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ABSTRACT

Dang, Tan Ph.D., Purdue University, August 2020. Topics on the Cohen-Macaulay
Property of Rees Algebras and the Gorenstein Linkage Class of a Complete Intersec-
tion. Major Professor: Bernd Ulrich, Professor.

We study the Cohen-Macaulay property of Rees algebras of modules of Kähler

differentials. When the module of differentials has projective dimension one, it is

known that condition F1 is sufficient for the Rees algebra to be Cohen-Macaulay.

The converse was proved if the module of differentials is already F0. We weaken the

condition F0 globally by assuming some homogeneity condition.

We are also interested in the defining ideal of the Rees algebra of a Jacobian

module. If the Jacobian module is an ideal, we prove a formula for computing the

defining ideal. Using the formula, we give an explicit description of the defining ideal

in the monomial case. From there, we characterize the Cohen-Macaulay property of

the Rees algebra.

In the last chapter, we study Gorenstein linkage mostly in the graded case. In

particular, we give an explicit example of a class of monomial ideals that are in the

homogeneous Gorenstein linkage class of a complete intersection. To do so, we prove

a Gorenstein double linkage construction that is analogous to Gorenstein biliaison.
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1. INTRODUCTION

There are two main topics in this thesis: the Cohen-Macaulay property of the Rees

algebra of certain modules and the Gorenstein linkage class of complete intersections.

First, let us provide some motivation and summarize the results regarding the

first topic. The Rees algebra of an ideal belongs to a class of rings collectively known

as blowup algebras. Let R be a ring and I an R-ideal. The Rees ring of I is defined

as

R(I) =
∞⊕
n=0

In.

The Rees algebra plays an important role in the study of desingularization, and

classically it is the coordinate ring associated with blowing up a variety along a

subvariety. Furthermore, as the definition suggests, the Rees algebra of ideal plays

a central role in the theory of integral dependence of ideals and other asymptotic

behaviors of power of ideals in general. This can be generalized to the case of modules.

The definition of Rees algebras of modules involves another example of blowup

algebras, namely the symmetric algebras, denoted by S(E). Similar to the classical

blowup,

Spec(S(E)) −→ Spec(R)

is the fiberation of Spec(R) by a collection of planes. Now for a module E having a

rank, the Rees algebra of E, denoted by R(E), can be defined as

R(E) = S(E)/τ

where τ is the R-torsion submodule of S(E). In many situations, the symmetric

algebras are the coordinate rings of certain objects in algebraic geometry. Hence, the

Rees algebra is a natural object to study because removing undesirable components

of Spec(S(E)) requires killing the torsion as one of the first steps. A particular
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example of this phenomenon is the main subject of Chapter 3, namely the module of

differentials.

The module of Kähler differentials, or just the module of differentials, is a classical

object that was first introduced by Erich Kähler in the 1930s. Let R be an affine

algebra over a field k. The module of differentials of R over k is denoted by Ωk(R) =

ΩR/k. Classically, the module of differentials characterizes the smoothness of R by

means of the famous Jacobian criterion. We apply the symmetric algebra and the Rees

algebra functors to Ωk(R). When R is an affine algebra over an algebraically closed

field k, the ring S(ΩR/k) is called the Zarisky tangent algebra [17]. In the language of

schemes, the Spec(S(ΩR/k)) is the first jet scheme of Spec(R). When R is regular, the

Rees algebra of Ωk(R) and the symmetric algebra of Ωk(R) coincide, however they

are generally quite different. The Rees algebra of Ωk(R) is the coordinate ring for a

correspondence in biprojective space [19]. In particular, when R is standard graded,

R/m⊗RR(ΩR/k) is the homogeneous coordinate ring of the tangential variety, which

is the closure of the union of all tangent spaces at smooth points.

In Chapter 3, we consider the case where the projective dimension of Ωk(R) is

at most one. For instance, R is a reduced and locally a complete intersection. In

general, when an R-module E has projective dimension at most one, E satisfies the

condition F0 if and only if S(E) is a complete intersection; furthermore, E satisfies F1

if and only if S(E) is R-torsion free (see [1, Propositions 3 and 4], [10, 1.1], [18, 3.4]).

Therefore, a sufficient condition for the Cohen-Macaulay property of R(E) is that E

satisfies the condition F1. The converse is not true in general. In [16, 3.1], it is shown

that for Ωk(R), the converse is true if Ωk(R) also already satisfies F0. Theorem 3.2.1

weakens the condition F0 by requiring some homogeneity condition. A consequence

of the main result of Chapter 3 is that the Cohen-Macaulay property of R(ΩR/k) is

highly restrictive, which in most cases will only occur if Ωk(R) is of linear type and

the symmetric algebra is a complete intersection.

We are also interested in the Rees algebra of a cousin of the module of differentials,

namely the Jacobian module. The Jacobian module plays a role in the theory of
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subspace arrangements, in particular hypersurface arrangements, and free divisors.

The Rees algebra of the Jacobian module is the coordinate ring of the conormal

variety of X, which is the closure of the set of pairs (x,H) where x is a smooth point

and H is a hyperplane tangent to X at x.

In Chapter 4, we study the case when the Jacobian module is an ideal. Ultimately,

we want to characterize the Cohen-Macaulay property of the Rees algebra of the

Jacobian module. There are different general frameworks for asserting the Cohen-

Macaulay property of the Rees algebra of an ideal. In this thesis, we choose the most

hands-on approach by first computing the defining ideal of the Rees algebra and then

extracting the Cohen-Macaulay property from the explicit presentation.

Let S = k[X1, . . . , Xn] be a polynomial ring in n variables over a field k. Let

f ∈ S and write R = S/(f). By Jac(f), we denote the Jacobian module of R over

k. Write J (f) for the defining ideal of the Rees algebra of Jac(f). Proposition 4.1.1

allows us to compute J (f) from J (fi) where fi are the irreducible factors of f . The

defining ideals of the Rees algebra of Jacobian ideals encode information about the

syzygy of the Jacobian ideals. Hence by Proposition 4.1.1, information about the

hypersurface arrangements can be deduced from the hypersurface arrangement of the

irreducible factors. We apply this proposition to the case where f is a monomial,

and observe that the Rees algebra of the Jacobian ideal is either Cohen-Macaulay or

almost Cohen-Macaulay.

The other topic in this thesis is Gorenstein linkage (liaison), and in particular the

Gorenstein linkage class of a complete intersection.

Gorenstein linkage is a generalization of complete intersection linkage, which is

simply called linkage. The theory of linkage has been an active and fruitful area of

research. It had yielded many results that are useful in the study of other algebraic

objects. For example, it has produced classes of ideals that are strongly Cohen-

Macaulay, which is an important property in the theory of Rees algebras [20, 4.2.4].

We will discuss in details the definition of (Gorenstein) linkage in Section 2.6.
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Let X, Y be equidimensional subschemes of Pn without any common component.

If X ∪ Y is a complete intersection, i.e. the corresponding ideal is a complete in-

tersection, then X and Y are said to be directly geometrically linked. It follows

that IX = IX∪Y : IY and IY = IX∪Y : IX . For example, take IX = (x1, x2), and

IY = (x1, x3). In this case, IX ∩ IY = (x2x3, x1). The lines X and Y are directly

linked by a complete intersection of a union of two planes and one plane.

As the theory developed, the condition of having no common component appeared

too restrictive. The authors in [14] rephrased the definition of linkage in the language

of quotient ideals, namely I = K : J and J = K : I where K is a complete intersection

ideal. It is clear that the definition is symmetric, but rarely reflexive or transitive.

However, this relation induces an equivalence relation by allowing linking in finitely

many steps. A particularly interesting linkage class is the linkage class of a complete

intersection, abbreviated as licci.

In low codimensions, the linkage class of a complete intersection is well understood.

However, in higher codimensions, the complete intersection condition of K is quite

restrictive. We wish to use a larger class of ideals while retaining as many properties

of linkage as possible. One direction to generalize complete intersection linkage is to

use Gorenstein ideal, which leads to Gorenstein linkage.

A natural question to ask is finding classes of ideals that are in the Gorenstein

linkage class of a complete intersection, abbreviated as glicci. Many classes of ideals
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have been shown to be glicci, for example standard determinantal ideals [11, 3.6] and

residual intersections of licci ideals [8, 4.6]. In Section 5.2, our main result is another

class of glicci ideals in the graded case. In particular, we are interested in ideals of

finite colength. By Macaulcay’s inverse systems (see Section 2.5), all Gorenstein ide-

als of finite colength can be obtained from the Matlis duals of cyclic modules. Using

the framework provided by inverse systems, we introduce a Gorenstein double link-

age construction that is analogous to Gorenstein basic double linkage, or Gorenstein

biliaison. The latter is ubiquitous in the literature involving glicci ideals. Applying

the new double linkage construction, we prove that a certain class of monomial ideals

of finite colength is homogeneously glicci.
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2. PRELIMINARIES

In this chapter, we review information that provides the background for the work in

this thesis.

Section 2.1 lays out some basic notions about matrices. In Sections 2.2 and 2.3,

we set up the foundation for Chapters 3 and 4. In Section 2.4, we review the Eagon-

Northcott complex, a well-known complex of free modules that generalizes the Koszul

complex. In Section 2.5, we recall a duality of Artinian ideals that will be helpful in

Chapter 5. And in Section 2.6, we provide some background information on linkage

and Gorenstein linkage.

Throughout this work, all rings are unital and commutative.

2.1 Matrix, minors, and rank

Let R be a ring and ψ be an n by m matrix with entries in R

ψ =


a11 . . . a1m
...

...

an1 . . . anm

 .
Denote the ideal generated by all t by t minors of ψ as It(ψ). The determinantal

rank of ψ, or just rank of ψ, is defined as

rank (ψ) = max {t | It(ψ) 6= 0}.

Let M = coker (ψ). We define the ith Fitting ideal of M to be Fitti(M) = In−i(ψ).

The Fitting ideals only depend on M . Furthermore, by [5, 20.6]

V (Fitti(M)) = {p ∈ Spec(R) | µRp(Mp) > i}.
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2.2 Rees algebras of modules with projective dimension one

We start with the definition of Rees algebras of ideals and modules in general.

Let R be a Noetherian ring, and I = (x1, . . . , xn) and R-ideal. We define the Rees

algebra of I to be

R(I) :=
∞⊕
n=0

In ∼= R[It] = R[x1t, . . . , xnt] ⊂ R[t]

where R[t] is a polynomial ring in one variable.

This definition does not lend itself to an easy generalization to the case of modules

because it is not obvious what powers of modules should be. The inclusion R[It] ⊂

R[t] suggests that we think of the Rees algebra of a module E ⊂ Rr as the algebra

generated by the image of the module inside the symmetric algebra of Rr. This

approach has a disadvantage that it is dependent on the embedding E ⊂ Rr. A

general definition of the Rees algebra of module that is independent of the embedding

can be found in [4]. In this thesis, we will use a slightly more narrow, but very common

definition of the Rees algebra of modules where we require the module to have a rank.

First, we say a module E over a Noetherian ring R has a rank r when E ⊗R
Quot(R) ∼= Quot(R)e, where Quot(R) denotes the total ring of fractions of R. This

class of modules is quite common. For example, when R is a domain, Quot(R) is a

field, and every R-module has rank. Or, when E admits a finite resolution by finitely

generated free R-modules, then E has a rank.

Next, for an R-module E, we define the symmetric algebra of E as

S(E) :=
⊗E

(x⊗ y − y ⊗ x | x, y ∈ E)

where ⊗E is the tensor algebra of E. This algebra has a universal property: for every

commutative R-algebra S and every R-linear map µ : E → S, there exists a unique

R-linear map from S(E) to S so that it restricts to µ on E. If E ∼= Rn, then the

symmetric algebra of E is nothing but R[T1, . . . , Tn], the polynomial in n variables

over R.
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Now let R be a Noetherian ring and E = Rx1 + . . . + Rxn a finite R-module.

We can then map Rn surjectively onto E by sending the standard basis to the cho-

sen generators of E. Then by applying the symmetric algebra functor, we obtain

R[T1, . . . , Tn] � S(E) and consequently

S(E) ∼=
R[T1, . . . , Tn]

L

where L is called the defining ideal of the symmetric algebra of E. We notice that L

is generated by linear forms w in R[T1, . . . , Tn] satisfying w(x1, . . . , xn) = 0.

More concretely, if E admits a finite presentation

Rm ψ−→ Rn → E → 0 ,

then L = (l1, . . . , lm) so that

[l1 . . . lm] = [T1 . . . Tn] · ψ .

We now define the Rees algebra of a module E having a rank.

Definition 2.2.1

R(E) := S(E)/τ

where τ is the torsion R-submodule of S(E). If R(E) = S(E), E is said to be of

linear type.

This definition generalizes the definition of Rees algebra of ideals. Let I be an

R-ideal with positive grade. From the natural embedding I ⊂ R, we obtain a homo-

morphism S(I)→ R[t]. Its image is the graded R-algebra R[It] whereas its kernel is

precisely the torsion submodule of S(I).

Now with a working definition of R(E), we can define powers of E as Ei :=

[R(E)]i.

The Krull-dimension of the Rees algebra of a module is well-understood.

Proposition 2.2.1 ([15, 2.2]) Let R be a Noetherian ring of dimension d and E a

finitely generated R-module with rank r. Then

dim R(E) = d+ r.
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For ideals with zero height, the formula above cannot be used. Instead, we use

following formula.

Proposition 2.2.2 ([5, 13.8]) Let R be a Noetherian ring. I an R-ideal. Then

dim R(I) = max {dim R, 1 + dim R/p | p ∈ Min(R)\V (I)}.

Next, we review the definition for condition Fk, and go over theorems about blow-

up algebras of modules with project dimension one that will be needed in Chapter

3.

Definition 2.2.2 Let E be a finite R-module with rank e. We say E satisfies condi-

tion Fk if

µ(Ep) ≤ dim Rp + e− k

for all prime ideals p so that Ep is not Rp-free.

Equivalently, when ψ is a presentation matrix of E, we can rephrase condition Fk as

ht Ii(ψ) ≥ rank(ψ)− i+ 1 + k, for 1 ≤ i ≤ rank(ψ).

We observe that this condition can be readily checked by a computer algebra system.

Condition Fk, in particular F0 and F1, characterize certain properties of the sym-

metric algebra.

Theorem 2.2.1 ([1], [10, 1.1], [18, 3.4]) Let R be a local Cohen-Macaulay ring, and

E a finite R-module with projective dimension at most one. Then

• E satisfies conditions F1 if and only if S(E) is R-torsion free.

• E satisfies conditions F0 if and only if S(E) is a complete intersection.

Using Bourbaki ideals is a well-known technique to study properties of the Rees

algebra of modules. In [15], the authors introduced generic Bourbaki ideals, and

proved that some properties of the Rees algebra of a module can be inferred from

those of the Rees algebra of its generic Bourbaki ideal.
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Theorem 2.2.2 ([15, 3.5]) Let R be a Noetherian local ring, E a finitely generated

R-module with rank e > 0. Let I be the generic Bourbaki ideal of E. Then

• The Rees algebra R(E) is Cohen-Macaulay if and only if R(E) is Cohen-

Macaulay.

• E is of linear type and grade R(E)+ ≥ e if and only if I is of linear type.

As an application, the Cohen-Macaulay property of R(E) can be characterized

by property regarding certain ideals of minors.

Theorem 2.2.3 ([15, 4.7]) Let R be a Gorenstein local ring with infinite residue field,

E a finite R-module with rank e, projective dimension at most one, and presentation

matrix φ. Assume E satisfies condition F1 locally on the punctured spectrum of R.

The following are equivalent:

• R(E) is Cohen-Macaulay.

• After elementary row operations, It(φ) is generated by the maximal minors of

the matrix consisting of the last t rows of φ, where t = µ(E)− dim R− e+ 1.

We want to remark that the row operations in theorem above are corresponding

to a general change of generators of E. If R contains an infinite field k, the row

operations and correspondingly the change of generators can be induced from an

element of GLn(k).

For a torsion-free R-module E, the authors in [15] also showed that Cohen-

Macaulay property of R(E) is rather restrictive.

Theorem 2.2.4 ([15, 4.3]) Let R be a Cohen-Macaulay ring and E a finitely gen-

erated torsion-free R-module having a rank. If R(E) is Cohen-Macaulay, then E is

locally free at codimension 1.
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2.3 Module of differentials and Jacobian module

Let A be a ring, S = W−1A[{Xi|i ∈ I}], and R = S/I for some S-ideal I =

(fj|j ∈ J ). The module of differentials of R over A is defined as

Definition 2.3.1

ΩA(R) = ΩR/A :=
⊕
i∈I

Rdxi/(Σ
∂fj
∂Xi

dxi|j ∈ J )

where {dxi | i ∈ I} is a basis,
∂fj
∂Xi

are the partial derivatives of fj with respect to Xi

and ¯ denotes the image in R.

When the index sets I and J are finite, say S = W−1A[X1, . . . , Xn], I =

(f1, . . . , fm), there is readily a presentation of ΩA(R)

Rm θ−→ Rn −→ ΩA(R) −→ 0 where θ =


∂f1
∂x1

. . . ∂fm
∂x1

...
...

∂f1
∂xn

. . . ∂fm
∂xn


where

∂fj
∂xi

is the image of
∂fj
∂Xi

in R. Notice, the matrix θ is the image in R of the

Jacobian matrix of f1, . . . , fm.

Equivalently, the module of differentials together with the universal A-derivation

dR/A : R → ΩA(R) with dR/A(xi) = dxi can be defined via a universal property.

Namely, for every A-derivation δ : R → M , there exists uniquely a R-linear map

µ : ΩA(R) → M with δ = µ ◦ dR/A. A map δ : R → M , where M is R-module, is

called a A-derivation if it is a homomorphism of additive groups, and satisfies the

product rule δ(xy) = xδ(y) + yδ(x) for all x, y ∈ R, and A ⊂ ker(δ). Hence, the

definition of the module of differentials only depends on the A-algebra R and not on

its presentation.

With the same R, S and I as before, we dualize the presentation into the ring R

and obtain

0 −→ Ω∗R/A −→ (R∗)n
T (θ)−−→ (R∗)m.

Now the image of T (θ) is called the Jacobian module of R over A.
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By the well-known Jacobian criterion, the freeness of the module of differentials

is related to the regularity of the ring. We will state a slightly different version of the

criterion here.

Theorem 2.3.1 ([5, 16.22]) Let (R,m) be a local k-algebra essentially of finite type

over a field k. Assume either k has characteristic 0 or that R is reduced and k is

perfect. Then

R is regular⇐⇒ Ωk(R) is free as R-module.

Additionally, if the equivalence holds, rank(Ωk(R)) = dim R + trdegk(R/m).

Noticing that both conditions localize, as a corollary, we can detect the singular

locus of R by means of Ωk(R). We define the singular locus of R as follow,

Sing(R) = {q ∈ Spec(R) | Rq is not regular}.

Theorem 2.3.2 ([5, 16.20]) Let k be a perfect field, W be a multiplicative subset of

the polynomial ring k[X1, . . . , Xn], I ⊂ W−1k[X1, . . . , Xn] an equicodimensional ideal

of height g (i.e. every minimal prime of I has the same height). Let D = n− g, and

R = W−1k[X1, . . . , Xn]/I. Then

Sing(R) = V (FittD(Ωk(R))).

The FittD(Ωk(R)) is called the Jacobian ideal of R over k, and denoted by J (R/k).

Notice that the right hand side only depends on the k-algebra R, and can be computed

from a presentation of Ωk(R), which is readily available.

The Jacobian module also displays similar properties with respect to the regularity

of R by following theorem:

Theorem 2.3.3 ([12]) Let k be a field of characteristic 0 and R a reduced local k-

algebra essentially of finite type. The following are equivalent:

1. R is regular

2. Ωk(R)/τ is free where τ is the R-torsion submodule of Ωk(R)
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3. R is equidimensional and J (R/k) is principal

4. The Jacobian module of R is free.

2.4 Eagon-Northcott complex

The Eagon-Northcott complex plays an important role in Chapter 3. We will

review its construction in details here (see [3]).

Let R be a ring and ψ be an n by m matrix with n ≤ m and entries in R

ψ =


a11 a12 . . . a1m

a21 a22 . . . a2n
...

...
...

an1 am2 . . . anm

 .

Let K be the exterior algebra generated by m symbols X1, . . . , Xm. For each row

of ψ, there is an associated differentiation ∆k, namely

∆k(Xi1 ∧ · · · ∧Xis) =
s∑
p=i

(−1)p+1akipXi1 ∧ · · · ∧ X̂ip ∧ · · · ∧Xis .

We notice that these differentiations are alternating, i.e. for k 6= h,

∆k∆h + ∆h∆k = 0.

Let S = R[Y1, . . . , Yn] be a polynomial ring in n variables. Denote St the R-module

consists of forms of degree t. Now the Eagon-Northcott complex can be described as

follow

E. : 0→ Em−n+1
d−→ Em−n

d−→ . . .
d−→ E1

d−→ E0

where

E0 = R, and Eq+1 = Kn+q ⊗ Sq for q = 0, 1, . . . ,m− n.

To describe the differentiation homomorphism d, we notice that each component

of E. is a free R-module with a natural basis

Xi1 ∧ · · · ∧Xin+q ⊗ Y
µi
1 . . . Y µn

n with i1, . . . , in+q ≤ m and µ1 + · · ·+ µn = q.
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For q ≥ 0, let d be defined on the basis elements by

d(Xi1 ∧ · · · ∧Xin+q ⊗ Y
µi
1 . . . Y µn

n ) =
∑
j

∆j(Xi1 ∧ · · · ∧Xin+q)⊗ Y
µ1
1 . . . Y

µj−1
j . . . Y µn

n .

The summation only includes terms with µj − 1 ≥ 0.

For q = 0, we simply use

d(Xi1 ∧ · · · ∧Xin ⊗ 1) = det


a1i1 a1i2 . . . a1in

a2i1 a2i2 . . . a2in
...

...
...

ani1 ani2 . . . anin

 .

For a concrete example, let ψ be a generic matrix

ψ =

x1 x2 x3 x4

x5 x6 x7 x8

 .
Then the Eagon-Northcott complex will be

0→ R3 → R8 → R6 → R.

The entries of d0 are nothing but the maximal minors of ψ. For the other maps

d, we can write down their explicit formulas

d1 =



−x3 −x7 −x4 −x8 0 0 0 0

x2 x6 0 0 −x4 −x8 0 0

−x1 −x5 0 0 0 0 −x4 −x8
0 0 x2 x6 x3 x7 0 0

0 0 −x1 −x5 0 0 x3 x7

0 0 0 0 −x1 −x5 −x2 −x6


,



15

and

d2 =



x4 x8 0

0 x4 x8

−x3 −x7 0

0 −x3 −x7
x2 x6 0

0 x2 x6

−x1 −x5 0

0 −x1 −x5



.

We observe that the Eagon-Northcott complex is a generalization of the Koszul

complex. When n = 1, the Eagon-Northcott complex is the Koszul complex as-

sociated with the sequence a11, a12, . . . , a1m. They share similar properties on the

exactness of the complex.

Theorem 2.4.1 ([14, 1]) Let R be a Noetherian ring, and ψ an n by m matrix with

n ≤ m. Let I be the ideal generated by the maximal minors of ψ and I 6= R. Let

t = max {i | Hi(E.) 6= 0}, then

grade I = m− n− t+ 1.

In particular, grade I ≤ m− n+ 1.

As an immediate corollary, if the ideal of maximal minors has maximum grade,

then the Eagon-Northcott complex is acylic and it will provide a free resolution for

the ideal of maximal minors.

Theorem 2.4.2 ([14, 2]) Let R be a local Cohen-Macaulay ring, and ψ an n by m

matrix with n ≤ m. Let I be the ideal generated by the maximal minors of ψ and

I 6= R. If the height of I is maximal, ie ht I = m− n+ 1, then

E. : 0→ Em−n+1
d−→ Em−n

d−→ . . .
d−→ E1

d−→ E0

is acyclic and H0(E.) = R/I. Furthermore, if I1(ψ) is contained in the maximal ideal,

then the projective dimension of R/I is precisely m− n+ 1.
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2.5 Macaulay Inverse Systems

In this section, we state the Matlis duality and review its applications to Macaulay’s

inverse systems, which is the main tool for Chapter 5.

Theorem 2.5.1 (Matlis Duality) Let R be a complete Noetherian local ring with

residue field k. Let E be the injective envelope of k as R-module. Denote −′ =

HomR(−, E). Let M be a R-module.

a) M ′ is Artinian if and only if M is Noetherian, and M ′ is Noetherian if and

only if M is Artinian.

b) M ′′ is naturally isomorphic to M .

For an R-module M , the injective envelope or injective hull of M is an injective

R-module E such that M ⊂ E is an essential extension. In particular, with the

assumptions of Theorem 2.5.1, the injective envelope of k is a faithful R-module E so

that the extension k ⊂ E is essential. We can now describe Macaulay inverse systems.

Let R = k[[X1, . . . , Xn]] be a power series ring in n variables over a field k. Set

T = [X−11 , . . . , X−1n ], the set of the “inverse polynomials,” and A = k[X1, . . . , Xn], the

polynomial ring. We define an A-module structure on T by defining a multiplication

between the monomials of A and T as follow: For α1, . . . , αn, β1, . . . , βn ≥ 0,

Xα1
1 . . . Xαn

n X−β11 . . . X−βnn =

X
α1−β1
1 . . . Xαn−βn

n , if αi − βi ≤ 0 for all i

0 , otherwise
.

Observe that since every element of T is annihilated by some powers of the ideal

(X1, . . . , Xn)A, the multiplication induces an R-module structure on T . Furthermore,

for every i ≥ 0, Ai×T−i
mult−−→ k is a nondegenerate bilinear form, and (RAi+1)T−i = 0.

Hence, k ⊂ T is an essential extension and further T is a faithfulR-module. Therefore,

T is the injective envelope of k.
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Applying Matlis Duality, we obtain a one-to-one correspondence between m-

primary R-ideals and finitely generated R-submodules of T , which we denote by

I and M respectively:

I 7→M = 0 :T I and M 7→ I = 0 :R M = annRM.

For a concrete example, let R = k[[x, y, z]] and T = [x−1, y−1, z−1] the injective

envelope of k. Let I = (x3, y2, z4, x2y, yz3, xz) be an m-primary ideal of R. Then

M = 0 :T I = Rx−1y−1 + Rx−2 + Rz−3 + Ry−1z−2. Vice versa, we can check

I = 0 :R M = (x3, y2, z4, x2y, yz3, xz).

Furthermore, R/I is Gorenstein if and only if M is cyclic. Such ideal I is called a

Gorenstein ideal. This duality gives an easy way to generate Gorenstein m-primary

ideals in a ring of arbitrary dimension. Under the setting of the example above,

we can choose any cyclic R-module, say M = R(x−4 + x−2y−1z−1 + z−4). Then

I = 0 :R M = (y2, yz2, xz2, x2y− z3, x3−xyz) is a Gorenstein ideal of finite colength.

2.6 Linkage and Gorenstein linkage

Let R be a local Cohen-Macaulay ring. Two proper R-ideals I and J are said to be

directly linked if there exists a regular sequence x1, . . . , xg so that I = (x1, . . . , xg) : J

and J = (x1, . . . , xg) : I.We denote this relation by I ∼ J. This induces an equivalence

relation: I and J are in the same linkage class if

I = I0 ∼ I1 ∼ · · · ∼ In = J , for some n.

If we require n to be even, the equivalence class is called the even linkage class.

Two R-ideals I and J are said to be geometric linked if in addition to being directly

linked, ht(I + J) > g. Notice that (x1, . . . , xg) ⊂ I ∩ J and ht I = ht J = g.

Under suitable conditions, directly linked ideals can be readily produced.

Theorem 2.6.1 ([14]) Let R be a local Gorenstein ring and I be an unmixed ideal

of height g. Let K 6= I be an ideal generated by a regular sequence x1, . . . , xg in I. If

J = K : I, then I = K : J . In other words, I ∼ J .
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Many properties of I can be transferred or are at least closely related to those

of the ideals in the same linkage or even linkage class. Those properties include

but are not limited to: the Cohen-Macaulay property and its related conditions, like

sliding depth and strong Cohen-Macaulayness, as well as other homological invariants.

Finding what properties are preserved under linkage is a general problem, usually

called finding linkage invariants. We state the most basic invariant.

Proposition 2.6.1 ([14]) With the hypothesis if Theorem 2.6.1, if I is a Cohen-

Macaulay ideal, then J = K : I is also Cohen-Macaulay.

Since ideals in the same (even) linkage class share many properties, it is not

surprising that the linkage class of a complete intersection is a well-studied class of

ideals that provides many examples and counter examples to various questions. In

particular, in low codimensions, it is well-understood.

Theorem 2.6.2 ([6]) Let R be a Gorenstein local ring, and I be a perfect ideal of

codimension two. Then I is in the linkage class of a complete intersection.

Theorem 2.6.3 ([22]) Let R be a Gorenstein local ring, and I be a perfect Gorenstein

ideal of codimension three. Then I is in the linkage class of a complete intersection.

Perhaps, it is a strength and also a weakness that many strong properties are

preserved under even linkage. This prevents many classes of ideals to be licci. To

overcome this disadvantage, the definition of direct linkage can be generalized. One

way to generalize is to replace complete intersection ideals by Gorenstein ideals.

Definition 2.6.1 Let R be a regular local ring, and I and J be R-ideals. Two proper

R-ideals I and J are said to be Gorenstein directly linked if there exists a Gorenstein

ideal K so that I = K : J and J = K : I.

Notice, K ∈ I ∩ J and K, I, J are of the same height. Theorem 2.6.1 and Propo-

sition 2.6.1 can be generalized to this setting.
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Theorem 2.6.4 ([14]) Let R be a regular local ring. Let I be an unmixed ideal of

height g. Let K ( I be a Gorenstein ideal of height g. If J = K : I, then I = K : J .

In addition, if I is Cohen-Macaulay, then so is J.

In low codimensions, Gorenstein ideals are complete intersections, hence the two

definitions coincide. In particular, let R be a regular local ring and K an unmixed

ideal of height one. Since R is a unique factorization domain, K is principal, hence a

complete intersection.

If K is a Gorenstein of height 2, then K must have a resolution of the form

0→ R→ Rµ(K) → R→ R/K → 0.

Computing ranks along the exact sequence, we observe that µ(K) = 2, hence K is a

complete intersection.

In codimension three, Gorenstein ideals are not necessarily complete intersections.

Theorem 2.6.5 ([2, 4]) Let R be a regular local ring, and I be an ideal of height

3. Then I is Gorenstein if and only if I is generated by the 2n-order Pfaffians of a

(2n+ 1) by (2n+ 1) alternating matrix.

For example, in R = k[X, Y, Z], let

K = (XY, Y Z,XZ,X2 − Y 2, Y 2 − Z2).

The ideal K has height 3 and is minimally generated by 5 elements, hence not a com-

plete intersection. Its generators are the 4 by 4 Pfaffians of the following alternating

matrix 

0 −Z 0 Y 0

Z 0 0 −X Y

0 0 0 Y −X

−Y X −Y 0 −Z

0 −Y X Z 0


.
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In codimension three or higher, the Gorenstein linkage class of a complete in-

tersection is different from the (complete intersection) linkage class of a complete

intersection. Many classes of ideals have been proven to be glicci (and not licci), and

we will review some of the results in Section 5.1.
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3. REES ALGEBRAS OF MODULES OF

DIFFERENTIALS

In this chapter, we are interested in determining necessary conditions for the Rees al-

gebra of a module of differentials to be Cohen-Macaulay. The module of differentials

has a well-understood presentation. We are interested in reduced complete intersec-

tion rings because their modules of differentials have projective dimension one. In

this setting, many results are known about the Cohen-Macaulay property of the Rees

algebra of such modules (see Chapter 2, Section 2). Theorem 3.2.1 says under suitable

hypothesis, if the Rees algebra of the module of differentials is Cohen-Macaulay, then

the module of differential is F1 if it is F0 locally on the punctured spectrum.

3.1 Background

First, recall a presentation for ΩA(R). Let R = S/I where S = W−1A[X1, . . . , Xn],

I = (f1, . . . , fm),

Rm θ−→ Rn −→ ΩA(R) −→ 0 with θ =


∂f1
∂x1

. . . ∂fm
∂x1

...
...

∂f1
∂xn

. . . ∂fm
∂xn

 ,
where

∂fj
∂xi

is the image of
∂fj
∂Xi

in R. Associated with the module of differentials there

is a very useful exact sequence, called the conormal sequence.

Proposition 3.1.1 ([5, 16.3]) Let R = S/I where S is an algebra over a ring A.

There exists an exact sequence of R-modules

I/I2
d−→ R⊗S ΩA(S) −→ ΩA(R)→ 0,

where d maps the class of f to 1⊗ df .
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A necessary and sufficient condition for the map d to be split-injective is known

[5, 16.12]. We are interested in a class of rings where the map d is injective.

Proposition 3.1.2 ([21]) Let S be a Noetherian ring and I 6= S an S-ideal. If I is

a complete intersection, then I/I2 is a free S/I-module.

As a consequence of Proposition 3.1.1 and Proposition 3.1.2, if R = S/I is a re-

duced k-algebra essentially of finite type over a field k, which is locally also a complete

intersection, then I/I2 is a locally free R-module, and d is injective. Therefore, Ωk(R)

has projective dimension at most one (also see [5, 17.12]).

In this case, as an immediate observation from Theorem 2.2.1, if we assume Ωk(R)

satisfies condition F1, then S(Ωk(R)) is a torsion-free Cohen-Macaulay algebra. Con-

sequently, the Rees algebra is Cohen-Macaulay. In [16, 3.1], the authors explored the

converse and found a positive answer if the module satisfies condition F0 beforehand.

Theorem 3.1.1 ([16, 3.1]) Let k be a field of characteristic zero, and R a k-algebra

essentially of finite type which is also locally a complete intersection. Assume the

following conditions:

1. R(ΩR/k) is Cohen-Macaulay.

2. edim Rp ≤ 2 dim Rp for every prime ideal p ∈ Spec(R).

Then edim Rp ≤ 2 dim Rp − 1 for every non-minimal prime ideal p ∈ Spec(R).

In the same paper, the authors further posed the question whether assumption (2)

in Theorem 3.1.1 can be dropped. The next section attempts to answer the question

by weakening assumption (2). We can translate assumption (2) and the conclusion

of Theorem 3.1.1 into condition Fk by Proposition 3.1.4 (also see [17, proof of 2.3]).

Before stating the proposition, we review a formula for the rank of Ωk(R), which is

well-known. For a lack of reference, we give a quick proof.

Proposition 3.1.3 Let k be a field of characteristic 0, and (R,m) be a local k-algebra

essentially of finite type. Assume R is reduced and equidimensional. Then

rank Ωk(R) = dim R + trdegk(R/m).
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Proof Since R is reduced, Rp is regular for every prime ideal p ∈ Ass(R) =

Min(R). Thus by Theorem 2.3.1, Ωk(Rp) is free as Rp-module with rank dim Rp +

trdegk(Rp/pRp) = trdegk(Rp/pRp) = dim R/p+ trdegk(R/m). But since R is equidi-

mensional, for every p ∈ Min(R), dim R/p = dim R.

Proposition 3.1.4 Let k be a field of characteristic 0 and R a local reduced k-algebra

essentially of finite type, which is also equidimensional. Then

Ωk(R) satisfies condition Fk if and only if edim Rp ≤ 2 dim Rp − k for every

prime ideal p ∈ Sing(R).

Proof Replace R by Rp where p is a prime ideal in Sing(R), we need to show

µ(Ωk(R)) ≤ dim R + rank(Ωk(R))− k if and only if edim R ≤ 2 dim R− k.

By Proposition 3.1.3, rank(Ωk(R)) = dim R + trdegk(R/m), and quite generally,

by [7], we have µ(Ωk(R)) = edim R + trdegk(R/m). Thus, the left hand side can be

written as

edim R + trdegk(R/m) ≤ 2 dim R + trdegk(R/m)− k,

which is equivalent to the right hand side.

3.2 Main result

First, we recall the Euler relations for partial derivatives, then we prove a technical

proposition that plays an important role in our proof.

Let f be a homogeneous form in k[X1, . . . , Xn], a positively graded polynomial

ring in n variables with deg Xi = δi. Then the partial derivatives of f , namely

∂f
∂X1

, . . . , ∂f
∂Xn

, satisfy the following Euler relation

δ1X1
∂f

∂X1

+ δ2Xx
∂f

∂X2

+ · · ·+ δnXn
∂f

∂Xn

= (deg f)f.

Proposition 3.2.1 Let R = k[X1, . . . , Xn]/I be a positively graded algebra over a

field k with char k = 0. Let d = dim R ≥ 2. Let I be generated by a homogeneous
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regular sequence f1, f2, . . . , fn−d contained in (X1, . . . , Xn)2. Consider the n by n− d

matrix

θ =


∂f1
∂x1

. . . ∂fn−d
∂x1

...
...

∂f1
∂xn

. . . ∂fn−d
∂xn


where ∂fi

∂xj
is the image in R of the partial derivative of fi with respect to Xj. Write

t = n − 2d + 1 ≥ 1. Let θ′ be the submatrix of θ consisting of the last t rows. If

It(θ) = It(θ
′), then ht It(θ) < d.

Proof Write θ′ =
(
θ1 | θ2

)
where θ1 is a square t by t matrix and θ2 is a t

by d − 1 matrix. Let Θ be the transpose of the Jacobian matrix associated with

f1, . . . , fn−d. Let Θ′ be the submatrix of Θ consisting of the last t rows, and we write

Θ′ =
(

Θ1 | Θ2

)
where Θ1 is a square t by t matrix.

We claim that we may assume I1(Θ2) ⊂ (X1, . . . , Xn−1, X
2
n). This is because after

factoring out by (X1, . . . , Xn−1), we are in the ring k[X1, . . . , Xn] ∼= k[Xn]. Since

Θ1 has t columns and Θ2 has t rows, we can perform elementary column operations

which do not change I, It(θ), and It(θ
′), until I1(Θ2) ⊂ (Xn

2
). Note that we only

need to perform k-linear combination involving columns of the same degree, hence

preserving the homogeneity property. Thus, the claim is proved.

Now, let ∆[i1,...,it]×[j1,...,jt] be the determinant of the submatrix of θ consisting of

entries from rows i1, . . . , it and columns j1, . . . , jt. Write ∆[i1,...,it] = ∆[i1,...,it]×[1,...,t],

∂fi/∂xj = aji and [1, . . . , ĵ, . . . , t] for the tuple of integers from 1 to t with j removed.

By the Laplace expansion for determinants, we have

∆[2d,...,n] =
t∑

j=1

(−1)j+tanj∆[2d,...,n−1]×[1,...,ĵ,...,t]. (3.1)

Denote deg Xi = δi. Since all fj are homogeneous, there exists the following Euler

relations in R. For all 1 ≤ j ≤ n− d,

n∑
i=1

δixiaij = 0

where xi is the image of Xi in R.
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Solving for δnxnanj and substituting into the equation (3.1) above, we obtain

δnxn∆[2d,...,n] =
t∑

j=1

(−1)j+tδnxnanj∆[2d,...,n−1]×[1,...,ĵ,...,t]

=
t∑

j=1

n−1∑
i=1

(−1)j+t+1δixiaij∆[2d,...,n−1]×[1,...,ĵ,...,t]

=
n−1∑
i=1

δixi

t∑
j=1

(−1)j+t+1aij∆[2d,...,n−1]×[1,...,ĵ,...,t]

=
n−1∑
i=1

(−1)iδixi∆[i,2d,...,n−1]×[1,...,t] .

(3.2)

Since It(θ) = It(θ
′),

∆[i,2d,...,n−1]×[1,...,t] =
∑

1≤λ1<···<λt≤n−d

hi,λi,...,λt∆[2d,...,n]×[λ1,...,λt],

for hi,λi,...,λt ∈ R. Thus we can rearrange the equation (3.2), and obtain

∆[2d,...,n](δnxn−
n−1∑
i=1

(−1)iδixihi,1,...,t) =
n−1∑
i=1

∑
[λi,...,λt] 6=[1,...,t]

(−1)iδixihi,λ1,...,λt∆[2d,...,n]×[λi,...,λt].

(3.3)

Now suppose that ht It(θ
′) = ht It(θ) = d. We notice that this is the maximal

possible height of the ideal of minors of size t of θ′ because (n− d)− t+ 1 = n− d−

(n− 2d+ 1) + 1 = d. By Theorem 2.4.2, the Eagon-Northcott complex associated to

θ′

E. : 0→ En−m+1 −→ En−m −→ . . .
d2−→ E1

d1−→ E0

is acyclic. Hence ker d1 = im d2. From equation (3.3), we have

(δnxn −
n−1∑
i=1

xigi, g
′
2, . . . , g

′
k) ∈ ker d1 = im d2

where gi and g′i are elements in R.

By the construction of the Eagon-Northcott complex (Section 2.4), the entries in

the first row of d2 are in the ideal generated the entries of θ2. Hence,

δnxn −
n−1∑
i=1

xigi ∈ I1(θ2).
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Hence, back in k[X1, . . . , Xn], we have

δnXn −
n−1∑
i=1

XiGi ∈ I1(Θ2) + I

where Gi is the preimage of gi in k[X1, . . . , Xn].

But this is impossible because δn is a unit, I1(Θ2) ⊂ (X1, . . . , Xn−1, X
2
n) and

I ⊂ (X1, . . . , Xn)2.

We are now ready to state the main theorem of this chapter.

Theorem 3.2.1 Let R = k[X1, . . . , Xn]/I be a standard graded k-algebra with char k =

0. Let I be generated by a homogeneous regular sequence. Assume edim Rp ≤

2 dim Rp for every prime ideal p ∈ Spec(R)\V (R+). Then

R(Ωk(R)) is Cohen-Macaulay if and only if edim Rp < 2 dim Rp for every non-

minimal homogeneous prime ideal p ∈ Spec(R).

Proof The backward direction [⇐] is obvious by Theorem 2.2.1 and Proposition

3.1.4. We want to note that the conditions Fk can be rephrased as conditions of the

heights of Fitting ideals. Since the ring is graded, it is enough to check the conditions

locally at homogeneous ideals. We prove the forward direction [⇒].

Let d = dim R ≥ 1. By the hypothesis, locally at codimension d − 1, Ωk(R)

satisfies condition F0 hence by Theorem 3.1.1, also condition F1. Now localize at the

homogeneous maximal ideal and we may also assume I ⊂ (X1, . . . , Xn)2. Let I be

generated by a homogeneous regular sequence f1, f2, . . . , fn−d. Write n = edim R.

Assume to the contrary that n ≥ 2d. If d = 1, then the Cohen-Macaulayness of

R(ΩR/k) implies that ΩR/k modulo its torsion is free by Theorem 2.2.4. Thus by

Theorem 2.3.3, R is regular, hence n = d, which contradicts n ≥ 2d = 2. We now

assume d ≥ 2.

We want to reduce the case where the residue field extension k ⊂ R/m is algebraic.

Let r = trdegk(R/m) ≥ 1. Write R = k[x1, . . . , xn]m and pick r general linear k-

combination y1, . . . , yr so that their residues yield a transcendence basis for R/m
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over k. Observe that L = k(y1, . . . , yr) is a subfield of R. Furthermore, ΩL(R) =

Ωk(R)/(Rdy1 + . . .+Rdyr) where d : R→ Ωk(R) is the universal derivation of R over

k. By Proposition 3.1.3, rank Ωk(R) > r. Now we have an isomorphism

R(ΩL(R)) ∼= R(Ωk(R))/(dy1 + . . .+ dyr),

which shows R(ΩL(R)) is Cohen-Macaulay because R(Ωk(R)) is Cohen-Macaulay.

Hence, we can replace k by L to assume the residue field extension is algebraic.

By Proposition 3.1.1 and Proposition 3.1.2, Ωk(R) has projective dimension at

most one. If it is zero, then Ωk(R) is free, hence by Theorem 2.3.1, R is regular,

hence n = d, which is a contradiction.

Now consider a presentation of Ωk(R) given by the n by n− d matrix

θ =


∂f1
∂x1

. . . ∂fn−d
∂x1

...
...

∂f1
∂xn

. . . ∂fn−d
∂xn

 ,
where ∂fi

∂xj
is the image in R of the partial derivative of fi with respect to Xj. Write

t = µ(ΩR/k)− dim R− rank ΩR/k + 1 = n− 2d+ 1 ≥ 1.

We can assume ht It(θ) = d. Otherwise we choose a prime q of height at most d−1

containing It(θ), (Ωk(R))q satisfies F0 by hypothesis. Hence ht It(θ)q ≥ n−d−t+1 =

n− d− (n− 2d+ 1) + 1 = d, which is absurd.

Since R(ΩR/k) is Cohen-Macaulay and locally satisfies condition F1 on the punc-

tured spectrum, by Theorem 2.2.3, after elementary row operations over k, It(θ) =

It(θ
′) where θ′ is the submatrix of θ consisting of the last t rows. Notice this change

of variables corresponds to a general change of generators x1, . . . , xn.

However, by Proposition 3.2.1, ht It(θ) < d, which is a contradiction.

Comparing to [16, 3.1], Theorem 3.2.1 weakens the condition F0 globally to F0

locally on the punctured spectrum, but the ring needs to be homogeneous. As a
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corollary, for a smooth non-degenerate complete intersection subvariety, the Cohen-

Macaulay property of the Rees algebra of ΩR/k corresponds to a rather restrictive

condition on the dimension of the subvariety.

Corollary 3.2.2 Let k be a field of characteristic 0. Let V ⊂ Pn be a smooth non-

degenerate complete intersection subvariety of dimension d. Let R be the homogeneous

coordinate ring of V . Then R(ΩR/k) is Cohen-Macaulay if and only if n ≤ 2d.

Proof It is immediate from Theorem 3.2.1 after we notice that edim R = n+ 1 and

we only need to check the inequality at the homogeneous maximal ideal.
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4. REES ALGEBRAS OF JACOBIAN MODULES

In this chapter, we compute the defining ideal of the Rees algebra of a Jacobian

module, then characterize its Cohen-Macaulay property.

First, recall the Jacobian module. Let R = S/I where S = W−1A[X1, . . . , Xn],

I = (f1, . . . , fm), and

Sn
φ−→ Sm with φ =


∂f1
∂X1

. . . ∂f1
∂Xn

...
...

∂fm
∂X1

. . . ∂fm
∂Xn

 .
The matrix φ is the Jacobian matrix. If we denote ¯ for the images in R, then the

image of φ̄ in Rm is the Jacobian module of R over A. If m = 1, then the Jacobian

module is the Jacobian ideal, denoted by Jac(I) or Jac(f),

Jac(I) = Jac(f) = (
∂f

∂x1
, . . . ,

∂f

∂xn
)

where I = (f) and ∂f
∂xi

= ∂f
∂Xi

. For simplicity of notation, we write fXi = ∂f
∂Xi

.

Notice that R(Jac(I)) = R[ ∂f
∂x1
t, . . . , ∂f

∂xn
t]. We can map R[T1, . . . , Tn] surjectively

onto the Rees algebra of Jac(f) by sending Ti to ∂f
∂xi
t. The kernel, denoted by J (f),

is the defining ideal of R(Jac(I)), i.e.

R(Jac(I)) =
R[T1, . . . , Tn]

J (f)
.

4.1 Main result

We start with a theorem that will be a helpful tool in computing the defining

ideals.

Theorem 4.1.1 Let A be a Noetherian unique factorization domain and W a multi-

plicative subset of A. Let R = S/I where S = W−1A[X1, . . . , Xn] and I = (f) = (gh).
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Denote J (−) for the defining ideal of the Rees algebra of a Jacobian ideal as above.

Write −′ for the preimage in S[T1, . . . , Tn]. If g, h generate an ideal of positive height

in R, then J (f)′ = J (g)′ ∩ J (h)′.

Proof Recall J (f) = (w homogeneous form in R[T1, . . . , Tn] | w(fx1 , . . . , fxn) = 0).

Let w′ be the preimage of w in S[T1, . . . , Tn]. We have w′(fX1 , . . . , fXn) ∈ (f). Simi-

larly for J (g) and J (h).

Claim: For any homogeneous form L ∈ S[T1, . . . , Tn],

L(fX1 , . . . , fXn) = L(gX1 , . . . , gXn)hdeg L + ug,

for some u ∈ S. It is enough to show the claim for L a monomial.

We induct on the degree of L. Notice that the base case deg L = 0 is clear. For the

inductive step, without loss of generality, we write L = T1 ·L′ where L′ is a monomial

with deg L′ = deg L− 1. By the induction hypothesis, we obtain

L(fX1 , . . . , fXn) = fX1 · L′(fX1 , . . . , fXn)

= (gX1h+ ghX1)(L
′(gX1 , . . . , gXn)hdeg L

′
+ ug)

= gX1L
′(gX1 , . . . , gXn)hdeg L + u′g

= L(gX1 , . . . , gXn)hdeg L + u′g,

(4.1)

for some u′ ∈ S. Hence, the inductive step is complete, and the claim is proved.

We now prove J (f)′ ⊂ J (g)′ ∩ J (h)′. Since g and h play the same role, it is

enough to prove J (f)′ ⊂ J (g)′. Let w′ ∈ J (f)′. Hence, w′(fX1 , . . . , fXn) ∈ (f) ⊂ (g).

By the claim, we have

w′(fX1 , . . . , fXn) = w′(gX1 , . . . , gXn)hdeg w
′
+ ug ∈ (g).

Thus,

w′(gX1 , . . . , gXn)hdeg w
′ ∈ (g).

Since ht (g, h)S = 2, (g, h)S is a complete intersection ideal in S , we obtain

w′(gX1 , . . . , gXn) ∈ (g). Hence, w′ ∈ Jac(g)′. Similarly for Jac(h)′.
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Finally, we prove J (g)′ ∩ J (h)′ ⊂ J (f)′. Let w′ ∈ J (g)′ ∩ J (h)′. Hence,

w′(gX1 , . . . , gXn) ⊂ (g), and w′(hX1 , . . . , hXn) ⊂ (h). By the claim, we have

w′(fX1 , . . . , fXn) = w′(gX1 , . . . , gXn)hdeg w
′
+ ug.

Observe that the right hand side is in (g). Hence w′(fX1 , . . . , fXn) ∈ (g). The same

argument for h shows w′(fX1 , . . . , fXn) ∈ (h). Thus, w′(fX1 , . . . , fXn) ∈ (g) ∩ (h) =

(gh) = (f) because (g, h)S is a complete intersection ideal in S.

From this theorem, notice that if we have the defining ideals of the Rees algebras

of Jac(f1), . . . , Jac(fs) where any fi, fj with i 6= j generate an ideal of positive height

in R, then we can compute the defining ideal of the Rees algebra of Jac(f1 . . . fs). The

next proposition gives explicit formulas for the defining ideals of the Rees algebra for

some classes of ideals.

Proposition 4.1.1 Let R = S/I with S = k[X1, . . . , Xn], k a field, and I = (f).

Consider a presentation of the Rees algebra of Jac(f)

R(Jac(I)) =
R[T1, . . . , Tn]

J (f)
.

1. If f = Xδ
i , then

J (f) =

 (T1, . . . , T̂i, . . . , Tn) , if δ = 1

(xiTi, T1, . . . , T
2
i , . . . , Tn) , if δ ≥ 2

.

2. If f = Xδ1
1 . . . Xδn

n , I1 = {δi | δi ≥ 1}, and I2 = {δi | δi > 1}, then

J (f) = ({xiTi, TiTj | i, j in I1 and i 6= j}) + ({T 2
i | i ∈ I2}) + ({Ti | i /∈ I1}).

Proof Part (1) is clear if δ = 1. Now assume δ ≥ 2, we notice that fXγ = 0

for all γ 6= i; therefore T1, . . . , T̂i, . . . , Tn ∈ J (f). Factoring out these variables

T1, . . . , T̂i, . . . , Tn, we are in the ring R[T1, . . . , Tn] ∼= R[Ti]. Since fXi = δXδ−1
i ,

the forms xiTi and T 2
i generate the whole defining ideal in R[T1, . . . , Tn]. Thus, in

R[T1, . . . , Tn], J (f) = (xiTi, T1, . . . , T
2
i , . . . , Tn).
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We now prove part (2). We can assume I1 = {1, . . . , n}, i.e. δi ≥ 1 for all i since

otherwise, we can just drop the variables with δi = 0. Let J = J (f), and Ji = J (Xδi
i ).

Denote −′ the preimage in S[T1, . . . , Tn]. By Theorem 4.1.1 and induction, we have

J ′ = J ′1 ∩ . . . ∩ J ′n.

By part (1) of this theorem, we obtain

J ′ =
⋂
i/∈I2

(Xδi
i , T1, . . . , T̂i, . . . , Tn)) ∩

⋂
i∈I2

(Xδi
i , XiTi, T1, . . . , T

2
i , . . . , Tn). (4.2)

All ideals in the equation (4.2) are monomial ideals, and there are explicit formula

for intersections of monomial ideals. We compute the first intersection. Notice, if

i /∈ I2, then δi = 1.⋂
i/∈I2

(Xi, T1, . . . , T̂i, . . . , Tn) = (Πi/∈I2Xi) + ({TlTj | l 6= j})

+ ({Tj | j ∈ I2}) + ({XiTi | i /∈ I2}).

We want to point out that all monomial generators on the right hand side are

expected because they are the obvious least common multiples of the generators on

the left hand side. However, perhaps it is curious that the mixed products of the

form XiTj do not appear on the right hand side. In order for XiTj to appear, i /∈ I2.

If j ∈ I2, then XiTj is already in the ideal generated by {Ti | i ∈ I2}. If j /∈ I2, then

XiTj /∈ (Xj, T1, . . . , T̂j, . . . , Tn) with i 6= j.

Next, we compute the other intersection,⋂
i∈I2

(Xδi
i , XiTi, T1, . . . , T

2
i , . . . , Tn) = (Πi∈I2X

δi
i ) + ({TiTj | i 6= j}) + ({Ti | i /∈ I2})

+ ({T 2
i | i ∈ I2}) + ({XiTi | i ∈ I2}).
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Similarly, all monomial generators on the right hand side are expected, and the

mixed products of the form Xδi
i Tj do not appear. Now we can compute J ′,

J ′ =
(

(Πi/∈I2Xi) + ({TiTj | i 6= j}) + ({Ti | i ∈ I2}) + ({XiTi | i /∈ I2})
) ⋂

(
(Πi∈I2X

δi
i ) + ({TiTj | i 6= j}) + ({Ti | i /∈ I2}) + ({T 2

i | i ∈ I2}) + ({XiTi | i ∈ I2})
)

= (ΠXδi
i ) + ({TiTj | i 6= j}) + ({T 2

i | i ∈ I2}) + ({XiTi | i ∈ I2}) + ({XiTi | i /∈ I2})

= (ΠXδi
i ) + ({TiTj | i 6= j}) + ({T 2

i | i ∈ I2}) + ({XiTi, ∀ i})

= ({f, XiTi, TiTj | i 6= j}) + ({T 2
i | i ∈ I2}).

This completes the proof.

Before we characterize the Cohen-Macaulay property of the Rees algebras of these

Jacobian ideals, we first compute the Krull-dimension.

Theorem 4.1.2 Let R = S/I with S = k[X1, . . . , Xn] a polynomial ring over a field

k, and I = (f). Write f = Xδi
1 . . . X

δn
n . Without loss of generality, assume δi ≥ 1 for

all i. Then

dim R(Jac(f)) =

 n , if δi = 1 for some i

n− 1 , otherwise
.

Proof We first observe that Proposition 2.1.1 cannot be used because in most cases,

ht Jac(I) = 0. However, by Proposition 2.1.2, we have

dim R(Jac(f)) = max {dim R, 1 + dim R/p | p ∈ Min(R)\V (Jac(f))}.

We can detect all minimal prime ideals of R from their preimages in S. Let

q ∈ Spec(S) such that q is a minimal prime of (Xδi
1 . . . X

δn
n ). Then q = (Xi) for some

i.

Let ¯ denote the image in R, and I = {i | δi = 1}. For i ∈ I, q̄ = (Xi) is a

minimal prime that does not contain Jac(I). Therefore, if I 6= ∅,

max {1 + dim R/q̄ | q̄ ∈ Min(R)\V (Jac(f))} = 1 + (n− 1) = n.
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On the other hand, if I = ∅, then

dim R(Jac(f)) = dim R = n− 1.

We recall a remark about monomial ideals. Let R = k[X1, . . . , Xn] be a polynomial

in n variables over a field k. Let I be a monomial ideal, h an element of R. We write

h = h1 + · · ·+ ht where hi are distinct monomials. If h ∈ I, then hi ∈ I for all i.

Proposition 4.1.2 Let S = k[X1, . . . , Xn] be a polynomial ring in n variables over

a field k. Let R = S/I where I is a monomial ideal so that (I :S X1)∩ (I :S X2) ⊂ I.

Then X1 −X2 is a non zero-divisor on R.

Proof By the hypothesis, we have I : (X1, X2) = (I : X1) ∩ (I : X2) ⊂ I. Thus,

(X1, X2) is not contained in any associated prime of I. However, since all associated

prime ideals of I are monomial ideals, X1 −X2 is not in any associated prime of I.

Hence, X1 −X2 is a non zero-divisor on R.

Theorem 4.1.3 Let R = S/I with S = k[X1, . . . , Xn] a polynomial ring over a field,

and I = (f). Write f = Xδi
1 . . . X

δn
n . Without loss of generality, assume δi ≥ 1 for all

i.

1. If n = 1, then the Rees algebra R(Jac(f)) is Cohen-Macaulay.

2. If n ≥ 2, then the Rees algebra R(Jac(f)) is Cohen-Macaulay if and only if

δi ≥ 2 for all i.

Proof Part (1) follows easily from Proposition 4.1.1, part (1).

Assume n ≥ 2. We first prove the backward direction [⇐]: if δi ≥ 2 for all i, then

the Rees algebra R(Jac(f)) is Cohen-Macaulay. By Proposition 4.1.1, part (2), we

can write

R(Jac(f)) =
S[T1, . . . , Tn]

J ′
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where S[T1, . . . , Tn] is a polynomial in the variables X1, . . . , Xn, T1, . . . , Tn over the

field k and

J ′ = (f,X1T1, . . . , XnTn, T
2
1 , . . . , T

2
n) + ({TiTj | i 6= j}).

By Theorem 4.1.2, dim R(Jac(f)) = n−1.We claim thatX1−X2, X1−X3, . . . , X1−

Xn is a regular sequence of length n−1 onR(Jac(f)). With our hypothesis, R(Jac(f))

is standard graded k-algebra. Hence once the claim is proved, we are done with this

direction.

Induct on the length r of the sequence. For the base case r = 1, we can apply

Proposition 4.1.2 after verifying that

(J ′ : X1) ∩ (J ′ : X2) ⊂ J ′.

We compute the quotient ideals on the left hand side.

J ′ : X1 = (
f

X1

, T1) + J ′, J ′ : X2 = (
f

X2

, T2) + J ′.

Hence, we obtain

(J ′ : X1) ∩ (J ′ : X2) =
(

( f
X1
, T1) + J ′

)
∩
(

( f
X2
, T2) + J ′

)
⊂ J ′.

For the inductive step, we want to show X1 −Xr+1 is a non zero-divisor on

S[T1, . . . , Tn]

J ′ + (X1 −X2, . . . , X1 −Xr)
∼=

k[X1, Xr+1, . . . , Xn][T1, . . . , Tn]

(Xδ1+···+δr
1 X

δr+1

r+1 . . . X
δn
n , X1T1, . . . , X1Tr, Xr+1Tr+1, . . . , XnTn, T 2

1 , . . . , T
2
n) + ({TiTj | i 6= j})

=: A/L.

Again, we apply Proposition 4.1.2. It remains to show

(L : X1) ∩ (L : Xr+1) ⊂ L.

Write g = Xδ1+···+δr
1 X

δr+1

r+1 . . . X
δn
n . We compute the quotient ideals on the left hand

side and obtain

L : X1 = (
g

X1

, T1, . . . , Tr) + L,

L : Xr+1 = (
g

Xr+1

, Tr+1) + L.
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The intersection computation follows similarly as above

(L : X1) ∩ (L : Xr+1) =
(

( g
X1
, T1, . . . , Tr) + L

)
∩
(

( g
Xr+1

, Tr+1) + L
)
⊂ L.

This completes the backward direction.

We now prove the forward direction [⇒] by proving the contrapositive. If δi = 1

for some i, then the Rees algebra R(Jac(f)) is not Cohen-Macaulay. By Proposition

4.1.1, part (2), we can write

R(Jac(f)) =
S[T1, . . . , Tn]

J ′
,

with

J ′ = (f,X1T1, . . . , XnTn) + ({TiTj | i 6= j}) + ({T 2
i | i /∈ I}),

where I = {i | δi = 1} 6= ∅.

By Theorem 4.1.2, dim R(Jac(R)) = n. Notice that X1−X2, . . . , X1−Xn is still

a regular sequence because the induction proof above follows through the same way.

We only need to show

depth
S[T1, . . . , Tn]

J ′ + (X1 −X2, . . . , X1 −Xn)
= 0.

Notice that

S[T1, . . . , Tn]

J ′ + (X1 −X2, . . . , X1 −Xn)
∼=

k[X1][T1, . . . , Tn]

(Xdeg f
1 , X1T1, . . . , X1Tn) + ({TiTj | i 6= j}) + ({T 2

i | i /∈ I})
.

Since n ≥ 2, the degree of f is at least 2. Hence,

Xdeg f−1
1 (X1, T1, . . . , Tn) ⊂ (Xdeg f

1 , X1T1, . . . , X1Tn).

Therefore, the depth of the quotient ring is 0, which completes the proof.

As the final remark for this chapter, we observe from the proof above that in

the setting of the theorem, the Rees algebra R(Jac(f)) is either Cohen-Macaulay or

almost Cohen-Macaulay.
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5. THE GORENSTEIN LINKAGE CLASS OF A

COMPLETE INTERSECTION

In this chapter, we are interested in monomial ideals of finite colength. In Section 5.1,

we review some known results on monomial ideals in the Gorenstein linkage class of a

complete intersection. In Section 5.2, using Macaulay inverse systems, we introduce a

Gorenstein double linkage construction that is analogous to Gorenstein basic double

linkage, and we use it to identify classes of monomial ideals that are homogeneously

glicci.

5.1 Background

We recall the definition of Gorenstein linkage.

In a regular local ring R, we say two proper ideals I, J are Gorenstein directly

linked if there exists a Gorenstein ideal K so that I = K : J and J = K : I. By

Theorem 2.6.4, if I is unmixed of height g and K ( I is a Gorenstein ideal of the

height g, then J = K : I is Gorenstein directly linked to I. We denote I ∼G J . We say

I and J are in the same Gorenstein linkage class if I = I0 ∼G I1 ∼G · · · ∼G In = J .

Analogously, when the ring R is a graded regular ring, in addition, if I, J and K are

homogeneous ideals, we say I, J are homogeneously Gorenstein directly linked. We

say an ideal is homogeneously glicci if it is in the homogeneous Gorenstein linkage

class of a complete intersection.

Gorenstein basic double linkage (Gorenstein biliaison) is a common tool in proving

a class of ideals to be glicci. The general idea is that after a double link, the linked

ideal is “simpler” than the original ideal. Hence after finitely many steps, we may

arrive at a complete intersection. We recall the definition of Gorenstein basic double

linkage.
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Proposition 5.1.1 ([9, 4.1]) Let (R,m) be a local Gorenstein ring, K and H proper

ideals of R, and x ∈ m. Assume that R/K is Cohen-Macaulay and generically Goren-

stein, and that K+xH is unmixed of height greater than the height of K. Then K+xH

and K +H are Gorenstein linked in two steps.

The graded case can be found in [11, 5.10]. The following theorems describe some

classes of glicci ideals, and they use Gorenstein basic double linkage in an essential

way in their proofs.

Theorem 5.1.1 ([13, 3.1]) Let R = k[X1, . . . , Xn] be a polynomial ring over an in-

finite field k, and I a monomial ideal of finite colength. Then I can be deformed,

via the procedure described in [13, 2.1], to an ideal J ⊂ R[T1, . . . , Ts] so that J is

homogeneously glicci.

Theorem 5.1.2 ([13, 3.1]) Let R = k[X1, . . . , Xn] be a polynomial ring over a field

k of characteristic 0, and I a monomial ideal. If I is Borel-fixed, then I is homoge-

neously glicci.

A monomial ideal I is said to be Borel-fixed if for any monomial w ∈ I, if Xi | w,

then
Xj
Xi
w ∈ I for all 1 ≤ j < i ≤ n.

Theorem 5.1.3 ([9, 4.2]) Let R = k[X1, . . . , Xn] be a polynomial ring over an infinite

field k, m the homogeneous maximal ideal, and I an m-primary monomial ideal. Then

Im is glicci in Rm.

The main difference between Theorem 5.1.1 and Theorem 5.1.3 is that in Theorem

5.1.3, the Gorenstein links are not necessarily homogeneous, and in Theorem 5.1.1,

the Gorenstein linkage does not occur in the base ring. In the next section, we identify

a class of monomial ideals of finite colength that is homogeneously glicci in the base

ring.

We recall an explicit (complete intersection) double linkage that is used in [9]. We

generalize this result to Theorem 5.2.1.
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Proposition 5.1.2 ([9, 2.5]) Let R = k[X1, . . . , Xn], m = (X1, . . . , Xn), and I a

monomial m-primary ideal. If I = (Xd1 , . . . , Xdn)+Xa1
1 . . . Xan

n H for some monomial

ideal H 6= R, then I is homogeneously doubly linked to

J = (Xd1−a1 , . . . , Xdn−an) +H.

5.2 Main result

We use Macaulay inverse systems heavily in this section to prove the main theorem

about Gorenstein double linkage.

Let R = k[X1, . . . , Xn] and I a homogeneous ideal of finite colength. Let T =

k[X−11 , . . . , X−1n ] with an R-module structure as defined in Section 2.5. Write MI =

0 :T I, which is the Matlis dual of R/I. Since the duality is inclusion-reversing, we

need to find a homogeneous element F ∈ T so that MI ⊂ R · F . Then K = 0 :R F is

a homogeneous Gorenstein ideal of finite colength contained in I. All homogeneous

Gorenstein ideals of finite colength in I can be obtained this way. Then J = K : I is

homogeneously Gorenstein directly linked to I.

Furthermore, inverse systems give a framework to compute linkage.

Proposition 5.2.1 Let R = k[X1, . . . , Xn] be a polynomial ring over a field k, and

T = k[X−11 , . . . , X−1n ] the set of “inverse polynomials” with an R-module structure as

defined Section 2.5.

If two proper homogeneous ideals I and J of finite colength are homogeneously

Gorenstein directly linked by an ideal K, then 0 :T J = I(0 :T K).

Proof We only need to show the duals of both sides are the same, namely J = 0 :R

(I(0 :T K)). But it follows from the associativity property of colon ideals

0 :R (I(0 :T K)) = 0 :R ((0 :T K)I) = (0 :R (0 :T K)) :R I = K :R I = J.
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For example, letR = k[X, Y, Z], T = k[X−1, Y −1, Z−1], and I = (X5, Y 4, Z6, XY ).

Then dual of I is 0 :T I = RX−4Z−5 + RY −3Z−5. Let F = X−4Y −3Z−5. Write

K = 0 :R F . Then the ideal J = K : I and its dual can be computed as

0 :T J = I · F = RX−3Y −2Z−5 and J = (X4, Y 3, Z6).

We now state a theorem about a novel Gorenstein double linkage construction.

Theorem 5.2.1 Let R = k[X1, . . . , Xn] be a polynomial ring over a field k, and I

a homogeneous R-ideal of finite colength. If there exists a homogeneous Gorenstein

ideal K of finite colength so that K ( I ⊂ K + (g) for some homogeneous element

g ∈ R, then I is homogeneously Gorenstein linked in two steps to J = I : g.

Proof Let T be as in Proposition 5.2.1. Write RF = 0 :T K, and L = K :R I. To

show I ∼G L ∼G J , we prove

1. 0 :R RgF ⊂ J , and

2. L = (0 :R gF ) :R J.

The inclusion (1) is clear because

0 :R RgF = (0 :R RF ) :R g = K :R g ⊂ I :R g = J.

For the equality (2), we claim that gJF = IF . Once the claim is proved, we have

(0 :R gF ) :R J = 0 :R gJF = 0 :R IF = (0 :R F ) :R I = K :R I = L.

For the claim, since K ⊂ I ⊂ K + (g), we have I = (K + (g)) ∩ I = K + (g) ∩ I =

K + g(I : g) = K + gJ . Hence IF = gJF since KF = 0.

Proposition 5.1.2 is a special case of Theorem 5.2.1 where K = (Xd1 , . . . , Xdn)

and g = Xa1
1 . . . Xan

n . Using Theorem 5.2.1, we identify a class of monomial ideals of

finite colength that are homogeneously glicci.

Theorem 5.2.2 Let R = k[X, Y, Z] be a polynomial ring over a field k. Let I be a

monomial ideal of finite colength.
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1. If µ(I) ≤ 5, then I is homogeneously licci.

2. Assume I = (Xα, Y β, Zγ, Xα1Y β1 , Y β2Zγ1 , Xα2Zγ2) and either one of the fol-

lowing conditions holds

. α ≤ β2 + γ1,

. β ≤ α2 + γ2,

. γ ≤ β1 + γ1.

Then I is homogeneously glicci.

Proof For part (1), we induct on the sum of the degrees of a minimal generating

set of I. If this sum is 3, then I is a complete intersection, and we are done. Assume

this sum is greater than 3. We may write I = (Xα, Y β, Zγ) +L, where L a monomial

ideal and µ(L) = µ(I)−3. Thus, µ(L) ≤ 2. Observe that L cannot be generated by a

single variable since µ(L) = µ(I)− 3. Also, L cannot be generated by two relatively

prime monomials because otherwise one of would have to be a power of a variable,

contradicting the fact that µ(L) = µ(I)− 3.

If L = 0, then I is a complete intersection, and we are done. Otherwise, since I

is generated by at most 2 monomials but cannot be generated by 2 relatively prime

monomials or a single variable, we can write

L = Xα1Y β1Zγ1L1,

where α1 +β1 +γ1 > 0 and L1 6= R. Notice L1 is a monomial ideal and µ(L1) = µ(L).

By Proposition 5.1.2, I is homogeneously doubly linked to

I1 = (Xα−α1 , Y β−β1 , Zγ−γ1) + L1.

Now apply induction hypothesis to I1, and we are done.

For part (2), without loss of generality, we assume α ≤ β2+γ1. We claim it suffices

to show that there exists a homogeneous Gorenstein ideal K so that K ( I ⊂ K+(X).

It is because by Theorem 5.2.1, I will be homogeneously Gorenstein doubly linked to
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I : X = (Xα−1, Y β, Zγ, Xα1−1Y β1 , Y β2Zγ1 , Xα2−1Zγ2). Since I : X again satisfies the

hypothesis, we can repeat this process inductively until α1 = 0 or α2 = 0. Then the

linked ideal satisfies the assumption of part (1), hence I is homogeneously glicci.

Consider a homogeneous idealK = (Y β, Zγ, XαY β−β2 , XαZγ−γ1 , Xβ2+γ1−Y β2Zγ1).

By the hypothesis, it is clear K ( I ⊂ K+(X). Notice K has height 3. It remains to

show K is a Gorenstein ideal. By Theorem 2.6.5, this follows easily from computing

the 4 by 4 Pfaffians of the following alternating matrix

ψ =



0 0 Xα 0 Y β2

0 0 0 Y β−β2 Zγ−γ1

−Xα 0 0 Zγ1 0

0 −Y β−β2 −Zγ1 0 −Xβ2+γ1−α

−Y β2 −Zγ−γ1 0 Xβ2+γ1−α 0


.

Let ψi be the submatrix of ψ with the ith row and the ith column removed. Then

det ψ1 = Z2γ,

det ψ2 = (Xβ2+γ1 − Y β2Zγ1)2,

det ψ3 = Y 2β,

det ψ4 = X2αZ2(γ−γ1),

det ψ5 = X2αY 2(β−β2).

Finally, we want to remark the class of ideals in part (2) of Theorem 5.2.2 is not

(locally) licci by [9, 2.6].
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