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BH, hydrolytic (acidogenic) biomass concentration (g L-1);  

Bo, ultimate (measured) methane yield (mL g-1);  

Bu, theoretical methane yield (mL g-1);  

CCH4cor, the corrected concentration of dry methane gas (%); 

CCH4, the measured concentration of methane gas (%); 

CCO2, is the measured concentration of carbon dioxide gas (%);  

CH2S, concentration of H2S in biogas (ppm); 

Cn, number of carbon atoms; 

c, regularization parameter for support vector machine models; 

d, degrees of differencing; 

f, fraction of free H2S gas to total dissolved sulfide; 

fd, biodegradable fraction of substrate;  

fm, gam smoothing function; 

fVS, biodegradable fraction of VS;  

g, gaseous phase; 
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H, Gompertz methane production potential (mL g-1 VS);  

Ha, number of hydrogen atoms; 

i, ith value; 

J, objective function;  

k, rate coefficient (day-1);  

k1, rate coefficient for the first order equation (day-1); 

kM1, rate coefficient for the quadratic Monod equation (day-1); 

k1mod, rate coefficients for first order modified equation (day-1); 

k2, rate coefficient for the second order equation (day-1); 

kM2, rate coefficient for the quadratic Monod equation (day-1); 

k2mod, rate coefficients for first order modified equation (day-1); 

KCH, Chen and Hashimoto kinetic constant (dimensionless),  

Kd, equilibrium constant for H2S dissociation;  

kh, hydrolysis coefficient (day-1); 

K̂VS, half-saturation coefficient (dimensionless);  

l, liquid phase; 

n, number of data points;  

Nc, number of nitrogen atoms; 

Ob, number of oxygen atoms; 

p, autoregressive parameter; 

pn, number of parameters;  

q, moving average component; 

R2, coefficient of determination; 

s, gam link function; 

S1, S2, S3, and SM, corn-starch based industrial wastes;   

Rm, maximum specific methane production (mL day-1);  

T80, time to reach 80% of biogas production (days); 

T90, time to reach 90% of biogas production (days);  

VBiogas, volume of biogas (L); 

Vm, measured biogas volume; 

WVS, initial weight of VS fed into digester (g); 
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̅y, the mean of values; 

YH, hydrolytic (acidogenic) biomass yield coefficient;  

yi, the measured value; 

 ̂yi, the predicted value; 

yt
`, differenced time series; 

α, absorption coefficient, Henry’s Law; 

β0, gam intercept; 

γ, time dependency; 

Δ, difference; 

ɛ, previous error terms; 

θ, moving average parameter; 

λ, lag phase (days);  

µm, maximum specific growth rate (day-1);   

ρmH, maximum specific hydrolytic rate (day-1); 

σ, set of parameter values; 

ϕ, slope coefficient; 

ω, conversion coefficient of waste into methane (mL CH4 g-1 VS )  

 

Chemical Formulas 

AlCl3, aluminum chloride; 

C, carbon; 

CaCl2∙2H2O, calcium chloride dihydrate; 

CaCO3, calcium carbonate; 

CH4, methane; 

C6H10O5, carbohydrate; 

C5H7O2N, protein; 

C57H104O6, lipid; 

CO2, carbon dioxide; 

CO3
2-, carbonate ion; 

CoCl2∙6 H2O, Cobalt(II) Chloride Hexahydrate; 

Cu, copper (g L-1); 
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CuCl2∙2 H2O, Copper(II) Chloride Dihydrate; 

Fe, iron (g L-1); 

FeCl2∙4 H2O, iron dichloride tetrahydrate; 

FeOH3, ferric hydroxide; 

FeS, iron(II) sulfide; 

Fe3(PO4)2, iron (II) phosphate; 

H2, hydrogen gas; 

H2O, water; 

HS-1, bisulfide; 

H2S, hydrogen sulfide; 

H3BO3, boric acid; 

HCl, hydrochloric acid; 

HCO3
-, bicarbonate; 

He, helium; 

K2HPO4∙3H2O, potassium hydrogen phosphate trihydrate; 

KOH, potassium hydroxide; 

MgCl2∙6H2O, magnesium chloride hexahydrate; 

MnCl2∙4 H2O, manganese(II) chloride tetrahydrate; 

N, nitrogen; 

Na+, sodium; 

N2, nitrogen gas; 

Na2S∙9H2O, sodium sulfide nonahydrate; 

Na2SeO3∙5 H2O, sodium selenite pentahydrate; 

NaCl, sodium chloride; 

NaHCO3, sodium bicarbonate; 

NaOH, sodium hydroxide; 

NH3, ammonia; 

NH3-N, nitrogen-ammonia; 

NH4
+, ammonium; 

NH4Cl, ammonium chloride;  

(NH4)6Mo7O24∙4H2O, ammonium heptamolybdate tetrahydrate; 
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Ni, nickel (g L-1); 

NiCl2∙6 H2O, nickel(II) chloride hexahydrate; 

O, oxygen; 

PO4, phosphate; 

PO4
3-, phosphate; 

S, sulfur; 

S2-, sulfide; 

SO4
-2, sulfate; 

ZnCl2, zinc chloride 
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GLOSSARY 

Acetogenesis:  The conversion of acidogenesis products to simpler compounds.   

Acidogenesis:  The conversion of solubilized materials to simpler compounds.   

Anaerobic:  An environment in which bacteria do not use free molecular oxygen. 

Artificial Intelligence:  Machines simulate human knowledge through learning and problem 

solving.  

Batch:  Samples collected on the same date. 

Biodegradability:  The ultimate rate and extent to which organic material is metabolized by 

microorganisms.   

Biogas:  A gas mixture, usually containing 50–75% methane, produced via anaerobic 

fermentation.   

Biogas curve:  The collected times series data of biogas volume which is connected and denotes 

trends in the data.   

Black-box model:  Describes a relationship between the input and output variables without prior 

knowledge about the physical and chemical relationships between the variables. 

Biochemical methane potential (BMP test):  A laboratory experimental process to determine 

the biogas/methane production from a specific substrate under controlled anaerobic 

digestion. 

BMP data:  Methane yield (mL g VS added-1) from a lab-digester collected over time. 

Co-digestion:  Anaerobic digestion using a mixture of more than one types of feedstock.   

Continuously stirred tank reactor:  Provides continuous or intermittent mixing so materials are 

suspended uniformly in the tank. 

Cross validation:  A resampling procedure to evaluate the skill of machine learning models on 

unseen data with limited datasets (based on https://machinelearningmastery.com/k-

fold-cross-validation/).   

Decay:  A regularization parameter which reduces overfitting in the machine learning model 

(based on https://towardsdatascience.com/this-thing-called-weight-decay-

a7cd4bcfccab). 

Digestate:  see Effluent. 

Digester:  A container whose contents are undergoing anaerobic fermentation.   

https://machinelearningmastery.com/k-fold-cross-validation/
https://machinelearningmastery.com/k-fold-cross-validation/
https://towardsdatascience.com/this-thing-called-weight-decay-a7cd4bcfccab
https://towardsdatascience.com/this-thing-called-weight-decay-a7cd4bcfccab
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Digestion liquid (DL):  Liquid inside the digester body under anaerobic digestion (based on 

http://digester.com/learning/introduction-to-anaerobic-digestion/).  

Digester materials: The substance which the anaerobic digestion container is composed of (e.g., 

glass).      

Digester type:   The design of the system used for anaerobic digestion which affects how the 

anaerobic digestion process is executed (based on https://www.epa.gov/anaerobic-

digestion/types-anaerobic-digesters).     

Effluent:  The material from anaerobic digesters after anaerobic fermentation.  Also called 

digestate.      

Feedstock:  Any raw, renewable, biological material that can be used for anaerobic digestion to 

produce methane.   

Field digester:  An industrial-scale digester for treating livestock manure, agro-industrial wastes, 

or municipal wastewater.   

Foam:  A mass of tiny bubbles generated in a liquid and accumulated above the liquid.   

Fuzzy logic:  A technique which maps data between 0 and 1 and uses linguistic rules to classify 

elements.    

Greenhouse gas (GHG):  A gas which can trap heat in the atmosphere, including carbon dioxide 

(CO2), methane (CH4), nitrous oxide (N2O), and fluorinated gases (based on 

https://www.epa.gov/ghgemissions/overview-greenhouse-gases). 

Headspace:  The internal space between the digester liquid contents and the top of the digester.   

Hybrid knowledge-based systems:  Systems where artificial intelligence techniques are applied 

to knowledge-based systems.   

Hydrolysis:  The solubilization process of an organic material.    

Influent:  Prepared liquid materials to feed into digesters, usually a mixture of feedstock, 

inoculum, and water.  

Inoculum:  Liquid material containing an anaerobic microbial community and obtained from 

anaerobic digesters for inoculation of feedstock to prepare digester influent.  

Kappa value: Measurement of agreement within a model which corrects for category 

imbalances (based on https://www.statisticshowto.com/cohens-kappa-statistic/, 

https://remiller1450.github.io/s230f19/caret3.html).   

https://www.epa.gov/anaerobic-digestion/types-anaerobic-digesters
https://www.epa.gov/anaerobic-digestion/types-anaerobic-digesters
https://www.epa.gov/ghgemissions/overview-greenhouse-gases
https://www.statisticshowto.com/cohens-kappa-statistic/
https://remiller1450.github.io/s230f19/caret3.html
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Kinetic model:  The mathematical description of the course of the reaction for each reaction step 

as a function of components in the system (based on 

https://www.crt.tf.fau.eu/forschung/arbeitsgruppen/katalytische-reaktoren-und-

prozesstechnik/kinetische-modellierung/). 

Knowledge-based approach:  A method which involves knowledge acquisition, representation, 

and management. 

Lab-digester:  A laboratory-scale anaerobic digester (0.5 L or 1 L in this study).   

Machine learning:  An area of artificial intelligence in which model building is automated 

(based on https://expertsystem.com/machine-learning-definition/).   

Metabolism:  The use of the material as both an energy and carbon source for the 

microorganisms.  

Methane production:  In this dissertation, a general term for the generation of methane gas 

through a fermentation process.  

Methane production curve: The collected times series data of methane production which has 

been connected to depict trends in the data.  

Methane yield:  The production of methane from a lab-digester test divided by a unit of mass 

(mL g VS-1). 

Methanogenesis:  The production of methane via anaerobic fermentation.   

Methanogenic inoculum:  Inoculum which contains viable methanogens.   

mtry: The number of randomly sampled variables as candidates at each split in the random 

forest model (based on 

https://www.rdocumentation.org/packages/randomForest/versions/4.6-

14/topics/randomForest). 

Neural network:  A system of interconnected elements which can send and receive signals.     

Non-parametric test:  A statistical test which does not assume that the data fits a normal 

distribution (based on http://www.biostathandbook.com/normality.html).   

Nutrient media:  A mixture of micronutrients and growth factors for an anaerobic microbial 

community.    

Organic waste: Waste which is biodegradable and comes from a plant or animal source.     

Oxidation:   A process in which a compound loses one or more electrons.  

Parameter:  A numerical constant that is used to describe a model.    

https://www.rdocumentation.org/packages/randomForest/versions/4.6-14/topics/randomForest
https://www.rdocumentation.org/packages/randomForest/versions/4.6-14/topics/randomForest
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Particulate:  A macroparticle which is not easily dissolved or taken up by microorganisms.   

Plug flow digester:  A digester in which material enters one end and moves to the other end 

where it is removed (based on http://digester.com/learning/introduction-to-anaerobic-

digestion/). 

Precipitation reaction:  A reaction in which ionic liquids combine to form a solid product. 

Predictive accuracy:  A measurement of reliability for a model which measures the proportion 

of observations that the model classifies correctly (based on 

https://remiller1450.github.io/s230f19/caret3.html, 

https://pubmed.ncbi.nlm.nih.gov/12854094/#:~:text=Measures%20of%20the%20predi

ctive%20accuracy,on%20covariates%20replaces%20unconditional%20prediction).         

Raw:  Untreated material. 

Reduction:  A chemical process in which a compound gains one or more electrons.   

Sample:  A grab sample from the same source at a given time point.   

Soluble:  Material which can be dissolved by water, particularly material which is easily taken 

up by microorganisms.   

Specific methane yield (SMY):  The final day cumulative methane yield per unit of volatile 

solids (mL g VS-1) from a biomethane potential test.    

Substrate:  In this dissertation, materials collected at industrial anaerobic digester systems and 

used in lab-scale digesters for bacteria to obtain carbon and energy.  

Supervised machine learning:  A machine learning process that is trained with a labelled data 

set of known values (based on http://digester.com/learning/introduction-to-anaerobic-

digestion/).      

Surface active agent:  A substance which lowers the surface tension of a liquid. 

Times series forecasting analysis: An area of machine learning in which future values are 

predicted based on historical data (based on https://machinelearningmastery.com/time-

series-forecasting/). 

Tuning Parameter:  A model parameter which is not directly estimated from the data and is 

used to determine optimal model structure (based on 

https://www.datacamp.com/community/tutorials/parameter-optimization-machine-

learning-models).  

https://remiller1450.github.io/s230f19/caret3.html
https://machinelearningmastery.com/time-series-forecasting/
https://machinelearningmastery.com/time-series-forecasting/
https://www.datacamp.com/community/tutorials/parameter-optimization-machine-learning-models
https://www.datacamp.com/community/tutorials/parameter-optimization-machine-learning-models
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ABSTRACT 

Anaerobic digestion uses a mixed, microbial community to convert organic wastes to biogas, 

thereby generating a clean renewable energy and reducing greenhouse gas emissions.  However, 

few studies have quantified the relationship between waste composition and the subsequent 

physical and chemical changes in the digester.  This Ph.D. dissertation aimed to gain new 

knowledge about how these differences in waste composition ultimately affect digester function.  

This dissertation examined three areas of digester function: (1) hydrogen sulfide production, (2) 

digester foaming, and (3) methane yield.   

To accomplish these aims, a variety of materials from four different large-scale field 

digesters were collected at different time points and from different locations within the digester 

systems, including influent, liquid in the middle of the digesters, effluent, and effluent after solids 

separation.  The materials were used for biochemical methane potential (BMP) tests in 43 lab-

scale lab-digester groups, each containing triplicate or duplicate digesters.  The materials from 

field digesters and the effluents from the lab-digesters were analyzed for an extensive set of 

chemical and physical characteristics. The three areas of digester function were examined with the 

physical and chemical characteristics of the digester materials and effluents, and the BMP 

performances.  

Hydrogen sulfide productions in the lab-digesters ranged from non-detectable to 1.29 mL g 

VS-1.  Higher H2S concentrations in the biogas were observed within the first ten days of testing. 

The initial Fe(II) : S ratio and OP concentrations had important influences on H2S productions. 

Important parameters of digester influents related to digester foaming were the ratios of Fe(II) : S, 

Fe(II) : TP, and TVFA : TALK; and the concentrations of Cu. Digesters receiving mixed waste 

streams could be more vulnerable to foaming.  The characteristics of each waste type varied 

significantly based on substrate and inoculum type, and digester functioning.  The influent 

chemical characteristics of the waste significantly impacted all aspects of digester function. Using 

multivariate statistics and machine learning, models were developed and the prediction of digester 

outcomes were simulated based on the initial characteristics of the waste types.   
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 GENERAL INTRODUCTION 

Global energy demand is projected to increase in the next decade (IEA, 2019).  Therefore, 

the development of sustainable, affordable, and reliable energy technologies is a global concern 

(UN, 2019).  Specifically, renewable energy technologies are projected to play an increasingly 

important role in meeting global energy demand (IEA, 2019).  Climate change, sustainable 

development, and resource scarcity and availability are the main motivators for renewable energy 

development (Vanek, Francis M.l, Albright, & Angenent, 2012).    

Organic waste management has received attention in recent years.  Increases in livestock 

production in the United States have resulted in concern about manure management. Traditionally, 

the manure can be spread on crop fields as fertilizer due to its high nutrient content (Wilkie, 2005).  

However, field application of manure can become a significant source of odor, water pollution, 

antibiotic resistant bacteria, pathogens, greenhouse gas (GHG) emissions, and ammonia (NH3) 

emissions due to the incomplete anaerobic decomposition of manure during storage (Aguirre-

Villegas & Larson, 2017; Amon, Kryvoruchko, Amon, & Zechmeister-Boltenstern, 2006; 

Armstrong et al., 2010; Udikovic-Kolic, Wichmann, Broderick, & Handelsman, 2014; Wilkie, 

2005).  These problems are exacerbated by the fact that the number of farms with more than 2000 

cows are increasing while the number of smaller farms (fewer than 200 cows) is decreasing 

(Macdonald et al., 2007).  Larger dairy farms rarely have enough land to apply the manure in order 

to meet zero excess nitrogen and phosphorus goals (Macdonald et al., 2007).  Therefore, there is 

interest in on-site treatment of livestock manure.  Specifically, incorporating anaerobic digesters 

into these treatment systems is of particular interest.     

 Other types of organic wastes include food waste, yard waste, pet waste, and paper waste.  

Food waste is a particular issue, with a reported 36 million tons of food waste generated in the 

United States in 2012 (EPA, 2014).  The majority of organic wastes in the United States is 

landfilled (CEC, 2017).  Regulations on state and local disposal of waste have gone into effect and 

have increased interest in anaerobic digestion (AD) and composting.  It is estimated that there 

could be an over 50% reduction in greenhouse gas emissions (GHG) from organic wastes through 

100% diversion to AD and composting (CEC, 2017).   
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Consequently, better insight into the effect of different types of waste streams in AD systems 

will help to improve understanding of the AD process in order to contribute to environmental 

sustainability.      

1.1 Overview of anaerobic digestion  

Anaerobic digestion is an established technology which is used to treat organic waste streams 

while simultaneously generating energy.  During AD, a mixed microbial community converts 

complex organic solids to biogas without the presence of oxygen (De Baere, 2000; Mata-Alvarez, 

Mac, & Llabr, 2000).  The recovered solids after digestion are stabilized, thereby having reduced 

odor, solids concentration, weed-seed concentration, GHG emissions, and pathogen concentration 

for land application (Amon et al., 2006; Jeyanayagam & Collins Jr., 1984; ten Brummeler, 2000).  

Other benefits of AD include energy production, fertilizer production, nutrient conservation and 

mineralization, co-product production, compliance with environmental regulations, and tipping 

fees (Betts & Ling, 2009; Wilkie, 2005).   

Anaerobic digestion systems have been installed throughout the United States.  Increases in 

energy prices in the 1970s initially sparked interest in AD.  However, from 1970-1990, agricultural 

AD systems in the United States had a reported 60% failure rate and faced numerous technical and 

economic difficulties (Betts & Ling, 2009; Bishop & Shumway, 2009).  Today, concerns about 

increasing GHG emissions and air and water pollution from organic wastes have increased local, 

state, and federal interest in AD in the United States (Betts & Ling, 2009).  Additionally, new 

technology, governmental funding, and innovative partnerships have encouraged AD installations 

throughout the United States (Betts & Ling, 2009; Bishop & Shumway, 2009; Innovation Center 

for U.S. Dairy, 2016).  In 2019, AD systems on livestock farms in the United States generated 1.28 

million megawatt hour equivalents of energy and avoided 4.64 million metric tons of CO2 

equivalents (U.S. EPA, 2020).  Anaerobic digestion installations are also commonly found at 

wastewater treatment plants (WWTPs).  Despite technological advances and research, AD systems 

can still face process imbalance, resulting in decreased biogas production and economic loss.          

Anaerobic digestion relies on a series of interconnected biological processes.  The stages of 

AD are hydrolysis, acidogenesis, acetogenesis, and methanogenesis (Figure 1-1).  Because the 

entire process operates near thermodynamic equilibrium, the rate of reaction in each stage must 

remain in balance with the other stages in order for the digester to function efficiently.  The stability 
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in the digester is determined by the unique consortia of microorganisms in the digester 

(Venkiteshwaran, Bocher, Maki, & Zitomer, 2016).  The microorganisms in the digester are 

specific to the environmental conditions at each stage of digestion.  The microorganisms require 

simple substrates such as H2, CO2, formate, ethanol, and acetate.  

 

 

Figure 1-1.  Overview of anaerobic digestion, consisting of hydrolysis, acidogenesis  

acetogenesis , and methanogenesis stages.  

1.1.1 Hydrolysis 

The first stage of AD is hydrolysis (Figure 1-1).  Organic matter is composed of a 

biodegradable and non-biodegradable fraction (Parkin & Owen, 1987).  The biodegradable 

fraction can then be divided into a particulate and soluble fraction (Pavlostathis & Gossett, 1986).  

Hydrolysis is the breakdown of complex, organic molecules, such as polysaccharides, lipids, and 

proteins, by hydrolytic extracellular enzymes released by hydrolytic microorganisms.  These 

molecules are thus converted to smaller, soluble molecules which can be taken up by the cell 

membrane of microorganisms.  Hydrolysis is often the rate-limiting step in AD when recalcitrant 

molecules are present (Parkin & Owen, 1987; Pavlostathis & Gossett, 1986; Venkiteshwaran et 

al., 2016).   
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1.1.2 Acidogenesis  

Crucial intermediate compounds are generated during acidogenesis.  Specifically, the 

solubilized molecules from hydrolysis undergo conversion to volatile fatty acids (VFAs), alcohols, 

carbon dioxide (CO2), hydrogen (H2), and ammonia (Figure 1-1).  The acidogenesis stage is a 

common point of digester failure.  If the digester experiences a disturbance, such as overloading, 

a rapid temperature change, or toxicity, the VFAs can accumulate and cause a drop in digester pH 

which can ultimately inhibit methanogenesis (Venkiteshwaran et al., 2016).     

1.1.3 Acetogenesis 

More intermediate compounds are generated during the acetogenesis stage.  Some 

compounds from the acidogenesis stage, such as propionate, butyrate, isobutyrate, valerate, 

isovalerate, and ethanol are further degraded to acetic acid, formate, H2 and CO2 (Figure 1-1).  

Medium and long-chain fatty acids are degraded to acetate, H2, and CO2 during this stage 

(Venkiteshwaran et al., 2016).  The accumulation of VFAs, especially propionate, during this stage 

can inhibit methanogenesis (Venkiteshwaran et al., 2016).   

1.1.4 Methanogenesis 

There are two primary pathways for methane (CH4) production (Figure 1-1).  These are 

acetoclastic methanogenesis and hydrogenotrophic methanogenesis.  Acetoclastic methanogenesis 

is when CH4 is produced from the cleaving of the acetate molecule.  Hydrogenotrophic 

methanogenesis is when CH4 is produced by the reduction of CO2 by H2.  About 30% of CH4 

comes from hydrogenotrophic methanogenesis and 70% from acetoclastic methanogenesis  

(Parkin & Owen, 1987; Venkiteshwaran et al., 2016).   

1.2 Field digester systems 

A field AD system consists of infrastructure for feedstock collection, anaerobic digestion, 

effluent storage, gas handling, and gas use (United States Environmental Protection Agency, 2004).  

A great amount of variability can exist within each segment of a field digester system.  A simplified 

field AD system in the United States is shown in Figure 1-2. 
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Figure 1-2.  A simplified field digester system.  

1.2.1 Feedstock collection 

Feedstock collection methods are dependent on the location of the digester.  Manure for 

on-farm digesters can be collected through scraping and flushing.  Scraped manure is collected 

from the pen floor using a mechanical scraper and thus typically has a solids content of 10-20% 

(Martin & Roos, 2007; Safley Jr., Barker, & Westerman, 1984; Safley, Westerman, & Barker, 

1986; United States Environmental Protection Agency, 2004).  In a flush manure system, the 

manure from the barn is flushed with water and passed through a solid-liquid separation system 

with a resulting solids concentration of less than 5% (Chastain, Vanotti, & Wingfield, 2001; Frear, 

Wang, Li, & Chen, 2011; United States Environmental Protection Agency, 2004).  Digesters at 

WWTPs receive waste activated sludge (WAS) or primary sludge (PS) from the on-site wastewater 

treatment system (Mao, Feng, Wang, & Ren, 2015). Other types of wastes include food waste, 

lignocellulose wastes, and other industrial wastes.  These materials may be collected and trucked 

to an off-site AD system.  The feedstock may then be stored or subjected to a pre-treatment process 

to enhance its performance in the AD system.        

1.2.2 Influent 

The collected and stored feedstock can then be used to prepare the influent which is fed to 

the anaerobic digester.  The influent may be a mixture of several different types of wastes for “co-

digestion”. The influent usually contains inoculum, which may be taken from the digester effluent. 

Sometimes water or wastewater, e.g., lagoon water, may also be added to dilute the feedstock.   

In fact, co-digestion is implemented at many AD locations.  Co-digestion treats a mixture 

of different feedstocks, or waste streams, to make better use of available feedstock and improve 
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digester performance.  Agricultural wastes, animal wastes, sewage sludge, and food wastes are 

among the many waste streams which have been co-digested (Beneragama, Iwasaki, & Umetsu, 

2017; Bouallagui, Lahdheb, Ben Romdan, Rachdi, & Hamdi, 2009; Hills, 1979; Hills & Roberts, 

1981; Kafle & Kim, 2013; Toumi et al., 2015; Usack & Angenent, 2015).  Co-digestion can 

improve digester performance by creating a more balanced nutrient load, introducing suitable 

microorganisms into the microbial community, increasing the load of biodegradable matter, and 

improving buffering capacity (Bouallagui et al., 2009).  The exact mixing ratio of co-digested 

substrates depends on the individual substrate characteristics (Kafle & Kim, 2013).  The drawbacks 

of co-digestion include transportation costs for the wastes and local policy on waste generation 

(Mata-Alvarez et al., 2000).   

1.2.3 Anaerobic digester  

The anaerobic digester is the closed tank where the materials undergo fermentation to 

produce the biogas.  The digester type is the design of the AD system.  Different digester types 

include different temperatures, sizes, mixing strategies, feedstock types, loading rates, and total 

solids (TS) concentrations.  These considerations are important factors in determining pre-

treatment requirements during digestion as well as the optimal digester performance parameters 

(Betts & Ling, 2009).  The suitability of each type of anaerobic digester will depend on the facility, 

feedstock management system, the solids content of the feedstock, and climate.  Most anaerobic 

digesters operate at mesophilic (25-37°C) or thermophilic (55-65°C) conditions (Vanek, Albright, 

& Angenent, 2012).   

Two common field digesters include the continuous stirred tank reactor (CSTR) and the 

plug flow digester.  The CSTR is commonly used at WWTPs (Mao et al., 2015).  The CSTR 

digesters are ideal for treating high-strength industrial wastes (Mao et al., 2015).  A CSTR has a 

hydraulic retention time (HRT) of 15-20 days and works best with waste streams of 3-10% TS  

(Betts & Ling, 2009; Wilkie, 2005).  In a plug flow digester, the new material is added on one end 

and moves as a “plug” to the other end.  Plug flow digesters perform optimally with waste streams 

of 11-14% TS and have a longer HRT of 15-30 days (Betts & Ling, 2009; Wilkie, 2005).  The 

plug flow reactor is relatively low maintenance and inexpensive to operate (Lazarus & Rudstrom, 

2007).   
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Other types of digesters include covered lagoons, fixed film digesters, and up-flow 

anaerobic sludge blanket (UASB) digesters.  Covered lagoons have minimal control and are suited 

for TS concentrations of less than 3% and are operated at psychrophilic (-20°C-10°C) temperatures 

(Betts & Ling, 2009).  Fixed film digesters contain a biofilm of mesophilic or thermophilic 

microorganisms.  The HRT is usually less than 6 days, and this digester type is suited for 

feedstocks with less than 5% TS (Betts & Ling, 2009).  The UASB digesters have smaller volumes, 

faster flow velocities, higher biogas productions, and can handle higher TS concentrations (Mao 

et al., 2015).         

1.2.4 Effluent 

The effluent, also known as the digestate, has several potential uses.  The effluent from the 

digester typically has a reduced solids content and is more uniform than the raw feedstock (Betts 

& Ling, 2009).  It is, therefore, easier to process.  The effluent can undergo a post-treatment process 

to extract valuable by-products (Bishop & Shumway, 2009; Lazarus & Rudstrom, 2007; United 

States Environmental Protection Agency, 2004).  In many facilities, the digestate undergoes solid-

liquid separation in which the solids are recovered and sold as bedding, soil amendments, potting 

soil, or organic fertilizer while the liquids are land applied (Betts & Ling, 2009).  This can also 

improve the economics of the AD system.   

1.2.5 Biogas handling and use 

The gas handling system contains the equipment for gas storage, treatment, and transport to 

its end-use.  This equipment may include in-digester and/or separated biogas storages, a scrubber 

to remove hydrogen sulfide (H2S), piping, pumps, meters, pressure regulators, and condensate 

drains (United States Environmental Protection Agency, 2004).  The biogas from an AD system 

typically contains about 50-70% CH4, 30-50% CO2, and trace gases including H2S (NREL, 2013). 

During digestion, the gas is collected under the digester cover and then is pushed out through the 

collection pipe under the positive pressure inside the digester.  The biogas then can undergo 

scrubbing and the removal of water vapor.  The biogas may be used for heating, electricity, 

refrigeration, trigeneration, or as natural gas (Mao et al., 2015; United States Environmental 
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Protection Agency, 2004). The generated electricity can be sold to the local utility or be used to 

meet the energy needs of the site.   

1.3 Benefits of anaerobic digestion  

1.3.1 Renewable energy production 

The main benefit of AD is renewable energy production.  Specifically, the biogas can be 

combusted for usage in boilers or combined heat and power systems (CHP). Additionally, the 

biogas can be upgraded to CH4 gas which can be used as a natural gas (NREL, 2013).  In the 

United States, the CH4 potential from organic wastes could displace 5% and 56% of natural gas 

consumption in the electric power and transportation sectors, respectively (NREL, 2013).  Globally, 

the adoption of biogas technologies has the potential to increase substantially by 2040 (IEA, 2019).   

1.3.2 Environmental 

AD systems provide several environmental benefits.  The installation of AD systems 

reduces GHG emissions by treating organic waste and replacing conventional fossil fuels for 

energy (Amon et al., 2006; Mao et al., 2015; Weiske et al., 2006).  Organic wastes from landfills 

as well as from livestock manure are significant sources of CH4 emissions (17.4%, and 9.7% 

respectively) (U.S. EPA, 2020).  Fossil fuels account for 92.7% of CO2 emissions in the U.S. (U.S. 

EPA, 2020).  It is estimated that the biogas from AD could reduce GHG emissions from electricity 

by almost 4% (Cuéllar & Webber, 2008).   At WWTPs, AD systems can generate enough energy 

so that the plant can be carbon neutral (Vanek, Albright, & Angenent, 2012).  Additional 

environmental benefits include the replacement of inorganic fertilizers, the conservation of forest 

vegetation, reduction of acidification and eutrophication, and air and water pollution reduction 

(Mao et al., 2015).  Installations with co-digested material typically receive more environmental 

benefits (Clemens, Trimborn, Weiland, & Amon, 2006; Ebner et al., 2015).   

1.3.3 Economic 

AD systems can provide several economic benefits.  Often manure is co-digested with other 

feedstocks.  Therefore, the digester owners can receive the tipping fees from accepting these 

additional waste streams (Bishop & Shumway, 2009; Vanek, Albright, & Angenent, 2012).  The 
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removal of valuable co-products from the digestate is another source of income.  Methane gas, 

electricity, and other separated nutrients and fiber from the digestate are additional sources of 

revenue (Bishop & Shumway, 2009; Lazarus & Rudstrom, 2007).  It has been reported that AD 

plants can produce 165-245 kWh per ton of energy in excess of the 15 kWh per ton required for 

operation which could be sold (De Baere, 2000).  However, the relatively low natural gas and 

electricity prices in the United States can result in low returns (Vanek, Albright, & Angenent, 

2012).  Credits for GHG reductions are also another future source of revenue (Lazarus & Rudstrom, 

2007).  However, the economic benefits can vary due to the different circumstances of the 

individual farms, with larger farms benefiting more.  The price of electricity and availability of 

subsidies may determine profitability in the United States (Lazarus & Rudstrom, 2007). 

1.4 BMP testing  

A biochemical methane potential (BMP) test determines the suitability of specific feedstock 

for CH4 production in AD.  The BMP test is a controlled batch test to determine the CH4 production 

of a substrate under ideal conditions for methanogenesis.  Other characteristics of the substrate 

such as the biodegradability, and the rate of degradation are also determined (Angelidaki et al., 

2009).  The information obtained from a BMP test can then be used to determine the substrate’s 

suitability for a field digester system (Lesteur et al., 2010; Strömberg, Nistor, & Liu, 2014).  

Chapters 2 and 3 provide more background information about different BMP methodologies and 

modeling processes.    

1.5 Knowledge gaps 

There is a lack of comprehensive knowledge about the chemical and physical properties of 

the influent in AD systems.  The substrates tested in BMP systems rarely receive in-depth 

characterization of their chemical attributes even though different substrates in BMP testing can 

substantially affect the digester behavior.  Additionally, the digester liquid from BMP testing is 

rarely given in-depth characterization beyond pH, solids content, total alkalinity (TALK), total 

volatile fatty acids (TVFA), and nitrogen concentrations.  Further insight into substrate and 

digester liquid characterization in BMP testing can improve the following areas. 
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There is a lack of knowledge about the complex relationships between digester function and 

the physical and chemical characteristics of the digester liquid.  This extends to the phenomenon 

of foaming, which has received little attention as to its causes in AD systems.  Prediction of 

anaerobic digester phenomena such as foaming is required to better understand the introduction of 

co-digested substrates into field AD systems. Obtaining more data about AD characterization can 

illuminate these relationships.     

Little comprehensive modeling of the biogas curves from AD systems has been conducted.  

There are a variety of models that have been identified for different CH4 production curves, but 

few for H2S production.  Hydrogen sulfide production is a toxic, corrosive gas which often must 

be removed from the biogas.  A greater understanding of H2S production can aide in the 

development of solutions for its removal and treatment.  Additionally, understanding and 

identifying these models is crucial for determining feasibility of substrates for AD.         

1.6 Research objectives 

The objective of this Ph.D. dissertation was to gain new knowledge about the function of 

AD systems in the areas of CH4 production, H2S production, and digester foaming.  These are 

areas in which digesters can experience technical difficulty.  Low CH4 yields, the presence of H2S 

in the biogas, and digester foaming can be detrimental economically to the AD systems.  Digester 

foaming is the rapid production of bubbles in the digester system and can lead to digester overspill, 

low CH4 yield, and foaming of the pipework.  Foaming has also been observed in manure pits 

(Boe, Kougias, Pacheco, O-Thong, & Angelidaki, 2012) and WAS systems (Blackall, Harbers, 

Hayward, & Greenfield, 1991), so insight into AD foaming can be applicable in other areas of 

research.  Insight into H2S production in AD could be useful to H2S production in manure pits. 

 Specifically, this dissertation seeks to gain information on (1) the influence of the physical 

and chemical properties of substrate on these AD processes and (2) different modeling strategies 

for characterizing and predicting these AD processes.     

1.7 Hypothesis  

The hypothesis of this dissertation is that there are unique and measurable differences in 

mesophilic anaerobic digestion under different operational conditions.   



 

40 

 

1.8 Dissertation outline 

This dissertation is composed of seven chapters.  In addition to the general introduction of 

the dissertation in Chapter 1, Chapter 2 is a literature review of BMP testing methodology.  It 

synthesizes information about BMP test design, operation, and data processing based on 139 

literature publications.  Chapter 3 is a literature review of BMP test modeling.  It provides details 

about the various models used in this dissertation.  Chapter 3 is structured as a separate review 

from Chapter 2 because of the amount of literature (~150 cited publications) about BMP modeling, 

which is generally at a different level of BMP research.  

Chapters 4-6 are original research papers based on eight different experimental BMP studies.  

The BMP studies were conducted using substrate and inoculum collected from four different field 

digesters.  The data includes CH4 production data, H2S production data, physical and chemical 

characteristic data from both the field digesters and BMP digesters, and qualitative data about the 

field and BMP digester conditions.  The data was analyzed using a mix of linear and non-linear 

modeling techniques, basic and multivariate statistical calculations, and machine learning.  The 

results were used to explain and simulate predictions of AD function in the areas of H2S  

production, foaming, and CH4 production.  An overview of data collection and analyses for 

Chapters 3-5 is presented in Figure 1-3.  

Specifically, Chapter 4 studies the production of H2S during BMP testing and models this 

process.  Chapter 5 investigates foaming in a field digester and lab-digesters and uses machine 

learning to simulate predictions of foaming status.  Chapter 6 develops BMP models using machine 

learning for specific methane yield simulation.  An overview of data collection and analysis for 

Chapters 4-6 is presented in Figure 1-3.  Finally, the general conclusions from this dissertation are 

presented in Chapter 7.  
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Figure 1-3.  Overview of data collection and analysis in Chapters 3-5 of this dissertation. 

1.9 References 

Aguirre-Villegas, H. A., & Larson, R. A. (2017). Evaluating greenhouse gas emissions from 

dairy manure management practices using survey data and lifecycle tools. Journal of 

Cleaner Production, 143, 169–179. https://doi.org/10.1016/j.jclepro.2016.12.133 

Amon, B., Kryvoruchko, V., Amon, T., & Zechmeister-Boltenstern, S. (2006). Methane, nitrous 

oxide and ammonia emissions during storage and after application of dairy cattle slurry and 

influence of slurry treatment. Agriculture, Ecosystems and Environment, 112(2–3), 153–

162. https://doi.org/10.1016/j.agee.2005.08.030 

Angelidaki, I., Alves, M., Bolzonella, D., Borzacconi, L., Campos, J. L., Guwy, A. J., … van 

Lier, J. B. (2009). Defining the biomethane potential (BMP) of solid organic wastes and 

energy crops: A proposed protocol for batch assays. Water Science and Technology, 59(5), 

927–934. https://doi.org/10.2166/wst.2009.040 

Armstrong, S. D., Smith, D. R., Joern, B. C., Owens, P. R., Leytem, A. B., Huang, C., & Adeola, 

L. (2010). Transport and fate of phosphorus during and after manure spill simulations. 

Journal of Environmental Quality, 39(1), 345–352. https://doi.org/10.2134/jeq2009.0234 

Barber, E. M., & Mcquitty, J. B. (1977). Chemical Control of Hydrogen Sulfide From Anaerobic 

Swine Manure I . Oxidizing Agents. Canadian Agricultural Engineering, 19(1), 15–19. 

 

 

Industrial scale 

anaerobic digesters

Collection

Characterization

Digester 

function

Digestate 

Methane

Hydrogen Sulfide

Foaming

BMP Testing Data Analysis

Modelling

Statistics

Machine Learning

Foaming, date, location, sample type, pH, conductivity, solids, COD, TALK, 

TVFA, nitrogen, alkalinity, phosphorus, metals, sulfate, tannins & lignin 

Substrate & 

inoculum



 

42 

 

Beneragama, N., Iwasaki, M., & Umetsu, K. (2017). Methane production from thermophilic co-

digestion of dairy manure and waste milk obtained from therapeutically treated cows. 

Animal Science Journal, 88(2), 401–409. https://doi.org/10.1111/asj.12624 

Betts, C., & Ling, C. (2009). Cooperative Approaches for Implementation of Dairy Manure 

Digesters. USDA Research Report 217. Washington D.C. 

Bishop, C. P., & Shumway, C. R. (2009). The economics of dairy anaerobic digestion with 

coproduct marketing. Review of Agricultural Economics, 31(3), 394–410. 

Blackall, L. L., Harbers, A. E., Hayward, A. C., & Greenfield, P. F. (1991). Activated sludge 

foams: Effects of environmental variables on organism growth and foam formation. 

Environmental Technology (United Kingdom), 12(3), 241–248. 

https://doi.org/10.1080/09593339109385001 

Boe, K., Kougias, P. G., Pacheco, F., O-Thong, S., & Angelidaki, I. (2012). Effect of substrates 

and intermediate compounds on foaming in manure digestion systems. Water Science and 

Technology, 66(10), 2146–2154. https://doi.org/10.2166/wst.2012.438 

Bouallagui, H., Lahdheb, H., Ben Romdan, E., Rachdi, B., & Hamdi, M. (2009). Improvement of 

fruit and vegetable waste anaerobic digestion performance and stability with co-substrates 

addition. Journal of Environmental Management, 90(5), 1844–1849. 

https://doi.org/10.1016/j.jenvman.2008.12.002 

CEC. (2017). Characterization and Mangement of Organic Waste in North America. Montreal. 

Chastain, J. P., Vanotti, M. B., & Wingfield, M. M. (2001). Effectiveness of Liquid-Solid 

Seperation for Treatment of Flushed Dairy Manure: A Case Study. Applied Engineering in 

Agriculture, 17(3), 343–354. 

Clemens, J., Trimborn, M., Weiland, P., & Amon, B. (2006). Mitigation of greenhouse gas 

emissions by anaerobic digestion of cattle slurry. Agriculture, Ecosystems and Environment, 

112(2–3), 171–177. https://doi.org/10.1016/j.agee.2005.08.016 

Cuéllar, A. D., & Webber, M. E. (2008). Cow power: The energy and emissions benefits of 

converting manure to biogas. Environmental Research Letters, 3(3). 

https://doi.org/10.1088/1748-9326/3/3/034002 

De Baere, L. (2000). Anaerobic digestion of solid waste: state-of-the-art. Water Science and 

Technology : A Journal of the International Association on Water Pollution Research, 

41(3), 283–290. 



 

43 

 

Ebner, J. H., Labatut, R. A., Rankin, M. J., Pronto, J. L., Gooch, C. A., Williamson, A. A., & 

Trabold, T. A. (2015). Lifecycle Greenhouse Gas Analysis of an Anaerobic Codigestion 

Facility Processing Dairy Manure and Industrial Food Waste. Environmental Science and 

Technology, 49(18), 11199–11208. https://doi.org/10.1021/acs.est.5b01331 

EPA. (2014). Municipal Solid Waste Generation , Recycling, and Disposal in the United States : 

Facts and Figures for 2012. Washington, DC. 

Frear, C., Wang, Z. W., Li, C., & Chen, S. (2011). Biogas potential and microbial population 

distributions in flushed dairy manure and implications on anaerobic digestion technology. 

Journal of Chemical Technology and Biotechnology, 86(1), 145–152. 

https://doi.org/10.1002/jctb.2484 

Hills, D. J. (1979). Effects of carbon: nitrogen ratio on anaerobic digestion of dairy manure. 

Agricultural Wastes, 1(4), 267–278. 

Hills, D. J., & Roberts, D. W. (1981). Anaerobic digestion of dairy manure and field crop 

residues. Agricultural Wastes, 3(3), 179–189. https://doi.org/10.1016/0141-4607(81)90026-

3 

IEA. (2019). World Energy Outlook 2019. Paris. 

Innovation Center for U.S. Dairy. (2016). 2016 US Dairy Sustainability Report. 

Jeyanayagam, S. S., & Collins Jr., E. R. (1984). Weed Seed Survival in a Dairy Manure 

Anaerobic Digester. Trans ASAE, 27(5), 1518–1523. 

Kafle, G. K., & Kim, S. H. (2013). Anaerobic treatment of apple waste with swine manure for 

biogas production: Batch and continuous operation. Applied Energy, 103, 61–72. 

https://doi.org/10.1016/j.apenergy.2012.10.018 

Lazarus, W. F., & Rudstrom, M. (2007). The economics of anaerobic digester operation on a 

Minnesota dairy farm. Review of Agricultural Economics, 29(2), 349–364. 

https://doi.org/10.1111/j.1467-9353.2007.00347.x 

Lesteur, M., Bellon-Maurel, V., Gonzalez, C., Latrille, E., Roger, J. M., Junqua, G., & Steyer, J. 

P. (2010). Alternative methods for determining anaerobic biodegradability: A review. 

Process Biochemistry, 45(4), 431–440. https://doi.org/10.1016/j.procbio.2009.11.018 

Macdonald, J. M., Donoghue, E. J. O., Mcbride, W. D., Nehring, R. F., Sandretto, C. L., & 

Mosheim, R. (2007). Profits, Costs, and the Changing Structure of Dairy Farming. United 

States Department of Agriculture. Washington D.C. https://doi.org/10.2139/ssrn.1084458 



 

44 

 

Mao, C., Feng, Y., Wang, X., & Ren, G. (2015). Review on research achievements of biogas 

from anaerobic digestion. Renewable and Sustainable Energy Reviews, 45, 540–555. 

https://doi.org/10.1016/j.rser.2015.02.032 

Martin, J. H., & Roos, K. F. (2007). Comparison of the Performance of a Conventional and a 

Modified Plug-Flow Digester for Scraped Dairy Manure (No. 701P0907). International 

Symposium on Air Quality and Waste Management in Agriculture. Broomfield, Colorado. 

Mata-Alvarez, J., Mac, S., & Llabr, P. (2000). Anaerobic digestion of organic solid wastes. An 

overview of research achievements and perspectives. Bioresource Technology, 74(1), 3–16. 

https://doi.org/10.1016/S0960-8524(00)00023-7 

NREL. (2013). Biogas Potential in the United States (Fact Sheet). Related Information: Energy 

Analysis, NREL (National Renewable Energy Laboratory). Golden, CO. 

https://doi.org/10.2172/1097303 

Parkin, B. G. F., & Owen, W. F. (1987). Fundamentals of anaerobic digestion of wastewater 

sludges. Journal of Environmental Engineering, 112(5), 867–920. 

Pavlostathis, S. G., & Gossett, J. M. (1986). A kinetic model for anaerobic digestion of 

biological sludge. Biotechnology and Bioengineering, 28(10), 1519–1530. 

https://doi.org/10.1002/bit.260281010 

Safley Jr., L. M., Barker, J. C., & Westerman, P. W. (1984). Characteristics of Fresh Dairy 

Manure. Transactions of the ASAE, 27(4), 1150–1153. https://doi.org/10.13031/2013.32937 

Safley, L. M., Westerman, P. W., & Barker, J. C. (1986). Fresh dairy manure characteristics and 

barnlot nutrient losses. Agricultural Wastes, 17(3), 203–215. https://doi.org/10.1016/0141-

4607(86)90094-6 

Strömberg, S., Nistor, M., & Liu, J. (2014). Towards eliminating systematic errors caused by the 

experimental conditions in Biochemical Methane Potential (BMP) tests. Waste 

Management, 34(11), 1939–1948. https://doi.org/10.1016/j.wasman.2014.07.018 

ten Brummeler, E. (2000). Full scale experience with the BIOCEL process. Water Science and 

Technology, 41(3), 299–304. 

Toumi, J., Miladi, B., Farhat, A., Nouira, S., Hamdi, M., Gtari, M., & Bouallagui, H. (2015). 

Microbial ecology overview during anaerobic codigestion of dairy wastewater and cattle 

manure and use in agriculture of obtained bio-fertilisers. Bioresource Technology, 198, 

141–149. https://doi.org/10.1016/j.biortech.2015.09.004 



 

45 

 

U.S. EPA. (2020). Potential for Anaerobic Digestion on Livestock Farms in the United States. 

Retrieved April 15, 2020, from https://www.epa.gov/agstar/agstar-data-and-

trends#adpotential 

Udikovic-Kolic, N., Wichmann, F., Broderick, N. A., & Handelsman, J. (2014). Bloom of 

resident antibiotic-resistant bacteria in soil following manure fertilization. Proceedings of 

the National Academy of Sciences, 111(42), 15202–15207. 

https://doi.org/10.1073/pnas.1409836111 

UN. (2019). Energy-United Nations Sustainable Development. Retrieved September 29, 2019, 

from https://www.un.org/sustainabledevelopment/sustainable-development-goals/ 

United States Environmental Protection Agency. (2004). A Manual For Developing Biogas 

Systems at Commercial Farms in the United States. (K. F. Roos, J. B. Martin Jr., & M. A. 

Moser, Eds.), AgSTAR Handbook (2nd ed.). 

Usack, J. G., & Angenent, L. T. (2015). Comparing the inhibitory thresholds of dairy manure co-

digesters after prolonged acclimation periods: Part 1 – Performance and operating limits. 

Water Research, 87, 1–12. https://doi.org/10.1016/j.watres.2015.05.055 

Vanek, Francis M.l, Albright, L. D., & Angenent, L. T. (2012). Introduction. In Energy Systems 

Engineering: Evaluation and Implementation (Second, pp. 1–28). New York: McGraw Hill. 

Vanek, F. M. ., Albright, L. D., & Angenent, L. T. (2012). Bioenergy Resources and Systems. In 

Energy Systems Engineering: Evaluation and Implementation (Second, pp. 449–476). New 

York: McGraw Hill. 

Venkiteshwaran, K., Bocher, B., Maki, J., & Zitomer, D. (2016). Relating anaerobic digestion 

microbial community and process function. Microbiology Insights, 8, 37–44. 

https://doi.org/10.4137/MBI.S33593 

Weiske, A., Vabitsch, A., Olesen, J. E., Schelde, K., Michel, J., Friedrich, R., & Kaltschmitt, M. 

(2006). Mitigation of greenhouse gas emissions in European conventional and organic dairy 

farming. Agriculture, Ecosystems and Environment, 112(2–3), 221–232. 

https://doi.org/10.1016/j.agee.2005.08.023 

Wilkie, A. C. (2005). Anaerobic Digestion of Dairy Manure : Design and Process 

Considerations. In Dairy Manure Management: Treatment, Handling, and Community 

Relations (pp. 301–312). Ithaca, NY: Natural Resource, Agriculture, and Engineering 

Service. 



 

46 

 

 REVIEW OF BIOCHEMICAL METHANE POTENTIALS 

IN ANAEROBIC DIGESTION—PART I: TESTING METHODOLOGIES 

2.1 Abstract  

Biochemical methane potential (BMP) tests are a frequently used method to determine the 

feasibility of a substrate for anaerobic digestion (AD).  However, there is significant variability in 

reported BMP methodologies.  This chapter synthesized 88 peer-reviewed studies in which batch 

BMP testing was reported. From these studies, the major sources of variability in the BMP test 

methodologies were identified and test conditions for reliable comparisons of BMP test results to 

large-scale AD systems were determined.  Biogas measurements were the greatest source of 

variability.  State-of-the-art improvements in biogas measurements through the use of automated 

BMP tests were identified.  Additionally, the use of controls and the consistent standardization of 

biogas volumes improved the reliability of reported biogas measurements.  

2.2 Introduction 

Anaerobic digestion (AD) is a mature technology, which is used for the treatment of waste 

and the simultaneous generation of energy.  Anaerobic digestion uses a mixed microbial 

community to convert complex organic materials to biogas, a renewable energy containing about 

55–70% methane (CH4), without the presence of molecular oxygen (De Baere, 2000; Mao, Feng, 

Wang, & Ren, 2015; Q. Zhang, Hu, & Lee, 2016). Organic materials, such as land-applied 

livestock manure, can decompose and release significant quantities of CH4 into the atmosphere. 

Therefore, AD technology is a solution to capture this CH4, which has a high Global Warming 

Potential (GWP) of 28–36 over 100 years (USEPA, 2017). A desire to generate renewable energy 

as well as concern about increasing global greenhouse gas (GHG) emissions from organic wastes 

has sparked interest in AD in recent years (Abbasi, Tauseef, & Abbasi, 2012).  

Anaerobic digestion is a series of biochemical and microbiological processes.  The four main 

stages of AD are hydrolysis, acidogenesis, acetogenesis, and methanogenesis (Gavala, Angelidaki, 

& Ahring, 2003). Because the entire process operates near thermodynamic equilibrium, AD relies 

on syntrophic relationships among a unique guild of microorganisms in order to function 

efficiently (Leng et al., 2018; Venkiteshwaran, Bocher, Maki, & Zitomer, 2016). Additionally, the 
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type of substrate being tested can cause process imbalance (V.A. Vavilin, Lokshina, Jokela, & 

Rintala, 2004; V.A. Vavilin, Rytov, & Lokshina, 1996; Vedrenne, Béline, Dabert, & Bernet, 2008). 

Therefore, before designing a full-scale AD system with a specific substrate or introducing a new 

type of substrate into an existing AD system, it is necessary to know the substrate’s characteristics 

and feasibility for digestion.  

A common method for substrate characterization is the biochemical methane potential 

(BMP) test. During the BMP test, the substrate undergoes controlled batch AD under laboratory 

conditions to determine the specific CH4 yield, also known as the SMY (mL CH4 g mass-1),  the 

biodegradability, and the rate of degradation (I. Angelidaki et al., 2009). These values can be used 

to approximate the substrate’s suitability of digestion or co-digestion with other substrates, 

retention time, organic loading rate (OLR), and the microbial behavior in a full scale digester 

(Lesteur et al., 2010; Strömberg, Nistor, & Liu, 2014).  

Various methodologies have been reported in BMP tests. As a result of the complexity of 

the AD process and the lack of a standardized method, BMP tests may provide inaccurate 

predictions for the performance of the same feedstock in large-scale digesters. Some major 

drawbacks of the BMP test have been identified as the investment of time, and the limited 

understanding of the complex microbiological, physical, and chemical processes that occur during 

AD (I. Angelidaki et al., 2009; Lesteur et al., 2010). However, much information concerning the 

BMP test methodologies in literature still remains to be synthesized.  

This chapter reviews the past and current methodologies for BMP tests in combination with 

the author’s own BMP test practices. It also summarizes the challenges of obtaining high quality 

data for modeling large-scale digester performance.  Additionally, this paper also identifies the 

major sources of variability in BMP testing. Eighty-eight peer-reviewed BMP studies were 

synthesized to identify and report these sources of variability. Finally, this chapter provides 

recommendations for more reliable, consistent, and accurate results from BMP testing.   

2.3 Overview of the BMP test 

In this dissertation, a BMP test is defined as a laboratory experimental process to determine 

the biogas/methane production from a specific substrate under controlled AD. The general process 

of the BMP test includes analysis of the substrate to the digester, anaerobic digestion of the 

substrate for a selected number of days, measurement and analysis of biogas produced during the 
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test, and analysis of effluent, also called digestate, at the end of digestion (Figure 2-1). The BMP 

test generates data that can be used for BMP modeling, which is reviewed in Chapter 3. 

 

 

Figure 2-1. Overview of the general process of BMP testing and modeling.  

The BMP test methodology has been reported and scrutinized in many studies.  One of the 

first BMP bioassay protocols to give comparatively rapid and reliable results, when compared with 

a semi-continuously fed bench-scale study, was developed by Owen et al. (1979). This method has 

been modified in subsequent years but the basic principles and methods have been retained. 

Generally, the BMP test adds known volumes of a well-defined substrate, methanogenic inoculum, 

and nutrient media to lab-scale, batch digesters under favorable conditions for CH4 production (I. 

Angelidaki et al., 2009; Irini Angelidaki & Sanders, 2004; Chynoweth, Turick, Owens, Jerger, & 

Peck, 1993; Filer, Ding, & Chang, 2019; Owen et al., 1979; Pearse, Hettiaratchi, & Kumar, 2018). 

These favorable conditions include sufficient nutrients, a neutral pH (6.8–7.2), strictly anaerobic 

conditions, a diverse and abundant population of active methanogens, a constant and uniform 

temperature, and a substrate concentration below inhibition (Gerardi, 2003). However, many 

factors in the BMP tests, including physical setup and control, substrate and inoculum preparation, 

biogas collection and quantification, and BMP calculation, may influence BMP test quality and 

deserve close attention (Table 2-1).  Often, the choice of these key operational parameters depends 

on the type of substrate being tested, equipment, laboratory space, and financial limitations.  
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Table 2-1. Factors that can influence the outcomes of the BMP test. 

BMP Test Set-up BMP Test Operation Biogas Quantification BMP Calculation 

• Digester 

• Material 

• Configuration 

• Working volume 

• Headspace volume 

• Measurement and 

control method 

• Temperature 

• Mixing 

• Data acquisition 

• Sampling 

• Statistical design 

• Replicates  

• Number of controls 

• Test duration 

 

 

• Mode of operation 

• Temperature 

• Mixing 

• Test duration 

• Statistical design 

• Substrate 

• Uniformity 

• Storage 

• Inoculum 

• Inoculum-to-substrate 

ratio 

• Source 

• Storage 

• Nutrient media 

• pH measurement 

• Liquid sampling 

 

• Headspace treatment 

• Collection and 

measurement 

• Biogas volume 

• Biogas composition 

 

• STP normalization 

• Mass unit for 

normalization 

 

2.4 BMP test set-up 

2.4.1 Digester material 

Anaerobic digesters are the major hardware in the BMP test setup. They are essentially 

sealed containers that provide an anaerobic condition for a substrate to go through the biogas 

production process. These containers have been called different names, such as flasks, bottles, or 

vessels.  The most common shapes of BMP test digesters were cylindrical or conical.     

The digesters in the reviewed BMP studies were made of several different materials.  Glass 

was the most commonly used material for the digesters (Browne & Murphy, 2013; Hashimoto, 

1989; Kafle & Chen, 2016; Kafle & Kim, 2013; Kafle, Kim, & Sung, 2013; Luste, Heinonen-

Tanski, & Luostarinen, 2012; Nizami, Orozco, Groom, Dieterich, & Murphy, 2012; V.A. Vavilin 

et al., 2004; Vedrenne et al., 2008). Plastic (Oslaj, Mursec, & Vindis, 2010; Y. Wang, Odle, 

Eleazer, & Barlaz, 1997), polyvinyl chloride (PVC) (Rico, García, Rico, & Tejero, 2007), and 

aluminum (Martín-González, Colturato, Font, & Vicent, 2010) were less frequently used as 

digester material (Figure 2-2).  Over 50% of the digesters examined in the reviewed BMP studies 

were made of glass (Figure 2-2).  However, there is little information concerning the effect of 

different materials on digester function.  
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Figure 2-2. Digester materials and their distribution in 88 reported BMP studies.  

2.4.2 Digester configurations 

The digester configuration is how the digesters are set-up relative to their heating source, 

gas collection, and other data acquisition methods. Various configurations were reported in the 

BMP studies.  The configurations were generally dictated by the method of gas measurement and 

desired size and headspace. Serum bottles were commonly used, usually with the bottle capped by 

a butyl rubber septum and sealed with an aluminum crimp (Alzate, Muñoz, Rogalla, Fdz-Polanco, 

& Pérez-Elvira, 2012; Luste et al., 2012; Nizami et al., 2012).  Incubators or shaking incubators 

were also frequently used to maintain appropriate temperatures.  Other studies used large vessels 

with internal stirring systems and heating blankets (Browne & Murphy, 2013).   

Automation of the BMP test is an emerging area of digester configurations.  Automated 

BMP systems have increased in popularity (I Angelidaki, Schmidt, Ellegaard, & Ahring, 1998; 

Badshah, Lam, Liu, & Mattiasson, 2012; Browne & Murphy, 2013; Koch, Hafner, Weinrich, & 

Astals, 2019; Koch, Lippert, & Drewes, 2017; Koch, Plabst, Schmidt, Helmreich, & Drewes, 2016; 

Kolbl, Paloczi, Panjan, & Stres, 2014; Ma, Gu, & Liu, 2018; McEniry, Allen, Murphy, & O’Kiely, 

2014; Meng et al., 2018; Strömberg, Nistor, & Liu, 2015; J. Zhang et al., 2016), since they were 

first demonstrated by Angelidaki et al. (1998). Automated BMP systems can test different 

combinations of digesters in parallel with reproducible and reliable results (Badshah et al., 2012). 

They allow for online data acquisition and can reduce the labor required for the BMP tests as well 
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as the possibility of operator error. However, they can be prohibitively expensive for many 

research spaces.  

2.4.3 Digester working volumes 

Reported working volumes varied considerably in the reviewed BMP studies. The reported 

working volumes ranged from 20 to 5000 mL (Figure 2-3). Over 50% of the reported studies had 

working volumes of 250 mL or less (Figure 2-3). However, several studies have used digester sizes 

greater than 500 mL for the BMP test (Browne & Murphy, 2013; Buffiere, Loisel, Bernet, & 

Delgenes, 2006; Kafle & Kim, 2013; Kafle et al., 2013; Neves, Gonçalo, Oliveira, & Alves, 2008; 

Rao, Singh, Singh, & Sodha, 2000; Rincón, Banks, & Heaven, 2010).  

Comparisons among BMP tests conducted with digesters of differing volumes have yielded 

inconsistent results. Browne and Murphy (2013) compared a large volume continuously stirred 

tank reactor (CSTR) BMP setup (5 L) to a small volume BMP setup (0.5 L) treating food.  They 

found that the smaller BMP setup gave higher SMYs than the large volume BMP setup.  This 

outcome was most likely due to better mixing and more precise gas measurements in the smaller 

bottles. Conversely, another study found that the SMY in a larger digester (1500 mL working 

volume) was higher than in a smaller digester (70 mL working volume) for grass silage under 

similar conditions with continuous mixing (Nizami et al., 2012). It has been suggested that non-

homogenous samples may need a larger working volume to obtain consistent results (Raposo et 

al., 2011).   
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Figure 2-3.  Digester working volumes and their distribution in 88 reported BMP studies.  

2.4.4 Digester headspace volumes 

Headspace volume may also affect the selection of digesters.  The recommended headspace 

volume is 10–30% of the total digester volume (OECD, 2006). In the reported BMP studies, the  

headspace volume was frequently over 25% (Figure 2-4). Owen et al. (1979) suggested that the 

sample size and liquid-to-headspace ratio should be selected so that the measurable cumulative 

CH4 volume over the course of the experiment is between 20–120 mL. In that study, this resulted 

in a 100 mL working volume in a 264 mL serum bottle.  The selection of headspace volume may 

also depend on how frequently gas is released from the digester. If the headspace is vented 

regularly, only 10% of the total digester volume could also be necessary as headspace (OECD, 

2006). However, there is little experimental comparison about the effect of headspace volume on 

digester performance. One recent study recommends a headspace of 75% of the total digester 

volume to minimize BMP measurement errors when using manometric measurements (Hafner & 

Astals, 2019). The reasoning for this is that a greater headspace may reduce errors from the 

volatilization of CH4 during measurements. Overall, consideration of the biogas volume and 

production rate as well as the sampling frequency would influence digester headspace selection.   
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Figure 2-4. Headspace volume in digesters and their distribution in 88 reported BMP studies. 

2.5 BMP operation and physical control  

2.5.1 Mode of operation  

The digesters can be set up to be continuous, semi-continuous, or batch, although batch is 

most common due to its simplicity. Typically, the digesters are fed at the beginning of the 

experiment, sparged to maintain an anaerobic environment, and then sealed. Semi-continuous or 

continuous fed batch tests are typically time-intensive and are therefore used less frequently than 

batch tests. Semi-continuous fed batch studies are typically used to compare the reliability of BMP 

batch testing (Chynoweth et al., 1993; Labatut, 2012; Usack & Angenent, 2015). The focus of this 

chapter is on batch tests.  

2.5.2 Temperature measurement and control 

The temperature of the BMP test affects several aspects of the digester function.  This 

includes the degradation rates of the substrate, the survival and growth of microorganisms, and the 

microbial metabolism (Irini Angelidaki & Sanders, 2004; Mata-Alvarez et al., 2014). Typically, 

the BMP tests are conducted at mesophilic (25 – 40°C) temperatures (Irini Angelidaki & Sanders, 

2004) The digesters are commonly placed in a temperature-controlled chamber or in a thermostatic 

water bath. BMP tests have also been conducted at thermophilic (45 – 60°C) and psychrophilic (< 
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20°C) temperatures (Irini Angelidaki & Sanders, 2004). Thermophilic temperatures have greater 

solids destruction and may be used with difficult to degrade substrates or high OLRs (Mata-

Alvarez, Mac, & Llabr, 2000; Wandera et al., 2018). However, thermophilic digesters typically 

experience issues with process instability related to propionate accumulation (Moonil Kim, Ahn, 

& Speece, 2002). The temperature selection will depend on the conditions which are reflected in 

the real-life digester which is being tested. Theoretically, temperature should not affect the ultimate 

biodegradability, but it can influence the rate of degradation. 

2.5.3 Digester liquid mixing 

Mixing has several effects on the BMP test.  Mixing can prevent the stratification of the 

liquid in the bottle and allow for uniform samples during collection (Labatut, Angenent, & Scott, 

2011). Mixing can also prevent the saturation of carbon dioxide (CO2) in the liquid phase of the 

experiment (I Angelidaki et al., 1998). However, the mixing intensity during AD may negatively 

affect the formation of the methanogenic community (Vasily A. Vavilin & Angelidaki, 2005).  

High-intensity mixing may disturb the formation of methanogenic communities within the digester 

and limit methanogenesis (Vasily A. Vavilin & Angelidaki, 2005).      

Reported mixing intensity can vary from intermittent to continuous. At minimum, the BMP 

digester is mixed at least once before gas sampling. In many cases, mixing is continuous using a 

stir bar or mechanical shaker. Intermittent mixing consists of mixing the bottle once every 1 – 2 

days, typically before gas sampling. Thorough mixing may be needed to maximize CH4 production 

(Browne & Murphy, 2013). For example, high mixing intensity in batch digestion has been linked 

to the prevention of the formation of methanogenic communities and lower CH4 yields (Moonil 

Kim et al., 2002; Vasily A. Vavilin & Angelidaki, 2005; Vedrenne et al., 2008). Continuous 

mixing may also prevent the syntrophic oxidation of volatile fatty acids (VFAs) which is crucial 

for methanogenesis (McMahon, Stroot, Mackie, & Raskin, 2001). Low-intensity mixing appears 

to be better than intense mixing (Stroot, McMahon, Mackie, & Raskin, 2001). Overall, low 

intensity or minimal mixing may be the best method to maximize CH4 production.  
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2.5.4 Test duration 

The digestion time is also a critical parameter in the BMP test.  However, there is 

disagreement about the necessary time needed to ensure that the substrate has reached its maximum 

SMY.  Additionally, the length of the BMP test can prolong the acquisition of desired information.  

Typically, the test continues until there is nearly no detectable CH4 production. In some studies, 

this is when the CH4 production is less than 1% of the cumulative CH4 volume (Strömberg et al., 

2015). In other studies, this is when biogas production is less than 1% of the biogas volume (Belle, 

Lansing, Mulbry, & Weil, 2015). 

The length of the BMP test is highly variable (Figure 2-5). Of the reviewed BMP studies, 

over 60% of reported digestion lengths were between 21-60 days (Figure 2-5). Lignocellulosic 

materials such as grasses had longer test lengths over of 60 days.  Manure collection methods can 

affect degradability and length of the BMP test.  Dairy manure ranged from 30-100 days in the 

papers reviewed (Figure 2-5).  Lignocellulosic materials such as woody biomass or paper products 

have required test lengths of 60 days or longer (Amon et al., 2007; Tong, Smith, & McCarty, 1990). 

For example, using the 1% rule as an indicator of digestion time may be deceptive for 

lignocellulosic substrates because they have been shown to have biphasic CH4 production (Turick 

et al., 1991).  A longer digestion time may ensure that all CH4 is accounted for during the test.   

Therefore, recommendations of BMP test lengths are inconsistent.  Some studies have 

suggested that BMP analyses should have a minimum operation time of at least 50 days to ensure 

that the maximum SMY has been reached (Hansen et al., 2004; Turick et al., 1991). Others suggest 

a longer period of 80 or 100 days (Ponsá, Gea, & Sánchez, 2011; Vedrenne et al., 2008).  

Ultimately, the composition of the substrate may be a determining factor on digestion time.  

Overall, close monitoring of the BMP test is required to ensure that the maximum CH4 potential 

is reached before ending the experiment.      
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References: Alzate et al. (2012); Belle, Lansing, Mulbry, & Weil (2015); Cho, Park, & Chang 

(1995); Daly & Ni, (n.d.); Kafle et al. (2013); Labatut et al. (2011); Møller, Sommer, & Ahring 

(2004); Rico et al. (2007); Tong et al., (1990); R. Zhang et al. (2007).  

Figure 2-5.  The durations of the BMP test to complete with the type of substrate in cited BMP 

studies.   

2.5.5 BMP test statistical design  

There are certain measures that can be taken to improve the accuracy of the BMP test.  

BMP tests are typically performed in triplicate in order to determine the precision and accuracy of 

the results. A positive control using a well-characterized substrate should also be included. 
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Cellulose is one of the most common positive controls. A negative control, also known as a blank, 

should also be used to test the activity of the experiment.  The comparisons performed depend on 

the objective of the test. One of the benefits of the BMP tests is its flexibility in testing different 

combinations of independent variables.   

2.6 BMP operation and biochemical and microbiological control 

The operation of the BMP test contains many different aspects.  Variables related to the 

substrate (e.g., inoculum to substrate (ISR) ratio, nutrient media, buffering capacity) and digestion 

conditions (e.g., temperature, mixing intensity) can influence the test results. Consideration of 

these variables may affect the predictive applicability of the BMP tests for large-scale digestion. 

Additionally, a lack of reporting is difficult for the comparison of BMP results among inter-

laboratory studies.    

2.6.1 Substrate 

The substrate is one of the most crucial influences on the BMP test.  The substrate is 

typically characterized for, at minimum, pH and solids concentration on the first and final days of 

the test. The solids concentration is required for the normalization of the biogas measurements and 

to determine loading rates. The pH is required to determine sufficient buffering capacity. Solids 

concentration is most often reported as Volatile Solids (VS) or Chemical Oxygen Demand (COD). 

Measurements of VFAs, individual fatty acids, or total ammonia nitrogen (TAN), can also provide 

insight into possible inhibition of the system. Continuous monitoring of these parameters can 

provide further insight but would require a more advanced technical setup. The digesters are 

typically operated with a uniform working volume and solids concentration during the experiment. 

Typically, the solids concentration (VS or COD) is calculated to be uniform among all of the 

digesters at the beginning of the test. Often, water is added to the digester to adjust the solids 

concentration to the uniform volume (Astals, Batstone, Mata-Alvarez, & Jensen, 2014; De Vrieze 

et al., 2015; Feng et al., 2013; Luostarinen, Luste, & Sillanpää, 2009; Nizami et al., 2012; Wandera 

et al., 2018). Owen et al. (1979) recommended that less than 2 g L-1 of readily degradable COD be 

present in the BMP digester.  
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The substrate can affect the microbial community in the digester.  Specifically, microbial 

abundance and diversity in AD systems is strongly influenced by the substrate composition (Mata-

Alvarez et al., 2014). Therefore, microbial community analysis of the materials can provide further 

insight into the behavior of the system (Amha, Sinha, Lagman, Gregori, & Smith, 2017; De Vrieze 

et al., 2015; Meng et al., 2018; Palatsi, Viñas, Guivernau, Fernandez, & Flotats, 2011; Petropoulos, 

Dolfing, Davenport, Bowen, & Curtis, 2017). Overall, pretreatment and characterization of the 

substrate is essential for SMY reporting.   

Uniformity  

The uniformity of the substrate can affect the BMP test results. The substrate after 

collection may contain particulates which are not uniform in size. Substrate particle size can affect 

the rate of hydrolysis and rate of AD, with smaller particle sizes increasing the rate of AD (Barlaz, 

Ham, Schaefer, Isaacson, & Carolina, 1990; Pearse et al., 2018; V.A. Vavilin et al., 1996). 

Therefore, homogenizing particle sizes can improve reproducibility of the BMP test (I. Angelidaki 

et al., 2009; Chynoweth et al., 1993; Davidsson, Gruvberger, Christensen, Hansen, & Jansen, 

2007). It is recommended that particle size should be at least 1 mm (Chynoweth et al., 1993). Error 

in characterizing the substrates may be a source of error in determining the volume or 

concentration of substrate to add to the digester (Raposo et al., 2011). Overall, the concentration 

and particle size of the substrate should be considered in the BMP test.  

Storage 

In many studies, the substrate is stored frozen and then thawed before testing. Freezing is 

used to prevent degradation of the substrate between collection time and the start of the test. 

However, freezing and then thawing a substrate may affect the microbial and chemical 

composition of the substrate. Additionally, the rate and temperature of freezing may affect the 

extent of change (Qunhui Wang, Fujisaki, Ohsumi, & Ogawa, 2001). The effect of substrate 

storage and freezing on BMP performance has not been extensively examined in the literature. 

One study found that freezing waste activated sludge (WAS) at -10°C resulted in a higher rate and 

volume of CH4 production in lab-scale digesters through increasing VFA concentrations (Qunhui 

Wang, Kuninobu, Ogawa, & Kato, 1999). Another study found an average 1.5 increase in biogas 
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yield in sludge which had been frozen at -25°C for 24 hours and then thawed at room temperature 

compared to raw sludge in a mesophilic CSTR (Montusiewicz, Lebiocka, Rozej, Zacharska, & 

Pawłowski, 2010). In this study, the freezing and thawing process increased the solubility of the 

sludge. Additionally, they suggested that the presence of fat and protein in the substrate may 

prevent microorganism death during freezing. Overall, freezing and thawing of the substrate may 

provide a small increase in CH4 production.  

2.6.2 Inoculum 

The concentration, source, and storage of inoculum plays a crucial role in the BMP test 

results.  Typically, inoculum is taken from a stable, healthy AD system to provide the necessary 

microorganisms for all stages of AD. The contribution of methanogenic inoculum is determined 

from several “blank” digesters, which are prepared according to the same procedure but without 

substrate addition. The contribution of inoculum to total CH4 volume in the digester should not be 

more than 20% in order to avoid overestimating the SMY (Owen et al., 1979; Vedrenne et al., 

2008).  However, some procedures use “pre-incubated” inoculum in which the inoculum has been 

previously degassed and, therefore, there is no need for a blank assay (Edward, Edwards, Egwu, 

& Sallis, 2015; Elbeshbishy, Nakhla, & Hafez, 2012).  

Positive controls are often included in BMP tests.  The inoculum activity can be tested 

using a positive control.  There has been a call for greater inclusion of positive controls in BMP 

testing as they can be used to determine the reliability of the BMP results (Juliet Ohemeng-

Ntiamoah & Datta, 2019; Reilly, Dinsdale, & Guwy, 2016). Positive controls contain a “standard” 

substrate, such as starch, gelatin, or cellulose (I. Angelidaki et al., 2009; Raposo, De La Rubia, 

Fernández-Cegrí, & Borja, 2012). The selection of a positive control will depend on the type of 

substrate being tested.  Of the 88 reviewed BMP studies, over 52% of reported positive controls 

were cellulose (Figure 2-6).  Cellulose can represent the CH4 production of a recalcitrant substrate 

undergoing degradation.  Since cellulose is so commonly used, there are multiple references to 

compare the results to, and therefore this may explain why it is so commonly used (Figure 2-6).    
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Figure 2-6. Positive controls and their distribution in 88 reported BMP studies. 

Inoculum-to-substrate ratio 

The selection of the inoculum-to-substrate (ISR) ratio is an important criteria of the BMP 

test. Different ISR ratios can significantly affect the SMY and rate of CH4 production (Costa, 

Oliveira, & Alves, 2016; Dechrugsa, Kantachote, & Chaiprapat, 2013; Kawai et al., 2014; G. Liu, 

Zhang, El-Mashad, & Dong, 2009). The ISR ratio is a critical operational parameter because it is 

related to the food to microorganism ratio. However, reporting of the ISR ratio in BMP literature 

is not always consistent and there has been a call for more ISR reporting in literature (Juliet 

Ohemeng-Ntiamoah & Datta, 2019). The inoculum to substrate ratio is typically 2 or less on a g 

g-1 VS basis (Figure 2-7). The selection of the best ISR ratio is highly dependent on the substrate 

type. Several studies have suggested that a 2:1 ISR ratio on a VS basis is ideal for CH4 production 

(Chynoweth et al., 1993; Hashimoto, 1989). A minimum ratio of 0.5 may be needed to ensure 

productivity.  However, low ISR values such as 0.05-0.1 may cause overloading of the 

microorganisms in the digester and reduce the time to reach the final SMY (Koch et al., 2019).  

Low ISR values may also lead to acidification of the digester liquid (Irini Angelidaki & Sanders, 

2004).  If ISR volumes are too high, the inoculum may add too much CH4 volume and skew the 

results (Irini Angelidaki & Sanders, 2004).  Often, multiple combinations of ISRs can be tested to 

determine the best for the particular substrate.  
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Figure 2-7. Inoculum to substrate ratios and their distribution in 88 reported BMP studies.  

Source 

Inoculum sources can vary, but the selection of the inoculum source can be critical. The 

inoculum source can influence substrate degradation (Raposo et al., 2011; Shelton & Tiedje, 1984).  

Additionally, different sources of inocula will contain different microorganism phyla and 

abundance (T. Liu, Sun, Müller, & Schnürer, 2017). It has been recommended that inoculum with 

a high abundance of methanogens is favorable for the BMP test (De Vrieze et al., 2015). One of 

the most common sources of inoculum is from the effluent from digesters treating sewage sludge 

(Table 2-2).  However, this effluent may contain heavy metals which could be toxic (Álvarez, 

Mochón, Sánchez, & Rodrı́guez, 2002; Y. Chen, Cheng, & Creamer, 2008). Other studies use 

effluent from operating digesters treating a similar type of substrate, thereby assuming that the 

necessary microbial consortia is present.  

Table 2-2. Most frequently used inoculum sources and their pros and cons. 

Inoculum Source Pros Cons Ref. 

Industrial scale anaerobic 

digester treating sewage sludge 

Compatible with a variety of 

substrates; commonly used 

May contain heavy metals 
1 

Full scale anaerobic digester 

treating waste similar to 

substrate 

May contain relevant organisms 

for methanogenesis 

May contain inhibitory 

concentrations of chemical 

parameters 

2 
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Table 2-2 continued. 

Inoculum Source Pros Cons Ref. 

Cultured/Acclimated for 

substrate in lab  

Shown to have the highest BMP 

when acclimated to substrate-

type 

Time consuming, labor 

intensive 3 

1. Achinas, Li, Achinas, & Euverink (2019); Astals et al. (2014); Batstone, Tait, & Starrenburg (2009); Cho et al. 

(1995); Chynoweth et al. (1993); Elbeshbishy & Nakhla (2012); Erguder, Guven, & Demirer (2000); Eskicioglu & 

Ghorbani (2011); Isci & Demirer (2007); Jensen, Ge, & Batstone (2011); Koch et al. (2016); Ma et al. (2018); J. 

Ohemeng-Ntiamoah & Datta (2018); Rincón et al. (2010); Souza, Carvajal, Donoso-Bravo, Peña, & Fdz-Polanco 

(2013); Strömberg et al. (2015); R. Zhang et al. (2007); Zhu et al. (2009) 

2. Belle et al. (2015); De Vrieze et al. (2015); Kafle & Chen (2016); Labatut et al. (2011); Meng et al. (2018); Neves 

et al. (2008); Posmanik et al. (2017); Yan, Zhang, Feng, Sun, & Dang (2018)  

3. T. H. Chen & Hashimoto (1996); Gunaseelan (1995); Heo, Park, Lee, & Kang (2003); Martín-González et al. 

(2010); Mottet et al. (2010); Owens, J.M. and Chynoweth (1993); Y. Wang et al. (1997)  

Storage 

The storage conditions of inoculum can vary based on the purpose of the BMP test.  

Inoculum can be acclimated to specific environmental conditions or the substrate type before use 

(Irini Angelidaki & Sanders, 2004). It has been suggested that inoculum which has been acclimated 

to the specific substrate gives the best BMP results (Browne & Murphy, 2013; Koch et al., 2017). 

Vedrenne et al. (2008) recommended that the inoculum should be a mix of anaerobic sludge from 

several different digesters and that CH4 production from inoculum should not exceed 20% of the 

total biogas production.  Inoculum sourced from a digester treating wastewater sludge is often 

recommended (Filer et al., 2019). 

Careful consideration of the storage temperature for inoculum should be made.  Inoculum 

which was stored at 38°C for two weeks had decreased CH4 production compared to fresh 

inoculum or inoculum that had been stored for the same about of time at 4°C (Koch et al., 2019).  

However, degassing the inoculum for 1-5 days at 35°C has been recommended to remove the 

contribution of CH4 from the inoculum (Filer et al., 2019).  Therefore, storage length and 

temperature of inoculum can play a critical role in BMP test results.     

Ultimately, while the extent of degradation may be the same, the inoculum storage 

conditions can significantly affect the degradation rate (Costa et al., 2016; Koch et al., 2017; 

Vedrenne et al., 2008). 
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2.6.3 Nutrient media 

The nutrients added to the BMP test can vary.  Typically, the BMP test is supplemented 

with a nutrient media to prevent inhibition due to nutrient deficiency (Irini Angelidaki & Sanders, 

2004). The bioavailability of inorganic nutrients may significantly affect AD performance (Moonil 

Kim et al., 2002). The nutrient media typically contains supplements for nitrogen, phosphorus, 

sulfur, potassium, magnesium, sodium, calcium, iron, micronutrients and growth factors (Irini 

Angelidaki & Sanders, 2004; Owen et al., 1979) (Table 2-3). The concentrations in nutrient media 

are carefully determined to meet bacterial growth requirements.  Additionally, a pH buffer (NaOH) 

can be added to adjust the pH to neutral. The optimum range for methanogenesis is between 7–8 

(Irini Angelidaki & Sanders, 2004). 

However, not all BMP tests require supplemental nutrients for microbial growth. Some 

substrates already contain the required micronutrients for growth and the addition of nutrient media 

could cause toxicity to microorganisms. Dairy manure, for example, is high in required 

micronutrients (Belle et al., 2015). Wastewater effluents additionally contains trace nutrients (Y. 

Chen et al., 2008). Therefore, nutrient media would be more beneficial for pure substrates such as 

acetate or glucose.  

Table 2-3. Concentrations and purposes of the different chemicals added to BMP testing.  

Chemical Concentration (g L-1 in 

distilled water) 

Purpose 

Stock Solution 

NH4Cl 100 Nitrogen source (element in proteins and amino 

acids) 

NaCl 10 Sodium source (used by enzymes) 

MgCl2∙6H2O 10 Magnesium Source (stabilizer for ribosomes, cell 

membranes, nucleic acids) 

CaCl2∙2H2O 5 Calcium source (stabilizer for bacterial cell wall and 

endospores) 

K2HPO4∙3H2O 200 Phosphorus source (nucleic acids and 

phospholipids) 

Trace metal and selenite solution 

FeCl2∙4H2O 2 Iron source  

H3BO3 0.05 Boron source 

ZnCl2 0.05 Micronutrients for enzymes 

CuCl2∙2H2O 0.038 Micronutrients for enzymes 

MnCl2∙4H2O 0.05 Micronutrients for enzymes 

(NH4)6Mo7O24∙4H2O 0.05 Micronutrients for enzymes 
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Table 2-3 continued. 

Chemical Concentration (g L-1 in 

distilled water) 

Purpose 

Trace metal and selenite solution 

AlCl3 0.05 Micronutrients for enzymes 

CoCl2∙6H2O 0.05 Micronutrients for enzymes 

NiCl2∙6H2O 0.092 Micronutrients for enzymes 

ethylenediaminetetraacetate 0.5  

Concentrated HCl 1 mL  

Na2SeO3∙5H2O 0.1 Micronutrients for enzymes 

Vitamin Mixture 

biotin 2 Growth factor 

folic Acid 2 Growth factor 

pyridoxine acid 10 Growth factor 

ridoflavin 5 Growth factor 

thiamine hydrochloride 5 Growth factor 

cyanocobalamine 0.1 Growth factor 

nicotinic acid 5 Growth factor 

P-aminobenzoic acid 5 Growth factor 

lipoic acid 5 Growth factor 

DL-pantothenic acid 5 Growth factor 

Other 

Resazurin 0.5 Indicates presence of oxygen 

Cysteine hydrochloride 0.5 g Sulfur source 

NaHCO3 2.6 g pH buffer 

Na2S∙9H2O Add until 0.025% Creates a reducing environment 

Sources: Irini Angelidaki & Sanders (2004); Labatut (2012); Owen et al. (1979). Note, that based on the individual 

substrate being tested, modifications to the media used may change. 

 

The addition of micronutrients have purposes other than for aiding microbial growth. The 

introduction of metal nutrients have helped to reduce VFA concentrations in mesophilic and 

thermophilic continuously fed AD systems (Moonil Kim et al., 2002). The addition of inorganic 

nutrients can also increase the hydrolysis and acidogenesis of particulates in mesophilic and 

thermophilic CSTR digesters receiving synthetic primary sludge (M Kim, Gomec, Ahn, & Speece, 

2003). However, toxicity from the nutrient media can also occur. Metals can be involved in 

complex interactions during the digestion process and can affect enzyme structure and function 

(Y. Chen et al., 2008). Sulfate can be reduced to sulfide which can be toxic at a range from 100–

800mg L-1 ( Y. Chen et al., 2008). Inoculum used from a wastewater treatment plant (WWTP) may 

also contain metals which can result in toxicity (Abdel-Shafy & Mansour, 2014). Therefore, the 

addition of nutrients should be carefully monitored based on the type of substrate and inoculum 

used.   
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2.6.4 pH measurement and control 

The pH of the digester plays a crucial role in determining methanogenic activity. In most 

instances, the pH is not controlled during the digestion time. More commonly, the initial pH of the 

digester is adjusted to 7.0 using a solution of sodium bicarbonate (NaHCO3), sodium hydroxide 

(NaOH), or hydrochloric acid (HCL). A pH meter is typically used to measure the pH throughout 

the digestion period, or at minimum, on the first and final days of digestion. Sparging the digester 

headspace with a mixture of nitrogen gas (N2) and CO2 is also a method for maintaining a neutral 

pH in the digester. When pH is controlled throughout the digestion period in the reviewed BMP 

studies, it was with an automatic titration of 4-molar HCl or 4-molar NaOH (Qilin Wang et al., 

2016).     

2.6.5 Digester liquid sampling and sampling analyses 

Typically, pH and solid concentrations are the crucial characteristics of the digestate. 

Solids concentrations (i.e., COD, VS) are used to calculate the specific methane yields. However, 

measurement of other characteristics can provide insight into the influence of various properties 

of the substrate on CH4 yield. For example, many studies conduct an elemental analysis of the 

material.  Commonly measured elements are  carbon (C), nitrogen (N), hydrogen (H), sulfur (S), 

and oxygen (O) (Cho et al., 1995; Feng et al., 2013; Posmanik et al., 2017; Romagnoli, Pastare, 

Sabūnas, Bāliņa, & Blumberga, 2017; Yan et al., 2018). The lignin, cellulose, and the hemi-

cellulose concentrations of the substrates are also measured, particularly for feedstock crops 

(Achinas et al., 2019; Amon et al., 2007; Buffiere et al., 2006; Chynoweth et al., 1993; Kafle & 

Chen, 2016; Labatut et al., 2011; Oslaj et al., 2010; Rico et al., 2007; Triolo, Pedersen, Qu, & 

Sommer, 2012). Individual or total VFAs, alkalinity, TAN, total kjeldahl nitrogen (TKN), are also 

commonly measured. Sampling is sometimes done during the digestion period, but often times is 

at the beginning and end only.  However, in the reviewed studies, it was rare to find a substrate 

which has been characterized for a comprehensive range of all these characteristics or others 

including conductivity, metal, phosphorus, and sulfate concentrations. 
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2.7 Biogas collection and quantification 

2.7.1 Digester headspace air treatment 

Treatment of the headspace pressure and gas composition may affect the operation of the 

digester. Many studies sparged the reactor with inert gases before sealing in order to remove 

oxygen from the headspace or liquid. In the BMP studies reviewed, nitrogen (N2) gas was one of 

the most commonly used gases for sparging. In many studies, the headspace is flushed with 

nitrogen or a N2/CO2 gas mixture before sealing to remove any residual oxygen. Oxygen free N2 

gas, 70/30 or 75/25 N2/CO2 gas, and helium (He) were also used to flush out the headspace.  

However, a pressure greater than 0.5 atm in the headspace can negatively affect gas production or 

cause gas leakage (Owen et al., 1979).   

There have been few investigations regarding sparging gas and its effect on the BMP test.  

Sparging with N2 and CO2 gas has been used to increase hydrogen (H2) production rate by reducing 

the H2 partial pressure and inhibiting acetogens and lactic acid bacteria (D. H. Kim, Han, Kim, & 

Shin, 2006).  Additionally, a mix of N2 and CO2 may help maintain pH at an appropriate level for 

AD (Erguder et al., 2000). One inter-laboratory study found that there were no significant 

differences in BMP results from purging with different headspace gases (N2, N2-CO2, Helium (He)) 

(Raposo et al., 2011). Ultimately, very few studies have examined the effect of different gases for 

purging the headspace on BMP results.  

2.7.2 Biogas collection and measurement 

The biogas produced from the individual digesters is collected periodically. In most of the 

BMP studies reviewed, there was less than a 5-day interval between biogas sampling dates. 

Frequent sampling was attributed to the prevention of pressure build-up in the digester headspace. 

In BMP testing, the CH4 content of the gas is typically measured until there is a negligible amount 

of CH4 production, usually a daily production of < 1% of the accumulated production from a 

digester (Strömberg et al., 2015). In some protocols, the experiment continues until the daily 

biogas volume is below < 1% of the cumulative biogas volume from the digester (Belle et al., 2015; 

Koch & Drewes, 2014).  
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Measurement of biogas volume 

Several different biogas collection methods were reported in the reviewed BMP studies 

(Table 2-4). Biogas measurement methods were either volumetric, in which the volume was 

measured while the pressure was constant, or manometric, in which pressure was measured at a 

constant volume. The device used for determining biogas volume depended on the volume of gas 

produced and the digester setup. 

Biogas collection and measurement is critical to prevent error in BMP testing. Volumetric 

methods typically operate on the principle of displacement. The syringe method uses a syringe 

lubricated with deionized water which has been flushed with a CO2-N2 mixture to evacuate the gas 

in the headspace. This method was popularized by Owen et al. (1979) as a standard method for the 

BMP test due to its easy and inexpensive setup. It can be a laborious method with precision lost 

depending on the demarcations of the syringe as well as friction between the piston and barrel 

(Guwy, 2004). 

  The use of water gasometers, in which the displacement of water in the device determines 

the volume, was also commonly used. The main issue with this method was that gas, particularly 

CO2, could easily diffuse into the water resulting in inaccurate gas composition measurements 

(Walker, Zhang, Heaven, & Banks, 2009). Other barrier solutions, such as acidified sodium 

chloride, have been used and have shown decrease in CO2 losses (Walker et al., 2009).  

Continuous gas meters also operate on the principles of displacement.  In on-line 

continuous gas flow meters, a counter will be activated when the liquid is displaced at a certain 

biogas pressure.  They have been shown to be within 5% of the correct volume, but care must be 

taken to calibrate them correctly (Browne & Murphy, 2013; McEniry et al., 2014; Walker et al., 

2009). Other issues with continuous gas flow meters involve corrosion, algal growth, and CO2 

solubility in water (Guwy, 2004).  

Pressure transducers have been used to measure gas pressure and are fast, accurate, precise, 

and cost effective (Shelton & Tiedje, 1984). Online data acquisition systems allow for continuous 

monitoring of gas pressure and concentrations and continuous data acquisition. Continuous on-

line pressure measurements from pressure transducers have been used (I Angelidaki et al., 1998; 

Labatut et al., 2011). Ultimately, there are several different methods for data acquisition and gas 

collection.  
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Table 2-4. Most frequently used biogas measurement methods in 88 reported BMP studies. 

Method Pros Cons Ref. 

Manometric Methods 

Pressure transducers 

Fast, accurate, precise and cost 

effective; data can be continuously 

acquired 

Laborious to set up 

1 

Volumetric Methods 

Syringe Easy to use, inexpensive 

Limited by graduations of 

syringe, laborious process, 

friction between the piston and 

barrel can affect measurement 

2 

Water displacement 

gasometer 
Commonly used 

Gas can diffuse into water 

easily resulting in inaccurate 

volumes and gas composition 

measurements; labor intensive 

and inaccurate 

3 

Continuous gas flow 

meter 
Accurate within 5% 

Needs to be calibrated 

correctly; difficult to control 

CO2 solubility, corrosive, algal 

growth 

4 

1. I Angelidaki et al. (1998); Labatut et al. (2011); Luna-delRisco, Normak, & Orupõld (2011); Montañés, 

Solera, & Pérez (2015); Neves et al. (2008); Shelton & Tiedje (1984); Wagner, Lins, Malin, Reitschuler, & 

Illmer (2013)  

2. Belle et al. (2015;) T. H. Chen & Hashimoto (1996); Elbeshbishy & Nakhla (2012); Elbeshbishy et al. 

(2012); Erguder et al. (2000); Guwy (2004); Hashimoto (1989); Lim & Fox (2013); Owens, J.M. and 

Chynoweth (1993); Posmanik et al. (2017); Tong et al. (1990); Turick et al. (1991); Usack & Angenent 

(2015); Qilin Wang et al. (2016) 

3. Guwy (2004); Jokela (2002); Rao et al. (2000); Strömberg et al. (2015); R. Zhang et al. (2007) 

4. Browne & Murphy (2013); Buffiere et al. (2006); Forster-Carneiro, Pérez, Romero, & Sales (2007); 

McEniry et al. (2014); Reilly et al. (2016)  

Measurement of biogas composition and concentration  

Methane and CO2 concentrations are most often measured with a gas chromatograph (GC). 

The two main GC methods are thermal conductivity detection (TCD) where both CH4 and CO2 

are measured using N2 as a reference gas, and flame ionization detection (FID) where only CH4 is 

measured based on a standard (Irini Angelidaki & Sanders, 2004).  The FID method requires a 

short amount of time (less than 1 minute typically) to measure the CH4 concentration (Irini 

Angelidaki & Sanders, 2004). One of the benefits of a GC is that a small volume (less than 5 mL) 

of biogas is needed to determine a measurement.  Additionally, a GC can provide highly precise 

readings. The drawbacks of a GC include expense, effort for calibration and operation, and 

variability between machines.   

Another method for determining CH4 concentration is through reacting the biogas with an 

alkaline solution. In this method, a known volume of biogas is injected into a serum bottle 
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containing a known concentration of the alkaline solution, such as potassium hydroxide (KOH) or 

NaOH. The serum bottle is shaken and the CO2 and hydrogen sulfide (H2S) gases are absorbed by 

the liquid for 3–4 minutes. The remaining gas in the headspace is 99.9% CH4 and can be measured 

by withdrawing the gas with a syringe (Ahmadi-Pirlou, Ebrahimi-Nik, Khojastehpour, & Ebrahimi, 

2017; Erguder et al., 2000; Isci & Demirer, 2007; J. Ohemeng-Ntiamoah & Datta, 2018; Pham, 

Triolo, Cu, Pedersen, & Sommer, 2013; Romagnoli et al., 2017; Veluchamy & Kalamdhad, 2017; 

Wickham, Galway, Bustamante, & Nghiem, 2016). This method has been found to produce 

slightly higher CH4 concentrations than a GC, most likely due to trace gases which are not 

absorbed in the base liquid, but it is an inexpensive option for laboratories without access to a GC 

(Pham et al., 2013). 

Methane measurements are preferable over CO2 measurements as an indicator of digester 

activity.   The CO2 concentrations in the digester headspace may be affected by flux between the 

solid and liquid phases as well as ionization to bicarbonate (HCO3
-) and carbonate (CO3

2-) thereby 

not providing a true representation of CO2 concentration (I Angelidaki et al., 1998; Irini Angelidaki 

& Sanders, 2004; Shelton & Tiedje, 1984). Methane has been found to be present in insignificant 

amounts in the liquid phase (I Angelidaki et al., 1998). Therefore, CH4 production potential may 

be a more reliable indicator of digester activity.   

2.8 BMP calculations and expressions 

The general procedure for gas collection and calculations is as follows. First, the dry CH4 

gas concentration (CCH4) is measured from each bottle and then corrected for the concentration of 

carbon dioxide (CCO2) assuming insignificant fractions of a H2S and ammonia (Kafle & Kim, 2013; 

Kafle et al., 2013; Triolo et al., 2012; Triolo, Sommer, Møller, Weisbjerg, & Jiang, 2011) as shown 

in Eq. 2-1:  

 
𝐶𝐶𝐻4𝐶𝑜𝑟 = 𝐶𝐶𝐻4

⋅
100

(𝐶𝐶𝐻4
+ 𝐶𝐶𝑂2

)
 

(2-1) 

 

where CCH4cor is the corrected concentration of dry CH4 gas (%), CCH4 is the measured 

concentration of CH4 gas (%) and CCO2 is the measured concentration of CO2 gas (%).  

Next, the measured biogas volume (Vm) of each digester is converted to Standard 

Temperature Pressure (STP) (Hansen et al., 2004; Kafle & Kim, 2013; Kafle et al., 2013) (Eq. 2-
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2).  Due to the variability of room temperatures and pressures across laboratories, the instantaneous 

temperature and pressure for each gas should be measured to correctly calculate gas volumes 

(Walker et al., 2009):  

 
𝑉𝑆𝑇𝑃 = 𝑉𝑚 ⋅

(𝑇standard ⋅ 𝑃𝑚)

(𝑇𝑚 ⋅ 𝑃standard)
 

(2-2) 

 

where VSTP is the biogas volume at STP, Vm is the measured biogas volume, Tm is the measured 

temperature, and Pm is the measured pressure.  

Then, the corrected substrate biogas volume (VSTP, substrate) is determined by subtracting the 

mean corrected blank biogas volume (VSTP, blank) from the corrected sample biogas volume 

(VSTP,sample) (Owen et al., 1979). Finally, the corrected substrate biogas volume is multiplied by 

the corrected CH4 fraction to obtain the corrected volume of CH4 gas from the substrate (Triolo et 

al., 2011) as shown in Eq (2-3):  

 𝐵 = 𝐶𝐶𝐻4𝐶𝑜𝑟 ⋅ 𝑉𝑆𝑇𝑃,𝑆𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒 (2-3) 

 

where B is the volume of CH4 (mL).  

Finally, the CH4 yield is determined. Methane yield is the volume of methane produced 

per unit of mass (Hill, 1984). Ultimate CH4 yield (Bo) is the SMY (Møller et al., 2004). Ultimate 

CH4 yield is a fraction of the theoretical CH4 yield (Bu) due to energy requirements for cell 

synthesis, washout, or the presence of recalcitrant or inhibitory compounds (Møller et al., 2004). 

For animal manure, the animal species, breed, growth stage, feed, amount and type of bedding, 

manure collection method, and manure degradation extent during storage can affect SMY (Møller 

et al., 2004).  

There are several ways to express CH4 yield. The mass variable can be VS destroyed, VS 

loaded, total solids (TS) loaded, animal live weight (LW), sample mass, TCOD loaded, or sample 

volume (Table 2-5). Each variable has different degrees of usefulness. The VS loaded (mL CH4 g 

VS-1) is the most common unit for CH4 yield. However, VS destroyed corresponds to the 

theoretical CH4 yield if there were 100% biodegradability of the organic fraction (Møller et al., 

2004). This metric is expected to be relatively constant between all wastes types (Hill, 1984). The 

VS loaded is less consistent between waste types because it corresponds to the SMY, which will 

vary because biodegradability can be highly variable between different waste types (Hill, 1984; 
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Møller et al., 2004). Additionally, using VS as opposed to COD for the mass variable does not 

account for the volatile fatty acids (VFAs) that are present in the feedstock and are evaporated 

during the VS test; these VFAs also contribute to CH4 production (Rico et al., 2007).  Because TS 

is a characteristic of the raw waste, dividing by TS loaded can cause variability in the reported 

CH4 yields (Hill, 1984). A LW basis (m3 CH4 Mg LW-day-1) is the most useful for economic 

comparisons and provides the amount of CH4 per animal (Hill, 1984). Comparisons using sample 

volume (L CH4 m-3) can also be useful for economic comparisons but can be skewed by the water 

content of the substrate (Møller et al., 2004). Overall, the expression of CH4 yield can be chosen 

based on the intended application of the data (Table 2-5).  

Table 2-5. Seven most frequently used SMY expression methods. 

Method Unit Remarks Ref. 

VS destroyed mL CH4 g VS-1 Corresponds to the theoretical CH4 yield 1 

VS loaded mL CH4 g VS-1 Less constant between waste types; corresponds to 

ultimate CH4 yield 
2 

TS loaded mL CH4 g TS-1 Greater variance between samples 3 

Animal LW m3 CH4 Mg LW-day-1 Useful for economic comparisons 1 

Sample volume L CH4 m-3 Can be skewed by water content 3 

TCOD loaded mL CH4 g TCOD added-1 Includes soluble VFAs which may be lost in VS 

process 
4 

Mass loaded mL CH4 g waste-1 Useful for economic comparisons 5 

1. Gaur & Suthar (2017); Hill (1984); Møller et al. (2004);  

2.(Alzate et al. (2012); Badshah et al. (2012); Belle et al. (2015); Browne & Murphy (2013); Cho et al. (1995); 

Chynoweth et al. (1993); Labatut et al. (2011); Luostarinen et al. (2009); Luste et al. (2012); Møller et al. (2004); 

Neves et al. (2008); Owens, J.M. and Chynoweth (1993); Rico et al. (2007); Rincón et al. (2010); Turick et al. (1991); 

Usack & Angenent (2015); Vedrenne et al. (2008)  

3. Hill (1984);  

4. Elbeshbishy & Nakhla (2012); Kafle & Kim (2012, 2013); Palatsi et al. (2011);  

5. Isci & Demirer (2007); Wickham et al. (2016). 

2.9 Reliability and applicability of the BMP test data 

There was considerable variability within each BMP testing methodology for the reviewed 

BMP studies.  Whereas the BMP test can be a useful metric, there has been a call for increased 

standardization of the BMP test (I. Angelidaki et al., 2009; Strömberg et al., 2014; Walker et al., 

2009). Notably, the collection, storage, measurement, and calculations of CH4 volumes are often 

poorly reported and variable among studies (Walker et al., 2009).  

The BMP test results have been compared with CH4 production from lab-scale or full-scale 

continuous or semi-continuous digesters (Chynoweth et al., 1993; Jerger, Chynoweth, & Isaacson, 



 

72 

 

1987; M. Kim, Chowdhury, Nakhla, & Keleman, 2016; Koch et al., 2016; Usack & Angenent, 

2015). There has been agreement between SMYs obtained from the BMP test to those obtained 

from semi-continuously fed lab-scale digesters (Chynoweth et al., 1993). Semi-continuously fed 

or continuously fed digesters, if the hydraulic retention time (HRT) is long enough, can approach 

similar degradation kinetics as batch systems for similar substrates, despite their operational 

differences (Labatut, 2012). However, Jerger et al. (1987) found that SMYs of sorghum were 

higher than in a lab-scale continuously stirred tank reactor (CSTR) and non-mixed vertical flow 

reactor (NMVFR) at the same temperature and HRT, but different solids retention time (SRT); but 

the NMVFR digester had a higher SMY than the CSTR, indicating that the type of large scale 

digester may affect BMP results.  

Additionally, the BMP test is less ideal for co-digested mixtures.  Mixtures of substrates 

can have synergistic effects that may be obscured by the favorable conditions of the BMP test 

(Koch, Hafner, Weinrich, Astals, & Holliger, 2020; Koch et al., 2016; Nielfa, Cano, Pérez, & 

Fdez-Polanco, 2015). Koch et al. (2016) found that the CH4 yield from a mesophilic semi-

continuous full scale (1350 m3) digester co-digesting food waste and raw sludge was generally 

higher than in batch tests, though they hypothesized this was because of a slight increase in the 

percentage of sludge during the large-scale operation. Conversely, Labatut (2012) found that the 

CH4 yields for co-digested substrates (manure, dog food) were higher in the BMP test than in semi-

continuously fed mesophilic and thermophilic lab-scale digesters.  The results of BMP tests using 

co-digested materials should thus be carefully examined.    

The data from a BMP tests typically has a limited range of application.  Inter-laboratory 

differences, such as laboratory setup, operation, substrate and inoculum treatment, and SMY 

calculations can affect the BMP results more than within an individual test. Within individual tests, 

results can often be reproduced with less than 10% error among replicates (Shelton & Tiedje, 1984). 

Therefore, BMP results may be reliable for an individual test, but may not be applicable to a 

broader scope.  Overall, consideration of the large-scale substrate type, digester configuration, 

operational parameters, and application are essential for predictive applicability of the BMP test 

to large-scale digesters.  

2.10 Conclusions 

The following conclusions were drawn from this chapter: 
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1. Automated BMP tests are a state-of-the-art-method that can improve precision and 

accuracy of the results through reducing operator error.   

2. Glass serum bottles of a volume of 250 mL or less are commonly used as digesters in 

BMP tests.   

3. Close monitoring of the BMP test in regards to temperature, mixing, and duration is 

required to ensure that the maximum CH4 potential is reached before ending the 

experiment.      

4. Collection, storage, and pretreatment of the substrate and inoculum can significantly 

affect BMP results.   

5. The reliability of BMP test results can be improved through the use of a positive control, 

correcting gas volumes at STP, and consistent BMP calculations. 

6. Factors such as co-digestion, digester type, and volume should be considered when 

comparing BMP test results to large-scale AD systems. 
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 REVIEW OF BIOCHEMICAL METHANE POTENTIALS 

IN ANAEROBIC DIGESTION—PART II: RESULT MODELING 

3.1 Abstract 

Biochemical methane potential (BMP) tests are commonly used to predict the methane yield 

of a feedstock for large-scale anaerobic digestion (AD) systems.  Kinetic modeling is often applied 

to the BMP results to improve their predictive applicability to these large-scale systems.  However, 

recent literature has revealed that kinetic modeling in the BMP test is often overly simplistic and 

fails to capture the complexity of the system.  In this chapter, 88 peer-reviewed BMP studies were 

examined.  From these studies, the most frequent approaches for calculating, modeling, and 

predicting methane yield and substrate biodegradability were identified and compared for their 

reliability in predicting methane yield. Specifically, non-linear models or models which accounted 

for the initial characteristics of the substrate were more reliable in their predictions.  The 

development of more comprehensive models, which account for the various dynamics in the AD 

process, could reduce test time via early parameter estimation.        

3.2 Introduction 

Anaerobic digestion (AD) is becoming increasingly widespread.  Anaerobic digestion  is a 

potential solution for mitigating greenhouse gas (GHG) emissions and odor from organic wastes 

while generating energy (Abbasi, Tauseef, & Abbasi, 2012).  Anaerobic digestion uses a mixed 

microbial community to convert complex organic materials to biogas in the absence of molecular 

oxygen (De Baere, 2000; Mao, Feng, Wang, & Ren, 2015; Q. Zhang, Hu, & Lee, 2016). A variety 

of organic materials have been used for AD including food waste, manure, slaughterhouse waste, 

industry waste, and agricultural residue.   

The biochemical methane potential (BMP) test is a commonly used method to determine 

substrate feasibility for AD.  During the BMP test, the substrate undergoes batch digestion to 

determine its ultimate CH4 yield (Bo) per unit of volatile solids (VS), also known as the specific 

methane yield (SMY).  Besides providing the SMY, the BMP test is most commonly used to 

determine the biodegradability and the rate of degradation of a given substrate (Strömberg, Nistor, 

& Liu, 2015).  These values can be used to approximate the most suitable substrate, retention time, 
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or organic loading rate (OLR) in a full scale digester (Lesteur et al., 2010; Strömberg, Nistor, & 

Liu, 2014).   

The AD process is a complex series of syntrophic relationships among a consortium of 

microorganisms which operates near thermodynamic equilibrium (Leng et al., 2018; 

Venkiteshwaran, Bocher, Maki, & Zitomer, 2016).  The four main stages of AD are hydrolysis, 

acidogenesis, acetogenesis, and methanogenesis (Gavala, Angelidaki, & Ahring, 2003).  The rate 

of each stage is dependent on the previous stages.  Generally, organic matter is reduced to smaller, 

soluble monomers (i.e., hydrolysis) which are converted to volatile fatty acids (VFAs), hydrogen 

gas (H2), carbon dioxide (CO2), and other byproducts (i.e., acidogenesis, acetogenesis) which are 

then converted to methane (CH4) (i.e., methanogenesis).  The biogas production and composition 

can be significantly affected by an imbalance at one of the four stages.     

Several modeling processes have been developed and applied in conjunction with BMP test 

data.  Several of these models are kinetic models which describe the rate and extent of CH4 

production during the BMP test.  Many of the kinetic models are developed from common models 

for microbial growth.  The parameters are estimated using linear or nonlinear regression techniques.  

However, many of the models used to calculate the process rates during the BMP test are overly 

simplistic and have failed to capture the complexities of the system.  Therefore, some researchers 

have applied more nuanced kinetic models that account for the complexities of the batch 

fermentation process and can improve predictive applicability of the BMP test.     

This chapter reviews the modeling techniques for BMP studies. This chapter synthesized 88 

peer-reviewed articles in which batch BMP tests were reported.  Then, the most frequently used 

methods for predicting the SMY, calculating substrate biodegradability, and modeling CH4 yield 

profiles were examined.  After an overview of the BMP test and modeling methodologies, this 

chapter examined the main ways that BMP test modeling has been applied in the literature.  These 

ways were: 1.) prediction of the theoretical SMY for a given substrate; 2.) calculating substrate 

degradation; 3.) dynamic modeling prediction of BMP performance for a given substrate over time; 

and 4.) parameter estimation from BMP test data. 

This chapter compared the advantages and disadvantages of various existing models and 

whether they could reduce the time needed for the BMP test and whether they would be applicable 

for predicting large-scale digester performance.  Improvements for BMP modeling were also 

proposed.   
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3.3 Overview of modeling 

A model structure consists of a set of equations containing variables, constants, and 

parameters.  Determining a model structure (i.e., structural identifiability) in which all the 

parameters can be solved for a unique value is one of the challenges in mathematical modeling 

(Dochain, Vanrolleghem, & Van Daele, 1995).  A model structure should: 1.) be directly 

associated with the physical process under consideration; 2.) have a structure whose methodology 

can be well characterized; 3.) be able to estimate a unique value for all parameters; 4.) have a good 

fit with experimental data (i.e., practical identifiability); 5.) be simple with the least number of 

parameters; and 6.) maintain a balance between parameter precision and model accuracy (Spriet, 

1985).   

The basic steps for mathematical model development are: 1.) definition of the problem and 

goal; 2.) collection of preliminary data and developing an experimental design; 3.) identification 

of the framework model structure; 4.) creation of an experimental design; 5.) performance of 

parameter estimation and precision; and 6.) testing the model with new data and revising it if 

necessary (Carstensen, Vanrolleghem, Rauch, & Reichert, 1997; Flotats, Ahring, & Angelidaki, 

2003; Lauwers et al., 2013). 

3.3.1 Modeling anaerobic digestion 

There is interest in modeling the entire AD process.  Multi-step dynamic modeling of the 

AD process can improve understanding of its mechanisms and optimize operation and design (I. 

Angelidaki, Ellegraard, & Aharing, 1993; Irini Angelidaki, Ellegaard, & Ahring, 1999; Andres 

Donoso-Bravo et al., 2011; Flotats et al., 2003; Kovalovszki, Alvarado-Morales, Fotidis, & 

Angelidaki, 2017).  The Anaerobic Digestion Model No. 1 (ADM1) is one of the more prevalent, 

comprehensive AD models in recent years (Batstone et al., 2002).  The ADM1 model accounts for 

multiple biochemical and physiochemical processes in AD.  The ADM1 model has been 

successfully calibrated using BMP test data (Astals, Batstone, Mata-Alvarez, & Jensen, 2014; 

Souza, Carvajal, Donoso-Bravo, Peña, & Fdz-Polanco, 2013).  Furthermore, the ADM1 model has 

been expanded to include sulfate reduction processes (Fedorovich, Lens, & Kalyuzhnyi, 2003) and 

microbial diversity (Ramirez, Volcke, Rajinikanth, & Steyer, 2009).  However, the application of 

ADM1 models to industrial-scale co-digested plants is rare (Nordlander, Thorin, & Yan, 2017).  
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In fact, modeling of co-digested systems has received limited attention (Mata-Alvarez et al., 2014).  

Additionally, a lack of substrate characterization limits the applicability of the ADM1 model 

(Lauwers et al., 2013; Nordlander et al., 2017),  

Other types of modeling techniques can avoid the need for exhaustive characterization of 

the substrate or in-depth knowledge of the microbial or physical chemical processes in the digester.  

Black-box models are typically used when a specific parameter is desired but little is known about 

the processes within the digester.  Examples of black-box models commonly used in AD include 

principle component regression (PCR), artificial neural networks (ANN), partial least squares 

regression (PLS), neuro-fuzzy systems, and support vector machines (SVM) (Lauwers et al., 2013).  

The drawbacks of black-box modeling include over-fitting, ambiguity in the results, and 

interpretability (Lauwers et al., 2013).     

Generally, there are few systematic procedures for modeling AD processes as well as a 

lack of validation for the model and parameter accuracy (Andres Donoso-Bravo et al., 2011).  Due 

to the complexity of the physical, chemical, and microbiological processes of AD, the kinetic 

models involve complex, high order nonlinear systems with a large number of state variables and 

parameters and require high quality and a large number of data points (Batstone et al., 2002; 

Bernard, Hadj-Sadok, Dochain, Genovesi, & Steyer, 2001; Dochain et al., 1995; Souza et al., 2013).  

The inclusion of controls for inoculum and substrate activity can increase the reliability of the data 

results (Juliet Ohemeng-Ntiamoah & Datta, 2019; Reilly, Dinsdale, & Guwy, 2016).  Advances in 

automated BMP tests and continuous data acquisition may provide a solution for generating a 

larger number of reliable and reproducible data points to improve modeling (I Angelidaki, Schmidt, 

Ellegaard, & Ahring, 1998; Badshah, Lam, Liu, & Mattiasson, 2012; Kolbl, Paloczi, Panjan, & 

Stres, 2014).  Including parameters for specific microbial species in the model or for changes in 

microbial fluxes or populations could also advance BMP modeling.  

3.3.2 Parameter estimation techniques    

There is a need for a universal method of parameter estimation for AD processes (Andres 

Donoso-Bravo et al., 2011).  The typical parameter estimation techniques for mathematical 

modeling include linearization and subsequent algebraic calculations and recursive algorithms 

(Spriet, 1985).  Parameter estimation is challenging for nonlinear models or models with a high 

number of parameters (López & Borzacconi, 2010).  Any parameter estimation method must 
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include a statistically valid objective function (J) as well as an appropriate statistical test for 

determining model uncertainty (Jensen, Ge, & Batstone, 2011; Vanrolleghem, Van Daele, & 

Dochain, 1995).  For AD processes, the objective function is typically solved through the 

minimization of the sum of least squares using a software program for nonlinear curve fitting 

(Andrés Donoso-Bravo, García, Pérez-Elvira, & Fdz-Polanco, 2011; Andres Donoso-Bravo et al., 

2011).  Various methods have been used to determine model uncertainty for BMP tests.   

Parameter certainty should meet the requirements of goodness of fit, discriminating power, 

efficiency, computational robustness, statistical robustness, computation requirements, 

consistency, and small sample behavior (Spriet, 1985).  Common optimality criteria include 

relative root mean squared error of prediction (rRMSE), mean square of the deviations (MSD), 

relative absolute error (rAE), residual sum of squares (RSS), final prediction error criteria (FPE), 

least squares, and coefficient of determination (R2) (Lobry, Rosso, & Flandrois, 1991; Lokshina 

et al., 2001; Rao, Singh, Singh, & Sodha, 2000; Strömberg et al., 2014; Vavilin, Lokshina, Jokela, 

& Rintala, 2004).  These methods are based on the sum of differences between observed and 

theoretical data points.  Theoretically a minimal difference between the  measured and calculated 

data points indicates a better fit.  Modified least squares methods have been suggested, especially 

for batch AD tests which have low CH4 production in the first few days (Koch & Drewes, 2014).  

Because the least squares method for regression analysis will have high sensitivity for the early  

days of a BMP test, it is suggested to minimize the sum of the relative error instead of the sum of 

the squared differences as seen in Eq. 3-1: 

 
𝐿𝑆 = ∑

⌊𝑦𝑖,𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 − 𝑦𝑖,𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑⌋

𝑦𝑖,𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑

𝑛

𝑖=1

 
(3-1) 

 

where LS is the sum of errors between the measured and calculated values; yi,measured  is the 

measured value at point i; yi,calculated is the calculated value at point i.  

If there is more than one parameter in a model, parameter correlation should be determined 

(Jensen et al., 2011).  Noisy and limited experimental data can result in parameters which are 

highly correlated (Vanrolleghem et al., 1995).  Parameter correlation indicates the change in one 

parameter when another parameter is changed.  Parameter correlation has been estimated for AD 

using the secant method (Batstone, Pind, & Angelidaki, 2003).  Parameter uncertainty and 
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correlation can be more effective than goodness of fit values for representing model uncertainty 

(Jensen et al., 2011).     

For nonlinear models specifically, parameter surface searching can also be used to 

determine model uncertainty (Batstone et al., 2003; Batstone, Tait, & Starrenburg, 2009; Jensen et 

al., 2011; Lobry et al., 1991).  First, there is a set of parameters that minimizes J.  The desired 

parameters will lie on Jcrit as seen in Eq. (3-2):  

 𝐽𝑐𝑟𝑖𝑡 = 𝐽𝑜𝑝𝑡 (1 +
𝑝𝑛

𝑛 − 𝑝𝑛
) 𝐹𝛼,𝑝,𝑛−𝑝𝑛

 
(3-2) 

 

where Jcrit is the critical value, n is the number of measured data points, pn is the number of 

parameters, and Jopt is the value when RSS is minimized.  Assuming the residuals are normally 

distributed, the critical value of the surface of the parameter uncertainty region can be determined 

from Jmin using the F distribution and the input values α, p, n-pn (Batstone et al., 2003).  The 

confidence region for the set of parameters can then be visualized as a hypervolume surrounded 

by a hypersurface (Lobry et al., 1991).  The confidence limits for the parameter values is visualized 

as the extent of this hypersurface (Lobry et al., 1991).  A 1-α confidence region for parameters is 

defined as the set of parameter values (σ) such that RSS is less than the confidence region threshold 

as seen in Eq. (3-3) (Lobry et al., 1991): 

 {𝜎: 𝑅𝑆𝑆(𝜎) ≤ (1 +
𝑝𝑛

𝑛 − 𝑝𝑛
𝐹𝑝,𝑛−𝑝𝑛

𝛼 )} 
(3-3) 

 

where n is the number of points, pn is the number of parameters, and F is the F-distribution with 

the input values α, p, n-pn.  One method for determining this confidence region is computing a 

homogenous distribution of points on the hypersurface (10,000 – 30,000).  The first step is to start 

with a “hypersphere” of radius 1 and randomly generate points within the range of [-1,1] until one 

point falls within the hypersphere.  Its coordinates are then divided by its distance from the origin 

so it is projected onto the surface of the hypersphere.  The hypersphere is then translated so its 

origin is placed where RSS is minimized.  The hypersphere is then scaled along each axis by 

adjusting the radius to acceptable limits for each parameter so the confidence region is then 

enclosed.  An iterative method based on linear interpolation is then used to determine the point 

enclosing the confidence region.  The difference between the threshold and RSS must be less than 
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a user defined small value (10-3) (Eq. 3-4).  The smaller the difference (Δ), the more accurate the 

location of the point.  

 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 − 𝑅𝑆𝑆

𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
< ∆ 

(3-4) 

 

The user may also define a maximum number of iterations (103) (Lobry et al., 1991).  The 

hypersurface can be projected onto (pn
2-pn)/2 planes to determine the parameter values and their 

correlation 

 Jensen et al. (2011) determined the rate (k) and extent of biodegradability (fd) from BMP 

tests of cellulose.  They used CH4 production to calculate the parameters using both a linearized 

first order model and a nonlinear parameter model and an uncertainty estimation procedure 

(surface searching method).  The parameter estimations from both models were similar, but the 

nonlinear model provided metrics for parameter correlation and uncertainty and was less sensitive 

to the end point of the test.   

3.4 Theoretical methane potential models 

In the reviewed BMP studies, many parameters were calculated from both the observed CH4 

yield data and the theoretical CH4 yield of the substrate.  Additionally, an estimate of the theoretical 

SMY was useful for experimental design.  For theoretical BMP calculations, consideration of 

individual substrate biodegradability was important for generating accurate predictions.  There 

were several methods for calculating the theoretical SMY.   

3.4.1 Buswell equation 

The theoretical SMY can be calculated using the stoichiometric coefficients of the substrate 

in a redox reaction known as the Buswell Equation (Symons & Buswell, 1933).  The Buswell 

equation was originally developed from carbohydrate fermentation and has since been modified 

based on empirical observation (M. Buswell & Muellepi, 1952; Richards, Cummings, White, & 

Jewell, 1991) to a general fermentation equation as shown in Eq. (3-5): 
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 𝐶𝑛𝐻𝑎𝑂𝑏𝑁𝑐 + (𝑛 − 0.25𝑎 − 0.5𝑏 + 1.75𝑐)𝐻2𝑂

→ (0.5𝑛 − 0.125𝑎 + 0.25𝑏 − 0.625𝑐)𝐶𝑂2 + 

(0.5𝑛 + 0.125𝑎 − 0.25𝑏 − 0.375𝑐)𝐶𝐻4 + 𝑐𝑁𝐻4
+ + 𝑐𝐻𝐶𝑂3

− 

(3-5) 

 

where C, H, O, and N represent the elements of carbon, hydrogen, oxygen, and nitrogen, and n, a, 

b, and c represent the number of atoms of the respective element.  Symons and Buswell (1933) 

reported that a very small amount of substrate was converted for bacterial cell synthesis; therefore, 

the electrons used for cell synthesis are ignored in the equation.  Additionally, the Buswell equation 

assumes that the substrate is 100% biodegradable. Eq. (3-5) assumes that one mole of CO2 is 

produced in the solution per mole ammonia (NH3) and that the ammonium (NH4
+) and bicarbonate 

(HCO3
-) are in their aqueous forms.  Specifically, NH4

+ can react with CO2 to form HCO3
-, which 

can act as a pH buffer (Kayhanian, 1999; B. Zhang, Zhang, Zhang, Shi, & Cai, 2005).  The general 

fermentation equation can therefore be used to determine the theoretical SMY of a substrate, 

assuming that the atomic fraction composition is known (Edward, Edwards, Egwu, & Sallis, 2015; 

Raposo et al., 2011).  Many studies have used Buswell’s equation to estimate theoretical CH4 yield 

(Browne & Murphy, 2013; Curry & Pillay, 2012; Davidsson, Gruvberger, Christensen, Hansen, & 

Jansen, 2007; Edward et al., 2015; Labatut, Angenent, & Scott, 2011; Triolo, Pedersen, Qu, & 

Sommer, 2012; Yoon, Kim, Shin, & Kim, 2014). 

However, Buswell’s equation is limited in its application.  Many experimental factors 

including solubility, temperature, volume, media composition, and substrate biodegradability can 

affect the accuracy of the calculated theoretical SMY from Buswell’s equation (Shelton & Tiedje, 

1984).  Symons and Buswell (1933) tested pure compounds including starch, lactic acid, acetic 

acid, and sucrose, thereby oversimplifying its biodegradability assumption.  Additionally, 

Buswell’s equation fails to account for the substrate which is used for both energy and cell 

synthesis.   

3.4.2 McCarty’s Bioenergetics method 

McCarty’s Bioenergetics method accounts for both energy and cell synthesis in CH4 

production.  Energy and cell synthesis are determined separately, then added together (McCarty, 

1971). The energy equation accounts for the flow of electrons from donors to acceptors. Ultimately, 

three half reactions (electron donor, electron accepter, oxidation of cells) can be combined to yield 
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the appropriate oxidation-reduction reaction for methane fermentation. The stoichiometric 

coefficients for synthesis and energy must equal the coefficients of the overall equation.  However, 

the Bioenergetics Method does not account for biodegradability.  

Both the Buswell and McCarthy’s Bioenergetics methods have been shown to overestimate 

CH4 yield (Labatut et al., 2011; Lesteur et al., 2010).  Labatut et al. (2011) compared the 

experimentally obtained SMYs to the theoretical SMYs calculated by Buswell and McCarty’s 

Bioenergetics method for seventeen unique substrates.  They found that the theoretical SMYs 

overestimated the experimental SMYs (mL CH4 g VS-1), with the Buswell equation giving the 

worst estimate; they suggested this was because it did not account for cell synthesis.  The largest 

differences between experimental SMYs (mL CH4 g VS-1) and the theoretical calculations were 

for substrates with the lowest biodegradability.  When they accounted for biodegradability in the 

theoretical SMY calculations, there was an over 90% agreement.  They concluded that the Buswell 

estimation was the closest to the experimentally observed value when including biodegradability 

because cell synthesis is accounted for in the biodegradability calculations.   

Closer examination of substrate composition can improve these theoretical CH4 potential 

calculations.  Performing a theoretical CH4 potential calculation on the component composition 

(i.e., fats, proteins, lipids) instead of the elemental composition may provide a closer 

approximation since there are inherent differences in component degradability (A. M. Buswell & 

Neave, 1930; Lesteur et al., 2010; Neves, Gonçalo, Oliveira, & Alves, 2008; J. Ohemeng-

Ntiamoah & Datta, 2018; Raposo et al., 2011; Wagner, Lins, Malin, Reitschuler, & Illmer, 2013).  

Testing for the component composition rather than the elemental composition may also be less 

time consuming.  For substrates with known lipid, protein, and carbohydrate organic fraction 

compositions, the theoretical SMY (Bu) can be estimated using an equation derived from the 

average stoichiometric formulae for carbohydrates (C6H10O5), proteins (C5H7O2N), and lipids 

(C57H104O6) (Raposo et al., 2011) as seen in Eq. (3-6). 

 𝐵𝑢 = 415 ∙ %𝐶𝑎𝑟𝑏𝑜ℎ𝑦𝑑𝑟𝑎𝑡𝑒𝑠 + 496 ∙ %𝑃𝑟𝑜𝑡𝑒𝑖𝑛𝑠 + 1014 ∙ %𝐿𝑖𝑝𝑖𝑑𝑠 (3-6) 

 

Davidsson et al. (2007) calculated Bu using both the elemental composition (C, H, O, N) and the 

component composition (fats, proteins, lipids) of the organic fraction of municipal solid wastes 

(MSW).  They found that the component composition was 87% of the observed yield versus 74% 

for elemental composition.  Formulas only relying on composition, however, can over-predict 
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SMY because they do not account for biodegradability; only the biodegradable fraction can be 

converted to methane (Kafle & Chen, 2016).  To account for biodegradability, Triolo et al. (2011) 

and Møller et al. (2004) proposed including lignin and VFA concentrations in the theoretical BMP 

calculation as seen in Eq. (3-7).  

 𝐵𝑢 = 415 ∙ %𝐶𝑎𝑟𝑏𝑜ℎ𝑦𝑑𝑟𝑎𝑡𝑒𝑠 + 496 ∙ %𝑃𝑟𝑜𝑡𝑒𝑖𝑛𝑠 + 1014 ∙ %𝐿𝑖𝑝𝑖𝑑𝑠

+ 373 ∙ %𝑉𝐹𝐴 + 727 ∙ %𝐿𝑖𝑔𝑛𝑖𝑛 

(3-7) 

3.4.3 Additional theoretical BMP models 

Additional theoretical BMP models have been developed.  These models include multiple 

linear regression models which use substrate composition to predict SMY (Amon et al., 2007; 

Gunaseelan, 2007; Triolo et al., 2011).  Triolo et al. (2011) regressed the SMY against several 

different fiber fractions of the substrate to develop a combined statistical model for manure and 

energy crops.  They found that the lignin fraction was the only significant predictor of Bu when 

testing cellulose, acid detergent fiber, and acid detergent lignin. Results showed that lignin was 

the strongest predictor of Bu for animal manure (R2 = 0.91) and energy crops (R2 = 0.76), though 

the model could still be improved.  Other models for predicting Bu include the ADM1 Model 

(Souza et al., 2013), and the General Integrated Solid Waste Co-Digestion Model (Zaher, Li, 

Jeppsson, Steyer, & Chen, 2009).    

The theoretical SMY can also be estimated based on the chemical oxygen demand (COD) 

concentration of the substrate.  In theory, 1 g of COD can produce 0.35 L of CH4 at STP (0 °C, 1 

atm) (Buffiere et al., 2006; McCarty, 1964).  Therefore, the maximum theoretical SMY can be 

determined from multiplying the amount of total COD in a substrate by 0.35 and dividing by the 

unit mass (Morris, Jewell, & Loehr, 1977; Tong, Smith, & McCarty, 1990; Wandera et al., 2018).   

Theoretical SMY calculations can thus be modified in several ways.  Overall, the elemental 

composition of a substrate does not account for the unique interactions and degradation of various 

bio-molecules in the substrate, and therefore will likely overestimate SMY unless there is a 

correction factor.  Developing statistical models which are unique to the characteristics of the 

substrate tested show promise.  Potentially, the BMP test can be circumvented through the use of 

a reliable theoretical methane potential model.    



 

99 

 

3.5 Modeling biodegradability 

Biodegradable material is the portion of organic material that can be metabolized by 

microorganisms.  Metabolism refers to the use of the material as both an energy and carbon source 

for the microorganisms (Irini Angelidaki & Sanders, 2004).  Organic material is composed of a 

soluble fraction and a particulate fraction.  By definition, particulates are colloids or macro 

particles that are taken up by bacteria less easily than solubles.   

 Biodegradability refers to the ultimate rate and extent of substrate utilization.  

Biodegradability can be influenced by nutrient availability, substrate type, co-digestion, inoculum 

source, inoculum to substrate (ISR) ratio, electron donor and acceptor availability, oxygen 

concentration, temperature, pH, moisture, salinity, sorption of chemicals to particulate material, 

and the chemical concentration (Irini Angelidaki & Sanders, 2004; Costa, Oliveira, & Alves, 2016; 

Hafner et al., 2018; Isci & Demirer, 2007; Kawai et al., 2014; Koch, Hafner, Weinrich, & Astals, 

2019; Koch, Lippert, & Drewes, 2017; Ma, Gu, & Liu, 2018; McEniry, Allen, Murphy, & O’Kiely, 

2014; Meng et al., 2018; Nizami, Orozco, Groom, Dieterich, & Murphy, 2012; Usack & Angenent, 

2015; Vedrenne, Béline, Dabert, & Bernet, 2008; Y. Wang, Odle, Eleazer, & Barlaz, 1997; Yan, 

Zhang, Feng, Sun, & Dang, 2018). 

The BMP test is often used to determine the rate and extent of biodegradability of a 

substrate.  Biodegradability is calculated from either measured product formation (i.e., biogas, 

methane, intermediates), or substrate depletion (i.e., volatile solids (VS), total organic carbon 

(TOC), COD, or another specific compound) in the BMP test (Irini Angelidaki & Sanders, 2004; 

Guwy, 2004).  The biodegradability of organic wastes can range from 5% to 90% without a 

dependence on temperature (Mata-Alvarez, Mac, & Llabr, 2000; Veeken & Hamelers, 1999).  The 

batch BMP test has been shown to give a comparable estimate of the extent of degradability when 

compared to continuous systems (Batstone et al., 2009).  Generally, the more biodegradable the 

substrate is, the higher the SMY (Figure 3-1).   
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 DM = dairy manure, FW = food waste, IW = Industry Waste. 

Figure 3-1. Biodegradability versus SMY (mL CH4 g VS-1) from cited BMP studies.   

3.5.1 Biodegradability calculated from measured product formation 

The CH4 yield from the BMP test is one of the most commonly measured products used to 

calculate biodegradability.  Generally, the biodegradable fraction (fd) of the substrate is calculated 

by dividing the observed SMY (Bo) by Bu as seen in Eq. (3-8) (Buffiere et al., 2006; Cavaleiro, 

Ferreira, Pereira, Tommaso, & Alves, 2013; Cho, Park, & Chang, 1995; Elbeshbishy, Nakhla, & 

Hafez, 2012; Møller et al., 2004; Mottet et al., 2010; Posmanik et al., 2017; Souza et al., 2013; 

Tong et al., 1990; Q. L. Wang, Li, Gao, & Li, 2016): 

 
𝑓𝑑 =

𝐵𝑜

𝐵𝑢
 

(3-8) 

 

where fd is the biodegradable fraction (decimal), Bo is the observed SMY at Standard Temperature 

and Pressure (STP), and Bu is the theoretical CH4 yield.  Theoretically, the Bo value will always 

be a fraction of Bu due to inhibition of CH4 production by certain compounds, uptake by cells for 
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cell synthesis, biomass washout, and the presence of recalcitrant compounds (Irini Angelidaki & 

Sanders, 2004; Møller et al., 2004).  However, there are several different methods for calculating 

Bu as described in section (3.4).  Accounting for the minor losses in CH4 yield due to cell synthesis, 

cell death, biomass washout, and inhibition is of particular concern in these calculations.  Because 

biodegradability calculations reflect the extent to which the substrate can be metabolized by the 

microorganisms, the accounting of these losses can influence the biodegradability measurement.    

3.5.2 Biodegradability calculated from substrate depletion  

Biodegradability is commonly determined through the measurement of substrate depletion.  

The content of the substrate can strongly influence degradation kinetics and CH4 production 

(Amha, Sinha, Lagman, Gregori, & Smith, 2017; Christ, Wilderer, Angerhöfer, & Faulstich, 2000; 

Oslaj, Mursec, & Vindis, 2010).  Either “lumped parameters” (i.e., VS, COD, TOC) or specific 

components (i.e., acetate, glucose, lignin, proteins) are used as indicators of substrate depletion 

(Irini Angelidaki & Sanders, 2004; Guwy, 2004).  However, COD and VS are the most frequently 

used metrics for determining biodegradability (Achinas, Li, Achinas, & Euverink, 2019; Ahmadi-

Pirlou, Ebrahimi-Nik, Khojastehpour, & Ebrahimi, 2017; Alzate, Muñoz, Rogalla, Fdz-Polanco, 

& Pérez-Elvira, 2012; Belle, Lansing, Mulbry, & Weil, 2015; Elbeshbishy & Nakhla, 2012; 

Erguder, Guven, & Demirer, 2000; Eskicioglu & Ghorbani, 2011; Forster-Carneiro, Pérez, 

Romero, & Sales, 2007; Heo, Park, Lee, & Kang, 2003; Jerger, Chynoweth, & Isaacson, 1987; 

Kafle & Chen, 2016; Kafle & Kim, 2012, 2013; Kafle, Kim, & Sung, 2013; Labatut et al., 2011; 

Liu, Zhang, El-Mashad, & Dong, 2009; Luostarinen, Luste, & Sillanpää, 2009; Luste, Heinonen-

Tanski, & Luostarinen, 2012; Martín-González, Colturato, Font, & Vicent, 2010; Montañés, 

Solera, & Pérez, 2015; Palatsi, Viñas, Guivernau, Fernandez, & Flotats, 2011; Petropoulos, 

Dolfing, Davenport, Bowen, & Curtis, 2017; Rico, García, Rico, & Tejero, 2007; Vidal, Carvalho, 

Méndez, & Lema, 2000; Wandera et al., 2018; Wickham, Galway, Bustamante, & Nghiem, 2016; 

R. Zhang et al., 2007).  Basically, COD and VS measurements lump together several components 

of the substrate including solids and intermediate compounds.  Specifically, COD is determined 

experimentally from the amount of an oxidizing agent required to fully oxidize an organic substrate 

(APHA, 1999).  VS is determined experimentally by calculating the loss of material after drying 

at 550°C (APHA, 1999).  The relationship between VS and COD can be determined if the atomic 

fraction composition is known (Irini Angelidaki & Sanders, 2004).  Substrate depletion methods 
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are suitable for processes where there is likely to be inhibition or for early estimation of 

biodegradability (Irini Angelidaki & Sanders, 2004).     

Models to predict anaerobic biodegradability have been developed.  Biodegradability has 

been predicted from the initial characteristics of the substrate (Lesteur et al., 2010; Mottet et al., 

2010).  Regression techniques can be applied to the initial chemical characteristics of the substrate 

and experimental BMP test results to determine the strongest predictor variables for 

biodegradability.   

There is particular interest in the initial concentration of lignin since it is a known inhibitor 

of biodegradability.  One statistical model (R2  = 0.94) developed from a variety of substrates 

(manure, newspaper, straw leaves, agricultural material) shows that one percent of lignin can 

decrease VS digestion by almost 3% (Lesteur et al., 2010) (Eq. 3-9): 

 𝑓𝑉𝑆 = 0.83 − (0.028) ⋅ %𝐿𝑖𝑔𝑛𝑖𝑛 (3-9) 

 

where fVS is the biodegradable fraction of VS (0 < B < 1), and the initial lignin concentration (0 

<  %Lignin  <  20%) in (%VS).  They reported that about 83% of VS can be degraded, while 17% 

is used for cell synthesis and metabolic products.   

 Other chemical characteristics of the substrate have also been considered for 

biodegradability prediction.  Mottet et al. (2010) developed a partial least squares regression model 

from twelve different parameters to predict anaerobic sludge biodegradability.  The key predictors 

of biodegradability were component composition (protein, carbohydrate, lipid) and soluble organic 

carbon concentration, and the COD to TOC ratio.  In many cases, there is a relationship between 

the initial chemical characteristics of a substrate and its biodegradability.  One of the drawbacks 

of early predictive chemical analysis is the investment of time and materials.  However, this time 

may be less than a BMP test, which needs a minimum of 30 days for complete digestion.   

3.6 Kinetic modeling BMP test performance 

3.6.1 First order models 

The first order kinetic model (Eq. 3-10) is one of the most commonly used kinetic models 

for the BMP test (Table 3-1). This first order equation assumes that only one reaction is rate 

limiting, typically hydrolysis, which is a suitable assumption for complex substrates (Strömberg 
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et al., 2015; Vavilin et al., 1996).  The parameters are the rate coefficient (k) and observed SMY 

(Bo).  For AD processes, CH4 is the input variable when hydrolysis is the limiting step (Vavilin, 

Fernandez, Palatsi, & Flotats, 2008).  Several studies have fitted batch CH4 yield data to the first 

order  model (T. H. Chen & Hashimoto, 1996; Elbeshbishy & Nakhla, 2012; Gaur & Suthar, 2017; 

Hashimoto, 1989; Koch & Drewes, 2014; Koch et al., 2019; Lim & Fox, 2013; Luna-delRisco, 

Normak, & Orupõld, 2011; Owens, J.M. and Chynoweth, 1993; Posmanik et al., 2017; Turick et 

al., 1991; Veeken & Hamelers, 1999; Q. L. Wang et al., 2016; Zeng, Yuan, Shi, & Qiu, 2010) as 

shown in Eq. (3-10): 

 𝐵 = 𝐵𝑜[1 − 𝑒𝑥𝑝(−𝑘1𝑡)] (3-10) 

 

where B is the cumulative specific CH4 production (mL CH4 g mass-1), Bo is the ultimate methane 

yield (mL CH4 g mass-1), k1 is the CH4 production rate (day-1), and t is time in days.  The k can 

also be defined as the reciprocal when half of the ultimate CH4 production is reached (Koch & 

Drewes, 2014).  It represents the rates of degradation and biogas production (Koch & Drewes, 

2014).  The parameter k can be determined through linearization (I. Angelidaki et al., 2009; Koch 

& Drewes, 2014), the Secant method (Posmanik et al., 2017), nonlinear least squares regression 

(Luna-delRisco et al., 2011; Owens, J.M. and Chynoweth, 1993; Turick et al., 1991), and surface 

searching (Jensen et al., 2011; Q. L. Wang et al., 2016) (Table 3-1).   

Table 3-1. Kinetic models, their parameter estimates, BO values, and calculation techniques for 

BMP tests in literature.   

Model 

name (1) 

Substrate Model input 
(2) 

Parameter 

estimate 

Parameter 

estimation method 

Statistical 

measurement 

Reference 

First order Wet food 

waste 

CH4 yield k=0.15 Regression curve 

fitting 

R2 Browne 

and 

Murphy 

(2013) 

First order Cellulose CH4 yield k=0.14-0.37 Newton Search 

Along Vectors 

Confidence 

region 

Jensen et 

al. (2011) 

First order Livestock 

manure 

CH4 yield Bo=142-321 

k=0.07-0.12 

Nonlinear regression R2, rRMSE Kafle and 

Chen 

(2016) 

First 

Order 

Raw Sewage 

Sludge 

CH4 yield Bo
 =315 

k1=0.320 

Nonlinear regression Model 

Efficiency 

Koch et al. 

(2019) 

First order Yard waste CH4 yield Bo=23-371 

k=0.04-0.08 

Nonlinear regression Standard 

deviation 

 

Owens, 

J.M. and 

Chynoweth 

(1993) 
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Table 3-1 continued. 

Model 

name (1) 

Substrate Model input 
(2) 

Parameter 

estimate 

Parameter 

estimation method 

Statistical 

measurement 

Reference 

First order Carbohydrate 

and proteins 

CH4 yield k=0.10-0.34 Secant method ND Posmanik 

et al. 

(2017) 

First order Corn stover CH4 yield k=0.14 Linearization R2 Tong et al. 

(1990) 

First order Wood 

species 

CH4 yield Bo=140-310 

k=0.01-0.12 

Least squares fit Standard 

Deviation 

Turick et 

al. (1991) 

First order Grey waste CH4 volume Bo=159-169 

k=0.03-0.03 

Nonlinear regression Standard 

Deviation, FPE 

Vavilin et 

al. (2004) 

Modified 

first order 

MSW Biogas volume k1=0.003 

k2=0.023 

fd=0.341 

Exponential 

regression 

R2, MSD (Rao et al., 

2000) 

Modified 

first order 

Wheat CH4 yield k1=0.67-0.83 

k2=0.07-0.08 

fd=0.63-0.67 

ND R2 Rincón et 

al. (2010) 

Modified 

first order 

Wood 

species 

CH4 yield Bo=160-320 

k1=0.07-0.25 

k2=0.01-0.31 

Least squares fit Standard 

Deviation 

Turick et 

al. (1991) 

Second 

order 

Organic 

wastes 

CH4 yield ND Constrained 

nonlinear 

minimization 

rRMSE, rAE, R2 Strömberg 

et al. 

(2015) 

Modified 

Gompertz 

Swine 

manure 

CH4 yield Bo=273 g 

TCOD added, 

λ=1.1 day, 

Rm=8 mL 

gTCOD-day-1 

Nonlinear least 

square regression 

R2, rRMSE Kafle and 

Kim 

(2012) 

Modified 

Gompertz 

Fish waste, 

bread waste, 

silage 

CH4 yield Bo=396 

λ=0.5 

Rm=19.3 

Nonlinear least 

squares regression 

R2, Standard 

Deviation 

Kafle et al. 

(2013) 

Modified 

Gompertz 

Livestock 

manures 

CH4 yield Bo=148-511 

λ=0-4 

Rm=2.8-12.6 

Nonlinear fit R2 Wandera et 

al. (2018) 

Modified 

Gompertz 

Livestock 

manures 

CH4 yield Bo=138-312 

λ=0 

Rm=5.5-25.2 

Nonlinear regression R2, rRMSE Kafle and 

Chen 

(2016) 

Modified 

Gompertz 

Raw Sewage 

Sludge 

CH4 yield Bo = 315 

Rm = 56.67 

λ = -0.50 

Nonlinear regression Model 

Efficiency 

Koch et al. 

(2019) 

Integrated 

Contois 

Grey waste CH4 volume αB0H YH
-1 =3-

21 ρmH YH
-1  

=0.30-

0.55,K̂VS ρmH
-1  

=4.20-7.66 

α=145-154 

Weighted nonlinear 

regression 

Standard 

Deviation, FPE 

Vavilin et 

al. (2004) 

Chen & 

Hashimoto 

Swine 

manure 

CH4 yield KCH =0.54 

µm=0.11 

HRTcrit=19 

Linearization ND Kafle and 

Kim 

(2012) 

Chen & 

Hashimoto 

Fish, bread 

waste, silage 

CH4 yield HRTcrit=23.8 

Kch=0.13 

 µm =0.04 

Linearization R2 Kafle et al. 

(2013) 
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Table 3-1 continued. 

Model 

name (1) 

Substrate Model input 
(2) 

Parameter 

estimate 

Parameter 

estimation method 

Statistical 

measurement 

Reference 

Chen & 

Hashimoto 

Livestock 

manure 

CH4 yield Bo=129-301 

Kch=2.5-5.1 

µm =0.51-0.85 

Nonlinear regression R2, rRMSE Kafle and 

Chen 

(2016) 

Note: (1) First order: Eq. (3-10); Modified first order: Eq. (3-11); Second order: Eq. (3-16); Modified Gompertz: Eq. 

(3-14); Integrated Contois: Eq. (3-15); Chen & Hashimoto: Eq (3-18); (2) Typical model inputs are: methane yield, 

mL g-1; methane volume, mL CH4..  

 

However, Eq. (3-10) does not account for variance in substrate characteristics and 

essentially lumps together all the kinetic processes.  Specifically, first order kinetics are not 

appropriate when the biodegradability of the substrate is low.  Therefore, there is interest in 

incorporating a term for substrate biodegradability into the first order model (Chynoweth, Turick, 

Owens, Jerger, & Peck, 1993; Tong et al., 1990).  Specifically, there is interest in correlating the 

rate of CH4 fermentation to the lignin concentration of the substrate (Chynoweth et al., 1993; Tong 

et al., 1990).  Tong et al. (1990) attempted to relate the biodegradability and rate of CH4 

fermentation to lignin concentration.  The principle behind this is that lignin is particularly 

recalcitrant to degradation during anaerobic fermentation and could determine the limiting rate of 

substrate degradation (Boruff & Buswell, 1934; Masoud, 1995; Robbins, Armold, & Lacher, 1979).  

 Lignocellulosic substrates can pose a challenge in BMP testing.  Tong et al. (1990) 

performed BMP tests on several lignin-rich substrates using inoculum from an anaerobic fermenter 

treating WWTP sludge.  They modelled CH4 fermentation of lignocellulosic materials using the 

first order model.  When comparing the first order rate constant and CH4 conversion efficiencies 

to lignin concentration, they found a negative correlation (R2 = 0.82).  However, they were not 

able to relate the rate of CH4 fermentation or biodegradability with only lignin concentration.  They 

hypothesized that this was due to structural bonds that the lignin formed with cellulose which are 

resistant to hydrolytic enzymes.  Chynoweth et al. (1993) has noted a correlation between the rate 

of conversion for the first order model of several biomass feedstocks and their lignin 

concentrations.   

Modified first order equations have been developed by combining two first order equations.  

The CH4 yield profile may be better assessed using two rate constants to account for the rapid 

degradation of readily degradable components followed by the slower degradation of fibrous 

material (Eq. 3-11) (Owens, J.M. and Chynoweth, 1993; Rao et al., 2000; Rincón et al., 2010; 

Strömberg et al., 2015): 
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 𝐵(𝑡) = 𝐵𝑜(1 − 𝑓𝑑 ⋅ 𝑒𝑥𝑝( − 𝑘1𝑚𝑜𝑑 ⋅ 𝑡) − (1 − 𝑓𝑑) ⋅ 𝑒𝑥𝑝( − 𝑘2𝑚𝑜𝑑 ⋅ 𝑡)) (3-11) 

 

where fd is the fraction of the readily degradable part of the substrate, k1mod is the rate constant of 

the more readily degradable substrate, and k2mod is the rate constant of the less readily degradable 

substrate. When compared to the first order model for the BMP of wheat, the pseudo first order 

model was a better fit (Rincón et al., 2010) (Table 3-1).   

The typical first order model has been modified to include a time dependency as seen in 

Eq. (3-12) (Strömberg et al., 2015): 

 𝐵(𝑡) = 𝐵𝑜 ∙ (1 − 𝑒𝑥𝑝(−𝑘 ∙ 𝑡𝛾)) (3-12) 

 

where γ is the time dependency.  The kh for hydrolysis can also be calculated assuming first order 

degradation using the time once the CH4 production is less than 1% of total gas production as seen 

in Eq (3-13) (Koch & Drewes, 2014): 

 
𝑘ℎ =

𝑡 − 100

𝑡 − 𝑡2
 

(3-13) 

 

where t is a real number and does not equal 0 or 1.   

The time-dependent first order model (Eq 3-13) has been used for early prediction of  the 

SMY.  The time-dependent first order model had better predictions of the final SMY than the first 

order or modified first order in a BMP test of sludge and other types of organic wastes (Strömberg 

et al., 2015).   

Overall, there are several ways to improve the first order equation.  Substrate-specific 

modifications of the first order equation can provide better parameter estimates and generate a 

more precise BMP profile.  Improvements in parameter estimation techniques can also increase 

the accuracy of the first order model.  Nonlinear parameter estimation methods can provide more 

precise parameter estimates and uncertainty than typical linearization methods.   

3.6.2 Gompertz equation 

The modified Gompertz equation is another frequently cited BMP model.  The Gompertz 

equation is a sigmoidal growth curve which was developed to model bacterial population growth 

without including substrate uptake (Zwietering, Jongenburger, Rombouts, & Van, 1990).  A 
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modified form of the Gompertz equation Eq. (3-14) can be used to calculate the CH4 production 

potential and maximum specific CH4 production rate (Beneragama, Iwasaki, & Umetsu, 2017; 

Dechrugsa, Kantachote, & Chaiprapat, 2013; Feng et al., 2013; Gaur & Suthar, 2017; Kafle & 

Kim, 2013; Kafle et al., 2013; Koch et al., 2019; Romagnoli, Pastare, Sabūnas, Bāliņa, & 

Blumberga, 2017; Strömberg et al., 2015; Veluchamy & Kalamdhad, 2017; Wandera et al., 2018; 

Zhu et al., 2009; Zwietering et al., 1990): 

 
𝐵(𝑡) = 𝐵𝑜 ⋅ 𝑒𝑥𝑝 {− 𝑒𝑥𝑝 [

𝑅𝑚 ⋅ 𝑒

𝐻
(𝜆 − 𝑡) + 1]} 

(3-14) 

 

where B(t) is the cumulative specific CH4 production (mL g mass-1) at time t, exp(1) is 2.71828, 

Rm is the maximum specific CH4 production rate (mL g mass day-1), H is the specific CH4 

production potential (mL g mass-1), λ is the lag phase time in days.  The parameters can be 

estimated using non-linear least square regression methods.   

The modified Gompertz model has performed well when compared to other models.  The 

modified Gompertz model provided a better fit and closer prediction of SMYs when compared to 

the first order kinetic model for several substrates including fish waste, bread waste, brewery grain 

waste, and swine manure (Kafle & Kim, 2012; Kafle et al., 2013) (Table 3-1).  In one case, the 

modified Gompertz model had worst predictions for SMYs for several different types of livestock 

manures in batch mesophilic digestion when compared to the first order model but was still a good 

fit (R2  >  0.99) (Kafle & Chen, 2016) (Table 3-1).  They attributed this result to the fact that there 

was no lag phase in CH4 production due to the use of an active inoculum and the presence of 

readily degradable material in the substrate.  In Kafle and Kim (2012) and Kafle et al. (2013), the 

modified Gompertz model may have been a better fit due to the initial lag time in CH4 production.  

Overall, the modified Gompertz model is suitable when there is a lag in CH4 production during 

the initial days of the test.  

3.6.3 Contois nonlinear regression  

Integrated Contois model 

Contois kinetics can be applied to AD.  Contois kinetics were derived from the microbial 

growth kinetics of continuous and batch cultures of aqueous solutions (Contois, 1959).  Contois 

kinetics have been adapted for hydrolysis kinetics of anaerobic degradation.  For a particulate 
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substrate, there are two separate phases for hydrolysis: colonization and degradation (Vavilin et 

al., 1996).  During colonization, hydrolytic microorganisms surround the individual particle and 

release enzymes to produce smaller particles, called monomers.  The hydrolytic microorganisms 

can then degrade the surface of the monomers at a constant depth per unit time.  Vavilin et al. 

(1996) showed that the Contois model is a good fit for the surface-related hydrolysis kinetics model.  

Vavilin et al. (1996) developed a surface-related hydrolysis kinetics model to account for 

colonization that combines both the saturation of the substrate and biomass into a single parameter.  

Vavilin et al. (2004) developed the integrated Contois model by combining Contois hydrolysis 

kinetics with the conversion of organic waste to CH4, as seen in Eq. (3-15): 

 

𝑡 =
1

𝑌𝐻𝜌𝑚𝐻
𝑙𝑛 (1 +

𝑉𝐶𝐻4
− 𝑉(𝐶𝐻4,0)

𝜔
𝐵0𝐻

𝑌𝐻

) −
�̂�𝑉𝑆

𝜌𝑚𝐻
𝑙𝑛 (1 −

𝑉𝐶𝐻4
− 𝑉(𝐶𝐻4,0)

𝜔𝑉𝑆0
) 

(3-15) 

 

where the coefficients are ωB0H/YH (mL CH4 L-1), ρmH/YH (day-1), K̂VS ρmH
-1 (day), and ω (ml CH4 

gVS-1).  Specifically, YH is the hydrolytic (acidogenic) biomass yield coefficient (unitless), ρmH is 

the maximum specific hydrolytic rate (day-1), VCH4 is the CH4 volume released (mL), ω is the 

conversion coefficient of waste into CH4 (mL CH4 g mass-1), BH is the hydrolytic (acidogenic) 

biomass concentration, �̂�𝑉𝑆 is the half-saturation coefficient (unitless).  Vavilin et al. (2004) used 

the integrated Contois model to fit BMP test results for the putrescible fractions of MSW (Table 

3-1).  When compared to first order kinetics, they found that the integrated Contois model was a 

significantly better fit.   

Monod equation (second order model) 

The Monod equation is commonly used for modeling microbial uptake in biological 

processes.  The Monod equation is a special case of Contois kinetics (Spriet, 1985).  Modified 

forms of the Monod equation are commonly used for modeling microbial growth rates in anaerobic 

wastewater treatment and anaerobic digestion (Batstone et al., 2002; Bernard et al., 2001; 

Billington, 1988; Dochain et al., 1995; Eastman & Ferguson, 1981; Eastman et al., 1981; Lokshina 

et al., 2001; Sollfrank & Gujer, 1991; Vanrolleghem et al., 1995).   

The Monod equation operates under several assumptions.  The Monod equation may be 

more suitable for modeling the BMP test when there is prolonged, slower degradation at the end 
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of the batch test (Strömberg et al., 2014).  This kinetic model is derived from the assumptions that 

(1) a batch digester behaves like a CSTR with a short retention time and a high OLR in the 

beginning, and at the end when most of the substrate is degraded, behaves like a CSTR with a low 

retention time and a low OLR and (2) that hydrolysis is the rate-limiting step (Koch & Drewes, 

2014).  The modified Monod equation for BMP tests is shown in (3-16). 

 
𝐵(𝑡) = 𝐵𝑜 (

𝑘2 ⋅ 𝑡

1 + 𝑘2 ⋅ 𝑡
) 

(3-16) 

 

The parameter k2 can be estimated by linearization of (3-16) (Koch & Drewes, 2014) and nonlinear 

regression (Strömberg et al., 2015) (Table 3-1).   

The Quadratic Monod is another modification of Contois kinetics and has also been used 

for modeling BMP test results (Strömberg et al., 2015).  

 
𝐵(𝑡) = 𝐵𝑜 ∙ (

𝑡2

𝑡2 + 𝑘𝑀1 ∙ 𝑡 + 𝑘𝑀2
) 

(3-17) 

 

In Eq. (3-17), kM1 and kM2 are the rate constants.  The Monod equation, while easily structurally 

identifiable to the biological mechanism, is not easily practically identifiable due to the lack of 

high quality experimental data (Dochain et al., 1995).   

Chen and Hashimoto model 

The Chen and Hashimoto model was developed using Contois kinetics for substrates with 

high total solids (TS) concentration.  The Chen and Hashimoto model was a good fit for a semi-

continuous mesophilic anaerobic digester receiving dairy manure (Y. R. Chen & Hashimoto, 1980).  

Furthermore, the Chen and Hashimoto model has been modified for batch BMP digestion systems 

by substituting substrate concentration with CH4 yield as seen in Eq (3-18) (Kafle & Chen, 2016): 

 
𝐵(𝑡) = 𝐵𝑜 (1 −

𝐾𝐶𝐻

𝐻𝑅𝑇 ⋅ 𝜇𝑚 + 𝐾𝐶𝐻 − 1
) 

(3-18) 

 

where KCH is the dimensionless kinetic constant, μm is the maximum specific growth rate (day-1), 

and HRT is the hydraulic time (day).  The parameters can be solved through linearization (Kafle 

& Kim, 2012; Kafle et al., 2013) or nonlinear regression (Y. R. Chen & Hashimoto, 1980; Kafle 

& Chen, 2016).   
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The Chen and Hashimoto model contains several kinetic parameters which differentiates 

it from the previously described models.  Unlike the Monod model, the Chen and Hashimoto model 

accounts for the relative biodegradability of different waste materials (Billington, 1988).  However, 

one of the drawbacks of Contois kinetics is that it is less reliable at low substrate concentrations 

(Billington, 1988).  Of the models reviewed, only the Chen and Hashimoto model included a term 

for microbial growth rate.  However, this term was a lumped parameter.  Including parameters for 

specific microbial species in the model or for changes in microbial fluxes or populations could 

advance BMP modeling.  

The Chen and Hashimoto model has been tested in literature.  Kafle and Chen (2016) used 

the Chen and Hashimoto model to predict the CH4 yield for several different types of livestock 

manure in batch mesophilic digestion (Table 3-1).  When compared to the first order and Gompertz 

model, the Chen and Hashimoto model gave the worst prediction of CH4 yields but was still a good 

fit (R2 > 0.97).  However, they found a relation between the model and the lignin concentration.  

The parameters KCH, and μm increased as the lignin concentration of the manure decreased.  

Kinetic modeling can be used for early prediction of values related to the BMP test.  Short-

time estimation of the biogas potential for MSW has been done by correlating biogas data with 

time.  However, this method requires at least 14 days of data and is case specific (Ponsá, Gea, & 

Sánchez, 2011).  Strömberg et al. (2015) used kinetic modeling to predict remaining degradation 

in a real time BMP experiment of several substrates including anaerobic sludge, standard 

compounds, household wastes, agricultural wastes, sewage sludge and lipid-rich wastes.  They 

tested six kinetic models including the first order, first order with time dependency, combined first 

order, a modified Gompertz, Monod, and a quadratic Monod.  For parameter estimation, they used 

constrained nonlinear minimization.  They found that the Monod, quadratic Monod, and time-

dependent first order models had more accurate predictions of the SMY than the first order, 

combined first order, and modified Gompertz.  They suggested that these models were more 

accurate because they allowed for a slower decline in gas production which is typical of complex 

substrates.  Overall, they found that mathematical modeling could reasonably predict the SMY as 

early as six days into the test with a reasonable error (rRMSE < 10%).   

Improvements in kinetic modeling can aid BMP testing and prediction.  One of the main 

drawbacks of the BMP test is its length.  The application of kinetic modeling with an on-going 

BMP test could help to provide earlier predictions.  However, improvements in kinetic modeling 
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could reduce the time needed for the BMP test.  The majority of kinetic modeling uses the first 

order model and modified Gompertz model (Figure 3-2).  There is potential for the exploration of 

other kinetic models for BMP test modeling.  However, the predictive ability of these models 

assumes that the collected data is of high quality.  Leakages of the biogas (Hafner & Astals, 2019) 

during the BMP tests can be a common issue.  Poor biogas data could substantially affect the 

implementation of these models.  Overall, attention should be paid to the BMP testing 

methodology.    

 

Figure 3-2. Number of reported studies for the given BMP models.   

3.7 Conclusions 

The following conclusions were drawn from this chapter: 

1. Reliable theoretical BMP models can be selected based on the feedstock being tested and 

could possibly remove the need for BMP testing. 

2. Substrates with higher biodegradability had higher SMY values. 

3. For kinetic modeling of BMP results, the frequently used first order model lacks the nuance 

required for complex substrates.  

4. Improvements in BMP models could reduce the time needed for the BMP test through early 

prediction of the SMY and other parameters.   
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5. Linking the function of the AD process to microbial community dynamics could further 

improve modeling. 
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 MODELING OF HYDROGEN SULFIDE PRODUCTION 

IN BIOCHEMICAL METHANE POTENTIAL TESTS 

4.1 Abstract 

Hydrogen sulfide (H2S) is an unwanted byproduct in biogas from anaerobic digestion (AD). 

However, the modeling of H2S production in AD is complex and often relies on the sulfate 

reduction processes in the digester liquid. This study examined H2S production in six biochemical 

methane potential (BMP) tests and one precipitation test to investigate interactions of iron, sulfate, 

phosphorus and the anaerobic microbial community in AD.  The H2S final specific production 

(FSP, H2S production per g VS) over the digestion period was examined using a generalized 

additive model (gam).  The results showed that highly soluble, carbohydrate-based wastes had a 

high H2S FSP.  The H2S production as a time series was successfully modelled using a gam model 

(R2 > 0.82).  Additionally, the H2S FSP was negatively correlated with the initial Fe(II) : S ratio 

in the digester liquid.  The results indicated that FeS precipitation was preferred in the presence of 

an anaerobic community.    

4.2 Introduction 

There is increasing interest about renewable energy production and concern about 

greenhouse gas (GHG) emissions from organic waste materials. Anaerobic digestion (AD) is a 

solution for both issues.  It is a mature and cost-effective technology that uses a mixed microbial 

community to convert pre-existing wasted biomass to biogas.  Biogas is composed mainly of 

methane (CH4) (50-70%) and carbon dioxide (CO2) (30-50%) (NREL, 2013).  It can be used as a 

renewable energy to provide heat or generate electricity, thereby replacing conventional fossil fuel 

energy sources.  Capturing biogas for energy use reduces GHG emissions.  In 2018, landfills 

containing organic waste accounted for 17.4% of CH4 emissions in the United States, while 

manure management accounted for 9.7% (EPA, 2020).  In 2019, AD systems on livestock farms 

were able to reduce GHG emissions by 4.63 million metric tons of CO2 equivalent (U.S. EPA, 

2020). 

Hydrogen sulfide is the third most important component in biogas but not a desired product.  

It is generated during the AD process and its concentration is usually <1% (<10,000 ppm) in biogas.  
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Hydrogen sulfide can be explosive, highly flammable, corrosive, and fouling at certain 

concentrations  (Barrera, Spanjers, Dewulf, Romero, & Rosa, 2013; OSHA, n.d.).   It is extremely 

toxic to humans and animals at concentrations greater than 1000 ppm.  To protect the equipment 

in   combined heat and power (CHP) generation and boiler applications, H2S concentrations should 

be kept below 1000 ppm.  Hydrogen sulfide should be removed almost entirely for vehicle fuel or 

natural gas use (Appels et al., 2008; Rasi, Läntelä, & Rintala, 2011).  

 Formation of H2S in AD requires a sulfur source, which can cause potential for sulfur 

inhibition in AD.   There are different mechanisms for sulfur inhibition in AD.  Sources of sulfur 

in AD include the introduction of sulfur-rich feedstock and the degradation of amino acids and the 

subsequent release of sulfur.  Even though sulfide is a required nutrient for bacteria, high 

concentrations of sulfide  (> 200 mg L-1) can pose a toxicity problem in AD  (Lin, King, Williams, 

& Hu, 2017; Omil, Méndez, & Lema, 1995; B. G. F. Parkin & Owen, 1987).  One cause of this 

toxicity is when sulfate reducing bacteria (SRB) out-compete methanogens for acetate and 

hydrogen to produce H2S (i.e., primary inhibition) (Chen, Cheng, & Creamer, 2008; Harada, 

Uemura, & Momonoi, 1994; Harper & Pohland, Frederick, 1986; Moestedt, Nilsson Påledal, & 

Schnürer, 2013).  Sulfate reduction is generally favored over methanogenesis.  Compared to 

methanogens, SRBs have higher specific growth rates and greater affinities for substrate utilization 

and removal (Chen et al., 2008; Harada et al., 1994; Oude Elferink, Visser, Hulshoff Pol, & Stams, 

1994).  A secondary inhibition can also occur when sulfide precipitates metals and thus inhibits 

methanogenesis by depriving microorganisms of essential nutrients (Chen et al., 2008; Mountfort 

& Asher, 1979; Winfrey & Zeikus, 1977).   

 There are several methods for preventing H2S production in AD.  They include the addition 

of Fe3+ salts, the addition of sulfur scavenging microorganisms, adsorption with activated carbon 

systems, and the addition of oxygen into the digester (Appels et al., 2008; Barber & Mcquitty, 

1977; Chen et al., 2008; Cirne, Van Der Zee, Fernandez-Polanco, & Fernandez-Polanco, 2008; Z. 

Song, Williams, & Edyvean, 2001).  However, these methods can be expensive and inefficient or 

cause other side-effects (Peu et al., 2012).  Hence, H2S is typically scrubbed from the biogas rather 

than preventing its formation in the AD process (Choudhury, Shelford, Felton, Gooch, & Lansing, 

2019; Peu et al., 2012).   

The H2S production can be studied in biochemical methane potential (BMP) tests.   The 

BMP test is a controlled batch lab-scale digestion study whose purpose is to examine the CH4 and 
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biogas production from a given substrate (Angelidaki et al., 2009).  Though the BMP test usually 

focuses on CH4 production, H2S production can also be examined.  Using the information from 

BMP tests, the H2S production has been modeled based on the C : S ratio of the agricultural 

feedstocks (Peu et al., 2012).   

However, connecting H2S production only to the introduction of sulfur-rich substrates can 

oversimplify the other influences on H2S production.  For example, the presence of metals can 

influence the conversion of sulfur.  High iron concentrations could precipitate sulfide, which could 

prevent the precipitation of other essential metals by microorganisms through secondary inhibition 

(Gupta, Flora, Sayles, & Suidan, 1994).  However, metal concentrations can also inhibit H2S 

production.  Batch digester tests of dairy manure showed that iron and copper played a role in 

reducing H2S concentrations in the biogas through sulfide-metal precipitation (Lin et al., 2017).  

This reduction in H2S production was attributed to sulfide-metal precipitation.  Additionally, the 

pH, COD : Sulfate, and sulfate concentrations can influence CH4 inhibition and sulfate conversion 

to H2S in AD (Guerrero, Chamy, Jeison, Montalvo, & Huiliñir, 2013; Vavilin, Vasiliev, Rytov, & 

Ponomarev, 1994).  For example, the inhibition of sulfide on acetoclastic methanogenesis 

intensifies at acidic pH values (Koster, Rinzema, de Vegt, & Lettinga, 1986).  Moreover, H2S 

production in AD could be related to different types of feedstock (Belle, Lansing, Mulbry, & Weil, 

2015).   

   The goal of this study is to improve understanding of H2S production in lab-scale batch 

tests through identifying influential factors on H2S production that can serve as indicators for 

potential digester inhibition.  The specific objectives of the study were: 1.) Examining biogas 

production and digester liquid pH; 2.) Studying dynamic behaviors of H2S production and digester 

liquid pH; and 3.) Determining influential factors for controlling H2S production. 

4.3 Materials and methods 

4.3.1 Sources of substrate and inoculum 

Field digesters for substrate and inoculum 

Substrate and inoculum used in the experiment were collected from four industrial-scale 

digesters (Digesters F, B, L, and W) in Indiana State.  Collections occurred at seven dates between 

January 2018 and November 2019 for seven laboratory tests (Table 4-1).  The substrate and 



 

132 

 

inoculum were taken at different locations within the field digesters. After collection, they were 

transported to Purdue University and immediately used in the laboratory tests.   

Table 4-1. Characteristics of the four industrial anaerobic digesters, and substrate and innoculum 

collections for laboratory tests.   

Description 
Industrial anaerobic digester 

Digester F Digester B Digester L Digester W 

Digester design Mixed plug flow Mixed plug flow Completely 

mixed 

Completely 

mixed 

Digester type Agriculture Agricultural co-digestion WWTP WWTP 

Digester feedstock Dairy manure 

slurry 

Beef cattle manure, food waste, 

glycerin, industrial wastes, and 

biodiesel waste 

WAS, PS WAS, food 

waste, grease 

Digester HRT 

(days) 

15 28-32 15-30 ND 

Digestion T (°C) 41.6 38.3 36 Mesophilic 

Biogas production 

(m3 d-1) 

~34,000 ~61,000 ~1900 ~1500 

Collection date 

(m/d/y) 

1/18/18 6/5/18, 8/9/18, 10/24/18, 2/18/19 5/17/19 11/15/19 

Materials collected DM, EF, EF-R INF, DL-E, DL-W, EF-E, EF-W, 

EF-L 

INF, EF EF  

Used in lab test (#) 1 2-5 6 7 

(precipitation) 

Note: WWTP = wastewater treatment plant; WAS = waste activated sludge; PS = primary sludge; ND = no data. 

Digester F 

Digester F was a mixed plug-flow digester treating dairy manure (DM) at mesophilic 

conditions (41.6°C) and a hydraulic retention time (HRT) of 15 days (Table 4-1).  Digester F 

produced about 34,000 m3 of biogas daily (Table 4-1).  Three types of substrate and inoculum 

were collected in January 2018 from the influent that was mainly DM, digester effluent (EF) and 

effluent after solid separation and phosphorus recovery (EF-R). 

Digester B 

Digester B was also a mixed plug-flow design, consisting of three parallel and isolated 

digester bodies.  It operated at 38.3°C and an HRT of 28-32 days and produced about 61,000 m3 

of biogas daily (Table 4-1).  Digester B received beef cattle manure (~50%) with other co-digested 

materials including food waste, glycerin, industrial waste (IW), and biodiesel waste, resulting in 
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variable influent to the digester. Therefore it provided unique conditions to study the effect of 

different influent composition on the performance of AD.  Effluent from Digester B was processed 

to remove solids and left a liquid portion of effluent (EF-L).   

Substrate and inoculum were collected from Digester B at four dates on 6/5/18, 8/9/18, 

10/24/18, and 2/18/19, and used in Tests 2, 3, 4, and 5, respectively. Digester B was reported as 

experiencing foaming at the first three collection times.  Additionally, glycerin loads were reported 

as being reduced during the last collection.  

Six types of materials were taken at different locations of the digester system. These 

materials were 1) digester influent (INF) in the equalization pit after feedstock mixing, 2) and 3) 

digester liquid in the middle of the east (DL-E) and west (DL-W) digesters, 4) and 5) digester 

effluent in the effluent pits of the east (EF-E) and west (EF-W) digesters, and 6) liquid fraction of 

digester effluent (EF-L) after solids removal using a roller press, slope screen, and centrifuge 

(Figure 4-1).   

 

Figure 4-1. Overview of field digester sampling locations (in bold letters).  

Digester L 

Digester L was at a wastewater treatment plant (WWTP), operating at 36°C and an HRT 

of 15-30 days.  It treated waste activated sludge (WAS) and primary sludge (PS) and produced 

about 1900 m3 of biogas daily.  Influent and effluent at Digester L were collected in May 2019 and 

used in lab Test 6. 
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Additionally, three types of dry and powdered cornstarch-based co-digestion wastes 

(identified as S1, S2, and S3) from the facility were used as the substrate for Test 6. Substrate SM 

(Table 4-2) was an equal mix by mass of S1, S2, and S3.  

Digester W 

Digester W was a mesophilic digester at another WWTP. It treated WAS and other co-

digestion wastes, including food waste and grease, and produced about 1500 m3 of biogas daily 

(Table 4-1). Substrate and inoculum were collected at Digester W in November 2019 and used in 

a precipitation test (Test 7).   

4.3.2 Substrate and inoculum characterization 

The substrate and inoculum were thoroughly characterized after collection (Day 0 of each 

test) to determine several chemical and physical parameters (Table A-1). The total chemical 

oxygen demand (TCOD), soluble chemical oxygen demand (SCOD), total volatile fatty acids 

(TVFAs), total alkalinity (TALK), total sulfate, total phosphorus (TP), Total Kjeldahl Nitrogen 

(TKN), Total Nitrogen (TN), inorganic N, iron, copper, and nickel were measured using 

TNTplusTM Vial test kits and a Hach DR3900 Benchtop Spectrophotometer (Hach Company, 

Loveland, CO).  Other Hach test kits used in the lab tests included orthophosphate (OP) (Hach 

Orthophosphate Test Kit Model PO-19), tannic acid (Hach Method 8193), and TAN (Hach Method 

8038).   

The measurement of TS, fixed solids (FS), and volatile solids (VS) followed methods 

described in (APHA, 1999).  A Jenco Digital pH Meter (Model 60 with Cole-Parmer electrode Cat 

No 05993-00) was used to measure pH.  Conductivity was measured with a Hanna Instruments HI 

9813-6N EC Meter.  

Measurements necessitating particulate samples (pH, solids, conductivity, TCOD, sulfate, 

tannic acid, TAN, and TP) were thoroughly mixed with a magnetic stir bar to ensure consistency.  

Measurements requiring soluble samples were filtered with a cellulose acetate filter of either 0.2 

μm (SCOD) or 0.45 μm (TKN, TVFA, TALK, OP, Fe, Cu, Ni) (Table A-1).  Soluble samples were 

filtered with either a 0.2 μm cellulose acetate filter or a 0.45 μm cellulose acetate μm filter.   

Dilutions were performed on a g g-1 basis.   
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4.3.3 Lab-digester set-up 

The laboratory tests were conducted in customized digesters.  For experiments involving 

materials from Digesters F and B (Tests 1 through 5), the digesters were made of 1000 mL (with 

6.75 mm OD barb side outlet port) or 500 mL (with 6.35 mm OD barb side outlet port) flasks 

(Bomex borosilicate glass filtering flasks). The 1000 mL digesters was sealed with #10 rubber 

stoppers and the 500 mL digesters was sealed with #8 rubber stoppers.   

A piece of pipe, cut from a 10 mL Falcon Pipet (#357551), was inserted through each 

rubber stopper and used as an operation port for sampling and measurement. When the digesters 

were sealed with the stoppers, the lower end of the pipe extended to below the digester liquid so 

the biogas produced in the digesters could not escape from the operation port. The side outlet port 

in the digester body was used as a biogas collection port.  Two 500 mL gas bags in parallel were 

attached to the side outlet port using a Tee.  

For experiments involving materials from Digesters L and W (Tests 6 and 7), the digesters 

were made of 1000 mL Corning polycarbonate square bottles.  The original 45 mm screw cap of 

the bottles were replaced with #8 rubber stoppers.  In addition to the operation port, a biogas port 

was added by inserting a short piece of pipe, cut from a 2 mL polystyrene Falcon Pipet (#357507), 

through the stopper.  The lower end of the pipe opened at the headspace of the digester to release 

the biogas.  The top end of the pipe was connected to a 3-L or a 1-L Tedlar bag, depending on the 

biogas production rates during different stages of AD, to collect the biogas. To ensure air tightness, 

the pipes were sealed to the stopper using a silicone sealant. 

4.3.4 Lab-digester operation  

Immediately after loading the digesters with influent (the mixture of substrate, inoculum, 

and RO water when necessary), the digesters were randomly placed in several water baths 

(GEMMYCo Model YCW-010, and PolyScience Model WB28A11B). The temperatures of the 

water baths were controlled at 38.3°C ± 0.1 for Tests 1-5, and 7 and at 36°C ± 0.1 for Test 6.  The 

tests were ended when the CH4 daily production was less than 1% of its cumulative production. 

The biogas volume and composition were measured for the first three days daily, and then 

at intervals of no more than three days until the end of the tests.  Before detaching from the 
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digesters, the gas bags were sealed with metal screw clamps (16 mm x 19 mm). The bags were 

immediately replaced with new bags. 

The volumes of biogas in the bags were measured using a custom-made device and a 200 

mL syringe (SEALY Model VS 404). All biogas volumes were converted to Standard Temperature 

and Pressure (1 atm, 0°C) before data processing.  Biogas compositions were measured with a 

5000 Gas Analyzer (LANDTEC North America, Inc., Colton, CA), which has detection ranges of 

CH4 (0-100%); CO2 (0-100%); O2 (0-25%), and H2S (0-10,000 ppm).  The specific methane yield 

(SMY) was calculated by dividing the final cumulative CH4 volume by the grams of the initial 

volatile solids. 

The pH of the digester liquid was measured through the operation port using a Jenco Model 

60 Digital pH meter (Cole-Parmer electrode Cat No 05993-00) on the same days when the biogas 

volume and concentration were measured. The liquid in the digesters were thoroughly mixed with 

a magnetic stir bar before pH measurement.   

4.3.5 BMP tests 

Tests 1 through 6 were regular BMP tests that were conducted with different combinations 

of substrate and inoculum (Table 4-2).  The substrate included DM, EF-R, INL, and mixture of PS 

and WAS.  The inoculum was either EF, EF-R, or DL to ensure the necessary microbial consortia 

for CH4.  Additionally, digesters with 100% inoculum to determine the activity of the different 

stages of the AD system were used.  The DL from Digester B experienced foaming issues in Test 

2 so, in subsequent tests, the DL was diluted with reverse osmosis (RO) water to 50% in the 

digesters.   

The six BMP tests were all performed in triplicate, except for blanks which were in 

duplicate.  For each test, a “blank” control with inoculum and water was used to determine the 

production of CH4 from the inoculum.        

The SMY was calculated by dividing the final cumulative CH4 volume by the grams of the 

initial volatile solids.     
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Table 4-2. Sample collection location and % volume of materials loaded in each lab-digester in 

each batch of collected materials (lab-digester group No.).  

Field 

digester 

Lab- digester 

group No. 

RO water 

(% V) 

Substrate 

(% V) 

Inoculum 

(% V) 

F 1-1 0 DM (100) 0 

F 1-2 0 DM (90) EF (10) 

F 1-3 0 0 EF-R (100) 

F 1-4 0 EF-R (90) EF (10) 

F 1-5 0 0 EF (100) 

F 1-6** 90 0 EF (10) 

B 2-7 0 INL (90) EF (10) 

B 2-8 0 INL (90) DL-W (10) 

B 2-9* 0 0 DL-W (100) 

B 2-10 0 0 EF-W (100) 

B 2-11** 90 0 EF-W (10) 

B 2-12** 90 0 DL-W (10) 

B 3-13 0 INL (90) EF-W (10) 

B 3-14 0 INL (90) DL-W (10) 

B 3-15 0 0 EF-W (100) 

B 3-16 50 0 DL-W (50) 

B 3-17** 90 0 EF-W (10) 

B 3-18** 90 0 DL-W (10) 

B 4-19 0 INL (80) EF-W (20) 

B 4-20 50 0 DL-W (50) 

B 4-21 50 0 DL-E (50) 

B 4-22 0 0 EF (100) 

B 4-23** 80 0 EF-W (20) 

B 5-24 0 INL (80) EF-W (20) 

B 5-25 50 0 DL-W (50) 

B 5-26 50 0 DL-E(50) 

B 5-27 0 0 EF (100) 

B 5-28** 0 0 EF-W (20) 

L 6-29 0 PS+ WAS mix (33.3)+Cellulose (0.02) EF (66.7) 

L 6-30 0 PS+WAS mix (33.3) EF (66.7) 

L 6-31 13.3 PS+ WAS mix (28.7)+S1 (0.7%) EF (57.3) 

L 6-32 23.4 PS+WAS mix (25.1)+S1 (1.3) EF (50.2) 

L 6-33 31.2 PS+WAS mix (22.4)+S1 (1.7) EF (44.7) 

L 6-34 11.3 PS+WAS mix (29.4)+S2 (0.7) EF (58.7) 

L 6-35 27.3 PS+WAS mix (23.7)+S2 (1.6) EF (47.4) 

L 6-36 12.7 PS+WAS mix (28.9)+S3 (7) EF (57.7) 

L 6-37 22.4 PS+WAS mix (25.5)+S3 (1.2) EF (50.9) 

L 6-38 30.0 PS+WAS mix (22.8)+S3 (1.6) EF (45.6) 

L 6-39 14.3 PS+WAS mix (28.3)+SM (0.8) EF (56.6) 

L 6-40 1.4 PS+WAS mix (24.6)+SM (1.4) EF (49.2) 

L 6-41 33 PS+WAS mix (21.7)+SM (1.8) EF (43.5) 

L 6-42 48.9 PS+WAS mix (16.1)+SM (2.7) EF (32.3) 

L 6-43 23.5 PS+WAS mix (24.6)+SM (2.8) EF (49.2) 

L 6-44 0 0 EF (100) 

L 6-45 0 PS+WAS mix (80) EF (20) 

Each digester group contains 3 individual digesters, except for blanks which contain 2. * Digesters in this group 

foamed over during the experiment and were removed.  **Digesters in this group were blanks.  DL = digester liquid, 

DM = dairy manure, EF = effluent, EF-R = effluent with phosphorus and solids recovered, PS = primary sludge, 

WAS = waste activated sludge.  
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4.3.6 Precipitation tests 

Based on the results of Tests 1 through 6, an experiment was designed to gain more insight 

into the role of iron, phosphorus, and sulfide in AD.  Ferric chloride hexahydrate (VWR analytical) 

was the iron source, phosphoric acid 85% (Mallinckrodt Chemicals) was the phosphorus source, 

and sodium sulfide nonahydrate (ACS, 98.0% min, Crystalline, Na2S 9H2O, Alfa Aesar) was the 

sulfide source.  The inoculum was obtained from Digester W as described in the previous section 

4.3.1.  The inoculum was 10% of the volume in the 1 L working volume used. The digester set-up 

was described in the previous sections 4.3.3 and 4.3.4. 

The conditions of this test were selected to be similar to conditions in Tests 1 through 6.  

To test FeS precipitation, the sulfide concentration was limiting since sulfide concentrations were 

naturally limiting in the previous BMP tests.  To test Fe3(PO4)2, formation, Fe was limiting as that 

was what occurred in the previous BMP batch tests. The experimental set-up is described in more 

detail in Table 4-3.  Additionally, on Day 0, each digester received 3 grams of sodium bicarbonate 

(Mallinckrodt Chemicals) and 0.001 gram of resazurin sodium salt (Thermo Fisher Scientific) as 

a buffer and oxygen indicator, respectively.  Each treatment was performed in duplicate.  Biogas 

volume and pH were measured at intervals of no less than 2 days and the gas concentrations were 

measured as needed using methods described in section 4.3.4. 

Table 4-3. The experimental design of the precipitation tests. 

Treatment Ferric 

Chloride (g) 

Sodium 

Sulfide (g) 

Phosphoric 

Acid (mL) 

Inoculum (g) 

Fe Reduction + Inoculum  0.5809   100 

Fe Reduction   0.5809    

Fe Reduction+ FeS Precipitation + Inoculum  0.5809 0.2434  100 

Fe Reduction +FeS Precipitation  0.5809 0.2434   

Fe-P Precipitation + Inoculum 0.5809  0.7205 100 

Fe-P Precipitation  

 
0.5809  0.7205  

Inoculum only    100 
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4.3.7 Data analysis 

Result data 

The tests resulted in data that included characterizations of the lab-digester liquid (Tables 

A-2 through A-5), the final specific H2S production calculations (Table 4-4), the H2S and pH time 

series data, and the qualitative variables of the substrate and the inoculum (substrate type, 

collection date, location, inoculum, foaming).  Numerical calculations, statistics, and modeling 

were performed in Microsoft Excel and R version 3.6.3 (2020-02-29) (x86_64-w64-mingw32/x64 

(64-bit)).   

Calculations 

To have a uniform comparison between the different digesters, the final specific H2S 

production (FSP) was calculated using Eq. (4-1): 

 
𝐹𝑆𝑃 =

∑ 𝐶𝐻2𝑆,𝑖 ⋅ 𝑉𝐵𝑖𝑜𝑔𝑎𝑠,𝑖
𝑛
𝑖=1

1000 ⋅ 𝑊𝑉𝑆
 

(4-1) 

 

where FSP is the final specific H2S production, mL g VS-1; CH2S is the concentration of H2S in the 

biogas, ppm; VBiogas is the volume of the biogas, L; WVS is the initial weight of VS fed into the 

digester, g; n, is the number of biogas collections during the test; and i is ith collection of biogas 

produced from the digester.  Eq (4-1) was modified from calculations for the SMY from the batch 

digestion tests.   

The concentration of H2S in the liquid phase was calculated using Henry’s Law and the 

related coefficients from the literature (Isa, Grusenmeyer, & Vestraete, 1986; Lawrence, McCarty, 

& Guerin, 1964). Using Henry’s law, the total dissolved sulfide concentration (TDS) was 

calculated from the H2S concentration measured in the biogas during the lab-digester tests as 

shown in Eq. (4-2):  

 [𝐻2𝑆]𝑙 = 𝛼[𝐻2𝑆]𝑔 (4-2) 

 

where α is the absorption coefficient which is 1.73 at 38.3°C and 1.80 at 36.0°C and H2S 

concentrations are expressed in moles per liter of liquid and moles per liter of gas, respectively.   
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The theoretical partition of H2S between the gas and liquid phases of the digester were 

calculated based on the measured pH and H2S concentrations using Eq. (4-3): 

 
𝒇=(1 + 

K𝑑

10−pH)
−1

 
(4-3) 

 

where f is the fraction of free H2S gas to TDS (H2S(l) + HS- + S2-) and Kd is the equilibrium 

dissociation constant for H2S which was 1.639 x 10-7 at 38.3°C and 1.535 x 10-7 at 36.0°C (Isa et 

al., 1986; Lawrence et al., 1964).  

The total dissolved sulfide (TDS) concentration was calculated using the concentration of 

H2S in the liquid and the pH in Eq. (4-4)  (Isa et al., 1986; Lawrence et al., 1964). 

 
𝑇𝐷𝑆 =

[𝐾𝑑][𝐻𝑠𝑆(𝑙)]

10−𝑝𝐻
+ [𝐻2𝑆(𝑙)] 

(4-4) 

 

The COD removal by SRB was calculated from the initial and final TCOD and sulfate 

concentrations as shown in Eq (4-5) (Guerrero et al., 2013). 

 
𝐶𝑂𝐷removal by SRB =

0.67 ∗ [𝑆𝑂4,initial
−2 − 𝑆𝑂4,final

−2 ]

𝐶𝑂𝐷𝑖 𝑛tial
 

(4-5) 

Regression analysis  

Different regression analyses were performed on the data.  Ridge, LASSO (Least Absolute 

Shrinkage and Selection Operator), and partial least squares (PLS) regression was performed in 

Rstudio.  Ridge, LASSO, and PLS regression can be used for data which displays multicollinearity. 

The package FactomineR was used to develop a multiple linear regression model of qualitative 

characteristics (substrate type, collection date, location, inoculum, foaming) on the final specific 

H2S production data.  Pearson and spearman correlation tests between the FSPs and initial 

characterizations were also performed using the cor() function in Rstudio.      

Statistical tests 

The data from the precipitation tests were analyzed using statistical tests.  Due to the small 

sample sizes (n < 30) for each treatment in the precipitation test, the data was first tested for 

normality using the Shapiro-Wilk test, which is a commonly used normality test and is 
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recommended for smaller sample sizes (Ghasemi & Zahediasl, 2012).  If the data was not normally 

distributed (P < .05), then a Wilcoxon signed-rank test was applied.  If the data was normally 

distributed, then a paired t-test was applied.  Both the Wilcoxon signed-rank test and the paired t-

test are commonly used analyses for data in which there are two independent variables (Date, 

Treatment) and one dependent variable (Fe).  They are commonly used to determine differences 

between “before” and “after” data from different treatments (McDonald, 2014).  The P values were 

corrected with a Bonferroni correction method, which is popular and the most conservative P 

values correction method (Jafari & Ansari-Pour, 2019).   

Model development  

Local Regression (loess) and Generalized Additive Model (gam) were used for modeling 

the final specific H2S productions (S. Wood, 2011; S. N. Wood, 2004).  The models were 

developed using RStudio package mcgv (S. N. Wood, 2001).  Loess is a non-parametric method 

that uses data points of less than 1000 to predict the local y value through fitting multiple 

regressions in a local neighborhood of numerical data.  Gam uses nonlinear regression to fit local 

y values in a local neighborhood of numeric data and is a more generalized version of loess.  The 

gam model is shown in Eq (4-6): 

 𝑠(𝐸((𝑌)) = 𝛽0 + 𝑓1(𝑥1) … 𝑓𝑚(𝑥𝑚) (4-6) 

 

where β0 is the intercept, fm is the smoothing function, and s is the link function which was identity.   

4.4 Results and discussion 

4.4.1 Hydrogen sulfide production 

 Hydrogen sulfide production from 43 digester groups in the six tests showed a considerable 

variability (Table 4-4).  The lowest specific H2S productions ranged from non-detectable (Table 

4-4, lab-digester group #1-6 that had 90% RO water) to 1.29 mL g VS-1 (#6-41). The lowest five 

lab-digester groups producing < 0.001 mL g VS-1 were those which tested either effluent from 

Digester F (#1-5) or diluted digester liquid from the middle of Digester B.  The digesters that 

produced ≥ 0.2 mL H2S g VS-1 were all from Test 6. These digesters also received co-digestion 
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substrate S1, or S2, or SM.  Digester groups # 6-41 and 6-43 were the highest with 1.29 and 0.75 

mL g VS-1, respectively.   

 The time series of H2S concentrations are shown in Figure 4-2.  In most cases, the highest 

H2S concentrations were observed within the first ten days of the experiments.  Notably, the H2S 

concentrations exceeded 1000 ppm in Tests 3, 5, and 6.  In the lab, BMP digester operators should 

note that BMP tests can produce biogas with high H2S concentrations. If the biogas has a large 

volume and leaks in the lab room air, it could pose a potential risk and the room air should be 

vented accordingly.   

Table 4-4. Specific hydrogen sulfide productions from 43 digester groups in the six tests. 

FD-T-LD 
Substrate  

(% V) 

Inoculum  

(% V) 

RO water  

(% V) 

H2S production 

(mL g VS-1) 

F-1-1 DM (100)   0.01 ± 0.0052 

F-1-2 DM (90) EF (10)  0.012 ± 0.0055 

F-1-3  EF-R (100)  0.0033 ± 0.0021 

F-1-4 EF-R (90) EF (10)  0.0029 ± 0.0022 

F-1-5  EF (100)  4e-04 ± NA 

F-1-6  EF (10) (90) NA 

B-2-7 INL (90) EF (10)  0.003 ± 0.0012 

B-2-8 INL (90) DL-W (10)  0.0038 ± 0 

B-2-9*  DL-W (100)    

B-2-10  EF-W (100)  0.40 ± 0.80 

B-2-11  EF-W (10) (90) 0.0045 ± NA 

B-2-12  DL-W (10) (90) 0.0035 ± 0.0031 

B-3-13 INL (90) EF-W (10)  0.0019 ± 0.0019 

B-3-14 INL (90) DL-W (10)  0.0011 ± 0.0015 

B-3-15  EF-W (100)  0.0083 ± 0.011 

B-3-16  DL-W (50) (50) 6e-04 ± 7e-04 

B-3-17  EF-W (10) (90) 6e-04 ± 4e-04 

B-3-18  DL-W (10) (90) 8e-04 ± 8e-04 

B-4-19 INL (80) EF-W (20)  0.0054 ± NA 

B-4-20  DL-W (50) (50) 0.0027 ± 0.0021 

B-4-21  DL-E (50) (50) 0.0039 ± 0.0019 

B-4-22  EF (100)  0.0028 ± 0.0029 

B-4-23  EF-W (20) 80 9e-04 ± 0 

B-5-24 INL (80) EF-W (20)  0.025 ± 0.012 

B-5-25  DL-W (50) (50) 0.014 ± 0.0098 

B-5-26  DL-E(50) (50) 0.016 ± 0.0057 

B-5-27  EF (100)  0.0026 ± 7e-04 

B-5-28  EF-W (20)  0.0064 ± 0.0061 

L-6-29 SL (33.3)+Cellulose (0.02) EF (66.7)  0.080 ± NA 

L-6-30 SL (33.3) EF (66.7)  0.092 ± NA 

L-6-31 SL (28.7)+S1 (0.7%) EF (57.3) (13.3) 0.20 ± 0.10 

L-6-32 SL (25.1)+S1 (1.3) EF (50.2) (23.4) 0.30 ± NA 

L-6-33 SL (22.4)+S1 (1.7) EF (44.7) (31.2)   

L-6-34 SL (29.4)+S2 (0.7) EF (58.7) (11.3) 0.074 ± NA 
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Table 4-4 continued. 

FD-T-LD 
Substrate  

(% V) 

Inoculum  

(% V) 

RO water  

(% V) 

H2S production 

(mL g VS-1) 

L-6-35 SL (23.7)+S2 (1.6) EF (47.4) (27.3) 0.24 ± 0.053 

L-6-36 SL (28.9)+S3 (7) EF (57.7) (12.7) 0.043 ± NA 

L-6-37 SL (25.5)+S3 (1.2) EF (50.9) (22.4) 0.14 ± 0.12 

L-6-38 SL (22.8)+S3 (1.6) EF (45.6) (30) 0.29 ± NA 

L-6-39 SL (28.3)+SM (0.8) EF (56.6) (14.3) 0.040 ± NA 

L-6-40 SL (24.6)+SM (1.4) EF (49.2) (1.4) 0.50 ± NA 

L-6-41 SL (21.7)+SM (1.8) EF (43.5) (33) 1.29 ± NA 

L-6-42 SL (16.1)+SM (2.7) EF (32.3) (48.9) 0.20 ± NA 

L-6-43 SL (24.6)+SM (2.8) EF (49.2) (23.5) 0.75 ± 0.9933 

L-6-44  EF (100)  0.10 ± NA 

L-6-45 SL (80) EF (20)  0.061 ± 0.048 

Each digester group contains 3 individual digesters, except for blanks that contains 2. FD-T-LD = Field digester - 

Test number - Lab digester group number, DL = digester liquid, DM = dairy manure, EF = effluent, EF-R = effluent 

after solids removal and phosphorus recovery, SL = sludge, a mixture of primary sludge and waste activated sludge.  

 

 

Figure 4-2. The average measured H2S concentration (ppm) and standard deviation over time 

from the lab-digester groups. 

4.4.2 Correlations between H2S production and digester influent characteristics 

Correlation calculation results showed that the most important influences on the final 

specific H2S productions, disregarding those characteristics containing solids measurements, were 

the initial Fe(II) : S and OP concentrations (Table 4-5).  Sulfate itself was not highly correlated 
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with the final specific H2S productions, but its relation to iron was.  Additionally, concentrations 

of the initial copper and different forms of nitrogen were correlated with H2S production.  Since 

the majority of H2S was produced relatively early in the experiment (Figure 4-2), the initial 

concentrations of these metals and nutrients may have a complex effect on H2S production.   

Table 4-5. Correlation coefficients between the final specific H2S productions and the day 0 

digester influent characteristics. 

Characteristic Correlation 

Coefficient 

Test P value Significance 

FE(II) : S -0.65 spearman < .001 *** 

SCOD : TCOD -0.63 spearman < .001 *** 

TCOD : TKN 0.54 spearman < .001 *** 

TCOD : TN : TP 0.54 spearman < .001 *** 

SCOD -0.52 spearman < .001 *** 

OP -0.52 spearman < .001 *** 

Inorganic N -0.50 spearman < .001 *** 

TN -0.48 spearman < .001 *** 

TAN : TKN 0.46 spearman < .001 *** 

TKN -0.46 spearman < .001 *** 

OP : TP -0.46 spearman < .001 *** 

Fe(II) : TP 0.35 spearman < .001 *** 

Fe 0.34 spearman .0011 ** 

TVFA -0.32 pearson .024 ** 

Cu -0.22 pearson .036 * 

TAN -0.22 pearson .037 * 

Conductivity -0.15 spearman .16  

Ni 0.14 spearman .19  

TP -0.11 spearman .31  

Sulfate -0.09 spearman .39  

pH -0.08 spearman .43  

TALK -0.08 pearson .43  

TCOD : Sulfate 0.08 spearman .47  

TVFA : TALK -0.06 spearman .58  

Tannic Acid 0.01 spearman .91  

* P < .05, ** P < .01, *** P < .001 

TCOD to sulfate ratio and H2S production 

The TCOD : Sulfate ratios also varied among different lab-digesters.  The digesters 

containing DM and DL (lab-digester group numbers 1-1, 1-2, 2-7, 2-8, 3-13, 3-14, 4-19, 5-24) had 

initial TCOD : Sulfate ratios greater than 10, suggesting that sulfide inhibition was unlikely from 

those particular digesters (Table A-4).  Lab-digesters with an initial TCOD : Sulfate less than 10 

included materials containing digester influent and liquid from field Digester B (lab-digester group 

numbers 3-15, 3-16, 4-21, 5-25, 5-26, 5-27) and lab-digester group numbers 6-29, 6-30, 6-45 from 
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field Digester L (Table A-4).  The recorded pH for group numbers 6-29, 6-30, and 6-45 from 

Digester L, and 3-16 and 4-21 from Digester B were below neutral (Table A-4).   

The TCOD : Sulfate ratio has been commonly used as an indicator for the likelihood of 

SRB and methanogen competition.  After sulfate reduction, sulfide could present as H2S in the gas 

phase  and  liquid phase.  For wastewater, it has been suggested that a TCOD : Sulfate ratio below 

10 would exceed the free H2S concentration limit of 150 mg L-1 (Isa et al., 1986; Kalyuzhnyi, 

Fedorovich, Lens, Hulshoff Pol, & Lettinga, 1998).  Other studies have cited 1.7 or 1 as ratios for 

SRB dominance in anaerobic digesters (Choi & Rim, 1991; McCartney & Oleszkiewicz, 1993).  

Overall, the TCOD : Sulfate ratio was generally a better predictor of TCOD removal than final 

specific H2S productions.   

TCOD destruction 

The TCOD removal varied greatly between different substrate collection days and digester 

types (Figure 4-3).  The majority of cases had TCOD removal by methanogenesis (Figure 4-3).  

The amount and type of TCOD destruction varied considerably.  The digesters in Test 5 had some 

of the lowest TCOD removal rates, with rates of less than 22% (Table A-7) with the exception of 

lab-digester group number 5-28 (Figure 4-3).  Lab-digester group number 5-28 was the blank and 

subsequently had a low initial TS concentration (12 g L-1) compared to the other digesters in the 

test (34-138 g L-1) (Table A-2).  In the majority of tests, TCOD was removed by methanogenesis 

(Figure 4-3).  However, the Test 5 cases had some of the highest percentages of COD removal by 

SRB, most likely attributed to the low initial TCOD : Sulfate ratio (Table A-4).  These high 

removal rates did not result in particularly high FSP values (Table 4-4).  However, there were 

relatively high concentrations of H2S in the biogas from these Test 5 samples (Figure 4-2).  Lab-

digester group numbers 2-7, 2-8, and 2-10, had little TCOD removal and was even calculated as 

being negative (Table A-7) for methanogen removal.   Minimal changes in the VS : TS ratio were 

observed in these digesters (Table A-5) and TCOD increased slightly (Table A-2).  Most likely, 

there was minimal CH4 production and solids conversion; when combined with laboratory error, 

this most likely resulted in this slight increase.  Overall, the TCOD : Sulfate ratio was generally a 

better predictor of TCOD removal than final specific H2S productions.      
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Figure 4-3. The average final percent TCOD removal by methanogens and sulfate-reducing 

bacteria (SRB) for each lab-digester group. 

Iron and H2S production 

Increased FSP values were negatively correlated with Fe(II) : S ratios.  Some of the highest 

FSP productions, such as in 6-38 and 6-43, had Fe(II) : S ratios that were 0 (Table A-5).  Therefore, 

the relationships with iron and sulfur were examined further to uncover the mechanism of H2S 

production.   

The results of the change in digester liquid over the BMP test time are summarized in Table 

A-6.  The analysis of the changes in concentrations over time identified that in 44% of cases, the 

iron concentrations increased over time (Table A-6).  The iron measurements in this study were 

soluble (Table A-1).  Since the majority of soluble iron was Fe(II), this increase in iron suggests 

that an iron reduction process was occurring (Figure 4-4).  In the remaining cases, the iron 

concentration decreased over time.  This suggests that an iron precipitation process occurred 

(Figure 4-4).   
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The two most common ways in which iron precipitation occurs in AD is through combining 

with sulfide or phosphorus.  At below 0.1 g L-1, Fe can release P; but at higher concentrations, Fe 

can react with PO4
3- and form a precipitant (Yanchen Liu, Shi, Li, Hou, & He, 2011; Peng et al., 

2014).  Fe(II) will combine with sulfide to form FeS and will follow a pseudo-first order reaction 

when Fe(II) is limiting (Ya Liu et al., 2017).  There was a possibility that in these batch tests, iron 

was most likely being reduced through FeS precipitation since the sulfate concentrations decreased 

in most cases (Table A-6).     

 

Adapted from (Madigan & Martinko, 2006). 

Figure 4-4. Representation of the iron and sulfate cycles.  Red arrows indicate reduction 

processes and yellow arrows indicate oxidation processes. 

Initial sulfate concentration 

Several important characteristics of sulfate were shown.  Overall, the starting sulfate 

concentrations varied for different lab-digester group numbers from 0.57 g L-1 to 10.48 g L-1 (Table 

A-3).  However, most starting concentrations exceeded 2 g L-1 (Table A-3).  Notably, Test 5 had 

sulfate concentrations exceeding 4 g L-1 for lab-digester group numbers 5-24 through 5-27 (Table 

A-3).  The H2S concentration in the biogas exceeded 1000 ppm for lab-digester group numbers 5-

24, 5-26, 5-28 (Figure 4-2).  However, this did not necessarily result in high FSP values (Table 

4-4).  Influent sulfate concentrations in AD above 2 g SO4
2 L-1 can result in high concentrations of 

undissociated H2S and subsequent methanogenesis inhibition (Sarti, Pozzi, Chinalia, Ono, & 

Fe2+

Fe0

Fe3+ SO4
-2

H2S

S0 S0
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Foresti, 2010).  In another study with a high rate anaerobic digester, sulfate toxicity was reported 

above 5 g L-1 (Isa et al., 1986).  In this study, there were no significant correlations between initial 

sulfate concentration and the FSP value (Table 4-5).  Therefore, there was no clear cut relationship 

between initial sulfate concentration and H2S concentration.  

pH and dynamics of H2S production 

Interactions between H2S concentrations and pH were observed.  When the pH was below 

7, the fraction of H2S gas produced was modeled to be higher (Figure 4-5).  Additionally, in the 

case of Test 5, H2S concentration demonstrated oscillations in H2S production after Day 30 (Figure 

4-2).  Higher pH values, particularly in Test 4, corresponded with lower final specific H2S 

productions (Table 4-4).  Increases in H2S concentrations have been shown to trigger a positive 

feedback loop with sulfate and acetate resulting in a subsequent decline in pH in chemostats 

(Fomichev & Vavilin, 1997; Vavilin et al., 1994).  For example, methanogens and SRB may 

exhibit oscillating behavior for 5-20 days near system failure (Fomichev & Vavilin, 1997; Vavilin 

et al., 1994).  Sulfate concentration and pH has been shown to affect SRB and methanogen 

concentrations (O’Flaherty, Mahony, O’Kennedy, & Colleran, 1998) which may be contributing 

to these oscillations.     

 

Figure 4-5. The average fraction of free H2S gas to TDS versus pH for each lab-digester group. 
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4.4.3 Material collection locations on final specific H2S productions  

Several different types of regression analyses were performed (Table 4-6).  None of the 

regression methods had R2 values or root mean square error (RMSE) values which indicated a 

good fit.  For the qualitative variables, location of the field digester where materials were collected 

was the most significant predictor of the final specific H2S productions (Table 4-7).  The adjusted 

R2 value was still low (0.11) on this, however.  Therefore, the data was fitted with a more complex 

model.  

Table 4-6. Errors from PCA, PLS, Ridge, OLS, and Lasso regression analyses for the final 

specific H2S production (mL g VS-1). 

 RMSE R2 

pca 1.5 0.0086 

PLS 1.9 0.0064 

ridge 2.51 0.0005 

ols 98.51 0.0005 

lasso 0.72 0.0005 

Table 4-7. FactoMine R results and significance. 

 Intercept Field digester location 

Estimate -0.095 0.12 

Standard error 0.065 0.034 

t-value -1.5 3.4 

P value .15 .001 

Significance  ** 

* P < .05, ** P < .01, *** P < .001 

 

4.4.4 Precipitation 

The t-tests revealed significant changes in Fe(II), TP, and sulfate concentrations over the 

digestion period in the precipitation test (Table 4-8).  When iron reduction was tested, the Fe(II) 

concentrations only significantly increased in the treatments without inoculum (P = .026) (Table 

4-8, Table A-8).  Phosphorus precipitation only occurred in treatments without inoculum.  For 

example, total phosphorus concentrations significantly decreased (P < .001) in the phosphorus 

treatment without inoculum (Table 4-8, Table A-8).  Sulfate precipitation was less clear.  For 

example, sulfate significantly decreased in the FeS treatment (P = .001) with inoculum (Table 4-8, 

Table A-8).  The soluble Fe concentration significantly (P = .009) increased in the FeS treatment 
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without inoculum but sulfate significantly increased (P = .029) (Table 4-8, Table A-8).  Therefore, 

Fe-S precipitation appears to be mediated by the anaerobic community as it was not observed in 

the non-inoculum treatment.     

Table 4-8. The P values and their significance from precipitation tests for the changes in Fe(II), 

TP, and sulfate concentrations between Day 0 and Day 26 for each treatment.   

Treatment Fe (II)  TP Sulfate Treatment 

confirmed? 

Fe Reduction w Inoculum  .763 .047 * <.001 *** No 

Fe Reduction w/o Inoculum .026* NA NA Yes 

Fe Reduction+ FeS Precipitation w Inoculum  .18  0 *** .003 ** Yes 

Fe Reduction +FeS Precipitation w/o Inoculum .009 ** NA .029 * Yes 

Fe-P Precipitation w Inoculum .053 <.001*** .001 ** Yes 

Fe-P Precipitation w/o Inoculum <.001 *** <.001 *** NA Yes 

Inoculum only .535  .009 ** .002** NA 

* P < .05, ** P < .01, *** P < .001   

The differences in Fe(II) concentrations between inoculum treatments (Table 4-8) suggests 

that the presence of the anaerobic community may prevent iron reduction, thereby explaining why 

iron reduction occurred less often in the previous batch tests.  However, the anaerobic community 

did not seem to prevent Fe-P precipitation since phosphorus concentrations were observed to 

decrease in both the absence and presence of an anaerobic community (Table A-6).  The anaerobic 

community appears to be necessary in the case of Fe-S precipitation as a decrease in sulfate 

concentration was not observed in the non-inoculum treatment (Table A-6).  In other words, iron 

reduction and iron-phosphorus precipitation seem to occur without the presence of an anaerobic 

community, while FeS precipitation seems to require an anaerobic community.  

 Iron reduction was less likely to occur in the presence of an anaerobic microbial community, 

therefore, an iron-precipitation process was favored in the anaerobic community.  The soluble 

concentrations of 0.20-16.0 mg L-1 Fe, 0.15-1.92 mg L-1 Co, and 0.05-0.40 mg L-1 for Ni are 

considered sufficient to prevent secondary inhibition by metal availability (G. F. Parkin, Lynch, 

Kuo, Van Keuren, & Bhattacharya, 1990).  Ferrous and copper have been used to control H2S 

concentrations in biogas from a batch digester containing dairy manure, but copper lost its 

effectiveness after 45 days and severely inhibited microbial activity (Lin et al., 2017).  Therefore, 
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this is an explanation for the negative correlation with the Fe(II) S-1 ratio and the final specific H2S 

productions (Table 4-5). 

4.4.5 Modeling H2S productions 

The gam and loess models and their results are summarized in Table 4-9.  Between the two 

models, the gam models had a better fit (Table 4-9).  The gam model has the ability to fit the H2S 

production even when the production curves vary considerably between tests (Figures A-1 through 

A-8).  In most digesters, the H2S production increased rapidly during the first ten days and then 

leveled off (Figures A.1 through A-8).  Lab-digester group number 4-23, however, experienced a 

linear increase over time (Figure A-4).  Lab-digester group number 3-15 experienced a drop due 

to one of the replicates being removed during the test (Figure A-3) and had lower goodness of fit 

values (Table 4-9).   

The coefficients from the gam model can be obtained to predict H2S production in future 

studies.  Both gam and loess models have been used in environmental modeling (Thakur et al., 

2018; S. N. Wood & Augustin, 2002) due to their ability to fit smooth curves to complex data.  

Overall, the initial increase in H2S production during the first 10 days was the most challenging to 

model.  The results benefitted from modeling processes which do not rely on comparative selection 

processes for defined models but, rather on smoothing processes with penalties (S. N. Wood, 2001).    

There have been few studies modeling H2S production kinetics from batch digester systems.  

The H2S production in one mesophilic batch study was 0.76 mL g VS-1  for dairy manure and 2.23 

mL g VS-1 for radish (Belle et al., 2015).  The plot of the H2S data (%) as a time series depicted 

initial increases in H2S concentrations and then a decline starting after Day 1 (Belle et al., 2015).  

This increase then decline was attributed to the depletion of sulfate concentration in the digester 

(Belle et al., 2015).  In this study, there were “spikes” of H2S concentration (ppm) past day 10 

(Tests 1, 5, 6) which were most likely attributed to low pH (Figure 4-2).  In all digesters, there was  

sulfate at the end of the digestion period (Table A-3), so the depletion of sulfate is not an adequate 

explanation for H2S decrease over time.  Rather, the decline in H2S production may indicate an 

adjustment of the digester to more favorable conditions for methanogenesis. 
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Table 4-9. Goodness of fit measurements from the gam and loess models for each lab-digester 

group. 

Lab-digester group No. R2 (gam) R2 (loess) RMSE (loess) RMSE (gam) 

1-1 1 0.99 0.00017 0.00014 

1-2 1 14 0.00017 0.00014 

1-3 0.96 0.91 0.00017 0.00014 

1-4 0.98 0.97 0.00017 0.00014 

1-5 0.97 0.97 0.00017 0.00014 

2-7 0.93 0.81 0.00043 0.00025 

2-8 0.93 0.83 0.00043 0.00025 

2-10 0.99 0.92 0.00043 0.00025 

2-11 0.82 0.59 0.00043 0.00025 

2-12 0.89 0.69 0.00043 0.00025 

3-13 0.54 0.35 5.75E-05 2.40E-05 

3-14 0.59 0.38 5.75E-05 2.40E-05 

3-15 0.85 0.40 5.75E-05 2.40E-05 

3-16 0.96 0.80 5.75E-05 2.40E-05 

3-17 0.94 0.83 5.75E-05 2.40E-05 

3-18 0.96 0.85 5.75E-05 2.40E-05 

4-19 0.91 0.74 0.00020 8.57E-05 

4-20 0.98 0.90 0.00020 8.57E-05 

4-21 0.96 0.83 0.00020 8.57E-05 

4-22 0.98 0.95 0.00020 8.57E-05 

4-23 0.99 0.96 0.00020 8.57E-05 

5-24 0.97 0.91 0.0016 0.0012 

5-25 0.77 0.58 0.0016 0.0012 

5-26 0.96 0.85 0.0016 0.0012 

5-27 0.96 0.84 0.0016 0.0012 

5-28 0.98 0.91 0.0016 0.0012 

6-29 0.92 0.84 0.011 0.0055 

6-30 0.94 0.75 0.011 0.0055 

6-31 0.97 0.94 0.011 0.0055 

6-32 0.88 0.70 0.011 0.0055 

6-34 0.94 0.81 0.011 0.0055 

6-35 0.90 0.66 0.011 0.0055 

6-36 0.90 0.69 0.011 0.0055 

6-37 0.95 0.82 0.011 0.0055 

6-38 0.92 0.79 0.011 0.005 

6-39 0.93 0.75 0.011 0.0055 

6-40 0.83 0.64 0.011 0.0055 

6-41 0.98 0.83 0.011 0.0055 

6-42 0.92 0.87 0.011 0.0055 

6-43 0.99 0.95 0.011 0.0055 

6-44 0.93 0.88 0.011 0.0055 

6-45 0.95 0.84 0.011 0.0055 

4.5 Conclusions 

The following conclusions were drawn from this chapter: 
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1. Hydrogen sulfide production showed a considerable variability, ranging from non-

detectable to 1.29 mL g VS-1. Higher H2S concentrations in the produced biogas were 

observed within the first ten days of AD. 

2. There were no significant correlations between the initial sulfate concentrations and the 

final specific H2S productions.    

3. Another commonly cited indicator of final specific H2S production, i.e., TCOD :  Sulfate 

ratio, was not shown as a reliable predictor. This ratio was generally a better indicator of 

TCOD removal than H2S production. 

4. The most important influences on the final specific H2S productions were the initial 

Fe(II) : S ratio and OP concentrations. Sulfate, phosphorus, and iron in the anaerobic 

microbial community were important for the understanding of H2S production.   

5. Iron reduction and iron-phosphorus precipitation seemed to occur without the presence 

of an anaerobic community, whereas FeS precipitation seemed to require an anaerobic 

community. 

6. The gam model could be applied to model the H2S production for a variety of different 

substrate types with high R2 values.   

4.6 References 

Angelidaki, I., Alves, M., Bolzonella, D., Borzacconi, L., Campos, J. L., Guwy, A. J., … van 

Lier, J. B. (2009). Defining the biomethane potential (BMP) of solid organic wastes and 

energy crops: A proposed protocol for batch assays. Water Science and Technology, 59(5), 

927–934. https://doi.org/10.2166/wst.2009.040 

APHA. (1999). Standard Methods for the Examination of Water and Wastewater. (L. S. Clescerl, 

A. E. Greenberg, A. D. Eaton, & M. A. H. Franson, Eds.) (20th ed.). Washington D.C.: 

Amer Public Health Assn; American Water Works Assn; Water Environment Federation. 

Appels, L., Baeyens, J., Degrève, J., & Dewil, R. (2008). Principles and potential of the 

anaerobic digestion of waste-activated sludge. Progress in Energy and Combustion Science, 

34(6), 755–781. https://doi.org/10.1016/j.pecs.2008.06.002 

Barber, E. M., & Mcquitty, J. B. (1977). Chemical Control of Hydrogen Sulfide From Anaerobic 

Swine Manure. II. Oxidizing Agents. Canadian Agricultural Engineering, 19(1), 15–19. 

 



 

154 

 

Barrera, E. L., Spanjers, H., Dewulf, J., Romero, O., & Rosa, E. (2013). The sulfur chain in 

biogas production from sulfate-rich liquid substrates: A review on dynamic modeling with 

vinasse as model substrate. Journal of Chemical Technology and Biotechnology, 88(8), 

1405–1420. https://doi.org/10.1002/jctb.4071 

Belle, A. J., Lansing, S., Mulbry, W., & Weil, R. R. (2015). Methane and hydrogen sulfide 

production during co-digestion of forage radish and dairy manure. Biomass and Bioenergy, 

80, 44–51. https://doi.org/10.1016/j.biombioe.2015.04.029 

Chen, Y., Cheng, J. J., & Creamer, K. S. (2008). Inhibition of anaerobic digestion process: A 

review. Bioresource Technology, 99(10), 4044–4064. 

https://doi.org/10.1016/j.biortech.2007.01.057 

Choi, E., & Rim, J. M. (1991). Competition and inhibition of sulfate reducers and methane 

producers in anaerobic treatment. Water Science and Technology, 23(7–9), 1259–1264. 

Choudhury, A., Shelford, T., Felton, G., Gooch, C., & Lansing, S. (2019). Evaluation of 

Hydrogen Sulfide Scrubbing Systems for Anaerobic Digesters on Two U.S. Dairy Farms. 

Energies, 12, 4605. 

Cirne, D. G., Van Der Zee, F. P., Fernandez-Polanco, M., & Fernandez-Polanco, F. (2008). 

Control of sulphide during anaerobic treatment of S-containing wastewaters by adding 

limited amounts of oxygen or nitrate. Reviews in Environmental Science and Biotechnology, 

7(2), 93–105. https://doi.org/10.1007/s11157-008-9128-9 

EPA. (2020). Inventory of U.S. Greenhouse Gas Emissions and Sinks. 

Fomichev, A. O., & Vavilin, V. A. (1997). The reduced model of self-oscillating dynamics in an 

anaerobic system with sulfate-reduction. Ecological Modelling, 95(2–3), 133–144. 

https://doi.org/10.1016/S0304-3800(96)00041-5 

Ghasemi, A., & Zahediasl, S. (2012). Normality tests for statistical analysis: A guide for non-

statisticians. International Journal of Endocrinology and Metabolism, 10(2), 486–489. 

https://doi.org/10.5812/ijem.3505 

Guerrero, L., Chamy, R., Jeison, D., Montalvo, S., & Huiliñir, C. (2013). Behavior of the 

anaerobic treatment of tannery wastewater at different initial pH values and sulfate 

concentrations. Journal of Environmental Science and Health - Part A Toxic/Hazardous 

Substances and Environmental Engineering, 48(9), 1073–1078. 

https://doi.org/10.1080/10934529.2013.773827 



 

155 

 

Gupta, A., Flora, J. R. V., Sayles, G. D., & Suidan, M. T. (1994). Methanogenesis and sulfate 

reduction in chemostats-II. Model development and verification. Water Research, 28(4), 

795–803. https://doi.org/10.1016/0043-1354(94)90086-8 

Harada, H., Uemura, S., & Momonoi, K. (1994). Interaction between sulfate-reducing bacteria 

and methane-producing bacteria in UASB reactors fed with low strength wastes containing 

different levels of sulfate. Water Research, 28(2), 355–367. https://doi.org/10.1016/0043-

1354(94)90273-9 

Harper, S. R., & Pohland, Frederick, G. (1986). Recent developments in hydrogen management 

during anaerobic biological wastewater treatment. Biotechnology and Bioengineering, 28, 

585–602. https://doi.org/10.1007/Bfb0000691 

Isa, Z., Grusenmeyer, S., & Vestraete, W. (1986). Sulfate reduction relative to methane 

production in high-rate anaerobic digestion: Technical aspects. Applied and Environmental 

Microbiology, 51(3), 572–579. 

Jafari, M., & Ansari-Pour, N. (2019). Why, when and how to adjust your P values? Cell Journal, 

20(4), 604–607. https://doi.org/10.22074/cellj.2019.5992 

Kalyuzhnyi, S., Fedorovich, V., Lens, P., Hulshoff Pol, L., & Lettinga, G. (1998). Mathematical 

modelling as a tool to study population dynamics between sulfate reducing and 

methanogenic bacteria. Biodegradation, 9(3–4), 187–199. 

Koster, I. W., Rinzema, A., de Vegt, A. L., & Lettinga, G. (1986). Sulfide inhibition of the 

methanogenic activity of granular sludge at various pH-levels. Water Research, 20(12), 

1561–1567. https://doi.org/10.1016/0043-1354(86)90121-1 

Lawrence, A. W., McCarty, P. L., & Guerin, F. J. A. (1964). Effects of sulfides on anaerobic 

treatment. In Proceedings of the nineteenth Industrial Waste Conference (pp. 343–357). 

West Lafayette, IN: Purdue University. 

Lin, H., King, A., Williams, N., & Hu, B. (2017). Hydrogen sulfide removal via appropriate 

metal ions dosing in anaerobic digestion. Environmental Progress and Sustainable Energy, 

36(5), 1405–1416. https://doi.org/10.1002/ep.12587 

Liu, Ya, Zhang, Z., Bhandari, N., Dai, Z., Yan, F., Ruan, G., … Tomson, M. B. (2017). New 

Approach to Study Iron Sulfide Precipitation Kinetics, Solubility, and Phase 

Transformation. Industrial and Engineering Chemistry Research, 56(31), 9016–9027. 

https://doi.org/10.1021/acs.iecr.7b01615 



 

156 

 

Liu, Yanchen, Shi, H., Li, W., Hou, Y., & He, M. (2011). Inhibition of chemical dose in 

biological phosphorus and nitrogen removal in simultaneous chemical precipitation for 

phosphorus removal. Bioresource Technology, 102(5), 4008–4012. 

https://doi.org/10.1016/j.biortech.2010.11.107 

Madigan, M. T., & Martinko, J. M. (2006). Brock Biology of Microorganisms. (G. Carlson, Ed.) 

(11th ed.). Upper Saddle River: Prentice Hall. 

McCartney, D. M., & Oleszkiewicz, J. A. (1993). Competition between methanogens and sulfate 

reducers: effect of COD:sulfate ratio and acclimation. Water Environment Research, 65(5), 

655–664. https://doi.org/10.2175/wer.65.5.8 

McDonald, J. H. (2014). Handbook of Biological Statistics (3rd ed.). Baltimore, Maryland: 

Sparky House Publishing. 

Moestedt, J., Nilsson Påledal, S., & Schnürer, A. (2013). The effect of substrate and operational 

parameters on the abundance of sulphate-reducing bacteria in industrial anaerobic biogas 

digesters. Bioresource Technology, 132(May 2014), 327–332. 

https://doi.org/10.1016/j.biortech.2013.01.043 

Mountfort, D. O., & Asher, R. A. (1979). Effect of inorganic sulfide on the growth and 

metabolism of Methanosarcina barkeri strain DM. Applied and Environmental 

Microbiology, 37(4), 670–675. https://doi.org/10.1128/aem.37.4.670-675.1979 

NREL. (2013). Biogas Potential in the United States (Fact Sheet). Related Information: Energy 

Analysis, NREL (National Renewable Energy Laboratory). Golden, CO. 

https://doi.org/10.2172/1097303 

O’Flaherty, V., Mahony, T., O’Kennedy, R., & Colleran, E. (1998). Effect of pH on growth 

kinetics and sulphide toxicity thresholds of a range of methanogenic, syntrophic and 

sulphate-reducing bacteria. Process Biochemistry, 33(5), 555–569. 

https://doi.org/10.1016/S0032-9592(98)00018-1 

Omil, F., Méndez, R., & Lema, J. M. (1995). Anaerobic treatment of saline wastewaters under 

high sulphide and ammonia content. Bioresource Technology, 54(3), 269–278. 

https://doi.org/10.1016/0960-8524(95)00143-3 

OSHA. (n.d.). Hydrogen Sulfide. https://doi.org/10.1016/B978-0-12-386454-3.00513-3 

 

 



 

157 

 

Oude Elferink, S. J. W. H., Visser, A., Hulshoff Pol, L. W., & Stams, A. J. M. (1994). Sulfate 

reduction in methanogenic bioreactors. FEMS Microbiology Reviews, 15(2–3), 119–136. 

https://doi.org/10.1111/j.1574-6976.1994.tb00130.x 

Parkin, B. G. F., & Owen, W. F. (1987). Fundamentals of anaerobic digestion of wastewater 

sludges. Journal of Environmental Engineering, 112(5), 867–920. 

Parkin, G. F., Lynch, N. A., Kuo, W.-C., Van Keuren, E. L., & Bhattacharya, S. K. (1990). 

Interaction between acetate fed sulfate reducers and methanogens. Research Journal of the 

Water Pollution Control Federation, 62(6), 780–788. https://doi.org/10.1016/0043-

1354(95)00238-3 

Peng, S. C., Xue, J., Shi, C. B., Wang, J., Chen, T. H., & Yue, Z. B. (2014). Iron-enhanced 

anaerobic digestion of cyanobacterial biomass from Lake Chao. Fuel, 117(PART A), 1–4. 

https://doi.org/10.1016/j.fuel.2013.09.006 

Peu, P., Picard, S., Diara, A., Girault, R., Béline, F., Bridoux, G., & Dabert, P. (2012). Prediction 

of hydrogen sulphide production during anaerobic digestion of organic substrates. 

Bioresource Technology, 121, 419–424. https://doi.org/10.1016/j.biortech.2012.06.112 

Rasi, S., Läntelä, J., & Rintala, J. (2011). Trace compounds affecting biogas energy utilisation - 

A review. Energy Conversion and Management, 52(12), 3369–3375. 

https://doi.org/10.1016/j.enconman.2011.07.005 

Sarti, A., Pozzi, E., Chinalia, F. A., Ono, A., & Foresti, E. (2010). Microbial processes and 

bacterial populations associated to anaerobic treatment of sulfate-rich wastewater. Process 

Biochemistry, 45(2), 164–170. https://doi.org/10.1016/j.procbio.2009.09.002 

Song, Z., Williams, C. J., & Edyvean, R. G. J. (2001). Coagulation and anaerobic digestion of 

tannery wastewater. Process Safety and Environmental Protection, 79(January), 23–28. 

https://doi.org/https://doi.org/10.1205/095758201531103 

Thakur, M. P., Reich, P. B., Hobbie, S. E., Stefanski, A., Rich, R., Rice, K. E., … Eisenhauer, N. 

(2018). Reduced feeding activity of soil detritivores under warmer and drier conditions. 

Nature Climate Change, 8(1), 75–78. https://doi.org/10.1038/s41558-017-0032-6 

U.S. EPA. (2020). Potential for Anaerobic Digestion on Livestock Farms in the United States. 

Retrieved April 15, 2020, from https://www.epa.gov/agstar/agstar-data-and-

trends#adpotential 

 



 

158 

 

Vavilin, V. A., Vasiliev, V. B., Rytov, S. V, & Ponomarev, A. V. (1994). Self- oscillating 

coexistence of methanogens and sulphate-reducers under hydrogen sulphide inhibition and 

the pH-regulating effect. Bioresource Technol, 49, 105–119. 

Winfrey, M. R., & Zeikus, J. G. (1977). Effect of sulfate on carbon and electron flow during 

microbial methanogenesis in freshwater sediments. Applied and Environmental 

Microbiology, 33(2), 275–281. https://doi.org/10.1128/aem.33.2.275-281.1977 

Wood, S. (2011). Fast stable restricted maximum likelihood and marginal likelihood estimation 

of semiparametric generalized linear models. Journal of the Royal Statistical Society Series 

B, 73(1), 3–36. https://doi.org/https://www.jstor.org/stable/41057423 

Wood, S. N. (2001). mgcv: GAMs and Generalized Ridge Regression for R. R News, 1, 20–25. 

Wood, S. N. (2004). Stable and efficient multiple smoothing parameter estimation for 

generalized additive models. Journal of the American Statistical Association, 99(467), 673–

686. https://doi.org/10.1198/016214504000000980 

Wood, S. N., & Augustin, N. H. (2002). GAMs with integrated model selection using penalized 

regression splines and applications to environmental modelling. Ecological Modelling, 

157(2–3), 157–177. https://doi.org/10.1016/S0304-3800(02)00193-X 

  

  



 

159 

 

 IDENTIFICATION OF KEY PROCESS PARAMETERS 

ON ANAEROBIC DIGESTER FOAMING  

5.1 Abstract  

Foaming is an issue in co-digested AD systems and can cause instability and significant 

economic loss.  However, the causes of foaming are not completely understood.  In this study, an 

investigation of a field mesophilic digester, which experienced unpredictable foaming events, four 

batches of laboratory experiments, and a machine learning in data analysis were conducted. The 

ratios of Fe(II) : S, Fe(II) : TP, and TVFA : TALK; and the concentrations of Cu were identified 

as influential parameters in both the field digester and lab-digesters.  These characteristics could 

model predictions of whether a digester would foam with 87% accuracy.  A model was developed 

for “foaming potential” of lab-digesters with a root mean square error (RMSE) of 0.048.   

5.2 Introduction 

Increasing global energy demand, increasing concerns about greenhouse gas (GHG) 

emissions from fossil fuels, concerns about energy security, and the limited quantity of oil have 

contributed to the development of sustainable energy technologies (IEA, 2019; UNEP, 2019).  The 

deployment of renewable energy technologies has increased globally in the past decade (IEA, 

2019).  It is projected that the demand for biogas technologies will increase substantially by 2040 

(IEA, 2019).       

Anaerobic digestion (AD) is an environmentally sustainable technology that uses a mixed 

microbial community to convert organic wastes to methane gas (CH4) and carbon dioxide (CO2).  

Anaerobic digestion systems can accept a diverse composition of organic wastes including 

livestock manure, waste activated sludge, food waste, industrial wastes, pharmaceutical wastes, 

and crop residues.  Therefore, AD captures CH4, a GHG, and generates a fuel source.  The CH4 

potential from landfilled materials, animal manure, wastewater, and other waste streams could 

displace 5% or 56% of natural gas consumption in the electric power or transportation sectors 

(NREL, 2013).   

The main stages of AD are hydrolysis, acidogenesis, acetogenesis, and methanogenesis.  

Basically, large particles are biodegraded into smaller, soluble monomers (hydrolysis) which are 
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converted to short chain fatty acids, CO2, hydrogen gas (H2), (acidogenesis, acetogenesis) and 

finally CH4 (methanogenesis).  In order for the digester to function efficiently, the rate of reaction 

in each stage must remain in balance with the other stages.  However, differences in feedstock 

composition, digester design, shape, temperature, loading rates, and retention time can affect each 

stage and overall digester function.       

Foam may be generated in imbalanced AD systems.  Foams in lab-scale digesters and in 

field digesters are countless tiny bubbles which are generated faster than their decay in a liquid 

(Vardar-sukan, 1998).  These bubbles are surrounded by a liquid film that thins but does not rupture 

when the gas bubbles approach each other.  In AD, CO2 is more likely to be trapped in foams than 

CH4 due to its higher density and solubility (Kanu, Aspray, & Adeloye, 2015).   

Foaming is a problem in AD systems.  It can occur in both industrial digesters and lab-scale 

digesters and result in reduced biogas production, volatile solid (VS) destruction, and pH (Ross & 

Ellis, 1992).  Foaming can cause odor problems, fouling of gas collection compressors and other 

equipment, gas binding in sludge recirculating pumps, and solids inversion (Ganidi, Tyrrel, & 

Cartmell, 2009).  Not surprisingly, foaming can result in economic loss for an AD system (Ganidi 

et al., 2009).   

Insight into foaming in AD systems has been gained through investigation of foaming in 

activated sludge systems.  Foaming in activated sludge systems has been described as a three-

phase system which consists of a gas, liquid, and solid phase (Davenport & Curtis, 2002; Ganidi 

et al., 2009; Ganidi, Tyrrel, & Cartmell, 2011).  In the three-phase system, a particle becomes 

attached to the gas bubble and rises with it through the liquid, thereby preventing bubble 

coalescence and increasing foam stability (Bikerman, 1973).  Typically, these particles are small, 

surface active agents or microorganisms whose hydrophobic ends are attracted to the air-liquid 

interface of the bubble (Bikerman, 1973; Ganidi et al., 2009, 2011; Kanu et al., 2015; Vardar-

sukan, 1998).  Surface active agents also lower the surface tension of the liquid which decreases 

the tendency for gas bubbles to rupture.  Examples of surface active agents include proteins, lipids, 

particulate matter (e.g., sand, metals), volatile fatty acids, or detergents (Ganidi et al., 2009).  

Filamentous organisms can also attach to the gas bubbles and act as a foam stabilizer due to their 

hydrophobic properties (Ganidi et al., 2009).   

However, changes in surface tension from the presence of surface active agents or 

filamentous organisms may not be the sole explanation for foaming.  For example, measurements 
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of surface tension and hydrophobicity did not show consistent correlations with changes in total 

solids (TS) concentrations or compounds in raw dairy manure foaming (Boe, Kougias, Pacheco, 

O-Thong, & Angelidaki, 2012).  The presence of certain organic compounds, such as Na+ and 

NH4
+ increased surface tension but demonstrated an increased tendency to foam (Boe et al., 2012).  

Additionally, lipids did not increase the tendency to foam in raw dairy manure, suggesting that it 

is their organic load which may be correlated with foaming in AD (Boe et al., 2012).  Moreover, 

increased TS concentrations increased foaming tendency but did not affect surface tension 

significantly (Boe et al., 2012).   

Therefore, other factors besides the presence of surface active agents or filamentous 

organisms should also be considered.  For example, foaming in continuously stirred digesters in a 

full-scale biogas plant was attributed to the chemical properties of the influent substrate, including 

alkalinity and protein content, and mixing patterns, rather than microbial community differences 

(Kougias, Boe, O-Thong, Kristensen, & Angelidaki, 2014).  Additionally, the presence of 

filamentous microorganisms could not be correlated to foam stabilization in a lab-scale digester 

receiving feed from an activated sludge plant (Ganidi et al., 2011).  Furthermore, temperature or 

excessive CO2 production from digester imbalance has been suggested as other possible factors 

influencing foaming formation and processes in AD systems (Ganidi et al., 2009; Kanu et al., 2015; 

Kougias et al., 2014; Murk, Frieling, Tortorici, & Dietrich, 1980).  Therefore, the framework of 

the three-part system explains the main mechanisms of foam formation but requires more in-depth 

analysis about the role of digester influent and subsequent AD processes.    

Due to the complexity of the foaming process in AD systems, knowledge-based approaches 

will be needed to model them.  Knowledge-based approaches is a broadly defined term for 

approaches which involve knowledge acquisition, representation, and management (Poch, Comas, 

Rodríguez-Roda, Sànchez-Marrè, & Cortés, 2004).  Knowledge-based approaches are suited 

towards prediction tasks in wastewater treatment plant (WWTP) systems due to their ability to 

handle complexity and uncertainty (Poch et al., 2004).  Artificial intelligence techniques (e.g., 

neural networks, fuzzy logic) can be combined with knowledge-based systems to create hybrid 

knowledge-based systems (Poch et al., 2004; Wen & Vassiliadis, 1998).  Hybrid knowledge-based 

systems have been used to predict foaming risk in anaerobic digesters (Jordi Dalmau, Comas, 

Rodríguez-Roda, Pagilla, & Steyer, 2010), acidification states (Carrasco, Rodríguez, Punal, Roca, 

& Lema, 2004), and CH4 yields (Cakmakci, 2007).  In other words, these systems can handle a 



 

162 

 

large number of qualitative and quantitative variables (i.e., “knowledge”), develop complex 

connections between these variables, and then simulate AD processes to aide with control and 

operation.   

The goal of this study was to obtain new insights into the effect of the digester liquid’s 

chemical and physical characteristics on foaming in AD systems.  It was also to propose the 

creation of a hybrid knowledge-based approach to model digester foaming with particular interest 

in digester influent. 

5.3 Materials and methods 

5.3.1 Overview 

This study consisted of an investigation of an industrial-scale field digester and a laboratory 

experiment on foaming. Test materials were all obtained at the same field digester. The field 

digester was studied at foaming and non-foaming time points to determine influential physical and 

chemical characteristics on foaming. The role of gas production was examined in lab-scale 

foaming digesters. Additionally, machine learning was used to identify influential variables on 

foaming and to develop a model for foaming 

5.3.2 Field digester investigation 

The field digester of this study was an industrial-scale mixed plug-flow digester system in 

Indiana State. The system produced about 61,000 m3 of biogas daily for electricity generation and 

heating. The system had three 9085 m3 anaerobic digesters that operated in parallel at mesophilic 

(38.3°C) conditions and a hydraulic retention time (HRT) of 28-32 days.  The field digester system 

treated beef cattle manure (~50%) with other co-digested materials including food waste, glycerin, 

industrial wastes, and biodiesel waste depending on availability.  The variable composition of the 

influent provided unique opportunities to investigate the effect of influent compositions on 

foaming.   

Five batches of samples were collected during incidents of foaming and non-foaming 

operations from October 2017 to February 2019 (Table 4-2).  Batches 1 and 5 were collected 

during non-foaming times. Batches 2, 3, and 4 were collected at the times that the digesters were 
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experiencing foaming. Additionally, at the time of Batch 5 collection, glycerin loads to the 

digesters were nearly negligible.  

Six types of samples were taken at six locations of the digester system. These samples were 

1) digester influent (INF) in the equalization pit that stored digester influent after feedstock mixing, 

2) and 3) digester liquid in the middle of east and west digesters (DL-E and DL-W, respectively), 

4) and 5) digester effluent in the effluent pits of east and west digesters (EF-E and EF-W, 

respectively), and 6) liquid fraction of digester effluent (EF-L) after solids removal using a roller 

press, slope screen, and centrifuge (Figure 4-1).   

After collection, the samples were transported to Purdue University and immediately 

characterized to determine relationships between the physical/chemical characteristics and the 

origins of foaming.  Detailed methods of characterization are presented in Section 4.3 and Table 

A-1. 

5.3.3 Lab-digester experiment 

Lab-digester set-up 

   The lab-digesters were customized for the tests.  They were made of glass borosilicate 

flasks (Bomex).  For Batch 1, the digesters had a working volume of 500 mL. However, the gas 

bags in Batch 1 tests experienced leakage so no CH4 yield data was collected and used in this 

chapter.  For Batches 2-5, the digesters had a working volume of 1000 mL.  Details about the lab- 

digester setup are described in Section 4.3.3 for Digester B. 

Lab experimental design 

The samples from the field digester underwent anaerobic digestion in four batches of lab-

scale digesters.  In each of the Batches 2 through 5 tests (Table 5-1), a “blank” control with 10% 

or 20% volume inoculum and the remaining volume as reverse osmosis (RO) water was used to 

determine the contribution of CH4 from inoculum (Table 5-1).  There were also digesters with 50% 

or 100% inoculum to determine the activity of the different stages of the field digester (Table 5-1).  

The experiments were performed in triplicate, except the blanks which were performed in 

duplicate (Table 5-1). 
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Table 5-1. Description of materials loaded into each lab-digester group.  

Lab-Digester Group No. Substrate 

 (% V) 

Inoculum  

(% V) 

Inoculum 

Type 

RO water 

(% V) 

2-1 90 10 EF-W 0 

2-2 90 10 DL-W 0 

2-3* 0 100 DL-W 0 

2-4 0 100 EF-W 0 

2-5** 0 10 DL-W 90 

2-6** 0 10 EF-W 90 

3-7 90 10 EF-W 0 

3-8 90 10 DL-W 0 

3-9 0 50 DL-W 50 

3-10 0 100 EF-W 0 

3-11** 0 10 DL-W 90 

3-12** 0 10 EF-W 90 

4-13 80 20 DL-W 0 

4-14 0 100 EF-E 0 

4-15 0 50 DL-W 50 

4-16 0 50 DL-E 50 

4-17** 0 20 EF-W 80 

5-18 80 20 EF-W 0 

5-19 0 100 EF-E 0 

5-20 0 50 DL-E 50 

5-21 0 50 DL-W 50 

5-22** 0 20 EF-W 80 

Each digester group contains 3 individual digesters, except for blanks that contains 2. *This lab-digester group 

foamed over during the experiment and was removed before completing the test.  **Digesters in this group were 

blanks.  NA = not applicable. 

 

 

The substrate to all lab-digesters was the INF from the field digester.  The inoculum to all 

lab-digesters came from the field digester liquid (DL-E, DL-W) and effluent (EF-E, EF-W) (Figure 

4-1). The inoculum ensured the necessary microbial consortia for CH4 production in the lab-

digesters.  The characteristics of substrate and inoculum were the same as determined for the field 

digester on Day 0 and described in Section 4.3.  On the final day of each test, the lab-digester 

liquid was thoroughly mixed, sampled, and characterized using the same methods as on Day 0 

(Tables B.1 through B.4).   

During the lab tests, the lab-digesters were randomly assigned to several water baths 

(GEMMYCo Model YCW-010 and PolyScience Model WB28) and incubated at 38.3°C ± 0.1 

until the volume of daily CH4 production from the lab-digester was less than 1% of the volume of 

cumulative CH4 production from the same digester. 
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Biogas collection and measurement 

The biogas from the lab-digesters was collected in plastic bags.  The bags were connected 

with silicone rubber tubing.  Two 500 mL gas bags were attached to the side outlet port of the 

digester to collect the biogas.  When a gas bag was removed from a lab-digester for biogas volume 

and gas composition measurement, it was immediately replaced with an empty bag.   

Biogas volume and biogas composition were measured for the first three days daily, and 

then at intervals of no more than three days.  Biogas volume was determined using a custom-made 

device and a 200 mL syringe (Sealey Model VS 404, Jack Sealey Ltd, Suffolk, UK).  All biogas 

volumes were converted to Standard Temperature and Pressure (0°C, 1 atm). The biogas composition 

was measured with a Biogas Analyzer (Model 5000, LANDTEC North America, Inc., Colton, CA) 

with detection ranges of CH4 (0-100%), CO2 (0-100%), O2 (0-25%), and H2S (0-10,000 ppm).  The 

specific methane yield (SMY) was calculated by dividing the cumulative CH4 volume by grams of 

initial volatile solids in the digester in m3 g-1 VS. 

Digester liquid pH measurement 

The digester liquid pH was measured at the same instances as the biogas was collected and 

measured, i.e., for the first three days daily, and then at intervals of no more than three days.  The 

pH measurement was conducted through the operational port during the experiment using a pH 

probe (Cole-Parmer electrode Cat No 05993-00) and a pH meter (Model 60, Jenco Digital pH 

Meter). The measurement was done after the contents of the digester were thoroughly mixed with 

the magnetic stir bar in each lab-digester and a magnetic stirrer.   

5.3.4 Data and software 

The data used in statistical analysis and model development were from the chemical 

characterizations of the field digesters and lab-digesters (Tables B-2 through B-9), SMY (Table 

B-9) results from the lab-digester tests and qualitative variables (primary digester liquid, collection 

date, substrate to inoculum ratio (S:I), foaming).  Rstudio (version 3.6.3, (2020-02-29 Platform: 

x86_64-w64-mingw32/x64, 64-bit) and Microsoft Excel were used for data analysis.   
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t-tests 

Differences in the chemical characteristics between foaming and non-foaming time-points 

for the field digester samples were examined using RStudio.  First, the normality of the data was 

checked using the Shapiro-Wilk Normality test.  If the data was not normally distributed (P < 0.05), 

then the non-parametric Wilcoxon signed-rank test was applied.  Otherwise, a pairwise t-test with 

a Bonferroni correction was performed.     

Qualitative factors analysis 

Differences between the CH4 production potentials from the lab-digesters were examined 

using Rstudio. The package FactoMineR in Rstudio was used to develop a multiple linear 

regression model of the influence of qualitative variables on SMY.  The data for the FactomineR 

was the final SMY value (Table B-9) and the qualitative information on the sample collection 

(Table 5-1 and Table 4-1).  Specifically, this was inputted as the primary digester liquid (INF, 

EFFL, DL) added to the digester, digester material collection date, substrate to inoculum (S:I) ratio, 

and whether  the materials were taken from the digester during foaming or nonfoaming timepoints.  

The primary digester liquid was the highest percentage of materials added to the digester, 

excluding RO water.    

A principle component analysis (PCA) biplot of the lab test results was generated in the 

factoextra package in RStudio. To determine whether foaming or another quantitative factor 

influenced the decreased SMY, PCA and regression analyses on the SMY and Day 0 

characterizations (Tables B.1 through B.4) of the digester liquid were performed.    

Foaming potential 

In this particular study, a foaming potential of each lab-digester group was determined 

using Eq. 5-1 from Kanu et al. (2015). The lower the foaming potential value, the increased 

likelihood of foaming.  This equation is motivated by the fact that surfactant concentration 

typically increases when the feed to the digester increases, thereby decreasing foaming potential.  

Additionally, total biogas production is likely to be lower in foaming digesters due to gas 

entrapment.  In this study, the feedstock volume was converted to mass (g) of total solids so the 

foaming potential was (mL g feed TS-1). 
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Foaming potential = [

Volume of biogas produced

Volume of feedstock to the digester
] 

(5-1) 

5.3.5 Machine learning 

Machine learning to predict foaming classification 

The foaming classification data was obtained from the field digester and included INFL 

and DL materials (Tables B-5 through B-8).  The foaming classification was defined as “yes” or 

“no” and referred to whether the digester was “yes, foaming” or “no, non-foaming”.  The foaming 

classification data was only taken from INFL and DL locations in the field digester because these 

areas were experiencing visible foaming and digester overspill at the time of collection.        

Machine learning was performed using the caret package in RStudio (Kuhn, 2008) to 

predict the state of the digesters (foaming v. non-foaming) (Figure 5-1).  Missing data were 

determined through k-nearest neighbor imputation.  The foaming state was converted to a dummy 

variable of “0” (non-foaming) or “1” (foaming).  All the data was centered and scaled before 

modeling.  Recursive feature modeling with repeated cross validation was used to determine the 

top five numerical predictors.  Recursive feature modeling is a wrapper method that is used to 

determine the best performing subset when there are many factors.  The recursive feature modeling 

process was repeated 11 times with a random seed each time in order to determine the best subset 

of six predictor variables.  Wrapper methods tend to be more robust than traditional filter methods 

(e.g., Pearson correlation, ANOVA).  Each model was trained using a supervised machine learning 

model with 5-fold cross-validation repeated 100 times using the train() function in RStudio.   

Several classification and regression models were tested.  These models included neural net 

(NN), multinomial logistic regression (MULTINOM), k-nearest neighbor (KNN), classification 

and regression trees (CART), support vector machines (SVM) with radial basis function kernel, 

Brieman’s random forest algorithm (RF), and the generalized linear model via penalized maximum 

likelihood (Glmnet).  Accuracy and the kappa statistic were used to evaluate the predictive ability 

of the models (Banerjee, Capozzoli, McSweeney, & Sinha, 1999).   

The test and training data were obtained by randomly partitioning the data (67% training, 33% 

testing) using the function createDataPartition in RStudio.  The test data was used to evaluate the 

model.  The predictive accuracies and kappa statistics were determined using the predict function 
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in RStudio.  The model’s results were compared to the testing data to determine the model’s 

accuracy and kappa values.   

 

Figure 5-1. Overview of machine learning.  

Machine learning algorithms for foaming classification  

Foaming classification was developed by using the neural net model in the nnet package 

in RStudio and different machine learning algorithms.  The model was a feed-forward neural 

network with a single hidden layer (Ripley, 1996; Venables & Ripley, 2002).  Neural networks 

consist of several layers of interconnected elements (neurons) that are connected by weights, 

which receive inputs from previous layers or external sources (Figure 5-2).  Only the “input” and 

“output” neurons interact with the outside world; the “hidden” neurons are intermediate neurons, 

which are not visible to the user.  A neural network is a type of black-box modeling, which can 

be created by summing the product of the inputs and the weighted connections, adding a bias, 

and then passing the result through an output function. The value of the weights provide 

information on the relationships between the interconnected elements.  “Training” the network 

refers to determining the weights and unit thresholds of the network.  In the feed-forward 

process, the computation process starts in the first layer and proceeds with each consecutive 

layer until the output layer (Figure 5-2).  The training process used in this study was a quasi-

Newton optimization procedure (Bergmeir & Benítez, 2012).  
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Figure 5-2. A single layer of a 2-3-1 feed-forward neural network.  

Additional algorithms are described as follows: 

The MULTINOM algorithm in RStudio uses neural networks to fit nominal (categorial) 

variables to log-linear models (Venables & Ripley, 2002).  The appeal of the MULTINOM 

algorithm is that it does not assume linearity, normality, or homoscedasticity of the data 

(Starkweather & Moske, 2011).  The tuning parameter was decay, which is a regularization 

parameter.  The predictive accuracy was used to select the optimal model using the largest value.  

The final predictive accuracy value used for the model had a decay value of 1e-04. 

The KNN algorithm is a supervised non-parametric algorithm that is primarily used for 

classification.  The KNN algorithm examines the classes of its k-nearest examples in a reference 

set and then assigns a classification based on the majority classification (Ripley, 1996; Venables 

& Ripley, 2002).  The benefits of KNN is that it accounts for the class of the data.  The tuning 

parameter was k, and k values between 5 and 23 were tested.  The predictive accuracy with the 

largest value was used to select the optimal model.  The final predictive accuracy value used for 

the model had a k value of 5. 

The CART algorithm uses decision trees to classify and partition the data using a Gini 

index as the criterion (L. Breiman, Friedman, Olshen, & Stone, 1984).  The CART algorithm is a 

flexible classification method for data with highly ordered variables (L. Breiman et al., 1984).  

Maxdepth was the tuning parameter and was the maximum depth to which the decision tree could 
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“grow”.  The CART model only converged on one solution because the program held maxdepth 

at a constant value of 1. 

The SVM with radial basis function kernel algorithm uses a Gaussian kernel function to 

map the data nonlinearly in space and then construct a hyperplane to classify the data (Schölkopf 

et al., 1997).  The SVM algorithm is well-suited for data with separable classes (Schölkopf et al., 

1997).  The tuning parameters were sigma and c.  Sigma was the scale parameter, and c was a 

regularization parameter. The predictive accuracy was used to select the optimal model using the 

largest value.  The final predictive accuracy value used for the model had a sigma of 0.40 and a c 

value of 8.   

The RF algorithm uses an ensemble of decision trees to determine class prediction (Leo 

Breiman, 2001).  The benefits of the RF algorithm include its randomness which generates a 

“forest” of uncorrelated trees and its inability to overfit data (Leo Breiman, 2001).  The tuning 

parameter is the mtry value which is the number of randomly sampled variables that are sampled 

as candidates at each split in the random forest model.  The predictive accuracy was used to select 

the optimal model using the largest value.  The final predictive accuracy value used for the model 

had a mtry value of 2.     

The GLMNET algorithm fits a generalized linear model with lasso, ridge, or elastic 

(combination of lasso and ridge) net penalties (Friedman, Hastie, & Tibshirani, 2010).  The 

benefits of the GLMNET algorithm include its efficiency as well as its mixture of lasso and ridge 

methods which can reduce the effect of highly correlated data (Friedman et al., 2010).  The tuning 

parameters were alpha and lambda.  Alpha is the elasticnet mixing parameter and varied between 

0 and 1.  Lambda is the parameter which controls penalization in the model.  The predictive 

accuracy was used to select the optimal model using the largest value.  The final predictive 

accuracy value used for the model had an alpha value of 0.4 and lambda value of 0.0001.    

Machine learning to predict foaming potential 

The hybrid neural fuzzy inference system (HYFIS) model in the frbs package in RStudio 

was used to model the foaming potential (mL g TS-1) from individual BMP digesters (Bergmeir & 

Ben, 2015).  The previous equation 5-1, relies on data which is collected at the end of the 

experiment.  If foaming potential could be tied to an influent Day 0 characteristic, then the potential 

to foam could be determined before the BMP test begins.  The machine learning model thus 
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developed connections between the Day 0 characteristics from the BMP digesters (Tables B-1 to 

B-5) and the foaming potential data (Table B-9).     

The HYFIS model combines the neural network structure and fuzzy logic in what is known 

as a neuro-fuzzy model.  The HYFIS model is used to deal with systems with uncertainty, 

imprecision or non-linearity.  The HYFIS model was selected due to lower R2 values and high 

RMSE values (Table B-14) using the previously mentioned algorithms from section “Machine 

learning algorithms for foaming classification”. 

The HYFIS model uses Wang and Mendel techniques for knowledge acquisition (L. X. 

Wang & Mendel, 1992).  First, structure identification and parameter estimation (mean and 

variance) of the training data was performed through gradient descent-based learning algorithms 

(Kim & Kasabov, 1999).  A knowledge base was then generated.  The test data then underwent 

the prediction phase.  First, the input data underwent a “fuzzification” process (Figure 5-3).  The 

data was mapped to a value between 0 and 1 using a selected membership function.  In more detail, 

“0” indicated that the variable was not a member and “1” indicated complete membership.  The 

data was then assigned a label which indicates the degree of membership.  For example, a value 

of 0.01 might be labelled as “low” membership.  A value of 0.99 might be labelled as “high” 

membership.  In other words, the data were roughly subdivided into categories.  The HYFIS model 

used a Gaussian membership function.  Next, there was the inference process (Figure 5-3).  This 

was when a set of linguistic IF-THEN rules were determined based on the data and the selected 

inference method.  For example, a rule would be “IF A is high THEN B is low”.  This resulted in 

much greater flexibility for modeling and a greater tolerance of variance.  Next, the decision 

making unit would interpret the inputted values and then assign an output value using these "IF-

THEN" rules.  The HYFIS model uses Mamdani fuzzy logic techniques as its inference system.  

Finally, there was a defuzzification process which then converts the data back into crisp, numerical 

values (Figure 5-3). 

The variable selection method was a backward-elimination strategy (Kohavi & John, 1997) 

as used for determining the biological risk of foaming in AD (J. Dalmau, Comas, Rodríguez-Roda, 

Latrille, & Steyer, 2008; J. Dalmau, Comas, Rodriguez-Roda, Latrille, & Steyer, 2009).  First, the 

HYFIS model was run with every single predictor variable and the reference RMSE was obtained.  

Then, the model was re-run with one variable removed and the RMSE was obtained and compared 

to the reference RMSE.  If the RMSE increased when that variable was dropped, then the variable 
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was deemed as relevant to the model.  Once a subset of relevant variables was chosen, 

combinations of these variables were tested by adding one variable at a time to the HYFIS model.  

First, the variable with the highest RMSE was then selected and trained again with the HYFIS 

model.  If the RMSE was less than the reference RMSE, then the variable was deemed as essential.  

The variable with the next highest RMSE was added and the process was repeated until all 

variables were tested (i.e., forward elimination).  

Once the relevant variables were selected, the final model was evaluated using RMSE and 

R2 values.  This was accomplished using the predict function in RStudio to compare the model to 

the testing data.   

 

Adapted from (Bergmeir & Ben, 2015; Cakmakci, 2007; Jang, 1993) 

Figure 5-3. Overview of the HYFIS model. 

5.4 Results and discussion 

5.4.1 Field digester characteristics  

Some significant differences in the digester influent were found.  Influents related to 

digester foaming had significantly lower OP, iron, nickel, and ammonia concentrations in the 

digester influent and significantly higher total alkalinity concentrations (Table 5-2).  Foaming-
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causing influents additionally had significantly lower Fe(II) : S, Fe(II) : TP, OP : TP, and SCOD  : 

TCOD ratios and higher VS : TS ratios (Figure 5-1, Tables B-7 through B-8).   

Table 5-2. The P values and significance levels of the measured Day 0 chemical concentrations 

for the non-foaming (n = 3) and foaming INFL (n = 3) field digester samples. 

Characteristic Non-foaming (g L-1) Foaming (g L-1) P value Significance 

Cu 0.007 ± 0.004 0.005 ± 0.002 .349  

Fe 0.178 ± 0.07 0.03 ± 0.014 < .001 *** 

Ni 0.011 ± 0.002 0.007 ± 0.002 .006 ** 

TP 6.58 ± 1.7 5.28 ± 0.64 .054  

OP 3.3 ± 0.24 2.1 ± 0.47 < .001 *** 

TKN 1.81 ± 0.69 1.33 ± 0.46 .14  

NH3N 1.89 ± 0.19 1.5 ± 0.2 .001 ** 

Sulfate 8.08 ± 3.45 6.78 ± 0.65 .281  

TS 141 ± 17 309 ± 287 1  

VS 80.21 ± 32.21 287.48 ± 287.25 .066  

pH 6.25 ± 1.05 6.81 ± 0.18 .394  

TCOD 223 ± 34 249 ± 134 .628  

SCOD 83 ± 25 71 ± 49 .381  

TALK 2.2 ± 1.53 4.77 ± 1.07 .007 ** 

TVFA 14.6 ± 1.4 16.3 ± 5.1 .465  

Conductivity 8.11 ± 0.17 8.42 ± 1.83 .839  

Tannic Acid 2.64 ± 0.81 2.35 ± 0.28 .323  

TN 1.15 ± 1.41 1.38 ± 0.49 .657  

Inorganic N 0.89 ± 0.77 0.08 ± 0.06 .077  

SCOD : TCOD 0.41 ± 0.11 0.27 ± 0.04 .022 * 

OP : TP 0.53 ± 0.13 0.41 ± 0.05 .044 * 

TCOD :  TN : TP 255.2 ± 237.31 35.77 ± 36.35 .034 * 

TVFA : TALK 8.44 ± 3.51 3.74 ± 1.89 .016 * 

TAN : TKN 1.08 ± 0.37 1.23 ± 0.33 .445  

TCOD : Sulfate 33.39 ± 17.16 36.39 ± 21.08 .731  

FS : TS 0.4 ± 0.3 0.13 ± 0.08 .022 * 

VS : TS 0.6 ± 0.3 0.87 ± 0.08 .022 * 

FE(II) : S 0.055 ± 0.042 0.008 ± 0.004 .008 ** 

Fe(II) : TP 0.05 ± 0.033 0.01 ± 0.005 .003 ** 

TCOD : TKN 1.81 ± 0.69 1.33 ± 0.46 1  

* P < .05, ** P < .01, *** P < .001 

 

The differences in the digester influent could explain the tendency to foam.  The SCOD :  

TCOD ratio was lower at foaming incidents (Table 5-2,Table B-3), suggesting that non-foaming 

digesters were receiving material which was more solubilized and thus primed for methanogenesis.  

Additionally, an increased percentage of organic matter (Table 5-2, Table B-4) was present in 

foaming samples, indicating possible digester overload.  A relationship between elevated VS : TS 



 

174 

 

content and foaming in sludge samples has been demonstrated (Jiang, Qi, Hao, McIlroy, & Nielsen, 

2018).  Additionally, the elevated alkalinity concentrations may have been a surface active agent 

in the foaming digesters.  High alkalinity concentrations have been positively correlated with a 

tendency to foam due to decreasing the surface tension of the digester liquid (Gerardi, 2003; 

Kougias et al., 2014; Nges & Liu, 2010; Niekerk, Kawahigashi, Reichlin, Malea, & Niekerk, 1987).  

Additionally, increased alkalinity concentrations increases CO2 solubility, thereby increasing the 

likelihood of its entrapment in the digester liquid (Murk et al., 1980).  These characteristics suggest 

that there were differences in the digester INFL materials that caused foaming. 

Digesters receiving mixed waste streams could be more vulnerable to foaming.  For 

example, co-digestion of manure with lipid-rich substrates such as food waste, slaughterhouse 

waste, and glycerol can cause digester instability and foaming (Atandi & Rahman, 2012; Fierro et 

al., 2016; Usack & Angenent, 2015).  The field Digester B reportedly had lipid-rich wastes in the 

influent.  Specifically, glycerin wastes were reported as present in the influent for all cases except 

in Batch 5 (a non-foaming case).  Biodiesel wastes were reported as present in all cases.  However, 

there were other differences in the samples that more closely isolated the causes of foaming.  

Because the influent was a co-digested mix of various waste streams, chemical characterization 

was the best solution to determine differences between foaming and non-foaming samples. 

5.4.2 Lab-digester characteristics 

Digester substrate, inoculum, and liquid 

The Day 0 analysis of the lab-digesters indicate some important characteristics in digester 

substrate and inoculum.  The VS : TS ratios were generally high for all of the materials (greater 

than 50%) which were loaded into the digesters (Table B-4).  Some of the highest VS : TS ratios 

were in digesters taken from foaming samples (> 0.8) (Table B-4).  A high VS : TS ratio indicates 

that these samples had high organic strength and suggests that there may have been overloading 

of the digester.  The initial pH varied from 5.9 to 7.95 (Table B-1).  The optimal pH for 

methanogenesis is 6.5 to 7.6 (Parkin & Owen, 1987), and most samples fell within this range.  

Digesters using materials taken from foaming time points generally had lower pH values below 7 

(Table B-1).  The initial sulfate concentrations were also generally high (> 2 g L-1) in almost all of 

the digesters (Table B-2).   
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The digester liquid underwent degradation during the digestion period.  The SCOD : TCOD 

ratios generally increased between Day 0 and the final day (Table B-3).  In fact, the SCOD : TCOD 

ratios only decreased in digesters receiving samples from foaming incidents.  The OP and TN 

concentrations increased in most cases (Table B-2), with the decrease in OP only occurring in 

digesters receiving samples from foaming incidents.  Therefore, the solubilization of the organic 

matter as well as the degradation of amino acids evidently occurred, with a greater extent in 

foaming samples.  Some of the organic matter was utilized as evidenced by the general decrease 

in VS : TS ratios (Table B-4).  Additionally, the pH increased in most cases over the digestion 

period (Table B-1).  The decrease in sulfate concentration over the digestion period (Table B-2) 

also indicated sulfate reduction.     

Specific methane yield  

The SMY from the BMP digesters varied considerably.  The digesters containing influent 

samples had generally low SMY results for both foaming and non-foaming cases (less than 11 mL 

CH4 g VS-1) (Figure 5-4).  For example, manure slurries have had SMYs from 165 to 530 mL CH4 

g VS-1 (Møller, Sommer, & Ahring, 2004).  The digesters in Batch 5 that received materials from 

the field digester during non-foaming events had significantly higher SMYs (Figure B-2, Table B-

13) for all digesters except for digesters containing field digester influent (Figure 5-4).  The fact 

that the foaming potential was a high value (indicating low foaming potential) in the digester liquid 

and effluent samples indicates that the microbial community in the digester was viable, but that a 

characteristic of the digester liquid might be inhibiting CH4 production, rather than the foaming 

itself.  For example, the elevated total alkalinity concentrations might have contributed to excess 

CO2 production and gas entrapment.     
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Figure 5-4. Specific methane yields and standard deviations over time from BMP tests for each 

lab-digester group.  

5.4.3 Qualitative variable from FactoMineR analysis 

The qualitative variables of collection date (batch), foaming, S:I, and primary digester 

liquid (INF, EFFL, DL) showed some differences in the regression model from the FactoMineR 

analysis of the Day 0 characteristics and the SMY.  The two most influential variables on SMY 

were the S : I (P < .001) and the primary digester liquid (P < .001).  However, the adjusted R2 of 

the overall FactoMineR model was 0.59, indicating that the choice of a linear model may not be 

the best for determining the qualitative influences on CH4 yield.  

Digester liquid characteristic from PCA analysis 

The PCA analysis revealed that there were distinct differences in the digester liquid 

characteristics (Tables B-2 through B-6).  This was evident in the PCA plot (Figure 5-5), although 

there was no distinct clustering between the foaming and non-foaming samples from the lab-

digesters. Different clusters of vectors could explain correlations in the results. For example, the 

initial VS : TS and SCOD : TCOD ratios had a negative correlation with the CH4 yield (Figure 
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5-5), which would be the opposite of what would be expected.  However, the relationship of these 

variables to foaming may be conflated with the SMY.   

 

The angle between two vectors represents the correlation between those variables and the 

principle component. The length of the arrow indicates the contribution to the PCA.  Two 

principle components are shown. PCA1 explained 58.5% of the variation and PCA2 explained 

22.9% of the variation. The colors of each circle represent the foaming condition (blue triangle = 

Yes; red circle = No). 

Figure 5-5. Biplot of the lab test results with each vector (line with arrow) representing the 

characterizations.   

Foaming potential  

 The foaming potential results indicated differences among lab-digesters.  Low foaming 

potential values (below 20 mL g TS-1) were clearly indicated in lab-digester group numbers 3-7, 

3-8, 4-13, and 5-18 (Figure 5-6, Table B-9).  These digesters started with 90% or 80% of their 
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volume as INF.  These digesters also had low SMYs (Figure 5-4) with a larger percentage of their 

biogas composed of CO2.  The CO2 was most likely trapped in the liquid, resulting in foaming.     

These foaming potential values aligned with what was observed.  These digesters exhibited 

foaming during the course of the experiment.  In fact, lab-digester group numbers 4-13, 3-8, 3-10, 

and 2-2 also had one replicate within their group which was removed due to foaming.  Lab-digester 

group number 2-3 was not included in the foaming potential calculations because all replicates 

were removed during the experiment due to overflow from foaming.  The foam in the lab-digesters 

consisted of very small bubbles that rose rapidly within the first 72 hours of the experiment.   

In general, there were differences in foaming potential values and the primary digester 

liquid.  In all cases, foaming potential values were lower in digesters containing materials from 

the foaming field digester (Figure B-1, Table B-12).  Specifically, DL samples had significantly 

lower foaming potential during times of foaming (Figure B-1).  The digester contents would have 

contained the most biologically-active materials from the field digester system.  The digester liquid 

may have foamed due to digester imbalance and the middle samples contained these conditions.  

Therefore, the observed foaming was somewhat confirmed by the foaming potential calculations 

and suggests that the material from the field digester has properties which might cause foaming. 
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Figure 5-6. The final average foaming potential and standard deviation for each lab-digester 

group number.    

5.4.4 Foaming classification and foaming potential from machine learning  

Foaming classification 

Recursive feature modeling identified the most significant predictor variables as Fe(II) : S, 

Fe(II) : TP, TCOD, Fe, TVFA : TALK and Cu.  Since only samples from the influent and digester 

liquid were examined in this analysis, these variables align with the t-test results.   Most of these 

variables, except for Cu and TCOD, were identified as influential variables on foaming in the 

influent (Table 5-2).  In the DL samples, Cu and TCOD were identified as significant on foaming 
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classification (Table B-10).  Hence, the recursive feature modeling process was able to narrow 

down the most relevant predictor variables of all the process parameters with an 89% accuracy.   

The model with the highest predictive accuracies for foaming classification (“yes”, “no”)  

were the KNN (80%) and SVM (87%) models (Table 5-3).  The NN and MULTINOM models 

had some of the lowest predictive accuracies of 73% (Figure 5-7).  The weighted values were < 

0.50 for the NN model, except for Fe(II) : S which had a weight of 0.68.  The SVM and KNN 

algorithms are specialized models for the classification of data which is most likely why they had 

the best predictive accuracies.     

These results improved on findings from previous studies.  A study compared the KNN, 

SVM with radial kernel, RF, and GLMNET models to predict CH4 production based on influent 

characteristics (total carbon, TN, carbon to nitrogen ratio, cellulose, xylan, lignin, glucan, 

temperature) (L. Wang, Long, Liao, & Liu, 2020).  Their best predictive accuracy was 73% with 

the GLMNET model  (L. Wang et al., 2020).  Another study examined biomethane production 

from an industrial co-digested system using RF, elastic net, and extreme gradient boosting and 

reported R2 values between 0.80 and 0.88 (De Clercq et al., 2020).  By examining a broader range 

of characteristics and more machine learning algorithms, the method in this study was able to 

develop a machine learning model for foaming classification.  

Table 5-3. Models used for supervised machine learning of foaming classification in the field 

digester and their predictive accuracy and kappa value.  

Model tested Type of Model Tuning Parameter Accuracy Kappa 

MULTINOM classification decay 0.73 0.46 

KNN classification, regression k 0.80 0.59 

CART classification, regression maxdepth 0.60  0.18 

NN classification, regression size, decay 0.73 0.46 

SVM classification, regression sigma, c 0.87 0.74 

RF classification, regression mtry 0.73 0.46 

GLMNET classification, regression alpha, lambda 0.73 0.46 
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Figure 5-7. NN model for foaming classification. 

Foaming potential 

Using the backward-elimination strategy, the most relevant subset of variables for 

predicting foaming potential were SCOD : TCOD, TCOD : Sulfate, sulfate, copper, conductivity, 

VS, Fe(II) : S, Inorganic N, Fe(II) : TP, TVFA : TALK, and tannic acid (Figure 5-8) 

After applying the forward elimination strategy to this subset, the combination of predictor 

variables with the lowest RMSE was Cu, sulfate, TCOD : Sulfate, SCOD : TCOD, and 

conductivity, with a RMSE of 0.048 (Table 5-4).  Therefore, those were the predictor variables 

used in the final HYFIS model.   
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The relevance was determined by subtracting the RMSE value of the HYFIS model without that 

variable from the RMSE value of the HYFIS model for all the variables.  The more positive the 

number the more relevant the variable. 

Figure 5-8. The most relevant variables for determining foaming potential using the HYFIS 

model.   

Table 5-4. RMSE values for the HYFIS models with different combinations of predictor 

variables.  

Predictor Variables RMSE 

All 0.0830 

 SCOD : TCOD + Sulfate 0.0683 

 SCOD : TCOD + Sulfate + Cu  0.0489 

 SCOD : TCOD + Sulfate + Cu + Conductivity 0.0481 

 SCOD : TCOD + Sulfate + Cu + Conductivity + VS 0.0486 

 SCOD : TCOD + Sulfate + Cu + Conductivity + VS + Fe(II) : S 0.0520 

 SCOD : TCOD + Sulfate + Cu + Conductivity + VS + Fe(II) : S + Inorganic N 0.0510 

 SCOD : TCOD + Sulfate + Cu + Conductivity + VS + Fe(II) : S + Inorganic N + Fe(II) : TP 0.0510 

 SCOD : TCOD + Sulfate + Cu + Conductivity + VS + Fe(II) : S + Inorganic N + Fe(II) : TP +TVFA : 

TALK 
0.0492 

 

The optimal HYFIS model had 7 labels, 100 iterations, a 0.03 step size, and center of 

gravity (COG) as a defuzzification method.  The model’s predictions were compared with the test 

values from the data set (Figure 5-9).  The R2 value for the model was 81% and the RMSE was 

0.048.  This RMSE is lower than the one obtained in (J. Dalmau et al., 2008).  In that study, the 

inflow rate, TVFA concentration, total organic carbon (TOC) concentration, pH in influent, pH in 

digester, CO2, and CH4 percentages were the only variables considered (J. Dalmau et al., 2008).   

Simulation and validation of this study’s model indicated that the foaming potential for 

individual digesters was more difficult to predict and required a fuzzy-logic method which was 
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more suited to the variability of the different digester combinations.  Since foaming potential uses 

biogas volume and TS data, it could provide a useful metric for AD operators.   

 

Figure 5-9. Comparison of the measured data (red) and the predictions (blue) from the HYFIS 

model for foam potential from the lab- digesters.  

In both machine learning scenarios, TVFA : TALK, Fe(II) : S, Fe(II) : TP, and Cu were 

influential variables.  The TVFA concentrations were significantly higher in the digester liquid 

(Table B-10) and effluent (Table B-11) samples during foaming, though not in the influent (Table 

5-2).  Elevated TVFA : TALK ratios have been observed in foaming lab-digesters (Ross & Ellis, 

1992).  The TVFAs are surface active agents which can contribute to foaming (Ganidi et al., 2009).  

The Fe(II) : S and Fe(II) : TP ratios were both significantly lower in the influent during foaming 

(Table 5-2). Therefore, less soluble iron was available relative to the sulfur and total phosphorus 

concentrations.  The Cu concentration was significantly lower in the digester liquid samples during 

foaming (Table B-10).  In the lab and field digesters, the microorganisms may have experienced a 

nutrient deficiency, which resulted in AD process imbalance and subsequent foaming.  

Additionally, copper and iron can also play a role in foam formation.  In a simulated study of 

foaming in a gelatin mixture, the presence of copper sulfide shortened the time for foam collapse 

while the presence of ferric hydroxide (FeOH3) increased foam height (Bikerman, 1973).    

The most influential chemical parameters on foaming, which were identified using 

machine learning in this study, improved the understanding of causes of digester foaming.  While 
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the chemical characteristics chosen in this study provided broad insight into the AD process, they 

were only recorded at discrete time-points.  In the future, more studies on digester foaming are 

needed in modeling using larger datasets from more diversified digester feedstock and digester 

operation conditions.  Controlled experiments which analyze the relationships discovered in this 

study can be developed to define the mechanisms of foaming.     

5.5 Conclusions      

The following conclusions were drawn from this chapter: 

1. There were significant differences in the influent and digester liquid of a field digester 

during times of foaming and non-foaming.     

2. Substrate and inoculum taken from foaming field digesters resulted in lower SMY values 

in lab-scale tests.   

3. Important characteristics for predicting foaming were Fe(II) : S, Fe(II) : TP, TVFA : 

TALK, and Cu.    

4. Machine learning predicted the foaming status of the industrial-scale digester with a 

predictive accuracy of 87% and the foaming potential of individual lab-scale digesters 

with an RMSE of 0.048 based on the influent characteristics.   
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 BIOCHEMICAL METHANE POTENTIAL TEST 

COMPARATIVE MODELING AND DEVELOPMENT OF MODELS FOR 

EARLY PREDICTION OF ANAEROBIC DIGESTER PERFORMANCE 

6.1 Abstract  

Anaerobic digestion (AD) is a technical solution for reducing odor, pathogens, and 

greenhouse gas (GHG) emissions from organic wastes.  Biochemical methane potential (BMP) 

tests are used to determine the suitability of a given substrate for AD.  Several BMP tests were 

conducted using a variety of substrate and inoculum types.  The BMP test results were fitted using 

several kinetic models and the parameters were calculated.  Several time-series forecasting 

algorithms were tested for early estimation of the specific methane yield (SMY).  The experimental 

results revealed differences in methane production curves, hydrolysis rates, and time to reach the 

specific methane yield (SMY).  No one kinetic model could be applied to every scenario.  The 

Autoregressive Integrated Moving Average (ARIMA) algorithm most often produced the model  

with the lowest root mean square error (RMSE).  The SMY could be predicted 25% ahead of the 

total test time.         

6.2 Introduction 

Anaerobic Digestion (AD) treats complex, organic wastes using a mixed microbial 

community.  The AD process consists of four stages including hydrolysis, acidogenesis, 

acetogenesis, and methanogenesis (Parkin & Owen, 1987; Pavlostathis & Giraldo‐Gomez, 1991).  

Hydrolysis is the breakdown of complex, organic molecules, such as polysaccharides, lipids, and 

proteins, by hydrolytic extracellular enzymes released by bacteria to smaller, soluble molecules 

which can be taken up by the cell membranes of microorganisms.  The solubilized molecules then 

undergo conversion to volatile fatty acids (VFAs) (i.e., acetate, propionate, isobutyrate, butyrate, 

valerate, isovalerate), alcohols, lactate, formate, carbon dioxide (CO2), hydrogen (H2), and 

ammonia.  Next, some compounds from the acidogenesis stage, such as propionate, butyrate, 

isobutyrate, valerate, isovalerate, and ethanol are further degraded to acetic acid, formate, H2 and 

CO2.  During methanogenesis, methane (CH4) is produced from cleavage of the acetate molecule, 

a process known as acetoclastic methanogenesis, and the reduction of CO2 by H2 or formate, a 
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process known as hydrogenotrophic methanogenesis.  The resulting biogas contains about 50-70% 

CH4, 30-50% CO2, and trace gases (NREL, 2013).  The biogas can then be captured and used as a 

fuel source.  AD technology can therefore stabilize organic wastes and be used as an alternative to 

fossil fuels. 

The BMP test is a frequently used analysis to determine the feasibility of a substrate for AD.  

Organic waste materials have heterogeneous physical, chemical, and microbiological properties 

which can adversely affect the stability of the AD system, as indicated by decreased biogas 

production.  The BMP test provides the maximum CH4 yield (mL g VS-1) for a substrate under 

conditions which are favorable conditions for fermentation (Owen, Stuckev, Healy, Young, & 

Mccarty, 1979).  Because the test is performed at lab-scale in batch mode, it allows the researcher 

to easily modify the experimental design to determine the optimal conditions for continuous or 

semi-continuous AD.  These conditions include retention time, organic loading rate (OLR), and 

dilution ratios.  However, the BMP test can overestimate CH4 yields or generally fail to replicate 

the unique conditions of a continuous AD system (Jerger, Chynoweth, & Isaacson, 1987; Labatut, 

Angenent, & Scott, 2011).  There is interest in using kinetic modeling in combination with the 

BMP test to improve its predictive applicability to AD.  More descriptive models may provide 

better insight into substrate hydrolysis and biodegradability while reducing the time needed for the 

BMP test. 

One of the challenges of BMP test modeling is that the CH4 production curves can vary 

greatly among batch BMP tests.  Changes in operational parameters can affect the dynamic 

behavior of batch anaerobic digesters (Zhang et al., 2019) as well as differences in substrate type 

(Chynoweth, Turick, Owens, Jerger, & Peck, 1993; Turick et al., 1991).  This presents unique 

challenges in modeling BMP tests.  Early prediction of CH4 production has been accomplished 

using the Monod equation (Donoso-Bravo, García, Pérez-Elvira, & Fdz-Polanco, 2011) and other 

kinetic equations (Dai, Duan, Dong, & Dai, 2013; Strömberg, Nistor, & Liu, 2015).  However, 

differences in CH4 production curves may mean that one kinetic equation does not fit all.  

Additionally, differences in operational parameters, substrates, and initial conditions can be 

difficult to isolate, obtain data from, or replicate.   

Predicting CH4 production using artificial intelligence tools may result in a better prediction.  

Time series forecasting is an area of machine learning which uses historical data to predict future 

values by analyzing trends in the data (Hyndman, R.J. Athanasopoulos, 2018).  There are various 
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time series forecasting models which can be selected, fitted, and evaluated to the data set 

(Hyndman, R.J. Athanasopoulos, 2018).  These models can then be used to predict future values.  

Thus, this process does not require knowledge of the substrate characteristics or information about 

the microbial or physical chemical processes in the digester.    

Few studies have used time series forecasting to predict outcomes in AD systems.  For 

decades, times series techniques have been recognized as useful for analyzing continuous high-

quality digester data (Monteith & Stephenson, 1981).  However, few studies have applied it.  In 

one case, time series forecasting has been used to predict H2 and CH4 flowrate one hour in advance 

in an AD system (Ruiz, Castellano, González, Roca, & Lema, 2004).  In that study, the auto-

regressive integrated moving average with explanatory variable (ARIMAX) model was selected 

to model the data from a continuously-fed hybrid UASB-UAF digester with reportedly low error 

rates.  Another study used fractal analysis of times series data of pH from an anaerobic sequencing 

batch reactor  (AnSBR) digester and correlated the results to other process parameters such as CH4 

production and chemical oxygen demand (COD) (Sánchez-García et al., 2018).  Ultimately, early 

prediction of CH4 data can save time for AD operators.  Little or no attention has been suggested 

for forecasting SMY.      

The objectives of this chapter were to 1) evaluate CH4 production curves related to different 

substrates in BMP tests; 2) pinpoint influential factors on CH4 yields; 3) identify the best modeling 

method of BMP tests. 

6.3 Materials and methods 

6.3.1 Data and data preparation 

The data used in this Chapter are part of the laboratory experimental data described in 

Chapter 4, section 4.3. Only sources of substrate and inoculum from Digesters F, B, and L (Section 

4.3.1) and relevant result data from six lab tests (Table 4-2) were used in model development in 

this Chapter.   

The data were composed of the BMP data, qualitative variables, and lab-digester liquid 

characterizations (Tables A-2 to A-5).  The qualitative variables included 6 types of primary 

digester liquid by volume (INFL DM, EF, DL, WAS+PS, EF-R), 6 batch numbers (1-6), three 
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field digester collection locations (Digester F, B, L), two inoculum conditions (yes, no), and two 

digester foaming conditions (yes, no).   

The BMP data was used for times series forecasting.  Specifically, this BMP data included 

the measured methane yield (mL CH4 g VS added -1) for each sampling day for each BMP digester.  

In total, there were 100 different time series which were tested and 290 data points.    

Before time series forecasting, the BMP data were transformed to stationary data by 

differencing the log-transformed data.  Each BMP digester times series was tested individually.  

For the forecasting analysis, 75% of each time series for each BMP digester was used as 

training data and the remaining 25% was used for testing data.  The root mean square error 

(RMSE) values were calculated from the forecasted and test data for each model type.  

6.3.2 Statistical methods and kinetic calculations 

All data analysis was conducted in Microsoft Excel and Rstudio (version 3.6.3 ((2020-02-

29 Platform: x86_64-w64-mingw32/x64,64-bit).   

The collected BMP data was evaluated using kinetic models. These models were identified 

as being frequently used for modeling in literature (Eqs. 6-1 to 6-5).  

These kinetic models were fitted to the BMP data using nonlinear curve fitting in Excel.  

The models that were fitted included the first order model (Eq. 6-1), combined first order (Eq. 6-

2), second order (Eq. 6-3), Chen & Hashimoto (Eq. 6-4), and modified Gompertz (Eq. 6-5).  The 

RMSE value between the fitted and actual CH4 yield was used as the objective function.  The 

objective function was set to minimization.  The fitted and measured values were compared using 

adjusted R2 and RMSE to determine the accuracy of the model.  These kinetic parameters were 

obtained using the GRG nonlinear Solver method in Excel.   

The first order model was selected for fitting the BMP data as shown in Eq. 6-1  (Strömberg 

et al., 2015): 

 𝐵 =  𝐵𝑜[1 − exp (−𝑘1𝑡)] (6-1) 

 

where k1 is the rate coefficient (day-1), t is time (days), B is the methane yield (mL g VS-1), and Bo 

is the SMY (mL g VS-1).  

 The combined first order model was selected for fitting the BMP data as shown in Eq. 6-2  

(Strömberg et al., 2015): 
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 𝐵(𝑡) =  𝐵𝑜(1 − 𝑓𝑑 ∙ 𝑒𝑥𝑝(−𝑘1𝑚𝑜𝑑 ∙ 𝑡) − (1 − 𝑓𝑑)  ∙ exp(−𝑘2𝑚𝑜𝑑 ∙ 𝑡)) (6-2) 

 

where k1mod and k2mod are the rate coefficients (day-1), fd  is the biodegradable fraction (unitless), t 

is time (days), B is the methane yield (mL g VS-1), and Bo is the SMY (mL g VS-1). 

 The second order model was selected for fitting the BMP data as shown in Eq 6-3 

(Strömberg et al., 2015): 

 
𝐵(𝑡) =  𝐵𝑜 (

𝑘2 ∙ 𝑡

1 + 𝑘2 ∙ 𝑡
) 

(6-3) 

 

where k2 is the rate coefficient (day-1), t is time (days), B is the methane yield (mL g VS-1), and Bo 

are the SMY (mL g VS-1). 

 The Chen and Hashimoto model was selected for fitting the BMP data as shown in Eq. 6-

4 (Kafle & Chen, 2016): 

 
𝐵(𝑡) = 𝐵𝑜 (1 −

𝐾𝐶𝐻

𝐻𝑅𝑇 ∙ 𝜇𝑚 + 𝐾𝐶𝐻 − 1
) 

(6-4) 

 

where KCH is the Chen and Hashimoto kinetic constant (unitless), HRT is the hydraulic retention 

time (days), µm is the maximum specific growth rate (day-1), t is time (days), B is the methane 

yield (mL g VS-1), and Bo are the SMY (mL g VS-1). 

 The modified Gompertz model was selected for fitting the BMP data as shown in Eq. 6-5 

(Strömberg et al., 2015): 

 
𝐵(𝑡) = 𝐵𝑜 ∙ 𝑒𝑥𝑝 {−𝑒𝑥𝑝 [

𝑅𝑚∙𝑒

𝐻
(𝜆 − 𝑡) + 1]} 

(6-5) 

 

where λ is the lag phase (days), H is the Gompertz CH4 production potential (mL CH4 g VS-1), Rm 

is the maximum specific CH4 production rate (mL CH4 g VS-1 day-1), t is time (days), B is the 

methane yield (mL g VS-1), and Bo is the SMY (mL g VS-1). 

Information on the BMP behavior was obtained from the BMP data.  The time to reach 80% 

(T80) and 90% (T90) of the biogas production was calculated from the biogas data in Excel.  The 

hydrolysis constant (kh) from the first order time-dependency (Eq. 6-6) (Koch & Drewes, 2014) 

was also calculated for the lab-scale digesters in Excel:   
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𝑘ℎ =  

𝑡 − 100

𝑡 − 𝑡2
 

(6-7) 

 

where kh is the hydrolysis coefficient and t is time (days).  

Effect calculations were used to assess the comparative fit of the different kinetic models. 

The effects of fitting the BMP data to the five different kinetic models (Eqs. 6-1 to 6-5) were 

calculated based on the method from (Strömberg et al., 2015) in which the RMSE of the fitted and 

measured data are calculated for each model type and then the average differences between each 

model type (Eq. 6-8):      

 
𝐸𝑀1 = −

1

4
∙ (∑ 𝑅𝑀𝑆𝐸𝑀1 − ∑ 𝑅𝑀𝑆𝐸𝑖

𝑖=𝑀2:𝑀5

) 
(6-8) 

 

where M is the model number.    

The RMSE was calculated by Eq. (6-9):   

 

𝑅𝑀𝑆𝐸 =  
√∑

(𝑦𝑖 − 𝑦�̂�)
2

𝑛
�̅�

 

(6-9) 

 

where n is the number of samples, yi is the measured value, ̂yi is the predicted value, and  ̅y is the 

mean of the measured samples.   

6.3.3 New model development  

The package FactomineR in RStudio was used to develop a multiple linear regression 

model of the qualitative variables and the SMY data.   

Machine learning was used for early prediction of BMP data through time series 

forecasting.  Five time series algorithms were chosen for the forecasting of the BMP data.  The 

forecast and TSA package in RStudio was used to develop an Autoregressive Integrated Moving 

Average (ARIMA(p, d, q)) model of CH4 yield.  The ARIMA model is expressed as (Hyndman, 

R.J. Athanasopoulos, 2018) (Eq. 6-10): 

 𝑦𝑡
` = c + φ1𝑦𝑡−1

` +. . . +φ𝑝𝑦𝑡−𝑝
` + θ1ε𝑡−1+. . . +θ𝑞ε𝑡−𝑞 + ε𝑡 (6-10) 
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where yt
` is the differenced time series, p is the autoregressive parameter, or number of lags to use, 

d is the degrees of differencing (subtracting current value from previous value d times) to get a 

stationary data set, q is the moving average component error in mode and determines the number 

of terms to use, ɛ is the previous error terms, ϕ is the slope coefficient, and θ is the moving average 

parameter.  

The ARIMA model is a popular forecasting model.  The ARIMA model assumes stationary 

data (Bisgaard & Kulahci, 2011), identifies a model, estimates parameters, and then forecasts.  The 

auto.arima function in Rstudio was used (Hyndman, R.J. Athanasopoulos, 2018; Hyndman & 

Khandakar, 2008). 

Additionally, the Extreme Learning Machine (ELM) model was used for time series 

forecasting using the nnfor package in RStudio.  ELM uses an algorithm for fitting single layer 

feed forward neural networks (Huang, Zhu, & Siew, 2006).   

Neural networks were used to forecast the BMP data.  Nnetar was in the forecast package 

in Rstudio for fitting feed-forward neural networks with a single hidden layer (Kourentzes, Barrow, 

& Crone, 2014).   

The KNN model was used for forecasting in the tsfknn package in Rstudio (Martinez, Frias, 

2019).  The KNN model uses the k-nearest neighbor regression for forecasting.      

The multi-layer perceptron (MLP) model was generated using the RSNNS package in 

RStudio.  This model consists of connected feed-forward networks.     

6.4 Results and discussion 

6.4.1 Methane yield 

The CH4 yield results varied considerably among the different lab-digester groups.  

Predominantly, first- and second-order type curves were evident in Batches 2-5.  There was a rapid 

increase in CH4 yield and then a gradual levelling off.  The CH4 yield curves also varied 

considerably from the Digester L samples, most likely due to the variety of different treatment 

types.  Several lab-digesters from Batches 1 and 6 experienced Gompertz-type growth curves with 

short lags before a rapid increase in CH4 production and then a leveling off.  All lab-digesters in 

Batch 1 except lab-digester group number 1-5 demonstrated this lag (Figure 6-1).  Lab-digester 

group numbers 6-32, 6-35 through 6-40, and 6-42 also demonstrated this lag (Figure 6-1).  The 
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lags in Batch 6 may be attributed to relatively low initial pH values (6.46-6.85) which increased 

over time to neutral values (Table A-2).  However, the curves for treatments 6-35 through 6-38 

indicate polyauxic behavior, in which there are extended lags and multiple lags and CH4 

production.  These types of curves indicate an “unhealthy” BMP digester with inhibition (Koch, 

Hafner, Weinrich, & Astals, 2019).  The inhibition may be due to low pH or an inadequate ISR 

ratio.  The lags in Batch 1 may be attributed to the presence of dairy manure which is less readily 

degradable than other types of manure (Hill, 1982; Kafle & Chen, 2016).   

The SMY values also varied for the different lab-digester group numbers.  The final SMY 

for dairy manure was higher than for the mixed industrial wastes from Digester B (Table 6-2).  The 

SMY for dairy manure with inoculum was higher (154 mL g VS-1) than without (138 mL g VS-1) 

(Table 6-2).  Digesters containing influent from Digester B had unusually low CH4 production 

despite having active cumulative gas production.  The final SMY values were 9 mL g VS-1 for lab-

digester group number 2-7, 4 mL g VS-1 for lab-digester group number 2-8 (Table 6-2).  The final 

SMY values for Digester B from Batch 3 were 0.17 mL g VS-1 for lab-digester group numbers 3-

13, 0.21 g VS-1 for lab-digester group numbers 3-15, 61 mL g VS-1, and 74 mL g VS-1 (lab-digester 

group number 3-16) (Table 6-2).  Higher SMYs were obtained from the Batch 5 test.  The substrate 

and inoculum for the Batch 5 tests were collected from a field digester which was not foaming.  

There was a lot of variation in BMP yields from the Batch 6 lab-scale digesters (Figure 6-1).  The 

low SMY (7.2-10 mL g VS-1) values came from SM samples with a 50% COD loading or higher 

(lab-digester group numbers 6-41 through 6-43) (Table 6-2).  The highest SMY value was 196 mL 

g VS-1 from a digester with 75% COD from an S3 sample (lab-digester group number 6-38).   

The low SMY yields from digesters containing Digester B influent may be attributed to the 

source of the influent.  The influent was a co-digested mixture of several different feedstocks.  

Generally, BMP tests can fail to represent the synergistic and antagonistic effects of co-digested 

substrates (Koch, Hafner, Weinrich, Astals, & Holliger, 2020).  In real life, the Digester B influent 

is gradually added to the functioning digester, and therefore, the microbial community would be 

better acclimated than in this batch BMP test.   

The variability of the CH4 yields in this study is reflective of variability of CH4 yields in 

literature.  Dairy manure slurry produces approximately 126-243 mL CH4 g VS-1 (Amon et al., 

2007; Kafle & Chen, 2016; Labatut et al., 2011; Møller, Sommer, & Ahring, 2004; Usack & 

Angenent, 2015; Vedrenne, Béline, Dabert, & Bernet, 2008), which corresponds with the values 
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in this study (Table 6-2).  Primary sludge (PS) and waste activated sludge (WAS) can have SMYs 

which range from 108-132 mL g VS or COD-1 (Amha, Sinha, Lagman, Gregori, & Smith, 2017; 

Elbeshbishy, Nakhla, & Hafez, 2012; Ohemeng-Ntiamoah & Datta, 2018).  Starch has had SMYs 

of 315 mL g COD-1 (Elbeshbishy & Nakhla, 2012) and 320 mL g VS-1 (Raposo et al., 2011).  The 

variability of the Test 6 samples which contained mixtures of WAS, PS, and cornstarch-based 

wastes reflect these differences.  Most likely, the presence of PS and WAS decreased the SMY 

value of the cornstarch-based substrates.  However, the lower values in lab-digester group numbers 

6-41 through 6-43 may have been due to antagonistic effects of the SM mixture.          

 

Figure 6-1. The average methane yields (mL CH4 g VS-1) and standard deviation over time from 

each lab-digester group. 

6.4.2 Influential factors on methane yield 

There were differences in the CH4 yield results between different batches.  The most 

influential qualitative variable on final SMY (mL g VS-1) from the FactomineR analysis was 

foaming (P < .001) (Table 6-1).  The substrate and inoculum collected for the BMP tests Batches 

2-4 were collected from field digesters experiencing foaming, and thus experienced lower CH4 

yields.  However, the adjusted R2 value was 0.27 indicating that this model was a poor fit.  The 

FactomineR results use a linear model, which was not the best model to predict future BMP data.      
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Table 6-1. FactoMineR results for the lab-digesters.  

 Intercept Foaming 

Estimate 183.55 -70.60 

Std. Error 18.40 12.18 

t-value 9.98 -5.80 

P value < .001 < .001 

Significance *** *** 

* P < .05, ** P < .01, *** P < .001 

6.4.3 Kinetic models 

There were considerable differences among the fitted SMYs for the different model types.  

Almost all lab-digester group numbers had at least one fitted SMY with an R2 value greater than 

0.90 (Table 6-2).  The Chen and Hashimoto model had a negative effect in nearly all cases (Figure 

6-2, Table C-1) and was the worst performing model.   Batches 1 and 6 had reliable predictions 

from the Gompertz model (Table 6-2). Batches 2-6 had particularly good fits from the first and 

second order models (Table 6-2).  However, lab-digester group numbers 3-13, 6-41, and 6-42, did 

not have good SMY predictions for any model type (Table 6-2).  All three of these lab-digester 

treatments had very low SMY values and most likely experienced inhibition (Table 6-2).  

Therefore, predicting SMY values can be a challenge when there is a source of inhibition. 

The kinetic parameters and their adjusted R2 values from Equations 6-1 through 6-6 are 

summarized in (Table 6-3).  The kinetic parameters calculated using the Chen and Hashimoto 

model generally had poor R2 values (-0.15-0.89) (Table 6-3).  The lag times for CH4 production 

from the modified Gompertz model varied from 0 to 71 days (Table 6-3).  Not surprisingly, first 

order and second order models had high R2 values (> 0.90) in many cases.  Many of the CH4 yield 

curves from Batches 2-5 had first and second order shaped curves.  In most cases, the first order 

curve was a better fit than the first order modified.   

Calculations from the biogas data demonstrated the differences in digester treatments.  The 

T90 values ranged from 7-50 for all lab-scale digesters, indicating the variability in time required 

to reach full biogas production (Table 6-4).  The T90 values for Batches 2-5 were generally higher 

(23 to 50 days) than Batches 1 and 6 (7 to 42 days) which were reflective of the gradual increase 

of their first-order and second order CH4 yield curves (Table 6-4).  Inclusion of full biogas data 

analysis can provide further insight into the microbial activity of the system.      

The hydrolysis coefficients also provided insight to the CH4 yield data.  The hydrolysis 

constant, kh ranged from 0.01-0.31, though most samples had lower kh values (0.04-0.01 day-1) 
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(Table 6-4).  These relatively low kh values coincided with the length of time required for the batch 

tests (greater than 30 days) as well as the lag time for CH4 production in many cases.  This is most 

likely due to the presence of recalcitrant materials which required additional time to hydrolyze.     

In summary, there were noticeable differences among the different waste types.  The 

variability in lag times as well as the time to reach 80% and 90% of total biogas production (T80, 

T90) can have implications for the length of future BMP testing.  In this study, all tests required 

longer than 30 days, and Batch 3 required 60 days to reach the SMY.  Additionally, the generally 

low hydrolysis values suggest that a long time is required for complete CH4 production as 

hydrolysis can be the limiting step.   In fact, some studies recommend performing BMP testing for 

as long as 80 or 100 days (Ponsá, Gea, & Sánchez, 2011; Vedrenne et al., 2008) to ensure complete 

results.  Overall, there was no one model which fit every different type of CH4 production.  

Awareness of substrate type may be essential before choosing a predictive model.     

 

 

Figure 6-2. The effect (%) calculations of how well each BMP model from literature fitted the 

measured BMP data (mL CH4 g VS-1) for each lab-digester group. 
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Table 6-2. The measured and fitted SMY values with the adjusted R2 in parenthesis for each lab-

digester group number. 

Lab-

digester 

Group 

No. 

SMY SMY 

Chen & 

Hashimoto 

SMY 

Modified 

Gompertz 

SMY 

1st  order 

SMY 

2nd  order 

SMY 

1st order 

modified 

1-1 138 156(0.94) 153(0.86) 80(0.94) 81(0.94) 78(0.94) 

1-2 154 186(0.78) 164(0.98) 143(0.94) 143(0.94) 138(0.94) 

1-3 83 79(0.86) 97(0.93) 27(0.89) 27(0.89) 50(0.89) 

1-4 78 82(0.92) 78(0.99) 67(0.97) 67(0.97) 67(0.97) 

1-5 99 0.18(-0.15) 94(1) 110(0.96) 111(0.96) 109(0.97) 

2-7 8.8 9.0(0.91) 8.6(0.97) 9.9(0.8) 11(0.78) 9.9(0.8) 

2-8 4.3 4.9(0.48) 4.5(0.93) 4.5(0.9) 4.7(0.87) 4.5(0.9) 

2-10 55 0.23(0.99) 52(0.98) 52(0.99) 52(0.99) 52(0.35) 

2-11 18 18(0.98) 40(0.92) 20(0.98) 20(0.98) 18(0.42) 

2-12 45 54(0.15) 195(0.97) 47(0.74) 47(0.7) 45(0.53) 

3-13 0.17 0.15(-0.05) 0.15(0.76) 0.17(0.72) 0.17(0.84) 0.017(0.62) 

3-14 0.21 0.21(0.18) 0.2(1) 0.21(0.2) 0.21(0.97) 0.17(0.82) 

3-15 61 66(0.97) 59(0.99) 61(0.05) 33(0.93) 0.94(0.12) 

3-16 75 74.66(1) 67(0.9) 75(0.96) 74(1) 42(0.89) 

3-17 53 52(1) 48(0.85) 50(0.99) 76(0.85) 16(0.85) 

3-18 50 46(0.99) 44(0.92) 50(0.95) 53(0.92) 4(0.72) 

4-19 4.1 4.1(0.92) 4(0.93) 0.67(1) 1.3(0.76) 0.028(0.97) 

4-20 80 90(0.81) 95(0.92) 70(0.92) 130(0.99) 18(0.96) 

4-21 93 94(0.99) 80(0.93) 83(0.97) 122(0.93) 24(0.47) 

4-22 53 62(0.8) 45(0.95) 52(1) 54(1) 4.1(-0.02) 

4-23 23 0.18(NA) 21(0.99) 19(0.99) 19(0.99) 2.0(-0.03) 

5-24 1.2 2.0(-0.02) 0.99(0.91) 0.95(1) 0.93(0.9) 0.042(0.03) 

5-25 184 216(0.66) 166(0.96) 171(0.98) 181(1) 40(0.94) 

5-26 116 0(NA) 103(0.95) 105(0.97) 165(0.84) 66(0.97) 

5-27 106 123(0.71) 95(0.95) 98(0.98) 104(1) 19(-0.03) 

5-28 49 0.3(NA) 44(0.97) 49(1) 70(0.85) 0.042(0.46) 

6-29 129 6.7(0.82) 120(0.97) 190(0.6) 192(0.59) 153(0.71) 

6-30 80 575(0.07) 104(0.6) 115(0.65) 114(0.65) 80(0.95) 

6-31 158 167(0.96) 157(1) 248(0.71) 250(0.7) 254(0.54) 

6-32 164 0(0.79) 740(0.66) 182(0.91) 189(0.91) 179(0.91) 

6-34 193 393(0.88) 195(0.99) 293(0.68) 28(0.18) 212(0.92) 

6-35 115 147(0.89) 91(0.97) 44(0.8) 44(0.8) 44(0.8) 

6-36 169 103.18(-0.04) 189(0.96) 168(0.93) 34(0.94) 165(0.93) 

6-37 130 140(0.97) 146(0.95) 99(0.96) 99(0.96) 254(0.96) 

6-38 196 195(0.87) 137(0.9) 34(0.93) 35(0.93) 40(0.95) 

6-39 171 209(0.87) 194(0.96) 174(0.94) 35(0.95) 14(0.06) 

6-40 172 162(0.86) 214(0.93) 49(0.93) 48(0.92) 6.5(0) 

6-41 10 25(0.48) 12(0.65) 15(0.69) 11(0.73) 7.6(0.74) 

6-42 7.2 9.8(0.7) 8.8(0.77) 8.3(0.84) 11(0.87) 2.3(0.08) 

6-43 9.8 10.1(0.97) 12(0.55) 15.6(0.87) 15(0.63) 15(0.62) 

6-44 27 38(0.77) 42(0.65) 37(0.88) 36(0.89) 29(0.95) 

6-45 126 11(-0.05) 105(0.99) 108(0.77) 105(0.79) 109(0.75) 
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Table 6-3. The fitted kinetic parameters and their R2 value in parenthesis for each lab-digester group.      

No μm 

Day-1 

Eq. 6-4 

Kchen 

Day-1 

Eq. 6-4 

k1 

Day-1 

Eq. 6-1 

k2 

Day-1 

Eq. 6-3 

k1mod 

Day-1 

Eq. 6-2 

k2mod 

Day-1 

Eq. 6-2 

Lag 

Day-1 

Eq.  6-5 

Rm  

mL g VS day-1 

Eq.  6-5 

1-1 0.31 (0.94) 105(0.94) 0.0016 (0.94) 0.00037 (0.94) 0.0024 (0.94) 0.0024 (0.94) 7.5(0.87) 5.9(0.87) 

1-2 0.00021(0.78) 0.99(0.78) 0.00068(0.94) 0.00041(0.94) 0.0035 (0.94) 0.0035 (0.94) 4.0(0.98) 7.6(0.98) 

1-3 0.27(0.86) 179049(0.86) 0.0015(0.89) 0.0056(0.89) 0.10(0.89) 0.40(0.89) 27(0.93) 27(0.93) 

1-4 0.00059(0.92) 0.99(0.92) 0.00043(0.97) 0.0039(0.97) 0.013(0.97) 0.013(0.97) 3.5 (0.99) 7.8(0.99) 

1-5 0.000048(-0.15) 0.33(-0.15) 0.060(0.97) 0.031(0.96) 0.063(0.97) 0.063(0.97) 0.60(1) 16(1) 

2-7 0.86(0.91) 3.7(0.91) 0.048(0.80) 0.028(0.78) 0.048(0.80) 0.048(0.80) 1.3(0.97) 0.96(0.97) 

2-8 0.00022(0.48) 0.99(0.48) 0.12(0.90) 0.086(0.87) 0.12(0.90) 0.12(0.90) 0.0 (0.93) 0.44(0.93) 

2-10 959 (0.99) 74701 (0.99) 0.032(0.99) 0.020(0.99) 6.9(0.10) 3.6(0.10) 0.24(0.98) 2.0(0.98)3. 

2-11 1.326 (0.98) 68(0.98) 0.032(0.98) 0.019(0.98) 6.0(0.42) 3.0(0.42) 3.5(0.92) 4.1(0.92) 

2-12 0.000019(0.15) 1.0(0.15) 0.00065(0.74) 0.00014(0.70) 5.9(0.53) 3.0(0.53) 2.3(0.97) 44(0.97) 

3-13 1.1(-0.053) 0.31(-0.53) 8.2 e-07(0.72) 0.41(0.84) 0.040(0.62) 0.18(0.62) 2.8(0.76) 1.0(0.76) 

3-14 0.00068(0.18) 0.88(0.18) 1.6e-06(0.20) 2.3(0.97) 0.40(0.82) 0.21(0.82) 0.031(1) 0.15(1) 

3-15 1.73(0.97) 1502(0.97) 0.00015(0.05) 0.000055(0.93) 0.010(0.12) 0.16(0.12) 7.6(0.99) 2.2(0.99) 

3-16 8251(1) 53940(1) 0.16(0.96) 0.17(1) 0.010(0.89) 0.098(0.89) 0.0(0.90) 7.9(0.90) 

3-17 6268(1) 82624(1) 0.093(0.99) 0.00037(0.85) 0.010(0.85) 0.13(0.85) 0.0(0.96) 3.2(0.96) 

3-18 2134(1) 26212(0.99) 0.063(0.95) 0.045(0.92) 0.010(0.71) 0.187(0.71) 1.2(0.98) 4.0(0.98) 

4-19 0.55(0.92) 5.2(0.92) 0.00099(1) 0.000012(0.76) 0.010(0.97) 0.083(0.97) 4.3(0.93) 0.35(0.93) 

4-20 0.000084(0.81) 0.99(0.81) 0.064(0.92) 0.064(0.99) 0.10(0.96) 0.13(0.96) 0.0(0.93) 1.9(0.93) 

4-21 3015 (0.99) 103485(0.99) 0.074(0.97) 0.00024(0.93) 0.010(0.47) 0.12(0.47) 0.0(0.93) 4.3(0.93) 

4-22 0.00013(0.80) 0.99(0.80) 0.033(1) 0.023(1) 0.010(-0.025) 0.17(-0.025) 1.7(0.95) 2.1(0.95) 

4-23 0.26(0) 0(0) 0.00012(0.99) 0.00016(0.99) 0.010(-0.027) 0.11(-0.027) 6.6(0.99) 0.51(0.99) 

5-24 0.14(-0.018) 0.031(-0.018) 0.00014(1) 0.00087(0.90) 0.010(0.026) 0.17(0.026) 7.4(0.91) 0.026(0.91) 

5-25 0.00013(0.66) 0.99(0.66) 0.092(0.98) 0.082(1) 0.100(0.94) 0.16(0.94) 0.0 (0.96) 11(0.96) 

5-26 0.015(0) 110(0) 0.11(0.97) 0.00034(0.84) 0.010(0.97) 0.09(0.97) 0.0(0.95) 7.5(0.95) 

5-27 0.000075(0.7218) 0.99(0.71) 0.079(0.98) 0.066(1) 0.010(-0.033) 21(-0.033) 0.0(0.95) 5.4(0.95) 

5-28 412177(0) 0(0) 0.059(1) 0.00033(0.85) 0.010(0.46) 0.13(0.46) 0.92(0.97) 2.8(0.97) 

6-29 0.97(0.82) 2.75(0.82) 0.0039(0.60) 0.00083(0.59) 0.19(0.71) 0.13(0.71) 1.3(0.54) 31(0.54) 

6-30 0.00014(0.07) 0.99(0.07) 0.00045(0.65) 0.00027(0.65) 0.12(0.95) 0.00(0.95) 0.0(0.77) 2.5(0.77) 

6-31 1.03(0.96) 6.25(0.96) 0.0048(0.71) 0.0011(0.70) 0(0.54) 0.0092(54) 0.48(1) 14(1) 

6-32 0.078(0.79) 820(0.79) 0.00060(0.91) 0.0013(0.91) 0.0025(0.91) 0.0025(0.91) 43(0.66) 106(0.66) 

6-34 1257095(0.88) 12507832(0.88) 0.0010(0.68) 20016452(0.18) 0.075(0.92) 0.0027(0.92) 0.98(0.99) 17(0.99) 

6-35 0.00045(0.89) 0.98(0.89) 0.00015(0.80) 0.000091(0.80) 0.00076(0.80) 0.00076(0.80) 71(0.96) 16(0.96) 
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Table 6-3 continued. 

No μm 

Day-1 

Eq. 6-4 

Kchen 

Day-1 

Eq. 6-4 

k1 

Day-1 

Eq. 6-1 

k2 

Day-1 

Eq. 6-3 

k1mod 

Day-1 

Eq. 6-2 

k2mod 

Day-1 

Eq. 6-2 

Lag 

Day-1 

Eq.  6-5 

Rm  

mL g VS day-1 

Eq.  6-5 

6-36 0.50(-0.04) 2.0E-05(-0.04) 0.0055(0.93) 0.00040(0.94) 0.0018(0.93) 0.0018(0.93) 4.4(0.97) 6.7(0.97) 

6-37 305(0.97) 35000(0.97) 0.0035(0.96) 0.0013(0.96) 0.10(0.96) 0.40(0.96) 6.0(0.95) 4.9(0.95) 

6-38 0.18(0.87) 107619(0.87) 0.00011(0.93) 0.00040(0.93) 0.00051(0.95) 0.00051(0.95 28(0.90) 13(0.90) 

6-39 689(0.87) 118491654(0.87) 0.00057(0.94) 0.00040(0.95) 956(0.06) 2679(0.06) 4.5(0.96) 6.4(0.96) 

6-40 0.14(0.86) 152841(0.86) 0.00014(0.93) 0.00040(0.92) 459(0.005) 808(0.005) 65(0.93) 55(0.93) 

6-41 490(0.48) 511042841(0.48) 0.000059(0.69) 0.00040(0.73) 11(0.74) 20(0.74) 0(0.75) 3.1(0.75) 

6-42 1583(0.70) 2312898273(0.70) 0.000027(0.84) 0.00040(0.87) 170(0.08) 271(0.08) 39(0.80) 0.57(0.80) 

6-43 13781(0.97) 52016(0.97) 0.000041(0.87) 0.000036(0.63) 0.00091(0.62) 0(0.62) 0.0(0.55) 0.29(0.55) 

6-44 1342(0.77) 532843585(0.77) 0.00012(0.88) 0.00040(0.89) 0.036(0.95) 0.036(0.95) 1.3(0.82) 3.2(0.82) 

6-45 0.35(-0.050) 0(-0.050) 0.00035(0.77) 0.0070(0.79) 0.00026(0.75) 0.00026(0.75) 3.5(0.99) 9.9(0.99) 
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Table 6-4. Calculated values for each lab-digester group. 

Lab-digester group No. Kh 

Day-1 

Eq. 6-7 

T80 

day 

T90 

day 

1-1 0.04 16 22 

1-2 0.05 17 26 

1-3 0.11 0 7 

1-4 0.31 26 31 

1-5 0.4 28 35 

2-7 0.07 8 23 

2-8 0.11 27 31 

2-10 0.05 27 31 

2-11 0.1 29 31 

2-12 0.07 30 31 

3-13 0.05 9 30 

3-14 0.09 13 35 

3-15 0.01 31 43 

3-16 0.01 18 29 

3-17 0.02 34 42 

3-18 0.02 42 50 

4-19 0.04 24 31 

4-20 0.02 34 43 

4-21 0.02 33 41 

4-22 0.02 35 42 

4-23 0.02 42 47 

5-24 0.02 38 44 

5-25 0.02 22 32 

5-26 0.02 24 36 

5-27 0.02 27 34 

5-28 0.02 28 42 

6-29 0.04 7 12 

6-30 0.04 12 23 

6-31 0.04 9 11 

6-32 0.04 23 25 

6-34 0.04 10 13 

6-35 0.04 29 33 

6-36 0.04 24 26 

6-37 0.04 28 33 

6-38 0.02 40 42 

6-39 0.04 25 27 

6-40 0.02 39 42 

6-41 0.05 13 16 

6-42 0.04 21 21 

6-43 0.04 12 13 

6-44 0.04 26 29 

6-45 0.04 8 17 
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6.4.4 Times series forecasting 

The results of the time series forecasting are summarized in (Table 6-5).  No one 

forecasting model worked for all lab-digesters.  In some cases (lab-digester group numbers  1-1, 

2-7, 3-13, 4-19, 6-29), the RMSE values between the real and predicted data were very high, 

indicating a poor prediction.  For these lab-digester treatments, the other replicates showed better 

RMSE values.  The forecasted values were based on 75% of the previous values, which was 9 to 

15 days in advance for all batches (Figures C-1 through C-7).   

The ARIMA model was most frequently the best time series forecasting model (Table 6-5).  

Both neural network models and time series models have been used to forecast in an up-flow 

anaerobic sludge blanket (UASB) scale steady-state digester (Ruiz et al., 2004).  Lab-scale 

digesters are not “steady-state” and therefore have changing CH4 yield production with time.  The 

ARIMA model is unique because it accounts for the autocorrelations in the data and is flexible for 

many different types of time series patterns (Hyndman, R.J. Athanasopoulos, 2018).  The model 

is able to use previous data to predict future data points which is an optimal scenario in AD.  

Table 6-5. Optimal forecasting model and RMSE value for each lab-scale digester. 

Lab-digester group No. Replicate Best Model RMSE 

1-1 B NNETAR 1.819 

1-1 C ARIMA 0 

1-2 A ARIMA 0.038 

1-2 B ELM 0.003 

1-2 C ARIMA 0.015 

1-3 A ARIMA 0.006 

1-3 B ARIMA 0 

1-3 C ELM 0 

1-4 A ARIMA 0 

1-4 B ARIMA 0 

1-4 C ARIMA 0 

1-5 A ARIMA 0 

2-7 A NNETAR 1.779 

2-7 B ARIMA 0 

2-7 C ARIMA 0.101 

2-8 A ARIMA 0 

2-8 C ARIMA 0 

2-10 A KNN 0 

2-10 B ARIMA 0 

2-10 C ARIMA 0.258 

2-11 A ARIMA 0.119 

2-11 B ARIMA 0 

2-12 A ARIMA 0 

2-12 B MLP 0.005 
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Table 6-5 continued. 

Lab-digester group No. Replicate Best Model RMSE 

3-13 A KNN 2.282 

3-13 B ARIMA 0 

3-13 C ARIMA 0 

3-14 A ARIMA 0 

3-14 B ARIMA 0 

3-15 B ARIMA 0 

3-15 C KNN 0.065 

3-16 A ARIMA 0.010 

3-16 B NNETAR 0.057 

3-16 C ARIMA 0.008 

3-17 A ARIMA 0.023 

3-17 B ARIMA 0 

3-18 A ARIMA 0 

3-18 B KNN 0.064 

4-19 B ARIMA 1.581 

4-20 A ARIMA 0 

4-20 B MLP 0.014 

4-20 C ARIMA 0.069 

4-21 A ARIMA 0.050 

4-21 B KNN 0.034 

4-21 C ELM 0.017 

4-22 A ARIMA 0.020 

4-22 B ELM 0.023 

4-22 C ELM 0.030 

4-23 A NNETAR 0.048 

4-23 B NNETAR 0.072 

5-24 A NNETAR 1.660 

5-24 B ARIMA 0.075 

5-24 C KNN 0 

5-25 A ELM 0.081 

5-25 B NNETAR 0.012 

5-25 C ELM 0.012 

5-26 A ELM 0.011 

5-26 B MLP 0.012 

5-26 C KNN 0.011 

5-27 A ARIMA 0.018 

5-27 B ARIMA 0.015 

5-27 C ELM 0.011 

5-28 A MLP 0.010 

5-28 B MLP 0.028 

6-29 A ARIMA 2 

6-30 A ARIMA 0.005 

6-31 A KNN 0.011 

6-31 B MLP 0.004 

6-31 C ARIMA 0 

6-32 A ARIMA 0 

6-34 A ARIMA 0.006 

6-35 A ARIMA 0.001 

6-35 B NNETAR 0.157 

6-35 C ELM 0.198 

6-36 C MLP 0.088 
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Table 6-5 continued. 

Lab-digester group No. Replicate Best Model RMSE 

6-37 A NNETAR 0.009 

6-37 B ARIMA 0.010 

6-37 C ARIMA 0.006 

6-38 A ARIMA 0.008 

6-39 A NNETAR 0.052 

6-40 A ARIMA 0.008 

6-41 A MLP 0.051 

6-42 A ELM 0.010 

6-43 A ARIMA 0 

6-43 B MLP 0.027 

6-43 C ARIMA 0 

6-44 A ARIMA 0.001 

6-45 A ARIMA 0 

6-45 B ARIMA 0.002 

 

A unique array of materials were chosen for this study.  This is evidenced in the CH4 yield 

results which indicate a variety of CH4 production curves (Figure 6-1) as well as the differences 

in hydrolysis coefficients and T80 and T90 values (Table 6-4).  Therefore, the time series forecasting 

and models included several different scenarios.  Specifically, the models predicted several final 

SMY values with high R2 values.   

This study is novel because it developed an approach for the early prediction of BMP data.  

The use of time series forecasting only requires previously collected SMY values and thus is not 

limited by the initial substrate characteristics.  This study demonstrates that the selection of the 

forecasting model is important in predicting future values.  This study could be improved through 

the use of a continuous data acquisition system for CH4 production, which would provide a greater 

number of data points for the predictions.  Ultimately, time series forecasting could reduce the 

time needed for the BMP test.     

6.5 Conclusions  

The following conclusions were drawn from this chapter: 

1. A variety of different substrates investigated through BMP testing had different CH4 

production curves.  Differences in these CH4 production curves had different best-fit 

models.   

2. The kh, T80, and T90 values varied considerably for the different BMP tests, indicating the 

need for close BMP test monitoring.    
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3. Using time series forecasting to predict future BMP yields, ARIMA was found to be the 

best fitted model in 59% of cases and predicted SMY values in the final 25% of the batch 

BMP test time.    
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 GENERAL CONCLUSIONS 

Biochemical methane potential tests are a useful laboratory method that can assist with the 

optimization of operational strategies for field AD systems. However, there are still many 

challenges for improving the technical aspects of this method and the mathematical models of test 

results. Moreover, the ability of the BMP method to gain new insights into anaerobic digester 

performance has still not been fully exploited. 

Significant variabilities in reported BMP methodologies were uncovered in the 

comprehensive literature review. These variabilities were primarily demonstrated in BMP test 

setup, digester operation and control, biogas collection and quantification, and BMP calculation 

and expressions.  Moreover, the lack of reporting on key operational parameters made the reported 

tests and test results difficult to be reproduced. Understanding these variabilities led to the 

conclusion that developing and implementing standardized BMP test practices are needed for 

making the BMP tests a better tool to serve the growing number of field AD systems. 

Modeling has also been applied in BMP tests to explain the physical and chemical 

properties of the liquid, to predict SMY, to mathematically describe the changes in a defined 

system, and to forecast future events. Among the variety of mathematical models reviewed in this 

dissertation, the most frequently used first order model lacks the nuance required for complex 

substrates. Improvements in nonlinear modeling could reduce the time needed for the BMP test. 

Linking the function of the AD process to the microbial community dynamics could further 

improve modeling. Moreover, models and calculations should be carefully chosen based on 

substrate types. 

Laboratory BMP tests could be a supportive approach to gain new insights into some 

operational issues in field AD systems, such as H2S production.  Hydrogen sulfide productions in 

the lab-digesters showed considerable variability, ranging from non-detectable to 1.29 mL g VS-1.  

Higher H2S concentrations in the biogas were observed within the first ten days of AD. Unlike in 

previous studies, initial sulfate concentrations and the final specific H2S productions were not 

significantly correlated, and the TCOD : Sulfate ratio was not a reliable H2S production predictor. 

Instead, the initial Fe(II) : S ratio and OP concentrations had important influences on H2S 

productions. Iron reduction and iron-phosphorus precipitation could have occurred without the 

presence of an anaerobic community, whereas FeS precipitation seemed to require an anaerobic 
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community. Sulfate, phosphorus, and iron in the anaerobic microbial community were important 

for understanding the H2S production.   

When combined with field investigation and machine learning, the BMP test enabled the 

identification of key parameters in digester foaming.  Influents related to the field digester foaming 

had significantly lower OP, iron, nickel, and NH3 concentrations in the digester influent and 

significantly higher total alkalinity concentrations. Important parameters of digester influents 

related to digester foaming were the ratios of Fe(II) : S, Fe(II) : TP, and TVFA : TALK; and the 

concentrations of Cu. Digesters receiving mixed waste streams could be more vulnerable to 

foaming.  In the lab tests, digesters receiving substrates from the field digester during non-foaming 

events had significantly higher SMYs but lower CO2 concentrations in the produced biogas. 

Foaming in the lab-digesters occurred within the first 72 hours of the experiment. Machine learning 

revealed that the ratios of TVFA : TALK, Fe(II) : S, Fe(II) : TP, and the concentrations of Cu were 

influential variables.   

In addition to the findings from the BMP modeling literature review, the studies on the field 

investigation and lab experimental results also led to the conclusion that models should be 

carefully chosen based on the modeling objectives.  In the H2S production research, the gam model 

was the most applicable to a variety of different substrates. In the digester foaming study, a hybrid 

knowledge-based approach predicted the foaming status of the field digester and the foaming 

potential of individual lab-scale digesters. To investigate the CH4 productions in lab BMP tests, it 

was demonstrated that differences in CH4 production curves were an important factor for model 

selection. The application of time series forecasting to the early prediction of BMP data had several 

successful predictions with low RMSE values, particularly with the ARIMA algorithm.  

Over the past decades, BMP testing has been slow in the development of new knowledge 

and new technologies.  However, many research gaps, some of which have been identified in this 

dissertation, still exist. The BMP test could be expanded to examine other aspects of digester 

function including H2S production and foaming.  Filling these gaps requires continuous efforts in 

scientific research. Successes in expanding BMP testing will make the BMP test a valuable tool in 

AD development and application for a healthy world. 
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APPENDIX A. CHAPTER 4 SUPPLEMENTARY  

Table A-1. Methods for characterization of substrate, inoculum, and digester effluent.   

Parameter Unit Method Matter 

pH Unitless Jenco Digital pH Meter (Model 60) with Cole-Parmer 

electrode Cat No 05993-00 

Particulate 

TS g L-1 Standard Methods for the Examination of Wastewater 

(20th edition) Method 2540 B 

Particulate 

VS, FS g L-1 Standard Methods for the Examination of Wastewater 

(20th edition) Method 2540E 

Particulate 

Conductivity mS cm-1 Hanna Instruments HI 9813-6N EC Meter Particulate 

COD g L-1 Adapted USEPA Reactor Digestion Method (250-15,000 

mg COD L-1) for TNTplusTM Vial Test TNT823 Method 

10212* 

TCOD = Particulate 

SCOD=Soluble 

(0.2μm filter) 

TVFA g Acetic 

Acid L-1 

Adapted Esterification Method (50-2,500 mg Acetic Acid 

L-1) for TNTplusTM Vial Test TNT 872 Method 10240* 

Soluble (0.45μm 

filter) 

TALK g CaCO3 L-1 Adapted Colorimetric Method (25-400 mg CaCO3 L-1) for 

TNTplusTM Vial Test TNT 870 * 

Soluble (0.45μm 

filter) 

Sulfate g SO4
-2 L-1 Adapted Turbidimetric Method (40-150 mg SO4

2- L-1)  

TNTplus Vial Test for TNTplus™ 864 Method 10227 * 

Particulate 

Tannic Acid g L-1 Adapted Tyrosine Method (0.1-9.0 mg Tannic Acid L-1) 

for Hach Method 8193* 

Particulate 

OP g PO4 L-1 Hach Orthophosphate Test Kit Model PO-19 Soluble (0.45μm 

filter) 

TAN g NH3-N L-1 Adapted USEPA Nessler Method (0.02-2.50 mg NH3-N L-

1) For Hach Method 8038* 

Particulate 

TP g PO4
3- L-1 Adapted USEPA PhosVer®3 with Acid Persulfate 

Digestion Method (0.02-1.10 mg PO4
3- L-1) for Test N’ 

TubeTM Vials Method 8190  * * 

Particulate 

TKN, TN, 

Inorganic N 

g L-1 Simplified TKN Method (0-16 mg N L-1) for TNTplus™ 

880 Method 10242  * 

Soluble (0.45μm 

filter) 

Fe g L-1 Adapted Phenanthroline Method (0.2-6.0 mg Fe L-1) for 

TNTplus™ 858 Method 10229 * 

Soluble (0.45μm 

filter) 

Cu g L-1 Adapted Bathocuproine Method (0.1 to 8.0 mg Cu L-1) for 

TNTplus™ 860 Method 10238 * 

 

Soluble (0.45μm 

filter) 

Ni g L-1 Adapted Dimethylglyoxime Method (0.1 to 6.0 mg Ni L-1) 

for TNTplus™ 856 Method 10220 * 

Soluble (0.45μm 

filter) 

Note: *Measured with Hach DR3900 Benchtop Spectrophotometer (Hach Company, Loveland, CO). 
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Table A-2. The mean ± standard deviation of digester influent (day zero) and effluent (final day) characteristics for each lab-digester 

group (1). 

Day No. pH Conductivity TS VS TCOD SCOD TVFA TALK TKN 

Final 1-1 7.88 ± 0.04 6.49 ± 0.15 24 ± 4 14.61 ± 3.77 28 ± 3 12.44 ± 8.02 4.2 ± 1.5 14.61 ± 4.01 2.9 ± 0.73 

Zero 1-1 7.72 ± 0.15 8.56 ± 0 47 ± 0 36.51 ± 0 55 ± 0 32.59 ± 0 5.9 ± 0 8.44 ± 0 2.27 ± 0 

Final 1-2 7.85 ± 0.08 6.45 ± 0.01 21 ± 2 11.69 ± 1.78 25 ± 6 6.65 ± 1.03 2.6 ± 0.1 10.47 ± 1.17 2.01 ± 0.2 

Zero 1-2 7.64 ± 0.12 8.5 ± 0 45 ± 0 34.39 ± 0 53 ± 0 33.03 ± 0 5.8 ± 0 8.52 ± 0 2.27 ± 0 

Final 1-3 7.82 ± 0.08 6.3 ± 0.06 9 ± 0 3.69 ± 0.07 5 ± 0 10.31 ± 6.89 3 ± 0.7 9.86 ± 1.67 2.04 ± 0.37 

Zero 1-3 7.72 ± 0.05 8.85 ± 0 12 ± 0 6.07 ± 0 25 ± 0 49.33 ± 0 4.8 ± 0 8.97 ± 0 1.68 ± 0 

Final 1-4 7.7 ± 0.15 6.36 ± 0.09 10 ± 0 4.28 ± 0.25 7 ± 1 7.49 ± 2.67 2.6 ± 0.1 8.8 ± 1.45 1.78 ± 0.18 

Zero 1-4 7.66 ± 0.12 8.76 ± 0 13 ± 0 6.99 ± 0 27 ± 0 48.1 ± 0 4.8 ± 0 8.99 ± 0 1.74 ± 0 

Final 1-5 7.96 ± NA 6.35 ± NA 17 ± NA 9.37 ± NA 16 ± NA 5.19 ± NA 3.8 ± NA 22.66 ± NA 1.56 ± NA 

Zero 1-5 7.75 ± 0.28 7.96 ± 0 23 ± 0 15.24 ± 0 37 ± 0 37.07 ± 0 4.9 ± 0 9.24 ± 0 2.32 ± 0 

Final 2-7 7.52 ± 0.37 6.95 ± 0.04 82 ± 6 64.48 ± 5.58 192 ± 61 42.07 ± 4.51 19 ± 0.4 8.33 ± 3.4 3.65 ± 0.09 

Zero 2-7 6.54 ± 0.05 9.91 ± 0 99 ± 0 80.83 ± 0 150 ± 0 37.69 ± 0 9.3 ± 0 6.56 ± 0 1.53 ± 0 

Final 2-8 7.85 ± 0.76 6.87 ± 0.17 94 ± 2 74.89 ± 1.76 155 ± 6 40.75 ± 0.07 18.9 ± 0.2 10.16 ± 1.7 4.53 ± 1.03 

Zero 2-8 6.94 ± 0.04 9.86 ± 0 100 ± 0 81.01 ± 0 152 ± 0 37.29 ± 0 9.2 ± 0 6 ± 0 1.45 ± 0 

Final 2-10 8.03 ± 0.24 6.34 ± 3.14 44 ± 29 29.98 ± 19.35 67 ± 47 12.58 ± 7.8 5.4 ± 3.3 11.14 ± 7.39 2.15 ± 1.39 

Zero 2-10 7.5 ± 0.3 8.34 ± 4.84 51 ± 30 36.2 ± 21.02 52 ± 30 12.5 ± 7.26 4.8 ± 2.8 9.45 ± 5.49 1.87 ± 1.09 

Final 2-11 7.46 ± NA 1.94 ± NA 2 ± NA 0.91 ± NA 2 ± NA 2.98 ± NA 0.52 ± NA 0.75 ± NA 0.23 ± NA 

Zero 2-11 7.15 ± NA 1.08 ± NA 7 ± NA 4.67 ± NA 7 ± NA 1.61 ± NA 0.62 ± NA 1.22 ± NA 0.24 ± NA 

Final 2-12 7.65 ± 0.14 2.18 ± 0.02 2 ± 0 0.85 ± 0.12 1 ± 0 2.66 ± 0.25 0.22 ± 0 0.8 ± 0.12 0.3 ± 0 

Zero 2-12 7 ± 0.05 1.02 ± 0 8 ± 0 4.85 ± 0 10 ± 0 1.21 ± 0 0.53 ± 0 0.66 ± 0 0.16 ± 0 

Final 3-13 7.14 ± 0.6 4.27 ± 1.45 205 ± 156 185.41 ± 155.4 353 ± 67 75.14 ± 16.03 19.5 ± 2 6.58 ± 3.73 1.23 ± 0.11 

Zero 3-13 6.62 ± 0.2 1 ± 1.13 628 ± 0 605.95 ± 0 490 ± 0 150.72 ± 0 20.2 ± 0 4.18 ± 0 0.92 ± 0 

Final 3-14 7.5 ± 0.14 0.93 ± 0.92 146 ± 42 122.45 ± 35.09 340 ± 36 72.82 ± 11.84 18.5 ± 0.2 3.79 ± 0.81 1.05 ± 0.37 

Zero 3-14 6.02 ± 0.07 1.89 ± 0.92 627 ± 0 605.5 ± 0 498 ± 0 150.86 ± 0 19.3 ± 0 4.3 ± 0 0.92 ± 0 

Final 3-15 7.65 ± 0 7.81 ± 0.1 33 ± 18 18.59 ± 13.45 59 ± 28 46.54 ± 18.21 6 ± 0.1 11.37 ± 0.81 2.75 ± 0.23 

Zero 3-15 7.95 ± 0.03 7.63 ± 0.02 74 ± 0 52.89 ± 0 70 ± 0 18.43 ± 0 21.5 ± 0 7.31 ± 0 2.23 ± 0 

Final 3-16 7.55 ± 0.04 7.06 ± 0.15 20 ± 9 12.43 ± 6.69 27 ± 12 9.04 ± 1.36 5.2 ± 2.4 5.06 ± 0.64 1.46 ± 0.37 

Zero 3-16 5.99 ± 0.01 6.5 ± 0.13 35 ± 0 24.22 ± 0 35 ± 0 9.21 ± 0 10.8 ± 0 3.66 ± 0 1.12 ± 0 

Final 3-17 7.65 ± 0 2.78 ± 1.21 4 ± 1 2.49 ± 0.45 3 ± 1 1.48 ± 0.78 0.89 ± 0.42 1.35 ± 0.19 0.18 ± 0.05 

Zero 3-17 7.21 ± 0.01 2.45 ± 0.19 7 ± 0 5.29 ± 0 7 ± 0 1.84 ± 0 2.2 ± 0 0.73 ± 0 0.22 ± 0 

Final 3-18 6.84 ± 1.29 3.11 ± 0.22 5 ± 0 2.78 ± 0.08 5 ± 2 1.27 ± 0.08 0.71 ± 0 1.04 ± 0.02 0.24 ± 0.04 

Zero 3-18 5.92 ± 0 1.93 ± 0.67 7 ± 0 4.84 ± 0 3 ± 0 1.88 ± 0 1.2 ± 0 0.89 ± 0 0.23 ± 0 

Final 4-19 7.16 ± NA 7.96 ± NA 108 ± NA 82.49 ± NA 199 ± NA 62.03 ± NA 26.2 ± NA 8.3 ± NA 2.38 ± NA 
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Table A-2 continued. 

Day No. pH Conductivity TS VS TCOD SCOD TVFA TALK TKN 

Zero 4-19 6.95 ± NA 8.67 ± NA 137 ± NA 114.91 ± NA 227 ± NA 58.86 ± NA 16.4 ± NA 6.06 ± NA 1.83 ± NA 

Final 4-20 7.83 ± 0.09 6.87 ± 0.06 23 ± 9 14.39 ± 7.46 10 ± 3 6.4 ± 0.64 3.6 ± 0.9 4.34 ± 0.7 1.09 ± 0.12 

Zero 4-20 6.85 ± 0.05 7.51 ± 0.14 45 ± 0 33.82 ± 0 68 ± 0 9.46 ± 0 3 ± 0 5.54 ± 0 1 ± 0 

Final 4-21 8.15 ± 0.05 6.89 ± 0.04 26 ± 14 15.9 ± 10.28 16 ± 8 8.63 ± 1.73 2.8 ± 1.3 13.8 ± 2.37 1.11 ± 0.3 

Zero 4-21 6.98 ± 0.06 7.63 ± 0.2 48 ± 0 35.41 ± 0 41 ± 0 9.24 ± 0 4.1 ± 0 5.52 ± 0 1.32 ± 0 

Final 4-22 8.16 ± 0.07 7.84 ± 0.2 37 ± 3 19.58 ± 2.76 29 ± 5 13.5 ± 2.41 5 ± 0.2 12.9 ± 5.1 1.88 ± 0.39 

Zero 4-22 7.34 ± 0.13 8.53 ± 0.03 83 ± 0 58.29 ± 0 99 ± 0 17.85 ± 0 6.2 ± 0 8.85 ± 0 2.12 ± 0 

Final 4-23 8.01 ± 0.13 4.49 ± 0.27 6 ± 0 3.18 ± 0.63 5 ± 2 4.44 ± 0.04 4.4 ± 4.9 2.35 ± 0.53 0.69 ± 0.29 

Zero 4-23 7.11 ± 0.01 4.26 ± 0.89 28 ± 0 26.59 ± 0 32 ± 0 3.4 ± 0 1.2 ± 0 1.88 ± 0 0.4 ± 0 

Final 5-24 6.43 ± 0.04 6.63 ± 0.31 86 ± 11 69.39 ± 9.07 147 ± 12 81.2 ± 16.18 35.8 ± 10.2 5.91 ± 1.37 3.72 ± 0.37 

Zero 5-24 7.12 ± 0.59 7.36 ± 0.56 138 ± 0 119.73 ± 0 180 ± 0 59.84 ± 0 12 ± 0 2.78 ± 0 2.49 ± 0 

Final 5-25 7.73 ± 0.07 7.19 ± 0.07 17 ± 6 10.77 ± 4.48 31 ± 2 9 ± 1.82 5.3 ± 0.2 8.95 ± 0.98 2.12 ± 1.25 

Zero 5-25 7.62 ± 0.22 7.08 ± 0.24 34 ± 0 25.56 ± 0 35 ± 0 7.64 ± 0 2.6 ± 0 4.07 ± 0 1.11 ± 0 

Final 5-26 7.73 ± 0.12 6.85 ± 0.54 27 ± 2 18.22 ± 1.75 27 ± 5 6.84 ± 0.65 3.3 ± 0.6 6.12 ± 1.88 1.29 ± 0.35 

Zero 5-26 7.54 ± 0.18 7.29 ± 0.08 35 ± 0 25.27 ± 0 36 ± 0 4.61 ± 0 2.1 ± 0 4.67 ± 0 1.33 ± 0 

Final 5-27 7.95 ± 0.24 8.2 ± 0.07 43 ± 6 27.61 ± 4.7 39 ± 11 14.15 ± 2.62 8 ± 3.3 15.04 ± 1.79 3.36 ± 0.95 

Zero 5-27 7.88 ± 0.05 7.92 ± 0.1 61 ± 0 43.3 ± 0 52 ± 0 8.84 ± 0 3.9 ± 0 7.14 ± 0 2.02 ± 0 

Final 5-28 7.09 ± 0.11 4.23 ± 0.17 5 ± 2 3.17 ± 1.55 4 ± 1 3.26 ± 0.34 0.7 ± 0.01 2.35 ± 0.1 0.53 ± 0.02 

Zero 5-28 7.86 ± 0.12 4.61 ± 0.29 12 ± 0 11.27 ± 0 12 ± 0 2.07 ± 0 0.87 ± 0 1.78 ± 0 0.46 ± 0 

Final 6-29 7.08 ± NA 5.2 ± NA 35 ± NA 16.66 ± NA 35 ± NA 1.91 ± NA 0.36 ± NA 3.39 ± NA 0.67 ± NA 

Zero 6-29 6.74 ± NA 6.14 ± NA 37 ± NA 20.56 ± NA 38 ± NA 1.98 ± NA 3.9 ± NA 4.18 ± NA 0.09 ± NA 

Final 6-30 7.18 ± NA 5.04 ± NA 28 ± NA 13.23 ± NA 43 ± NA 2.47 ± NA 0.36 ± NA 6.11 ± NA 0.45 ± NA 

Zero 6-30 6.75 ± NA 6.31 ± NA 37 ± NA 20.37 ± NA 38 ± NA 1.98 ± NA 3.9 ± NA 4.18 ± NA 0.09 ± NA 

Final 6-31 7.09 ± 0.08 4.45 ± 0.23 36 ± 10 17.37 ± 4.96 32 ± 2 1.86 ± 0.33 0.42 ± 0.05 5.65 ± 1.71 0.49 ± 0.09 

Zero 6-31 6.88 ± 0.03 5.27 ± 0.24 43 ± 0 24.13 ± 0 45 ± 0 1.7 ± 0 3.3 ± 0 3.6 ± 0 0.08 ± 0 

Final 6-32 7.18 ± NA 4.65 ± NA 24 ± NA 11.54 ± NA 14 ± NA 2.65 ± NA 0.51 ± NA 3.71 ± NA 0.58 ± NA 

Zero 6-32 6.94 ± NA 4.66 ± NA 50 ± NA 28.03 ± NA 52 ± NA 1.49 ± NA 2.9 ± NA 3.16 ± NA 0.07 ± NA 

Zero 6-33 6.64 ± NA 4.46 ± NA 56 ± NA 32.05 ± NA 59 ± NA 1.33 ± NA 2.6 ± NA 2.82 ± NA 0.06 ± NA 

Final 6-34 7.09 ± NA 4.84 ± NA 24 ± NA 11.48 ± NA 16 ± NA 2.4 ± NA 0.45 ± NA 3.93 ± NA 0.8 ± NA 

Zero 6-34 6.86 ± NA 5.02 ± NA 42 ± NA 23.52 ± NA 44 ± NA 1.75 ± NA 3.4 ± NA 3.69 ± NA 0.08 ± NA 

Final 6-35 7.26 ± 0.15 3.34 ± 0.27 34 ± 6 18.22 ± 3.58 41 ± 16 6.66 ± 1.49 2.2 ± 0.1 2.69 ± 0.22 0.46 ± 0.08 

Zero 6-35 6.93 ± 0.06 4.08 ± 0.32 52 ± 0 30.12 ± 0 56 ± 0 1.41 ± 0 2.8 ± 0 3 ± 0 0.07 ± 0 

Final 6-36 7.07 ± NA 4.85 ± NA 7 ± NA 2.69 ± NA 24 ± NA 2.31 ± NA 0.45 ± NA 4.94 ± NA 0.74 ± NA 

Zero 6-36 6.85 ± NA 5.05 ± NA 43 ± NA 23.99 ± NA 45 ± NA 1.72 ± NA 3.4 ± NA 3.63 ± NA 0.08 ± NA 

Final 6-37 7.19 ± 0.14 4.2 ± 0.26 22 ± 10 10.67 ± 5.27 23 ± 2 2.1 ± 0.3 0.54 ± 0.18 3.69 ± 0.95 0.63 ± 0.06 

Zero 6-37 6.91 ± 0.05 4.57 ± 0.14 49 ± 0 27.75 ± 0 51 ± 0 1.51 ± 0 3 ± 0 3.2 ± 0 0.07 ± 0 
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Table A-2 continued. 

Day No. pH Conductivity TS VS TCOD SCOD TVFA TALK TKN 

Final 6-38 7.54 ± NA 4.39 ± NA 31 ± NA 14.85 ± NA 21 ± NA 2.62 ± NA 0.61 ± NA 4.1 ± NA 0.59 ± NA 

Zero 6-38 6.87 ± NA 4.53 ± NA 55 ± NA 31.64 ± NA 58 ± NA 1.35 ± NA 2.7 ± NA 2.86 ± NA 0.06 ± NA 

Final 6-39 6.89 ± NA 4.53 ± NA 35 ± NA 17.31 ± NA 36 ± NA 2.01 ± NA 0.48 ± NA 4.64 ± NA 0.37 ± NA 

Zero 6-39 6.85 ± NA 5.21 ± NA 44 ± NA 24.52 ± NA 46 ± NA 1.68 ± NA 3.3 ± NA 3.56 ± NA 0.08 ± NA 

Final 6-40 7.43 ± NA 3.46 ± NA 34 ± NA 16.71 ± NA 48 ± NA 2.65 ± NA 0.54 ± NA 3.02 ± NA 0.52 ± NA 

Zero 6-40 6.86 ± NA 4.47 ± NA 51 ± NA 28.83 ± NA 53 ± NA 1.46 ± NA 2.9 ± NA 3.1 ± NA 0.07 ± NA 

Final 6-41 7.12 ± NA 3.84 ± NA 33 ± NA 20.52 ± NA 35 ± NA 15.48 ± NA 7 ± NA 1.68 ± NA 0.29 ± NA 

Zero 6-41 6.46 ± NA 3.92 ± NA 58 ± NA 33.3 ± NA 61 ± NA 1.29 ± NA 0.02 ± NA 2.74 ± NA 0.06 ± NA 

Final 6-42 7.08 ± NA 4.13 ± NA 30 ± NA 19.78 ± NA 37 ± NA 25.34 ± NA 10.2 ± NA 1.67 ± NA 0.17 ± NA 

Zero 6-42 6.93 ± NA 4.76 ± NA 81 ± NA 47.69 ± NA 85 ± NA 0.96 ± NA 1.9 ± NA 2.04 ± NA 0.05 ± NA 

Final 6-43 7.09 ± 0.23 4.21 ± 0.2 42 ± 8 28.26 ± 5.72 53 ± 12 26.58 ± 5.1 10.1 ± 1.6 2.22 ± 0.26 0.35 ± 0.06 

Zero 6-43 6.93 ± 0.02 4.08 ± 0.24 53 ± 2 31.28 ± 2.12 56 ± 2 1.46 ± 0 2.9 ± 0 3.12 ± 0.02 0.07 ± 0 

Final 6-44 7.17 ± NA 5.04 ± NA 32 ± NA 14.82 ± NA 25 ± NA 1.6 ± NA 0.43 ± NA 4.79 ± NA 0.69 ± NA 

Zero 6-44 6.88 ± NA 6.51 ± NA 31 ± NA 15.53 ± NA 38 ± NA 1.99 ± NA 2.6 ± NA 5.29 ± NA 0.48 ± NA 

Final 6-45 7.29 ± 0.13 4.45 ± 0.21 34 ± 4 16.43 ± 2.5 27 ± 3 2.53 ± 0.53 0.46 ± 0.15 5.06 ± 0.32 0.53 ± 0.15 

Zero 6-45 6.83 ± 0.1 3.49 ± 0.02 44 ± 0 27.13 ± 0 38 ± 0 0.4 ± 0 1.7 ± 0 2.64 ± 0 0.15 ± 0 

Units are in g L-1 except for conductivity (mS cm-1) and pH (unitless). n = 3).  
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Table A-3. The mean ± standard deviation of digester influent (day zero) and effluent (final day) characteristics for each lab-digester 

group (2). 

Day No. TAN Sulfate Tannin TP OP Fe Ni Cu TN  

Final 1-1 1.95 ± 0.08 3.4 ± 0.04 1.26 ± 0.03 0.94 ± 0.06 0.1 ± 0.03 0.01 ± 0.002 0.002 ± 0.001 0.002 ± 0 2.935 ± 0.734 

Zero 1-1 1.32 ± 0 5.19 ± 0 1.79 ± 0 0.21 ± 0 0.23 ± 0 0.008 ± 0 0.003 ± 0 0.006 ± 0 2.388 ± 0 

Final 1-2 1.74 ± 0.07 3.13 ± 0.25 1.11 ± 0.15 0.71 ± 0.15 0.06 ± 0.02 0.008 ± 0 0.001 ± 0 0.003 ± 0 2.038 ± 0.203 

Zero 1-2 1.37 ± 0 5.11 ± 0 1.79 ± 0 0.23 ± 0 0.22 ± 0 0.008 ± 0.001 0.003 ± 0 0.004 ± 0.001 2.393 ± 0 

Final 1-3 1.36 ± 0.02 1.11 ± 0.02 0.51 ± 0.05 0.17 ± 0.08 0.03 ± 0.01 0.003 ± 0.004 0.001 ± 0.001 0.001 ± 0.001 2.071 ± 0.374 

Zero 1-3 1.61 ± 0 1.38 ± 0 1.01 ± 0 0.05 ± 0 0.06 ± 0 0.003 ± 0 0.001 ± 0 0.001 ± 0 2.434 ± 0 

Final 1-4 1.4 ± 0.05 1.03 ± 0.16 0.49 ± 0.04 0.16 ± 0.06 0.02 ± 0 0.002 ± 0 0.005 ± 0.002 0.002 ± 0 1.803 ± 0.184 

Zero 1-4 1.64 ± 0 1.69 ± 0 1.09 ± 0 0.08 ± 0 0.07 ± 0 0.005 ± 0 0.001 ± 0 0.001 ± 0 2.434 ± 0 

Final 1-5 1.43 ± NA 2.19 ± NA 0.73 ± NA 0.53 ± NA 0.04 ± NA 0.008 ± NA 0 ± NA 0.004 ± NA 1.589 ± NA 

Zero 1-5 1.86 ± 0 4.42 ± 0 1.76 ± 0 0.35 ± 0 0.14 ± 0 0.016 ± 0 0.003 ± 0 0.002 ± 0 2.434 ± 0 

Final 2-7 2.63 ± 0.18 5.65 ± 0.26 2.12 ± 1.36 6.48 ± 0.93 3.87 ± 0.61 0.005 ± 0.001 0.006 ± 0 0.005 ± 0.001 3.708 ± 0.104 

Zero 2-7 1.81 ± 0 6.97 ± 0 2.43 ± 0 2.12 ± 0 2.12 ± 0 0.014 ± 0 0.004 ± 0 0.004 ± 0 1.55 ± 0 

Final 2-8 2.65 ± 0.17 5.03 ± 1.18 2.58 ± 0.53 6.67 ± 0.38 3.6 ± 0 0.013 ± 0.011 0.004 ± 0 0.003 ± 0.001 4.6 ± 1.106 

Zero 2-8 1.75 ± 0 6.99 ± 0 2.34 ± 0 2.06 ± 0 2.06 ± 0 0.012 ± 0 0.004 ± 0 0.004 ± 0 1.474 ± 0 

Final 2-10 3.05 ± 1.97 3.85 ± 2.63 3.1 ± 2.1 4.69 ± 2.94 1.2 ± 0.8 0.008 ± 0.013 0.002 ± 0.001 0.002 ± 0.001 2.248 ± 1.434 

Zero 2-10 2.61 ± 1.52 4.39 ± 2.55 2.88 ± 1.67 3.39 ± 1.97 1.32 ± 0.76 0.048 ± 0.028 0.003 ± 0.002 0.002 ± 0.001 1.886 ± 1.095 

Final 2-11 0.14 ± NA 0.11 ± NA 0.37 ± NA 2.03 ± NA 0.02 ± NA 0 ± NA 0 ± NA 0 ± NA 0.246 ± NA 

Zero 2-11 0.34 ± NA 0.57 ± NA 0.37 ± NA 0.44 ± NA 0.17 ± NA 0.006 ± NA 0 ± NA 0 ± NA 0.243 ± NA 

Final 2-12 0.2 ± 0.02 0.09 ± 0.01 0.06 ± 0.01 0.93 ± 0.07 0.4 ± 0 0.001 ± 0 0 ± 0 0 ± 0 0.342 ± 0.005 

Zero 2-12 0.28 ± 0 0.58 ± 0 0.28 ± 0 1.25 ± 0 0.11 ± 0 0.005 ± 0 0 ± 0 0 ± 0 0.168 ± 0 

Final 3-13 2.56 ± 0.24 2.51 ± 0.2 1.97 ± 0.18 6.92 ± 0.68 1.67 ± 0.31 0.025 ± 0.011 0.005 ± 0.002 0.003 ± 0.001 1.268 ± 0.082 

Zero 3-13 1.34 ± 0 6.39 ± 0 2.49 ± 0 4.96 ± 0 1.76 ± 0 0.039 ± 0 0.007 ± 0 0.007 ± 0 0.953 ± 0 

Final 3-14 1.84 ± 0.08 3.75 ± 0.94 2.34 ± 0.01 5.99 ± 0.17 2.6 ± 0 0.065 ± 0.015 0.006 ± 0 0.005 ± 0 1.093 ± 0.383 

Zero 3-14 1.35 ± 0 6.37 ± 0 2.43 ± 0 5.01 ± 0 1.75 ± 0 0.039 ± 0 0.008 ± 0 0.007 ± 0 0.952 ± 0 

Final 3-15 3.02 ± 0.42 4.11 ± 0.52 2.82 ± 0.93 3.18 ± 1.27 2.5 ± 0.14 0.019 ± 0.02 0.007 ± 0.003 0.007 ± 0.002 2.845 ± 0.238 

Zero 3-15 2.32 ± 0 7.48 ± 0 4.35 ± 0 6.24 ± 0 1.4 ± 0 0.043 ± 0 0.003 ± 0 0.002 ± 0 2.26 ± 0 

Final 3-16 1.28 ± 0.13 2.08 ± 1.31 1.62 ± 0.68 3.01 ± 0.77 1.27 ± 0.23 0.014 ± 0.011 0.003 ± 0.001 0.004 ± 0.001 1.527 ± 0.395 

Zero 3-16 1.16 ± 0 3.74 ± 0 2.18 ± 0 3.12 ± 0 0.7 ± 0 0.021 ± 0 0.001 ± 0 0.001 ± 0 1.13 ± 0 

Final 3-17 0.26 ± 0.12 0.15 ± 0 0.26 ± 0.22 1.21 ± 0.48 0.6 ± 0.28 0.006 ± NA 0.001 ± NA 0.001 ± NA 0.218 ± 0.061 

Zero 3-17 0.23 ± 0 0.75 ± 0 0.44 ± 0 0.62 ± 0 0.14 ± 0 0.004 ± 0 0 ± 0 0 ± 0 0.226 ± 0 

Final 3-18 0.34 ± 0.05 0.42 ± 0.3 0.24 ± 0.04 0.96 ± 0.17 1.4 ± 1.41 0.005 ± NA 0 ± NA 0.001 ± NA 0.276 ± 0.017 

Zero 3-18 0.25 ± 0 0.72 ± 0 0.43 ± 0 0.67 ± 0 0.14 ± 0 0.004 ± 0 0.001 ± 0 0.001 ± 0 0.228 ± 0 

Final 4-19 2.93 ± NA 6.85 ± NA 3.78 ± NA 6.61 ± NA 3.6 ± NA 0.025 ± NA 0.007 ± NA 0.003 ± NA 2.452 ± NA 

Zero 4-19 1.88 ± NA 6.94 ± NA 3.03 ± NA 5.98 ± NA 2.56 ± NA 0.035 ± NA 0.007 ± NA 0.006 ± NA 1.932 ± NA 

Final 4-20 1.2 ± 0.04 0.84 ± 0.45 0.92 ± 0.03 1.56 ± 0.23 1.93 ± 1.14 0.01 ± 0.001 0.003 ± 0 0.003 ± 0.001 1.147 ± 0.109 
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Table A-3 continued. 

Day No. TAN Sulfate Tannin TP OP Fe Ni Cu TN 

Zero 4-20 1.37 ± 0 3.14 ± 0 2.65 ± 0 3.02 ± 0 0.7 ± 0 0.011 ± 0 0.002 ± 0 0.001 ± 0 1.032 ± 0 

Final 4-21 1.37 ± 0.15 1.62 ± 1.15 1.13 ± 0.28 1.7 ± 0.12 2 ± 0.53 0.013 ± 0.005 0.004 ± 0.002 0.003 ± 0.003 1.187 ± 0.306 

Zero 4-21 1.26 ± 0 4.09 ± 0 1.99 ± 0 2.72 ± 0 1 ± 0 0.019 ± 0 0.001 ± 0 0.001 ± 0 1.342 ± 0 

Final 4-22 2.3 ± 0.71 3.63 ± 0.58 2.24 ± 0.25 2.97 ± 0.13 1.87 ± 0.61 0.031 ± 0.016 0.009 ± 0.004 0.011 ± 0.006 2.024 ± 0.44 

Zero 4-22 3.02 ± 0 7.04 ± 0 5.23 ± 0 7.55 ± 0 1.47 ± 0 0.029 ± 0 0.003 ± 0 0.005 ± 0 2.21 ± 0 

Final 4-23 0.33 ± 0.01 0.6 ± 0.37 0.36 ± 0 0.74 ± 0.03 1 ± 0 0.013 ± 0.003 0.002 ± 0.001 0.003 ± 0.001 0.725 ± 0.276 

Zero 4-23 0.58 ± 0 1.38 ± 0 1.05 ± 0 1.22 ± 0 0.32 ± 0 0.006 ± 0 0.001 ± 0 0.002 ± 0 0.425 ± 0 

Final 5-24 2.24 ± 0.45 4.93 ± 0.72 2.37 ± 0.47 6.71 ± 1.2 6.27 ± 1.22 0.069 ± 0.07 0.009 ± 0.001 0.008 ± 0.001 3.701 ± 0.347 

Zero 5-24 2.16 ± 0 10.48 ± 0 3.12 ± 0 7.32 ± 0 3.09 ± 0 0.118 ± 0 0.011 ± 0 0.006 ± 0 2.64 ± 0 

Final 5-25 1.32 ± 0.2 2.38 ± 0.25 1.17 ± 0.26 1.51 ± 0.28 1.27 ± 0.12 0.015 ± 0.002 0.005 ± 0.002 0.005 ± 0.002 2.073 ± 1.218 

Zero 5-25 1.45 ± 0 4.19 ± 0 1.52 ± 0 2.4 ± 0 0.8 ± 0 0.017 ± 0 0.005 ± 0 0.005 ± 0 1.279 ± 0 

Final 5-26 1.37 ± 0.5 3.14 ± 0.81 1.65 ± 0.64 3.13 ± 1.45 1.13 ± 0.12 0.015 ± 0.006 0.011 ± 0.012 0.015 ± 0.009 1.272 ± 0.359 

Zero 5-26 1.46 ± 0 4.71 ± 0 1.47 ± 0 2.64 ± 0 0.77 ± 0 0.016 ± 0 0.005 ± 0 0.005 ± 0 1.308 ± 0 

Final 5-27 3.22 ± 0.37 4.37 ± 0.56 3.21 ± 1.34 4.03 ± 1.8 2.07 ± 0.23 0.024 ± 0.005 0.005 ± 0.001 0.005 ± 0 3.264 ± 0.917 

Zero 5-27 2.79 ± 0 9.23 ± 0 3.07 ± 0 4.29 ± 0 1.4 ± 0 0.033 ± 0 0.009 ± 0 0.01 ± 0 2.084 ± 0 

Final 5-28 0.52 ± 0.06 0.22 ± 0.03 0.36 ± 0.11 0.7 ± 0.1 0.44 ± 0.06 0.009 ± 0.001 0.001 ± 0 0.001 ± 0 0.512 ± 0.001 

Zero 5-28 1.6 ± 0 1.6 ± 0 0.61 ± 0 0.86 ± 0 0.32 ± 0 0.008 ± 0 0.002 ± 0 0.002 ± 0 0.476 ± 0 

Final 6-29 0.73 ± NA 0.65 ± NA 1.18 ± NA 1.53 ± NA 0 ± NA 0.007 ± NA 0.001 ± NA 0 ± NA 0.683 ± NA 

Zero 6-29 0.76 ± NA 3.96 ± NA 2.55 ± NA 2.1 ± NA 0 ± NA 0.039 ± NA 0.003 ± NA 0.001 ± NA 0.117 ± NA 

Final 6-30 0.82 ± NA 0.67 ± NA 6.11 ± NA 2.55 ± NA 0 ± NA 0.01 ± NA 0.002 ± NA 0.003 ± NA 0.45 ± NA 

Zero 6-30 7.59 ± NA 3.96 ± NA 2.55 ± NA 2.1 ± NA 0 ± NA 0.039 ± NA 0.003 ± NA 0.001 ± NA 0.092 ± NA 

Final 6-31 0.73 ± 0.02 1.4 ± 0.51 2.41 ± 0.4 3.11 ± 0.73 0 ± 0 0.008 ± 0.001 0.001 ± 0.001 0.001 ± 0 0.501 ± 0.094 

Zero 6-31 1.64 ± 1.7 3.41 ± 0 2.19 ± 0 1.8 ± 0 0 ± 0 0.033 ± 0 0.002 ± 0 0.001 ± 0 0.1 ± 0 

Final 6-32 0.56 ± NA 0.81 ± NA 1.45 ± NA 0.71 ± NA 0 ± NA 0.017 ± NA 0.002 ± NA 0 ± NA 0.604 ± NA 

Zero 6-32 0.37 ± NA 2.99 ± NA 1.92 ± NA 1.58 ± NA 0 ± NA 0.029 ± NA 0.002 ± NA 0.001 ± NA 0.088 ± NA 

Zero 6-33 0.51 ± NA 2.66 ± NA 1.71 ± NA 1.41 ± NA 0 ± NA 0.026 ± NA 0.002 ± NA 0.001 ± NA 0.078 ± NA 

Final 6-34 0.77 ± NA 0.65 ± NA 2.42 ± NA 2.4 ± NA 0 ± NA 0.005 ± NA 0.001 ± NA 0.001 ± NA 0.803 ± NA 

Zero 6-34 0.67 ± NA 3.49 ± NA 2.24 ± NA 1.85 ± NA 0 ± NA 0.034 ± NA 0.003 ± NA 0.001 ± NA 0.103 ± NA 

Final 6-35 1.44 ± 1.48 1.09 ± 0.24 2.19 ± 0.99 1.89 ± 1.23 0 ± 0 0.035 ± 0.006 0.002 ± 0 0.001 ± 0 0.474 ± 0.074 

Zero 6-35 0.54 ± 0 2.82 ± 0 1.81 ± 0 1.49 ± 0 0 ± 0 0.028 ± 0 0.002 ± 0 0.001 ± 0 0.083 ± 0 

Final 6-36 0.71 ± NA 0.55 ± NA 1.37 ± NA 3.05 ± NA 0 ± NA 0.009 ± NA 0.001 ± NA 0.001 ± NA 0.759 ± NA 

Zero 6-36 0.66 ± NA 3.44 ± NA 2.21 ± NA 1.82 ± NA 0 ± NA 0.034 ± NA 0.002 ± NA 0.001 ± NA 0.101 ± NA 

Final 6-37 2.33 ± 1.66 0.66 ± 0.17 1.2 ± 0.48 2.5 ± 1.41 0 ± 0 0.011 ± 0.004 0.002 ± 0.001 0.002 ± 0 0.643 ± 0.065 

Zero 6-37 0.39 ± 0.34 3.03 ± 0 1.95 ± 0 1.6 ± 0 0 ± 0 0.03 ± 0 0.002 ± 0 0.001 ± 0 0.089 ± 0 

Final 6-38 0.56 ± NA 0.86 ± NA 2.16 ± NA 0.47 ± NA 0 ± NA 0.012 ± NA 0.001 ± NA 0.001 ± NA 0.611 ± NA 

Zero 6-38 0.52 ± NA 2.71 ± NA 1.74 ± NA 1.43 ± NA 0 ± NA 0.026 ± NA 0.002 ± NA 0.001 ± NA 0.08 ± NA 
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Table A-3 continued. 

Day No. TAN Sulfate Tannin TP OP Fe Ni Cu TN 

Final 6-39 0.59 ± NA 0.67 ± NA 1.84 ± NA 2.05 ± NA 0 ± NA 0.008 ± NA 0.001 ± NA 0.001 ± NA 0.385 ± NA 

Zero 6-39 0.64 ± NA 3.37 ± NA 2.16 ± NA 1.78 ± NA 0 ± NA 0.033 ± NA 0.002 ± NA 0.001 ± NA 0.099 ± NA 

Final 6-40 0.59 ± NA 2.22 ± NA 2.58 ± NA 4.1 ± NA 0 ± NA 0.017 ± NA 0.001 ± NA 0 ± NA 0.52 ± NA 

Zero 6-40 0.56 ± NA 2.93 ± NA 1.88 ± NA 1.55 ± NA 0 ± NA 0.029 ± NA 0.002 ± NA 0.001 ± NA 0.086 ± NA 

Final 6-41 0.35 ± NA 0.59 ± NA 2.02 ± NA 1.93 ± NA 100 ± NA 0.15 ± NA 0.005 ± NA 0.002 ± NA 0.298 ± NA 

Zero 6-41 0.5 ± NA 2.59 ± NA 1.66 ± NA 1.37 ± NA 0 ± NA 0.025 ± NA 0.002 ± NA 0.001 ± NA 0.077 ± NA 

Final 6-42 0.25 ± NA 0.54 ± NA 1.12 ± NA 1.99 ± NA 180 ± NA 0.15 ± NA 0.007 ± NA 0.003 ± NA 0.212 ± NA 

Zero 6-42 0.37 ± NA 1.92 ± NA 1.23 ± NA 1.01 ± NA 0 ± NA 0.019 ± NA 0.001 ± NA 0 ± NA 0.057 ± NA 

Final 6-43 1.84 ± 1.24 1.25 ± 0.75 2.86 ± 1.23 2.75 ± 0.6 100 ± 40 0.273 ± 0.043 0.014 ± 0.006 0.006 ± 0.002 0.358 ± 0.059 

Zero 6-43 0.56 ± 0 2.93 ± 0 1.88 ± 0 1.55 ± 0 0 ± 0 0.029 ± 0 0.7 ± 1.209 0.2 ± 0.345 0.087 ± 0.001 

Final 6-44 0.94 ± NA 0.92 ± NA 1.29 ± NA 2.57 ± NA 0 ± NA 0.009 ± NA 0.002 ± NA 0.002 ± NA 0.611 ± NA 

Zero 6-44 0.99 ± NA 3.51 ± NA 3.06 ± NA 2.2 ± NA 0 ± NA 0.021 ± NA 0.002 ± NA 0.001 ± NA 0.157 ± NA 

Final 6-45 3.26 ± 0.14 1.25 ± 0.79 1.28 ± 1.62 3.36 ± 0 0 ± 0 0.009 ± 0.002 0.002 ± 0 0.001 ± 0 0.544 ± 0.173 

Zero 6-45 0.38 ± 0 4.6 ± 0 1.83 ± 0 2.4 ± 0 0 ± 0 0.064 ± 0 0.004 ± 0 0.001 ± 0 0.148 ± 0 

Units are in g L-1. n = 3. 
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Table A-4. The mean ± standard deviation of digester influent (day zero) and effluent (final day) characteristics for each lab-digester 

group (3). 

Day No. InorgN SCOD : TCOD OP : TP TCOD : TN :  TP TVFA : TALK TAN : TKN TCOD:  Sulfate TCOD : TKN 

Final 1-1 0.035 ± 0.001 0.45 ± 0.32 0.11 ± 0.02 10.6 ± 2.42 0.31 ± 0.19 0.7 ± 0.2 8.32 ± 0.63 9.97 ± 1.66 

Zero 1-1 0.12 ± 0 0.6 ± 0 1.07 ± 0 107.87 ± 0 0.7 ± 0 0.58 ± 0 10.55 ± 0 24.13 ± 0 

Final 1-2 0.032 ± 0.004 0.28 ± 0.04 0.09 ± 0.04 16.99 ± 2.34 0.25 ± 0.03 0.88 ± 0.13 7.89 ± 2.24 12.51 ± 4.53 

Zero 1-2 0.12 ± 0 0.62 ± 0 0.97 ± 0 98.07 ± 0 0.68 ± 0 0.6 ± 0 10.37 ± 0 23.31 ± 0 

Final 1-3 0.035 ± 0.005 1.89 ± 1.26 0.19 ± 0.13 18.25 ± 8.37 0.31 ± 0.07 0.68 ± 0.12 4.94 ± 0.25 2.76 ± 0.58 

Zero 1-3 0.116 ± 0 1.94 ± 0 1.22 ± 0 212.89 ± 0 0.53 ± 0 0.96 ± 0 18.34 ± 0 15.1 ± 0 

Final 1-4 0.028 ± 0.004 1.09 ± 0.31 0.14 ± 0.07 27.23 ± 13.88 0.3 ± 0.04 0.79 ± 0.07 6.61 ± 0.63 3.84 ± 0.58 

Zero 1-4 0.116 ± 0 1.81 ± 0 0.86 ± 0 138.76 ± 0 0.53 ± 0 0.94 ± 0 15.74 ± 0 15.23 ± 0 

Final 1-5 0.024 ± NA 0.33 ± NA 0.08 ± NA 18.53 ± NA 0.17 ± NA 0.91 ± NA 7.18 ± NA 10.02 ± NA 

Zero 1-5 0.116 ± 0 0.99 ± 0 0.4 ± 0 44.27 ± 0 0.53 ± 0 0.8 ± 0 8.43 ± 0 16.08 ± 0 

Final 2-7 0.056 ± 0.025 0.24 ± 0.09 0.61 ± 0.16 8.08 ± 3 2.53 ± 0.92 0.72 ± 0.04 34.3 ± 12.04 52.41 ± 16.64 

Zero 2-7 0.053 ± 0 0.25 ± 0 1 ± 0 45.52 ± 0 1.41 ± 0 1.18 ± 0 21.45 ± 0 97.77 ± 0 

Final 2-8 0.066 ± 0.076 0.26 ± 0.01 0.54 ± 0.03 5.16 ± 0.75 1.89 ± 0.3 0.6 ± 0.18 31.84 ± 8.7 34.96 ± 6.55 

Zero 2-8 0.055 ± 0 0.24 ± 0 1 ± 0 50.21 ± 0 1.53 ± 0 1.21 ± 0 21.81 ± 0 105.13 ± 0 

Final 2-10 0.12 ± 0.007 0.78 ± 1.19 0.21 ± 0.13 6.54 ± 2.93 0.62 ± 0.27 1.27 ± 0.57 16.3 ± 6.84 26.66 ± 18.01 

Zero 2-10 0.04 ± 0 0.24 ± 0 0.39 ± 0 20.65 ± 28.59 0.51 ± 0 1.39 ± 0 11.95 ± 0 28.04 ± 0 

Final 2-11 0.025 ± 0.016 1.9 ± NA 0.01 ± NA 3.15 ± NA 0.7 ± NA 0.61 ± NA 13.92 ± NA 6.78 ± NA 

Zero 2-11 0.004 ± 0 0.24 ± NA 0.39 ± NA 63.54 ± NA 0.51 ± NA 1.39 ± NA 11.95 ± NA 28.04 ± NA 

Final 2-12 0.043 ± 0.004 2.23 ± 0.2 0.43 ± 0.03 3.79 ± 0.91 0.28 ± 0.04 0.68 ± 0.07 13.21 ± 0.54 4.02 ± 0.73 

Zero 2-12 0.006 ± 0 0.13 ± 0 0.09 ± 0 46.01 ± 0 0.81 ± 0 1.71 ± 0 16.6 ± 0 59.71 ± 0 

Final 3-13 0.042 ± 0.029 0.22 ± 0.05 0.24 ± 0.07 40.39 ± 7.93 3.47 ± 1.36 2.09 ± 0.09 140.85 ± 29.02 292.4 ± 78.33 

Zero 3-13 0.119 ± 0 0.31 ± 0 0.35 ± 0 103.55 ± 0 4.84 ± 0 1.47 ± 0 76.6 ± 0 535.08 ± 0 

Final 3-14 0.044 ± 0.016 0.21 ± 0.01 0.43 ± 0.01 54.59 ± 15.17 5 ± 1.11 1.88 ± 0.73 92.65 ± 13.83 339.24 ± 84.63 

Zero 3-14 0.099 ± 0 0.3 ± 0 0.35 ± 0 104.46 ± 0 4.5 ± 0 1.47 ± 0 78.25 ± 0 542.84 ± 0 

Final 3-15 0.095 ± 0.013 0.81 ± 0.08 0.86 ± 0.39 6.42 ± 1.11 0.53 ± 0.03 1.11 ± 0.24 13.95 ± 5.08 21.84 ± 12.02 

Zero 3-15 0.6 ± 0 0.26 ± 0 0.22 ± 0 4.99 ± 0 2.94 ± 0 1.04 ± 0 9.39 ± 0 31.48 ± 0 

Final 3-16 0.063 ± 0.032 0.42 ± 0.29 0.43 ± 0.04 6.64 ± 4.37 1.04 ± 0.55 0.92 ± 0.28 15.29 ± 5.05 18.47 ± 6.99 

Zero 3-16 0.3 ± 0 0.26 ± 0 0.22 ± 0 9.97 ± 0 2.94 ± 0 1.04 ± 0 9.39 ± 0 31.48 ± 0 

Final 3-17 0.034 ± 0.01 0.47 ± 0.16 0.49 ± 0.04 12.74 ± 5.83 0.64 ± 0.22 1.36 ± 0.25 19.55 ± 3.66 16.56 ± 1.07 

Zero 3-17 0.06 ± 0 0.26 ± 0 0.22 ± 0 49.85 ± 0 2.94 ± 0 1.04 ± 0 9.39 ± 0 31.48 ± 0 

Final 3-18 0.036 ± 0.027 0.26 ± 0.12 1.35 ± 1.23 19.76 ± 5.43 0.68 ± 0.01 1.43 ± 0.03 14.32 ± 5.26 23.18 ± 12.75 

Zero 3-18 0.002 ± 0 0.6 ± 0 0.21 ± 0 20.59 ± 0 1.37 ± 0 1.12 ± 0 4.37 ± 0 13.96 ± 0 

Final 4-19 0.073 ± NA 0.31 ± NA 0.54 ± NA 12.27 ± NA 3.16 ± NA 1.23 ± NA 29.03 ± NA 83.54 ± NA 

Zero 4-19 0.154 ± NA 0.26 ± NA 0.43 ± NA 19.65 ± NA 2.71 ± NA 1.03 ± NA 32.69 ± NA 124.26 ± NA 
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Table A-4 continued. 

Day No. InorgN SCOD : TCOD OP : TP TCOD : TN :  TP TVFA : TALK TAN : TKN TCOD:  Sulfate TCOD : TKN 

Final 4-20 0.028 ± 0.02 0.66 ± 0.17 1.19 ± 0.54 5.54 ± 0.14 0.86 ± 0.32 1.11 ± 0.12 13.11 ± 3.38 9.19 ± 1.72 

Zero 4-20 0.051 ± 0 0.14 ± 0 0.23 ± 0 21.77 ± 0 0.55 ± 0 1.37 ± 0 21.59 ± 0 68.09 ± 0 

Final 4-21 0.103 ± 0.053 0.6 ± 0.21 1.19 ± 0.36 7.59 ± 1.2 0.21 ± 0.1 1.26 ± 0.17 12.18 ± 6.2 13.88 ± 2.83 

Zero 4-21 0.062 ± 0 0.23 ± 0 0.37 ± 0 11.17 ± 0 0.74 ± 0 0.96 ± 0 9.95 ± 0 30.96 ± 0 

Final 4-22 0.148 ± 0.048 0.47 ± 0.05 0.63 ± 0.21 4.92 ± 1.03 0.45 ± 0.23 1.29 ± 0.54 8.24 ± 2.72 15.79 ± 3.76 

Zero 4-22 0.102 ± 0 0.18 ± 0 0.19 ± 0 5.94 ± 0 0.7 ± 0 1.42 ± 0 14.1 ± 0 46.68 ± 0 

Final 4-23 0.031 ± 0.01 0.89 ± 0.32 1.36 ± 0.06 11.64 ± 8.42 1.68 ± 1.71 0.51 ± 0.2 9.82 ± 2.9 9 ± 6.44 

Zero 4-23 0.022 ± 0 0.11 ± 0 0.26 ± 0 61.47 ± 0 0.62 ± 0 1.43 ± 0 23.02 ± 0 78.72 ± 0 

Final 5-24 0.02 ± 0.024 0.56 ± 0.15 0.97 ± 0.35 6.03 ± 0.99 6.5 ± 2.84 0.61 ± 0.16 30.42 ± 6.76 39.95 ± 7.02 

Zero 5-24 0.067 ± 0 0.33 ± 0 0.42 ± 0 9.32 ± 0 4.3 ± 0 0.87 ± 0 17.19 ± 0 72.37 ± 0 

Final 5-25 0.044 ± 0.04 0.29 ± 0.08 0.86 ± 0.16 12.46 ± 6.51 0.6 ± 0.07 0.73 ± 0.26 13.3 ± 1.99 17.87 ± 7.91 

Zero 5-25 0.031 ± 0 0.22 ± 0 0.33 ± 0 11.44 ± 0 0.63 ± 0 1.31 ± 0 8.37 ± 0 31.73 ± 0 

Final 5-26 0.021 ± 0.019 0.26 ± 0.05 0.42 ± 0.19 9.13 ± 7.32 0.56 ± 0.1 1.04 ± 0.14 8.69 ± 0.7 22.86 ± 11.29 

Zero 5-26 0.032 ± 0 0.13 ± 0 0.29 ± 0 10.37 ± 0 0.44 ± 0 1.1 ± 0 7.61 ± 0 27 ± 0 

Final 5-27 0.098 ± 0.031 0.38 ± 0.06 0.62 ± 0.37 3.9 ± 3.03 0.52 ± 0.16 1 ± 0.25 9.03 ± 3.09 12.54 ± 5.8 

Zero 5-27 0.065 ± 0 0.17 ± 0 0.33 ± 0 5.86 ± 0 0.55 ± 0 1.38 ± 0 5.67 ± 0 25.95 ± 0 

Final 5-28 0.018 ± 0.024 0.75 ± 0.09 0.63 ± 0 12.29 ± 1.04 0.3 ± 0.02 0.97 ± 0.06 20.75 ± 7.46 8.32 ± 1.45 

Zero 5-28 0.017 ± 0 0.17 ± 0 0.37 ± 0 29.69 ± 0 0.49 ± 0 3.49 ± 0 7.62 ± 0 26.58 ± 0 

Final 6-29 0.011 ± NA 0.06 ± NA 0 ± NA 33.07 ± NA 0.11 ± NA 1.09 ± NA 52.75 ± NA 51.42 ± NA 

Zero 6-29 0.025 ± NA 0.05 ± NA 0 ± NA 157.3 ± NA 0.93 ± NA 8.25 ± NA 9.69 ± NA 417.29 ± NA 

Final 6-30 0.003 ± NA 0.06 ± NA 0 ± NA 37.07 ± NA 0.06 ± NA 1.84 ± NA 63.25 ± NA 95.13 ± NA 

Zero 6-30 0.025 ± NA 0.05 ± NA 0 ± NA 198.16 ± NA 0.93 ± NA 82.47 ± NA 9.64 ± NA 415.22 ± NA 

Final 6-31 0.013 ± 0.01 0.06 ± 0.01 0 ± 0 22.3 ± 7.49 0.08 ± 0.04 1.52 ± 0.25 25.97 ± 12.16 67.34 ± 8.62 

Zero 6-31 0.021 ± 0 0.04 ± 0 0 ± 0 249.38 ± 0 0.93 ± 0 20.67 ± 21.52 13.21 ± 0 568.8 ± 0 

Final 6-32 0.023 ± NA 0.19 ± NA 0 ± NA 32.97 ± NA 0.14 ± NA 0.96 ± NA 17.34 ± NA 24.2 ± NA 

Zero 6-32 0.019 ± NA 0.03 ± NA 0 ± NA 374.45 ± NA 0.92 ± NA 5.3 ± NA 17.4 ± NA 748.91 ± NA 

Zero 6-33 0.017 ± NA 0.02 ± NA 0 ± NA 536.98 ± NA 0.92 ± NA 8.25 ± NA 22.22 ± NA 956.25 ± NA 

Final 6-34 0.007 ± NA 0.15 ± NA 0 ± NA 8.49 ± NA 0.11 ± NA 0.97 ± NA 25.05 ± NA 20.51 ± NA 

Zero 6-34 0.022 ± NA 0.04 ± NA 0 ± NA 231.45 ± NA 0.93 ± NA 8.24 ± NA 12.59 ± NA 541.44 ± NA 

Final 6-35 0.014 ± 0.011 0.17 ± 0.03 0 ± 0 57.83 ± 33.89 0.82 ± 0.04 2.86 ± 2.53 37.38 ± 11.45 86.66 ± 20.11 

Zero 6-35 0.018 ± 0 0.03 ± 0 0 ± 0 449.25 ± 0 0.92 ± 0 8.22 ± 0 19.81 ± 0 850.19 ± 0 

Final 6-36 0.016 ± NA 0.1 ± NA 0 ± NA 10.51 ± NA 0.09 ± NA 0.95 ± NA 44.54 ± NA 32.62 ± NA 

Zero 6-36 0.021 ± NA 0.04 ± NA 0 ± NA 243.6 ± NA 0.93 ± NA 8.25 ± NA 13 ± NA 559.91 ± NA 

Final 6-37 0.009 ± 0.008 0.09 ± 0.02 0 ± 0 18.32 ± 10.82 0.15 ± 0.06 3.78 ± 2.74 37.14 ± 14.24 36.27 ± 3.12 
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Table A-4 continued. 

Day No. InorgN SCOD : TCOD OP : TP TCOD : TN :  TP TVFA : TALK TAN : TKN TCOD:  Sulfate TCOD : TKN 

Zero 6-37 0.019 ± 0 0.03 ± 0 0 ± 0 359.31 ± 0 0.93 ± 0 5.5 ± 4.76 16.92 ± 0 728.41 ± 0 

Final 6-38 0.016 ± NA 0.13 ± NA 0 ± NA 72.43 ± NA 0.15 ± NA 0.94 ± NA 23.97 ± NA 34.67 ± NA 

Zero 6-38 0.017 ± NA 0.02 ± NA 0 ± NA 508.08 ± NA 0.93 ± NA 8.24 ± NA 21.41 ± NA 921.29 ± NA 

Final 6-39 0.012 ± NA 0.06 ± NA 0 ± NA 45.05 ± NA 0.1 ± NA 1.57 ± NA 52.93 ± NA 95.4 ± NA 

Zero 6-39 0.021 ± NA 0.04 ± NA 0 ± NA 258.14 ± NA 0.93 ± NA 8.23 ± NA 13.54 ± NA 582.19 ± NA 

Final 6-40 NA ± NA 0.05 ± NA 0 ± NA 22.61 ± NA 0.18 ± NA 1.12 ± NA 21.74 ± NA 92.54 ± NA 

Zero 6-40 0.018 ± NA 0.03 ± NA 0 ± NA 397.48 ± NA 0.93 ± NA 8.22 ± NA 18.17 ± NA 779.7 ± NA 

Final 6-41 0.005 ± NA 0.44 ± NA 51.69 ± NA 61.21 ± NA 4.16 ± NA 1.18 ± NA 59.71 ± NA 120.3 ± NA 

Zero 6-41 0.016 ± NA 0.02 ± NA 0 ± NA 580.89 ± NA 0.01 ± NA 8.21 ± NA 23.54 ± NA 1008.43 ± NA 

Final 6-42 0.04 ± NA 0.68 ± NA 90.26 ± NA 88.83 ± NA 6.12 ± NA 1.46 ± NA 69.83 ± NA 218.43 ± NA 

Zero 6-42 0.012 ± NA 0.01 ± NA 0 ± NA 1463.1 ± NA 0.93 ± NA 8.17 ± NA 44.38 ± NA 1890.47 ± NA 

Final 6-43 0.013 ± 0.018 0.51 ± 0.1 38 ± 16.54 56.31 ± 18.47 4.63 ± 1.17 5.41 ± 4.13 53.16 ± 30.88 151.34 ± 8.76 

Zero 6-43 0.018 ± 0 0.03 ± 0 0 ± 0 412.83 ± 13.3 0.92 ± 0.01 8.17 ± 0.04 19.09 ± 0.8 813.2 ± 29.02 

Final 6-44 0.016 ± NA 0.06 ± NA 0 ± NA 16.13 ± NA 0.09 ± NA 1.35 ± NA 27.5 ± NA 36.54 ± NA 

Zero 6-44 0.029 ± NA 0.05 ± NA 0 ± NA 110.46 ± NA 0.49 ± NA 2.06 ± NA 10.9 ± NA 79.36 ± NA 

Final 6-45 0 ± NA 0.09 ± 0.01 0 ± 0 15.82 ± 6.39 0.09 ± 0.04 6.48 ± 2.09 27.71 ± 19.39 54.17 ± 19.99 

Zero 6-45 0.002 ± 0 0.01 ± 0 0 ± 0 107.3 ± 0 0.65 ± 0 2.59 ± 0 8.28 ± 0 258.45 ± 0 

Unitless except for InorgN (g L-1). n = 3. 
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Table A-5. The mean ± standard deviation of digester influent (day zero) and effluent (final day) 

characteristics for each lab-digester group (4). 

Day No. FS : TS VS : TS Fe(II) : S Fe(II) : TP 

Final 1-1 0.39 ± 0.06 0.61 ± 0.06 0.005 ± 0.001 0.018 ± 0.005 

Zero 1-1 0.22 ± 0 0.78 ± 0 0.003 ± 0 0.063 ± 0 

Final 1-2 0.43 ± 0.02 0.57 ± 0.02 0.004 ± 0 0.019 ± 0.003 

Zero 1-2 0.23 ± 0 0.77 ± 0 0.003 ± 0 0.059 ± 0.006 

Final 1-3 0.59 ± 0.02 0.41 ± 0.02 0.004 ± 0.006 0.039 ± 0.06 

Zero 1-3 0.5 ± 0 0.5 ± 0 0.004 ± 0 0.117 ± 0 

Final 1-4 0.58 ± 0.01 0.42 ± 0.01 0.003 ± 0 0.025 ± 0.016 

Zero 1-4 0.47 ± 0 0.53 ± 0 0.005 ± 0 0.1 ± 0 

Final 1-5 0.46 ± NA 0.54 ± NA 0.007 ± NA 0.027 ± NA 

Zero 1-5 0.34 ± 0 0.66 ± 0 0.006 ± 0 0.079 ± 0 

Final 2-7 0.21 ± 0.01 0.79 ± 0.01 0.001 ± 0 0.001 ± 0.001 

Zero 2-7 0.18 ± 0 0.82 ± 0 0.003 ± 0 0.011 ± 0 

Final 2-8 0.2 ± 0 0.8 ± 0 0.005 ± 0.005 0.003 ± 0.003 

Zero 2-8 0.19 ± 0 0.81 ± 0 0.003 ± 0 0.01 ± 0 

Final 2-10 0.34 ± 0.03 0.66 ± 0.03 0.003 ± 0.005 0.002 ± 0.003 

Zero 2-10 0.29 ± 0 0.71 ± 0 0.019 ± 0 0.024 ± 0 

Final 2-11 0.45 ± NA 0.55 ± NA 0 ± NA 0 ± NA 

Zero 2-11 0.29 ± NA 0.71 ± NA 0.019 ± NA 0.024 ± NA 

Final 2-12 0.48 ± 0 0.52 ± 0 0.023 ± 0.002 0.002 ± 0 

Zero 2-12 0.37 ± 0 0.63 ± 0 0.014 ± 0 0.007 ± 0 

Final 3-13 0.13 ± 0.08 0.87 ± 0.08 0.017 ± 0.006 0.006 ± 0.002 

Zero 3-13 0.03 ± 0 0.97 ± 0 0.01 ± 0 0.013 ± 0 

Final 3-14 0.16 ± 0 0.84 ± 0 0.03 ± 0.001 0.018 ± 0.004 

Zero 3-14 0.03 ± 0 0.97 ± 0 0.011 ± 0 0.013 ± 0 

Final 3-15 0.48 ± 0.13 0.52 ± 0.13 0.009 ± 0.01 0.013 ± 0.016 

Zero 3-15 0.29 ± 0 0.71 ± 0 0.01 ± 0 0.012 ± 0 

Final 3-16 0.41 ± 0.09 0.59 ± 0.09 0.01 ± 0.006 0.009 ± 0.009 

Zero 3-16 0.3 ± 0 0.7 ± 0 0.01 ± 0 0.012 ± 0 

Final 3-17 0.4 ± 0.01 0.6 ± 0.01 0.061 ± NA 0.299 ± 0.414 

Zero 3-17 0.29 ± 0 0.71 ± 0 0.01 ± 0 1.082 ± 1.514 

Final 3-18 0.41 ± 0.03 0.59 ± 0.03 0.015 ± NA 0.358 ± 0.494 

Zero 3-18 0.3 ± 0 0.7 ± 0 0.01 ± 0 0.617 ± 0.858 

Final 4-19 0.23 ± NA 0.77 ± NA 0.006 ± NA 0.007 ± NA 

Zero 4-19 0.16 ± NA 0.84 ± NA 0.009 ± NA 0.01 ± NA 

Final 4-20 0.41 ± 0.1 0.59 ± 0.1 0.025 ± 0.014 0.011 ± 0.003 

Zero 4-20 0.26 ± 0 0.74 ± 0 0.006 ± 0 0.006 ± 0 

Final 4-21 0.43 ± 0.09 0.57 ± 0.09 0.018 ± 0.013 0.012 ± 0.004 

Zero 4-21 0.26 ± 0 0.74 ± 0 0.008 ± 0 0.012 ± 0 

Final 4-22 0.48 ± 0.03 0.52 ± 0.03 0.015 ± 0.006 0.018 ± 0.01 

Zero 4-22 0.3 ± 0 0.7 ± 0 0.007 ± 0 0.006 ± 0 

Final 4-23 0.49 ± 0.07 0.51 ± 0.07 0.042 ± 0.017 0.03 ± 0.009 

Zero 4-23 0.06 ± 0 0.94 ± 0 0.007 ± 0 0.008 ± 0 

Final 5-24 0.19 ± 0.01 0.81 ± 0.01 0.02 ± 0.024 0.02 ± 0.022 

Zero 5-24 0.13 ± 0 0.87 ± 0 0.019 ± 0 0.027 ± 0 

Final 5-25 0.37 ± 0.04 0.63 ± 0.04 0.044 ± 0.04 0.018 ± 0.003 

Zero 5-25 0.24 ± 0 0.76 ± 0 0.007 ± 0 0.012 ± 0 

Final 5-26 0.32 ± 0.01 0.68 ± 0.01 0.021 ± 0.019 0.009 ± 0.005 

Zero 5-26 0.27 ± 0 0.73 ± 0 0.006 ± 0 0.01 ± 0 
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Table A-5 continued. 

Day No. FS : TS VS : TS Fe(II) : S Fe(II) : TP 

Final 5-27 0.36 ± 0.02 0.64 ± 0.02 0.098 ± 0.031 0.012 ± 0.006 

Zero 5-27 0.28 ± 0 0.72 ± 0 0.006 ± 0 0.013 ± 0 

Final 5-28 0.44 ± 0.09 0.56 ± 0.09 0.018 ± 0.024 0.022 ± 0.001 

Zero 5-28 0.09 ± 0 0.91 ± 0 0.008 ± 0 0.015 ± 0 

Final 6-29 0.52 ± NA 0.48 ± NA 0 ± NA 0.008 ± NA 

Zero 6-29 0.44 ± NA 0.56 ± NA 0 ± NA 0.031 ± NA 

Final 6-30 0.53 ± NA 0.47 ± NA 0 ± NA 0.007 ± NA 

Zero 6-30 0.44 ± NA 0.56 ± NA 0 ± NA 0.031 ± NA 

Final 6-31 0.52 ± 0 0.48 ± 0 0 ± 0 0.005 ± 0.001 

Zero 6-31 0.44 ± 0 0.56 ± 0 0 ± 0 0.031 ± 0 

Final 6-32 0.52 ± NA 0.48 ± NA 0 ± NA 0.041 ± NA 

Zero 6-32 0.43 ± NA 0.57 ± NA 0 ± NA 0.031 ± NA 

Zero 6-33 0.43 ± NA 0.57 ± NA 0 ± NA 0.031 ± NA 

Final 6-34 0.52 ± NA 0.48 ± NA 0 ± NA 0.004 ± NA 

Zero 6-34 0.43 ± NA 0.57 ± NA 0 ± NA 0.031 ± NA 

Final 6-35 0.46 ± 0 0.54 ± 0 0 ± 0 0.044 ± 0.033 

Zero 6-35 0.42 ± 0 0.58 ± 0 0 ± 0 0.031 ± 0 

Final 6-36 0.6 ± NA 0.4 ± NA 0 ± NA 0.005 ± NA 

Zero 6-36 0.44 ± NA 0.56 ± NA 0 ± NA 0.031 ± NA 

Final 6-37 0.51 ± 0.01 0.49 ± 0.01 0 ± 0 0.011 ± 0.01 

Zero 6-37 0.43 ± 0 0.57 ± 0 0 ± 0 0.031 ± 0 

Final 6-38 0.52 ± NA 0.48 ± NA 0 ± NA 0.043 ± NA 

Zero 6-38 0.43 ± NA 0.57 ± NA 0 ± NA 0.031 ± NA 

Final 6-39 0.51 ± NA 0.49 ± NA 0 ± NA 0.007 ± NA 

Zero 6-39 0.44 ± NA 0.56 ± NA 0 ± NA 0.031 ± NA 

Final 6-40 0.51 ± NA 0.49 ± NA 0 ± NA 0.007 ± NA 

Zero 6-40 0.43 ± NA 0.57 ± NA 0 ± NA 0.031 ± NA 

Final 6-41 0.37 ± NA 0.63 ± NA 0 ± NA 0.132 ± NA 

Zero 6-41 0.43 ± NA 0.57 ± NA 0 ± NA 0.031 ± NA 

Final 6-42 0.33 ± NA 0.67 ± NA 0 ± NA 0.128 ± NA 

Zero 6-42 0.41 ± NA 0.59 ± NA 0 ± NA 0.031 ± NA 

Final 6-43 0.33 ± 0.01 0.67 ± 0.01 0 ± 0 0.177 ± 0.062 

Zero 6-43 0.41 ± 0.02 0.59 ± 0.02 0 ± 0 0.031 ± 0 

Final 6-44 0.54 ± NA 0.46 ± NA 0 ± NA 0.006 ± NA 

Zero 6-44 0.5 ± NA 0.5 ± NA 0 ± NA 0.016 ± NA 

Final 6-45 0.52 ± 0.02 0.48 ± 0.02 0 ± 0 0.004 ± 0.001 

Zero 6-45 0.38 ± 0 0.62 ± 0 0 ± 0 0.045 ± 0 

Unitless. n = 3. 
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Table A-6. Fraction of increases and decreases for each parameter over time.   

Parameter Decrease Increase 

pH 0.19 0.90 

Conductivity 0.71 0.31 

TS 0.69 0.33 

VS 0.73 0.29 

TCOD 0.72 0.30 

SCOD 0.44 0.63 

TVFA 0.61 0.43 

TALK 0.40 0.68 

TKN 0.36 0.73 

TN 0.37 0.72 

Inorganic N 0.58 0.46 

TAN 0.44 0.63 

Sulfate 0.84 0.15 

Tannic Acid 0.64 0.39 

TP 0.41 0.67 

OP 0.29 0.80 

Fe 0.60 0.44 

Ni 0.52 0.54 

Cu 0.45 0.62 
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Table A-7. The percentage of each type of COD removal for each lab-digester group.  

Lab-digester group No. COD removal from Methanogens, % COD removal from SRB,% 

1-1 46.16 2.19 

1-2 51.19 2.51 

1-3 77.73 0.73 

1-4 72.96 0.40 

1-5 53.91 4.02 

2-7 -28.75 0.59 

2-8 -2.62 0.86 

2-10 -32.56 0.57 

2-11 75.36 4.47 

2-12 84.16 3.41 

3-13 27.46 0.53 

3-14 31.29 0.35 

3-15 13.25 3.21 

3-16 18.79 3.16 

3-17 51.37 5.67 

3-18 -73.88 6.30 

4-19 12.39 0.03 

4-20 82.91 2.27 

4-21 56.81 4.06 

4-22 68.57 2.30 

4-23 81.62 1.65 

5-24 16.32 2.06 

5-25 7.22 3.46 

5-26 21.86 2.93 

5-27 20.11 6.22 

5-28 56.05 7.59 

6-29 4.35 5.77 

6-30 -17.04 5.77 

6-31 25.01 2.99 

6-32 70.14 2.81 

6-34 58.56 4.33 

6-35 25.03 2.08 

6-36 42.25 4.33 

6-37 69.18 2.39 

6-38 62.34 2.14 

6-39 18.06 3.96 

6-40 8.39 0.89 

6-41 39.78 2.19 

6-42 54.88 1.09 

6-43 2.24 1.99 

6-44 29.17 4.53 

6-45 23.07 5.89 
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Table A-8. Percent increase and decrease for each characteristic for the precipitation tests. 

Treatment pH Sulfate TP Fe Ni Cu 

Fe Reduction w/ Inoculum 2.68 -76.52 99.24 17.05 -123.31 -116.1 

Fe Reduction w/o Inoculum 3.31 NA NA Inf NA NA 

Fe Reduction +FeS Precipitation w/ 

Inoculum 

0.98 -33.61 112.29 225.2 -129.55 -116.44 

Fe Reduction + FeS Precipitation w/o 

Inoculum 

0.69 5150.85 NA Inf NA NA 

Fe-P Precipitation w/ Inoculum -1.04 -61.49 -36.34 30.7 -120.15 -115.47 

Fe-P Precipitation w/o Inoculum -1.52 NA -37.75 Inf NA NA 

Inoculum only -0.48 -47.8 139.52 -46.45 -131.85 -111.91 
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Figure A-1. The specific H2S productions and the fitted gam and loess models for the lab-digesters for Batch 1.   
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Figure A-2. The specific H2S productions and the fitted gam and loess models for the lab-digesters for Batch 2.   
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Figure A-3. The specific H2S production and the fitted gam and loess models for the lab-digesters for Batch 3.   
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Figure A-4. The specific H2S production and the fitted gam and loess models for the lab-digesters for Batch 4.   
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Figure A-5. The specific H2S production and the fitted gam and loess models for the lab-digester groups for Batch 5.   
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Figure A-6. The specific H2S production and the fitted gam and loess models for the lab-digester groups for Batch 6 (1).   
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Figure A-7. The specific H2S production and the fitted gam and loess models for the lab-digester groups for Batch 6 (2).   

 

 



 

 

 

2
3
5
 

 

Figure A-8. The specific H2S production and the fitted gam and loess models for the lab-digester groups for Batch 6 (3).    
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APPENDIX B. CHAPTER 5 SUPPLEMENTARY  

Table B-1. The mean ± standard deviation of digester influent (day zero) and effluent (final day) characteristics for each lab-digester 

group (1). 

Day No. pH Conductivity TS VS TCOD SCOD TVFA TALK 

Final 2-1 7.52 ± 0.37 6.95 ± 0.04 82 ± 6 64.48 ± 5.58 192 ± 61 42.07 ± 4.51 19 ± 0.4 8.33 ± 3.4 

Zero 2-1 6.54 ± 0.05 9.91 ± 0 99 ± 0 80.83 ± 0 150 ± 0 37.69 ± 0 9.3 ± 0 6.56 ± 0 

Final 2-2 7.85 ± 0.76 6.87 ± 0.17 94 ± 2 74.89 ± 1.76 155 ± 6 40.75 ± 0.07 18.9 ± 0.2 10.16 ± 1.7 

Zero 2-2 6.94 ± 0.04 9.86 ± 0 100 ± 0 81.01 ± 0 152 ± 0 37.29 ± 0 9.2 ± 0 6 ± 0 

Final 2-4 8.14 ± 0.15 7.87 ± 0.8 59 ± 1 39.65 ± 0.59 89 ± 19 15.77 ± 5.46 7 ± 0.6 14.68 ± 2.59 

Zero 2-4 7.64 ± 0.02 10.77 ± 0 66 ± 0 46.7 ± 0 68 ± 0 16.12 ± 0 6.2 ± 0 12.19 ± 0 

Final 2-5 7.65 ± 0.14 2.18 ± 0.02 2 ± 0 0.85 ± 0.12 1 ± 0 2.66 ± 0.25 0.22 ± 0 0.8 ± 0.12 

Zero 2-5 7 ± 0.05 1.02 ± 0 8 ± 0 4.85 ± 0 10 ± 0 1.21 ± 0 0.53 ± 0 0.66 ± 0 

Final 2-6 7.58 ± 0.18 1.83 ± 0.15 2 ± 0 0.94 ± 0.04 1 ± 0 2.98 ± 0 0.52 ± 0 0.64 ± 0.16 

Zero 2-6 7.1 ± 0.07 1.08 ± 0 7 ± 0 4.67 ± 0 7 ± 0 1.61 ± 0 0.62 ± 0 1.22 ± 0 

Final 3-7 7.14 ± 0.6 4.27 ± 1.45 205 ± 156 185.41 ± 155.4 353 ± 67 75.14 ± 16.03 19.5 ± 2 6.58 ± 3.73 

Zero 3-7 6.62 ± 0.2 1 ± 1.13 628 ± 0 605.95 ± 0 490 ± 0 150.72 ± 0 20.2 ± 0 4.18 ± 0 

Final 3-8 7.5 ± 0.14 0.93 ± 0.92 146 ± 42 122.45 ± 35.09 340 ± 36 72.82 ± 11.84 18.5 ± 0.2 3.79 ± 0.81 

Zero 3-8 6.02 ± 0.07 1.89 ± 0.92 627 ± 0 605.5 ± 0 498 ± 0 150.86 ± 0 19.3 ± 0 4.3 ± 0 

Final 3-9 7.55 ± 0.04 7.06 ± 0.15 20 ± 9 12.43 ± 6.69 27 ± 12 9.04 ± 1.36 5.2 ± 2.4 5.06 ± 0.64 

Zero 3-9 5.99 ± 0.01 6.5 ± 0.13 35 ± 0 24.22 ± 0 35 ± 0 9.21 ± 0 10.8 ± 0 3.66 ± 0 

Final 3-10 7.65 ± 0 7.81 ± 0.1 33 ± 18 18.59 ± 13.45 59 ± 28 46.54 ± 18.21 6 ± 0.1 11.37 ± 0.81 

Zero 3-10 7.95 ± 0.03 7.63 ± 0.02 74 ± 0 52.89 ± 0 70 ± 0 18.43 ± 0 21.5 ± 0 7.31 ± 0 

Final 3-11 6.84 ± 1.29 3.11 ± 0.22 5 ± 0 2.78 ± 0.08 5 ± 2 1.27 ± 0.08 0.71 ± 0 1.04 ± 0.02 

Zero 3-11 5.92 ± 0 1.93 ± 0.67 7 ± 0 4.84 ± 0 3 ± 0 1.88 ± 0 1.2 ± 0 0.89 ± 0 

Final 3-12 7.65 ± 0 2.78 ± 1.21 4 ± 1 2.49 ± 0.45 3 ± 1 1.48 ± 0.78 0.89 ± 0.42 1.35 ± 0.19 

Zero 3-12 7.21 ± 0.01 2.45 ± 0.19 7 ± 0 5.29 ± 0 7 ± 0 1.84 ± 0 2.2 ± 0 0.73 ± 0 

Final 4-13 7.16 ± NA 7.96 ± NA 108 ± NA 82.49 ± NA 199 ± NA 62.03 ± NA 26.2 ± NA 8.3 ± NA 

Zero 4-13 6.95 ± NA 8.67 ± NA 137 ± NA 114.91 ± NA 227 ± NA 58.86 ± NA 16.4 ± NA 6.06 ± NA 

Final 4-14 8.16 ± 0.07 7.84 ± 0.2 37 ± 3 19.58 ± 2.76 29 ± 5 13.5 ± 2.41 5 ± 0.2 12.9 ± 5.1 

Zero 4-14 7.34 ± 0.13 8.53 ± 0.03 83 ± 0 58.29 ± 0 99 ± 0 17.85 ± 0 6.2 ± 0 8.85 ± 0 

Final 4-15 7.83 ± 0.09 6.87 ± 0.06 23 ± 9 14.39 ± 7.46 10 ± 3 6.4 ± 0.64 3.6 ± 0.9 4.34 ± 0.7 

Zero 4-15 6.85 ± 0.05 7.51 ± 0.14 45 ± 0 33.82 ± 0 68 ± 0 9.46 ± 0 3 ± 0 5.54 ± 0 

Final 4-16 8.15 ± 0.05 6.89 ± 0.04 26 ± 14 15.9 ± 10.28 16 ± 8 8.63 ± 1.73 2.8 ± 1.3 13.8 ± 2.37 

Zero 4-16 6.98 ± 0.06 7.63 ± 0.2 48 ± 0 35.41 ± 0 41 ± 0 9.24 ± 0 4.1 ± 0 5.52 ± 0 
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Table B-1 continued. 

Day No. pH Conductivity TS VS TCOD SCOD TVFA TALK 

Final 4-17 8.01 ± 0.13 4.49 ± 0.27 6 ± 0 3.18 ± 0.63 5 ± 2 4.44 ± 0.04 4.4 ± 4.9 2.35 ± 0.53 

Zero 4-17 7.11 ± 0.01 4.26 ± 0.89 28 ± 0 26.59 ± 0 32 ± 0 3.4 ± 0 1.2 ± 0 1.88 ± 0 

Final 5-18 6.43 ± 0.04 6.63 ± 0.31 86 ± 11 69.39 ± 9.07 147 ± 12 81.2 ± 16.18 35.8 ± 10.2 5.91 ± 1.37 

Zero 5-18 7.12 ± 0.59 7.36 ± 0.56 138 ± 0 119.73 ± 0 180 ± 0 59.84 ± 0 12 ± 0 2.78 ± 0 

Final 5-19 7.95 ± 0.24 8.2 ± 0.07 43 ± 6 27.61 ± 4.7 39 ± 11 14.15 ± 2.62 8 ± 3.3 15.04 ± 1.79 

Zero 5-19 7.88 ± 0.05 7.92 ± 0.1 61 ± 0 43.3 ± 0 52 ± 0 8.84 ± 0 3.9 ± 0 7.14 ± 0 

Final 5-20 7.73 ± 0.12 6.85 ± 0.54 27 ± 2 18.22 ± 1.75 27 ± 5 6.84 ± 0.65 3.3 ± 0.6 6.12 ± 1.88 

Zero 5-20 7.54 ± 0.18 7.29 ± 0.08 35 ± 0 25.27 ± 0 36 ± 0 4.61 ± 0 2.1 ± 0 4.67 ± 0 

Final 5-21 7.73 ± 0.07 7.19 ± 0.07 17 ± 6 10.77 ± 4.48 31 ± 2 9 ± 1.82 5.3 ± 0.2 8.95 ± 0.98 

Zero 5-21 7.62 ± 0.22 7.08 ± 0.24 34 ± 0 25.56 ± 0 35 ± 0 7.64 ± 0 2.6 ± 0 4.07 ± 0 

Final 5-22 7.09 ± 0.11 4.23 ± 0.17 5 ± 2 3.17 ± 1.55 4 ± 1 3.26 ± 0.34 0.7 ± 0.01 2.35 ± 0.1 

Zero 5-22 7.86 ± 0.12 4.61 ± 0.29 12 ± 0 11.27 ± 0 12 ± 0 2.07 ± 0 0.87 ± 0 1.78 ± 0 

Units are in g L-1 except for conductivity (mS cm-1) and pH (unitless). n = 3. 
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Table B-2. The mean ± standard deviation of digester influent (day zero) and effluent (final day) characteristics for each lab-digester 

group (2). 

Day No. TKN TAN Sulfate Tannin TP OP Fe Ni 

Final 2-1 3.65 ± 0.09 2.63 ± 0.18 5.65 ± 0.26 2.12 ± 1.36 6.48 ± 0.93 3.87 ± 0.61 0.005 ± 0.001 0.006 ± 0 

Zero 2-1 1.53 ± 0 1.81 ± 0 6.97 ± 0 2.43 ± 0 2.12 ± 0 2.12 ± 0 0.014 ± 0 0.004 ± 0 

Final 2-2 4.53 ± 1.03 2.65 ± 0.17 5.03 ± 1.18 2.58 ± 0.53 6.67 ± 0.38 3.6 ± 0 0.013 ± 0.011 0.004 ± 0 

Zero 2-2 1.45 ± 0 1.75 ± 0 6.99 ± 0 2.34 ± 0 2.06 ± 0 2.06 ± 0 0.012 ± 0 0.004 ± 0 

Final 2-4 2.8 ± 0.63 4.03 ± 0.27 5.09 ± 1.04 4.11 ± 0.73 6.1 ± 1.03 1.6 ± 0 0.011 ± 0.015 0.003 ± 0.001 

Zero 2-4 2.42 ± 0 3.37 ± 0 5.67 ± 0 3.71 ± 0 4.38 ± 0 1.7 ± 0 0.062 ± 0 0.003 ± 0 

Final 2-5 0.3 ± 0 0.2 ± 0.02 0.09 ± 0.01 0.06 ± 0.01 0.93 ± 0.07 0.4 ± 0 0.001 ± 0 0 ± 0 

Zero 2-5 0.16 ± 0 0.28 ± 0 0.58 ± 0 0.28 ± 0 1.25 ± 0 0.11 ± 0 0.005 ± 0 0 ± 0 

Final 2-6 0.22 ± 0.02 0.13 ± 0.01 0.12 ± 0 0.22 ± 0.2 1.24 ± 1.12 0.02 ± 0.01 0 ± 0 0 ± 0 

Zero 2-6 0.24 ± 0 0.34 ± 0 0.57 ± 0 0.37 ± 0 0.44 ± 0 0.17 ± 0 0.006 ± 0 0 ± 0 

Final 3-7 1.23 ± 0.11 2.56 ± 0.24 2.51 ± 0.2 1.97 ± 0.18 6.92 ± 0.68 1.67 ± 0.31 0.025 ± 0.011 0.005 ± 0.002 

Zero 3-7 0.92 ± 0 1.34 ± 0 6.39 ± 0 2.49 ± 0 4.96 ± 0 1.76 ± 0 0.039 ± 0 0.007 ± 0 

Final 3-8 1.05 ± 0.37 1.84 ± 0.08 3.75 ± 0.94 2.34 ± 0.01 5.99 ± 0.17 2.6 ± 0 0.065 ± 0.015 0.006 ± 0 

Zero 3-8 0.92 ± 0 1.35 ± 0 6.37 ± 0 2.43 ± 0 5.01 ± 0 1.75 ± 0 0.039 ± 0 0.008 ± 0 

Final 3-9 1.46 ± 0.37 1.28 ± 0.13 2.08 ± 1.31 1.62 ± 0.68 3.01 ± 0.77 1.27 ± 0.23 0.014 ± 0.011 0.003 ± 0.001 

Zero 3-9 1.12 ± 0 1.16 ± 0 3.74 ± 0 2.18 ± 0 3.12 ± 0 0.7 ± 0 0.021 ± 0 0.001 ± 0 

Final 3-10 2.75 ± 0.23 3.02 ± 0.42 4.11 ± 0.52 2.82 ± 0.93 3.18 ± 1.27 2.5 ± 0.14 0.019 ± 0.02 0.007 ± 0.003 

Zero 3-10 2.23 ± 0 2.32 ± 0 7.48 ± 0 4.35 ± 0 6.24 ± 0 1.4 ± 0 0.043 ± 0 0.003 ± 0 

Final 3-11 0.24 ± 0.04 0.34 ± 0.05 0.42 ± 0.3 0.24 ± 0.04 0.96 ± 0.17 1.4 ± 1.41 0.005 ± NA 0 ± NA 

Zero 3-11 0.23 ± 0 0.25 ± 0 0.72 ± 0 0.43 ± 0 0.67 ± 0 0.14 ± 0 0.004 ± 0 0.001 ± 0 

Final 3-12 0.18 ± 0.05 0.26 ± 0.12 0.15 ± 0 0.26 ± 0.22 1.21 ± 0.48 0.6 ± 0.28 0.006 ± NA 0.001 ± NA 

Zero 3-12 0.22 ± 0 0.23 ± 0 0.75 ± 0 0.44 ± 0 0.62 ± 0 0.14 ± 0 0.004 ± 0 0 ± 0 

Final 4-13 2.38 ± NA 2.93 ± NA 6.85 ± NA 3.78 ± NA 6.61 ± NA 3.6 ± NA 0.025 ± NA 0.007 ± NA 

Zero 4-13 1.83 ± NA 1.88 ± NA 6.94 ± NA 3.03 ± NA 5.98 ± NA 2.56 ± NA 0.035 ± NA 0.007 ± NA 

Final 4-14 1.88 ± 0.39 2.3 ± 0.71 3.63 ± 0.58 2.24 ± 0.25 2.97 ± 0.13 1.87 ± 0.61 0.031 ± 0.016 0.009 ± 0.004 

Zero 4-14 2.12 ± 0 3.02 ± 0 7.04 ± 0 5.23 ± 0 7.55 ± 0 1.47 ± 0 0.029 ± 0 0.003 ± 0 

Final 4-15 1.09 ± 0.12 1.2 ± 0.04 0.84 ± 0.45 0.92 ± 0.03 1.56 ± 0.23 1.93 ± 1.14 0.01 ± 0.001 0.003 ± 0 

Zero 4-15 1 ± 0 1.37 ± 0 3.14 ± 0 2.65 ± 0 3.02 ± 0 0.7 ± 0 0.011 ± 0 0.002 ± 0 

Final 4-16 1.11 ± 0.3 1.37 ± 0.15 1.62 ± 1.15 1.13 ± 0.28 1.7 ± 0.12 2 ± 0.53 0.013 ± 0.005 0.004 ± 0.002 

Zero 4-16 1.32 ± 0 1.26 ± 0 4.09 ± 0 1.99 ± 0 2.72 ± 0 1 ± 0 0.019 ± 0 0.001 ± 0 

Final 4-17 0.69 ± 0.29 0.33 ± 0.01 0.6 ± 0.37 0.36 ± 0 0.74 ± 0.03 1 ± 0 0.013 ± 0.003 0.002 ± 0.001 

Zero 4-17 0.4 ± 0 0.58 ± 0 1.38 ± 0 1.05 ± 0 1.22 ± 0 0.32 ± 0 0.006 ± 0 0.001 ± 0 

Final 5-18 3.72 ± 0.37 2.24 ± 0.45 4.93 ± 0.72 2.37 ± 0.47 6.71 ± 1.2 6.27 ± 1.22 0.069 ± 0.07 0.009 ± 0.001 

Zero 5-18 2.49 ± 0 2.16 ± 0 10.48 ± 0 3.12 ± 0 7.32 ± 0 3.09 ± 0 0.118 ± 0 0.011 ± 0 

Final 5-19 3.36 ± 0.95 3.22 ± 0.37 4.37 ± 0.56 3.21 ± 1.34 4.03 ± 1.8 2.07 ± 0.23 0.024 ± 0.005 0.005 ± 0.001 
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Table B-2 continued. 

Day No. TKN TAN Sulfate Tannin TP OP Fe Ni 

Zero 5-19 2.02 ± 0 2.79 ± 0 9.23 ± 0 3.07 ± 0 4.29 ± 0 1.4 ± 0 0.033 ± 0 0.009 ± 0 

Final 5-20 1.29 ± 0.35 1.37 ± 0.5 3.14 ± 0.81 1.65 ± 0.64 3.13 ± 1.45 1.13 ± 0.12 0.015 ± 0.006 0.011 ± 0.012 

Zero 5-20 1.33 ± 0 1.46 ± 0 4.71 ± 0 1.47 ± 0 2.64 ± 0 0.77 ± 0 0.016 ± 0 0.005 ± 0 

Final 5-21 2.12 ± 1.25 1.32 ± 0.2 2.38 ± 0.25 1.17 ± 0.26 1.51 ± 0.28 1.27 ± 0.12 0.015 ± 0.002 0.005 ± 0.002 

Zero 5-21 1.11 ± 0 1.45 ± 0 4.19 ± 0 1.52 ± 0 2.4 ± 0 0.8 ± 0 0.017 ± 0 0.005 ± 0 

Final 5-22 0.53 ± 0.02 0.52 ± 0.06 0.22 ± 0.03 0.36 ± 0.11 0.7 ± 0.1 0.44 ± 0.06 0.009 ± 0.001 0.001 ± 0 

Zero 5-22 0.46 ± 0 1.6 ± 0 1.6 ± 0 0.61 ± 0 0.86 ± 0 0.32 ± 0 0.008 ± 0 0.002 ± 0 

Units are in g L-1. n = 3.  
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Table B-3. The mean ± standard deviation of digester influent (day zero) and effluent (final day) characteristics for each lab-digester 

group (3). 

Day No. Cu TN InorgN SCOD : TCOD OP : TP Fe(II) : TP TCOD : 

TN : TP 

TVFA : TALK 

Final 2-1 0.005 ± 0.001 3.708 ± 0.104 0.056 ± 0.025 0.24 ± 0.09 0.61 ± 0.16 0.001 ± 0.001 8.08 ± 3 2.53 ± 0.92 

Zero 2-1 0.004 ± 0 1.55 ± 0 0.053 ± 0 0.25 ± 0 1 ± 0 0.011 ± 0 45.52 ± 0 1.41 ± 0 

Final 2-2 0.003 ± 0.001 4.6 ± 1.106 0.066 ± 0.076 0.26 ± 0.01 0.54 ± 0.03 0.003 ± 0.003 5.16 ± 0.75 1.89 ± 0.3 

Zero 2-2 0.004 ± 0 1.474 ± 0 0.055 ± 0 0.24 ± 0 1 ± 0 0.01 ± 0 50.21 ± 0 1.53 ± 0 

Final 2-4 0.003 ± 0.001 2.916 ± 0.641 0.12 ± 0.007 0.19 ± 0.1 0.27 ± 0.05 0.003 ± 0.004 5.25 ± 1.72 0.49 ± 0.14 

Zero 2-4 0.002 ± 0 2.434 ± 0 0.04 ± 0 0.24 ± 0 0.39 ± 0 0.024 ± 0 6.35 ± 0 0.51 ± 0 

Final 2-5 0 ± 0 0.342 ± 0.005 0.025 ± 0.016 2.23 ± 0.2 0.43 ± 0.03 0.002 ± 0 3.79 ± 0.91 0.28 ± 0.04 

Zero 2-5 0 ± 0 0.168 ± 0 0.004 ± 0 0.13 ± 0 0.09 ± 0 0.007 ± 0 46.01 ± 0 0.81 ± 0 

Final 2-6 0 ± 0 0.246 ± 0.001 0.043 ± 0.004 2.23 ± 0.48 0.02 ± 0.01 0 ± 0 6.78 ± 5.14 0.84 ± 0.21 

Zero 2-6 0 ± 0 0.243 ± 0 0.006 ± 0 0.24 ± 0 0.39 ± 0 0.024 ± 0 63.54 ± 0 0.51 ± 0 

Final 3-7 0.003 ± 0.001 1.268 ± 0.082 0.042 ± 0.029 0.22 ± 0.05 0.24 ± 0.07 0.006 ± 0.002 40.39 ± 7.93 3.47 ± 1.36 

Zero 3-7 0.007 ± 0 0.953 ± 0 0.119 ± 0 0.31 ± 0 0.35 ± 0 0.013 ± 0 103.55 ± 0 4.84 ± 0 

Final 3-8 0.005 ± 0 1.093 ± 0.383 0.044 ± 0.016 0.21 ± 0.01 0.43 ± 0.01 0.018 ± 0.004 54.59 ± 15.17 5 ± 1.11 

Zero 3-8 0.007 ± 0 0.952 ± 0 0.099 ± 0 0.3 ± 0 0.35 ± 0 0.013 ± 0 104.46 ± 0 4.5 ± 0 

Final 3-9 0.004 ± 0.001 1.527 ± 0.395 0.095 ± 0.013 0.42 ± 0.29 0.43 ± 0.04 0.009 ± 0.009 6.64 ± 4.37 1.04 ± 0.55 

Zero 3-9 0.001 ± 0 1.13 ± 0 0.6 ± 0 0.26 ± 0 0.22 ± 0 0.012 ± 0 9.97 ± 0 2.94 ± 0 

Final 3-10 0.007 ± 0.002 2.845 ± 0.238 0.063 ± 0.032 0.81 ± 0.08 0.86 ± 0.39 0.013 ± 0.016 6.42 ± 1.11 0.53 ± 0.03 

Zero 3-10 0.002 ± 0 2.26 ± 0 0.3 ± 0 0.26 ± 0 0.22 ± 0 0.012 ± 0 4.99 ± 0 2.94 ± 0 

Final 3-11 0.001 ± NA 0.276 ± 0.017 0.034 ± 0.01 0.26 ± 0.12 1.35 ± 1.23 0.358 ± 0.494 19.76 ± 5.43 0.68 ± 0.01 

Zero 3-11 0.001 ± 0 0.228 ± 0 0.06 ± 0 0.6 ± 0 0.21 ± 0 0.617 ± 0.858 20.59 ± 0 1.37 ± 0 

Final 3-12 0.001 ± NA 0.218 ± 0.061 0.036 ± 0.027 0.47 ± 0.16 0.49 ± 0.04 0.299 ± 0.414 12.74 ± 5.83 0.64 ± 0.22 

Zero 3-12 0 ± 0 0.226 ± 0 0.002 ± 0 0.26 ± 0 0.22 ± 0 1.082 ± 1.514 49.85 ± 0 2.94 ± 0 

Final 4-13 0.003 ± NA 2.452 ± NA 0.073 ± NA 0.31 ± NA 0.54 ± NA 0.007 ± NA 12.27 ± NA 3.16 ± NA 

Zero 4-13 0.006 ± NA 1.932 ± NA 0.154 ± NA 0.26 ± NA 0.43 ± NA 0.01 ± NA 19.65 ± NA 2.71 ± NA 

Final 4-14 0.011 ± 0.006 2.024 ± 0.44 0.028 ± 0.02 0.47 ± 0.05 0.63 ± 0.21 0.018 ± 0.01 4.92 ± 1.03 0.45 ± 0.23 

Zero 4-14 0.005 ± 0 2.21 ± 0 0.051 ± 0 0.18 ± 0 0.19 ± 0 0.006 ± 0 5.94 ± 0 0.7 ± 0 

Final 4-15 0.003 ± 0.001 1.147 ± 0.109 0.103 ± 0.053 0.66 ± 0.17 1.19 ± 0.54 0.011 ± 0.003 5.54 ± 0.14 0.86 ± 0.32 

Zero 4-15 0.001 ± 0 1.032 ± 0 0.062 ± 0 0.14 ± 0 0.23 ± 0 0.006 ± 0 21.77 ± 0 0.55 ± 0 

Final 4-16 0.003 ± 0.003 1.187 ± 0.306 0.148 ± 0.048 0.6 ± 0.21 1.19 ± 0.36 0.012 ± 0.004 7.59 ± 1.2 0.21 ± 0.1 

Zero 4-16 0.001 ± 0 1.342 ± 0 0.102 ± 0 0.23 ± 0 0.37 ± 0 0.012 ± 0 11.17 ± 0 0.74 ± 0 

Final 4-17 0.003 ± 0.001 0.725 ± 0.276 0.031 ± 0.01 0.89 ± 0.32 1.36 ± 0.06 0.03 ± 0.009 11.64 ± 8.42 1.68 ± 1.71 

Zero 4-17 0.002 ± 0 0.425 ± 0 0.022 ± 0 0.11 ± 0 0.26 ± 0 0.008 ± 0 61.47 ± 0 0.62 ± 0 

Final 5-18 0.008 ± 0.001 3.701 ± 0.347 0.02 ± 0.024 0.56 ± 0.15 0.97 ± 0.35 0.02 ± 0.022 6.03 ± 0.99 6.5 ± 2.84 
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Table B-3 continued. 

Day No. Cu TN InorgN SCOD : TCOD OP : TP Fe(II) : TP TCOD : 

TN : TP 

TVFA : TALK 

Zero 5-18 0.006 ± 0 2.64 ± 0 0.067 ± 0 0.33 ± 0 0.42 ± 0 0.027 ± 0 9.32 ± 0 4.3 ± 0 

Final 5-19 0.005 ± 0 3.264 ± 0.917 0.044 ± 0.04 0.38 ± 0.06 0.62 ± 0.37 0.012 ± 0.006 3.9 ± 3.03 0.52 ± 0.16 

Zero 5-19 0.01 ± 0 2.084 ± 0 0.031 ± 0 0.17 ± 0 0.33 ± 0 0.013 ± 0 5.86 ± 0 0.55 ± 0 

Final 5-20 0.015 ± 0.009 1.272 ± 0.359 0.021 ± 0.019 0.26 ± 0.05 0.42 ± 0.19 0.009 ± 0.005 9.13 ± 7.32 0.56 ± 0.1 

Zero 5-20 0.005 ± 0 1.308 ± 0 0.032 ± 0 0.13 ± 0 0.29 ± 0 0.01 ± 0 10.37 ± 0 0.44 ± 0 

Final 5-21 0.005 ± 0.002 2.073 ± 1.218 0.098 ± 0.031 0.29 ± 0.08 0.86 ± 0.16 0.018 ± 0.003 12.46 ± 6.51 0.6 ± 0.07 

Zero 5-21 0.005 ± 0 1.279 ± 0 0.065 ± 0 0.22 ± 0 0.33 ± 0 0.012 ± 0 11.44 ± 0 0.63 ± 0 

Final 5-22 0.001 ± 0 0.512 ± 0.001 0.018 ± 0.024 0.75 ± 0.09 0.63 ± 0 0.022 ± 0.001 12.29 ± 1.04 0.3 ± 0.02 

Zero 5-22 0.002 ± 0 0.476 ± 0 0.017 ± 0 0.17 ± 0 0.37 ± 0 0.015 ± 0 29.69 ± 0 0.49 ± 0 

Units for Cu, TN, and InorgN are in g L-1, the rest are unitless. n = 3.  
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Table B-4. The mean ± standard deviation of digester influent (day zero) and effluent (final day) characteristics for each lab-digester 

group (4). 

Day No. TAN :  TKN TCOD : Sulfate TCOD : TKN FS : TS VS : TS Fe(II) : S 

Final 2-1 0.72 ± 0.04 34.3 ± 12.04 52.41 ± 16.64 0.21 ± 0.01 0.79 ± 0.01 0.001 ± 0 

Zero 2-1 1.18 ± 0 21.45 ± 0 97.77 ± 0 0.18 ± 0 0.82 ± 0 0.003 ± 0 

Final 2-2 0.6 ± 0.18 31.84 ± 8.7 34.96 ± 6.55 0.2 ± 0 0.8 ± 0 0.005 ± 0.005 

Zero 2-2 1.21 ± 0 21.81 ± 0 105.13 ± 0 0.19 ± 0 0.81 ± 0 0.003 ± 0 

Final 2-4 1.5 ± 0.41 18.43 ± 6.56 33.7 ± 13.76 0.32 ± 0.01 0.68 ± 0.01 0.004 ± 0.005 

Zero 2-4 1.39 ± 0 11.95 ± 0 28.04 ± 0 0.29 ± 0 0.71 ± 0 0.019 ± 0 

Final 2-5 0.68 ± 0.07 13.21 ± 0.54 4.02 ± 0.73 0.48 ± 0 0.52 ± 0 0.023 ± 0.002 

Zero 2-5 1.71 ± 0 16.6 ± 0 59.71 ± 0 0.37 ± 0 0.63 ± 0 0.014 ± 0 

Final 2-6 0.6 ± 0.01 11.92 ± 2.83 6.17 ± 0.87 0.41 ± 0.05 0.59 ± 0.05 0 ± 0 

Zero 2-6 1.39 ± 0 11.95 ± 0 28.04 ± 0 0.29 ± 0 0.71 ± 0 0.019 ± 0 

Final 3-7 2.09 ± 0.09 140.85 ± 29.02 292.4 ± 78.33 0.13 ± 0.08 0.87 ± 0.08 0.017 ± 0.006 

Zero 3-7 1.47 ± 0 76.6 ± 0 535.08 ± 0 0.03 ± 0 0.97 ± 0 0.01 ± 0 

Final 3-8 1.88 ± 0.73 92.65 ± 13.83 339.24 ± 84.63 0.16 ± 0 0.84 ± 0 0.03 ± 0.001 

Zero 3-8 1.47 ± 0 78.25 ± 0 542.84 ± 0 0.03 ± 0 0.97 ± 0 0.011 ± 0 

Final 3-9 0.92 ± 0.28 15.29 ± 5.05 18.47 ± 6.99 0.41 ± 0.09 0.59 ± 0.09 0.01 ± 0.006 

Zero 3-9 1.04 ± 0 9.39 ± 0 31.48 ± 0 0.3 ± 0 0.7 ± 0 0.01 ± 0 

Final 3-10 1.11 ± 0.24 13.95 ± 5.08 21.84 ± 12.02 0.48 ± 0.13 0.52 ± 0.13 0.009 ± 0.01 

Zero 3-10 1.04 ± 0 9.39 ± 0 31.48 ± 0 0.29 ± 0 0.71 ± 0 0.01 ± 0 

Final 3-11 1.43 ± 0.03 14.32 ± 5.26 23.18 ± 12.75 0.41 ± 0.03 0.59 ± 0.03 0.015 ± NA 

Zero 3-11 1.12 ± 0 4.37 ± 0 13.96 ± 0 0.3 ± 0 0.7 ± 0 0.01 ± 0 

Final 3-12 1.36 ± 0.25 19.55 ± 3.66 16.56 ± 1.07 0.4 ± 0.01 0.6 ± 0.01 0.061 ± NA 

Zero 3-12 1.04 ± 0 9.39 ± 0 31.48 ± 0 0.29 ± 0 0.71 ± 0 0.01 ± 0 

Final 4-13 1.23 ± NA 29.03 ± NA 83.54 ± NA 0.23 ± NA 0.77 ± NA 0.006 ± NA 

Zero 4-13 1.03 ± NA 32.69 ± NA 124.26 ± NA 0.16 ± NA 0.84 ± NA 0.009 ± NA 

Final 4-14 1.29 ± 0.54 8.24 ± 2.72 15.79 ± 3.76 0.48 ± 0.03 0.52 ± 0.03 0.015 ± 0.006 

Zero 4-14 1.42 ± 0 14.1 ± 0 46.68 ± 0 0.3 ± 0 0.7 ± 0 0.007 ± 0 

Final 4-15 1.11 ± 0.12 13.11 ± 3.38 9.19 ± 1.72 0.41 ± 0.1 0.59 ± 0.1 0.025 ± 0.014 

Zero 4-15 1.37 ± 0 21.59 ± 0 68.09 ± 0 0.26 ± 0 0.74 ± 0 0.006 ± 0 

Final 4-16 1.26 ± 0.17 12.18 ± 6.2 13.88 ± 2.83 0.43 ± 0.09 0.57 ± 0.09 0.018 ± 0.013 

Zero 4-16 0.96 ± 0 9.95 ± 0 30.96 ± 0 0.26 ± 0 0.74 ± 0 0.008 ± 0 

Final 4-17 0.51 ± 0.2 9.82 ± 2.9 9 ± 6.44 0.49 ± 0.07 0.51 ± 0.07 0.042 ± 0.017 
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Table B-4 continued. 

Day No. TAN :  TKN TCOD : Sulfate TCOD : TKN FS : TS VS : TS Fe(II) : S 

Zero 4-17 1.43 ± 0 23.02 ± 0 78.72 ± 0 0.06 ± 0 0.94 ± 0 0.007 ± 0 

Final 5-18 0.61 ± 0.16 30.42 ± 6.76 39.95 ± 7.02 0.19 ± 0.01 0.81 ± 0.01 0.02 ± 0.024 

Zero 5-18 0.87 ± 0 17.19 ± 0 72.37 ± 0 0.13 ± 0 0.87 ± 0 0.019 ± 0 

Final 5-19 1 ± 0.25 9.03 ± 3.09 12.54 ± 5.8 0.36 ± 0.02 0.64 ± 0.02 0.098 ± 0.031 

Zero 5-19 1.38 ± 0 5.67 ± 0 25.95 ± 0 0.28 ± 0 0.72 ± 0 0.006 ± 0 

Final 5-20 1.04 ± 0.14 8.69 ± 0.7 22.86 ± 11.29 0.32 ± 0.01 0.68 ± 0.01 0.021 ± 0.019 

Zero 5-20 1.1 ± 0 7.61 ± 0 27 ± 0 0.27 ± 0 0.73 ± 0 0.006 ± 0 

Final 5-21 0.73 ± 0.26 13.3 ± 1.99 17.87 ± 7.91 0.37 ± 0.04 0.63 ± 0.04 0.044 ± 0.04 

Zero 5-21 1.31 ± 0 8.37 ± 0 31.73 ± 0 0.24 ± 0 0.76 ± 0 0.007 ± 0 

Final 5-22 0.97 ± 0.06 20.75 ± 7.46 8.32 ± 1.45 0.44 ± 0.09 0.56 ± 0.09 0.018 ± 0.024 

Zero 5-22 3.49 ± 0 7.62 ± 0 26.58 ± 0 0.09 ± 0 0.91 ± 0 0.008 ± 0 

Unitless.  n = 3.  
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Table B-5. The mean ± standard deviation of the chemical characteristics of substrate and inoculum collected from field digesters (1). 

Digester Batch Sub/Ino pH Conductivity TS VS TCOD SCOD TVFA TALK 

B 1 EF-L 8.31 ± 0.79 9.06 ± 0.06 41 ± 0 29.35 ± 4.81 54 ± 2 43.02 ± 18.34 4.3 ± 2.6 9.05 ± 2.19 

B 1 INFL 5.5 ± NA 8.24 ± NA 125 ± 2 109.3 ± 1.85 236 ± 22 105.12 ± NA 15.4 ± 1.6 3.14 ± 1.78 

B 1 DL-W 8.1 ± NA 9.28 ± NA 72 ± 1 51.87 ± 1.06 56 ± 12 57.11 ± NA 5.2 ± 1.9 10.49 ± 1.49 

B 2 INFL 6.67 ± NA 9.82 ± NA 103 ± 1 84.63 ± 0.78 159 ± 7 40.09 ± 7.15 9.6 ± 0.3 5.93 ± 0.11 

B 2 EF-W 7.64 ± 0.02 10.77 ± NA 66 ± 3 46.7 ± 2.73 68 ± 11 16.12 ± 1.65 6.2 ± 1.1 12.19 ± 2.16 

B 2 DL-W 7.47 ± 0.13 10.24 ± NA 77 ± 2 48.5 ± 2.44 97 ± 3 12.12 ± NA 7.5 ± 2 6.6 ± NA 

B 3 INFL 6.75 ± NA 6.34 ± NA 689 ± 68 667.4 ± 69.24 536 ± NA 165.42 ± NA 20.1 ± 1.2 3.84 ± 0.35 

B 3 EF-W 7.96 ± 0.03 7.52 ± 0.18 74 ± 2 52.89 ± 2.14 93 ± 40 18.43 ± 0.67 21.5 ± NA 7.31 ± 3.34 

B 3 DL-W 7.67 ± NA 8.8 ± NA 69 ± 5 48.45 ± 4.4 154 ± 12 19.83 ± 0.94 12.2 ± NA 8.43 ± 0.92 

B 4 EF-E 6.98 ± 0.08 8.53 ± 0.03 83 ± 1 58.29 ± 1.16 99 ± NA 17.85 ± 0.69 6.2 ± 0.6 8.85 ± 1.41 

B 4 DL-E 6.82 ± NA 8.18 ± NA 96 ± 12 70.83 ± 11.27 82 ± 14 18.48 ± 0.2 8.2 ± 1 11.04 ± 0.98 

B 4 INFL 7.02 ± NA 9.09 ± NA 136 ± 1 110.41 ± 1.05 244 ± 17 69.32 ± 0.95 19.1 ± 1.2 5.22 ± NA 

B 4 EF-W 7.21 ± NA 8.69 ± NA 141 ± 8 132.93 ± 18.74 159 ± NA 17.01 ± 0.44 5.8 ± 0.6 9.41 ± 0.96 

B 4 DL-W 7.21 ± NA 8.68 ± NA 91 ± 2 67.64 ± 2.86 136 ± NA 18.91 ± 0.12 6 ± 0.2 11.09 ± NA 

B 5 EF-E 7.88 ± 0.05 7.92 ± 0.1 61 ± 2 43.3 ± 1.49 52 ± 0 8.84 ± 0.38 3.9 ± 0.3 7.14 ± 0.87 

B 5 DL-E 7.77 ± NA 8.19 ± NA 69 ± 5 50.54 ± 5.23 72 ± 1 9.22 ± 1.73 4.1 ± 0.3 9.33 ± 0.2 

B 5 INFL 6.99 ± NA 7.99 ± NA 157 ± 1 51.11 ± 7.12 210 ± 43 72.22 ± 21.93 13.9 ± 0.8 1.26 ± 0.17 

B 5 EF-W 7.58 ± NA 10.15 ± NA 62 ± 4 46.41 ± 3.89 61 ± 4 10.34 ± 0.5 4.4 ± 0.2 8.88 ± 1.05 

B 5 DL-W 7.67 ± NA 8.09 ± NA 67 ± 7 51.11 ± 7.12 70 ± 14 15.28 ± 0.08 5.1 ± 0.6 8.15 ± 0.83 

Note: Sub/Ino = substrate / inoculum. 

Units are in g L-1 except for conductivity (mS cm-1) and pH (unitless). n = 3. 
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Table B-6. The mean ± standard deviation of chemical characteristics of substrate and inoculum collected from field digesters (2). 

Digester Batch Sub/Ino  TKN TAN Sulfate Tannin TP OP Fe Ni 

B 1 EF-L 2.24 ± 0.92 2.19 ± 0.28 3.59 ± 0.4 2.57 ± 0.95 3.68 ± 0.22 2.36 ± 0.62 0.056 ± NA 0.005 ± NA 

B 1 INFL 1.32 ± 0.21 1.71 ± 0.14 5.07 ± 1.23 1.71 ± 0.14 5.1 ± 0.77 3.13 ± 0.12 0.204 ± 0.085 0.011 ± 0.003 

B 1 DL-W 2.03 ± 0.04 2.45 ± 0.16 3.89 ± 1.61 2.04 ± 0.99 4.6 ± 1.02 1.42 ± 1.28 0.042 ± 0.009 0.007 ± 0.001 

B 2 INFL 1.43 ± 0.23 1.64 ± 0.04 7.12 ± 0.28 2.29 ± 0.13 5.07 ± 0.58 2.17 ± 0.4 0.008 ± 0 0.004 ± 0 

B 2 EF-W 2.42 ± 0.08 3.37 ± NA 5.67 ± NA 3.71 ± NA 4.38 ± 0.25 1.7 ± NA 0.062 ± 0 0.003 ± 0 

B 2 DL-W 1.62 ± NA 2.78 ± 0.13 5.83 ± 0.43 2.79 ± 0.39 12.54 ± NA 1.1 ± NA 0.048 ± 0 0.003 ± 0 

B 3 INFL 0.77 ± 0.02 1.24 ± 0.06 6.27 ± 0.28 2.28 ± 0.37 4.82 ± 0.45 1.8 ± 0.35 0.038 ± 0.005 0.008 ± 0.001 

B 3 EF-W 2.25 ± 0.03 2.32 ± 0.22 7.48 ± NA 4.35 ± NA 6.24 ± NA 1.4 ± 0 0.043 ± 0.003 0.003 ± 0 

B 3 DL-W 2.25 ± NA 2.34 ± 0.15 7.2 ± 0.25 3.74 ± 0.52 6.71 ± NA 1.33 ± 0.12 0.047 ± 0.005 0.006 ± 0.004 

B 4 EF-E 2.12 ± 0.03 3.02 ± 0.04 7.04 ± 3.1 5.23 ± 0.11 7.55 ± 0.05 1.47 ± 0.12 0.029 ± 0.002 0.003 ± 0.001 

B 4 DL-E 2.63 ± 0.12 2.51 ± 0.27 8.19 ± 1.31 3.97 ± 0.64 5.44 ± NA 2 ± 0 0.039 ± 0.003 0.003 ± 0 

B 4 INFL 1.78 ± 0.12 1.62 ± 0.07 6.95 ± 0.95 2.48 ± 0.35 5.95 ± 0.25 2.8 ± NA 0.037 ± 0.005 0.007 ± 0 

B 4 EF-W 2.02 ± 0.1 2.89 ± NA 6.91 ± 3.55 5.24 ± NA 6.09 ± NA 1.6 ± 0 0.028 ± 0 0.007 ± 0.004 

B 4 DL-W 1.99 ± 0.03 2.74 ± 0.22 6.28 ± 1.04 5.3 ± 0.14 6.03 ± 1.19 1.4 ± 0.2 0.023 ± 0.003 0.003 ± 0 

B 5 EF-E 2.02 ± 0 2.79 ± 0.13 9.23 ± 0.45 3.07 ± 0.11 4.29 ± 0.1 1.4 ± 0 0.033 ± 0 8.948 ± 1.513 

B 5 DL-E 2.65 ± 0.19 2.91 ± 0.12 9.42 ± 0.1 2.95 ± 0.05 5.29 ± 0.54 1.53 ± 0.12 0.032 ± 0 0.009 ± 0.001 

B 5 INFL 2.54 ± 0.15 1.98 ± 0.14 11.1 ± 0.97 3.2 ± 0.28 8.07 ± 0.13 3.47 ± 0.23 0.138 ± 0 0.012 ± 0 

B 5 EF-W 2.29 ± 0.16 2.87 ± 0.21 8 ± 0.26 2.8 ± 0.14 4.31 ± 0.26 1.6 ± 0.2 0.038 ± 0 0.009 ± 0.001 

B 5 DL-W 2.21 ± 0.01 2.91 ± 0.2 8.38 ± 0.09 3.04 ± 0.23 4.8 ± 0.13 1.6 ± 0 0.033 ± 0.001 0.01 ± 0.001 

Note: Sub/Ino = substrate / inoculum. 

Units are in g L-1. n = 3.  
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Table B-7. The mean ± standard deviation of chemical characteristics of substrate and inoculum collected from field digesters (3). 

Digester Batch Sub/Ino  Cu TN InorgN SCOD : 

TCOD 

OP : TP TCOD : TN : TP TVFA : TALK 

B 1 EF-L 0.006 ± NA 2.28 ± 1.035 0.111 ± 0.073 0.812 ± 0.378 0.64 ± 0.13 7.36 ± 3.12 0.45 ± 0.16 

B 1 INFL 0.008 ± 0.005 0.114 ± 0.011 1.438 ± 0.201 0.446 ± NA 0.63 ± 0.11 419.64 ± 105.94 5.7 ± 2.12 

B 1 DL-W 0.007 ± 0 2.13 ± 0.055 0.104 ± 0.02 1.136 ± NA 0.31 ± 0.24 5.81 ± 1.35 0.51 ± 0.21 

B 2 INFL 0.005 ± 0 1.451 ± 0.243 0.054 ± NA 0.252 ± 0.038 0.42 ± 0.04 22.37 ± 6.14 1.59 ± 0 

B 2 EF-W 0.002 ± 0 2.434 ± 0.099 0.04 ± NA 0.24 ± 0.017 0.4 ± NA 6.4 ± 1.37 0.52 ± 0.09 

B 2 DL-W 0.004 ± 0 1.677 ± NA 0.057 ± NA 0.129 ± NA 0.09 ± NA 4.47 ± NA 0.81 ± NA 

B 3 INFL 0.008 ± 0.002 0.808 ± 0.047 0.054 ± 0.017 0.308 ± NA 0.37 ± 0.04 117.75 ± NA 5.29 ± 0.82 

B 3 EF-W 0.002 ± 0 2.26 ± 0.029 0.319 ± 0.397 0.221 ± 0.081 0.22 ± NA 4.73 ± NA 6.23 ± NA 

B 3 DL-W 0.002 ± 0 1.84 ± 0.384 0.211 ± 0.265 0.129 ± 0.007 0.21 ± NA 9.39 ± NA 1.37 ± NA 

B 4 EF-E 0.005 ± 0 2.21 ± 0.014 0.102 ± NA 0.185 ± NA 0.19 ± 0 5.96 ± NA 0.72 ± 0.17 

B 4 DL-E 0.003 ± 0.001 2.684 ± 0.186 0.123 ± NA 0.212 ± 0.026 0.37 ± NA 6.11 ± NA 0.75 ± 0.16 

B 4 INFL 0.004 ± 0 1.885 ± 0.065 0.164 ± NA 0.292 ± 0.029 0.46 ± NA 21.84 ± 2.51 3.42 ± NA 

B 4 EF-W 0.012 ± 0 2.123 ± 0.113 0.104 ± 0.015 0.105 ± NA 0.26 ± NA 13.1 ± NA 0.62 ± 0.08 

B 4 DL-W 0.003 ± 0 2.065 ± 0.021 0.073 ± 0.048 0.139 ± NA 0.23 ± 0 12.79 ± NA 0.57 ± NA 

B 5 EF-E 0.01 ± 0.002 2.084 ± 0.002 0.065 ± 0.005 0.169 ± 0.006 0.33 ± 0.01 5.86 ± 0.16 0.56 ± 0.09 

B 5 DL-E 0.01 ± 0 2.615 ± 0.356 0.064 ± 0.015 0.127 ± 0.023 0.29 ± 0.03 5.24 ± 0.18 0.44 ± 0.04 

B 5 INFL 0.005 ± 0 2.705 ± 0.001 0.062 ± 0.001 0.394 ± 0.147 0.43 ± 0.03 8.54 ± 0.82 11.18 ± 1.95 

B 5 EF-W 0.01 ± 0 2.381 ± 0.146 0.087 ± 0.011 0.172 ± 0.002 0.37 ± 0.05 5.98 ± 0.83 0.52 ± 0.09 

B 5 DL-W 0.01 ± 0 2.559 ± 0.482 0.062 ± 0.004 0.235 ± 0.063 0.33 ± 0.01 5.54 ± 1.68 0.64 ± 0.12 

Note: Sub/Ino = substrate / inoculum. 

Units for Cu, TN, and InorgN are in g L-1, the rest are unitless. n = 3. 
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Table B-8. The mean ± standard deviation of chemical characteristics of substrate and inoculum collected from field digesters (4). 

Digester Batch Sub/Ino  TAN : TKN TCOD : Sulfate TCOD : TKN FS : TS VS : TS Fe(II) : S Fe(II) : TP 

B 1 EF-L 1.04 ± 0.25 15.04 ± 1.62 26.48 ± 26.48 0.29 ± 0.12 0.71 ± 0.12 0.026 ± NA 0.024 ± NA 

B 1 INFL 1.31 ± 0.25 47.98 ± 9.61 179.93 ± 179.93 0.13 ± 0 0.87 ± 0 0.076 ± 0.042 0.07 ± 0.035 

B 1 DL-W 1.21 ± 0.06 15.05 ± 2.84 27.38 ± 27.38 0.28 ± 0.01 0.72 ± 0.01 0.02 ± 0.004 0.016 ± 0.003 

B 2 INFL 1.17 ± 0.23 22.34 ± 1.83 112.58 ± 112.58 0.18 ± 0 0.82 ± 0 0.002 ± 0 0.003 ± 0 

B 2 EF-W 1.34 ± NA 10.17 ± NA 28.14 ± 28.14 0.29 ± 0.01 0.71 ± 0.01 NA ± NA 0.024 ± 0.002 

B 2 DL-W 1.81 ± NA 16.68 ± 1.57 57.96 ± 57.96 0.37 ± 0.01 0.63 ± 0.01 0.015 ± 0 NA ± NA 

B 3 INFL 1.61 ± 0.12 81.35 ± NA 676.38 ± 676.38 0.03 ± 0.01 0.97 ± 0.01 0.011 ± 0.001 0.014 ± 0.001 

B 3 EF-W 1.03 ± 0.1 8.96 ± NA 41.26 ± 41.26 0.29 ± 0.01 0.71 ± 0.01 0.009 ± NA 0.011 ± NA 

B 3 DL-W 1.12 ± NA 21.41 ± 2.43 63.7 ± 63.7 0.3 ± 0.01 0.7 ± 0.01 0.011 ± 0.001 0.01 ± NA 

B 4 EF-E 1.42 ± 0.04 9.36 ± NA 47.43 ± 47.43 0.3 ± 0 0.7 ± 0 0.008 ± 0.003 0.006 ± 0.001 

B 4 DL-E 0.99 ± 0.09 9.94 ± 0.29 30.86 ± 30.86 0.26 ± 0.03 0.74 ± 0.03 0.008 ± 0.001 0.013 ± NA 

B 4 INFL 0.92 ± 0.1 35.45 ± 4.66 137.68 ± 137.68 0.19 ± 0.01 0.81 ± 0.01 0.009 ± 0.002 0.011 ± 0.002 

B 4 EF-W 1.52 ± NA 14.45 ± NA 83.41 ± 83.41 0.05 ± 0.17 0.95 ± 0.17 0.008 ± 0.003 0.008 ± NA 

B 4 DL-W 1.38 ± 0.13 19.33 ± NA 67.02 ± 67.02 0.26 ± 0.02 0.74 ± 0.02 0.006 ± 0 0.007 ± 0.002 

B 5 EF-E 1.38 ± 0.06 5.68 ± 0.28 25.95 ± 25.95 0.28 ± 0.01 0.72 ± 0.01 0.006 ± 0 0.013 ± 0 

B 5 DL-E 1.1 ± 0.13 7.61 ± 0.17 27.08 ± 27.08 0.27 ± 0.02 0.73 ± 0.02 0.006 ± 0 0.011 ± 0 

B 5 INFL 0.73 ± 0.03 18.8 ± 2.28 73.49 ± 73.49 0.67 ± 0.05 0.33 ± 0.05 0.023 ± 0 0.029 ± 0.001 

B 5 EF-W 1.25 ± 0.06 7.62 ± 0.5 26.67 ± 26.67 0.25 ± 0.02 0.75 ± 0.02 0.008 ± 0 0.016 ± 0 

B 5 DL-W 1.31 ± 0.09 8.08 ± 2.3 29.88 ± 29.88 0.24 ± 0.02 0.76 ± 0.02 0.007 ± 0 0.012 ± 0 

Note: Sub/Ino = substrate / inoculum. 

Unitless. n = 3.
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Table B-9. The specific methane yield (SMY) and calculated foam potential for the lab-scale 

digester tests. 

Lab-digester Group 

No. 

SMY 

mL CH4 g VS-1 
Foam Potential 

mL g TS 
2-1 8.81 ± 2.13 29.15 ± 4.79 

2-2 4.27 ± 3.49 33.78 ± 0 

2-4 46.96 ± 26.43 104.46 ± 25.22 

2-5 44.63 ± 5.81 90.17 ± 39.99 

2-6 14.78 ± NA 80.23 ± NA 

3-7 0.17 ± 0.1 2.71 ± 0.87 

3-8 0.21 ± 0.15 3.68 ± 1.3 

3-9 74.66 ± 33.45 82.38 ± 26.69 

3-10 60.73 ± 8.56 75.39 ± 11.57 

3-11 50.49 ± 14.75 121.95 ± 73.24 

3-12 52.79 ± 23.47 106.14 ± 16.44 

4-13 4.09 ± NA 17.73 ± NA 

4-14 53.34 ± 64.02 48.8 ± 69.53 

4-15 80.13 ± 49.2 83.12 ± 47.87 

4-16 92.96 ± 34.49 93.18 ± 31.81 

4-17 22.98 ± 8.11 42.67 ± 13.37 

5-18 1.2 ± 0.72 18.6 ± 2.8 

5-19 105.91 ± 20.56 101.21 ± 26.59 

5-21 115.75 ± 52.46 118.08 ± 42.27 

5-21 184.21 ± 10.92 191.63 ± 15 

5-22 48.93 ± 22.35 68.40 ± 33.53 
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Table B-10. The P values and significance levels of the measured Day 0 chemical concentrations 

for the non-foaming and foaming DL field digester samples. 

Characteristic D0 g L-1, 

non-foaming  

D0 g L-1, 

foaming  

P value Significance 

Cu 0.009 ± 0.002 0.003 ± 0.001 0 *** 

Fe 0.037 ± 0.007 0.038 ± 0.011 .743  

Ni 0.009 ± 0.001 0.004 ± 0.002 .002 ** 

TP 4.89 ± 0.66 7.35 ± 3 .007 ** 

OP 1.52 ± 0.65 1.53 ± 0.35 .959  

TKN 2.30 ± 0.3 2.22 ± 0.39 .643  

TAN 2.76 ± 0.27 2.59 ± 0.25 .152  

Sulfate 7.09 ± 2.82 6.93 ± 1.2 .869  

TS 69 ± 5 83 ± 12 .007 ** 

VS 51 ± 5 59 ± 12. .105  

pH 7.85 ± 0.23 7.35 ± 0.31 .045 * 

TCOD 66 ± 12 113 ± 33 .001 ** 

SCOD 21 ± 20 18 ± 3 .171  

TALK 9.32 ± 1.33 9.51 ± 1.9 .81  

TVFA 4.8 ± 1.1 7.7 ± 2.1 .002 ** 

Conductivity 8.52 ± 0.66 8.98 ± 0.89 .494  

Tannic acid 2.67 ± 0.7 3.95 ± 0.99 .003 ** 

TN 2.435 ± 0.379 2.144 ± 0.441 .144  

Inorganic N 0.08 ± 0.02 0.12 ± 0.13 .918  

SCOD : TCOD 0.37 ± 0.43 0.15 ± 0.04 .343  

OP : TP 0.31 ± 0.12 0.23 ± 0.1 .207  

TCOD : TN : TP 5.53 ± 1.11 8.19 ± 3.69 .063  

TVFA : TALK 0.53 ± 0.15 0.83 ± 0.29 .02 * 

TAN : TKN 1.21 ± 0.12 1.25 ± 0.3 .676  

TCOD : Sulfate 10.51 ± 4.15 16.34 ± 5.01 .018 * 

FS : TS 0.26 ± 0.02 0.30 ± 0.05 .069  

VS : TS 0.74 ± 0.02 0.70 ± 0.05 .069  

Fe(II) : S 0.012 ± 0.007 0.01 ± 0.003 .462  

Fe(II) : TP 0.013 ± 0.003 0.009 ± 0.003 .062  

TCOD : TKN 28.11 ± 4.31 46.88 ± 17.96 .009 ** 

* P < 0.05, ** P < .01, *** P < .001. 
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Table B-11. The P values and significance levels of the measured Day 0 chemical concentrations 

for the non-foaming and foaming EFFL field digester samples.  

Characteristic D0 g L-1, no-

foaming  

D0 g L-1, 

foaming  

P value Significance 

Cu 0.01 ± 0.001 0.006 ± 0.004 .304  

Fe 0.036 ± 0.003 0.038 ± 0.013 .844  

Ni 4.479 ± 5.234 0.004 ± 0.003 .008 ** 

TP 4.3 ± 0.17 5.8 ± 1.45 .03 * 

OP 1.5 ± 0.17 1.51 ± 0.12 .761  

TKN 2.16 ± 0.18 2.2 ± 0.16 .594  

TAN 2.83 ± 0.16 2.78 ± 0.43 .801  

Sulfate 8.62 ± 0.75 6.87 ± 2.57 .142  

TS 61 ± 3 91 ± 31 < .001 *** 

VS 45 ± 3 73 ± 37 .003  

pH 7.81 ± 0.16 7.50 ± 0.42 .185  

TCOD 57 ± 5 93 ± 37 .005 ** 

SCOD 10 ± 1 17 ± 1 < .001. *** 

TALK 8.01 ± 1.28 9.44 ± 2.61 .151  

TVFA 4.1 ± 0.4 7.6 ± 4.9 .001 ** 

Conductivity 8.47 ± 1.12 8.45 ± 1.08 1  

Tannic acid 2.93 ± 0.19 4.83 ± 0.65 < .001. *** 

TN 2.23 ± 0.19 2.26 ± 0.14 .754  

Inorganic N 0.08 ± 0.01 0.16 ± 0.20 .352  

SCOD : TCOD 0.17 ± 0 0.21 ± 0.06 .218  

OP : TP 0.35 ± 0.04 0.25 ± 0.09 .082  

TCOD : TN : TP 5.92 ± 0.54 7.17 ± 3.1 .937  

TVFA : TALK 0.54 ± 0.08 1.18 ± 1.78 .165  

TAN : TKN 1.32 ± 0.09 1.28 ± 0.22 .678  

TCOD : Sulfate 6.65 ± 1.12 10.73 ± 2.53 .008 ** 

FS : TS 0.27 ± 0.02 0.23 ± 0.13 .291  

VS : TS 0.73 ± 0.02 0.77 ± 0.13 .291  

Fe(II) : S 0.008 ± 0.003 0.008 ± 0.003 .315  

Fe(II) : TP 0.014 ± 0.002 0.013 ± 0.008 .793  

TCOD : TKN 26.31 ± 1.69 42.38 ± 20.54 .029 * 

* P < .05, ** P < .01, *** P < .001. 

 

Table B-12. The P values and significance levels of the foam potential (mL g TS-1) values for 

non-foaming and foaming samples.   

Sample P value Significance 

EF .666  

INF .864  

DL .012 * 

* P < .05. 
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Table B-13. The P values and significance levels of the SMY (mL g VS-1) values for non-

foaming and foaming samples.   

Sample P value Significance 

EF .031 * 

INF .331  

DL .003 ** 

* P < .05, ** P < .01, *** P < .001. 

 

Table B-14. Models used for supervised machine learning of foam potential and their RMSE and 

R2 values. 

Model RMSE R2 

RF 0.63 0.76 

SVM 0.85 0.66 

NN 1.05 0.63 

KNN 0.74 0.69 

Linear 0.81 0.64 

 

Foam potential was predicted using regression models in the caret package in RStudio as 

described in the Materials and Methods Section 5.3.4.  The RMSE and R2 values were used in 

place of accuracy and the kappa values as the data was continuous.  The RMSE and R2 values 

determined how well the predicted data points compared to the test data points.     
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Figure B-1. The foam potential (mL g TS-1) for non-foaming and foaming lab-digester samples 

grouped by primary digester liquid.  * P < .05 

 

Figure B-2. The SMY (mL g VS-1) for non-foaming and foaming lab-digester samples grouped 

by primary digester liquid.  * P < .05, ** P < .01. 
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APPENDIX C. CHAPTER 6 SUPPLEMENTARY  

Table C-1. The effect percentages of how well each BMP model from the literature fitted the 

measured SMY (mL CH4 g VS-1). 

Lab-digester Group 

No. 

1st 

Order 

1st Order 

Combined 

Chen & 

Hashimoto 

Gompertz 2nd 

Order 

1-1 1% 1% -4% 1% 1% 

1-2 2% 2% -10% 3% 2% 

1-3 2% 0% -7% 3% 2% 

1-4 4% 4% -14% 4% 4% 

1-5 10% 10% -39% 10% 10% 

2-7 -1% -1% 1% 1% -1% 

2-8 0% 0% -2% 1% 0% 

2-10 1% -2% 0% 1% 1% 

2-11 38% 32% 37% -109% 38% 

2-12 17% 15% -8% -29% 17% 

3-13 -176% -181% 253% 2% 135% 

3-14 -236% -43% 106% 91% 80% 

3-15 -1% -1% 0% 1% 0% 

3-16 0% -1% 0% 0% 0% 

3-17 1% -2% -1% 1% 1% 

3-18 -5% 0% 2% 2% 1% 

4-19 -7% -13% 27% -5% -2% 

4-20 6% 4% 2% -12% 4% 

4-21 4% 2% 2% -8% 3% 

4-22 5% 3% 1% -10% 5% 

4-23 -3% 4% -16% 4% 12% 

5-24 18% -123% 89% 3% 17% 

5-25 1% 1% -5% 1% 1% 

5-26 5% 5% -20% 5% 5% 

5-27 1% 0% -4% 1% 1% 

5-28 0% 4% -18% 7% 7% 

6-29 4% 5% -7% -4% 4% 

6-30 39% 40% -123% 13% 39% 

6-31 0% 0% -1% 1% 0% 

6-32 10% 10% -21% -6% 10% 

6-34 163% 164% -647% 158% 163% 

6-35 1% 1% -7% 2% 1% 

6-36 115% 115% -434% 94% 115% 

6-37 1% -1% -2% 1% 1% 

6-38 60% 60% -197% 25% 60% 

6-39 28% 27% -85% 7% 27% 

6-40 95% 95% -343% 66% 95% 

6-41 13% 16% -46% 7% 12% 

6-42 10% 6% -13% -6% 6% 

6-43 -2% -1% 2% 2% -2% 

6-44 31% 32% -86% 0% 31% 

6-45 5% 5% -22% 6% 5% 
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Figure C-1. The training data (black), test data (red), and forecasted data (green) from time series forecasting from the transformed 

BMP yields (mL g VS-1) for the best forecasting number for each digester group in Batch 1. 
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Figure C-2. The training data (black), test data (red), and forecasted data (green) from time series forecasting from the transformed 

BMP yields (mL g VS-1) for the best forecasting number for each digester group in Batch 2. 
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Figure C-3. The training data (black), test data (red), and forecasted data (green) from time series forecasting from the transformed 

BMP yields (mL g VS-1) for the best forecasting number for each digester group in Batch 3.   
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Figure C-4. The training data (black), test data (red), and forecasted data (green) from time series forecasting from the transformed 

BMP yields (mL g VS-1) for the best forecasting number for each digester group in Batch 4.   
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Figure C-5. The training data (black), test data (red), and forecasted data (green) from time series forecasting from the transformed 

BMP yields (mL g VS-1) for the best forecasting number for each digester group in Batch 5. 
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Figure C-6. The training data (black), test data (red), and forecasted data (green) from time series forecasting from the transformed 

BMP yields (mL g VS-1) for the best forecasting number for each digester group in Batch 6. 
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Figure C-7. The training data (black), test data (red), and forecasted data (green) from time series forecasting from the transformed 

BMP yields (mL g VS-1) for the best forecasting number for each digester group in Batch 6. 
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