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ABSTRACT

Desmond, Jacob R. Ph.D., Purdue University, August 2020. Quasidiagonal Ex-
tensions of C∗-algebras and Obstructions in K-theory. Major Professor: Marius
Dadarlat.

Quasidiagonality is a matricial approximation property which asymptotically cap-

tures the multiplicative structure of C∗-algebras. Quasidiagonal C∗-algebras must be

stably finite. It has been conjectured by Blackadar and Kirchberg that stably finite-

ness implies quasidiagonality for the class of separable nuclear C∗-algebras. It has also

been conjectured that separable exact quasidiagonal C∗-algebras are AF embeddable.

In this thesis, we study the behavior of these conjectures in the context of extensions

0→ I → E → B → 0. Specifically, we show that if I is exact and connective and B is

separable, nuclear, and quasidiagonal (AF embeddable), then E is quasidiagonal (AF

embeddable). Additionally, we show that if I is of the form C(X)⊗K for a compact

metrizable space X and B is separable, nuclear, quasidiagonal (AF embeddable), and

satisfies the UCT, then E is quasidiagonal (AF embeddable) if and only if E is stably

finite.
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1. INTRODUCTION

Quasidiagonality is a matricial approximation property that asymptotically captures

the multiplicative structure of C∗-algebras. Fundamental to the study of operator

algebras, this notion appears in Elliott’s classification program, as a structural prop-

erty of group C∗-algebras associated to amenable groups, and in the structure theory

of nuclear C∗-algebras. Voiculescu’s celebrated theorem [1] led to a new characteriza-

tion of quasidiagonality and was instrumental in proving his theorem on the homotopy

invariance of quasidiagonality [2].

Quasidiagonal C∗-algebras must be stably finite. The reduced group C∗-algebra of

nonamenable groups is neither quasidiagonal nor nuclear, despite being stably finite.

Motivated by this class of examples, Blackadar and Kirchberg conjectured in [3] that

all separable nuclear C∗-algebras which are stably finite must be quasidiagonal. As a

stunning accomplishment, Tikuisis-Winter-White proved that any separable nuclear

C∗-algebra A which satisfies the Universal Coefficient Theorem (UCT) and has a

faithful trace is quasidiagonal [4]. In particular, separable unital nuclear simple stably

finite C∗-algebras that satisfy the UCT are quasidiagonal.

This thesis confirms the Blackadar-Kirchberg conjecture for certain classes of non-

simple C∗-algebras in the context of extensions. Given a quasidiagonal ideal I and

quasidiagonal quotient B, it is natural to ask whether the extension given by the

short exact sequence 0→ I → E → B → 0 will also be quasidiagonal. The Toeplitz

algebra T , an extension of C(S1) by the compact operators K, is a well-known coun-

terexample. Indeed, since the Toeplitz algebra is generated by a nonunitary isometry,

it is not stably finite and therefore is not quasidiagonal. In [5], Spielberg observed a

connection between stably finite extensions and the behavior of the boundary map

that appears in the 6-term exact sequence. Given that I and B are stably finite, E

is stably finite if and only if ∂(K1(B)) ∩K0(I)+ = {0}.
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Constructing embeddings with prescribed K-theory was originally explored by

Voiculescu and Pimsner [6] in order to embed irrational rotation algebras into AF

algebras. Expanding on this notion and Spielberg’s result, N. Brown and Dadarlat

developed a method for proving when stably finite extensions are quasidiagonal with-

out having to assume the UCT [7]. Under the additional assumption that the quotient

B satisfies the UCT, N. Brown and Dadarlat proved that stably finite extensions are

quasidiagonal if and only if there exist embeddings of the ideal I into quasidiagonal

C∗-algebras with a particular effect on the K-theory. We use these results to show

that if I is exact and connective and B is separable, nuclear, and quasidiagonal, then

E is quasidiagonal. In addition, when the ideal is of the form C(X)⊗K, where X is

a compact metrizable space, and B is separable, nuclear, quasidiagonal, and satisfies

the UCT, then any extension E is stably finite if and only if it is quasidiagonal.

Aside from quasidiagonality, AF embeddability has also been of great interest

in the field. Indeed, every C∗-subalgebra of an AF algebra is separable, exact, and

quasidiagonal. It is still open whether the converse holds. One advancement is

that cones over separable exact C∗-algebras, which are quasidiagonal by Voiculescu’s

homotopy invariance theorem, were shown to be AF embeddable by Ozawa [8]. In

fact, due to work of Dadarlat-Pennig [9] [10], Gabe [11], and Rørdam [12], we know

that all exact connective C∗-algebras are AF embeddable. L. Brown showed in [13]

that extensions of AF algebras are AF. Expanding on this result, Spielberg proved

that if either the quotient or ideal is AF embeddable and the other is an AF algebra,

then any nuclear extension which is stably finite must be AF embeddable [5]. In a

similar vein to these results, we show that if I is exact and connective and B is nuclear

and AF embeddable, then E is AF embeddable.. With the additional assumption that

the B satisfies the UCT, we show that stably finite extensions by ideals of the form

C(X)⊗K, where X is a compact metrizable space, are AF embeddable.
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2. QUASIDIAGONALITY

While quasidiagonality is the central focus of this chapter, there are many tools

required to understand this notion and its consequences. For this reason, we will

give an overview of these concepts to establish the prerequisite theory needed for this

thesis.

2.1 PRELIMINARIES

A ∗-algebra is an algebra A over C with an involution ∗ : A→ A that satisfies the

following properties:

(i) (a∗)∗ = a

(ii) (a+ b)∗ = a∗ + b∗

(iii) (λa)∗ = λ̄a∗

(iv) (ab)∗ = b∗a∗

for all a, b ∈ A and λ ∈ C. A Banach ∗-algebra is a ∗-algebra endowed with a

complete submultiplicative norm ‖·‖ that satisfies ‖a∗‖ = ‖a‖ for all a ∈ A. If the

Banach ∗-algebra additionally satisfies the C∗-identity

‖a∗a‖ = ‖a‖2

for all a ∈ A, then it is a C∗-algebra. A map ϕ : A→ B between C∗-algebras A and B

is called ∗-preserving if ϕ(a∗) = ϕ(a)∗ for all a ∈ A. An algebra homomorphism from

A to B that is also ∗-preserving is called a ∗-homomorphism and are the fundamental

class of morphisms used to study C∗-algebras. A C∗-algebra with a unit is called a

unital C∗-algebra. The quintessential example of a C∗-algebra is the set of bounded
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linear operators B(H) on a Hilbert space H. Any closed self-adjoint subalgebra of

B(H), called a C∗-subalgebra, is also a C∗-algebra. In fact, every C∗-algebra has this

form.

Theorem 2.1.1 (Gelfand-Naimark). Every C∗-algebra A is isometrically ∗-isomorphic

to a C∗-algebra contained in B(H) for some Hilbert space H.

Given a locally compact Hausdorff space X, a continuous function f ∈ C(X,C) is

said to vanish at infinity if for every ε > 0 the set {x ∈ X : f(x) ≥ ε} is compact.

The collection of all functions that vanish at infinity is denoted as C0(X). Equipped

with the involution f 7→ f̄ and sup norm, it is clear that C0(X) is a commutative

C∗-algebra. The class of commutative C∗-algebras happens to be one of the most

deeply studied due to a structure theorem of Gelfand and Naimark.

Theorem 2.1.2 (Gelfand-Naimark). Every commutative C*-algebra A is isometri-

cally ∗-isomorphic to C0(X) for some locally compact Hausdorff space X.

For this reason, all topological spaces will be assumed to be locally compact Hausdorff.

It is well-known that these spaces allow for the existence of partitions of unity. Given

an open cover {Vi}i∈I , a partition of unity of X subordinate to {Vi}i∈I is a collection

of continuous functions {fi : X → [0, 1]}i∈I such that supp(fi) ⊂ Vi and for every

x ∈ X

(i)
∑

i∈I fi(x) = 1.

(ii) There exists a neighborhood of x on which only finitely many elements in {fi}

are nonzero.

For any compact subset K of a locally compact Hausdorff space X and a finite

subcover, there exists a partition of unity of K subordinate to that cover. This

notion generalizes to abstract C∗-algebras and is called nuclearity. In order to define

it, we must first introduce contractive completely positive (ccp) maps. A linear map

ϕ : A → B between C*-algebras A and B is called positive if the image of the

positive cone A+ = {a∗a : a ∈ A} of A is contained in the positive cone of B. Positive
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maps are automatically ∗-preserving, i.e. ϕ(a∗) = ϕ(a)∗ for all a ∈ A. Let Mn(A)

denote the C∗-algebra which consists of all n × n matrices with entries in A. Mn

will always stand for Mn(C). Given a positive map ϕ : A → B, if the extensions

ϕn : Mn(A) → Mn(B) given by aij 7→ [ϕ(aij)]ij are positive for all n ∈ N, then

ϕ is said to be completely positive. Furthermore, if a completely positive map is

a contraction, i.e. ‖ϕ‖ ≤ 1, then ϕ is contractive and completely positive (ccp).

It should be noted that ∗-homomorphisms are always ccp maps. These maps were

popularized by Arveson in an extension theorem analogous to Hahn-Banach for C∗-

algebras.

Theorem 2.1.3 (Arveson). Let A be a unital C∗-algebra and E ⊂ A a C∗-subalgebra

of A. Then every ccp map ϕ : E → B(H) extends to a ccp map ϕ̃ : A→ B(H).

With this notion, we are able to define nuclearity, which is a matricial approximation

property.

Definition 2.1.4. A C∗-algebra A is nuclear if for every finite subset F ⊂ A and ε >

0, there exist ccp maps ϕ : A→Mn and ψ : Mn → A such that ‖(ψ ◦ ϕ)(a)− a‖ < ε

for all a ∈ F .

The existence ccp maps which induce the diagrams

A A

Mk(n)

ϕn

idA

ψn

is referred to as the ccp map idA : A → A being nuclear. A C∗-algebra A is said to

be exact if there exists a faithful representation π : A→ B(H) such that π is nuclear.

Examples of nuclear C∗-algebras include commutative C∗-algebrasand AF algebras.

The class of nuclear C∗-algebras is closed under quotients, extensions, inductive limits,

and other constructions. One of the landmark theorems that utilize this notion is the

Choi-Effros Lifting theorem, which will be used repeatedly throughout this thesis.
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Theorem 2.1.5 (Choi-Effros Lifting Theorem, [14]). Let A be a separable C∗-algebra.

If Φ : A → B/I is a nuclear ccp map into a quotient of C*-algebras, there exists a

ccp lift ϕ : A→ B that makes the following diagram commute

B

A B/I

π
ϕ

Φ

Corollary 2.1.6. Let A be a separable nuclear C∗-algebra. If Φ : A → B/I is a ∗-

homomorphism into a quotient of C∗-algebras, then Φ lifts to a ccp map ϕ : A→ B.

In addition to the Choi-Effros lifting theorem, nuclearity is fundamental to the

structure of tensor products. In general, for two C∗-algebras A and B there are many

possible tensor product constructions. The two most widely used are the minimal

tensor A ⊗ B and the maximal tensor A ⊗max B. If A is nuclear, then A ⊗ B is

canonically isomorphic to A ⊗max B for all B, and furthermore implies there is a

unique cross-norm on the algebraic tensor of A and B that allows it to become a C*-

algebra. In this way, nuclearity of A implies there is a unique norm on the algebraic

tensor product of A and B that allows its completion to be a C∗-algebra. See [15] for

more information.

2.2 DEFINITIONS AND EXAMPLES

Quasidiagonality was first introduced by Halmos in [16] in 1970 as a means to

generalize the notion of a block diagonal operator. Given a separable Hilbert space H,

an operator in B(H) is block diagonal if there exists a sequence of finite dimensional

projections Pn ≤ Pn+1 which converge to 1 in the strong operator topology and

commute with the operator itself. By relaxing the assumption on the projections and

allowing them to instead commute asymptotically, we arrive at Halmos’s definition

of quasidiagonal.

Definition 2.2.1. A set of bounded operators S on a separable Hilbert space is

quasidiagonal if there exists an increasing sequence of projections Pn ≤ Pn+1 that
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converge to 1 in the strong operator topology and lim
n→∞

[[T, Pn]] = 0 for all n and all

T ∈ S.

Let K(H) denote the compact operators in B(H). When there is no confusion

regarding the underlying Hilbert space, we will write K for brevity. One can show that

a single operator T is quasidiagonal if and only if it is a compact perturbation of a

block diagonal operator. This is done by using the associated sequence of projections

Pn to create a block diagonal matrix B whose blocks are given by Pn+1 − Pn and

showing that the difference T − B is compact. In fact, this holds for quasidiagonal

sets as well.

Theorem 2.2.2 (Thm. 5.2 [17]). Let H be a separable Hilbert space. Then S is a

quasidiagonal set of operators if and only if for every finite subset F ⊂ S and ε > 0

there exists a block diagonal algebra B ⊂ B(H) such that S + K = B + K and for

every T ∈ F there exists an element C ∈ B such that ‖T − C‖ < ε.

To connect the notion of quasidiagonality with abstract C∗-algebras, we will need

to briefly introduce representations. Let H be a separable Hilbert space. A represen-

tation of a C∗-algebra A on H is a ∗-homomorphism π : A→ B(H). π is called faithful

if it is injective and essential if π(A)∩K = {0}. If A is unital, then a representation

is called unital if π(1) = 1H ∈ B(H). Let πi : A → B(Hi) be unital representations

on separable Hilbert spaces Hi for i = 1, 2. If there exists a sequence of unitaries

un : H1 → H2 such that ‖unπ1(a)u∗n − π2(a)‖ → 0 for all a ∈ A, then π1 and π2 are

said to be approximately unitarily equivalent. If the difference unπ1(a)u∗n − π2(a) is

always compact, then the two representations are said to be approximately unitarily

equivalent modulo the compacts. Below is one version of Voiculescu’s theorem, which

is not only essential to the discussion of quasidiagonality but also a fundamental tool

within operator algebras in its own right.

Theorem 2.2.3 (Voiculescu, [1]). Let H be a separable Hilbert space and let A ⊂

B(H) be a C∗-algebra such that 1H ∈ B(H). Let ι : A ↪→ B(H) denote the canonical

inclusion and π : A→ B(K) be a unital representation of A on another Hilbert space
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K such that π(A ∩ K(H)) = 0. Then ι ⊕ π is approximately unitarily equivalent

modulo the compact operators to ι.

Corollary 2.2.4. Let A be a separable unital C∗-algebra and πi : A→ B(Hi), i = 1, 2,

be faithful unital essential representations of A onto separable Hilbert spaces Hi. Then

π1 and π2 are approximately unitarily equivalent modulo the compacts.

Let A be a unital C∗-algebra and let π : A → B(H) be a unital faithful repre-

sentation of A on H. Suppose that π(A) is a quasidiagonal set of operators. While

π(A) may intersect K nontrivially, its infinite multiple π∞ : A → B(⊕H) given

by a 7→ diag(π(a), π(a), . . . ) will be a faithful unital essential representation of A.

By Voiculescu’s theorem, any faithful unital essential representation ρ will be ap-

proximately unitarily equivalent modulo the compacts and thus ρ(A) will also be a

quasidiagonal set of operators. This motivates the following definition.

Definition 2.2.5. A separable C*-algebra A is said to be quasidiagonal if there exists

a faithful representation π : A → B(H) on a separable Hilbert space H such that

π(A) is a quasidiagonal set of operators.

It should be noted, however, that there exist examples of C*-algebras where A

is quasidiagonal and π is a faithful representation but π(A) is not a quasidiagonal

set. To obtain a more usable characterization of quasidiagonality, we again turn to

Voiculescu.

Theorem 2.2.6 (Voiculescu, [2]). A C*-algebra A is quasidiagonal if and only if for

every finite subset F ⊂ A and ε > 0 there exists a ccp map ϕn : A→Mn such that

(i) ‖ϕn(ab)− ϕn(a)ϕn(b)‖ < ε for all a, b ∈ F

(ii) ‖a‖ − ε < ‖ϕn(a)‖ for all a ∈ F .

This local definition can be altered to a global characterization which uses nets

to account for the possibility that A maybe not be separable. However, since this

thesis will only be concerned with separable quasidiagonal C∗-algebras, we will only
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need the sequential characterization. Let A be a separable quasidiagonal C∗-algebra.

By taking a countably dense subset D of A, one may iteratively use the above defini-

tion on an increasing subset of D to construct a sequence of ccp maps ϕn : A →

Mk(n) that satisfy Properties (i) and (ii) from above. Property (i) implies that

‖ϕn(ab)− ϕn(a)ϕn(b)‖ → 0 for all a, b ∈ A and we say that the sequence ϕn is

asymptotically multiplicative. Property (ii) implies that ‖ϕn(a)‖ → ‖a‖ for all a ∈ A

and we say that the sequence ϕn is asymptotically isometric.

Recall that
∏

nMk(n) is the infinite product of Mk(n), where the norm of an element

m = (m1,m2, ...) is given by ‖m‖ = supn ‖mn‖. Contained inside this C∗-algebra is

the closed two-sided ideal
⊕

nMk(n), which consists of all elements m that satisfy

‖mn‖ → 0. If A is quasidiagonal, one can use the sequence of asymptotically mul-

tiplicative and asymptotically isometric ccp maps ϕn to embed A into the quotient∏
Mk(n)/

⊕
Mk(n). Indeed, defining ψ : A →

∏
Mk(n) to map a 7→ (ϕ1(a), ϕ2(a), ...)

and composing ψ with the canonical quotient map π :
∏

Mk(n) →
∏

Mk(n)/
⊕

Mk(n)

yields the desired ∗-monomorphism. Observe that since the maps ϕn are asymptot-

ically multiplicative and asymptotically isometric, π ◦ ψ will be multiplicative and

injective, respectively.

Proposition 2.2.7. Let A be a separable C*-algebra. A is quasidiagonal if and only

if there exists a *-monomorphism

Φ : A ↪→
∏
n

Mk(n)

/⊕
n

Mk(n)

that has a ccp lift ψ : A→
∏
n

Mk(n).

Proof. We have already described how to construct Φ from an asymptotically mul-

tiplicative and asymptotically isometric sequence of ccp maps. Conversely, let Φ

be an embedding into the quotient algebra and ψ the corresponding ccp lift. For

every n, define ϕn : A → Mk(n) to map an element a ∈ A to the nth compo-

nent of the element ψ(a) = (a1, a2, . . . ) ∈
∏

Mk(n). Fix a finite subset F ⊂ A

and ε > 0. Let a, b ∈ F . Since Φ(ab) = Φ(a)Φ(b), there must exist an element
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m ∈
⊕

Mk(n) such that ψ(ab)− ψ(a)ψ(b) = m. This implies there exists an N such

that ‖ϕn(ab)− ϕn(a)ϕn(b)‖ < ε for n ≥ N . Since F is finite, there are a finite num-

ber of pairs of elements in F and each pair yields an N in this manner. Selecting the

maximum shows that the sequence ϕn is asymptotically multiplicative. Recall that

the norm of any element a ∈
∏

Mk(n) is given by

‖π(a)‖ = lim sup
n
‖an‖

Since Φ = π ◦ ψ, this immediately implies that the sequence ϕn is asymptotically

isometric.

The existence of a ccp lift is essential to quasidiagonality. C*-algebras that em-

bed into the quotient algebra
∏

Mk(n)

/⊕
Mk(n) are MF-algebras, a strictly weaker

property than quasidiagonality. Note that if A is nuclear and an MF-algebra, then it

is also quasidiagonal by the Choi-Effros lifting theorem.

We now introduce some permanence properties and examples.

Proposition 2.2.8. C*-algebras enjoy the following permanence properties:

(i) Every C∗-subalgebra of a quasidiagonal C*-algebra is quasidiagonal.

(ii) The unitization of any quasidiagonal C*-algebra remains quasidiagonal.

(iii) If A and B are quasidiagonal, then so is their minimal tensor product A⊗B.

(iv) If An are quasidiagonal C*-algebras, then the inductive limit lim
→
An is quasidig-

onal if the connecting maps are injective.

(v) If An are quasidiagonal C*-algebras, then so is the infinite product
∏
An.

One permanence property which shows that quasidiagonality has a topological

nature is due to Voiculescu.

Theorem 2.2.9 (Voiculescu [2]). If A is quasidiagonal and homotopic to a C∗-algebra

B, then B is also quasidiagonal.
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Example 2.2.10. The matrices Mn are trivially quasidiagonal, and by the above

proposition, so must all the finite dimensional C*-algebras. Since AF algebras can

be realized as inductive limits of finite dimensional algebras with injective connecting

maps, (iv) from Prop. 2.2.8 implies that all AF algebras are quasidiagonal. In

particular, the universal UHF C∗-algebra U is quasidiagonal and is given by the

inductive limit

C M2! M3! M4! · · ·ϕ1 ϕ2 ϕ3 ϕ4

whose connecting maps ϕn map an element a ∈ Mn! to n + 1 copies of a along the

diagonal within M(n+1)!.

Example 2.2.11. Commutative C*-algebras C0(X) are always quasidiagonal. Let

{xn} be a dense sequence inX. Using point evaluations xn 7→ f(xn) for f ∈ C0(X), we

can construct ccp maps to be ϕn(f) = diag(f(x1), . . . , f(xn). These maps are clearly

multiplicative and since the sequence {xn} is dense in X, ‖diag(f(x1), . . . , f(xn))‖

will converge to ‖f‖. A similar line of reasoning can be used to show nonseparable

C0(X) are quasidiagonal that the residually finite dimensional (RFD) C*-algebras are

also quasidiagonal.

Example 2.2.12. Both the cone CA = C0(0, 1]⊗A and suspension SA = C0(0, 1)⊗A

are quasidiagonal for any C*-algebra A. Indeed since C0[0, 1) = CC is homotopic to

the zero C*-algebra, Voiculescu’s homotopy invariance yields C0[0, 1) is quasidiago-

nal. This homotopy can be passed through after tensoring with A to yield that CA

and its subalgebra SA are quasidiagonal. Interestingly, this also shows that quasidi-

agonality does not behave well under quotients since every C*-algebra is the quotient

of quasidiagonal C∗-algebras A ' CA/SA.

Example 2.2.13. Group C∗-algebras are fundamental examples within the field of

operator algebras. It is well-known that if the reduced group C∗-algebra C∗λ(G) is

quasidiagonal for a discrete group G, then G is amenable. In a remarkable accom-

plishment, Tikuisis-Winter-White proved in [4] that the converse holds: all discrete

amenable groups G generate quasidiagonal group C∗-algebras.
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2.3 STABLY FINITE C∗-ALGEBRAS

In this section we will introduce stably finiteness and its connection to quasidiag-

onality. We will provide a class of examples that show quasidiagonality is a stronger

property and how this class of examples relates to the Blackadar-Kirchberg conjec-

ture. To motivate the notion of stably finite C∗-algebras, we recall a particular

characterization of finite sets: a set X is finite if and only if every injective function

f : X → X is a bijection. Replacing sets with Hilbert spaces and injective functions

with isometries, we can generalize this notion to C∗-algebras since every C∗-algebra

can be concretely represented as operators on some Hilbert space. We are thus led

to the following definition.

Definition 2.3.1. A unital C∗-algebra A is said to be finite if every isometry is a

unitary, i.e. for every u ∈ A, u∗u = 1 implies that uu∗ = 1. A is said to be stably

finite if Mn(A) is finite for every n ∈ N. A non-unital C∗-algebra is said to be finite

if its unitization is.

Example 2.3.2. For every natural number n, the C∗-algebras Mn are stably finite.

This follows from the fact that Mn has a faithful trace. Furthermore, the finite

dimensional C∗-algebras stably finite since they are direct sums of matrices. This

implies that AF algebras are stably finite.

Example 2.3.3. Let X be a locally compact Hausdorff space. Then the commutative

C*-algebra C0(X) is stably finite. Indeed, since C0(X) is quasidiagonal, it must be

stably finite by Prop. 2.3.6.

Example 2.3.4. Let {ei}i∈N be the canonical orthonormal basis of the infinite di-

mensional Hilbert space l2(N). The unilateral shift operator S defined by Sei = ei+1

is a nonunitary isometry. Indeed, we have that

S∗S = 1

SS∗ < 1
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and hence the C∗-algebra it generates is not (stably) finite. There are even examples

of C∗-algebra which are finite yet not stably finite, as shown by Clarke in [18].

The notion of finiteness can be phrased in terms of projections instead of uni-

taries. The predominant way to compare the size of projections is using Murray-von

Neumann equivalence, which is the backbone of the construction of K0(A). Two

projections p, q ∈ P∞(A) are said to be Murray-von Neumann equivalent, denoted as

p ∼ q, if there exists a v ∈ Mm,n(A) such that p = v∗v and q = vv∗. A projection

p ∈ A is called infinite if there exists a a projection q ∈ A such that p ∼ q < p. If p

is not infinite, then it is finite.

Proposition 2.3.5. The following are equivalent for a unital C∗-algebra.

(i) A is finite.

(ii) All projections in A are finite.

(iii) 1 ∈ A is a finite projection.

Proof. (i) =⇒ (ii). Suppose p, q ∈ A are projections such that p ∼ q ≤ p. Let v

be a partial isometry such that v∗v = p and vv∗ = q. Using the well-known identity

v = qv = pv = qvp and the observation that q ≤ p implies that qp = pq = q, we can

write s = v + (1 − p) and calculate that s∗s = 1 and ss∗ = 1 − (p − q). Since A is

finite, p− q = 0 and hence all projections are finite.

(ii) =⇒ (iii). Trivial.

(iii) =⇒ (i). Suppose s ∈ A satisfies s∗s = 1. Then 1 = s∗s ∼ ss∗ ≤ 1. But 1 is

finite, so ss∗ ∼ 1 and hence ss∗ = 1.

We now present one fundamental relationship between stably finiteness and qua-

sidiagonality.

Proposition 2.3.6. Every quasidiagonal C*-algebra A is stably finite.
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Proof. It suffices to show that A is finite since the quasidiagonality and nuclearity

of Mn implies that Mn(A) ' Mn ⊗ A is quasidiagonal. Suppose for the sake of

contradiction that A contain a nonunitary isometry s. Let ϕn : A → Mk(n) be a set

of ccp maps that are asymptotically multiplicative and asymptotically isometric. By

assumption, we must have that ‖ϕn(s)ϕn(s)∗ − 1‖ is bounded away from 0. Note that

‖T ∗nTn − 1‖ → 0 as n → ∞ implies ‖TnT ∗n − 1‖ → 0 for any sequence of operators

Tn ∈ Mk(n). Since s∗s = 1 implies that ‖ϕn(s)∗ϕ(s)− 1‖ → 0 as n → ∞, we arrive

at a contradiction.

This gives us many ways to construct C∗-algebras which are not quasidiagonal.

Simply take any operator S ∈ B(H) which is a nonunitary isometry and the C∗-

algebra it generates will not be quasidiagonal.

The converse to Prop. 2.3.6 not true. C∗λ(F2), the reduced C∗-algebra generated

by the free group on 2 generators F2, is stably finite but not quasidiagonal. Stably

finiteness follows immediately from the fact that reduced group C∗-algebras have a

faithful trace τ . Indeed, if s∗s = 1, then τ(ss∗) = τ(s∗s) = 1, and hence ss∗ −

1 = 0. Those accustomed to working with operator algebras will notice that F2

is not amenable. As discussed in Example 2.2.13, this implies that C∗λ(F2) is not

quasidiagonal. Furthermore, the lack of amenability of F2 also implies that C∗λ(F2) is

not nuclear. Nuclearity, like quasidiagonality, is a matricial approximation property.

This leads one to question whether the additional assumption of nuclearity combined

with being stably finite is strong enough to capture the matricial approximations

induced by quasidiagonality. Indeed, this is exactly what Blackadar and Kirchberg

conjectured in [3].

Conjecture 2.3.7 (Blackadar-Kirchberg). Every separable, stably finite, nuclear C∗-

algebra is quasidiagonal.

Even though we have not yet introduced the Universal Coefficient Theorem (UCT),

there has been major progress towards answering this question using the UCT. Recall

that a C∗-algebra is simple if it contains no nontrivial ideals.
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Theorem 2.3.8 (Tikuisis-Winter-White, [4]). Let A be a separable, stably finite,

nuclear, simple, unital C∗-algebra that satisfies the UCT. Then A is quasidiagonal.

This major result leads one to draw their focus to the structure of non-simple C∗-

algebras and the non-UCT case. Since extensions of C∗-algebras are a method for

creating C∗-algebras that contain nontrivial ideals, it is a natural setting in which to

test further examples.
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3. EXTENSIONS OF C∗-ALGEBRAS

To examine whether or not all nuclear stably finite C*-algebras are quasidiagonal,

we will test the Blackadar-Kirchberg conjecture in the setting of extensions. Given

a short exact sequence of C*-algebras 0 → I → E → B → 0 such that I and B are

nuclear and quasidiagonal, we wish to answer two questions. The first is whether the

necessary condition that E is stably finite holds. In general, the answer is no. Recall

the unilateral shift operator S from Example 2.3.4. The Toeplitz algebra T is C∗(S),

the C∗-algebra generated by S. Let H = `2(N) be a separable, infinite dimensional

Hilbert space with canonical orthonormal basis {en}n∈N. Let Pn be the projection

onto the subspace spanned by en. We will first show that the compact operators K

belong to T . Indeed, it suffices to show that T contains all the finite rank operators.

Let Fn = Sn(S∗)n. Then each Pn can be seen to belong to T using an iterative

process:

Pn = (1− Fn)−
n−1∑
i=1

Pi

The projections Pn can be used to construct any finite rank operator and hence the

compact operators sit inside of T as a closed, two-sided ideal. Observe that π(S) is

a unitary in T /K since 1 − SS∗ = P1 is compact. One can show that σ(π(S)) = T

and hence T/K = C∗(π(S)) = C(T).

This yields the following extension

0 K T C(T) 0

We have already shown that both K and C(S1) are quasidiagonal and nuclear. Since

extensions of nuclear quotients by nuclear ideals are nuclear, T is nuclear. On the

other hand, T is not finite. This example demonstrates that we will needed an

additional assumption on the center term of a short exact sequence to ensure that it



17

is stably finite. Spielberg observed that this condition can be rephrase in terms of

K-theory, which we will examined in Section 3.2. The second question is one of the

central focuses of this thesis.

Question 3.0.1. Let 0 → I → E → B → 0 be a short exact sequence, where I and

B are separable nuclear quasidiagonal C∗-algebras. If E is stably finite, must it be

quasidiagonal?

In a similar manner, we can also examine the AF embeddability conjecture con-

cerning separable exact quasidiagonal C∗-algebras. Phrased in the context of exten-

sions, we present another question this thesis addresses.

Question 3.0.2. Let 0 → I → E → B → 0 be a short exact sequence, where I and

B are separable exact AF embeddable C∗-algebras. If E is quasidiagonal, must it be

AF embeddable?

In order to properly discuss this, we start with the theory of extensions.

3.1 EXTENSIONS AND BUSBY INVARIANTS

Within topology, extensions and quotients are natural constructions that allow one

to combine topological spaces in order to create new ones. In a similar vein, extensions

of C∗-algebras can be seen as a noncommutative analogue to these methods. Suppose

X and Y are compact Hausdorff spaces and f : X → Y is a continuous map. It is well-

known that f induces a *-homomorphism f ∗ : C(Y )→ C(X) given by g 7→ g ◦f . Let

g, h ∈ C(Y ) be two continuous functions such that g(f(x)) = h(f(x)) for all x ∈ X.

Should f happen to be surjective, then g = h on all of Y and hence f ∗ is injective.

Let us assume that f is injective. Since X is compact and Y is Hausdorff, X is a

closed subspace of Y after identifying it with its image f(X). The Tietze extension

theorem allows one to show that for any function h ∈ C(X) there exists a g ∈ C(Y )
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such that g|X = h. But since g|X = f ∗(g), we have that f ∗ is injective. These two

observations show that any short exact sequence

0 X Y Y/X 0

of compact Hausdorff spaces induces an extension of C∗-algebras

0 C(Y/X) C(Y ) C(X) 0.

We generalize this construction to arbitrary C∗-algebras with the following definition.

Definition 3.1.1. Given two C∗-algebras I and B, an extension of B by I is any

C∗-algebra E that satisfies the following short exact sequence

0 I E B 0ι π

where I is a closed, two-sided ideal in E, ι is the inclusion of I into E, and π is the

surjective quotient map that induces B ' E/I.

Example 3.1.2. A (trivial) extension of B by I is given by

0 I I ⊕B B 0

Example 3.1.3. Extensions of C by C0(R):

0 C0(R) E C 0

There are several possibilities for E, namely C(T), C0([0, 1)), C0((0, 1]), and the trivial

extension C0(R)⊕ C.

Example 3.1.4. Recall the Toeplitz algebra T , the C*-algebra generated by the

unilateral shift operator is an extension of C(T) by the compact operators K.

0 K T C(T) 0

In order to properly discuss extensions of C∗-algebras, we will use the framework

Busby introduced in [19], which is centered around multiplier algebras. Multiplier

algebras, similar to unitizations, are a way of adding a unit to any C∗-algebra. While

the unitization can be thought of the minimal way to do this, multiplier algebras can

be thought of as the maximal way to add a unit.
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Definition 3.1.5. An ideal I of a C∗-algebra A is said to be essential if for every

nontrivial ideal J in A, I ∩ J 6= {0}.

Essential ideals capture information about an ideal that truly relates to the am-

bient C∗-algebra. Given two arbitrary C∗-algebras A and B, A is always an ideal

of A ⊕ B, but it is certainly not an essential ideal. For arbitrary ideals I and J in

A such that I ∩ J = {0}, the product of any element a ∈ I with b ∈ J must equal

0. Conversely, if T ∈ I ∩ J , then IJ = 0 implies T ∗T = 0 and hence T = 0. The

observation I ∩ J = {0} if and only if IJ = 0 is often used without reference.

Proposition 3.1.6. Let I be an ideal of a C∗-algebra A. The following are equivalent:

(1) I is essential in A

(2) If aI = 0 for some a ∈ A, then a = 0.

Proof. Suppose that I is essential in A and that aI = 0 for some a ∈ A. Let J be

the ideal generated by a, i.e. J =
{
bab′ : b, b′ ∈ A

}
. For any d ∈ I, db ∈ I and hence

d(bab′) = (db)ab′ = 0. Since IJ = 0, the above observation shows that I ∩ J = {0}.

But since I is essential in J , J = 0 and hence a = 0. Conversely, if we assume that I

is not essential in A, then there exists a nontrivial ideal J such that I ∩ J = {0}. Let

a ∈ J be a nonzero element. Then ab ∈ I ∩ J for all b ∈ J , which shows that aI = 0

for a nonzero element a.

Definition 3.1.7. The multiplier algebra of a C∗-algebra A, denoted as M(A), is

the universal, unital C∗-algebra that contains A as an essential ideal and satisfies the

following universal property: Given any C∗-algebra D which contains A as an ideal,

there exists a unique *-homomorphism ϕ : D → M(A) that makes the following

diagram commute

A D

M(A)

ϕ

The map ϕ is injective if and only if A is essential in D. Upon inspection of the

definition it is not clear that multiplier algebras must exist. However, this does indeed



20

hold to be true, see [20] for an in-depth construction of these objects. In general, a

concise description of multiplier algebras is hard to provide, especially since they are

typically nonseparable. However, there are a few examples that can be given:

Example 3.1.8. The multiplier algebra of any unital C∗-algebra is itself. Indeed

since A is an essential ideal M(A),

(1M(A) − 1A)A = 1M(A)A− A = 0

which by Proposition 3.1.6 yields 1M(A) = 1A and hence A =M(A).

Example 3.1.9. Given a commutative C∗-algebra C0(X), its multiplier algebra is

C(βX), where βX is the Stone-Cech compactification of X. For a proof, see [21,

Example 3.1.3].

Fix an ideal I and quotient B. In order to classify the possible extensions E,

Busby observed that extensions could be placed in a 1-1 correspondence with ∗-

homomorphisms from the quotient B to the corona algebra Q(I), which is the quotient

M(I)/I. Consider the following diagram.

0 I E B 0

0 I M(I) Q(I) 0

ϕ η

π

The map ϕ : E →M(I) exists by the universal property of multiplier algebras, and

moreover is injective if and only if I is essential in E. Define the map η to be the

composition of ϕ with the quotient map π : M(I) → Q(I), which will make the

above diagram commute.

Definition 3.1.10. The map η : B → Q(I) given above is called the Busby invariant

of the extension 0→ I → E → B → 0.

It should be noted that, similar to the universal property for multiplier algebras,

the map η is injective if and only if I is essential in E. Since every extension can
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be associated to a Busby invariant, it is natural to question whether a given map

η : B → Q(I) induces an extension of B by I.

Definition 3.1.11. Let A1, A2, B, be C∗-algebras and let ϕi : Ai → B be ∗-homo−

morphisms. The pullback (C, {ψi}) of (A1, A2) along (ϕ1, ϕ2) is a C∗-algebra C and

set of ∗-homomorphisms ψi : C → Ai that satisfy the following universal property:

For any C*-algebra D with ∗-homomorphisms σi : D → Ai such that ϕ1◦σ1 = ϕ2◦σ2,

there exists a ∗-homomorphism θ : C → D such that σi = ψi ◦ θ.

The pullback of (M(I), B) along (π, η) is isomorphic to the subalgebra E(η) :=

{(x, b) ∈ M(I)) ⊕ B : π(x) = η(b)}. In this way a Busby invariant η induces an

extension and ϕ : E → E(η) in the following diagram is a ∗-isomorphism.

0 I E B 0

0 I E(η) B 0

ϕ

This establishes a bijection between the extensions ofB by I and the *-homomorphisms

from B to Q(I). Often extensions and Busby invariants are referred to interchange-

ably.

Let us now assume that I is stable, i.e. I ⊗ K ' I. Given an isomorphism

between M2 ⊗ K ' K, there is an induced isomorphism between M2 ⊗M(I ⊗ K) '

M(I ⊗K) and hence one for the corona algebras M2 ⊗Q(I ⊗K) ' Q(I ⊗K) using

the identificationM(M2(I)) 'M2⊗M(I). Given two Busby invariants η1, η2 : B →

Q(I ⊗K), we can define their sum in the following way:

(η1 ⊕ η2)(b) :=

 η1(b) 0

0 η2(b)

 ∈M2 ⊗Q(I ⊗K) ' Q(I ⊗K)

In order to ensure that this sum does not depend on the particular isomorphism

M2 ⊗ K ' K, we will define an equivalence relation on the set of Busby invariants.

Two invariants η1 and η2 are said to be strongly equivalent if there exists a unitary

u ∈ M(I) such that π(u)∗η1(b)π(u) = η2(b) for all b ∈ B. In this case we write

η1 ∼SE η2. Strongly equivalent Busby invariants induce isomorphic extensions.
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Definition 3.1.12. A Busby invariant η : B → Q(I) is called trivial if it lifts to a

*-homomorphism ϕ : B →M(I). If η⊕ τ is strongly equivalent to η for every trivial

extension τ , then η is said to be absorbing.

If two extensions τ1 and τ2 are both trivial and absorbing, then τ1, τ1 ⊕ τ2, and

τ2 are all strongly equivalent and therefore E(τ1) ' E(τ2). Trivial extensions have

another nice property. Let τ be a trivial extension and ψ : B →M(I) be a lift. Given

an arbitrary extension η, recall that E(η) ' {(x, b) ∈M(I))⊕B : π(x) = η(b)}. For

x ∈ M(I) and b ∈ B, we can define an embedding of E(η) ↪→ E(η ⊕ τ) via the

mapping

x⊕ b 7→

x 0

0 ψ(b)

⊕ b.
Strong equivalence between Busby invariants does not give them enough structure

to be interesting. To remedy this, we will define a second equivalence relation on the

set of Busby invariants. We say that η1 ∼ η2 if there exists trivial extensions τ1, τ2 such

that η1⊕τ1 is strongly equivalent to η2⊕τ2. The quotient of this relation is an abelian

semigroup denoted as Ext(B, I) and we write that [η1] = [η2]. This technique was first

introduced by Brown-Douglas-Fillmore when they studied extensions of commutative

C∗-algebras by the compact operators [22].

The last theorem we will need is a generalization Kasparov gave of Voiculescu’s

theorem, which asserts that under certain conditions, trivial absorbing extensions

exist.

Theorem 3.1.13. ( [23, Thm. 15.12.3]) Assume that B is separable, I is σ-unital,

and either B or I is nuclear. Let ρ : B → B(H) be a faithful representation such that

H is separable, ρ(B)∩K = {0} and the orthogonal complement of the nondegeneracy

subspace of ρ(B) (i.e. H 	 ρ(B)H) is infinite dimensional. Regarding B(H) '

B(H)⊗ 1 ⊂M(K ⊗ I) as scalar operators we get a short exact sequence

0 K ⊗ I (ρ(B)⊗ 1) + (K ⊗ I) B 0.

If η is the induced Busby invariant, then η is both trivial and absorbing.
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The existence of a trivial absorbing extension η ensures that Ext(B, I) has an

identity element. Indeed, by the properties of trivial and absorbing we have that

the trivial invariant η ⊕ η is strongly equivalent to η. Using this fact shows that

γ ∼ γ ⊕ η for any arbitrary extension γ since (γ) ⊕ η ⊕ η is strongly equivalent to

(γ ⊕ η) ⊕ η. Under the assumptions of Theorem 3.1.13, the semigroup Ext(B, I)

contains an identity and is therefore an abelian monoid. In general, Ext(B, I) is not a

group. Let Ext−1(B, I) denote the subgroup of invertible elements within Ext(B, I).

When B is nuclear and both I and B are separable, the Choi-Effros theorem implies

that Ext−1(B, I) = Ext(B, I) by using a generalized version of Stinespring’s theorem

to dilate the ccp lift to a ∗-homomorphism [23, 15.7]. Every Busby invariant η : B →

Q(I) corresponds to a unique extension of the form

0 I ⊗K E B 0 (3.1)

Since quasidiagonality and AF embedability pass to subalgebras, it suffices to work

with extensions of the form displayed in Equation 3.1, i.e. elements in Ext(B, I ⊗K).

3.2 SPIELBERG’S CHARACTERIZATION OF STABLY FINITE EX-

TENSIONS

Spielberg’s result characterizes stably finite extensions in terms of K-theory. In

order to understand this result, we give a brief overview of K-theory, which is a pair of

functors K0 and K1 that associates to every C∗-algebra A abelian groups K0(A) and

K1(A). K0(A) is created using homotopy classes of projections and K1(A) is similarly

constructed using homotopy classes of unitaries. These groups serve as topological

invariants for C∗-algebras and not only can be used to tell C∗-algebras apart, but even

serves as a complete invariant for certain classes of C∗-algebras. Readers looking for

an in-depth treatment of this subject should consult [23] or [24].

The word projection will always refer to a self-adjoint idempotent, i.e. an element

that satisfies p = p2 = p∗. Define Pn(A) to be the set of all projections which belong
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to Mn(A), M∞(A) = ∪∞n=1Mn(A), and P∞(A) = ∪∞n=1Pn(A). Given projections p, q ∈

P∞(A), there is a binary operation on P∞(A) defined by

p⊕ q = diag(p, q) =

 p 0

0 q

 ∈ P∞(A).

The projections p and q are said to be Murray-von Neumann equivalent, written

as p ∼0 q, if there exists a partial isometry v ∈ Mn,m(A) such that v∗v = p and

vv∗ = q. Assume that A is unital. Let D(A) denote the abelian semigroup obtained

by quotienting P∞(A) under the relationship ∼0. The addition on D(A) is given by

[p]D + [q]D = [p⊕ q]D.

Applying the Grothendieck construction to (D(A),+) yields the abelian group K0(A),

whose elements are denoted as the difference of classes of projections [p]0 − [q]0 for

p, q ∈ P∞(A). Two classes [p]0, [q]0 ∈ K0(A) are equal if and only if there exists

an r ∈ P∞(A) such that p ⊕ r ∼0 q ⊕ r. Given a *-homomorphism ϕ : A → B

between unital C∗-algebras, there is an induced map K0(ϕ) : K0(A)→ K0(B) given

by [p]0 7→ [ϕ(p)]0 ∈ K0(B). For brevity, we usually write ϕ∗ in place of K0(ϕ). This

construction is also valid in the nonunital case.

If A is nonunital, we will define K0(A) in the following way. Consider the following

split short exact sequence

0 A Ã C 0ι
π

λ

where Ã is the unitization of A. K0(A) is defined to be the kernel of the group

homomorphism K0(π) : K0(Ã)→ K0(C) = Z.

Similar to how K0(A) is constructed via equivalence classes of projections, K1(A)

is constructed via equivalence classes of unitaries. Let A be a unital C∗-algebra and

let U(A) denote the unitaries in A, i.e. all elements u ∈ A that satisfy u∗u = uu∗ = 1.

Let Un(A) = U(Mn(A)) and U∞(A) = ∪∞n=1Un(A). Un(A) comes equipped with a

natural abelian semigroup structure:

u⊕ v = diag(u, v) =

 u 0

0 v

 ∈ Un(A),
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where u, v ∈ Un(A). Two unitaries u ∈ Un(A), v ∈ Um(A) are said to be equivalent

(written as u ∼1 v) if there exists a positive integer k such that u⊕1k−n is homotopic

in Uk(A) to v ⊕ 1k−m. Recall that u is homotopic to v in a topological space X if

there exists a continuous function F : [0, 1]→ X such that

F (0) = u

F (1) = v.

For any C∗-algebra A, define

K1(A) = U∞(Ã)/ ∼1.

The functors K0 and K1 are split exact but not exact. However, associated to any

short exact sequence of C∗-algebras

0 I A B 0ι π

is the 6-term exact sequence

K1(I) K1(A) K1(B)

K0(B) K0(B) K0(I)

K1(ι) K1(π)

∂∂

K0(π) K0(ι)

where the two maps ∂ : K1(B) → K0(I) and ∂ : K0(B) → K1(I) are referred to as

the boundary maps.

In addition to the group structure of K0(A), we can also show that in specific

cases, K0(A) is an ordered group.

Definition 3.2.1. An ordered group is a pair (G,G+), where G is an abelian group

and G+ is a subset of G that satisfies the following three properties:

(i) G+ +G+ = G+

(ii) G+ −G+ = G
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(iii) G+ ∩ −G+ = {0}

The subset G+ is called the positive cone of G and induces a partial ordering ”≤” on

G: x ≤ y if y − x ∈ G+. In this case, the elemental y − x is said to be positive. If

y − x ∈ G+\{0}, then x− y is said to be strictly positive and we write x < y.

Definition 3.2.2. An order unit u for an ordered group (G,G+) is a positive element

such that for every x ∈ G, there exists a positive integer n such that x ≤ nu. In

this case we will emphasize the existence of u by writing (G,G+, u) and say that G is

a scaled ordered group. If every nonzero positive element in an ordered group is an

order unit, then (G,G+) is said to be simple.

Example 3.2.3. By far the most well-known examples are the different possible

positive cones of Rn (or Zn). The two that occur most frequently are the standard

cone {v ∈ Rn|vi ≥ 0 for 1 ≤ i ≤ n} and the strict cone {v ∈ Rn|vi > 0 for 1 ≤ i ≤ n}.

For both choices of positive cones, the canonical order unit is (1, 1, . . . , 1), but notice

that any strictly positive vector is also an order unit. Therefore, Rn equipped with

the strict cone is a simple ordered group.

Proposition 3.2.4. Let A be a unital stably finite C∗-algebra. Then the group K0(A)

is an ordered group with positive cone

K0(A)+ = {[p]0 ∈ K0(A) : p ∈Mn(A) is a projection}

and order unit [1A]0.

Proof. Part (i) of Definition 3.2.1 holds trivially by the construction of K0(A). Given

two projections p, q ∈ P∞(A), [p]0 + [q]0 = [p⊕ q]0.

Part (ii) follows from A being unital. For unital C∗-algebras, K0(A) is given

by the Grothendieck construction applied to the abelian monoid D(A), which are

equivalence classes of path-connected projections in P∞(A). Since every element of

an element in the Grothendieck group is represented by the difference of two classes

of elements in D(A), we have that K0(A)+ −K0(A)+ = K0(A).
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To show (iii), let x ∈ K0(A)+ ∩ −K0(A)+. Then there exist projections p, q ∈

P∞(A) such that [p]0 = −[q0] and hence [diag(p, q)]0 = 0. Being equivalent to 0 in a

unital C∗-algebra means that there exists a projection r ∈ P∞(A) such that p⊕ q⊕ r

is Murray-von Neumann equivalent to r. Find an n ∈ N large enough that contains

both p⊕ q ⊕ r and r. Mn(A) is finite, which implies that no projection is equivalent

to a proper subprojection of itself. We immediately have that p⊕ q = 0. This shows

that p = q = 0, which is to say that x = 0.

Fix x ∈ K0(A) and find projections p, q ∈ Pn(A) such that x = [p]0 − [q]0. Using

the identity that n[1A]0 = [1n]0, where 1n is the unit in Mn(A), we have the following

inequalities.

−n[1A]0 = [1n]0 = −[1n − q]0 − [q]0

≤ [q]0

≤ [p]0 − [q]0 = x

≤ [p]0

≤ [1n − p]0 + [p]0

≤ [1n]0 = n[1A]0

Therefore [1A]0 is an order unit of (K0(A), K0(A)+).

It should be noted that Part (iii) holds without the assumption of A unital. One

must simply pass to the unitization and the proof is identical.

AF algebras always have ordered K0 groups. Indeed, since unital AF algebras

are stably finite, the above proposition ensures that unital AF algebras have ordered

K0 groups. However, using the continuity of the functor K0 one can reach the same

conclusion for AF algebras. Indeed, for any AF algebra A, K0 = lim
→

Zni . Any such

group which is given by the direct limit of finitely many copies of Z is called a

dimension group. These groups are obviously countable. In addition, dimension

groups are unperforated and have the Riesz interpolation property. An ordered group

(G,G+) is said to be unperforated if nx ≥ 0 implies that x ≥ 0 for some positive
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integer n. G is weakly unperforated if nx > 0 implies that x > 0 for some positive

integer n. A consequence an ordered group being unperforated is that it must be

torsion free. The Riesz interpolation property says that given any elements xi, yj ∈ G

such that xi ≤ yj for i, j,= 1, 2, there exists a z ∈ G such that xi ≤ z ≤ yj.

Effros-Handelman-Shen proved in [25] that these three properties fully characterize

dimension groups.

Theorem 3.2.5 (Effros-Handelman-Shen). Let (G,G+) be an ordered group. Then

G is a dimension group if and only if G is countable, unperforated, and has the Riesz

interpolation property.

One large class of C∗-algebras whose ordered K0 group is simple is due to Cuntz

[23, Prop. 6.3.5]. In particular, as noted in [23, 6.3.6], a consequence of the following

proposition is that if A is a unital stably finite simple C∗-algebra or A ' C(X) for

X compact and connected, then (K0(A), K0(A)+) is simple.

Proposition 3.2.6. Let A be a unital stably finite C∗-algebra. If every nonzero

idempotent in M∞(A) is not contained in any proper two-sided ideal, then K0(A) is

a simple ordered group.

We now give a result about the structure of K0(C(X)) that is due to Husemöller.

Let X be a compact, connected Hausdorff space. We can identify K0(C(X)) with the

topological K-theory K0(X) by realizing that any projection p ∈ Pn(C(X)) carves

out a complex vector bundle η over X. Under this identification, we can decompose

K0(C(X)) as Z⊕ K̃0(X), where K̃0(X) is the reduced K-theory of X. The class [p]0

of a projection is thus identified with the pair (k, α), where k is the rank of p. When

X is a finite dimensional CW-complex, we have the following result regarding the

ordering on K0(C(X)).

Theorem 3.2.7 ( [26], Thm. 10.1.2). Let X be a compact, connected finite dimen-

sional CW-complex. There exists a natural number r that depends on the dimension

of X such that for every element (k, α) ∈ K0(C(X)), k > r implies that (k, α) > 0.
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There is one last structure regarding ordered groups that we will need. The

ordering on K0(A) is closely relates to traces on a C∗-algebra A.

Definition 3.2.8. A state on a simple ordered group (G,G+, u) is a group homo-

morphism ϕ : G→ R such that ϕ : (G+) ⊂ [0,∞) and ϕ(u) = 1.

The collection of all states on G is the state space S(G) and is convex and compact

in the topology of pointwise convergence. The state space is intimately related to the

ordering on G, and sometimes even completely determines it.

Theorem 3.2.9 ( [27], Thm. 4.12). Let (G,G+, u) be an ordered group with order

unit u. For every x ∈ G, s(x) > 0 for all states s ∈ S(G) if and only if there exists a

positive integer n such that nx is an order unit in G.

Theorem 3.2.10 ( [23], 6.8.5). Let (G,G+, u) be a simple weakly unperforated ordered

group with order unit u. Then G+ = {0} ∪ {x ∈ G : s(x) > 0 for all s ∈ S(G)}.

All of the real-valued affine functions over S(G) form a Banach space Aff(S(G)).

For every group element x, there is an induced element in Aff(S(G)) given by x̂(f) =

f(x). The infinitesimals of G form the subgroup

Inf(G) = {x ∈ G : x̂ = 0}.

A more convenient description of this subgroup was given by Dadarlat in [28].

Lemma 3.2.11. Let (G,G+, u) be a simple ordered group. Then

Inf(G) = {x ∈ G : ∀n ∈ Z ∃m > 0,m(u+ nx) > 0}.

Traces are intimately related to the structure of the state space. A trace τ is a

positive linear functional on a C∗-algebra such that τ(a∗a) = τ(aa∗) for all a ∈ A. If

‖τ‖ = 1, then τ is called a tracial state. The collection of all tracial states is denoted

as T (A). Every trace τ on A induces a map τ̂ : K0(A)→ R given by

τ̂([p]0) =
n∑
i=1

τ(pii)



30

for p ∈ Pn(A). In this way we have a map χ : T (A) → S(K0(A)). In fact, the

domain of this map can be extended to include quasitraces, which are functions from

M∞(A) → C that are linear on commutative subalgebras and satisfy 0 ≤ τ(a∗a) =

τ(aa∗) for all a. Denote the collection of all quasitraces on A as QT (A). Clearly

then T (A) ⊂ QT (A). For exact C∗-algebras, QT (A) = T (A) [29] and the map χ is

surjective [23]. In the case that A is a stably finite unital C∗-algebra with real rank

zero, χ is a bijection [30].

With this information about ordered groups, we are ready to present Spielberg’s

result that is central to studying the Blackadar-Kirchberg conjecture in the context

of extensions.

Theorem 3.2.12 (Spielberg, [5]). Let E be a C∗-algebra, I an ideal in E, and suppose

that I and B = E/I are stably finite. Then E is stably finite if and only if

∂(K1(B)) ∩K0(I)+ = {0}. (3.2)

Proof. Suppose there exists an element x ∈ K1(B) such that ∂(x) > 0. Find a

unitary u ∈Mn(B̃) such that [u]1 = x, and lift that unitary to a unitary w ∈M2n(Ẽ)

such that π(w) = u⊕ u∗. Hence ∂(x) = [w∗(1n ⊕ 0n)w]0 − [1n ⊕ 0n]0 = [p]0 for some

projection p ∈ Mk(Ĩ) and therefore [w(1n ⊕ 0n)w∗]0 = [1n ⊕ 0n ⊕ p]0. There exist

positive integers r, s and unitary v ∈M2n+k+r+s(Ĩ) such that

v(w(1n ⊕ 0n)w∗ ⊕ 0k ⊕ 1r ⊕ 0s)v
∗ = 1n ⊕ 0n ⊕ p⊕ 1r ⊕ 0s.

Let R = v(w⊕1k+r+s)(1n⊕0n⊕0k⊕1r⊕0s). Then R∗R = (1n⊕0n⊕0k⊕1r⊕0s) <

RR∗ = (1n ⊕ 0n ⊕ p⊕ 1r ⊕ 0s) and hence E is not finite by Prop. 2.3.5.

Conversely, if E is not stably finite, then let s be a non-unitary coisometry in

Mn(Ẽ). Since B is stably finite, u = π(s) is a unitary in Mn(B̃) and therefore p =

1n−s∗s is a nonzero projection in Mn(I). This implies that [p] 6= 0 in K0(I). Indeed,

if [p]0 = 0, then p ⊕ 1r ⊕ 0s is unitarily equivalent to 0n ⊕ 1r ⊕ 0s in Mn+r+s(Ĩ) and

we can use the method in the preceding paragraph to create a non-unitary isometry

in Mn+r+s(Ĩ), contradicting the assumption that I is stably finite. Hence ∂([u]1) =

[1− s∗s]0 − [1− ss∗]0 = [p]0 is a nonzero element of K0(I)+.
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3.3 UNIVERSAL COEFFICIENT THEOREM AND KASPAROV’S KK-

THEORY

Rosenberg and Schochet introduced the universal coefficient theorem (UCT), an

immensely important tool especially used in classification theory that relates Kas-

parov’s KK-theory to the K-theory of C∗-algebras. Kasparov’s KK-theory is an

additive bivariate functor that associates an abelian group KK(A,B) to a pair of

C∗-algebras (A,B) that is defined by homotopy classes of certain (A,B)-Hilbert bi-

modules. An in-depth treatment of this subject can be found in [23]. For the purpose

of this thesis, we use the following facts. Given separable C∗-algebras A and B,

KKn(A,B) is an abelian group for every n ∈ N and they satisfy KKn(A,B) '

KKn+2(A,B). We often write KK(A,B) for KK0(A,B). One powerful feature of

KK-theory is the Kasparov product, which is a pairing

KKi(A,D) KKj(D,B) KKi+j(A,B)×

that is an associative composition of KK-elements (x, y) 7→ x · y. Critical to what

follows are the following natural isomorphims involving K-theory and Ext−1(A,B).

K∗(A) ' KK∗(C, A) (3.3)

KK1(A,B) ' Ext−1(A,B) (3.4)

Note that when A is nuclear, Equation 3.4 implies that KK1(A,B) ' Ext(A,B) using

the Choi-Effros lifting theorem. In addition to these identifications, these groups also

satisfy Bott periodicity.

Theorem 3.3.1. For separable C∗-algebras A and B, we have

KK1(A,B) ' KK(A, SB) ' KK(SA,B)

and KK(A,B) ' KK1(A, SB) ' KK1(SA,B) ' KK(S2A,B) ' KK(A, S2B) '

KK(SA, SB), where S2A = S(SA).
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Definition 3.3.2. An element x ∈ KK(A,B) is said to be a KK-equivalence if there

exists a y ∈ KK(B,A) such that x · y = 1B and y · x = 1A. If there exists a

KK-equivalence between separable C∗-algebras A and B, then they are said to be

KK-equivalent.

It follows that a KK-equivalence between A and B implies that K∗(A) = K∗(B).

Indeed a KK-equivalence implies that for all D, KK∗(A,D) = KK∗(B,D), which in

turn can be used to show that K∗(A) = K∗(B). The converse holds under the UCT.

The proof of this will be provided after the UCT. Let N denote the family of all

separable C∗-algebras that are KK-equivalent to a commutative C∗-algebra.

Theorem 3.3.3 (Universal Coefficient Theorem). Let B ∈ N . Then for every sepa-

rable C∗-algebra A, the following short exact sequence holds.

0 Ext1Z(K∗(B), K∗(A)) KK∗(B,A) Hom(K∗(B), K∗(A)) 0

In this case, we say that B satisfies the UCT. The above sequences is compactly written

and contains information about two exact sequences, which are described below.

0→


Ext1

Z(K0(A), K1(B))

⊕

Ext1
Z(K1(A), K0(B))

→ KK(B,A)→


Hom(K0(B), K0(A))

⊕

Hom(K1(B), K1(A))

→ 0

0→


Ext1

Z(K0(A), K0(B))

⊕

Ext1
Z(K1(A), K1(B))

→ KK1(B,A)→


Hom(K0(B), K1(A))

⊕

Hom(K1(B), K0(A))

→ 0

Proposition 3.3.4. Let A,B satisfy the UCT. Then A and B are KK-equivalent if

K∗(A) = K∗(B).

Proof. Since A and B satisfy the UCT, there exists an α ∈ KK0(B,A) that induces

K∗(A) = K∗(B), i.e.

KK∗(C, A) ' K∗(A) K∗(B). ' KK∗(C, B)
α∗
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By functoriality of the UCT, we have the following diagram for all C∗-algebras D

0 ExtZ1 (K∗(A), K∗(D)) KK(A,D) Hom(K∗(A), K∗(D)) 0

0 ExtZ1 (K∗(B), K∗(D)) KK(B,D) Hom(K∗(B), K∗(D)) 0

α∗ ◦α α∗

In particular, since the left and the right side morphisms are isomorphisms induced

by α∗, the middle must also be an isomorphism by the five lemma. When D = B, this

yields an isomorphism between KK(A,B) and KK(B,B). Letting β ∈ KK(A,B)

be the preimage of 1B ∈ KK(B,B) under this isomorphism, we have that β · α =

1A. This implies that the induced maps β∗ : K∗(B) → K∗(A) are isomorphisms.

Repeating the argument using β ∈ KK(A,B) instead of α ∈ KK(B,A) yields a

γ ∈ KK(B,A) that satisfies γ · β = 1B. But then clearly γ = γ · β · α = α, which

yields the necessary KK-equivalence between A and B.

The last structure included in the statement of the UCT is the functor Ext1
Z(−, G).

Consider the following short exact sequence of abelian groups

0 A B C 0 (3.5)

For any abelian group G, the contravariant functor Hom(−, G) is left exact and

when applied to 3.5 yields the exact sequence

0 Hom(C,G) Hom(B,G) Hom(A,G) (3.6)

To continue this exact sequence, one must introduce the functor Ext1
Z(−, G). We

will omit the construction of this group and its connecting maps. For an in-depth

exposition on the subject refer to [31]. However, it should be noted that the construc-

tion is independent of the choice of short exact sequence (3.5). The only property

of Ext1
z(−, G) we will use in this thesis is the case when G is divisible. An abelian

group G is called divisible if nG = G for every n ∈ N. Divisible groups, the most

prominent example being the rational numbers Q, are injective groups and therefore

satisfy Ext1
Z(−, G) = 0 [31, Prop. 11.4.6].
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3.4 RESULTS ON EXTENSIONS BY N. BROWN AND DADARLAT

We are now equipped with the preliminary tools necessary to examine Question

3.0.1: Given quasidiagonal C∗-algebras I and B and an extension E of B by I, does

stably finiteness of E imply that it is quasidiagonal? In this section we will introduce

results from N. Brown and Dadarlat in [7] that give affirmative answers under the

context of extensions whose class in Ext(B, I) is 0.

Proposition 3.4.1. [7, Prop. 2.5] Let 0 → I → E → B → 0 be an exact sequence

with Busby invariant γ. Let γs denote the Busby invariant of the short exact sequence

0 → I ⊗ K → E ⊗ K → B ⊗ K → 0 that is induced by γ. If both I and B are

quasidiagonal, B is separable, I is σ-unital, either I or B is nuclear and [γs] = 0 ∈

Ext(B ⊗K, I ⊗K), then E is also quasidiagonal.

Proof. By Theorem 3.1.13, there exists a trivial absorbing extension τ : B ⊗ K →

Q(I ⊗ K). Since [γs] = 0, γs ⊕ τ is trivial and absorbing. Indeed, there exist trivial

extensions τ1, τ2 : B ⊗ K → Q(K ⊗ I) such that γs ⊕ τ1 ∼SE τ2. Therefore we have

that

γs ⊕ τ ∼SE γs ⊕ τ ⊕ τ1 ∼SE τ2 ⊕ τ ∼SE τ .

From this we see that γs⊕τ must be trivial and absorbing since it’s strongly equivalent

to τ . This yields the following chain of embeddings.

E(γ) ↪→ E(γs) ↪→ E(γs ⊕ τ) ' E(τ).

Since quasidiagonality passes to C∗-subalgebras, it suffices to show that E(τ) is qua-

sidiagonal. Referencing the extension in Theorem 3.1.13 that induces τ , we have that

E(τ) ↪→ (ρ(B) + K) ⊗ Ĩ, where Ĩ is the unitization of I. The trivial intersection

ρ(B) ∩K = {0} ensures that ρ(B) +K is quasidiagonal and hence (ρ(B) +K)⊗ Ĩ is

quasidiagonal by Proposition 2.2.8.

Recall that for a short exact sequence 0→ I → E → B → 0, there is an associated

6-term sequence that is exact at every term:
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K1(I) K1(E) K1(B)

K0(B) K0(E) K0(I)

As discussed in Section 3.2, we know that E being stably finite places a restriction

on the image of the boundary map ∂ : K1(B)→ K0(I). If we assume that B satisfies

the UCT and that the boundary map is 0, then we are able to pass quasidiagonality

to the extension.

Theorem 3.4.2. Let 0 → I → E → B → 0 be a short exact sequence where E is

separable, I is quasidiagonal, and B is nuclear, quasidiagonal, and satisfies the UCT.

If the induced map ∂ : K1(B)→ K0(I) is zero, then E is quasidiagonal.

Proof. In order to use Proposition 3.4.1, we must construct a short exact sequence

whose class in Ext(B, I) is 0l. To do so, we first use Proposition 3.3 from [7] to find a

σ-unital quasidiagonal C∗-algebra J such that ι : I ↪→ J is an approximately unital

embedding and K1(J) = 0. After stabilizing and tensoring by the Universal UHF

algebra U we have the following diagram.

0 I E B 0

0 J E ′ B 0

0 J ⊗K ⊗ U E ′ ⊗K ⊗ U B ⊗K ⊗ U 0

Let γ : Q(B) → J denote the Busby invariant of the second short exact sequence.

The boundary map ∂ : K0(B) → K1(J) vanishes trivially and ∂ : K1(B) → K0(J)

vanishes by naturality of the boundary maps.

K0(B) K1(I)

K0(B) K1(J)

∂

K1(ι)

∂

Denote the Busby invariant of the third extension by η. Again by naturality,

the boundary maps associated to η vanish. Furthermore, we have that K0(B ⊗ K ⊗
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U) = K0(B) ⊗ Q, which is divisible. Hence Ext1Z(K0(B) ⊗ Q, K0(J) ⊗ Q) = 0 and

therefore the extension [η] = 0 since B satisfies the UCT. Proposition 3.4.1 finishes

the proof.

Definition 3.4.3. A quasidiagonal C∗-algebra A has the QD extension property if

for every separable nuclear quasidiagonal C∗-algebra B that satisfies the UCT and

Busby invariant η : B → Q(A ⊗ K) we have that E(η) is stably finite if and only if

E(η) is quasidiagonal.

Naturally, one would like to show that every separable C∗-algebra satisfies the

QD extension property. As it turns out, this property is related to another definition

which is more deeply connected with controlling the K-theory of embeddings. Recall

that any short exact sequence 0→ I → E → B → 0 has an associated 6-term exact

sequence. If we assume that E is stably finite, then Spielberg’s characterization says

that ∂(K1(B)) ∩K0(I)+ = {0}. These subgroups represent the subgroups of K0(I)

that can be the image of the boundary map for stably finite extensions. If we expect

E to be quasidiagonal, the embedding ϕ : I ↪→ E must satisfy ϕ∗(∂(K1(B)) = 0 by

exactness of the 6-term exact sequence. As we will see in Prop. 3.4.6, this particular

embedding existing for all such subgroups is sufficient to ensure than an extension is

quasidiagonal.

Definition 3.4.4. Let (G,G+) be an ordered group. The singular elements of G,

denoted as Sing(G), is the set {x ∈ G : Zx ∩G+} = {0}. If a subgroup is contained

inside Sing(G), then it is called a singular subgroup. If A is a C∗-algebra with ordered

group (K0(A), K0(A)+), then for brevity we write Sing(A) in place of Sing(K0(A)).

Definition 3.4.5. A quasidiagonal C∗-algebra A has the K0-embedding property if

for any singular subgroup G of K0(A), there exists a quasidiagonal C∗-algebra C and

an embedding ρ : A ↪→ C such that ρ∗(G) = 0.

Proposition 3.4.6 (Prop. 4.6 [7]). A separable C∗-algebra A satisfies the QD exten-

sion property if and only if it has the K0-embedding property.
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Prop. 3.4.6 demonstrates the critical role K-theory plays for quasidiagonal exten-

sions. Given Voiculescu’s characterization of quasidiagonality, one can ask how well

the asymptotically multiplicative and asymptotically isometric ccp maps capture the

information contained in the K-theory. This gives rise to property weaker than the

K0-embedding property known as the K0-Hahn-Banach property

Definition 3.4.7. A quasidiagonal C∗-algebra A has the K0-Hahn-Banach property

if for every x ∈ Sing(A) there exists a sequence of asymptotically multiplicative and

asymptotically isometric ccp maps ϕn : A→Mk(n) such that (ϕn)#(x) = 0 for n large

enough.

One should immediately note that for a ccp map ϕ : A → Mn the notion of an

induced morphism ϕ∗ : K0(A)→ K0(B) is not defined. However, given a sequence of

asymptotically multiplicative and asymptotically isometric ccp maps ϕn : A→Mk(n),

there is a well-defined way to talk about the induced behavior on K0. To do this,

we need an elementary observation regarding perturbing elements to projections. For

every ε > 0 there exists a δ > 0 such that for any C∗-algebra A and any a ∈ A, if

‖a2 − a‖ < δ and ‖a∗ − a‖ < δ, there exists a projection p ∈ A such that ‖a− p‖ < ε.

Let 0 < ε < 1/4 and p ∈ P∞(A). Recall that if p ∈ Mk(A) then ϕn(p) is

understood to be the matrix (ϕn(pi,j)) ∈ Mk(B). There exists a δ > 0 such that

whenever ‖ϕn(p)− ϕn(p)2‖ < δ, we have that ‖ϕn(p)− p̃n‖ < ε, where p̃n is the

projection whose existence is guaranteed by the above fact. Since there exists an N

such that n ≥ N implies that ϕn is δ-multiplicative, we may define (ϕn)#(p) = p̃n

for n ≥ N and 0 elsewhere. Note that regardless of which N is chosen to construct

the above sequence, any two choices will produce sequences which are tail equivalent.

This tail represents the information regarding the K-theortic properties of ϕn and its

asymptotic behavior.

While for individual C∗-algebras it was shown in [7, Prop. 4.10] that the K0-

embedding property implies the K0-Hahn-Banach property, it turns out they are

equivalent in the following sense.
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Theorem 3.4.8. The following statements are equivalent.

(i) Every separable, nuclear, quasidiagonal C∗-algebra has the QD extension prop-

erty.

(ii) Every separable, nuclear, quasidiagonal C∗-algebra has the K0-embedding prop-

erty.

(iii) Every separable, nuclear, quasidiagonal C∗-algebra has the K0-Hahn-Banach

property.

(iv) If A is any separable, nuclear, quasidiagonal C∗-algebra and x ∈ K0(A) is such

that Zx ∩K+
0 (A) = {0} then there exists an embedding ρ : A ↪→ C, where C is

quasidiagonal (but not necessarily separable or nuclear), such that ρ∗(x) = 0.

(v) If A is any separable, nuclear, quasidiagonal C∗-algebra and x ∈ K0(A) is such

that Zx∩K+
0 (A) = {0}, then there exists a short exact sequence 0→ K⊗A→

E → C(T)→ 0 where E is QD and x ∈ ∂(K1(C(T))) = ∂(Z).
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4. EXTENSIONS BY CONNECTIVE C∗-ALGEBRAS AND

BY C(X)⊗K

In this chapter we discuss connective C∗-algebras, a notion introduced by Dadarlat

and Pennig in [9] [10], and stabilized commutative C∗-algebras. Section 4.2 answers

Question 3.0.1 and 3.0.2 affirmatively when the ideals are exact and connective. Sec-

tion 4.3 considers ideals of the form C(X)⊗K, which, unlike connective C∗-algebras,

have lots of projections. In particular, for compact metrizable spaces X, we an-

swer Question 3.0.1 and Question 3.0.2 affirmatively when the ideals are of the form

C(X) ⊗ K and with the additional assumption that quotient is nuclear and satisfies

the UCT.

4.1 DEFINITIONS AND EXAMPLES

Theorem 4.2.7 is motivated by the following example due to N. Brown and Dadar-

lat [7]. Let 0 → SI → E → B → 0 be a short exact sequence, where I is σ-unital

and B separable, nuclear, and quasidiagonal. Then E is quasidiagonal. This result

follows by the homotopy invariance of Ext(−,−) and that the suspension SI is null-

homotopic. In particular, this is done without the use of the UCT. The suspension of

any separable C∗-algebra is connective, a notion introduced by Dadarlat and Pennig

in [9]. Originally introduced for the purposes of unsuspending in E-theory, we will use

an embedding result of Gabe and the homotopy invariance of Ext(−,−) to generalize

the result of N. Brown and Dadarlat to connective ideals.

Definition 4.1.1. A separable C∗-algebra A is connective if there exists a

∗-monomorphism

Φ : A ↪→
∞∏
n=1

CB(H)
/ ∞⊕

n=1

CB(H)
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that lifts to a ccp map ϕ : A →
∏

nCB(H), where H is an separable, infinite

dimensional Hilbert space.

Dadarlat and Pennig in [10] proved that the primitive spectrum of any connective

C∗-algebra had no nonempty compact open sets. Gabe proved that this property

fully characterizes connectivity [11].

Theorem 4.1.2. A separable exact C∗-algebra is connective if and only if its primitive

ideal space has no non-empty, compact, open subsets.

Example 4.1.3. Given a compact, connected metrizable space X, the C∗-algebra

C0(X\x0) will be connective, where x0 ∈ X is a base point.

Example 4.1.4. For any separable C∗-algebra A, the cone CA is connective. Since

connectivity passes to subalgebras, the suspension SA is connective as well.

Here are some general properties concerning connective C∗-algebras.

Theorem 4.1.5. Connective C∗-algebras have the following properties:

(i) Connective C*-algebras are quasidiagonal.

(ii) Connective C*-algebras do not contain any nonzero projections.

(iii) The class of nuclear connective C*-algebras is closed under (minimal) tensoring

with any other C*-algebra.

One additional remark about the structure of connective C∗-algebras is needed. If

B is exact and A is exact and connective, then A ⊗ B is exact and connective by

Remark 2.8 in [9].

4.2 EXTENSIONS BY CONNECTIVE C∗-ALGEBRAS

In this section we prove two theorems about the structure of extensions for con-

nective ideals without assuming the UCT. When the ideal is connective and exact,
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Theorem 4.2.7 provides an affirmative answer for Question 3.0.1 and Theorem 4.2.9

provides an affirmative answer for 3.0.2. Before they are presented, we must introduce

a fundamental technique that allows one to pass an from an extension in Ext(B, I)

to an extension in Ext(B, J) using a suitable embedding I ↪→ J .

An approximate unit of A is a net of positive elements (eλ) in the closed unit ball

of A such that for any a ∈ A, ‖eλa− a‖ tends to 0 as λ → ∞. Approximate units

always exist and when A is separable they may be chosen to be a sequential.

Definition 4.2.1. Let A and B be C∗-algebras and ϕ : A → B an injective ∗-

homomorphism. ϕ is said to be approximately unital if there exists an approximate

unit eλ of A whose image ϕ(eλ) is an approximate unit of B.

Approximately unital embeddings provide a method to embed an extension into

a new one without changing the quotient. Any approximately unital inclusion A →

B induces an inclusion of multiplier algebras M(A) ⊂ M(B) and hence corona

algebras [32, 3.12.12]. For a given short exact sequence 0 → I → E → B → 0 and

approximately unital embedding I ↪→ J , this process yields the following diagram.

0 I E B 0

0 J E ′ B 0

One way to ensure an embedding is approximately unital is by using hereditary

C∗-subalgebras. A C∗-subalgebra B of A is called hereditary if for any a ∈ A+ and

b ∈ B+ the inequality a ≤ b implies a ∈ B. Given a subset H ⊂ A, the hereditary

C∗-subalgebra generated by H is the smallest hereditary subalgebra of A containing

H. We give two theorems regarding the structure of such algebras.

Theorem 4.2.2 ( [21], Thm. 3.2.2). Let B be a C∗-subalgebra of A. Then B is a

hereditary subalgebra if and only if bab′ ∈ B for all b, b′ ∈ B and a ∈ A.

Theorem 4.2.3 ( [21], Thm. 3.2.5). For every element a ∈ A+, the C∗-subalgebra

aAa is a hereditary subalgebra of A. Conversely, if B is a separable hereditary subal-

gebra of A, there exists a positive element s ∈ B+ such that sAs = B.
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Proposition 4.2.4. Let A be a separable C∗-algebra, H a C∗-subalgebra of A, and

B the hereditary C∗-subalgebra of A generated by H. Then the embedding H ↪→ B is

approximately unital.

Proof. Let en be an approximate unit of H and let s =
∑
en/2

n. We will show that

the hereditary C∗-subalgebra sAs = B. Since B contains H, s ∈ B. By Theorem

4.2.2, we know that sas ∈ B for all a ∈ A, which implies that sAs ⊂ B. For the

other direction, we note that since B is hereditary, Theorem 4.2.3 ensures that there

exists a b ∈ B+ such that B = bAb. Furthermore, s ∈ sAs implies that en ∈ sAs

because en/2
n ≤ s. For any a ∈ A, en(bab)en ∈ sAs by Theorem 4.2.2 and therefore

B = bAb ⊂ sAs. The last thing to show is that en is an approximate unit for

sAs. Indeed, for any a ∈ A, ‖ensas− sas‖ ≤ ‖(ens− s)‖ ‖as‖ → 0. Since en is an

approximate unit for sAs, it is for sAs = B as well.

With Prop. 4.2.4 in mind, we examine a result due to Gabe.

Theorem 4.2.5 ( [11], Thm. A). Let I be an exact connective C*-algebra. Then I

embeds into the Rørdam algebra A[0, 1].

Rørdam’s algebra A[0, 1] is the direct limit of the C∗-algebras

C0([0, 1),M2)
ϕ1−→ C0([0, 1),M4)

ϕ2−→ C0([0, 1),M8)
ϕ3−→ · · · → A[0, 1]

where

ϕn(f)(t) =

 f(t) 0

0 f(max(t, tn))


for a dense sequence {tn} in [0, 1). Since A[0, 1] is the inductive limit of C0[0, 1)⊗M2n

and the K-theory of C0[0, 1) vanishes, the K-theory of both A[0, 1] and A[0, 1] ⊗ K

vanish. Furthermore, A[0, 1] is an inductive limit of C*-algebras that satisfy the UCT

and therefore also satisfies the UCT. This implies that A[0, 1] and A[0, 1] ⊗ K are

KK-equivalent to 0 by Prop. 3.3.4.

One crucial step for the results in this section is the fact that Gabe’s embedding

can be taken to be approximately unital.



43

Proposition 4.2.6. Let I be an exact connective C∗-algebra. The embedding I ↪→

A[0, 1] can be taken to be approximately unital.

Proof. Let B be a hereditary subalgebra of A[0, 1], which is nuclear since A[0, 1]

is nuclear. We will first show that the ideal lattice I(B) is homeomorphic to the

unit interval [0, 1]. The ideals of A[0, 1] are order isomorphic to [0, 1] and denoted as

It for t ∈ [0, 1]. The embedding ι : B ↪→ A[0, 1] induces a continuous map on the

ideal lattices ι̂ : I(A[0, 1]) → I(B) given by ι̂(It) := ι−1(It) = It ∩ B. Notice that

ι̂ is surjective since the ideals of a hereditary subalgebra are of the form I ∩ B for

an ideal I in A[0, 1]. This implies that I(B) is compact and has a single connected

component. Additionally, one can see that I(B) is totally ordered under containment

of ideals. By [33, Prop. 1.1.5], the topology induced by a total order coincides with

the canonical topology on the ideal lattice. Since I(B) is a totally ordered space

which is compact, connected, and metrizable in the order topology (B is separable),

it must be isomorphic to a compact subset of R with a single connected component,

i.e. I(B) is order isomorphic to [0, 1].

Note that B is purely infinite because it’s a hereditary C∗-subalgebra of the purely

infinite algebra A[0, 1]. Since I(B) and I(A[0, 1]) are both order isomorphic to [0, 1]

B is stable by [12, Prop. 5.1]. Additionally, A[0, 1] is also stable, so [34, Cor. 6.14]

implies that B ⊗O2 ' A[0, 1]⊗O2. Hence the embedding B ↪→ B ⊗O2 ' A[0, 1]⊗

O2 ' A[0, 1] is approximately unital, where the last isomorphism holds by [35, Prop.

6.1]. Let B equal the hereditary subalgebra of A[0, 1] generated by the image of I in

the original embedding. Prop. 4.2.4 completes the proof.

Theorem 4.2.7 (D). Let 0 → I → E → B → 0 be a short exact sequence of

C∗-algebras such that I is exact and connective and B is separable, nuclear, and

quasidiagonal. Then E is quasidiagonal.

Proof. As remarked at the end of Section 3.1, we can without loss of generality

assume our extension is of the form

0 I ⊗K E B 0.
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Let σ denote the Busy invariant of the above extension. Since I is connective and

exact and K is nuclear, I ⊗ K is connective and exact. By Proposition 4.2.6, there

exists an embedding ι : I ⊗ K → A[0, 1] that is approximately unital and therefore

induces an extension η ∈ Ext(B,A[0, 1]) such that the following diagram commutes.

0 I ⊗K E B 0

0 A[0, 1] E(η) B 0

Since A[0, 1] and B are quasidiagonal, showing that [η] = 0 is sufficient to conclude

that E ⊂ E(η) is quasidiagonal by Proposition 3.4.1. BecauseA[0, 1] is KK-equivalent

to 0 and B is nuclear, Theorem 3.3.1 implies that

Ext(B,A[0, 1]) ' KK1(B,A[0, 1]) ' KK1(B, 0) ' 0

and hence [η] = 0.

Similar to Theorem 3.4.1, we will require a result that ensures AF embeddability

under suitable conditions.

Proposition 4.2.8. [36, Prop. 2.1] Let 0→ I → E → B → 0 be an essential semi-

split extension of separable C∗-algebras whose class vanishes in Ext−1(B, I). Suppose

that both I and B are AF embeddable. Then E is AF embeddable.

Theorem 4.2.9 (D). Let 0→ I → E → B be a short exact sequence of C∗-algebras

such that I is exact and connective and B is nuclear and AF-embeddable. Then E is

AF embeddable.

Proof. Since AF embeddability passes to C∗-subalgebras, we are able to work with

the extension

0 I ⊗K E B 0.

I⊗K is connective and exact, so by Proposition 4.2.6 we can ensure that the embed-

ding I ⊗ K → A[0, 1] is approximately unital and therefore yields the second row of

the diagram below. This extension is essential if and only if I ⊗ K is essential in E,
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which in general is not true. To remedy this, we will apply Lemma 1.12 from [5] to

obtain the following diagram:

0 I ⊗K E B 0

0 A[0, 1] E(η) B 0

0 A[0, 1]⊗K E(γ) B 0

By construction, A[0, 1]⊗K is essential in E(γ). Since A[0, 1]⊗K is KK-equivalent

to 0, we have that

[γ] ∈ Ext(B,A[0, 1]⊗K) ' KK1(B,A[0, 1]⊗K) ' KK1(B, 0) = 0

Now the third line of the above diagram is an essential extension of C∗-algebras

whose class in Ext(B,A[0, 1] ⊗ K) vanishes. Additionally, since B and A[0, 1] ⊗

K are nuclear, so must E(γ) and therefore the extension is semisplit. A[0, 1] and

hence A[0, 1] ⊗ K is AF embeddable [37, Cor. 6.4]. By Prop. 4.2.8, E(γ) is AF

embeddable.

4.3 EXTENSIONS BY C(X)⊗K

In this section we consider ideals of the form C(X)⊗K, which, unlike connective

C∗-algebras, contain lots of projections. We show that ideals of this form also give an

affirmative answer to Question 3.0.1 and Question 3.0.2 when the quotient is nuclear

and satisfies the UCT. To do so, we will require Proposition 3.4.6 and an astounding

lifting theorem due to C. Schafhauser [38].

Theorem 4.3.1 (Schafhauser). Suppose A is a separable, unital, exact C∗-algebra

satisfying the UCT and B is a simple, unital, U-stable C∗-algebra with unique trace

τB such that every quasitrace on B is a trace and K1(B) = 0. If τA is a faithful,

amenable trace on A and σ : K0(A) → K0(B) is a group homomorphism such that

τ̂Bσ = τ̂A and σ([1A]) = [1B], then there is a unital, faithful, nuclear *-homomorphism

ϕ : A→ B such that K0(ϕ) = σ and τBϕ = τA.



46

In order to use Schafhauser’s theorem, we will construct an AF algebra whose

K0 group is order isomorphic to K0(C(X) ⊗ U). Spielberg demonstrated a way to

construct a group homomorphism between dimension groups that contains a prede-

termined singular subgroup in its kernel. We will use this result to obtain a second

AF algebra and our desired group homomorphism between their K0 groups. Using a

lifting theorem of Elliott’s, we are able to construct a ∗-homomorphism between these

AF algebras that induces the map on K-theory described above. These two results

are presented below.

Lemma 4.3.2 ( [5]). Let G be a dimension group and H ⊂ G be a subgroup such that

H ∩G+ = {0}. Then there is a dimension group G′ and dimension group morphism

ϕ : G→ G′ such that

(i) H ⊂ kerϕ

(ii) G+ ∩ kerϕ = {0}.

Theorem 4.3.3 ( [39]). Let A and B be AF algebras and σ : K0(A) → K0(B)

be a homomorphism of scaled ordered groups. Then there exists a ∗-homomorphism

ϕ : A→ B such that ϕ∗ = σ.

Lemma 4.3.4. (D) Let X be a connected, finite dimensional CW-complex. There

exists an AF algebra A and an embedding C(X) ↪→ C(X) ⊗ U ↪→ A such that

K0(C(X)⊗ U) is order isomorphic to K0(A).

Proof. As discussed in the paragraph preceding Theorem 3.2.7, K0(C(X)) can be

identified with the topological K-theory K0(X). This yields the decomposition

K0(C(X)) ' Z⊕ K̃0(X)

where K̃0(X) is the reduced K-theory of X obtained by removing an arbitrary base

point in X. For brevity, we will denote this group as H. C(X)⊗ U is the inductive

limit of C(X)⊗Mn! and therefore

(K0(C(X)⊗ U), K0(C(X)⊗ U)+, [1]0) = lim
→
K0(C(X)⊗Mn!)
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as scaled ordered groups. Let Gn = K0(C(X)⊗Mn!) and observe that for all n ∈ N,

Gn = Z⊕H. This yields the following inductive limit

Z⊕H Z⊕H Z⊕H · · · Q⊕ (H ⊗Q)
α1 α2 α3

where αn((z, h)) = ((n + 1)z, (n + 1)h), αm,n = αm−1 ◦ αm−2 ◦ · · · ◦ αn : Gn → Gm,

and α∞,n : Gn → Q ⊕ (H ⊗ Q) are the maps induced by the universal property

of inductive limits. The identification K0(C(X) ⊗ U) ' Q ⊕ (H ⊗ Q) will be used

frequently. We will first prove that K0(C(X)⊗ U) is a dimension group. To do this,

we will show that an element (q, h) ∈ K0(C(X)⊗ U) is positive if and only if q > 0.

Indeed if (q, h) ∈ Q⊕ (H ⊗Q) is such that q > 0, we can find an n ∈ N and element

(z, g) ∈ Gn such that α∞,n((z, g)) = (q, h). By the nature of the connecting maps αn,

q > 0 implies z > 0. Since X is a finite dimensional complex, Theorem 3.2.7 implies

that there exists an m ∈ N such that the amplification αm,n((z, g)) belongs to G+
m.

Recall that

K0(C(X)⊗ U)+ =
∞⋃
k=1

α∞,k(G
+
k )

and therefore (q, h) = (α∞,m ◦ αm,n)((z, g)) > 0. Conversely, if (q, h) > 0 there exists

an element (z, h) ∈ G+
n such that α∞,n((z, h)) = (q, h). Since X is connected, the

ordering on K0(C(X)⊗Mn!) ensures that z > 0 and therefore q > 0.

This observation on the ordering of K0(C(X)⊗ U) implies that its positive cone

is the set {(q, h) ∈ Q⊕ (H ⊗Q) : q > 0} ∪ {0}. Since Q has the Riesz interpolation

property, so must K0(C(X) ⊗ U). Furthermore, tensoring a group with Q removes

perforation. Using the identification K0(C(X)⊗U) ' K0(C(X)⊗Q, we may conclude

that K0(C(X)⊗U) is unperforated and therefore a dimension group by Theorem 3.2.5.

In fact, we can even conclude that the infinitesimals of K0(C(X)⊗U) is the subgroup

H ⊗Q and that K0(C(X)⊗ U) is a simple ordered group.

Let A be a unital AF algebra whose scaled ordered group (K0(A), K0(A)+, [1]0)

is order isomorphic to (K0(C(X)⊗ U), K0(C(X)⊗ U)+, [1]0). A must have a unique

trace. Indeed, since all of the infinitesimals of K0(C(X) ⊗ U) are of the form (0, h)

for h ∈ H ⊗ Q, any trace τ on A induces a state on K0(A) such that τ̂((0, h)) = 0.
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This implies that for any element (q, h) ∈ K0(A), τ̂((q, h)) depends only on q. There

is a unique group morphism from Q to R mapping 1 to 1 and hence the state space

S(K0(A)) consists of a unique state. Since A is a unital AF algebra, the canonical

map χ : T (A)→ S(K0(A)) is a bijection and we conclude that there is a unique trace

on A.

Observe that using a similar argument to the one listed above, we know that A is

U -stable, i.e. A ' A⊗ U . Now A is simple, unital, and has a unique trace ρ. Being

an AF algebra, every quasitrace on A is a trace and K1(A) = 0. Consider the trace

τ : C(X) ⊗ U ' C(X,U) → C given by f 7→ τ(f(x)), where x is a fixed point in X

and τ is the unique trace on U . Letting σ denote the identity map between the order

isomorphic groups K0(C(X) ⊗ U) and K0(A), we have that ρ̂ ◦ σ = τ̂ . We may use

Theorem 4.3.1 to lift σ to an embedding ϕ : C(X)⊗ U ↪→ A. Composing the trivial

embedding ι : C(X) ↪→ C(X)⊗ U with ϕ finishes the proof.

We will need the following fact. Given a compact metrizable space consisting of

finitely many connected components X1, . . . , Xn, each of which is a finite dimensional

CW-complex, an element x = (x1, . . . , xn) ∈ K0(C(tXi)) = K0(C(X1)) ⊕ · · · ⊕

K0(C(Xn)) is positive if and only if each xi in positive in K0(C(Xi)). Let Ai be

the AF algebras obtained from Lemma 4.3.4 into which C(Xi) ⊗ U embeds and set

A = A1 ⊕ · · · ⊕ An. The Schafhauser embeddings ϕi : C(Xi) ⊗ U ↪→ Ai can be

summed together to yield an embedding ϕ : C(X) ⊗ U ↪→ A that induces an order

isomorphism on the K-theory. Indeed since K0(A) = K0(A1) ⊕ · · · ⊕ K0(An), the

positive cone K0(A)+ equals K0(A1)+ ⊕ · · · ⊕K0(An)+.

Lemma 4.3.5. (D) Let X be a compact, metrizable space. Then C(X)⊗ U has the

K0-embedding property.

Proof. Let X be a compact, metrizable space. Write C(X) as the inductive limit

of C(Xn), where each Xn is a finite dimensional CW-complex with finitely many

connected components [40, Thm. 10.1]. After tensoring everything with U , we will

denote the connecting maps from C(Xn) ⊗ U → C(Xn+1) ⊗ U as ψn. Let ϕi :
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C(Xi) ⊗ U ↪→ Ai be the embeddings discussed in the preceding paragraph, where

each Ai is an AF algebra. Let σi : K0(Ai)→ K0(Ai+1) be the group homomorphism

that makes the following diagram commute.

K0(C(X1)⊗ U) K0(C(X2)⊗ U) · · · K0(C(X)⊗ U)

K0(A) K0(A2) · · · K0(A)

(ψ1)∗ (ψ2)∗

ϕ∗

σ1 σ2

Note that the map ϕ∗ induced by the diagram is an order isomorphism since all

the vertical maps are order isomorphisms. By Theorem 4.3.3, each σi lifts to a ∗-

homomorphism ρi : Ai → Ai+1 that induces σi. This yields the following diagram of

C∗-algebras.

C(X1)⊗ U C(X2)⊗ U · · · C(X)⊗ U

A1 A2 · · · A

ψ1

ϕ1

ψ2

ϕ2 ϕ

ρ1 ρ2

where ϕ : C(X)⊗ U ↪→ A is an embedding and induces ϕ∗.

Let G be any singular subgroup of K0(C(X)⊗ U). By Lemma 4.3.2, there exists

a dimension group H and morphism f : K0(C(X)⊗U)→ H such that f(G) = 0 and

ker(f) ∩H+ = {0}. Let B be an AF algebra such that K0(B) = H and lift f to an

injective ∗-homomorphism γ : A ↪→ B. Recall that the embedding ϕ : C(X)⊗U ↪→ A

induces an order isomorphism on K0 and therefore the composition

C(X)⊗ U A B
ϕ γ

is injective and and satisfies (γ∗ ◦ ϕ∗)(G) = 0.

Theorem 4.3.6 (D). Let 0 → C(X) ⊗ K → E → B → 0 be a short exact sequence

where X is a compact metrizable space and B is a separable nuclear quasidiagonal

C∗-algebra that satisfies the UCT. If E is stably finite, then E is quasidiagonal.

Proof. Since U is an AF algebra, E ⊗ U will be stably finite. This follows from

writing E ⊗ U as the inductive limit of E ⊗Mn! and using the stably finiteness of
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E. Therefore, we can tensor the given extension with U and create the following

diagram.

0 C(X)⊗K E B 0

0 C(X)⊗K ⊗ U E ⊗ U B ⊗ U 0

Since E ⊗ U is stably finite, we have that Spielberg’s condition on the boundary

map is satisfied. Without loss of generality, it suffices to prove that E ⊗ U must

be quasidiagonal, for E embeds into it. Lemma 4.3.5 showed that C(X) ⊗ U has

the K0 embedding property. This immediately implies that C(X) ⊗ U ⊗ K has it

as well. Indeed, let G be a singular subgroup of K0(C(X) ⊗ U) and use Lemma

4.3.4 to obtain a ∗-homomorphism ϕ : C(X) ⊗ U ↪→ B such that ϕ∗(G) = 0. The

induced map (ϕ⊗ id)∗ : K0(C(X)⊗U⊗K)→ K0(B⊗K) arising from the embedding

ϕ⊗ id : C0(X)⊗U ⊗K → B ⊗K will contain G in its kernel. Prop. 3.4.6 completes

the proof.

Theorem 4.3.7 (D). Let 0 → C(X) ⊗ K → E → B → 0 be a short exact sequence

where X is a compact metrizable space and B is a nuclear AF embeddable C∗-algebra

that satisfies the UCT. If E is stably finite, then E is AF embeddable.

Proof. We will show that E embeds into an AF embeddable C∗-algebra E ′. Using the

same arguments in the preceding theorem, we know there exists a unital AF algebra

A and unital embedding C(X)⊗U ↪→ A. Therefore the embedding C(X)⊗U ⊗K ↪→

A ⊗ K is approximately unital. Tensor the given short exact sequence with the

universal UHF algebra U and use the approximately unital embedding mentioned

above to yield the following diagram.

0 C(X)⊗K E B 0

0 C(X)⊗K ⊗ U E ⊗ U B ⊗ U 0

0 A⊗K E ′ B ⊗ U 0



51

By assumption, E and hence E ⊗ U is stably finite. In particular, Lemma 3.2.12

ensures that the image of boundary map ∂ : K1(B ⊗ U) → K0(C(X) ⊗ K ⊗ U) is a

singular subgroup. By construction, K0(A) and K0(C(X)⊗U) are order isomorphic

and hence the naturality of the boundary map implies that E ′ is stably finite. Observe

that since B is nuclear, AF embeddable, and satisfies the UCT, B ⊗U will also have

these three properties. Additionally, A⊗K is an AF algebra and is therefore nuclear

and satisfies the UCT. These conditions on B⊗U and A⊗K imply that the extension

E ′ is nuclear and satisfies the UCT. By [5, Thm. 1.15], E ′ is AF embeddable.
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5. OPEN QUESTIONS

Question 1 Is every nuclear stably finite C*-algebra necessarily quasidiagonal?

The Blackadar-Kirchberg conjecture is still open in its fullest generality. Even

with remarkable progress by many researchers, there is still room for exploration in

the nonsimple case. With the major progress made by Tikuisis-Winter-White in [4],

extensions are a natural framework in which to examine this question.

Question 2 Do all separable nuclear quasidiagonal C∗-algebras have theK0-embedding

property?

As shown to be equivalent to the Blackadar-Kirchberg conjecture in the context of

extensions in [7], this remains an interesting question to explore. Not only due to its

inherent interest due to quasidiagonality, but also since it’s related to controlling the

K-theory of embeddings, which originated in the work of Pimsner and Voiculescu [6].

Question 3 Do all separable nuclear quasidiagonal C∗-algebras have the K0-Hahn-

Banach property?

On the class of separable nuclear quasidiagonal C∗-algebras, [7] showed this to

be equivalent to Question 2. However, on an individual basis, the K0-embedding

property implies the K0-Hahn-Banach property. This property is considerably easier

to work with since it deals with only a single element in Sing(A) at a time, and as

described earlier allows one to work with asymptotically multiplicative and asymp-

totically isometric ccp maps instead of ∗-homomorphisms.
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Question 4 Is every separable, exact, quasidiagonal C∗-algebra AF-embeddable?

This is another open problem concerning the nature of quasidiagonality. Since AF

algebras are one of the primary classes of examples in the field, having a complete

characterization of their C∗-subalgebras would be immensely helpful. One of the most

surprising results is due to Ozawa, stating that the cone (and hence suspension) of

any separable exact C∗-algebra is AF embeddable [8]. Gabe’s embedding of exact

connective C∗-algebras into Rørdam’s algebra, which is AF embeddable, generalizes

this result.
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