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ABSTRACT

Ulloa-Esquivel, Roberto PhD, Purdue University, August 2020. Epsilon multiplicity
of modules with Noetherian saturation algebras. Major Professor: Dr. Bernd Ulrich.

In the need of computational tools for ε-multiplicity, we provide a criterion for

a module with a rank E inside a free module F to have rational ε-multiplicity in

terms of the finite generation of the saturation Rees algebra of E. In this case, the

multiplicity can be related to a Hilbert multiplicity of certain graded algebra. A

particular example of this situation is provided: it is shown that the ε-multiplicity

of monomial modules is Noetherian. Numerical evidence is provided that leads to a

conjecture formula for the ε-multiplicity of certain monomial curves in A3.
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1. INTRODUCTION

Given (R,m, k) a Noetherian local ring, one would like to study the growth of powers

of an R-ideal I. If I is m-primary, one can look at the function λR(R/In). It is a

classical result in commutative algebra that this numerical function is of polynomial

type, i.e., there is a polynomial with rational coefficients, P ∈ Q[X] such that for n

large enough λR(R/In) = P (n) [17]. The leading coefficient of this polynomial (after

normalization) is called the multiplicity of I. The same theory can not be applied

if I is not m-primary, since in this case the lengths of the modules R/In are not

guaranteed to be finite.

A way to generalize the notion of multiplicity is to apply the section function,

or zero-th local cohomology to the modules before considering their length, i.e, to

look at the modules H0
m(R/In). For a fixed n ∈ N, this module is the largest sub-

module of R/In which has finite length, hence we can define the function ΛI(n) =

λR(H0
m(R/In)). This numerical function however is more complicated that its ana-

logue in the m-primary case. For example, it is not always of polynomial type. If I

is a monomial ideal, it is known that this function is of quasipolynomial type, i.e.,

it behaves cyclically as a polynomial function [13]. In particular, there is no lead-

ing coefficient to look at to extract a multiplicity. However, if depth(R) > 0, and I

contains a nonzero divisor, then ΓI(n) is bounded above by a polynomial of degree d

[24]. This allows to define

ε(I) = lim sup
n→∞

d!ΛI(n)

nd

Cutkosky has also shown that if R is analytically unramified and dimR > 0, then

one can replace limsup by an actual limit, or if R is regular. [4] The limit in question
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appears when studying the asymptotic behaviour of graded families of ideals. The

graded family associated to the ε-mutliplicity on an R-ideal is its saturated Rees al-

gebra. The R-ideal In :R m∞ =
⋃
j≥0(In :R mj) is called the n-th saturated power of

I. It is straight forward to see that ΛI(n) = λR(In :R m∞/In). This function appears

naturally as it is also equal to λ(H1
m(In)) whenever depth(R) ≥ 2. Moreover, by local

duality if R is Gorenstein, ΛI(n) = λR(ExtdR(R/In, R)).

Even when the ε-multiplicity exists as a limit, unlike Hilbert’s multiplicity, it can

be irrational [5]. For example, if R = C[x1, ..., x4] and m = (x1, ..., x4), Cutkosky has

proved that there is a nonsingular projective curve C ⊆ P3
C with defining R-ideal I

and

lim
n→∞

λR(H0
m(R/In))

n4
6∈ Q

There are cases where the ε-multiplicity of the ideal is known to be rational. For

example if I is a monomial ideal, ΛI(n) has a quasipolynomial behaviour. Herzog,

Puthenpurakal and Verma have proved that the polynomials repeating cyclically have

the same degree and the same leading coefficient [13]. In particular, the limit exists

and it is a rational number. Jeffries and Montaño have improved this result by actu-

ally computing this multiplicity as a volume of certain region [16].

Given a ring R and two R-ideals J ⊆ I, one can define the saturation Rees algebra

of I with respect to J as

Rsat(I) =
⊕
n≥0

(In :R J
∞)tn ⊆ R[t]

A crutial result in the proof of Herzog, Puthenpurakal and Verma is that the satu-

ration Rees algebra of a monomial ideal with respect to any other monomial ideal is

Noetherian [12]. We prove in Chapter 4, that ε(I) ∈ Q whenever the saturation Rees

algebra is finitely generated. The saturation Rees algebra may not be Noetherian

in general. For example, if R is a local ring of dimension d and I is a prime ideal

of height d − 1, then In :R m∞ = I(n), the n-th saturated power of I. The study
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of the Noetherianness of the symbolic Rees algebra is a classical problem. In fact,

it is related to a geometric problem via the following theorem: let k be an infinite

field and C is a curve in An(k). If the symbolic Rees algebra of the curve is finitely

generated, then C is a set-theoretical local complete intersection, i.e., it is locally the

intersection (as a set) of n − 1 hyperplanes. Rees already knew of examples where

the symbolic Rees algebra was not Noetherian.

A particular family where the saturation Rees algebra correspond to the symbolic

Rees algebra are monomial curves in A3(k). Let C be a monomial curve parametrized

by the map λ 7→ (λn1 , λn2 , λn3) and let p = p(n1, n2, n3) = ker(ϕ) is the defining ideal.

It is an open problem to find a characterization in termns of n1, n2 and n3 of when is

Rsat(p) Noetherian. However, Herzog and Ulrich have characterized monomial curves

with symbolic Rees algebras generated by the first and second symbolic powers [14].

We explore numerically what happens with the growth of λR(H0
m(R/In)) for some of

these monomial curves in Chapter 5.

Ulrich and Validashti have generalized the notion of ε-multiplicity to modules [24].

If E ⊆ F are R-modules with F ' Rr free and E a module with a rank, then one can

make sense of the funtion ΛE(n) = λR(H0
m(F n/En)) as follows: the symbolic algebra

of F is just a polynomial ring over R, say S = R[t1, ..., tr]. The n-th power of F

is just the n-th graded component of S. The symmetric algebra of E maps into S

by the universal mapping property of symmetric algebras. The image of this map

is a standard graded R-subalgebra of S, called the Rees algebra of E and denoted

R(E). Its graded components are the powers of E. We prove in Chapter 4 that if

the R-algebra:

Rsat(E) = R(E) :S m∞

is Noetherian, then ε(E|F ) is rational, whenever one can realize the ε-multiplicity as

a limit.
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In the case of R-ideals this reduces to Rsat(I) being Noetherian. As we mention

before, this algebra is known to be Noetherian for monomial ideals. We generalize this

to monomial modules. In Chapter 4 we prove that the ε-multiplicity of a monomial

module is rational, by showing that their saturation Rees algebra is always Noethe-

rian.

Finally in Chapter 5, we explore some numerical evidence about the ε-multiplicity

of monomial curves, and some results for the relative multiplicity of two ideals of finite

colength, equality of colength and multiplicity and the effect of quotiening by general

elements in the multiplicity.
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2. PRELIMINARIES

2.1 Blowup algebras

Definition 2.1.1 Let H be an additive monoid and R a ring. We say that R is

H-graded, if there is a direct sum decomposition of the additive group of R

R =
⊕
h∈H

Rh

such that 1 ∈ R0 and RhRk ⊆ Rh+k for all h, k in H. We call Rh the h-th graded

component of R. An element x ∈ R is called homogeneous if there is h ∈ H such that

x ∈ Rh and an R-ideal is called homogeneous if it can be generated by homogeneous

elements. If H = N0 we will just say that R is graded and if R = R0[R1] we say that

R is homogeneous or standard graded.

Definition 2.1.2 (Rees algebra, extended Rees algebra) Let R be a ring and

I an R-ideal:

(a) The Rees algebra of R with respect to I is defined to be

R(I) := R[It] =

{
n∑
i=0

ait
i : n ∈ N0, ai ∈ I i

}
⊆ R[t].

Note that R[It] is a standard graded subalgebra of R[t], and [R(I)]i = I iti,

R(I) =
∞⊕
i=0

(It)i = R⊕ It⊕ I2t2 ⊕ · · ·

(b) The extended Rees algebra of I is defined as

R[It, t−1] =

{
n∑

i=−n

ait
i : n ∈ N0, ai ∈ I i

}
⊆ R[t, t−1].
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where by convention Ik = R for k ≤ 0. This is a Z-graded R-subalgebra of

R[t, t−1], and R[It, t−1]i = I iti where I i = R for i ≤ 0. With this we can write

R[It, t−1] =
∞⊕

i=−∞

(It)i = · · · ⊕Rt−1 ⊕R⊕ It⊕ I2t2 ⊕ · · ·

Sometimes R[It, t−1] is also denotes by R+
I (R).

Definition 2.1.3 (Associated graded ring, fiber cone, analytic spread ) Let R

be a ring and I an R-ideal.

(a) The associated graded ring of R with respect to I is defined as grI(R) :=

R(I)/IR(I). Note that IR(I) is a homogeneous ideal, hence grI(R) is a stan-

dard graded R-algebra, and [grI(R)]i ' I iti/I i+1ti. With this

grI(R) ' R/I ⊕ I/I2 ⊕ · · ·

(b) If (R,m, k) is local, the fiber cone of I is the ring

FI(R) := R(I)/mR(I)

Again, mR(I) is a homogeneous ideal, hence the fiber cone is a standard graded

R-algebra, and:

FI(R) ' k ⊕ I/mI ⊕ I2/mI2⊕

(c) The dimension of the fiber cone is called the analytic spread of I and is

denoted by `(I).

Remark 2.1.1 Let R be a ring and I an R-ideal. The associated graded ring is an

epimorphic image of the extended Rees algebra

grI(R) ' R[It, t−1]

(t−1)R[It, t−1]

We can summarize the relations between the Rees algebra, the extended Rees

algebra and the associated graded ring in the following diagram:
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R(I) R[It, t−1]

grI(R)

i

mod (t−1)mod IR(I)

2.2 Powers of modules

Let R be a commutative ring, M and N R-modules and g : M → N an R-linear

map. By the universal mapping property of symmetric algebras, there is an induced

homogeneous R-algebra homomorphism

Sym(g) : Sym(M)→ Sym(N)

x ∈ [Sym(M)]1 7→ g(x) ∈ [Sym(N)]1

Note that im(Sym(g)) is a standard graded R-subalgebra of Sym(N) generated by

linear forms. We apply this construction to the case where E is a submodule of a

free R-module F . The inclusion E
i−→ F induces a homogeneous homomorphism of

standard graded R-algebras

Sym(E)
Sym(i)−−−−→ Sym(F )

(which may not be necessarily injective). Now, since F '
⊕

i∈∆Ri is free, Sym(F ) '

R[{ti}i∈∆].

Definition 2.2.1 (Rees algebra on an embedding [6]) Let R be a commutative

ring, E an R-module, and i : E ↪→ F an embedding of E into a free R-module F . The

Rees algebra of the inclusion E ↪→ F , R(i), or sometimes just denoted R[E],

R(i) = im(Sym(i)) ⊆ Sym(F )

Since R(i) is a standard graded ring, when realized inside R[{ti}i∈∆], it is gener-

ated by linear forms.
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Remark 2.2.1 If R is a ring and I is an R-ideal, the previous construction for the

inclusion i : I ↪→ R gives the classical definition of Rees algebra for an ideal.

Definition 2.2.2 (Powers of a module) Let R be a commutative ring, E an R-

module, and i : E ↪→ F an embedding of E into a free R-module F . The n-th graded

component of the Rees algebra of the embedding is called the n-th power of E, and

denoted En, i.e.:

En := [R(i)]n

Note that the powers of modules do not have all the properties powers of ideals

have. In fact, unlike in the ideal case Ei+1 6↪→ Ei, so {Ei}i∈N does not form a filtration.

As a consequence, we cannot define the associated graded ring of a module, nor its

extended Rees algebra. Furthemore, this construction does depend on the embedding,

unless we have some assumptions on the module or the ring.

Definition 2.2.3 (Rank) Let R be a Noetherian ring and M a finite R-module. We

say that M has a rank if M ⊗R Quot(R) ' Quot(R)r for some r ≥ 0. In such a case,

we say that M has rank r and denote it by rank(M) = r.

Proposition 2.2.1 Let R be a Noetherian ring and M a finite R-module. The fol-

lowing are equivalent:

(a) M has a rank and rank(M) = r;

(b) Mp ' Rr
p for every p ∈ Ass(R).

For a proof of this, see for example [2], Proposition 1.4.3:

Theorem 2.2.2 (Einsenbud, Huneke, Ulrich) Let R be a Noetherian ring and

E a finite R-module. Assume that for each p ∈ Ass(R), one of the following holds

(i) Ep is a free Rp-module (e.g. E has a rank);

(ii) Rp is Gorenstein;
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(iii) Rp is Z-torsionfree (e.g. if Q ⊆ Rp or if R is a domain).

Then R(E) does not depend on the embedding. In particular, the powers of E do not

depend on the embedding.

For a proof of this, see [6], Theorem 1.6.

2.3 Numerical functions

In this section we introduce the concept and some properties of numerical functions

that will be used later on.

Definition 2.3.1 (Numerical function) A numerical function is a function

F : Z → Q. If S ⊆ Z is a set and F : S → Q we regard F as a numerical

function by extending G : Z → Q with G(n) = 0 for n 6∈ S and G(n) = F (n) for

n ∈ S.

The set of numerical functions V is a Q-vector space. One can regard Q[t], the

space of polynomials over Q, as a subspace of V : given a polynomial P (t) ∈ Q[t], one

defines P : Z→ Q with n 7→ P (n). We will refer to these as polynomial numerical

functions.

Define an equivalence relation on V by declaring F ∼ H if and only if F (n) = H(n)

for n � 0. If F ∼ P for some polynomial numerical function, we say that F is of

polynomial type. Note that if F is of polynomial type, there is a unique polynomial

P such that F ∼ P . In this case we say that P is the polynomial associated to F

and define degF = degP .

Define a Q-linear transformation ∆ : V → V by:

F 7→

 ∆F : Z→ Q

n 7→ F (n)− F (n− 1)
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Lemma 2.3.1 Let B−1(t) := 0, B0(t) := 1 and for r ≥ 1:

Br(t) =

(
t+ r

r

)
:=

∏r
i=1(t+ i)

r!
∈ Q[t]

(a) {Br(t) : r ≥ 0} is a Q-basis for Q[t] ⊆ V ;

(b) For 1 ≤ d ≤ r, ∆dBr(t) = Br−d(t);

(c) For n ∈ Z, Br(n) ∈ Z.

Proof For (a) note that if r ≥ 0, Br(t) is a monic polynomial of degree r and so

{Br(t) : r ≥ 0} is a Q-basis for Q[t] ⊆ V . For (b) proceed by induction on d. Let

d = 1. Note that

∆Br(t) = Br(t)−Br(t− 1) =

∏r
i=1(t+ i)−

∏r
i=1(t− 1 + i)

r!
=

r−1∏
i=1

(t+ i) · (t+ r)− t
r!

=

∏r−1
i=1 (t+ i)

(r − 1)!
= Br−1(t)

Assume d ≥ 2. Note that

∆dBr(t) = ∆(∆d−1Br(t)) = ∆Br−d+1(t) = Br−d(t).

Finally for (d), note that if n + r ≥ 0, then Br(n) =
(
n+r
r

)
∈ Z. If n + r < 0, then

n < −r ≤ 0, so −n− 1 ≥ 0 and:

Br(n) =

(
n+ r

r

)
=

∏r
i=1(n+ i)

r!
= (−1)r

∏r
i=1(−n− i)

r!

= (−1)r
(−n− 1)!

(−n− r − 1)!r!
= (−1)r

(
−n− 1

r

)
∈ Z

Lemma 2.3.2 Let F be a numerical function and d an integer with d ≥ 0. The

following are equivalent:

(a) F is of polynomial type of degree d;

(b) ∆F is of polynomial type of degree d− 1;
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(c) ∆dF is eventually a non-zero constant.

Proof (a)⇒ (b) Since F is of polynomial type of degree d, and {Br(t) : r ≥ 0} is a

Q-basis for Q[t], there are ai ∈ Q, 0 ≤ i ≤ d such that F ∼
∑d

i=0 aiBi(t) and ad 6= 0.

For n� 0 note that

∆F (n) = ∆

(
d∑
i=0

aiBi(n)

)
=

d∑
i=0

ai∆Bi−1(n)

In particular ∆F ∼
∑d

i=0 ai∆Bi−1(t) and this is a polynomial of degree d− 1.

(b)⇒ (a) If d = 0, then ∆F ∼ 0, so F is eventually constant and hence F

polynomial type of degree 0. With this assume d ≥ 1. There is Q ∈ Q[t] such that

∆F ∼ Q and deg(Q) = d− 1. Write Q =
∑d−1

i=0 biBi(t), where bd−1 6= 0. Consider the

polynomial

P (t) =
d−1∑
i=0

biBi+1(t)

Then ∆P (t) =
∑d−1

i=0 biBi(t) = Q(t) ∼ ∆F . In particular ∆(F − P ) ∼ 0, hence

F −P must be associated to a constant polynomial, say C, C ∈ Q ⊆ Q[t]. Note that

F ∼ P + C, and hence F is of polynomial type of degree d.

(b)⇒ (c) Proceed by induction on d. If d = 0, ∆F ∼ 0, and ∆0F = F is eventu-

ally constant. Assume d ≥ 1. Since ∆F is a of polynomial type of degree d − 1, by

induction ∆dF = ∆d−1(∆F ) is eventually constant.

(c)⇒ (b) If ∆0F is eventually constant, then F is eventually constant, and hence

∆F ∼ 0. With this we may assume d ≥ 1. If ∆dF is eventually constant, then

∆d−1(∆F ) is eventually constant. By induction hypothesis ∆F is of polynomial type

of degree d− 1.

Lemma 2.3.3 Let F be a numerical function of polynomial type with associated poly-

nomial P of degree d. The following are equivalent:
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(a) F (n) ∈ Z for n� 0;

(b) P (n) ∈ Z for n� 0;

(c) P (n) ∈ Z for n ∈ Z;

(d) P (t) =
d∑
r=0

arBr(t) with ar ∈ Z, ad 6= 0 if d 6= −1.

Proof Note that (a) is equivalent to (b) by definition and (c)⇒ (b) trivially. Also

(d)⇒ (c), since Lemma 2.3.1(c) say that for n ∈ Z, Br(n) ∈ Z. Hence it is enough to

show that (b)⇒ (d). Write P (t) =
∑d

r=0 aiBi(t), with ar ∈ Q for every r and ad 6= 0.

Proceed by induction on d. If d = 0, then P is constant and by (b) it takes integer

values, so the result holds. Let d ≥ 1. Note that

∆P (t) =
d∑
r=0

ar∆Br(t) =
d∑
r=0

arBr−1(t) =
d−1∑
r=−1

ar+1Br(t) =
d−1∑
r=0

ar+1Br(t)

Since P (n) ∈ Z for n � 0, ∆P (n) ∈ Z for n � 0. By induction on d, a1, ..., ad are

integers. Now, note that a0 = P (n) −
∑d

r=1 arBr(n) ∈ Z for n � 0 and so we are

done.

Definition 2.3.2 (Integer-valued numerical function) A numerical function F

is said to be integer-valued if F (n) ∈ Z for n ≥ 0. We say that F is non-negative

if F (n) ≥ 0 for n� 0.

2.4 Hilbert functions

Let R =
⊕∞

i=0 Ri be a Noetherian graded ring with R0 Artinian and let M =⊕
i∈ZMi be a finitely generated R-module. The R0-modules Mi are finite for every i.

Since R0 is Artinian, λ(Mi) <∞ for i ≥ 0. With this, the following definition makes

sense.

Definition 2.4.1 (Hilbert function) Let R =
⊕∞

i=0Ri be a Noetherian graded ring

with R0 Artinian and let M =
⊕

i∈ZMi be a finitely graded R-module.
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(a) The function HM : Z → N0 given by HM(i) = λR0(Mi) is called the Hilbert

function of M.

(b) The Laurent series hM(t) =
∑

iHM(i)ti is called the Hilbert series of M.

Theorem 2.4.1 (Hilbert series is rational) Let R be a Noetherian graded ring

with R0 Artinian, write R = R0[x1, ..., xn] where xj is homogeneous of degree dj > 0,

let M =
⊕∞

i=0Mi be a finitely generated graded R-module. Then:

hM(t) =
q(t)∏n

j=1(1− tdj)
,

for some q(t) ∈ Z[t, t−1]. If Mi = 0 for i < 0, then q(t) ∈ Z[t] and hM(t) is a rational

function.

Proof Proceed by induction on n ≥ 0.

(Case n = 0) If n = 0, R = R0 and hence because M is a finite R-module, it has

finite length. Since M =
⊕

i∈ZMi, it follows that Mi = 0 for |i| >> 0. In particular,

there is N such that

hM(t) =
N∑

i=−N

λR(Mi)t
i ∈ Z[t, t−1].

Note that if Mi = 0 for i < 0 then hM(t) = q(t) ∈ Z[t].

(Case n > 0) Let n > 0. Then M(−dn)
xn−→ M is a homogeneous R-linear map

since xnMi−dn ⊆ Mi. Its kernel and cokernel are graded modules giving rise to an

exact sequence of homogeneous R-linear maps

0→ K →M(−dn)
xn−→M → L→ 0

where xnK = 0 = xnL. By the latter, K and L are graded modules over the graded

ring R/(xn) ' R0[X1, ..., Xn−1], where Xi is the class of xi in R/(xn). Thus by

induction hypothesis

hK(t) =
q′(t)∏n−1

j=1 (1− tdj)
and hL(t) =

q′′(t)∏n−1
j=1 (1− tdj)



14

for some q′(t), q′′(t) in Z[t, t−1] (or Z[t] if Mi = 0 for i < 0). Now, by additivity:

q′′(t)− q′(t)∏n−1
j=1 (1− t)dj

= hL(t)− hK(t)

= hM(t)− hM(−dn)(t) = hM(t)− tdnhM(t) = (1− tdn)hM(t).

Proposition 2.4.1 Let R be a standard graded Noetherian ring with R0 an Artinian

ring and let M be a finitely generated graded R-module. If M 6= 0, then hM(t) can be

written uniquely as:

hM(t) =
qM(t)

(1− t)d

where d = d(M) ≥ 0 and qM(t) ∈ Z[t, t−1] with qM(1) 6= 0.

Proof By Theorem 2.4.1, hM(t) = q(t)/(1 − t)n for some q(t) ∈ Z[t, t−1]. Further-

more

hM(t) =
(1− t)`

(1− t)n
qM(t) = (1− t)`−nqM(t)

for some qM(t) ∈ Z[t, t−1] with qM(1) 6= 0. Set d = n− `. If d < 0, then

0 = hM(1) =
∑
i∈Z

λR0(Mi) 6= 0

since M 6= 0. We condude d ≥ 0.

We focus now on the case where M 6= 0 is non-negatively graded, i.e., Mi = 0 for

i < 0. Write deg(qM) = s. Since d(M) is the order of the pole of hM(t) at t = 1, we

want to express qM(t) in the basis {(1− t)n : n ≥ 0} which we can do by considering

a Taylor expansion around t = 1 for qM(t). Note that

qM(t) =
s∑
i=0

q
(i)
M (1)

i!
(t− 1)i =

s∑
i=0

(−1)iq
(i)
M (1)

i!
(1− t)i

Write qM(t) = a0 + · · ·+ ast
s. Then

q
(i)
M (1) =

s∑
n=i

i−1∏
j=0

(n− j)an =
s∑
n=i

n!

(n− i)!
an =

s∑
n=i

(
n

i

)
· i! · an = i! ·

s∑
n=i

(
n

i

)
an
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In particular

qM(t) =
s∑
i=0

[
s∑
n=i

(
n

i

)
an

]
(−1)i(1− t)i

Let ei =
∑s

n=i

(
n
i

)
an =

q
(i)
M (1)

i!
. Note that e0 = qM(1) 6= 0. Also es = as 6= 0 and ei ∈ Z

for 0 ≤ i ≤ s. With this notation

qM(t) =
s∑
i=0

ei(−1)i(1− t)i.

With the Taylor expansion, we can now write hM(t) as

hM(t) =
qM(t)

(1− t)d
=

∑s
i=0 ei(−1)i(1− t)i

(1− t)d

Now we will use this form of hM(t) to find a polynomial PM with HM ∼ PM . Recall

that if d ∈ N. Then:

1

(1− t)d
=
∞∑
i=0

 i+ d− 1

d− 1

 ti =
∞∑
i=0

Bd−1(i)ti

Theorem 2.4.2 Let R be a standard graded Noetherian ring with R0 Artinian and let

0 6= M =
⊕∞

n=0Mn be a finitely generated graded R-module which is non-negatively

graded. For d ≥ 1 write

P (t) =
d−1∑
i=0

(−1)ieiBd−i−1(t).

Then HM(n) = PM(n) for n ≥ s − d + 1. In particular HM is of polynomial type of

degree d− 1. If d = 0, then HM is of polynomial type of degree −1.

Proof If d = 0, then hM(t) = qM(t) and hence HM(n) = 0 for i ≥ s + 1. Then

HM(n) is of polynomial type of degree −1. Assume then d ≥ 1. Consider the case

where s < d. Then:

hM(t) =
s∑
i=0

(−1)iei
1

(1− t)d−i

and d− i ≥ d− s > 0. Using the expansion for 1/(1− t)d we have:

hM(t) =
s∑
i=0

(−1)iei

∞∑
k=0

Bd−i−1(k)tk =
∞∑
k=0

s∑
i=0

(−1)ieiBd−i−1(k)tk
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and hence, comparing coefficients

HM(n) = λ(Mn) =
s∑
i=0

(−1)ieiBd−i−1(n) =
d−1∑
i=0

(−1)ieiBd−i−1(n)

since ei = 0 for i > s. Note that this holds for n ≥ 0 ≥ s− d+ 1.

With this we may assume s ≥ d. Then one can write

hM(t) =
d−1∑
i=0

(−1)iei
1

(1− t)d−i
+

s∑
i=d

(−1)iei(1− t)i−d

Using the arguments from the previous case, one can rewrite the first sumand to get

hM(t) =
∞∑
k=0

d−1∑
i=0

(−1)ieiBd−i−1(k)tk +
s∑
i=d

(−1)iei(1− t)i−d.

Note that
∑s

i=d(−1)iei(1 − t)i−d is a polynomial of degree at most s − d, hence for

n ≥ s− d+ 1 we have:

HM(n) =
d−1∑
i=0

(−1)ieiBd−i−1(n) = PM(n)

Definition 2.4.2 (Hilbert polynomial, multiplicity) Let R =
⊕∞

i=0Ri be a Noethe-

rian standard graded ring with R0 Artinian, and M =
⊕∞

n=0Mn a finitely generated

graded R-module.

(a) PM(t) is called the Hilbert polynomial of M ;

(b) The Hilbert multiplicity of M , denoted e(M), is defined as follows:

e(M) =

 e0 if d ≥ 1;

λ(M) if d = 0.

Theorem 2.4.3 (Hilbert) Let R be a Noetherian standard graded ring with (R0,m0, k)

Artinian and M a finite graded R-module of dimension d. Then HM is of polynomial

type of degree d− 1.
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Proof We prove the case M = R/p for p a graded prime ideal of R first. Proceed

by induction on dim(R/p) = d.

(Case d = 0) If dimR/p = 0, then p = m0 ⊕ R+ since this is the homogeneous

maximal ideal. In particular R/p ' k and hence HR/p(n) = 0 for n ≥ 1. In particular

HR/p is of polynomial type of degree -1.

(Case d > 0) Since R is standard graded, we know that R = R0[R1] and hence

R/p = k[ R1

p∩R1
]. If R1 = p ∩ R1, then dimR/p = 0, a contradiction. Hence we can

pick 0 6= x ∈ R/p homogeneous of degree 1. Consider the exact sequence:

0→ R/p(−1)
x−→ R/p→ R/(p, x)→ 0.

By additivity

∆HR/p(n) = HR/p(n)−HR/p(n− 1) = HR/(p,x)(n).

Note that R/p is a Noetherian standard graded domain with R0 = k a field, and

hence dimR/(p, x) = dimR − 1. By induction hypothesis HR/(p,x) is of polynomial

type of degree d− 2. But this says that ∆HR/p is of polynomial type of degree d− 2,

hence HR/p is of polynomial type of degree d− 1, according to Lemma 2.3.2.

Now we prove the general case. Consider a graded prime filtration of M , i.e., a

chain

0 = N0 ⊆ N1 ⊆ N2 ⊆ · · · ⊆ N` = M

of graded submodules of M such that for each i, Ni/Ni−1 ' R/pi, 1 ≤ i ≤ `, where

pi are graded prime ideals. Considering the exact sequences:

0→ Ni−1 → Ni → Ni/Ni−1 → 0

it is easy to see by induction that:

HM =
∑̀
i=1

HNi/Ni−1
=
∑̀
i=1

HR/pi
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We know that HR/pi is of polynomial type of degree dim(R/pi). It is straightforward

that HM is of polynomial type. We also know that the leading coefficient of the

polynomial associated to HR/pi must be positive, since HR/pi(n) ≥ 0. In particular

degHM = max
1≤i≤`
{degHR/pi} = max

1≤i≤`
{dim(R/pi)− 1}.

But all the minimal primes of M are homogeneous, and they must appear in every

prime filtration of M . In particular:

d− 1 = dimM − 1 = max
Min(M)

{dim(R/p)− 1)} ≤ max
1≤i≤`
{dim(R/pi)− 1} ≤ d− 1.

2.5 Hilbert-Samuel Functions

Definition 2.5.1 (Ideal of definition) Let R be a Noetherian semilocal ring. An

ideal of definition is an ideal I with
√
I = Rad(R), where Rad(R) is the Jacobson

radical of R, i.e., the intersection of all maximal ideals. Note that if Q is an ideal of

definition, then R/Q is an Artinian ring.

Definition 2.5.2 (Hilbert-Samuel function) Let R be a semilocal Noetherian ring,

I an ideal of definition and M a finitely generated R-module. Define the Hilbert-

Samuel function of M with respect to I as follows:

LI,M : N0 → N0

LI,M(n) := λR(M/InM) =
n−1∑
j=0

HgrI(M)(j) =
n−1∑
j=0

λR(IjM/Ij+1M)

Note that grI(R) is an Noetherian standard graded ring with [grI(R)]0 = R/I

an Artinian ring. Also grI(M) is a finite grI(R)-graded module. Hence the previous

definition makes sense.
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Proposition 2.5.1 (Existence of the Hilbert-Samuel polynomial) Let R be a

semilocal Noetherian ring, I an ideal of definition and M a finitely generated R-

module. There is a unique polynomial PI,M(t) ∈ Q[t], with LI,M(n) = PI,M(n) for

every n� 0. Furthermore

PI,M(t) =
d∑
i=0

(−1)ieiBd−j(t− 1)

with ei ∈ Z, 0 ≤ i ≤ d, and e0 6= 0 if M 6= 0.

Proof If M = 0, then PI,M(t) = 0. Hence wee say assume that 0 6= M . We

know that HgrI(M) is of polynomial type of degree d − 1 for some d. If M 6= 0, then

grI(M) 6= 0, and:

∆LI,M(n) =
n−1∑
j=0

HgrI(M)(j)−
n−2∑
j=0

HgrI(M)(j) = HgrI(M)(n− 1).

It follows that LI,M is of polynomial type of degree d. Let LI,M ∼ PI,M . Write:

PI,M(t) =
d∑
i=0

(−1)ieiBd−i(t)

A priori, ei ∈ Q, but since LI,M is integer-valued, ei ∈ Z and e0 6= 0 as wanted.

Definition 2.5.3 (Hilbert-Samuel polynomial) Let R be a semilocal Noetherian

ring, I an ideal of definition and M a finitely generated R-module. The polynomial

PI,M is called the Hilbert-Samuel polynomial of M with respect to I.

Let R and M be as in Definition 2.5.3. Define

δ(M) = min

{
n ∈ N0|∃a1, ..., an ∈ Rad(R), λ

(
M

(a1, ..., an)M

)
<∞

}
.

Theorem 2.5.1 (Fundamental Theorem of Dimension Theory) Let R be a lo-

cal ring and M 6= 0 a finite R-module. Then dim(M) = δ(M). This is also equal to

the degree of the Hilbert-Samuel polinomial with respect to any m-primary ideal.

For a proof, see [17], Theorem 14.3.
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Corollary 2.5.2 Let R be a Noetherian local ring and I an ideal of definition. Let

0 6= M be a finite R-module. Then dim grI(M) = dimM .

Proof In this case [grI(R)]0 is an Artinian local ring. Hence by Theorem 2.4.3,

HgrI((M) is of polynomial type of degree dim(grI(M))− 1. On the other hand, by the

proof of Theorem 2.5.1 we know that

∆LI,M(n) = HgrI(M)(n− 1),

and so LI,M must be of polynomial type of degree dim(grI(M)). But by the funda-

mental theorem of dimension theory, Theorem 2.5.1, LI,M is of polynomial type of

degree dimM . We conclude that dimM = dim grI(M).

Let R and M be as in Theorem 2.5.1. Let PI,M be the Hilbert-Samuel polynomial

of M with respect to I. If 0 6= M and d = dimM , then

PI,M(t) =
d∑
j=0

(−1)jej

(
t+ d− j + 1

d− j

)
where ej ∈ Z and e0 6= 0. In this case, one can write:

PI,M(n) =
e0X

d

d!
+O(Xd−1)

Definition 2.5.4 (Hilbert-Samuel mutiplicity) Let (R,m) be a Noetherian semilo-

cal ring and M a finite R-module. Let I be an R-ideal of definition for M . Define

the Hilbert-Samuel multiplicity of M as

e(I;M) :=


e0 if M 6= 0;

0 otherwise.

Remark 2.5.3 Assume 0 6= M . Since LI,M(n) = PI,M(n) for n� 0 note that:

e0 · nd

d!
+O(nd−1) = λR/I(M/InM)

In particular, multiplying by d!/nd gives

e0d!

d!
+O(n−1) =

d!λR(M/InM)

nd
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and so, taking limits as n→∞ we get

e(I;M) = e0 = lim
n→∞

e0 +O(n−1) = lim
n→∞

d!λR(M/InM)

nd
.

It is also easy to see that in this case

e(I;M) = ∆dLI,M(n) for n� 0.

If I = m we write e(m;M) =: e(M) and if M = R we write e(I) := e(I;R).
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3. ε-MULTIPLICITY

3.1 Some facts about length and local cohomology

One would like a notion of Hilbert-Samuel multiplicity in the case where I is not

m-primary. The problem in this case is that the quotients R/In may not have finite

length. A way to fix this is the section functor.

Proposition 3.1.1 Let (R,m, k) be a Noetherian local ring and M a finite R-module.

msM = 0 for some s ∈ N if and only if λR(M) <∞.

Proof (⇒) Assume msM = 0 for some s ∈ N. Consider the chain:

0 = msM ⊆ ms−1M ⊆ · · · ( mM ⊆M

Note that

λR(M) = λR(M/msM) =
s−1∑
i=0

λ(miM/mi+1M) <∞

since miM/mi+1M are a finite k-vector spaces and hence

λR(miM/mi+1M) = dimk(m
iM/mi+1M)

(⇐) Assume msM 6= 0 for any s ∈ N. By Nakayama’s lemma, one obtains strict

containments

msM ( ms−1M ( · · · ( mM (M

For each s, this gives a chain of length s+ 1 and since s is arbitrary, λR(M) =∞.

Definition 3.1.1 (Section functor) Let R be a ring, I an R-ideal and M an R-

module. The section functor of M with respect to I, or 0-th local cohomol-

ogy of M with respect to I is

ΓI(M) = 0 :M I∞ =
⋃
j≥0

(0 :M Ij) '
⋃
j≥0

HomR(R/Ij,M).
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Remark 3.1.1 Let R be a ring, I an R-ideal and S a graded R-algebra with R = S0.

Let M =
⊕

j≥0Mj be a graded S-module. Then ΓI(M) is a graded S-submodule of

M .

Proposition 3.1.2 Let (R,m, k) be a local ring ring and M a finite R-module. Then

(a) Γm(M) is the unique largest submodule of M with finite length;

(b) Γm(M) = 0 if and only if depth(M) > 0

(c) Let M = M/Γm(M). Then Γm(M) = 0, so depth(M) > 0.

Proof Let N be a submodule of M with finite length. By Proposition 3.1.1 there

is s ∈ N such that msN = 0, and so N ⊆ Γm(M). On the other hand, since M is

Noetherian, the chain

0 :M m ⊆ 0 :M m2 ⊆ · · ·

must stabilize and so there is s ∈ N such that msΓm(N) = 0. In particular λR(Γm(M)) <

∞ by Proposition 3.1.1.

For (b), recall that if I is an R-ideal, then I contains a non-zero divisor of M

(and so, depthI(M) > 0) if and only if HomR(R/I,M) = 0. If Γm(M) = 0, then

0 :M m = 0. But (0 :M m) ' HomR(k,M), hence depthm(M) = depth(M) > 0. On

the other hand, if depth(M) > 0, then depthms(M) > 0 for s ≥ 1, hence 0 :M ms = 0.

Lemma 3.1.2 Let (R,m, k) be a Noetherian local ring, I = (x1, ..., xn) a proper R-

ideal. If λR(M) <∞, then

H i
I(M) = H i(Č

•
(x1, ..., xn;M)) = 0 for i > 0.

Proof Note that Mxj = 0 for all j, hence Č
i
(x1, ..., xn;M) = 0 for i > 0.

Proposition 3.1.3 (Subadditivity of λ(Γm(−))) Let R be a Noetherian ring, I an

R-ideal and consider an exact sequence of finite R-modules

0→M ′ →M →M ′′ → 0



24

(a) λR(ΓI(M)) ≤ λR(ΓI(M
′)) + λR(ΓI(M

′′));

(b) Equality holds in (a) if λ(M ′) <∞.

Proof Consider the longexact sequence

0→ ΓI(M)′ → ΓI(M)→ Γm(M ′′)→ H1
I (M ′)→ · · ·

and let C = Coker(ΓI(M)→ Γm(M ′′)). Then we have an exact sequence:

0→ ΓI(M)′ → ΓI(M)→ Γm(M ′′)→ C → 0

Using additivity of length, we have

λR(ΓI(M)) = λR(ΓI(M
′)) + λR(ΓI(M

′′))− λR(C)

≤ λR(ΓI(M
′)) + λR(ΓI(M

′′))

For (b) note that if λ(M ′) <∞, then H i
I(M

′) = 0 for i > 0 by Proposition 3.1.2. In

particular, H i
I(M

′) = 0 giving the short exact sequence

0→ ΓI(M)′ → ΓI(M)→ Γm(M ′′)→ 0

and the result follows from additivity of λ.

3.2 j-multiplicity

In studying intersection theory, Achilles and Manaressi introduce a multiplicity

associated to an R-ideal that is not m-primary, but has maximal analytic spread [1].

Today, this multiplicity is known as j-multiplicity, and it has been generalized to

modules.

Let R =
⊕

n≥0Rn a Noetherian standard graded ring with (R0,m) a Noetherian

local ring and M =
⊕∞

j=0 Mj a finite graded R-module. By Remark 3.1.1, Γm(M) is

a graded submodule of M .
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By 3.1.2, Γm(M) has finite length and so by Proposition 3.1.1 there is s ∈ N such

that msΓm(M) = 0. In particular Γm(M) is a finite graded R/msR-module. Note that

R/msR is a Noetherian standard graded ring, with [R/msR]0 = R0/m
s an Artinian

local ring.

With this, there is a well-defined Hilbert function for Γm(M)

HΓm(M) : N0 → N0

n 7→ λR0([Γm(M)]n) = λR0(Γm(Mn))

In this case, the Hilbert polynomial PΓm(M) ∈ Q[x] has degree dim(Γm(M))− 1.

Definition 3.2.1 (j-multiplicity) Let R =
⊕

n≥0Rn a Noetherian standard graded

ring with (R0,m) a Noetherian local ring and M =
⊕∞

j=0Mj a finite graded R-module.

Let d = dimM and δ = dim Γm(M). For D ≥ d define:

jD(M) =


0 if D > δ;

e(Γm(M)) if D = δ.

If D = dimM , then we write j(M) = jD(M).

Let (R,m) be a Noetherian local ring and M be a finitely generated d-dimensional

R-module. Let I be an R-ideal (not necessarily primary) and D ≥ d. Note that grI(R)

is a standard graded ring with R0 = R/I Noetherian local, and grI(M) is a finite

grI(R)-module. Hence we are in the context of the graded j-multiplicity and so the

following definition makes sense:

Definition 3.2.2 (j-multiplicity) Let (R,m) be a Noetherian local ring and M be

a finitely generated d-dimensional R-module. Let I be an R-ideal and D ≥ d. Then

the j-multiplicity of I with respect to M is

jD(I;M) := jD(grI(M))

where the latter j-multiplicity is computed considering grI(M) as an grI(R)-module.

We write j(I;M) = jd(I;M).
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Lemma 3.2.1 Let R =
⊕

n≥0Rn a Noetherian standard graded ring with (R0,m) a

Noetherian local ring and M =
⊕∞

j=0Mj a finite d-dimensional graded R-module. If

q ∈ Min(M) ∩ V (mR), then Γm(M)q = Nq.

Proof If q ∈ MinR(M), then dimMq = 0, or equivalently Rq/annRq(Mq) is an

Artinian local ring and so there is k such that qkMq = 0. But then mkMq ⊆ qkMq = 0

and hence Mq = Γm(Mq) = Γm(M)q.

Lemma 3.2.2 Let R =
⊕

n≥0Rn a Noetherian standard graded ring with (R0,m) a

Noetherian local ring and M =
⊕∞

j=0Mj a finite d-dimensional graded R-module. Let

D > d. The following are equivalent:

(a) dim(M/mM) < D;

(b) dim Γm(M) < D.

Proof First notice that a power of mR annihilates Γm(M). In particular

SuppR(Γm(M)) ⊆ SuppR(M) ∩ V (mR) = SuppR(M/mM)

and so dim Γm(M) ≤ dimM/mM . This shows (a)⇒ (b).

(b)⇒ (a) Assume that dimM/mM = D. Then there is q ∈ SuppR(M) with

mR ⊆ q and dimR/q = D. Since D ≥ dimM , such a q is minimal in SuppR(M) and

so by Lemma 3.2.1, Γm(M)q = Mq 6= 0. Hence

D = dim(Mq/mMq) ≤ dimMq = dim Γm(N)q ≤ dim Γm(N) ≤ D,

and so equality holds throughout.

Remark 3.2.3 By Lemma 3.2.2 we have that

jD(M) =


0 if dim(M/mM) < D;

e(Γm(M)) if dim(M/mM) = D.

and that j(M) 6= 0 if and only if dim(M/mM) = dim(M).
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Remark 3.2.4 Let (R0,m) be an Artinian local ring and R a standard graded Noethe-

rian ring. Let M be a finite d-dimensional graded R-module. Since R0 is Artinian,

there is k ∈ N such that mk = 0 and so Γm(Mn) = Mn, Γm(M) = M and δ = d. If

d ≥ 1, then

jD(M) = lim
n→∞

(D − 1)!λ(Γm(M))

nD−1
= lim

n→∞

(D − 1)!λ(Mn)

nD−1
= e(M)

so the j multiplicity generalizes Hilbert’s multiplicity.

Definition 3.2.3 (Internal grading, [25]) Let (R,m) be a Noetherian local ring

and S a standard graded R-algebra. Let I be an S-ideal generated by linear forms. The

internal grading on S[t, t−1] is the grading obtained by setting deg t = 0. Restricting

this grading to the extended Rees algebra of I gives the internal grading of the

extended Rees algebra of S.

Note that R+
I (S) ⊆ S[t, t−1] are Noetherian standard graded rings with the in-

ternal grading. In fact, note that S[t, t−1]0 = R[t, t−1], hence

S[t, t−1] = (R[t, t−1])[S1] = S[t, t−1]0[S]1,

and since R+
I (S)0 = R[t−1], we see that

R+
I (S) = R[t−1][S1, It] ⊆R+

I (S)0[R+
I (S)]1.

Given a graded S-module M , the modules R+
I (M) and M [t, t−1] = M ⊗S S[t, t−1] =

M ⊗R R[t, t−1] are finite graded modules over R+
I (S) and S[t, t−1] respectively. Fac-

toring out the homogeneous element t−1 we see that grI(S) is a Noetherian standard

graded ring and [grI(S)]0 = R. Also notice that grI(M) is a finitely generated grI(S)-

module. Furthermore

[grI(M)]n =
∞⊕
i=0

[
I iM

I i+1M

]
n

.

Note that only finitely many of these direct summands are non-zero since I is an ideal

generated by linear forms.
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Definition 3.2.4 (j-multiplicity of modules [25], Definition 4.1) Let (R,m) be

a Noetherian local ring, d = dimR, E ⊆ F ' Rr be finite R-modules. Set S =

SymR(F ). Set D = d+ r and I = E · S. Define the j-multiplicity of E as

j(E) := jD(F · grI(S))

where F · grI(S) is a grI(S)-module and grI(S) has the internal grading.

Define a function

ΣE(n) = λR([Γm(F · grI(S))]n) =
n−1∑
i=0

λR

(
Γm

(
EiF n−i

Ei+1F n−i−1

))
.

Note that if D = d+ r > 0, then

jD(E) = lim
n→∞

(D − 1)!ΣE(n)

nD−1
= lim

n→∞

(d+ r − 1)!ΣE(n)

nd+r−1
∈ N0.

3.3 ε-multiplicity

Definition 3.3.1 Let (R,m) be a Noetherian local ring, E ⊆ F ⊆ Rr. Assume E

and F have a rank. Define

ΛE|F (n) = λR (Γm (F
n
/En)) .

Lemma 3.3.1 Let (R,m) be a Noetherian local ring, E ⊆ F = Rr. Assume that E

has a rank.

(a) ΛE|F (n) ≤ ΣE|F (n);

(b) Equality holds in (a) if λ(F/E) <∞.

Proof Fix n and consider the filtration

En ⊆ En−1F ⊆ En−2F 2 ⊆ · · · ⊆ EF n−1 ⊆ F n

Using induction and exact sequences of the form:

0→ Ei+1F n−i−1

Ei+2F n−i−2
→ EiF n−i

Ei+2F n−i−2
→ EiF n−i

Ei+1F n−i−1
→ 0
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together with the subadditivity of λR(Γm(−)) (see Prop. 3.1.3), one obtains

ΓE|F (n) = λR(Γm(F n/En)) ≤
n−1∑
i=0

λR

(
Γm

(
EiF n−i

Ei+1F n−i−1

))
= ΣE|F (n).

Furthermore, by Proposition 3.1.3, additivity holds if λ(F/E) <∞ and so we recover

equality.

Lemma 3.3.2 Let (R,m) be a Noetherian local ring of dimension d and let E ⊆ F ⊆

Rr be R-modules having a rank. Let U be a submodule of E having a rank. Then

ΛU |E(n) ≤ ΛU |F (n) ≤ ΛU |E(n) + ΛE|F (n),

and the second inequality is an equality if λR(E/U) <∞.

Proof Consider the exact sequence

0→ En/Un → F n/Un → F n/En → 0

The result follows by subadditivity of λR(Γm(−)). Furthermore, in short exact se-

quences, additivity holds if the first module has finite length. In particular, if

λR(E/U) <∞, then equality holds.

There are examples of modules for which the Γ function is not of polynomial type.

We will provide examples in the next section. We will show that if the underlying ring

has positive depth, then Γ is bounded above by a polynomial of degree depending

only on the dimension of the ring and the rank of the module E. The following results

are from [23]:

Theorem 3.3.3 (Kleiman,Ulrich,Validashti, [23]) Let (R,m) be a Noetherian

local ring of dimension d and E ⊆ F ⊆ Rr. Assume rank(E) = e and rank(F ) = f .

If E is free and depth(R) > 0, then ΛE|F (n) is bounded above by a polynomial of

degree e.
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Proof (Case e = 0) If e = 0, since E is free, E = 0. In this case F n/En = F n ⊆ Rrn.

Note that Γm(F n) is a submodule of Γm(Rrn). Note that by Proposition 3.1.2(b) the

latter is zero, given that depth(R) > 0.

We may assume e > 0. Completing we may also assume R = R̂. By Cohen’s

Structure Theorem, there exists a complete local ring T with R ' T/a. Let x be a

maximal T -regular sequence inside a and write S = T/(x). Then S � R and (S, n) is

a complete local Gorenstein ring with dimS = dimR = d. Write W = Extd−1
S (R, S).

Since S is Gorenstein, S is Cohen-Macauley and ωS ' S sodimW ≤ d−(d−1) = 1.

Recall there is a fixed s ∈ N such that

msΓm(F · grI(A)) = 0.

The graded components of Γm(F · grI(A)) are of the form

n−1⊕
i=0

Γm(EiF n−i/Ei+1F n−i−1),

hence msΓm(EiF n−i/Ei+1F n−i−1) = 0 for all n and all i. Now F n/En has a filtra-

tion with n factors of the form EiF n−i/Ei+1F n−i−1. Hence, by left-exactness of Γm,

Γm(F n/En) has a filtration with n factors that are submodules of Γm(EiF n−i/Ei+1F n−i−1),

hence are annihilated by ms. In particular for all n ∈ N

msnΓm(F n/En) = 0.

The exact sequence

0→ En → F n → F n/En → 0

induces an exact sequence

Extd−1
S (En, S)→ ExtdS(F n/En, S)→ ExtdS(F n, S).
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Recall that S is a complete local Gorenstein ring of dimension d, hence ExtdS(−, S) '

Γn(−)+, where −+ = HomS(−, ES(S/n)) denotes the Matlis dual. Also, for R-

modules Γn(−) ' Γm(−). Hence

ExtdS(F, S) ' Γm(F )+.

Since F is R-torsionfree and depth(R) > 0, Γm(F ) = 0. Hence ExtdS(F, S) = 0. Also

ExtdS(F n/En, S) ' Γm(F n/En)+. With this we obtain

λR(Γm(F n/En)) = λS(Γm(F n/En)) = λS(ExtdS(F n/En, S)) = λR(ExtdS(F n/En, S)).

Now we have seen that

R/msn ⊗R Extd−1
S (En, S) � ExtdS(F n/En, S),

where λR(ExtdS(F n/En, S)) = ΛE|F (n). Since E ' Re, R(E) ' Sym(E), hence

En ' Sn(E) ' Rk, where k =
(
n+e−1
e−1

)
. In particular

R/msn ⊗R Extd−1
S (En, S) ' (R/msn ⊗R Extd−1

R (R, S))
⊕

(n+e−1
e−1 )

= (W/msnW )
⊕

(n+e−1
e−1 ).

So λR(R/msn ⊗R Extd−1
S (En, S)) =

(
n+e−1
e−1

)
λR(W/msnW ).

Since dimRW ≤ 1, λR(W/msnW ) is bounded by a linear polynomial. Hence

ΛE|F (n) is bounded above by a polynomial of degree (e− 1) + 1 = e.

Theorem 3.3.4 (Kleiman, Ulrich, Validashti[23]) Let (R,m) be a Noetherian

local ring with dimR = d and depth(R) > 0. Let E ⊆ F be finite modules of

ranks e and f embedded in some free module. Then ΛE|F (n) is bounded above by a

polynomial of degree d+ e− 1 (independent of f .)

Proof Let K = Quot(R). Then K ⊗R E ' Ke has a K-basis x1, ..., xe so that after

dividing by a non-zero divisor in R

E ⊆ E ′ =
e∑
i=1

Rxi ' Re.
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There exists a non-zero divisor a on R so that aE ′ ⊆ E. Let F ↪→ Rr. In Kr we

have R-submodules E ′ ⊆ a−1E ⊆ F ′ := a−1F ↪→ a−1Rr ' Rr. Thus E ′ ⊆ F ′ ↪→ Rr,

where E ′ ' Re and F ′ is a finite R-module having a rank, since F ′ ⊗RK = F ⊗RK.

In particular by Lemema 3.3.2

ΛE|F (n) ≤ ΛE|F ′(n) ≤ ΛE|E′(n) + ΛE′|F ′(n)

for every n. Since E ′ is free of rank e, ΛE|E′(n) is bounded above by a polynomial of

degree d+ e− 1 by Definition 3.2.4 and Lemma 3.3.1(a). Since E ′ ' Re, ΛE′|F ′(n) is

bounded above by a polynomial of degree e ≤ d+ e− 1 by Theorem 3.3.3.

Definition 3.3.2 (ε-multiplicity) Let (R,m) be a Noetherian local ring with dimR =

d and depth(R) > 0. Let E ⊆ F be finite modules of ranks e and f embedded in some

free module. Define the ε-multiplicity of E ⊆ F as

ε(E|F ) = (d+ e− 1)! lim sup
n→∞

ΛE|F (n)

nd+e−1
.

If F is a fixed free module, we write ε(E) = ε(E|F ).

Remark 3.3.5 Under the hypothesis of Definition3.3.2, notice that by Theorem 3.3.4,

ε(E|F ) ∈ R+

Remark 3.3.6 Cutkosky [5] has constructed examples of ideals I ⊆ R where ε(I) 6∈

Q, in more details if R = C[x1, ..., x4] and m = (x1, ..., x4), Cutkosky has proved that

there is a nonsingular projective curve C ⊆ P3
C with defining R-ideal I and

lim
n→∞

λR(Γm(R/In))

n4
6∈ Q

Theorem 3.3.7 (Cutkosky, [? ], Theorem 3.2.) Let (R,m) be an analytically un-

ramified Noetherian local ring. Let E ⊆ F be finite modules with E having a rank e

and F free. Then

ε(E|F ) = lim
n→∞

(d+ e− 1)!ΛE|F (n)

nd+e−1
.
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Definition 3.3.3 (Fiber cone, analytic spread) Let (R,m, k) be a Noetherian lo-

cal ring. For a finite R-module E having a rank, one defines

F(E) :=
R(E)

mR(E)
=

∞⊕
n=0

Ei

mEi
.

The dimension of the fiber cone is called the analytic spread of E and denoted by

`(E).

Remark 3.3.8 Whenever we have an inclusion of modules E ⊆ F ' Re and rank(E) =

e, we have ε(E) ≤ j(E). This follows directly from Lemma 3.3.1.

Proposition 3.3.1 (Ulrich, Validashti [24]) Let (R,m) be a equidimensional, uni-

versally catenary local ring of dimension d, and E ( F R-modules with F ' Re.

Assume E has a rank e. The following are equivalent:

(a) ε(E) > 0;

(b) `(E) = d+ e− 1, i.e., E has maximal analytic spread.

Proof See [24], Theorem 4.4

Remark 3.3.9 Let (R,m, k) be a Noetherian local ring. If I is an m-primary ideal,

then

e(I) = j(I) = ε(I)

Definition 3.3.4 [24] Let (R,m) be a Noetherian local ring of dimension d and U ⊆

E be submodules of a free module F . Assume that Up = Ep for p ∈ Min(R). Consider

the inclusion of R-algebras

R(U) ⊆R(E) ⊆ Sym(F ).

We say that U is a reduction of E (or that E is integral over U) if R(U) ⊆R(E) is

an integral extension of rings.
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The following theorem, is an application of the ε-multiplicity, giving a criterion for

the integral dependence of modules, based on the ε-multiplicity, just as Rees’ theorem

does in the m-primary case.

Theorem 3.3.10 (Ulrich, Validashti [24], Theorem 3.1.) Let R be a locally equidi-

mensional, universally catenary Noetherian ring. Let U ⊆ E be submodules of a finite

free module F and assume that both U and E have a rank e. The following are equiv-

alent:

(a) E is integral over U ;

(b) ε(Up) = ε(Ep) for every p ∈ Spec(R);

(c) ε(Up) ≤ ε(Ep) for every p ∈ SuppR(E/U) with `(Up) = dimRp + e− 1.

The previous theorem motivates the need for computational tools of ε multiplicity.
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4. ε-MULTIPLICITY AND THE SATURATION REES

ALGEBRA

4.1 Background

When studying the ε-multiplicity of modules, one graded algebra of interest ap-

pears. Let (R,m, k) be a Noetherian local ring and E ⊆ F = Rr be R-modules with

a rank. Let S = Sym(F ). Note that

ΛE|F (n) = λR(Γm(F n/En)) = λR

(
En :Fn m∞

En

)
= λR

(
En :Sn m∞

En

)
Definition 4.1.1 Let (R,m, k) be a Noetherian local ring and E ⊆ F = Rr be R-

modules with a rank. Let S = Sym(F ). The R-algebra

Rsat(E) = R(E) :S m∞ =
∞⊕
i=0

En :Sn m∞ ⊆ S

is called the saturation Rees algebra of E.

We show that the Noetherianness of this algebra implies the rationality of ε(E).

As a matter of fact, in this case we can express the epsilon multiplicity as the Hilbert

multiplicity of some graded module. To prove this, we need a criterion for the Noethe-

rianness of certain algebras.

Definition 4.1.2 (Veronese subalgebra) Let S be a Noetherian ring and A =
∞⊕
n=0

An a graded S-algebra. The S-subalgebra
∞⊕
n=0

Arn is called the r-th Veronese

subalgebra of A and denoted A (r).

Theorem 4.1.1 Let S be a Noetherian ring and A =
⊕∞

i=0Ai be a positively graded

S-algebra with A0 = S. If A is a Noetherian S-algebra; then there exists r ∈ N such

that the r-th Veronese subalgebra of A is standard graded, i.e. A (r) = S[Ar].
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Proof Assume A is Noetherian, in which case A is finitely generated. Write A =

S[f1, ..., fn], where fi ∈ Aei , 1 ≤ i ≤ n. Let e = lcm(e1, ..., en). Now set gi = f
e/ei
i .

Note that gi ∈ Ae, hence the S-subalgebra of A , B := S[g1, ..., gn] is generated over S

by homogeneous elements of degree e, in particular B(e) is standard graded. Now note

that fi is integral over B, 1 ≤ i ≤ n, given that they are a root of the polynomial

te/ei − gi ∈ B[t]. In particular, A is a finitely generated B-module, and so is the

A-submodule A(e). Write

A(e) =
∑̀
j=0

BAje

and define r = e`. We will prove that A(r) is standard graded, i.e., Ari = Air for

i ≥ 0. Proceed by induction on i. If i = 0, then A0 = R = A0
r. Assume i ≥ 1. Since

Air ⊆ Ari for all i, it is enough to show that Ari ⊆ Air.

We proof that Aes = Be(s− `)Ae` for s ≤ `. To do this, note that

A(e) =
∑̀
j=0

BAej

so for any s ≥ ` we have

Aes =
∑̀
j=0

Be(s−j)Aej

Note that since B(e) is standard graded, Bej = Be(j−1)Be ⊆ Be(j−1)Ae for any j ≥ 1.

In particular we have a filtration

BesA0 ⊆ Be(s−1)Ae ⊆ · · · ⊆ Be(s−`)Ae`,

so Aes = Be(s−`)Ae`.

Now by the claim and the induction hypothesis:

Air = Ae`i = Be`(i−1)Ae` ⊆ Ar(i−1)Ar = Air
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Remark 4.1.2 In the context of theorem 4.1.1, if A = S[A1, ..., Ad], and r = d · d!,

then A(r) = S[Ar]. For Example see the proof of Lemma 5.2. in [10].

Proposition 4.1.1 In addition to the assumptions of Theorem 4.1.1, assume there

is x ∈ A1 which is a non-zero divisor on A. The following are equivalent:

(a) A is a Noetherian S-algebra;

(b) there is r ∈ N such that A (r) is astandard graded Noetherian S-algebra;

(c) there is r ∈ N such that A (r) is finitely generated a Noetherian S-algebra.

Proof We already proved (a)⇒ (b), and (b)⇒ (c) is trivial. We prove that (c)⇒

(a). For 0 ≤ j ≤ r − 1 define

A (r;j) :=
∞⊕
i=0

Ari+j

which is an A (r)-submodule of A . Note that A =
r−1⊕
j=0

A (r;j), so it is enough to

show that each A (r;j) is finitely generated as a module over A (r). Since x ∈ A1 is a

non-zero divisor, so is xr−j ∈ Ar−j. Note that

xr−jA (r;j) ⊆
⊕
i≥0

Ar−jAri+j ⊆
⊕
i≥0

Ar(i+1) ⊆ A (r).

Since xr−j is a non-zero divisor, the A (r)-linear map µx : A (r;j) → A (r) is injective,

hence A (r;j) must be isomorphic to an ideal of A (r). Since A (r) is finitely generated

as an S-algebra and S is Noetherian, A (r) is a Noetherian ring. Therefore A (r;j) must

be finitely generated as a module over A (r). But since A is a finite direct sum of the

modules A (r), A must be finitely generated as a module over A (r). In particular, A

is a Noetherian ring.

Theorem 4.1.3 (Simis, Ulrich, Vasconcelos, [22], Proposition 3.2) Let R be

a Noetherian local ring and let A ⊆ B be a homogeneous inclusion of standard graded

Noetherian R-algebras and R = A0 = B0 with λR(B1/A1) < ∞. Write d = dimB

and m for the maximal ideal of R. Let G = grA1B(B), with internal grading.



38

(a) For n ≥ 0, λR(Bn/An) = λ([B1G]n);

(b) For n� 0, λ(Bn/An) is of polynomial type of degree dimB1G− 1 ≤ d− 1;

(c) If PA|B(X) ∈ Q[X] is the polynomial associated to λ(Bn/An), then:

PA|B(X) =
e(A|B)

(d− 1)!
Xd−1 +O(Xd−2)

where

e(A|B) =


0 if dim(B1G) < d;

e(B1G) if dim(B1G) = d

.

Proof Let G =grA1B(B). Note that

Gn =
∞⊕
i=0

[
Ai1B

Ai+1
1 B

]
n

.

We consider the module B1G. With this grading

[B1G]n =
n⊕
i=1

Ai−1Bn−i+1

AiBn−i
,

in particular one has

[0 :G B1G]0 = [0 :R B1G] = annR(B1/A1).

Note that R/ann(B1/A1) is an Artinian ring, and so we are in the context where B1G

is a finitely generated G/(0 :G B1G)-module, the latter being a standard graded ring

with 0-th graded piece an Artinian local ring.

Recall that [B1G]n =
n⊕
i=1

Ai−1Bn−i+1

AiBn−i
. For i ≥ 1 and all j we have AiBj = Ai1Bj =

Ai−1
1 (A1Bj) ⊆ Ai−1Bj+1, so for n ≥ 0 we have a filtration

An = AnB0 ⊆ An−1B1 ⊆ · · · ⊆ A0Bn = Bn.
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By additivity of length we see that:

λR

(
Bn

An

)
=

n∑
i=1

λR

(
Ai−1Bn−i+1

AiBn−i

)
= λR([B1G]n)

Statements (b) and (c) follow from the theory of Hilbert functions for graded modules

over a standard graded ring with Artinian local zero-th graded component.

4.2 Rationality of the ε-multiplicity and the Noetherianness of the satu-

rated Rees algebra

From now on, when writing lim
n→∞

f(n) ∈ Q, we mean the limit exists and is rational.

Theorem 4.2.1 Let (R,m, k) be an analytically unramified Noetherian local ring of

dimension d > 0. Consider E ⊆ F := Rt an R-module with rank e. If Rsat(E) is an

Noetherian R-algebra, then

ε(E) = lim
n→∞

(d+ e− 1)!ΛE|F (n)

nd+e−1
∈ Q.

Proof Rewrite ΛE|F (n) as follows:

ΛE|F (n) = λR(Γm(F n/En)) = λR
(
0 :Fn/En m∞

)
= λR

(
En :Fn m∞

En

)
By Theorem 4.1.1, given that the R-algebra Rsat(E) is Noetherian, there is r ∈ N

such that we know there is r ∈ N such that

Rsat(E)(r) =
∞⊕
n=0

Ern :F rn m∞

is standard graded, i.e., Ern :F rn m∞ = (Er :F r m∞)n for n ≥ 0 (not that this is

not the n-th power of the module Er :F r m∞, but the power inside S). Consider the

R-standard graded algebras

A := R⊕ Er ⊕ E2r ⊕ · · · = R(E)(r) ⊆ Rsat(E)(r) =: B.

We have an inclusion of standard graded R-algebras A ⊆ B, A0 = B0 = R and:

λR(B1/A1) = λR(Er :F r m∞/Er) = λR(Γm(F r/Er)) <∞
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Now, we can apply Theorem 4.1.3 to the R-algebras A ⊆ B to get that the numerical

function

ΛE|F (nr) = λR

(
Enr :Fn m∞

Enr

)
= λR

(
An
Bn

)
is of polynomial type of degree dimB1G − 1 := δ where G = grA1B(B), i.e., there is

a polynomial P (X) ∈ Q[X] with

P (X) =
e(A|B)

δ!
Xδ +O(Xδ−1)

with P (n) = ΛE|F (nr) for n � 0 and e(A|B) ∈ Q. Since R is analytically unram-

ified, by Theorem 3.3.7 the ε mutliplicity of E exists as a limit. In particular, any

subsequence of (d + e − 1)!ΛE|F (n)/nd+e−1 has as limit ε(E). Putting this together

gives:

ε(E|F ) = lim
n→∞

(d+ e− 1)!ΛE|F (nr)

(nr)d+e−1
= lim

n→∞

(d+ e− 1)!P (n)

(nr)d+e−1

By Cutkosky’s theorem, this limit exists and is finite hence δ ≤ d+e−1. If δ < d+e−1,

then ε(E) = 0. If δ = d+ e− 1, then:

lim
n→∞

(d+ e− 1)!P (n)

(nr)d+e−1
=
e(A|B)

rd+e−1
∈ N0

rd+e−1

The hypothesis that Rsat(E) is Noetherian is not always satisfied. For example

if E = I ⊆ F = R for an R-ideal I this reduces to the Noetherianess of the satu-

rated Rees algebra. As we mentioned in Remark 3.3.6, [5], Cutkosky has produced

an example of an ideal I ⊆ R, where ε(I) is not rational. By the previous result, the

associated saturation Rees algebra cannot be finitely generated.

Other examples of ideals for which the saturation Rees algebra may not be Noethe-

rian include monomial curves in A3. We will discuss more of this case in Chapter 5.

Now we explore a case that we will generalize in the following section.

Definition 4.2.1 (Saturation Rees algebra) Let S be a Noetherian ring, I and

J S-ideals. The saturation Rees algebra of I with respect to J is

Rsat(I|J) :=
⊕
n≥0

(In :S J
∞)τn ⊆ S[τ ].
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The following is a result from Herzog, Hibi and Trung:

Theorem 4.2.2 (Herzog, Hibi, Trung[12], Theorem 3.2) Let R = k[x1, ..., xd]

be a polynomial ring and I, J monomial ideals. Then Rsat(I, J) is Noetherian.

Corollary 4.2.3 Let R = k[x1, ..., xd] be a polynomial ring and I a monomial R-

ideal. Then ε(I) ∈ Q.

Corollary 4.2.3 has been proved using different techniques. For example, Herzog,

Puthenpurakal and Verma have studied the nature of the funcion ΛI(n) for monomial

ideals.

Definition 4.2.2 (Quasipolynomial type) Let F : N → N. We say that F has

quasipolynomial type if there are polynomials P0, ..., Pg−1 ∈ Q[X] such that for n� 0:

F (n) = Pi(n) if n = i(mod g)

The following result by Herzog, Puthenpurakal and Verma [13] is proved with

much more generality than the following version:

Proposition 4.2.1 ([13]) Let R = k[x1, ..., xd] and I a monomial R-ideal.

(a) The numerical function λR((In :R m∞)/In) is of polynomial type.

(a) Let P0, ..., Pg−1 be the polynomials with ΛI(ng+ i) = Pi(n) for n� 0. Then all

these polynomials have the same degree and same leading coefficient.

This shows that ε(I) exists and it is rational, being the normalized leading coeffi-

cient of any Pi, 0 ≤ i ≤ g− 1. But one can say even more about the ε-multiplicity of

monomial ideals. In fact, Jeffries and Montaño have explicit formulas for what these

multiplicites should be.

Theorem 4.2.4 (Jeffries,Montaño [16], Theorem 5.1.) Let R = k[x1, ..., xd] and

I a monomial R-ideal. Then

ε(I) = d!vol(out(I))

which is a rational number.
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4.3 The saturation algebra of monomial modules

Definition 4.3.1 (Monomial module) Let k be a field and R = k[x1, ..., xd] a poly-

nomial ring in d-variables. Let F be a finite free R-module with basis {ei}mi=1.

(a) A monomial in F is an element of the form xα1
1 · · ·x

αd
d ei, 1 ≤ i ≤ m;

(b) A monomial module is an R-submodule of F generated by monomials.

Let E be a monomial submodule of F . Notice that E has a rank. Consider the

inclusion i : E ↪→ F to define the ε-multiplicity of E. We show that the saturation

Rees algebra of E with respect to any monomial ideal is Noetherian.

Remark 4.3.1 Let R be a Noetherian ring and E ⊆ F finite R-modules with a rank

and F = Rr. Let S = Sym(F ) and I = E · S. Then En = [In]n.

Theorem 4.3.2 Let k be a field and R = k[x1, ..., xd] a polynomial ring. Let F be

a finite free R-module and E ⊆ F a monomial module. Let S = Sym(F ). Given a

monomial R-ideal J , the R-algebra:

Rsat(E, J) := R(E) :S J
∞ =

⊕
n≥0

En :Fn J∞ ⊆ S

is Noetherian.

Proof Let {ei}mi=1 be a basis for F . Write S = R[t1, ..., tm]. Consider monomial

generators for E, say E =
∑e

j=1Rmj, with mj = xαjeij . Define the S-ideal I := E ·S.

Let µj = Sym(i)(mj) = xαj tij . Note that I = (µ1, ..., µe) is a monomial S-ideal.

Hence, by Theorem 4.2.2, the saturation Rees algebra

Rsat(I, J) =
∞⊕
n=0

(In :S J
∞)τn ⊆ S[τ ]

is Noetherian.
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Now note that Rsat(E, J) =
⊕∞

n=0(En :Fn J∞) =
⊕∞

n=0[In :S J
∞]n. In particular

Rsat(I, J) =
∞⊕
n=0

(In :S J
∞)τn =

∞⊕
n=0

∞⊕
j=0

[In :S J
∞]jτ

n

= Rsat(E, J)⊕
∞⊕
n=0

⊕
j 6=n

[In :S J
∞]jτ

n,

thus Rsat(E, J) is a direct summand of Rsat(I, J) as a module over Rsat(E, J). It

follows that Rsat(E, J) is Noetherian.

Corollary 4.3.3 Let k be a field and R = k[x1, ..., xd] a polynomial ring. Let F be a

finite free R-module and E ⊆ F a monomial module. Then ε(E) ∈ Q.

Proof By Theorem 4.3.2, Rsat(E) = Rsat(E,m) is Noetherian. Hence by Theorem

4.2.1, it follows that ε(E) is rational.
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5. ε-MULTIPLICITY OF SOME MONOMIAL CURVES

5.1 ε-multiplicity of monomial curves in A3.

Definition 5.1.1 (Monomial curve in A3) Let k be a field and consider the k-

algebra map

ϕ : k[[X, Y, Z]]→ k[[t]]

X 7→ t`, Y 7→ tm, Z 7→ tn

where gcd(`,m, n) = 1. The algebra im(ϕ) is called the coordinate ring of the

monomial curve of `,m, n. The image of the map λ 7→ (λ`, λm, λn) is called

a monomial curve of A3(k). The kernel of this map is called the defining ideal

associated to the monomial curve.

Remark 5.1.1 If p is the defining ideal of a monomial curve in A3(k), then p is a

perfect ideal of height 2. As a matter of fact, Herzog proved in [11], Proposition 3.3,

that there are α, α′, β, β′, γ, γ′ ∈ N such that

p := ker(ϕ) = I2

 Xα Y β′ Zγ′

Y β Zγ Xα′

 .

It is also easy to see that if p is the ideal of maximal minors of a matrix as in

Remark 5.1.1, and p = p(`,m, n), then
` = βγ + βγ′ + β′γ′

m = γα + γα′ + γ′α

n = αβ′ + α′β + α′β′

Not every matrix of the form

M =

 Xα Y β′ Xγ′

Y β Zγ Xα′
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will have maximal minors corresponding to the defining ideal of a monomial space

curve. For example, in [8], Lemma 2.1. it is shown that starting with a matrix of this

form, if p = p(`,m, n) for some relatively prime integers, then α 6= 2α′, 2β 6= β′ or

2γ 6= γ′.

Definition 5.1.2 Let R be a Noetherian ring, and I an R-ideal. Recall that the n-th

symbolic power of I is defined as

I(n) :=
⋂

p∈Ass(R/I)

InRp ∩R

It is clear that In ⊆ I(n) for n ≥ 0. If p ∈ Spec(R), then p(n) = pnRp ∩R.

For an R-ideal I, define

A(I) =
⋃
n≥1

AssR(R/In)

Proposition 5.1.1 Let R be a Noetherian ring and I an R-ideal with no embedded

primes. Let Ω ⊆ V (I) be a set such that

(a) Ω is finite;

(b) Min(I) ∩ Ω = ∅;

(c) If q ∈ A(I) is not minimal in A(I), then q ∈ Ω.

Then

I(n) = In :R

(⋂
p∈Ω

p

)∞
.

For a proof, see [10], Lemma 1.30. In particular, note that if (R,m) is a Noetherian

local d-dimensional ring and p ∈ Spec(R) with ht(p) = d − 1, then one can take

Ω = {m}. Clearly Ω is finite, it does not contain any minimal prime of I, since

Min(p) = {p}. Finally note that m is the only potential embedded prime of any

power of p. With this one obtains:
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Corollary 5.1.2 Let (R,m) be a d-dimensional Noetherian local ring and p ∈ Spec(R)

of height d− 1. Then

Γm(R/pn) ' p(n)/pn.

Definition 5.1.3 Let (R,m) be a Noetherian local ring, p a prime ideal. The sym-

bolic Rees algebra of p is the graded R-algebra

Rs(p) =
⊕
n≥0

p(n)tn ⊆ R[t]

Let p be the defining ideal of a monomial curve. By Theorem 4.2.1, if the symbolic

Rees algebra of p is Noetherian, then ε(p) ∈ Q, but there are examples of families of

monomial curves in A3(k) where the symbolic Rees algebra is not Noetherian, due to

the work of Goto, Nishida and Watanabe:

Remark 5.1.3 Let k be a field of characteristic 0, and for n ≥ 4, an integer not

divisible by 3, consider the monomial curves in A3(k) with defining ideals

p = p(7n− 3, (5n− 2)n, 8n− 3).

These ideals do not have Noetherian symbolic Rees algebras as proved in [9], Corollary

1.2.

The j-multiplicity for monomial curves in A3(k) has been completely described

by Nishida and Ulrich in [19], Example 4.5.

Theorem 5.1.4 (Nishida, Ulrich[19], Ex. 4.5.) Let k be an infinite field, p =

p(`,m, n) be the defining ideal of a monomial curve in A3(k). If we write

p := ker(ϕ) = I2

 Xα Y β′ Zγ′

Y β Zγ Xα′


By replacing the variables X, Y and Z suitably, one may assume

`α = min{`α, nβ, nγ, `α′,mβ′, nγ′}.

Then j(p) = αβ(γ + γ′).
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An interesting question to ask is whether there is an analoguous formula for the

ε multiplicity in this class of ideals. Since the Noetherian property of the symbolic

Rees algebra of p guarantees the rationality of the ε-multiplicity, a more approach-

able question would be: given a monomial curve with defining ideal p such that

Rsat(p) is Noetherian, is there a formula depending on α, α′, β, β′, γ, γ′ describing the

ε-multiplicity?

We have studied numerically a particular case of this problem. Herzog and Ulrich

have characterized the monomial curves in A3(k) for which Rsat(p) = R[pt, p(2)t2]

(see [14], Corollary 2.12.).

Theorem 5.1.5 (Herzog, Ulrich, [14] Corollary 2.12, [8], Corollary 4.3.) Let

R be a regular local ring of dimension 3, X, Y and Z a regular system of parameters

and

p = I2

 Xα Y β′ Zγ′

Y β Zγ Xα′


a prime ideal of codimension one. Let M be the matrix defining p. After suitable

permutations of the rows and columns of M , one may assume that either (i) α ≤ α′,

β ≤ β′ and γ ≤ γ′ or that (ii) α > α′, β < β′ and γ < γ′. The following statements

are equivalent:

(a) Rs(I) = R[pt, p(2)t2];

(b) We have the following conditions:

(a) the matrix M satisfies (i);

(b) β = β′ or α = α′ and γ = γ′.

In this case, Rs(I) is Gorenstein, and (p(2))n = p(2n) for n ≥ 1.

A lot is known about the function Λp in this case. We have the following behavior

of the symbolic powers:

p2n :R m∞ = p(2n) = (p(2))n
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p2n+1 :R m∞ = p(2n+1) = p(p(2))n

for all n ≥ 0. In particular the functions Λp(2n) and Λp(2n + 1) are of polynomial

type of degree 3 ([13], Proposition 5.5) Huneke has shown that the R-module p(2)/p2

is cyclic [15], and Schenzel has fully described its generator [20]. In this case, using

Theorem 4.2.1, one can write

ε(p) =
3!

23
lim
n→∞

λR((p(2))n/p2n)

n3
=
e(p(2)|p2)

8

where e(p(2)|p2) denotes the relative multiplicity associated to the homogeneous in-

clusion of standard Noetherian graded R-algebras R(p2) ⊆R(p(2)).

Since we know that Λp(2n) is of polynomial type of degree 3, we can use this

to generate numerical evidence on what the ε-multiplicity of these monomial curves

should be. For example, consider the family ideals:

p(γ′) = I2

 X Y Zγ′

Y Z X


By declaring degX = 2γ′ + 1, deg Y = γ′ + 2 and degZ = 3, we may assume that p

is homogeneous and we compute:

λR(p2 :R (X, Y, Z)∞)n/p2n) = λR(p(2n)/p2n) = λ(Γ(X,Y,Z)(R/p
2n))

for γ′ = 2, ..., 10 and use this to get a polynomial of degree 3. The results obtained

are summarized in Table 5.1.

There are two interesting facts about this data. The first one is that the estimation

for the ε multiplicity is:

ε(p(γ′)) =
3(2γ′ + 1)(γ′ + 2)

2
=

degX deg Y degZ

2

The second one is that for this family

λp(2n) = ε(p)

(
4

3
n3 + n2 − n

3

)
.

so there is a generic polynomial giving the ε-multiplicity of the family.
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Table 5.1.: Prediction of the ε-multiplicity for the family p(γ′)

γ′ (`,m, n) Predicted Λp(2n) Predicted ε(p)

2 (5, 4, 3) 40n3 + 30n− 10n 30

3 (7, 5, 3) 70n3 + 105
2
n2 − 35

2
n 105

2

5 (11, 7, 3) 154n3 + 231
2
n2 − 77

2
n 231

2

6 (13, 8, 3) 208n3 + 156n2 − 52n 156

8 (17, 10, 3) 340n3 + 255n2 − 85n 255

9 (19, 11, 3) 418n3 + 627
2
n2 − 209

2
n 627

2

5.2 Some conjectures for relative multiplicity

A possible approach for the computation of the ε-multiplicity of monomial curves,

following the ideas of Ulrich and Nishida for the j-multiplicity, is to reduce the

dimension of the ring. Using the notation for relative multiplicity introduced in

Chapter 4, given two R-ideals J ⊆ I in a local ring with λR(I/J) < ∞, denote

e(J |I) = e(R(J)|R(I)). This function is the normalized leading coefficient of the

polynomial that behaves like the numerical function λR(In/Jn).

Following the ideas of Ulrich and Nishida in [19], a first step in proving that the

formula for ε-multiplicity of the family p(γ′) holds, is to show the following conjecture:

let (R,m, k) be a Noetherian local ring, J ⊆ I R-ideal such that λR(I/J) < ∞.

Assume that grade(J) > 0. Is it true that for x ∈ J general

e(J/(x))|I/(x)) = e(J |I)?

Note that λR(In/Jn) is of polynomial type of degree d + 1 = dimR(I), while

λR(In + (x)/(x)/Jn + (x)/(x)) has degree dim(R/(x)) + 1 = d.
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In particular, if this holds one may assume that ht(I) = ht(J) = 0. We studied

some numerical examples to see whether there is enough evidence to assume this

result holds. Since λR(In/Jn) is of polynomial type, we compute it for large values

of n in Macauley2, and extract the information about the relative multiplicity. In

k[X, Y, Z] the experiment was run for over 90 monomial ideals with finite colength

and the result was positive for all of them, i.e., relative multiplicity carried over after

going module general elements.

Another interesting fact for this family is that the relative multiplicity was bounded

above by the colength. It is not true in general that e(I|J) ≤ λR(I/J), even for

the primary case. For example take R = k[[X, Y ]]. For n > 2 set I = (Xn, Y n)

and J = (Xn+1, XnY, Y n). Note that for all of these ideals, λR(I/J) = 1, yet

e(J |I) = e(J) − e(I) = n(n + 1) − n2 = n. This shows that the relative multi-

plicity can be made arbitrarily large without changing the relative colength.

Finally, after analizing some of the data, in particular when the colength and

multiplicity match, one sees a patern. This data appears in Table 5.2. It leads to the

following conjecture:

Conjecture. Let R be a regular local ring of dimension d. Let J ⊆ I be R-ideals

with λR(I/J) <∞. If I is a complete intersection of height d− 1 and J is an almost

complete intersection, then e(J |I) = λR(I/J).
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Table 5.2.: Colength and relative multiplicity of some monomial ideals in Q[X, Y, Z]

I J λR(In/Jn), n� 0 e(J |I) λR(I/J)

(X2Z4, Y 9) (X2Z7, X5Z4, Y 9) 27
2
n3 + 81

2
n2 + 27n 81 81

(XZ, Y 3) (XZ22, X2Z, Y 3) 1
2
n3 + 3

2
n2 + n 3 3

(XY 7, Z9) (Z9, XY 8, X2Y 7) 3
2
n3 + 9

2
n2 + 3n 9 9

(X3, Y 4) (X3Z, Y 4, X4) 2
3
n3 + 2n2 + 4

3
n 4 4

(XZ2, Y 6) (XZ5, X4Z2, Y 6) 9n3 + 27n2 + 18n 54 54

(Y, Z2) (Z2, Y 2, XY ) 1
3
n3 + n2 + 2

3
n 2 2

(Y 2Z,X5) (Y 2Z3, Y 4Z,X5) 10
3
n3 + 10n2 + 20

3
n 20 20

(Y 5, Z7) (Z7, Y 7, X2Y 5) 14
3
n3 + 14n2 + 28

3
n 28 28

(Z, Y 5) (Z5, X4Z, Y 5) 40
3
n3 + 40n2 + 80

3
n 80 80

(X2Z5, Y 8) (X2Z6, X3Z5, Y 8) 4
3
n3 + 4n2 + 8

3
n 8 8

(X4Z, Y 5) (X3Z2, X4Z, Y 5) 5
6
n3 + 5

2
n2 + 5

3
n 5 5

(Z, Y 3) (Z3, X2Z, Y 3) 2n3 + 6n2 + 4n 12 12

(Y 4, Z8) (Z8, Y 8, X5Y 5) 64
3
n3 + 64n2 + 128

3
n 128 128

(X4Z6, Y 11) (X4Z7, X5Z6, Y 11) 11
6
n3 + 11

2
n2 + 11

3
n 11 11
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