantity to determine flowability in the pharmaceutical industry. 

Smaller Hausner ratio means better flowability of the powder, so MCC 200 with the best 

flowability is suitably used as a model material to calibrate the mass flow sensor. 

 

Five kinds of powders were measured at three different mass flow rates, and their values averaged 

over two minutes are shown in Figure 2.5 including the normalized capacitance (Figure 2.5a), the 

velocity (Figure 2.5b) and predicted mass flow rates from the ECVT sensor (Figure 2.5c). 

 

 

Table 2.1 Powder properties 

 True density 

(g/mL) 

Bulk density 

(g/mL) 

Tapped density   

(g/mL) 

Hausner ratio 

 

d
50

  

(μm) 

Lactose 

 

1.590 0.596 0.817 1.37 92 

MCC-102 

 

1.471 0.356 0.422 1.19 100 

MCC-200 

 

1.456 0.375 0.425 1.13 200 

MCC-200(90%) 

+APAP(10%) 

 

1.449 0.344 0.410 1.19 N/A 

MCC-200(80%) 

+APAP(20%) 

1.427 0.356 0.426 1.20 N/A 

 

 

First, effects of particle size could be observed from the results with MCC-200 (median size ~ 200 

μm) and those of MCC-102 (median size ~ 100 μm). At the same mass flow rates, the velocity of 

MCC-102 (0.9 m/s) is slightly smaller than that of MCC-200 (1.1 m/s) due to size effects [21]. 

The volume fraction is inversely proportional to the velocity, which is verified by the fact that 

capacitance of MCC-102 was larger than that of MCC-200. The higher error (≤12.7%) of mass 
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flow rate of MCC-102 than of MCC-200 (≤7.7%) may be attributed to fouling caused by poor 

flowability of the material with smaller particle size. 

 

Secondly, effects of bulk density could be observed from the results of MCC-102 (0.356 g/cm3) 

and those of lactose (0.596 g/cm3). At the same screw speed, lactose was discharged at higher mass 

flow rate and higher velocity than MCC-102. The highest velocity of lactose among all materials 

results in the lowest capacitance. The errors of mass flow rate are similar in both materials, 

indicating that the accuracy of mass flow rate should not have a strong dependence on bulk density. 

 

Thirdly, effects of the composition of API could be observed from the results of MCC-200, Blend 

10% (10%APAP + 90%MCC-200) and Blend 20% (20% APAP + 80%MCC-200). The velocity 

of these three materials is similar at the same mass flow rates. However, the error of the capacitance 

and mass flow rates of Blend 10% and Blend 20% are higher than those of MCC-200, which may 

be attributed to content uniformity of APAP in blends and different permittivity of MCC-200 and 

APAP. 
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Figure 2.5 Effects of powder properties including bulk density, particle size and concentration of API on (a) 

velocity, (b) normalized capacitance and (c) predicted mass flow rates 
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2.3.4 Approaches to Improve Measurement Accuracy 

 

Compared to the measurement errors of 5% obtained with the X-ray sensor, the measurement 

accuracy of the ECVT needs improvement for further implementation in the manufacturing line. 

The challenges to enhance measurement accuracy are to mitigate the effects of sensor baseline 

drift and fouling on the pipe. Therefore, several approaches have been investigated and results are 

discussed in this chapter. 

 

Sensor baseline drift can in part be attributed to temperature variations in the printed circuit board 

(PCB) of the data acquisition system [10]. Figure 2.6 shows that the capacitance (blue dashed line) 

of an empty pipe and the circuit board temperature (red line) are positively correlated. The 

increased value of 0.0011 for capacitance variation caused by increased 0.5oC temperature 

variation appears to be not serious, but it does result in a huge negative impact on mass flow 

accuracy in the dilute free-falling solid-gas system when the solid fraction is less than 0.1% and 

the capacitance is less than 0.01. Accordingly, a temperature compensation technique can be used 

in which the relationship between the capacitance and the temperature is assumed to be linear 

providing that the temperature is only subject to small variations. When the linear temperature 

compensation technique is applied, the sensor drift is reduced from 0.0011 to 0.0002 considering 

the difference between the incipient capacitance and the capacitance at t = 1200 sec. 

 

 

Figure 2.6 Sensor baseline drift caused by temperature variations in the PCB 
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Another approach to alleviate the effect of sensor drift is to reduce the diameter of the ECVT 

sensor. Although reduced diameter does not directly lessen the drift extent, when the inner 

diameter of the sensor is reduced from 2.5 inches to 1 inch, the capacitance signal of the powder 

fraction is amplified, which consequently mitigates the impact of sensor drift. However, the 

reduced diameter can worsen the effects of fouling on the pipe because a layer of powder adhesion 

with the same thickness accounts for a larger proportion in the 1 inch pipe than in the 2.5 inch pipe.  

 

Figure 2.7 shows the situation when fouling takes place and the situation when fouling is mitigated. 

Powders adhering to the pipe wall can result in overestimation of measured powder flow rates, and 

the time-variant extent of fouling produces gross error and large variations in sensor measurement. 

Therefore, a vibration device was fixed on the pipe to help remove the powders adhering to the 

pipe wall. Figure 2.8a indicates that accumulated fouling makes mass flow measurement from the 

ECVT sensor increase gradually, resulting in a large deviation compared to the actual mass flow 

rate from the weighing scale. With the aid of the vibration device, fouling is mitigated and the 

measurement error is decreased as shown in Figure 2.8b. It should be noted that the reading of the 

ECVT sensor is not negatively affected by vibration, whereas such vibrations  can strongly affect 

the mass flow reading when using load cell based techniques, which are used in  LIW feeders.  

 

 

Figure 2.7 Illustration of fouling in the pipe 
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Figure 2.8 Effects of vibration on fouling 

 

 

Given that powders sometimes could be too cohesive to be shaken off by a vibration device, the 

effects of pipe materials on powder adhesion was also considered. Adhesivity and electrostatic 

chargeability of the powders are two main reasons for fouling [22]. Accordingly, the effects of 

choice of three pipe materials, polytetrafluoroethylene (PTFE), polyvinyl chloride (PVC) and 

polycarbonate, were investigated. The friction coefficients and work functions [23] for these 

materials are listed in Table 2.2. Pipes with lower friction coefficient can reduce the amount of 

powder that adheres to the pipe wall. In these experiments MCC-200 is blended with 0.2 wt% SiO2 

to increase the powder flowability. Providing that the work function of MCC is 5.11 eV [23], PVC 

can reduce the tribocharging effect the most. It can be expected that materials with higher work 

function will tend to charge with positive polarity and thus that larger difference in work function 

between two materials will result in more accumulated static charges.  

 

Mass flow rates from the weighing scale in the top part of Figure 2.9 suggest that powder flow 

rates are steady after t = 100 sec at five different flow rates. In other words, mass flow rates from 

the ECVT after t = 100 sec as shown in the bottom part of Figure 2.9 theoretically should be as 

steady as possible. In addition, the difference between the capacitance of the first minute and the 

capacitance of the last minute is caused by the change of the amount of powder fouling. Based on 

these criteria, PTFE is the preferred candidate to reduce the effects of fouling. These results also 

indicate that fouling of MCC-200 is more subject to the friction coefficient than to the work 



 

 

28 

function considering that PVC (5.13 eV) is closest to the work function of MCC (5.11 eV). The 

polycarbonate is the worst choice for measuring mass flow rates of MCC-200 because of the 

highest friction coefficient. One additional point worth noting from Figure 2.9 is that the ECVT 

measurement can reflect the mass flow variation very well even when powder flow rates are low 

(2 kg/hr, green line). It is evident from these experiments that several mitigation strategies must 

be employed to minimize the effects of sensor baseline drift and fouling and thus to enhance 

measurement accuracy. The average errors of the predicted mass flow are listed in Table 2.3, which 

also includes the mass flow error by using 2.5 inch pipe for comparison. To calculate average 

errors of ECVT sensors, the average mass flow rates over 1 minute ( from t = 100 sec to 160 sec) 

from both the weighing scale and the ECVT are used, which is (Rate ECVT – Rate Weigh) / Rate Weigh. 

The error range provided in Table 2.3 includes all the errors within the listed flow range. For 1 

inch sensor with different pipe materials, there is one measurement for five setpoints (2, 4, 6, 8, 10 

kg/hr). For 2.5 inch sensor used for different powders, there are three measurements for three 

setpoints. The results indicate the best measurement accuracy is achieved by using 1 inch PTFE 

pipe, supported by the value of the smallest error (-1.8 ~ 3.3%). 

 

Table 2.2 Pipe properties 

 PTFE PVC Polycarbonate 

Friction coefficient 0.04 0.20 0.31 

Work function (eV) 5.75 5.13 4.68 
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Figure 2.9 Effects of pipe materials including (a) PTFE, (b) PVC, and (c) polycarbonate 

 

 

2.4 Conclusions 

 

The novel capacitance-based ECVT sensor shows the ability to distinguish different mass flow 

rates from 0 to 20 kg/hr. To capture stable velocity, the L/D ratio of the section of flow upstream 

of the location at which the flow sensor is positioned should be large enough for the free-flowing 

powder to reach its terminal velocity. Moreover, cross-correlation velocimetry is more accurate at 

relatively  high flow rates (e.g. MCC-200 at 10 kg/hr) than at low flowrates (e.g. MCC-200 at 2 

kg/hr). In a dilute free-falling solid-gas system, the capacitance plays a more important role in 

reflecting the real mass flow rates than the velocity which depends on powder properties rather 

than mass flow rates. The effects of powder properties including the bulk density, the particle size, 

and the API composition are investigated in this study. The experimental results allow three 

conclusions to be drawn: (1) higher bulk density results in lower capacitance and higher velocity, 
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(2) larger particle size results in lower capacitance and higher velocity, and (3) API compositions 

less than 20% do not affect either capacitance and velocity to any significant extent.  

 

The two main root causes of the mass flow measurement error are sensor baseline drift and sensor 

fouling. These two factors can worsen the accuracy of ECVT measurement especially in the case 

of dilute solid-gas systems. Temperature compensation technique can be used to mitigate sensor 

drift caused by temperature variations in the printed circuit board of the data acquisition system. 

In addition, when the diameter of the pipe passing through the ECVT sensor is reduced from 2.5 

inches to 1 inch, the capacitance signal of powder fraction is amplified, which further mitigates 

the impact of sensor drift. To deal with the fouling issue, a small amount of glidant silicon dioxide 

can be added to the powder blend, thus improving the flowability of powders and reducing the 

pipe wall friction. Considering the work function and the friction coefficient of pipe materials, 

PTFE pipe can be used to reduce fouling the most. To obtain satisfactory real-time mass flow 

measurement for applications such as process control, approaches such as those investigated in 

this work are required to mitigate sensor drift and fouling. 

 

As shown in this work by appropriate choices of upstream pipe length,  pipe diameter relative to 

mass flow rate, pipe material of construction, use of a vibration device and inclusion of a small 

amount of glidant, the presentation of the powder flow to the sensor can be stabilized and fouling 

significantly reduced. The sensor signal itself also must also be corrected for the temperature of 

its printed circuit. With these engineering solutions applied, the experimental results summarized 

in Table 2.3 show that sensor measurement error can be reduced to between -1.8% and 3.3% 

depending on the absolute value of the mass flow. 
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Table 2.3 Average errors of the predicted mass flow rates from the ECVT sensor 

Pipe Powder material Flow range (kg/hr) Average error (%) 

 

1 inch PTFE MCC200 + 

0.2%SiO2 

2 ~ 10 -1.8 ~ 3.3 

 

1 inch PVC MCC200 + 

0.2%SiO2 

2 ~ 10 -8.5 ~ 5.6 

 

1 inch Polycarbonate MCC200 + 

0.2%SiO2 

2 ~ 10 -10.0 ~ 3.9 

 

 

2.5 inch Acrylic MCC200 6 ~ 10 -4.5 ~ 7.7 

 

 Blend 10% 6 ~ 10 -7.4 ~ 15.9 

 

 Blend 20% 6 ~ 10 -13.8 ~ 14.1 

 

 MCC102 6 ~ 10 -12.6 ~ 10.0 

 

 Lactose 12 ~ 20 -11.2 ~ 12.2 
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 APPLICATIONS OF MASS FLOW MEASUREMENT TO PROCESS 

CONTROL 

3.1 Introduction 

 

The approach to quality control can be changed significantly with the shift from batch 

manufacturing to continuous manufacturing. The traditional method, known as Quality-by-Testing 

(QbT), is to test intermediate materials and final products at the end of each batch unit operation 

[24]. Open-loop process operation within the predefined design space or the documented recipe 

should be followed to meet a tight release specification regulated by the FDA. For example, as the 

specific amount of API and excipients are mixed in a fixed time period in a batch blender, thief 

sampling at discrete time points is required to check the blend homogeneity [25]. The control 

strategy in batch processes relies on using a simple programmable logic control (PLC) panel in 

each equipment. Although there are reports of  advanced control strategies used in batch 

manufacturing, for example, the use of nonlinear model predictive control (NMPC) in a batch 

crystallizer [26], the advanced control strategy is still limited to individual unit operations rather 

than the entire process line.  

 

Recognizing that testing and simple PLC control cannot provide real-time remedial control actions, 

the FDA has advanced the concept of Quality-by-Design (QbD) and issued some guidance 

documents [27-30]. The key message of QbD is that the quality must be designed into the product 

to reduce quality crisis drug manufacture [31]. With the aid of PAT tools and process 

understanding, the systematic design of operating space can be used to integrate each unit 

operation and to enable continuous manufacturing. Simultaneously, closed-loop plant-wide 

control is required in an integrated line to exercise corrective actions when the results of real-time 

release testing indicate that product is out of specification. To move from open-loop operation in 

one equipment to closed-loop operation in a plant-wide system, indispensable steps include control 

system design, control hardware/software and sensor integration, and control system 

implementation [32]. More recently, the QbD concept has been extended to a new concept called 

Quality-by-Control (QbC), which serves to address operating problems resulting from process 

disturbances and uncertainties as well as to provide more robustness and efficiency compared to 
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QbD approaches [1].  The benefits of the QbC approach are in part attributable to the active control 

approaches applied, with the proof-of-concept studies include the continuous tableting process [1, 

33], the dry granulation process [34, 35], the drop-on-demand additive manufacturing process [36, 

37] and the continuous crystallization process [38, 39].  

 

A number of common control strategies (e.g. PID, MPC, feedforward, feedback) have been 

investigated in continuous pharmaceutical manufacturing under the guidance of QbD and QbC, 

but the most suitable and robust control system design has not yet been thoroughly developed [3, 

40, 41]. The continuous direct compaction process has seen the most case studies investigating the 

process control strategies. For instance, Singh et al indicated that a hybrid MPC-PID control 

strategy with the API composition measurement using NIR was able to control the API 

composition better than a base level PID control scheme [40]. Another example is a study in which 

the coupled feedforward/feedback control with the bulk density measurement by using NIR was 

shown to reduce variations in CQAs [42]. However, the application of a mass flow sensor for the 

plant-wide control system has not been reported due to limited PAT tools for mass flow monitoring. 

Given that the powder flow rate is a disturbance variable to the downstream unit operations (the 

blender and the tablet press) and can impact CQAs (e.g. API composition) and CPPs (e.g. hopper 

level) in continuous manufacturing, this study will focus on the application of mass flow 

measurement to enhance control robustness and performance in a direct compression process. 

 

3.2 Process Description 

 

A direct compression line consists of three types of unit operations : Loss-in-weight (LIW) feeders, 

a blender, and a tablet press as shown in Figure 3.1. Loss-in-weight feeders are devices in which 

powder is fed from a hopper into a barrel which contains a rotating screw element. The entire 

device is set on a load cell and the difference in load cell weight measurements over a short time 

interval is used to compute an estimate of the mass flow. The computed flow is compared to the 

set point value and the screw rpm adjusted using a suitable control strategy to minimize the 

difference. The API and excipients are dispensed at target flow rates from respective LIW feeders 

and fed into a blender. In the blender, a rotating paddle causes mixing of the powders to a degree 
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sufficient to meet composition variation targets.  Upon exiting the blender,  the blend is transferred 

by gravity flow to the tablet press. At the exit of the blender, the mass flow sensor (e.g. ECVT) 

and the API concentration sensor (e.g. NIR) are used to measure the flow and composition values 

in real time as shown in Figure 3.1 (blue line). The blend flows into the hopper associated with the 

tablet press,  then into the feed frame which next pushes the blend into the individual dies of the 

tablet press. Once the blend fills the die,  the upper and lower punches compress the blend to form 

tablets, which are finally ejected by lower punches and collected at the end of the process as shown 

in Figure 3.1 (red dash line). 

 

 

 

Figure 3.1 Process description of a direct compaction line 

 

 

 

3.2.1 Models for Unit Operations 

 

LIW Feeders 

 

There are two available models for LIW feeders. One is a first order plus time delay  (FOPTD) 

model as below. 
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𝜏
𝑑𝑦(𝑡)

𝑑𝑡
= −𝑦(𝑡) + 𝐾 𝑢(𝑡 − 𝜃)   Eq. 3.1 

𝑌(𝑠)

𝑈(𝑠)
=

𝐾

𝜏𝑠+1
𝑒−𝜃𝑠     Eq. 3.2  

 

where τ is the time constant, K is the process gain and θ is the time delay. Eq 3.2 is the Laplace 

transform of Eq 3.2. The other model is the feed factor model [43], which is better to capture 

process dynamics considering that the screw rotation speed has to vary according to the varying 

powder weight in the hopper and the effective bulk density of powders. The feed factor model is 

represented as below. 

 

𝐹 = 𝑓𝑓(𝑡) 𝜔𝑠𝑐𝑟𝑒𝑤(𝑡)      Eq. 3.3 

𝑓𝑓(𝑡) = 𝜌𝑒𝑓𝑓(𝑡)𝑉𝑠𝑐𝑟𝑒𝑤𝑝𝑖𝑡𝑐ℎ    Eq. 3.4 

𝜌𝑒𝑓𝑓(𝑡) = 𝜌𝑠𝑎𝑡 + 𝑒
−𝜎𝑣(𝑡)

𝛽 (𝜌𝑖𝑛𝑖 − 𝜌𝑠𝑎𝑡)  Eq. 3.5 

𝜎𝑣(𝑡) =
𝑚(𝑡)𝑔

𝐴𝑓𝑒𝑒𝑑𝑒𝑟
+ cos(2𝜋𝜔𝑖𝑚𝑝𝑒𝑙𝑙𝑒𝑟𝑡)

𝑀𝑏𝑙𝑎𝑑𝑒𝑅𝑏𝑙𝑎𝑑𝑒𝜔𝑖𝑚𝑝𝑒𝑙𝑙𝑒𝑟
2

𝐴𝑠𝑐𝑟𝑒𝑤𝑝𝑜𝑟𝑡
  Eq. 3.6 

𝜔𝑖𝑚𝑝𝑒𝑙𝑙𝑒𝑟(𝑡) = 𝛼𝜔𝑠𝑐𝑟𝑒𝑤(𝑡)    Eq. 3.7 

𝑑𝑚(𝑡)

𝑑𝑡
= −𝐹     Eq. 3.8 

 

where F is flowrate at the outlet of the feeder, ωscrew and ωimpeller are the feeder screw speed and 

impeller speed respectively, ff(t) is feed factor, ρeffective is the effective density, Vscrewpitch is the 

volume of the screw pitch, ρsat is the saturated density, ρini is the initial density, σV is the vertical 

stress, β is the density constant, Mblade and Rblade are the mass and radius of the impeller blade, 

Afeeder and Ascrewport are the area of the feeder and the area of the port where screws enter the bowl, 

g is the gravity constant, m(t) is the powder weight in the feeder hopper and α is the impeller ratio 

between the impeller speed and the screw speed.  

 

Blender 

 

The blender is described by the two-dimensional (2D) compartment model [44, 45] which includes 

the axial and the radial direction. Each compartment is equally sized and assumed to be wel1 mixed. 

The powder holdups of both the API and the excipient in each compartment is shown as below. 
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𝑑𝑚𝑖,𝑗

𝑑𝑡
= 𝐹𝑓(𝑚𝑖−1,𝑗 − 𝑚𝑖,𝑗) + 𝐹𝑏(𝑚𝑖+1,𝑗 − 𝑚𝑖,𝑗) + 𝐹𝑟(𝑚𝑖,𝑗−1 − 2𝑚𝑖,𝑗 + 𝑚𝑖,𝑗+1) Eq. 3.9 

𝐹𝑓  =  𝑎𝜔𝑏𝑙𝑒𝑛𝑑𝑒𝑟  +  𝑏     Eq. 3.10 

𝐹𝑏  =  𝑐𝜔𝑏𝑙𝑒𝑛𝑑𝑒𝑟  +  𝑑     Eq. 3.11 

𝐹𝑟  =  𝑒𝜔𝑏𝑙𝑒𝑛𝑑𝑒𝑟       Eq. 3.12 

 

where mi,j is the mass hold up in the compartment, i and j are the indices of the compartment in 

the axial and radial directions respectively. Ff, Fb and Fr are the forward, backward, and radial 

fluxes respectively, ωblender is the blender rotation speed, and a,b,c,d and e are flux parameters. The 

blend flow at the exit of the blender is mainly determined by the powder holdups of the last 

compartments in the axial direction and the equations are represented as below. 

 

𝐹𝑏𝑙𝑒𝑛𝑑𝑒𝑟 =  ∑ 𝐹𝑓,𝐴𝑃𝐼 𝑚𝐴𝑃𝐼,𝑖=𝑛𝑎,𝑗 + ∑ 𝐹𝑓,𝐸𝑥𝑐 𝑚𝐸𝑥𝑐,𝑖=𝑛𝑎,𝑗
𝑛𝑟
𝑗=1

𝑛𝑟
𝑗=1   Eq. 3.13 

𝐶𝐴𝑃𝐼 =
∑ 𝐹𝑓,𝐴𝑃𝐼 𝑚𝐴𝑃𝐼,𝑖=𝑛𝑎,𝑗

𝑛𝑟
𝑗=1

𝐹𝑏𝑙𝑒𝑛𝑑𝑒𝑟
     Eq. 3.14 

𝑅𝑆𝐷𝐴𝑃𝐼 =

√ 1

𝑛𝑟−1
∑ (

𝐹𝑓,𝐴𝑃𝐼 𝑚𝐴𝑃𝐼,𝑖=𝑛𝑎,𝑗

𝐹𝑓,𝐴𝑃𝐼 𝑚𝐴𝑃𝐼,𝑖=𝑛𝑎,𝑗+𝐹𝑓,𝐸𝑥𝑐 𝑚𝐸𝑥𝑐,𝑖=𝑛𝑎,𝑗
−𝐶𝐴𝑃𝐼)

2
𝑛𝑟
𝑗=1

𝐶𝐴𝑃𝐼
   Eq. 3.15 

 

where Fblender is the powder flow rate at the exit of the blender, nr and na are the number of the 

compartments in the radial and the axial direction respectively. CAPI is the mean API composition 

of the blend. RSDAPI is the relative standard deviation of the API used to quantify blend 

homogeneity. 

 

Tablet Press 

 

Tablet weight is determined by the amount of powders filling the die, and the variations of tablet 

weight may result from variations in the powder bulk density and die filling time as shown below. 

 

𝑊 =
𝜋𝐷2𝐻𝑓𝑖𝑙𝑙

4
𝜌𝑏𝑢𝑙𝑘(1 − 𝑐𝜔𝑇)    Eq. 3.16 

𝐹𝑡𝑎𝑏𝑙𝑒𝑡 = 𝑊𝜔𝑇𝑁𝑠𝑡𝑎𝑡𝑖𝑜𝑛     Eq. 3.17 
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𝑑𝐻ℎ𝑜𝑝𝑝𝑒𝑟

𝑑𝑡
=

𝐹𝑏𝑙𝑒𝑛𝑑𝑒𝑟−𝐹𝑡𝑎𝑏𝑙𝑒𝑡

𝜌𝑏𝑢𝑙𝑘𝐴ℎ𝑜𝑝𝑝𝑒𝑟
     Eq. 3.18 

 

where W is the tablet weight, D is the diameter of the die, Hfill is the filling depth (or called dosing 

position), ρbulk is the powder bulk density, c is an efficiency parameter of powder flowing into the 

dies from the feed frame, and ωT is the turret speed. Ftablet is the production rate of tablets and 

Nstation is the number of stations. The hopper level of the tablet press is determined by the inlet 

mass flow rate and the outlet mass flow rate, which are the flow rate at the exit of the blender and 

the production rate of tablets respectively. 

 

The Kawakita model [46] is employed to describe the relationship between the main compression 

force and the relative density as follows:  

𝐶𝐹 =
𝜋𝐷2/4

𝑎𝑏

1

[
1

1−𝜌𝑐𝑟/𝜌𝑟
−

1

𝑎
]
     Eq. 3.19 

𝜌𝑟 =
𝑊

𝜋𝐷2𝐻𝑚𝑎𝑖𝑛
4

𝜌𝑡𝑟𝑢𝑒

      Eq. 3.20 

 

where CF is the main compression force, the parameter a is the maximum degree of compression, 

and the parameter b is the reciprocal of the pressure applied to the maximum degree of compression. 

ρr is the tablet relative density, which is the ratio of the tablet bulk density to the powder true 

density. ρcr is the critical relative density. Hmain is the main compression thickness. For the powder 

blend, both the powder bulk density (ρbulk) and the powder true density (ρture) are represented by 

the linear equations below.  

 

𝜌𝑏𝑢𝑙𝑘(𝑡) = 𝐶𝐴𝑃𝐼𝜌𝑏𝑢𝑙𝑘,𝐴𝑃𝐼(𝑡 − θ ) + (1 − 𝐶𝐴𝑃𝐼)𝜌𝑏𝑢𝑙𝑘,𝐸𝑥𝑐(𝑡 − θ )   Eq. 3.21 

𝜌𝑡𝑟𝑢𝑒 (𝑡) = 𝐶𝐴𝑃𝐼𝜌𝑡𝑟𝑢𝑒,𝐴𝑃𝐼(𝑡 − θ ) + (1 − 𝐶𝐴𝑃𝐼)𝜌𝑡𝑟𝑢𝑒,𝐸𝑥𝑐(𝑡 − θ )   Eq. 3.22 

 

where θ is time delay, which is assumed to be powder weight in the hopper divided by the tablet 

production rate. The detailed representation of flow sheet model is shown in Figure 3.2. 
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Figure 3.2 Detailed representation of flowsheet model for a direct compaction line 

 

3.2.2 Hierarchical Three-Level Control Structures 

 

According to the ISA-95 Enterprise-Control-System Integration Standard,  the hierarchical three-

level control structure is emphasized in the modern control system implementation with the levels 

classified according to their control objectives and can be represented by Figure 3.3(cited from 

[1]). The level 0 control technique is equipment based control, in which the control objectives are 

focused on the operation of the equipment itself. Simple PID control is generally implemented via 

a programmable logic control (PLC) panel in the equipment provided by the equipment vendor, 

and thus the CPPs can be directly manipulated and maintained within nominal operating conditions. 

For instance, the PLC in LIW feeders can deliver powder flow at the set point by adjusting the 

screw rotation speed, and the PLC in the blender can make the paddle rotate at a certain speed by 

adjusting the motor current. 
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The level 1 control is PAT based property feedback control, specifically, the measurements from 

PAT tools are used to control CQAs via suitable control logic. All the sensor data and the 

equipment data are collected in the Supervisory Control And Data Acquisition (SCADA) platform 

via OPC servers, and thus cascaded Single-Input Single Output (SISO) loops with PID controllers 

in the distributed control system (DCS) can be based on those measurements to supervise the level 

0 PLC controllers. For example, the API composition at the exit of the blender can be adjusted by 

means of the control commands that the DCS sends to the PLC of the API feeder or the excipient 

feeder. 

 

The level 2 control is model-based and optimization-based control of the entire production line. 

Mathematical models enable the DCS to validate the process measurements, to detect exceptional 

events and to predict the effects of variations in the CPPs on the CQAs. When the multivariable 

process is complex, the decoupled SISO control loops in level 1 could fail due to the strong 

interaction of process variables. Therefore, the advanced control strategy like model predictive 

control (MPC), which can deliver Multiple-Input Multiple-Output (MIMO) functionality, is 

needed to enhance process stability for plant-wide process control purposes.  
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Figure 3.3 The hierarchical process control structure for a continuous direct compaction line [1] 

 

MPC is based on iterative finite-horizon optimization of the process model. The objective function 

can be expressed as Eq. 3.23, in which the first term represents the weighted sum of squared errors 

of controlled variables (y) and the second term represents the weighted sum of controller 

adjustments (Δu).  

 

min
Δ𝑢𝑗

𝐽 = ∑ ∑ 𝑊𝑗
𝑦

[𝑦𝑗
𝑠𝑝(𝑘 + 𝑖) − 𝑦𝑗(𝑘 + 𝑖)]2𝑛𝑦

𝑗=1
+ ∑ ∑ 𝑊𝑗

Δu[Δ𝑢𝑗(𝑘 + 𝑖 − 1)]2𝑛𝑢
𝑗=1

𝑁𝐶
𝑖=1

𝑁𝑝

𝑖=1
    Eq. 3.23 

 

where k is the current sampling interval, (k+i) is the future sampling interval, Np is the prediction 

horizon, Nc
 is the control horizon, ny is the number of controlled variables, nu is the number of 

manipulated variables, Wj
y is the weight for output yj , Wj

Δu
 is the rate weight, and yj

sp is the set 

point of the controlled variable. The objective of MPC is demonstrated more clearly in Figure 3.4, 

which is to find the optimal first move for each manipulated variable during each iteration.  
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Figure 3.4 Illustration of model predictive control 

 

3.3 Dynamic Flowsheet Modeling 

 

Dynamic flowsheet models can serve as a digital surrogate for a real manufacturing process, so 

that evaluation of control strategies and the risk analysis can be done before the actual 

implementation of the physical process. The flowsheet model of the direct compaction process in 

MATLAB Simulink is shown in Figure 3.5, where blue lines represent the direction of materials 

flow and red lines represent the direction of measurement flow and control commands. The 

dynamic model equations in section 3.2 are written in MATLAB S-function files and thus can be 

executed in the Simulink environment.   
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Figure 3.5 MATLAB Simulink flowsheet model of a direct compaction process 

 

The hierarchical control structure is implemented in the DCS, namely ‘L1/L2 Supervisory Control’ 

subsystem in Figure 3.5, where all the process measurements are acquired. The detail of the ‘L1/L2 

Supervisory Control’ is shown in Figure 3.6. The subscript m means measurement and the 

subscript sp means the setpoint. In this study, the 6 inputs by 6 outputs control structure is 

investigated with the associate variables listed in Table 3.1. The selector in the DCS makes the 

control structure flexible. Hence, it is possible to customize the supervisory control framework by 

letting some variables be controlled by level 1 PID and letting the other variables be controlled by 

level 2 MPC or nonlinear MPC (NMPC). Three supervisory-level control schemes are also listed 

in Table 3.1, including scheme 1, which uses only PID; scheme 2, which uses only MPC; and 

scheme 3, which uses only NMPC. It should be noted that the level 0 PLC or PID is absolutely 

required in all cases. 

 

When MATLAB PID Tuner Toolbox is used to tune the PID controllers, the tuning parameters are 

automatically calculated by adjusting response time and the transient behavior (robust or 

aggressive). The difference in the performance observed between MPC and NMPC is principally 
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in the model used in the control algorithm. The linear time-invariant (LTI) state-space model is 

commonly applied in MPC and is represented as below. 

 

𝑑𝑥

𝑑𝑡
= 𝐴𝑥 + 𝐵𝑢     Eq. 3.24 

𝑦 = 𝐶𝑥 + 𝐷𝑢     Eq. 3.25 

 

where x is the vector of state variables, u is the vector of model inputs, y is the vector of model 

outputs, and A, B, C, and D are constant matrices of appropriate dimensions. The MATLAB Linear 

Analysis Toolbox is used to obtain a linear approximation of the nonlinear plant model at a 

specified operating point. Then, MATLAB Model Predictive Control Toolbox provides an 

environment to manually enter tuning parameters including prediction horizon, control horizon, 

sampling time, and weights. By contrast, it is more challenging to design the NMPC controller 

because no NMPC templates or toolbox are provided in Simulink. Therefore, an S-function which 

can call other user-defined functions (.m files) is built, enabling nonlinear models mentioned in 

section 3.2.1 to be included in the ‘fmincon’ solver to optimize the objective function as Eq. 3.23. 

 

 

 

Figure 3.6 Control structure in the supervisory level 1 and level 2 control system 
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Table 3.1 Process variables and supervisory control schemes 

Critical 

process points 

Model output (y) 

Controlled variables 

Model input (u) 

Manipulated variables 

Supervisory 

scheme1 

Supervisory 

scheme2 

Supervisory 

scheme3 

 

Blender API Composition 

(y1) 

API flow rate (u1) 

 

PID + ratio MPC NMPC 

 Powder flow (y2) Excipient flow (u2) 

 

PID MPC NMPC 

 API RSD (y3) Blender rotation speed 

(u3) 

 

PID MPC NMPC 

Tablet press Tablet weight (y4) Dosing position (u4) 

 

PID MPC NMPC 

 Main compression 

force (y5) 

 

Main thickness (u5) PID MPC NMPC 

 Production rate 

(y6) 

Turret speed (u6) PID MPC NMPC 

 

 

3.4 Simulation Results 

 

3.4.1 Control Performance under Risk Scenarios 

 

When API and excipients are delivered by LIW feeders, the weight measurement is crucial for the 

L0 PLC to adjust the screw rotation speed to maintain the desired mass flow. The sudden change 

of the powder weight (e.g. refilling) and unexpected events (e.g. powder ratholing, bridging, 

agglomeration) can cause variations in the mass flow rate. Moreover, the vibration in the feeder 

caused by the screw rotation can disturb the load cell measurement frequently and result in the 

calibration error of the LIW feeder itself.  

 

Three control loops are considered: (1) level 0 open loop, (2) level 1 PID closed-loop only using 

the API composition measurement at the exit of the blender, which is the most common case 

reported in the literature [2, 47, 48], and (3) level 1 PID closed loop with the measurements of both 

the API composition and the powder flowrate at the exit of the blender, which is the case to show 
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the benefits of mass flow sensing. The only distinction between the second case and the third case 

is the existence of blend flow control, which means that the tablet press is controlled by the same 

level 1 PID controllers in both cases. Without loss of generality,  a calibration error of -20% is 

introduced in the excipient LIW feeder at t = 300 sec to represent the risk scenario as shown in 

Figure 3.7. Some metrics are used to quantify the control performance, including integral of time 

absolute error (ITAE), out-of-specification (OOS) time, duration-to-reject (D2R), and magnitude-

to-product (M2P). To be clear, OOS time means the period during which the CQA is not within 

the tolerance limits. D2R is the length of time that the process requires to smooth out the process 

disturbance or to reach a new set point for the CQA. M2P describes the maximum deviation in the 

CQAs from the target setpoint. The lowest values of the above indicators are preferred. The 

evaluations of control performance in terms of these metrics and based on the API composition 

and the tablet weight are listed in Table 3.2.  

 

Under the risk scenario of the calibration error in the feeder, the level 0 open control loop fails to 

maintain the API composition, the powder flow rate, and the tablet weight at the target values. In 

addition, the tablet press hopper level drops significantly from 50% to 23.2%, which may result in 

the potential risk of a shortage of powders. By contrast, both level 1 closed control loops can 

correct the API composition back to the ± 5% tolerance limit and maintain the tablet weight within 

0.11% error. Moreover, the closed loop with mass flow sensing exhibits better control performance 

than the closed loop without mass flow sensing, given M2P of API composition (5.9% < 6.1%) 

and DR2 of API composition (211 sec < 245 sec ). When the API composition is beyond 5% 

control limits, the OOS materials/products must be diverted. In other words, PID with mass flow 

sensing will waste approximate 950 tablets over the OOS time of 72 seconds (blue line from t = 

337 sec to 445 sec), saving more materials compared to PID without mass flow sensing which 

produces 1350 wasted tablets in the OOS time of 102 seconds (brown line from t = 380 sec to t = 

482 sec).  

 

It should be noted that the change of API composition at the exit of the blender does not affect the 

tablet weight immediately because of the residence time of the material in the tablet press hopper 

This is the reason that the tablet weight is affected only after t = 440 sec rather than beginning at t 

= 300 sec in all cases. The residence time is approximately equal to the powder weight in the tablet 



 

 

46 

press hopper divided by the production rate of tablets. While D2R and M2P of the tablet weight 

are almost the same in both closed-loop cases,  smaller ITAE of the tablet weight in the case with 

mass flow sensing denoted fewer variations in the tablet weight. From the viewpoint of hopper 

level, PID with mass flow sensing keeps the blend flow rate within 5% error and the hopper level 

within 3.3%, which is obviously better than obtained with PID without mass flow sensing. 

Therefore, the additional PAT tool for mass flow sensing  (e.g. ECVT sensor) can make the control 

strategy more robust under these risk scenarios. 

 

 

Figure 3.7 Control performance when the calibration error occurs to the LIW feeders 
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Table 3.2 Performance evaluation based on API composition and tablet weight 

CQA Performance 

indicators 

L0 open loop L1 closed loop 

without flow sensing 

L1 closed loop 

with flow sensing 

API Comp   OOS time(sec) Fail 102 72  
D2R (sec) Fail 245 211  

  M2P (%) 22 6.1 5.9 

Tablet weight   D2R (sec) Fail 270 270 

  M2P(%) 

 

0.0024 0.11 0.11 

  ITAE (sec) 809.3 46.4 44.2 

 

 

3.4.2 Disturbance Rejection 

 

The capability of disturbance rejection plays a key role in maintaining operations within 

specification, especially when the system becomes more complex and nonlinear. The ability of 

level 1 closed-loop control with mass flow sensing for disturbance rejection is shown in Figure 

3.8. A sinusoidal disturbance of  0.6 sin( πt / 300) kg/hr is added to the powder flow rate at the exit 

of the blender. The powder flow rate violates the 5% operation limit in the level 0 open-loop 

control scenario. However, when the level 1 closed-loop control is applied, the disturbances are 

suppressed and the powder flow rate is maintained within 2.2%. In addition, the controlled powder 

flowrate reduces the disturbances in the tablet press hopper level as well, which can potentially 

lower the disturbances in the properties of powders entering the feed frame. 
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Figure 3.8 Disturbance rejection performance for the closed-loop control with mass flow sensing 

 

 

The disturbances in tablet weight are in part attributed to the variations in the turret speed, which 

affects the time of die filling. The comparison of two cases of level 1 closed loop control for 

adjusting the turret is shown in Figure 3.9. A sinusoidal disturbance of 0.6 sin( πt / 300) kg/hr is 

again imposed on the powder flow rate at the exit of the blender as a disturbance in the hopper 

level and the set point of the tablet weight is 210 mg in both cases. One case is the level-controlled 

closed-loop (orange line), which is the most common control strategy employed in continuous 

direct compression tableting lines in the literature. To maintain the hopper level at the setpoint 

value 50%, the required frequent changes in the turret speed can lead to variations in the tablet 

weight ( -0.070 ~ +0.080 mg). The other case is the rate-controlled closed-loop (blue line), where 

the turret speed is altered according to the mass flow measurement of tablets. As the tablet 

production rate is controlled at 10 kg/hr, less frequent adjustment of the turret speed is required. 

At the expense of larger variations in the hopper level, the variations in the tablet weight are 

mitigated (-0.058 ~ 0.043 mg) compared to the level-controlled case. 
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Figure 3.9 Comparison of control performance when the turret speed is adjusted depending on different variables 

 

 

Following the comparison of the rate-controlled closed loop and the level-controlled closed loop, 

an interaction analysis for the MIMO system can be further investigated using the relative gain 

array (RGA) analysis represented by equations below. 

 

𝐺(𝑠) = 𝐶(𝑠𝐼 − 𝐴)−1𝐵 + 𝐷    Eq. 3.26 

Λ =  G(s = 0)  ⊙ (G−1(s = 0))𝑇    Eq. 3.27 

 

where G(s) is the system transfer function matrix. A,B,C, and D are the same matrices in the state-

space model in Eq. 3.24 and Eq. 3.25. I is identity matrix. Λ  is the RGA. G(s=0) is the steady-

state gain matrix. RGA is defined as the ratio of an open loop gain to the same loop gain when the 

other loops are under perfect control. When the RGA element (i,j) in the ith  row and the jth column 

is close to one, it means that the ith output and the jth input is the optimal control-loop pairing. In 

other words, values in RGA deviating from one represents an unstable system and high process 

interaction. Given 6 inputs and 6 outputs in the system, the RGA of 6x6 dimension for the rate-

controlled closed loop and the level-controlled closed loop are listed in Table 3.3 and Table 3.4 

respectively. 
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Table 3.3 RGA of the process when the tablet production rate is a controlled variable (y6) 

 u1 

API flow 

u2 

excipient 

flow 

u3 

blender 

rpm 

u4 

dosing 

position 

u5 

main  

thickness 

u6 

turret 

speed 

y1  API Comp 0.900 0.100 0.000 0.000 0.000 0.000 

y2  powder flow 0.100 0.900 0.000 0.000 0.000 0.000 

y3  API RSD 0.000 0.000 1.000 0.000 0.000 0.000 

y4  tablet weight 0.000 0.000 0.000 0.982 0.000 0.018 

y5  main force 0.000 0.000 0.000 0.000 1.000 0.000 

y6  production rate 0.000 0.000 0.000 0.018 0.000 0.982 

 

 

Table 3.4 RGA of the process when the hopper level is a controlled variable (y6) 

 u1 

API flow 

u2 

excipient 

flow 

u3 

blender 

rpm 

u4 

dosing 

position 

u5 

main  

thickness 

u6 

turret 

speed 

y1  API Comp 3.497 -2.553 0.000 0.092 0.000 -0.036 

y2  powder flow -0.072 0.178 0.000 0.016 0.000 0.877 

y3  API RSD -2.426 3.374 0.001 0.001 0.000 0.049 

y4  tablet weight 0.000 0.000 0.000 0.891 0.000 0.109 

y5  main force 0.000 0.000 0.000 0.000 1.000 0.000 

y6  hopper level 3.470 -2.533 0.000 0.091 0.000 -0.036 

 

 

When the rate-controlled closed loop is applied, the RGA in Table 3.3 indicates that the diagonal 

pairing should be used because these six diagonal values are close to 1, suggesting that this MIMO 

system can be decoupled into multiple SISO loops. By contrast, the RGA in Table 3.4 shows higher 

process interaction (off-diagonal values in the range of 2.4 to 3.5) when the level-controlled closed 

loop is used. Therefore, controlling the mass flow rate of tablets is more beneficial to the process 

stability than controlling the hopper level. 

 

3.4.3 Intelligent Diverting Control 

 

Under FDA guidance, diverting out-of-specification materials/tablets is a required step in a 

continuous process to maintain the quality of final products. The concept of residence time 



 

 

51 

distribution (RTD) has been proposed as an estimate of the time required for materials advanced 

into downstream unit operations to be diverted. It has been proposed that the RTD-based control 

approach is more efficient than the fixed window approach [49].  

 

A new concept, intelligent diverting control (IDC), is proposed here to increase the robustness of 

the diverting procedure as shown in Figure 3.10. Since it is better to control the turret speed based 

on the production rate measurement rather than the hopper level as discussed in section 3.4.2, it 

should be noted that the production rate measurement is missing when the diverting gate of the 

tablet press is on. A conventional approach is to apply the open-loop control mode to maintain the 

same value of the turret speed as shown in Figure 3.10a. By contrast, the powder flow rate is 

incorporated in the IDC concept as shown in Figure 3.10b, because the powder flow rate should 

be the most similar value with the tablet production rate for the purpose of maintaining the process 

in a state of control. This strategy enables the closed-loop mode to be employed during the 

diverting process.  

 

 

Figure 3.10 Diverting procedures for (a) conventional approach and (b) intelligent diverting control (IDC) 

 

The trigger will open the diverting gate when the measurement error = |ymeasurement – ysetpoint|/ ysetpoint 

is larger than tolerance limits, where y is the controlled CQA (e.g. API composition or tablet 

weight). To investigate the effectiveness of IDC, a disturbance in the bulk density is introduced to 

the powder in the feed frame at t = 300 sec and the tolerance limits for the tablet weight is set to 
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5% (210 mg ± 10.5 mg) as shown in Figure 3.11. The level 1 PID control is used in both cases 

including the IDC framework and the conventional method. As evident in Figure 3.11d the 

diverting gate is on when the 5% tolerance limit is violated from t = 322 sec to t = 365 sec. The 

rate measurement used in the controller for the turret speed is shown in Figure 3.11c, suggesting 

that the reading in the IDC framework is not affected by the diverting process with the aid of 

powder flow sensing but the reading is missing in the conventional approach. When the diverting 

process ends and the turret speed is manipulated in the closed-loop mode for both cases, the 

conventional approach suffers from the missing flow measurement and increases the turret speed 

significantly to compensate for the measurement error as shown in Figure 3.11a, which further 

causes a large deviation in the hopper level as shown in Figure 3.11b. By contrast, the IDC 

framework demonstrates improved robustness over the conventional method by resulting in less 

deviation in the hopper level. 

 

 

Figure 3.11 Comparison of robustness in IDC and in the conventional approach 
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3.4.4 Advanced Control Strategies (Level 2 MPC and NMPC) 

 

Higher-level advanced control strategies (e.g. level 2 MPC or level 2 NMPC) can be developed 

when more measurements (e.g. mass flow sensing) are available and included. More real-time data 

are beneficial to process understanding and the development of mathematical models, further 

improving control performance by using active control response to predicted errors. To investigate 

advanced control strategies, step changes of the API composition and the tablet weight are 

introduced into three kinds of control schemes as shown in Figure 3.12, including level 1 cascaded 

PID, level 2 MPC, and level 2 NMPC. The evaluations of control performance are listed in Table 

3.5. 

 

Given the rise time and the fall time, defined as the time required for the response to rise or fall 

from 10% to 90% of the final value, NMPC demonstrates the most efficient capability of setpoint 

tracking. Moreover, it is observed that larger step change in tablet weight (from 210 mg to 140 mg) 

can be better handled in NMPC than in MPC (fall time 39 sec < 47 sec), although there is almost 

no difference of rise time (both 38 sec) in smaller step change (from 175 mg to 210 mg) between 

MPC and NMPC, as evident from Figure 3.12d. This can be attributed to the fact that the control 

performance deteriorates as the tablet weight deviates from the nominal value (210 mg) and the 

plant-model mismatch increases in MPC. 

 

While the powder flow rate and API root mean squared deviation (RSD) can be controlled at their 

set points by three control schemes as shown in Figure 3.12b and Figure 3.12c, both MPC and 

NMPC show better control of the main compression force and the production rate compared to 

cascaded PID as shown in Figure 3.12e and Figure 3.12f. That occurs because the optimization-

based level 2 control can determine the appropriate moves for every manipulated variable 

simultaneously and thus can mitigate the effects of process interactions. Based on M2P and ITAE 

values, it can be shown that NMPC can reject the disturbances in the main compression force more 

effectively than MPC, but MPC has better control performance on maintaining production rates 

compared to NMPC. The results can be explained by the fact that different weights (Wj
y and Wj

Δu) 

are chosen in the objective function in Eq. 3.23 as well as the fact that NMPC tracks the setpoint 

of tablet weight more aggressively than MPC. Overall, advanced level 2 control schemes can 
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provide improved setpoint tracking and disturbance rejection than level 1 PID does, which 

supports the idea that more process measurements are required to understand the process and 

implement effective control structures. 

 

 

Figure 3.12 Control performance for Level 1 PID, Level 2 MPC and Level 2 NMPC 
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Table 3.5 Performance evaluations of different control schemes (PID, MPC and NMPC) 

Variables Performance indicators level 1 PID level 2 MPC level 2 NMPC 

API Comp Rise time of  

large step change (sec)  

86 58 26 

 
Fall time of  

small step change (sec)  

79 38 13 

Tablet weight Fall time of  

large step change (sec)  

55 47 39 

 
Rise time of  

small step change (sec)  

63 38 38 

Main force ITAE (sec)  37978 8211 5199 
 

M2P (%)  46.5 15.9 7.6 

Production rate ITAE (sec)  20093 6017 7289 
 

M2P (%)  19.6 8.5 14.0 

 

3.4.5 Effects of Sampling Time and Measurement Precision 

 

Given that different PAT tools for mass flow sensing (e.g. ECVT sensor, X-ray sensor, and load 

cell) can have different rates of data acquisition and measurement precision, it is important to know 

the effects of data sampling. Generally, too large a sampling time can cause aliasing and too small 

a sampling time can impose burdens on data storage and computing time. To deal with the noise 

in the raw data, the moving average filter is a common tool to improve measurement precision.  

 

In the simulated process,  a setpoint change (from 10 kg/hr to 15 kg/hr) is introduced in the powder 

flowrate at t = 200 sec, and then another setpoint change (from 15 kg/hr to 10 kg/hr) is introduced 

at t =600 sec to return the powder flow rate back to the nominal value. Setpoint tracking of powder 

flow causes variations in the API composition. Therefore, ITAE and M2P of the API composition 

are used to evaluate the effects of sampling time of mass flow sensing on three different control 

schemes, as shown in Figure 3.13. It should be noted that ITAE and M2P here are normalized so 

we can demonstrate the effects of sampling time more clearly. The sampling times for PID, MPC, 

and NMPC are fixed at 1 sec, 3 sec, and 3 sec respectively. As the sampling time of powder flow 

is increased, the observations and discussions for three control schemes are described as follows:  
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(a) For PID, while M2P remains almost the same, ITAE is increasing slightly with 1.04 times 

variation produced when sampling time is 6 sec. The sampling time does not affect the control 

performance of the  PID controller very much.  Consequently it is not necessary to reduce 

sampling time as much as possible, which is supported by the observation that there is no 

improvement when sampling time of sensing (0.5 sec) is less than sampling time of PID 

controller (1 sec) 

(b) For MPC, both M2P and ITAE are suddenly increasing when the sampling time is much larger 

than the sampling time of MPC (3sec), which is supported by 1.80 times ITAE and 1.48 times 

M2P when sampling time of mass flow sensing is 5sec. It should be noted that the control 

performance of MPC does not significantly deteriorate when the sampling time of flow sensing 

(4 sec) is a little larger than the sampling time of MPC (3sec). 

(c) For NMPC, both M2P and ITAE are immune to the effects of sampling time. The reason for 

the immunity to sampling time in NMPC is that there is no model-plant mismatch in the 

simulation. 

 

 

Figure 3.13 Effects of sampling time on different control schemes including (a) level 1 cascaded PID, (b) level 2 

MPC and (c) level 2 NMPC 
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To investigate the effects of the average window size, a similar setting is used. In the simulated 

process,  a setpoint change (from 10 kg/hr to 15 kg/hr) is introduced in the powder flowrate at t = 

200 sec, and then another setpoint change (from 15 kg/hr to 10 kg/hr) is introduced at t =600 sec 

to return the powder flow rate back to the nominal value. In addition, random noise is introduced 

to the mass flow measurement.  The normalized ITAE and normalized M2P of the API when 

different average window sizes are used are shown in Figure 3.14. 

 

Under PID control in Figure 3.14a and MPC in Figure 3.14b, the raw noise data (frame size = 1) 

can lead to high ITAE and M2P compared to filtered data. The noise significantly deteriorates the 

control performance of MPC, as supported by the 1.8 times ITAE and 2.2 times M2P. The window 

size of 50 frames is the best choice to filter the noise data. Too large a window size can result in 

adverse effects, with MPC performance much more negatively impacted (1.35 times ITAE) when 

the window size is too large (≥300 frames) compared to PID performance(1.06 times ITAE). In 

Figure 3.14c, it can be seen that NMPC is insensitive to the average window size, which can be 

attributed to no plant-model mismatch in the simulation. 

 

 

Figure 3.14 Effects of the average window size on different control schemes including (a) level 1 cascaded PID, (b) 

level 2 MPC and (c) level 2 NMPC 
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3.5 Conclusions 

 

Under the concept of QbC, robust active control is required to respond to risk scenarios and to 

reject disturbances in pharmaceutical manufacturing. Flowsheet modeling executed in MATLAB 

Simulink is used to investigate the applications of mass flow sensing to the plant-wide control 

system in a continuous direct compaction process, consisting of LIW feeders, a blender, and a 

tablet press. The three-level hierarchical control structure is investigated in this study, including 

equipment based level 0 PLC control, level 1 PAT based property feedback control (PID), and 

level 2 model and optimization based supervisory control (MPC and NMPC). 

 

When the level 1 PID control scheme is used to manipulate the API flowrate and the excipient 

flow rate, the closed-loop control with both the blend flow measurement and the API composition 

measurement at the exit of the blender has better control performance than the closed-loop control 

with only the API composition measurement, as supported by the OOS time, D2R, M2P, and ITAE 

of CQAs. In addition, the controlled flow rate is beneficial in significantly reducing variations in 

the hopper level, which is an important buffer inventory and can not be controlled by using only 

ratio control and the API composition measurement under risk scenarios. While it is common to 

control the hopper level by adjusting the turret speed, simulation results show that variations in the 

tablet weight can be mitigated by level 1 PID closed-loop which adjusts the turret speed depending 

on the tablet production rate instead of the hopper level. Moreover, RGA analysis also indicates 

that process interaction (value 2.4 – 3.5 in RGA) is stronger when the hopper level is one of the 

controlled variables, but the system can be approximately decoupled into several SISO pairings 

(the diagonal values are close to 1 in RGA) when the hopper level is replaced by the production 

rate. Therefore, it is a better operating strategy to monitor the hopper level rather than to directly 

control it. Under the conventional procedure of diverting out-of-specification tablets, the 

measurement of the production rate is lost when the diverting gate is open. When the powder flow 

rate is also incorporated into the control strategy for adjusting the turret speed, it is evident that the 

variations in the hopper level can be reduced. 

 

With more PAT measurements and real-time information, the mathematical models followed by 

process understating can be developed and used for prediction, further enabling high-level 
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advanced control strategies such as level 2 MPC and NMPC. In a MIMO system, model and 

optimization based level 2 control can deal with the process interaction better than level 1 PID 

because decoupled SISO systems may fail in a complex and nonlinear system. When the setpoint 

change is introduced to the API composition and the tablet weight,  both MPC and NMPC show 

the better capability of setpoint tracking and disturbance rejection in the main compression force 

and production rate. 

 

Given different techniques for mass flow sensing (ECVT sensor, X-ray sensor, and load cell), the 

effects of sampling time and measurement precision are discussed. A setpoint change of powder 

flow is introduced and the ITAE of API composition is used to evaluate the effects of mass flow 

sampling. Increased sampling time and inappropriate window size slightly impact level 1 PID. 

However, when the sampling time of mass flow sensing is larger than the sampling time of MPC, 

the control performance deteriorates the most. It is observed that NMPC is insensitive to both 

sampling time and average window size because there is no model-plant mismatch. 

 

In conclusion, all of the simulation results indicate that mass flow measurements (powder flow 

and tablet production rate) make the control strategy more robust in handling risk scenarios, 

rejecting disturbances, providing a better candidate in RGA for decoupled pairings, and reducing 

variations during the diverting process. Higher-level advanced control strategies can also be 

implemented in a plant-wide MIMO system such as a direct compaction line when mass flow rates 

are measured. 
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 EXPERIMENTAL IMPLEMENTATION 

4.1 Continuous Direct Compaction Line 

 

As discussed in Section 3.2 (Process Description), the continuous direct compaction line of the 

pilot plant at Purdue University consists of two Schenck AccuRate PureFeed®  AP-300 loss-in-

weight feeders (LIW) (Figure 4.1a), one each for API and excipient. The API and excipients are 

dispensed at target flow rates from respective LIW feeders and fed into Gericke GCM-250 

continuous blender (Figure 4.1b). Upon exiting the blender,  the blend is transferred by gravity 

flow to the commercial-scale tablet press Natoli NP-400, which has 22 stations with concave-head 

punches (Figure 4.1d). Inside the chamber of the tablet press, the NIR probes of Innopharma 

Multieye2 spectrophotometer can be located both in the hopper and the feed frame to measure API 

concentration (Figure 4.1c).  

 

 

Figure 4.1 Unit operations in the direct compaction line including (a) loss-in-weight feeders, (b) continuous blender, 

(c) hopper associated with the tablet press, and (d) tablet press 
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Continuous blending is the first step in the continuous tablet manufacturing line in which API is 

mixed with excipients to meet the required API concentration and content uniformity. Given that 

it is hard to correct the API concentration in the downstream unit operations (e.g. tablet press in a 

direct compaction line, and roller compactor in a dry granulation line), the feeding-blending 

subsystem has to be properly controlled. Therefore, an experimental setup incorporating both the 

ECVT sensor (Figure 4.2b) and the NIR sensor (Figure 4.2c) was used to implement sensor 

measurements within the distributed control system (DCS) DeltaV. Upon exiting the blender, the 

blended powder flows by gravity into a concentric reducer which was connected to the 1 inch 

PTFE pipe as shown in Figure 4.2a, and passes through the ECVT sensor and by the NIR sensor. 

The mass flow measurement from an independent Mettler-Toledo ME 4001E weighing scale was 

used to provide the reference mass flow rate in these experiments. 

 

 

Figure 4.2 Experimental setup for the feeding-blending subsystem 
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4.2 Experimental Results 

 

API composition is a required measurement for any level 1 or level 2 control structure. In these 

experiments that composition is obtained using NIR spectroscopy. With the accurate API 

composition measurement, the powder flow rate control in a plant-wide system can be more robust. 

The NIR spectrum obtained was converted to a composition value by means of a partial least 

squares (PLS) regression model. Dynamic samples from the feeding-blending system (8%, 10%, 

12%, 14%, 16% API) at 10 kg/hr were used to generate the necessary spectra and to build the PLS 

model, where 8% means 0.8 kg/hr API and 9.2 kg/hr excipients and so on. The results indicate that 

the PLS model operating on the NIR measurements was able to detect the concentration difference 

between 10% API static sample and 14% API static sample, and average measurement errors over 

2 minutes were (11.8-10)/10 = 18% and (13.3-14)/14 = -5% as shown in Figure 4.3a. When the 

NIR sensor was used to measure dynamic powder flow, the API composition of a blend with 10 % 

API flowing at 10 kg/hr was predicted to be 10.98 % from t = 1:00 to t = 2:30, with the average 

error of  9.8% as shown in Figure 4.3b. However, when the API composition was increased to 14 % 

(excipient flow was decreased from 9 kg/hr to 8.6 kg/hr, and API flow was increased from 1kg/hr 

to 1.4 kg/hr), the NIR sensor failed to detect the concentration change. Even when the powder flow 

stopped at t=7:30, the API composition still approximately maintained at 10.8%. These two results 

can be attributed to fouling caused by the powder accumulated in the printed holder for the NIR 

probe as shown in Figure 4.4 
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Figure 4.3 API composition measurement when the powder is (a) static or (b) dynamic 
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Figure 4.4 NIR probe holder (a) with powder fouling and (b) without fouling 

 

 

Given some modifications are required in the NIR holder design, an experiment was conducted to 

demonstrate that the mass flow sensing can increase the control robustness before implementing 

both API composition measurement and mass flow measurement into the feedback control loop. 

When the excipient blend (MCC200 + 0.2% MgSt) was delivered at 9 kg/hr as shown in Figure 

4.5a, the blender rotation speed was adjusted to emulate some disturbances at the exit of the blender 

as shown in Figure 4.5b. When the blender rotation speed was adjusted from 200 rpm to 100 rpm 

at t = 180 sec, the powder flow rate was decreased accordingly then returned back to 9 kg/hr at t = 

250 sec as shown in Figure 4.5c. Other step changes of blender rotation speed were introduced at 

t = 300 sec and t = 420 sec, which both led to disturbances in the powder flow rate. While the LIW 

feeder of course could not capture variations in the flow rates, the ECVT sensor did measure these 

changes caused by powder holdup and residence time in the blender. The average error of the 

ECVT sensor was – 13.1%, which was computed by comparing each point relative to the weighing 

scale at the same point. 
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Figure 4.5 Flow rate monitoring in the feeding blending system including (a) excipient flow rate (b) blender rotation 

speed, and (c) flow rate at the exit of blender 

 

4.3 Conclusions  

 

To control the mass flow rate of blended powder, an accurate API composition measurement is 

required to complement the mass flow measurement for implementing level 1 or level 2 

supervisory plant-wide control. A partial least squares (PLS) regression model for the NIR 

spectroscopy-based sensor was used to predict the API composition. The results indicated that the 

NIR sensor and the PLS model can detect API composition of static samples. However, the NIR 

probe holder must be redesigned to mitigate the effects of fouling, in order to enable accurate real-

time API concentration measurements. The ECVT sensor has already been implemented in the 

exit of the blender. By adjusting the blender rotation speed to emulate disturbances in the blender, 

it is observed that the ECVT sensor can capture the flow dynamics at the exit of the blender, which 

is impossible to be measured by LIW feeders. Therefore, the mass flow measurements from the 

ECVT sensor definitely will make the control structure more robust by rejecting measured 

disturbances. 
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 FUTURE WORK 

 

In the future, the mass flow measurements of the ECVT sensor will be sent to the DCS system 

DeltaV via OPC Unified Architecture (OPCUA) server in real-time. In addition, when the reliable 

real-time API composition measurement is obtained, the comparative performance of the closed-

loop control studies with both mass flow measurements and API composition measurements and 

the one with only API composition measurements will be carried out. Moreover, the entire direct 

compaction process will be operated in integrated fashion via the Level 1 and 2  closed-loop control 

structures.  

 

More measurement redundancy is beneficial to process understanding and mathematical model 

development. The mass flow rate can be applied to estimate unmeasured variables such as blender 

holdup, which plays a key role in determining residence time and content uniformity. Hence, state 

estimation will be investigated in the future. State estimation is a useful technique for process 

monitoring, control, and real-time optimization. It not only provides estimates of unmeasured 

variables, but also filters the measured variables by using the mathematical models as optimization 

constraints. Compared to the direct measurements applied in the closed-loop control, the state 

estimates can make the controller more robust by eliminating the effects of gross errors or bias, 

both of which are very common problems arising in the use of on-line sensors. For nonlinear 

dynamic systems in continuous pharmaceutical manufacturing, moving horizon estimation (MHE) 

is a well-known strategy for constrained state estimation. The basic theory in MHE is to estimate 

the current state of the process using only the last L states and sensor measurements directly, where 

L is the horizon length. 

 

Process understanding, which relies on the measurements of material properties and real-time 

process data, is a must for developing advanced level 2 NMPC control schemes. For linear MPC, 

there exists commercial software like DeltaV which facilitates the construction of the linear state-

space model automatically by using perturbations in the input and output variables of the real plant. 

By contrast, although NMPC usually offers better control performance than MPC, plant-model 

mismatch can deteriorate the control performance of the NMPC control scheme more easily in the 
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real plant compared to MPC because of the uncertainty in the nonlinear mathematical models and 

their parameters. Therefore, the mass flow and other on-line measurements will be used to 

demonstrate on the real pilot plant how plant-model mismatch can be mitigated via real-time 

process data and as-needed updating of parameters in the  NMPC models. 
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