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ABSTRACT

Wachs, Liz Ph.D., Purdue University, August 2020. Market Acceptance of Renewable
Energy Technologies for Power Generation. Major Professor: Bernard Engel.

The perception of climate change as an emergency has provided the primary im-

petus to a transition from conventional fossil-based energy sources to renewables.

The use of renewable energy sources is essential to sustainable development, since it

is the only way that quality of life can remain high while greenhouse gas emissions

are cut. Still, at the time of writing, renewables contribute a small part of the total

primary energy use worldwide. Much research has gone into understanding barriers

to the full-scale adoption of renewable energy sources. Still, many of the tools used

have focused primarily on optimal paths, which are useful in the long-term but prob-

lematic in non-equilibrium markets. In the shorter term, behavior is thought to be

more governed by existing institutions and commitments until those frameworks can

be changed. This means that understanding people’s attitudes towards renewables is

key towards understanding how adoption will take place and how best to incentivize

such action. Particularly, decisions are made by investors, who serve as intermediaries

between what customers/public want and the existing institutions (what is possible).

Understanding their responses to the current state of affairs as well as perturbations

in the form of policy changes is important in order to effect change or make sure that

policies will work as intended.

First, the shifting demand landscape is considered, specifically in Indiana cities.

Heating is shrinking as a driver of primary energy use over time due to climate change,

while transport increases relatively. Electricity demand continues to increase, and the

potential for electrification of transport can add to this potential. This led to a focus

on the electricity sector for further work. Noticing that adoption lags public support
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led to a comparison of levelized cost of electricity and net present value metrics for 18

dominant technologies in two power markets in the US. Capacity markets and solar

renewable energy credits lead to differences between cost and net present value in

PJM, making natural gas the most attractive technology there. Noting the difference

in electricity price between the two markets also provides a caution regarding the

employment of carbon pricing in PJM, since that is an additional cost to the consumer

who is already paying twice to fossil based generation in that region, once for energy

provision and once for reliability.

Individual technologies represent only part of the question, however, since gener-

ation capacity is added to bolster existing supplies. In order to study the portfolio,

historical risk is considered along with levelized costs to identify optimal portfolios

in CAISO and PJM. Then electricity is treated as a social good, and a sustainabil-

ity profile was built for each technology balancing current equity and risks to future

generations. This allowed quantification and identification of barriers to market ac-

ceptance of renewables, but it also led to a recognition of where useful metrics are still

lacking. For example the use of land provides an important barrier to the adoption

of renewables, and is a potent potential barrier for future acceptance. It is not well

understood, however, which led to a critical review of existing technologies.

The work in this dissertation provides one of the first mixed methods attempts

to assess energy demand for cities including the end use of cooling. It provides a

simple model that demonstrates the importance of capacity markets in determining

the profitability of different energy technologies. It provides a guide to the emerging

issue of land use by energy systems, a key consideration for the study of the food-

energy-water nexus. It is the first use of portfolio optimization for sustainability

studies. This is an important methodological tool since it allows a comprehensive

sustainability analysis while providing a sense of the difference between immediate and

future risks. The tool also allows users to diagnose which technologies are incentivized

and which are deterred by market factors, as well as the strength of the deterrence.

This is helpful for policy makers in understanding how incentives should be structured.
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1. INTRODUCTION

Risks of climate change and associated global warming have led to a clean energy

transition, which depends on the substitution of renewable energy sources for fossil

fuels to allow quality of life to remain high while greenhouse gas emissions are cut [1].

Suboptimal choices due to poor information availability at the time critical decisions

are made can lead to a “lock-in” that is costly to exit [2]. The “techno-institutional

complex,” involving expertise, network externalities, and both public and private

institutions surrounding the energy sector [1,3] can then dampen the speed of change.

Thus, short-term decisions are especially important to ensure that the adoption over

the long-term follows the best path.

The importance of making correct decisions on technology adoption is heightened

because primary energy consumption has been increasing despite increased attention

to climate change (Fig. 1.1). Large-scale investments in renewables have occurred as

well [4] coupled with planning and speculation concerning a movement to energy sys-

tems powered only by renewables [5,6]. Such 100% renewables systems likely require

electrification of industry, transportation and heating [7,8]. At present, however, the

US electric grid is based primarily on fossil fuels, and electric transport is still in its

infancy [9]. In 2018, most new generation capacity was based on natural gas [10], de-

spite concerns about stranded assets [11]. Based on past retirements [12], the lifetimes

of these plants may extend 30-60 years into the future.

Researchers have worked to understand what keeps people from adopting renew-

ables even when they theoretically agree with their use. Wüstenhagen et al. wrote

about social acceptance of renewables, identifying the major paths to implementa-

tion of as sociopolitical, community and market acceptance [14]. Wüstenhagen et

al. described market acceptance as behavior from consumers, investors and firms.
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Fig. 1.1.: Global consumption of primary energy from 1965-2017, according to figures

from BP [13]

Since then, work has been done to understand investors [15,16], financing [17–19] and

risk [20–22].

Acceptance literature does not deal directly with a related question, which is that

renewables come with their own trade-offs [23], so choosing the correct renewables is

a difficult problem in itself. Some researchers have worked to choose methods and

indicators that allow choosing the best technologies [24–26]. Recently LCA has been

employed to perform a global assessment of power generation technologies [27].

Still, many problems remain, in part because sustainability and the optimality

of portfolios are interconnected with costs [26], which are extremely dynamic for

emerging technologies. LCA does not include the social and economic indicators

that are important to an overall sustainability assessment [27], and does not address

the issue of portfolio selection. Sustainability indicators outside of global warming

potential are left out of energy models which can lead to solutions that are not in

keeping with sustainable development objectives [28], and are also left out of most

commercial software used by utilities for integrated resource planning, leading to

criticism about other important environmental issues. Long-term energy models have

typically underestimated the adoption of renewables (see table 1.1).
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Table 1.1.: Estimates of 2015 power generation mixture by IEA in 2009 [29] versus

actual generation mixture in 2016 (2015 data not available) [30]. The estimates that

varied by over 20% from the actual values are in bold

.

2015 forecast 2016 actual % Above

(TWh) (TWh) Forecast

Total 24,352 24,765 2%

Fossil fuels 16,302 16,136 -1%

Coal 10,461 9,282 -11%

Gas 4,982 5,850 17%

Oil 859 1,004 17%

Nuclear 3,107 2,611 -16%

Renewables 4,944 6,018 22%

Hydro 3,692 4,070 10%

Bioenergy 408 566 39%

Wind 678 981 45%

Solar PV 67 303 352%

Other renewables 99 98 -1%

In this thesis, the best portfolios of technologies will be identified using an innova-

tive and transparent framework for holistic sustainability assessments. The framework

will be used to provide a diagnostic tool that identifies market acceptance barriers

to renewable technologies. First, the demand landscape for Indiana cities will be

studied to assess how heating, electricity and transportation demand will vary with

relation to each other under climate change and population growth. Then, two US

regions, with high and low adoption of renewables, are studied to compare costs and

revenues for different technologies. This analysis provides the groundwork for a cost

and risk analysis that can be contrasted with the sustainability analysis to identify

market barriers in CAISO and PJM. While developing the sustainability assessment
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framework, a critical review of land use metrics for power generation is performed, in

order to include this crucial indicator in the analysis.

1.1 Research Questions

1.1.1 Research Question 1

How will a warmer climate affect urban energy use in terms of electricity, heating

and transportation and what is the time frame for the changes?

The backdrop for the energy transition is the climate change expected over the

next century [31]. Most energy use can be divided into electricity, heating and trans-

portation. The relative proportions of these uses may change in the future, and in

the case of transportation and electricity, may coalesce. Will most changes happen

soon, or later? Where might the largest changes occur in Indiana’s cities? How much

certainty is there about these estimates, and what is needed to improve on this?

Existing models will be used to assess these questions in Indiana’s cities [32, 33].

1.1.2 Research Question 2

Do capacity markets represent barriers to renewables? Reliability is a key feature

of energy systems. In many deregulated markets, load serving entities are remuner-

ated for their commitments to make generation capacity available. This thrust looks

at whether renewables are compatible with this understanding of resource adequacy,

or whether these markets present a barrier to renewables. Pricing is examined, and

cost and profit metrics are compared for their correspondence with generation capac-

ity installed.

1.1.3 Research Question 3

How should land use by power generation technologies be measured? Since at

least 2000, researchers have warned about the need for large amounts of land for
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some renewable technologies [23,34,35]. Land use is a frequently mentioned indicator

and is linked to biodiversity as well as other important impacts. How should it be

assessed temporally, physically, and in terms of impacts? Literature will be surveyed

to compare existing methods and analyze land use by power generation technologies

typically employed.

1.1.4 Research Question 4

How can market barriers to technologies be quantified? A diagnostic tool that

measures market barriers to individual technologies is created. This requires identi-

fying optimal portfolios from a market perspective and contrasting them with optimal

portfolios from a sustainability perspective. The tool is applied to CAISO and PJM

markets.

1.2 Organization of the Dissertation

The dissertation is divided into six chapters. Chapter two has been published in

Climatic Change [36], and resolves the first research question. In the third chapter,

prices, costs and profitability are calculated for 18 commonly considered technologies

in PJM and CAISO. These are used to understand which metrics are most correlated

with planned generation installations. The PJM capacity market and the recent

obligatory expansion of its minimum offer price rule are explored to understand its

role as a potential market barrier (research question 2). Chapter four documents the

application of mean variance portfolio optimization to find optimal portfolios based

on market and sustainability criteria, and finds market barriers and boosts for 18

technologies in CAISO and PJM (research question 4). Chapter five provides a critical

review of land use metrics for power generation (research question 3). Conclusions and

directions for future work are summarized in chapter 6. The rest of the introduction

provides background on energy systems models, market acceptance, and financing in

the sector.
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1.3 Forecasting world energy use and supply: Energy Systems Models

The importance of forecasting energy use has been noted since the 1970’s [37].

Energy systems include the resources exploited for energy, conversion technologies

and distribution, as well as use for provision of services [38]. Energy systems are

complex, involving multiple scales, industries, interactions and actors. While this

dissertation does not use the energy models surveyed here, this brief literature review

provides some guiding principles used in the construction of models for this work.

Widely used models for energy supply estimation include MARKAL (according

to [37] MARKAL is probably the most widely used energy systems model) and

TIMES, from the IEA, MESSAGE (IIASA) and TIMER. MARKAL is specifically

geared towards energy supply, whereas TIMES and TIMER are part of integrated as-

sessment models (IAM). The ETSAP-TIAM (Integrated MARKAL-EFOM System)

is the implementation of TIMES as an IAM [39]. TIMES is a partial equilibrium

model, so supply and demand are balanced based on the elasticity of demand speci-

fied by the user. [39].

Pfenninger et al. reviewed energy systems models [37], with regard to temporal

and spatial resolution, handling uncertainty and showing assumptions, simplifica-

tions/complexity accurately modeled, and treatment of human behavior and risk.

The models considered were divided into four classes, shown in table 1.2. Trutnevyte

showed that half of the energy forecasts developed by the integrated assessment mod-

els for the 5th meeting of the Intergovernmental Panel on Climate Change were pre-

pared via cost optimization, and 80% of those models relied on the perfect foresight1

assumption as well [40].

Systems models contain both aleatory and epistemic uncertainty [37, 41], par-

ticularly when they model future states. Aleatory uncertainty is random error [41],

which cannot be modeled but it can be minimized by using approaches such as Monte

Carlo or stochastic programming (sometimes integrated with MARKAL or MES-

1Perfect foresight is necessary for equilibrium conditions to be met according to economic theory,
allowing the assumption of marginal pricing to be justified.
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Table 1.2.: Models considered by Pfenninger et al. [37] by type and focus

Type Models Focus

Optimization MARKAL, MESSAGE, TIMES, OSe-

MOSYS

Normative

Simulation NEMS, PRIMES, LEAP Forecasting

Power/electricity WASP, PLEXOS, ELMOD, EMCAS Planning & Ops

Hybrid/qualitative UK Dept for Energy and Climate Change

2050 Pathways, Mackay’s Scenarios, Cli-

mate Stabilization Wedges

Scenarios

SAGE). Epistemic uncertainty refers to strength of data collection [37]. DeCarolis

distinguishes instead between structural and parametric uncertainty [42]. Parame-

ter uncertainty is addressed by scenario analysis which can be effective as long as

the scenarios themselves are designed to be exhaustive. Parameter uncertainty can

also be addressed by using Monte Carlo simulation or a stochastic optimization ap-

proach [42]. Even if parameter uncertainty were zero, the uncertainty in long-range

energy models would still be high, due to complexity and random effects [42]. Struc-

tural uncertainty refers to how models are built, which parameters and processes are

included versus which are ignored. This type of uncertainty is difficult to handle,

and frequently managed by building more complicated models that include more pro-

cesses, but these additional elements may not contribute to better validation [42].

Assumptions made by modelers also have a large effect on results, so they need to be

transparent [37]. When used as a method for generating predictions for the future,

Pfenninger et al. point to a commentary from Klosterman [43] which claims that sim-

pler models tend to perform as well as complex models. Pfenninger et al. also allude

to the importance of human factors in the contribution to uncertainty, as individual

behavior related to preferences and culture is not usually captured by energy sys-

tems models. Trutnevyte conducted an ex-post analysis of the UK electricity sector’s
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shifts from 1990-2014 in order to study whether cost-optimization can approximate

real energy transitions [40]. The study showed that for shorter range forecasts the

cost optimization worked well, but for longer-term forecasts it was necessary to use

a range of near-optimal scenarios to include the true transition values.

1.4 Market Acceptance

Market acceptance encompasses behavior both on the demand and supply side.

Consumers primarily influence demand. Investors influence future supply and firms

influence supply (and future supply). Supply and demand are related, and economic

models are based on the assumption that at equilibrium conditions, supply and de-

mand are equal. In Fig. 1.2, the structure of flows between three groups: consumers,

firms and investors, is visualized.

Fig. 1.2.: Visualizing the market with consumers, firms and investors as actors. Con-

sumers act on the demand side, while firms act on the supply side. Finance links

investors to firms, and thereby influences the supply of goods.

The supply curve has a positive slope, where the quantity produced increases

with increasing prices. The demand curve is typically negatively sloped, with the
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amount demanded increasing as price decreases. The slope of the curves reflects the

elasticity of the good. If a good is elastic, the demand or supply changes quite a bit

when price fluctuates. When goods are inelastic, price changes do not correspond to

much movement on the demand or supply curves. Goods with an inelastic demand

function tend to be those whose consumption is necessary at a certain level. A high

price cannot cause people to reduce their consumption, and a low price won’t cause

much of an increase since they don’t need more. On the supply side, inelastic goods

are those whose supply is hard to change.

Since energy is a necessity for people, energy demand should be fairly inelastic.

This inelasticity is augmented by the usually unvarying rates that consumers can be

charged. This may not be as true for its income elasticity, since people without access

to electricity who can gain access with an increase in means will increase its use. The

supply side for energy is different. While generation capacity is capital intensive, there

is typically an oversupply of capacity in developed countries, so it is not very difficult

to increase generation at any point in time. Still, when the maximum is reached,

higher demand can cause power outages, as has been seen in the past. Thus, supply

is inelastic after a certain point. This can be seen in Figs. 1.3, 1.4. This phenomenon

presents a challenge for electricity markets. Demand peaks that hit the vertical areas

on the supply curve are sudden and somewhat unpredictable, so may not effectively

stimulate firms to provide services in the case of such high prices. There is a robust

literature on the missing money that cannot be quantified in the case of a blackout,

and this has led to the theoretical basis for capacity markets that have been instituted

in PJM and most other ISO/RTOs in the US, with corresponding price caps in the

energy market [44, 45].

1.4.1 Consumers

Consumers directly influence demand by deciding how much of a product to pur-

chase. Firms, on the other hand, decide how much to provision, which means that
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Fig. 1.3.: CAISO’s supply curve at 6 pm, March 2016 according to data analysis

in [46]. Supply is highly inelastic both at very low quantities and at high quantities,

and highly elastic in between.

Fig. 1.4.: PJM’s supply curves in 2014, 2016 and 2017 from [47], shown along with

loads in 2016 and 2017. The supply curve is highly elastic, as predicted, until threshold

values are reached when it becomes vertical.

consumers have an indirect feedback on supply since firms wish to know how much

consumers want. Firms have a direct link to supply. Investors have a more indirect

role, since they decide how much financing to provide to firms. In some situations, the

consumers have a lot of power. In the case of regulated electricity markets, however,

households have power, since they have no choice over the mixture of power genera-

tion technologies used. Still, commercial enterprises in particular as well as localities
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have made well-publicized commitments to reduce impacts on climate change, whose

potential effects are explored in [48].

1.4.2 Firms

Profit Motive

Just as there is both a supply and demand side in the marketplace, decisions

about operations and investments are made both by attempting to minimize costs

and maximizing revenues. The difference between the revenues and costs is the profit.

There is a time dimension to profit, since an operation may be profitable over time,

but not immediately. Both the cumulative sense, or the integral, and the immediate

sense are important, since cash flow is determined at a point in time. Income is

closely linked to demand, since it is tied to the actions of people buying the products.

Since electricity prices to consumers can be constrained, profit opportunities are more

limited than in some sectors, while utilities enjoy a low-risk revenue stream.

Adoption Strategies and Payoffs

Firms must decide whether to continue using older technologies or to adopt newer

technologies. Market penetration is described mathematically in appendix A. In a

study of energy technologies, Schilling and Esmundo studied S-curves of technology

improvements versus cost of investment, finding that the return on investment in

research and development for fossil fuel-based power generation was much lower and

declining versus the returns for investment in renewables [49]. This analysis was

inspired in part by previous work on the S-shaped curve for technology by Christensen

[50,51] and Ayres [52]. Christensen found that incumbent firms maintained strategic

advantage while pursuing a “jump” in the S-curve for a new technology in components

because implementation of new technologies can be more challenging than originally

anticipated [50]. On the other hand, for architectural shifts, new entrants had an
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advantage, and there was an advantage to early adoption [51]. The advantage was

seen because the architectural shifts made the product lag in acceptance by traditional

markets, as it would underperform according to the existing metrics, forcing the

product into emerging markets, where it could develop and then quickly take over

the former standard once the technical barriers were overcome [51].

1.4.3 Investors

Investment is the exchange of money for the proceeds of a given asset [15]. The

asset can be real, in which case it has a physical realization like a turbine or generation

plant, or financial, in which case it is a contract [15]. The investment can be in the

form of equity, in which case the investor is buying a portion of the asset, or debt [15].

Assets are grouped into classes according to their characteristics of risk and returns:

equities (stocks), commodities, cash and cryptocurrencies, derivatives, real estate,

and fixed income (bonds).

In deregulated electricity markets, projects need the blessing not of central plan-

ners but rather of investors, who need to assess a monetary advantage to the project.

Private investors can be grouped into the following categories: a) corporations, b)

retail investors (private individuals), c) partnerships such as hedge funds or firms,

d) financial intermediaries (such as banks, pension funds or insurance firms), and e)

endowments (typically held by universities or foundations) [15]. They can be broken

down into two classes: strategic and financial investors [15]. Strategic investors in-

volved in the industrial sector already, for example existing energy firms or utilities

that invest in renewables for strategic reasons (mainly from group a). Financial in-

vestors are mainly groups b - e, and they are more focused on financial gains. While

strategic investors are involved in renewable projects as part of their core business,

financial investors are prone to exit the sector if risks increase [15].
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When new projects are proposed, their profitability is assessed by potential in-

vestors. The simplest metric is the return on investment, shown in equation 1.1:

ROI =
P − C
C

(1.1)

Where P is profits and C is costs. Estimating the ROI is not as simple as equation 1.1

suggests, however, since in most cases, neither the profits nor costs can be known with

certainty ahead of time. This means that investors must factor in risk. The decision

problem for investors is whether the price they must pay to enter the market will

allow them to profit. The return they are interested in must be adjusted for risk.

Donovan describes asset pricing as the method of understanding this risk, defining

the asset price according to equation 1.2 [15].

At = E(dt+1,Πt+1) (1.2)

The asset price at time t (At) is here a function of the discount factor d at time t+1

and the payoff (Π) at time t+1. The basic form of the asset pricing model is given in

equation 1.3 [53].

At = Et(β
u′(ct+1)

u′(ct)
Πt+1) (1.3)

Here β is the discount factor, which is specified as the subjective discount factor.

Marginal utility of consumption is u’(c). Note that the product of the asset price

with the marginal utility of consumption at time t is equivalent to the expected value

of the product of the marginal utility of consumption at time t+1 with the expected

payoff and the subjective discount factor [53]. Thus the discount factor dt+1 can be

defined as:

dt+1 = β
u′(ct+1)

u′(ct)
(1.4)

Substituting into equation 1.3 gives the expression in equation 1.2.

Time Cost of Money and Metrics

The value of money is not constant over time, due to inflation, interest, opportu-

nity cost and uncertainty. Many metrics are used to evaluate potential investments.
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In these investments, costs and cash flow occur in multiple time periods. Hence,

investments must be considered in terms of their net present value (NPV), or dis-

counted profitability, described more fully in chapter 3, section 3.3.4. The discount

rate can be evaluated and understood in a variety of ways, but it is a measure of the

time value of money [54] as well as risk in some cases [15]. NPV, while a powerful

tool, does not allow for a full accounting of risks and opportunities over the project

timeline. For example, tying up the capital in a project today may make it impossible

to invest in an even better project a few years down the line. Or if a worst-case type

scenario occurs in one of the risks that affects the project, it is invisible in an NPV

calculation. For example, in power generation plants, particularly biomass, commod-

ity prices can be volatile. NPV will not take that into account. If either the costs of

the raw materials or the price of the final product makes the technology infeasible,

the project may be abandoned before being finished.

Since most discount rates cannot be known ahead of time, they are a source of un-

certainty and multiple discount rates may be used to give estimates (see section 1.4.3

for more thorough discussion of risk and uncertainty). The government publishes

recommended discount rates for public projects. For private investment, the cost of

capital is generally used, ideally the marginal cost of capital [54]. Firms can com-

pute the weighted average cost of capital (WACC), described in detail in chapter 3,

section 3.3.5.

NPV is a powerful analytical tool, but it does not allow for a full accounting of

risks and opportunities over the project timeline [55]. In other words, while a positive

NPV represents a good investment, it is not always the best investment. Also, while

these metrics are simple in that they give a single value that is easy to interpret, that

can be misleading since the anticipated costs really represent probability distributions,

and thus are frequently calculated using Monte Carlo, and looking at the results as a

distribution can give a different sense than the single number [54].



15

Risk and Uncertainty for Investors

Two assumptions implicit in the use of NPV have led to the development of

different methods to assessing desirability and risk: reversibility of investment (no

sunk costs) and inability to postpone investments (ignoring opportunity costs). Both

assumptions show that NPV underestimates the price of investing, leading to a lower

barrier for investment than firms actually use.

Reversibility is the idea that once an investment has begun, it can be easily re-

versed. In many cases, however, risk affects all customers the same way. Therefore, if

an asset loses its value to its initial purchaser, it may have lost value for all potential

purchasers. This is the case when a purchase is firm-specific or industry-specific, and

is also termed a “sunk cost.”

The temporal element is likened to the asset market. An option to invest at a

given time can be purchased without being exercised. There is an opportunity cost

to investing, represented by the option cost, which is forfeited when the investment

is made. Firms face a similar dilemma when choosing to invest in new technological

options, knowing that an innovation might become available which will enable them

to make a better product more efficiently. For this reason, there are times when the

purchaser will find it advantageous to wait. This type of risk is frequently modeled

using real options theory [56,57].
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2. PROJECTING THE URBAN ENERGY DEMAND FOR

INDIANA, USA IN 2050 AND 2080
1

2.1 Introduction

Cities are home to a majority of the world’s population but make up less than 3% of

terrestrial land [58], and possibly as little as 0.51% [59]. Accordingly, the International

Energy Agency posited that 64% of global primary energy use took place in cities in

2013 [60]. This trend has also been found in the US [61], which is important both

for forecasting future energy use and targeting policies. While this work is focused

on the consequences of climate change in terms of energy use, energy use is also one

of the largest contributors to greenhouse gas emissions, representing a feedback loop.

Particularly after the exit of the US from the Paris Accords, increasing attention

has been placed on the potential for more distributed action by the more than 300

“climate mayors,” who have affirmed their commitment to meet international goals

for climate change mitigation [62].

As part of the Indiana Climate Change Impacts Assessment (IN CCIA), high

resolution forecasts were made available for Indiana for the time period up to 2100 for

two climate change scenarios: representative concentration pathway (RCP) 4.5 and

RCP 8.5. The numbers in the scenario names refer to the amount of radiative forcing

present in the atmosphere in 2100 in W/m2. The principal tasks of the energy working

group for the IN CCIA were to project the effects of climate change on state-wide

energy consumption, and estimate the effects of policies on the supply mixture [63].

An understanding of the energy demand changes spatially across the state, specifically

centered in urban areas, was desirable in order to develop an actionable plan to

1Reprinted by permission from: Springer Climatic Change “Projecting the urban energy demand
for Indiana, USA, in 2050 and 2080” by Liz Wachs and Shweta Singh, COPYRIGHT 2019
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meet the changing energy demand in response to climate change. According to the

US Census Bureau’s classification of urban areas, Indiana is home to 15 cities or

parts of cities [64], which contain 77% of the state’s population according to 2010

census numbers (5,036,573 of 6,483,802 inhabitants) [64]. Hence, in this work we

focused more narrowly on Indiana’s urban areas and their energy demand, specifically

considering how residential and commercial urban energy consumption is likely to

shift due to climate change.

The RCP 4.5 scenario assumes the adoption of carbon pricing and other mitigation

policies, with emissions peaking near 2040 and stabilizing near 525 ppm CO2 and 650

ppm CO2 equivalents [65]. RCP 8.5 is sometimes referred to as a “business as usual”

or “baseline” scenario. It assumes that no global greenhouse gas emission mitigation

strategy is adopted. Instead, the world population continues growing, reaching 12

billion by 2100, with low levels of economic growth and technological innovation.

Thus, fossil fuels present a more economical choice than renewables, leading to a

high level of use for coal (cleaner coal technologies like gasification are employed over

time) and nontraditional petroleum products [66]. Some criticism of RCP 8.5 as a

reference case has emerged since estimates of coal’s availability may prevent its use

as a “backstop” fuel in such a scenario [67]. Still, the RCP 8.5 scenario reads as

familiar, since it assumes the use primarily of fossil fuels for energy provision while

in the policy sphere a higher priority is placed on air pollution than climate change

mitigation. Recently in the US there has been much talk of reviving interest in

“clean coal.” Indiana, the site of our study, has high levels of coal production (8th

among states in the US as of 2015 [68]), and receives the majority (>70% as of Nov

2017 [68]) of electricity from coal power generation plants—Indiana is currently the

third largest consumer state of coal in the US, and recently opened a clean coal

electricity generation plant (in Edwardsport), so RCP 8.5 indeed presents a relevant

storyline here.

In order to estimate urban energy demand, it is necessary to understand the

driving reasons behind its changes. Energy demand change is a complex phenomenon
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with several driving variables that may change simultaneously, including increased

urbanization, population growth, population density change and income increases.

The specific questions driving our work were: how a warmer climate would affect

urban energy use? What is the time frame for the changes i.e. will most changes

happen soon, or later? Where might the largest changes occur in Indiana’s cities?

How much certainty is there about these estimates, and what is needed to improve

on this?

To address these research questions, two time periods: 2050 and 2080, were ex-

amined and compared with 2015 estimates. Energy demand for heating, electricity

and transportation in Indiana’s urban areas was estimated by two methodologies,

one developed in [33] and the other from [32]. Residential cooling was estimated by a

method developed in [69] and refined in [70]. These estimates provide a greater spa-

tial and temporal resolution to the energy demand forecasts published in [63], thus

making results more relevant for individuals and stakeholders. While the methods we

used here were not developed specifically for this project, the combination of methods

we have used allows for projections below national scale, which is poorly represented

in the literature. This is one of the only studies that provides projections of energy

demand at the city scale including end-uses.

2.2 Background: Modeling Urban Energy Consumption

A robust literature seeks to predict and model energy consumption, including in

urban areas. On a national scale in the US, the Energy Information Administration

(EIA) makes detailed forecasts according to multiple scenarios on a national level.

MARKAL [71] is frequently used at national scale to model supply, and an Indiana-

specific version of MARKAL was used in [63]. The long range energy alternatives

planning (LEAP) system [72] is also frequently used at national scale. Still, models

applicable to a range of places at a higher spatial resolution (subnational, below state

level) are lacking. In the US two national studies have focused on urban energy
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demand estimation. The Vulcan model [73] was used for a study of US urban areas

by Parshall et al. [61]. Vulcan has not been updated after 2002, however, and the

work in [61] could not be disaggregated to focus on individual cities.

Brown and Logan [74] purchased proprietary data for use in their study of resi-

dential electricity, transportation and fuel consumption in the 100 largest US cities by

population. They also performed statistical analysis to find significant predictors for

residential carbon footprints. The most recent data source was 2005. Interestingly,

Indianapolis had the 3rd highest per capita carbon footprint for residential electricity

and fuel use in 2000 and 4th highest in 2005. When electricity alone was considered,

Indianapolis was 7th in 2000 and 5th in 2005 [74].

At global scale, Singh and Kennedy sought to model urban energy demand change

in response to climate change based on predictive variables [33], with a statistical

methodology that is adaptable to any group of cities. The model was developed

based on empirical data on energy consumption at city scale along with the esti-

mates of predictor variables calculated at same city scale. The modeling focused

on urban energy demand in three major categories: transportation, electricity and

heating. Both electricity and heating were found to be dependent on temperature

accounted by the variable of Heating Degree Days (HDD), thus directly effected by

changing climate. In this work, the cooling energy demand was accounted for in

electricity consumption. This model was applied globally for 3436 cities after testing

for extrapolations using statistical approach of leverage to caution for any projection

errors.

Kennedy et al. [32] classified material flows more broadly in “megacities,” along

with including predictive characteristics of variables for energy demand in urban areas,

similar to Singh and Kennedy [33] . This work also looked at electricity, heating and

transportation, but only heating was tied to temperature, perhaps due to the nature

of “megacities” where electricity was mostly driven by urban form and GDP, which

were highly correlated. However, both works independently confirmed temperature

to be a major driver of heating energy consumption in urban areas.
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Cooling Energy Modeling: The contemporaneous trends of development and

climate change have led to interest in projecting changes in global adoption of space

cooling technologies. In many of the hottest places, people have historically had little

access to air conditioning, but this may change in the coming years. Whether, where

and how quickly this might change has been the focus of several studies [69,70,75,76].

Cooling is particularly important because in many areas it has a large impact on the

peak load despite it‘s relatively small proportion of overall energy use.

Cooling degree days (CDD) has been used as predictor variable for cooling energy

estimation since it captures the effective number of days when cooling is required with

respect to a baseline temperature that represents thermal comfort for people. Hence,

CDD is a good proxy variable for quantifying cooling energy demand as in the model

by Isaac and van Vuuren [70] . Sivak [75] found that many of the fastest growing cities

had very high CDD, indicating a high potential for future cooling demand in cities

in the developing world. Likewise McNeil and Letschert [69] looked at the emerging

adoption of air conditioning in the residential sector of developing countries. Isaac

and van Vuuren [70] expanded their approach to a global scale for inclusion in the

TIMER model. Air conditioners are much more energy intensive (i.e. to achieve the

goal of space cooling, air conditioners use a large amount of energy) and expensive

than other cooling technologies (e.g. fans). Their energy intensity makes their usage a

good proxy for space cooling energy use. McNeil and Letschert noted that ownership

of air conditioners is strongly correlated with income, following an S-shaped diffusion

curve [69], so that once a certain threshold income level is reached (in [70] it is

around $10,000 per capita), ownership rises rapidly. This income threshold has been

met in the US, usually considered one of the areas with the highest adoption of air

conditioners. In the US, 87% of homes have air conditioning as of 2015, and 65% of

homes have central air [77].

Saturation of air conditioners in a given area is also highly dependent on climate

[69] [78] and the interaction of climate and income is even more important [76].

Sailor and Pavlova show a logarithmic type curve for the climate effect, since in
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cooler climates people are unlikely to purchase air conditioners, but in hot climates

the saturation is near unity [78]. Once air conditioners are available in a household,

their usage is highly correlated with climate, with strong increases shown when it

is very hot. Davis and Gertler showed in their study of Mexican households that

each day with temperatures over 90◦F (32.2◦C) increased monthly electricity usage by

3.2% [76]. This certainly implies that as climate change results in higher temperatures

in certain regions, it will have a direct impact on higher energy demand.

We could not find a model for cooling energy estimation in the commercial sector

that could be used at urban scale for the needed projections. Recently in the US,

work by Lokhandwala and Nateghi [79] analyzed data from the Commercial Buildings

Energy Consumption Survey (CBECS) to determine the variables with predictive

capability for commercial cooling load. They note the wide agreement that building

area is a determining variable, and look at energy use intensity [kWh/m2], showing

that while in the past (2003) [79] and prior [80] CDD was the most predictive variable,

principal building activity now surpasses CDD as a predictor. They also note that the

predictive capability of CDD has decreased with respect to energy use intensity, most

likely due to improvements in efficiency. Still they note that with those improvements,

cooling energy use intensity has not decreased.

As part of the IN CCIA project, Nateghi and Mukherjee [81] developed a frame-

work for including climate change effects in energy demand estimates. They estimated

an increase in commercial demand for space cooling in Indiana in the same study pe-

riod, but a decrease in residential demand for space cooling. Their work, however,

does not address the spatial variability below the state level.

2.3 Methodology for Energy Demand Change at Urban Scale

2.3.1 Heating, Electricity and Transportation Projections

As mentioned above, Singh and Kennedy [33] (S-K) and Kennedy et al. [32] (K-M)

both published regression models that can be used for estimation of transportation,
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Table 2.1.: Singh Kennedy (S-K) Model for Urban Energy Estimation. For heating

demand, only the heating degree days is a significant variable. For electricity, both

heating degree days and inverse population density are significant. For transportation

only inverse population density is significant. Inverse population density refers to

urban area per capita.

Heating Degree Days Inverse Pop Density (ha/cap)

Heating* (GJ/cap) 0.014725 -

Electricity* (MWh/cap) 0.000994 144.7

Transportation (GJ/cap) - 1374.9

*Adjusted from published model as described in section 2.3.1

electricity and heating energy demand. The models were developed using a regression

based approach that tested the relationship of explanatory variables such as gross

domestic product (GDP), CDD, HDD, population density and inverse population

density with empirical data on energy consumption in a group of world cities. Tables 1

and 2 show the variables proven to be significant predictors along with parameters and

regression coefficients for energy estimation in each category for each model. Although

these models were developed independently using two different datasets, they showed

similar significant predictor variables for each category of energy providing confidence

in using this methodology for the forecast of energy demand in urban areas.

Full methodologies as well as data sets for deriving the two regressions are dis-

cussed in the source papers. The S-K dataset included cities from all over the world

with varying population sizes, densities and stages of development [33]. The K-M

model set had 27 cities with a wider geographic range but included only “megaci-

ties,” the largest cities in terms of population size in the world [32]. For this reason,

the K-M model is used here to provide a benchmark for the total projections for

heating, electricity and transport.
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Table 2.2.: Kennedy Megacities (K-M) Model for Urban Energy Estimation. Full

details can be found in [32]).

Heating Degree Days Inverse Pop Density (km2/cap)

Heating (GJ/cap) 0.02 57 722

Electricity (MWh/cap) - 21 614

Transportation (GJ/cap) - 92 858
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The S-K model was slightly modified in this work. Since our focus is on the

commercial and residential sectors, we excluded a proportion of the heating energy

from the dataset based on assumptions of the relative contribution of industry in

heating energy demand in those cities. The coefficients included here in Table 2.1

reflect the adjustments for the exclusion of industrial heating. For the electricity

modeling, we combined the datasets from the original work in [33] and [32], using

the S-K data in the case of duplicate cities. We also added electricity usage from

Indianapolis, in order to have a more robust dataset with a higher variability in

urban form. The source data for the modified regressions in the S-K model used are

available in Tables 1 and 2 of the SI (Appendix B).

To use these models, data for density were required. HDD and CDD were required

for all cities, which were calculated based on temperature data from the climate group

and GIS based methodology proposed in Singh and Kennedy [33]. Further, population

data was necessary in order to calculate total energy consumption in each category

for all cities. The data collection and calculations for HDD & CDD are discussed in

section 2.3.3.

2.3.2 Cooling

Residential Cooling Estimation A separate estimation for per capita cooling en-

ergy consumption was made based on models developed by McNeil and Letschert [69]

and Isaac and van Vuuren [70]. Cooling consumption cannot be directly calculated

from the regression models described above, mainly because the data used for devel-

opment of regression models aggregated space cooling energy requirements as simply

part of electricity consumption. Cooling makes up a relatively small component of

energy use (mainly electricity). Nevertheless, the question of whether increased cool-

ing energy use will outpace declines in heating demand has generated much study

(see for example [82,83]).
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The model used here is based on statistical analysis examining both extensive and

intensive behavior related to the use of space cooling equipment. The decision to

purchase air conditioning units is a long term or extensive type choice. People run

the air conditioners more or less in a given year (intensive) based on current weather

conditions. Hence, the total energy consumption in this model is a function of both

total amount of equipment present and the usage of the cooling equipment.

The total per capita urban cooling energy demand in this model is calculated by

equation 2.1, which is from [70] but in a per capita format:

T =
P

h
× UEC

EE
(2.1)

In Equation 2.1, T is the total per capita cooling energy use [kWh/capita], h is the

household size [people/household], P is penetration [%](the extensive variable—taking

into account the proportion of households that own air conditioners), UEC is the unit

energy consumption [kWh/household/year] (usage—the intensive variable indicating

how often people use their air conditioners) and EE is the efficiency factor [%]. Since,

UEC depends on CDD (Cooling Degree Days) and GDP per household i.e., income (I)

(See Equation 2.2), the per capita energy consumption depends on both on climate

and income change. The UEC model (equation 2.2) was developed by Isaac and van

Vuuren, who ran a linear regression on 37 data points to estimate the usage variable,

UEC against the explanatory variables of Income (I) and CDD [70]. The maximum

value allowed is 3500 kwh/year following [84].

UEC = CDD × (0.865× ln(I)− 6.0) (2.2)

In equation 2.2, I is income, approximated by GDP per household. Next, we assume

that penetration in the US depends only on climate (CDD) (equation 2.3) as in the

original model. Logically, this is true since investment in cooling equipment is driven

by the general weather of region, hence households in warm weather (with higher

CDD) are more likely to purchase cooling equipments as captured by Equation 2.3

from [69].

P = 1− 0.949× e−0.00187×CDD (2.3)
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We present results assuming no efficiency gains as well as results based on a forecast

of cooling technology improvement (seasonally averaged COP values—variable EE

in Equation 2.1). For 2015 we use a COP value of 3.35, a weighted average of the

efficiency values based on cooling stock in US residences from table 22 of the 2017

Annual Energy Outlook [85]. This has been revised from the higher value of 3.81

(given as a 2020 value in Iyer et al. [86]) used in Gotham et al. [63] since we were

able to calculate this more accurate value for 2015. We estimate expected efficiency

gains in cooling technology by interpolating from predicted efficiency increases in the

cooling sector through 2100 given by equation 2.4, where y is the year:

EE = −0.0003y2 + 1.05y − 1092.6 (2.4)

This equation was found by plotting the values of 2.4 for 2000, 3.2 for 2020 and

4.39 for 2100 which follow a polynomial improvement given by the Pacific Northwest

National Laboratory [87]. These efficiency values for 2050 and 2080 of 4.02 (the

Annual Energy Outlook [88] gives a weighted average value of 4.026 for 2050) and

4.39 respectively are included in equation 2.1 following the approach used by Isaac

and van Vuuren [70].

Since no city-level data or estimates of energy use are available, the models were

run to create baseline estimates for 2015 to be used as reference year. We used the

projected changes in CDD for 15 Indiana cities over time, relying on the estimates

by the climate group in this issue [89], as the basis for our projections. We also made

assumptions about income as described below in section 2.3.3.

2.3.3 Data Collection

Geographical Coverage: The largest city in Indiana is Indianapolis, the capital,

whose population was estimated at 2,000,400 in 2015. Indiana is located in the

Midwest region of the US, and for the EIA it is in the East North Central region of

the Midwest. It can be split into a southern portion that falls in the “mixed-humid”

region (according to the Building America Climate Regions), and the northern part of
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the state which lies in the “cold” region. The northwest corner of the state includes

Gary, which is part of the Chicago metropolitan area. Indiana is bordered to the

north by Lake Michigan and Michigan. To the west it borders Illinois, to the south

Kentucky, and to the East, Ohio. The cities included in this work range in latitude

from Michigan City-La Porte, the northernmost city with latitude 41.7, to Evansville,

with latitude 38.0. The list of Indiana’s 15 cities is provided in Table 2.3.

Population: For these urban areas, population projections in five year increments

extending to 2050 were available in [90]. Since no population projections were avail-

able for 2080, we extended the population numbers to 2080 for each city based on its

growth rate from 2045-2050, assuming the annual growth rate for the period of 30

years. The population estimates for each city at each point in the study time period

are shown in Table 2.3.

Area and Inverse Population Density: Population density was calculated sep-

arately. Where the urban agglomeration’s population resided principally outside of

Indiana’s borders (Cincinnati-Middletown, Louisville-Jefferson and Gary Division),

density data from [91] were used. For other cities the land area for the named com-

ponents of each city (i.e. Indianapolis and Carmel cities proper) from county and

township level census data [92] was summed to perform the calculations for 2010. The

population density was projected forward assuming a 1% yearly decline attributed to

the phenomenon of urban sprawling.

Temperatures: As part of the IN CCIA project, temperature projections were

made based on 31 global climate models, from which 10 were selected to best cap-

ture the range of results. The values were statistically downscaled to 1/16 degree

resolution, approximately 5 by 7 km, for the RCP 4.5 and 8.5 scenarios based on

the Coupled Model Intercomparison Project, Phase 5 (CMIP5) [89]. High and low

daily temperatures from three time periods were modeled: 2011-2040, 2041-2070 and

2071-2100. For this work we took an average for each time period to represent the
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Table 2.3.: Cities studied with population figures as used for 2015, 2050 and 2080.

Indianapolis, the largest city, is forecast to increase significantly in population over

this period.

City 2015 2050 2080

Bloomington 166,210 198,766 224,365

Cincinnati* 42,063 47,352 45,471

Columbus 79,194 88,112 93,421

Elkhart-Goshen 204,959 248,764 286,441

Evansville* 272,443 292,128 297,881

Fort Wayne 429,967 497,948 544,459

Gary 723,879 778,362 801,495

Indianapolis 2,000,400 2,584,097 3,018,845

Kokomo 82,029 70,080 59,267

Lafayette 211,029 251,032 278,182

Louisville* 287,666 330,988 353,713

Michigan City-LaPorte 112,111 106,949 99,697

Muncie 117,220 109,859 103,194

South Bend-Mishawaka* 268,533 274,940 276,554

Terre Haute 173,132 166,141 157,087

* refers to the Indiana portion of larger metropolitan area
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three years of 2015, 2050 and 2080. Note that since these forecasts were not devel-

oped specifically for use at urban scale, the urban heat island effect may not be fully

shown. Using latitude and longitude, the distance from cities was calculated using

the great circle distance method (see description in [33]), and temperatures recorded

in any spot less than 10 miles from the city’s latitude and longitude were averaged

to compute maximum temperature (tmax) and minimum temperature (tmin) values

for the city. Table 2.4 shows the temperature increases by 2080 for the cities studied

under both scenarios. Highlighted cities as well as Fort Wayne all sit above 41 degrees

latitude, so represent the northernmost cities.

For RCP 8.5, by 2050 minimum temperatures are projected to rise by 1.21 (Apr

and Nov) to 2.08 degrees C on average in the cities studied. Maximum temperatures

increase on average 2 degrees or higher for Jul-October, with the highest increases seen

in August, where some cities see an increase of more than 3 degrees (Bloomington

and Cincinnati are at 3 even, Columbus and Kokomo are over 3 degrees). The 4

northernmost cities see above average minimum temperature rise in the winter (Dec-

Feb), but not during the rest of the year.

By 2080 average minimum temperatures are projected to rise by between 2.87-4.7

degrees in the cities studied. In all time periods and scenarios except Dec-Jan-Feb in

RCP 4.5, the maximum temperatures increase more than the minimum temperatures.

In winter the northernmost cities see the highest increase in minimum temperature.

The increase in maximum temperatures is more pronounced, with average increases

ranging from 3.23 degrees in April to 5.92 degrees in August.

The largest temperature increase forecast in this model was for the Jun-Jul-Aug

period in RCP 8.5, which shows more than a 5 degree increase for the cities. Cities

with projected maximum temperature increases above 6 degrees (all > 6 ◦C increases

were seen in the month of August) are Cincinnati, Columbus, Fort Wayne, Indi-

anapolis, Kokomo, and Muncie. In both scenarios pronouncedly larger increases in

temperature are seen in summer months by 2080, as compared to winter and transi-

tion seasons.
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RCP 4.5 temperature increases forecast for the cities were less than 2 ◦C except in

the Jun-Aug time period. RCP 8.5, on the other hand, shows temperature increases

over 3 ◦C in all the time periods. August heat increases are more pronounced in the

more southern or central parts of the state (highest in Indianapolis), but for other

months the 4 northernmost cities generally see the highest temperature increases,

with increases at or above the median and average in all months except April, where

Gary is just below these markers.

Table 2.4.: Temperature changes in ◦C from 2015 to 2080 under the two scenarios

considered for all cities studied. Average increases in high (h) and low (l) temperatures

for each 3-month period are shown. The northernmost cities are shaded. Temperature

increases higher than 4◦C are shown in bold.

City

Temperature Increase in ◦C 2015-2080

Dec-Jan-Feb Mar-Apr-May Jun-Jul-Aug Sep-Oct-Nov

RCP 4.5 RCP 8.5 RCP 4.5 RCP 8.5 RCP 4.5 RCP 8.5 RCP 4.5 RCP 8.5

h l h l h l h l h l h l h l h l

Bloomington 1.63 1.61 3.27 3.07 1.40 1.32 3.30 3.05 2.21 1.72 5.24 4.26 1.75 1.44 4.55 4.07

Cincinnati 1.61 1.60 3.22 3.07 1.40 1.32 3.31 3.05 2.19 1.74 5.33 4.31 1.77 1.43 4.59 4.12

Columbus 1.61 1.63 3.25 3.06 1.41 1.33 3.30 3.06 2.21 1.73 5.24 4.24 1.73 1.44 4.56 4.05

Elkhart-Goshen 1.71 1.82 3.56 3.65 1.51 1.35 3.45 3.07 2.24 1.71 5.13 4.27 1.85 1.37 4.62 3.89

Evansville 1.61 1.55 3.16 3.05 1.41 1.26 3.25 2.98 2.08 1.65 4.97 4.19 1.74 1.38 4.44 4.03

Fort Wayne 1.69 1.73 3.48 3.43 1.50 1.35 3.42 3.07 2.25 1.72 5.24 4.31 1.83 1.38 4.65 3.98

Gary 1.77 1.83 3.63 3.68 1.50 1.32 3.45 3.03 2.14 1.73 4.91 4.15 1.87 1.42 4.54 3.97

Indianapolis 1.66 1.65 3.35 3.17 1.43 1.33 3.33 3.04 2.23 1.73 5.27 4.26 1.78 1.42 4.59 3.99

Kokomo 1.72 1.67 3.49 3.35 1.42 1.34 3.36 3.04 2.31 1.78 5.24 4.31 1.87 1.41 4.69 4.05

Lafayette 1.72 1.74 3.53 3.42 1.44 1.31 3.35 3.02 2.25 1.73 5.12 4.22 1.89 1.40 4.63 3.95

Louisville 1.61 1.65 3.21 3.12 1.41 1.32 3.29 3.03 2.18 1.70 5.12 4.23 1.75 1.42 4.51 3.96

Mich. Cty-L. P. 1.73 1.84 3.60 3.68 1.51 1.33 3.44 3.07 2.22 1.72 5.06 4.20 1.89 1.39 4.61 3.91

Muncie 1.67 1.68 3.43 3.27 1.42 1.34 3.35 3.08 2.25 1.72 5.30 4.27 1.81 1.40 4.67 4.01

South Bend-Mish. 1.71 1.82 3.56 3.65 1.52 1.35 3.46 3.07 2.24 1.71 5.14 4.26 1.86 1.37 4.60 3.88

Terre Haute 1.69 1.61 3.37 3.09 1.43 1.28 3.30 2.94 2.12 1.69 5.03 4.20 1.80 1.37 4.54 3.93

Average 1.68 1.70 3.41 3.32 1.45 1.32 3.36 3.04 2.21 1.72 5.16 4.25 1.81 1.40 4.59 3.99
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For the modeling work, temperature data was needed to calculate HDD and CDD.

We first calculated the average monthly temperatures (tavg) from tmax and tmin. Then

HDD was calculated using Equation 2.5 around a base temperature of 18◦C.

HDD =
12∑
n=1

(18− Tavg)Dn (2.5)

Where Dn is the number of days in the month, n. When the average temperature is

higher than 18 for a given month, HDD = 0. The CDD calculation was done with

the same equation, but the argument in the summation has the reverse signs.

Household Size: For cooling energy estimation, average household sizes were ob-

tained for each city from the United States Census Bureau’s QuickFacts database [93].

Since the rate of change in household size has been very small and includes fluctua-

tions, it was assumed constant for 2050 and 2080.

Gross Domestic Product : The US Census Bureau provides estimates of GDP

per capita on a city level. They were assumed to rise 1% per year. Since GDP by

household was needed, the GDP per capita values were multiplied by household size.

2.4 Results and Discussion

Per Capita Energy Demand Projections: Fig. 2.1 shows per capita heating and

electricity projections for the cities studied using the S-K method as well as cooling

per capita both with and without efficiency gains in cooling equipments. Per capita

heating demand is expected to fall in Indiana’s cities by 7.8-13.3% by 2050 and 12.9-

27.4% by 2080 (bounds correspond to the RCP 4.5 and 8.5 scenarios respectively).

The spatial variation among cities for per capita heating demand declines over time

as both scenarios project a more similar climate among IN cities over time. Modeled

electricity demand is much less dependent on climatic shifts as the primary driver

of electricity use as predicted by our model is decreasing inverse density due to ur-

ban sprawl. Per capita electricity usage is projected to increase over time by quite a
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bit—29.8-30.98% average increases are expected by 2050 and 64.38-67.56% increases

are expected by 2080. Still the tight bounds on these estimates are due to the low

impact of climate. The higher electricity costs for RCP 4.5, which has cooler temper-

atures than RCP 8.5, are due to electric heating’s inclusion in the S-K model dataset

that is, all electricity end uses are accounted for and in the cities modeled electric

heating will be larger than air conditioning. In part to overcome that limitation, we

looked more closely at the end use of space cooling.

In the case of cooling, we evaluated two cases. In one case we held the efficiency

of cooling equipment constant for future scenarios, whereas in the second case we

assumed improvements in efficiency. In Evansville, the urban area that currently

has the highest projected per capita cooling energy use, as well as Bloomington,

Cincinnati, Columbus, Indianapolis and Louisville the per capita use falls in both

time periods in the high efficiency (HE) case. Other cities show an increase, most

notably in the northern half of the state. Michigan City-La Porte shows the most

dramatic increases, between 25-54% higher in 2050 and 51-63% higher in 2080 in

the HE cases. With no efficiency improvements both Michigan City and South Bend

would see over 100% increases in per capita cooling by 2080 in both the RCP 8.5

scenario.

Most striking is the falling standard deviation in cooling energy use, from 29-

61% lower across all scenarios in 2050, and 54-69% lower by 2080, showing that the

overall profile for Indiana would be more homogeneous in terms of cooling needs under

climate change. Accordingly, the penetration of air conditioners averaged 74.2% in

our modeled estimates for 2015, but rises to over 90% in all cities by 2080 in the RCP

8.5 scenario. This is supported by [89], who predict an increase in the number of “hot

days,” days with a high temperature of over 35◦C, across all Indiana urban areas

included in their analysis, from historical numbers of 2.5-10.5 to a range of 58.6-98.2

days in the RCP 8.5 scenario. Full results by city are shown in Tables 5 and 6 in the

supplementary information. The results indicate changing spatial patterns of energy
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demand in the state which will have implications on the grid load and also cost of

energy specifically for cooling demand.

If the urban residential cooling demand competes with industrial demand (in some

parts of Indiana, manufacturing industries such as corn-ethanol manufacturers are the

major consumers of electricity in cooling towers) a major economic pricing issue may

emerge, forming both a social and economic challenge. Hence, it is necessary to have

better and accurate understanding of spatial changes in the energy demand due to

climate change.

Total Energy Demand Projections: If population growth is included we forecast

an increase of energy use for space cooling in the residential sector for urban areas of

Indiana. Heating demand, however, would increase in RCP 4.5 over time and in RCP

8.5 would actually decline as the climate effect overwhelms the effects of population

growth, as shown in Fig. 2.2. Our population predictions are more uncertain for 2080,

however. For overall electricity demand, which increases in both scenarios, inverse

density and population growth dominate the climate effects.

Cooling demand increases vary spatially, as shown in Fig. 2.3. Here it is also clear

that most of the increased cooling demand in both scenarios comes by 2050.

Indianapolis is already a key driver of urban energy demand in Indiana currently

accounting for 41% of Indiana’s urban electricity use, 38% of urban heating, and

42% of urban transportation energy demand, according to our model. The population

and growth trends anticipated over the course of the studied timespan are expected

to intensify this, with Indianapolis driving 48% of Indiana’s urban energy demand by

2080. Indianapolis’ portion of total cooling can also be clearly seen in Fig. 2.3, where

it dominates the contributions. Indianapolis’s increased cooling demand represents

between 44-56% of the total increases in the higher efficiency scenario and 43-50% of

the increases in the same efficiency scenario.

As the heating needs shrink and urban density declines, transportation is expected

to represent an increasing share of the total energy use. Fig. 2.4 shows this change
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over the time periods studied from the S-K model results. The K-M model shows the

same trend, with transport rising from 38% of modeled energy use in 2015 to 46-47%

in 2080.

2.4.1 Limitations and Model Robustness

One of the major limitation of urban energy demand projections is the lack of

data at this level of fine resolution. While most data on energy consumption are

aggregated at state or national scale, energy consumption is centered in urban areas.

Hence, a better energy demand projection responsive to changing factors such as

climate change, economic prosperity, demographics etc, will need to be made at finer

scale such as urban scale. The existing S-K and K-M models were made possible by

projects that supported data collection at such a fine scale and both these studies have

cautioned about the use of these models for non-representative cities. Most statistical

models run into the issue of extrapolation if the models are used for projections beyond

the underlying modeling data. The models used here were based on a global set of

cities with a generally higher population density. To address this limitation and ensure

the applicability of the S-K model to Indiana cities a hidden extrapolation test was

run as used by Singh and Kennedy [33] and also described in [94]. This test defines

the minimal convex area containing all regressor data points and determines whether

the model results fall inside the area, since if they are outside extrapolation takes

place. In the future, fine scale data on urban energy demand would help improve the

applicability of the S-K model, since regressions could be run with regional specificity.

Still, according to the extrapolation test, for 2050 over 90% of the cities modeled are

within the reasonable bounds of the S-K model. As time goes on our uncertainty

about the parameters increases as does the amount of extrapolation present in our

model. All extrapolation test results are provided in Appendix B, section 3, Tables

7-10.
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HDD and CDD are calculated from average monthly temperatures providing an

underestimation if calculated using daily temperatures, since some of the variation is

lost. This means that peaks in temperature are lost, as are any effects from build-up

of temperature. Results from [33] show that this still represents the trends adequately,

although finer time scale resolution will improve accuracy. The urban heat island is

also not fully represented by the temperature forecasts, so may lead to underestimates

of cooling and overestimates of heating demand in urban areas.

Cooling energy use is strongly affected by the efficiency of space cooling equipment.

In the calculations initially done as reported in [63] our baseline data for 2015 was

calculated using an efficiency value of 3.81, hence the trend lines shown here differ in

terms of magnitude in the no efficiency improvement scenario, and in terms of relative

increase in the high efficiency scenario. For 2050 and 2080 projections we relied on

estimates of technological improvements from [87], but this may be conservative. The

high efficiency scenario from GCAM [86] includes an efficiency factor of 7.03 for 2050,

much higher than the factor of 4.02 used in our model. Using this factor for 2050 and

2080 would show decreased cooling demand in all years and scenarios, ranging from a

14% average decrease in 2080 for RCP 8.5 to a decrease of 32% in 2050 for RCP 4.5.

Again there is spatial variability, with the highest increase (26%) shown in Elkhart-

Goshen, one of the northernmost cities with a very moderate climate currently, with a

corresponding decrease of 49% in Kokomo, which for 2015 shows a higher penetration

of air conditioning than more northern cities (RCP 8.5 scenario, 2080).

2.5 Conclusions

Urbanization drives energy demand patterns throughout the world, hence most

countries are now focusing on future strategies based on urban demand changes.

Climate change impacts will differ in urban areas within the same region, however,

due to their specific climatic conditions. Hence, coupling the results from downscaled

climate change models with urban energy demand models is necessary to provide
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reliable information about impact of climate change at fine scale. This will improve

the strategies for addressing climate change impacts.

This work is an initial attempt to understand the spatial changes in energy demand

in Indiana’s urban regions and to quantify the demand changes in response to long-

term projections related to climate change. The underlying temperature changes show

higher maximum and minimum temperatures, with the summer maxima outpacing

other increases. Warmer winters will be seen, with more of the change in winter

happening in the northernmost parts of the state. Indiana’s winter climate loses

some of its spatial variability in cities as the state as a whole becomes much warmer,

see also table S1 in [89]. As described in section 2.4.1, the projected heating or cooling

demand may be lower than seen elsewhere since the CDD and HDD estimated are

reduced when an average monthly temperature is used rather than calculated with

higher temporal resolution. Yet in previous work HDD estimated this way has been

shown to adequately demonstrate the trend. In the case of cooling, we still show all

cities using the maximum cooling energy per capita by the end of the study period.

In terms of energy demand, this means a lower heating but a higher cooling bill.

While we do expect an overall decline in energy costs due to climate change for the

residential sector, a general projection for the commercial sector was not done. If we

consider data from the most recent CBECS report [95] together with our classification

of cities in terms of HDD and CDD by proxy using 2014 real temperatures, Indiana’s

cities move from the category of 11% of electricity in the commercial sector devoted

to cooling to the category of 20-27% of electricity devoted to cooling. Nateghi and

Mukherjee [81] estimated an increase in cooling energy demand for the commercial

sector of 5.1-5.4% during the same model period. So while we were not able to model

the urban portion of the commercial cooling, it is likely to increase.

A recent study that performed a detailed simulation of energy use by buildings in

the eastern region of the US found similar results in terms of overall energy use—lower

heating loads and increased cooling energy use in buildings [82]. They also found,

however, that the additional cooling load would result in additional generation ca-
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pacity needs, particularly in Minnesota, where a projected 23% increase in cooling

would result in more than 100% of increased electricity capacity generation. We have

not studied this issue since we modeled energy demand totals, but spatial trends here

may indicate the need for closer study. By the end of the study period we forecast

a per capita cooling load in northern Indiana cities comparable to current cooling

loads in southern Indiana cities except in the highest efficiency scenario, which may

have ramifications for generation capacity in these areas. In fact, most of the increase

happens by 2050, so within the planning horizon.

The S-K model results show that based on current usage trends, transportation

takes up an increasing portion of the energy usage over time. But this has to be put

in context in terms of other large scale changes that may occur, such as electrification

of transport. Currently electric vehicles make up a small portion of the fleet, but

signs point to a potentially precipitous increase. A recent study [96] looks at the

potential for electric vehicles and the autonomous technology to change the business

model for transportation, causing a rapid shift from the car ownership model to a

transportation services model. Such a shift would allow electric vehicles to act as

storage capacity for renewables.

This study shows that much of Indiana’s energy needs will come in urban cen-

ters, particularly Indianapolis. Transportation will become increasingly important as

heating needs diminish and cooling needs are expected to increase. Improvements in

efficiency may modulate demand increases from cooling.

More data on urban energy demand and usage would be helpful in order to develop

modeling tools with higher spatial resolution. Further, improving the demand change

model to include urban heat island effects would further improve the accuracy of

demand projections. Commercial cooling models are limited as well.
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(a) Heating energy demand in GJ/cap (b) Electricity demand in MWh/cap

(c) Cooling demand with no efficiency improve-

ment

(d) Cooling demand with efficiency gains

Fig. 2.1.: Per capita urban residential and commercial heating and electricity projec-

tions using the revised S-K model for each city are shown in a and b for the RCP

8.5 scenario. The distinction between north and south is with respect to 40 degrees

latitude. Heating demand falls steadily in all cities whereas electricity demand rises.

Urban residential per capita cooling estimates are shown in c and d with and without

efficiency gains. Most cooling demand changes occur by 2050 with smaller changes

through 2080. When efficiency gains are included in some cases, particularly in the

southern cities, cooling demand falls from 2015-2080. Full data for figures as well as

for the RCP 4.5 scenario is available in Appendix B, Tables 3-6.
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(a) Urban electricity demand in Twh (b) Urban heating demand in PJ

Fig. 2.2.: Total electricity and heating demand are shown as modeled by the two

techniques. Electricity shows consistent growth in both models, while heating demand

falls in the RCP 8.5 scenario, even accounting for population growth. Note that in

the K-M model there is no difference between the electricity projections based on

temperature, so RCP 8.5 and 4.5 give the same results. Growth for electricity demand

is also very similar between the two scenarios in the S-K model.
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(a) Total urban residential cooling RCP 4.5, ef-

ficiency gains

(b) Total urban residential cooling RCP 8.5, no

efficiency gains

Fig. 2.3.: Projections for total cooling demand (GWh) by city are shown for the

RCP 4.5 scenario, including the efficiency improvement assumption (so the most

conservative estimate) are shown on the left, to contrast with the most aggressive

estimate given by RCP 8.5 with no efficiency gains, shown at right. The sequence

and shading denote the years in the study. When population is taken into account,

most increases are still primarily seen from 2015-2050, with flatter increases from

2050-2080, and absolute decreases for Evansville, Kokomo and Terre Haute in the

conservative scenario. Indianapolis dominates the total demand here due to its large

population.
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Fig. 2.4.: Changing energy use categories over time forecast using the S-K model.

Forecasts are for residential and commercial energy demand. Electricity should in-

clude cooling, but the projections for cooling are from a different methodology so are

not indicated here. Also, since cooling projections are only for residential, they will

represent a small portion of the total electricity demand shown here.
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3. RELIABILITY VERSUS RENEWABLES: MODELING

COSTS AND REVENUE IN CAISO AND PJM

3.1 Introduction

As climate change concerns have intensified, electrification of industry, transporta-

tion and heating have been explored as possible means to reduce or eliminate green-

house gas emissions from these sectors (see [7, 8] among others). US electric grids,

however, are still based primarily on fossil power production, and renewables ac-

counted for just over 12% of primary energy production in 2018 [9]. As recently as

2018, the majority of new generation added to the grid was natural gas-based [10],

with technology lifetimes that likely extend 30-60 years into the future1.

In their seminal paper, Wüstenhagen et al. posited three critical hurdles for the

adoption of renewable energy technologies: social, community and market acceptance

[14]. Assuming that market acceptance is the limiting factor to the adoption of

renewables, this study compares costs and profitability of generating technologies in

two US markets. The paper is organized as follows: section 3.2 presents background

for the study with literature review. Methods, introducing a framework for the study

and placing it into the testbed regions of the California Independent System Operator

(CAISO) and PJM, are explained in section 3.3. Results are presented in section 3.4,

and discussed and interpreted in Section 3.5. Findings are summarized in section 3.6.

1This is an assumption based on ages of recently retired plants. See [12] for discussion of recent
power plant retirements and probable causes and drivers. Their analysis showed that ages of recently
retired natural gas steam turbines mostly ranged from 40-60 years old, combustion turbines were
40-50 years old, and combined cycle plants were 30-40 years old.
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3.2 Background and Literature Review

Due to the importance of energy for development and meeting basic needs, as

well as to the dynamic nature of the energy system, many models have been devel-

oped, notably MARKAL, TIMES, MESSAGE and TIMER [37]. Cost optimization

is generally the central mechanism of energy systems models, underlying half of the

energy forecasts developed for the 5th meeting of the Intergovernmental Panel on

Climate Change [97]. Real solutions implemented in UK electricity markets deviated

substantially from the cost-optimal solutions projected, however [97].

Joskow noted that while many energy models used levelized cost of electricity

(LCOE) as a comparative metric, metrics such as net present value (NPV) were

needed to account for dispatchability of different technologies [45]. Reichelstein and

Sahoo applied correction factors to the LCOE to account for price differences for

generated electricity [98].

The treatment of individual technologies by cost, environmental and revenue met-

rics is compared. Including the revenue side allows tracking of the hurdles for renew-

able development and the likely paths for the deployment of the renewables transition.

NPV calculations are scarce in the literature. The California Energy Commission [99]

model is specific to California and assumed a different price for each technology ac-

cording to its break-even costs. The National Energy Modeling System is difficult

to adapt to state level analysis and uses proprietary data. The ReEDS model [100]

results are used in the National Renewable Laboratory’s Annual Technology Baseline

(ATB), which does not include NPV estimates and has very limited regionalization.

For the purposes of this study, therefore, a model is developed that integrates the

suggestions of Joskow [45] and Reichelstein and Sahoo [98], but can easily be used to

understand the current situation in PJM and CAISO vis-à-vis commonly considered

generation technologies.

Many US markets have implemented capacity remuneration mechanisms. The

consideration of these mechanisms in the scientific literature tends to focus on theo-
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retical design, with a shortage of empirical data2 Electricity is treated as “perfectly

substitutable” in these works, so welfare considerations assume that no additional

costs are borne by the marketplace regardless of the additional carbon footprint of

the technologies. PJM’s Reliability Pricing Model (RPM) is included, making one of

the only examinations based on empirical data.

3.3 Methods

3.3.1 Testbed

Two US regions with very different profiles are studied. The California Indepen-

dent System Operator (CAISO), powers California and a small area of Nevada. Solar

already provides a large portion of California’s electricity, and coal provides less than

1%. Geothermal and solar thermal technologies are viable here. Capacity is guaran-

teed by obligating load-serving entities to ensure that they have access to the capacity

required by their customers [102]. PJM is the regional transmission organization cov-

ering the Mid-Atlantic extending inward to the Midwest and down to the Southeast.

PJM’s solar PV resource is less favorable than in CAISO, and wind speeds generally

lower than 5.5 m/s [103] leave most of its territory outside traditional hubs for on-

shore wind. Coal mining and hydraulic fracturing are prevalent, with the Marcellus

Shale providing the largest portion of the US natural gas resource. PJM’s generation

mixture has been shifting from roughly 1/3 nuclear, 1/3 coal and 1/3 natural gas

toward natural gas. PJM’s RPM is a capacity auction operating 3 years ahead of

time and with balancing auctions 20, 10 and 3 months before deployment [104].

3.3.2 Modeling Framework

Two methods of are employed to compare generating technologies: LCOE and en-

vironmental cost minimization, and NPV calculations. The optimization is performed

2Empirical data is included in the analysis of [101].
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with no cap on solar PV and onshore wind and then constraining their combined total

at 30%, 50% and 70% of the total to simulate a perceived technical reliability need3.

Various scenarios for NPV calculations are explored: generating lifetimes of 20, 30

and 40 years in both regions, inclusion/exclusion of renewable energy credits (RECs)

in PJM and a consideration of the effects of the minimum offer price rule (MOPR)

extension.

3.3.3 Optimization Description

The optimization is modeled as a discrete problem using a minimization version

of the bounded knapsack problem. Costs include the LCOE, human health scores,

and greenhouse gas emissions4. Genetic algorithms were used to provide a variety of

solutions, thus reflecting the multitude of decision-making processes and the lack of

certainty for costs. The problem is formulated:

min C(x) =
n∑

j=1

m∑
i=1

cixij

s.t.
n∑

j=1

ajxj ≥ D

Sj − xj ≥ 0

xj ≥ 0

(3.1)

Where c represents costs, subscript i represents the type of cost (human health,

greenhouse gas emissions, or LCOE), x is number of plants, for technology j. Available

capacity (nameplate capacity discounted by capacity factor), is denoted by a, and

total demand is D. The supply of a given technology (Sk) must not exceed its limits.

A need of 10,000 MW was selected so that large nuclear plants could still appear.

3The midpoint of 50% was chosen based on the assertion by [105] that a grid with more than 50%
VRE in any instant becomes inverter-dominated.
4Energy return on investment was examined as well as a constraint, but was ultimately excluded
since it turned out not to affect the outcomes (see Appendix C, section C.5 for discussion of this
metric).
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Plant capacities were rounded so that size would not bias adoption. The rounding

mechanism used to determine capacity, p, is shown by:

p =


1 if capname × cf < 5

roundToMultiple(capname × cf, 10) if 5 ≤ capname × cf < 100

roundToMultiple(capname × cf, 50) otherwise

(3.2)

Where capname is the representative nameplate capacity chosen to represent the

given technology, and cf is the average capacity factor for the technology based on

usage data. This gave distributed solar and hydro a p value of 1, whereas other

technologies are multiples of 10 or 50, depending on size.

The VRE constraint is:

vD − asolarxsolar − awindxwind = 0 (3.3)

Where v refers to the portion of demand met by VRE. MATLAB’s multiobjec-

tive optimization toolbox was used, which uses the non-dominated sorting genetic

algorithm II (NSGA II). Parameters are shown in table 3.1.

Table 3.1.: Parameters used for optimization. Link to full code in Appendix C

Parameter Value

Number of experiments 20

Population Size 150

Maximum Generations 200

Tolerance 1e-16

Representation Integer

Crossover Arithmetic mean of two parents, integer

Mutation Gaussian integer



47

3.3.4 Net Present Value

NPV is calculated by adding the discounted profits over the course of the project’s

lifetime (L) as incurred in each time period (t):

NPV =
L∑

t=1

Profitt
(1 + rdisc)t

(3.4)

Where rdisc refers to the discount rate, the after tax weighted average cost of

capital (ATWACC). Profit is calculated according to:

Profitt = Rt − Cvar,t − Cfix,t − Tt (3.5)

Where R is revenue, Cvar is variable costs, Cfix is fixed costs, and T is taxes.

Costs

Fixed Costs

Fixed costs are incurred regardless of how much the plant operates over a given

year. Fixed costs are calculated by:

cfix,t = cOM,t + Tproperty,t + cIns,t (3.6)

Where cIns, t is the insurance cost, Tproperty,t is the property tax, and cOM,t is the

operations and maintenance cost (increasing with inflation), all for t, the year stud-

ied. For all generating types except nuclear, the insurance cost is the product of an

assumed insurance rate with the assessed value of the asset. The assessed value is the

original installed cost (approximated by the overnight cost) with the depreciation de-

ducted. By the end of the generating lifetime (assumed at 30 years for all generation

types), the asset is fully depreciated. Thus, the insurance cost decreases every year.

Insurance costs for nuclear plants are governed by the Price-Anderson Act. Their

costs are estimated at $1.3 million annually per site (increasing with inflation).
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A depreciation schedule for the assessed value for property tax purposes is assumed

and the yearly property tax (ad valorem) is the product of the installed cost, the

depreciation percentage by year, and the property tax rate assumed.

Variable Costs

Variable costs cvar,t depend on the plant’s level of operation. Here they are calcu-

lated by:

cvar,t = cfuel,t + cghg,t (3.7)

Fuel costs, cfuel,t are the product of the heat rate, fuel price and assumed genera-

tion of the technology in the given year. Fuel prices are assumed to rise with inflation.

Greenhouse gas emissions costs cghg,t are the product of generation, GHGe/MWh and

the carbon price in the given area. Carbon prices are assumed to rise with inflation.

Variable operations and maintenance costs are omitted in the interest of parsimony.

Investment Costs

Overnight capital costs are used to represent installation costs. These are financed

by a combination of debt and equity. Investment costs are calculated using MAT-

LAB’s payper function to compute the periodic payment of a loan, so an assumption

is made that the loan payment will be equal for each month in the lifetime of the

loan:

It =
rdebt(OCC ×Debtportion

1− (1 + rdebt)−n
(3.8)

Where rdebt is the interest rate assumed for debt, OCC is the overnight capital

costs, Debtportion refers to the plant’s capital structure, the portion of the OCC paid

by debt, and n is the debt period in years.

State taxes are calculated by:

Tstate,t = rstate × (Incomet − (Intt +Depstate,t)) (3.9)
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Where r refers to the tax rate, Income is the net income, Intt refers to the interest

portion of the debt payment, and Dep refers to the depreciation loss for the given

year. The depreciation lifetime for state taxes is assumed to be 20 years. The total

annual debt payment, It, was calculated in equation 3.8. Its interest portion changes

over time, and is calculated by the following algorithm:

Algorithm 1 Calculate Intt

for t = 1:L do

Interest payment = rdebt× loan amount

Principal portion = It − Intt
Loan amount = Loan amount – Principal portion

end for

The maximum of 0 or the calculated state tax is used.

Federal tax is calculated by:

Tfed,t = rfed × (Incomet − (Intt +Depfed,t)) (3.10)

The depreciation lifetime for federal taxes is assumed to be 5 years, a simplifica-

tion since the recovery period ranges from 5-20 years depending on fuel source, with

renewables and natural gas on the low end and nuclear and coal on the high end [106].

Revenue

Generators receive revenue from electricity sales, resource adequacy commitments,

ancillary services and subsidies. Resource adequacy provisions exist since it is theo-

retically possible for supply to be insufficient to meet demand. California’s resource

adequacy provision is met by load-serving entities. In PJM it is met by the RPM (sec-

tion 3.3.1). Some generation technologies are eligible for subsidies including RECS.

Ancillary services are ignored here since they typically make up a small portion of

the cost of energy (see tables C.2 and C.1 in appendix C).
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Price

Revenue is the product of price and generation. Since electricity prices vary during

the course of the day and the year, electricity prices for a sample of times were taken

for each study area. For each technology, the maximum capacity was approximated

by the highest generation g for the technology in the hours h sampled.

capmax = max
h

g (3.11)

Then, the de facto capacity factor CFD was calculated for each hour:

cfh =
gh
caph

(3.12)

A price indicator coefficient PM for each time period was calculated:

PMh = cfh × Ph (3.13)

The weighted average price was calculated for each technology:

Pavg =

∑
PMh∑
cfh

(3.14)

A price factor for each technology is calculated by dividing its average price by

the overall average price for generation in the region. While this is an approximation,

for CAISO all price-taking generation types received price factors lower than 1, while

opportunistic generation types received price factors greater than 1.

An average capacity price from the past 15 years was assumed, rising with infla-

tion, for PJM’s RPM. REC prices are volatile, and typically decline over time as new

capacity is added (in 2018 the prices were below $10/MWh in all PJM states [107]),

so $0 REC prices for CAISO and $5 REC prices in PJM were assumed for states

with renewable portfolio standards (RPS). Six states (Delaware, Illinois, Maryland,

New Jersey, Ohio, Pennsylvania) in PJM as well as the District of Columbia issue

solar renewable energy credits (SREC), with a price range of $32-$445/MWh [107],

approximated as $200.
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Generation

Generation for energy and REC revenue is calculated by:

gt = capname × cf × (1− Fdegradation,t) (3.15)

Nameplate capacity capname and capacity factor are assumed constant over the

lifetime of the asset with a degradation factor Fdegradation representing the loss of

performance over time. Generating capacity is bid into the RPM according to its

unforced capacity UCAP :

UCAP = ICAP × (1− EFORd) (3.16)

Installed capacity ICAP is the capacity available under peak demand conditions

as determined by tests run at plant sites. EFORd refers to the outage rate for

the particular generating type. Renewables are assumed to have an EFORd of 0,

but their ICAP is established by a flat discount rate on their nameplate capacity

according to PJM (at time of writing 42.0% for solar, 14.7% for onshore wind and

26.0% for offshore wind [108]). In December 2019, the Federal Energy Regulatory

Commission (FERC) ruled that PJM should extend the MOPR to all units eligible

for state subsidies. Affected units must bid into the RPM at the administratively

determined cost of new entry (see table 3.2).

3.3.5 Data

Data requirements are summarized in table C.3 (appendix C). The technolo-

gies were taken from the ATB [109]. Emissions values for air pollution were taken

from [110] and multiplied by International Reference Life Cycle Data System charac-

terization factors in [111]. Capacity factors were based on US EIA statistics [112]. A

higher capacity factor for solar PV is used in CAISO [113]. For PJM, 2018 capacity

factors were used (p. 298 of [104]).
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Table 3.2.: Minimum offers for affected technologies in the RPM

Technology $/MW ICAP/Day

Combustion Turbine $355

Solar PV $387

Combined Cycle $438

Coal $1,023

Hydropower $1,066

Nuclear $1,451

Onshore wind $2,489

Offshore Wind $4,327

NPV Parameters

Discount Rate

The discount rate is key to determining profitability. The ATWACC, which mea-

sures the cost of a capital investment since firms finance investments by a combination

of equity (selling ownership) and loans is calculated by:

ATWACC =
Eq

Eq +Debt
× req +

Debt

Eq +Debt
× rdebt × (1− rtax) (3.17)

Where Eq is the amount of equity, Debt is the amount of debt, req is the rate

for equity, rdebt is debt rate, and rtax is the tax rate. Ideally, discounting should be

project-specific and not company-specific ATWACC [117]. While firms have different

costs of capital, many costs (fuel) are the same for everyone. Loan payment amounts

are known with high certainty. Some fuel costs fluctuate in cycles with the market,

and some counter to the market [117]. Still, these fluctuations are difficult to predict.

The persistently volatile natural gas price is no longer as closely linked to oil prices

as in the past [118], and in fact in the US is set primarily by competition with other

gas supplies [119]. It is also not clear that oil prices maintain a negative covariance
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Table 3.3.: Parameters required for discount rate calculations from literature and as

used in model, shown on the right. PJM literature values from [114,115].

Literature values Model

PJM PJMa PJMb PJM CAISO Source

2013 2018 2018

Return on Equity 13.80% 15.00% 12.80% 11.95% 11.95% calculated

Cost of Debt 7.00% 7.50% 6.50% 6.50% 6.50% assumed

Capital Structure

Debt Weight 60% 55% 65% 55% 55% assumed

Equity Weight 40% 45% 35% 45% 45% assumed

Tax Rate 40.50% 29.25% 29.25% 29.25% 30.04% current

Risk-free Rate 3.40% 4.00% 3.50% 4% 4% c

Market Risk Premium 6.50% 6.90% 6.90% 5.00% 5.00% d

Implied Beta 1.6 1.59 1.35 1.59 1.59 assumed

Asset Beta 0.85 0.85 0.58 0.85 0.85 calculated

WACC 9.70% 10.90% 8.70% 9.00% 9.00% calculated

ATWACC 8.00% 9.70% 7.50% 7.90% 7.90% calculated

a from [114]

b from [115]

c 2% bond return + 2% inflation

d from [116]

with the economy (see [120]). Firm-wide discount rates such as ATWACC are biased

towards higher risk-higher return projects at the expense of lower risk-lower return

projects that still have an acceptable payoff [55]. Nevertheless, many firms still use a

single discount rate to avoid special treatment for preferred projects [55]. Firms do

frequently apply an additional percentage to the ATWACC to account for unknown

risks, leading to a higher rate [55].
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The ATWACC represents the market perception of the liabilities of the firm [55].

An investor’s true cost of capital cannot be directly measured [116], and therefore it is

the product of subjective decisions by modelers. Still, the ATWACC will be roughly

equal to the long-term return on invested capital [116], so can be checked against this

trend. The ATWACC depends on four principal components: the capital structure,

that is the percentage of capital to be raised by equity and the percentage that comes

from debt; the cost of equity; the cost of debt; and the tax rate. Of these, the easiest

to pinpoint is the tax rate, because while it varies, the rate is fixed and published.

The cost of equity is usually estimated using the capital asset pricing model:

req = rf + βi(E(Rm)− rf ) (3.18)

Where rf is the risk-free rate of return, βi is the unlevered asset beta, or the

similarity of the risk profile of the given investment to the overall market risk profile,

and the difference (E(Rm) − rf ) is the market risk premium, since E(Rm) is the

expected market return. The parameters given in table 3 are used to estimate re. The

risk-free rate is estimated using a long-term bond return of 2% [116] summed with

the inflation rate of 2% used in the model. A risk premium of 5% is assumed [116].

The beta value used has been approved in other energy filings by FERC [114]. It is

higher than values generally found for either utilities (0.5-0.7) or integrated oil and

gas (0.7-0.8) (exhibit 13.9 in [116]), so it can be considered a smoothed beta value.

The cost of debt is dynamic, but bond rates are published. Each firm has a bond

rating, and an average, which may not correspond to a particular project, is used. A

cost of debt of 6.5% [115] gives a WACC of 9% for both regions and an ATWACC of

7.9%. This is in keeping with historical ROIC rates for utilities, although higher, so

represents a mixture of utilities and energy services companies.
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Other Parameters

An inflation factor of 2% is used. Higher inflation rates make generation more

profitable. Inflation rates vary over time, and no thirty-year period is seen with a

constant inflation rate or one consistently between 1-3%. Electricity prices are mean-

reverting [121] but volatile due to the need to balance supply and demand. Hence,

electricity prices are based on the weighted average price for PJM and CAISO from

their respective reporting [104,122]. The methodology for the price factor derivations

has been explained above, and documentation is available in the appendix.

The average PJM capacity price over the period 2007-2022 was used, increasing

with inflation. Using a stochastic capacity price did not change results for profitability

significantly. Prices for greenhouse gas permits were initially set at $17/t rising with

inflation based on prices in [123].

3.3.6 Verification

Results were compared with data from the EIA form 860, which records planned

generation over 1 MW in the US by state and county [124]. For CAISO, data from all

planned generation in California was used. Only planned generation in the counties

also covered by PJM (see table C.8 appendix C) was used for states with less than

50% coverage by PJM.

3.4 Results

Optimization results representing all unique best solutions (Pareto front) from

twenty runs are shown in a histogram in Fig. 3.1. For comparison purposes, scenarios

constraining VRE to 30%, 50% and 70% of the total need (using LCOE Mid) were also

run. Solar PV has the highest amount of installation when no VRE constraints are

used, and solar PV, nuclear and wind show up in over 70% of scenarios. The use of the

mid-range LCOE versus overnight costs is most important for hydropower. Natural
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(a) No VRE Constraints (b) VRE Constraints

Fig. 3.1.: Histogram showing the total amount of available capacity installed over 20

runs of optimization model from unique solutions in the Pareto set based on national

figures. On the left, results are not constrained by Eq. 3. On the right, the total

contribution from solar PV (including commercial and residential) and onshore wind

is constrained to no more than 30%, 50%, or 70% of the total.

gas is the most popular technology choice in VRE constrained scenarios. The NPV

for each technology in both study areas is shown in Fig. 3.2. A range of generating

lifetimes is shown in CAISO since many firms make decisions with a shorter payback

period, and assets may be kept operational for longer than the standard timeline. In

CAISO, solar PV, wind and natural gas combined cycle (NGCC) plants are profitable

in the model. In PJM, solar PV and NGCC are profitable in all scenarios. Due to

the higher capacity prices anticipated with the extension of the MOPR, NG CT

becomes profitable in PJM. Biomass, coal with carbon capture, and offshore wind

are the least profitable in both areas. Local sensitivity analysis results are shown in
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(a) CAISO (b) PJM

Fig. 3.2.: CAISO profitability with 20, 30 and 40 year lifetimes is shown on the left.

PJM profitability is on the right, including the baseline scenario, the MOPR with a

low threshold for entry into the RPM, with RECs (states with RPS).

Fig. 3.3. For PJM the analysis was run on the scenario with no expanded MOPR

with capacity prices awarded to all technologies. All variables were changed by 10%

and the change in costs or revenues were estimated in $/kw-yr as well as percentage.
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The dollar amount can be compared across all categories to give a sense of the relative

magnitude of a change in the variable. Variables greater or equal than 10% include

installed costs, discount rate, capacity factor and price. Installed costs are the most

sensitive variable in both regions, both in terms of percentage and dollar amount.

Capacity prices are not particularly sensitive, with a 10% change shifting revenues

on average just 1.4%. This is not evenly distributed since natural gas combustion

turbine (NG CT) changes the most at 4.4% and wind changes the least, less than 1%.

Verification shows that model results track closely with the planned generation

for California and the PJM area as of 2017 (Fig. 3.4). In PJM, 88.7% of the planned

generation and 83% of the planned generation capacity in CAISO were profitable ac-

cording to the model. In PJM, NGCC, solar PV, NG CT and onshore wind accounted

for 97.2% of planned generation, with over 85% NGCC. In CAISO the majority was

solar PV, followed by NGCC and NG CT. The rankings were similar in the planned

generation versus the model.

3.5 Discussion

3.5.1 Overview

This study examines the electricity markets in CAISO and PJM to demonstrate

how technologies fare in terms of cost and profitability. It confirms that NPV performs

better than LCOE as a predictor of technology adoption. It shows how revenue

streams, including prices, capacity markets and RECs, which do not appear in LCOE

calculations, are important to the adoption rate of renewables and conversely to

the establishment of natural gas-based power plants. This study adds weight to

criticisms of capacity markets as barriers to renewables, since results show that the

RPM bolsters natural gas with respect to other technologies. The model provides a

helpful tool for further studies as changes to the capacity market represent a complex

policy topic.
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Fig. 3.3.: Response to a 10% perturbation in variable value, shown in CAISO and

PJM, variables ordered by the $ amount change in PJM. The percentage refers to

either the total revenue or total costs, depending on the variable. Revenue is affected

by: Discount Rate – R, Capacity Price, Price, Capacity Factor – R, and Inflation

– R. Costs are affected by: Installed Costs, Discount Rate – C, Fuel Cost, O&M,

Interest Rate, Capacity Factor – C, Ad Valorem, Inflation – C, Insurance, State Tax

and GHG emissions. For taxes, which do not appear on either revenue or costs, the

NPV is used.
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Fig. 3.4.: New capacity additions planned in PJM territory and California as of 2017,

according to EIA Form 860 (does not include pre-existing generation assets).
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Considering technologies on the basis of environmental costs and LCOE alone led

to a wide variety of options, with solar and nuclear adopted the most. A reliability

assumption modeled by hard constraints of 30%, 50% or 70% VRE made natural gas

the most frequently chosen technology. The unconstrained optimization results do

not bear a close resemblance to the capacity additions planned in each region since

they factor in environmental costs and do not include revenue. Nuclear fared well in

the cost optimization but not in the NPV calculations or planned implementation.

The NPV assessment predicted planned generation capacity expansion well. It

showed that most profitable power plants rely in part on additional revenue streams

such as RECs or capacity remuneration. The absences of coal-based generation and

carbon capture and storage technologies from planned generation in PJM are sup-

ported since they are not profitable in the model, even when assigned higher capacity

prices.

3.5.2 Differences between CAISO and PJM

NGCC and solar PV are profitable in both CAISO and PJM, yet verification data

shows less installation of NGCC and more installation of solar PV in CAISO. This

is due to a combination of factors, including relative profitability. Wind is profitable

in CAISO and NG CT is profitable in PJM. Still, NG CT is installed at a higher

proportion in CAISO. Although capacity markets are not present in CAISO and

accordingly the cost of energy is lower (see table C.2), private reliability contracts

are made with prices similar to those of PJM (recent prices hovered between $2.87-

$3.25 /kW-month [125]). NG CT benefits from these contracts and retains its level

of profitability with a very low assumed capacity factor (8% in CAISO and 6.9% in

PJM). Thus in CAISO, where renewable mandates are increasing, NG CT is a better

bet than NGCC. In PJM, there seems to be little risk of NGCC being forced out due

to RPS. Also, higher profit margins due to capacity markets, even at low generating
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lifetimes, make NGCC a safer investment in PJM. NGCC shows profitability above

$500/kw-yr in all scenarios.

Revenue complicates the picture for solar PV, the lowest cost technology. In both

regions, the model predicts that solar PV receives lower than average prices. In

CAISO this is partially due to the high adoption of solar. In PJM it is due to a price

peak in January when little solar power was available, reducing its ability to take

advantage of the highest prices. The lack of opportunism will continue to hamper the

attractiveness of solar generation without storage.

In certain regions of PJM, the directed policy of SRECS has led to a very high

upside for solar PV. Therefore, the adoption of solar PV in PJM will likely be guided

mostly by the presence of RPS that provide additional incentives for solar energy. The

model probably overestimates SREC revenues since they will decrease unpredictably

over time as solar penetration increases. NGCC is more profitable than solar PV in

PJM states with no SRECs due to the higher prices NGCC receives as well as its

better position in capacity markets.

The low profitability of generation capacity (no generating technology shows prof-

itability above $500/kw-yr in CAISO) makes it easy to understand why California

utilities are looking at getting out of generation [126]. It also demonstrates why Cali-

fornia may seek innovative solutions to the problem of peak demand, like the Building

Initiative for Low-Emissions Development (BUILD) and Technology and Equipment

for Clean Heating (TECH). In PJM, carbon pricing and RPS are applied only in

parts of the coverage area. Lower prices for wind, low resource availability, and low

qualification for capacity revenue led to wind’s lack of profitability in PJM. Higher

capacity prices in PJM under the extended MOPR are expected to bolster natural

gas plants, particularly as compared to wind. This focus occurs because higher costs

for many technologies excludes them from receiving capacity auction bids, and be-

cause the high UCAP classification for natural gas plants qualifies them for higher

payments than renewables.
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3.5.3 Capacity Markets as a Barrier for Renewables

Resource adequacy is a single dimension issue of grid reliability. Markets cannot

adequately compensate firms for the provision of reliability due to “missing money”

in the case of blackouts [44]. Thus, capacity markets exist to correct a market failure.

PJM’s capacity market should provide the shortfall between energy market revenue

and the fixed costs of the least expensive dispatchable technology [127].

Much literature about the need for and proper design of capacity markets [101,

102, 128–130] considers electricity as perfectly substitutable, thereby excluding en-

vironmental and social costs. Additional context, including political climate and

transmission, is also excluded. A system free from corruption, with all necessary in-

frastructure to ensure the availability of the basic service of power generation can also

be called “resilience” [131]. In fact, most blackouts, or losses of reliability, are not

due to adverse weather events, pointing more frequently to distribution level failures

and aging infrastructure rather than resource inadequacy [131,132]. Silverstein et al.

suggest a framework for evaluating reliability aids, finding that capacity remuneration

tends to have “low value” from the consumer side [131].

This study shows that capacity markets in PJM aid profitability of natural gas

based generation more than renewables. Solar PV is only the most profitable tech-

nology when it can rely on highly priced SRECs. Hydropower and nuclear arose fre-

quently in the optimization results, but are not profitable, and only benefit from the

MOPR extension in states with no RPS, or in the case that they are more profitable

already than other plants of their type. Therefore, the results and model contribute

to questions regarding the efficacy of capacity markets. The high correspondence of

NGCC installation (see Fig. 3.4) to the desirability in the constrained optimization

scenarios (right side of Fig. 3.1) suggests that PJM incentives match the ideas repre-

sented by these constraints. Given that states and taxpayers already pay billions of

dollars to support the installation of renewables in many parts of the region via RPS,

any inconsistency with overall goals needs to be examined.
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Solar PV is aided by the PJM capacity markets, receiving a higher capacity credit

than would be expected in bilateral power purchase agreements based on capacity

factor. Wind’s capacity credit is lower than its straight capacity factor. Still, for

renewables to offer the same level of reliability as fossil plants, a storage block must

be added to form a hybrid system. In PJM, while the UCAP of 10 hours of storage

can be added to the UCAP of the solar resource in hybrid systems [133]; the total

UCAP will still fall below a typical value for a fossil-based system.

The cost of energy in PJM is higher than in CAISO. PJM estimates that the cost

is primarily from energy prices, with reliability capacity making up roughly 20% of

energy costs between 2014-2018 (calculations from data in [104]. In CAISO, which

showed a lower cost of energy, reliability makes up a negligible proportion of total

costs (¡1%) [122]. Higher costs in markets with capacity remuneration were previously

noted by [101], who showed in his model that a capacity market increased prices 55-

61% accompanied by a 1.3-1.4% decrease in consumer surplus. He supported this

theoretical case with data comparing prices in ERCOT with ISO-New England. If

a capacity market also increases the relative penetration of conventionals, additional

harm can be assessed.

Low carbon prices are present in the PJM regional greenhouse gas initiative states.

Expanding carbon prices to other states would increase the cost of generation for fossil

plants, further driving up capacity prices. Thus, carbon prices may not be a logical

policy mechanism here; capacity markets ask consumers to pay a price for fossil fuels’

intrinsic benefit of dispatchability while carbon prices charge even more for their

intrinsic cost in terms of global warming potential. This may be further complicated

by the expanded MOPR, as discussed next.

3.5.4 MOPR Expansion

Three scenarios for the expanded MOPR were included to allow some exploration

of probable costs and implications, as well as providing a tool for further study. Pre-
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vious versions of the FERC ruling were estimated to cost an additional $1-7 billion5,

a cost borne by consumers in addition to state level subsidies. The FERC has been

concerned about the inclusion of subsidized energy sources in the market distorting

prices [137]. This concern is illustrated in the scenarios without the MOPR, where

NG CT is not profitable. The effects of the MOPR extension on the profitability

of technologies in states subject to and not subject to RPS are shown in Figs. 3.5

and 3.6. Producers in states not subject to an RPS may benefit from the higher capac-

ity prices regardless of technology. In states with an RPS, only lower cost technologies

are bolstered.

High reserve margins of 20+% mean that capacity prices support the addition of

plants whose electricity is seldom used, particularly if their marginal costs are higher

than average. When reliability is considered a limiting factor for the expansion of

VRE’s (constraint-based optimization scenarios), NGCC plants are a rational choice.

Still, ratepayers have not directly chosen these constraints. The additional cost of

$236-$310/kw-yr for each NGCC plant is borne by consumers, who might make a

different choice if they could. In this sense the expanded MOPR acts as a subsidy

to counteract subsidies like RECs that bolster renewables. According to the recent

report on the costs of hybrid systems [138], the cost of a 60 MW/240 MWh battery

storage system that can be paired with a 100 MW PV system is $91 million, which if

divided over a lifetime of 15 years (see [139]), works out to just over $100/kw-yr for

the battery storage needed for pairing with solar.

3.5.5 Limitations

Considering two complex regions made a high degree of simplification necessary.

Particular power generation projects in either area may be subject to different in-

centives and hurdles. The high sensitivity to many variables that cannot be known

5See [134] for an estimate of $5.7 billion for a hypothesized version of the FERC ruling, contested
by an industry group in [135] who estimated costs at “well below the $2.2 billion annual cost” that
they ascribe to subsidies to coal, nuclear and renewable plants. This caused a rebuttal that said
costs might be higher than $6.9 billion/year [136]
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Fig. 3.5.: Increases in the NPV for each technology due to the expanded MOPR in

states with no RPS, with no assumption made as to the ability of the asset to receive

a winning bid. The color code refers to the lifetime of the asset, with more gains to

the technology on a cumulative basis.
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Fig. 3.6.: Two scenarios for the extension of the MOPR in states subject to RPS. On

the left, only NGCC, NG CT, and solar PV plants win bids in the RPM auction, so

their NPV is bolstered. On the right, supercritical coal and nuclear plants also win

capacity income.

with high certainty suggests that policy options should be explored using scenarios.

Installed costs are key, and have a high variability based on location. In PJM both

NG CT and solar PV show as more profitable than wind, which has a higher level of

planned implementation in the verification data. In 2017, however, solar costs were

much higher, and the Renewable Electricity Production Tax Credit was still in effect

for wind generation. The rapid drop in costs as renewable technology matures adds

an option value to waiting, which is not taken into account here.
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3.6 Conclusions

The movement to strengthen renewables in California reflects a set of assumptions

that contrasts with the high value placed on reliability in the form of excess capacity in

PJM. While California’s policies resulted from referenda, however, the PJM capacity

market reforms come from technocratic processes. The lack of clarity about tradeoffs

explains controversy surrounding the recent FERC decision to apply the MOPR more

broadly.

Since capacity markets have been adopted throughout most of the US, it is ap-

propriate to ask whether additional markets should be added to value benefits that

renewables are supposed to bring to the table, such as lower pollution, reduction of

greenhouse gas emissions, early adoption of technology, and a hedge against volatile

or high fuel prices. In a sense, RECs do this, but they are not universally adopted,

and besides solar RECS, have had low prices. REC prices may decline further as

renewables become more widely adopted. Considering the high price tag that PJM

customers will be paying for the extension of the MOPR as well as the higher energy

prices they are already paying with respect to energy only market customers, carbon

taxes would further increase the amount that consumers have to pay for the good of

reliability.

Many companies have announced contracts with renewable energy companies to

achieve targets for renewables in their own energy mix [140]. This is unsurprising

because solar PV and wind offer low costs as well as price risk reductions. The

revenue structure in PJM gives an advantage to fossil resources due to their ability

to serve as flexible peak demand. Storage associated with renewables could provide

the same need (although long-term storage is still necessary in many cases), as could

adaptive energy use by industry.

Profitability metrics account for a large portion of capacity adoption decisions.

Work using portfolio approaches is also needed to better approach market outcomes.

More transparency in California’s reliability contracts would be helpful for verification
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purposes. High sensitivity to many variables highlights the need for scenario-based

approaches.
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4. QUANTIFYING BARRIERS TO MARKET

ACCEPTANCE OF RENEWABLES: A PORTFOLIO

OPTIMIZATION APPROACH

4.1 Introduction and Background: Social Acceptance of Renewables and

the Use of Portfolio Optimization

The perception of risks surrounding global warming have triggered large-scale

investments in renewable energy and speculation about requirements for an energy

system powered entirely by renewables [5, 6]. Wüstenhagen et al. [14] grouped hur-

dles to the adoption of renewables into barriers to social, community and market

acceptance. Market acceptance refers to the willingness of people in their capacity as

consumers, firms and investors to adopt renewables. In the US, polling shows high

public support for renewables. While barriers to the acceptance of particular projects

may exist at a local and community level, that seems unlikely to explain the slow

adoption of renewables. American utilities show lower adoption of renewables than

the public would like, however. This makes it logical to explore a scenario in which

market acceptance is the limiting factor for the spread of renewables.

Economic theory predicts that people adopt the best solution available based on

available information. In the short term, however, market failures exist where particu-

lar problems have not yet been priced, and thus incentives present in the marketplace

can lead to negative results. Sustainability is one such example, since the needs of

future generations are heavily discounted by the market and governments (Solow,

1991). Ayres et al. pointed out that weak sustainability, the idea that natural and

human capital are substitutable, ignores the biological nature of humankind [141].

Sustainability approaches typically consider a triple bottom line [26, 142], and thus

include economic, social and environmental concerns. Since sustainability is some-
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times a vague concept, and can be either “weak” or “strong”, the assumptions made

in assigning sustainability scores must be explicit as to what is and is not included.

Considering that there is a strong social impetus to move towards more sustainable

energy solutions means that market failures here are particularly problematic since

they lead to equipment being installed today that will either be used for a long time

(thus causing problems with carbon “lock-in”) or else cause stranded assets whose

costs will largely be borne by the public.

The overall methodology is depicted in Fig. 4.1. First, cost and risk are used

to select the most attractive portfolios from a market perspective. Then, the most

sustainable portfolios, balancing the ability to meet current needs in an equitable

and harmless manner with implications for future generations, are identified. This

may be the first use of the portfolio optimization with sustainability, and offers a

useful framework for identifying technologies that may be favored over the long-

term. Because of concerns about the intermittent nature of variable renewable energy

(VRE) and the current lack of long-term storage, scenarios with limits on VRE as

30%, 50% and 70% of the total portfolio are considered. The differences between

these marketable and sustainable portfolios are considered to be barriers or boosts to

market acceptance. Policies may be enacted to lower costs to eliminate barriers, and

policies that currently allow market boosts may be vulnerable.

Optimal generating portfolios are found for two US regions: The Mid-Atlantic

and California. The regions represent very different areas in terms of renewable and

fossil resource potential and policies. Originally an acronym for Pennsylvania New

Jersey Maryland, PJM is the regional transmission organization functioning in the

Mid-Atlantic region of the US. PJM has been powered primarily by a mixture of coal,

natural gas and nuclear with very little renewables. It covers parts of 13 states and

the District of Columbia. The California Independent System Operator (CAISO)

powers most of California and a small part of Nevada with a high penetration of

renewables.
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Fig. 4.1.: Summary of approach to quantifying barriers to market acceptance of renew-

ables and identifying desirable portfolios from market and sustainability perspectives

taken in this paper.
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4.2 Methods

4.2.1 Data

The potential renewable resources available to the two regions considered are

presented in table While there are no limits on the amount of coal or natural gas

available per year, PJM states have extensive coal mining and gas drilling activity

and reserves, whereas California does not. California mandates 100% renewables

for electricity by 2045, whereas PJM has varying renewable portfolio standards. In

California, new nuclear power plants cannot be built until a spent fuel disposal method

has been enacted. The total generation in California’s 2018 energy mix was 285,488

GWh, which, if all units ran at 100% capacity factor, would require 32,589 MW

of capacity. Due to the short distance the continental shelf extends beyond the

coastline of most of California, the offshore wind resource is located mostly in deeper

waters, which make its development much more expensive. Likewise, while California

has a very high potential for onshore wind, the resources are concentrated in less

desirable areas (according to National Renewable Energy Laboratory classification,

techno-resource groups 6-10). Table shows that onshore wind, offshore wind, solar

PV, or solar thermal have the potential to meet electricity needs, whereas the other

technologies can make only a partial contribution. Still, additions in any one year

could be made up entirely of any one of the technologies.

In PJM, the total generation for 2018 was 806,546 GWh. Onshore wind, any of

the offshore wind types, or solar photovoltaic (PV) could meet 100% of the total

needs, but new hydropower could make up only 9% of the total matrix and biopower

could make up only 18% of the total. Note that 70% of the offshore wind potential for

PJM is from North Carolina and Michigan, however. Onshore wind resources come

from the higher cost techno-resource groups, as in California.
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Table 4.1.: Potential technical resources for renewable technologies in regions. These

are conservative estimates since they cover the entire states: NV and CA in CAISO,

and DE, IL, IN, KY, MD, MI, NJ, NC, OH, PA, TN, VA, WV and DC for PJM.

The solar PV figures are an underestimate since they are based on technical potential

from 2012.

CAISO PJM

Potential % CA Potential % PJM CF

GW TWh 2018 GW TWh 2018

Onshore Winda 771 2,365 100% 1,131 3,467 100% 0.35

Offshore Windb (S) 4 17 6% 440 1,734 100% 0.45

Offshore Windb (M) 10 41 14% 259 1,022 100% 0.45

Offshore Windb (D) 573 2,259 100% 424 1,671 100% 0.45

Solar PVc 7,864 17,741 100% 21,223 34,537 100%

Solar Thermal 5,251 23,000d 100% - - 0% 0.5

Geothermale 6 45 16% - - 0% 0.9

Hydropowerf 4 20 7% 14 73 9% 0.6

Biomassc 4 29 10% 17 144 18%

a From [143]

b From [144]

c From [145]

d From [146]. California figure only.

e From [147]

f From [148,149]

4.2.2 Portfolio optimization in energy planning literature

Portfolio optimization was introduced into energy planning literature by Shimon

Awerbuch in a series of papers (although it had been used sporadically before his

work). The procedure used by Awerbuch is summarized elegantly in the review of
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portfolio optimization approaches by de Llano Paz et al. [150]. The total risk of a

portfolio can be estimated using equation 4.1 from [151]:

Rportfolio =

√√√√ N∑
i=1

N∑
j=1

xixjρijσiσj (4.1)

Where x refers to the respective weights of items i and j in the total portfolio,

ρ refers to the correlation between the two items, and σ is the calculated risk for

each item. In the case of this work, the items are technologies. The x value is found

by optimization, or if the value is known for an existing or hypothetical portfolio, it

can be used with equation 4.1 to find the score. Quantification of risk and expected

return is discussed in sections 4.2.3 and 4.2.4, after the data collection process.

4.2.3 Return

Return is frequently modeled as the inverse of cost, although internal rate of

return and net present value have also been used [150]. In this work, returns are

approximated by levelized costs from the 2019 Annual Technology Baseline [152],

which is appropriate since planners typically use the cost side [153]. Previous work

has shown that the revenue side significantly changes the return of technologies [154].

Still, return can give either positive or negative values, so does not allow for easy

comparisons between the technologies [150].

4.2.4 Quantifying Technology Cost Risk

Each technology’s costs can be divided into individual cost streams, each of which

has its own variability but whose movements may also be correlated with the vari-

ability of other cost streams. Then, the total risk for a single technology can be

calculated by equation 4.2, where s and t refer to the individual cost streams for a

single technology:
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σi =

√√√√ M∑
s=1

M∑
t=1

xi,sxi,tρi,stσi,sσi,t (4.2)

The cost stream categories used by Awerbuch and Yang [22] as well as [151] are

used: investment costs, operations and maintenance (O&M), CO2 and fuel. A model

documented in [154] is used to estimate the proportion of costs xi,s in each category

for each technology and region (x values are shown in Table D.1 of appendix D). The

O&M category refers to all fixed costs, including insurance and ad valorem as well as

fixed O&M. Variable O&M is excluded in interest of parsimony because of its very

low proportion of total costs.

The volatility risk factor for a given cost used is the standard deviation of holding

period returns [22,117,155]. Holding period returns are calculated by equation 4.3:

HPR =
EV −BV

BV
(4.3)

HPR refers to holding period returns, EV is the ending value for the time period

studied, and BV is the beginning value. The sample standard deviation is used in

the calculations throughout this work. Table D.2 collects the risk factors for the cost

categories examined.

In most cases the correlation between cost categories is assumed to be zero, and

is 1 for the same category, giving the identity matrix for ρ except for nonzero values

between the fuel and carbon categories. The correlations between the fuels and car-

bon have been calculated and are available in Table D.3 of appendix D. Using the

cost proportions from Table D.1, the cost stream risks from Table D.2, and the cor-

relations from Table D.3, the risks for each technology are calculated and are shown

in Table D.4 of appendix D.
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4.2.5 Correlation between Cost Categories and Technologies

Cost Categories

While section 4.2.4 provides all the information necessary to calculate the value

for each technology, it is still necessary to calculate the correlation between technolo-

gies, ρij in equation 4.1. As mentioned above, correlation between cost categories for

a single technology can generally be ignored, with the exception of fuel/carbon costs.

When two different technologies are considered, however, correlation is more compli-

cated. Fuel costs for two different technologies may be negatively correlated or may

have a correlation of zero. Likewise, O&M costs may not have a perfect correlation

between technologies, since the composition of the cost as well as the component parts

may vary between technologies. Still, the capital costs and carbon costs should be

close to perfectly correlated. This means that between any two technologies, a corre-

lation matrix can be constructed that resembles the four by four identity matrix, but

can include values between -1 and 1 for fuel/fuel, fuel/carbon and O&M/O&M cor-

relation. Values used for these matrices are shown in Table D.3 and Table D.5 of the

supplemental data files (note that these tables can be used for both the correlations

for a single technology, as used in section 4.2.4, and between technologies).

The correlation coefficients are calculated from publicly available data. The stan-

dard error is high for each since the time series are short. Still, it is easy to replicate,

and values should be recalculated if future researchers wish to use this method.

Awerbuch and Yang defined the correlation between O&M for different fuel types,

basing it on analysis of the data captured in the Form 1 collected by the US Federal

Energy Regulatory Commission detailing operating expenses for generating plants

[22]. This is tabulated in table 8.4 of the annual electricity report issued by the

US Energy Information Administration. Still, this form provides cost data primarily

for nuclear, fossil steam, hydro-electric and gas turbine plants. It does not include

renewables. For renewables such as solar PV, a much shorter time frame for empirical

data on costs is available.
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For wind, O&M costs are most highly correlated with the age of the plants [156],

demonstrating that it is not appropriate to compare empirical data on a developing

technology’s operating costs with those of a mature technology in order to determine

correlation for future projections. On one hand, the drivers of the costs are different

since one is driven by the technological development. Still, labor costs likely experi-

ence similar trends between technologies. Also, O&M is used as a proxy for all fixed

costs, which in some cases are dominated by insurance and ad valorem. Those are

also similar between technologies unless there is an exemption (in the US, nuclear has

a different framework for insurance, and solar has a 90% exemption from ad valorem

in CAISO, one of the markets studied). Fossil generation with carbon capture and

storage (CCS) have not yet been commercially implemented, so a 90% correlation

with their corresponding fossil fuel type is assumed.

Thus, the correlation coefficients for O&M by technology are calculated from Form

1 data over the past 11 years, while the correlation between renewables technologies

and all other technologies are assumed as 0.6, a moderate correlation. The O&M

correlation factors are shown in Table D.5 of appendix D.

4.2.6 Deriving Single Values for Correlation

Having assembled the necessary data to construct correlation matrices between

any two technologies, it is still necessary to estimate a single ρij value. Three ap-

proaches to estimating correlation between different technologies were found in the

literature. Garcia et al. assumed zero cross-technology correlations [157]. This is

the simplest method of correlation, but it does not allow the benefits of portfolio

optimization to be used. Awerbuch pointed out that one of the key advantages to

renewables was their lack of correlation with fossil fuel based technologies [117]. This

seems particularly relevant today since in the PJM market there has recently been

almost a 1:1 correlation between natural gas prices and energy prices, so renewables

may provide a shield against natural gas price volatility.
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Arnesano et al. proposed using the determinants of the cost correlation matrices

between each technology pair as the correlation factors for the technologies [151].

The determinant method has a weakness, in that if, for example, fuel/fuel correlation

is equal to zero, as between renewables and natural gas, the determinant is zero,

while there may still be high correlation in non-fuel costs. The correlation matrix

resulting from the determinant method are similar to those of Garcia et al. [157], as in

their work the correlation matrix consists primarily of near-zero correlations between

all technology pairs except those using the same fuel type (the highest correlation

coefficient between technologies not sharing the same fuel type in their matrix is

0.07).

De Llano Paz et al. assumed that correlations are additive, including any ex-

isting correlation and adding the term to the next existing correlation [158]. They

assigned a technology risk factor without weighting by cost. They assumed that all

correlations between cost types not equal to each other are zero, so only consider

the correlation between O&M costs and between fuel costs that vary from 1. Ear-

lier, the only nonzero, non-diagonal component was the correlation between CO2/fuel

costs. Still, this is not insignificant since in the case of natural gas, for example, the

CO2 costs are close to 20% of estimated costs in CAISO. Some complementary cost,

such as decommissioning/waste management costs for nuclear plants, costs due to

intermittency of wind and solar generation (not clear as to how these costs are de-

termined), and transport/storage costs for CCS were also included. In this paper

such costs are part of O&M (fixed) costs for these technologies. De Llano Paz et al.’s

approach [158] does not directly generate a correlation matrix. This approach has

the weakness of being quite complex, and as the correlation is calculated each time

in the optimization, it is much less computationally efficient.

To counteract the complexity of the method outlined in De Llano Paz et al. and

the frequent zero correlations in Arnesano et al., a fourth method is proposed, the

scaled matrix method. The cost proportions of each technology are used along with

the correlation matrix between the two technologies to generate a scalar value for the
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correlation. Each technology has a vector of costs, Ct,i and technology j has its own

vector of costs, Ct,j. As mentioned previously, the cost types have correlations, which

are shown in matrix Ccorri,j. A different Ccorr matrix is formed between every two

technologies considered. Thus, ρij for each pair is calculated by equation 4.4:

ρij = Ct,i × Ccorri,j × C>t,j (4.4)

Correlation matrices for the problem considered here are included in the data

files using the determinant method as described in Arnesano et al. [151] (Tables D.6

and D.7, appendix D) and using the scaled matrix method (Tables D.8 and D.9,

appendix D).

4.2.7 Optimization Problem and Approach

The optimization problem for cost and risk is a minimization as follows:

min F (x) ≡

√√√√ N∑
i=1

N∑
j=1

xixjρijσiσj,
N∑
k=1

ckxk

s.t. x1 + x2 + · · ·+ xN = 1

0 ≤ xm ≤ 1

(4.5)

In the case where the additive (de Llano – Paz) method is used, the objective

function is:

min F (x) ≡

√√√√ N∑
t=1

x2tσ
2
t +

N∑
t1=1

N∑
t2=1,t1 6=t2

2xt1xt2ρ
O&M
t1,t2 σ

O&M
t1 σO&M

t2 ,

N∑
k=1

ckxk (4.6)

Since the risk values may be complex numbers, the maximum of the argument

calculated in equation 4.6 or 0 is taken before calculating the square root.
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4.2.8 Solution Methods

Metaheuristic approaches to these problems are used in order to capture a variety

of solutions and to avoid bias. Three approaches and two solution methods were

used. The two solution methods were the paretosearch and genetic algorithms (using

NSGA II in MATLAB’s multiobjective optimization toolbox). The approaches were:

beginning with randomly generated solutions, seeding solutions, and performing a

hybrid approach using goal attain. The exploration of these methods is based on [159].

MATLAB prerelease version 2019b was used.

4.2.9 Sustainability

In the second thrust of the model, sustainability scores are calculated for each tech-

nology. The Brundtland definition of sustainable development looks to an equitable

distribution of goods today that does not harm the wellbeing of future generations.

So return is loosely conceptualized as factors that allow an equitable and efficient

distribution of goods with minimal harm to people and the environment today. Risk

is conceptualized as the factors that expose the environment and conditions for future

generations to peril.

The sustainability analysis is modeled on the work of Cartelle Barros et al. [26],

who conducted a thorough analysis of literature to determine indicators that enable

the selection of a sustainable power generation system using an approach from multi-

criteria decision making (MCDM). To avoid double counting, the upstream economic

indicators used in their work were excluded. Environmental indicators that were

collapsed into a single quantitative indicator were here expanded to include three

categories. Water use (as further documented in section D.3, appendix D), and land

use were added. Land use was recognized by Cartelle Barros [26] as an important

indicator, and efforts to quantify this are detailed in chapter 5. An additional in-

dicator for the price factor, representing the relative prices that different generating
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technologies receive for their output, was included as well. Indicators were divided

into the current and future categories (division is shown in appendix D, Table D.10).

In order to use the portfolio method, single scores for current sustainability and for

risks to the future are needed. This requires normalizing and weighting the indicator

values. As detailed further in [26] and Alarcon et al. [160], each indicator is assigned

a distinctive value function. Once the parameters have been identified, the value

function is evaluated by equation 4.7 [26]:

Vi,x =
1− exp

(
−mi(

|Pi,x−Pi,min|
ni

)Ai

)
1− exp

(
−mi(

|Pi,x−Pi,min|
ni

)Ai

) (4.7)

Where Vi,x is the value of the indicator, i, for technology x; mi, ni and Ai are

shape parameters (see [160] for further description of these), and Pi,max and Pi,min

refer to the range of values for the variable, with Pi,x representing the value for the

technology and indicator. Once values for each indicator category are evaluated, they

must be weighted together according to equation 4.8:

Vx =
N∑
i=1

αi × βi × γi × Vi,x (4.8)

Where α, β, and γ refer to weights attached to the category (economic, social

or environmental), indicator with respect to others in the same category, and the

indicator with respect to other indicators for the same phenomenon, respectively.

Each phenomenon being measured, e.g. water, should have a total of 1. Likewise,

the values within each category and values for all the categories must sum to 1.

4.2.10 Sustainability Optimization

Since the sustainability scores range from 0 (least sustainable) to 1 (most sustain-

able), the minimization problem is formed as shown in equation 4.9. The correlation

matrix is the identity matrix for this analysis. Correlation is not appropriate in the
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same way since costs cannot be defined in the same way as monetary costs, and it is

not desirable to trade off any indicator category for another.

min F (x) ≡ −

√√√√ N∑
i=1

N∑
j=1

xixjρijσiσj,−
N∑
k=1

ckxk

s.t. x1 + x2 + · · ·+ xN = 1

0 ≤ xm ≤ 1

(4.9)

Paretosearch and genetic algorithms when not seeded never gave results above

50% for either sustainability objective. When both algorithms were seeded with

good initial solutions, i.e. 100% of each technology with a score over 50% on either

objective, or if subject to constraints, limited with the rest randomly coming from

the other positive technologies, a variety of solutions that were over 50% in both

objectives were obtained. Using a hybrid goal attain approach limited the variety of

the solutions. Only seeded genetic algorithms provided both a variety of solutions

and good scores.

4.3 Results

Results from the sustainability MCDM are shown in Table 4.2. Solar PV has the

highest score for current sustainability. Wind, both onshore and offshore, have the

highest scores for future sustainability, however. Coal has the lowest scores in the

sustainability assessment, and no coal technology outscores any non-coal technology.

All renewable technologies have scores above 0.5 for both current and future sustain-

ability. Natural gas combined cycle (NGCC), natural gas combustion turbine (NG

CT) and nuclear have scores above 0.5 for current sustainability metrics, but below

0.5 for future risks. When CCS is included, NGCC has a score above 0.5 in both

regions, while in PJM it is still below 0.5 for future risks.

Market-based optimization results for PJM are shown in Fig. 4.2. Results for

CAISO are shown in Fig. 4.3. These figures show similar low risk solutions for each
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Table 4.2.: Sustainability scores closer to 1 are on a blue scale, darker blue meaning

more sustainable. Lower scores are on a red scale, with lower scores shown in darker

red.

Current Future Risks

PJM CAISO PJM CAISO

Solar PV 0.903 0.962 0.74 0.739

Solar thermal 0.757 0.86 0.68 0.679

Nuclear 0.662 0.709 0.419 0.449

Onshore Wind 0.816 0.899 0.787 0.842

NGCC 0.713 0.696 0.316 0.49

NGCC CCS 0.71 0.726 0.369 0.544

NG CT 0.512 0.581 0.473 0.465

Coal 30 CCS 0.277 0.363 0.267 0.44

Coal 90 CCS 0.247 0.317 0.267 0.44

Biomass 0.675 0.694 0.625 0.655

Offshore Wind (S) 0.656 0.657 0.787 0.842

Offshore Wind (M) 0.635 0.652 0.787 0.842

Offshore Wind (D) 0.632 0.627 0.787 0.842

Mini Hydropower 0.55 0.645 0.759 0.816

Geothermal Flash 0.7 0.756 0.7 0.723

Geothermal Binary 0.661 0.696 0.614 0.637

Coal Supercritical 0.308 0.356 0.045 0.218

Coal IGCC 0.278 0.342 0.139 0.312
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scenario, while limiting VRE’s changed lowest cost scores significantly. For PJM, the

proportion of renewables in (average) low cost scores ranged from 31-80%, and for

low risk scores from 60-77%. In CAISO, the proportion ranged from 61-72% in low

cost solutions and from 63-65% in low risk solutions.

Results from the sustainability analysis are shown in Fig. 4.4. In CAISO, all the

sustainable solutions in the Pareto front were 100% renewables. In PJM, renewables

ranged from 93-100% of the total in the average sustainable portfolios. The compo-

sition of lower risk portfolios is >40% biomass, >10% coal, >10% onshore wind (in

some PJM scenarios; in all CAISO scenarios) and >10% hydropower in all PJM sce-

narios. The most cost sensitive scenarios are made up primarily of onshore wind, with

NGCC generally replacing it in the constrained scenarios in both regions. Sustainable

solutions in PJM are made up only of solar PV, onshore wind, NGCC, NGCC with

CCS, biomass and offshore wind. Sustainable solutions in CAISO are composed only

of solar PV, onshore wind, offshore wind, solar thermal and geothermal.

4.4 Discussion

4.4.1 Best Solutions Based on Returns

Levelized costs and the scaled matrix method of measuring correlation were used

as a reference case. Results from overnight costs are shown as well for comparison

purposes. Using overnight costs makes 100% solar PV the lowest cost solution but

gives a risk of 5.4%. Using levelized costs gave the lowest cost solution as 96% onshore

wind, with 3% NGCC and 1% solar PV. Note that the large shift depending on the

use of levelized versus overnight levelized costs gives a sense of how sensitive choices

are to the method of cost approximation. The lowest risk solutions relied mostly on

a mixture of hydro and biomass, with 4-20% coming from coal. In both cases, the

xnew method gave the best values for the Pareto front, but gave only a small number

of solutions.
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Fig. 4.2.: PJM portfolios with each constraint level for VREs differentiated by color

and symbol: no constraint on VRE is shown with purple asterisks; a 70% constraint

on VREs is shown with turquoise diamonds; a 50% constraint is shown with green

circles; and a 30% constraint on VREs is shown with red exes.
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Fig. 4.3.: Pareto fronts for CAISO with each constraint level for VREs differentiated

by color and symbol: no constraint on VRE is shown with purple asterisks; a 70%

constraint on VREs is shown with turquoise diamonds; a 50% constraint is shown

with green circles; and a 30% constraint on VREs is shown with red exes.
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Fig. 4.4.: Sustainable portfolios for CAISO and PJM. The colors and symbols repre-

sent the percentage of VREs allowed in the scenario: no constraint on VRE is shown

with purple asterisks; a 70% constraint on VREs is shown with turquoise diamonds;

a 50% constraint is shown with green circles; and a 30% constraint on VREs is shown

with red exes.
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Fig. 4.5.: A comparison of the effect of correlation method on the proportion of each

technology chosen in average portfolios. Results are for CAISO using levelized costs.

Nuclear comprises more than 2% of average portfolios only where VRE is con-

strained to 30% in CAISO. Offshore wind, solar thermal and geothermal do not

appear in any of the lowest cost or risk portfolios. In all cases the combination of

paretosearch and goal attain gave the closest approximation to the Pareto front. In

some cases, however, this method gave very few solutions. This method also gave

fewer low cost results and more low risk results.

Correlation has a strong effect on the portfolios chosen (see Fig. 4.5), and there

is not a consensus method in the literature. Without correlation, all technologies

except offshore wind appeared in the Pareto front results for CAISO’s reference sce-

nario. Including correlation (any method) eliminated solar thermal and geothermal

from market solutions, and eliminated nuclear unless the determinant method was

used. Including correlation also made solar PV and hydropower less attractive. Coal

benefited from the inclusion of correlation (the additive method only slightly favored

coal). Biomass benefited substantially from the scaled matrix correlation method.

The attractiveness of biomass here shows the strength of correlation in determining

portfolios. The correlation of biomass is low with other technologies due to the lack

of data for biomass prices. Coal, which fared quite poorly in an earlier study, never
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showing up in the majority of portfolios minimizing environmental and monetary costs

[154], also shows up much more frequently when correlation is included. NGCC shows

up less frequently than its true representation due both to the lack of consideration of

the revenue side in this study as well as the inclusion of cost risk. NGCC scores as the

highest risk technology due to the relatively high volatility of natural gas fuel prices

which are shown clearly in this technology which is forecast to run at a high capacity

factor. In fact, this is also shown by the near-perfect correlation between natural gas

prices and electricity prices, which reflects natural gas’s role as the marginal supplier

of electricity. NGCC does show up when VRE is limited, particularly in the lowest

cost/high risk solutions. In a sense, this demonstrates the function of the Reliability

Pricing Model in PJM which values the reliability from NGCC and other fossil plants

more highly than the contribution from intermittent electricity sources. This may

also suggest that investors don’t expect to pay the price of their losses if natural gas

prices rise again.

4.4.2 Sustainability

Recent work by Farfan and Breyer [161] offers a sustainability index for power

generation giving all renewables a score of 1, but natural gas 0.25, oil (not considered

in this paper) -0.25, and coal and nuclear -1. Besides nuclear, these scores roughly

align with those from this earlier work.

When the optimization was run, the best solutions for each scenario tended to

be clustered in groups with similar characteristics. For example the best solutions

in PJM for current costs appearing in the Pareto front for the 30% VRE constraint

included 63.4% offshore wind, 5% NGCC, 1% NGCC with CCS and 30% solar PV.

The proportions varied slightly between the first three categories giving a range of

scores. Therefore, the approximate reported values give a range of solutions.
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Coal, nuclear and hydro did not appear in any of the best solutions for sustainabil-

ity. This is the case even though hydro has scores above 0.5 in all categories so was

seeded in solutions. Natural gas did not appear in any of the solutions for CAISO.

Since the sustainability optimization does not include correlation, there is some

benefit for solutions made up exclusively of the lowest cost or risk technology. For

example, it can be seen in Fig. 4.4 that the best solution frontier is made up of 100%

solar PV and onshore wind, with 100% offshore wind showing up in constrained

scenarios. The next frontier in PJM is composed mostly of solutions with a high

proportion of offshore wind, supplemented by solar PV, onshore wind, and biomass.

Still, one set of solutions has 20% NGCC, and one is 100% biomass, with another

70% solar PV.

Similar values for current and future sustainability scores in the case of onshore

wind and solar PV, for example, are due to their positive profiles in many of the

indicators used. Greenhouse gas emissions is a relatively high portion of the future

risks category (the environmental category had a weight of 0.5 for the future score).

The current category gives a high weight to social indicators, including primarily risk

of accident, for which solar PV and onshore wind score very well, and to environmental

indicators such as human health concerns for which solar PV and onshore wind also

score very well. Both technologies are also low-cost, which also benefits them in the

current category.

4.4.3 Sustainability versus Market

Here the market and sustainability solutions are contrasted by taking the av-

erage representation of each technology above and below the median risk and cost

scores and comparing it with the average representation in sustainable solutions. The

results in Figs. 4.6 and 4.7 show how the different scenarios affect the difference be-

tween sustainable and market-friendly solutions, forming barriers or boosts to market

acceptance.
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Fig. 4.6.: Differences between average sustainable portfolio values and average values

from cost scenarios below the median value. Color coding shows scenario and region.
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Fig. 4.7.: Differences between average sustainable portfolio values and average values

from risk scenarios below the median value. Color coding shows scenario and region.
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In a world with no constraints on VREs, sustainable portfolios are made up almost

entirely of solar PV in PJM or onshore wind in CAISO. Thus, stakeholders who do

not consider that there should be any constraints on VREs perceive a large barrier

to market acceptance of solar PV or onshore wind. This barrier, however, may be

due to the assumption and revenue considerations attached to scenarios where VREs

are limited (note that both CAISO and PJM have mechanisms by which providers

can be compensated for reliability, which tends to favor conventionals and renewables

that are not intermittent).

If a stakeholder assumes that VREs should or must be constrained to account

for the lower reliability/responsiveness that a simple cost or risk calculation does

not show, offshore wind shows the strongest barriers in PJM and CAISO, with solar

thermal and geothermal also showing barriers in CAISO and with solar PV still

showing a barrier in PJM. Shallow offshore wind is most favorable due to its lower

costs. While in PJM there would be enough shallow offshore wind capacity to meet

any needs, California is much more limited in terms of shallow offshore wind potential.

Sustainable and market type solutions are not totally independent of each other since

levelized costs are important to both sets of criteria.

Market boosts if VREs are unconstrained in PJM are shown for both onshore

wind (both cost sensitive and risk averse) and NGCC in cost sensitive scenarios and

biomass, hydro and coal for risk averse scenarios. When VREs are unconstrained,

CAISO also shows a small market boost for NGCC in both cases and higher boosts

for biomass, hydro and coal in both cases (the boost for biomass is higher in the

risk-averse case).

Offshore wind never appears in any of the market solutions. With no VRE con-

straints, solar PV and onshore wind do slightly less well in the market based scenarios

in PJM, reaching 70% when levelized costs are used and 85% when overnight costs are

used for the lowest cost solutions, rather than approaching 100% as in the case for the

sustainability based solutions with no constraints. Still, they also go as low as 20%

in the no constraint solutions, since the lower risk solutions rely more on biomass,
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coal, and hydropower. Lowest cost solutions for scenarios with VRE constraints reach

67% NGCC, whereas the highest representation of NGCC in the sustainability op-

timization is 20%. Therefore, NGCC fares more favorably in the market than in

sustainability-based analysis. When risk is taken into account, biomass appears quite

favorable as an option in market scenarios. Higher risk scenarios have little biomass,

so the barrier for biomass is present only if risk is ignored. NGCC with CCS is not

present in most scenarios, but in sustainability it also appears only at low levels.

Interestingly, in CAISO while coal, NGCC and NG CT do show up in market based

solutions, NG CT is actually more likely to be installed. CAISO has implemented

many policies to aid renewables, and guarantees of 100% renewables represent a

revenue risk to fossil fuels that is not captured in this model. Most of the technologies

tended to skew in one direction, with the exception only of onshore wind. The

technology was either better represented in the cost-risk based optimization than in

the sustainability-based optimization, or vice versa. The degree varied slightly based

on the region and cost or risk basis.

Biomass, coal and hydro benefited in the risk side of the analysis because their fuel

sources and costs do not show high variability. While nuclear also benefited from this

lack of variability, its overall risk score ended up as slightly higher than many of the

other options, so in a dual objective optimization it did not score highly as compared

to others. Nuclear is also hindered by the correlation method used (see Fig. 4.5); if

the determinant method of correlation were used, its representation would be higher.

Ultimately, it is desirable for market incentives to match sustainability incentives.

Therefore, where these results show boosts for a technology, this indicates that addi-

tional subsidies for these technologies may not be warranted. Where the results show

a barrier, this indicates that it may be desirable to provide additional incentives to

aid the development of the technology. VRE-constrained scenarios are included be-

cause the intermittency of VREs makes them undesirable for many planners, who are

concerned about meeting reliability targets unless they are coupled with long-term

storage.
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4.4.4 Limitations

This work considers historical risk and correlation based on price history, which

may not be indicative of future prices. High historical volatility of natural gas illus-

trates this well. Low natural gas prices due to hydraulic fracturing may continue,

and many power generation investors seem to bet on that. Moreover, the use of

correlation, while it offers a benefit in that it provides more information, may be

controversial if this method of correlation is disputed. considering its high deploy-

ment despite past cost variability. Correlation in this work is based on historical

data, and may not hold true in the future. Since Awerbuch’s work on portfolio ap-

proaches to power generation, the natural gas price has ceased to be well correlated

with petroleum prices [118]. Still, correlation over time is difficult to predict. A lower

risk value for natural gas technologies and a lower or negative value for correlations

for natural gas based technologies would make them more attractive on the market

side, enhancing the boost in market acceptance over its sustainability profile.

Levelized cost is an imperfect proxy for return. Previous work has shown that

ranking by levelized costs does not perfectly align with profitability due to different

prices available for technologies, capacity revenues, and subsidy revenues. Indeed,

while using levelized cost in this work offers a favorable profile for onshore wind,

previous work did not show onshore wind as a profitable technology in PJM. Cost,

and particularly levelized costs, are important for planners but less useful for managers

and investors [153].

This work does not look at retrofitting but instead at new installations, which

is a limitation since much of the power generation infrastructure is already in place.

Levelized costs from the ATB are used, which assume grid connection costs to be

zero for most technologies. Grid connection costs can add a significant hurdle to

some renewable development that is not included. Storage is rapidly emerging, and

more analysis including storage will be helpful in the future.
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Finally, one limitation of the sustainability model is that the desirability of tech-

nologies in this model scales linearly. Therefore, a technology’s score has the same

effect whether the technology occupies a large part of the total portfolio or not. Land

use, for example, is more costly if expansion of renewables encroaches on other uses

rather than being limited to marginal lands. Correlation should be explored further

to account for this as the penetration of renewables increases. A second caveat for

the sustainability model is that since access and equity are important considerations

for meeting current needs, high current price barriers to technologies limit their at-

tractiveness using this approach.

4.5 Conclusions

The results of this work suggest that offshore wind is the renewable technology

facing the strongest barriers to market acceptance in the two study areas. They do

not support the contention that market criteria represent barriers to CCS and nuclear

plants. As opposed to earlier studies using the portfolio optimization methodology,

this work shows a high representation of renewables in the most cost effective/lowest

risk portfolios, particularly due to the precipitous drop in costs for solar PV and

onshore wind.

NGCC is still significantly favored by market criteria. A holistic sustainability

analysis of technologies leaves space for NGCC as well, which a narrower focus on

climate change would not show. NGCC scores better in the current sustainability

indicators than the future risks, so weighting more towards renewables. Still, the

the future will damage its score. If 100% renewable portfolios are desired, this work

provides insight into where NGCC still performs favorably in terms of sustainability.

The inclusion of particular technologies depends on regional resources and costs.

Solar PV and onshore wind were both attractive technologies, particularly from a

sustainability and cost perspective. Assuming constraints based on concerns about

intermittency highlights the attractiveness of other renewable technologies such as



98

offshore wind, solar thermal and geothermal. Concerns about risk make biomass a

favorable option.

The method used allows the construction of an entire portfolio, considering corre-

lations between costs as well as technologies. It contains a novel method for the calcu-

lation of overall sustainability and sustainable power generation portfolios. Growing

attention has been placed on additional dimensions of sustainability beyond simply

climate change in energy planning [28]. The holistic approach offered here can more

accurately represent barriers to adoption of technologies. No single method for cal-

culation of correlation was found in the literature, so a simple method was offered to

improve estimates.
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5. LAND USE FOR UNITED STATES POWER

GENERATION: A CRITICAL REVIEW OF EXISTING

METRICS WITH SUGGESTIONS FOR GOING

FORWARD

5.1 Abstract

Renewable based energy systems have the potential to vastly increase the use

of land devoted to energy, thus drastically changing landscapes and habitats, since

conventional, fossil-based energy systems use a very small proportion of earth’s land

surface. Land use affects ecosystems, biodiversity, and geochemical cycles. It also

affects people’s well-being due to effects on views, noise, recreation, and quality of

life. This means strong and transparent metrics to assess land use for energy systems

are needed. This review considers some of the most influential papers and metrics in

this category, namely ecological footprint, land use intensity and power density, at-

tempting to make them transparent in terms of data used and calculations performed.

We find that the literature frequently relies heavily on assessments that are decades

old, many dating from the 1980’s. The lack of transparency in the methods and

even confusion in the units has led to the published metrics being applied incorrectly.

Even within the same paper, the calculation is often performed several different ways,

leading to errors and confusion on several orders of magnitude. We also attempt to

provide a better assessment of land use by major electricity production technologies

and fuels as well as an explanation and guide to commonly used metrics.

List of Abbreviations and Nomenclature

BTU British thermal unit
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CSP concentrating solar-thermal power

GJ gigajoule

GW gigawatt

GWe representative gigawatt of electricity

GWh gigawatt hour

ha hectare

km kilometer

kW kilowatt

kWh kilowatt hour

lb pound

LCA life-cycle assessment

m meter

MW megawatt

MWh megawatt hour

MWi megawatts of installed nominal capacity

NARM North Antelope Rochelle Mine

PV photovoltaic

sq mi square mile

t tonnes (metric tons)

We representative Watt of electricity

Wi Watts of installed nominal capacity
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5.2 Introduction

While quantification of global warming potential is highly advanced, many other

metrics remain underdeveloped. Land use, with strong impacts on well-being of

people and wildlife, is one such metric. As we begin the transition to systems based

more heavily on renewables, these metrics will require the same level of treatment as

those pertaining to climate change. Otherwise, they may provide unforeseen hurdles

to energy transition. Land use in particular is important due to the world’s increasing

population and associated demands for food production, as well as its linkage to

biodiversity.

5.2.1 Four conundrums

In assigning land change metrics that apply to both renewable and fossil sources

of energy, we note four fundamental conundrums, which are explained below:

1. temporal scale;

2. system boundaries;

3. secondary effects and degradation; and

4. incomparability

All of these are sources of both unintentional and potentially intentional bias.

Temporal Boundaries

Land use metrics include an implicit time factor. If the factor is long enough,

renewables always best conventionals. In the short term, however, that is not the

case. Land use metrics sometimes refer to potential, that is how much of an energy

source is present in a given area. However, it is important to bring them onto a level

playing field by considering how much of that energy can be harnessed in a given
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time period. In the case of fuels, extraction technologies and transportation networks

limit the flow rate. Variable renewables, on the other hand, need to be tempered by a

capacity factor that reflects the general operating conditions for existing technologies.

System Boundaries

For many energy system components, the total lease for a plant or mine site

includes a proportion of land directly affected by construction or mining, while the

rest may be only moderately disturbed or even untouched. Trainor et al. make a nice

distinction between the landscape effect, which refers to the total scope of land used,

e.g. lease boundaries, versus the land with a direct footprint, i.e. the site of the plant,

roads constructed to provide permanent access, or the area disturbed by mining this

year [162]. For coal extraction, for example, Colorado lists the number of permit acres

included for coal mines, then the affected areas, then the disturbed acres for a given

year (see [163]). None of the land use metrics explored consistently distinguish which

of these figures should be used. This contributes to the large variations in assumed

footprints in the literature.

Degradation versus Use; End of Life

Lingering effects on land are very different for each type of development, and

include a temporal dimension with very high uncertainty. For example, mountaintop

mining of coal may irrevocably change the landscape and diminish the quality of

ecosystem services available, whereas biomass may be farmed today and replaced with

a food crop next year with little difficulty (not to negate the food versus fuel debate

as some forms of biomass require the use of dedicated agricultural land, whereas other

types of extraction or renewable generation may use marginal lands). Advocates of

nuclear state that going forward things will be better than the legacy of abandoned

uranium mining sites. Renewables have simply not been around long enough to know

what will happen when large numbers of solar panels and wind turbines reach the
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end of their useful lives—will they become eyesores or leach toxic materials? Or will

recovery and repurposing processes be instituted? This is related to the temporal

question—what is the lifetime of a project in terms of its effects on the land?

Incomparabilities

The fourth difficulty is one found in all areas of life-cycle assessment (LCA), which

is that environmental effects cannot really be compared between units; is it better to

contaminate a stream than the air? Which species is it okay to lose? Who decides?

In this sense, land use metrics must be well developed and are important for questions

of environmental justice. This is particularly important considering that opposition

can be particularly strong for certain land uses, as seen in recent protests over the

Keystone pipeline.

5.2.2 Power Generation Units

This paper is focused on electricity. To that end, we apply prevailing efficiency

conversions to fossil energy. Of course, fuels can also be burned for heat with a

much higher efficiency. This means that beyond the comparison among electricity

generation technologies, additional discussion regarding end uses is warranted. We

do not consider this in our paper.

5.2.3 Looking forward and backward

Frequently people use metrics to look forward, considering the future land foot-

print from capacity expansion. This means that estimates should be based on the

most competitive, prevalent or imminent technology. Still, it is also necessary to look

backwards, particularly in the case of land use. As alluded to in section 5.2.1, many

technologies have improved their land footprint going forward, but carry a legacy of

contamination or failed clean-up. Since we cannot know what will happen at the end
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of life for these assets, the past provides an important indication for the future, and

provides a barrier to acceptance. Since sustainability metrics are frequently a key

to people’s hesitation or resistance to embracing a given technology or process, past

performance is important. Still, it does not make sense to use an obsolete technology

to forecast future land use.

The rest of the paper is structured as follows: In section 5.3 we define the most

commonly used metrics for land use. Section 5.4 details the application of these

methods to dominant power generation technologies. The need for storage to be as-

sociated with solar photovoltaic (PV) and wind to provide the flexibility included in

fossil -based generation and hydropower is briefly considered in section 5.4.9. Sec-

tion 5.5 presents the results of our analysis, discussed in section 5.6. Section 5.7

briefly summarizes the major findings and presents suggestions for going forward.

5.3 Existing Methods

With the growing focus on the food energy water nexus and attention to the pos-

sible increase in land use for energy with a transition to renewables [35, 162], it is

time to look more critically at metrics and data used to quantify land use for power

generation. Multiple researchers have attempted to quantify land use by energy sys-

tems. We consider three frequently used metrics: ecological footprint [164], land use

intensity [165], and power density [35]. First, we briefly document their calculations,

basic equations, data used and units. We demonstrate strengths and weaknesses of

each method. Studies by Gagnon et al. [34] and Hand et al. [166] are also frequently

cited, although [34] is dated and neither study publishes their complete methodology,

so we include their results for comparison in Figs. E.1 and E.2, appendix E.
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5.3.1 Summary of Three Indicators

Ecological Footprint

The ecological footprint was developed in the 1990s by Wackernagel and Rees

[164]. It measures our society’s ability to stay within our “biocapacity,” that is,

the planet’s biologically productive capacity. The metric is powerful because it sim-

plifies the sustainability landscape into two important categories: land conversion

(and thus effects on biodiversity), and global climate change. In their original book,

Wackernagel and Rees estimated 80-100 gigajoule (GJ) fossil energy/hectare (ha) of

land [164], which they obtained using three methods of estimating land use for fossil

energy: 1) land needed to replace the fossil source using cultivated biomass, 2) land

needed to sequester carbon dioxide emissions from the fossil fuel, and 3) land needed

to recover the natural capital used up by fossil fuel combustion. They favored method

2 and used a ratio of 100 GJ/ha [164]. They noted that when electricity is consid-

ered, the land use is more than three times the listed rate, but they did not specify

which rate they use. Their book listed ranges for different renewables and estimated

1 ha/1000 GJ for hydropower, and 1 ha/100-1000 GJ for solar PV [164]. The range

they estimated for wind using only dedicated land is 1 ha/12,500-25,000 GJ [164].

Two main problems sometimes prevent the use of the ecological footprint in sus-

tainability analyses: lack of data for end uses (it is primarily compiled according to

state-level political organization), and the use of carbon sequestration land, which

may represent double counting if another indicator measuring global warming poten-

tial is used. Since fossil fuel land use is measured by proxy, it is not comparable to

renewable estimates used. Still, this method is notable in that it fully incorporates

some of the tradeoffs we mention above, thereby addressing temporal and degradation

issues.
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Land Use Intensity

Fthenakis and Kim studied land use intensity for electricity systems in the US

in a literature review based LCA [165], with results included in a summary figure.

This was a particularly comprehensive work, but did not fully document the calcu-

lation method, relied on very old sources even at the time, and does not include all

technologies considered relevant today. Their method as applied favors renewables

through discounting land in the generation phase. Thus, its results and methods

should be considered carefully in the context of other metrics to determine the best

way of measuring land use.

Basic equation and definition(s)

The basic conceptual equation for the land use intensity metric is:

L =
Discounted Total InstallationArea

Y early Generation× Asset Lifetime
(5.1)

Where L is the land use intensity, the discounted total installation area refers to the

amount of land used for power generation (typically discounted to represent the direct

footprint), the yearly generation was measured in gigawatt hour (GWh), and thirty

years was used as the asset lifetime.

Data

Fthenakis and Kim conducted extensive literature review for their work, but many

of their sources dated from the 1980’s or 2000. Therefore, when their values are used,

it is important to look closely at source data to make sure that it would still be

representative of current conditions.
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Units

The units used by Fthenakis and Kim were meter (m)2/GWh; thus, a lower num-

ber is better. The GWh is a levelized unit here. Production was calculated for the

lifetime of the unit, and thus the land use was divided by the number of years the

unit would be in service.

Pros and cons

This approach is strong in that the entire life cycle was considered. Efficiency

metrics were consistently applied, ensuring that comparisons are done on the basis of

electricity values. The use of lifetimes, however, make it difficult to do an apples-to-

apples comparison. This is especially true for coal, where year discounting was not

performed, thus overstating its land footprint with respect to renewables. The use

of very old data makes it difficult to rely on their values, particularly in the case of

natural gas, which has become dominant in the US since their article was published.

The lack of data tables and equations in their work makes it difficult to understand

their calculations. A lifecycle with units of land use per GWh is helpful, however.

Power Density

Smil laid out calculations and case studies for power density estimates in his 2015

book [35]. This appears to be the most in-depth examination of land use for power

generation, and he makes a strong case for the adoption of his metric. Still, his

analysis was not always implemented in a way that measures both renewables and

conventionals on an equivalent basis and tends to favor conventionals.



108

Basic equation

The basic conceptual equation for power density is:

P =
Y early Generation

Discounted Total InstallationArea
(5.2)

Data

While Smil [35] has fairly updated data, at times he uses power density estimates

that come directly from other sources that have not used his method, so refer to total

reserves rather than yearly generation.

Units

Smil’s units for power density are annual power generated per earth’s land surface

area used, which for electricity are measured in We/m2.

Pros and cons

Smil’s method is strong in that he suggests using annual generation, which is a

more logical approach than assuming a lifetime and levelizing land use. Smil provides

multiple case studies and solid theoretical bases for the calculations. Unfortunately,

since equations and equivalencies are not always clearly spelled out, other researchers

may fumble when trying to apply his method. Also, the ranges in the final results are

very large. Some examples in the text substantially overstate the power density of

common fossil sources by listing reserves. Fossil sources are generally not multiplied

by an efficiency factor, so that the values are not comparable with the values for

renewables. This is intentional since fuels can be burned for their heat value, and

Smil’s work includes discussion of end uses. The units in the power density metric

make it more difficult to do lifecycle comparisons since the installation area is in the

denominator.
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5.3.2 Converting Between Power Density and Land Use Intensity

Both the land use intensity and power density metrics seek to provide a measure

of actual generation of electricity or energy use with respect to area of land needed.

It is easy to convert between the metrics. Equation 1, above, gave the conceptual

equation for land use intensity. Here we show the basic numeric equation for land use

intensity, L, in Fthenakis and Kim’s work:

L =
A

C × cf ×H × y
(5.3)

Equation 4 gives the basic equation for power density, P:

P =
C × cf
A

(5.4)

Where A is land area, C represents the nominal capacity of the power generation,

whereas cf is a typical capacity factor. H is hours in the year (8760), taking capacity

in megawatt (MW) to generation in megawatt hour (MWh). The assumed generating

lifetime in years is given by y.

Most energy units are shown per MWh or MJ, but Smil uses We, similar to MJ/s.

This unit can be obtained from MWh by dividing by H. Besides this factor and the

temporal factor assumed lifetime, t, used in equation 5.3, power density and land

use intensity are inverses of each other. Therefore, a value for L can be converted to

P by the following equation:

P =
109

L×H × y
(5.5)

The 109 figure in the denominator converts from representative gigawatt of electricity

(GWe) to We. Equation 6 converts power density to land use intensity:

L =
109

P ×H × y
(5.6)

For coal mining, however, Fthenakis and Kim omitted the lifetime (y). In this paper

we omit the lifetime, so y can be excluded from equations 5.5 and 5.6.
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5.4 Analysis of Major Power Generation Technologies

5.4.1 Solar

While not explicitly stated, Fthenakis and Kim calculate land use (L) for solar

farms by equation 5.7 [165]:

L =
pf

I × y × η
(5.7)

Where I is the annual irradiation, η is system efficiency, and pf is the packing

factor, which refers to the spacing of units. The use of packing factor means that

they consider the space needed by a hypothetical solar farm in its totality, excepting

access roads and perimeters. They assumed a lifetime of 30 years, which reduces the

total land footprint.

Smil’s work assumes equivalencies. In his example of solar energy, he shows the

power generation based on the solar resource present. Note that this is equivalent

to equation 5.4 above, since irradiation includes area in the denominator. It is also

equivalent to the conceptual equation for power density shown in equation 5.2.

P = I × f × η (5.8)

The power density is given by the product of irradiation with a performance factor f

(accounting for AC/DC conversion, typically 0.85) and an efficiency factor, η. Note

that I already includes the capacity factor. If the actual annual production of a

system is known, it can simply be divided by the land area covered to estimate

the power density. These three methods are equivalent, although they all present

simplifications (there can be high error in irradiation estimates, we are using average

values for performance and efficiency factors, does not consider curtailment). Note

the differences between these equations and those for land use intensity: equation 5.8

is similar to the inverse of the equation used in Fthenakis and Kim, but excludes both

the packing factor (thereby including only panel area), and the assumed lifetime, so

focuses only on annual generation rather than a levelized value.
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In the US, the total installed capacity of solar PV is 71.3 gigawatt (GW) at

the time of writing [167]. The most recent assessment of land use was based on

installations present in 2012, when 2.1 GW had been constructed [168]. At that

point the National Renewable Energy Lab found that large PV (>20 MW) used on

average 7.9 acres/MW, whereas concentrating solar-thermal power (CSP) used 10

acres/MW. Direct area use was only slightly lower, 7.2 acres/MW for large PV and

7.7 acres/MW for CSP. For CSP this assumes a capacity factor of 32.6%, and they

list 2.7 acres/GWh/year, and for PV a capacity factor of 26.5% is assumed, giving an

average of 3.1 acres/GWh/year. This gives a power density of 9.1 We/m2 for solar

PV and 10.5 for CSP. The land use intensity is 1.26x104 m2/GWh for solar PV and

1.09x104 m2/GWh for CSP.

5.4.2 Wind

Onshore Wind

Fthenakis and Kim used equation 3 to determine the land transformation for

wind farms assuming a 30 year lifespan. Land area was estimated from a 1997 doc-

ument that assumed a 25 MW capacity wind farm with 2 rows of 25 turbines, each

500kilowatt (kW). Two capacity factors, 26% and 36%, result in land transformation

intensities of 2780 and 2040 m2/GWh. They mention that the indirect land use would

be 5.5 m2/GWh, less than 1% of the total land footprint. While the area used for

the footprint is the total site area, they mention that wind turbines occupy a small

portion of the total lands. Converting the figures from Fthenakis and Kim to power

density units gives 1.37-1.87 We/m2.

Smil also provides a process for calculating power density, providing the equation

for maximum power flux for a wind turbine:

p =
1

2
ρAwv

3 (5.9)
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Where p is the power, ρ is the air density, Aw is the working area swept by the turbine,

and v is the wind speed. He points out that for the nominal power of a wind turbine,

p must be corrected by an efficiency factor that considers materials used, called the

actual power coefficient. Applying this coefficient gives a nominal capacity in Watts of

installed nominal capacity (Wi). The working area term refers to the area cut by the

turbine, so the product of π with the blade length squared. This means that a blade

length must be assumed and multiplied out if the power density figure comes from

a different source. The obtained power should be divided by the land area covered.

To calculate power density, the power value must be multiplied by a capacity factor

and divided by the true land surface area. Note that if the wind resource is known

in We/m2, the fluctuation of wind during the year is already included.

Denholm et al. [169] estimated 25,438 MW of capacity in 8,778.9 kilometer (km)2

of disturbed and undisturbed land, so the total footprint, in 2009. A capacity factor

of 30% gives a total power density of 0.87 We/m2, or land use intensity of 1.3e6

m2/GWh. Denholm et al. showed that the direct impact area when permanent

structures are considered is roughly 1% of the total wind land use intensity [169].

The current National Renewable Energy Lab’s Energy Analysis tool estimates 30

acres/MW, which is around 1/3 of the 85.3 acres/MW from the Denholm et al.

study. The methodology is not provided, so it is difficult to know what assumptions

led to this estimate. Still, since this is the most updated datum from governmental

sources, we use this value. Assuming a capacity factor of 0.3 gives a land use intensity

of 4.6e5 m2/GWh and a power density of 2.47 We/m2.

If wind turbines can be installed on existing cropland or grazing land, their power

density is very high. If they require dedicated land and buffers from habitation, the

power density is low. Either way, the landscape is changed. Wind is notable in

having a large difference between its landscape power density/land use intensity and

its direct land footprint, which provides opportunities for innovation as long as the

intrusion on human needs can be minimized.
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Offshore wind

When offshore wind turbines are located sufficiently offshore as to not be visible

from the beach, the human impact of their land use is almost nil. Still, the turbines

may affect the surrounding water area. For example, Vanhellemont and Ruddick

noted increased turbidity near offshore turbines, which can have effects on habitats

of marine mammals and fish [170]. Erosion patterns near turbines may also differ,

causing additional changes even far afield of the turbines [171]. The construction

period as well as the decommissioning period may have their own effects on coastal

ecosystems [172], and decommissioning in particular has not yet been carried out or

thoroughly thought through [173]. We do not consider offshore wind separately since

we found no studies that analyzed its land use.

5.4.3 Coal

The schematic in Fig. 5.1 shows the cradle to gate life cycle phases for power

generation from coal. The fuel cycle requires indirect land use to power machinery

and for construction of subterranean wooden supports in underground mines. Indirect

land use is a significant ∼25% factor in the land use for underground mines but

insignificant <1% for other mining systems [165]. Ores are purified, typically onsite,

in a process that involves significant loss of mass. Then they are transported to power

plants, usually via rail. Power generation is the last step. The distributed nature of

coal production, and variability in extraction technologies and coal ores, leads to very

different estimates of land use (discussed further in section E.2, appendix E).

Mining and Extraction

Table 5.1 provides statistics presented in [35] and [165] on mining land use. There

is not a particularly large difference between the numbers in the sources. Examination

of original sources for this work, particularly [174], does not clarify whether the land
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Fig. 5.1.: Schematic of major life cycle phases for power production from coal. Three

major methods of extraction are used: mountaintop removal, underground mines, and

surface mines. For underground mines, the indirect land use from wooden supports

can be significant. Mined coal is typically transported by rail to power plants where

it is burned for power generation. The major land use phase is mining, but rail

transport makes up 6-53% of the land use according to Fthenakis and Kim [165].

The power generation phase is a very small part of the total land use.
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represents the total footprint, affected area, or disturbed area. In section 3.3.1.1

we provide an in-depth analysis into the largest mine in the US, which leads us to

surmise that the numbers here represent disturbed area, the smallest figure for land

use. Some assumptions made in these calculations are loss during processing, which

varies between 10-25%, and electricity conversion of 0.35. The lower heating value

of coal varies by area. For eastern coal, the calculations in [165] use roughly 2.2

GWh/1000 t coal. For western coal, the conversion is roughly 1.8 GWh/1000 t coal.

In 2012, the last year for which an annual report is accessible online, the Office of

Surface Mining Reclamation and Enforcement assessed that just 75% of lands have

been restored after coal mining [175].

Calculations for North Antelope Rochelle Mine in WY

Wyoming coal accounts for over 70% of Western production and nationally has the

lowest land footprint [165] and [35]. The North Antelope Rochelle Mine (NARM),

located in Wright, Wyoming and owned and operated by Peabody Energy, is the

nation’s largest coal mine. Its site covers 46,000 acres (p. 28, [175]) [1.86 x 108 m2]

with reserves of 1.7 billion tons [short tons, equivalent to 1.54 billion tonnes (metric

tons) (t)) and heating value of 8,800 British thermal unit (BTU)/pound (lb) (20.47

MJ/kg) [176]. In 2018, NARM sold 98.4 million short tons of coal [89.3 million t].

Including the total area of the mine and using 2018 as a representative year, the ratio

of land to mined coal is 2082 m2/1000 t. This is much higher than Fthenakis and

Kim’s Wyoming estimate of 90 m2/1000 t [165], but less than half of the estimate of

5.15 x 106 ha/million short tons [5676 m2/ 1000 t] from [162]. Smil cites two sources

giving the density of the NARM as 12,000 W/m2. Still, using Smil’s method, the

much lower value of 312 W/m2 is obtained. Including an efficiency figure of 35%

reduces the power density to 109 We/m2. The corresponding land use intensity is

1,047 m2/GWh for mining alone. This represents a lower bound for land use by

surface mining. Smil presents figures for Wyoming extraction from 1996-2009 at 4.37
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Table 5.1.: Data on Mining land use found in the two principal source papers. Smil’s

numbers, which were given in W/m2, have been multiplied by an efficiency factor of

0.35 to convert to We/m2.

Mining System Source Vintage
Power Density Land Use Intensity

We/m2 m2/GWh

Surface mining, Western US [165], Table 1 1983 815 140

Surface mining, Eastern US (a) [165], Table 1 1989 368 310

Surface mining, Eastern US (b) [165], Table 1 1983 79 1450

Northern Appalachia [165], Table 1 1980 326 350

Central Appalachia [165], Table 1 1980 317 360

Southern Appalachia [165], Table 1 1980 200 570

Wyoming [165], Table 1 1980 2655 43

Kansas [165], Table 1 1980 136 840

US Average, Surface [165], Table 1 1995 285 400

Underground mining, Eastern US [165], Table 1 1983 49633 2.3

Underground mining, northern Appalachia [165], Table 1 1980 243 470

Underground mining, central Appalachia [165], Table 1 1980 224 510

Underground Mining, Southern Appalachia [165], Table 1 1980 238 480

Underground mining, Utah [165], Table 1 1980 476 240

Underground mining, US average [165], Table 1 1985,

1995

571 200

Mountaintop removal, example 1 [35] 70 1631

Mountaintop removal, example 2 [35] 17.5 6523

Surface mining, Wyoming [35] 1995-2009 3850 30

Tennessee, 2009 [35] 2009 122.5 932

Underground, low [35] 700 163

Underground, high [35] 5250 22

Nationwide [35] 350 326



117

Gt from 25,700 ha of disturbed land, with a power density of almost 11,000 W/m2

(3,850 We/m2). This suggests that the disturbed land is about 3% of the total for

Wyoming surface mining.

Power Generation Stage

No official statistics are published on the size of the acreage of power plants.

Fthenakis and Kim relied on the Characterization of Energy Types [174], already 30

years old when their paper was published. Smil provided details on some of the largest

power plants operating in the US, contrasting their size with a postulated theoretical

size. His theoretical size could reflect the possible direct impact bounds, whereas

the true sizes he finds give a sense of the scope of the total landscape effect. In

table 5.2, we provide the size in terms of installed capacity for two different capacity

factors—0.5, representing today, and 0.8, representing the past.

Table 5.2.: Land use intensities for land for coal power plants assuming different

capacity factors. We use the average from Fthenakis and Kim updated with a capacity

factor of 0.5 as the representative value for coal power plant land use intensity.

Source
power generation

cf = 0.5, m2/GWh cf = 0.8, m2/GWh
(acre/MWi)

Fthenakis and Kim (US average) 0.5 461.97 288.73

Fthenakis and Kim (US low) 0.3 273.51 170.95

Fthenakis and Kim (US high) 1.7 1568.85 980.53

Smil (low) - theoretical need 0.04 34.19 21.37

Smil (high) - theoretical need 0.06 59.32 37.07

Scherer (total land claim, Smil) 2.39 2205.28 1378.3

Bowen (total land claim, Smil) 0.26 241.43 150.89

Gibson (total land claim, Smil) 1.18 1093.71 683.57

Bull Run (total land claim, Smil) 0.18 164.87 103.05
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Transport and Indirect Land Use

Fthenakis and Kim stated that 32% of the total ton-miles of shipping by US rail

in 2001 was attributable to coal shipments. Allocating this proportion of the total

rail miles to coal gives an estimate of an addition of 30 (East) or 80 (West) m2/GWh.

Smil estimates that the transportation land footprint is negligible in comparison with

the mining land footprint. Either way, we see that in the higher case of Fthenakis

and Kim, it would add just another 5% to the total so far. Indirect land use ranges

from 60 (West) - 175 (East) m2/1000 t according to Fthenakis and Kim, and using a

conversion of 2.2 GWh/1000 t of Eastern coal and 1.8 GWh/1000 t of Western coal

gives roughly 35-80 m2/GWh for this step, relevant only to underground operations.

This is included below for the direct effect calculations.

Additional Considerations and Looking Forward

We have shown a broad swathe of estimates for land footprint throughout this

section. Table 5.3 provides a single estimate. We use equations 10 and 11 to estimate

the direct and landscape effect land use intensities for NARM (considered representa-

tive), underground, and mountaintop mining technologies as they are located in the

US.

LD,tech = aLP,tot + btechLm,tot,tech + Tr + Indtech,r (5.10)

LL,tech = qLm,tot,tech + LP,tot (5.11)

Where a is the coefficient for power plant direct land use (assumed as 0.1), btech is

the technology-specific coefficient for mining direct land use (0.1 for western surface

mining and underground, 1 for mountaintop removal), Tr is the transportation term

based on region r (30 for East, 80 for West), and Ind is the indirect land use term

based on technology (0 for surface or mountaintop) and region (35 for West, 80 for
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East), and q is the coefficient to transform direct land footprint to landscape level,

which here was 1.5 for mountaintop, and 1 for underground and surface. The value

assumed for Lm,tot for underground mining is 1000 (from NARM estimate) and 4000

for mountaintop removal (average of two cases provided in Smil’s work, shown above

in Table 1).

Table 5.3.: Our assessed land use intensities for the systems considered as well as

a representative case. Mountaintop mining based systems have the highest land-use

intensity, whereas the other systems are similar to each other, with the representative

case doing slightly better.

Mining System Landscape

Effect Land

Use Inten-

sity

Direct Effect

Land Use In-

tensity

Landscape

Effect Power

Density

Direct Ef-

fect Power

Density

Representative

(NARM) (Sur-

face, West)

1509 231 76 495

Underground 1462 259 78 441

Mountaintop 6462 4076 18 28

NARM is considered most representative due to its large market share and the

positive economic profile of Wyoming coal. Currently, coal costs are much lower for

the Powder River Basin than for other parts of the country, suggesting that only in

Western states is there a clear economic case for coal. This might change if policy is

enacted to preserve the coal industry, but so far there is no evidence of this. These

estimates neglect allocation related to the use of coal ash waste products for cement

production.
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5.4.4 Natural Gas

Natural gas has become the dominant fuel source for power generation in the US,

due to the dramatic expansion of shale gas plays over the past decade. Most new

generation capacity in 2018 was powered by natural gas, and by 2015, half of US

natural gas production was coming from “shale gas and tight oil plays” [177]. This

is projected to increase over time to 70-80% of production for the foreseeable future.

The largest producing shale for natural gas is Marcellus, over Pennsylvania, West

Virginia and nearby areas.

Extraction by hydraulic fracturing allows very high recovery in the first year fol-

lowed by hyperbolic decline [35]. Typical first year shale fields in Marcellus have a

power density of around 2000 W/m2, which declines to roughly 200 W/m2 by their

third year [35]. Thus, natural gas production is much different than the other fuels

and power sources in this survey, with particularly thorny system boundaries. Moran

et al. used GIS data to analyze the number of ha developed (completely converted

from original state to housing for natural gas infrastructure) and modified (habitat is

converted from original state, but not totally occupied by infrastructure) from 2004-

2015 by shale gas and tight oil plays in the US [178]. Over the same period, 77.93

trillion cubic feet of dry natural gas was extracted from shale gas and tight oil plays, or

140.33 trillion cubic feet including tight gas as well [177]. Moran et al. estimate that

140,000 ha were developed with an additional 60,000 modified from original ecosys-

tem states of temperate forest, grassland/pasture, woodlands and agricultural during

the same period [178]. Assuming a heating value of 1030 BTU/ft3 (38.4 MJ/m3) and

an efficiency of 43.3% for conversion to electricity, the power density estimates range

from 582 We/m2 (all terrain included and just shale gas and tight oil are counted) to

1496 We/m2 if only developed terrain is included and tight gas is also included. All

of these represent intermediate values in Smil’s estimates.

The transportation stage was not explored in Smil’s work [35] nor in Moran et

al.’s analysis [178]. Fthenakis and Kim’s analysis apportions the highest contribution



121

to land use to the pipeline stage, however [165]. Considering that sustainability

indicators should provide some measure of potential social opposition to a project,

transportation should not be excluded here. In recent years, pipelines, which offer

the safest transport method in terms of accidents, have faced strong opposition due

primarily to the potential for accidents and siting considerations.

The US Department of Transportation’s Pipeline and Hazardous Materials Safety

Administration data shows that in the recent past, around 30,000 miles are installed

per decade, or around 3,000 miles per year (4,828 km) [179]. We use the estimate of

Fthenakis and Kim that the buffer zone is 20 m wide. This gives an average of 9.66 x

107 m2 of land associated with pipeline constructed per year. The gas developments

we have mentioned provided 54% of the natural gas produced in the US in the 12-

year period from 2004-2015, so we will attribute the same proportion of the pipeline

construction to this gas. This brings the estimates down to 443-1035 We/m2. This is

still well above the power density of coal from our calculations, but it is much lower

than the upper bound of Smil’s estimate. Also, Fthenakis and Kim show natural

gas as less land efficient than coal, but our analysis agrees with Smil’s in showing it

to be more. Some of the natural gas currently produced from shale is a byproduct

of oil production, especially in the Permian basin, where it may be flared or vented

(this is being better controlled) due to low gas prices and low availability of pipelines,

rather than sold. This means that there is some allocation need for natural gas land

footprint, pointing out that part of the footprint goes to products from waste such

as ethylene or more valuable products like oil. This will diminish the overall land

footprint of natural gas, or increase its power density.

5.4.5 Biomass

The biomass used for electricity is mainly from wood, wood waste solids, black

liquor, landfill gas and solid waste [180]. Both Fthenakis and Kim’s analysis as well

as Smil’s analysis and others give very wide ranges for biomass and focus on crops,
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particularly corn for ethanol. Land use issues for bioenergy from food crops differ

from other land use issues since they also hinge on the food versus fuel debate. Here

we focus on land use for wood and wood waste products. Neither paper evaluates

wood waste products. Only Gagnon et al. show an estimate for power production

from wood waste, included in Figs. E.1 and E.2 [34].

For woody biomass, we consider a yield on the order of 5-15 t/ha for temperate

species such as willow and poplar [35,165]. Smil assumes a heating value of 19 GJ/t.

This is further modified with an efficiency value, which we assumed as 30%. Using the

high end (15 t/ha) gives 0.27 We/m2. A lower bound of 5 t/ha with a lower heating

value of 15 GJ/t and a lower efficiency value of 20% gives a power density of 0.05

We/m2. This does not consider plant siting or indirect land use, which Fthenakis and

Kim mentioned were a magnitude of difference smaller. Land use intensity values in

Fthenakis and Kim of 101-136 m2/GJ [165] bracket our calculated value of 117 m2/GJ,

obtained by multiplying yield by heating value/efficiency. Still, both of these values

should be considered high estimates for land use, since most biomass for power is

derived from waste products, and thus does not require new land use.

5.4.6 Hydropower

Land use by hydro projects is extremely variable [35, 165]. Fthenakis and Kim

use a levelized equation, estimating the total power generated in a 30 year project

lifetime [165]. A 30-year lifetime is very short for a hydropower project, however.

Also, the results summary shows a much smaller land footprint for hydropower than

the generic reservoir listed in Table 7 (which shows a transformation figure of 25,000

m2/GWh, higher than any other generation technology by far) [165]. Note that hydro

has effects downstream as well, not only at the reservoir. On the other hand, in the

US, it has been performed so extensively that untouched waterways no longer remain.

Smil points out that since the power generation depends on the hydraulic head

and water flow rate, deep water dams can have a smaller footprint in terms of size
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of the reservoir, whereas shallow dams will have a larger reservoir and thus higher

footprint [35]. The only US dam that Smil includes is the Grand Coulee Dam. The

nameplate capacity is 6,809 MW, but the capacity factor generally used is 36%. The

reservoir surface area is 125 square mile (sq mi) (324 km2). This gives a power density

of 7.6 We/m2. The famous Hoover dam has a nameplate capacity of 2,080 MW with

capacity factor of 23% and reservoir area of 640 km2, so a power density of 0.75

We/m2.

The total surface area of dams in the 2018 national inventory of dams (does not

include all dams, but best record we have) is 4.61 x 107 acres [181]. In 2018, 292

billion kilowatt hour (kWh) of hydroelectricity was generated in the US from 79,893

MW of installed capacity (so a capacity factor overall of 0.417) [182]. This averages

0.18 We/m2 or 6.39 x 105 m2/GWh. While a large-scale hydropower plant or one

with an exceptionally deep reservoir could have a high power density, the average

power density is probably more representative for most projects or existing capacity

that could be developed in the US. Hand et al.’s analysis assumes only run of the

river generation, with a much lower land footprint (see Figs. E.1 and E.2) [166].

5.4.7 Geothermal

The sources that included land use for geothermal power (not included in [165])

typically rely on an analysis performed by DiPippo in 1991 [183] (for example Smil, p.

93 cites DiPippo, and then cites McDonald, who cited an MIT Energy Study whose

estimates came from DiPippo). Copeland et al. look at records from the Bureau of

Land Management, noting that 449,000 ha of federal lands were subject to lease for

geothermal development [184]. Around 2,700 megawatts of installed nominal capacity

(MWi) existed in 2013 [185]. Capacity factor is generally around 0.7. This would give

a power density of 0.42 We/m2 or 2.4 We/m2. This is much lower in density than

literature estimates, however, since not all development would be complete. Copeland

et al. estimate 1 exajoule per 208,333 ha, which is equivalent to 15.2 We/m2, without



124

Fig. 5.2.: Nuclear energy process diagram

specifying whether this refers to disturbed or landscape effect [184]. Smil provides a

landscape estimate for the Geysers as a power density of 21 Wi/m2, and varies that to

provide a direct footprint of 55 Wi/m2. We use this pair of estimates (and a capacity

factor of 0.7), since many geothermal projects seem to have a higher power density

than that derived from overall leased land.

5.4.8 Nuclear

As in the case of all fuel-based power generation, nuclear energy requires a fuel

cycle as well as transport before the generation stage. Fig. 5.2 shows the cradle to gate

stages for nuclear power. Note that according to [165], only mining, milling, power

generation and fuel disposal have a significant land footprint. Land use for nuclear

energy has been the subject of much debate. In part this is due to dissent over the

land requirement for uranium enrichment, with some sources [186] ascribing all and

others [165] a large portion (30%) to the gas diffusion process, which is now obsolete

(according to [187] all plants have now been shut down). Since the centrifuge process

is much less energy intensive, the corresponding indirect land use is here assumed to

be inconsequential.

Unlike coal and natural gas, 90% of uranium used for US power generation is

imported [188]. Canada is the largest supplier, but Kazakhstan and Uzbekistan

are also significant suppliers. In situ leaching is the major technology for uranium

mining. Only one domestic uranium mill and one domestic enrichment plant are

currently operational. This means that domestic land use impacts going forward are

concentrated on the power generation stage. Fthenakis and Kim show graphically

that the power plant is the largest land use stage for nuclear [165]. Together, mining,
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milling and disposal account for a larger area than the power plant in their analysis,

just under 2/3 of the total. So, total land use can be discounted by approximately

1/4 if just US territorial area is of interest.

Since no disposal sites have been commissioned in the US, most waste remains

on site at power plants. Thus, we do not assign additional land footprint to the

disposal stage. We do consider the entire land footprint for both the power plants

and mining. Nuclear is the best example of how while the power plant may occupy

just a small portion of the site, the siting of plants shows the much larger landscape

effect perceived by the public.

If we assume that all future uranium needs come from imports and consider only

domestic land use, and use a figure of 1.3 sq mi (3.4x106 m2) needed per 1000 MW

installed capacity [189], running at a capacity factor of 90%, we get a power density of

267.3 We/m2 and a land use intensity of 427 m2/GWh. If we assume that same reactor

needs 200 t of mined uranium per year, extracted via in-situ leaching, it requires 1/5

of the total production of the Beverly Mine (800 ha total), so the production from

160 ha (0.6 sq mi). Assuming that mining and generation account for all land use

gives a power density of 181.2 We/m2 and land use intensity of 630 m2/GWh.

Smil includes one US mine, Crow Butte, whose license covers 1,320 ha but with

only 440 disturbed [35]. Using the disturbed acreage, a power conversion assumption

of 42.2 GWh/t and total extraction of 3800 t in 11 years, the power density is 380

We/m2. To be consistent with other calculations, the total mine area should be used,

which gives the lower power density of 126 We/m2. Looking backwards presents a

different story, however. In the US, there are thousands of abandoned uranium mines,

typically abandoned when production became uneconomical with no safeguards put

in place at the time. This is part of nuclear power’s legacy in the US.
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5.4.9 Storage

Reliance on variable renewables makes storage and auxiliary services separate

elements. This may be transformative particularly in markets, since high prices result

in part from the need to generate and use electricity in tandem. Storage was not

included in any of the major sources we surveyed. There are a variety of estimates

of how much storage capacity needs to be included per MW of renewable energy

to make it comparable to fossils in terms of flexibility. Cebulla et al. find that the

amount of storage depends on the amount of penetration of variable renewables [190].

They found that solar requires a higher amount of storage capacity than wind based

systems. With a penetration of 80% VRE in the US, they estimated 3 TWh of storage

needs, which, assuming an annual net generation of 4.178 x109 MWh [191], amounts

to less than 0.1% of generation from storage.

The two dominant storage options are hydro pumped storage and batteries. Lithium

ion is the leading battery technology, but other technologies are being actively devel-

oped. Some people also anticipate a hydrogen economy to surpass difficulties such as

cloudy and cold winter days with no wind. Immendoerfer et al. estimated 1 x 105

m2/GWh for pumped storage and 8 x 104 m2/GWh for batteries [192]. For pumped

storage, land use concerns have been high [192], in part because pumped storage typ-

ically affects pristine greenfields. Note that the land use impact for electricity from

storage is higher than all land use impacts except biomass and hydro. Still, only a

portion of the storage land use (say 0.1%) would be allocated to one GWh of re-

newable energy. These discounted numbers are still higher than the total direct land

footprint for onshore wind, nuclear, coal and natural gas, so they are not insignificant.

It is not clear whether the values in [192] will be appropriate for mature battery

technologies since they are scaled up by almost 2,000. If current battery installations

are more power dense and more efficient, the proportion of land use from the pro-

duction phase may become more relatively important. The largest battery currently

planned is the Manatee Energy Storage Center in Florida, which covers 40 acres and
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Fig. 5.3.: Land use intensities for technologies considered, shown in m2/GWh. While

natural gas is least land-intensive in both metrics, wind is much more attractive if

only the direct footprint is considered.

is rated at 409 MW or 900 MWh [193]. This equates to a land use density of 1.8 x

105 m2/GWh, roughly double the estimates by Immendoerfer et al [192]. This area

requires further study since much storage infrastructure is planned for the coming

years.

5.5 Results

Figs 5.3 and 5.4 show the results of our analysis. Fig. 5.3 shows the results from

our calculations in land use intensity (m2/GWh). Fig. 5.4 shows the results in power

density (We/m2). In both landscape-level and direct footprints, natural gas shows

the lowest land use intensity/highest power density. This assessment is based on

current US practices. Electricity from biomass assumes wood plantations. Logarith-

mic scales are used to show the true variation between technologies. Measuring direct

footprint shifts wind power and coal into better profiles versus landscape effect. These

measurements are placed in context in Figs. E.1 and E.2, appendix E.
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Fig. 5.4.: Power densities in We/m2 for technologies considered. Note that the density

is higher when only the direct footprint is considered.
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5.6 Discussion

Natural gas has, by far, the highest power density/lowest land use intensity in

our analysis. This can be seen in Figs. 5.3 and 5.4, as well as our literature re-

view in Figs. E.1 and E.2, appendix E. The only low carbon technology whose land

use intensity approaches that of natural gas is nuclear (in fact Smil’s results group

thermal power generation together, showing the similarity of the land footprint of

these technologies [35]). The direct footprint of wind approaches the land footprint

of conventional fossil sources. Some projects now look at combining solar panels with

farming by raising the panels (see [194]). Likewise, biomass from wood wastes and

hydro from run of river projects have a low footprint, but will remain marginal in

their total contribution to power generation. While geothermal and solar CSP have

relatively low land footprints, it may be more difficult to reduce them further. The

large landscape effect of renewables suggest the potential resistance to greater use of

renewables. Even when it is possible to allow combined uses, locking a field in as a

wind farm does not provide the same flexibility or options for higher value future uses

as a piece of farmland with no wind turbines present. Still, opportunities to mitigate

effects on land and allow combined use may aid acceptance. Planning for end-of-life

will also influence acceptance.

A qualitative approach to land disturbances may tell a different story, which is in

part why the ecological footprint and Fthenakis and Kim’s work sought to penalize

conventionals further for greenhouse gas emissions and discount the major land use

stage for renewables by levelizing according to lifetimes. Metrics that allow this

multi-dimensional approach are still lacking.

5.6.1 Temporal Scale

Land is a finite resource, which will be under increasing pressure with population

growth over the coming decades. One temporal scale of critical import, then, is the

footprint, that is, land that must be dedicated to the energy system at any point
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in time. This scale requires a level playing field for the various technologies. A

second temporal dimension must also be considered, the question of land quality—if

we shut the plant down tomorrow, have we diminished the capacity in the future to

re-wild the land or to use it for something else? This temporal dimension is related

to degradation and secondary effects and is discussed below in section 5.6.3.

The time horizon for fossil fuel reserves to diminish is usually much longer than

our planning horizon. It is functionally equivalent to have something persist for 50

years or forever. But renewables are attractive in part because the same plot of land

can be used indefinitely. Trainor et al. demonstrates a crossover point for technologies

in Fig. 3 of their paper [162]. Fthenakis and Kim provide a graphical example of how

timescales work with renewables, but those values are already outdated.

In [165] land use is levelized by total production over time. As soon as we want

to use renewable resources, however, we must establish the farm on a given plot of

land. Then the resource is meted out annually. On the other hand, once the lifetime

of this farm runs out, we can refurbish and continue reaping the dividends. To make

this point further, since solar power will be available every year, any lifetime could

be chosen, allowing us to say that solar power requires essentially no land area. This

is useless in terms of planning and assessing the snapshot of land footprints.

If fossil reserves can be known with certainty, we can calculate a ratio of energy

per land area that will never be exceeded, an upper limit for the maximum power

density for a given energy reserve. Using that as a measure of power density that

is somehow comparable with that of renewables, however, is problematic since we

do not have an instantaneous method of extracting and transporting the energy for

its final use. An appropriate measure for power density, then, must be harmonized

with our technological capabilities, that is what is installed on the ground and can

be extracted in a given time period.
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5.6.2 System Boundaries

Land use has vital consequences for nature. Since there is an inherent difficulty

in determining the correct spatial boundaries for land use for power generation, it

is important to consider the use of the metric. Developing land adds noises, odors

and aesthetics that may be unpleasant. It replaces natural surfaces with impervious

surfaces, which change runoff patterns. It removes vegetation, which provides habi-

tat while regulating the climate. It takes away recreational space and views. It may

fragment habitat or introduce invasive species. Sometimes habitat is eliminated alto-

gether, or corrupted with pollution into waterways or air. In some cases, changes are

permanent; a forest is degraded into a different ecosystem that can no longer provide

the same services to people or animals, or even needs to be reclaimed. Other times,

development involves only slight or temporary modifications to the land, leaving land

similar to its original state. This means that two dimensions, spatial boundary and

extent of damage, need to be considered.

In terms of area affected by development, Trainor et al. noted that even landscape

footprint based on total area may be a conservative estimate [162]. People unhappy

when offshore wind turbines mar the view from their beaches are far from the direct

footprint of the turbine, but still perceive the landscape effect far beyond the area of

the wind lease. Once a road divides formerly intact wilderness, habitat is fragmented

on either side of the road itself. Thus, the total area is a conservative proxy for the

true value, which cannot be easily measured. That means that empirical data is also

the best measure of land footprints, since the size of the average building or panel

does not convey the purchased area. For this reason, our results reflect both the

direct footprint and landscape effect to the extent possible.

Still, as better metrics measuring biodiversity effects and ecosystem services are

devised, they will vary for technologies even when the land use area is the same. More

study is needed to construct this, but work must be done to understand what types

of ecosystem services are affected by development for different energy types, as well
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as how development affects biodiversity. In part this is what qualitative indicators

like those described and used in [26, 195] seek to achieve, but it should be possible

to improve them and quantify them. The lack of these indicators applied to power

generation are part of what have made projects such as the Keystone pipeline so

controversial, since this project affects cultural ecosystem services.

Indicators linking biodiversity to development for power generation have so far

have been slow to develop. Bird mortality related to wind farms has frequently

been discussed, but bird deaths related to natural gas extraction have scarcely been

studied [196]. Sovacool performed a comparative study between power generation

technologies, finding fossil technologies more lethal than wind energy [197]. This

analysis, however, ascribed the lion’s share of avian mortality to climate change.

This places these issues in context, but the rest of his analysis suggests that direct

mortality from fossil fuels and wind power is similar [197]. Since development from

the two energy sources is similar [196], further research should enable us to quantify

this and other effects on species loss. Jones and Pejchar point out the complexity

of comparing mortality in wind versus oil and gas development, since it depends on

the condition of the land before development and the length of time that energy is

utilized from the installation [198]. No two developments are the same, even when

the same energy source is used.

As Jones et al. [196] point out, it is possible to identify links between ecosystem ser-

vices, biodiversity and land use. They look at wildlife mortality and population, loss

and fragmentation of habitats, noise and light pollution, spread of invasive species,

decrease in carbon stocks, and effects on freshwater including from impervious sur-

faces. Their study found that there were simply not many studies on these issues. For

example, they found 79 studies on wildlife mortality in wind farms, but these spanned

only 13 states in the US. They noted that most data on mortality in wind farms was

proprietary. On the other hand, despite areas of concern, they found only 12 studies

on wildlife mortality related to oil and gas exploration. Their study focused only on

the exploration phase for gas and oil, and the wind farm operations and construction
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phases for wind farms, so ignored pipelines and power plants. In fact, in a detailed

review of papers on wildlife mortality across energy sources, Loss et al. found that it

is not possible currently to draw on sufficient literature to compare wildlife mortality

by energy technology [199].

5.6.3 Secondary effects, land degradation and end of life

Beyond the energy footprint snapshot and the additional question of its spatial

boundaries, there is an additional question of reversibility. In some cases, contam-

ination, acidification, forest deterioration caused by mining or accidents can cause

long-lasting harm. In a sense, when we mine energy resources, we are passing the

land use effects on to future generations if we know that restoration will be time-

intensive or that damage may be permanent. For different fuel or technology sources,

the level of damage differs. This legacy type effect is one of the largest barriers to

acceptance of certain types of development, for example nuclear power plants. End

of life for renewables can present a similar hurdle, since wind and solar farms may

remain after being decommissioned, which has been a source of controversy in the

past [200]. Essentially this means that once the snapshot land footprint during the as-

set’s productive lifetime is captured, it is still necessary to capture the land footprint

after that lifetime. This involves studying how long structures remain after being

taken out of use, and measuring how long ecosystems services are affected at end of

life. This can be an additional metric, since it can add up to a much higher amount of

land than accounted for by installations on the ground, and could conceivably include

double-counting. While Fthenakis and Kim mention secondary effects and end-of-life,

they do not include these times in their land-use intensity metric [165]. It is likewise

excluded from the other sources considered here.

Moving forward with nuclear requires inattention to mines or faith that future

mines and processing sites will be dealt with differently than in the past. Hydraulic

fracturing carries a large stigma with future damage to waterways. Coal mining
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has seriously degraded mountainous areas and has poisoned water sources. Fuel

based power generation, thus, is tied to much historic contamination. In this sense,

renewables have an opportunity. Still, renewables are tied to mining as well, in rare

earth metals needed for their fabrication (see op-ed in [201]), and storage is tied

strongly to lithium mining. Still, the land footprint from these mines should be much

smaller than the footprint of the use phase of these technologies. At the very least,

long term legacies from mining, extraction and end of life should be considered in

qualitative metrics.

5.6.4 Incomparabilities

Renewable plants are more viable where those resources are plentiful. Extraction

also occurs at sites where fossil resources are accessible. Moran et al. approach this

type of incomparability by using calculations from de Groot et al. that place monetary

value on ecosystem services based on the characteristics of the landscape, i.e. forest,

desert [178]. They note, for example, the high impact of shale gas extraction on

temperate grasslands and forests [178]. This methodology has promise as a way of

valuing damages which are always site-specific. This type of site-specific analysis will

continue to be important, and is excluded in these large-scale metrics.

5.7 Conclusions

The purpose of this paper was to clarify and evaluate the metrics extant in the

literature for measuring land use of power generation systems. These are frequently

cited with superficial or misleading discussion of their differences. In the source

papers, the methodology is not always laid out in such a way as to make them usable

for researchers who might wish to use their metrics with updated data. We have

attempted to clarify them for others and in the process have formulated the following

recommendations:
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• There is a need for up to date studies using current conditions – many of the

existing assessments rely heavily on data that is almost 40 years old. No studies

have been done for geothermal (since 1991) or offshore wind. The most recent

solar study in the US was completed when the installations were a fraction of

current installed capacity.

• If using the land use intensity metric as defined in [165], make sure that gen-

erating lifetime for renewables has been factored out, or explain why it is used

and make conversions to all technologies.

• Metrics for land use should be based on annual power generation, whether

annual We or annual Whe. This allows an equal playing field for technologies

by basing the land use on the snapshot of the area of earth’s surface that must

be utilized at any point for annual generation.

• Since in many cases the entire land use is relevant in terms of effects on biodi-

versity, nature and landscape, the entire footprint, or landscape effect, should

be assessed. A qualitative or additional scaled indicator can be factored in to

give a sense of the relative impact on the land. Another distinct calculation can

be included with a direct footprint as suggested by [162]. To account for slow

land reclamation for coal mining, we recommend including an extra 1/3 to all

mining land footprints, since there is an additional burden from unreclaimed

lands. Further study is needed on the question of land degradation and end of

life, including a separate metric evaluating this, for all generation technologies.

• More work is necessary on an ecosystem services effect indicator for power gen-

eration systems, measuring the effects of the land footprint on the environment.

Land use has appeared to some a strange benchmark for power generation [186]. This

is most likely due to the relatively small land footprint of energy systems as they

exist today [35]. Converting our energy and materials systems away from petroleum,

however, will most likely require a large increase in the land footprint [35]. This
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will likely lead to new challenges for adoption, particularly in terms of community

acceptance (see [14]). At the same time, the larger land footprint does not necessarily

translate into worse outcomes for biodiversity or availability of ecosystem services.

Further research is needed to understand these outcomes to more fully understand

environmental consequences of the energy transition.
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6. CONCLUSIONS AND IMPLICATIONS FOR FUTURE

WORK

6.1 Overview

A framework was developed to quantify market barriers and boosts for different

power generation technologies in two regional US markets: CAISO and PJM. The

approach leverages on mean variance portfolio optimization by including risks and

costs both in terms of dollars and sustainability. This is the first application of the

portfolio optimization approach with sustainability, and the ability to view solutions

in light of how they fare in terms of meeting current needs versus risks for the future is

important in terms of transparency and dialogue. The framework demonstrated that

offshore wind faces market barriers, but that onshore wind and solar PV only show

strong barriers if it is assumed that VRE can make up 100% of the power generation

mix. This may be a good assumption in PJM, where VRE makes up a very small

part of the current portfolio. Still, including the revenue side for solar PV might

eliminate the barrier since highly-priced SRECs are available in many PJM states.

The approach here offers innovations in terms of correlation calculations, the adoption

of the portfolio approach to sustainability analysis for power generation, and a useful

diagnostic tool for the identification of market barriers and boosts for technologies.

The work demonstrated the difference in regions with high renewable resources

versus those with lower resources, since CAISO showed market barriers for solar

thermal and geothermal. One major advantage of the model is its ability to provide

a range of good solutions, accessing the feasible but dominated space found to be

important by [40, 42]. Correlation methods used are found to have a high impact

on the resulting portfolios chosen, and a method was chosen to better represent the
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relative cost proportions for each technology with the benefit of still being efficient

for calculations.

The first thrust of this research showed that population growth is expected to drive

increased electricity and transportation demand in Indiana cities (Ch 2). Heating is

expected to play a smaller part in the total energy bundle due to climate change.

These results confirm the importance of focusing on the electricity sector, since electric

transport is expected to rise. The changes to Indiana’s climate with the strongest

impact on heating and cooling happen by 2050, with cooling demand rising in northern

cities as the climate becomes more homogeneous in the state. Efficiency increases

in cooling technologies are likely to ameliorate the increased cooling demand from

electricity.

The second thrust involved an analysis of costs and prices for technologies in

both CAISO and PJM (see chapter 3). The study confirmed that NPV tracked more

closely with generation capacity expansion than did LCOE. It provided useful tools

for exploring capacity market regulation changes, and showed that capacity markets

bolster natural gas in PJM, which is likely to be exacerbated by the planned MOPR

expansion. It suggested that markets for other aspects of renewables may be more

favorable incentives than carbon pricing, which would add to the already high cost

of energy in PJM and drive up the cost of new entry to the RPM.

Results of the third thrust show that renewables made up the majority of un-

constrained scenarios even for market-based optimization. This was due to risk as-

sessment that favored biomass, and low costs for solar PV and wind. Solar PV and

wind were both attractive technologies, particularly from a sustainability and cost

perspective. Assuming constraints based on concerns about intermittency highlights

the attractiveness of other renewable technologies such as offshore wind, solar ther-

mal and geothermal. The work highlighted the market attractiveness and relatively

benign sustainability profile of natural gas profile. It did not support the argument

that carbon capture and storage or nuclear power are subject to market barriers, since

their outcomes in the market and sustainability optimizations were nearly identical.
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Land use metrics were critically reviewed in chapter five. More work is necessary

in this area, since there is still disagreement over the appropriate temporal scale

and system boundaries. Much of the seminal work on this area is dated and does

not accurately reflect current technologies and processes. Also, metrics do not yet

accurately reflect effects on biodiversity and resource degradation. Offshore wind

has not been surveyed in terms of land use. Still, an approach was suggested that

used the land use intensity metric from [165] but omits the temporal discounting on

renewables. Calculations were performed on fossil and renewable power generation

that can be used for sustainability assessments as performed in the tool offered in

chapter four.

6.2 Limitations

This model is currently available only for CAISO and PJM, and still requires

running the experiments manually. It is not fully integrated with storage options

that are still emerging. The results from chapters three and four point to the need

for viable long-term storage options. For areas like PJM, hydro is not a viable option

for winter conditions, and winter conditions will require either a very high amount

of storage or else novel frameworks such as hydrogen that have not been proposed

or explored. In PJM, capacity markets require consideration of a ten hour period

for storage. Still, for winter peaks, storage needs may be high if VRE penetration

were high. For now, constraints on VRE have been manually added to simulate

this concern. This is not ideal since such constraints lead to much of the debate

over integrated resource plans that override cheap VRE options in favor of leaving

fossil plants open. Much work on carbon capture and storage and nuclear is based

on the lack of storage and the unsuitability of intermittent VRE to act as a main

power source. The work in chapters three and four does not lend support to these

arguments, since neither technology choice fares well in terms of sustainability or
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favorably in constrained scenarios. Still, without better storage options, these may

seem more attractive.

The sustainability assessment needs further development as well. Indicators for

water use were left as categorical indicators because of lack of specific data and a large

bound on values for each technology. Land use metrics need further development

since they do not account fully for biodiversity impacts, which is one of the chief

motivators for their use. It is important to continually update the parameters for

the model, because cost is very important to equity and accessibility concerns. Still,

this means that lower costs for a technology not currently favorable can change the

sustainability perspective as well in this model on the current needs objective. On

the cost side, the emerging nature of renewable technologies makes data series short

and uninformative, adding uncertainty.

Adoption of renewable energy affects the demand of petroleum and fossil resources,

rather than the supply side [202]. Carbon leakage refers to price effects from decreased

demand for fossil fuels in a specific place and time leading to an increase in demand

in other places. Carbon leakage effects have been widely noted both in theory and

actuality from unilateral actions to combat climate change. Sinn [202] pointed out

that all policies on the demand side are limited in their potential to reduce global

warming since the small group of global actors controlling supply of fossil resources

can increase extraction in the short term if they perceive a benefit to themselves to

doing so and greater risks to leaving the fossil resources in the ground. Such actions

decrease prices in the short term, leading to higher usage, an intertemporal carbon

leakage effect. The other issue that arises with demand side interventions is the

rebound effect, usually considered when discussing efficiency improvements, but with

a potential here as well. As the penetration of renewables increases, these limitations

may be felt in terms of the resulting decrease in greenhouse gas emissions.
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6.3 Impact on Field of Power Generation

In many geographic areas, market acceptance may be the limiting factor in the

spread of renewables. The framework proposed in chapter four offers a short term

analytical tool for finding discrepancies between market prognosis and sustainability

of technologies. This is helpful for the design of long-term energy models, which may

need to anticipate the likelihood of policies being enacted that specifically affect those

technologies. It is also helpful to show stakeholders and policymakers areas that may

be sources of disagreement and may require policy support.

For this to be a more helpful tool, more work could be done on the market side

to incorporate profit metrics and the revenue side rather than costs. Work on the

front end to make a graphical user interface and allow user input and weighting of

preferences could allow this to be used by stakeholders in the integrated resource plan-

ning process, to help utilities understand the concerns and preferences of stakeholder

groups and to increase transparency around scenario design.

6.4 Impact for other fields

An approach for sustainability assessments that transparently balances current

and future generations is helpful for other industrial technologies and processes as

well. Such a transparent approach may enable rapid diagnosis of policy mechanisms

or movements that can find wide appeal. Much of the most heated debate on en-

vironmental policy issues has to do with trade-offs between meeting current needs

equitably and sacrificing the comfort of future generations. This tool can allow the

location on the curve to be clearly seen, so that stakeholder preferences can be more

transparent. Social cost of carbon is another approach in the same vein. Eventually

this tool should be able to show the location of a particular product or industry with

reference to a Pareto front of best possible solutions as in Fig 6.1. As such it could

be used in industry communication with customers, and could also be considered as

part of a firm’s strategic planning and core values discussions.
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Fig. 6.1.: Illustration of a product with respect to hypothetical Pareto front according

to sustainability criteria
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[80] D. J. Sailor and J. R. Muñoz, “Sensitivity of electricity and natural gas con-
sumption to climate in the U.S.A. - Methodology and results for eight states,”
Energy, vol. 22, no. 10, pp. 987–998, 1997.

[81] R. Nateghi and S. Mukherjee, “A multi-paradigm framework to assess the
impacts of climate change on end-use energy demand,” PLoS ONE, vol. 12,
no. 11, p. e0188033, 2017. [Online]. Available: http://journals.plos.org/
plosone/article/file?id=10.1371/journal.pone.0188033{&}type=printable

https://escholarship.org/uc/item/64f9r6wr
https://www.energycommunity.org
https://www.energycommunity.org
http://www.pnas.org/lookup/doi/10.1073/pnas.1423558112
https://www.sciencedirect.com/science/article/pii/S2352550918300083
https://www.sciencedirect.com/science/article/pii/S2352550918300083
http://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0188033{&}type=printable
http://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0188033{&}type=printable


149

[82] J. A. Dirks, W. J. Gorrissen, J. H. Hathaway, D. C. Skorski, M. J. Scott,
T. C. Pulsipher, M. Huang, Y. Liu, and J. S. Rice, “Impacts of climate change
on energy consumption and peak demand in buildings: A detailed regional
approach,” Energy, vol. 79, no. C, pp. 20–32, 2015. [Online]. Available:
http://dx.doi.org/10.1016/j.energy.2014.08.081

[83] H. Wang and Q. Chen, “Impact of climate change heating and cooling energy
use in buildings in the united states,” Energy and Buildings, vol. 82, pp. 428–
436, 2014.

[84] M. A. McNeil, V. E. Letschert, and S. de la Rue du Can, “Global Potential
of Energy Efficiency Standards and Labeling Programs,” Ernest Orlando
Lawrence Berkeley National Laboratory, Tech. Rep. June, 2008. [Online].
Available: https://eaei.lbl.gov/sites/all/files/lbnl-760e.pdf

[85] U. E. I. Administration, “Annual energy outlook,” US Department of Energy,
United States Government Printing Office: Washington, DC, Tech. Rep., 2017.

[86] G. Iyer, L. Clarke, J. Edmonds, P. Kyle, C. Ledna, H. Mcjeon, and M. Wise,
“GCAM-USA Analysis of U . S . Electric Power Sector Transitions,” Pacific
Northwest National Laboratory - US Department of Energy, Tech. Rep. May,
2017.

[87] F. Rong, L. E. Clarke, and S. J. Smith, “Climate Change and the
long term evolution of the US Building sector,” Pacific Northwest
National Laboratory, US Department of Energy, Tech. Rep. April,
2007. [Online]. Available: http://www.pnl.gov/main/publications/external/
technical{ }reports/PNNL-16869.pdf

[88] U. E. I. Administration, “Annual energy outlook,” US Department of Energy,
United States Government Printing Office: Washington, DC, Tech. Rep., 2018.

[89] A. Hamlet, K. Brun, S. Robeson, M. Widhalm, and M. Baldwin, “Impacts of
climate change on the state of Indiana: future projections based on statistical
downscaling,” Climatic Change, 2018 This issue.

[90] STATS Indiana, “Population Projections By Age and Sex for Indiana
Counties and Regions, 2010-2050,” STATS Indiana, Tech. Rep., 2012. [Online].
Available: www.stats.indiana.edu/topic/projections.asp

[91] S. Angel, J. Parent, D. L. Civco, and A. M. Blei, “Atlas of Urban Expansion
Data,” Lincoln Institute of Land Policy, Tech. Rep., 2012.

[92] US Census Bureau, “Indiana : 2010 Population and Housing Unit Counts,”
Washington, DC, 2012. [Online]. Available: https://www.census.gov/prod/
cen2010/cph-2-16.pdf

[93] ——, “Quickfacts database,” 2017.

[94] M. Douglas and G. Runger, Applied statistics and probability for engineers.
John Wiley & Sons, 2010.

[95] US Energy Information Administration, “Commercial Buildings Energy
Consumption Survey (CBECS),” 2012. [Online]. Available: https://www.eia.
gov/consumption/commercial/

http://dx.doi.org/10.1016/j.energy.2014.08.081
https://eaei.lbl.gov/sites/all/files/lbnl-760e.pdf
http://www.pnl.gov/main/publications/external/technical{_}reports/PNNL-16869.pdf
http://www.pnl.gov/main/publications/external/technical{_}reports/PNNL-16869.pdf
www.stats.indiana.edu/topic/projections.asp
https://www.census.gov/prod/cen2010/cph-2-16.pdf
https://www.census.gov/prod/cen2010/cph-2-16.pdf
https://www.eia.gov/consumption/commercial/
https://www.eia.gov/consumption/commercial/


150

[96] J. Arbib and T. Seba, “Rethinking Transportation 2020-2030,” RethinkX, Tech.
Rep., May 2017.

[97] E. Trutnevyte, W. McDowall, J. Tomei, and I. Keppo, “Energy scenario choices:
Insights from a retrospective review of uk energy futures,” Renewable and sus-
tainable energy reviews, vol. 55, pp. 326–337, 2016.

[98] S. Reichelstein and A. Sahoo, “Time of day pricing and the levelized cost of
intermittent power generation,” Energy Economics, vol. 48, pp. 97–108, 2015.

[99] “Cost of generation model version 3.98,” 2016.

[100] K. Eurek, W. Cole, D. Bielen, N. Blair, S. Cohen, B. Frew, J. Ho, V. Krish-
nan, T. Mai, B. Sigrin, and D. Steinberg, “Regional energy deployment system
(reeds) model documentation: Version 2016,” National Renewable Energy Lab-
oratory, Tech. Rep., 2016.

[101] R. Bajo-Buenestado, “Welfare implications of capacity payments in a price-
capped electricity sector: A case study of the texas market (ercot),” Energy
Economics, vol. 64, pp. 272–285, 2017.

[102] A. Bublitz, D. Keles, F. Zimmermann, C. Fraunholz, and W. Fichtner, “A
survey on electricity market design: Insights from theory and real-world imple-
mentations of capacity remuneration mechanisms,” Energy Economics, vol. 80,
pp. 1059–1078, 2019.

[103] “Us average annual wind speed at 80 meters,”
https://windexchange.energy.gov/maps-data/319, 2010.

[104] L. Monitoring Analytics, “State of the market report for pjm,” PJM, Tech.
Rep., 2019.

[105] B. Kroposki, B. Johnson, Y. Zhang, V. Gevorgian, P. Denholm, B.-M. Hodge,
and B. Hannegan, “Achieving a 100% renewable grid,” IEEE Power and Energy
Magazine, vol. March/April, pp. 61–73, 2017.

[106] “Macrs asset life table,” 2019.

[107] G. Barbose, “Us renewables portfolio standards: 2018 annual status report,”
Lawrence Berkeley National Laboratory, Tech. Rep., 2018.

[108] “Mopr floor offer prices for 2022/2023 bra ($/mw-day in icap mw terms),” PJM,
Tech. Rep., 2019.

[109] NREL, “Annual technology baseline,” National Renewable Energy Laboratory,
2018. [Online]. Available: https://atb.nrel.gov/

[110] J. D. Rhodes, C. King, G. Gulen, S. M. Olmstead, J. S. Dyer, R. E. Heb-
ner, F. C. Beach, T. F. Edgar, and M. E. Webber, “A geographically resolved
method to estimate levelized power plant costs with environmental externali-
ties,” Energy Policy, vol. 102, pp. 491–499, 2017.

[111] EC European Commission and others, “Characterization factors of the ilcd
recommended life cycle impact assessment methods, database and supporting
information,” EC, Tech. Rep., 2012.

https://atb.nrel.gov/


151

[112] “Electricity monthly update,” US Energy Information Administration, Tech.
Rep., 2018.

[113] M. Bolinger and J. Seel, “Utility scale solar 2018 edition public data file,” 2018.

[114] “Pjm quadrennial review: Discount rate,” Energyzt Advisors, LLC, Tech. Rep.,
2018.

[115] S. Newell, J. M. Hagerty, J. P. Pfeifenberger, B. Zhou, E. Shorin, P. Fitz,
S. Gang, P. Daou, and J. Wroble, “Pjm cost of new entry: Combustion turbines
and combined-cycle plants with june 1, 2022 online date,” Brattle Group, Tech.
Rep., 2018.

[116] M. Goedhard, T. Koller, and D. Wessels, Valuation: Measuring and managing
the value of companies. John Wiley & Sons, 2015.

[117] S. Awerbuch, “Market-based irp: It’s easy!!!” The Electricity Journal, vol. 8,
no. 3, pp. 50–67, 1995.

[118] D. Hulshof, J.-P. van der Maat, and M. Mulder, “Market fundamentals, com-
petition and natural gas prices,” Energy Policy, vol. 94, pp. 480–491, 2016.

[119] “Wholesale gas price survey: 2018 edition,” International Gas Union, Tech.
Rep., 2018.

[120] B. Bernanke, “The relationship between stocks and oil prices,” 2016.

[121] R. Weron, “Electricity price forecasting: A review of the state-of-the-art with
a look into the future,” International journal of forecasting, vol. 30, no. 4, pp.
1030–1081, 2014.

[122] D. of Market Monitoring, “2017 annual report on market issues & performance,”
California Independent System Operator, Tech. Rep., 2018.

[123] “Weekly commentary: Cca prices increase significantly as the front changes
from april 19 to may 19,” April 2019.

[124] “Form eia-860 detailed data with previous form data (eia-860a/860b),” Septem-
ber 2018.
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A. MARKET PENETRATION

The penetration of new technologies into the marketplace is not instantaneous, but

instead relies on gradual replacement of existing solutions, particularly when these

solutions involve expensive capital equipment. The logistic or Verhulst equation was

initially developed to model population dynamics.

The continuous logistic equation [203] is shown:

dN

dt
=
rN(K −N)

K
(A.1)

Where K is the carrying capacity, N is the actual population and r is the Malthusian

parameter, which represents the maximum growth rate. Applying this to the energy

marketplace, da Vieira [204] rearranges the logistic equation to:

1

x

dx

dt
= rx(1− x) (A.2)

Where x ≡ N
K

, or the proportion of the total possible population occupied by tech-

nology x. The fractional change in the population of x over time ( 1
x
dx
dt

) is therefore

directly proportional to the percentage of the total population not using x, that is,

(1 - x). Da Rosa walks through the solution for x, which is given by:

x =
exp{(rt+ b)}

1 + exp{(rt+ b)}
(A.3)

In this case, b represents the integration constant. It is thus possible to graph x over

t for any given r and b to see an S shaped diffusion curve.
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B. SUPPLEMENTARY MATERIAL FOR CHAPTER TWO

The supplementary material contains the dataset used for the electricity regression

model used in chapter 2, as well as all results by city for per capita heating, cooling

and electricity energy demand. In addition, information pertaining to the statistical

extrapolation test run, including the code, h values and results is provided.
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B.1 New data set for electricity modeling

As described in section 3.1 in the main paper, the regression coefficients differed

slightly from the published models. The data used for the electricity regression model

is given here in table B.1.

Table B.1.: Data used for the electricity regression model referred to in the text as

S-K

City HDD Inverse

Density

(Ha/cap)

Electricity

Consumption

(MWh/cap)

Tianjin 2693 4.446E-03 4.146

Mumbai 1 4.836E-03 1.038

Dar es Salaam 6 5.051E-03 0.164

Seoul 2870 1.102E-02 4.455

Delhi 396 8.094E-03 1.295

Moscow 4562 1.987E-02 4.516

Manila 0 9.425E-03 1.294

Shanghai 1566 9.569E-03 5.455

Beijing 2865 1.074E-02 3.915

Jakarta 0 1.112E-02 2.906

Rio de Janeiro 7 1.149E-02 2.303

Dhaka 50 5.836E-03 0.619

Sao Paulo 329 1.258E-02 2.903

Geneva 2902 1.305E-02 6.460

Kolkata 96 3.644E-03 0.877

Lagos 0 4.865E-03 0.078

Buenos Aires 863 1.443E-02 4.187

Paris-IDF 2605 1.520E-02 5.020

Barcelona 1295 1.555E-02 4.660

Mexico City 873 8.952E-03 1.544

London 2559 1.695E-02 5.330

Cape Town 1013 1.783E-02 3.860

Osaka 1728 2.265E-02 8.271

Shenzhen 377 1.903E-02 6.650

Amman 1257 1.969E-02 2.239

Bangkok 0 2.020E-02 5.040

Karachi 153 4.246E-03 1.335

Tokyo 1594 1.968E-02 6.759

Toronto 3722 2.825E-02 10.040

Prague 3550 2.874E-02 4.660

New York City 2372 3.058E-02 6.070

Los Angeles 691 3.322E-02 6.710

Istanbul 1996 1.166E-02 2.837

Chicago 3400 4.484E-02 10.350

Denver 3425 5.650E-02 11.490

Guangzhou 539 5.830E-02 4.950

Cairo 440 7.677E-03 1.508

Tehran 1977 1.141E-02 2.027

Indianapolis 2881.5 1.161E-01 8.062
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Table B.2.: Data used for heating regression. Based on the published S-K model.

Industrial heating shares were assumed for each city and the modified totals were

used for the regression.

Country City
Actual

Heating

Adjusted

Heating
HDD Assumption

Industrial

Htg Share

GJ/c/yr GJ/c/yr

Thailand Bangkok 28.40 22.72 0 middle industry 20%

Spain Barcelona 15.00 13.50 1295 limited industry 10%

South Africa Cape Town 3.90 3.12 1013 middle industry 20%

USA Denver 73.52 66.17 3425 limited industry 10%

Switzerland Geneva 51.30 46.17 2902 limited industry 10%

UK London 44.90 40.41 2559 limited industry 10%

USA Los Angeles 24.20 21.78 691 limited industry 10%

USA New York City 50.80 45.72 2372 limited industry 10%

Czech Republic Prague 46.80 42.12 3550 limited industry 10%

Canada Toronto 58.90 53.01 3722 limited industry 10%

China Tianjin 46.50 30.22 2693 high industry 35%

China Shanghai 55.06 35.79 1566 high industry 35%

China Beijing 49.19 31.97 2865 high industry 35%

USA Chicago 62.40 56.16 3400 limited industry 10%

France Paris-IDF 36.00 32.40 2605 limited industry 10%

Indonesia Jakarta 5.10 4.08 0 middle industry 20%

Jordan Amman 5.13 4.10 1257 middle industry 20%

Argentina Buenos Aires 21.32 19.19 863 limited industry 10%

Brazil Sao Paulo 3.49 3.14 329 limited industry 10%

Brazil Rio de Janeiro 5.48 4.93 7 limited industry 10%
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B.2 Detailed Results for Fig. 1 in Main Text

Table B.3.: Heating demand by city for each time period. Demand is measured in

GJ/capita and the cumulative percent increase or decrease from the 2015 figure is

included.

Timeframe 2015 2050 2080

Scenario RCP 4.5 RCP 8.5 RCP 4.5 RCP 8.5 RCP 4.5 RCP 8.5

City/Units GJ/c GJ/c GJ/c % +/- GJ/c % +/- GJ/c % +/- GJ/c % +/-

Bloomington 33.52 33.35 30.67 -8.5% 28.62 -14.2% 28.92 -13.7% 23.90 -28.3%

Cincinnati 34.21 34.04 31.35 -8.3% 29.28 -14.0% 29.62 -13.4% 24.41 -28.3%

Columbus 35.12 35.00 32.26 -8.1% 30.26 -13.5% 30.53 -13.1% 25.26 -27.8%

Elkhart-Gosh. 42.80 42.59 39.58 -7.5% 37.08 -12.9% 37.46 -12.5% 31.07 -27.0%

Evansville 29.04 28.91 26.21 -9.7% 24.47 -15.3% 24.75 -14.8% 20.29 -29.8%

Fort Wayne 41.81 41.60 38.76 -7.3% 36.38 -12.5% 36.75 -12.1% 30.56 -26.5%

Gary 41.19 40.94 37.96 -7.8% 35.51 -13.3% 35.86 -12.9% 29.91 -26.9%

Indianapolis 36.94 36.77 34.11 -7.6% 31.98 -13.0% 32.26 -12.7% 26.85 -27.0%

Kokomo 38.88 38.68 36.19 -6.9% 33.77 -12.7% 34.13 -12.2% 28.29 -26.9%

Lafayette-WL 39.22 39.03 36.44 -7.1% 34.08 -12.7% 34.42 -12.3% 28.57 -26.8%

Louisville 31.92 31.78 29.04 -9.0% 27.04 -14.9% 27.32 -14.4% 22.40 -29.5%

Mich City-L.P. 42.32 42.10 39.05 -7.7% 36.56 -13.2% 36.94 -12.7% 30.74 -27.0%

Muncie 38.75 38.57 36.00 -7.1% 33.69 -12.6% 34.05 -12.1% 28.21 -26.9%

South Bend-M 43.02 42.81 39.79 -7.5% 37.26 -13.0% 37.64 -12.5% 31.29 -26.9%

Terre Haute 35.72 35.53 32.92 -7.9% 30.81 -13.3% 31.08 -13.0% 25.90 -27.1%

Average 37.87 37.69 34.86 -8.0% 32.65 -13.4% 32.94 -13.0% 27.36 -27.4%

St. Dev. 4.15 4.12 4.03 3.81 3.84 3.29

B.3 Hidden extrapolation test results

In order to ensure that the results or our regression model were not subject to

hidden extrapolation, a test for hidden extrapolation was run. In B.3.1 we include

the MATLAB code for running the hidden extrapolation test. Tables B.7 and B.8

have the h values for heating and electricity. Table B.9 has the test values for heating

in each scenario (no hidden extrapolation was present in any modeled scenario).

Table B.10 has the test values for electricity, with the extrapolated values shaded in

gray.
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Table B.4.: Electricity demand by city for each time period. Demand is measured in

MWh/capita and the cumulative percent increase or decrease from the 2015 figure is

included.

Timeframe 2015 2050 2080

RCP Scenario 4.5 8.5 4.5 8.5 4.5 8.5

City/Units MWh/c MWh/c MWh/c % + MWh/c % + MWh/c % + MWh/c % +

Bloomington 7.98 7.97 10.20 27.8% 10.06 26.3% 14.73 84.6% 14.47 81.6%

Cincinnati 11.87 11.86 15.71 32.3% 15.57 31.3% 23.66 99.3% 23.39 97.2%

Columbus 16.48 16.47 22.23 34.9% 22.10 34.2% 34.22 107.6% 33.94 106.1%

Elkhart-Gosh. 10.80 10.79 13.92 28.9% 13.75 27.5% 20.25 87.5% 19.91 84.6%

Evansville 8.52 8.51 11.09 30.2% 10.97 29.0% 14.27 67.6% 13.97 64.2%

Fort Wayne 13.29 13.28 17.50 31.7% 17.34 30.6% 22.60 70.0% 22.18 67.1%

Gary 10.33 10.31 13.30 28.7% 13.13 27.3% 16.93 63.9% 16.53 60.3%

Indianapolis 11.89 11.88 15.66 31.7% 15.52 30.6% 20.23 70.2% 19.87 67.3%

Kokomo 11.43 11.42 14.96 30.9% 14.80 29.6% 19.23 68.2% 18.84 65.0%

Lafayette-WL 9.87 9.86 12.73 28.9% 12.57 27.5% 16.21 64.2% 15.81 60.4%

Louisville 10.50 10.49 13.82 31.7% 13.68 30.5% 17.88 70.3% 17.54 67.3%

Mich City-L.P. 13.91 13.89 18.34 31.9% 18.17 30.8% 23.73 70.6% 23.31 67.8%

Muncie 11.72 11.71 15.37 31.2% 15.22 30.0% 19.79 68.9% 19.40 65.7%

South Bend-M 11.53 11.52 14.95 29.6% 14.78 28.3% 19.12 65.8% 18.70 62.3%

Terre Haute 10.30 10.29 13.44 30.5% 13.30 29.2% 17.26 67.6% 16.92 64.4%

Average 11.36 11.35 14.88 31.0% 14.73 29.8% 20.01 76.1% 19.65 73.2%

St. Dev. 2.03 2.03 2.85 2.85 4.72 4.73

B.3.1 MATLAB Code to check for hidden extrapolation in one result

dataset

%%%%%%%%%Our Model for Heating%%%%%%%%%%%%%%%%%%%%

OurXData = xlsread(’OurHtgData.xlsx’, ’B2:B21’);

OurXmatrix = OurXData;

OurXprimematrix = transpose(OurXmatrix);

OurYData = xlsread(’OurHtgData.xlsx’, ’C2:C21’);

OurXprimeXmatrix = OurXprimematrix * OurXmatrix;

OurXprimeYmatrix = OurXprimematrix * OurYData;

OurBetaVector = inv(OurXprimeXmatrix) * OurXprimeYmatrix;

OurYHat = OurXmatrix .* OurBetaVector;

Oure = OurYData - OurYHat;
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Table B.5.: Cooling in kWh per capita. Efficiency gains are assumed for air condi-

tioning systems. The cumulative percent increase or decrease from the 2015 figure is

included.

Timeframe 2015 2050 2080

Scenario RCP 4.5 RCP 8.5 RCP 4.5 RCP 8.5 RCP 4.5 RCP 8.5

City/Units kWh/c kWh/c kWh/c % + kWh/c % + kWh/c % + kWh/c % +

Bloomington 338.80 350.03 327.23 -3.4% 341.60 -2.4% 310.11 -8.5% 334.90 -4.3%

Cincinnati 360.65 374.05 339.31 -5.9% 356.72 -4.6% 322.75 -10.5% 352.70 -5.7%

Columbus 325.80 333.91 295.61 -9.3% 310.57 -7.0% 281.66 -13.6% 306.59 -8.2%

Elkhart-Gosh. 177.50 187.57 213.33 20.2% 259.76 38.5% 235.06 32.4% 269.71 43.8%

Evansville 398.36 400.71 345.21 -13.3% 356.25 -11.1% 324.11 -18.6% 341.70 -14.7%

Fort Wayne 200.44 210.71 241.08 20.3% 289.06 37.2% 261.34 30.4% 295.73 40.4%

Gary 234.07 245.22 266.36 13.8% 284.90 16.2% 258.79 10.6% 291.09 18.7%

Indianapolis 299.09 311.09 288.00 -3.7% 303.21 -2.5% 275.06 -8.0% 300.74 -3.3%

Kokomo 280.43 295.65 312.48 11.4% 331.45 12.1% 300.21 7.1% 330.56 11.8%

Lafayette-WL 257.95 271.40 304.22 17.9% 324.92 19.7% 294.84 14.3% 325.89 20.1%

Louisville 348.40 351.54 307.95 -11.6% 320.66 -8.8% 291.22 -16.4% 313.22 -10.9%

Mich City-L.P. 190.49 200.71 238.73 25.3% 309.83 54.4% 287.51 50.9% 327.96 63.4%

Muncie 214.81 225.48 274.96 28.0% 318.93 41.4% 288.58 34.3% 322.92 43.2%

South Bend-M 175.65 185.12 211.64 20.5% 277.36 49.8% 251.67 43.3% 289.08 56.2%

Terre Haute 309.54 320.34 311.97 0.8% 326.34 1.9% 296.52 -4.2% 321.51 0.4%

Average 274.82 285.28 280.91 2.2% 304.26 6.7% 275.89 0.4% 304.00 6.6%

St. Dev. 70.26 69.19 41.55 26.98 24.58 21.77
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Table B.6.: Cooling in kWh per capita. No efficiency gains are assumed for air

conditioning systems. The cumulative percent increase or decrease from the 2015

figure is included.

Timeframe 2015 2050 2080

Scenario RCP 4.5 RCP 8.5 RCP 4.5 RCP 8.5 RCP 4.5 RCP 8.5

City/Units kWh/c kWh/c kWh/c % + kWh/c % + kWh/c % + kWh/c % +

Bloomington 338.80 350.03 392.98 16.0% 410.24 17.2% 406.76 20.1% 439.28 25.5%

Cincinnati 360.65 374.05 407.49 13.0% 428.40 14.5% 423.34 17.4% 462.62 23.7%

Columbus 325.80 333.91 355.00 9.0% 372.97 11.7% 369.44 13.4% 402.14 20.4%

Elkhart-Gosh. 177.50 187.57 256.20 44.3% 311.95 66.3% 308.32 73.7% 353.76 88.6%

Evansville 398.36 400.71 414.57 4.1% 427.84 6.8% 425.13 6.7% 448.20 11.9%

Fort Wayne 200.44 210.71 289.52 44.4% 347.14 64.7% 342.79 71.0% 387.90 84.1%

Gary 234.07 245.22 319.88 36.7% 342.14 39.5% 339.44 45.0% 381.82 55.7%

Indianapolis 299.09 311.09 345.87 15.6% 364.13 17.1% 360.78 20.6% 394.47 26.8%

Kokomo 280.43 295.65 375.27 33.8% 398.04 34.6% 393.78 40.4% 433.58 46.7%

Lafayette-WL 257.95 271.40 365.34 41.6% 390.20 43.8% 386.73 49.9% 427.46 57.5%

Louisville 348.40 351.54 369.82 6.2% 385.09 9.5% 381.98 9.6% 410.84 16.9%

Mich City-L.P. 190.49 200.71 286.70 50.5% 372.08 85.4% 377.11 98.0% 430.17 114.3%

Muncie 214.81 225.48 330.21 53.7% 383.02 69.9% 378.52 76.2% 423.56 87.8%

South Bend-M 175.65 185.12 254.17 44.7% 333.09 79.9% 330.10 87.9% 379.18 104.8%

Terre Haute 309.54 320.34 374.65 21.0% 391.91 22.3% 388.94 25.6% 421.72 31.6%

Average 274.82 285.28 337.36 22.8% 365.39 28.1% 361.88 31.7% 398.74 39.8%

St. Dev. 70.26 69.19 49.90 32.40 32.25 28.55
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OurHatmatrix = OurXmatrix * inv(OurXprimeXmatrix) * OurXprimematrix;

ModelHValues = diag(OurHatmatrix);

HtgModelHTable = ModelHValues;

csvwrite(’HtgModelHValues.csv’, ModelHValues)

OurNewXData = xlsread(’ModelHtgResults2015RCP26.xlsx’, ’B2:B16’);

OurXoMatrix = OurNewXData;

OurXoPrimeMatrix = transpose(OurXoMatrix);

OurHooMatrix = OurXoMatrix * inv(OurXprimeXmatrix) * OurXoPrimeMatrix;

OurHooVector = diag(OurHooMatrix);

M = max(ModelHValues);

HiddenExtrapolationH2015RCP26 = OurHooVector > M;
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Table B.7.: H values for Heating Model

City H value

Bangkok 0

Barcelona 0.0167

Cape Town 0.0102

Denver 0.1165

Geneva 0.0837

London 0.0651

Los Angeles 0.0047

New York City 0.0559

Prague 0.1252

Toronto 0.1376

Tianjin 0.0721

Shanghai 0.0244

Beijing 0.0815

Chicago 0.1149

Paris-IDF 0.0674

Jakarta 0

Amman 0.0157

Buenos Aires 0.0074

Sao Paulo 0.0011

Rio de Janeiro 0
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Table B.8.: H values for Electricity Model

City H Value

Tianjin 0.0797

Mumbai 0.0015

Dar es Salaam 0.0016

Seoul 0.0739

Delhi 0.0021

Moscow 0.1786

Manila 0.0056

Shanghai 0.0184

Beijing 0.0742

Jakarta 0.0079

Rio de Janeiro 0.0083

Dhaka 0.0018

Sao Paulo 0.0062

Geneva 0.0714

Kolkata 0.0005

Lagos 0.0015

Buenos Aires 0.007

Paris-IDF 0.0519

Barcelona 0.0114

Mexico City 0.005

London 0.0476

Cape Town 0.0104

Osaka 0.0213

Shenzhen 0.0157

Amman 0.0135

Bangkok 0.0259

Karachi 0.0006

Tokyo 0.0175

Toronto 0.0958

Prague 0.0854

New York City 0.0397

Los Angeles 0.0471

Istanbul 0.0305

Chicago 0.0829

Denver 0.1079

Guangzhou 0.1797

Cairo 0.0019

Tehran 0.03

Indianapolis 0.538
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Table B.9.: Heating Test values for Hidden Extrapolation

City

RCP 2.6 RCP 4.5 RCP 8.5

2015 2050 2080 2015 2050 2080 2015 2050 2080

Bloomington 0.0479 0.0432 0.0424 0.0515 0.0431 0.0383 0.051 0.0375 0.0262

Cincinnati 0.0497 0.0451 0.0446 0.0536 0.045 0.0402 0.0531 0.0393 0.0273

Columbus 0.0526 0.0475 0.0467 0.0565 0.0477 0.0427 0.0561 0.0419 0.0292

Elkhart-Gosh. 0.0826 0.075 0.0736 0.0839 0.0718 0.0643 0.0831 0.063 0.0442

Evansville 0.0354 0.0315 0.031 0.0386 0.0315 0.0281 0.0383 0.0274 0.0189

Fort Wayne 0.0781 0.0718 0.0706 0.0801 0.0688 0.0619 0.0793 0.0607 0.0428

Gary 0.0751 0.0689 0.0676 0.0777 0.066 0.0589 0.0768 0.0578 0.041

Indianapolis 0.0593 0.0544 0.0534 0.0625 0.0533 0.0477 0.0619 0.0469 0.033

Kokomo 0.0672 0.063 0.0614 0.0693 0.06 0.0534 0.0686 0.0522 0.0367

Lafayette/WL 0.0681 0.0631 0.0618 0.0705 0.0608 0.0543 0.0698 0.0532 0.0374

Louisville 0.0431 0.0382 0.038 0.0467 0.0386 0.0342 0.0463 0.0335 0.023

Mich City/L P 0.0798 0.0725 0.0711 0.0821 0.0699 0.0625 0.0812 0.0612 0.0433

Muncie 0.0661 0.0613 0.06 0.0688 0.0594 0.0531 0.0682 0.052 0.0365

South Bend/M 0.0834 0.0757 0.0743 0.0848 0.0725 0.0649 0.084 0.0636 0.0449

Terre Haute 0.0552 0.0506 0.0496 0.0585 0.0497 0.0442 0.0578 0.0435 0.0307

Table B.10.: Electricity Test Values for Hidden Extrapolation. Shaded values indicate

extrapolation.

City

RCP 2.6 RCP 4.5 RCP 8.5

2015 2050 2080 2015 2050 2080 2015 2050 2080

Bloomington 0.051 0.1076 0.2219 0.0516 0.1076 0.2265 0.0515 0.1103 0.2437

Cincinnati 0.154 0.3648 0.7409 0.1518 0.3649 0.7524 0.152 0.3742 0.7929

Columbus 0.3869 0.897 1.7752 0.3815 0.8964 1.7928 0.382 0.913 1.8608

Elkhart-Gosh. 0.0965 0.2094 0.4331 0.0967 0.2111 0.4448 0.0966 0.2165 0.4768

Evansville 0.0676 0.1586 0.3264 0.0669 0.1586 0.3321 0.067 0.163 0.3537

Fort Wayne 0.1759 0.4136 0.8488 0.1752 0.4171 0.8676 0.1755 0.4276 0.9173

Gary 0.088 0.1905 0.3941 0.0882 0.1921 0.4049 0.0881 0.1971 0.4333

Indianapolis 0.143 0.3372 0.6907 0.1418 0.3385 0.7037 0.142 0.3472 0.7431

Kokomo 0.1212 0.2802 0.5792 0.1208 0.283 0.5939 0.1209 0.2911 0.6313

Lafayette/WL 0.0804 0.1743 0.3606 0.0807 0.1755 0.37 0.0806 0.1801 0.3966

Louisville 0.1143 0.2719 0.5539 0.1128 0.2713 0.563 0.1129 0.2788 0.5956

Mich City/L P 0.1986 0.4697 0.9613 0.1977 0.4731 0.9813 0.1981 0.4853 1.035

Muncie 0.1308 0.3052 0.6287 0.1301 0.3071 0.6422 0.1303 0.3154 0.6817

South Bend/M 0.1144 0.2572 0.5324 0.1144 0.2594 0.5463 0.1144 0.2663 0.5832

Terre Haute 0.0971 0.225 0.4645 0.0965 0.2259 0.4742 0.0966 0.232 0.5035



171

Table B.11.: In the work published in [63] the efficiency figure of 3.81 was used for

2015. This table gives the city by city cooling results with no efficiency change (so

3.81 is used for all years), that correspond to that report.

Timeframe 2015 2050 2080

Scenario RCP 4.5 RCP 8.5 RCP 4.5 RCP 8.5 RCP 4.5 RCP 8.5

City/Units kWh/c kWh/c kWh/c % + kWh/c % + kWh/c % + kWh/c % +

Bloomington 297.90 307.77 345.53 16.0% 360.71 17.2% 357.65 20.1% 386.24 25.5%

Cincinnati 317.11 328.89 358.29 13.0% 376.68 14.5% 372.23 17.4% 406.76 23.7%

Columbus 286.47 293.59 312.14 9.0% 327.94 11.7% 324.83 13.4% 353.59 20.4%

Elkhart-Gosh. 156.07 164.93 225.26 44.3% 274.29 66.3% 271.10 73.7% 311.05 88.6%

Evansville 350.27 352.33 364.52 4.1% 376.18 6.8% 373.80 6.7% 394.09 11.9%

Fort Wayne 176.24 185.27 254.56 44.4% 305.23 64.7% 301.40 71.0% 341.07 84.1%

Gary 205.81 215.61 281.26 36.7% 300.83 39.5% 298.46 45.0% 335.72 55.7%

Indianapolis 262.98 273.53 304.11 15.6% 320.17 17.1% 317.22 20.6% 346.84 26.8%

Kokomo 246.57 259.96 329.96 33.8% 349.99 34.6% 346.24 40.4% 381.23 46.7%

Lafayette-WL 226.81 238.63 321.23 41.6% 343.09 43.8% 340.04 49.9% 375.85 57.5%

Louisville 306.33 309.09 325.17 6.2% 338.60 9.5% 335.86 9.6% 361.24 16.9%

Mich City-L.P. 167.49 176.48 252.08 50.5% 327.16 85.4% 331.58 98.0% 378.23 114.3%

Muncie 188.88 198.26 290.34 53.7% 336.77 69.9% 332.82 76.2% 372.42 87.8%

South Bend-M 154.44 162.77 223.48 44.7% 292.88 79.9% 290.25 87.9% 333.40 104.8%

Terre Haute 272.17 281.66 329.42 21.0% 344.59 22.3% 341.98 25.6% 370.80 31.6%

Average 241.64 250.84 296.62 22.8% 321.28 28.1% 318.19 31.7% 350.60 39.8%

St. Dev. 61.78 60.83 43.87 28.49 28.35 25.10
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Table B.12.: In the work published in [63] the efficiency figure of 3.81 was used for

2015. This table gives the city by city cooling results with efficiency changes that

correspond to that report.

Timeframe 2015 2050 2080

Scenario RCP 4.5 RCP 8.5 RCP 4.5 RCP 8.5 RCP 4.5 RCP 8.5

City/Units kWh/c kWh/c kWh/c % + kWh/c % + kWh/c % + kWh/c % +

Bloomington 297.90 307.77 327.23 9.8% 341.60 11.0% 310.11 4.1% 334.90 8.8%

Cincinnati 317.11 328.89 339.31 7.0% 356.72 8.5% 322.75 1.8% 352.70 7.2%

Columbus 286.47 293.59 295.61 3.2% 310.57 5.8% 281.66 -1.7% 306.59 4.4%

Elkhart-Gosh. 156.07 164.93 213.33 36.7% 259.76 57.5% 235.06 50.6% 269.71 63.5%

Evansville 350.27 352.33 345.21 -1.4% 356.25 1.1% 324.11 -7.5% 341.70 -3.0%

Fort Wayne 176.24 185.27 241.08 36.8% 289.06 56.0% 261.34 48.3% 295.73 59.6%

Gary 205.81 215.61 266.36 29.4% 284.90 32.1% 258.79 25.7% 291.09 35.0%

Indianapolis 262.98 273.53 288.00 9.5% 303.21 10.8% 275.06 4.6% 300.74 9.9%

Kokomo 246.57 259.96 312.48 26.7% 331.45 27.5% 300.21 21.8% 330.56 27.2%

Lafayette-WL 226.81 238.63 304.22 34.1% 324.92 36.2% 294.84 30.0% 325.89 36.6%

Louisville 306.33 309.09 307.95 0.5% 320.66 3.7% 291.22 -4.9% 313.22 1.3%

Mich City-L.P. 167.49 176.48 238.73 42.5% 309.83 75.6% 287.51 71.7% 327.96 85.8%

Muncie 188.88 198.26 274.96 45.6% 318.93 60.9% 288.58 52.8% 322.92 62.9%

South Bend-M 154.44 162.77 211.64 37.0% 277.36 70.4% 251.67 63.0% 289.08 77.6%

Terre Haute 272.17 281.66 311.97 14.6% 326.34 15.9% 296.52 8.9% 321.51 14.1%

Average 241.64 250.84 280.91 16.3% 304.26 21.3% 275.89 14.2% 304.00 21.2%

St. Dev. 61.78 60.83 41.55 26.98 24.58 21.77
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C. SUPPLEMENT TO CHAPTER THREE ON

RELIABILITY AND RENEWABLES

C.1 Repository for models and data files

The models used for this work are stored in the following github repositories:

https://github.com/LizWachs/ga-power-gen-knapsack

KnapsackmultiobjGA.mlx and KnapsackmultiobjGA overnightLCOE.mlx are the

main optimization files. The others must be present in the working directory.

https://github.com/LizWachs/NPV-power-generation

NPV Calc CAISO.mlx is the NPV calculation for CAISO. NPV Calc PJM.mlx

is the NPV calculation for PJM. Both are set with a 30 year generation lifetime by

default, but the user can change this. EnergySources NPV.xlsx that accompanies the

files must be stored in the same active directory for the NPV programs to run.

C.2 Annual Cost of Energy in PJM and CAISO

Tables C.1 and Table C.2 show the cost of energy in the two markets from their

reporting [104, 122, 205], for the sake of comparison and understanding of what is

discussed in the main text.

C.3 Data used with sources

Data sources for the work are shown in table C.3. The data used for the least cost

optimization is shown in table C.4. Additional data used for the NPV calculation is

shown in table C.5, with data used for both regions, and table C.6, with data used

specifically for PJM or CAISO. Other parameters used for all technologies in the NPV

calculations are shown in table C.7.

https://github.com/LizWachs/ga-power-gen-knapsack
https://github.com/LizWachs/NPV-power-generation
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Table C.1.: Cost of energy in PJM from 2014-2018 with breakdown according to cost

type (2018 data from table 1-8 in [104], prior years’ data from [205])

$/MWh

PJM 2014 2015 2016 2017 2018 5 yr Share STD

avg %

Energy 53.13 36.25 29.27 31.06 38.24 37.59 66% 8.43

Reliability Capacity 8.91 11.14 9.39 8.73 13.01 10.24 18% 1.63

Transmission 5.75 6.93 7.63 8.58 9.47 7.67 13% 1.29

Other 2.58 1.56 1.2 1.27 1.57 1.64 3% 0.50

Total 70.37 55.88 47.49 49.64 62.29 57.13 8.40

Table C.2.: Cost of energy in CAISO from 2013-2017 broken down by cost type [122].

$/MWh

CAISO 2013 2014 2015 2016 2017 5 yr Share STD

avg %

Day ahead 44.14 48.57 34.54 30.7 37.59 39.11 93% 6.46

Real time 0.57 1.98 0.69 1.03 2.01 1.26 3% 0.62

Grid management 0.8 0.8 0.8 0.81 0.81 0.8 2% 0.01

Bid cost recovery 0.47 0.4 0.39 0.33 0.47 0.41 1% 0.05

Reliability 0.1 0.14 0.12 0.11 0.1 0.11 0% 0.02

Reserve costs 0.26 0.3 0.27 0.54 0.77 0.43 1% 0.20

Total 46.34 52.19 36.81 33.52 41.75 42.12 6.66
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Parameter Data Source

Overnight Capital Cost 2018 Projections [109]

Capacity Factor [112]

EROI Coefficient for Solar PV [206]

EROI Coefficients [207]

GHG Emissions [208]

Human Health Score characterization factors from [111]; emissions from [110]

Degradation Factors [99]

Fuel Price Coal and NG from [209]; projections for biomass; nu-

clear from [109]

Heat Rate 2018 Projections [109]

Insurance Percent [99]

Debt Term Coal from [210]; hydropower from [211]; nuclear from

[212]–shorter end, 15 years from the 15-18 year term

mentioned; CCS from [213]; offshore wind from [214];

others from [99]

O&M Costs 2018 Projections [109]

Electricity Prices CAISO weighted average price 2017 from [122];

hourly/quarterly prices from day ahead estimates from

[215–218], PJM weighted average price 2018 from [104];

hourly/monthly prices from [219]

LCOE Midrange and overnight 2018 projections from [109]

Generation by Type CAISO from Daily Renewables Watch [220]; PJM from

generation on 15th of every month from [221]

Table C.3.: Data sources for the NPV calculations
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Table C.4.: Energy sources with parameters used for modeling. Abbreviations used

in headings are average capacity (AC), capacity factor (CF), LCOE Midpoint (L-M),

LCOE overnight (L-O), and useful capacity (UC). All units are per MWh. Greenhouse

gases are in carbon dioxide equivalents.

Energy Source AC CF EROI GHG Health L-M L-O UC

kg DALY

Solar (PV) utility scale 100 20% 17.78 48 0 37 8 20

Solar thermal (CSP) 100 21% 20 27 0 123 130 20

Advanced Nuclear 1000 92% 14 12 0 63 53 900

Wind–Onshore 100 35% 20 11 0 63 54 40

NGCC 250 56% 23.5 490 4.14E-05 39 16 150

NGCC with CCS 250 56% 23.5 170 4.14E-05 65 38 150

NG CT 250 8% 23.5 490 4.39E-05 126 90 20

Coal 30% with CCS 500 53% 28 220 2.73E-04 138 110 250

Coal 90% with CCS 500 53% 28 220 2.73E-04 157 124 250

Biomass 50 56% 4 230 1.36E-05 109 108 30

Solar PV Residential 1 16% 17.78 41 0 109 154 1

Solar PV Commercial 1 15% 17.78 41 0 80 113 1

Offshore Wind–s 600 42% 20 12 0 121 116 250

Offshore wind–m 600 48% 20 12 0 129 121 300

Offshore wind–d 600 36% 20 12 0 207 186 200

Hydro–new stream 1 63% 84 24 0 53 52 1

Geothermal–flash 50 90% 9 38 1.75E-05 82 69 50

Geothermal–binary 50 80% 9 38 0 110 101 40

Coal–supercritical 500 53% 28 820 2.73E-04 99 75 250

Coal–IGCC 500 53% 28 820 2.73E-04 111 88 250
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Table C.5.: Parameters used for NPV calculations in both regions

Generation Type OCC Degrad

Fac-

tor

Fuel

Price

Heat

Rate

Insurance

Pct

Debt

Term

O M

Base

Solar (PV) $1,050 0.75 $ - 0 0.3 20 9

Solar thermal $7,099 0.5 $ - 0 0.3 20 67

Nuclear $5,656 0.18 $0.64 10.459 0 15 99

Onshore Wind $1,581 0.3 $ - 0 0.6 20 51

NGCC $1,029 0.178 $3.37 6.44 0.6 10 10

NGCC with CCS $2,137 0.178 $3.37 7.52 0.6 11 33

NG CT $876 0.016 $3.37 9.78 0.6 10 12

Coal 30% with CCS $5,015 0.18 $2.06 9.71 0.45 11 69

Coal 90% with CCS $5,546 0.178 $2.06 11.47 0.45 11 80

Biomass $3,795 0.1 $2.92 13.5 0.6 20 110

Offshore Wind (s) $3,549 0.3 $ - 0 0.45 13 146

Offshore wind (m) $5,239 0.3 $ - 0 0.45 13 115

Offshore wind (d) $5,811 0.3 $ - 0 0.45 13 134

Hydro-new stream $6,393 0.3 $ - 0 0.45 10 79

Geothermal-flash $4,720 0.5 $ - 0 0.6 20 145

Geothermal-binary $5,648 0.5 $ - 0 0.6 20 169

Coal–supercritical $3,611 0.18 $2.06 8.8 0.45 10 33

Coal–IGCC $3,872 0.18 $2.06 8.6 0.45 10 54
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Table C.6.: Region specific parameters used in the NPV calculations

Generation Type

PJM CAISO

CF ICAP EFORd Price Price Ad Valorem

Factor Factor Factor Factor

Solar (PV) 0.177 0.38 0.000 1.025 0.82 0.1

Solar thermal 0.56 0.38 0.000 1.025 0.83 0.1

Nuclear 0.942 0.913 0.014 0.953 0.96 1

Onshore wind 0.284 0.13 0.000 0.963 0.996 1

NGCC 0.6 0.836 0.044 0.985 1.087 1

NGCC with CCS 0.6 0.836 0.044 0.985 1.087 1

NG CT 0.069 0.836 0.095 1.58 1.087 1

Coal 30% with CCS 0.444 0.836 0.119 1.056 1.087 1

Coal 90% with CCS 0.444 0.836 0.119 1.056 1.087 1

Biomass 0.686 0.836 0.119 0.953 0.959 1

Offshore Wind (s) 0.42 0.13 0.000 0.963 0.996 1

Offshore wind (m) 0.48 0.13 0.000 0.963 0.996 1

Offshore wind (d) 0.36 0.13 0.000 0.963 0.996 1

Hydro–new stream 0.468 0.836 0.000 1.141 1.007 1

geothermal–flash 0.9 0.836 0.000 0.953 0.945 1

geothermal–binary 0.8 0.836 0.000 0.953 0.945 1

Coal–supercritical 0.444 0.836 0.119 1.056 1.087 1

Coal–IGCC 0.444 0.836 0.119 1.056 1.087 1
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Table C.7.: Parameters used for NPV calculations independent of technology.

Parameter Name Value

Discount Rate 0.079

Inflation Factor 2.00%

Federal Tax Rate 21.00%

Debt Equity Pct 45%

Interest Rate 6.50%

State Depreciation Lifetime 20 years

Federal Depreciation Lifetime 5 years

PJM

State Tax Rate 8.00%

Price $38.24

Property Tax Rate 2.00%

GHG Permit Price (Initial) 0

Capacity Price $36.64

CAISO

State Tax Rate 8.84%

Price $37.61

Property Tax Rate 1.00%

GHG Permit Price (Initial) $17.00
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C.4 Verification

To put results in context, we used 2017 data from the survey Form EIA-860 [124].

The form records the physical address of the planned unit, but does not include the

relevant regional transmission organization (RTO) or independent system operator

(ISO). To compare the data, we used all California plants to represent CAISO. To

represent PJM, we included all generation from relevant states, except for the follow-

ing states where plants from the counties listed were assumed to be from PJM, and

any others, including those with no county given, were excluded. Note that in KY,

only two plants were planned, so other counties were not relevant.

C.5 Energy Return on Investment (EROI)

Due to the complex regulatory framework including subsidies and taxes at multiple

levels, the “true” cost of given technologies is difficult to estimate and compare. If a

certain energy technology or resource is subsidized, its cost appears low, but later the

cost rises if the subsidy is removed. To skirt this opacity, a set of metrics called “net

energy analysis” was developed to evaluate energy sources based on more fundamental

criteria. One of the easiest to understand and apply is energy return on investment

(EROI). Energy return on investment can be defined simply as in equation C.1 [222]:

EROI =
EnergyOutput

EnergyInput
(C.1)

The EnergyOutput (numerator) refers to the energy value finally produced. For

coal, natural gas, biomass, petroleum or any substance converted into a liquid fuel, it

is typically the higher heating value (HHV). Further efficiency losses result when this

fuel is used to create electricity or other kinds of work instead of heat. Solar or wind

power provide “higher quality” energy directly suitable for work. The EnergyInput

(denominator) includes all energy used along the production route, from the man-

ufacture of drilling equipment to the gas needed for the freighter that carries the

fuel. EROI estimates tend to be characterized by high variability because of differ-
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Table C.8.: Counties whose planned generation was included for PJM Verification

calculations.

State County State County

MI St. Joseph IL Henry

MI Cass IL Lake

MI Kalamazoo IL LaSalle

MI Van Buren IL Lee

MI Berrien IL McLean

IN La Porte NC Perquimans

IN St. Joseph NC Chown

IN Elkhart NC Hyde

IN Miami NC Dare

IN Howard NC Tyrell

IN Tipton NC Washington

IN Hamilton NC Martin

IN Steuben NC Bertie

IN De Kalb NC Nash

IN Allen NC Edgecombe

IN Adams NC Pitt

IN Jay NC Beaufort

IN Randolph NC Currituck

IN Wells NC Camden

IN Blackford NC Pasquotank

IN Delaware NC Gates

IN Noble NC Hertford

IN Whitley NC Northhampton

IN Huntington NC Halifax

IN Grant KY Greenup

IN Madison KY Scott

IN Wabash
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ing production systems (see [223] for an example for oilfields). EROI values are not

stagnant, since technological improvements/scarcity affect values. EROI is an im-

portant metric nonetheless, since it removes distortions from subsidies and taxation

and thus may provide a better picture for long-term planning than monetary cost at

any particular point in time. Estimates have been made as to the minimum EROI

necessary to support human needs, from basic to the most decadent. Basic needs can

be met with a relatively low EROI, but a much higher EROI is needed to support

secondary and tertiary needs, such as the arts. The minimum EROI necessary for the

amenities common to American life is hypothesized as 14 [224]. This means that a

EROI below 14 may violate the principle of sustainable development, defined by the

Brundtland Commission as “development that meets the needs of the present without

compromising the ability of future generations to meet their own needs [225].”

When oil’s use as a cheap source of energy first became widespread, the return

on investment for oil production was extremely high. Its EROI has been declining

along with the reserves of the easiest resources to extract, although there is high

variability over global oil fields. Offshore drilling currently shows ratios as high as

1000 MJ/MJ, while some fields (particularly those using thermal recovery) showed

ratios <3. The mean EROI for offshore drilling in a recent study by Brandt et al.

was 32.5 MJ/MJ [223]. The revolutions in quality of life in the past century and a

half can be attributed in part to the ability to capitalize on fuels that gave such a

high return [224]. Renewables (except for hydro), on the other hand, typically utilize

more dispersed energy reserves, so do not necessarily offer the benefits of high EROI

given by fossil fuels, whose high energy density accumulated over millennia. For both

renewables and fossil fuels, technological advances can offer improvements to EROI.

EROI is shown in table C.4.

The highest energy return on investment is hydro by far, with coal the runner up,

and natural gas as the only other technology with an EROI higher than 20. Solar

and wind are between 15-20. As mentioned, fossil fuel EROI tends to be decreasing,

while solar and wind have seen large increases due to technological advances. Nuclear
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EROI is 14, just the level needed for comfort. Geothermal and biomass both have

EROI below 10. This characteristic of geothermal and biomass indicates that they

will not be a major part of a power generation mixture unless significant technological

breakthroughs are achieved. Still, both geothermal and biomass also have high lev-

elized costs. Neither is the lowest option in terms of GHG emissions or human health

scores as well. This keeps them as only minor contributors in the cost minimization

exercise, even without taking EROI into account. For this reason the EROI, while

considered, was not included in the optimization performed.
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D. APPENDIX FOR CHAPTER FIVE ON

QUANTIFYING MARKET BARRIERS TO

RENEWABLES

D.1 Supporting Data for Correlation and Risk Calculations

Table D.1.: The relative weighting of each cost category by technology and region.

CO2 costs for PJM are based on Regional Greenhouse Gas Initiative (RGGI) prices.

CO2 costs are higher in CAISO, so the proportion of CO2 costs tends to be higher in

CAISO. Insurance and Ad Valorem costs also differ between the two regions, leading

to different proportions of OCC and O&M costs. Fuel costs between the two regions

are similar, so their proportion is also similar in the two regions.

PJM CAISO

O&M CO2 Fuel OCC O&M CO2 Fuel OCC

Solar PV 41.10% 0.70% 0.00% 58.20% 22.60% 3.80% 0.00% 73.70%

Solar Thermal 42.20% 0.20% 0.00% 57.70% 24.70% 0.60% 0.00% 74.70%

Nuclear 40.20% 0.10% 12.40% 47.30% 34.60% 0.40% 13.30% 51.70%

Wind Onshore 57.70% 0.10% 0.00% 42.20% 54.00% 0.40% 0.00% 45.60%

NGCC 14.10% 8.10% 57.90% 19.90% 10.00% 19.70% 51.40% 18.90%

NGCC CCS 24.20% 1.90% 46.00% 27.90% 20.20% 5.20% 45.20% 29.40%

NG CT 32.80% 2.30% 24.50% 40.40% 25.30% 7.10% 28.00% 39.70%

Coal 30 CCS 36.30% 1.20% 18.20% 44.30% 28.10% 4.20% 22.20% 45.50%

Coal 90 CCS 36.40% 1.10% 19.00% 43.50% 28.40% 3.70% 23.30% 44.60%

Biomass 31.40% 1.50% 42.50% 24.60% 30.00% 3.80% 38.70% 27.50%

Wind Offshore Shallow 61.10% 0.10% 0.00% 38.90% 57.60% 0.20% 0.00% 42.10%

Wind Offshore Med 51.20% 0.10% 0.00% 48.70% 45.70% 0.20% 0.00% 54.00%

Wind Offshore Deep 51.90% 0.10% 0.00% 48.00% 46.60% 0.20% 0.00% 53.20%

Hydro 43.70% 0.10% 0.00% 56.20% 36.40% 0.60% 0.00% 63.00%

Geothermal Flash 56.80% 0.40% 0.00% 42.80% 52.60% 1.30% 0.00% 46.10%

Geothermal Binary 56.40% 0.30% 0.00% 43.30% 52.30% 1.00% 0.00% 46.70%

Coal Supercritical 29.50% 6.10% 21.90% 42.60% 19.10% 18.30% 23.80% 38.80%

Coal IGCC 33.90% 5.50% 19.30% 41.30% 23.70% 16.80% 21.30% 38.20%
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Table D.2.: Volatility (sigma) values for each technology and cost category. CAISO

and PJM have different values for CO2 pricing. Biomass doesn’t have a long enough

time series to estimate its volatility, so the value for coal is used.

O&M PJM CO2 CAISO CO2 Fuel OCC

Solar PV 4.10% 39.00% 7.00% 0.00% 8.80%

Solar Thermal 4.10% 39.00% 7.00% 0.00% 7.60%

Nuclear 4.10% 39.00% 7.00% 7.00% 13.50%

Wind Onshore 4.10% 39.00% 7.00% 0.00% 11.70%

NGCC 4.10% 39.00% 7.00% 27.00% 10.20%

NGCC CCS 4.10% 39.00% 7.00% 27.00% 2.30%

NG CT 4.10% 39.00% 7.00% 27.00% 1.50%

Coal 30 CCS 4.10% 39.00% 7.00% 7.00% 18.40%

Coal 90 CCS 4.10% 39.00% 7.00% 7.00% 18.40%

Biomass 4.10% 39.00% 7.00% 7.00% 3.40%

Wind Offshore Shallow 4.10% 39.00% 7.00% 0.00% 18.20%

Wind Offshore Med 4.10% 39.00% 7.00% 0.00% 18.20%

Wind Offshore Deep 4.10% 39.00% 7.00% 0.00% 18.20%

Hydro 4.10% 39.00% 7.00% 0.00% 7.60%

Geothermal Flash 4.10% 39.00% 7.00% 0.00% 14.40%

Geothermal Binary 4.10% 39.00% 7.00% 0.00% 14.40%

Coal Supercritical 4.10% 39.00% 7.00% 7.00% 12.20%

Coal IGCC 4.10% 39.00% 7.00% 7.00% 11.40%
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Table D.3.: The correlation coefficients between cost categories shown as a heat map.

Note that natural gas and PJM energy prices are almost perfectly correlated since

natural gas is the marginal energy supplier. Cap here refers to capacity.

Coal Gas Uranium CO2 CO2 Biomass Energy Energy Cap

PJM CAISO PJM CAISO PJM

1 -0.4 0.9 -0.33 -0.79 0 -0.04 0.32 0.17

-0.4 1 -0.21 -0.22 -0.17 0 0.96 0.59 -0.11

0.9 -0.2 1 -0.66 -0.78 0 0.13 -0.06 0.11

-0.3 -0.2 -0.66 1 0.31 0 -0.14 0.24 0.49

-0.8 -0.2 -0.78 0.31 1 0 -0.17 0.27 -0.26

0 0 0 0 0 1 0 0 0

-0 0.96 0.13 -0.14 -0.17 0 1 0.53 -0.01

0.32 0.59 -0.06 0.24 0.27 0 0.53 1 -0.08

0.17 -0.1 0.11 0.49 -0.26 0 -0.01 -0.08 1
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Table D.4.: Risk factors for each technology type in PJM and CAISO. The largest

are for combined cycle technologies, which have a high relative proportion of fuel

costs from natural gas, whose prices experience high variability. Offshore wind’s

construction costs are relatively high and variable. Coal also has high fuel costs, but

coal prices have been less variable than natural gas prices in US markets. Since lack

of data prevented calculating a variability for biomass costs, coal’s value was used.

Technology PJM CAISO

NGCC 0.154 0.1384

NGCC CCS 0.1233 0.122

Wind Offshore Med 0.0912 0.1002

Wind Offshore Deep 0.0901 0.0988

Coal 30 CCS 0.0837 0.0855

Coal 90 CCS 0.0823 0.0841

Wind Offshore Shallow 0.0751 0.0803

Geothermal Binary 0.0666 0.0708

NG CT 0.0665 0.0758

Nuclear 0.0664 0.0718

Geothermal Flash 0.0661 0.07

Coal Supercritical 0.0585 0.0493

Wind Onshore 0.0548 0.0579

Solar PV 0.0537 0.0652

Coal IGCC 0.0536 0.0456

Solar Thermal 0.0469 0.0574

Hydro 0.0464 0.0503

Biomass 0.034 0.0313
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Table D.5.: Correlation coefficients used for O&M costs between technologies. As-

sumptions are detailed in the text. Shading is used to make the scale of correlation

clear; dark blue is very close correlation (∼1) and dark red is a strong negative corre-

lation (∼-1). Abbreviations for technologies are used including natural gas combined

cycle (NGCC), natural gas combustion turbine (NG CT), coal integrated gasification

combined cycle (IGCC).
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Solar PV 1 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6

Solar Thermal 0.6 1 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6

Nuclear 0.6 0.6 1 0.5 0.55 0.55 -0.56 0.55 0.55 0.6 0.6 0.64 0.6 0.55 0.55

Wind Onshore 0.6 0.6 0.6 1 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6

NGCC 0.6 0.6 0.55 0.6 1 0.9 -0.76 0.9 0.9 0.6 0.6 0.75 0.6 1 1

NGCC CCS 0.6 0.6 0.55 0.6 0.9 1 -0.76 1 1 0.6 0.6 0.75 0.6 0.9 0.9

NG CT 0.6 0.6 -0.56 0.6 -0.76 -0.76 1 -0.76 -0.76 0.6 0.6 -0.59 0.6 -0.76 -0.76

Coal 30 CCS 0.6 0.6 0.55 0.6 0.9 1 -0.76 1 1 0.6 0.6 0.75 0.6 0.9 0.9

Coal 90 CCS 0.6 0.6 0.55 0.6 0.9 1 -0.76 1 1 0.6 0.6 0.75 0.6 0.9 0.9

Biomass 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 1 0.6 0.6 0.6 0.6 0.6

Offshore Wind 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 1 0.6 0.6 0.6 0.6

Hydro 0.6 0.6 0.64 0.6 0.75 0.75 -0.59 0.75 0.75 0.6 0.6 1 0.6 0.75 0.75

Geothermal 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 1 0.6 0.6

Coal Supercritical 0.6 0.6 0.55 0.6 1 0.9 -0.76 0.9 0.9 0.6 0.6 0.75 0.6 1 1

Coal IGCC 0.6 0.6 0.55 0.6 1 0.9 -0.76 0.9 0.9 0.6 0.6 0.75 0.6 1 1
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Table D.6.: Correlation matrix obtained for CAISO using the determinant method.

Row names are omitted for fit, but are identical to column names.
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1 0.6 0 0.6 0 0 0 0 0 0 0.6 0.6 0.6 0 0

0.6 1 0 0.6 0 0 0 0 0 0 0.6 0.6 0.6 0 0

0 0 1 0 -0.19 -0.19 0.192 0.158 0.158 0 0 0 0 0.158 0.158

0.6 0.6 0 1 0 0 0 0 0 0 0.6 0.6 0.6 0 0

0 0 -0.19 0 1 0.873 -0.74 -0.51 -0.51 0 0 0 0 -0.56 -0.56

0 0 -0.19 0 0.873 1 -0.74 -0.56 -0.56 0 0 0 0 -0.51 -0.51

0 0 0.192 0 -0.74 -0.74 1 0.429 0.429 0 0 0 0 0.429 0.429

0 0 0.158 0 -0.51 -0.56 0.429 1 0.379 0 0 0 0 0.341 0.341

0 0 0.158 0 -0.51 -0.56 0.429 0.379 1 0 0 0 0 0.341 0.341

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0.6 0.6 0 0.6 0 0 0 0 0 0 1 0.6 0.6 0 0

0.6 0.6 0 0.6 0 0 0 0 0 0 0.6 1 0.6 0 0

0.6 0.6 0 0.6 0 0 0 0 0 0 0.6 0.6 1 0 0

0 0 0.158 0 -0.56 -0.51 0.429 0.341 0.341 0 0 0 0 1 0.379

0 0 0.158 0 -0.56 -0.51 0.429 0.341 0.341 0 0 0 0 0.379 1

Table D.7.: Correlation table for PJM obtained using the determinant method. Col-

umn and row names are identical but row names are omitted for fit.
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1 0.6 0 0.6 0 0 0 0 0 0 0.6 0.6 0.6 0 0

0.6 1 0 0.6 0 0 0 0 0 0 0.6 0.6 0.6 0 0

0 0 1 0 -0.2 -0.2 0.2 0.38 0.38 0 0 0 0 0.38 0.38

0.6 0.6 0 1 0 0 0 0 0 0 0.6 0.6 0.6 0 0

0 0 -0.2 0 1 0.85 -0.72 -0.45 -0.45 0 0 0 0 -0.5 -0.5

0 0 -0.2 0 0.85 1 -0.72 -0.5 -0.5 0 0 0 0 -0.45 -0.45

0 0 0.2 0 -0.72 -0.72 1 0.38 0.38 0 0 0 0 0.38 0.38

0 0 0.38 0 -0.45 -0.5 0.38 1 0.89 0 0 0 0 0.8 0.8

0 0 0.38 0 -0.45 -0.5 0.38 0.89 1 0 0 0 0 0.8 0.8

0 0 0 0 0 0 0 0 0 1 0 0 0

0.6 0.6 0 0.6 0 0 0 0 0 0 1 0.6 0.6 0 0

0.6 0.6 0 0.6 0 0 0 0 0 0 0.6 1 0.6 0 0

0.6 0.6 0 0.6 0 0 0 0 0 0 0.6 0.6 1 0 0

0.6 0.6 0 0.6 0 0 0 0 0 0 0.6 0.6 1 0 0

0 0 0.38 0 -0.5 -0.45 0.38 0.8 0.8 0 0 0 0 1 0.89

0 0 0.38 0 -0.5 -0.45 0.38 0.8 0.8 0 0 0 0 0.89 1
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Table D.8.: CAISO correlation matrix obtained using scaled matrix method. Row

names are omitted for fit but are identical to column names.
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1 0.58 0.42 0.41 0.16 0.24 0.33 0.37 0.36 0.24 0.39 0.46 0.46 0.51 0.41 0.31 0.31

0.58 1 0.44 0.42 0.16 0.25 0.33 0.38 0.37 0.25 0.4 0.47 0.47 0.52 0.42 0.32 0.32

0.42 0.44 1 0.33 0.08 0.17 0.14 0.31 0.31 0.2 0.34 0.37 0.37 0.41 0.35 0.25 0.25

0.41 0.42 0.35 1 0.12 0.2 0.26 0.3 0.29 0.22 0.38 0.39 0.39 0.41 0.38 0.24 0.25

0.16 0.16 0.08 0.12 1 0.3 0.2 0.03 0.03 0.07 0.11 0.13 0.13 0.15 0.12 0.02 0.03

0.24 0.25 0.17 0.2 0.3 1 0.2 0.14 0.13 0.12 0.19 0.21 0.21 0.24 0.2 0.09 0.1

0.33 0.33 0.14 0.26 0.2 0.2 1 0.09 0.08 0.16 0.25 0.28 0.28 0.2 0.26 0.08 0.07

0.37 0.38 0.31 0.3 0.03 0.14 0.09 1 0.32 0.17 0.29 0.32 0.32 0.36 0.3 0.25 0.25

0.36 0.37 0.31 0.29 0.03 0.13 0.08 0.32 1 0.17 0.29 0.32 0.32 0.36 0.29 0.24 0.25

0.24 0.25 0.2 0.22 0.07 0.12 0.16 0.17 0.17 1 0.22 0.23 0.23 0.24 0.22 0.14 0.15

0.39 0.4 0.34 0.38 0.11 0.19 0.25 0.29 0.29 0.22 1 0.49 0.49 0.39 0.38 0.23 0.24

0.46 0.47 0.37 0.39 0.13 0.21 0.28 0.32 0.32 0.23 0.49 1 0.5 0.44 0.39 0.26 0.27

0.46 0.47 0.37 0.39 0.13 0.21 0.28 0.32 0.32 0.23 0.49 0.5 1 0.44 0.39 0.26 0.27

0.51 0.52 0.41 0.41 0.15 0.24 0.2 0.36 0.36 0.24 0.39 0.44 0.44 1 0.41 0.3 0.31

0.41 0.42 0.35 0.38 0.12 0.2 0.26 0.3 0.29 0.22 0.38 0.39 0.39 0.41 1 0.24 0.25

0.31 0.32 0.25 0.24 0.02 0.09 0.08 0.25 0.24 0.14 0.23 0.26 0.26 0.3 0.24 1 0.21

0.31 0.32 0.25 0.25 0.03 0.1 0.07 0.25 0.25 0.15 0.24 0.27 0.27 0.31 0.25 0.21 1

Table D.9.: Correlation table for PJM using the scaled matrix method. The row

names are the same as the column names but are omitted for fit.
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0.35 0.35 0.31 0.31 0.08 0.17 0.07 1 0.36 0.18 0.31 0.33 0.33 0.37 0.31 0.32 0.33

0.34 0.34 0.31 0.31 0.08 0.17 0.06 0.36 1 0.17 0.3 0.32 0.32 0.36 0.31 0.32 0.32

0.22 0.22 0.19 0.21 0.07 0.11 0.16 0.18 0.17 1 0.21 0.22 0.22 0.22 0.21 0.16 0.17
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D.2 Sustainability Indicators

Table D.10.: Sustainability indicators used in this analysis. The future category (F)

represents risks with current (C) as a separate category. Quantitative factors (Q)

have defined functions. Categorical indicators (C) are step functions.

Indicator Type Timing

E
co

n
o
m

ic

Investment Costs, levelized Q C

Fuel & CO2 Costs, levelized Q C

Operations Costs, levelized Q C

Price factor Q F

S
o
ci

a
l

Employment Q C

Population Displacement C C

Development of New Areas C C

Accident Risk C C

Visual Impact C C

Water Consumption C F

Water Withdrawal C F

Land Use Q F

E
n
v
ir

o
n
m

e
n
ta

l

Global Warming Potential Q F

Human Health Q C

Resources Q F

Noise C C

Odor C C

Local/Regional/Global Impact C F
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D.3 Life Cycle Water Use

Literature search revealed no current studies with original data on water foot-

prints or use for all electricity generating technologies. The best source found was

Meldrum et al. [226], who performed an extensive review of literature and harmo-

nized estimates. They noted the dearth of original data in this area as well, as well

as vast ranges in some of the literature around particular technologies or processes.

Their study is important, however, in providing benchmarks for most of the technolo-

gies included here, and for showing how water use is distributed between different

phases (i.e. power plant construction, fuel cycle, and operations) as well as how it

varies by cooling system employed and between consumption and withdrawal in some

cases. One important takeaway from Meldrum et al. is that without cooling water

use, all technologies except geothermal binary (for which water is used as a working

fluid), would have less than 200 gallons/MWh. Also, only solar PV and CSP show

a significant water use (≥ 100 gal/MWh) for power plant construction. For all fossil

generation as well as nuclear, the water use before operations comes from the fuel

cycle, and in all cases it is ≤ 50 gal/MWh. A sea change in cooling methods or more

efficient cooling technology in fossils would eliminate the difference between water

footprints of fossil versus renewable sources. Also, for renewables except geothermal,

all the water use is virtual, that is, it can come from other places, whereas for fossil

sources, the water use is almost all for the operations.

Due to the very high uncertainty and age of data available, a categorical indicator

was chosen for water use. The indicator has two parts, which are equally weighted.

They are tied to figures for water consumption for the first and water withdrawal in

the second. An important takeaway from Meldrum et al. [226] is that for most power

generation systems, water use is incurred primarily in the cooling process. There are

very large gaps between water use by different cooling systems. Traditionally cooling

towers have been built, which evaporated cooling water after recirculation. With

attention placed on water use, in recent years this type of system still predominates.
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Still, many plants are beginning to rely on dry cooling or hybrid systems [115, 227].

Meldrum et al. [226] did not include biomass in their analysis. A prior review by

Fthenakis and Kim [228] does include biomass but note the very wide estimates for

water use. The variation is largely due to uncertainty around feedstocks, and they

show that agriculture requiring irrigation in particular has a very high water footprint.

Biomass used for electricity in the US, however, comes largely from paper byproducts,

as well as wood and other wastes (see [180]). For this reason, assumptions are made

that water is not used in the fuel cycle and thus the biomass plant is given the same

rating as NGCC.
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E. APPENDIX TO CHAPTER FIVE ON LAND USE FOR

POWER GENERATION

E.1 Literature Estimates for Land Use

In Figs. E.1 and E.2, we show the wide range of estimates in the literature for land

use/power density of different technologies. A logarithmic scale is used, showing that

the estimates for electricity generation from each technology tend to vary by orders

of magnitude. The narrowest ranges are for solar, although the land use in all cases

is based on retrospective use when only a small fraction of current installations were

in place. The triangle markers in our estimates show that for wind, part of the range

of the estimates is due to the difference between direct and landscape footprints. For

a similar power density to conventionals, Hand et al.’s estimates place geothermal

and hydropower close [166]. Hydro is based on their estimates on run of the river

type plants. Wind direct footprint by our estimate is similar as well. Gagnon’s high

estimate for biomass power density is based on the use of wood waste [34], which has

not been modeled in other literature reviewed.

E.2 Coal Production Today

In 2017, the most recent year from which data is available, a total of 774 billion

short tons of coal were produced from 680 mines [229]. Roughly 2/3 of annual pro-

duction came from surface mines with 1/3 coming from underground mines. Coal

came primarily from 4 basins: the Powder River basin in Wyoming and Montana

(43.2% of production, all surface mines), Appalachia (25.6% of production, primarily

surface mines), the Illinois Basin (13.3% of production), and the Uinta Basin (3.6%

of production). Additional interior states provide 5.4% of production and western



195

Fig. E.1.: Land use intensity estimates from literature review. Fthenakis and Kim

estimates taken from visual inspection of results figure 3 [165]. Smil estimates taken

from visual inspection of Fig. 7.3 [35]. Hand et al. [166] estimates available only

for renewables. Capacity factors from our work were used on their values from table

A-10 [166]. Gagnon’s biomass estimate for wood wastes was used [34].

states contribute the final 8.8% of production. Only 6 mines, all in Wyoming, ac-

counted for over 2% of total US coal production in 2017. Thus, coal mining in the

US is quite distributed. While the largest mine, the North Antelope Rochelle Mine

(NARM), accounted for over 13% of production, and the second largest, the Black

Thunder Mine, accounted for over 9% of production, the mines quickly scale down,

with the third largest, Antelope Coal Mine, accounting for only 3.7% of production.
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Fig. E.2.: Power density estimates from literature. Fthenakis and Kim estimates

taken from visual inspection of results figure 3 [165]. Smil estimates taken from

visual inspection of Fig. 7.3 [35]. Hand et al. [166] estimates available only for

renewables. Capacity factors from our work were used on their values from table

A-10 [166]. Gagnon’s biomass estimate for wood wastes was used [34].

Appalachia represents the majority of mines but only around a quarter of produc-

tion. In the US Energy Information Administration statistics Appalachia represented

559 of the 680 mines with nonzero production or 799 of 959 mines included in the

statistics (¿80%) [229].

Due to the distributed nature of mining, its spatial and technical variation, and

differing coal composition and heating value, researchers have attempted to segment
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the market in their analyses. This also means that the reader or analyst must read

these statistics and employ them with caution—what do they represent? Are histor-

ical trends indicative of future trends? How can single values be extrapolated from

systems that are quite different from each other? As in the case of wind, disturbed

land versus total landscape effects for coal are quite different, but have not been ad-

equately characterized. Three papers with significant analysis include [35, 162, 165].

Here, calculations are based on the largest surface mine in the US, and a calculation

method is suggested that gives single values for the major mining technologies in the

US.

Focusing on the question of system boundaries, available data on Colorado coal

mines lists 3 categories of land use: total lease area, disturbed area, and affected

area. For underground mines, the disturbed area ranged from 1-20% of the total

area, with most values below 5%. Affected areas ranged from 25-100% of the mine

lease, however. Only three surface mines were included, with identical areas listed as

disturbed and affected. The mine listed as nearing complete extraction was at roughly

95% affected area with the other two at around 25-35% of the area. Therefore, for the

underground mines, 1/3 of the total, the direct footprint could be calculated at 5% of

the total lease, but this would exclude much of the affected area. For surface mines,

the land will ultimately be almost totally affected or disturbed, although several years

may pass before this occurs.

E.2.1 Measurements and Bounds from the Literature

Table B1 gives estimates for the land use intensity of the entire cradle to gate life

cycle of coal from three sources. Immediately it is clear that the estimates vary by

orders of magnitude. This is the case for example between Trainor et al.’s values and

those of Fthenakis and Kim, even though they seem to rely largely on the same data

set.
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Source Description Total, Direct Total, Landscape

m2/GWh m2/GWh

[162] Underground - low 240

[162] Underground - single value 640 640

[162] Underground - high 1510

[162] Surface - low 4690

[162] Surface - single value 8190 8190

[162] Surface - high 16420

[35] Surface - low 71 71

[35] Surface - high 120 120

[165] Underground - single value 250 250

[165] Surface - low 100 100

[165] Surface - high 950 950

Table E.1.: Values for land use intensity from three sources with any necessary unit

conversions made by the author. Note that while Trainor et al. pioneer the idea of

landscape level versus direct footprint, they do not differentiate here in the case of

coal. Values from Fthenakis and Kim come from visual inspection of Fig. 6. Values

for Smil come from pages 135-136.

One of the largest issues with the coal calculations in [165] is that the data sets

are very old. The reader is not presented with enough information to replicate the

calculations that lead to the results in Fig. 6. Inconsistencies found were that mining

land is not discounted over lifetime of the project unlike other stages, the data source

drawn on for mining land use is from 1983, and there is a typo on table 3, which lists

tonnes of coal mined from the surface which were thousand short tons in the original

sources.

Fthenakis and Kim [165] as well as Trainor et al. [162] use the divisions West and

East to classify coal production without specifying which production is included in
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each area. For example, the representative case for Trainor et al. includes mines in

Texas, North Dakota and Colorado, but not from other states. Together, however, the

production from those three states represents only 10% of US production. Wyoming

alone contributes more than 40% of US production, however, so a representative

Western case needs to include Wyoming numbers. In fact, the NARM alone produced

more than all the mines included in the representative case for Trainor et al [162].

Using the figures from either source may be problematic, therefore, since niche cases

are taken as representative.
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