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ABSTRACT

Shergadwala, Murtuza N. Ph.D., Purdue University, August 2020. Sequential Infor-
mation Acquisition and Decision Making in Design Contests: Theoretical and Ex-
perimental Studies. Major Professor: Jitesh H. Panchal, School of Mechanical
Engineering.

Products are typically designed by accounting for competition. For example, Ap-

ple and Samsung competing to design better products. Such competition influences

strategic design decisions which, in turn, influence the product design outcomes. Ex-

isting literature in Design for Market Systems utilizes behavioral Game Theory to

investigate product design competitions to maximize a firm’s profit. However, in

engineering design contexts, there is a lack of understanding of the influence of com-

petition on designer behaviors and, thereby, the design outcomes.

Consider an example of a design contest such as DARPA’s Robotics Challenge.

In such a contest, the contest organizer (DARPA) possesses greater freedom as com-

pared to free-market product development competitions because they get to design

the contest environment. The organizers need to make contest-design decisions such

as, what problem-specific and contest-specific information to share with the contes-

tants. Moreover, the contestants are the designers who solve the design problem.

Thus, the contest-design decisions influence how the contestants evaluate the compe-

tition as well as make the design decisions such as what information to acquire about

the problem and when to stop acquiring information. Information acquisition deci-

sions, in turn, influence decisions about the design artifact and, thereby, the contest

outcomes. Such nuances of engineering design behaviors are unaccounted in existing

literature on contests. Thus, there is a lack of theoretical foundations to understand

how competition influences the decision-making behaviors of designers in engineer-

ing design contexts. Establishing such foundations would enable predictions about
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product design outcomes as well as aid organizers of design contests to better design

competitive environments.

The primary research question of this dissertation is, How do contestants make

sequential design decisions under the influence of competition? To address this ques-

tion, I study the influence of three factors, that can be controlled by the contest or-

ganizers, on the contestants’ sequential information acquisition and decision-making

behaviors. These factors are (i) a contestant’s domain knowledge, (ii) framing of a

design problem, and (iii) information about historical contests. The central hypoth-

esis is that by conducting controlled behavioral experiments we can acquire data of

contestant behaviors that can be used to calibrate computational models of contes-

tants’ sequential decision-making behaviors, thereby, enabling predictions about the

design outcomes. The behavioral results suggest that (i) contestants better under-

stand problem constraints and generate more feasible design solutions when a design

problem is framed in a domain-specific context as compared to a domain-independent

context, (ii) contestants’ efforts to acquire information about a design artifact to make

design improvements are significantly affected by the information provided to them

about their opponent who is competing to achieve the same objectives, and (iii)

contestants make information acquisition decisions such as when to stop acquiring

information, based on various criteria such as the number of resources, the target

objective value, and the observed amount of improvement in their design quality.

Moreover, the threshold values of such criteria are influenced by the information the

contestants have about their opponent. The results imply that (i) by understanding

the influence of an individual’s domain knowledge and framing of a problem we can

provide decision-support tools to the contestants in engineering design contexts to

better acquire problem-specific information (ii) we can enable contest designers to

decide what information to share to improve the quality of the design outcomes of

design contest, and (iii) from an educational standpoint, we can enable instructors to

provide students with accurate assessments of their domain knowledge by understand-

ing students’ information acquisition and decision making behaviors in their design
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projects. The primary contribution of this dissertation is the computational models

of an individual’s sequential decision-making process that incorporate the behavioral

results discussed above in competitive design scenarios. Moreover, a framework to

conduct factorial investigations of human decision making through a combination of

theory and behavioral experimentation is illustrated.



1

1. TOWARDS A DESCRIPTIVE THEORY FOR DECISION MAKING IN

DESIGN UNDER COMPETITION: DISSERTATION OVERVIEW

The primary research question of this dissertation is, How do designers make se-

quential information acquisition decisions under the influence of competition? To

motivate the reader for the need to investigate this research question, two key topics

are introduced and discussed in this chapter, namely, sequential decision making and

human behavior under the influence of competition. Both the topics are discussed in

the context of engineering design. Existing literature in Decision-based Design and in

Behavioral Economics is leveraged to combine the two topics and discuss the research

gaps in sequential decision making in design under competition. Then, I present

the overview of this dissertation by discussing the research questions, the research

approach adopted to address the questions, the summary of the research findings,

and the educational implications of this work. I close the chapter by discussing the

organization of this dissertation document.

1.1 Design Under Competition: Introduction

Products are typically designed by accounting for competition [1, 2]. By under-

standing the competition, designers can make design decisions that can improve the

competency of their products [3]. Thus, competition influences design decisions and

such decisions in turn influence the product design outcomes. Examples of product

design under the influence of competition include Apple and Samsung competing to

design better products [4]. Moreover, with the decentralization and democratization

of digital technologies, open-innovation contests such as crowdsourcing contests have

become novel examples of product design under competition [5].
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Crowdsourcing is defined as the practice of outsourcing tasks, traditionally per-

formed by employees or suppliers, to a large group of people in the form of open

contests [6]. An example of crowdsourced design contests is the DARPA research

competitions such as DARPA Robotics Challenge [7] where various teams compete

to achieve design objectives. In the context of crowdsourcing contests, organizers pos-

sess greater freedom as compared to free-market competitions because the organizers

get to design the competition environment and make contest-design decisions such

as how to design the incentives, what information to share with the contestants, and

deciding the knowledge-background of the contestants.

Currently, there is a lack of theoretical foundations to understand how competition

influences decision making behaviors of designers, thereby, influencing product design

outcomes such as product innovation, safety, and efficiency. Such knowledge would

enable the organizers of design contests to make predictions about contest outcomes

by accounting for the influence of competition on the contestants’ design decisions. To

establish the knowledge gaps for design under competition, I refer to two key research

areas: Decision-based Design (DBD) and Behavioral Economics. Within DBD, the

primary agent is a designer who is viewed as a decision maker. Within Behavioral

Economics, the effects of environmental factors such as competition are studied on

the decisions of individuals. Within DBD, there is a lack of descriptive theories, that

is, understanding how humans actually make decisions within a design process. Such

considerations are important for design under competition to investigate how con-

testants would actually make design decisions. Within Behavioral Economics, there

is lack of consideration of the nuances of engineering design and designer behaviors.

Thus, studying design under the influence of competition would bridge the gaps in

these research areas while leveraging existing work in both these fields. In the fol-

lowing, I discuss these two research areas as the foundation over which I build my

dissertation research.
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1.1.1 Decision-based Design: Past Research Emphasis

The two distinguishing characteristics of design decision making are that decisions

are made by humans and these decisions involve uncertainty [8,9]. Such characteristics

make a designer the primary agent that influences a decision making process and its

outcomes. Within the context of engineering design, designers make several decisions

such as what information to acquire and when to acquire that information which

influences the design outcomes. Thus, decision making is widely recognized as an

integral activity within design process [8, 10].

During the past two decades, decision-based design (DBD) [8,11] has emerged as

an important research area focused on supporting a rigorous application of mathemat-

ical principles and decision theory to develop computational methods for engineering

design. Existing research in DBD has focused on a designers as decision makers

by modeling their preferences [12, 13], understanding their deviations from rational-

ity [14], investigating group decision making [15], and accounting for customers’ deci-

sions in the product design [16]. However, the emphasis of research in decision-based

design has primarily been on using normative theory to make artifact decisions using

a specified state of information. Much less attention has been given to descriptive

theory, that is, understanding how humans actually make decisions within a design

process. As humans are an integral part of design processes, descriptive theory is

essential to make better predictions about the impact of human decision making on

design outcomes.

1.1.2 Descriptive Investigations in Decision-based Design: Sequential De-

cision Making

Although descriptive theories of human decisions have been developed within be-

havioral economics [17], psychology [18], and cognitive science [19], research in these

fields does not address the nuances of systems engineering and design. For example,

in typical engineering design processes, designers rarely make artifact decisions solely
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based on available information. They also perform information acquisition activities

such as executing simulation models and experiments. In such activities, designers

make decisions about what new information to acquire and when to stop acquiring in-

formation. Such information acquisition decisions heavily influence design outcomes

and the resources utilized in the engineering design processes [20].

Currently in design literature, there is a lack of descriptive models of sequential

information acquisition and decision making. Existing models of sequential decision

making [21–23] do not consider a design context or the cognitive limitations of humans

while making sequential decisions. For example, the authors [21,22] assume that the

individual has a finite set of choices. In the context of a design scenario, a design

space can be continuous with infinite possibilities of design alternatives. Moreover,

there is a lack of computational models that capture the qualitative knowledge that

factors such as an individual’s domain knowledge influences their information acqui-

sition process. Thus, it may be qualitatively known that an individual with a greater

knowledge about their domain, that is, an expert, typically has a better strategy in

problem solving, which includes information acquisition [24]. However, there is a lack

of computational models that can quantify such relationships and enable predictions

on the outcomes of engineering design scenarios. Therefore, there is a need for un-

derstanding how designers make information acquisition decisions within the context

of engineering design.

Information acquisition can be broadly categorized into sequential or parallel pro-

cesses [25]. In a sequential process, information is acquired in steps, and in each step,

the acquired information is used to update past beliefs, resulting in a new state of

knowledge at the end of that step. Hence, the information acquired in a sequential

process affects the subsequent information acquisition decisions. For example, the

information acquisition process is sequential when a designer decides what next ex-

periment to conduct based on the result of previous experiments. In parallel processes,

all acquired information is analyzed at the end of the process [25]. For example, the
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information acquisition process is parallel when a designer executes a pre-planned set

of experiments and analyzes the results of the entire set at the end.

Within the context of design contests, both sequential and parallel information

acquisition processes exist. However, in this dissertation, I focus on modeling a single

contestant as a decision maker who sequentially acquires information to search for an

optimal design solution. Focusing on such scenario is a parsimonious starting step

in understanding information acquisition as a design behavior under the influence

of competition. Moreover, information acquisition in parallel could be regarded as

multiple individuals within a competing design team following a sequential process

of information acquisition and pooling information at various time steps. Such an

investigation is beyond the scope of this dissertation.

1.1.3 Behavioral Economics Literature: Competition as A Factor Affect-

ing Decision-making Behaviors

Existing literature in behavioral game theory has established that the design of a

contest influences participant behaviors and, thereby, the outcomes of a contest [26,

27]. The design of a contest includes decisions such as what and how much information

to share with the contestants [26]. Examples of various types of contest-specific

information include knowledge about the organizers of the contest, the reputation

of the contest, the prize of the contest, and the players in the contest [28]. It is

intuitive that knowledge about such types of information can heavily influence the

strategic decisions of the players. For example, in the field of sports, a lot of data

about competing teams’ past performance is analyzed to make strategic decisions for

a team’s gameplay such that it improves their winning probability [29,30].

While there is extensive literature investigating contests within behavioral eco-

nomics [26,31–34], research in behavioral economics does not address the nuances of

engineering design scenarios. For example, designers in engineering design processes

typically iterate through several design solutions before making artifact decisions.
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Each of these iterations involves information acquisition activities that allow the de-

signers to explore the design space and update their state of knowledge about them.

Sharing contest-specific information influences a designer’s information acquisition

activities, and thereby, the quality of design solutions.

Existing literature in Design for Market Systems utilizes behavioral Game The-

ory to investigate product design competitions to maximize a firm’s profit [35, 36].

Moreover, it is acknowledged that designers play an important role such that their

decisions get influenced based on the structure of market systems [37]. However,

the incorporation of designer’s decision-making behaviors through the identification

and quantification of contest-specific factors that influence their behaviors in com-

petitive design environments has largely been ignored [38]. Thus, there lies a need

to understand how competition influences sequential decision-making behaviors in an

engineering design process.

1.2 Overview of this Dissertation

The overarching research goal of this dissertation to develop descriptive theory

of sequential information acquisition and decision making in design contests. A step

towards descriptive theory of information acquisition and decision making under com-

petition is by factorial investigation [39]. Such investigation provides insights on the

quantification and the impact of factors that affect information acquisition, decision

making process and its outcomes in design contests. Such insights can then be in-

corporated to develop descriptive models of decision making process that can better

predict design contest outcomes.

The research approach adopted in this dissertation for factorial investigation is

to utilize a combination of computational modeling and behavioral experimentation.

Existing theories from areas such as DBD and Behavioral Economics are utilized

to develop computational models of sequential design scenarios under competition.

Such models provide abstractions of design contests subjected to some assumptions.
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Models provide predictions about contest design outcomes which helps us generate hy-

potheses about the factorial impact on design decision making process and outcomes.

Such hypotheses can then be tested using behavioral experimentation. Results of

such hypotheses testing provide us with insights that in turn help us improve existing

theory. The research approach adopted in this dissertation is described in Figure 1.1.

Theories Model Hypothesis

Behavioral 

Experiments

Assumptions

Hypothesis 

Testing

Design of Experiment

Update 

Theory

Figure 1.1. : The Research Approach

1.2.1 Research Questions Addressed In This Dissertation

In this dissertation, the impact of three factors in an information acquisition

and decision making scenario are investigated. These factors are a decision maker’s

domain knowledge, problem framing, and information about the historical contest’s

winning performances. In order to conduct investigations of the mentioned factors I

aim to address the following research questions (RQs):

RQ1 How can we quantify the impact of a designer’s domain knowledge and problem

framing on their information acquisition decisions and the corresponding design

outcomes?
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RQ2 How can we quantify the influence of providing information about historical

contests on a participant’s information acquisition decisions in a design contest?

RQ3 How can we study a designer’s cognitive processes that influence their decision

to stop acquiring information under the influence of competition?

RQ1 is addressed in Chapter 2. The motivation for RQ1 is that there is a lack of

descriptive models that quantify the impact of a designer’s domain-specific knowledge

on their information acquisition, decision making, and thereby, the quality of design

solutions. For example, it is trivial to predict that an expert roller coaster designer

would design better roller coasters than a novice. However, there’s a lack of models

that quantify the impact of their knowledge of dynamics, for example, on the quality

of the design of the roller coaster.

RQ2 is addressed in Chapter 3. The motivation for RQ2 is that while it is known

that opponent-specific information influences participant’s decision-making, there is

a lack of understanding on how a boundedly rational agent would utilize such infor-

mation to make decisions. Thus, there lies a need to quantify the influence of such

information on participant’s information acquisition and decision making behaviors.

Moreover, computationally quantifying and modeling such influences provides a base-

line to study actual behaviors of participants.

RQ3 is addressed in Chapter 4. RQ3 is considered as an extension of the other

two research questions that have so far focused on the quantification of factors af-

fecting decision making behaviors. The motivation for RQ3 is that there is lack of

understanding of the approach to investigate how the cognitive factors influence a

participant’s decision making process. Thus, there is a need to synthesize the effect

of cognition on design outcomes. Such knowledge is particularly helpful for a designer

of a design tournament whose objective is to maximize the quality of the design so-

lutions submitted. The designer of such tournaments can decide what information

to reveal about the past contests such as the past participant’s performance data.
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Moreover, the approach to answer RQ3 requires both qualitative and quantitative

methods. Qualitative methods enable investigating individuals’ cognitive processes

that can help us infer their preferences, motivations, and mental states. Whereas,

quantitative methods can enable quantification of the cognitive factors and their

impact of design outcomes. Thus, a mixed methods approach is proposed towards

descriptive theory development in DBD.

1.2.2 Research Questions: Summary of the Results and Their Implica-

tions

The results from investigating RQ1 suggest that, designers better understand

problem constraints and generate more feasible design solutions when a design prob-

lem is framed in a domain-specific context as compared to a domain-independent

framing of the problem. Moreover, the computational model developed is able quan-

tify the influence of domain knowledge and problem framing on an individual’s se-

quential decision making behaviors. The results imply if contest designers frame the

design problem in a domain-specific context, they would receive more feasible design

solutions.

The results from investigating RQ2 suggest that, contestants’ efforts to acquire

information about a design artefact to make design improvements are significantly

affected by the information provided to them about their opponent who is competing

to achieve the same objectives. Specifically, designers expend higher efforts when they

know that their opponent has a history of generating good quality design solutions

as compared to when their opponent has a poor performance history. Moreover, the

computational model developed is able to quantify such a behavior by accounting for

an individual’s belief about their opponent. The results imply that sharing opponent-

specific information affects contestants perception about the competitiveness of the

competition and their willingness to participate in the contest. Thus, contest de-
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signers need to strike a balance between how much information to reveal about the

opponents and how to ensure sufficient participation.

The results from investigating RQ3 suggest that, contestants make information

acquisition decisions such as when to stop acquiring information, based on various

criteria such as the amount of resources they have, the target objective value they

want to achieve, and the amount of improvement in their design quality in succes-

sive iterations. Moreover, the threshold values of such criteria are influenced by the

information the contestants have about their opponent. From the identified criteria,

contestants’ resource expenditure threshold is the most sensitive to the information

they have about their opponent. Thus, if the opponent has a strong past performance

history, contestants are hesitant to spend more resources as compared to an opponent

with a weak performance history. The results imply that contest designers need to

strike a balance between the competitiveness of the competition and the resource

budget allocation to the contestants.

1.2.3 Educational Implications of Investigating Sequential Decision Mak-

ing Without Competition

The implications of the factorial investigation of domain knowledge (RQ1) are also

investigated in engineering education contexts. Students are considered as sequential

decision-makers to understand how classroom activities can impact their ability to

acquire and process information. The following educational research question (ERQ)

is addressed.

ERQ1 How do students make decisions while acquiring information in a product design

process?

ERQ1 is addressed in Chapter 5 where an observational study is discussed. The

results of the study indicate that the students recognize the need to acquire informa-

tion about the physics and dynamics of their design artifact. However, they do not

acquire such information during the design process. The factors that contribute to
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the failure of information acquired during the product design activity are the lack of

(i) explicit learning objectives in the project specifications, (ii) the students’ lack of

knowledge to do so, and (iii) the time constraints for project completion. Instead,

they acquire such information from the prototyping activity as their toy does not sat-

isfy the design objectives and work as intended. Such information acquisition results

in the students wanting to have more number of iterations for prototyping activi-

ties to improve the achievement of their design objectives. With the given cost and

time constraints, the students do not get the opportunity to iterate their prototype.

Consequently, the students rely on improvising during prototyping.

1.3 Thesis Organization

In this dissertation, each Research Question (RQ) is addressed by utilizing a com-

putational model of decision making in conjunction with a controlled behavioral ex-

periment. In each of the subsequent chapters, that is, Chapter 2, Chapter 3, and

Chapter 4, respectively, I report how RQ1, RQ2, and RQ3 are addressed. These chap-

ters are structured such that, in each, I discuss the theories utilized to address the

respective RQs followed by the model formulation. Then, I discuss the design of the

experiment and the corresponding hypothesis formulation and results. In Chapter 5,

I highlight the implications of this dissertation in engineering educational research

contexts by discussing how ERQ1 was addressed. Finally, in Chapter 6, I provide

closing remarks for this dissertation along with the intellectual merit and the broader

implications of this research.
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2. QUANTIFYING THE IMPACT OF DOMAIN KNOWLEDGE AND PROBLEM

FRAMING ON SEQUENTIAL DECISIONS IN ENGINEERING DESIGN

2.1 Chapter Overview

Designers make several decisions within engineering systems design such as what

information to acquire and what resources to use. These decisions significantly affect

design outcomes, and the resources used within design processes. While decision the-

ory is increasingly being used from a normative standpoint to develop computational

methods for engineering design, there is still a significant gap in our understanding

of how humans make decisions within the design process. Particularly, there is lack

of knowledge about how an individual’s domain knowledge and framing of the design

problem affects information acquisition decisions. To address this gap, the objective

of this chapter is to address RQ1 (Refer to Chapter 1.2), that is, to quantify the impact

of a designer’s domain knowledge and problem framing on their information acqui-

sition decisions and the corresponding design outcomes. The objective is achieved

by (i) developing a descriptive model of information acquisition decisions, based on

an optimal one-step look ahead sequential strategy, utilizing expected improvement

maximization, and (ii) using the model in conjunction with a controlled behavioral

experiment. The domain knowledge of an individual is measured in the experiment

using a Concept Inventory, whereas the problem framing is controlled as a treatment

variable in the experiment. A design optimization problem is framed in two different

ways: a domain-specific track design problem, and a domain-independent function

optimization problem. The results indicate that when the problem is framed as a

domain-specific design task, the design solutions are better and individuals have a bet-

ter state of knowledge about the problem, as compared to the domain-independent
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task. The design solutions are found to be better when individuals have a higher

knowledge of the domain and they follow the modeled strategy closely.

2.2 Introduction

Factors such as a designer’s domain knowledge and the framing of a design problem

affect designers’ decisions [40–43]. However, there is a significant gap in our under-

standing of how these factors affect information acquisition decisions. For example,

it is trivial to predict that an expert roller coaster designer would design better roller

coasters than a novice. However, there is a lack of descriptive models that quantify

the impact of a designer’s domain-specific knowledge, such as, their knowledge of

dynamics on the quality of design solutions. Therefore, in this chapter, the objective

is to address RQ1 (Refer to Chapter 1.2).

My approach to answer RQ1 consists of two steps. First, I develop a descriptive

model of a sequential information acquisition activity in an engineering design process.

The model is described in Section 2.3. It is based on the assumptions that individuals

strive to maximize their expected payoff and use the Bayesian approach to update

their state of knowledge based on new information. Second, I design and execute

a behavioral experiment. I utilize experimental data to estimate parameters in the

model, and to test hypotheses about the impact of domain knowledge and problem

framing on design outcomes. Before the experiment, I measure an individual’s do-

main knowledge using a Concept Inventory [44]. Within the experiment, I control for

problem framing by presenting a mathematically identical problem in two different

ways and observe the decisions made by the participants. The details of the experi-

ment are provided in Section 2.4. The results are discussed in Section 2.5. Finally, I

discuss the implications of this work, the validity of the modeling assumptions, and

the avenues for future research in Section 2.6.
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2.3 A Descriptive Model of Sequential Information Acquisition and De-

cision Making Process

In this section, I abstract design processes as a Sequential Information Acquisition

and Decision Making (SIADM) process. Then, a computational model of the SIADM

process is formulated that accounts for the influence of domain knowledge.

2.3.1 Sequential Information Acquisition and Decision Making: An Ab-

straction of Design Processes

Consider a design scenario where a designer has a set of design variables x that

affect a design outcome f(x) under constraints g(x) ≥ 0. The designer’s objective is

to achieve the best feasible design outcome. The designer does not explicitly know

the mathematical relationship between the design variables and the design outcome,

i.e., the function f(x). However, they may know the feasibility of the design variables,

i.e., the constraint function g(x) ≥ 0, due to factors such as their domain knowledge.

In such a scenario, a designer needs to acquire information about the impact of design

variables x on the design outcome f(x). Such information can be acquired by running

(physical or computational) experiments, which incur certain cost. Consequently,

they also receive information about the feasibility of the design variables g(x). We

assume that the designer updates their state of knowledge about both these functions

after executing each experiment. Such a design scenario is referred to as a Sequential

Information Acquisition and Decision Making (SIADM) scenario.

We choose such a scenario, where f(x) is unknown but g(x) may be known,

to decouple the impact of an individual’s domain knowledge on the knowledge of

the objective f(x) and the constraint function g(x). In reality, designers may have

knowledge about the objective function f(x). We align the modeled scenario with

our experiment by ensuring that the function f(x) is unknown to the participants.

The SIADM process is illustrated in Figure 2.1. It consists of three main activities:

acquiring information, processing information, and making decisions. These activities



15

Decision:
Choose next x

Current
belief

about f(x)
and g(x)

Acquire
Information:

about f(x)
and g(x)

for chosen x

Process
Information:
update belief
about f(x)
and g(x)

Decision:
Stop

experimentation?

Yes
Artifact
Decision

No

. . . . . .

t = 1 t = 2 t = T

Figure 2.1. : Illustration of Sequential Information Acquisition and Decision Making
process. Decisions are highlighted in gray color. Rectangular nodes are informa-
tion acquisition decisions and the outcome (diamond node) of the SIADM process is
making the artifact decision.

are repeated over a sequence of steps, t = 1, . . . , T . During each step t, the decision

maker chooses a set of design variables xt to execute an experiment. Choosing a

set of design variables x is referred to as sampling. From the experimental data,

the decision maker acquires new information about f(x) and g(x), and processes

it to update their state of knowledge. Then, the decision maker decides whether

to continue acquiring information (or to stop experimentation). If they decide to

continue acquiring information, the decision maker repeats the same set of activities

as that of the previous step. If their decision is to stop experimentation, then they

make artifact decisions such as selecting an alternative using the current state of

knowledge at step t.
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2.3.2 Model Formulation

I begin the SIADM model formulation by making assumptions about the represen-

tation of an individual’s state of knowledge, how they update their state of knowledge,

and how they make information acquisition decisions. I assume the following: A1.1)

The state of knowledge of an individual is the belief of that individual. A1.2) Individ-

uals update their state of knowledge through Bayesian updating. A2.1) The decision

to choose the “next x” (refer to Figure 2.1) is made by maximizing the expected im-

provement in the objective function. A2.2) Individuals have bounded rationality [45].

A3) The decision maker stops after a fixed number of steps T .

A1.1 implies that the state of knowledge of an individual is a probability distri-

bution (referred to as a belief) assigned by the individual over the information space.

By assuming A2.1 and A2.2 I imply that individuals can only estimate the impact

of the information acquired in the immediate next step. In other words, I model a

myopic information acquisition decision by accounting for an individual’s bounded

cognitive capabilities. Assumption A3 is reasonable in scenarios where the designer

has to commit to expending certain resources before conducting any experiments or

there is a fixed predefined budget for experiments.

In my model, I account for the impact of domain knowledge and the framing of the

design problem on the state of knowledge of an individual. I do so by utilizing a set

of parameters called type (θ) of an individual. The type θ of an individual accounts

for their unique characteristics due to which they have varying domain knowledge

and different information acquisition strategies. By assuming A1.1 I imply that an

individual’s type θ impacts their prior beliefs with which they begin the SIADM

process. While I make specific assumptions about the information acquisition process

of an individual (A1 to A3), I account for their deviation from the process through

their type θ.

In the following subsections, I mathematically define two concepts: (i) the in-

formation acquired at each decision making step (Section 2.3.3) and (ii) the type of
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an individual θ (Section 2.3.4). I then describe various aspects of an individual’s

type θ, such as, an individual’s state of knowledge (Section 2.3.5), how they update

their state of knowledge (Section 2.3.6), and how they make information acquisition

decisions (Section 2.3.7).

2.3.3 Information Acquired at Each Step

At each decision making step, t = 1, 2, . . . , T , (refer to Figure 2.1) the individual

samples an xt value and receives information about:

1. The constraint feasibility, zt =

1, if g(xt) ≥ 0

0, otherwise.

2. The value of the objective function, yt = f(xt), provided the constraint is

satisfied, zt = 1. The design outcome is not known, yt = ∅, if the constraint is

not satisfied, zt = 0.

I assume that an individual begins the SIADM process at step t = 0 with some

initial information I0 at x = x0 about the objective function y0 = f(x0) and the

constraint feasibility z. Thus,

I0 = {(x0, y0, z0)}. (2.1)

The information It that the individual observes at the end of step t is:

It = It−1 ∪ {(xt, yt, zt)}. (2.2)

2.3.4 The Type of an Individual

The type θ of an individual fully specifies (i) their prior state of knowledge and

how it is represented, (ii) how they update their state of knowledge after observing It,

and (iii) how they decide what to observe at each step. Obviously, there are infinitely
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many modeling alternatives for items (i)-(iii). In what follows, I have made specific

modeling choices, trying to be parsimonious (to keep the number of model parameters

as small as possible), while taking into account some of the cognitive limits of humans.

2.3.5 Modeling an Individual’s State of Knowledge

I utilize Gaussian process prior [46] to model an individual’s state of knowledge

about the objective function f(x). Existing studies support the findings that Gaussian

Process models can capture human search process [47,48]. A relevant study conducted

by Borji and Itti [49] focuses on investigating the underlying algorithms that humans

utilize to optimize an unknown 1D objective function. Their results indicate that

Gaussian Process models can capture an individual’s state of knowledge about the

mathematically unknown objective function f(x).

I assume that prior to observing any data, the individual believes that f(x) could

be any sample from a Gaussian process prior [46],

f(x)|θ ∼ GP (0, c(x, x′)) , (2.3)

with a zero mean and covariance function c(x, x′). The covariance function c(x, x′)

defines the process’ behavior between any two points x and x′. The choice of the

covariance function c(x, x′) along with the prior beliefs that the individual has about

its parameters are, in general, a part of their type θ.

In this work, however, I assume that the individuals use a squared exponential

covariance function:

c(x, x′) = s2 exp

{
−(x− x′)2

2`2

}
, (2.4)

with unspecified signal strength s > 0 and length scale ` > 0, i.e., they assign flat

priors. This choice is equivalent to the assumption that the individual believes that

f(x) is infinitely differentiable and that it could have any signal strength or length

scale.
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The state of knowledge about the constraint function z is represented as the

probability that the constraints are satisfied p(z = 1|x, θ). The simplest such model

is the logistic regression:

p(z = 1|x, λ, b) = sigm(λ(x− b)) :=
1

1 + e−λ(x−b) , (2.5)

with parameters λ and b. As with the parameters of the covariance function, I

do not assume that an individual knows the exact values of λ and b. In other words,

λ and b are not a part of the description of an individual’s type θ. What is a part

of the type θ, however, is the individual’s prior beliefs about λ and b. Specifically, I

assume that an individual of type θ assigns a factorizing prior on λ and b:

p(λ, b|θ) = p(λ|θ)p(b|θ), (2.6)

and that each factor α ∈ {λ, b} is a Gaussian:

α|θ ∼ N (µα, σ
2
α), (2.7)

with given mean µα and variance σ2
α. In other words, the specification of an indi-

vidual’s type contains these parameters, i.e., {µλ, σ2
λ, µb, σ

2
b} ⊂ θ. While λ quantifies

the slope of the regression curve (refer to Equation 2.5), the parameter b has an in-

tuitive interpretation that correlates with the constraint knowledge of an individual.

I discuss the interpretation of b in Section 2.4.3.

2.3.6 Modeling how Individuals update their State of Knowledge

At step t, after an individual samples xt, they receive information (xt, yt, zt). The

individual processes this information by updating their belief about f(x) and g(x).

However, due to their limited cognitive capabilities they may not be able to fully

characterize all posteriors. The assumptions A1.2 and A2.2 imply that when they
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cannot deal with the computational complexity, they choose to obtain a maximum a

posteriori estimate of their hyperparameters. Thus, an individual of type θ updates

their beliefs about f(x) to:

f(x)|It, θ ∼ GP (mt(x), ct(x, x
′)) (2.8)

where mt(x) and ct(x, x
′) are the posterior mean and covariance functions of the

GP [46] when it is conditioned on the x-y input-output pairs contained in It that

satisfy the constraints, i.e., on {(xi, yi) : (xi, yi, zi) ∈ It, zi = 1, i = 0, . . . , t}. Since

I have assumed that the individuals have flat priors on the hyperparameters of the

covariance function, p(s, `|θ) ∝ 1, this is equivalent to maximizing the marginal like-

lihood. Note that at the very first step, t = 0, the marginal likelihood is flat with

respect to the lengthscale. In that case, I assume that they pick ` = 1. This may

seem ad hoc, but it is inconsequential since their first decision at t = 1 does not

depend on `.

Similarly, the individuals use It to update their state of knowledge about the

feasible region, which is modeled as a logistic regression depending on b and λ. In

this part, their prior state of knowledge specified by their type θ, and specifically by

{µλ, σ2
λ, µb, σ

2
b} ⊂ θ, does play a role in their decision to choose the next search point.

The modeling assumption is that they choose b and λ by maximizing the posterior of

these hyperparameters, i.e., they choose:

b̂(It; θ), λ̂(It; θ) = arg max
b,λ

t∏
i=0

p(zi|xi, λ, b)p(λ, b|θ). (2.9)

2.3.7 Modeling how Individuals make Information Acquisition Decisions

To model how an individual of type θ samples xt, I define a decision function

χt(It; θ). In the context of the SIADM scenario, the decision of what information to

sample can be modeled utilizing a decision function. For example, for a convex search

problem, a designer may choose to sample xt based on a convex optimization method
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such as the bisection method. Then the decision function is modeled such that the

next x is chosen at the mid point of the search space.

To descriptively formulate my decision function, my first assumption is that the

decision function is not stationary i.e., it changes with t. However, it only changes due

to the information observed until step t i.e. χt(It; θ) = χ(It; θ). I do so to account

for the argument that when t is small, individuals may wish to explore the space

and that when t gets closer to T , they wish to exploit their state of knowledge. The

second assumption is that the decision function is myopic, i.e., it only considers the

optimality of the next decision and not the optimality of the subsequent sequence of

decisions. This assumption is reasonable, since individuals do not have the cognitive

capabilities to think about many steps ahead [50]. There are many possible choices

of myopic decision functions. Here, I opted for one of the most parsimonious models

(no new parameters) which is based on the conditional expected improvement [51].

Borji and Itti [49] show that maximization of expected improvement is indicative of

how humans make search decisions. It is:

χ(It; θ) = arg max
x

EI(x; It, θ)p(z = 1|x, λ̂(It; θ), b̂(It; θ)), (2.10)

where EI(x; It, θ) is the expected improvement (EI) defined via the GP represen-

tation of the objective function as modeled by an individual of type θ and p(z =

1|x, λ(It; θ), b(It; θ)) is the probability that the constraints are satisfied given by the

logistic regression function. λ̂(It; θ) and b̂(It; θ) are parameters that the individual

has identified as described in Section 2.3.6.

2.3.8 A Researcher’s Belief about the Individual

A researcher is an individual who is observing the decision maker’s decisions but

does not know their type θ. In Section 2.3.7, I formulate the beliefs of an individ-

ual about f(x) and g(x). In this section, I formulate the researcher’s beliefs about

observing the decision data of an individual with type θ.
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The researcher’s probability that an individual of type θ selects xt at the t-th step

after having observed information It is:

p(xt|It, θ) ∼ N
(
χ(It; θ), σ2

)
, (2.11)

where σ2 ∈ θ is a type parameter that accounts for the deviation of an individual

from the information acquisition strategy modeled in Section 2.3.7. Thus, for a fixed

number of tries T , the researcher’s probability of observing a sequence of decisions

made by an individual x1:T = {x1, . . . , xT} is given by:

p(x1:T |y1:T , z1:T , θ) =
T−1∏
t=0

p(xt+1|It, θ) (2.12)

I refer to Equation 2.12 as the likelihood. Note that the likelihood is also conditioned

on fixing the number of tries (assumption A3). Therefore, the probability of an

individual for not stopping for T − 1 tries as well as the probability of stopping at T

tries is 1.

The researcher’s prior beliefs about the type θ of an individual are:

p(θ) = p(µλ)p(σλ)p(µb)p(σb)p(σ), (2.13)

where, the variances σ2
λ, σ

2
b , and σ2 are assigned an uninformative Jeffrey’s prior, e.g.,

p(σλ) ∝ 1
σλ

,

µλ ∼ N (−0.1, 0.001), (2.14)

and

µb ∼ N (300, 5000). (2.15)

I assume that all the participant’s prior belief about µb and µλ is normally distributed

as shown in Equation 2.14 and 2.15. These priors are assigned in accordance with

the range of values chosen for the design of the experimental constraints as described

in Section 2.4.1.
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Information
at step
t: It

i = 1, . . . , t

xi

yi

zi

λ

b

f (x)

l s parameters that
individual infers

observed by an
individual at step t

xt+1

µλ σλ µb σb σ

part of type θ

Figure 2.2. : Graphical illustration of Sequential Information Acquisition and Decision
Making (SIADM) model at step t. Parameters λ, b, l, and s are inferred by the
individual. Parameters µb, σb, µλ, σλ, and σ are a part of an individual’s type θ.

Figure 2.2 illustrates the information observed by the individual. Note that the

researcher observes the entire information set It. Figure 2.2 also illustrates the plate

diagram of the SIADM model and the influence of various model parameters on the

information acquired.

2.3.9 Inferring an Individual’s Type from Experimental Data

The stochastic model of sequential decision making contains five parameters that

specify the type of an individual, i.e., θ = {µλ, σ2
λ, µb, σ

2
b , σ

2}. In this section, I
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discuss how observed decisions x1:T of the individual can be used to infer their type θ.

Section 2.3.8 describes a generative model of x1:T conditioned on θ, which enables us

to compute the likelihood p(x1:T |y1:T , z1:T , θ) and the researcher’s prior beliefs about

an individual’s type θ. Using Bayes rule, the researcher’s posterior over θ conditioned

on x1:T is:

p(θ|IT ) ∝ p(x1:T |y1:T , z1:T , θ)p(θ). (2.16)

I sample from the posterior using the Metropolis-Hasting algorithm sampling [52]

from the PyMC [53] Python module. I run the MCMC chain for 10000 iterations

with a burn-in period of 2000 samples that are discarded. Equation 2.16 is used to

estimate the researcher’s posterior over θ for an individual given their (individual’s)

search data.

2.4 Experimental Study

A behavioral experiment with an SIADM task is required to obtain an individual’s

search data for this study. Such data enables us to estimate an individual’s type θ

from the model formulated in Section 2.3. In order to study the impact of domain

knowledge and problem framing in a SIADM scenario, I need to formulate and test

related hypotheses. Thus, in this section, I describe the experimental tasks, structure,

and design in the context of this work. I then discuss the quantification and mea-

surement of the factors investigated utilizing the experimental study and formulate

the hypotheses.

2.4.1 Experimental Tasks

I assume that a designer receives information about the design objective f(x)

and constraint g(x) with certainty i.e., the information sources are not noisy. I also

assume that an individual’s domain knowledge does not affect their belief about the

objective function. Thus, I assign a GP prior belief about the objective function
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for an individual in my model (refer to Section 2.3.7). To ensure consistency of the

experiment with the model, the objective function f(x) is mathematically unknown to

the participants. However, I assume that the domain knowledge affects an individual’s

belief about the constraints g(x).

The experimental study has three constrained optimization tasks. The first task

is formulated as a domain-dependent track design problem where the feasible design

space is not explicitly specified. For brevity, I call this task a Track-Design-Problem

where Constraint-is-Not-Specified (TDPCNS). The second task is the track design

problem where the constraint is specified (TDPCS). The third task is formulated

as a domain-independent function optimization problem (FOP). The TDPCNS and

FOP are mathematically identical but framed in different domain contexts. I do

so to test the impact of problem framing on the participants’ decisions in SIADM

scenarios. The TDPCS is formulated in order to understand the impact of adding a

constraint. Table 2.1 illustrates the differences between each task. I do not consider

a domain-independent task where the constraint is specified as it simply becomes a

search task without influence of domain knowledge due to lack of a domain context

and the constraint. In the following, I discuss the details of each design task.

Table 2.1. : Differences between the Track Design Problem (TDP) and Function
Optimization Problem (FOP)

Constraint
Domain

Dependent Independent

Specified TDPCS −
Not Specified TDPCNS FOP

Track Design Problems

The track design problems TDPs are formulated as SIADM tasks. The designer’s

task is to design a roller coaster track where the objective f(x) of the designer is

to “maximize enjoyment experienced by the rider of the track” under the constraint
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Figure 2.3. : The user interface of track design game where constraint is specified
TDPCS

g(x) that the centripetal acceleration should not exceed 4g. To achieve the objective,

a participant’s task is to design a circular valley segment of the track with an ap-

propriate width w. The participants are not provided an explicit mathematical form

of the “enjoyment function” E(w). However, they are informed that a small valley

width would make the ride uncomfortable due to high g forces and a wide valley has

a high radius of curvature. Both cases result in reduced enjoyment. Thus, there is an

optimal width w for which the enjoyment for the rider is maximized. The participants

are provided with an initial height H of the track and are informed that the circular

valley has a constant depth of 50 units as shown in Figure 2.3.

If the participants violate the constraint such that the centripetal acceleration

exceed 4g then the track fails because the ride becomes uncomfortable due to high g

forces. In such a case, it is counter intuitive to display an “enjoyment” value. Thus,

we chose a modeling scenario where violation of constraints results in no information

about the objective function.

We design the objective function E(w) such that it satisfies requirements such

as concavity, non-negativity, function parameterization, and function asymmetry in
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order to control for factors such as incentivization, intuition, guessing, and problem

difficulty to avoid interference with the experiment results.

We require the enjoyment function to have the following characteristics:

1. The objective function should be concave so that there is a unique maximum

value of enjoyment.

2. The objective function should be non-negative to ensure that the enjoyment

value is non-negative.

3. The objective function should be sensitive to the values in the design space

sampled by the user.

4. The concavity of the function should be such that it is less intuitive for the

participant to achieve the maximum by sampling values at random. In this

way the participants would also have an incentive in trying to converge to the

optimum.

5. The enjoyment value should eventually decrease to zero by moving away from

the optimal value.

6. The function should have flexible parameters to adjust its maximum value either

on the constraint boundary or somewhere within the design space. This would

make it less intuitive for the participant to search for the optimal by guessing.

7. The enjoyment function could be asymmetric with respect to the optimal width

value. The rate at which enjoyment decreases due to increase of width could be

different from the rate at which enjoyment decreases due to decreasing width.

Considering such characteristics, we model enjoyment function through a Log-

Normal function. The enjoyment (E(w)) of the track is defined as:

E(w) = 0.075 exp (0.005)
H2

w
exp

{
− (ln (w)− ln (H)− ln (0.6)− 0.01)2

0.02

}
. (2.17)
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The maximum value of enjoyment function occurs at the width value wmax. We model

wmax as a function of the track height H such that wmax = 0.6H. The corresponding

maximum enjoyment value Emax is:

Emax =
(H

8

)
. (2.18)

The function is normalized to have a maximum value dependent on the height of

the track. We do so because intuitively a “taller” ride should have a higher maximum

possible enjoyment. In the experiment, the height values H are uniformly chosen

from the range of 400 to 800 units. Thus, Emax values range between 50 to 100.

However, the design alternative at wmax may still be infeasible i.e., not satisfy the

acceleration constraint. The constraint is chosen by considering the standard safety

measures adopted in general in a roller coaster track design where the g forces are

limited between −4g and 4g. In the valley, the g force is always positive and therefore

limited between 0 to 4g. The track is also assumed to be frictionless.

Mathematically, the problem can be formulated as an optimization problem as

follows:

maximize E(w) = 0.075 exp (0.005)
H2

w
exp

{
− (ln (w)− ln (H)− ln (0.6)− 0.01)2

0.02

}
,

subject to w2 ≥ 200H.

(2.19)

Participants were not aware of the explicit form of the objective function E(w) as

seen in Equation 2.17. An understanding of laws of motion, centripetal acceleration

and force balance is required to formulate the constraint in Equation 2.19. We assume

that an individual with knowledge of the Newtonian concept of force will be able to

formulate the constraint in Equation 2.19. This assumption is reasonable as research

has shown that individuals with high domain knowledge tend to categorize a problem

according to the major concept that could be applied to solve the problem [54].

Consider a randomly chosen H value of 500. The theoretical maximum value of

the function is Emax = 62.5 at the width value of wmax = 0.6H = 300. However,
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for the constraint to be satisfied we need w ≥ 316.23. Thus, the function maximum

is not a feasible solution and the optimal lies at the constraint boundary in this

case. Such cases are included in order to reduce learning [55] about the relationship

between wmax and track parameter H. For track design problem where constraint is

specified TDPCS the participants were additionally given the constraint information.

We do so by giving the range of width values for which the solution would be feasible.

Figure 2.3 illustrates TDPCS.

Function Optimization Problem

We design the function optimization problem by excluding the context of the

track design task. In the function optimization problem, the participants are asked

to maximize a concave function f(x) given a constraint function g(x). Their task is

to sample values to obtain the maximum value of f(x) as well as ensure that g(x) < 2

for a feasible solution (choosing a set of design variables x is referred to as sampling).

The objective function f(x) remains exactly the same as the objective function of the

track design game, E(x) (Equation 2.17). The constraint in the TDP is such that the

centripetal acceleration is less than 4g (and greater than 0). The centripetal accel-

eration constraint is shown as a constraint function g(x) in FOP and the values are

normalized between 0 and 2 to minimize learning about the mathematical similarity

of the tasks.

2.4.2 Experiment Design

The experiment involved a total of 44 participants. These participants were un-

dergraduate and graduate students at Purdue university. The participants were en-

gineering majors from various departments such as mechanical, civil, chemical, and

nuclear engineering. Students were recruited via flyers and social media posts in Pur-

due Engineering groups. The experiment was divided into four parts. In the first

part, the participants were required to take a Concept Inventory test (the details are
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provided in Section 2.4.3). No time limit was imposed for this part. In the rest of

the parts, each participant was required to play the games in a predetermined order.

There were a total of three orders of execution of the experiment tasks. Such

ordering of tasks is done to eliminate order effects [56]. There can be six possible

permutations of the order of execution of three experimental tasks. However, I elim-

inated certain cases as follows: In any task I did not want the participants to play

TDPCS before playing TDPCNS. This was done to eliminate learning effects [55]. As

constraints are explicitly specified in TDPCS, knowledge of the constraints may inter-

fere with the performance in TDPCNS. Thus, I eliminate three of the permutations

of the order of execution of the three experiment tasks.

Table 2.2. : Treatments and number of participants in each treatment

Treatment Order Number of Participants

TDPCNS - FOPCNS - TDPCS 15 participants

TDPCNS - TDPCS - FOPCNS 15 participants

FOPCNS - TDPCNS - TDPCS 14 participants

Each order of the experimental tasks, as shown in Table 2.2, is termed as a treat-

ment. Each participant was a part of one of these three treatments. Each experi-

mental task within a treatment consisted of 7 periods. In each period, the objective

function was randomly generated. In particular, the objective function parameter H

was randomly chosen from a uniform distribution between 400 to 800 units.

Each period consisted of seven (7) fixed number of tries. A try is defined to be

a submission of one sampled w (or x for FOP) value. A successful try is defined as

one in which the constraint in Equation 2.19 is satisfied. Otherwise, the try is termed

unsuccessful. For all the tasks, at the end of each successful try, the value of the

objective function was shown. Additionally, for TDP, an animation of the ride was

shown to the participants.

The incentive structure for the participants was designed as follows. Participants

were paid based on their performance to align incentives with the task objective of
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obtaining the maximum value. I do so by obtaining a ratio of the maximum func-

tion value obtained by the participant in a period to the actual maximum achievable

value. This ratio is multiplied with a constant value of $2.5. Thus, the participants

can achieve a maximum incentive of $2.5 in each period. To control for wealth ef-

fects [57], the participants are informed that for any task they would be paid for their

performance in two randomly chosen periods of that task. As there are a total of

three tasks the participants can earn a maximum of $15. Additionally, they are given

$5 as a participation fee.

2.4.3 Metrics Utilized for Hypothesis Formulation and Testing

I describe the metrics utilized to quantify the factors under investigation in this

chapter. I list these factors in Table 2.3.

Table 2.3. : List of factors under investigation in this chapter and their method of
measurement

Factor Method of Measure-
ment or Control

Measure or
Control

Output

Domain Knowledge Concept Inventory Scores S

Lack of Knowledge Experimental Data and
Model

µdiff
b

Performance is
measured by
averaging all
the function
values sampled
in a given pe-
riod over the
total number
of tries in the
period

Deviation from
ideal strategy

Experimental Data and
Model

σ

Constraint Specifi-
cation

Constraint is either speci-
fied or not in the problem
statement

Experimental
Control

Problem Framing Problem is framed as a
Track Design Task and
a Function Maximization
Game

Experimental
Control

I consider domain knowledge as the general conceptual knowledge of an individual

about a specific domain. I quantify an individual’s domain knowledge through the

test-scores of a Concept Inventory. In this specific study, I utilize the test-scores S of

the Force Concept Inventory (FCI) [44]. The FCI quantifies an individual’s knowledge
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of Newtonian concepts of force. These concepts are required to comprehend the

constraints in the track design tasks. The FCI has been validated utilizing Item

Response Theory [58]. An FCI score ranges from 0 to 30. A score of less than 15 is

considered as a low score [58]. Shergadwala et al. [59] discuss how FCI scores can be

utilized to assess the performance of individuals in a design context. Other metrics

such as a student’s GPA or subject specific grades cannot be utilized to assess their

performance as they are inconsistent across universities and lack verification.

An individual’s lack of knowledge (µdiff
b ) is defined as the distance of an individual’s

belief about the location of the constraint boundary from the actual location. The

hyperparameter µb represents an individual’s mean prior belief about the location of

the constraint boundary. The actual location of the constraint boundary is bactual =
√

200H (refer to Equation 2.19). Thus, an individual’s lack of knowledge is quantified

as,

µdiff
b = |µb − bactual|. (2.20)

As µdiff
b estimates the distance between actual constraint boundary bactual and the

hyperparameter µb, intuitively a smaller µdiff
b means a lesser lack of knowledge. This

implies a better state of knowledge about the constraints. It is to be noted that µdiff
b

is specific to the class of problems where there are inequality constraints.

I quantify an individual’s deviation from the modeled SIADM strategy through

the hyperparameter σ. The decision-making data of the individuals obtained from the

experiments is utilized to infer the parameters µb and σ as discussed in Section 2.3.9.

Problem framing is controlled by formulating the Track Design Problem TDP and

Function Optimization Problem FOP.

The performance of an individual is measured as follows: For a given objective

function in a given period I average the f(x) values over all the tries (tries and periods

are defined in Section 2.4.2). For example, if an individual sampled {x1, . . . , xT}

sequentially in a design space to receive {f(x1), . . . , f(xT )} then the average of the

f(x) values achieved over T tries is considered as the person’s performance. I do so
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to reduce the effects of guessing the maximum value or randomly sampling a high

function value.

2.4.4 Hypotheses Formulation and Operationalization

I list all the hypotheses and their corresponding operationalization in Table 2.4.

Table 2.4. : Operationalization of Hypotheses

Research
Objective

Hypotheses Operationalized Hypotheses

1.1 To
quantify the
impact of
domain
knowledge
on SIADM
process and
outcomes.

H1: Domain knowledge affects
the initial state of knowledge of a
SIADM task.

H1*: Average µdiff
b is a decreasing function of the

FCI score.

H2: Domain knowledge affects de-
sign performance.

H2*: Average enjoyment value achieved by a par-
ticipant in the Track Design Game is an increas-
ing function of their FCI score.

H3: Domain knowledge affects
SIADM strategy.

H3*: Average σ value is a decreasing function of
the FCI score.

1.2 To
quantify the
impact of
problem
framing on
the SIADM
outcomes.

H4: Participants will have a better
state of knowledge about a domain
dependent problem as compared
to a domain-independent problem.

H4*: Participants will have a lower average µdiff
b

in the Track Design Game than in the Function
Maximization game.

H5: Participants will have a bet-
ter performance in a domain de-
pendent problem as compared to
a domain-independent problem.

H5*: Participants will have a higher average func-
tion value in the Track Design Game than in the
Function Maximization game.

H6: Participants will have a better
state of knowledge about the prob-
lem where constraints are spec-
ified as compared to a problem
where constraints are not speci-
fied.

H6*: Participants will have lower average µdiff
b

in the Track Design Game where the informa-
tion about the constraint is specified (TDPCS) as
compared to the Track Design Game where the
information about the constraint is not specified
(TDPCNS).

H7: Participants will have a better
performance in a problem where
constraints are specified as com-
pared to a problem where con-
straints are not specified.

H7*: Participants will have a higher average en-
joyment value in the Track Design Game where
the information about the constraint is specified
(TDPCS) as compared to the Track Design Game
where the information about the constraint is not
specified (TDPCS).

H8: Problem framing impacts
SIADM strategy.

H8*: Participants have a lower average σ in the
Track Design Game than the Function Maximiza-
tion game.
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I reiterate that the state of knowledge of an individual at each step t in a SIADM

process affects the decisions in the next step (t+1). Therefore, I consider H1* and H2*

where conditional on the design task to encompass the domain knowledge (Newtonian

force concept in this case) I hypothesize that the FCI score will negatively correlate

with the lack of knowledge parameter µdiff
b and positively correlate with performance.

The “decision making error” σ can be considered as the deviation of an individ-

ual’s search strategy from the assumed search strategy. I hypothesize (H3*) that an

individual with a higher domain knowledge will closely follow the modeled strategy.

By framing the same mathematical problem as a track design task and a func-

tion maximization task I hypothesize (H4*) that the participants will have a better

understanding about the track design task which implies a smaller µdiff
b for the track

design task. As a consequence of better understanding the track design task, I also

hypothesize (H5*) that the participants will have a better performance in the track

design task as compared to the function optimization problem.

As µdiff
b quantifies the belief the about constraints, I formulate H6*. Since the

participants are given the constraint boundary in TDPCS the µdiff
b will be smaller as

compared to TDPCNS. As the information about the constraint boundary is provided,

participants will be able to make better decisions and perform better. Thus, I for-

mulate and operationalize H7*. I formulate H8* by hypothesizing that participants

will follow the modeled strategy closely for a domain-specific task as compared to a

domain-independent task.

2.5 Results and Discussion

I utilize the data, collected from the experiment described in Section 2.4, to infer

the model parameters θ. Based on these parameters and the experimental data, I test

hypotheses H1* to H8* in this section. I then discuss the implications of each of the

hypothesis test results. Table 2.4 categorizes H1* to H8* with respect to my research

objective that is divided into two parts. The first part of the research objective is
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related to the domain knowledge and the second part is concerned with problem

framing.

2.5.1 Hypotheses Testing

I categorize H1* through H3* as hypotheses related to person-specific factors that

are conceptual knowledge (FCI Score) and lack of knowledge about the constraints

(µdiff
b ). H4* to H8* are categorized as hypotheses related to problem-specific factors

such as problem framing and constraint specifications in the problem. For each indi-

vidual, their µdiff
b , σ2, and performance are averaged over all but first two periods. As

the participant gets familiar with the task I disregard data from the first two periods

for each task to reduce the impact of learning effects [55].

Hypotheses Testing: Person-specific factors

To understand the impact of person-specific factors (FCI score and µdiff
b ) in a

SIADM task, I test H1* through H3*. I investigate the impact of knowledge about

the Newtonian concepts of force (quantified by the FCI scores) only in the tasks

that require that conceptual knowledge. As FOP does not require knowledge of Force

Concepts I do not investigate the impact of FCI scores on an individual’s performance

in FOP.

I test H1* by conducting a regression analysis between FCI scores and µdiff
b . The

results of H1* indicate that there is no significant linear relationship between FCI

score and the lack of knowledge about the constraints µdiff
b (p = 0.22 > 0.05). The

ANOVA results for FCI score versus µdiff
b is shown in Table 2.5. The scatter plots for

FCI score versus µdiff
b are shown in Figure 2.4.

Table 2.5 illustrates that the participant’s lack of knowledge about the constraints

(µdiff
b ) was not significantly affected by their conceptual knowledge of Newtonian force

concepts (FCI scores). I recognize that FCI scores and µdiff
b are direct and indirect

measures of an individual’s knowledge about the problem, respectively. The impact
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Table 2.5. : ANOVA of FCI score and µdiff
b in track design tasks.

ANOVA with µdiff
b

Metric TDPCNS TDPCS

FCI Score
S

r = 0.19
p = 0.22

r = −0.24
p = 0.11
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Figure 2.4. : Scatter plots for H1*

of domain knowledge on the state of knowledge may be reduced due to learning

effect [55].

I test H2* by conducting a regression analysis between FCI scores and perfor-

mance. The ANOVA results for FCI score versus performance are shown in Table 2.6.

The scatter plots for FCI score versus performance are shown in Figure 2.5. The fig-

ure illustrates that individuals with a greater FCI score have a higher performance

with lesser variation. This implies that individuals with a higher FCI score are likely

to perform better. In both the track design tasks, the results of H2* indicate a sig-

nificant (p < 0.05) weak positive linear relationship (0.25 < r ≤ 0.5) between FCI

scores and performance.

Table 2.6 indicates that there is a significant (p < 0.05) linear relationship between

an individual’s conceptual knowledge of the Newtonian Concepts of Force and the

TDP tasks that require such knowledge. However, as the correlation is weak (0.25 <

r ≤ 0.5) the FCI scores cannot be solely utilized to predict an individual’s performance
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Table 2.6. : ANOVA of FCI score and performance in track design tasks.

ANOVA with performance

Metric TDPCNS TDPCS

FCI Score
S

r = 0.31
p = 0.042

r = 0.48
p < 0.001
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Figure 2.5. : Scatter plots for H2*

in different SIADM scenarios. While FCI score may be a good metric for conceptual

knowledge quantification, further investigation is required to differentiate direct and

indirect measures of knowledge and their subsequent impact on SIADM outcomes.

I test H3* by conducting a regression analysis between FCI scores and σ. The

results of H3* indicate that there is a significant (p < 0.05) linear relationship between

FCI score and the deviation (σ) of an individual from the modeled strategy for TDPCS.

However, as the correlation is weak (0.25 < r ≤ 0.5) the FCI scores cannot be solely

utilized to predict an individual’s deviation from the SIADM model. The p-value for

TDPCNS is less than the level of significance α = 0.05. The ANOVA results for FCI

score versus σ are shown in Table 2.7. The scatter plots for FCI score versus σ are

shown in Figure 2.6.

Table 2.7 illustrates that when the constraints are specified, an individual’s do-

main knowledge affects how closely the individual followed the modeled strategy. The

variation of performance of the individuals with low FCI score is indicated in Fig-
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Table 2.7. : ANOVA of FCI score and σ in track design tasks.

ANOVA with σ

Metric TDPCNS TDPCS

FCI Score
S

r = −0.26
p = 0.09

r = −0.38
p = 0.01
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Figure 2.6. : Scatter plots for H3*

ure 2.5. This variation may be explained by the results of H3* that people with

higher FCI score tend to follow the modeled strategy closely, and that may impact

their performance. A greater and significant correlation in the track design task

where constraints are specified may be due to the order of the track design tasks. As

TDGCS is always played after TDGCNS, it may result in learning effect [55] such that

the participants get closer to the modeled strategy after repeatedly playing the track

design task.

Hypotheses Testing: Problem-specific factors

To test H4* I compare the average µdiff
b of an individual in TDP and FOP by

conducting a paired two sample t-test. The hypothesis test results for H4 indicate

that µdiff
b is indeed lower in the Track Design Games than the Function Maximization

Game (p < 0.05). Therefore, the state of knowledge about the constraints in the
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Track Design Game is better than the Function Maximization Game. I conclude

that problem framing impacts the lack of knowledge about the constraints. The

results are shown in Table 2.9. The mean and variance of the average µdiff
b value for

TDP (αTDPµ , γTDPµ ) and the mean and variance of the average µdiff
b value for FOPCNS

(αFOPµ , γFOPµ ) are shown in Table 2.8.

Table 2.8. : Mean (α) and variance (γ) of the average µdiff
b values in TDP and FOP

Average µdiff
b

Game
Mean
α

Variance
γ

TDPCNS

Sample size=44
αTDPµ = 59.59 γTDPµ = 499.46

TDPCS

Sample size=44
αTDPµ = 61.95 γTDPµ = 353.51

FOPCNS

Sample size=44
αFOPµ = 79.11 γFOPµ = 1694.84

Table 2.9. : Summary of the two sample t-test for H4*

Alternate Hypothesis t stat. p-value

Two sample t-test for TDPCNS αFOPµ > αTDPµ −2.66 0.0054

Two sample t-test for TDPCS αFOPµ > αTDPµ −2.33 0.012

I failed to reject the null for H6* (p = 0.6) and H7* (p = 0.59). This means that

while µdiff
b is indicative of an individual’s lack of knowledge about the constraints in

domain dependent and independent task, it does not capture the effect of providing

information about the constraints for the same task. Learning about the task may

interfere with providing information about constraints in one task and not in the

other. If the lack of knowledge about the constraints is descriptively captured through

µdiff
b , its value should ideally be zero when the participants know exactly where the

constraint boundary lies. However, I do not observe a significant difference between

µdiff
b values in TDPCNS and TDPCS.

To test H5∗ I compare the performance of the participants in both the track design

games with the function maximization game. I conducted a paired two sample t-test.
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The results are shown in Table 2.10. Both the p-values are less than the level of

significance (α = 0.05). This indicates that the performance of the participants was

indeed better in both the track design tasks as compared to the function maximization

task. The mean and variance of the average enjoyment value for TDP (αE, γE) and

the mean and variance of the average function value for FOPCNS (αF , γF ) are shown

in Table 2.11.

Table 2.10. : Summary of the two sample t-test for H5∗

Alternate Hypothesis t stat. p-value
Two sample t-test for TDPCNS αE > αF 12.10 < 0.00001
Two sample t-test for TDPCS αE > αF 5.90 < 0.00001

Table 2.11. : Mean (α) and variance (γ) of the average enjoyment values E in TDP
and average function values F in FOP

Average output value

Game
Mean
α

Variance
γ

TDPCNS

Sample size=44
αE = 88.54 γE = 141.75

TDPCS

Sample size=44
αE = 75.36 γE = 428.34

FOPCNS

Sample size=44
αF = 58.61 γF = 369.43

The results shown in Table 2.10 indicate that problem framing of the same math-

ematical task does indeed affect the task performance [43]. I do not find a significant

difference between performance in the two track design tasks. The result indicates

that providing information about the design space did not significantly impact the

task outcome. The result could be influenced due to lack of control over search strate-

gies of different individuals in the track design tasks as well as the learning effect [55].

There could also be a potential for bias in the second track design game play (TDPCS)

due to the previous track design game play (TDPCNS).

I failed to reject the null of H8* (p = 0.23). Thus, there is no significant difference

of the average σ in the Track Design Games and the Function Maximization Game.
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Table 2.12. : Summary of Hypothesis Results. Xindicates rejection of null and 7in-
dicates failure of null rejection.

Hypotheses Results Hypotheses Results

(H1*) For TDPCS : 7

For TDPCNS : 7
(H5*) X

(H2*) For TDPCS : X
For TDPCNS : X

(H6*) 7

(H3*) For TDPCS : X
For TDPCNS : 7

(H7*) 7

(H4*) X (H8*) 7

I cannot conclude that problem framing impacts an individual’s deviation from the

modeled SIADM strategy.

2.5.2 Hypotheses Tests: Discussion

I summarize the results of the hypothesis test in Table 2.12. The hypothesis test

results indicate that framing a SIADM task in a domain specific context decreases an

individual’s lack of knowledge about the problem constraints. Such problem framing

also positively impacts an individual’s performance. I conclude that the FCI scores a

weak but a significant correlation with an individual’s performance in a SIADM task

and therefore can be utilized as preliminary indicator of the impact of domain knowl-

edge on performance. Also, I do not find any significant differences in participant’s

performance across treatments.

It is to be noted that the participants take the FCI test before solving the de-

sign problem. This may result in the participants inferring that the design problems

involve Newtonian concepts of force. Such inference minimizes the impact of a par-

ticipant’s ability to recall the force concepts and thus, it strengthens the validity of

the results of the correlations between FCI scores and performance. The weak corre-

lations indicate the need towards developing descriptive measures of knowledge such

as µdiff
b .
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From Hypothesis 4, I wanted to leverage the truth that participants will have a

better state of knowledge about the domain-specific track design problem than about

the function optimization problem due to problem framing. I indeed find that µdiff
b

is lower in the track design game than the function optimization game. Based on

this, I verify that µdiff
b is indicative of an individual’s state of knowledge. This result

justifies the most important modeling assumption in this study that the distance of

an individual’s belief about the location of the constraint boundary from the actual

location represents their lack of knowledge about the task constraints.

I do not observe a relationship between conceptual knowledge and an individual’s

lack of knowledge about the problem constraints. This observation may be because

the FCI score of an individual remains the same throughout the study whereas µdiff
b

varies over successive periods. The variation of µdiff
b implies variation of the lack

of knowledge about the feasible design space. This variation may be due to the

randomization of feasible design space and its impact on learning about the task

problem over multiple periods of the game play.

2.6 Discussion

In this section, I discuss the SIADM framework as a contribution of this study.

Then, I discuss about the validity of the research results and the generalizability of

the model for extending the proposed framework.

2.6.1 Contributions

The primary contribution of this study is a SIADM framework which is instanti-

ated by presenting a SIADM model in conjunction with a behavioral experiment for a

class of design problems. Such a framework enables us to understand how individuals

sequentially acquire information and make decisions in a design context. I quantify

the impact of factors, such as problem framing and an individual’s lack of domain

knowledge, on the SIADM outcomes of a design search problem with constraints.
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I find that problem framing impacts an individual’s knowledge about the problem

constraints as well as their performance.

I represent a SIADM process as one that consists of three activities as illustrated

in Figure 2.1 and described in Section 2.3.1. I make specific modeling choices for

these three activities in my SIADM model as discussed in Section 2.3.7. Specifically,

I assume that individuals maximize the expected improvement in the objective func-

tion, and follow a myopic one-step look-ahead strategy for calculating the expected

improvement. Based on these assumptions, I study the impact of factors, such as

problem framing and an individual’s lack of domain knowledge, on the SIADM out-

comes.

The proposed model can be utilized to investigate behavioral similarities and dif-

ferences among individuals. Specifically, individuals can be categorized based on the

combinations of µdiff
b and σ. In the future, their behavior and SIADM outcomes can

be compared across such categorizes to study the influence of both domain knowledge

and following a particular SIADM model.

2.6.2 Validity

The experimental study has high internal validity as it is a controlled behavioral

experiment [60]. Internal validity refers to ensuring that the observed effect on the

SIADM activities is attributable to the factors identified as a cause. I control for

other factors such as an individual’s learning, intuition, the order of experiment task

execution, incentivization of the experiment tasks, and the similarity of the search

tasks in TDP and FOP that also affect a participant’s decision-making (refer to

Section 2.4).

External validity refers to the generalization of the research study [61]. As in any

controlled experiment, the external validity depends on how well the experimental

conditions represent the target setting. The SIADM framework that consists of the

three activities of a SIADM process, as illustrated in Figure 2.1, is highly general. Any
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sequential information acquisition activity in the design process can be represented

using this framework. The SIADM model, on the other hand, is more specific because

it has been instantiated for a particular class of design problems. These problems have

a single objective and a single constraint with a single design variable. Consequently,

the defined model parameter µdiff
b is specific to the problems with single inequality

constraints. In order to utilize the model in more complex design scenarios, various

aspects of the proposed model such as its parameters and the SIADM activities will

have to be appropriately considered. For example, in a design problem with multiple

constraints, µdiff
b could be considered as a set of parameters. Similarly, a problem with

multiple objectives will impact the way an individual updates their beliefs about the

objectives using Bayesian updating. Further investigation is required to evaluate the

effects of complexity on the SIADM model formulation. I also acknowledge that in

reality, individuals may cognitively execute the three activities in a SIADM scenario

differently. I do not test whether the proposed model is representative of how individ-

uals follow a SIADM process. To investigate the representativeness of an individual’s

SIADM process by the proposed model there lies a need to develop alternate descrip-

tive models of SIADM. Then, such models can be compared using Bayesian model

comparison to evaluate which model best represents the decision making strategy

followed by the individuals. This is a promising avenue for further research in this

direction.

The external validity of the proposed framework can also be assessed by how well

the model applies to different experimental settings such as (a) different populations

(b) different design problems, and (c) different SIADM factors. The experimental

study has been carried out with undergraduate and graduate engineering students. It

is not clear how well these results will extend to practicing engineers who have other

implicit as well as procedural knowledge. In real life settings, SIADM scenarios are

more complex with multiple objectives and multiple constraints. My study does not

account for the effects of complexity as a factor on SIADM scenarios. I do believe that

it is likely that different ways of increasing complexity affects behaviors in different
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ways. As the complexity grows, other factors such as the manner in which information

is presented also affects the behaviors. For example, if there are two or more variables,

the visual representation of the acquired data (x and f(x)) affects how individuals

process information and make decisions. With increasing complexity, computational

tools (e.g., surrogate models) are needed to support designers. The behavior then

depends on the types of computational tools used. To assess the ecological validity

in such settings, I can not only perform experiments but also conduct interviews,

surveys, and case studies. All these effects cannot be captured in a single experiment.

Therefore, the complexity of the problem and its effects on information acquisition

strategies adopted by humans requires further investigation.

While the SIADM framework is developed for individual SIADM scenarios, in the

subsequent chapters, it is used as a component within the design contests. Also, more

complex design settings can be studied such as design teams where multiple designers

make decisions in parallel. For example, my framework can be used to model a team

member making sequential decisions within a team. However, further investigation

would be required to understand how the three activities of a SIADM process would

be affected based on the interactions of an individual with their team members on

every iteration step of a team member’s SIADM process. Studying design teams is

out of the scope of this dissertation.
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3. QUANTIFYING THE INFLUENCE OF INFORMATION SHARING ABOUT

COMPETITOR’S PERFORMANCE ON A PARTICIPANT’S SEQUENTIAL

DESIGN BEHAVIORS IN DESIGN CONTESTS

3.1 Chapter Overview

Existing literature on information sharing in contests has established that shar-

ing contest-specific information influences participant behaviors, and thereby, the

outcomes of a contest. However, in context of engineering design contests, such as

crowdsourcing, there is still a significant gap in our understanding of how the contest

design decisions, such as what information to share, influence participants’ decision-

making behaviors. Particularly, there is a lack of knowledge about how information

about historical performances of competitors influences a participant’s decision mak-

ing behaviors and the outcomes of a design contest. To address this gap, the objective

of this chapter is to investigate RQ2, that is, to quantify the influence of information

about competitors’ past performance on a participant’s decision to stop acquiring in-

formation and on the design outcomes. The objective is achieved by (i) developing a

descriptive contest model of strategic information acquisition decisions, based on an

optimal one-step look-ahead strategy, utilizing expected improvement maximization,

and (ii) using the model in conjunction with a controlled behavioral experiment. A

behavioral experiment is conducted where design contests with design optimization

problems were considered. The results in Chapter 2 indicate that domain-dependent

contexts better inform contestants while making design decisions. Thus, the behav-

ioral experiments leverage the domain-dependent task discussed in Section 2.4.1 for

this study. The participants were subjected to agents with strong or weak perfor-

mance records such that they were either made aware of these records or not. The

results indicate that participants spend greater efforts when they are aware that their
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opponent has a strong performance record than when the opponent has a weak per-

formance record. Moreover, the model parameter is able to quantify the influence of

the contest-specific information sharing on a participant’s sequential decision-making

behaviors. It is observed that sharing information about an opponent with a strong

past performance record “polarizes” the participants such that, some participants ex-

pend greater efforts while others choose to not compete. Thus, participants’ average

performance distribution has a higher variation when they know that the opponent

has a strong past performance than when they do not have information about the

opponent as well as when they know that their opponent has a weak performance

record. Based on the parametric inferences, it is suggested that contest designers are

better off not providing historical performance records if past design qualities do not

match the expectations set up for a given design contest.

3.2 Introduction

Existing literature in behavioral game theory has established that the design of a

contest influences participant behaviors and, thereby, the outcomes of a contest [26,

27]. The design of a contest includes decisions such as what and how much information

to share with the contestants [26]. Examples of various types of contest-specific

information include knowledge about the organizers of the contest, the reputation

of the contest, the prize of the contest, and the players in the contest [28]. It is

intuitive that knowledge about such types of information can heavily influence the

strategic decisions of the players. For example, in the field of sports, a lot of data

about competing teams’ past performance is analyzed to make strategic decisions for

a team’s gameplay such that it improves their winning probability [29,30].

In the context of engineering design contests, such as crowdsourcing contests, a lot

of information about past design contests already exists. In the previous study [62], we

analyzed publicly available data on a crowdsourcing platform called GrabCAD [63].

It hosts crowdsourcing contests by organizations such as NASA and DARPA. The
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GrabCAD data included information about past contests such as the winning solu-

tions, the associated winners, and the overall participants [62]. A cursory visit to

other crowdsourcing platforms such as Innocentive [64] and Ennomotive [65] also es-

tablished that the past contests’ information is readily available. Similarly, product

design contests between companies such as Apple and Samsung are also influenced

based on the information about the past products of their competitors. Availabil-

ity of such information educates the participants about the history of such contests

which influences their behavior [66]. There is a lack of understanding of how such

information about past contests influences a participant’s decision-making behaviors.

Through this understanding, stakeholders can predict the influence of such informa-

tion on designer behaviors and outcomes. Such predictions can help, for example, the

designers of a crowdsourcing initiative to make decisions about how much and what

information to provide while designing such contests.

There is extensive literature on information sharing in contests within behavioral

economics [26,31–34]. However, research in behavioral economics does not address the

nuances of engineering design scenarios. For example, designers in engineering design

processes typically iterate through several design solutions before making artifact

decisions. Each of these iterations involves information acquisition activities that

allow the designers to explore the design space and update their state of knowledge

about them. Sharing contest-specific information influences a designer’s information

acquisition activities, and thereby, the quality of design solutions. Thus, there lies

a need to understand how contest-specific information sharing influences designer

behaviors in an engineering design process.

In this study, I investigate the influence of information about the past perfor-

mance of opponents on participants’ design behaviors. The influence of such type of

contest-specific information is investigated as it is readily available to the participants

on popular crowdsourcing platforms that host engineering design contests. Qualita-

tively, it is intuitive that a contestant can believe that contests with opponents who

have “strong” past performance records would be more competitive than contests



49

where opponents’ past performances have been “poor.” However, in the context of

engineering design, there is a lack of contest models that quantify the influence of

such information on designer behaviors. Therefore, in this study the objective is

to quantify the influence of information about competitors’ past performance on a

participant’s design behaviors and outcomes.

My approach consists of two steps. First, I model the influence of past performance

record of an opponent on a participant’s strategic decisions. I extend the SIADM

model as discussed in Chapter 2, by considering a design contest. The extended model

is described in Section 3.3. It is based on the assumptions that individuals strive to

maximize their expected payoff and use the Bayesian approach to update their state

of knowledge based on new information. Second, I design and execute a behavioral

experiment. The results in Chapter 2 indicate that domain-dependent contexts better

inform contestants while making design decisions. Thus, the behavioral experiments

utilize the domain-dependent task discussed in Section 2.4.1 for this study. I utilize

experimental data to estimate parameters in the model and to test hypotheses about

the influence of past performance record on design outcomes. In the experiment, I

control for past performance information by designing an agent as an opponent to

the participants. The details of the experiment are provided in Section 3.4. The

results are discussed in Section 3.5. Finally, I discuss the implications of this study,

the validity of the modeling assumptions, and the avenues for future research in

Section 3.6.

3.3 A Descriptive Model of Strategic Sequential Information Acquisition

and Decision Making Process

In this section, I describe the design contest scenario, and the specific modeling

choices for the type of contest, problem, and individual in the design scenario. Then, I

formulate a strategic model of sequential information acquisition and decision making.
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It is to be noted that uppercase notations represent random variables, such as X.

Whereas, lowercase notations represent real numbers, that is, the instantiation of a

random variable observed as data. For example, x is a real number observed by the

researcher as an instantiation of the random variable X.

3.3.1 The Design Contest Scenario

In order to model a design contest scenario, I need to consider the class of design

problems, the activities of the designer as a participant, and the type of contest. In

the following, I make contest-specific, problem-specific, and individual-specific mod-

eling choices by considering a typical crowdsourcing contest for engineering design

problems.

Contest-specific modeling considerations

In this study, I model the design contest by assuming that the participant is com-

peting against a single opponent; that is, I assume a two-player contest. I make

such an assumption for three reasons. First, there are several design competition

scenarios that are two-player contests such as product design competitions between

Apple vs. Samsung and Boeing vs. Airbus. Similarly, subcontracting engineering

design problems often have two competitors for which the modeling scenario is ap-

plicable. Second, multiplayer contests can be modeled as two-player contests where

multiple opponents are reduced to a single opponent who is assumed to be the best

competition that the participant encounters. This modeling assumption is reasonable

if I consider a contest where the best design solution wins the contest prize. Such

an incentive structure implies that participants are essentially competing against the

best performing opponent in the crowd. Third, for game-theoretic modeling of design

contests, it is typical to assume a two-player contest as a stepping stone for more

complex scenarios [67].
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Moreover, the information about the past performance records of contests typ-

ically comprises of the best past design solutions generated by the winner. Such

information influences a participant’s belief about the quality of the best compet-

ing solutions that may be generated in a contest and by extension, the belief about

the best competitor in the “crowd” or a participant population. Such information

influences a participant’s design decisions.

Problem-specific modeling considerations

A class of design problems is considered where participants are required to op-

timize a given design objective. For example, crowdsourcing contests organized by

NASA provide a clear “figure of merit,” such as the weight for a given design artifact,

that needs to be minimized. In such scenarios, participants typically utilize an engi-

neering design process where they perform information acquisition activities, such as

executing simulation models and experiments. In such activities, participants make

decisions about what new information to acquire and when to stop acquiring infor-

mation. Such information acquisition decisions heavily influence design outcomes and

consequently, the success of a design contest.

I consider a design scenario where a designer has a design x that affects the design

performance f(x). The designer’s objective is to achieve the best design outcome.

The designer does not explicitly know the mathematical relationship between the

design variables and the design outcome, i.e., the function f(x). However, they may

know the qualitative relationship between the design x and the design outcome f(x)

due to factors such as their domain knowledge. In such a scenario, a designer needs to

acquire information about the impact of design x on the design outcome f(x). Such

information can be acquired by running (physical or computational) experiments,

which incur a certain cost. Moreover, the information can be acquired sequentially

or in parallel. In Section 3.3.1, I make modeling choices about how an individual

acquires information.
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I assume that the designers are aware of the feasible design space and the qualita-

tive relationship between the design variables and the design outcome. I make such

an assumption to control for the influence of domain knowledge on designer behaviors

and outcomes in the experiment. I also align the modeled scenario with the exper-

iment by ensuring that the function f(x) is unknown to the participants. Further

details are provided about the design of the experiment in Section 3.4.

Individual-specific modeling considerations

An individual’s information acquisition process can be broadly categorized into

sequential or parallel processes [25]. An information acquisition process is sequential

when information is acquired in steps, and in each step, the acquired information is

used to update prior knowledge, resulting in a new state of knowledge at the end of

that step. Hence, the information acquired in a sequential process affects subsequent

information acquisition decisions. For example, when a designer decides what next

experiment to conduct based on the result of previous experiments, the process is

sequential. In parallel processes, all acquired information is analyzed at the end of

the process [25]. For example, the information acquisition process is parallel when

a designer executes a pre-planned set of experiments and analyzes the results of the

entire set at the end. Within the context of engineering systems design, I recognize

that both sequential and parallel information acquisition processes exist. However, in

this chapter, I focus on modeling a single designer as a decision-maker who sequentially

acquires information to search for an optimal design solution.

In my previous work [68], I have modeled an individual’s sequential information

acquisition and decision making (SIADM) behavior. The SIADM framework consists

of three main activities: acquiring information, processing information, and making

decisions about where to search and when to stop the search. These activities are

repeated over a sequence of steps, t = 1 . . . T . In this study, I extend the model to

account for the contest-specific information known to the individual and the influ-
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ence of such information on their SIADM process. I call the extended framework as

a Strategic-SIADM (S-SIADM) framework because contest-specific information influ-

ences a contestant’s gameplay strategy in SIADM scenarios. The S-SIADM frame-

work is illustrated as an extension to the SIADM framework in Figure 3.1.

Contest-specific
Information

Information
about past
solutions

Belief about
opponent’s

performance

Player’s SIADM

Decision:
Choose next x

Participant’s
current
belief

about f(x)

Acquire
Information:
about f(x)
for chosen x

Process
Information:
update belief
about f(x)

Decision:
Stop

information
acquisition?

Yes
Artifact
Decision

No

. . . . . .

t = 1 t = 2 t = T

Contest Outcomes

SIADM Extension

Influence on strategy

Figure 3.1. : Illustration of the Strategic Sequential Information Acquisition and
Decision Making (S-SIADM) framework (red) and model (magenta). The S-SIADM
framework considers the influence of contest-specific information on a player’s SIADM
and contest outcomes. The framework (red) is shown as an extension to the SIADM
framework as discussed in Chapter 2. Decisions are highlighted in gray color. Gray
rectangular nodes are information acquisition decisions, and the outcome (diamond
node) of the SIADM process is making the artifact decision which is also the con-
test outcome for the S-SIADM framework. The modeling instance of the S-SIADM
framework (magenta) considers the influence of information about past solutions on
an individual’s strategic decision of when to stop the search.

In this study, I assume that the cost associated with acquiring information is

independent of the information that is acquired. That is, the value of the “next x” to
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choose and the experiment cost do not influence each other. Moreover, I assume that

the decision to choose x is a problem-specific decision which does not get influenced

by the contest-specific information, such as an opponent’s historical performance

records. The decision to stop, on the other hand, does get influenced by an opponent’s

historical performance records. For example, a participant may decide to stop in the

very beginning (not participate) in a contest if they know that their opponent is

“very strong”. Thus, I term the decision to stop as a strategic decision made by

the participant in an S-SIADM scenario. It is intuitive that the decision to stop

the search influences the total cost incurred for the search problem, that is, the

greater the number of experiments, the higher the cost. I control for the variability

of the experimental costs by assuming that the cost associated with each information

acquisition step is constant.

3.3.2 Information Acquired at Each Step

At each decision making step, t = 1, 2, . . . , T , the individual chooses a design Xt

and receives information about the value of the objective function to be maximized,

Yt = f(Xt). (3.1)

They also decide whether to stop or not at time step t, St = 1 or 0.

I assume that an individual begins the S-SIADM process at step t = 0 with some

initial information history H0 which includes a single design X0 and the associated

performance Y0 = f(X0). At t = 0 they are given a choice to enter the contest or not

(S0 = 1 or 0), which is a special case of the stopping decision they consider at any

other time step. Thus,

H0 = {(X0, Y0, S0)}. (3.2)

The information history Ht that the individual has by the end of step t is:

Ht = Ht−1 ∪ {(Xt, Yt, St)}. (3.3)
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The best performance (quality) Qt of the individual at time step t is given by:

Qt = max
1≤i≤t

Yi (3.4)

It is to be noted that the initial information history H0 at time step t = 0 is not

considered to calculate Qt as participants do not expend any effort for the given

information. In other words, if participants do not enter the contest, their best

quality is null.

The Type of an Individual

The type θ of an individual (i) fully specifies their prior state of knowledge about

the opponent, the design objective, and how they are represented in the model, (ii)

influences how they update their state of knowledge after observingHt, (iii) influences

how they decide to acquire information at each time step, and (iv) influences how

they decide to stop. In what follows, I have made specific modeling choices, trying

to be parsimonious (to keep the number of model parameters as small as possible),

while taking into account some of the cognitive limits of humans.

I leverage the SIADM model discussed in Chapter 2 to model (i) an individual’s

state of knowledge about the objective function, (ii) how they decide to choose the

“next x,” and (iii) how they update their state of knowledge about the objective

function. It is to be noted that these activities are problem-specific. However, an

individual’s state of knowledge about the opponent and their decision to stop are

a part of their strategic decision-making, and its modeling is an extension to the

previous work.

Modeling an Individual’s State of Knowledge

I model the influence of providing information about the historical performance

record R of an opponent as follows. By observing past information, an individual
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develops “belief” about the opponent’s best solution B that they are capable of gen-

erating in a contest. I model the belief about the best solution B as a sample from a

Gaussian distribution with a mean best performance µb and deviation σb,

B ∼ N(µb, σb), (3.5)

where, µb and σb are hyperparameters which are a part of the participant’s type θ.

Summary of the previous work

As in Chapter 2, I model an individual’s belief about the objective function as a

Gaussian process (GP),

f ∼ GP (m, c) , (3.6)

where m and c are the mean and covariance functions.

I utilize a convex mean function m(x) to model the prior belief about the objective

function given by,

m(x) =
(
−0.0014 · x2 + 2.048 · x− 633.7

)
, (3.7)

where, x ∈ R and takes values in the range [350, 1000]. The domain of x is consistent

with the domain of the design parameter given to the participants in the experiment.

Moreover, the mean function is also consistent with the initial state of knowledge of

the participants who know that the objective function is convex and assumed that

the design objective would be maximized around the mid range of x.

The covariance function c(x, x′) defines the Gaussian process’ behavior between

any two points x and x′. Consistent with the previous work, I assume that the

individuals use a squared exponential covariance function:

c(x, x′) = s2 exp

{
−(x− x′)2

2`2

}
, (3.8)
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with unspecified signal strength s > 0 and length scale ` > 0, i.e., they assign flat

priors. This form of covariance function is equivalent to the assumption that the

individual believes that f(x) is infinitely differentiable and that it could have any

signal strength or length scale. I am also assuming that the individuals identify the

best signal strength and length scale ` by maximizing the likelihood of the data, i.e.,

by solving:

st, `t = arg max
s,`
N (Y1:t|m(X1:t), c(X1:t) + λIt) , (3.9)

where N (·|µ,Σ) denotes the PDF of the multivariate normal distribution with mean

µ and covariance Σ. Also, I have introduced the notation X1:t = (X1, . . . , Xt) and

Y1:t = (Y1, . . . , Yt) for the collection of all observed designs and the corresponding

performances up to step t. Furthermore, I use m(X1:t) = (m(X1), . . . ,m(Xt)) for the

mean function evaluated at all designs, and c(X1:t) = {c(Xi, Xj)} is the covariance

matrix of the designs. Finally, the matrix It is the t × t identity matrix, and λ is a

fixed parameter (I use λ = 10−6) added to the diameter to ensure numerical stability.

The posterior state of knowledge of the individual about f(x) is also a GP:

f |Ht ∼ GP (mt, ct) , (3.10)

where, mt and ct are the posterior mean and covariance functions of the GP [46] when

it is conditioned on Ht. Specifically, the posterior mean is given by,

mt(x) = m(x) + c(x,X1:t) [c(X1:t) + λIt]
−1 (Y1:t −m (X1:t)) , (3.11)

where the row vector c(x,X1:t) = (c(x,X1), . . . , c(x,Xt)) is the cross covariance be-

tween the test point x and the designs observed so far X1:t. The posterior covariance

is:

ct(x, x
′) = c(x, x′)− c(x,Xt) [c(Xt, Xt) + λIt]

−1 [c(x,X1:t)]
T , (3.12)

where AT is the transpose of matrix A.
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I use maximization of Expected Improvement (EI) to model how humans make

search decisions. EI is defined as the improvement in design performance at x over the

current best quality Qt integrated over the possible values of f(x). The mathematical

definition of EI is given by,

EI(x;Ht) = E [max(0, f(x)−Qt)|x,Ht]

= (mt(x)−Qt) Φ (Qt|mt (x) , ct (x, x)) + ct (x, x)N (Qt|mt (x) , ct (x, x))

(3.13)

Borji and Itti [49] show that maximization of expected improvement is indicative of

how humans make search decisions. Thus, I model the point they choose next by:

Xt+1 = arg max
x∈R

EI(x;Ht) + σZt, (3.14)

where, Zt are independent standard normal random variables, and σ > 0 sets the level

of the deviation of an individual from EI, that is, the modeled strategy to “choose

x.”

Modeling how Individuals make Stopping Decisions

As discussed earlier, the decision to stop is a strategic decision. I assume that

the individual is rational from the perspective that they are trying to maximize their

payoff Π in the contest. The stopping payoff Πt, that is, the payoff a participant

would receive if they were to stop at time step t is given by:

Πt = π1[B,∞)(Qt)−Kt, (3.15)

where, π is the prize, 1[B,∞)(Qt) is an indicator function such that its value is unity

if the best quality Qt at time step t is higher than opponent’s best quality B, K is

the assumed constant cost associated with each time step t.

With the specification of the contest-specific parameters such as prize and cost, we

are now in a position to visualize the plate diagram of the S-SIADM model and the
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influence of various model parameters on the information acquired by the individual

as illustrated in Figure 3.2.
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Figure 3.2. : Graphical illustration of Strategic Sequential Information Acquisition
and Decision Making (S-SIADM) model at step t of the process. Individual observes
an opponent’s past performance ratings (R). R is qualitative and takes discrete values
of poor, average, fair, good, and great. Parameters such as participant’s belief about
an opponent’s quality B and objective function l, and s are inferred by the individual.
Parameters µb, σb, and σ are a part of an individual’s type θ. Based on the inferred
parameters, information ht about the function till step t, the information about the
cost K of each try, and prize Π, the individual decides to stop Si or not.
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I model a participant’s stopping decision as follows. If the expected marginal

improvement in their payoff from step t to (t + 1) is negative, then they are more

likely to stop. The expected marginal improvement in the payoff ∆Πt is given as,

∆Πt := E [Πt+1 − Πt|Ht] = E[Πt+1|Ht]−E[Πt|Ht]. (3.16)

The conditioning on the history at time t indicates that the individual constructs

∆Πt after having observed it. In the language of probability theory, I say that the

stochastic process ∆Πt is filtered by the history Ht. In other words, ∆Πt is known

by time t. Note that the payoff at time t, Πt, is not completely determined from the

history Ht up to that point because the performance of the opponent, B, has not yet

been observed. I now proceed to calculate ∆Πt. I have for the first term:

E[Πt|Ht] = E
[
π1[B,∞)(Qt)−Kt|Ht

]
= πP[Qt ≥ B|Ht]−Kt

(3.17)

where, P(Qt ≥ B|Ht) is the probability that the individual assigns to winning at step

t. It is given by:

P[Qt ≥ B|Ht] = Φ

(
Qt − µb
σb

)
, (3.18)

where Φ is the cumulative distribution function of the standard normal. Note the

dependence of the right-hand side on the best performance Qt which, at time t, is

completely determined by the history Ht. For the other term defining ∆Πt, I have:

E[Πt+1|Qt, Xt+1] = E[π1[B,∞)(Qt+1)−K(t+ 1)|Ht],

= πP[Qt+1 ≥ B|Ht]−K(t+ 1),
(3.19)
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where P[Qt+1 ≥ B|Ht] is the probability that the individual assigns to winning at

step (t+ 1). This is given by:

P[Qt+1 ≥ B|Ht] = E [P [Qt+1 ≥ B|Ht+1]|Ht]

= E

[
Φ
(
Qt+1−µb

σb

)∣∣∣Ht

]
= E

[
Φ
(

max{Qt,Yt+1}−µb
σb

)∣∣∣Ht

]
=

∫∞
−∞Φ

(
max{Qt,y}−µb

σb

)
N (y|mt(Xt+1), σ2

t (Xt+1)) dy,

(3.20)

where N (·|µ, σ2) denotes the probability density function of a standard normal. Note

that the integration in the last step is over the point predictive probability density

of the GP at Xt+1 with mean given by Equation 3.11 and variance given by Equa-

tion 3.12 representing the individual’s knowledge about f(x). Furthermore, the next

point to choose Xt+1 is completely determined from the history at time t, Ht, see

Equation 3.14. The integral is evaluated via Monte Carlo integration using 10, 000

random samples from the point predictive probability density.

Having fully specified the expected marginal payoff after stopping, ∆Πt, we are

now in a position to model the individual’s decision to stop. My premise is that

the probability of stopping increases as ∆Πt increases. To reflect this, I model the

stochastic process St as follows:

St =

1, with probability sigm (−α∆Πt − β)

0, otherwise,

(3.21)

and, the stopping probability is given by,

sigm (−α∆Πt − β) =
1

1 + exp (−α∆Πt − β)
(3.22)

where, α and β are type parameters to be determined.
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3.3.3 Inferring an individual’s type from experimental observations

The goal of this section is to describe how one can infer the type of an individual

θ given a set of experimental history observations

ht = ht−1 ∪ {(xt, yt, st)}. (3.23)

I proceed in a Bayesian way which requires the specification of a prior for θ, p(θ), a

likelihood for ht given θ, p(ht|θ). The posterior state of knowledge about the type θ

is simply given by Bayes’ rule:

p(θ|ht) ∝ p(ht|θ)p(θ), (3.24)

and I characterize it approximately via sampling. I now describe each of these steps

in detail.

Following the discussion of the previous section, I associate the type with the

vector of parameters θ = (µb, σb, σ, α, β), all of which have already been defined.

From a Bayesian perspective, I describe the prior state of knowledge about θ by

assigning a probability density function to them, i.e., θ now becomes a random vector

modeling the epistemic uncertainty about the actual type. However, to highlight the

distinction between θ and the random variables I defined in the previous section, I

do not capitalize θ. Specifically, the random variables, Xt, Yt, St, are associated with

the subject’s behavior, whereas θ is associated with the beliefs about the statistics of

Xt, Yt, St.

Having no reason to believe otherwise, I assume that all components are a priori

independent, i.e., the prior probability density (PDF) factorizes as:

p(θ) = p(µb)p(σb)p(σ)p(α)p(β), (3.25)
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where, σ2
b , σ

2, α, and β are assigned an uninformative Jeffrey’s prior, i.e., p(σλ) ∝ 1
σλ

,

and

µb ∼ U [50, 200]. (3.26)

The range of the uniform distribution was chosen based on the design of the experi-

ment. Note that here I have silently introduced a convenient notational convention,

namely p(v), which is the PDF of the related random variable evaluated at a given

point v.

The second ingredient required for Bayesian inference of the type is the likelihood

of the data ht conditioned on θ. This was implicitly defined in the previous section.

I have:

p(ht|h0, θ) =
t∏

r=1

p(hr|hr−1, θ), (3.27)

since the model is Markovian. For each term within the product I have:

p(hr|hr−1, θ) = p(xr|hr−1, θ)p(yr|xr, hr−1, θ)p(sr|xr, yr, hr−1, θ), (3.28)

where I simplify using the definition of hr, and the fact that, according to the model,

the next design point is fully determined by the previous history, the next observed

performance fully determined by the design, and the stopping decision fully deter-

mined by all design-performance pairs observed thus far.

I note that while an individual’s belief about the design performance Y is depen-

dent on their type θ, the inference about an individual’s type does not depend on the

value of the design performance yr which is beyond the participant’s control. From

a decision-making perspective, a participant decides to choose x and decides to stop

sr. However, they do not decide the design performance. Thus, the middle term is

constant with respect to theta, and it is dropped from Equation 3.28. The first term

in Equation 3.28 is,

p(xr|hr−1, θ) ∼ N
(

arg max
x∈[0,1000]

EI(x;ht), σ
2

)
, (3.29)
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where, the range of x is based on the design range available to the participants in the

experiment. From Equation 3.22 I get that the last term is,

p(sr|xr, yr, hr−1, θ) = [sigm(−αδπr(µb, σb)− β)]sr [1− sigm(−αδπr(µb, σb)− β)]1−sr ,

(3.30)

where δπr(µb, σb) is the realization of ∆Πr of Equation 3.3.2 when Xr = xr, Yr =

yr,Hr−1 = hr−1 and for µb and σb as in the conditioning θ.

I sample from the posterior using the No-U-Turn Sampler (NUTS) [69], a self-

tuning variant of Hamiltonian Monte Carlo [70] from the PyMC3 [71] Python module.

I run the MCMC chain for 4000 iterations with a burn-in period of 500 samples that

are discarded. Equation 3.24 is used to estimate the researcher’s posterior over θ for

an individual given their (individual’s) search data.

3.4 Experimental Study

To ensure consistency of the experiment with the model, the objective function

f(x) is mathematically unknown to the participants. I assume that a designer receives

information about the design objective f(x) with certainty; that is, the information

sources are not noisy. I assume that all the participants have the same amount

of problem-specific information and that an individual’s domain knowledge does not

affect their belief about the objective function. Thus, I assign the same GP prior belief

about the objective function for all individuals in the model (refer to Section 3.3.2).

3.4.1 The Track Design Game

Participants are told that they will participate in a series of contests organized

by a firm that is interested in designing roller coasters. In every contest, they are

required to design a track. They are informed that they are competing against an

opponent while solving the track design problem as described in Section 3.4.1. The

player that achieves a higher value of the design objective for a given contest wins the
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corresponding prize amount for that contest. Participants are expected to strategize

their effort based on the information provided to them about their opponent. For

example, if they believe that their opponent has had a “ very strong performance

history” then they could decide not to expend any effort in a contest.

In reality, the “opponent” was an agent that was designed to have a past perfor-

mance record. The agent either had a strong performance record or a weak perfor-

mance record. Moreover, the participants were either given information about their

performance record or not. The authors’ decision to design the opponent as an agent

was made to achieve experimental control in order to quantify the influence of histor-

ical information about opponents on a participant’s design behaviors and outcomes.

The agent was also designed to be consistent with their past performance while com-

peting against a participant in a given contest. Further details about the design of

the opponent and achieving control are provided in Section 3.4.3.

The Task

I utilize the track design problem statement as discussed in Chapter 2. However, I

modify the objective function design for the problem-context. The objective function

E(w) is designed such that it satisfies requirements such as concavity, non-negativity,

function parameterization, and function asymmetry in order to control for factors

such as incentivization, intuition, guessing, and problem difficulty to avoid interfer-

ence with the experimental results. Considering such characteristics, I model the

enjoyment function through a Log-Normal function. The enjoyment (E(w)) of the

track is defined as:

E(w) = (0.25H2−80H) exp (0.00405)
f

w
exp

{
− (ln (w)− ln (H)− ln (f)− 0.0081)2

0.0162

}
.

(3.31)
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Figure 3.3. : The user interface of track design game where constraint is specified
TDPCS

The maximum value of enjoyment function occurs at the width value wmax. I model

wmax as a function of the track height H and a factor f such that wmax = fH. The

corresponding maximum enjoyment value Emax is:

Emax =
(

0.25H − 80
)
. (3.32)

The function is normalized to have a maximum value dependent on the height of

the track. I do so because intuitively a “taller” ride should have a higher maximum

possible enjoyment. To reduce the effect of learning about optimal width value wmax

as a function of height H, I introduced a factor f that was uniformly sampled from

the range of [0.6, 0.9]. In the experiment, the height values H are uniformly chosen

from the range of 600 to 1000 units. Thus, Emax values range between 70 to 170. The

Emax range was carefully chosen to ensure that participants do not develop miscon-

ceptions about the maximum achievable enjoyment value. For example, participants

may believe that the maximum achievable enjoyment value for a track is 100. By ran-
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domizing objective function parameters, I reduced the influence of such preconceived

notions.

Participants are expected to iteratively search for width w values of the track

such that it maximizes the enjoyment experienced by the rider. A try is defined

to be a submission of one w value. For each trial, participants incur a cost, and

they are shown the corresponding enjoyment value, that is, the value of the objective

function. For example, Figure 3.3 shows that a participant has tried 8 times, the

cost for which is 200 cents. Further details on the design of the incentive structure

are provided in Section 3.4.3. A table and a graph of search data are also provided

to the participants to reduce the cognitive load of having to remember their search

history. The participants are also provided with an initial height H of the track and

are informed that the circular valley has a constant depth of 50 units. Participants

are explicitly provided the feasible design space in this study, and the information

appears as “Try values for width greater than X” as shown in Figure 3.3. I do so for

experimental control such that I reduce the influence of problem-specific information

on a participant’s design behaviors and outcomes. In other words, there is no variance

in participants’ knowledge about the design space.

3.4.2 Opponent Specific Information: Past Design Ratings

The information about an opponent’s performance record is termed as the “design

ratings” given by the firm to the design solutions generated by the opponents in the

past. A design rating is the firm’s assessment of the goodness of the opponent’s past

design solutions. The rating is given on a Bad-Average-Fair-Good-Great scale, where

“Bad” rating is the worst possible rating, and “Great” rating is the best possible

rating. If information about the opponent is provided, participants are shown a his-

togram of the design ratings of the best design solutions submitted by the opponent

in the past 10 to 15 contests as shown in Figure 3.4. Such information is intended

for the participants to develop judgment about their opponent’s past performance.
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For example, Figure 3.4 reflects that the opponent has a predominantly “great” per-

formance history. Moreover, to control for the effect of design fixations, I did not

provide information about the design artefact. Instead, the design ratings provided

qualitative information about the design solutions without explicitly revealing the

past designs.

To generate past performance data of an opponent, I utilized a quantitative mea-

sure of design ratings and created an agent’s performance distribution. From such a

distribution, performance data was sampled and then converted to a qualitative scale

as seen by the participants.

Figure 3.4. : The information about opponent’s past performance as seen by a par-
ticipant.

For design search problems, theoretically, an opponent’s true design quality achieve-

ment (TDQ) can be quantitatively formulated as follows:

True Design Quality Achievement =
Design objective value achieved for a problem

Optimal design objective value for a problem
×100%

(3.33)

In reality, assessments of design quality in the context of design search problems

are not trivial. The firms organizing design contests themselves do not know the

maximum achievable design objective value for a problem. However, I assume that the
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contest organizers (in this case, the firm) are capable of making an accurate assessment

of the true design quality of the design solutions generated by the opponent. I term

this assessment by the firm of the true design quality achieved by an individual, as the

“quantified design rating”. For example, a quantified design rating of 90% for a track

design problem with maximum enjoyment value of 120 implies that the opponent

achieved an enjoyment value of 108.

Table 3.1. : Qualitative and Quantitative Mapping Scheme for Design Ratings of an
Opponent.

Qualitative Rating Quantitative Mapping
Great Design Rating ≥ 95%
Good 95 > Design Rating ≥ 90%
Fair 90 > Design Rating ≥ 85%

Average 85 > Design Rating ≥ 80%
Bad Design Rating < 80%

For the opponent’s past performance data, quantified design ratings were sampled

from a Gaussian distribution with some mean design rating µopp and a standard

deviation of σopp = 3%. As discussed earlier, such ratings are purely theoretical. In

order to realistically reflect the past assessments by the firm of the design solutions

generated by the opponent, the quantitatively sampled ratings are categorized into

a qualitative scale through a mapping scheme. The mapping scheme is tabulated in

Table 3.1. It is to be noted that the participants are not aware of the quantitative

design rating and the mapping scheme. Such metrics were developed for internal

analysis by the authors for various experimental control scenarios as described in

Section 3.4.3.

The quantitative distribution utilized to generate past performance design ratings

is also used to sample the opponent’s (agent’s) enjoyment value achieved for a given

contest. The evaluated performance value of the agent is then utilized to decide

whether a participant wins or loses a given contest. When a participant decides to stop

their search in a contest, their corresponding performance, as well as their opponent’s

performance is shown and the winner is displayed for the contest. The consistency in
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utilizing the performance distribution of the agent is crucial to studying the influence

of past performance record on participant behaviors. The goal was not to create an

agent that is dishonest. It can be argued that an opponent’s performance may vary

over a period of time. However, for a controlled experiment scenario, a dishonest

agent would result in learning behaviors confounding with strategic decision-making

behaviors of the participants. To reduce the influence of learning about the dishonesty

of the agent over successive contests, the agent was designed to have a performance

distribution honest to its past performance record.

3.4.3 Experiment Design

The experiment involved a total of 36 participants. These participants were un-

dergraduate and graduate students at Purdue University. Students were recruited via

flyers and social media posts in Purdue Engineering groups. There were a total of

14 females and 22 males. The experiment was divided into two parts, namely, With

Information (WI) and Without Information (WOI) part. As the part name suggests,

WI part is one where the information about the opponent’s past performance was

provided, and WOI part is one where it was not. The experiment was executed

with the two possible orders of the two parts. Such ordering of the tasks is done to

eliminate order effects [56].

Table 3.2. : Treatments order and the number of participants in each treatment.

Treatment Order Number of Participants

WI - WOI 18 participants

WOI - WI 18 participants

Each order of the experimental parts, as shown in Table 3.2, is termed as a treat-

ment. Each participant was assigned to only one of these two treatments. The WOI

part had 10 contests and the WI part had 20 contests. Overall, every participant

played a total of 30 contests. In the WI part, a participant was presented with op-
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ponent’s past performance information such that they either had a “strong” past

history or a “poor” one. A mean design rating µopp in the range of [80, 84]% was uti-

lized for generating “poor” opponent history and a range of [95−99]% for generating

“strong” opponent history. These ranges were chosen based on observations of past

performances of human subjects in the design search problems and their achievement

of true design quality TDQ. It might seem that, in reality, a range of [80, 84]% for

design rating is a “strong” performance. However, in the context of a convex search

problem, I observed in the pilot experiment that human subjects are able to achieve

such quality (TDQ) in 2 to 3 tries on an average. For such low effort, I consider this

range of TDQ achievement to be a “poor” performance.

Table 3.3. : Contest conditions experienced by every participant.

Contest Condition Number of Contests

WI and “strong” opponents 10 contests

WI and “poor” opponents 10 contests

WOI and “strong” opponents 5 contests

WOI and “poor” opponents 5 contests

For the WI part, I randomized a total of 10 strong and 10 poor past performance

information about the opponents making it a total of 20 contests. Thus, overall,

every participant played ten contests with opponents with strong past performance,

with poor past performance, and without knowledge about the past performance,

respectively. Table 3.3 illustrates various conditions of a contest experienced by ev-

ery participant. I randomized strong and poor performance information in the WI

part in order to reduce anchoring effects of successively presenting poor (or strong)

opponent history. Moreover, it might result in an apparent belief of high (or low)

probability of wins, thereby, further compounding the effect of anchoring bias along

with the gambler’s fallacy. With 36 participants, I collected data of 1080 contests

(360 for each of the three conditions). To reiterate the objective, I want to study the

influence of information about the past performance of opponents on an individual’s

design behaviors. By designing experimental treatments where strong, poor, and no
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information about the past performances is provided, I can generate controlled data

sets of participant behaviors in various treatments.

The incentive structure for the experiment was designed as follows. The prize for

winning a contest was set to be $7. The cost for a try was set to be $0.25. The

prize to cost ratio was deliberately high to reduce the influence of a high cost of

experimentation on design behaviors. For the payments, the net gain or loss for any

three contests out of the thirty contests was chosen at random. This was done in

order to minimize the wealth effects [57]. The theoretical maximum net gain was

calculated to be $20.25. This calculation was done by considering the best case

scenario such that the participant tries once, costing them $0.25 cents, and they win

the contest such that it gives them a maximum gain of $7 − $0.25 = $6.75 for the

contest and 6.75× 3 = 20.25. Moreover, participants were given a show-up fee of $5.

Theoretically, participants could earn a maximum total of $25.25 for a session that

lasted for approximately 75 minutes.

3.4.4 Metrics Utilized for Hypothesis Formulation and Testing

I summarize the metrics utilized in this study to test the hypothesis in Table 3.4.

These metrics are the qualitative and quantitative design ratings of the agent, the

performance of a participant in a given contest, a participant’s belief about their

opponent’s performance, and a participant’s effort.

I describe the qualitative and quantitative design ratings in detail in Section 3.4.2.

The strong and poor past performance record is created by utilizing an agent with

a performance distribution that is Gaussian with parameters [µopp, σopp]. It is to be

noted that an individual’s belief about the opponent is also modeled as a Gaussian

distribution but with parameters [µb, σb]. The parameters [µopp, σopp] serve as control

variables to control an opponent’s past performance record while [µb, σb] are the

dependent variables estimated as model parameters using experimental data. In the

context of a design search problem, I refer to an individual’s effort as their design
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Table 3.4. : List of metrics used in this study and their method of measurement or
control.

Metric Method of Measure-
ment or Control

Measure or Con-
trol

Outcome

Qualitative Design
Rating

Mapping from quantita-
tive samples

Bad-Average-Fair-
Good-Great

Quantitative De-
sign Rating

Gaussian sampling Samples from
Gaussian dis-
tribution with
parameters [µopp,
σopp]

Performance
is measured
by using the
maximum en-
joyment value
achieved by
a participant
in a contest
and normaliz-
ing the value
according to
Equation 3.33

Strong past perfor-
mance record

Controlling the quanti-
tative design rating by
limiting µopp between
95% to 99%

Experimental Con-
trol

Poor past perfor-
mance record

Controlling the quanti-
tative design rating by
limiting µopp between
80% to 85%

Experimental Con-
trol

Belief about the
opponent’s per-
formance in a
contest

Experimental Data and
Model

Belief is quantified
as a Gaussian dis-
tribution with pa-
rameters [µb, σb]

Effort Number of tries Number of tries T

behavior. The individual’s effort is measured as the number of tries T they expend

in a design search problem.

3.4.5 Hypothesis Generation

I list all the hypotheses and their corresponding operationalization in Table 3.5.

I recall the discussion in Section 3.2 and reiterate that the opponent-specific infor-

mation influences participant behaviors (H1) and design outcomes (H2). Thus, I for-

mulate Hypotheses H1 and H2. Hypothesis H3 is formulated based on the modeling

considerations such that the information about opponents influences a participant’s

belief about their opponent’s performance. In the following, I discuss the hypothesis

formulation.
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Table 3.5. : Hypotheses and their corresponding operationalization based on the
influence of an opponent’s past performance on an individual’s efforts, performance,
and beliefs.

Hypotheses Operationalized Hypotheses

H1: Oppo-
nent’s past
performance
information
influences a
participant’s ef-
forts in a design
contest.

H1.1*: The number of tries (T ) expended by a participant is higher
when they are given that an opponent has a strong past performance
record (µopp between 95% to 99%) as compared to when they are given
that an opponent has a poor past performance record (µopp between
80% to 85%).

H1.2*: The number of tries (T ) expended by a participant is higher when
no information is given about an opponent as compared to when they
are given that an opponent has a poor past performance record (µopp

between 80% to 85%).

H1.3*: The number of tries (T ) expended by a participant is lower when
no information is given about an opponent as compared to when they
are given that their opponent has a strong past performance record (µopp

between 95% to 99%).

H2: Oppo-
nent’s past
performance
information
influences a
participant’s
performance in
a design contest.

H2.1*: The maximum enjoyment value achieved by a participant in a
contest is higher when they are given that an opponent has a strong past
performance record (µopp between 95% to 99%) as compared to when
they are given that an opponent has a poor past performance record
(µopp between 80% to 85%).

H2.2*: The maximum enjoyment value achieved by a participant in a
contest is higher when no information is given about an opponent as
compared to when they are given that an opponent has a poor past
performance record (µopp between 80% to 85%).

H2.3*: The maximum enjoyment value achieved by a participant in a
contest is lower when no information is given about an opponent as
compared to when they are given that an opponent has a strong past
performance record (µopp between 95% to 99%).

H3: Oppo-
nent’s past
performance
information
influences a
participant’s
belief about
the opponent’s
achievement
of the design
objective value
in a contest.

H3.1*: The µb value estimated for an individual when they are given
that their opponent has a strong past performance record (µopp between
95% to 99%) is higher as compared to the µb value estimated when they
are given that their opponent has a poor past performance record (µopp

between 80% to 85%).

H3.2*: The difference between the µb value estimated for an individual
when they do not know that their opponent has a strong past perfor-
mance record (µopp between 95% to 99%) and the µb value estimated
when they do not know that their opponent has a poor past performance
record (µopp between 80% to 85%) is zero.
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Hypothesis 1 is operationalized by comparing the influence of the modeled agent

in various contest conditions as described in Table 3.3 on participant efforts. This re-

sults in the formulation of three operationalized hypotheses, namely, H1.1*, H1.2* and

H1.3*. I hypothesize that when the participant knows that the opponent is strong,

they spend higher efforts than any other test condition (H1.1* and H1.3*). This

hypothesis stems from existing literature on information sharing in contests which

shows that there is significant over-expenditure of efforts (compared with theoretical

predictions) when information about a strong opponent is known [26]. I formulate

H1.2* by considering risk-behavior literature that the majority of the population is

risk-averse in nature. Thus, I hypothesize that when there is a lack of information

about the opponent, participants will behave conservatively and expend greater ef-

forts than when they know that their opponent has a poor past performance record.

Moreover, testing H1.1* also serves as a verification test for the experiment design.

I formulate H2 on the basis of H1 such that greater efforts expended would result

in better design performance. In the context of a design search problem, it is intuitive

that the greater the exploration of the design space, the more likely it is to search

for an optimal design solution. Thus, I map the operationalization of hypothesis 2

to the corresponding operationalized hypothesis 1. Hypotheses H2.1*, H2.2*, and

H2.3* are formulated in accordance with H1.1*, H1.2*, and H1.3* respectively. I

hypothesize (H2.1* and H2.3*) that the maximum enjoyment value achieved by a

participant while competing against an opponent that has a strong past performance

record is higher than an opponent that has a poor past performance record or when

no information is known about the opponent. Hypothesis H2.2* is formulated on the

basis of H1.2* such that conservative behavior when the opponent is unknown would

result in higher performance than when the opponent is known to have a poor past

performance record.

Hypotheses H3 is formulated based on the S-SIADM model. I quantify the in-

fluence of opponent-specific information on a participant’s SIADM behaviors via a

belief (probability distribution) about the opponent’s design performance. I hypoth-
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esize (H3.1*) that an individual’s belief µb about an opponent should be higher when

the opponent has a strong past performance as compared to an opponent with poor

past performance. To further validate the sensitivity of µb to the information provided

to the opponents, I hypothesize (H3.2*) that there is no difference in a participant’s

belief about an unknown opponent irrespective of whether they actually have a strong

or poor past performance record.

3.5 Results and Discussion

I utilize the data, collected from the experiment described in Section 3.4, to infer

the model parameters θ. Based on these parameters and the experimental data, I test

hypotheses H1.1* to H3.2* in this section. I then discuss the implications of each of

the hypothesis test results.

3.5.1 Hypotheses Testing: Influence of Past Performance Information

I categorize H1.1* to H1.3* as hypotheses related to the influence of an opponent’s

past performance on an individual’s efforts in a contest. The hypotheses H2.1* to

H2.3* are related to the influence of an opponent’s past performance on an individual’s

performance in a contest. To validate the model that quantifies the influence of an

opponent’s past performance via the beliefs that an individual develops about their

opponent, I test hypotheses H3.1* and H3.2*. Table 3.5 lists H1.1* to H3.2* with

respect to the influence of an opponent’s past performance on an individual’s efforts,

performance, and beliefs about the opponent in a contest.

Influence on Efforts

To test H1.1* to H1.3*, I compare the average number of tries T of the participants

across contests where they knew that their opponent had a strong past performance,

where they knew that their opponent had a poor past performance, and where they
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did not know their opponent’s performance record. I do so by conducting paired two-

sample two-tailed t-tests. The hypotheses test results for H1.1*, H1.2*, and H1.3*

are shown in Table 3.7. The results for H1.1* indicate that the participants indeed

try higher number of times when they know that their opponent had a strong past

performance record as compared to a weak one (p < 0.0001). Therefore, knowledge

about an opponent’s past information does influence a participant’s efforts. I also

reject the null for H1.2* (p < 0.01) which implies that the participants expend higher

effort when no information is provided to them about their opponent as compared to

when they know that their opponent has had a poor performance record. However,

I failed to reject the null for H1.3* (p > 0.05) that the participants expend higher

effort when they have information that the opponent has a strong past performance

record as compared to when there is no information provided to them about their

opponent. In other words, the difference between the expenditure of efforts when the

opponent is known to have a strong performance record and when the opponent is

unknown is not statistically significant.

The results for H1.3* indicate that a majority of the individuals behave con-

servatively while making strategic decisions against an unknown opponent. While

theoretically a total lack of information about the opponents is possible, in reality,

information about past contests and by extension, information about the best past

performances, is typically available. The results suggest that if such information is

available and the participants enter the contest, then they will expend higher effort

when they know that the opponents in the past have had a strong performance record.

Table 3.6 lists the mean µ and standard deviation σ of the average number of

Tries of the participants when they know the opponent is Good (µGT , σGT ), when they

know the opponent is Bad (µBT , σBT ), and when they have No information (µNT , σNT )
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Table 3.6. : The mean µ and standard deviation σ of the average number of tries T
of the participants.

Average tries T

Condition
Mean
µ

Standard Deviation
σ

Information given
Strong past performance record

Sample size=360
µGT = 5.17 σGT = 2.00

Information given
Poor past performance record

Sample size=360
µBT = 4.15 σBT = 1.8

No Information given
Sample size=360

µNT = 4.77 σNT = 2.12

Table 3.7. : Summary of the paired two-sample t-test for H1.1*, H1.2*, and H1.3*.

Alternate Hypothesis t stat. p-value

H1.1* µGT > µBT −4.85 < 0.0001

H1.2* µNT > µBT −3.43 0.0016

H1.3* µGT > µNT 1.61 0.1165

Influence on Performance

To test H2.1* to H2.3*, I compare the average of the normalized maximum enjoy-

ment value E achieved by the participants across contests where they knew that their

opponent had a strong performance record, where they knew that their opponent had

a poor performance record, and where they did not know their opponent’s perfor-

mance record. I do so by conducting paired two-sample two-tailed t-tests. I failed to

reject the null for all the hypotheses associated with H2, that is, H2.1*, H2.2*, and

H2.3*. The results are counter-intuitive as greater efforts in a design search problem

(H1) typically implies better achievement of the design objectives.

The results are shown in Table 3.9. The mean µ and standard deviation σ of the

normalized average Enjoyment value achieved by the participants when they know

the opponent is Good µGE, σGE , when they know the opponent is Bad µBE , σBE and when

they have No information µNE , σNE are shown in Table 3.8.
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I note the high variance in performance distribution σGE when the participants

know that their opponent has a had a strong past performance record. I believe that

such high variance is performance is due to the influence of the information about

the “goodness” of an opponent which results in a “polarizing effect” such that some

participants choose not to participate resulting in a zero design rating whereas some

expend greater efforts to increment their existing performance. On averaging across

individuals, the mean of the performances does not significantly vary, however, it does

result in a spread (high variance) of design quality.

Table 3.8. : The mean µ and standard deviation σ of the average number of tries T
of the participants.

Average enjoyment value E

Condition
Mean
µ

Standard Deviation
σ

Information given
Strong past performance record

Sample size=360
µGE = 95.27% σGE = 10.49

Information given
Poor past performance record

Sample size=360
µBE = 95.71% σBE = 4.27

No Information given
Sample size=360

µNE = 96.11% σNE = 5.73

Table 3.9. : Summary of the paired two-sample t-test for H2.1*, H2.2*, and H2.3*.

Alternate Hypothesis t stat. p-value

H2.1* µGE > µBE 0.28 0.7821

H2.2* µNE > µBE −0.43 0.6689

H2.3* µGE > µNE −0.50 0.6177

Influence on the Belief about the Opponent

To test H3.1* I compare the estimated belief parameters µb of the participants

across contests where they knew that their opponent had a strong past performance

record and a poor past performance record. I do so by conducting paired two-sample



81

two-tailed t-tests. The hypothesis test results for H3.1* indicate that the participants

indeed believe that their opponent’s performance is better when they have had a

strong past performance record as compared to a weak past performance record (p <

0.05). This implies that the modeled parameters are sensitive to the information

provided to the participants about their opponent’s past performances. To further test

the sensitivity of the modeled parameters, I test H3.2*. I compare the estimated belief

parameters µb of the participants across contests where their opponent had a strong

past performance record and a poor past performance record but the participants

did not know about the opponent’s performance record. The hypothesis test results

for H3.2* indicate that there is no statistically significant difference between the

estimated belief parameters µb in the two scenarios. This further supports the claim

that the modeled parameters are influenced based on the information provided to the

participants about their opponent’s past performance record.

The results are shown in Table 3.11. The mean µ and standard deviation σ of the

average of the estimated Belief parameters of the participants about their opponent’s

performance With Information that the opponent is Good (µGB−WI , σ
G
B−WI), With

Information that the opponent is Bad (µBB−WI , σ
B
B−WI), WithOut Information that the

opponent is Good (µGB−WOI , σ
G
B−WOI), and WithOut Information that the opponent

is Bad (µBB−WOI , σ
B
B−WOI), are shown in Table 3.10.

3.5.2 Hypotheses Tests: Discussion

I summarize the results of the hypotheses tests in Table 3.12. The hypotheses test

results from H1.1* to H1.3* and H2.1* to H2.3* indicate that information about the

past performance record of an opponent influences a participant’s decision to stop a

sequential search process. However, such information results in high variance of the

quality of the design outcomes for a participant population. This implies that differ-

ent participants respond differently to the given information about the opponent such

that some participants may expend higher efforts and generate higher quality while
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Table 3.10. : The mean µ and standard deviation σ of the average µb of the partici-
pants.

Average belief µb

Condition
Mean
µ

Standard Deviation
σ

Belief With Information
Strong past performance record

Sample size=360
µGB−WI = 90.51% σGB−WI = 17.62

Belief With Information
Poor past performance record

Sample size=360
µBB−WI = 87.70% σBB−WI = 16.68

Belief Without Information
Strong past performance record

Sample size=180
µGB−WOI = 88.59% σGB−WOI = 16.63

Belief Without Information
Poor past performance record

Sample size=180
µBB−WOI = 88.77% σBB−WOI = 18.55

Table 3.11. : Summary of the paired two-sample t-test for H3.1*, and H3.2*.

Alternate Hypothesis t stat. p-value

H3.1* µGB−WI > µBB−WI −2.20 0.0283

H3.2* µGB−WOI > µBB−WOI 0.99 0.9211

some participants may lose motivation to expend resources and efforts resulting in

no submissions or low quality solutions. This results in a large distribution over the

quality of submitted design solutions as compared to scenarios where participants do

not have information about the opponents and generate solutions that do not have

a high variance in design quality. Existing literature on open-innovation has inves-

tigated crowdsourcing scenarios where variance dominates quality of solutions [72].

The results contribute to the conditions that can be facilitated by contest designers,

such as, information provision about the opponents, in order to generate high variance

in design outcomes.

Moreover, the results indicate that the contest designers are better off not provid-

ing information to the participants about past contests if the corresponding winning

design solutions do not meet the standards defined by the organizers for the given

contest. However, regulations may prevent contest organizers from withholding such
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information from the participants. In such scenarios, the contest designers need to

account for the influence of such information on participant behaviors and contest

outcomes. Further research is required towards understanding how to catalyze par-

ticipant motivations towards expending higher efforts as well as generating higher

design quality given that they have knowledge about the historical information.

The test results from H3.1* and H3.2* indicate that I can quantify an individual’s

belief about an opponent through the parameter µb such that higher the µb parameter

greater is the belief about an opponent’s performance in a given contest. Such param-

eters can be utilized by contest designers to incorporate the influence of participant

beliefs about the competitiveness of a contest based on its participants and to predict

the corresponding influence on their design behaviors and contest outcomes. Such

parameters contribute to the much needed quantification of qualitative knowledge

about the design of contests for engineering design scenarios.

Table 3.12. : Summary of Hypothesis Results. 3 indicates rejection of null and
7 indicates failure of null rejection.

Hypotheses Results

(H1)
H1.1* : 3

H1.2* : 3

H1.3* : 7

(H2)
H2.1* : 7

H2.2* : 7

H2.3* : 7

(H3) H3.1* : 3

H3.2* : 3

3.5.3 Observations

I plot the belief parameters µGB−WI , µ
B
B−WI estimated for every individual when

they have information about the strong and poor performing opponents. I do so to

categorize every individual’s sensitivity to the information provided to them about
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their opponents. Figure 3.5 illustrates every individual as a scatter point (x, y) such

that the x-value represents an individual’s average belief about their opponent’s per-

formance when they are given that their opponent has had a poor performance record

and y-value represents that individual’s belief about their opponent’s performance

when they are given that their opponent has had a strong performance record. In-

dividual’s whose average belief about the strong opponent is higher than that of the

poor performing opponent are labeled as sensitive to the given information as esti-

mated by the model while others are termed as insensitive. The model estimates 22

individuals out of 36 as sensitive. Thus, the model estimates approximately 60% of

the participants as sensitive to the provided information about their opponent based

on their estimated beliefs from experimental data.

Such categorization of individuals can inform design decisions of contest designers

such as the need to conservatively frame the problem if majority of the participants

are insensitive to particular types of information. To do so, further model validation

is required by incorporating other informational factors that influence participant

behaviors as well as develop confidence that the model predictions are representa-

tive of people behavior. This study serves as the stepping stone towards developing

descriptive models of design contests with quantified relationships between strategic

information and design behaviors.

3.5.4 Validity

The experimental study has high internal validity as it is a controlled behavioral

experiment [60]. Internal validity refers to ensuring that the observed effect on the

S-SIADM activities is attributable to the past performance information identified as a

cause. I control for other factors such as an individual’s learning, intuition, the order

of experiment task execution, incentivization of the experiment tasks, and domain

knowledge that also affect a participant’s decision-making (refer to Section 3.4).
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Figure 3.5. : Plot categorizing individuals

External validity refers to the generalization of the research study [61]. The ex-

ternal validity is dependent on how well the experimental conditions represent the

target setting. The extension of the SIADM framework to include the influence of

contest-specific information as illustrated in Figure 3.1, is highly general. Any sequen-

tial information acquisition activity in a design contest can be represented using this

framework. The S-SIADM model, on the other hand, is more specific because it has

been instantiated based on contest-specific, process-specific, and individual-specific

considerations. The contest’s incentive structure is assumed to be a winner-takes-it-

all structure such that a two-player contest can be reasonably assumed. The problems

have a single objective with a single design variable. Consequently, the defined model

parameter µb is specific to the problems where belief about a single quality metric

can be modeled. In order to utilize the model in more complex design contest scenar-

ios, various aspects of the proposed model such as its parameters and the S-SIADM

activities will have to be appropriately considered. For example, in a design problem

with multiple winners as an incentive structure, a multi-player contest would need to
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considered. Similarly, a problem with multiple objectives will impact the way an in-

dividual updates their beliefs about the objectives using Bayesian updating. Further

investigation is required to evaluate the effects of complexity on the S-SIADM model

formulation. I also acknowledge that in reality, individuals may cognitively execute

the activities in a S-SIADM scenario differently. I do not test whether the proposed

model is representative of how individuals follow a S-SIADM process. To investigate

the representativeness of an individual’s S-SIADM process by the proposed model

there lies a need to develop alternate descriptive models of S-SIADM. Then, such

models can be compared using Bayesian model comparison to evaluate which model

best represents the decision making strategy followed by the individuals. This is a

promising avenue for further research in this direction.

The external validity of the proposed framework can also be assessed by how well

the model applies to different experimental settings such as (a) different populations

(b) different design problems, and (c) different contest-specific factors. The exper-

imental study has been carried out with undergraduate and graduate engineering

students. It is not clear how well these results will extend to the “crowd” who have

other implicit as well as procedural knowledge. In real life settings, SIADM scenarios

are more complex with multiple objectives and multiple constraints. The study does

not account for the effects of complexity as a factor on SIADM scenarios. I do be-

lieve that it is likely that different ways of increasing complexity affects behaviors in

different ways. As the complexity grows, other factors such as the manner in which

information is presented and various stages of a contest also affects the behaviors.

For example, if contest has a preliminary stage which eliminates a fraction of the

participation pool, then participants will need to update their belief distribution to

correspond to the next stage. With increasing complexity, computational tools (e.g.,

surrogate models) are needed to support designers. The behavior then depends on

the types of computational tools used. To assess the ecological validity in such set-

tings, I can not only perform experiments but also conduct interviews, surveys, and

case studies. All these effects cannot be captured in a single experiment. Therefore,
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the complexity of the problem and its effects on information acquisition strategies

adopted by humans requires further investigation.

3.6 Closing Remarks

An S-SIADM process is represented as one that consists of three activities as illus-

trated in Figure 3.1 and described in Section 3.3. I make specific modeling choices for

these three activities in the S-SIADM model as discussed in Section 3.3.1. Specifically,

it is assumed that individuals maximize their improvement in payoff, decide to stop

when they do not see an improvement in their payoff, and follow a myopic one-step

look-ahead strategy for design search. Based on these assumptions, the influence of

past performance records, on the SIADM outcomes is studied.

The primary contribution of this study is the finding that the influence of an op-

ponent’s past performance on a participant’s decision to stop acquiring information in

an SIADM problem solved under competition can be quantified using the S-SIADM

model. Moreover, it is found that, if possible, contest designers are better off not

providing historical performance records if past design qualities do not match the ex-

pectations set up for a given design contest. I also provide an extension to the SIADM

framework which is done by presenting a Strategic-SIADM model in conjunction with

a behavioral experiment for a class of design contests. Such a framework enables us to

understand how participants get influenced based on the performance information in

past contests on their sequential information acquisition and decision making process

in a design contest.

In the future, the S-SIADM model can be utilized to investigate behavioral simi-

larities and differences among contestants. Specifically, individuals can be categorized

based on the combinations of µb and σb. Such categorizes could be used to compare

participants’ behaviors and the S-SIADM outcomes to study the influence of historical

information on the design performance.
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4. SEQUENTIAL DECISION MAKING UNDER THE INFLUENCE OF

COMPETITION: A MIXED METHODS APPROACH

4.1 Chapter Overview

In the previous chapter, the influence of opponent-specific information on con-

testant’s decision making behaviors was computationally quantified by assuming a

boundedly rational model based on an optimal one-step look-ahead strategy, utilizing

expected improvement maximization. In this study, I investigate how information

about historical performances of competitors influences a participant’s information

acquisition behaviors and the outcomes of a design contest. To fill this knowledge

gap, I am leveraging both qualitative and quantitative data from protocol analysis

and controlled behavioral experimentation respectively. Such use of multiple data

sources enables the characterization of the opponent, the contest history, and the

influence of such characterization on designer behaviors and their design outcomes.

The central hypothesis is that by conducting a mixed-methods approach where I

conduct a controlled behavioral experiment and a protocol study, I can elicit and

model the designers’ cognitive processes while making information acquisition deci-

sions. I find that individuals make decisions to stop acquiring information based on

various thresholds such as a target design quality, the number of resources they want

to spend, and the amount of design objective improvement they seek in sequential

search. The threshold values for such stopping criteria, which are computationally

inferred based on experimental data, are influenced by the contestant’s perception

about the competitiveness of their opponent. The results indicate that the threshold

value for individuals’ expenditure of efforts is influenced the most by opponent-specific

information such that it is the most sensitive factor in deciding to stop information ac-

quisition activities. This study illustrates that the cognitive factors that influence an
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individual’s preferences can be investigated via a mixed-methods approach, thereby,

enabling predictions of behaviors towards bridging the gap between cognition and

decision making.

4.2 Introduction

In Chapter 3.2, I discuss the need to quantify the influence of information sharing

on a participant’s decision making behaviors. To further investigate this topic, the

research question of this study is: How does information about historical performances

of competitors influence a participant’s information acquisition behaviors and thereby

the outcomes of a design contest? The central hypothesis is that by conducting a

mixed-methods approach where I conduct a controlled behavioral experiment and a

protocol study, I can elicit and model the designer’s cognitive processes while mak-

ing information acquisition decisions. Qualitative analysis such as protocol analysis,

provides cognitive insights by investigating people’s thought process while making

decisions [73]. Whereas, quantitative analysis such as computational modeling of

the influence of cognition on design processes, enables better prediction of design

outcome [74]. In context of behavioral investigations, it is acknowledged that a com-

bination of qualitative and quantitative data supports the most robust theory and

scientific knowledge developments [75]. Thus, I choose a mixed-methods approach

towards theory building of contest design in engineering design scenarios.

The remainder of this chapter is structured as follows. In Section 4.3, I present a

mixed-methods approach that combines qualitative and quantitative data for descrip-

tive analysis of the influence of designers’ cognition and behaviors on design outcomes.

Then, in Section 4.4, I illustrate the approach through a study that investigates de-

signers’ information acquisition behaviors under the influence of competition. In

Section 4.5, I discuss the qualitative method and its analysis. In Section 4.6, I discuss

the quantitative method to computationally model designer behaviors by considering

the results of the qualitative analysis. In Section 4.7, I discuss the mixed-methods
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analysis by testing hypotheses based on both the qualitative and quantitative data.

I conclude this chapter in Section 4.8 by discussing the information acquisition be-

haviors of designers under the influence of competition as well as emphasizing the

need for adopting mixed-methods research approaches for theory building in design

research.

4.3 Analyzing Designer Behaviors: A Mixed-methods Approach

In this section, I present a mixed-methods research approach that enables us to

leverage both qualitative and quantitative data for cognitive analysis and modeling

of the factors that influence decision-making behaviors and outcomes in engineering

design contexts. Consequently, the research approach is suitable for descriptive anal-

ysis of engineering design behaviors. The approach consists of three steps that are, 1)

variable identification, 2) leveraging existing literature, and 3) mixed-methods behav-

ioral experimentation. In the following, I discuss these three steps with a particular

emphasis on the mixed-methods analysis in Step 3.

3.1.Qualitative Data 
Analysis

3.2.Quantitative Data 
Analysis

3.3.Triangulation
• Hypothesis Testing
• Verification

Data acquisition 
examples:
• Surveys
• Interviews
• Protocol Studies

Data acquisition examples:
• Controlled Behavioral 

Experimentation
• Latent Variable 

Measurement

1.Variable 
Identification 

3.Mixed Methods Behavioral 
Experimentation

Identify variables of 
interest such as:
• Dependent
• Independent
• Confounding
variables based on the 
research question.

Qualitative Data 
Acquisition

Quantitative Data 
Acquisition

Refer to existing 
literature that study 

the variables of 
interest in context 

of designer 
behaviors.

𝑥 𝑦

𝑧

Hypothesis Formulation

2.Leveraging 
Existing 

Literature

Figure 4.1. : An illustration of the mixed-methods research approach with an emphasis
on the mixed-methods analysis.
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4.3.1 Variables Identification and Leveraging Existing Literature

The first step in a descriptive research study is to identify the variables of interest.

In engineering design behavioral context, such variables would include the factors that

can provide a descriptive account of why or how people’s behavior gets influenced in

engineering design scenarios. Moreover, the behavior under study or the behavior of

interest is also a part of the variables of interest. For example, in a product design

scenario under competition, information about the opponent’s past performance can

influence how designer’s design their future products. In such a scenario, informa-

tion about the opponent is a factor that affects how products are designed. Such

information becomes a variable of interest. Moreover, the behaviors of interest such

as designers’ decision making is also a part of the variables of interest. I utilize the

process of systematically identifying all the experimental variables of interest from

existing literature on the design of experiments [76,77]. Based on the literature, I sug-

gest categorizing experimental variables of interest as dependent, independent, and

confounding variables. Factors that influence behaviors are typically categorized as

independent variables. The behaviors of interest are the dependent variables. Con-

founding variables are those variables that also influence the behaviors of interest

such that they may alter the apparent influence of the independent variables on the

dependent variables in the experimental observations.

In the context of behavioral design research, independent variables would typically

be the design variables that can be controlled by designers in engineering design envi-

ronments. Dependent variables would typically be designer behaviors such as decision

making, communication, and reasoning behaviors. Confounding factors include, but

are not limited to, the cognitive biases of designers that need to be controlled such

as anchoring bias that may alter the apparent effect of the experimental conditions

on the observed behaviors. For further details, refer to Cash et al. [78] where they

discuss various experimental design approaches specifically for design research.
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After identifying the variables of interest, one should refer to existing literature for

the theoretical foundations for such variables. Researchers would need to develop an

understanding of the boundaries of existing knowledge about the variables of interest

to identify research gaps that include quantifying variables of interest [68], relation-

ships between the variables of interest [79], the underlying cognitive mechanisms that

stimulate behavioral responses [80], and the domain-specific nuances of engineering

design contexts [81]. Such understanding would facilitate the formulation of hypoth-

esis about how the behaviors of interest influence the outcomes of interest. Moreover,

existing literature aids in the analysis of qualitative data as described in Section 4.3.2.

4.3.2 Mixed-methods Behavioral Experimentation

After identifying variables of interest and establishing research gaps, an approach

is required to bridge the research gaps between a designer’s cognitive processes, en-

gineering design behaviors, and their influence on the engineering design outcomes.

To do so, I suggest leveraging both qualitative and quantitative data with an aim to

better analyze engineering design scenarios. Such data should be acquired, processed,

and analyzed. I collectively term these activities as conducting mixed-methods ex-

perimentation. In the following, I discuss both qualitative and quantitative data

acquisition and processing as a part of the approach. I then discuss an approach to

mixed-methods analysis where I introduce the process of triangulation.

Qualitative Data Acquisition and Analysis

The goal of qualitative data analysis is to identify the underlying cognitive pro-

cesses that influence individual’s decision making activities. Based on the identified

variables that include factors that influence people’s behaviors (refer to Section 4.3.1),

researchers would need to investigate why and how the variables of interest influence

people’s behavior. Such investigation involves observing and probing an appropriate

sample of human population. Such observations result in generation of qualitative
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data that enable us to characterize and describe the identified factors and their pos-

sible influence on the outcomes of interests. Researchers should be able to either

acquire existing qualitative data from prior investigations or conduct experiments to

do so.

Various methods exist for qualitative data acquisition and analysis such as protocol

analysis of interviews and think aloud studies, self reports from people about their

activities while executing various tasks, reflections from experts as well as novices,

and surveys from a sample that is representative of a population of interest [82].

While these methods are not a comprehensive list, I emphasize that the outcomes

of the qualitative analysis, irrespective of the data acquisition method, should reveal

latent variables such as motivation, rationale, preferences, personality traits, prior

knowledge, and beliefs of human subjects at various levels such as individual, group,

community, and global level.

Quantitative Data Acquisition and Analysis

Following the outcomes of the qualitative analysis, researchers need to work to-

wards quantifying the identified latent variables (cognitive factors) and their rela-

tionships to the outcomes of interest. In context of engineering design, I believe that

qualitative analysis is a first step towards descriptive research and not necessarily

an end goal. Quantitative analysis provides the foundations required to make pre-

dictions about the design outcomes while accounting for the qualitative knowledge

about human behavior in engineering design. Researchers should be able to either

acquire existing quantitative data or conduct experiments to do so. It is to be noted

that researchers would need to quantify the identified latent variables from qualitative

analysis. Data for such variables of interest may not be readily available in existing

literature. Therefore, it is vital for researchers to appropriately design behavioral

experiments to acquire quantitative data.
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Various methods exist for quantitative data analysis such as existing open data

repositories and conducting behavioral experiments to measure specific quantities of

interest. Moreover, such data is typically analyzed via statistical approaches such as t-

tests in experimental conditions, correlations, and analysis of variance (ANOVA) [83].

While these methods are not a comprehensive list, I emphasize that the outcomes of

the quantitative analysis, irrespective of the data acquisition method, should quan-

tify relationships between latent variables and observable behaviors at various levels

such as individual, group, community, and global level. Such analyses would provide

researchers with a triangulation strategy to test hypotheses about possible cogni-

tive mechanisms that influence designer behaviors and therefore the outcomes of an

engineering design process. I discuss triangulation in Section 4.3.2.

Triangulation

In this section, I explain the process of triangulation in the context of my approach.

Triangulation refers to a multi-method approach of data collection and analysis. Key

idea supporting the concept of triangulation is that the phenomena under study can

be understood best when approached with a variety of research methods [84]. Data

Triangulation specifically refers to drawing evidence from several data sources to study

the variables of interest [84]. In this study, data triangulation, is referred to simply

as triangulation and it is considered as the process of leveraging the results of the

qualitative and quantitative analysis to test experimental hypotheses. Such process

aims towards establishing relationships between cognitive factors and engineering

design outcomes.

The process of triangulation can be conducted in parallel or in series. However,

the implications of choosing the process of execution needs to be highlighted. Tri-

angulation in parallel refers to collecting both qualitative and quantitative data in

parallel via independent studies. This implies that independent subject population

is utilized for collecting different types of data. Triangulation through such data im-
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proves the reliability of experimental conclusions. However, triangulation in parallel

is typically resource intensive as human-subjects recruited for one study cannot be

leveraged for the other. Triangulation in series refers to collecting both qualitative

and quantitative data from the same pool of human subjects. The advantage of such

an approach is generation of richer data sets from every individual as well as better

use of human-subject participants as compared to triangulation in parallel. However,

the dependency of the data sources results in a potential threat to validity such that

the actions of the human-subjects in a behavioral experiment may influence their

description of their behavior while studying the phenomenon of interest. In such a

scenario, existing literature can be leveraged to corroborate data analysis. Refer-

encing literature can help mitigate threats to validity by preventing formulation of

hypotheses about behaviors which may be specific to the particular study in concern

but otherwise not generalizable.

As discussed in Section 4.3.2, the outcomes of qualitative analysis include identi-

fication of latent variables associated with cognition. Such variables can be leveraged

in conjunction with existing literature to formulate hypotheses about how and why

people’s behavior influence design outcomes. Furthermore, by quantifying the vari-

ables identified from the qualitative analysis (refer to Section 4.3.2) researchers would

be able to operationalize the formulated hypotheses. Operationalization is a process

of defining the measurement of a phenomenon that is not directly measurable [85]. I

note that the process of operationalization in context of engineering design in and of

itself is worthy of detailed investigation. By including operationalization as a part of

the approach I do not intend to create a false impression that this process is a minor

task within the umbrella of activities for designing behavioral experiments. Instead, I

highlight that operationalization is the crucial bridge between qualitative and quan-

titative data analysis. Moreover, operationalization is dependent on a researcher’s

expertise to identify the suitable measures that serve as a proxy for the identified

latent variables. The triangulation activities culminate by hypotheses testing which

provides the verification that the operationalized metrics are indicative of the cogni-
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tive activities of interest. Such verification establishes confidence in the utilization of

the quantified latent variables. I note that validation of such metrics would require

multiple investigations to study their efficacy in varying domain-specific contexts.

4.4 A Mixed-methods Experiment: Interviews and Controlled Experi-

mentation

In this section, I illustrate the approach in Section 4.3 in context of the research

question: How does participants’ decision to stop searching for a design solution get

influenced by the knowledge about their opponent’s past performance? I identify the

variables of interest, refer to existing literature that study these variables, and design

a mixed-methods experiment to acquire and analyze qualitative and quantitative data

from human subjects using triangulation in series.

4.4.1 Variable Identification

I identify the independent variable as the historical or prior information about

the contests that is available to the participants. I consider this information as in-

dependent variable as the contest organizers can make a decision about how much

information they should avail to the contestants. Thus, such information availability

can be controlled by the contest organizers. The dependent variable is the contestant’s

decision to stop acquiring information. Such decisions include considerations such as

how much effort to expend including resources such as time and money as well as

cognitive load. I also identify other factors that influence the dependent variable and

may act as potential confounding variables. Factors such as an individual’s domain

knowledge, the complexity of the design problem, and the incentive structure can also

influence a participant’s stopping decisions. In Section 4.4.3, I refer to the controlled

behavioral experiment discussed in Chapter 3 as well as discuss the interview study

conducted with the participants of the experiment.
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4.4.2 Existing Literature: Information Acquisition and Decision Making

Existing literature in cognitive psychology and behavioral economics describes

various descriptive models of human decision makers [86, 87]. Examples of these

decision-making models include bounded rationality-based models [88], fast and fru-

gal heuristics [87], models based on deviations from rationality [86], and cognitive

architecture-based models [89].

Within engineering design, some efforts have been made to address nuances of in-

formation acquisition in context of designer behaviors [90]. The authors in [90] iden-

tify decision to stop information acquisition decisions using criteria such as resource

expenditure, objective achievement, and improvement in objective achievement in se-

quential steps. Such stopping decision strategies are also acknowledged in cognitive

psychology literature that refers to information acquisition as evidence accumula-

tion [91]. Moreover, the dependency of such evidence accumulation on the level of

confidence of a decision-maker is also acknowledged [92]. Thus, existing literature on

the decision to stop information acquisition has identified that individuals decide to

stop using threshold-based criteria such that if the value of the criteria surpasses a

particular threshold value, then individuals decide to stop.

4.4.3 Mixed-Methods Experimentation: The Track Design Behavioral

Experiment and Interviews

The same experiment and experimental data set as described in Chapter 3 is

utilized for this study. The rationale is that for studying the effect of opponent-

specific information, the same behavioral data set can be leveraged. What changes is

the research approach to investigate latent factors that influence participants decision-

making process. Such latent factors shed light on how participants made stopping

decisions, thereby, facilitating hypothesis formulation using existing literature.

The participants of the behavioral experiment described in Chapter 3 were inter-

viewed at the end of the previous study. The interviews were structured as opposed
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to semi-structured in order to limit the total duration of the experimental activities

to 60 minutes. I did so to avoid excessive cognitive load on the participants that

could have interfered with the reliability of self-reporting data by the participants.

In the following, I discuss the interview questions, data collection method, the data

analysis procedure, and the latent variables identified as a part of the results of the

analysis. The variables are corroborated with existing literature and then utilized as

a basis for quantitative modeling and analysis.

The interviews were conducted privately and in person with every individual par-

ticipant. The interviews were audio-recorded and then professionally transcribed.

The participants were asked five questions (Q1 through Q5) sequentially as illus-

trated in Table 4.1. The motivation to ask every question has been summarized in

the table as well. The interviews lasted for an average of 150 seconds.

Table 4.1. : Interview structure

Question Motivation
Q1: What do you think was the purpose of
this experiment?

To ensure that the participants were aware of
the experimental objectives.

Q2: Was the information provided to you
about the opponent useful to you? If so how?
If not, why not?

To investigate the usefulness of the opponent-
specific information to the participants.

Q3: How did you decide to stop in the contest?
To investigate the factors that influenced the
participants’ stopping decision.

Q4: Did you have a game play strategy?
Please elaborate.

To investigate the participants’ response
strategies in the game.

Q5: Did the information about the opponent
affect your stopping decision? Please elabo-
rate.

To investigate the influence of opponent-
specific information on the participants’
strategic decision, that is, the decision to stop
the search.

4.5 Interviews: Qualitative Analysis

In this section, I discuss the analysis procedure and the results of the interview

analysis. The results enable us to identify stopping strategies by the participants

based on various stopping criteria which are identified as the latent variables.
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4.5.1 Data Analysis

I analyze the individuals’ SIADM process from the transcribed interviews through

content analysis [93]. Phrases and sentences were coded to identify when participants

account for opponent-specific information, how they account for such information,

and how they decide to stop. Two coders independently analyzed the interview tran-

scripts. I hypothesize that the participants account for opponent-specific information

in their decision to stop the search process.

Through Question 1, I expect the participants to describe the experimental ob-

jective which was to study how opponent-specific information influences participants’

decision making process. I assess whether they paraphrase the experimental objec-

tive by recognizing the independent variable that is the information provided to them

about the opponents and the dependent variable that is their decision making pro-

cess. From the transcripts, specifically the answers to Question 1, I identify words

and phrases that refer to casual relationships such as “impact on,” “influence on,”

and “affects.” I also search for words such as “information,”“good/bad opponent,”

“risk taking”, “gambling,” “decision making,” “continue or not,” and “stopping.” The

words “gambling” and “risk taking” were included after reading the transcripts to re-

alize that participants referred to strategic decisions as “risk taking” and “gambling”

which contextually referred to the accounting of the “goodness or badness” of the op-

ponent to expend greater or fewer resources by stopping earlier or later accordingly.

Based on the analysis I concluded whether a participant understood the objective of

the experiment or not. Moreover, it enabled us to verify the design of the experiment.

Responses to Question 2 were expected to be “yes” or “no” along with the jus-

tification for the same. The focus on the “usefulness” of the information provided

insights regarding how participants process opponent-specific information in terms

of its utility while making strategic decisions. The yes or no nature of the question

enabled us to categorize the participant pool on the basis of whether the participants

recognized the value of the provided information.
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Question 3 was designed to identify factors that influenced participants’ stopping

decisions. Decisions are characterized by investigating a decision maker’s preferences,

various alternatives they choose from, and the information they have about the al-

ternatives. The factors were coded by understanding participants’ preferences and

the recognition of the problem-specific and the contest-specific information they high-

lighted while describing their decision to stop.

The answers to Question 4 were coded as participant’s approach to solving SIADM

problems. The transcriptions for the answers to Question 4 were analyzed several

times over to inductively identify common approaches described by the participants.

It is to be noted that a participant’s “game play strategy” may be different from

their stopping strategy. In [79] I model an s-SIADM strategy which assumed that an

individual’s game play strategy is the same as their stopping strategy. However, I

expected the answers to Question 4 to highlight the differences between policies and

strategies as participant’s descriptions of a “game play strategy” may not account for

opponent-specific information at all.

The answers to Question 5 were coded as stopping strategies or stopping policies

depending on whether participants respond a yes or a no to the question. It was

expected that they would elaborate on how they make stopping decisions by con-

sidering opponent-specific information (or not). I used content analysis [93] to elicit

phrases and sentences that represent the conditions based on which participants in-

clude opponent-specific information. Moreover, the answers to Question 3, 4, and 5

are considered in conjunction using the coding scheme as described in Table 4.2 to

categorize potential descriptive stopping strategies.

The inter-rater reliability (IRR) was calculated by taking the ratio of the number

of agreements among three coders while analyzing answers to every question to the

overall sum of agreements and disagreements [94]. A coded instance is considered as

an agreement if no clarification was requested amongst the coders towards identifying

that instance. The IRR is given by,

IRR% =
Agreements

Agreements+Disagreements
∗ 100% (4.1)
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Table 4.2. : Coding scheme for identifying how and when participants decided to
stop.

Criterion Details Coded Example

Stopping
Policy or
Stopping
Strategy

Based on the responses to Question 5, if
opponent-specific information was uti-
lized for stopping decision then answers
to Question 4 are marked as “strategy”
else it is coded as “policy”. Instances of
this category are coded verbatim from
the transcripts.

• “No, the [opponent-specific] informa-
tion was not helpful”

• “Definitely, it [opponent-specific in-
formation] helped”

Factors

Based on the responses to Questions 3,
4, and 5 I identify the factors/reasoning
provided by the participants that influ-
enced their stopping decisions. In-
stances of this category are coded in-
ductively after reading through the
transcripts several times.

• “for the most part, [for stopping] I was
looking for a relatively high numeric
answer” - objective value is a factor
for stopping.

• “most of the time I decided to stop, uh,
once I saw a point before and after, uh,
the peak, where it had sort of leveled
out ” -function visualization as a basis
for stopping.

Time Step

Based on the responses to Questions 3,
4, and 5, I categorize when they account
for opponent-specific information as 1)
in the beginning of the search process,
2) at the end of a search process, or
3) switching from searching to stopping
strategy at some time step. Instances of
this category are coded inductively af-
ter reading through the transcripts sev-
eral times.

• The participant used the information
as they began the search process.

• The participant used the information
at the end of the search process.

The disagreements were resolved by the coders through discussions, and the con-

sensus of the results are presented. However, the IRR scores include the disagreements

amongst the coders prior to the discussion aimed towards reaching a consensus. Thus,

the IRR score quantifies the reliability of the content analysis.

4.5.2 Qualitative Analysis: Results

Through protocol analysis of the transcribed interviews, I identify 3 strategies that

describe how participants accounted for opponent-specific information (IRR 90%). I

find that participants utilize opponent-specific information to 1) develop a target value
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of the function objective that they need to achieve, 2) decide the amount of resources

they need to spend, and 3) develop an intuition of the amount of improvement they

seek in successive searches.

Developing a target value for the objective achievement. Participants

mention that they developed a target value of the function objective that they need

to achieve based on the “goodness” or “badness” of the opponent. This implies that

the participants made an assessment of the competitiveness of the opponent based on

the opponent history and then developed beliefs about the opponent’s performance

such that they were required to perform slightly better than that assessment. Ex-

isting literature in decision-making discusses how individuals set goals or targets for

themselves while acquiring information [95]. A few of the participants decided to stop

by making an assessment of whether their opponent with the given history would be

able to achieve their current best performance. For example, a participant mentions

“So if the opponent had poor to average ratings, I could sort of find an okay value

and just like submit with sufficient confidence that I would win.”

Deciding the resources. Based on the opponent-specific information, partici-

pants decided the amount of iterations they would perform. In other words, partic-

ipants decided to allocate resources to their search and therefore indirectly deciding

when to stop. Existing literature acknowledges that resources are an important cri-

teria for information acquisition decisions [96]. Such a criterion is described by the

participants. For example, a participant mentions, “based on how well my opponent

had done in the past. So if, uh, he did really well then I would aim, I would spend

a lot more money on tries to really make sure I have the highest optimum.” Another

participant mentions, “so, if it was a, like, a really, really good opponent, I knew

that I had a smaller chance of beating them. So, I didn’t wanna waste a whole bunch

of resources.” A participant describes a resource optimization strategy influenced by

opponent-specific information. They discuss, “o the strategy I was using, was mainly

to try to guess in as few guesses as possible, I was trying to get all of them in less

than five. Uh, that didn’t work out most of the time. Uh, but I would take less guesses
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if I was up against, uh, a poorer opponent. Uh, if I was up against an opponent that

was, uh, more skilled I would take a few more guesses, or I would try to.”

Deciding the amount of improvement in the objective achievement.

Based on the opponent-specific information, participants decided how much improve-

ment in successive design iterations they would like to achieve before deciding to

stop. Existing literature in operations research [97] acknowledges that decision mak-

ers who recognize improvement in their objectives make decisions to stop a product

search and make a purchase. On a similar note, participants are describing such a

strategy conditional on opponent-specific information. For example, a participant

mentions “If I had a very strong opponent I would want to make sure my guess is

much more accurate.” Moreover, participants also utilized visual information stimuli

in conjunction with opponent-specific information to stop. For example, a participant

mentioned “If I knew that they [opponent] were probably gonna get a bad score then I

would stop, even if I wasn’t at the very top, and uh, if I knew that they were gonna get

a good score then I would keep going till I could get it as high as possible.” Another

participant explained “if they [opponent] had relatively low scores, then I probably

only needed to get, uh, close to the peak, I didn’t actually need to find, uh, to optimize

my peak.” Participants also associated their risk behaviors to the opponent-specific

information towards deciding improvement in the objective value achievement. A

participant mentions “it helped me decide what, whether or not to be more risky, or

to be to be more assured that my guess was correct.”

4.5.3 Hypotheses Formulation

Based on the existing literature and the interview analysis of the participant’s

stopping strategies, I hypothesize three stopping strategies as tabulated in Table 4.3.

Strategy 1 implies that participants make stopping decisions on the basis of resources

they want to expend. Once the expenditure budget is exhausted they decide to

stop. Moreover, the value of the budget is influenced based on the opponent-specific
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information. Strategy 2 implies that participants make stopping decisions on the

basis of the quality of their design solution. Once they achieve a target quality

they decide to stop. Moreover, the target quality value is influenced based on the

opponent-specific information. Strategy 3 implies that participants make stopping

decisions based on the improvement they achieve in their design quality over successive

iterations. Once they observe that the quality is not improving enough they decide

to stop. Moreover, the amount of improvement is influenced based on the opponent-

specific information.

Table 4.3. : Characterizing s-SIADM strategies based on how and when opponent-
specific information is utilized to stop the design search.

How Strategy
Decide Resource
Expenditure

Strategy 1: Stop if the cost of information acquisition exceeds a
threshold value decided based on the opponent-specific information.

Set Objective
Achievement
Target

Strategy 2: Stop if the opponent would not be able to achieve the
current best design.

Set Objective
Improvement
Target

Strategy 3: Stop if the amount of improvement one wishes to have in
their design objective achievement based on the opponent-specific
information is less than a threshold.

4.6 Computational Modeling of Hypothesized Stopping Strategies: Quan-

titative Analysis

In this section, I model the three hypothesized stopping strategies based on the

results from the qualitative analysis.

4.6.1 Modeling Stopping Decisions

Based on the results of the qualitative analysis, I note that the hypothesized

stopping strategies in Table 4.3 are threshold based, that is, the decision to stop or

not is dependent on the threshold value of a strategy specific criterion. The criteria are
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either attributes of the observed history Ht, such as the function objective value and

the expended resources or they could be derived quantities such as the improvement

of objective in successive iterations. Moreover, the threshold value is utilized to

make decisions by assessing whether the criteria is satisfied or not. The value of the

threshold is dependent on individual specific parameters characterized by the type θ of

an individual. In my previous work, I introduce computational modeling of threshold

based decisions [79, 90]. I leverage such a modeling approach for the hypothesized

stopping strategies.

I note that modeling the identified stopping strategies as described by the human

subjects falls under the realm of descriptive modeling. The definition of a descriptive

decision model involves two activities, (i) formulating a decision strategy as a feature

of the observed history, and (ii) modeling the stochasticity of an individual’s decision

making strategy using a likelihood function. Features are deterministic models that

predict decisions for a given decision strategy, while likelihood functions, with their

model parameters such as an individual’s type θ, add a layer of uncertainty around

those predictions. The uncertainty modeling acknowledges that designers make de-

cisions subjectively based on their type. Moreover, the assumption of probabilistic

decisions assumes the limited cognitive ability of designers to make accurate decisions

even though their judgments may be aligned with rational judgments.

Formally, I refer to a mapping between the observed history to some attribute

as a feature function. A feature function (or simply feature) incorporates the ob-

served history into the decision models. Given that multiple history attributes may

influence decisions, a decision strategy is specified in terms of a weighted sum of mul-

tiple independent features. Thus, I model the stopping decision based on whether

the weighted sum of features is greater or less than a threshold value. Mathemati-

cally, I characterize a particular strategy k using Rk independent features denoted by
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gk,t,1(Ht), . . . , gk,t,R(Ht), with wk,1, . . . , wk,R as the weight parameters. Then, I model

the stochastic stopping process Sk,t for a strategy k as follows:

Sk,t =

1, with probability sigm
(∑Rk

r=1wk,rgk,t,r(Ht)
)

0, otherwise,

(4.2)

and, the stopping probability is given by,

sigm

(
Rk∑
r=1

wk,rgk,t,r(Ht)

)
=

1

1 + exp
(∑Rk

r=1 wk,rgk,t,r(Ht)
) (4.3)

where, Sk,t = 1 is the observation that an individual using a strategy k stops at the tth

time step, type θ = {wk,1:R} are designer-specific parameters modeled as the weight

parameters. The weight parameter wk,r can be positive or negative depending on

whether an increase in gk,t,r(Ht), respectively, increases or decreases the probability

of stopping. I take gk,t,1(Ht) = −1 because in a threshold-based decision model, a

constant negative feature function gk,t,1(Ht) = −1 implies that the difference between

the weighted sum and a threshold determines the decision strategy.

While it is possible to model multiple history attributes as shown above, I model

the stopping decision based on the features identified in the qualitative analysis (refer

to Section 4.5.2. From the qualitative analysis, I find that human subjects describe a

single feature of history while deciding whether to stop or not. Thus, Rk = 2 for all

k, that is, all the hypothesized strategies. To reflect this, without loss of generality,

I model the stochastic process Sk,t as follows:

Sk,t =

1, with probability sigm (−αk (gk,t,2(Ht)− βk))

0, otherwise,

(4.4)
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and, the stopping probability is given by,

sigm (−αk (gk,t,2(Ht)− βk)) =
1

1 + exp (−αk (gk,t,2(Ht)− βk))
(4.5)

where, αk and βk are type θk (weight) parameters that need to be determined for an

individual following a strategy k.

Strategy 1: Decide based on resource expenditure

According to Strategy 1 (k = 1), the total resources expended or the expenditure

budget is fixed. I assume that the resources expended in each step is the same.

Consequently, I model that the number of steps t pursued is fixed. Accordingly, the

feature function for Equation 4.5 for modeling Strategy 1 is:

g1,t,2(Ht) = t. (4.6)

The individual specific parameters θ1 = (α1, β1) intuitively model an individual’s

sensitivity to the budget expenditure and their belief about the threshold value for

the resources to be expended.

Strategy 2: Decide based on objective achievement target value

According to Strategy 2 (k = 2), individuals decide to stop based on a target

objective value. Accordingly, the feature function is:

g2,t,2(Ht) = Qt, (4.7)

where, Qt is defined in Equation 3.4.

The individual specific parameters θ2 = (α2, β2) intuitively model an individual’s

sensitivity to the objective achievement and their belief about the threshold value for

the objective achievement target.
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Strategy 3: Decide based on objective improvement threshold

According to Strategy 3 (k = 3), individuals decide to stop if the expected im-

provement of target objective in successive step is small. This strategy fits into

Eq. (4.5) by defining the feature function as follows:

g3,t,2(Ht) = max
x∈R

EI(x;Ht), (4.8)

where, the mathematical definition of EI is given by,

EI(x;Ht) = E [max(0, f(x)−Qt)|x,Ht]

= (mt(x)−Qt) Φ (Qt|mt (x) , ct (x, x)) + ct (x, x)N (Qt|mt (x) , ct (x, x)) .

(4.9)

Refer to Equation 3.4 through Equation 3.12 for the terms used to define EI.

The individual specific parameters θ3 = (α3, β3) intuitively model an individual’s

sensitivity to the achievement of the expected improvement in the objective and their

belief about the threshold value for the expected improvement.

4.6.2 Inferring an individual’s type from experimental observations

The goal of this section is to describe how one can infer the type of an individual

θ for a strategy k given a set of experimental history observations

ht = ht−1 ∪ {(xt, yt, st)}. (4.10)

I proceed in a Bayesian way which requires the specification of a prior for θ, p(θ),

a likelihood for the features gk,t,2(ht) for a strategy k given θ, p(gk,t,2(ht)|θ). The

posterior state of knowledge about the type θ is simply given by Bayes’ rule:

p(θ|ht) ∝ p(ht|θ)p(θ), (4.11)
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and I characterize it approximately via sampling. I now describe each of these steps

in detail.

Following the discussion of the previous section, I associate the type with the

vector of parameters θk = (αk, βk) ∀ k ∈ {1, 2, or 3}, all of which have already

been defined. From a Bayesian perspective, I describe my prior state of knowledge

about θk by assigning a probability density function to them, i.e., θk now becomes a

random vector modeling my epistemic uncertainty about the actual type. However,

to highlight the distinction between θk and the random variables I defined in the

previous section, I do not capitalize θk. Specifically, the random variables, Xt, Yt, St,

are associated with the subject’s behavior, whereas θk is associated with my beliefs

about the statistics of Xt, Yt, St assuming a stopping strategy k.

Having no reason to believe otherwise, I assume that all components are a priori

independent, i.e., the prior probability density (PDF) factorizes as:

p(θk) = p(αk)p(βk), (4.12)

where, αk for all k are assigned an uninformative Jeffrey’s prior, i.e., p(αk) ∝ 1
αk

, and

β1 ∼ U [0, 15]

β2 ∼ U [0, 150]

β3 ∼ U [0, 20]

(4.13)

The range of the uniform distribution was chosen based on the design of the experi-

ment. Note that here I have silently introduced a convenient notational convention,

namely p(v), which is the PDF of the related random variable evaluated at a given

point v.

The second ingredient required for Bayesian inference of the type is the likelihood

of the data gk,t,2(ht) conditioned on θk. This was implicitly defined in the previous

section. I have:

p (ht|h0, θk) =
t∏

r=1

p(hr|hr−1, θk), (4.14)



110

since the model is Markovian. For each term within the product I have:

p (hr|hr−1, θk) = [sigm (−αk (gk,t,2(hr)− βk))]sr [1− sigm (−αk (gk,t,2(hr)− βk))]1−sr ,

(4.15)

where Xr = xr, Yr = yr,Hr−1 = hr−1 and for αk and βk as in the conditioning

θk. According to my model, the stopping decision fully determined by the features

observed thus far.

I sample from the posterior using the No-U-Turn Sampler (NUTS) [69], a self-

tuning variant of Hamiltonian Monte Carlo [70] from the PyMC3 [71] Python module.

I run the MCMC chain for 10, 000 iterations with a burn-in period of 500 samples

that are discarded. Equation 4.11 is used to estimate the researcher’s posterior over

θk for each game play for each individual given their (individual’s) search data.

4.6.3 Hypotheses Operationalization

Table 4.4. : Hypotheses and their corresponding operationalization based on the
influence of an opponent’s past performance on an individual’s threshold beliefs for a
given stopping strategy.

Hypotheses Operationalized Hypotheses

H1: Opponent’s past
performance informa-
tion influences a par-
ticipant’s threshold for
resource expenditure.

H1.1*: The β1,s of the individual participants are higher as compared to their
β1,p values when they are given the information about the opponents.

H1.2*: The difference between the β1,s and the β1,p value of an individual when
they are not given the information about their opponents, is zero.

H2: Opponent’s past
performance informa-
tion influences a par-
ticipant’s threshold for
target objective value.

H2.1*: The β2,s of the individual participants are higher as compared to their
β2,p values when they are given the information about the opponents.

H2.2*: The difference between the β3,s and the β2,p value of an individual when
they are not given the information about their opponents, is zero.

H3: Opponent’s past
performance infor-
mation influences a
participant’s threshold
for objective improve-
ment.

H3.1*: The β2,p of the individual participants are higher as compared to their
β2,s values when they are given the information about the opponents.

H3.2*: The difference between the β3,s and the β3,p value of an individual when
they are not given the information about their opponents, is zero.
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I list all the hypotheses and their corresponding operationalization in Table 4.4. I

formulate Hypothesis 1 (H1) through Hypothesis 3 (H3) based on Strategy 1 through

Strategy 3, respectively. Lets recall the discussion in Section 4.5.3 and reiterate that

the opponent-specific information influences participant’s decision to stop based on

various criteria as listed in Table 4.3. To discuss the operationalization of H1 through

H3, I use the model parameters βk (defined in Section 4.6.1). I define βk,s as βk

for those contests where the opponent has a strong past performance record (µopp

between 95% to 99%) and βk,p as βk for those contests where the opponent has a

poor past performance record (µopp between 80% to 85%).

Hypothesis 1 is formulated based on Strategy 1 and it is operationalized by consid-

ering my computational model as described in Section 4.6.1. I consider that opponent-

specific information influences an individual’s belief about the threshold value for the

resources to be expended (β1). I hypothesize (H1.1*) that an individual’s belief β1,s

about the threshold value for the resources to be expended will be higher when the

opponent has a strong past performance as compared to an opponent with poor past

performance β1,p. Based on the protocol analysis, human subjects rationalize that

they would have to spend greater resources to compete with a stronger opponent. To

further validate the sensitivity of β1 to the information provided to the participants,

I hypothesize (H1.2*) that there is no difference in a participant’s belief about the

threshold value for the resources to be expended for an unknown opponent irrespec-

tive of whether they actually have a strong (β1,s) or poor (β1,p) past performance

record.

Hypothesis 2 is formulated based Strategy 2 and it is operationalized by consider-

ing the computational model as described in Section 4.6.1. I consider that opponent-

specific information influences an individual’s belief about the threshold value for the

objective achievement target value (β2). I hypothesize (H2.1*) that an individual’s

belief β2,s about the threshold value for the objective achievement target will be higher

when the opponent has a strong past performance as compared to an opponent with

poor past performance β2,p. Based on the protocol analysis, human subjects rational-
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ize that they would have to better achieve the objective to compete with a stronger

opponent. To further validate the sensitivity of β2 to the information provided to

the participants, I hypothesize (H2.2*) that there is no difference in a participant’s

belief about the threshold value for the objective achievement target for an unknown

opponent irrespective of whether they actually have a strong β2,s or poor β2,p past

performance record.

Hypothesis 3 is formulated based Strategy 3 and it is operationalized by consider-

ing the computational model as described in Section 4.6.1. I consider that opponent-

specific information influences an individual’s belief about the threshold value for

the expected improvement in the objective (β3). I hypothesize (H3.1*) that an indi-

vidual’s belief β3,s about the threshold value for the objective improvement will be

smaller when the opponent has a strong past performance as compared to an oppo-

nent with poor past performance β3,p. Based on the protocol analysis, human subjects

rationalize that they would have to better achieve the objective to compete with a

stronger opponent. Consequently, they would need to observe smaller successive im-

provements in objective achievement when they decide to stop. To further validate

the sensitivity of β3 to the information provided to the participants, I hypothesize

(H3.2*) that there is no difference in a participant’s belief about the threshold value

for the objective improvement for an unknown opponent irrespective of whether they

actually have a strong β3,s or poor β3,p past performance record.

4.7 Results and Discussion

The data, collected from the experiment described in Section 4.4, is pooled for

every individual. Pooling refers to aggregating the collected data based on a criterion.

As there were 36 participants, the experimental data set was pooled into 36 sets.

For each set (or every individual) I sample model parameters βk from the posterior

distribution for each experimental treatment (refer to Table 3.2) and test H1.1* to

H3.2*. Testing the hypotheses based on pooled datasets, helps us identify if any of
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the belief parameters βk are sensitive to the opponent specific information across all

the individuals. I then discuss the implications of each of the hypothesis test results.

4.7.1 Hypothesis 1

Mathematically, Hypothesis H1.1* is considered as:

H1.1* := β1,s > β1,p. (4.16)

Thus, I calculate the following probability,

p(H1.1*|ht, θ) = E
[
I[0,∞](β1,s − β1,p)

∣∣ht, θ] (4.17)

which is calculated by the average number of times the posterior samples of β1,s are

greater than posterior samples of β1,p.

The results indicate that p(H1.1*|ht, θ) = 0.71. As the value is greater than 50%,

it implies that the Strategy 1 can predict stopping behaviors in an SIADM scenario

under the influence of competition with a greater than random chance.

To further test the sensitivity of the model parameters, I test H1.2* using the data

where participants do not have information about the opponent. In H1.2*, I consider

no difference between β1,s and β1,p. I define the null hypothesis as follows:

H1.2*null := β1,s > β1,p. (4.18)

Thus, I calculate the following probability,

p(H1.2*null|ht, θ) = E
[
I[0,∞](β1,s − β1,p)

∣∣ht, θ] (4.19)

which is calculated by the average number of times the posterior samples of β1,s are

greater than posterior samples of β1,p.

The results indicate that p(H1.2*null|ht, θ) = 0.48. This implies that when the

participants do not have information about the opponent, the model for Strategy 1
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predicts that participants expend similar efforts for a strong and a poor performing

opponent. This result further builds the confidence that the model is able to represent

the influence of opponent-specific information on a participant’s decision to stop via

resource threshold.

4.7.2 Hypothesis 2

Mathematically, Hypothesis H2.1* can be considered as:

H2.1* := β2,s > β2,p. (4.20)

Thus, I calculate the following probability,

p(H2.1*|ht, θ) = E
[
I[0,∞](β2,s − β2,p)

∣∣ht, θ] (4.21)

which is calculated by the average number of times the posterior samples of β2,s are

greater than posterior samples of β2,p.

The results indicate that p(H2.1*|ht, θ) = 0.62. This implies that the probability

that Strategy 2 describes the influence of opponent-specific information on a partic-

ipant’s stopping decision is approximately 62%. As the value is greater than 50%,

it implies that the Strategy 2 can predict stopping behaviors in an SIADM scenario

under the influence of competition with a greater than random chance. However,

Strategy 1 is likelier to describe participant behaviors as compared to Strategy 2.

To further test the sensitivity of the model parameters, I test H2.2* using the data

where participants do not have information about the opponent. In H2.2*, I consider

no difference between β2,s and β2,p. Thus, I define the null hypothesis as follows:

H2.2*null := β2,s > β2,p. (4.22)

Thus, I calculate the following probability,

p(H2.2*null|ht, θ) = E
[
I[0,∞](β2,s − β2,p)

∣∣ht, θ] (4.23)



115

which is calculated by the average number of times the posterior samples of β2,s are

greater than posterior samples of β2,p.

The results indicate that p(H2.2*null|ht, θ) = 0.49. This implies that when the

participants do not have information about the opponent, the model for Strategy

2 predicts that participants have the same target objective value threshold for a

strong and a poor performing opponent. This result further builds the confidence

that the model is able to represent the influence of opponent-specific information on

a participant’s decision to stop via objective threshold.

4.7.3 Hypothesis 3

Mathematically, Hypothesis H3.1* can be considered as:

H3.1* := β3,p > β3,s. (4.24)

Note that here β3 represents expected improvement which has an inverse relationship

with the past performance record of an opponent such that I hypothesize that β3,p >

β3,s . Thus, I calculate the following probability,

p(H3.1*|ht, θ) = E
[
I[0,∞](β3,p − β3,s)

∣∣ht, θ] (4.25)

which is calculated by the average number of times the posterior samples of β3,p are

greater than posterior samples of β3,s.

The results indicate that p(H3.1*|ht, θ) = 0.61. This implies that the probability

that Strategy 3 describes the influence of opponent-specific information on a partic-

ipant’s stopping decision is approximately 61%. As the value is greater than 50%,

it implies that the Strategy 2 can predict stopping behaviors in an SIADM scenario

under the influence of competition with a greater than random chance. However,

Strategy 1 is likelier to describe participant behaviors as compared to Strategy 3

(and Strategy 2).
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To further test the sensitivity of the model parameters, I test H3.2* using the data

where participants do not have information about the opponent. In H3.2*, I consider

no difference between β3,p and β3,s. Thus, I define the null hypothesis as follows:

H3.2*null := β3,p > β3,s. (4.26)

Thus, I calculate the following probability,

p(H3.2*null|ht, θ) = E
[
I[0,∞](β3,p − β3,s)

∣∣ht, θ] (4.27)

which is calculated by the average number of times the posterior samples of β3,p are

greater than posterior samples of β3,s.

The results indicate that p(H3.2*null|ht, θ) = 0.47. This implies that when the

participants do not have information about the opponent, the model for Strategy 3

predicts that participants have the same expected improvement value threshold for

a strong and a poor performing opponent. This result further builds the confidence

that the model is able to represent the influence of opponent-specific information on

a participant’s decision to stop via objective improvement threshold.

4.7.4 Posterior Predictive Checking

To check the fit of the modeled parameters, I conduct posterior predictive checking

(PPC). I leverage the posterior distributions p(θk|ht) of the model parameters to

simulate search history ht,sim for each hypothesized strategy.

p(ht,sim|ht) =

∫
p(ht,sim|θ)p(θ|ht)dθ (4.28)

The simulated stopping data st,sim ⊆ ht,sim for each strategy is utilized to calculate

the simulated effort tsim against opponents with varying historical information. The

number of tries tsim by the participants from the simulated stopping data st,sim is

given by,

tsim = {(t) : st,sim = 1}. (4.29)
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I test for the statistical differences in the simulated efforts tsim for each strategy

given good and bad opponents to observe systematic discrepancies, if any, across the

hypothesized stopping strategies. Based on the observations, I hypothesize that the

simulated efforts for each strategy should show that participants expended greater

efforts when they knew opponents had a strong past performance record than when

they knew opponents had a poor past performance record.

Simulating Stopping Decisions for Strategy 1

I conduct a two sample t-test with unequal variances to test whether the simu-

lated efforts, based on the resource threshold parameters β1, are greater when the

opponent had a strong past performance record than when the opponents had a poor

past performance record. I find a statistically significant difference in the simulated

data such that the effort expended is greater when the opponent had a strong past

performance record than when the opponents had a poor past performance record.

Table 4.5. : The mean µ and standard deviation σ of the simulated number of tries
Tsim

Simulated number of tries Tsim for Strategy 1

Condition
Mean
µ

Standard Deviation
σ

Given β1

strong past performance record
Sample size=36

µGTsim
= 4.23 σGTsim

= 2.85

Given β1

poor past performance record
Sample size=36

µBTsim
= 3.70 σBTsim

= 2.10

Table 4.6. : Summary of the two-sample t-test for posterior predictive check for
strategy 1.

Alternate Hypothesis t stat. p-value

PPC1 µGTsim
> µBTsim

−3.33 < 0.01
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Simulating Stopping Decisions for Strategy 2

I conduct a two sample t-test with unequal variances to test whether the simulated

efforts, based on the target objective threshold parameters β2, are greater when the

opponent had a strong past performance record than when the opponents had a poor

past performance record. I find a statistically significant difference in the simulated

data such that the effort expended is greater when the opponent had a strong past

performance record than when the opponents had a poor past performance record.

Table 4.7. : The mean µ and standard deviation σ of the simulated number of tries
Tsim

Simulated number of tries Tsim for Strategy 2

Condition
Mean
µ

Standard Deviation
σ

Given β2

strong past performance record
Sample size=36

µGTsim
= 4.30 σGTsim

= 3.61

Given β2

poor past performance record
Sample size=36

µBTsim
= 3.78 σBTsim

= 2.30

Table 4.8. : Summary of the two-sample t-test for posterior predictive check for
strategy 2.

Alternate Hypothesis t stat. p-value

PPC2 µGTsim
> µBTsim

−3.15 < 0.01

Simulating Stopping Decisions for Strategy 3

I conduct a two sample t-test with unequal variances to test whether the simulated

efforts, based on the expected improvement of the objective threshold parameters β3,

are greater when the opponent had a strong past performance record than when the

opponents had a poor past performance record. I do not find a statistically significant

difference in the simulated data which implies that I cannot infer whether the effort
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expended is greater when the opponent had a strong past performance record than

when the opponents had a poor past performance record.

Table 4.9. : The mean µ and standard deviation σ of the simulated number of tries
Tsim

Simulated number of tries Tsim for Strategy 3

Condition
Mean
µ

Standard Deviation
σ

Given β3

strong past performance record
Sample size=36

µGTsim
= 2.38 σGTsim

= 0.38

Given β3

poor past performance record
Sample size=36

µBTsim
= 2.47 σBTsim

= 0.38

Table 4.10. : Summary of the two-sample t-test for posterior predictive check for
strategy 3.

Alternate Hypothesis t stat. p-value

PPC3 µGTsim
> µBTsim

1.34 0.19

4.7.5 Discussion

I summarize the results of the hypotheses tests as well as the posterior predictive

checks in Table 4.11. The results indicate that Strategy 1, that is, stopping based

on resource threshold, is the most representative of an individual’s stopping strategy

under the influence of opponent specific information. While I observe the sensitiv-

ity of the threshold parameters across all hypothesized stopping strategies with a

probability greater than that of a random chance (0.5).

While specific individuals may adopt different strategies for stopping informa-

tion acquisition, contest designers would need to analyze behaviors across a group

of participants. The result that Strategy 1 is representative of the decision making

behaviors across a group of individuals is thus valuable from the perspective of de-

sign of engineering design contests. The results contribute to the conditions that
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can be facilitated by contest designers, such as, setting target budget expenditures if

competition is high such that participants can expend greater efforts.

Table 4.11. : Summary of the Results. 3 indicates rejection of null and 7 indicates
failure of null rejection.

Hypotheses Individual-
level Results

Posterior
Pre-
dictive
Check

Strategy 1 (H1) H1.1* : 3

H1.2* : 3
3

Strategy 2 (H2) H2.1* : 3

H2.2* : 3
3

Strategy 3 (H3) H3.1* : 3

H3.2* : 3
7

4.8 Conclusions

In this study, I illustrate a mixed-methods approach where both interviews and

controlled behavioral experimentation are conducted to investigate the influence of

opponent-specific information on an individual’s stopping decision in a sequential de-

cision making process. I illustrate that the cognitive factors that influence individual’s

preferences can be investigated using the presented approach.

I find that individuals make decisions to stop acquiring information based on

various factors such as a target design quality, the number of resources they want

to spend, and the amount of design objective improvement they seek in sequential

search. Moreover, the factors are computationally modeled as threshold functions to

influence information acquisition via an individual’s decision to stop such acquisition.

The results of the computational models indicate that an individual’s threshold for

the expenditure of efforts is influenced the most by the opponent-specific information

as compared to the other two thresholds. Thus, we can model individuals’ decision to
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stop information acquisition activities on the basis of resource expenditure identified

as the most sensitive factor influencing the decision.

This study bridges the gap between modeling decision making and account for cog-

nition. I do not claim that all individuals make information acquisition decisions on

the basis of resource expenditure. Instead, I suggest that modeling a participant pop-

ulation’s decision making on the basis of resource thresholds can provide behavioral

insights to contest designers about the population towards making predictions about

contest outcomes. By studying the cognitive factors that influence decision making,

intervention design decisions can be made to influence behavior change. Moreover, by

modeling the influence of such factors, expectations of the behavior change interven-

tions can be set. Such expectations in computational terms would be the predictions

about the influence of behavioral change interventions. Further investigations are re-

quired to study how the modeled cognitive factors can be leveraged to study contest

design for behavior change in the participants and thereby in the contest outcomes.

The triangulation approach utilized in this study was in series (refer to Sec-

tion 4.3.2). Thus, I acknowledge a potential threat to validity in this study because

the experimental population leveraged is the same for both qualitative and quantita-

tive data analysis. While triangulation strengthens validity, if the sample population

is the same for both qualitative and quantitative data, existing literature needs to

be utilized for establishing whether the results of the qualitative analysis are gen-

eralizable. This can be done by analyzing the qualitative findings in light of the

behaviors discussed in existing literature. Reference to existing literature is illus-

trated Section 4.5.2 such that the existing literature on stopping strategies discussed

in Section 4.4.2 is leveraged to substantiate the findings from qualitative analysis

towards facilitating formulation of hypotheses.



122

5. STUDENTS AS SEQUENTIAL DECISION MAKERS: EDUCATIONAL

IMPLICATIONS OF THIS RESEARCH

5.1 Chapter Overview

In this chapter, I report the study conducted to investigate students’ decision-

making during the information gathering activities of a design process. Existing

literature in engineering education has shown that students face difficulties while

gathering information in various activities of a design process such as brainstorm-

ing and CAD modeling. Decision-making is an important aspect of these activities.

While gathering information, students make several decisions such as what informa-

tion to acquire and how to acquire that information. There lies a research gap in

understanding how students make decisions while gathering information in a prod-

uct design process. To address this gap, semi-structured interviews and surveys in a

product design course are conducted. I analyze the students’ decision-making activ-

ities from the lens of the SIADM framework discussed in Chapter 2. I find that the

students recognize the need to acquire information about the physics and dynamics of

their design artifact during the CAD modeling activity of the product design process.

However, they do not acquire such information from their CAD models primarily due

to the lack of the project requirements, their ability, and the time to do so. Instead,

they acquire such information from the prototyping activity as their physical proto-

type does not satisfy their design objectives. However, the students do not get the

opportunity to iterate their prototype with the given cost and time constraints. Con-

sequently, they rely on improvising during prototyping. Based on the observations, I

discuss the need for designing course project activities such that it facilitates students’

product design decisions. Thus, this study illustrates the educational implications of
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this dissertation work by leveraging the SIADM framework. Parts of this work is

published in ASME IDETC/CIE conferences in 2018 [98] and in 2019 [99].

5.2 Introduction

Existing literature in engineering education has several studies on students’ design

behaviors in product design processes [100–103]. Such studies have concluded that

students, as novices, face difficulties in the problem scoping and information gathering

activities of a design process. They lack the design frames to scope their problem and

accordingly gather information [100]. Experts, on the other hand, tend to solve design

problems from a domain-specific frame of reference which allows them to quickly

converge to meaningful design outcomes [104]. Thus, information gathering activities

of students require further investigation in order to understand the specific challenges

they face in them in order to enable educators to accordingly design courses and

facilitate students’ design activities.

One of the lenses to investigate students’ information gathering activities is by con-

sidering design as a decision-making process [105]. While gathering information, stu-

dents make several decisions such as what information to acquire and how to acquire

that information. There lies a need to investigate such decisions and decision-based

design (DBD) frameworks can be utilized to do so [106]. However, the engineering

education research community has been dismissive of decision-based design (DBD)

frameworks [107]. Dym et al. [107] critique that DBD frameworks provide little guid-

ance on analyzing how students gather information and generate alternatives to make

decisions. Moreover, they discuss that DBD frameworks are only considered relevant

for making decisions after the information required to make such decisions has been

acquired [107]. However, I argue that DBD frameworks can be utilized to analyze

information acquisition activities of a design process.

In this study, I utilize the SIADM framework, discussed in Chapter 2, to inves-

tigate how students make product design decisions. I focus on their information
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acquisition decisions such as how to acquire information which ultimately affects

their design outcomes. I collect the students’ decision-making data through semi-

structured interviews and surveys in ME444: Toy Design course offered in the School

of Mechanical Engineering at Purdue University.

The investigation results in insights on the specific challenges the students expe-

rience while gathering information. I find that they recognize the need to acquire

information about the physics and dynamics of their design artifact during the CAD

modeling activity of a product design process. However, they do not acquire such

information during their CAD modeling activities primarily due to the lack of project

requirements, their ability to utilize physics simulation packages, and the time to do

so. Instead, they acquire such information from the prototyping activity. With the

given cost and time constraints, they do not get the opportunity to iterate their pro-

totype. Consequently, they rely on improvising during prototyping. The study also

supports the observation in existing literature that students, as novices, tend to have

higher design iterations than expected in product design activities [100–103]. Further-

more, the SIADM framework enables us to understand how information acquisition

activities influence students’ decision-making behaviors.

The remainder of this chapter is organized as follows. In Section 5.3, I review

existing literature on product design processes. The review explores the themes of

information gathering, problem framing, and decision-making including my work on

the integration of these themes. In Section 5.4, I introduce the course project and its

learning objectives. Then, I describe the details of the study including the research

methods, data collection, and analyses techniques. In Section 5.5, I report the ob-

servations. In Section 5.6, I discuss the need to design courses such that it accounts

for students’ decision-making and information acquisition behaviors. I provide rec-

ommendations for the design of design projects and discuss the limitations of this

study.
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5.3 Literature Review: Problem Framing, Information Gathering, and

Decision-making

Problem framing is recognized as that activity of the design process that deals

with the identification of problems, setting the design goals, requirements, and stat-

ing the assumptions and/or limitations [100]. Several studies have acknowledged the

importance of problem framing [102, 108]. While studying expert designers, the au-

thors [104] observed that the experts engaged in problem framing activities that mo-

tivated them to innovate. Studies that focus on expert-novice differences have found

that experts spend more time in problem framing activities than novices [100,109,110].

Studies on students, as novices, have also shown that students tend to be more ef-

fective as designers if they spend greater amounts of time in problem framing activi-

ties [111].

Information gathering is an essential part of problem framing activities. Studies

have suggested how information gathering is observed in effective team’s design be-

haviors [111]. It is also shown that information gathering as a part of design activities

is more meaningful than the act of gathering information in itself [112]. Students who

just focused on information gathering got stuck in the early stages of design rather

than progressing to generate design outcomes. The authors [112] observe that effec-

tive students quickly learn to integrate acquired information within the frame of their

problem.

Problem framing and information gathering culminate into decision-making activ-

ities [10,105]. Consequently, decision-based design research has emerged as an impor-

tant research area built on the foundations of mathematical principles and decision

theory [105,113]. Existing research has focused on characteristics of decision-making

activities such as preference analysis [12], decision-making under uncertainty [114],

and deviation from rationality [115]. Thus, decision-making motivates the formula-

tion of important learning objectives in engineering design education [116].
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Using the foundations of decision theory has been recognized as a means to im-

prove engineering design education [117]. However, DBD frameworks in engineering

education are considered relevant purely from a pedagogical standpoint [107]. From

a research standpoint, it is argued that DBD frameworks provide little guidance on

analyzing how students gather information and generate alternatives to make deci-

sions [107]. Such a belief in the engineering education research community is not

unfounded. Historically, DBD research has primarily emphasized on making artifact

decisions using a specified state of information [68]. However, efforts are being made

towards utilizing descriptive theory, i.e., understanding how humans make decisions

within the design process [106,118,119]. In the previous chapter (refer to Chapter 2)

I present an SIADM framework that integrates information gathering and decision-

making activities which is utilized as a lens to analyze the information acquisition

activities of students in a product design process.

5.4 The Study
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Figure 5.1. : Overview of the design process activities and the research activities
during the action toy project in ME444 Toy Design course.
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I observe the students’ decision-making in ME444: Toy Design course offered as

an elective undergraduate course in the School of Mechanical Engineering at Purdue

University. The learning objectives of the course include integrating CAD knowledge

with rapid prototyping techniques such as 3D printing and laser cutting. For the

achievement of the learning objectives, the students are required to work on two

projects, a guided design project and an action toy project. The guided project’s

emphasis is on CAD modeling and rapid prototyping activities only. In the guided

project, they are required to model a car chassis in CAD software and create a

prototype. They are provided with all the information required to do so. Thus,

they do not engage in information gathering activities. For the action toy project,

they are required to design a toy following a typical product design process involving

brainstorming, conceptual design, CAD modeling, and prototyping activities. In the

action toy project, they experience information gathering and decision-making in

various activities of a typical product design process. Thus, the study only focused

on the students’ decision-making in the action toy project. However, I account for

the fact that they gain experience in rapid prototyping techniques via the guided

project. Such a design of the course projects was deliberate such that the students

have prior experience for the CAD modeling and prototyping activities in the action

toy project. The course had a total of 44 upper-level undergraduate students divided

into 12 teams. The students work in teams of 3 or 4 who are randomly assigned at

the beginning of the semester.

The overview of the activities of the action toy project is illustrated in Figure 5.1.

The students were required to brainstorm toy ideas and then submit a proposal

document with detailed design, assembly, prototyping, and purchase plans for two

toy design concepts. The project required a “non-trivial motion” and they could

make purchase decisions for electronic components such as motors and batteries, if

required, with the given cost constraints. The students received feedback on their

proposal document from the instructor and the teaching assistants. Each team had

to then decide which idea to choose. I consider these activities and decisions as a part
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of the conceptual design activities for the toy. After the conceptual design activities,

the students were required to model the details of their chosen toy in CAD and create

the toy assembly. I consider these activities as a part of the CAD modeling activities

for the toy. Then, the students had to utilize rapid prototyping techniques namely

laser cutting and 3D printing to physically fabricate their toy. They were given size

and volume constraints for the same. The students were required to assemble their

fabricated parts along with their purchased parts to create the toy prototype. I

consider these activities as a part of the prototyping activities for the toy. Finally,

they had to present their toy prototype via a group presentation.

5.4.1 Data Collection

I conducted one survey and three semi-structured interviews over the course of the

toy design project as shown in Figure 5.1. The survey was conducted during the con-

ceptual design activities and focused on the students having to list the decisions they

were making during these activities. The semi-structured interviews were designed to

investigate how and why the students made decisions in the conceptual design, CAD

modeling, and prototyping activities. The students were incentivized for participat-

ing in the survey and interviews. They were provided with a 2% participation bonus

to their overall grade.

The interviews were audio recorded and then transcribed. The first and second

interviews were conducted one-on-one with the students. This was done in order

to document the decisions made by every team member as well as verify decisions

across team members. These interviews lasted for an average of 5 minutes. The final

interviews (interview 3) were conducted with the entire team due to time constraints

and lack of the students’ availability after the end of the course. The final interviews

lasted for an average of 12 minutes.
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Conceptual Design Activities

In the conceptual design activities, I focused on investigating the students’ concept

elimination and concept selection strategy. By the term ‘strategy’, I refer to their

motivations and preferences for eliminating and selecting their reported concepts. I

distinguish between concept elimination and selection strategy as follows. I label the

students’ reported preferences to choose two concepts from the several ideas they were

brainstorming as their concept elimination strategy. The students received feedback

on their proposed concepts. Then, based on the feedback and their team preferences,

they were required to select a toy concept as their toy project. I label the students’

reported preferences to choose a concept from their proposal as their concept selection

strategy.

The students were asked to complete an online survey and report the decisions

they were making, various alternatives they were considering, and the alternative

they chose. I use the survey data to report the decisions the students made during

the conceptual design activities. During interview 1, the students were interrogated

on their strategies to eliminate and select concepts.

I acknowledge that the conceptual design activities are worthy of extensive re-

search on their own. There are several activities that occur at a cognitive level such

as students recollecting their experiences from memories which allows them to exploit

various known toy concepts as well as students utilizing various sources of informa-

tion to explore further concepts. However, in this study, for the conceptual design

activities, I only focus on the students’ decision-making strategy for concept selection

and elimination.

CAD Modeling Activities

For the action toy project, the students spent the majority of their time on the

CAD modeling activities. Therefore, I investigate these activities in detail. From the

lens of the SIADM framework, I consider that CAD modeling acts as an information
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processing as well as an information acquisition activity. CAD modeling enables

students to visualize their conceptual design and therefore helps them process the

information they acquired during the conceptual design activities. CAD also results

in information acquisition as students can experiment with various dimensions of the

toy parts and consequently process information about how various parts will work

together as an assembly.

To understand the impact of CAD activities on the students’ decision-making, I

formulate interviews 1 and 2 as follows. First, I wanted to know what the students be-

lieve about CAD as a part of the product design activity before entering into the CAD

modeling activities. Since interview 1 was conducted prior to the beginning of CAD

modeling activities, it was utilized to elicit their beliefs. By the term beliefs, I refer

to their motivations for CAD modeling such as CAD as an information acquisition

activity and as an activity to create STL files to facilitate 3D printing. During the

CAD modeling activities, the students were making detailed design decisions such as

what dimensions to choose for each toy part. Interview 2 was conducted at the end of

these activities. From interview 2, I investigated the students’ experience with CAD

after the activity. I wanted to investigate whether the students acquired additional

information, what decisions they made, and if they encountered anything unexpected

from the CAD modeling activities.

Prototyping Activities

During the prototyping activities, the students assembled the physical prototype

of their toy. They had received their parts from the laser cutting and 3D printing

workshops as well as the electronic parts they had ordered. Their decisions of tol-

erance selections for dimensions as well as choosing the fabricating techniques were

made during the CAD modeling activities. The students were interrogated during

interview 2 regarding their tolerance decisions and their motivation to choose proto-
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typing techniques for their toy parts. During the prototyping activities, they gained

information regarding the outcomes of the decisions made in CAD modeling activities.

During interview 3, the students were asked whether they believed that the nature

of their design process was iterative and they were asked to elaborate on the specific

aspects of what they found iterative in nature. The motivation for such a question

was to investigate the sequence of their decision-making process. The students were

also engaged in a hypothetical scenario where they were asked if they had added 4

weeks of time, what steps they would have taken. The purpose of such a question

was to understand what the students learned from their design prototype and their

tendency to move further along the product design process.

Table 5.1. : Concept Selection and Elimination Preferences Coding Scheme

Preference
Criterion

Details Coded Example

Constraint Sat-
isfaction (CS)

Satisfying constraints based on
criteria provided in the project
description such as complexity
requirement, manufacturing tech-
niques, cost requirement, volume
constraints, mechanical motion, and
complexity.

“we want to do something with the
mechanisms and the ideas that are
not feasible with 3d printing and
laser cutting [were eliminated]”

Team’s Ability
(AB)

Ability to think and execute detailed
design for an idea.

“we all agreed that we wanted to
make a mechanism that’s simple and
it’s not outside our ability so the
first step was to make sure that ev-
erything was doable.”

Team’s Inter-
est/Fun (FN)

Whether the concept was fun to pur-
sue.

“We all picked one idea that we liked
that was fun project to make”

Originality
(OG)

Whether the idea was original and
innovative.

“we also wanted our idea to be orig-
inal and so couple of our ideas
weren’t original”

User Centered
Design (UC)

Whether the idea was fun for chil-
dren.

“we kind of eliminated ideas based
on what was the most interesting to
kids.”

Fixation (FX) Selecting an idea because the team
was fixated on it.

“we went and thought about other
ideas but since we were most pas-
sionate about the first idea we kind
of like knew kind of in the beginning
that we would go through that one ”

Prior Knowl-
edge (PK)

Whether team members had prior
experience to deal with the detailed
design.

“[we] just kinda came up with cre-
ative ideas on our own based on the
things we’ve done in our lives ”
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5.4.2 Data Analysis

I analyze teams’ decision-making activity from all the interviews as well as the

submitted proposal document. These documents were analyzed through content anal-

ysis [93] to code words and sentences as decisions. Decisions are characterized by in-

vestigating a decision maker’s preferences, various alternatives they choose from, and

the information they have about the alternatives as illustrated in Figure 5.2. The

characterized decisions were then analyzed from the lens of the SIADM framework

to characterize information acquisition, information processing, and decision-making

activities.

Decision

Preferences

Information

Alternatives Outcome

Figure 5.2. : Characteristics of a decision.

Using the SIADM framework as shown in Figure 2.1, I characterize the students’

decision-making activity by investigating the information they required to make the

decisions, their recognition of whether they possessed the information, their decision

to acquire information if needed, and their decision based on the information they

acquired. For example, transcripts with words such as “what”, “how”, “choose”,

“decide”, and “when” typically resulted in identification of decisions. The interviews

were semi-structured. Therefore, follow up questions were asked to further investigate

how such decisions were made by investigating the characteristics of a decision as

described in Figure 5.2. Various decisions reported by individual students were then

pooled to their respective teams to get a clearer picture of their decisions across

conceptual design, CAD modeling, and prototyping activities. The decisions in each of

these activities are reported in Section 5.5. I report the common and critical decisions
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for each team in Section 5.5.4. In Section 5.5.4, I also analyze the hypothetical

decisions they reported that they would’ve made from the final interview (interview

3).

For the conceptual design activities, I utilized content analysis [93] to elicit the

students’ preferences for eliminating and selecting concepts. Through such analy-

sis, I marked words and phrases into various preference categories that represent the

conditions on the basis of which the students eliminated and selected concepts. For

example, when a student mentioned “we wanted to select an idea that was doable”

I considered the statement as a part of their elimination strategy and labeled such

a preference criterion as a part of the team’s ability category. Table 5.1 lists all the

categorized preference criteria. Such criteria were then utilized to label their concept

selection and elimination strategy discussion from interview 1. The transcribed text

from Interview 1 was analyzed several times over to count the number of instances that

belong to each of these criteria. We sum the frequencies of instances of each of these

criteria across interviews. We also sum these frequencies from individual interviews

according to the teams to which the individuals’ data belonged. Multiple coders ana-

lyzed the frequencies to ensure the reliability of the results. The inter-rater reliability

(IRR) was calculated by taking the ratio of the number of agreements amongst coders

for labeling each instance to the overall sum of agreements and disagreements [94].

IRR% =
Agreements

Agreements+Disagreements
∗ 100% (5.1)

We also utilized the content analysis to analyze the teams’ submitted proposals for

their decisions and proposed ideas. The results of the content analysis are presented

in Section 5.5.1. Additionally, the content analysis aided us in understanding the

students’ beliefs about CAD modeling activity. Such beliefs about CAD modeling

are summarized in Section 5.5.2.
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5.5 Results

I present the results of the observations on the students’ decision-making activities

in the order of the conceptual design, CAD modeling, and prototyping activities of

the product design process as described in Figure 5.1. I also report the observations

from analyzing decisions across individual students as well as the teams.

5.5.1 Conceptual Design Activities

Out of the 44 students, 34 were available for interview 1. In other words, 7 out of 12

teams had all the members who reported for interview 1. I find that (IRR% = 80) on

average the students eliminated ideas predominantly based on constraint satisfaction

(CS), i.e., whether the idea satisfied the design constraints provided in the project

description. In order to select the final idea, I find that (IRR% = 79) the students

not only selected the idea that satisfied constraints (CS) but also selected it based

on their team’s interest (FN) to pursue the idea. These results are also applicable on

a team-level analysis to the 7 teams where all the members reported for interview 1.

Table 5.2 illustrates the frequency count of preference criteria codes for all the teams

for concept elimination strategy.

I also find that each team reported two decisions, namely, the decision to propose

two ideas, and the decision to select the final idea. However, only two students re-

ported additional decisions related to assembly, prototyping, and purchasing. These

decisions were expected to be made while submitting their conceptual design pro-

posal. I observe the students’ assembly, prototyping, and purchasing decisions in the

submitted proposal document. However, they do not report these decisions in the

interviews during the conceptual design activities. Instead, I observe the discussion

of such decisions during the specific activities for which the decisions were made,

namely, during the CAD modeling and prototyping activities.

An interesting observation (IRR% = 100) is that 8 out 12 teams had one of their

toy proposal idea similar to the car design guided project conducted earlier in the
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semester. The idea was modified to accommodate the project requirements, however,

it was observed that the students strategize idea proposal such that one of the ideas

was an outcome of the brainstorming activity which the team wanted to pursue

based on interest. The other idea involved the guided project’s car design concepts.

This observation is an example of design fixation [120] during the conceptual design

activities. However, it can also be argued that the students’ design behaviors are

rational given the project time constraints such that their prior experience from the

guided toy project is being judiciously utilized.

5.5.2 CAD Modeling

Out of the 44 students, 36 were available for interview 2. I find that 10 out of 12

teams believe that the course content improved their CAD modeling ability as well

as their ability to use Creo which is a CAD modeling software. The remaining two

teams reported that the course did not improve their CAD knowledge as they already

had prior experience. All the students reported that they believe that CAD as an

activity is important for the visualization of their design concepts.

I find that (IRR% = 100) 9 out 12 teams recognize the need to model the physics

of their toy including aspects such as springs, hydraulic actuators, and gravity. For

example, helical springs in Creo can be modeled if one knows how to utilize helical

sweeps as well as provide the geometric information required by Creo to do so. How-

ever, all the 9 teams reported that they did not acquire such information during CAD

modeling activities as the project requirement did not explicitly state the need to do

so, the students did not have the appropriate knowledge to utilize various modeling

functionalities and simulation packages in CAD, and the students had limited time to

fabricate their toy. This resulted in the students encountering prototyping problems

as their physical toy prototype did not function as intended. The students also did not

have enough resources in terms of budget and time to iterate their prototype. Such

setbacks resulted in the students having to improvise modifications for their physical
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prototype. Table 5.3 provides examples of instances when the students reported their

lack of information acquisition in CAD.

Table 5.3. : Examples of instances when the students could not acquire information
in CAD.

Team
Number

Instance of lack of information acquisi-
tion during CAD

Team 6 “Our design process is definitely iterative be-
cause we had to rebuild stuff in cad multiple
times and I built 6-7 tracks none of them end-
ing up working the cad model”

Team 8 “the physical model was quite different and we
had to add multiple batteries and that wasn’t
accounted for. . . If we had a way to model k
value of springs etc it would’ve been better ”

Team 9 “the charge system is very tolerance dependent
it was difficult to model in cad with motion.
our design use a lot of spring based mechanism
but its hard to estimate the friction from 3d
printed parts ”

Team 12 “[we] have gravity to worry about and just
there is going to be a few problems with how
everything comes together”

I also find that the students report that they execute several design iterations

for achieving the volume constraints in CAD. The students experiment with differ-

ent dimensions of their CAD parts and report this activity as an iterative procedure

towards satisficing the volume constraint provided for the material utilized for fabri-

cation activities. For example, one of the students reported as follows, “Our [CAD]

design process is definitely iterative because we had to rebuild stuff in cad multiple

times”.

5.5.3 Prototyping

All the 44 students were available for the final interview. I find that the teams’

decision to choose dimensions for a toy part was influenced by the prototyping tech-

nique chosen for the fabrication of that part. This behavior is consistent with the

learning objective of the course where the students are required to learn how to de-
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sign for manufacturability. I also find that teams who faced difficulty in anticipating

potential roadblocks, while translating their CAD model to a physical prototype, re-

lied on trial and error to improve the assembly of their prototype. For example, a

member of team 10 reported the following. “after printing [from] the SLA printer we

figured out there was warping ’coz of the print direction. We definitely learnt a lot

about improving our design.” .

During the prototyping activities, the students acquired information about the

physics of their prototypes such as friction between parts, tolerance limits for 3d

printing and laser cutting techniques, the strength of the parts such as springs, and

an understanding of the actuation power required for a successful motion of the toy.

The students also did not account for the impact of using spray paints to improve

the aesthetics of the toy. The spray paint added an additional layer of coating over

the parts which resulted in dimension tolerance mismatch and jamming of parts.

Such lack of information during the CAD modeling activities resulted in the students

reporting the need to have additional iterations during the prototyping activities.

5.5.4 Decisions

By analyzing decisions across the teams, I tabulated decisions that were common

across all teams in Table 5.4. I also report the decisions that critically affected the

design outcome of each team in Table 5.5. I find that the teams that reported a greater

number of detailed design decisions in CAD such as what fasteners to choose, what

material to choose, and what parts to order, typically had a functioning prototype.

For example, Team 3 reported a total of 16 detailed design decisions and had the best

functioning prototype (according to the instructor) whereas Team 5 reported a total

of 6 detailed design decisions and their prototype was jamming and did not have a

smooth output motion.

During the final interview, all the teams discussed the need to improve their

prototype. The students considered the outcome of their design process of the design
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project as a first iteration of the many required for design prototyping. I also asked

them to hypothetically discuss their next set of decisions assuming that they achieved

their objectives for all the design activities of their design process. They recognized

the need to evaluate the market potential of their product and ultimately discussed

the economic decisions required to be made to maximize revenue generation for their

product.

It is also noticed that the SIADM framework is formulated in [68] on the assump-

tion that decision-makers optimize for design objectives. However, the students are

observed to make decisions that satisfice the design requirements rather than optimize

them. For example, when the students are asked why they chose certain dimensions,

they typically rationalize their decisions on the basis of satisfying volume constraints.

They do not report their decision objective that is to minimize the use of the ma-

terial. Such an observation is consistent with existing literature on decision-making

between experts and novices [121]. In Section 5.6, I discuss the potential reasons

why I observe such a difference between the theoretical SIADM framework and the

students’ decision-making process.

Table 5.4. : Common decisions across teams.

Number Decision
1 What two concepts to choose?
2 What final idea to choose?
3 How to add functionality?
4 What assembly part to focus on the most in CAD?
5 What manufacturing technique to use for which part?
6 What dimensions to choose?
7 How much volume to assign to each part?
8 How to assemble in real?
9 What material to choose?
10 Which parts to order?
11 How to account for constraints from parts that are ordered?
12 What tolerance limit to choose?
13 How to add the electronics?
14 How to select the best fab model?
15 How to make aesthetic improvements?
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Table 5.5. : Critical decisions made by each team.

Team Critical Decisions Teams Faced

Team 1
How to reduce weight and friction?
How many linkages to choose to ensure functionality?

Team 2 How many mechanisms to choose?
Team 3 How to improve strength, usability, functionality?
Team 4 How to simulate hydraulics?
Team 5 How to ensure the complexity required in the project?
Team 6 How to model wires in CAD?
Team 7 –did not report–
Team 8 How to reduce the complexity and sustainability of the design?
Team 9 How to simulate springs?
Team 10 What information to acquire from CAD?
Team 11 How to utilize electronics knowledge?
Team 12 How to ensure innovation requirements?

5.6 Summary and Discussion

In this study, I utilize a decision-making framework to analyze students’ infor-

mation acquisition and decision-making activities in a product design scenario. The

results of this study paint the following collective picture of how upper-level under-

graduate students make product design decisions. I find that during the brainstorming

of design ideas, students frame potential ideas on the basis of their prior knowledge

and skills acquired in the course, based on design fixation, and on the basis of their

domain-specific interests. During the CAD modeling activities of a product design

process, I find that the students recognize the need to acquire information about

the physics and dynamics of their design artifact. However, they do not acquire

such information during these activities. The factors that contribute to the failure

of information acquired during the CAD modeling activity are the lack of i) explicit

learning objectives in the project specifications, ii) the students’ lack of knowledge

to do so, and iii) the time constraints for project completion. Instead, they acquire

such information from the prototyping activity as their toy does not satisfy the design

objectives and work as intended. Such information acquisition results in the students

wanting to have more number of iterations for prototyping activities to improve the

achievement of their design objectives. With the given cost and time constraints, the
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students do not get the opportunity to iterate their prototype. Consequently, the

students rely on improvising during prototyping.

Existing literature has shown that the design of an environment affects user be-

havior [122, 123]. Students are no different. In the ME444 course, I observed that

the resource constraints were a budget limit of $60 and a 15 cubic inch constraint on

the volume of material that could be 3D printed. Such constraints in effect implied

that the students get one shot to prototype. Thus, the design project essentially ab-

stracted a design scenario where physical experimentation is cost intensive and virtual

experimentation is cheap. Consequently, the students’ design behavior was observed

to be rational where they wanted to gain maximum information from the cheapest

information source that is their CAD model and through simulations. Instructors

need to anticipate such design behaviors and account for them while formulating

design project constraints in the design projects. From a course design standpoint,

there lies a need to recognize what aspect of reality is represented by the given design

constraints in a design project.

On interviewing the instructor, it was found that they did want to encourage

iterations while prototyping. However, due to the lack of additional time to proto-

type the students could not do so. Instead, the students improvised improvements

to their prototype to make them functional without having to fabricate the parts

again. Existing studies in design have highlighted the importance of improvisation

in product design processes [124]. However, the instructor did not account for such

design behaviors. The project was assessed based on innovation, the quality of CAD

models and prototypes, their final presentation, and design portfolio. There was a

lack of assessment on the team’s improvisation to their prototype. By understanding

students’ design behaviors while acquiring information, assessments of design teams

can be improved. Additional studies are required to understand how improvisation

in design can be assessed as well as encouraged. I hypothesize that design scenarios

where the cost of physical experimentation is high will result in students improvising

their design prototypes as observed in this course.
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Based on the observations, I recommend formulating design projects such that

it guides students towards appropriate information sources as well as accounts for

their ability to process the required information. In this study, I find that the course

should have been designed such that the students could have the opportunity as well as

incentives to gain more information from CAD models, if they wanted to, by teaching

them simulation packages or giving enough time in the course for them to develop their

domain-specific skills and apply it in CAD modeling activities. However, there was

no incentive for the teams who recognized the need to acquire information about the

physics and dynamics of their model during CAD activities. Assessments for design

projects should account for such recognition of decisions in order to incentivize teams

to critically analyze their design. For example, I notice that the students tend to

satisfice their volume constraint requirement for 3d printing as opposed to optimize

the use of the material. I believe that the students did not have the incentive to

optimize such objectives. If the students were given a higher evaluation of their

design prototypes if they utilized lesser resources I hypothesize that students would

tend to optimize their design objectives as formulated in the SIADM framework.

It is acknowledged that in practice, it is unreasonable to assume that instructors

should possess a “know-it-all” book about all the information students need. More-

over, it should not be encouraged. However, the intent of this research study is to

enable instructors to predict what information students would need as well as how stu-

dents would use such information based on their state of knowledge such that design

courses can be deliberately designed to encourage information acquisition behaviors.

While existing studies in engineering education highlight that students encounter

roadblocks in information gathering activities [100–103], DBD frameworks have not

been utilized to analyze their information acquisition decisions. This study illus-

trates the use of a decision-based design framework for investigating the information

acquisition and decision-making activities of students. I highlight the need to inte-

grate information acquisition and decision-making activities. The potential of such

an integrated view of these activities can enable us to investigate the factors that
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influence students’ design behaviors. I encourage the engineering education research

community to explore DBD research specifically the work on descriptive theories to

understand how humans make design process decisions.

Finally, I acknowledge the limitations of the research methods. In this study, I

rely on self-reported data from the students obtained through interviews and surveys.

In order to verify the decisions reported by the students, I cross-check the reported

decisions across individuals from the same team. Students may have self-reporting

bias where the rationale for decisions may have been formulated a posteriori. However,

the researchers ensured that interviews and surveys were conducted at appropriate

instances during the students’ product design activities for facilitating recollection of

their design activities. For example, I asked the students for their decision-making

strategy for concept selection and elimination during their proposal submission to

ensure they would be able to recollect their rationale for the elimination and selection

strategies. While multiple coders analyzed interviews, a single researcher conducted

the interviews. Due to the semi-structured nature of such interviews, I acknowledge

that additional data could have been collected if different researchers had variations

in follow up questions. Also, although the students were incentivized to participate,

the research data is dependent on the amount of information students provide from

the interviews and surveys.



144

6. CONCLUSIONS

In this dissertation, I have illustrated that by conducting controlled behavioral exper-

iments we can acquire data of contestant behaviors that can be utilized to develop and

calibrate computational models of contestants’ sequential decision-making behaviors,

thereby, enabling predictions about the outcomes of design contests. To that end, I

have answered the following research questions (RQs):

1. RQ1: How can we quantify the impact of a designer’s domain knowledge and

problem framing on their information acquisition decisions and the correspond-

ing design outcomes?

2. RQ2: How can we quantify the influence of providing information about his-

torical contests on a participant’s information acquisition decisions in a design

contest?

3. RQ3: How can we study a designer’s cognitive processes that influence their

decision to stop acquiring information under the influence of competition?

The results indicate that,

1. designers better understand problem constraints and generate more feasible

design solutions when a design problem is framed in a domain-specific context

as compared to a domain-independent framing of the problem.

2. contestants’ efforts to acquire information about a design artefact to make de-

sign improvements are significantly affected by the information provided to them

about their opponent who is competing to achieve the same objectives. Specif-

ically, designers expend higher efforts when they know that their opponent has

a history of generating good quality design solutions as compared to when their

opponent has a poor performance history.
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3. contestants make information acquisition decisions such as when to stop ac-

quiring information, based on various criteria such as the amount of resources

they have, the target objective value they want to achieve, and the amount

of improvement in their design quality in successive iterations. Moreover, the

threshold values of such criteria are influenced by the information the contes-

tants have about their opponent.

4. individual’s decisions to stop acquiring information is influenced by opponent

specific information through the mediating factor of resource expenditures. This

implies that when competition is high individuals tend to expend more resources

and effort than when competition is low.

5. the Bayesian SIADM model is able to capture the influence of problem framing

on an individual’s knowledge about the problem constraints as well as their

performance.

6. the SIADM framework enables us to understand how individuals sequentially

acquire information and make decisions in a design context. Using the frame-

work, we can study the impact of factors, such as problem framing and an

individual’s lack of domain knowledge, on the SIADM outcomes of a design

search problem with constraints.

7. the Strategic SIADM model is able to account for the influence of opponent-

specific specific information on an individual’s information acquisition decisions

such as when to stop.

8. by combining protocol analysis and controlled behavioral experimentation we

can study cognitive factors that influence individual’s decision making process.

Moreover, in the context of engineering education, I have investigated students’ se-

quential information acquisition and decision making behaviors in product design

processes via ERQ1. I find that the students recognize the need to acquire informa-

tion about the physics and dynamics of their design artifact. However, they do not
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acquire such information during the design process. The factors that contribute to

the failure of information acquired during the product design activity are the lack of

(i) explicit learning objectives in the project specifications, (ii) the students’ lack of

knowledge to do so, and (iii) the time constraints for project completion. Instead,

they acquire such information from the prototyping activity as their toy does not sat-

isfy the design objectives and work as intended. Such information acquisition results

in the students wanting to have more number of iterations for prototyping activi-

ties to improve the achievement of their design objectives. With the given cost and

time constraints, the students do not get the opportunity to iterate their prototype.

Consequently, the students rely on improvising during prototyping.

6.1 Contributions

The dissertation provides theoretical, experimental, methodological, and educa-

tional contributions of the descriptive investigations of sequential information acqui-

sition and decision making in engineering design. Theoretically, the SIADM (Chap-

ter 2) and the S-SIADM (Chapter 3) frameworks provide a foundation for the analysis

of the factors that influence designer behaviors and the outcomes of sequential deci-

sion making process. Experimentally, the dissertation illustrates the need to conduct

controlled behavioral experimentation. The research studies illustrate the need to

identify the dependent, independent, and the confounding variables in order to make

causal inferences while mitigating the effect of human biases. Methodologically, I il-

lustrate a mixed-methods approach (Chapter 4) that combines protocol analysis and

computational modeling of behaviors towards understanding designer behaviors and

developing behavioral theories for design studies. Furthermore, the educational im-

pact of investigating sequential decision making by understanding students’ behaviors

towards providing formative feedback is also discussed (Chapter 5).
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6.2 Future Work

The avenues for further research based on the work in this dissertation include

investigations of 1) sociotechnical influences in manufacturing and transportation in-

dustries, 2) design for behavioral change in educational contexts, 3) human-like artifi-

cial intelligence through embedding cognition, that is, the theory of mind, and 4) plan

recognition using behavioral design theories and artificial intelligence. Sociotechnical

design implies a deliberate and purposeful influence on people’s interaction through

technical environments. By leveraging behavioral theories that quantify the influ-

ences of behaviors in conjunction with the sequential decision making framework

discussed in this dissertation, future research could investigate sociotechnical design.

For manufacturing systems, this would mean designing systems to purposefully influ-

ence operator decisions in manufacturing processes, thereby, influencing the quality

of products and their throughput. Similarly, in transportation systems, sociotechni-

cal design would imply designing autonomous cars that recognize and influence driver

decisions. In educational context, theoretical foundations of SIADM can be leveraged

for an understanding of how students acquire and process information which can en-

able provision of formative feedback through predictive analysis of students’ progress

trajectories. Within AI literature, Plan Recognition (PR) [125, 126] is an active

area of research that aims to understand a person’s plans from their low-level action

streams. However, the limitations of scalability and a lack of human-interpretability

in complex environments of PR techniques curtails its benefits to areas such as so-

ciotechnical design [127–129]. Future research could leverage the SIADM framework

to enable AI to computationally infer cognition to facilitate sociotechnical design.

I reiterate the issue of validity as discussed in Chapter 2 in Section 2.6.2. The

advantage of the controlled experiments is high internal validity which enables theory

building. While external validity is equally important in establishing the impact

of the developed theories, it is important to focus on right aspects of a behavioral

design study for establishing external validity. For example, the proposed frameworks
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such as SIADM and S-SIADM are highly general and can be leveraged in sequential

decision making problems. However, the domain-specific contextualizations in the

computational models are specific to the research studies that focus on a class of

design optimization problems. Moreover, multiple research studies across varying

levels of complexity and contexts are required to establish external validity.

Another aspect of validity that needs to be acknowledged are the human subjects

recruited in the behavioral experiments for this dissertation. The subject population

comprised of engineering students. Since the population to which the generalizabil-

ity of information acquisition and decision making is being sought is in the context

of engineering design, I argue that leveraging engineering student population makes

it possible to identify factorial influences of contest design elements on the decision

making behaviors. Thus, I draw on the parallelism of the engineering design popu-

lation and the engineering students that would be a part of the future population of

the engineering design community.

This dissertation alone cannot claim to have established a generalized theory of se-

quential decision making in design contests. Instead, this dissertation illustrates how

the design community would need to collectively establish the protocols for investi-

gating designer behaviors such as decision making for strengthening the foundations

of theory-driven design research.
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