
PROGRAMMING SUPPORT FOR SCALABLE, SERIALIZABLE AND ELASTIC

CLOUD APPLICATIONS

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Bo Sang

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

August 2020

Purdue University

West Lafayette, Indiana

ii

THE PURDUE UNIVERSITY GRADUATE SCHOOL

STATEMENT OF DISSERTATION APPROVAL

Dr. Patrick Eugster, Co-chair

Department of Computer Science

Dr. Xiangyu Zhang, Co-chair

Department of Computer Science

Dr. Sonia Fahmy

Department of Computer Science

Dr. Daniel G Aliaga

Department of Computer Science

Approved by:

Dr. Chris Clifton

Graduate Program Chair

iii

ACKNOWLEDGMENTS

First and foremost, I would like to express my deepest gratitude to my Ph.D.

advisor, Professor Patrick Eugster. Under his guidance, I have learned plenty of

research skills and how to become a professional researcher. More importantly, he

has always provided strong support to me whenever I was frustrated by setbacks and

struggled with difficulties in research.

I also would like to express my thanks to Professor Xiangyu Zhang, Professor

Sonia Fahmy, Professor Daniel G Aliaga, and Professor Tiark Rompf, for serving in

my final exam committee and my prelim exam committee. Their suggestions and

feedback on my research work were highly valuable and pertinent.

I was very fortunate to work with many brilliant people. We have published our

results in several top conferences. Here, I would like to especially extend my thanks to

Gustavo Petri, Masoud Saeida Ardekani, Srivatsan Ravi and Pierre-Louis Roman. I

was also fortunate to have had great lab mates who provided me invaluable feedback:

Danushka Menikkumbura, Akash Agarwal, Bara Abusalah, James Lembke, Savvas

Savvides.

In addition, my gratitude goes to all of my dear friends at Purdue. I am always

motivated by their precious encouragement as well as their enthusiasm in/out re-

search. I will keep their names deeply in my mind: Hui Lu, Lianjie Cao, Shandian

Zhe, Mingjie Tang, He Zhu, Weihang Wang, Cong Xu, and Zhongshu Gu.

Finally, I dedicate this dissertation to my beloved family members: my parents,

Boqing Sang and Yongmei Cai; and my sisters, Cui Wang, Jie Pan, Xinrui Cai and

Jie Cai. They are always supportive of all the decisions I make and do their best to

help me accomplish my goals. Without their support, I do not think I could have

completed my Ph.D.

iv

TABLE OF CONTENTS

Page

LIST OF TABLES . vii

LIST OF FIGURES . viii

ABSTRACT . xi

1 INTRODUCTION . 1
1.1 Thesis Statement . 1
1.2 Contributions . 3
1.3 Dissertation Organization . 4

2 RELATED WORK . 5
2.1 Programming Language and Serializability in Distributed Systems . . . 5
2.2 Elasticity Management . 7

3 AEON: SCALABLE AND SERIALIZABLE NETWORKEDMULTI-ACTOR
PROGRAMMING LANGUAGE . 10
3.1 Background: Actor Model and Distributed Programming 10
3.2 A Primer . 13

3.2.1 Scenario . 13
3.2.2 Actors . 15
3.2.3 Events . 16

3.3 Programming Model . 17
3.3.1 Execution Model Overview . 18
3.3.2 Actors and Objects . 19
3.3.3 References and Ownership . 19
3.3.4 Methods and Events . 22

3.4 Semantics . 25
3.4.1 Overview . 25
3.4.2 Intra-actor Semantics . 26
3.4.3 Inter-actor Semantics . 31
3.4.4 Refinements . 41

3.5 Properties of AEONcore . 43
3.6 Summary . 55

4 AEON RUNTIME DESIGN AND IMPLEMENTATION 56
4.1 Multi-Actor Synchronization . 57

4.1.1 Synchronization under Static Ownership 57

v

Page
4.1.2 Synchronization under Dynamic Ownership 63

4.2 Elasticity . 66
4.2.1 Actor Mapping . 66
4.2.2 Elasticity Policy . 67

4.3 Implementation . 69
4.3.1 Prototype . 69
4.3.2 Fault Tolerance (FT) . 69

4.4 Evaluation . 70
4.4.1 Synopsis . 70
4.4.2 RQ1: Two-phase Locking in C++ 74
4.4.3 RQ2: Manual Synchronization on Binary Trees in Akka and C++ 75
4.4.4 RQ3: Metadata Store with HyperDex Warp 77
4.4.5 RQ3 and RQ4: Game App with Infinispan and Orleans 80
4.4.6 RQ5: Game App Scalability . 82
4.4.7 RQ5: B Tree . 83

4.5 Summary . 86

5 PLASMA: PROGRAMMABLE ELASTICITY FOR STATEFUL CLOUD
COMPUTING APPLICATIONS . 87
5.1 Background: Elasticity Management 88
5.2 Motivation and Overview . 91

5.2.1 Elastic PageRank . 91
5.2.2 PLASMA Overview . 93

5.3 Elasticity Programming Language (EPL) 95
5.3.1 Actor-based Elasticity . 95
5.3.2 Syntax . 96
5.3.3 Examples . 100
5.3.4 Discussion on Language . 104

5.4 Elasticity Management Runtime (EMR) 105
5.4.1 Elasticity Profiling Runtime (EPR) 105
5.4.2 Elasticity Execution Runtime (EER) 105
5.4.3 Discussion on Runtime . 108

5.5 Evaluation . 110
5.5.1 Synopsis . 111
5.5.2 PLASMA’s Runtime Overhead 111
5.5.3 Metadata Server . 114
5.5.4 PageRank . 114
5.5.5 E-Store . 118
5.5.6 Media Service . 119
5.5.7 Halo Presence Service . 120

5.6 Summary . 122

6 CONCLUSION . 124

vi

REFERENCES . 125

vii

LIST OF TABLES

Table Page

3.1 Summary of AEON method call semantics for all types of calls dc?x.m(...)
of methods ro? T m(...) on fields yield? with T ′ an actor type. “External”
indicates calls from clients and “internal” all other calls. “Callback” indi-
cates that the caller can not access any return value; instead the callee can
send returns through callback methods; “included” means the method is
executed as part of the caller event while “serialized” indicates the method
will be executed as separate event. 24

3.2 Overview of elements of AEONsemantics. 27

4.1 Metadata store LoC. 72

4.2 Game app LoC. 72

4.3 B tree LoC. 72

5.1 Applications implemented with PLASMA. We show elasticity rules and
evaluation for the first five applications. 101

5.2 API summary. 107

5.3 PLASMA EPR overhead, normalized. 113

viii

LIST OF FIGURES

Figure Page

3.1 Actor type and actor ownership reference structures in the game app. . . . 16

3.2 Abstract syntax of AEONmini. Underlined terms can refer to actor types. . 18

3.3 Conditions (i) and (ii) resp. of share definition. Solid edge indicates a
child, dashed edge a descendant. 21

3.4 Abstract syntax of AEONcore. Underlined terms can refer to actor types.
Boxed terms are only used internally and not by programmers directly. . 26

3.5 Intra-actor big-step semantics (excerpt). 29

3.6 Semantic ingredients used in the inter-actor semantics. 31

3.7 Global rules part 1 (except activations). 34

3.8 Global rules part 2 (except activations). 35

3.9 Activation rules. 39

3.10 Type-and-effect system to check the DAG structure of the ownership graph
(excerpt). 42

3.11 Deadlock state. 44

3.12 Commutativity of independent events. 51

3.13 AEON simulation diagram. 53

4.1 Example of dominate region of actor a1: actor a4 is a child dominator of
a1 because a2 is its parent and a2 is dominated by a1. Note how the child
dominator a4’s children actors a6 and a7 are not included in a1’s dominate
region. 58

4.2 Basic AEON synchronization. e1 and e2 are put into region locking queue
(1) at first. Then e1 is dequeued and put into actor locking queues of
reachable actors (2). After that, e2 is dequeued and put into the actor
locking queues (3). 58

4.3 Event execution order in child dominator’s region. a5 is a child dominator
of a1. e2 is the head of the actor locking queue of a5 in a1’s region. Thus
e2 will be put into the region locking queue of a5. 62

ix

Figure Page

4.4 Ownership event e3 waits until all previous events (e1 and e2) finish (1)
and starts to execute (2). e4 can only be put into actor locking queues
after e3 is done and removed from the queue. 62

4.5 Ownership events (i) modifying ownership between actors in a1’s domi-
nate region; (ii.1) and (ii.2) modifying ownership between actor from a1’s
dominate region and another actor from a2’s dominate region. 64

4.6 XYZ implementation workflow. 64

4.7 Binary tree throughput in AEON, C++ and Akka. Unlike AEON, the
synchronization overhead of a growing number of clients saturates C++
and Akka. 75

4.8 Latency of an app using AEON’s protocol vs a two-phase locking in C++
with varying numbers of clients and servers. 75

4.9 AEON vs HyperDex Warp metadata store. 78

4.10 AEON vs Infinispan vs Orleans game app with varying workloads (%UseG-
rill / %NewGrill events). 81

4.11 Game scale-out. 84

4.12 Calls’ throughput. 84

4.13 Calls’ CPU usage. 84

4.14 Optimizing B tree. 84

5.1 PageRank elasticity management example: (a) The initial placement of
graph partitions overloads the top server which calls for partition migra-
tion. (b) Once migration is performed, the bottom server becomes con-
gested. (c)With both servers reaching their maximum capacity, PLASMA
migrates to a new server to split the load of the bottom one. 91

5.2 PLASMA toolchain overview. 93

5.3 Basic definitions for actor programming language and abstract syntax of
PLASMA’s EPL. 97

5.4 PLASMA’s runtime system: GEMs manage application scale; LEMs han-
dle actors of single servers. 104

5.5 Simple reserve & colocate vs default vs no rule in Metadata Server. . . . 112

5.6 PageRank PLASMA’s vs Orleans’ elasticity, (a) static & (b) dynamic
allocation. 112

x

Figure Page

5.7 PageRank dynamic workload balance. PLASMA achieves 24% faster it-
eration times after initial automated balancing.
(In (b) and (c), each server is busy reading data in the early re-distributions.)
. 115

5.8 PageRank dynamic resource allocation. PLASMA achieves the same
application-level performance with 12 servers in comparison with the con-
servative provisioning case using 16 servers (with one worker per vCPU).
. 115

5.9 Latency of E-Store application. Similar for E-Store and PLASMA E-Store.118

5.10 Elasticity management for the Media Service. A small elasticity period
lowers the latency and fasten resources allocation/reclaiming. 118

5.11 Elasticity management for Halo Presence Service. (a) shows the elasticity
rules enable smoother player latency evolution, (b) shows the importance
of actors colocation, and (c) shows the slight impact on latency of number
of used GEM(s). 120

xi

ABSTRACT

Sang, Bo Ph.D., Purdue University, August 2020. Programming Support for Scalable,
Serializable and Elastic Cloud Applications. Major Professor: Patrick Eugster and
Xiangyu Zhang.

Elasticity is an essential feature for cloud applications to handle varying and unpre-

dictable workloads in a cost-effective way on cloud platforms. However, implementing

a stateful elastic application is hard, as programmers have to: (1) reason about con-

current execution in the applications (serializability); (2) guarantee the application

can process more requests with larger scale (scalability); and (3) provide elasticity

management to improve performance and resource efficiency for applications (efficient

elasticity management). Unfortunately, addressing all those concerns requires deep

understanding and rich experience in distributed systems and cloud computing.

In this dissertation, we provide programming support to help programmers im-

plement their stateful elastic cloud applications in a simpler manner. Specifically,

we present AEON, an actor-based programming language, and PLASMA, an elastic

programming framework. On the one hand, AEON provides programmers with scal-

ability and serialzability, executing actor-based programs in a serialized manner while

still retaining a high degree of parallelism. Meanwhile, AEON can adjust programs’

scale via fine-grained live actor migration. On the other hand, PLASMA includes (1)

an elastic programming language as a second “level” of programming (complementing

the main application programming language) for describing elasticity behaviors, and

(2) a novel semantics-aware elasticity management runtime that tracks program exe-

cution and acts upon application features as suggested by elasticity behaviors. With

these, PLASMA can provide efficient elasticity management to cloud applications.

1

1 INTRODUCTION

1.1 Thesis Statement

Elasticity is essential to “pay-as-you-go” cloud platforms, such as Amazon Web

Services (AWS), Google Cloud Platform (GCP), and Microsoft Azure. It is common

that workloads of cloud applications changes over time and are unpredictable. In

response to variations, an elastic cloud application can scale in and out automati-

cally thus to acquire available resources on demand. With elasticity, cloud users can

achieve cost savings by consuming cloud resources as needed, meanwhile maintaining

performance and service quality of their cloud applications.

However, it is challenging to develop stateful elastic applications from scratch, as

an elastic application needs to have the following key features:

Serializability. Cloud applications usually need to process thousands of (or even

more) requests at the same time. It is important to reason about the concurrent

execution of those requests. Especially, many requests have conflicting accesses to

the same set of the application states. In order to avoid race condition and guarantee

correct execution, applications need to process requests with potential conflicts in a

sequential manner.

Scalability. To effectively cope with unpredictable workloads, applications must

be able to function at different scales. Limited scalability eliminates the benefits

with more computing resources (i.e., virtual machines). However, it is especially

challenging to achieve scalability and guarantee progress (i.e., deadlock freedom) when

adding serializability to applications.

2

Live state migration. Unlike stateless applications, stateful applications can not

adjust scale by replicating/eliminating state on servers in many cases. Instead, they

need to migrate state from one server to another server without hampering the per-

formance of applications.

Efficient elasticity. For many applications, especially stateful applications, elas-

ticity management involves more than duplicating state/components of applications

on new servers. The state/components in an application may serve different functions

and receive unbalanced workloads. The efficient elasticity management must consider

the function and current workload of each state/component, the interaction between

two state/components, and so on.

There are already some solutions which can help programmers implement elastic

cloud applications. AWS Lambda functions [1] and Azure durable functions [2] allow

programmers to implement their applications in a set of functions. Those functions

are executing independently in response to certain events and can scale in/out (i.e.,

adjusting the number of running functions) according to the number of incoming

events. Programmers can also implement elastic applications in some actor-based

programming languages with elasticity support (e.g., Orleans [3] and EventWave [4]).

Both language runtimes support automatic scale adjustment for applications.

However, most of those solutions (e.g., AWS Lambda) are designed for state-

less applications. Though users can add external storage (e.g., AWS MangoDB) to

make them work with stateful applications, this kind of approach usually introduces

non-trivial latency on data read/write from/to the external storage. Actor-based pro-

gramming languages (e.g., Orleans and EventWave) do support stateful applications.

However, they fail to achieve scalability with serializability support. Meanwhile, those

languages’ runtime only provide quite limited elasticity management.

Here we are trying to provide programming support, which is based on the actor

model [5,6], to help programmers implement stateful elastic cloud applications. Dur-

ing the last decade, the actor model has become yet more popular for implementing

3

concurrent applications thanks to its remarkable simplicity for achieving parallelism

and collaboration. Parallelism comes naturally as actors a priori do not share state

with other actors and execute independently, yielding excellent potential for scalabil-

ity of distributed applications. Collaboration among actors can be implemented via

asynchronous message passing, with actors reacting to incoming messages from other

actors. The non-sharing between actors and asynchronous messaging also make actor

migration implementation simple, which is the basis of elasticity.

Thesis statement. This dissertation tries to respond to the requirements from

programmers who are implementing stateful elastic cloud applications. With a novel

actor-based programming language, programmers can implement cloud applications

with serializability, scalability and live actor migration support in a simple way. Fur-

thermore, a novel elastic programming framework can help programmers conduct

efficient elasticity management to their cloud applications.

1.2 Contributions

The contributions of this dissertation are as follows:

• We design a novel cloud programming language AEON and provide a dynamic

semantics and a type and effect system for this programming model. Based on

the dynamic semantics and type system, we show how to leverage the DAG-

based structure to serialize event execution and ensure a DAG-based structure.

We also give the proof sketches of deadlock freedom and serializability for exe-

cution of programs in our model.

• We implement a novel synchronization protocol and live actor migration algo-

rithm in the runtime system of AEON. The synchronization protocol serializes

the execution of events in a scalable manner, while the live actor migration

algorithm can minimize migration overhead on the applications.

4

• We design and implement an elastic programming framework PLASMA for

implementing expressive elastic cloud applications. It adds an elasticity pro-

gramming language as a second level of programming based on the AEON actor-

based programming language. Programmers can customize expected elasticity

management for their applications with this PLASMA elasticity programming

language. Then PLASMA runtime will conduct efficient elasticity management

automatically based on programmers’ input.

1.3 Dissertation Organization

This dissertation is organized as follows: the chapter 2 presents the related work

of this dissertation. The chapter 3 gives the dynamic semantics and type system of

AEON with proofs of deadlock freedom and strict serializability for execution of pro-

grams in our model. The chapter 4 discusses the implementation of our programming

model and show the performance of AEON with variety applications. The chap-

ter 5 presents the design and implementation of PLASMA and show the benefit of

PLASMA with multiple applications. Finally, we have drawn the conclusion in the

chapter 6. 1

1The source code of AEON is published on: https://aeonproject.github.io/plasma/webpages/; and
PLASMA is published on: https://aeonproject.github.io/aeon/aeon_webpages/. The latest version
of this thesis can also be found at: https://aeonproject.github.io/papers/webpages/

5

2 RELATED WORK

We summarize related work in two dimensions: (1) actor-based programming mod-

els and specification, as well as serializability in distributed systems; (2) elasticity

management.

2.1 Programming Language and Serializability in Distributed Systems

Actor specification and verification. Synchronizers [7,8] support reasoning about

multi-actor interaction through application-specific global constraints on message con-

sumption. Efficiency of implementation has not been investigated. Several works

combine behavioral typing with the actor model for guaranteeing coordination safety

of actors. Neykova and Yoshida [9] for instance introduce a Python library based

on multiparty session types, which allows programmers to specify and verify coor-

dination among actors. Each actor may take multiple roles in different sessions.

Several other works apply formal methods to actor languages (e.g., [10–14]). P [13]

for instance provides guarantees which are verified via model checking. A more recent

work [14] provides a proof system based on Hoare logic. Its verification phase includes

reasoning about individual actors and message passing among them. To guarantee

certain invariants two types of permissions are used, immutable and exclusive, which

resemble AEON’s readonly and regular access modes respectively. None of the above-

mentioned works consider performance in a physically distributed deployment.

Actor(-like) languages, runtime enforcement. EventWave [4] is a distributed

language based on actor-like contexts, targeting scalable cloud settings like Orleans

(cf. subsection 4.4.1). EventWave induces a strict single ownership graph (tree)

among actors/contexts where all requests are serialized at a single root node, voiding

6

scalability potential. Moreover, the topology is static, i.e., programs can not change

actor variable bindings. Last but not least, EventWave has not been evaluated on or

applied to different applications, or compared to other systems.

Several authors have also leveraged topology restrictions to improve non-distributed

concurrent programs. E.g., Golan-Gueta et al. [15] focus on heap-allocated data

structures. It is unclear what performance characteristics would be observed in the

networked distributed settings considered herein; which present different bottlenecks

than shared memory. Similarly, performance of the Transactor model [16], which uses

explicit primitives for checkpointing and rollback to reason about composition under

failures, has not been investigated.

Ownership and race conditions. Ownership and related properties have been

used to avoid race conditions in shared memory. E.g., Odersky and Haller [17],

Clebsch et al. [18], and Elias et al. [19] use capabilities to avoid race conditions in

concurrent executions. Odersky and Haller [17] propose a type system for Scala, with

annotations to denote capabilities of variables. Clebsch et al. [18] use capabilities to

deny certain operations on variables. (More recently, Orca aligned these capabilities

with memory reclamation [20].) Those type systems only allow concurrent access to

variables with uniqueness capability to avoid race conditions. Elias et al. [19] only

allow particular operations on variables with certain capabilities; concurrent accesses

to shared resources must be wrapped in explicit locking instructions. These works

focus on deadlock freedom and race condition avoidance yet none provides serializ-

ability across multi-actor interactions, as AEON, even less in networked distributed

environments.

With Directors [21], actors are hierarchically grouped into casts, each coordinated

by a director actor, which itself may belong to another cast. However, unlike in

AEON, an actor can only have a single director, and ownership transfer is prohib-

ited. Performance implications are not considered. SafeJava [22] statically prevents

data races and deadlocks by partitioning locks into a fixed number of lock levels

7

manually. Threads take locks according to a specified partial order. SafeJava limits

flexibility (static lock partition) and parallel execution (all threads must keep locks

in order) compared to AEON. Moreover, implementing locks in a distributed scale is

challenging.

Distributed transactions. Distributed transactional memory (DTM) [23] allows

programmers to build distributed applications with serializability based on the ab-

straction of transactional memory (TM) [24, 25]. We were unable to find any DTM

openly available for a performance comparison. Several seminal works use TM to im-

plement some form of transactions/strong consistency for actors, e.g., Chocola [26],

Domains [27], however focusing on single processes. Using transactional stores for

consistency-sensitive shared state is an alternative, explored via Infinispan [28] and

HyperDex Warp [29], showing favorable results for our approach.

2.2 Elasticity Management

Stateless/state-agnostic elasticity. Infrastructure-level elasticity services for the

cloud are typically provided through auto-scaling [30–33]. The number of VMs etc.

can be automatically adjusted based on predefined policies and metrics. To use such

infrastructure-level elasticity, cloud applications must follow a very specific program-

ming model. E.g., service-oriented programming [34, 35] allows each service of a web

application to be scaled in/out via sharding or partitioning [36,37]. Machine learning

techniques have been used for elastic provisioning in such models based on workload

change prediction [38,39]; these however remain coarse-grained.

Serverless computing is a recent trend in elastic cloud programming [1,40–43]. It

allows developers to decompose cloud applications into stateless functions, deployed

and scaled elastically. E.g., AWS Lambda [1] allows users to upload their func-

tion code to the cloud; management and capacity planning is done automatically.

PLASMA extends the scope of serverless computing to stateful applications.

8

Elasticity for stateful applications. Programming stateful applications in ex-

tant serverless computing requires leveraging a storage tier (e.g., database, cross-

application cache, network file/object store) to store state across functions [44–49].

Yet relying on such a storage tier fails to exploit inherent data locality (of accessing

functions) and thus limits effectiveness of application elasticity. Scaling the storage

tier automatically is notoriously hard [3, 4, 50,51].

Many approaches provide elasticity management for specific stateful applications [52–

56]. E.g., ElastMan [52] includes an elasticity manager for key-value storage in multi-

tier web applications. E-Store [53] and Mizan [56], introduced earlier, realize elastic

partitioning for distributed OLTP databases and graph vertex migration for map-

reduce based graph processing systems [57–59] respectively.

Ray [60] is a reinforcement learning framework that supports stateful computation

with actors. The elasticity management of these solutions is system/application-

specific and fail to provide general solutions.

Both Locus [61] and Pocket [62] provide a more efficient storage solution for server-

less computing. Locus combines cheap but slow storage with fast but expensive stor-

age to achieve good performance and cost-efficiency at the same time. Pocket is an

elastic distributed data store for serverless computing that provides similar perfor-

mance as ElastiCache Redis [63] at a lower cost. While Locus and Pocket tackle

the performance of serverless computing from the storage side, PLASMA focuses

on elasticity management by, for example, colocating two actors (or functions) that

frequently interact.

Azure durable functions [2] allow programmers to implement stateful functions

for their serverless applications. Programmers however can not customize their ap-

plication’s elasticity management like they can with PLASMA.

Elastic actor programming languages. The actor programming model [64] al-

lows building applications with scalable (a prequisite for elasticity) relations between

entities, well-studied in the context of cloud applications, e.g., in EventWave [4], Or-

9

leans [50] and AEON [51]. Though these languages support live actor migration,

they do not provide automated elasticity management. Previously [65] we sketched

the case for elasticity programming, however only providing coarse-grained monolithic

constructs instead of fine-grained elasticity conditions and behaviors, and without de-

tailed and evaluated runtime techniques for elasticity action execution.

10

3 AEON: SCALABLE AND SERIALIZABLE NETWORKED MULTI-ACTOR

PROGRAMMING LANGUAGE

A major challenge in writing applications that execute across hosts, such as dis-

tributed online services, is to reconcile (a) parallelism (i.e., allowing components to

execute independently on disjoint tasks), and (b) cooperation (i.e., allowing compo-

nents to work together on common tasks). A good compromise between the two is

vital to scalability, a core concern in distributed networked applications.

The actor model of computation is a widely promoted programming model for dis-

tributed applications, as actors can execute in individual threads (parallelism) across

different hosts and interact via asynchronous message passing (collaboration). How-

ever, this makes it hard for programmers to reason about combinations of messages

as opposed to individual messages, which is essential in many scenarios.

Roadmap. The section 3.1 introduces the actor model and distributed program-

ming. The section 3.2 overviews and motivates our programming model. The sec-

tion 3.3 presents our programming model in more detail. The section 3.4 presents

formal semantics and meta-theory for a core subset of AEON. The section 3.5 presents

formal proof of properties of AEON. section 3.6 draws a summary for this chapter. 1

3.1 Background: Actor Model and Distributed Programming

Distributed programs are the backbone of most highly demanding online services,

including for instance critical business transaction systems and multiplayer games

with an ever growing user base. These distributed programs are typically running
1The original formal semantics in this chapter was designed by Gustavo Petri and Patrick Eugster
with help by myself. In particular Gustavo Petri significantly contributed to the proof sketches for
the properties of the AEON programming language. Pierre-Louis Roman contributed the important
motivation application.

11

in the cloud [66] and are split into different components that can process certain

(parts of) requests from different clients independently, yet have to collaborate —

often over the network — with other components to process others. For example, in

an online game, a player can explore an area by herself but can also interact with

other players. Thus it is important for programmers of such applications to be able

to reason about (a) parallelism (i.e., individual components executing independently)

as well as (b) collaboration (i.e., multiple components working together) and achieve

a good performance compromise between the two.

Actors to the rescue. During the last decade, the actor [6,67] model has become

yet more popular for implementing concurrent applications thanks to its remarkable

simplicity for achieving parallelism and collaboration. Parallelism comes naturally

as actors a priori do not share state with other actors and execute independently,

yielding excellent potential for scalability of distributed applications. Collaboration

among actors can be implemented via asynchronous message passing, with actors re-

acting to incoming messages from other actors. This simplicity has motivated actor

extensions and libraries for most mainstream programming languages, e.g., Akka [68]

and Scala Actors [69] for Scala/Java, Asynchronous Agents Library [70] and C++ Ac-

tor Framework [71] for C++, and Akka.NET [72] for C# and F#. Several actor-based

languages such as Orleans [73] have also been more recently proposed specifically for

implementing scalable networked distributed online services.

Beyond single messages. However, in many scenarios, it is useful if not neces-

sary for programmers to reason not only about individual messages, but in terms

of compositions of such messages for collaboration. A set of actors may be involved

in multiple tasks which do not permit interleaved execution between them (i.e., the

tasks require strong consistency). The original asynchronous “singleton” messages

in the actor model do not guarantee any execution order, and do not support task

isolation. Different extensions and variants of actors have thus been proposed. E.g.,

Synchronizers [7, 8] allow (constraints on) message compositions to be specified ab-

12

stractly, independently from actors themselves. Several seminal works propose some

form of transactional actors (e.g., [16, 26,27]).

A thin line. As underlined by decades of research in distributed data manage-

ment, care is required when introducing strong consistency guarantees for message

compositions, as this may necessitate costly mechanisms whose overhead can ham-

per the potential for scalability of a programming model – especially across hosts

communicating over a network. Synchronization protocols, re-/un-doing of (partial)

computations, etc. are easily abstracted in formal models or implemented in sin-

gle processes, but can introduce significant overheads in practice. Many popular

databases thus for instance offer snapshot isolation instead of stronger consistency

models (e.g., Oracle, PostgreSQL). Rather recently Orleans was augmented with a

form of two-phase locking for strong consistency [74], which however introduces high

overhead as we show in our evaluation.

Scalable serializability over the network. Adding strong consistency to pro-

gramming models for networked distributed asynchronous environments in a way

achieving scalability and guaranteed progress (e.g., deadlock-freedom) at the same

time without hampering performance is challenging. In this paper, we propose a

novel actor-based programming model settling both ends of the challenge. More

precisely, we provide a model with serializability [75] for multi-actor programming,

meaning messages issued as so-called events (i.e., requests) execute in an isolated fash-

ion. Our model is deadlock-free yet scalable as it enables decentralized coordination

that does not rely on speculative execution or on undoing effects of messages. This

is particularly important in the context considered herein where communication be-

tween actors commonly takes place over the network with latency orders of magnitude

higher than in local interaction. The crux behind our model is to streamline execution

along an actor communication graph in the form of a directed acyclic graph (DAG).

Each actor is under the aegis of a unique dominator actor, according to its position

in the DAG, assigned in a dynamic manner (i.e., the DAG structure may change at

13

runtime). The execution of events is partially serialized by those dominators: events

executing on actors with the same dominator are serialized there, while events on

actors with different dominators execute in parallel. Our model thus captures many

useful application scenarios that require strong consistency, while still supporting a

high degree of parallelism and thus scalability. Further, for cases where the DAG

structure is overconstraining, actors can issue calls outside it which are decoupled

from their parent events.

3.2 A Primer

We introduce the main features of AEON through the example of a mult-player

game app that allows players (acting as clients) to manipulate their avatars in an

environment and interact with it.

3.2.1 Scenario

This game app shares basic ideas with many simulation games. Listing 3.1 sketches

a possible implementation in AEON. We remark that AEON is an extension of C++,

and the keywords appearing in green are new to AEON; we use the syntactic form

upto to iterate through a numerical range.

Users can manipulate their avatars (cooks) (9) in a steakhouse to finish certain

cooking tasks. Consider possibly large numbers of cooks, steakhouses, and the other

types of actors in this game. Those actors are distributed across multiple servers to

guarantee that there are enough resources provided to this game. Steakhouses (1)

include different types of items (e.g., grills). Cooks use those items to achieve certain

cooking tasks. Different tasks require different sets of items. However the number of

items are limited and cooks have to share them in certain cases. Cooks contend on

one or more items at the same time. To avoid conflicts, it is important to guarantee

that cooks access items in an isolated manner in order to avoid deadlocks or incon-

sistencies such as multiple acquisitions of the same item. Besides, in a distributed

14

1 actorclass Steakhouse {
2 vector<Cook> cooks;
3 vector<Grill> grills;
4 vector<Customer> customers;
5 ...
6 }
7
8 // Players are cooks
9 actorclass Cook {
10 vector<Grill> grills;
11 vector<Customer> customers;
12 Customer cu;
13 int ckid;
14 ...
15 void cook(int orderSize, int cuid)
16 {
17 cu = customers[cuid];
18 for (int i = 0 upto orderSize) {
19 Steak s = new Steak();
20 for (int j = i upto

grills.size()) {
21 if (!grills[j].isUsed()) {
22 // 3 options: sync, async,

event
23 grills[j].put(s, ckid);

24 // async grills[j].put(s,
ckid);

25 // event grills[j].put(s,
ckid);

26 break;
27 }
28 }
29 }

30 void grillTimerRings(int gid) {
31 async cu.get(grills[gid].take());
32 }
33 }
34
35 actorclass Grill {
36 yield vector<Cook> cooks;
37 yield Cook cook;
38 Steak steak;
39 int gid;
40 ...
41 bool isUsed() { return cook !=

NULL; }
42 void put(Steak s, int ckid)
43 { steak = s; cook = cooks[ckid];

... }
44 Steak take()
45 { ...; cook = NULL; return

steak; }
46 void timedOut()
47 { event

cook.grillTimerRings(gid); }
48 }
49 actorclass Customer {
50 yield vector<Cook> cooks;
51 int cuid;
52 ...
53 void giveOrder(int ckid, int nb)
54 { event cooks[ckid].cook(nb,

cuid); }
55 void get(Steak s) { ... }
56 }
57 class Steak { ... }

Listing 3.1: AEON code snippet for a steakhouse simulation multiplayer game where
players are cooks.

15

environment, player actors may interact with item actors on remote servers. Un-

like concurrent programming [76] on a single server, it is more difficult to implement

isolation efficiently in an asynchronous distributed environment.

Consider two cooks in a steakhouse who are responsible for cooking steaks for

customers. The order of one table is sent to one cook and this cook needs to put the

required number of steaks on grills (one steak per grill) at the same time such that

all the customers of a table may be served at the same time. Assume there are 10

grills in total and both cooks have received an order for 6 steaks. Without proper

synchronization, each cook may occupy 5 grills and run into deadlock.

As another example, a table has ordered two kinds of steaks and one cook is

responsible for one kind. It is possible for both cooks to observe that the grills of

the other cook are still empty, then they pick up one kind for cooking randomly. A

possible outcome without synchronization could be that the two cooks have prepared

the same kind of steak.

3.2.2 Actors

AEON’s actorclasses, declared for instance at 1 and 9, can be thought of as class-

like foundries for distributed objects — actors — that can contain data in the form

of fields:

1. Such fields can be of object (class) types, as is the case of 38 declaring a field

steak, an instance of class Steak declared at 57. Objects are passed by value so

role is guaranteed to reside in the same address space as the actor instance of

Player that refers to it.

2. Unqualified fields of actor types can contain references to other actors, which

at runtime may be remote. E.g., at 3, field grills contains a vector holding

references to Grill actors.

16

Steakhouse

Cook

Grill

Morton's

Mike Bill

Bob

a

grill2

Customer

A

Actor class

A

B

Type A has a
field with type B

Actor

a

b

Actor a has a
reference to actor b

grill1

Figure 3.1.: Actor type and actor ownership reference structures in the game app.

3. An actor type field can be declared as a special yield field (37). This is used for

internal events which are executed in isolation from the caller, explained further

shortly in subsection 3.2.3.

“Regular” actor type references, i.e., references of type (2) above induce an own-

ership graph. In short, AEON enforces that this graph is a directed acyclic graph

(DAG) at the type level (actor classes), thus enforcing the same at the instance level

(actors). Figure 3.1 depicts the reference structure for both actor classes (left part of

Figure 3.1) and actors (right part of Figure 3.1) according to our scenario and List-

ing 3.1. As we will detail shortly, this graph is essential for efficient synchronization

in AEON.

3.2.3 Events

Like other languages designed for implementing Internet-facing applications (e.g., [4,

51,73]), AEON follows an event-driven model, where clients of the system (e.g., users)

interact with the server application by issuing events to the latter through calls, tagged

in AEON at the call site with the event keyword in front of the expression representing

the target actor of the event. For instance, by calling event cook.cook(), a customer

prompts the cook to perform a cooking task, with cook the target actor of the event.

Importantly, the execution of an individual event is guaranteed to be atomic – more

precisely, linearizable with respect to other events. As detailed shortly in section 3.3,

and based on the reference DAG structure in Figure 3.1, the two Cook actors (Mike

17

and Bill) of Steakhouse will be assigned the same dominator actor (Morton’s). All

events have to access those actors in a synchronized manner by locking the domina-

tor, thus guaranteeing strong consistency and avoiding deadlocks. This means that

steak cooking tasks made by different Cooks on the same Grill will be executed in

sequential order.

Note here how the Grill :: put (23) method can be called as part of the Cook::cook

event. As foreshadowed, actor (class) methods can call other actor methods, with

actors being passed by reference, and objects passed by value, i.e., deep copying.

If not called as external(ly issued) event by a client to the main application, an

event call can also be made within an event, which we refer to as internal(ly issued)

event. E.g., Grill :: timeOut makes an event call Cook::grillTimerRings to inform the

cook that the steak is ready. Since every method call is made directly or transitively

in the context of some event, this call leads to a “sub-event” – an independent new

event which executes after the caller event finished. Details are given in section 3.3.

Other than as events, actor methods can be called either synchronously (default)

or asynchronously, indicated with the async keyword at the call site. A synchronous

call blocks the execution of the event in the current actor until a result is obtained from

the target actor upon return. 23 shows an example of a synchronous actor method call,

which needs to wait for the steak to be put on the grill. Conversely asynchronous

calls do not wait for a result, and allow execution to proceed immediately, hence

allowing for parallelism. An example of asynchronous call is given at 24: the cook

puts multiple steaks on grills in parallel.

3.3 Programming Model

This section presents the actor-based programming model of AEON in more depth.

The abstract syntax of AEONmini– a core sub-language of AEON– is shown in Fig-

ure 5.3, and will be detailed in the following paragraphs. For simplicity we omit from

18

Method Names m ∈M Field Names f ∈ F Variables x,y ∈ Var
Class Names cls ∈ Cls Actorclass Names acls ∈ ACls

Program Definition p ∈ P ::=
−−−→
aclsd

−−→
clsd main(. . .){ t}

Actorclass Definition aclsd ∈ AClsD ::= actorclass acls {
−→
fd
−→
md }

Class Definition clsd ∈ ClsD ::= class cls {
−→
fd
−→
md }

Type T ∈ T ::= acls | cls | T [] | int | float | . . .
Field Definition fd ∈ FD ::= yield? T f

Method Definition md ∈MD ::= ro? T m(−−→T x) { t }
Decorated Call dc ∈ DCall ::= event | async

Term t ∈ T erms ::= dc? t.m(~t) | t.f | x | skip | return | this | . . .

Figure 3.2.: Abstract syntax of AEONmini. Underlined terms can refer to actor types.

the syntax all the sequential aspects of C++ which are inconsequential with respect

to the ideas presented in AEON.

3.3.1 Execution Model Overview

As mentioned program execution is triggered by the reception of a request from

a client in the form of an external event, which is simply the invocation, tagged as

event, of an actor method. Any “regular” (i.e., non-event) nested method invocation

is executed as part of that event without interference of other events. Events can also

trigger other, internal, events. All such events are delegated until completion of the

calling event. This means that nested events do not execute logically as part of their

calling events, but are rather decoupled and serialized with respect to them. AEON

guarantees serializability and deadlock freedom with respect to all events, even when

these access multiple actors. The access to multiple actors is achieved by making

sync(hronous) or async(hronous) method calls to actors within an event.

19

3.3.2 Actors and Objects

A program p consists of class declarations clsd, actor class declarations aclsd, and

a main expression main (inherited from the structure of C++ programs). An actor is a

stateful point of service that receives and processes requests in the form of messages

from clients, directly (as external events) or indirectly (via other actor instances).

Actors encapsulate local state in the form of fields and functionality in the form

of exported methods, as defined by their classes. Actor method invocations give rise

to messages, and internal representations of actors can only be read and/or affected

through their methods. Actors are implemented by the means of objects, meaning

that their internal states are captured by objects. Unlike an object class, an actor

class can also contain actor type expressions, captured by underlining T in Figure 5.3.

Actors can refer to each other by references. While objects are always passed by value

between actors, actors are always passed by reference.

3.3.3 References and Ownership

A pragmatic choice in our model is to streamline execution along graphs of a

directed acyclic nature induced by actor references within an application (at the

exception of yield fields discussed at the end of this section). The key idea behind

our model is to determine the set of actors which can be accessed by an event when it

is issued. In an AEON application, one event can only access an actor when this event

has obtained the actor’s reference. Then, the event can access actors referenced by

the fields of the actor where the event is executing. Based on the ownership graph,

the AEON runtime system can verify whether the sets of accessible actors of two

events overlap. Our synchronization model ensures that such conflicting events are

serialized, while non-conflicting ones proceed in parallel.

Asserting absence of cycles. Absence of cycles is ensured by applying a conser-

vative static type-based program analysis. The type system keeps track of the types

20

of fields and method arguments which are of actor types (object types are not consid-

ered for this as they do not induce referencing). E.g., an actor of type acls0 cannot

have a field of type acls1 if acls1 has a field of type acls0. The analysis is simplified

by disallowing inheritance/method overriding or subtyping for actor classes, and by

a strict separation of actor and object class hierarchies. Note that a small exception

is made for direct recursion by the use of runtime cycle checks which can be made

fast through their “local” nature; programmers then have to cater for corresponding

exceptions, which are omitted from the formal language and left aside in the following

for simplicity.

From descendants to dominators. To ensure deadlock-freedom, AEON guaran-

tees that whenever two calls have the potential of affecting same actors, an order will

be established to access these actors. More precisely, ownership of actors in AEON

can be described as a DAG Ω = (A,→o), with A representing the set of actors and

thus vertices in Ω, and the relation →o representing edges (ownership relations) be-

tween such actors. That is, if actor a0 has a reference to a1 in one of its non-yield

fields, then we have a directed edge a0 →o a1.

Definition 1 (Parent and child actors). For Ω = (A,→o) and a0,a1 ∈A, if a0→o a1

we say a0 is a parent actor of a1, and a1 is a child actor of a0. children(Ω,a) is the

set of a’s child actors.

Definition 2 (Descendant actors). For Ω = (A,→o) and a0,a1 ∈A, if a0→∗o a1 with

→∗o the transitive closure of →o, then we say a0 is an ancestor (actor) of a1, a1 is a

descendant (actor) of a0, and a1 is reachable from a. desc(Ω,a0) presents the set of

a’s descendant actors.

Definition 3 (Common descendants). We say a0 and a1 share common descendants

iff desc(Ω,a0) ∩ desc(Ω,a1) 6= ∅.

21

a′

a

(i) a′′

a a′

(ii) a′′

Figure 3.3.: Conditions (i) and (ii) resp. of share definition. Solid edge indicates a
child, dashed edge a descendant.

Definition 4 (Sharing). share(Ω,a) represents the set of actors which share descen-

dants with a in Ω = (A,→o) and is defined as follows:

share(Ω,a) =
{
a′ | children(Ω,a′)∩desc(Ω,a) 6= ∅

}
∪{

a′ | desc(Ω,a′)∩desc(Ω,a) 6= ∅ ∧a′ /∈ desc(Ω,a) ∧ a /∈ desc(Ω,a′)
}

That is, ∀a′ ∈ share(Ω,a) we find actor a′ satisfies one of following conditions:

(i) a is the descendant of a′, and has at least one descendant that is a child of a′.

(ii) a′ has shared descendants with a, but is not a descendant of a nor vice versa.

In condition (i), as shown in Figure 3.3, actor a′ might be an ancestor of a, but

still has a direct reference to one of a’s descendants. Condition (ii) is needed to avoid

considering all ancestors of a in their share set. For a given actor set A′, we calculate

the “lowest actor above” all actors sharing descendants with any a in A′, denoted

dom(Ω,A′) and dubbed A′’s dominator, computed as the least upper bound (lub) of

the nodes in ⋃a∈A′ share(Ω,a)∪A′ of Ω:

Definition 5 (Dominator). The dominator of actor set A′ in Ω, dom(Ω,A′), is

defined as

dom(Ω,A′) = lub
(
Ω,⋃a∈A′ share(Ω,a)∪A′

)
.

In the special case of a DAG with multiple maxima without common ancestor the

AEON runtime system adds an abstract root actor as the parent of all such maxima.

This way, the runtime system can ensure the existence of a dominator for any actor

in the program.

22

Yield fields. As explained above, actor references define the shape of the runtime

DAG of an AEON application. To increase expressiveness, AEON allows fields to be

declared with an optional yield qualifier, which means that an actor referenced by

such a field is not a child (or owned) by the current actor. Thus such fields can be

of types which extrude the type-level DAG. In fact all fields of clients are treated as

yield fields. As we elaborate on shortly in subsection 3.3.4, yield fields however only

support event calls, such as to retain AEON’s properties.

3.3.4 Methods and Events

Actors interact via messages induced by invocations to methods on actors. Method

declarations have a return type T , a method name m, a sequence of formal arguments

of the form T x, a body term t, and, optionally, a leading romodifier denoting readonly

methods. Actor methods can invoke other actor methods in a nested manner as part

of their body t.

Call types. More precisely, AEON offers three types of calls – standard synchronous

calls and two types of decorated calls denoted by dc in the syntax (cf. Figure 5.3):

1. Standard method calls in AEON are synchronous, denoted by the usual dot

notation t.m(t). Our model ensures that these calls are not subject to deadlocks.

2. Similarly to the basic actor model, method calls can be asynchronous. Here

the caller continues straight after the call rather than waiting until the call

completes.

3. Method calls tagged as events are either (i) external(ly issued) asynchronous

requests from clients to a (server) application or (ii) internal(ly issued) asyn-

chronous requests from other actors. Both types of events are executed in a

serialized manner. Events in (i) define the external (client) API of an AEON

application.

23

Nested events and yield fields. nested event invocations (3.ii), are not a part

of the current event. Instead, these will be executed after completion of the current

event. Just as with asynchronous calls (2), return values of (nested) events can not

be accessed. Calls on yield fields must be tagged as events or the compiler raises an

error.

Results of events are passed to clients via callbacks to client actor methods. To

that end client actors can pass references to themselves as arguments to external

events. This also allows for multiple results.

Effects. Our model includes readonly methods as these can execute in parallel on

a same actor. The AEON compiler conducts a simple static analysis to ensure that

method declarations tagged as ro do not perform assignments. However, readonly

methods can also be called asynchronously, or as events, which may seem counter-

intuitive since the return values are then not accessible. As alluded to above, AEON

supports a programming style where returns of events and asynchronous methods

are handled via callbacks. When such callbacks are made to clients, these may have

side-effects yet can still be made by readonly methods, which otherwise can only

call other readonly methods. The ro qualifier thus refers to server-side code. Other

methods can modify fields of type (2) introduced in subsection 3.2.2 – non-yield actor

type fields. As these fields define ownership between actors, methods performing such

assignments change the →o relation in the actor DAG Ω = (A,→o):

Definition 6 (Ownership method and event). If method m updates non-yield actor

type fields, m alters →o of the actor DAG Ω = (A,→o), and is thus called an own-

ership (altering) method. If m executes as part of event e, e is called an ownership

(altering) event.

Table 3.1 summarizes the different features of method calls in AEON and their

composition. For example, as shown in the 2nd row, an internal non-ro caller —

a (non-client) actor method which is not declared as readonly — can issue an event

through any (yield or non-yield) field to any (readonly or non-readonly) methods; any

24

Table 3.1.: Summary of AEON method call semantics for all types of calls dc?x.m(...)
of methods ro? T m(...) on fields yield? with T ′ an actor type. “External” indicates
calls from clients and “internal” all other calls. “Callback” indicates that the caller
can not access any return value; instead the callee can send returns through callback
methods; “included” means the method is executed as part of the caller event while
“serialized” indicates the method will be executed as separate event.
Caller Call (dc?) Field (yield?) Method (ro?) Result Blocking Execution
External event yield Any Callback Non-blocking Serialized
Internal non-ro event Any Any Callback Non-blocking Serialized
Internal ro event Any ro Callback Non-blocking Serialized
Internal non-ro Sync Non-yield Any Return (T) Blocking Included
Internal non-ro async Non-yield Any Callback Non-blocking Included
Internal ro Sync Non-yield ro Return (T) Blocking Included
Internal ro async Non-yield ro Callback Non-blocking Included

return values are not accessible, so returns must be handled via explicit callbacks,

yet the caller will not be blocked and the call is treated as an independent event. As

per the 5th row, in a similar calling context, asynchronous calls are only permitted

through non-yield fields (as yield fields only support event calls), and will not block

yet, still execute as part of the same ongoing event (included). Clearly the only

distinctions made on the caller/calling context are statically determined (internal vs

external, readonly vs non-readonly).

Target(s). We refer to the target actor of an event (internal or external) as the

actor this event method is called on. However, an event will always be sent to the

dominator of the set of actors including target actor and actors passed as arguments

to the event. This dominator is determined by the AEON runtime when the event is

issued, following 5.

Note that for simplicity we made it sound so far like all calls on actors were

issued directly through actor fields. It is easy to see how all analyses for determining

permissible call types can be made also on formal arguments and returns of methods,

and in fact any expression (e.g., vector access 24 in Listing 3.1): ro is a characteristic

of the called method, the call decorator dc determines whether a return value can be

25

accessed, and the type-based analysis determining whether a field must be tagged as

yield can be applied to any expression.

3.4 Semantics

We present a formal semantics of a subset of the AEON language, dubbed AEONcore.

AEONcore is essentially AEONmini without yield references as well as internal events,

but two kinds of terms used only internally. We also focus on event execution in the

server-side application. As with AEONmini we concentrate only on the aspects of

the language that are new and relevant to guaranteeing the properties enforced by

AEON. Importantly, we do consider method calls and assignments, which are impor-

tant for AEON. We concentrate on aspects relating to actor communication, owner-

ship manipulation, and the overall distributed execution model, and ignore aspects

of traditional sequential computation of the C++ language.

Note that we still refer to actor ownership DAG as Ω in the formal semantics. Ω

includes dominator information here. Also, we denote it to be the set of currently

executing events.

3.4.1 Overview

In Figure 3.4 we present a slightly modified version of the syntax presented in Fig-

ure 5.3, where we have removed the yield fields (which are of no consequence to the

semantics of the system, since calls through them behave like client requests), and we

have added in a box instructions that are only part of the runtime semantics of the

language (i.e., they cannot appear in the source code of AEONcore programs) and are

used as placeholders for synchronization actions.

Since a single actor can execute independently and collaborate with other actors,

the semantics of AEONcore will also be described in two stages or layers:

1. In the first layer, which is named intra-actor semantics, we describe how an

event executes in a single actor without interacting with other actors.

26

Method Names m ∈M Field Names f ∈ F Variables x,y ∈ Var
Class Names cls ∈ Cls Actorclass Names acls ∈ ACls

Program Definition p ∈ P ::= −−−→aclsd
−−→
clsd main(. . .){ t}

Actorclass Definition aclsd ∈ AClsD ::= actorclass acls {
−→
fd
−→
md }

Class Definition clsd ∈ ClsD ::= class cls {
−→
fd
−→
md }

Type T ∈ T ::= acls | cls | T [] | int | float | . . .
Field Definition fd ∈ FD ::= T f

Method Definition md ∈MD ::= ro? T m(−−→T x) { t }
Decorated Call dc ∈ DCall ::= event | async

Terms t ∈ T erms ::= dc? t.m(~t) | t.f | x | skip | return | this
| wait t | emit | . . .

Figure 3.4.: Abstract syntax of AEONcore. Underlined terms can refer to actor types.
Boxed terms are only used internally and not by programmers directly.

2. The second layer, called the inter-actor semantics, presents the semantics for

the composition of all actors in the system. By capturing the synchronization of

multiple actors, this semantics establishes the global execution of sets of actors.

To aid the reader we provide in Table 3.2 a summary of the different semantic

domains, relations, and judgments used in the following.

3.4.2 Intra-actor Semantics

The first layer is a big-step semantics of single actors, that is, actors executing

in isolated manner. Of course, this semantics can only make progress as long as the

currently executing event does not need to communicate with other actors. In essence,

this semantics represents the atomic evolution of an event within the boundaries of

actions requiring communication.

27

Table 3.2.: Overview of elements of AEONsemantics.

Notation Meaning Section
t Term under evaluation 3.4.2
` Label issued for actions requiring actors synchronization 3.4.2
st Single actor state 3.4.2
am Access mode of an event (readonly ro or exclusive ex) 3.4.2

J x K, J ~vK Semantics of variables x and sequences of values ~v 3.4.2
(st, t,am) Actor configuration in the intra-actor semantics 3.4.2

(st, t,am) `
↪−→ (st ′, t′,am′) Label ` emitting transition in the intra-actor semantics 3.4.2
aid Actor identifier (a.aid for given actor a) 3.4.3
ch Multiset of actor identifiers representing the children (a.ch) 3.4.3
q Queue of requests to be executed (a.q) 3.4.3
A Set of activations representing events currently executing (a.A) 3.4.3

(aid, ch,q,st,A) Actor configuration in inter-actor semantics 3.4.3
eid Event identifier 3.4.3

a
(`,eid)−−−−⇁a′ Lifting of the intra-actor semantics to activations in actors 3.4.3
E Events currently executing in the system 3.4.3
Ω Encoding of ownership graph 3.4.3

(E,Ω) Configuration of the whole system (inter-actor semantics) 3.4.3
Ω↓eid Elimination of event eid from the actor graph Ω 3.4.3

(E,Ω) (`,eid)−−−−→ (E′,Ω′) Reduction of the inter-actor semantics, where the transition 3.4.3
generates label ` when executing event eid

To formalize this semantics, we introduce the following syntactic categories:

x ∈ Var Variables o ∈ O : F ⇀ Val Objects

v ∈ Val ⊇O∪Var Values aid ∈ AID Actor ID

st ∈ Σ : Var ⇀ Val Store am ∈ {ro,ex} Access Mode

While most of these categories are self-explanatory, we remark that the category of

values Val includes objects and variables Var. This is just for technical convenience

in presenting the semantics. In the runtime of AEON variables are bound in an envi-

ronment, and are not values themselves. We assume from now on that the language

is provided in Administrative Normal Form (ANF) – meaning that only variables

28

and constants can appear as arguments in calls (for instance method calls follow the

syntax t.m(~v)). The ANF transformation is standard and it preserves the semantics

of the source-level language; we use it only to simplify the semantic rules. It is of no

consequence to the actual implementation of the language.

The access mode am represents whether the running event has write permissions

over the state and therefore requires exclusive access (ex), or can only read the state

(ro). A configuration of this semantics is then simply a tuple of the following form:2

(st, t,am)

st represents the actor’s state including the heap, global variables, and a call stack

which we abstract away for brevity; t represents the current term under evaluation,

and am represents the access mode of the event executing t.

Moreover, we add labels used by the following semantic layer to synchronize among

multiple actors. Labels are drawn from the following grammar:

` ∈ Labels ::= τ | l-retaid
(v) | l-otaid

(an,ak)

| l-syncaid
(m,~v,am) | l-asyncaid

(m,~v,am) | l-eventaid
(m,~v)

The τ label is “silent”, meaning there is no consequence for synchronization, and

shall generally be omitted.3 The label l-syncaid
(m,~v,am) indicates that the transition

issues a synchronous call to actor aid for method m with argument ~v and access mode

am. The label l-otaid
(an,ak) represents a change in the ownership graph whereby

ownership of actor an is acquired, and ownership of ak is relinquished by actor aid.

The meaning of the other labels is self-explanatory.

The most important rules of this layer of semantics are shown in Figure 3.5, where

the judgment

(st, t,am) `
↪−→ (st ′, t′,am)

2For readability we omit the method environment, which is also a static element of the intra-actor
configuration, mapping method names to statically bound method implementations.
3We use the τ notation for silent labels as customary in process algebra literature.

29

Sequence
(st, t1,am) ↪−→ (st ′, skip,am)
(st, t1; t2,am) ↪−→ (st ′, t2,am)

Sync Actor Call
JxK(st) = ai J~vK(st) = ~v′ m has access mode am in ai

(st,y := x.m(~v),am)
l-syncai

(m,~v′,am)
↪−−−−−−−−−−→ (st,y := wait ai,am)

Sequence Label
(st, t1,am) `

↪−→ (st ′, t′1,am)

(st, t1; t2,am) `
↪−→ (st ′, t′1; t2,am)

Async Actor Call
JxK(st) = ai J~vK(st) = ~v′ m has access mode am in ai

(st,async x.m(~v),am)
l-asyncai

(m,~v′,am)
↪−−−−−−−−−−−→ (st,emit,am)

Field Update
JxK(st) = o JvK(st) = v′ st ′ = st[o.f ← v′]

(st,x.f := v,ex) ↪−→ (st ′, skip,ex)

Actor Return
JvK(st) = v′ st’s call stack is of size 1

(st, return v; t,am)
l-ret(v′)
↪−−−−→ (st, skip,am)

Ownership Assignment
JvK(st) = an Jthis.fK(st) = ak st ′ = st[this.f ← an]

(st, this.f := v,am)
l-ot(an,ak)
↪−−−−−−→ (st ′,emit,am)

Figure 3.5.: Intra-actor big-step semantics (excerpt).

represents a label-emitting transition from the configuration on the left towards the

configuration of the right. This big-step operational semantics is driven by the struc-

ture of the term t. For brevity, we ignore rules for standard statements such as

conditionals and loops (cf. syntax), which are simply inherited from the use of C++

as the supporting language for AEON.

As it can be seen from the Sequence rule, this semantics encodes a big-step

evaluation provided that the corresponding command does not emit a label other

than τ . The rule Sequence Label enforces that the execution is stopped at the

point where the semantics makes a labeled transition. The rule Field Update

models field assignments, and it requires that the access mode be ex, thus preventing

readonly calls from modifying the heap. We assume a given semantic function “J K”

which, when given a variable returns its value in the current state, and when given a

value returns it identically – the fact that the language is in ANF greatly simplifies

the definition of this rule. We assume the obvious extension of this rule to sequences

of variables and values J~vK.

30

The rules for Sync and Async Actor Call are similar except that they emit

labels, and they inject in the term of the actor a place-holder term to prevent execu-

tion until synchronization with other actors occurs. Terms wait ai and emit are the

respective runtime terms (they cannot appear in a source program) used to indicate

that a synchronization with another actor is necessary. These terms, for which no

intra-actor semantic rules are given, have the effect of stalling the execution of the

actor. The emitted labels serve to synchronize actors in the inter-actor semantics,

as shown shortly in subsection 3.4.3. Upon synchronization, the runtime terms are

removed allowing the resumption of the intra-actor semantics.

The Actor Return rule emits a return label on a return statement only if the

state of the actor contains a single call frame, meaning that the method was called

from another actor or directly from the client. In such case, the return of the method

has to be sent to the calling actor or client.

The final rule of Figure 3.5 allows the assignment of an actor to the field of another

actor. Due to the ownership discipline of AEON, the fact that the current actor holds

a new reference to an actor an means that it potentially becomes the parent of an if it

was not already. Similarly, since a reference to the actor ak held by the current actor

prior to the assignment is overwritten by the assignment, the current actor could lose

ownership over ak. To accommodate for these ownership DAG changes in the inter-

actor semantics, the old actor (ak) held by the field f , and new actor (an) assigned

to f are propagated in the label for the OT rule of the inter-actor semantics.

We recall that the missing C++ constructs have standard sequential C++ semantics,

which is beyond the scope of this paper, and are of no interest to the AEONcore
extension nor the properties that AEONcore enforces. We therefore ignore these

constructs throughout the paper.

31

Decorators
d ∈ Dec ::= sync

| async
| event

Activations
ν ∈ Atv ::= a-event(eid, t,am)

| a-sync(eid, t,am)
| a-async(eid, t,am)
| a-end(eid,am)

Requests
req ∈Req ::= r-event(eid,am,m,~v)

| r-sync(eid,am,m,~v)
| r-async(eid,am,m,~v)
| r-dom(req,aid)

Figure 3.6.: Semantic ingredients used in the inter-actor semantics.

3.4.3 Inter-actor Semantics

The second layer of our semantics considers the composition of all actors in the

system.

Decorators, activations, queues, and configurations

We will use the semantic category of Decorators shown in Figure 3.6 to indicate

the kinds of requests made to an actor. These correspond to the ways in which actor

methods can be called.

Next, since there could be multiple readonly events executing in a single actor, we

need a pool of activations representing different threads executing readonly methods

within an actor. Since at any point there could be at most one exclusive access

activation in an actor, we use the activation set of an actor as lock. The definition of

Activations, where we assume that the metavariable eid ∈EID represents a unique

event identifier, is shown in Figure 3.6. The first three cases represent a running

activation of a top-level event, an async call, and a sync call respectively; the fourth

case represents an activation that has terminated or is currently inactive in the actor,

but whose event is kept active to preserve the “lock” which cannot yet be safely

released.4 We will use the metavariable A to represent sets of activations throughout

the paper.

The next ingredient we need to consider is the request queue that each actor uses

to buffer calls received. This queue will contain requests sampled from the grammar
4We remark here that activations should also include the local environment of running actors – the
call stack. We have abstracted it in the interest of simplicity.

32

of Requests shown in Figure 3.6. A request r-event(eid,am,m,~v) represents a call

for a new event eid starting its execution with method m with arguments ~v and access

mode am. Requests of the forms r-sync() and r-async() represent requests to execute

synchronous and asynchronous methods for event eid respectively, and the last kind of

request, r-dom(req,aid) denotes that an event attempting to execute in actor aid needs

to lock the current actor (which happens to be the lub of aid). This request serves

only to lock the current actor for event eid, which enables the event to start execution

in its target actor. Finally, a request queue is simply a list of requests, and it will

be ranged over with the metavariable q : [Req], where the bracket notation represents

a list containing elements of type Req. We can now define actor configurations as

considered in this layer. An actor configuration is a tuple of the following form

(aid, ch,q,st,A)

where aid is an actor identifier drawn from the set AID, ch is a multiset of actor

identifiers representing the children of the actor; 5 the component q is a queue of

requests, that is, it has type [Req], st is an actor state, and finally the component A

is a set of activations representing events currently being executed by the actor. To

simplify our notations in what follows we will use the metavariables introduced in this

syntax as projections of a record-like definition of an actor. Then, we can reinterpret

the definition of configurations as above as a record with the following definition:

a ∈ ACls ::=
[
aid : AID, ch : AID ⇀ N, q : [Req], st : Σ, A : 2Atv

]

Using this record-like syntax, we will use the metavariables defined for each of the

components as a projection of such element in a named actor. We will use a dot to

denote such projections. Then, given an actor a the projection a.st denotes the state

of actor a, and a.q represents the requests queue of actor a.6 Moreover, we will use
5We use a multiset since an actor can be referenced multiple times, therefore we need to keep track
of the multiple “owning” references, similar to reference counting garbage collectors.
6By abuse of notation we will use the same convention for activations later.

33

the notation a[st← st ′] for in-place update of the st field of the actor record a with

the new state st ′ defined as follows

a[st← st ′].x =̂ if x= st then st ′ else a.x

Notice that in this notation the left occurrence of st represents a member name of

the record, whereas the right hand side notation st ′ is a meta-variable representing a

new state. A similar convention applies to all other named components of the actor

record.

Finally, a configuration of the whole system is a pair (E,Ω) comprising a set of

currently running events E ∈ 2EID and a set of actors Ω ∈ 2ACls representing the

ownership graph. It is important to notice here that the definition of of the actor

graph Ω in this appendix is more precise than the one introduced in subsection 3.3.3.

The vertices and dominators of this representation are implicit throught the children

projection of the included actors in the set.

Composition rules

The inter-actor semantics (see Figure 3.7) is given by judgments of the form:

(E,Ω)−→ (E′,Ω′)

These rules are concerned with the calling and returns of actor method calls. They

ignore how an event becomes activated in an actor, which will be detailed in Figure 3.9

and discussed in section 3.4.3.

While the semantics of Figure 3.5 considers configurations of single actors as a

triple comprising the actor’s state, statement and activation mode, in the semantics

of this section a single actor could have multiple activations, each of them containing

a configuration like above. We therefore need to lift the rules of Figure 3.5 to operate

on actors as opposed to intra-actor configurations. To that end, the rule Lift Intra

34

Lift Intra
a.A= {ν}∪A

(a.st,ν.t,ν.am) `
↪−→ (st ′, t′,ν.am) a′ = a[st← st ′]

[
A←{ν[t← t′]}∪A

]
a

(`,ν.eid)−−−−−⇁a′

Sync Call

a1 ∈ a0.cch a0
(l-synca1(m,~v,am),eid)
−−−−−−−−−−−−−−⇁a′0 a′1 = a1

[
q ← q · r-sync(eid,m,~v,am)

]
(E,Ω∪{a0,a1})−→ (E,Ω∪{a′0,a′1})

Async Call

a1 ∈ a0.cch a0
(l-asynca1(m,~v,am),eid)
−−−−−−−−−−−−−−⇁a′0

a′′0 = a′0
[
t← a′0.t[emit/skip]

]
a′1 = a1

[
q ← q · r-async(eid,m,~v,am)

]
(E,Ω∪{a0,a1})−→ (E,Ω∪{a′′0,a′1})

Sync Return
a1

(ret(v),eid)−−−−−−⇁a′1 a1.A= A1∪{sync(eid,am,_,_)}
a0.A= A0∪{ν} ν.eid = eid ν.t= (y := wait a1; t′)

a′0 = a0
[
A← A0∪

{
ν
[
t← y := v; t′]

]}]
a′′1 = a′1[A← A1∪{a-end(eid,am)}]

(E,Ω∪{a0,a1})−→ (E,Ω∪{a′0,a′′1})
Async Return

a
(ret(v),eid)−−−−−−⇁a′

a.A= A∪{a-async(eid,am,_,_)} a′′ = a′[A← A∪{a-end(eid,am)}]
(E,Ω∪{a})−→ (E,Ω∪{a′′})

Figure 3.7.: Global rules part 1 (except activations).

35

Event Call UnShared
eid /∈ E m has access mode am

a = lub(Ω∪{a},a) a′ = a
[
q← q · r-event(eid,m,~v,am)

]
(E,Ω∪{a})−→ (E∪{eid},Ω∪{a′})

Event Return & Commit
a

(ret(v),eid)−−−−−−⇁a′ a.A= A∪{a-event(eid,_,_,_)}
(E∪{eid},Ω∪{a})−→ (E,(Ω∪{a′}) ↓ eid)

Event Call Shared
eid /∈ E m has access mode am a` = lub(Ω∪{a,a`},a)
a` 6= a a′` = a`

[
q← q · r-dom(r-event(eid,m,~v,am),a)

]
(E,Ω∪{a,a`})−→ (E∪{eid,},Ω∪{a,a′`})

Ownership Transfer
ak ∈ a.cch a

(l-ot(an,ak),eid)−−−−−−−−−−⇁a′

a′′ = a′
[
t← a′.t[emit/skip]

][
cch← (a′.cch[ak← a.cch(ak)−1,an← a.cch(an) + 1])

]
type(a) = type(an)⇒ acyclic(Ω∪{a′′,an,ak})
(E,Ω∪{a,an,ak})−→ (E,Ω∪{a′′,an,ak}))

Figure 3.8.: Global rules part 2 (except activations).

36

propagates the behavior of the intra-actor semantics by combining the state of the

actor a (a.st) with one of its activation terms (ν.t) and accessing mode (ν.am), and

substituting the appropriate components in the resulting actor configuration. Note

also that this is the only rule to produce an arrow of the form (`,eid)−−−−⇁ which is used

in the premises of the other rules of this figure and denotes the lifting of the intra-

actor semantics to activations in actors. The label ` is simply propagated, with the

added information eid of the concrete event emitting it. Just like for the record

representation of actors, the notation ν[t← t′] represents the in-place substitution of

the term component of the activation ν with the new term t′. This is the only rule

to use such a substitution on activations.

The rule Sync Call considers the case where the intra-actor semantics emits a

synchronous call label. This rule involves actor a0 – the source of the call, and a1 –

its target. Notice that we check that a1 is a child of a0.7 As explained before, the

only effect of this step is to add the request to the tail of a1’s queue.

The rule Sync Return considers the case where a synchronous call terminates

in a1. In this case we check that indeed an activation ν in the set of activations

a0.A is waiting for the response of a synchronous call to a0 (it is an invariant that

for each event, at most one activation is waiting for a synchronous call from a single

actor). In that case, we substitute the wait a0 term for the actual value produced by

the call, therefore allowing the semantics of Figure 3.5 to proceed. Notice that the

activation is not removed from actor a0 upon the return, but rather replaced with an

a-end(eid,am) activation. This is because this activation acts as a lock for the actor,

and it will only be released upon the completion of the whole event eid. Moreover,

further calls to the same actor by event eid might re-activate the event, meaning that

ownership of the actor cannot be renounced.

The rule Async Call is similar to the one for Sync Call, with the exception

that the emit place-holder is immediately removed from the term of the issuing actor

when the event is placed in the target’s queue. This is because the caller actor needs
7This check will be relaxed at the end of the section.

37

not wait for the termination of the callee, and so its intra-actor semantics can proceed.

Consequently, the rule Async Return is also simpler than its Sync counterpart,

and in particular it involves a single actor a.

The next three rules consider the case of asynchronous event calls issued to an

actor. The rule Event Call Unshared considers the case where the target actor

a of the event is its own dominator (cf. the definition of section 3.3). In this case,

no other actor needs to be locked, and therefore the rule simply picks a fresh event

identifier eid /∈ E, and adds the event in the actor’s queue. On the other hand, if the

dominator of a is another actor a`, a new event is added in the queue of a` as a marker

indicating that the actor a` has to be locked before the event starts executing. This

is precisely the purpose of the request r-dom(r-event(eid,m,~v,am),a). Notice that in

rule Event Call Shared the target actor a remains unmodified by the transition.

The rule Event Return & Commit simply removes the event ID eid from the

event set, and it removes any activation appearing in any actor for the event eid. This

is encoded with the notation Ω↓eid defined as follows:

Ω↓eid =

∅ if Ω = ∅

Ω′↓eid ∪{a[A← (A/{a-end(eid,_)}]} if Ω = Ω′∪{a}

Notice that since we use activations as a lock, this achieves the effect of removing the

lock (either readonly or exclusive) from all actors that have been visited by the event

eid.8

The rule of Figure 3.8 is Ownership Transfer, and it considers the case where

an actor is assigned to a field of another actor. This has the effect of modifying the

actor graph, and hence, potentially the ownership graph. This rule involves three

actors: the parent actor a, the old actor ak stored in the field that is modified, and

the new actor an assigned to the field. To accommodate for the possible ownership

change, we need to modify the counters keeping track of the children actors owned

by a (that is, the a.cch multiset). In this case, we simply decrement the counter for

ak and increment the one for an. If ak is completely removed from the a.cch multiset
8This rule implies synchronization with all actors used by eid.

38

(i.e. a′′.cch(ak) = 0) we say that a is no longer a parent of ak, and symmetrically, if

a′′.cch(an) = 1 we say that a becomes a parent to an. An important final remark is

that in the special case where the field of the actor a being updated has the same type

as the actor a itself (therefore all of a, ak and an have the same type), a runtime check

has to be performed to guarantee that no cycles are added to the ownership relation.

This check is marked in green in the rule. (A simple static analysis guarantees that

no such cycles will happen at runtime in the case of distinct types, cf. section 3.4.4.)

Another important effect of the Ownership Transfer rule is that these trans-

fers could modify the dominator relation, since actors which shared no descendants

before, might share descendants after the update. This requires dominators of the

sub-graph of the event (performing the update) to be recalculated, and potentially

that the event queues of actors whose dominators change be forwarded and merged

into the new dominators.

This dominator recalculation procedure is abstracted in the rules by the primitive

adjustDom(Ω) which can be summarized as doing:

Ω′← recalculateLUBs(Ω);∀ a ∈ diff(Ω,Ω′) a.modifyLUB(a,Ω′)

In short, it takes as input the modified ownership graph Ω (generally a downwards

closed subgraph of the whole actor graph of the application) and it firstly calculates

locally the new dominator actors for Ω. This recalculation is computed by the proce-

dure recalculateLUBs, and its result is stored in Ω′. Subsequently for each actor whose

dominator changed as a consequence of the ownership transfer, or that becomes the

dominator of another actor after the transfer, we need to perform one of the following

operations:

(A) If the actor’s dominator changes we send the information of its new dominator

actor.

(B) If the actor becomes the dominator of a new actor, it must receive the requests

queue of the old dominator of that actor and append it to its request queue.

39

The algorithm above represents by diff(Ω,Ω′) the set of actors that require any of

these operations to be performed. The algorithm then calls the synchronous method

modifyLUB (reserved to the runtime system) on each of these actors. All the necessary

information to update each actor is embedded in the new ownership graph Ω′ passed

as argument. Note that the invariant of the semantics that each event be enqueued

in the actor that dominates the target of the event is preserved, even with non-empty

queues of actors whose dominator changes.

Activation rules Let us now concentrate on the activation rules illustrated in

Figure 3.9. These rules dictate how requests are removed from an actor’s queue, and

scheduled for execution.

Activate

a.q = r · q′
r = r-async(eid,am,m,~v) ⇒ ν = a-async(eid,a.m(~v),am)
r = r-sync(eid,am,m,~v) ⇒ ν = a-sync(eid,a.m(~v),am)

r = r-event(eid,am,m,~v) ⇒ ν = a-event(eid,a.m(~v),am)
am= ex ⇒ a.A⊆ {a-end(eid,ex)} ∧ A′ = {ν}
am= ro ⇒ ex /∈ a.A ∧ A′ = a.A∪{ν}

(E,Ω∪{a})−→ (E,Ω∪{a[q← q′][A← A′]})
LUB Lock and Schedule

a0.q = r-dom(r-event(eid,am,m,~v),ai) · q′
am= ex ⇒ a0.A= ∅
am= ro ⇒ ex /∈ a0.A

a′0 = a0[q← q′][A←{a-end(eid,am)}] a′i = ai[q← ai.q · r-event(eid,am,m,~v)]
(E,Ω∪{a0,ai})−→ (E,Ω∪{a′0,a′i)

Call Promotion
a.q = q0 · r · q1 r ∈ {r-sync(eid,am,_,_), r-async(eid,am,_,_)}

eid does not occur q0 a-end(eid,am) ∈ a.A
(E,Ω∪{a})−→ (E,Ω∪{a[q← r · q0 · q1]})

Figure 3.9.: Activation rules.

The rule Activate removes the first request from the requests queue of an an

actor a and it generates an activation ν according to the type of request. Notice that in

the generated activation the statement takes the form of a method call to the method

requested, and that the activation mode and event identifier are simply propagated.

Also notice that depending on the access mode am of the request, different conditions

40

are checked to start the execution. If am is ex the rule requires a.A to be either empty

or contain the singleton activation a-end(eid,am), and the resulting activation set A′

contains the singleton generated activation ν. On the other hand, if am is ro we verify

that there are no exclusive (ex) activations in a.A and add a new activation to the

old activation set.

The LUB Lock and Schedule rule performs a similar check in the lub actor,

and upon successfully activating the event, it forwards the request to the target actor

(by adding it to its queue). Notice that the only effect is to add an activation of the

form a-end(eid,am) since the event does not execute in this actor, but the activation

is only used as a lock.

Finally, the Call Promotion rule considers the case where a call is made to

an actor that was already visited by the event (i.e., eid was already activated in the

actor). In this case, the call can be executed regardless of other events that might

have arrived at the actor,9 and is therefore upgraded to the front of the requests

queue.

Tying it all together We conclude with a brief summary of the operations in-

volved in executing an event in AEONcore. The entry point for client requests of the

semantics are the Event Call rules. To give the semantics of an AEONcore pro-

gram, we consider that clients can non-deterministically issue calls to events (these

clients are external to the system and thus not modeled) triggering one of the Event

Call rules according to the case of the non-deterministically chosen event. As per

the rules, the events get firstly enqueued in the queue of either the target or the domi-

nator actor. Subsequently, one of the activation rules of Figure 3.9 activates the event

allowing its execution through an interleaving of the global rules of Figure 3.7, which

in turn utilize the intra-actor rules of Figure 3.5. Thus the semantics of a AEONcore
program is the mutually recursive composition of the rules of Figure 3.5, Figure 3.7

and Figure 3.9 with a non-deterministic client issuing events to the system.
9Notice that this could only happen if the actor a is its own dominator, since otherwise these events
would not be queued in this actor, but in its dominator instead.

41

Definition 1. We take the semantics of an AEONcore program to be given as the

transitive closure of the −→ relation (denoted −→∗) between configurations, starting

with a given initial configuration (∅,ΩI) containing no events.

3.4.4 Refinements

This section discusses our type-and-effect system for ensuring the DAG-based own-

ership structure in AEON programs, and a relaxation to the direct-owner restriction

and ownership transfer.

Checking ownership. We use a simple type-and-effect system to check that the

ownership graph is indeed a DAG. The main rules are presented in Figure 3.10. Again,

we ignore all the constructs that are of no relevance to the property enforced by the

type system which is implemented as part of the AEONcompiler. Type-and-effect

judgments for statements are of the form

Γ ` t : T,C

where, Γ is a standard type environment, mapping variables to their types, t is a

term, T is the (standard) type of the term, and finally C is a set of actor class names,

representing an over-approximation of the types of actors manipulated by t. As in C

(or Java), signatures of methods are assumed to be given. Then we can simply obtain

the type definition of a method by consulting its type as in type(cls,m) = T
C−→ T ′

where the actor type set C is inferred by the type system.

For method definitions the function type is simply labeled with the effects:

Γ ` T ′ m(T){t} : T C−→ T ′

The type judgment for actor definitions simply collects a series of inequality con-

straints that require any actor type potentially used by the actor being defined as

42

Γ ` t0 : acls, C0 type(acls,m) = T
C−→ T ′ Γ ` t1 : T, C1

Γ ` t0.m(t1) : T ′, C0∪C∪C1

Γ ` t0 : T0, C0 Γ ` t1 : T1, C1
Γ ` t0; t1 : T1, C0∪C1

· · ·
Γ,x : T ` t : T ′, C

Γ ` T ′ m(T x){t} : T C−→ T ′

C = {acls < acls′ | acls′ occurs in F∗ or the effects inM∗ and acls 6= acls′}
actorclass acls { F∗ M∗ } : C

Ct= {C | a ∈ ACls∗ & a : C} topsort(Ct) 6= ∅
ACls∗ Cls∗ main(args){ t∗} :X

Figure 3.10.: Type-and-effect system to check the DAG structure of the ownership
graph (excerpt).

being lower or equal to the one being defined. Finally, for whole programs the type-

and-effect system simply checks that the ownership graph is acyclic by calculating a

topological sort of the constraints gathered in the declarations of actors. In the case

that a topological sort exists we conclude that the type-use hierarchy of the program

is acyclic denoted as X in Figure 3.10.

Finally, notice that the constraints added in actor class definitions ignore adding

constraints in the case where the two actor types are the same. This allows recursive

data types as discussed.

Relaxing the direct-owner restriction Notice that calls could be issued from

an actor to any descendant actor, provided that locks are acquired in a top-down

hand-in-hand fashion, that is, acquiring the bottom lock before releasing the top one.

This is required to ensure deadlock-freedom. Then, allowing the runtime system to

perform the locking automatically on a path from the caller to the destination actor

allows us to remove the parent-to-child restriction, and in particular, since locks are

acquired only once for each event, subsequent calls can directly traverse the actor

network without accessing all intermediate descendants. To model that behavior we

43

use an asynchronous “runtime” locking rule, which simply takes the lock of an actor

when the runtime indicates so by following the above mentioned top-down hand-in-

hand policy.

Auto Lock

a1 ∈ a0.cch a-__(eid, . . . ,am) ∈ a0.A
am= ro ⇒ ex not in a1.A

am= ex ⇒ a1.A= ∅

a′1 = a1[a← a-end(eid,am)]

(E,Ω∪{a0,a1})−→ (E,Ω∪{a0,a
′
1})

This rule allows us to relax the constraint a1 ∈ a0.cch in the Call rules for a1 ∈

desc(Ω∪{a0,a1},a0), and hence, allows any actor to call any of its descendant ac-

tors.10

3.5 Properties of AEONcore

In this section we show more formally how the main properties guaranteed by

AEON are established by the semantics of AEONcore.

Deadlock freedom

Let us begin by formally defining how deadlocks could manifest in AEONcore.

Definition 1 (Deadlock State). State (E,Ω) contains a deadlock if Ω can be decom-

posed as

Ω = Ω′∪{a0,a1, . . . ,an}

where for each i ∈ [0,n] we have that there exists an event ei ∈ E such that: (i)

ei occurs in ai.A, and (ii) ei occurs in ai+1.q, considering addition modulo n.

A representation of a deadlock state is shown in Figure 3.11, where the actors

involved in the deadlock are marked with the primed names (a′0, a′1, a′2), and the
10This even allows bottom-up calls provided that the required actors are already locked, and thus
not subject to deadlocks.

44

e0

e0

e1

e1

e2

e2

req(e
0)

req(e
1)

req(e
2)

a1a0

a�
0 a�

1 a�
2

a2

Figure 3.11.: Deadlock state.

arrows represent ownership links with labels representing that there is a request from

the source actor to the target actor which is currently enqueued waiting to be activated

in the target actor. We also mark in the top-left corner of each actor the name of

the event currently holding the lock of the actor. Notice that in the queues of each of

these actors there is a request of an event that is currently holding the previous actor

in the chain (shown with incoming arrows marked req(ei)), thus closing the cycle.

Theorem 1. The semantics of AEONcore guarantees that no deadlock state can be

reached.

Proof. (Sketch) The proof proceeds by contradiction assuming that a first deadlock

state (E,Ω) can be reached. Firstly we observe that whenever an event is executing

in an actor, it must be activated in its dominator. This is an invariant preserved by

the semantics of AEONcore. Consider now any of the actors, say ai, that is issuing

a request for event ei that is enqueued in the queue of an actor a′i+1 in the deadlock

cycle as shown in the figure above. Also, by the definition of deadlock, there is an

event ei+1 that is currently holding the actor a′i+1, and its parent ai+1. This, by the

definition of share of subsection 3.3.3 implies that all of these actors share a common

dominator. Hence, by the above-mentioned invariant, neither event can execute in

these actors, since at most one of them is scheduled in the common dominator actor.

This contradiction proves the theorem.

45

To derive a more formal proof, let us first present some basic remarks about the

semantic rules of AEONcore presented in section 3.4.

Remark 1. If an event eid is executing within an actor a, then eid ∈ a.A. That is,

only activated events can execute within an actor.

Proof. It suffices to see that the Lift Intra rule requires the event to be in the

activation set to execute. All the other global rules do not execute within the actor

(i.e. do not make use of the ↪→ transitions of Figure 3.5). Similarly, activation rules

do not “execute” within the actor– that is, they don’t modify any of the components

of the actor other than the activation sets.

Remark 2. The only rule that allows removing an event from activations is Event

Return & Commit, which completely removes the event from the configuration set.

Proof. Simple observation of the semantic rules.

Corollary 1. Consider a configuration (E,Ω), an event eid ∈ E, and an actor a0

such that eid ∈ a0.A. Moreover, assume that (E,Ω∪{a0}) ∗−→ (E′,Ω′ ∪{a′0}) where

eid ∈E′. Then we have that eid ∈ a′0.A. In other words, once an event is activated in

an actor, it remains so, until completely eliminated from the event set E′.

Proof. This property is a simple consequence of 1. Since the only rule that can de-

activate an event from an actor eliminates the event from the activations of all actors

at once.

Remark 3. For any reachable configuration (E,Ω) such that an actor a occurs in Ω

we have that either |a.A| ≤ 1, or every activation in a.A is ro.

Proof. This is immediate from the antecedents of the activation rules (Figure 3.9).

In particular, notice that Activate and LUB Lock and Schedule rules require

that the initial activation set be empty in the case of exclusive access (ex) calls, and

that no exclusive access event is in the current activation set (ex /∈ a.A) in the case

of read only (ro) calls.

46

Let us refresh the definition of deadlock provided in 1. Recall Figure 3.11 repre-

senting a deadlock state. Notice that in the queues of each of these actors there is a

request of an event that is currently holding the previous actor in the chain (shown

with the incoming arrows marked req(ei)), therefore closing the cycle.

Lemma 1. For each event eid, and a state (E,Ω) such that there exists an actor

a ∈Ω with eid ∈ a.A, whenever dom(Ω, target(eid)) = a` we have that eid ∈ a`.A. Note

that we write dom(Ω, target(eid)) as a slight abuse of notation for simplicity from 5.

In words, whenever an event eid is executing in any actor, it is also activated in the

dominator actor corresponding to the events target actor according to Ω.

Proof. We notice first that the only rules that allow events to be added to the acti-

vation of an actor are the rules of Figure 3.9.

Moreover, notice that for each of these rules, an item already existed in the queue

of the actor with the necessary event ID. These are the premises of the form req =

r-__(eid, . . .). It is therefore sufficient to show that whenever a request is added to

a queue, then either (i) it effectively is the dominator actor, or (ii), the parent actor

contains eid in its activations before enqueuing the request. Finally we have to show

that no event is removed from an activation prematurely, but this is trivial, since the

only rule which removes events from the activations is Event Return & Commit,

which removes all the eid atomically from all actors as shown in 1.

Conditions (i) and (ii) above are easy to check by inspection on the rules that can

add requests in the queues of an actor. For (i) we have that newly arrived events are

always added with a request r-dom(r-event(eid,am,m,v),ai) in the LUB actor if it is

not directly the target. For (ii) we can check the rules that that add elements to the

queues (Synch Call, ASynch Call) require the parent actor to have the event

eid in their activations.

Corollary 2. For any reachable configuration (E,Ω), actor a0 ∈Ω, and event eid ∈E

such that eid ∈ a0.A, we have that eid ∈ dom(Ω, target(eid)).A, and there exists a path

47

of actors target(eid) · a1 · . . . · an · a0 in Ω – considered as a graph – from target(eid)

to a0 such that for each i ∈ [1,n] we have eid ∈ ai.A.

Proof. This is a direct consequence of (i) 1, the fact that Ω is a directed-acyclic

graph, and (iii) the fact that events are only ever deactivated (i.e. removed from

actors activation sets) by the rule Event Return & Commit which removes the

event once and for all form the whole actor set Ω.

The following lemma states that elements involved in a deadlock cycle must share

a common dominator. This is the critical observation to avoid deadlocks.

Lemma 2. Let us consider a deadlock state (E,Ω), such that Ω is a directed-acyclic-

graph (DAG) as prescribed by the AEONcore discipline. Moreover, let us assume that

if an event eid is either enqueued in an actor a (i.e. eid ∈ a.q), or it is currently

activated in it (i.e. eid ∈ a.A), then either a is the dominator of eid’s target (a =

dom(target(eid),Ω)), or a parent of a contains the event eid in its activations. Then,

we have that all the actors involved in the deadlock (as per 1) have a unique dominator

in Ω. Formally, lub(Ω,{a | a ∈ deadlock of Ω}) ∈ desc(dom(target(eid),Ω)).

Proof. We proceed by induction on the number of actors involved in the deadlock of

state (E,Ω). In particular, we relax the condition of there being a cycle, to requiring

only that there is a path in between any two actors (as opposed to a cycle). We

consider that there is a bidirectional edge between a0 ∈ Ω and a1 ∈ Ω if there exists

an event eid ∈ E such that eid ∈ a0.A and eid ∈ a1.q, or viceversa. Then, we are

interested in the length of the path formed with these bi-directional edges.

In the base case, with only two actors a0 and a1, we have that since in at least

one of the two actors one event is activated, and the other is enqueued, then both

actors share a common ancestor, which is guaranteed by 2. This concludes the case

by considering the dominator of this common ancestor in Ω.

In the inductive case we know there is a unique actor that is the dominator of a0,

..., an in Ω. We also know that at least one of these actors has an event activated which

is in the queue an additional actor an+1 or viceversa. Then, there are two cases: either

48

(i) dom(a0, ...,an,an+1) = dom(a0, ...,an) and we conclude the case, or (ii) otherwise,

by the definition of share in section 3.3, we have that the an+1 ∈ desc(dom(a0, ...,an)).

Therefore, by the definition of share, also in section 3.3, the dominator of the actor

containing the event that issued the call in an+1 has to also dominate dom(a0, ...,an),

which concludes the case.

We can now prove the deadlock freedom theorem (Theorem 1):

Proof. We consider a proof by contradiction. Let us assume that there is a first state

(E,Ω) in a run of the semantics of Figure 3.7 containing a deadlock as per 1. Then,

combining 2 and 1 we obtain a contradiction, since both events (one of which requires

exclusive access) must be activated in the common dominator.

Serializability

Let us now show that the execution of AEONcore events is serializable. We begin

by stating some simple lemmas that are necessary for the proof.

We consider an alternative semantics of AEON, given also by the rules of Fig-

ure 3.5, Figure 3.7 and Figure 3.9, where we add the additional constraint that there

is at most one event activated in any configuration (E,Ω), i.e. ∑a∈Ω |a.A| ≤ 1. This

essentially encodes a semantics of AEON where each event executes in complete

isolation. Let us call this the serial semantics of AEON and denote it with the

special arrow “�”. To distinguish configurations generated by this semantics w.r.t.

the semantics of section 3.4 we denote actor sets generated by this semantics as Ω̂.

The proof of serializability shows that the serial semantics of AEONcore (�∗)

can simulate the semantics of AEONcore (−→∗). To that end we consider a simulation

relation between configurations of the two semantics. Act(Ω) denotes the set of events

activated in any actor of Ω.

49

Definition 2 (Simulation Relation). We define the following simulation relation be-

tween a configuration (E, Ω̂) of the serial semantics of AEONcore with a configuration

(E,Ω) of the normal AEONcore, denoted (E, Ω̂) R (E,Ω) iff the following hold:

(i) Act(Ω̂) = ∅ (ii) (E, Ω̂) ∗−→ (E,Ω)

Thus, two configurations, (E, Ω̂) and (E,Ω), are related by our simulation if the

former has no active events in any of its actors (no restrictions on the second con-

figuration), and it can reach by executing a number of semantic rules the second

configuration. In a nutshell, the configuration (E, Ω̂) represents an alternative trace

which could have lead to (E,Ω) where events execute one at a time. This is proved

by our simulation proof which amounts to showing commutativity following the de-

picted diagram. That is to say, each time we start with a pair of similar configurations,

whenever the normal semantics of AEONcore (the low-level semantics) makes a step,

the resulting configuration is still related to the serial one, or there exist a number of

steps in the serial semantics that simulate the exact same behavior. In particular, the

event sets E in any two similar configurations are identical, meaning that transitions

that modify the event set must be matched one-to-one.

Theorem 2 (Simulation). The relation R defined above is a weak-simulation from

the normal (low-level) semantics of AEONcore to the serial semantics of AEONcore.

Proof. (Sketch) The only interesting case of this proof is the Return & Commit

rule, which requires that the serial semantics executes all the transitions of the event

making the commit in a single uninterrupted sequence. This proof relies on the fact

that all actors that have been visited by this event have been locked since the begin-

ning of the event, therefore no other concurrent event could have modified their state

meaning that the serial semantics configuration Ω̂ coincides in this actor with the

state in the normal semantics before the execution of the committing event starting

at Ω. Since all actor locks are taken in an ordered top-down fashion, and are not

released until commit, we have that the state of all these actors in the serial config-

50

uration coincides with the non-serial configuration before the execution of the event.

Moreover, these actors are all free. A simple commutativity argument based on the

exclusive access to actors that are locked allows us to conclude that the event can be

executed entirely from beginning to commit preserving the exact same behavior.

The simulation induces a serializability proof, with events serialized at their com-

mit point.

Corollary 3 (Serializability). Since the serial semantics of AEONcore is linear and

does not reorder non-overlapping events, Theorem 2 implies that the semantics of

AEONcore enforces serializability of events. This order respects the arrival order of

events, thus implying serializability.

Lemma 3 (Exclusive Access). Given a trace ~ω = (E0,Ω0)−→ (E0,Ω0) . . .−→ (En,Ωn),

assume that two events e0 and e1 access at least one coinciding actor, say a, in ~ω.

We have that for any configuration (E,Ω) appearing in ~ω:

1 dom(Ω, target(e0)) ∈ desc(dom(Ω, target(e1))), or

dom(Ω, target(e1)) ∈ desc(dom(Ω, target(e0))), and

2 e0 /∈ a.A or e1 /∈ a.A.

Proof. The claim 1 is a direct consequence of Ω forming a DAG, 2, 1, and the fact

that both events operate on a common actor a. The claim 2 is a direct consequence

of claim 1 in combination with 2 and 1.

We state that the proof of Theorem 2 relies on a commutativity argument allowing

to reordering the execution of actions of different events which operate in non-sharing

actors. Here we provide it definition and proof. Figure 3.12 provides a graphical

representation of this commutativity argument.

Lemma 4 (Commutativity). Consider two consecutive transitions where we assume

two actors a0,a1 ∈ Ω, and two events e0, e1 ∈ E:

(E,Ω0) a0−→
e0

(E,Ω′) a1−→
e1

(E,Ω1)

51

(E,Ω0)

(E,Ω′) (E,Ω′′)

(E,Ω1)

a1 e1

a0 e0

a0e0

a1e1

Figure 3.12.: Commutativity of independent events.

Here we denote with the arrow a−→
e

the fact that the transition involved the event

identifier e and it was performed in the actor a.We have that if either a0 6= a1 or

e0.am= e1.am= ro, there exists an intermediary actor set Ω′′ such that the following

transitions are also valid:

(E,Ω0) a1−→
e1

(E,Ω′′) a0−→
e0

(E,Ω1)

Figure 3.12 depicts this lemma, where dashed arrows represent the existential

transitions required by the lemma.

Proof. The case where the two events are ro is trivial. By 3 we have that if any

of the events is ex, then a0 6= a1. Moreover, we have that lub(Ω),a0.A = {e0} and

lub(Ω,a1).A= {e1}. Hence, by the definition of LUB we have that desc(a0)∩desc(a1) =

∅. It is not hard to see that the two events operate on disjoint portions of the graph,

and therefore the transitions commute immediately.

Corollary 4. Consider a sequence of transitions, where we use ēid denotes any of

the events in,

α = (E,Ω0)−→̄
e0

(E,Ω1,)−→̄
e1

. . . −−−→
¯en−1

(E,Ωn)

52

where no step except the last one is a commit event. We can conclude that there exists

an equivalent trace

α′ = (E,Ω0)−−−→
δ(ē0)

(E,Ω′1)−−−→
δ(ē1)

. . . −−−−−→
δ(¯en−1)

(E,Ωn)

where δ is an bijection from {ē0, . . . , ¯en−1} to itself, such that there exists an m∈ [0,n−

1] with (i) for all i < m we have δ(ēi) = ¯em−1, and (ii) for each i≥m, δ(ēi) 6= ¯en−1.

Essentially, the bijection δ pushes all transitions of ¯en−1 to the front.

Notice that the initial and final configurations are the same.

Proof. This is a trivial consequence of the lemma above, considering that all transi-

tions that need to be reordered correspond to different (concurrent) events.

We consider an alternative semantics of AEONcore which allows at most one event

at a time. As before, we call this the serial semantics of AEON and denote it with

the special arrow “�” and denote actor sets generated by this semantics as Ω̂.

The proof of serializability shows that the serial semantics of AEONcore can sim-

ulate the semantics of AEONcore. To that end we consider as simulation relation

between configurations of the two different semantics. We denote by Act(Ω) the set

of events that are activated in any actor of Ω.

We consider as simulation relation between configurations of the two different

semantics.

Definition 3 (Simulation Relation). We define the following simulation relation be-

tween a configuration of the serial semantics of AEON, (E, Ω̂), with a configuration

of the low-level configurations of AEON, (E,Ω), denoted by

(E, Ω̂) R (E,Ω)

iff the following conditions are met:

(i) Act(Ω̂) = ∅, and

(ii) (E, Ω̂) ∗−→ (E,Ω)

53

We then prove that the semantics of serial AEON simulates the semantics of

low-level AEON by showing that the diagram below commutes. This amounts to

proving that each time we start with a pair of similar configurations, whenever the

low-level semantics makes a step, there exists a step in the high-level semantics that

can simulate exactly the same behavior. Notice in particular, that the event sets E

in any two similar configurations are identical, meaning that transitions that modify

the event set must be matched one to one.

(E, Ω̂) (E′, Ω̂′)

(E,Ω) (E′,Ω′)

R

*

R

Figure 3.13.: AEON simulation diagram.

Theorem 3 (Simulation). The relation R defined above is a weak-simulation from

the low-level semantics of AEON to the serial semantics of AEON, as shown in Fig-

ure 3.13.

Proof. We assume a pair of configurations related by the relation R. Let them be

(ˆE,Ω) R (E,Ω).

The proof proceeds by case analysis on the transition taken by the configuration

(E,Ω) of standard AEON . Importantly, we only need to cater for transitions that

modify the event set E, since all other transitions immediately preserve the relationR,

as the second condition of the definition of the relation requires that the configuration

(E, Ω̂) can reach (E,Ω), and evidently, similar steps can be taken to preserve the

relation. Hence, we consider only transitions that modify the event sets. These are:

Event Call UnShared, Event Call Shared and Event Return.

• Event Call UnShared and Event Call Shared. The transitions taken

by these rules are trivially matched by the serial semantics, since these events

are only added to the tail of the queue (in both configurations).

54

• Event Return. This is the only important step, since it is here that the serial

semantics (i.e. the configuration (E, Ω̂)) must make actual transitions. In this

case, we can directly apply 4 to obtain the conclusion, since we have from 1

and 2 that the committing event was the only one to touche these actors (i.e.

all other concurrent events are disjoint), and the event continued to hold these

actors until this commit step.

Evidently, the simulation above induces a serializability proof, where events are

serialized at their commit point.

Parallelism

Here we provide a simple statement showing that independent events can be exe-

cuted in parallel.

Definition 4 (Independent Events). Given a trace ~ω and events e0, e1 ∈ E, we say

that e0 and e1 are independent in ~ω iff whenever ~ω can be decomposed as

~ω = ~ω0 · (E,Ω0) a0−→
e0

(E,Ω1) · ~ω1 · (E,Ω2) a1−→
e1

(E,Ω3) · ~ω3

we have that a0 6= a1.

Theorem 4. [Independence ⇒ Parallelism] Consider a trace ~ω and two independent

events e0, e1 ∈ E. We have that whenever

~ω = ~ω0 · (E,Ω0) a0−→
e0

(E,Ω1) a1−→
e1

(E,Ω2) · ~ω3

there exists an equivalent trace

~ω = ~ω0 · (E,Ω0) a1−→
e1

(E,Ω′) a0−→
e0

(E,Ω2) · ~ω3

where the order of the transitions of e0 and e1 is reversed.

55

Proof. This is an immediate consequence of 4.

In a nutshell this theorem establishes that the order of steps of events e0 and e1 is

inconsequential, and therefore they can be evaluated in any order (i.e., in parallel).

3.6 Summary

This chapter has presented a variant of the actor model specialized for distributed

setups where actors commonly communicate across hosts over the network, imple-

mented in our AEON language, which we believe achieves a sweet spot between (a)

ensuring serializability guarantees for multi-actor interaction, and (b) enabling a high

degree of parallelism in networked distributed systems. Our model provides serial-

izability and deadlock freedom, with largely decentralized synchronization and thus

scalability for distributed server-side applications or components following a DAG-

based structure of actors.

56

4 AEON RUNTIME DESIGN AND IMPLEMENTATION

Designing low-latency cloud-based applications that are adaptable to unpredictable

workloads and efficiently utilize modern cloud computing platforms is hard. The

actor model is a popular paradigm that can be used to develop distributed applica-

tions: actors encapsulate state and communicate with each other by sending events.

Consistency is guaranteed if each event only accesses a single actor, thus eliminating

potential data races and deadlocks. However it is nontrivial to provide consistency

for concurrent events spanning across multiple actors.

In this chapter, we will give AEON runtime implementation details. The syn-

chronization protocol (section 4.1) implemented in the runtime relies on actor DAG

structure to group actors and provide serializability as well as scalability. The elastic-

ity algorithm (section 4.2) enables the programmers to transparently migrate actors

without violating the execution of applications or entailing significant performance

overhead. We have give runtime and fault tolerance implementation in section 4.3

section 4.4 gives a performance study of several applications (e.g., metadata storage,

B-tree) implemented in AEON, in particular distilling the costs of serializability. We

compare AEON state-of-the-art specialized systems such as HyperDex Warp [29] and

Infinispan [28], and to implementations in Orleans [74] on Amazon AWS [77]. AEON

outperforms its competitors in most cases, and shows much better scalability. We

have draw a summary in section 4.5.1

1Patrick Eugster and Masoud Saeida Ardekani helped me design the AEON synchronization proto-
col. Also, Patrick Eugster, Masoud Saeida Ardekani and Srivatsan Ravi made many contributions
to the experiments design.

57

4.1 Multi-Actor Synchronization

We present synchronization in AEON first for a static ownership DAG (subsec-

tion 4.1.1), followed by the dynamic ownership DAG (subsection 4.1.2). In both

cases, we first introduce synchronization, then discuss how AEON achieves serializ-

ability [75] during execution of concurrent events. We consider the generic case, and

leave out optimizations (e.g., for executing multiple readonly events in parallel, cf.

section 3.4) as well as relaxations (e.g., allowing actors to access any of their descen-

dants, not only direct children, cf. section 3.4). As we discuss in subsection 4.3.2,

synchronization also supports fault-tolerance.

Definition 1 (Static and dynamic ownership). Let (E,Ω) denote a system configura-

tion resulting from an execution of an XYZ program, with E the set of issued events

and Ω the ownership DAG. We say that (E,Ω) is a static ownership configuration if E

does not contain any ownership event, otherwise a dynamic ownership configuration.

Definition 2 (Serializability). Let E denote the set of events in a given execution

of XYZ. We say that the execution is serializable if there exists an equivalent serial

(i.e., sequential) execution respecting the temporal relations among the same set of

events E. The temporal condition stipulates that for any two events {e1, e2} ∈ E, if

e1 precedes e2 in real-time in the concurrent execution, then e1 precedes e2 in the

equivalent serial execution.

4.1.1 Synchronization under Static Ownership

Traditional mechanisms for synchronization like two-phase locking enforce seri-

alizability on linearly-ordered structures without shape constraints while two-phase

commit is best suited when majority voting is necessary for agreement [78]. Both ap-

proaches require non-trivial synchronization which becomes costly across remote par-

ties. Unlike these mechanisms, the synchronization technique developed for AEON

exploits the DAG structure to rely on a two-step locking mechanism and multiple

58

Actor a1

Actor a3Actor a2

Actor a4

Dominator

Non-dominator

Parent-child dominatorActor a5

Dominate region

Ownership

Actor a6 Actor a7 Actor a8

…

Figure 4.1.: Example of dominate re-
gion of actor a1: actor a4 is a child
dominator of a1 because a2 is its par-
ent and a2 is dominated by a1. Note
how the child dominator a4’s children
actors a6 and a7 are not included in
a1’s dominate region.

(1) (2) (3)

a1

e1

Region locking queue

Actor locking queue

Event

Dominate region

a2

a3

a4

a5

e2

a1

a2

a3

a4

a5

e2

a1

a2

a3

a4

a5

e1

e1

e1

Actor a1 Actor a1 Actor a1

e2

e1

e1

e2

e2

e1

Figure 4.2.: Basic AEON synchronization.
e1 and e2 are put into region locking queue
(1) at first. Then e1 is dequeued and put
into actor locking queues of reachable ac-
tors (2). After that, e2 is dequeued and
put into the actor locking queues (3).

59

FIFO queues implemented at (dominator) actors to enforce partial-ordering across

events. Before we explain the runtime synchronization for multi-actor semantics, we

introduce the following crucial terminology:

Definition 3 (Parent-child dominator and dominate region). For dominators a1 6=

a2 we say a2 is the child dominator of a1, or a1 is the parent dominator of a2, when

a2 is a descendant of a1, and there is no dominator actor a3 such that a2 a descendant

of a3 and a3 is a descendant of a1. Given a dominator a1, its dominate region is

defined as the set of actors consisting of the (1) actors dominated by a1 (including

a1) and (2) the child dominators of a1 (cf. Figure 4.1).

Basic synchronization protocol. First off, AEON uses two types of FIFO queues

on every (dominator) actor: (1) a region locking queue for the actor’s dominate region;

(2) an actor locking queue for each actor in the region. (1) is used to guarantee that

events enter the dominate region in sequential order, while (2) control locks on the

corresponding actors.

Intuitively when an event targets a set of actors, it executes from the corresponding

dominator a1 downwards following the DAG. At every dominator “below” a1, other

events may arrive. Thus every dominator serializes events in its dominate region and

then “passes them on” to its child dominators similarly to hand-over-hand locking (at

dominator level):

(1) When an event arrives at a dominator a1 it needs to lock that dominate region

at first. To that end the event is first placed into the region locking queue of

a1.

(2) When the event becomes the head of that queue, it is removed and put into the

actor locking queues of: (i) a1 and (ii) any actor a2 reachable from a1 in this

dominate region.

If a2 is a child dominator the event is forwarded to a2 and put into its region

locking queue. The event is removed from all actor locking queues in the region once

60

all actors (i) and (ii), including child dominators, finished executing the event (boiling

down to a “no-op” for unaffected actors).

Illustration. In Figure 4.2, event e1 tries to execute on actor a2 while e2 is targeting

actor a3. Initially, e1 and e2 are placed into a1’s region locking queue (1). e1 is

removed from the region locking queue and put into actor locking queues of a2, a4

and a5 (2), since a4 and a5 are reachable from a2. e2 is then removed from the region

locking queue and put into actor locking queues of a3, a4, and a5 (3), since a4 and a5

are reachable from a3. Finally when e1 becomes the head of a2’s actor locking queue,

e1 can execute in a2, but when e1 tries to execute in a4 and becomes the head of a4’s

actor locking queue, e1 will be forwarded to a4 (i.e., a4 is a child dominator). Note

that in (3) e1 and e2 are the heads of actor locking queues of a2 and a3 respectively,

so they can execute in parallel in a2 and a3.

Observe that the actor locking queue of child dominators in their parent domi-

nator’s region is used to control the order in which events enter child dominators’

regions from parent dominators’ regions. Those events still need to obtain exclusive

locks on the former regions separately since they can access a dominate region either

from parent dominators’ regions or as direct targets. As Figure 4.3 shows, a5 is a

child dominator of a1. Events e2 and e3 are entering a5’s dominate region from a1’s

dominate region, while e1 lands in a5’s dominate region directly. When e2 becomes

the head of a5’s actor locking queue on a1, e2 is forwarded to a5 and put into its

region locking queue. When e2 finishes execution in all actors in the dominate region

of a1, e2 is removed from all actor locking queues in a1’s region. Note that e2 may

be still executing in other actors in a5’s region but finished executing in a5, and that

these actors in which e2 is executing are not included in a1’s region.

Serializability in a single dominate region. We argue for serializability by

showing that no two events in a given execution of XYZ are interleaved. Since an

event e can only execute in an actor a when e is the head of a’s actor locking queue,

61

and e will not be removed until it completes execution within the dominate region,

subsequent events are put on hold.

Consider the event execution order in actors of one dominate region. According

to the synchronization protocol above, when an event e1 becomes the head of a region

locking queue, it will be immediately put into the actor locking queues of any actor

a1 that e1 is targeting and actors that can be reached from a1 in the dominate region.

Since events follow the ownership DAG top-to-bottom to access actors, e1 can only

access actors reachable from a1 there. Assume there exists an actor a2 in the same

dominate region that e1 can access and a2 is not reachable from a1. Then (i) a1 must

be reachable from a2 or (ii) there is a3 which both a1 and a2 are reachable from. In

(i) e1 will be put into the actor locking queue of a1 when it tries to lock a2; in (ii) e1

will be put into actor locking queues of both a1 and a2 when it tries to lock a3. In

Figure 4.2 (3), e2 will execute in a3 and it is put into actor locking queues of a4 and

a5 since a4 and a5 are reachable from a3.

Finally, as the region locking queue is a FIFO queue, any two events executing in

a dominate region are dequeued in sequential order. As an event is placed into actor

locking queues of all accessible actors when it is thus dequeued, two events’ order in

any actor locking queues will be the same as their order in the region locking queue.

Thus any two events in a dominate region will execute in any actor in the same order

and will not interleave.

Serializability across dominate regions. By following the DAG an event can

only access dominate regions which are reachable from its current dominate region.

By showing that two events have the same execution order in a dominate region and

its child dominator’s region, we can inductively argue that those two events have the

same order in all dominate regions.

Assume two events e1 and e2 are accessing dominator a2 from an actor a3, which

is dominated by a1. Then a2 is a child dominator of a1 and is in the dominate region

of a1. e1 and e2 are put into the actor locking queues of a2 when they are dequeued

62

…

a1

a5

Actor a1

e2 e3

…

a5

Actor a5

e1 e2

Region locking queue

Actor locking queue

Event

Dominate region

Figure 4.3.: Event execution order in
child dominator’s region. a5 is a child
dominator of a1. e2 is the head of the
actor locking queue of a5 in a1’s region.
Thus e2 will be put into the region lock-
ing queue of a5.

(1) (2)

a1

e3

a2

a3

a4

a5

e4

a1

a2

a3

a4

a5
Actor a1 Actor a1

e1

e1

e1

e2

e2

e2

e3 e4

Region locking queue

Actor locking queue

Non-ownership event

Dominate region

Ownership event

Figure 4.4.: Ownership event e3 waits
until all previous events (e1 and e2) finish
(1) and starts to execute (2). e4 can only
be put into actor locking queues after e3
is done and removed from the queue.

63

from the region locking queue of a1. When e1 (or e2) becomes the head of a2’s actor

locking queue (on a1), it is forwarded to a2 and put into a2’s region locking queue.

Clearly, e1 and e2’s order in a2’s region locking queue is the same as their order in a2’s

actor locking queue (on a1), because e1 will not be removed from a2’s actor locking

queue (on a1) before it finishes execution in a2. In Figure 4.3, a5 is a child dominator

of a1. e2 is before e3 in a5’s actor locking queue on a1. e2 will thus be put in a5’s

region locking queue (on a5) before e3.

4.1.2 Synchronization under Dynamic Ownership

In our model, an event can include several ownership modifications, i.e., addition

or removal, of ownership between two actors (field re-assignments incur two modifi-

cations).

Synchronization protocol. Ownership events (cf. 6) are checked statically by

the AEON compiler. For any ownership modification, the ownership event involves

locking both corresponding parent and child actors by locking their dominators’ re-

gions. As with non-ownership events, ownership events are put into corresponding

region locking queues. However, when an ownership event becomes the head of such

a queue, it is not removed and put into actor locking queues (unlike other events).

Instead, the event waits until all actor locking queues are drained to finally execute.

All following events in the region locking queue are blocked until this ownership event

is finished and removed from the queue. Ownership events therefore lock the whole

dominate region during their execution. Since no other event can execute in one dom-

inate region while an ownership event is being executed, no other event can observe

(or suffer from) the DAG updating process.

As Figure 4.4 shows, ownership event e3 first waits for e1 and e2 to finish executing

in this dominate region (Figure 4.4 (1)). Eventually e3 becomes the head of the region

locking queue (Figure 4.4 (2)) and can be executed; it remains in the region locking

queue until the execution is finished. During the execution of an ownership event,

64

Actor a1 Actor a3

Actor a1 Actor a2

Actor a1

Actor a2

Actor a3

(i)

(ii.1)

(ii.2)

Dominator

Parent-child dominator

Ownership

Dominate region

Figure 4.5.: Ownership events (i)
modifying ownership between actors
in a1’s dominate region; (ii.1) and
(ii.2) modifying ownership between ac-
tor from a1’s dominate region and an-
other actor from a2’s dominate region.

Client Program Server ProgramXYZ Pre-compiler

Client C++ Program Server C++ Program

C++ Compiler

XYZ Client Library

Client Executable File Server Executable File

XYZ Runtime Library

Figure 4.6.: XYZ implementation
workflow.

the runtime determines actors whose dominators changed as a consequence, or have

new dominate regions, and informs them of the updated DAG. Only after that is the

ownership event removed from the region locking queue. If an actor is not a dominator

anymore or has new dominate region after DAG updates, it forwards events in its

region locking queue to the new respective dominators.

Serializability under dynamic ownership. As argued in subsection 4.1.1, our

model guarantees serializability under a static ownership configuration. To claim se-

rializability under dynamic ownership, we thus need to show that ownership events

do not affect the safety of event execution. In the following, we show that serializabil-

ity is maintained under dynamic ownership because ownership events lock all actors

which may be affected by its ownership operations.

Let us consider the graph induced by the ownership DAG’s dominators and parent-

child dominator relationships. Clearly the ownership structure is a tree. According

to the synchronization protocol, ownership events lock the whole dominate regions

during their execution. When an ownership event modifies an ownership, it must

lock both corresponding parent and child actors by locking their dominators’ regions.

Figure 4.5 depicts the two possible cases: (i) both actors are dominated by the same

dominator; (ii) the two actors are dominated by different dominators. For (i), the

65

ownership modification will not affect other dominators (and their dominated actors)

since it happens within one tree node (dominator) which is already locked by the

event. For (ii), assume the parent and child actors of the ownership are dominated

by a1 and a2. There are two sub-cases here: (ii.1) there is an actor a3 with paths to

both a1 and a2; (ii.2) there is a path from a1 to a2. In case (ii.1), potentially affected

actors can only be actors dominated by dominators on the path from a3 to a1 or from

a3 to a2, which are are all locked by the event. Similarly, in (ii.2), the event must

lock all dominators on the path from a1 to a2 and affected actors can only be actors

dominated by dominators on this path. Thus all affected actors are locked by this

ownership event.

Thus, non-ownership events will not be affected by concurrent ownership events.

As described, an ownership event will lock all actors which may be affected by its

ownership operations. At the same time, an ownership event will only start to execute

when there are no other events executing in the region. Then for events appearing

before the ownership event in the region locking queue, the ownership operations only

happen after they leave this region, while events after the ownership event can only

observe the updated DAG.

Deadlock freedom (and starvation freedom). As deadlocks only happen when

two events access the same set of actors in different orders, they can not occur in

AEON. As explained earlier, any two events will have the same execution order on

any common affected actors. Assuming every event finishes in a finite period of time,

starvation freedom is guaranteed under static ownership: any event in a region locking

queue will eventually become the head and be placed into corresponding actor locking

queues. This event will also be the head of actor locking queues and eventually execute

in corresponding actors. Starvation is possible under dynamic ownership though if

a non-ownership event is continually forwarded to a new dominator following DAG

updates via ownership events. However, we remark that such executions are not

uncommon for distributed transactional protocols in which a writer interrupts a reader

66

infinitely many times forcing starvation in order to preserve strong consistency [23,79].

Note that deadlock freedom is provided even in such a pathological execution as the

ownership change terminates although the non-ownership event is starved. We are

currently working on a solution mitigating this situation.

4.2 Elasticity

In this section, we explain AEON’s elasticity manager called smanager. The

smanager provides the following capabilities: (i) maintaining the global actor map-

ping and ownership network, and (ii) managing actor creation and migration based

on elasticity policies. In our experiments, AEON is made fault tolerant using the

Zookeeper service. In the remainder of this section, we explain the above two capa-

bilities.

4.2.1 Actor Mapping

Since actors can dynamically migrate across hosts, and in order to deliver an

event to the appropriate actor, AEON first needs to find the host currently holding

the corresponding actor. To this end, every client and host caches the most recent

actor mapping that they have queried, and periodically refreshes their actor mappings

by querying the smanager. In practice, and in order to have a highly scalable and

available system, clients and other hosts do not directly query the smanager. Instead,

the smanager stores the latest actor mappings along with the ownership network in

a (configurable) cloud storage. Therefore, to locate an actor for the first time (or

in case the local cache has become invalid), a host or a client simply performs a

read operation on the cloud storage system to retrieve the latest mapping. In the

remainder of this paper, and for the sake of simplicity, we assume that clients and

other hosts directly query the smanager.

67

4.2.2 Elasticity Policy

AEON gives the programmer the ability to define when and where actors should

be migrated. Every server periodically sends its resource utilization data (i.e., CPU,

memory and IO) to the smanager. AEON provides a simple API to define when the

smanager must perform a migration. The following example policies are implemented

in AEON by default: (i) Resource utilization: in this policy, a programmer defines a

lower and upper bound of a resource utilization along with an activation threshold.

Thus, when a resource in a server reaches its upper bound plus a threshold the

smanager triggers a migration. (ii) Server contention: under this policy, a programmer

defines the total number of acceptable actors per server. Hence, once a server reaches

its maximum, the smanager triggers a migration.

Once a migration is triggered, AEON computes a list of possible servers that

can receive the actors concerned. The default algorithm tries to move actors from

overloaded hosts to underloaded ones, but programmers can implement their own

algorithms for choosing hosts and actors. In addition, AEON allows programmers

to define constraints on any attribute of the system For instance, a constraint can

disallow certain actor migrations, or disallow a migration to a new host if total cost

reaches some threshold.

Migration protocol. Once a migration is triggered, the smanager will follow the

following atomic steps to migrate an actor C from host s1 to a new host s2.

I The smanager sends a prepare message to s2, notifying that requests for actor

C might start arriving. Then, s2 responds by creating a queue for actor C and

acknowledges the smanager.

II Upon receiving the ack, the smanager informs s1 to stop receiving events tar-

geting C and it waits for s1 ack.

III Once the smanager receives the ack, and after δ seconds, it updates its actor

mapping by assigning C to s2. Thus, from this point on, the smanager returns

68

s2 as the location of actor C. It then sends a special event called migrate(C, s2)

to s1 indicating that C has to be migrated to s2.

IV Upon receiving migrate(C, s2), s1 enqueues an event migratec in C’s execution

queue. This event serves as a notification for actor C that it must migrate.

When migratec reaches the head of C’s queue, s1 spawns a thread to move C to

s2.

V Upon completion of the migration, s2 notifies the smanager that the migration

is finished, and starts executing the enqueued events for actor C.

Correctness under actor migration. Observe that actor C, at the end of step

II when s1 stops accepting events for C does not take any steps until step III when

the smanager updates the actor map. During this period, s1 does not accept events

targeting actor C, and smanager does not return s2 as the new host for C.

Once the migration event enters C at s1 for execution, it will be the only event

that is being executed at C.

Following the complete execution, both s1 and s2 will have up-to-date actor map-

pings. If s1 later receives an event for C from a host with stale actor map, s1 will

forward those events to s2 directly and notify source host to update its actor map.

Similar to Orleans [73], AEON provides users with a special snapshot API that

allows programmers to take consistent snapshots of a given actor along with all its

children. To this end, upon receiving a snapshot request for an actor, the runtime

of AEON dispatches a particular event called snapshot to that actor. Consequently,

this event takes consistent snapshots of that actor and its children by getting actors

states, and writing them into a (configurable) cloud storage system like Amazon S3.

To improve the performance, a programmer is able to override a method returning

the state of an actor. In case the overridden method returns null for a actor, the

runtime system will ignore that actor during the checkpointing phase.

As we mentioned earlier, in practice the smanager is implemented as a stateless

service that is responsible for updating actor mapping and the DAG structure that

are stored in a cloud storage system. The smanager also leverages the cloud storage

69

system for persisting the steps of ongoing migrations. Therefore, if during the course

of a migration, the smanager crashes, a newly elected smanager can read the state of

an going migration, and tries to finish it. Details on how individual server and the

smanager failures are treated without violating the consistency can be found on the

AEON webpage.

4.3 Implementation

We overview our prototype implementation and discuss and fault tolerance in

AEON.

4.3.1 Prototype

AEON is implemented as a pre-compiler and two libraries: AEON runtime library

and AEON client library. As Figure 4.6 shows, programmers implement a server

program and a client program in AEON. The AEON pre-compiler processes those

AEON programs by handling special syntax in AEON (e.g., event) and generating

code to handle (potentially remote) method calls on actors. The pre-compiler outputs

C++ client and server programs. Then the C++ compiler is invoked to generate server

executables from C++ server programs and the AEON runtime library, and client

executables from C++ client programs and the AEON client library. The two AEON

libraries are implemented in around ≈ 40 KLoC in total in C++. The AEON pre-

compiler includes ≈ 3 KLoC in Python and ≈ 4 KLoC in Perl.

4.3.2 Fault Tolerance (FT)

Currently host (or process) crashes are handled by recovery. That is, failed actors

are resurrected at a new host (or process). To that end AEON takes consistent snap-

shots of actors, and loads the latest consistent state of a failed actor when resurrecting

it. Specifically AEON periodically takes global snapshots by sending a snapshot event

70

to the root actor. This event persists the state of all the actors starting from the root

actor. Observe how ensuring consistency — a non-trivial undertaking in general

graphs [80] — is fairly simple in our model as AEON guarantees serializability among

all the events, and a snapshot event runs like any other event. Moreover, by means of

async semantics, a snapshot event can obtain snapshots of the root actor’s descendants

in parallel, minimizing the impact on system performance. Advanced programmers

can configure snapshots and manually trigger and manage them on select parts of the

DAG through an API.

4.4 Evaluation

In this section we evaluate the performance of (applications written in) AEON,

by comparison to several related state-of-the-art systems and frameworks.

4.4.1 Synopsis

Research questions. The goal of this evaluation is to answer the following ques-

tions:

RQ1 (subsection 4.4.2): How does AEON’s synchronization protocol compare to a

basic synchronization protocol like two-phase locking?

RQ2 (subsection 4.4.3): How does our model compare to a “regular” actor language

(no support for multi-actor programming), achieving consistency by manually

synchronizing?

RQ3 (subsection 4.4.4, subsection 4.4.5): How does our model compare to using a

storage system for shared state which needs to be kept consistent?

RQ4 (subsection 4.4.5): How does our model compare to actor languages with com-

parable properties?

71

RQ5 (subsection 4.4.6, subsection 4.4.7): How well does our model scale and how do

the different call types fare?

Comparisons. We use the following systems and languages in our experiments:

C++: For RQ1&RQ2 we use the same basic C++ distributed runtime used in AEON

to show the efficiency of AEON’s synchronization protocol. For brevity we refer

to it simply as “C++”.

Akka: For RQ2 we use Akka [68] as it is a popular actor framework and well-suited

for distribution like AEON, yet does not provide built-in support for multi-actor

synchronization.

Infinispan: For RQ3, we chose two leading “transactional” distributed storage sys-

tems for comparison – the first is the (Java-based) Infinispan [28] key-value

store. Infinispan is one of the most popular systems for caching, being used for

instance by the JBoss [81] application server. Infinispan allows programmers

to execute multiple read/write operations on key-value pairs as one transac-

tion. However, Infinispan follows the traditional execute-validate mechanism

and does not guarantee all transactions can and will be executed successfully.

At least one of two concurrent conflicting transactions have to abort, yielding

an exception which the programmer must handle.

HyperDex Warp: For RQ3 we also use HyperDex Warp [29], a next-generation

NoSQL store. Programmers can create multiple spaces (similar to database

tables) and put/delete/update objects in them. Each object is referred to by a

unique key. Multiple objects (across spaces) can be accessed in a transactional

manner. When the runtime detects concurrent transactions on the same objects,

it aborts them and throws exceptions to clients.

Orleans: For RQ4, we use the Orleans [73] distributed programming language which

is centered on a notion of actor-like grains. Orleans is actively developed by

72

Table 4.1.: Metadata store LoC.

Implementation LoC
AEON basic 552
HyperDex Warp basic 400
AEON MapReduce 390
HyperDex Warp MapReduce 296

Table 4.2.: Game app LoC.

Implementation LoC
AEON 564
Infinispan 853
Orleans 434

Table 4.3.: B tree LoC.

Implementation LoC
AEON original 1370
AEON optimized 1437

Microsoft, and used in a number of projects including the re-engineered Skype

and Halo [82] applications. Until recently Orleans did not enforce consistency

over multiple grains/actors. Considering the need for consistency in many ap-

plications, the version 2.0 [74] started supporting cross-actor transactions. We

use transactions only where needed2.

Note that many actor languages and extensions have been proposed (several are

discussed in chapter 2) with designs overlapping with that of AEON. Languages and

models designed and implemented without support for distribution can however not

be compared against here. This is not to say that those could not be extended to

a distributed scope, but doing so require addressing specific non-trivial design ques-

tions. AEON’s model and synchronization protocol have been specifically designed

to minimize coordination over the network due to increased latency. Similarly, sev-

eral actor benchmarks (e.g., Savina [83]) are geared towards, and implemented for,

concurrent single-process setups and it is not clear whether corresponding applica-

tions (e.g., thread ring, dining philosophers) are meaningful in the networked setups

targeted herein.
2Orleans’ transactional semantics are controlled by tagging variables whose accesses need corre-
sponding synchronization.

73

Applications and settings. To compare against Infinispan and HyperDex Warp

we have implemented systems with the same features in AEON, or more directly

applications with the same functionality as applications built on top of these systems.

For brevity we may simply refer to AEON (or any of the approaches compared to)

for a given application, rather than specifying both application and approach used.

Table 4.1, Table 4.2 and Table 4.3 compare the number of LoC used for the more

involving applications across the different approaches. The number of LoC must be

treated with caution since each approach uses a different language: AEON is extended

from C++, HyperDex Warp provides Python APIs, Infinispan is a Java package,

and Orleans is based on C#. In addition, the levels of abstraction also differ. For

example, Table 4.1 shows that AEON’s programs have more LoC compared to those in

HyperDex Warp, yet programmers have to declare actor classes and implement actor

class methods in AEON, while they only need to create and access tables with built-

in API functions in the more specialized HyperDex Warp. It is thus reasonable to

expect that the AEON metadata store implementation requires more LoC compared

to HyperDex Warp. We believe that the numbers of LoC show that AEON does not

impose high burden on the programmer.

The technical differences similarly affect the performance measurements. However,

we believe this effect is not as pronounced as one might expect, especially at larger

scales where the overhead of remote communication becomes more important com-

pared to purely local processing speeds (explaining why increasingly many distributed

systems are implemented in languages like Java). In the performance comparison, we

assess the performance of each framework via a set of driver applications/workloads

on AWS cloud. We investigate scalability of AEON by varying the number of servers,

and compare performance of different call types.

Each experiment is run entirely at least 3 times and averaged, with averaging also

in runs.

74

FT. We disabled snapshots in AEON when comparing with other systems, as these

do not have comparable mechanisms. Orleans does not provide automatic FT in

its transactional version. HyperDex Warp claims FT [84] yet the source code [85]

is not FT. Infinispan supports replication for individual key-value pairs, but with

no consistency guarantee across key/value pairs in transactional mode, so we set its

replication degree to 1.

4.4.2 RQ1: Two-phase Locking in C++

While AEON has its own DAG-based synchronization protocol to serialize applica-

tions, developers can obtain a similar degree of synchronization with other languages,

albeit with more efforts, with classic mechanisms such as two-phase locking (2PL). We

exhibit the efficiency of AEON’s synchronization protocol against its closest baseline,

a 2PL implemented on AEON’s basic C++ runtime.

Assume an application which consists of multiple actors, each on a separate server.

Clients issue requests to this application consisting in updating two randomly chosen

target actors in an isolated manner. In the “C++” implementation, consistency is

guaranteed by using 2PL. To avoid deadlocks as in AEON though, all actors are

sorted according to their ids, and locking happens in increasing order of id; for two

chosen actors, any actor with smaller id than either of them has to be locked. Then the

client updates their states, and releases all locks. For AEON, as this microbenchmark

scenario has no root AEON creates an abstract root (cf. subsection 3.3.3) placed on

the same server as one of the actors. In addition to their respective synchronization

protocols, both AEON and C++ implementations include (write-ahead) logging of

operations as used typically in combination with 2PL for fault recovery.

We now describe the experimental setup for benchmarking AEON’s synchroniza-

tion protocol with respect to the above described C++ 2PL protocol implementation.

We compare the client request latencies of the two implementations on a setup where

1 to 4 clients send their requests to the applications with 1 to 8 actors. In the 1

75

1 2 3 4 5 6 7 8
#clients

0
20
40
60
80

100
120

#e
ve

nt
s /

 s
XYZ
C++
Akka

Figure 4.7.: Binary tree
throughput in AEON, C++
and Akka. Unlike AEON, the
synchronization overhead of a
growing number of clients sat-
urates C++ and Akka.

1 2 4
#clients

100

101

102

La
te

nc
y

(m
s,

lo
g)

1 server

1 2 4

2 servers

1 2 4

4 servers

1 2 4

8 servers

XYZ 2PL

Figure 4.8.: Latency of an app using AEON’s proto-
col vs a two-phase locking in C++ with varying num-
bers of clients and servers.

actor setup, clients only update 1 actor’s state. We deploy clients and actors on AWS

m1.small instances; each are deployed on their own instance.

Figure 4.8 shows the two implementations achieve close latencies with 1-2 actors.

However, AEON’s synchronization protocol clearly outperforms 2PL as the number

of actors increases, and even more so as the number of clients increases too; proving

the scalability of AEON’s synchronization.

4.4.3 RQ2: Manual Synchronization on Binary Trees in Akka and C++

Most actor programming languages such as Akka [68] focus on providing highly

concurrent execution with “simple” asynchronous messaging. AEON is not thought

of as a replacement for these languages, but specialized for applications requiring

serializability. We demonstrate the benefits of its inherent serializability support over

manual synchronization.

Assume multiple clients are issuing requests to a binary tree. Each request ran-

domly picks a path from the root node to a leaf node and accesses all nodes on the

path from top to bottom. Additionally, all those requests must access the tree nodes

in the same order. Simple asynchronous messaging can not guarantee that the arrival

order of each request is the same as those requests’ send order. One request may

leave a parent tree node after another request, and yet arrive at the child node first.

76

A simple, yet correct solution is to serialize the execution of requests by allowing one

request access at a time on the whole binary tree.

We implemented a 10-depth binary tree in (1) AEON (155 LoC), (2) Akka Scala

(274 LoC) and (3) on AEON’s basic C++ runtime (1510 LoC). (3) is used as an

intermediate baseline between AEON and Akka to isolate the benefits of C++, which

AEON is based on, over the JVM, and those proper to AEON. The binary tree

implementation in (2) and (3) serializes all requests via the root node. The tree

is deployed on two AWS m1.medium instances. We enforce remote messaging by

placing a parent node on a different machine from its children. Clients are on another

m1.medium instance.

As Figure 4.7 shows, Akka and “C++” outperform AEON with few clients be-

cause of the overhead of AEON’s serialization protocol. This is due to the fact that

the AEONprotocol leverages additional metadata and bookkeeping (with multiple

queues) for parallelism. However, with increasing numbers of clients, the benefits

of this fine-grained synchronization become apparent. AEON provides serializability

without sacrificing fine-grained parallelism. The experiment also shows AEON’s ben-

efits are due to its synchronization protocol and can not just be ascribed to C++’s

greater runtime efficiency.

We remark that it is possible to potentially improve the Akka (and C++) imple-

mentation of the binary tree enforcing the execution order of requests with timestamps

or with a distributed locking mechanism (as discussed in 4.4.2) or implementing a cus-

tom serializable protocol specifically designed for the semantics of the binary tree op-

erations [86]. However, such approaches require a deep understanding of distributed

applications and non-trivial implementation efforts; both of which can be avoided by

using AEON as it requires no additional code for serializability.

77

4.4.4 RQ3: Metadata Store with HyperDex Warp

We compare the metadata store of the Warp Transactional Filesystem (WTF) [84]

implemented both in AEON and HyperDex Warp. WTF consists of four “tiers”: a

client library, a metadata store, a replicated coordinator, and storage servers. Only

the metadata store requires serializability so clients can update metadata of multiple

files stored on the metadata store at a time.

That is, when a client tries to read, write, or manage a file, it first connects to

the metadata store to retrieve file information, and then connects to one of the corre-

sponding storage servers to access the file. WTF supports regrouping of accesses on

multiple files, unlike other filesystems (FSs) such as HDFS [87], by using “transac-

tions” in the metadata store, thus allowing clients to update the metadata of multiple

files (e.g., merge files) together.

Implementation. The original metadata store for WTF is implemented using Hy-

perDex Warp. In an FS, each file and folder has a corresponding inode containing

its metadata. Inodes reflect the hierarchical structure of files and folders. However,

HyperDex Warp is similar to a key-value store and can not inherently support a hi-

erarchical structure. Consequently, HyperDex Warp stores each inode as an object

with the path of inode as key, and each folder inode includes the names of its direct

child inodes. In contrast AEON can easily support a hierarchical metadata store by

simply organizing actors (implementing inodes) accordingly.

Filesystem operations. We compare the performance of the AEON and Hyper-

Dex Warp metadata stores via common FS operations. In short, our AEON version

outperforms the HyperDex Warp version in most cases. All our experiments use AWS

m1.medium instances.

Creating files in the same folder. In this experiment, the metadata store is

deployed on one instance while 4 clients are placed on another instance and all cre-

78

0 200 400 600
#events / s

XYZ-SFHY-SFHY-SF-D1HY-SF-D2HY-SF-D5HY-SF-D10
XYZ-PFHY-PF

(a) Create files in 1 folder.

1 2 4
Folder depth

100

101

102

La
te

nc
y

(m
s,

lo
g) XYZ

HyperDex

(b) Rename folders.

2 4 8
#servers

0
1000
2000
3000
4000
5000
6000

#e
ve

nt
s /

 s

(c) Open private inodes.

1 2 4 8
#servers

100

101

102

103

La
te

nc
y

(m
s,

lo
g)

(d) MapReduce.
Figure 4.9.: AEON vs HyperDex Warp metadata store.

ate files in the same folder. Figure 4.9a shows that AEON (AEON-SF) reaches a

throughput of 180 conflict-free requests/s.

In contrast, to create a file in a folder in the HyperDex Warp implementation, a

client adds the newly created file as a child of that folder. Multiple clients creating

files in the same folder all lock the same folder inode resulting in concurrent updates

and thus repeating aborts blocking all file creations (HY-SF). To handle concurrent

updates in HyperDex Warp, we had to add random delays of 0-1 ms (HY-SF-D1),

0-2 ms (HY-SF-D2), 0-5 ms (HY-SF-D5), and 0-10 ms (HY-SF-D10) periods.

As shown, delays reduce conflicts between concurrent updates and allow progress.

We note that the HyperDex Warp implementation can outperform AEON’s when

we introduce 0-2 ms random delays (HY-SF-D2). Delays however exhibit a trade-off

between operation throughput and latency: small delays can not alleviate conflicts

while large delays increase latency. Moreover, selecting the ideal delay is a tedious

79

task since the chosen one must strive despite various workloads, making it difficult to

have an efficient distributed HyperDex Warp.

Creating files in private folders. With the same setup, clients now create new

files in their private folders to avoid any conflict. As Figure 4.9a shows, without

conflicts, HyperDex Warp’s (HY-PF) throughout is about twice as high as AEON’s

(AEON-PF). In AEON, to create a new inode actor and add it as some actor’s child,

the runtime does not only need to create the actor, but also has to update the DAG

ownership structure, which results in greater latency.

Renaming folders. With the same setup, we now consider folder renaming in the

FS. Each client tries to rename their private folder. Figure 4.9b shows the results for

different directory depths, which indicates the inode level under the client’s private

folder. Each level includes two child inodes. Observe that AEON has similar per-

formance across depths as it only needs to update the name of one inode, while its

competitor has to update paths for all inodes of this folder since it relies on paths of

inodes to capture the hierarchy, thus degrading performance and increasing program-

ming effort.

Open private inodes. We now consider the most common operations in an FS:

single inode access and update. HyperDex Warp allows clients to retrieve an inode via

its path, which makes this operation both simple and fast. AEON also allows clients

to access an actor (i.e., inode) via reference directly. In this experiment, we evaluate

the scalability and maximum throughput for different numbers of servers. Figure 4.9c

shows that both AEON and HyperDex Warp scale well for distributed FSs, yet AEON

supports higher throughput than HyperDex Warp at any scale, though being more

generic. This scenario gauges the performance of AEON when programming in the

original actor sense with “singleton messages” (cf section 3.3.3), showing that AEON’s

performance is also appealing in that case.

80

MapReduce. We show the performance of AEON and HyperDex Warp metadata

stores while running MapReduce [87,88] jobs over the FS. We do not run the complete

MapReduce jobs but only simulate their operations on metadata store: (1) We only

implemented the metadata store in AEON as only this component is implemented

by HyperDex Warp. No other component requires serializability. (2) Compared to

actual data reads/writes and computation in MapReduce, metadata operations have

low latency. Performance of store servers and computation are out of experiment

scope. We thus focus on manipulation and creation of input, intermediate data, and

output files and reading/writing data from/to these. Each server hosts 3 mappers

and 1 reducer. There is 1 client submitting 1 job at a time, occupying all mappers

and reducers.

Figure 4.9d shows the time a MapReduce job takes to finish all operations in

metadata store. AEON clearly outperforms HyperDex Warp when multiple servers

are used. For a single operation in the metadata store (i.e., open a file), Hyper-

Dex Warp is only slightly slower than AEON. However, there are, admittedly, other

reasons why HyperDex Warp MapReduce is much slower than AEON: (1) Hyper-

Dex Warp only provides APIs for Python while AEON is implemented in C++, and

Python’s performance, in most cases, is worse than C++. (2) HyperDex Warp is a

distributed store rather than a complete programming language. Without non-trivial

efforts of programmers to optimize important parts of their implementation (e.g.,

thread pools, socket communication), the performance of a distributed application is

affected. AEON comes with built-in optimized versions of these basic features.

4.4.5 RQ3 and RQ4: Game App with Infinispan and Orleans

We compare AEON with Infinispan [28] and Orleans [74] on the game app.

Implementation and workloads. Since both Infinispan and Orleans throw ex-

ceptions when updates conflict, we introduce random delays of 1-10 ms and retry a

81

1 2 3 4 5
#cooks / steakhouse

100

101

102

103

#e
ve

nt
s /

 s
(lo

g)

100% / 0%

1 2 3 4 5

80% / 20%

1 2 3 4 5

50% / 50%

1 2 3 4 5

0% / 100%

XYZ Infinispan Orleans

Figure 4.10.: AEON vs Infinispan vs Orleans game app with varying workloads
(%UseGrill / %NewGrill events).

certain number of times (e.g., 3×) when clients are told that their transactions are

aborted.

In the game app (Listing 3.1), Cooks can (1) put steaks on Grills belonging to

them (15) generating a UseGrill event, and (2) abandon an owned Grill to pick a new

one (omitted from the code snippet) generating a NewGrill event. Note that NewGrill

are events that change the ownership DAG structure. We tested four workloads

with different ratios of events UseGrill/NewGrill: (a) 100%/0%; (b) 80%/20%; (c)

50%/50%; (d) 0%/100% (a less realistic workload used as worst case). We initialize

the app with as many Steakhouses as there are servers. Each Steakhouse owns 10

Grills. Cooks are equally assigned to each Steakhouse. Each Cook initially uses 4

random Grills.

Throughput and scalability. We run the AEON, Infinispan, and Orleans game

apps each on 8 servers with the four workloads. Figure 4.10 compares the game

app throughput across systems. AEON always outperforms Orleans and Infinispan

(except in one single-Cook case): AEON’s throughput is higher and scales much

better with an increasing number of Cooks per Steakhouse. As this number increases,

the chance of executing updates on the same set of actors also increases, leading to

contention. Those events (transactions) may be aborted with Infinispan and Orleans,

and exceptions thrown to clients. An event may have to be retried several times,

increasing latency and degrading throughput.

82

In our experiments, the performance of Orleans was far behind that of both

AEON and Infinispan. We also observed that the performance of transactional exe-

cution in Orleans degrades substantially with the same operations compared to non-

transactional execution. For instance, with one client the transactional version of

Orleans is 20-35× slower than the non-transactional one. While these problems may

be mitigated in future versions, they demonstrate the difficulties of providing trans-

actional guarantees with good performance. Similarly to the comparison between

AEON and Akka in subsection 4.4.3, technical differences alone do not seem to be

able to explain the substantial differences.

Infinispan outperformed AEON at 1 player with workload (d), as NewGrill events

update AEON’s DAG. However, in all other cases, AEON outperformed Infinispan,

especially for mixed workloads (b) and (c), where events may conflict with each

other on both Steakhouse and Grill actors. Thus the throughput of Infinispan drops

dramatically when more Cooks are added to a same Steakhouse. Also this difference

in trend to AEON is not due to mere technical differences.

4.4.6 RQ5: Game App Scalability

Scalability. In this experiment, we study how the ownership DAG helps the run-

time system execute events in a scalable manner, including dynamic changes of the

ownership DAG itself. Figure 4.11 depicts the scalability of the AEON game app,

with the same UseGrill/NewGrill workloads as in subsection 4.4.5, when the num-

ber of servers increases from 2 to 32. As presented in subsection 4.1.2, ownership

events (NewGrill) always lock the dominator (Steakhouse), while other events (UseG-

rill) release dominators upon execution. Hence the total throughput decreases as the

percent of NewGrill requests increases. Since the implementation of the distributed

DAG structure guarantees that only related actors are affected in NewGrill events,

AEON’s game app scalability is ensured even with 100% NewGrill events.

83

Call types. In section 3.2, we discussed how to implement a cooking arrangement

function in the game app using sync(hronous), async(hronous) and event method calls

for different consistency and performance requirements. We measure the performance

of each type of method call.

We set the game app with 1 Cook and 16 Grills deployed on 4 AWS m1.small

instances, hosting 4 Grills each. The Cook keeps making put method calls on those

Grills. We simulate put requiring a certain amount of computation by adding 0, 5K,

and 10K computation rounds in Grill :: put.

Figure 4.12 shows the throughput (i.e., number of method calls executed/s on

all Grills) for different types of method calls and computation loads. With little

computation, async’s throughput is around twice that of sync while the throughput

of (separate sub-)events is almost 4 times higher than that of async. Thus while async

can improve parallel execution within a single event, this improvement is limited by

the overhead of synchronization. Serializability is not enforced across (sub-)events,

enabling higher throughput.

4.4.7 RQ5: B Tree

Here we substantiate how programmers can benefit from AEON’s serializability

and readonly events through B trees, popular indexing data structures in storage

systems.

In the original B tree, every operation accesses the root node, thereby limiting

overall performance. Caching is thus a common optimization to improve performance

(of B and B+ trees alike [89], the difference being only the storage of data also on

inner nodes for the former). The cached information of inner nodes allows clients

to forward operations to related nodes directly. However, the cache-based B tree

implementation requires serializability, or the expected semantics of the B tree can

get violated. E.g., inserting a key into a node which is to be merged at the same time

could lead to exceeding the maximum number of keys in nodes, or worse, lost data.

84

2 4 8 16 32
#servers

100

101

102

103

#e
ve

nt
s /

 s

Use100
Use80
Use50
Use0

Figure 4.11.: Game scale-out.

0 5K 10K
Computation round

0
400
800

1200
1600
2000

#m
et

ho
d

ca
lls

 /
s

event
async
sync

Figure 4.12.: Calls’ throughput.

0 5K 10K
Computation round

0
20
40
60
80

100

CP
U

us
ag

e
%

ag
e

Figure 4.13.: Calls’ CPU usage.

0 200 400 600 800
#events / s

100

101

102

La
te

nc
y

(m
s,

lo
g)

Figure 4.14.: Optimizing B tree.

85

Implementation. Thanks to its serializability, programmers can implement an op-

timized B tree using AEON without extra effort to sidestep the above-mentioned

limitation. For comparison, we also implemented the original B tree without caching

information of any inner nodes on clients. In addition, both versions can benefit from

readonly semantics for read operations. As we have already compared AEON to Or-

leans, and the latter does not provide readonly semantics, we dive into the benefits of

(1) lightweight serializability (enabling efficient optimized B trees without root-node

synchronization of all events) and (2) readonly semantics (acceleration on read-heavy

workloads) of AEON. Table 4.3 shows the number of LoC for both the original and

optimized AEON implementations. The minor difference in LoC is due to the caching

of inner nodes in the optimized version.

Scalability. We compare the scalability of the two implementations on a single

AWS m1.medium instance. A second m1.medium instance was running from 1 to 8

clients. We follow the YCSB [90] benchmark, and use 2 types of workloads: write-

heavy (50% read operations vs 50% insert operations) and read-heavy (95% read vs

only 5% insert). Each client starts by issuing 100 read operations as a warm-up. We

repeated the experiments 3 times for all 4 combinations of the 2 implementations,

OPTimized and ORIGinal, and the 2 YCSB workloads.

Figure 4.14 shows mean throughput and mean latency of operations for all setups

(legend: H 50%-OPT, N 95%-OPT, + 50%-ORIG, X 95%-ORIG). As expected, the

optimized version (1) outperforms the original one for both workloads, scaling to more

operations performed with shorter latency, while the original version saturates much

faster at its maximum throughput, and (2) shows the benefit of readonly events on

the read-heavy workload. The huge differences between the read-heavy and write-

heavy measurements can not be explained by any inherent differences between read

and insert operations (i.e., RAM memory read/write speeds are similar [91]).

86

4.5 Summary

We have presented the implementation of the AEON language runtime. AEON

provides a sequential programming environment for the cloud based on the standard

paradigm of object-orientation. We provide a synchronization protocol of AEON,

and show that this protocol exploits parallelism while providing strict serializability

as well as deadlock freedom. We have experimentally shown that the AEON runtime

system scales as the number of client requests increases, and it is able to scale-out/in

to provide an economic solution for the cloud.

87

5 PLASMA: PROGRAMMABLE ELASTICITY FOR STATEFUL CLOUD

COMPUTING APPLICATIONS

Developers are always on the lookout for simple solutions to manage their applica-

tions on cloud platforms. Serverless computing platforms (e.g., AWS Lambda) are

among the most popular ones, which allow developers to program elastic cloud appli-

cations consisting of stateless functions that can be automatically scaled in and out,

without manual intervention. Major cloud providers have already been offering auto-

matic elasticity management solutions (e.g., AWS Lambda, Azure durable function)

to users. However, many cloud applications are stateful — while executing, functions

need to share their state with others. Providing elasticity for such stateful functions

is much more challenging, as a deployment/elasticity decision for a stateful entity

can strongly affect others in ways which are hard to predict without any application

knowledge. Existing solutions either only support stateless applications (e.g., AWS

Lambda) or only provide limited elasticity management (e.g., Azure durable function)

to stateful applications.

PLASMA (Programmable Elasticity for Stateful Cloud Computing Applications)

is a programming framework for elastic stateful cloud applications. It includes (1) an

elasticity programming language as a second “level” of programming (complement-

ing the main application programming language) for describing elasticity behavior,

and (2) a novel semantics-aware elasticity management runtime that tracks program

execution and acts upon application features as suggested by elasticity behavior. We

have implemented 10+ applications with PLASMA. Extensive evaluation on Ama-

zon AWS shows that PLASMA significantly improves their efficiency, e.g., achieving

same performance as a vanilla setup with 25% fewer resources, or improving perfor-

mance by 40% compared to the default setup.

88

Roadmap section 5.1 discusses the existing elasticity management. section 5.2

discusses challenges in providing elasticity for stateful applications and overviews

PLASMA. section 5.3 and section 5.4 detail PLASMA’s EPL and EMR respectively.

section 5.5 presents empirical evaluation. section 5.6 concludes.1

5.1 Background: Elasticity Management

Elasticity is essential to the “pay-as-you-go” cloud computing model [92], allowing

cloud applications to automatically scale their demand for cloud resources in/out in

adaptation to workload changes. Elasticity maximizes the use of resources and thus

reduces infrastructure costs, meanwhile maintaining performance and service quality

of cloud applications.

Developers can program elastic cloud applications as a set of functions executing

independently in response to specific events (e.g., AWS Lambda and Azure Durable

Function). Such functions, usually encapsulated in VMs/containers, can be auto-

matically scaled in/out on corresponding platforms [1,40–43], freeing developers and

administrators from server management.

This kind of solution provides developers with ideal automatic elasticity manage-

ment. However, existing automatic elasticity management provide better support to

applications consisting of stateless functions, such as routines for image processing [93]

or handlers of IoT devices [94]. These provide a pure transformation from input to

output without external dependencies at execution. When the state of functions is

thus limited to internal state, automating elasticity is relatively straightforward; it

can simply focus on placing a function on a server node with available resources, or

adjusting the number of function instantiations.

However, many cloud applications are stateful, i.e., functions need to share state

with each other. Such scenarios are common across multiple abstraction levels, e.g.,
1In this chapter, with the help of Gustavo Petri and Patrick Eugster I designed the semantics for
the PLASMA elastic programming language. Patrick Eugster and Srivatsan Ravi also made several
key propositions for the evaluation for the PLASMA runtime.

89

metadata of distributed file systems (one component of an application), data access

tier of web applications (an entire tier or layer), microservice applications [95] (mul-

tiple loosely coupled components), and massively multi-user online games (an entire

application). Those stateful applications can not be executed efficiently in state-of-

the-art serverless computing platforms (e.g., AWS Lambda [96]).

Providing elasticity for generic stateful functions – or more generally components

or (micro-)services – is very challenging, as an elasticity decision for one stateful com-

ponent depends on not only that component, but also on others and its interaction

with them. Existing programming models and frameworks enabling automated elas-

ticity [41, 96, 97] can not capture such stateful scenarios, thus limiting the scope of

the elasticity paradigm. Automating elasticity in such cases is difficult without any

knowledge of applications; many non-functional requirements are hard if not impos-

sible to learn just by looking at executions of applications. For instance one may be

tempted to straightforwardly rate low-frequency component interactions as secondary

to others and thus spread corresponding components across servers. Even if frequency

were straightforwardly correlated with “importance”, such a placement policy could

adversely affect frequent interactions — of such infrequently interacting components

— with others. Existing profiling approaches [98, 99] tracking system-level perfor-

mance (e.g., server usage) can not connect low-level performance data to application

semantics and trigger appropriate elasticity decisions.

We present PLASMA (Programmable Elasticity for Stateful Cloud Computing

Applications), a novel framework for implementing expressive elastic cloud applica-

tions. It extends an existing actor-based [64] application programming language along

two dimensions:

Elasticity programming language (EPL) PLASMA adds a second “level” of

programming to the underlying application programming language. That is, while

actors support building stateful cloud applications that have horizontal, scalable re-

lations between stateful components [4,50,51], PLASMA includes a complementary

90

elasticity programming language (EPL). The EPL allows users to express desired elas-

ticity behavior through simple rules based on high-level application semantics exposed

to the runtime to help it carry out fine-grained elasticity management. This is re-

alized without violating application invariants induced by the actor programming

model. In this paper we use EPL implementations for an actor-based language for

building stateful distributed applications, AEON [51], but our concepts are applicable

to others like Microsoft’s Orleans [3] and Scala [100].

Elasticity management runtime (EMR) To guide

PLASMA applications running on cloud platforms in achieving elasticity, PLASMA

involves a novel elasticity management runtime (EMR) with two main components.

(1) The elasticity profiling runtime tracks the behavior of actors (e.g., location, re-

source usage) and their interactions (e.g., message rates), as per the stated EPL

elasticity policy. The information is used in making global elasticity decisions (e.g.,

co-locating highly interactive actors, (de-)provisioning resources) that are acted upon

by (2) PLASMA’s elasticity execution runtime leveraging a two-level architecture to

reconcile global optimization accuracy with scalability.

We know of no other programming framework supporting programmable elasticity

for stateful cloud applications. Since our above-mentioned novel concepts are inde-

pendent from the exact underlying actor language, we focus on those concepts in

this paper. We have implemented various (10+) distributed cloud applications with

PLASMA2 including Metadata Server, E-Store [53], PageRank [101], Halo’s Pres-

ence Service [102], and a Media (micro-)Service [103]. We evaluated PLASMA using

these applications, showing how PLASMA enables fine-grained elasticity with only

high-level user input, even outperforming application-specific elasticity solutions like

Mizan [104].
2https://aeonproject.github.io/plasma/webpages/

https://aeonproject.github.io/plasma/webpages/

91

Graph partition ServerCommunication Resource Usage

(a) (b) (c)

Figure 5.1.: PageRank elasticity management example: (a) The initial placement
of graph partitions overloads the top server which calls for partition migration. (b)
Once migration is performed, the bottom server becomes congested. (c) With both
servers reaching their maximum capacity, PLASMA migrates to a new server to split
the load of the bottom one.

5.2 Motivation and Overview

We first motivate our work by a simple example, and further provide an overview

of PLASMA in this section.

5.2.1 Elastic PageRank

While elasticity in cloud computing enables an efficient use of resources, no exist-

ing framework supports fine-grained elasticity management for stateful applications.

Consequently, a whole range of essential algorithms and applications are being left be-

hind, forcing their developers to resort to an infrastructure with suboptimal resource

consumption, or build custom-tailored elastic solutions (e.g., [53, 55, 105]). PageR-

ank [101] is a fitting and simple example of a popular stateful application. A common

approach to speed up PageRank is to partition the graph it runs on into indepen-

dent subsets, and have subgraphs processed in parallel. However, as partitions need

to communicate with one another, deploying an elastic partitioned PageRank on a

stateless platform like AWS Lambda [1] requires the use of latency-costly external

92

storage (e.g., S3 [44], DynamoDB [106]). We have observed 25 ms average latency

for DynamoDB write requests and more than 70 s to write graph vertices, edges, and

partitions from a small 22 MB graph into a DynamoDB table; hence it is currently

impractical to develop stateful applications requiring frequent state load/store (e.g.,

the distributed PageRank in subsection 5.5.4 needs to update ≈1.2 GB data at each

round).

Another approach to obtain an elastic PageRank could be to directly implement

the algorithm using an elastic programming language such as Orleans [50], AEON [51]

or Akka [68]. Orleans balances workload by equalizing the number of actors on each

server and by replicating stateless actors as the workload increases. Orleans also co-

locates actors that frequently communicate with one another on the same server to

avoid remote communication. AEON also evenly distributes actors across a cluster.

Akka allows programmers to define router actors that forward received messages to

replicated routee actors in a certain pattern (e.g., round-robin).

However, none of these languages consider server metrics (e.g., CPU usage) for

ongoing elasticity management. They can not therefore properly handle applica-

tions such as PageRank – balanced graph partitioning being a notoriously difficult

task [57–59, 107]. Consider the example given in Figure 5.1 that provides an intu-

ition of elasticity management for PageRank applications. In this example, a graph

is split into four partitions. PageRank requires both network (i.e., partitions need

to exchange data) and CPU (i.e., processing graph partitions) resources. While ex-

act performance characteristics depend on exact graph partitions, cloud platform,

and implementation, simple tests on AWS show that PageRank can be easily CPU-

bound (more details in subsection 5.5.4). Assume partitions are originally evenly

distributed across two servers, as in Orleans, while trying to minimize remote com-

munication between actors as a secondary objective. But despite an even split and

fair initial placement, a partition can eventually require much more computation time

(Figure 5.1a) to the point where the CPU consumption upper-bound of the server

hosting it is crossed. With PLASMA, a developer can set CPU consumption bounds

93

Profiling Runtime Profiling Runtime Profiling Runtime

I2

I1

PLASMA Compiler

O1

O2

Actor Server

Execution Runtime

Figure 5.2.: PLASMA toolchain overview.

(e.g., 60% ≤ load ≤ 80%) to ensure that a server is neither over- nor underloaded.

To alleviate the load of a server, PLASMA then migrates actors to another server

to respect the aforementioned CPU consumption bounds (Figure 5.1b). While the

migration was sufficient at first, the bottom server becomes the congested one as

workloads vary, and with no available server to host additional workload, PLASMA

has no choice but to spawn a new server and migrate actors to that new server (Fig-

ure 5.1c).

PageRank demonstrates the need for application insights (e.g., CPU is more im-

portant than network in PageRank) for efficient elasticity management, and for plat-

form metrics (i.e., CPU usage). As we shall show, with custom-fitted elasticity rules,

PLASMA can optimize performance of various applications and adjust applications’

resources to avoid under- and overprovisioning. We explore several further applica-

tions benefiting from elasticity management in subsection 5.3.3.

5.2.2 PLASMA Overview

We outline how to develop elastic stateful applications with PLASMA, which

is designed to extend the popular actor model [64, 108, 109]. Several corresponding

languages have been already conceived for building scalable stateful elastic cloud

applications (e.g., [3, 4, 51,68]).

94

Programming with PLASMA Elasticity in PLASMA is programmed sepa-

rately from the application logic. PLASMA assumes only basic concepts for the

underlying actor-based programming language (cf. Figure 5.3.I); neither the underly-

ing actor language nor the programs need to be changed to benefit from PLASMA’s

elasticity model. This allows programmers to easily enable elasticity for existing ap-

plications without changes, simply by defining elasticity rules in a separate program

following PLASMA’s elasticity programming language (EPL).

As shown in Figure 5.2, programmers develop the (I1) application program using

the actor programming language and the (I2) elasticity program using PLASMA’s

EPL. PLASMA’s compiler takes these two programs as input and generates two

output files: (O1) an executable containing both the application’s binary code and

PLASMA’s elasticity management runtime code, and (O2) a file with elasticity ac-

tions for this application. To deploy the application programmers only need to launch

the executable that takes O2 as input.

Elastic execution with PLASMA As shown in Figure 5.2, when the application

is executing on a cloud platform, the PLASMA elasticity management runtime puts

the EPL elasticity rules to work based on the actual performance features observed

at servers about actors and their interaction. More specifically, PLASMA’s elastic-

ity management runtime (EMR) involves an elasticity profiling runtime (EPR) and

an elasticity execution runtime (EER). The EPR keeps track of the performance of

actors, focusing on those that are affected by elasticity decisions, as per the elasticity

rules. Given the declared EPL elasticity rules and the performance information from

the EPR, the EER takes decisions for placing actors among available servers and/or

adapting the number of servers, hence realizing automated application elasticity. The

EMR performs adjustments when creating actors, and every elasticity (time) period

(set by users). Note that the EMR will not blindly follow rules to conduct elastic-

ity management, but rather will consider the actual runtime situation (e.g., resource

limitations, migration overhead) in its decisions.

95

The EMR does not interfere with the execution of the original language’s runtime;

the EPR only collects runtime data of actors. In particular PLASMA inherits the

fault tolerance mechanism from the original runtime and relies on it to handle fail-

ures in the application. Failures in the EMR are handled by a separate mechanism

(presented in section 5.4).

5.3 Elasticity Programming Language (EPL)

This section describes how PLASMA’s EPL captures elasticity behaviors based

on high-level application semantics.

5.3.1 Actor-based Elasticity

Given a distributed actor-based application, elasticity decisions boil down to plac-

ing/migrating actors among available servers for adjusting to workload and variations

therein.

Execution features Numerous features of an actor-based application’s execution

can be used as cues for its performance, and to drive actor placement. The features

supported by PLASMA pertain to three categories:
[f-ra] Resource usage of actors (e.g., CPU).

[f-rs] Resource usage of servers (e.g., network).

[f-ia] Interaction between actors (e.g., message rate).

Elasticity rules Similarly to the above classes of runtime features, we can classify

rules guiding elasticity decisions based on the above features by the type of reaction

(behavior) they induce on the application execution:

[r-r] Resource elasticity rules correspond to resource features, and strive for a better

resource usage. Server resources are not directly influenced, but rather affected

indirectly by adjusting the placement (and thus resource usage) of actors, and so

this category of rules corresponds to both [f-ra] and [f-rs]. These rules provide

96

programmers with a way to reserve certain amounts of resources for actors or bal-

ancing resource usage among servers. For example, programmers can specify upper

and lower bounds on CPU resources for servers. If a server’s CPU utilization hits

the upper bound, a select group of its actors will be migrated to other servers with

idle CPU resources.

[r-i] Interaction elasticity rules correspond to actor interaction features [f-ia]. These

rules allow programmers to expose high-level application semantics to the runtime,

allowing it, e.g., to co-locate actors that strongly interact, as per application se-

mantics and actually observed at execution, thus reducing communication latency.

5.3.2 Syntax

Next, we detail the syntax and usage of PLASMA’s EPL, realizing the above

elasticity programming model. The EPL is declarative, as defining a set of elasticity

rules for actors is simpler for developers (e.g., [110]) over explicitly defining an algo-

rithm to follow with an imperative language. We opted for a declarative language

over an imperative one as we feel that it is more natural for developers to express

“policies” that way (cf. [110]). The EPL assumes only basic features of the underlying

actor programming language, as shown in Figure 5.3.I: a program includes a set of

actors of different types (), each declaring a set of functions (func) — which give rise

to messages — and fields (properties – prop). x denotes several instances of x.

Actor-condition-behavior The EPL (see Figure 5.3.II) is used to describe – sep-

arately from the main program – a policy pol that consists of a set of elasticity rules

rul. PLASMA’s elasticity rules (both [r-r] and [r-i]) are expressed in an actor-

condition-behavior style. That is, rules usually purport to features regarding certain

actors, and when certain conditions on those features are met which may adversely

affect performance, the runtime is advised to apply elasticity behaviors (to certain

actors).

97

I. Actor-based application programming language basics
Program prog ::=
Actor class ::= aname{prop func}
Property prop ::= type pname;
Function func ::= type fname(type . . .){. . .}

II. Elasticity programming language
Policy pol ::= rul
Rule rul ::= cond⇒ beh;
Actor actor ::= (var) | | var
Actor type ::= aname | any
Condition cond ::= cond or cond | cond and cond

| true | feat.stat comp val
| actor in ref(actor.pname) [f-ia]

Feature feat ::= entity.res
| cllr.call(actor.fname) [f-ia]

Entity entity ::= actor [f-ra]
| server [f-rs]

Caller cllr ::= client | actor
Statistic stat ::= count | size | perc
Resource res ::= cpu | mem | net
Comparison comp ::= < | > | >= | <=
Behavior beh ::= balance({}, res) [r-r]

| reserve(actor, res) [r-r]
| colocate(actor, actor) [r-i]
| separate(actor, actor) [r-i]
| pin(actor) [r-i]

Value val ∈ N∪R
Figure 5.3.: Basic definitions for actor programming language and abstract syntax of
PLASMA’s EPL.

98

Actors As actors of the same type tend to have similar behavior patterns, elasticity

rules are expressed a priori for actor types, and, as detailed shortly, behaviors are

expressed similarly with respect to actors of given types. A subject type of actor

is specified by the name of the actor type’s name aname as defined in the main

application program. However, a rule can contain several actors of the same type.

In order to disambiguate yet keep definitions concise by avoiding verbose variable

declarations in front of every rule, we use a form of implicit variable declaration, where

the use of an actor type in a rule can declare a variable var in an inline fashion. E.g.,

a condition relating to Innernode(i) specifies actor type Innernode and introduces

variable i to refer later to all Innernode instances to which the condition applies.

PLASMA also introduces the special type any, allowing rules to be defined for

all actors in an application. Note that PLASMA currently treats actor subtypes in

the application program as distinct types from their parent types.

Conditions Conditions are used to specify situations that may affect the perfor-

mance of applications. Though rules – and thus a priori also conditions – relate to

actor types, as alluded to above, conditions end up selecting a subset of actors of such

a type. While actors of the same type follow the same execution logic, their actual

runtime behaviors will also be affected by workloads and thus differ.

Conditions can be composed (and, or) of more elementary conditions. Basic con-

ditions can be trivial (true) or compare statistics stat (highlighted in orange) for

a runtime feature feat to some value val (a lower or upper bound), where statistics

can be a number of instances (count), a size value, or a percentage. Note that not

all statistics apply to all features.

Actual features are of three basic categories (the actual features in the syntax are

highlighted in green).

The first category (i) consists in conditions of the shape actor in ref(actor′.pname)

which essentially select actors of the former type actor that are referenced by specific

fields pname of actors of the second type actor′.

99

The second category (ii) corresponds to resource features of specific entities (entity.res).

Two subcategories arise from the two types of entities considered: actors (ii.a) or

servers (ii.b). They correspond to [f-ra] and [f-rs] respectively. The resources

considered here, in turn, are of three types (blue): cpu, memory, and network usage.

The third category (iii) corresponds to interaction features [f-ia] just like con-

ditions on referencing (i). For specific types of messages fname sent from either

clients or actors of one type to actors of another type (cllr.call(actor.fname)) we

consider the number of such messages sent per time unit, e.g., 1 min, their size, or the

percentage of a particular type of calls received by an actor, out of the total number

of this type of calls received by all actors on the same server.

Behaviors Finally, (elasticity) behaviors beh (red) tell the runtime how to react

to specified conditions on given actors. There are five kinds of elementary behaviors

(Figure 5.3). The first two give rise to resource elasticity rules [r-r] and the others

yield interaction elasticity rules [r-i].

In the former category we have balance and reserve. balance({}, res) prompts

the runtime to balance the workload on each server by migrating actors of types

indicated in from overloaded servers to ones with idle resources. res refers to the type

of critical resource that should be taken into consideration when balancing workloads.

Note that balance does not allow type variables to be used in its first argument –

using as opposed to actor. This is because balance targets servers instead of actors.

Referring to specific actors here, programmers could add conditions on those actors

(e.g., cpu.perc>30); then the runtime could only migrate those actors to balance the

workload. This would eliminate most flexibility for the runtime (e.g., migrating actors

with CPU below 30% might alleviate a bottleneck). reserve(actor,res) instructs the

runtime to keep those actors on dedicated servers exclusively, whose resources are

sufficient to meet the actors’ demands. res specifies the type of desired resources on

the dedicated servers.

100

The second behavior category spans colocate, separate and pin. colocate(actor,actor)

tells the runtime to keep the concerned actors on the same server. Notice that con-

ditions in the rule can also (further) constrain the interaction between the actors.

Consider actor2.call(actor1.fname1).count with fname1 a function of actor1. Plac-

ing a condition on this term can, for instance, restrict the total number of messages

fname1 to actor1 called by actor2. Conversely, behavior separate(actor,actor) in-

structs the runtime to keep the actors of the two types separated whenever resources

are available whilst the accompanying conditions are satisfied. This can be used for

example when actors of the two types run computationally demanding activities (i.e.,

instead, colocate may obstruct their operations). Lastly, pin(actor) indicates that

particular actors should not be moved. This prevents migration from hampering

highly available services.

5.3.3 Examples

We show the use of PLASMA’s EPL via five concrete examples. These applica-

tions are evaluated empirically in section 5.5.

Metadata Server The Metadata Server is composed of folders and files, handled

by Folder actors and File actors respectively, all of which can be opened and accessed

by remote clients. Some folders are in much higher demand than others, thus receiving

a significant portion of the overall number of requests. To avoid congestioning servers,

we opt to migrate highly demanded folders to idle servers.

Performing such elasticity managements requires the runtime to have knowledge

of application semantics, as is easily achieved with PLASMA. For instance, the

aforementioned elasticity behavior can be expressed in PLASMA by defining the

following elasticity rule: a Folder actor is migrated to an idle server (reserve) when

(1) the current server’s CPU usage exceeds 80% and (2) this folder receives more than

40% client requests among all Folder actors on this server. The rule also tells the

runtime to place all File actors under this Folder actor on the same server (colocate).

101

Table 5.1.: Applications implemented with PLASMA. We show elasticity rules and
evaluation for the first five applications.

Application LoC Elasticity rules (and number of rules)
Metadata 253 1. Colocate Folder with Files in it
Server (since they are accessed together)
PageRank [101] 465 1. Balance CPU workload
E-Store [53] 645 1. Put hot Partitions on idle servers

2. Colocate parent-child Partitions
3. Balance CPU workload of Partitions

Media 756 1. Balance network workload for FrontEnds
Service [103] 2. Provide VideoStream with enough CPU

3. Colocate linked VideoStream and UserInfo
4. Avoid migrating MovieReview
5. Balance CPU workload of ReviewChecker
6. Colocate linked ReviewEditor and
UserReview

Halo Presence 314 1. Balance CPU workload of Routers
Service [102] 2. Colocate Session with Players in it
B+ tree 1457 1. Colocate parent-child inner nodes

2. Put leaf nodes on separate servers
Piccolo [47] 564 1. Balance CPU workload for Workers

2. Colocate Worker and Table that Worker
reads data from

zExpander [111] 506 1. Put leaf nodes on idle servers
Cassandra [112] 221 1. Put table replicas on different servers

server.cpu.perc > 80 and

client.call(Folder(fo).open).perc > 40 and

File(fi) in ref(fo.files) ⇒

reserve(fo, cpu); colocate(fo, fi);

PageRank As we introduced in subsection 5.2.1, we should balance the PageRank

partitions according to CPU usage:

server.cpu.perc > 80 or server.cpu.perc < 60 ⇒ balance({Partition}, cpu);

E-Store E-Store [53] is an elastic partitioning framework for distributed OLTP

DBMSs. Initially, root-level keys are range-partitioned into blocks of fixed size and

102

co-located with descendant tuples. At runtime, the system monitors the workload

on each server and avoids imbalance. When observing a server’s resource usage (e.g.,

CPU) exceeding a high-water mark, the system selects k% partitions with high ac-

tivity on the hot server and migrates them to idle servers. If inversely observing a

server’s resource usage being below a low-water mark, the system also redistributes

the data.

It is a typical balancing problem where programmers need to define the conditions

to trigger data distribution (i.e., high-water mark and low-water mark), and how to

redistribute data (i.e., migrate hot data to idle servers). Furthermore, since data is

organized in a tree structure, we can not solely migrate the hot partitions but also

need to consider moving their descendants. We express E-Store needs with these 3

rules:

server.cpu.perc > 80 and

client.call(Partition(p1).read).perc > 30 ⇒ reserve(p1, cpu);

Partition(p2) in ref(Partition(p1).children) ⇒ colocate(p1, p2);

server.cpu.perc < 50 ⇒ balance({Partition}, cpu);

Media Service The Media Service [103] is a more intricate stateful application,

it provides two major functions, (1) rent and watch movies and (2) review movies,

involving 8 types of interdependent actors in a cloud microservice.

Specifically, the FrontEnd actors are the entrance of the Media Service and are

network-intensive. VideoStream actors stream movies to users and are CPU-intensive

and latency-sensitive. A UserInfo actor contains the information of a user: when a

user is watching a movie, the VideoStream actor keeps updating this user’s watching

history to the user’s UserInfo actor. This yields the following three rules:
server.net.perc > 80 or server.net.perc < 60 ⇒ balance({FrontEnd}, net);

server.cpu.perc>50 ⇒ reserve(VideoStream(v),cpu);

VideoStream(v).call(UserInfo(u).track).count > 0 ⇒ pin(v); colocate(v, u);

103

In addition, users can read/write movie reviews via the ReviewEditor actors,

which frequently interact with the UserReview actors by updating reviews on them.

MovieReview actors, on the other hand, store a large amount of reviews by movie types

(e.g., comedy), thus are memory-intensive. Finally, users’ reviews will be checked by

ReviewChecker actors before publication, and hence are CPU-intensive. Such seman-

tics lead to the remaining three elasticity rules:

ReviewEditor(r).call(UserReview(u).update).count > 0 ⇒ pin(r);

colocate(r, u);

true ⇒ pin(MovieReview(m));

server.cpu.perc > 90 or server.cpu.perc < 70 ⇒

balance({ReviewChecker}, cpu);

Halo Presence Service The Halo Presence Service [102] is a deployed actor-based

system that tracks player liveness in Halo 4. Active game consoles periodically send

heartbeat messages to the service. Each of these messages is first decrypted by a

randomly selected Router actor, before it is forwarded to the related Session actor

which finally forwards it to the corresponding Player actor.

A Session actor can only send messages to Player actors partaking in the session

it manages, while Player actors can only belong to one session at a time. This

isolation between Session actors and between the Player actors of different sessions

can be leveraged to improve the system communication performance. For instance,

remote messaging can be avoided by co-locating at runtime Player actors with their

corresponding Session actor:

Player(p) in ref(Session(s).players) ⇒ pin(s); colocate(p, s);

Router actors require a nontrivial amount of CPU resources to decrypt messages

from clients, to the point where it becomes essential to balance the CPU workload

by carefully distributing Router actors across servers:

server.cpu.perc > 80 or server.cpu.perc < 60 ⇒ balance({Router}, cpu);

104

Profiling Runtime

Execution Runtime

Elasticity Messages

Actor Runtime Information

Actor Migration

Actor Server

LEM LEM LEM

GEM GEM

Figure 5.4.: PLASMA’s runtime system: GEMs manage application scale; LEMs
handle actors of single servers.

5.3.4 Discussion on Language

We made several concessions for simplicity. An important choice was to consider

only restricted scopes: in all conditions relating to interaction features , we only

consider direct interaction. E.g., when conditioning the number of calls as in actor2

call(actor1.fname1).count we only consider direct calls from an instance of actor2

to fname1 of one of actor1, and not indirect ones, e.g., through a function fname3

of intermediary actors of some type 3. Considering such transitive interaction could

become quite complex: for given instances of actor1 and actor2, one could focus on

calls through a single instance of actor3, or any number. While both options (and

more) could be expressed by introducing a larger set of variables and making existen-

tial vs universal quantification explicit, it leads to a much more complex language.

Restricting scopes also simplifies profiling, especially with recursive types. subsec-

tion 5.4.3 discusses conflict resolution. Our language is one point in the design space,

and extensions such as additional features and behaviors are the subject of ongoing

investigations.

105

5.4 Elasticity Management Runtime (EMR)

PLASMA’s elasticity management runtime (EMR) is integrated into the run-

time of the underlying actor programming language. The EMR involves an elasticity

profiling runtime (EPR) and an elasticity execution runtime (EER) (cf. Figure 5.4).

5.4.1 Elasticity Profiling Runtime (EPR)

In short, the EPR, which runs on each server, is responsible for collecting performance-

related metrics, and feeding them to the EER. Corresponding to the three types of

execution features of PLASMA (cf. subsection 5.3.1), the EPR collects performance

information on resource usage of actors [f-ra], of the server it runs on [f-rs], and on

interaction among actors [f-ia].

For [f-rs], the EPR reads system-level performance metrics from the server di-

rectly — we assume servers expose an interface such as stat under /proc in Linux.

For features [f-ra] and [f-ia], the EPR keeps track of the behaviors of actors. As

the elasticity rules involve specific actor types, the EPR can focus solely on the actors

affected by these rules, thus limiting the overall profiling overhead. In particular, the

EPR collects (1) the execution time of each task, (2) the size of actors (i.e., memory

footprint), and (3) the count and size of different types of messages and involved

actors. Note that the elasticity management service usually runs at every elastic-

ity period (a configurable interval). The EPR only collects performance information

since its last run.

5.4.2 Elasticity Execution Runtime (EER)

The EER decides on placement of actors among available servers and on adapting

the number of required servers.

Two-level architecture PLASMA’s two-level EER design includes local and global

elasticity managers (LEMs and GEMs respectively). This design makes a practical

106

tradeoff between scalability (distributed LEMs with local views and actions) and ac-

curacy (centralized GEMs to provide a more complete, global, view of the system).

Duties are thus split in that a LEM works only for a single server and is responsible

for interaction elasticity rules [r-i] as these can be monitored locally. On the other

hand a GEM oversees a group of servers, and is responsible for resource elasticity rules

[r-r] among these servers, as these need to place actors among a group of available

servers, requiring global performance information.

LEMs When an elasticity management cycle begins, a LEM reads the performance

information of the server and actors from its local EPR. The LEM summarizes such

information, and reports imperative information (e.g., focusing on actors furthest

beyond thresholds) to its GEM. The LEM also iterates through its actors and checks

related interaction elasticity rules [r-i] (if any). If the conditions in the rules are

satisfied, the LEM identifies executable actions. Take for example a colocate rule

specifying actors of two types and ′, with frequent interaction through some function

fname, e.g., .call(′.fname).count > 1000. The LEM goes through each actor

and checks the message count between it and remote ′ actors generating a migration

action when a message count is larger than the threshold defined. Notice that the

LEM managing the ′ actor does the same but on a different server. The two LEMs

communicate directly, without passing by a GEM, to decide whose actor to migrate

to the other’s server (by default the one with lower resource usage).

GEMs A GEM manages a subset of servers; each server is managed by one GEM at

a time. After a certain time period (e.g., elasticity time period), each LEM randomly

picks a new GEM. After receiving the profiling information from LEMs of its managed

servers, a GEM creates a global runtime snapshot for all its managed servers. Referring

to this snapshot, the GEM checks the conditions of resource elasticity rules. If any

are met, the GEM identifies executable actions (O2 in Figure 5.2) from the rules, and

tasks servers.

107

Table 5.2.: API summary.
(a) GEM & LEM local functions

Function Functionality
getActRules Return actor elasticity rules
getActorsRuntime Return runtime info of all local actors
applyActRules Return migration actions as per actor runtime

info and elasticity rules on LEMs
getResRules Return resource elasticity rules
collectActorsFResRules Return runtime info of actors related to resource

elasticity rules
getServerRuntime Return local server runtime info
resolveActions Resolve conflicted migration actions of LEMs

and GEMs. Return final actions
applyResRules Return migration actions according to actor and

server runtime info and resource elasticity rules
on GEMs

checkIdleRes Decide if one server has enough idle resources to
accept an actor

(b) Action datatype

Action datatype field Content
actor Actor for migration
srcServ Server currently holding the actor
trgServ Target server for actor migration

Take for example a balance rule. When its condition is met (typically a lower

or upper bound on server resources is exceeded), the GEM migrates a select set of

actors among its managed servers to balance workload. PLASMA uses a simple

heuristic to thus select actors: a GEM only migrates actors from overloaded servers

(i.e., with resource usage above upper bounds) to servers with enough idle resources

– especially below specified lower bounds. If all of a GEM’s managed servers are

overloaded (resp. under-utilized), it broadcasts an adjustment message to all other

GEMs. GEMs reply whether their observations are similar. If the majority of replies

received by the requester GEM corroborate its own view, it increases (resp. decreases)

the number of servers.

LEM-GEM interaction 1 and 2 outline how LEMs and GEMs coordinate on

generating migration actions based on elasticity rules and runtime performance infor-

108

mation (using APIs summarized in Table 5.2). Each LEM (1) reads actors’ runtime

information from the profiling runtime and identifies migration actions (line 7) based

on actor elasticity rules (line 5). The LEM then checks resource elasticity rules and

reports related actors’ runtime information as well as its server runtime information

to a GEM (line 12).

The GEM (2) starts processing reports from LEMs when it receives enough of

those (line 8). It only checks resource elasticity rules and generates corresponding

migration actions (line 10) and informs relevant LEMs (line 14). A LEM and a GEM

can generate different, potentially conflicting, actions for the same actor. A LEM

then resolves such conflicts once it receives migration actions from its GEM (line 14).

Finally, the LEM starts migrating actors when the target server agrees to accept them

(line 22).

New actor creation When the application creates an actor (of type) on a server,

this server’s LEM queries the GEM, which managed it during last the elasticity period,

where to place the new actor. The GEM checks relevant elasticity rules and decides

the initial placement. E.g., the rules require to co-locate actors with references, or

identify actors as CPU-intensive. Then the new actor is to be co-located with another

actor that has a reference to it, or put on a server with idle CPU resources. If the

GEM can not find a valid rule for actors, it randomly picks a server from the ones it

manages. With the help of input elasticity rules, PLASMA has a higher chance to

place new actors on the right servers from the start, as we will see shortly.

5.4.3 Discussion on Runtime

Conflict resolution As stated above, LEMs and GEMs identify executable actions

based on rules. These actions are enqueued at LEMs, and are executed by the actor

programming language’s runtime via its live actor migration procedure. However, as

programmers may define multiple elasticity rules for one actor type, conflicts may

arise. PLASMA provides two mechanisms to resolve these. (1) When compiling

109

Algorithm 1 Elasticity execution on LEM lem
1: Local variables:
2: existActors B local actors and actors to be migrated to this server
3: gems B addresses of GEMs

4: task processElasticity:
5: actRules← getActRules()
6: actorsRT ← getActorsRuntime()
7: lemActions← applyActRules(actorsRT ,actRules)
8: resRules← getResRules()
9: ractorsRT ← collectActorsFResRules(actors,resRules)
10: serverRT ← getServerRuntime() B collect server runtime info
11: gem← gemx | gemx ∈ gems B pick random GEM
12: send (REPORT, ractorsRT ,serverRT) to gem B report to GEM
13: wait until receive (RREPLY, gemActions) from gem
14: finalActions← resolveActions(lemActions,gemActions)
15: for all (action ∈ finalActions) do
16: send (QUERY, action) to action.trgServ B can server accept

17: upon receive (QUERY, action) from lem′:
18: if checkIdleRes(existActors,action.actor) then
19: existActors← existActors∪{action.actor} B take resources
20: send (QREPLY, action) to lem′

21: upon receive (QREPLY, action):
22: migrate action.actor to action.trgServ

Algorithm 2 Elasticity execution on GEM gem
1: Local variables:
2: actorsRTs B queue for actor runtime information from LEMs
3: serversRTs B queue for server runtime information from LEMs
4: actionQs B map of addresses to action queues

5: upon receive (REPORT, actorsRT , serverRT) from lem :
6: actorsRTs← actorsRTs⊕{actorsRT}
7: serversRTs← serversRTs⊕{serverRT}
8: if |servers|>K then B K is given by user
9: resRules← getResRules()
10: actions← applyResRules(actorsRTs,serversRTs,resRules)
11: for all (act ∈ actions) do
12: actionQs[act.srcServ] ← actionQs[act.srcServ] ⊕{act}
13: for all (addr | ∃ actionQs[addr] do
14: send (RREPLY, actionQs[addr]) to addr B ret to LEM

110

elasticity rules, PLASMA’s compiler detects conflicting rules for the same actor

type, and issues warnings. (2) When applications are running, LEMs resolve the

remaining conflicts by choosing the migration action for an actor with the highest

priority, which can be specified by programmers or determined by assigning priorities

to migration actions. E.g., colocate can break the resource elasticity actions of

balance in that multiple LEMs might try to migrate their actors to the same server

and overload it. If PLASMA prioritizes balance over colocate, it will only allow the

target server to accept actors if it has enough resources. Existing conflict resolution

approaches [112–114] can also be leveraged in PLASMA; they are beyond the scope

of this paper.

Fault tolerance As is evident from 1 and 2, no state synchronization is required

between LEMs and GEMs or among GEMs. Hence, if a GEM fails while computing

the set of migration actions, LEMs can still progress by picking another GEM through

the shuffling process described. We run multiple GEMs for scalability and fault

tolerance when evaluating PLASMA in section 5.5.

Actor placement stability We opt for a conservative policy to actor migration

to minimize the cost associated with actor state “re”-migrations. More aggressive

migration policies [115] could be employed, e.g., by pre-profiling actor resource con-

sumption or migrating more actors than strictly needed, but no optimal policy exists.

To avoid frequent actor migrations, an actor can only be migrated if it stayed on

the same server for a certain time, which is set to be equal to the elasticity period

(cf. section 5.2.2).

5.5 Evaluation

The concepts of PLASMA can be implemented in many actor programming

languages.

111

5.5.1 Synopsis

We evaluate our approach through an implementation in AEON [51] involving

3500 Python LoC added to the AEON compiler, that parses both PLASMA elasticity

rules and AEON program to generate an elasticity configuration file (PLASMA

compiler in Figure 5.2). We also extend AEON’s runtime by 5000 C++ LoC to

collect actors’ and platform’s runtime information (profiling runtime in Figure 5.2),

and conduct elasticity management (execution runtime in Figure 5.2). We chose

AEON over Orleans [50] and Akka [68], as when starting our prototyping, Orleans’

code-base was undergoing frequent significant updates while Akka lacks live actor

migration features.

We evaluate PLASMA with several stateful applications on Amazon AWS. The

elasticity rules used for each scenario are described in subsection 5.3.3, with their sum-

mary in Table 5.1, demonstrating the low effort with which a multi-actor application

can be complemented with PLASMA.

We first evaluate the overhead of PLASMA’s runtime (subsection 5.5.2). Next

we demonstrate how a simple elasticity rule leveraging application-specific knowledge

improves a Metadata Server’s elasticity management (subsection 5.5.3). We com-

pare the efficiency of PLASMA against the state of the art on an elastic PageRank

(subsection 5.5.4). Then we showcase how PLASMA can help developers implement

specific elasticity management in E-Store (subsection 5.5.5). We show how PLASMA

handles highly dynamic workloads in a Media Service (subsection 5.5.6). Finally, we

evaluate how different number of GEMs impact the performance of the Halo Presence

Service (subsection 5.5.7).

5.5.2 PLASMA’s Runtime Overhead

First we assert that the EPR does not impose high overheads on applications

when tracking performance data.

112

0

10

20

30

40

50

60

70

0

1
4

2
1

2
7

3
3

3
9

4
5

5
1

5
7

6
3

6
9

7
5

8
1

8
7

9
3

9
9

1
0
5

L
at
en
cy
(m
s)

Time(second)

res-col-rule

def-rule

no-rule

Figure 5.5.: Simple reserve & colo-
cate vs default vs no rule in Meta-
data Server.

0

5

10

15

20

PLASMA Orleans

Elasticity

C
o

n
v
er

g
ed

 c
o

m
p

u
ta

ti
o

n

T
im

e(
s)

16-vCPU

(a)

0

2

4

6

8

10

12

14

PLASMA Conservative

provisioning

C
o

n
v
er

g
ed

 c
o

m
p

u
ta

ti
o

n

T
im

e(
s)

24-vCPU 32-vCPU

(b)
Figure 5.6.: PageRank PLASMA’s vs
Orleans’ elasticity, (a) static & (b)
dynamic allocation.

The EPR only collects runtime information of actors on the server it is deployed

on, the EPR overhead is therefore only affected by the number of actors and messages

on a single server, regardless of the number of servers used by this application.

To this end, we use an online chat room microbenchmark where users, represented

each by an actor, can exchange messages with others within the same room. The EPR

tracks information on all messages (e.g., type, size, number) and the times for actors

to process them. The chat room is deployed on a single AWS instance, i.e., actors

are stationary, and is tested with different numbers of users. Tab. 5.3 shows the

profiling overheads of PLASMA’s EPR on the chat room actors by normalizing the

execution time of PLASMA with that of a vanilla system without elasticity (e.g.,

1.007 means 7%� overhead). The setup x-instance refers to the number of users x, with

x ∈ {8,16,32}, deployed on either a m1.small instance identified as s or a m1.medium

instance identified as m. In all setups, users keep generating messages at high rates

to put pressure on the server’s CPU. In this overloaded situation we never observe

more than 2.3% overhead, showing that message latency is virtually unaffected by

profiling.

While the overhead of the EER is highly related to the elasticity rules, we do not

observe any noticeable overhead (i.e., over 1%) on any of the applications we evaluate.

The EER overhead remains low thanks to: (1) its periodical execution, the EER only

113

Table 5.3.: PLASMA EPR overhead, normalized.
8-s 16-s 32-s 8-m 16-m 32-m

1.007 1.001 1.023 1.003 1.006 1.005

executes for a couple of seconds per period in our scenarios, and (2) the low rule count

(i.e., less than 10) needed to cover applications elasticity requirements.

114

5.5.3 Metadata Server

In our first scenario we display the effect of a simple mix of Resource elasticity

rules and Interaction elasticity rules in PLASMA when deployed on a Metadata

Server (cf. subsection 5.3.3).

In the experiment, we create 4 folders with 8 files in each. The server is deployed

on an AWS m1.small instance, and 16 clients on another m1.medium instance. This

setup overloads an m1.small instance, i.e., simulates a service under high demand.

Among the 4 Folder actors, 1 actor receives 50% of requests from clients, and the

other 3 evenly share the remaining 50%. File actors in a same folder have the

same workloads. We compare three setups: (1) res-col-rule executes the reserve and

colocate elasticity rule defined in subsection 5.3.3; (2) def-rule mimics a default rule,

simply migrating actors with heavy workload (i.e., Folder actors) to an idle server;

(3) no-rule does not conduct any elasticity management. The first two setups require

an extra server; they use an elasticity time period of 80 s. We run each setup for

≈100 s to collect enough data before and after elasticity management.

Figure 5.5 shows that the elasticity rule (res-col-rule) reduces latency by 40% com-

pared to both other setups. The second setup (def-rule) however does not display

any visible latency benefit compared to the setup without elasticity (no-rule) because

accessing a folder implies accessing the files contained in it, even when the Folder and

File actors are on different servers. Therefore all accesses to a Folder actor on one

server end up being forwarded to File actors on another server, provoking an over-

heard that nullifies the potential migration gains. This demonstrates the importance

of application knowledge in elasticity management.

5.5.4 PageRank

In this scenario, we show the efficiency of PLASMA on a distributed actor-based

variant of the popular PageRank [101] algorithm. We focus on the basic algorithm

without specific optimizations as these do not address workload imbalances.

115

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

N
o

rm
al

iz
ed

 I
te

ra
ti

o
n

 T
im

e
(s

)

Number of Iterations

Mizan (w/ Elasticity)

Mizan (w/o Elasticity)

PLAS2MA (w/ Elasticity)

PLAS2MA (w/o Elasticity)

PLAS2MA

PLAS2MA

PLASMA

Orleans Elasticity

(a) Computation time of each
iteration.

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14

C
P

U
%

 o
f

E
ac

h
 N

o
d

e

Number of Redistributions

node1 node2

node3 node4

node5 node6

node7 node8

(b) CPU% of each server over
time.

0

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9 10 11 12 13 14

A
ct

o
r

D
is

tr
ib

u
ti

o
n

Number of Redistributions

node1 node2
node3 node4
node5 node6
node7 node8

(c) Distribution of worker ac-
tors over time.

Figure 5.7.: PageRank dynamic workload balance. PLASMA achieves 24% faster
iteration times after initial automated balancing.
(In (b) and (c), each server is busy reading data in the early re-distributions.)

0

10

20

30

40

50

60

70

80

90

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86

C
o

m
p

u
ta

ti
o

n
 T

im
e

(s
)

Number of Iterations

PLAS2MA

Over-Provisioning

PLAS2MAPLASMA (24-vCPU)

Conservative provisioning

(32-vCPU)

(a) Computation time of each
iteration.

0.0

0.5

1.0

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52

C
P

U
%

 o
f

E
ac

h
 N

o
d

e

Number of Redistributions

node1 node2 node3 node4
node5 node6 node7 node8
node9 node10 node11 node12

(b) CPU% of each server over
time.

0

10

20

30

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52

A
ct

o
r

D
is

tr
ib

u
ti

o
n

Number of Redistributions

node1 node2
node3 node4
node5 node6
node7 node8
node9 node10
node11 node12

(c) Distribution of worker ac-
tors over time.

Figure 5.8.: PageRank dynamic resource allocation. PLASMA achieves the same
application-level performance with 12 servers in comparison with the conservative
provisioning case using 16 servers (with one worker per vCPU).

In our implementation, each Worker actor iteratively computes on one partition

and synchronizes at the end of each iteration with the other workers to exchange

computation results. Since all workers synchronize at the same time, the overall

execution speed is limited by the slowest worker.

Though many partitioning schemes and systems have been proposed for parti-

tioning graphs [57–59, 107] and thusly balancing workloads across workers, ensuring

a fair workload distribution remains a non-trivial task. We use SNAP’s LiveJournal

online social network [116] as dataset. The graph is split with the popular graph

partitioning tool METIS [107] that computes balanced partitions.

Dynamic workload balance We first show how PLASMA balances workloads

among a fixed set of resources. This experiment uses 8 VMs, each being an AWS

116

m5.large instance (2 vCPUs and 8 GB memory), for a total of 16 vCPUs that are

connected with 10 Gbps links. All runs are congestion-free.

We first compare PLASMA with elasticity management to the limited elasticity

management of Orleans consisting in attempting to balance workload by putting the

same number of actors on each server. We implement the same elasticity rules in

AEON. We use METIS to evenly split the graph in 32 partitions, resulting in 32

actors, and randomly assign them across the 8 VMs. Since the number of actors is

already balanced across servers, Orleans elasticity management does not take fur-

ther action. PLASMA uses the same partition assignment, but combines it with a

balance resource elasticity rule that sets the lower bound to 60% and upper bound

to 80% (as for Piccolo in section 5.3.2). Once the PageRank application starts,

PLASMA’s EMR balances the worker actors among the 8 VMs based on their CPU

resource usage, while the worker actors stay in the same VMs with Orleans’ elasticity.

The experiment is repeated 3 times for each of the 5 different random distributions

used. Figure 5.6a shows that PageRank converges 24% faster with our elastic solution

PLASMA redistributing actors, compared to Orleans elasticity management.

Figure 5.7b and Figure 5.7c show the detailed behavior in a given experiment run

of the CPU consumption for each server and the per-server actor distribution respec-

tively. Once worker actors finish reading data and start iterative computations, the

CPU usage of each server starts diverging greatly despite the even partitioning per-

formed by METIS. PLASMA detects load imbalance and moves worker actors from

overloaded servers (e.g., server 5) to under-utilized ones (e.g., servers 1 and 2, until

the CPU usage of servers falls between the upper and lower bounds (i.e., 60%-80%).

As a result, PageRank converges faster since the computation time of each partition is

more homogeneous with elastic PLASMA, and no one worker actor is lagging behind

for the system-wide synchronization happening at the end of each iteration. This ex-

periment clearly shows that under fixed resources (e.g., CPU), PLASMA can detect

workload imbalance and improve resource efficiency by automatic actor re-location.

117

We further compare PLASMA with Mizan [56], a state-of-the-art graph process-

ing system for dynamically balancing computation across servers via graph vertex

migration. We run the open source Mizan [104] with both its default configuration

(without elasticity) and its dynamic migration scheme (with elasticity) in the same

setting as PLASMA– 8 AWS m5.large VMs and the LiveJournal graph with 32 par-

titions. Since the absolute iteration time of Mizan is about 4× longer than that

of PLASMA, to compare elasticity effectiveness of the two solutions, we normalize

each iteration time to the first iteration of the respective case without elasticity. Fig-

ure 5.7a shows Mizan with elasticity reduces iteration time by up to 3% compared to

the case without elasticity. In contrast, PLASMA with elasticity reduces iteration

time by up to 24% compared to the case without elasticity, showing that PLASMA

balances load more effectively while being generic.

Dynamic resource allocation Trivially we can reach best PageRank convergence

time by over-provisioning resources (conservative provisioning). We thus run 16 AWS

m5.large instances for a total of 32 vCPUs, randomly mapping each of the 32 worker

actors to their own vCPU. As expected, the convergence time is nearly halved (11.67 s,

cf. Figure 5.6b) compared to that of a 16-vCPU setup (19.77 s, cf. Figure 5.6a). But

can we achieve the same (or close) performance using fewer resources? To answer

this question, we set PLASMA to allocate resources dynamically – we re-use the

above balance rule, but once all of the existing servers are overloaded, PLASMA

provisions a new server (cf. subsection 5.4.2). In our experiments (cf. Figure 5.8),

we start with one running server for PLASMA and place all 32 worker actors on

it. Figure 5.8b clearly shows PLASMA provisioning new servers (via AWS Instance

Scheduler [117]) until it reaches a stable state where the CPU usage of every server

is within the defined lower and upper bounds. Figure 5.8c shows the details of the

worker actor re-distributions as PLASMA provisions new instances. Performance

improves each round as PLASMA performs elasticity management gradually (cf.

subsection 5.4.3) and inches towards an optimal actor distribution.

118

40

50

60

70

80

90

100

110

120

0

2
0

3
4

4
7

5
9

7
1

8
5

9
7

1
1

0

1
2

2

1
3

4

1
4

6

1
5

8

1
7

0

1
8

2

1
9

4

2
0

6

2
1

8

L
at

en
cy

(m
s)

Time(second)

PLASMA E-Store No Elasticity

Figure 5.9.: Latency of E-
Store application. Similar
for E-Store and PLASMA
E-Store.

0

20

40

60

80

100

120

140

0

100

200

300

400

500

600

700

800

0

9
2

1
8

4

2
7

6

3
6

8

4
6

0

5
5

2

6
5

2

7
4

4

8
3

6

9
3

2

1
0

2
4

1
1
1

6

1
2

0
8

1
3

0
0

C
li

en
t

N
u

m
b

er

L
at

en
cy

(m
s)

Time(s)

60s 120s 180s N Client

(a) Average latency.

0

10

20

30

40

50

60

70

0
1

0
9

2
9

1
4

1
2

4
7

1
5

3
4

5
9

6
6

5
6

7
1

6
8

3
5

8
9

6
1

0
1

7
1

0
7

8
1
1

3
3

1
1

5
6

1
1

9
5

1
2

1
5

1
2

8
8

1
3

2
3

S
er

v
er

 N
u

m
b

er

Time(s)

60s 120s 180s

(b) Number of servers.

Figure 5.10.: Elasticity management for the Media Ser-
vice. A small elasticity period lowers the latency and
fasten resources allocation/reclaiming.

Eventually, PLASMA performance comes very close to the best performance

as shown in Figure 5.8a for one run and in Figure 5.6b for the average across

runs. PLASMA achieves nearly identical performance with 12 servers as the over-

provisioning case does with 16 servers, saving 25% of resources.

5.5.5 E-Store

Programmers often end up implementing specific elasticity management in their

applications without help from specialized tools. We show here that PLASMA can

deliver similar performance as in-app implemented elasticity management.

As detailed in subsection 5.3.3, E-Store [53] has to migrate hot key partitions to

handle unbalanced workloads. At the same time, root level partitions must also be

co-located with their descendants to avoid remote communication. We implemented

E-Store in AEON [51] and added 3000 LoC to its runtime to include the specific

platform details (e.g., CPU usage, actor placement) used by E-Store for elasticity.

We compare the performance of this AEON E-Store with PLASMA E-Store that

(only) executes the elasticity rules defined in subsection 5.3.3.

We evenly deploy 40 root level partitions of E-Store on 4 m1.small instances. Each

such partition has 4 child partitions. Querying E-Store are 48 clients on another 2

m1.medium instances, generating unbalanced workload on partitions. The first root

partition receives 35% of total requests; the second receives 35% of the remaining 65%

119

of requests; the third receives 35% of the requests remaining after that, aso. Requests

arriving at a root partition will continue to access one child partition randomly. We

also run a non-elastic version for comparison. During execution, AEON E-Store and

PLASMA E-Store both require an extra instance.

As Figure 5.9 shows, the performance of AEON E-store and PLASMA E-store

are close to each other, and they both show obvious performance improvement com-

pared to AEON E-Store without elasticity management (No Elasticity). After detailed

analysis, we find elasticity behaviors in both versions are quite similar despite differ-

ences in their concrete elasticity management. For example, AEON E-Store migrates

the top k% root partitions on overloaded servers to idle servers while PLASMA picks

root partitions that receive a certain percentage of requests among all root partitions

on the same server. This demonstrates the usefulness of PLASMA for implementing

application-specific elasticity behavior.

5.5.6 Media Service

We next show how PLASMA improves the Media Service (subsection 5.3.3) per-

formance with highly dynamic workloads, with a focus on showing the impact of

elasticity time periods.

We deploy 128 clients on 8 AWS m1.small instances. In the first 10 minutes, these

clients join the service (i.e., start making requests) following a normal distribution

(µ = 2 min, σ = 90 s) and they keep sending requests for 4 more minutes. They

all leave the service starting from the 14 minute mark, for a period of 10 minutes,

following a normal distribution (µ = 19 min, σ = 90 s). Half of the clients’ requests

are “watch movie” and half are “review movie”.

On the server side, the Media Service is deployed on multiple m1.small instances, 4

instances initially, and can scale up to 65 instances. One UserInfo or UserReview ac-

tor only serves one client while all other actors serve two clients each (e.g., FrontEnd).

More actors are created as more clients access the service. As the number of clients

120

0

20

40

60

80

100

0 85 171 247 332 415 491 569 665

L
at

en
cy

 (
m

s)

Time (s)

def-rule

inter-rule

(a) Latency: interaction vs
frequency rule.

15

20

25

30

35

40

45

28 61 81 100 120 149 170

L
at

en
cy

 (
m

s)

Time (s)

c1 c2
c3 c4
c5 c6
c7 c8

(b) Single client latency with
frequency rule.

0

50

100

150

200

250

0 92 179 257 341 439 514 596 675 764

L
at

en
cy

(m

s)

Time (s)

1 GEM

2 GEMs

4 GEMs

(c) CPU workload balance for
router actors.

Figure 5.11.: Elasticity management for Halo Presence Service. (a) shows the elastic-
ity rules enable smoother player latency evolution, (b) shows the importance of actors
colocation, and (c) shows the slight impact on latency of number of used GEM(s).

(i.e., workload) evolves, PLASMA’s runtime gradually adjusts those actors’ place-

ment to ensure low request latency. We start 1 GEM to execute elasticity rules as

described in section 5.3.2 and run a scenario per elasticity period of 60 s, 120 s and

180 s.

As shown in Figure 5.10a, a smaller elasticity time period enables a better respon-

siveness from PLASMA’s runtime, with the 60 s elasticity period displaying the best

latency results. Figure 5.10b details the number of servers used by the application

over time under different elasticity time periods: PLASMA’s runtime — with shorter

elasticity time period — can allocate and reclaim resources in a faster manner cor-

responding to the workload dynamics. Yet too frequent elasticity management may

incur additional overhead. This clearly shows PLASMA works well with more (e.g.,

6) elasticity rules under dynamic workload, with a well-chosen elasticity time period.

5.5.7 Halo Presence Service

In this scenario, we show how to improve performance of the Halo Presence Ser-

vice [102] with rules for different types of actors, and assess the effect of the number

of GEMs used.

Interaction elasticity rule As discussed in subsection 5.3.3, a

Session actor can only send messages to Player actors in it, suggesting that they

121

be co-located. We could also instead use a rule that co-locates actors that frequently

interact with one another, but this rule can lead to poor migration choices (e.g.,

if a router actor happens to send many messages to one session actor for a while).

Moreover, frequent can have various interpretations. We use this frequency-based rule

as our default rule (baseline) for our evaluation.

The experiment setup is composed of 8 Router actors and 8 Session actors that

are deployed on 8 AWS m1.small servers, with one of each actor type deployed per

server. To highlight remote messaging latency, router actors do not perform decryp-

tion and forward messages directly. We simulate players behind game consoles by

starting 32 clients on another 2 AWS m1.medium servers. The 32 clients join the game

in 4 rounds (of 180 s each), with 8 clients joining per round, each at a random time

during the round. A joining client is assigned to a session and the application creates

a corresponding Player actor for it. Depending on the rule in place, this new Player

actor either (1) gets co-located with its session actor when the aforementioned elas-

ticity rule is established, or (2) is first placed on a random server and the default rule

attempts to co-locate it with the actors it frequently interacts with. Only one GEM

is started and the elasticity period is set to 70 s.

Figure 5.11a depicts the average message latencies resulting from the two rules.

With the elasticity rule (inter-rule), clients largely avoid remote messaging from the

start of the experiment while the default rule (def-rule) leads to degraded performance

for certain timespans (e.g., 0 s–85 s, 171 s–247 s). Only once Player actors are co-

located with their Session actor do message latencies become similar (85 s–171 s,

247 s–332 s). The elasticity rule enables smoother latency evolution for an enhanced

user (i.e., Halo player) experience.

Figure 5.11b shows the detailed performance of each client for the first round of

a single run under the default rule. Out of the 8 joining clients, c1, c5 and c8 are

fortuitously instantiated on the right servers for their Session actor, while c2, c3,

c4, c6 and c7 experience a latency between 30 ms and 40 ms, which is ≈35% higher

than that of well-placed clients. All clients’ latency is reduced to 20 ms after re-

122

distribution (after 70 s of presence). Note that high latency in the first few minutes

may limit a player’s interest in the game. Attempting to obtain better results by

shortening the elasticity period might lead to overzealous actor migration that can

worsen performance.

Resource elasticity rule As mentioned in subsection 5.3.3, we need to provide

Router actors with enough CPU resources. To demonstrate the efficiency of this rule,

we define a setup made of 64 Session actors and 32 Router actors and deploy them on

64 AWS m1.small servers. Each Session actor is hosted on a separate server whereas

Router actors are initially evenly distributed across 8 of these servers. We run up

to 128 clients (i.e., 128 Player actors) on 8 AWS m1.medium servers with a varying

number of GEMs: 1, 2, and 4. The elasticity time period is set to 80 s.

Figure 5.11c shows a sudden rise in average latency as more and more clients

join the game, indicating that the 8 servers with Router actors are overloaded. In

response, the GEM(s) start to balance the workload as per the resource elasticity rule

until each Router actor ends on a server with enough resources, allowing latency to

stabilize. Additionally, we see that deploying several GEMs, for scalability and fault

tolerance, only has a small impact on latency.

5.6 Summary

Existing automatic elasticity solutions (e.g., serverless computing) simplify de-

velopment and deployment of distributed applications executing in third-party in-

frastructure by providing simple abstractions such as functions, and dealing with

resource provisioning completely automatically in the face of fluctuating workloads.

PLASMA introduces the same benefits to stateful applications by complementing

the actor-based programming model with: (1) a second “level” of programming for

delineating actor-condition-behavior rules that drive elasticity management; (2) an

elasticity-aware runtime that accordingly profiles actors of specified types and applies

123

corresponding actions. While a core design goal was to keep PLASMA’s elasticity

programming language simple, we are investigating several extensions.

124

6 CONCLUSION

In the dissertation, we have presented a variant of the actor model AEON, which

is specialized for cloud setups. Actors communicate across hosts over the network

and are migrated for scale adjustment in the response of the workload. We believe

our AEON language and runtime (a) ensure serializability guarantees for multi-actor

interaction, (b) enable a high degree of parallelism in networked distributed sys-

tems, and (c) support efficient actor migration. Our model provides serializability

and deadlock freedom, with largely decentralized synchronization and thus scalabil-

ity for server-side cloud applications or components following a DAG-based structure

of actors. We have empirically demonstrated the strong potential for scalability and

presented the usability of our model through case studies of wide-ranging applications.

Furthermore, based on our AEON actor programming language, we have proposed

a novel solution PLASMA, which allows programmers to customize the elasticity

management for their cloud applications. Compared to existing solutions (e.g., AWS

Lambda), which simplify development and deployment of distributed applications

executing in third-party infrastructure by providing simple abstractions such as func-

tions, and dealing with resource provisioning completely automatically in the face

of fluctuating workloads, PLASMA introduces the same benefits to stateful appli-

cations by complementing the actor-based programming model with: (1) a second

“level” of programming for delineating actor-condition-behavior rules that drive elas-

ticity management; (2) an elasticity-aware runtime that accordingly profiles actors of

specified types and applies corresponding actions.

With these programming supports (i.e., AEON and PLASMA), programmers

can implement, deploy and manage their stateful elastic cloud applications in a much

simpler manner.

125

REFERENCES

[1] AWS Lambda. https://aws.amazon.com/lambda/.

[2] Azure Durable Function. https://docs.microsoft.com/en-us/azure/
azure-functions/durable/durable-functions-overview.

[3] Philip A Bernstein, Sergey Bykov, Alan Geller, Gabriel Kliot, and Jorgen The-
lin. Orleans : Distributed virtual actors for programmability and scalability.
Technical report, Microsoft Research, 2014.

[4] Wei-Chiu Chuang, Bo Sang, Sunghwan Yoo, Rui Gu, Milind Kulkarni, and
Charles Edwin Killian. EventWave: Programming Model and Runtime Support
for Tightly-coupled Elastic Cloud Applications. In Proceedings of the 4th ACM
Symposium on Cloud Computing, SoCC’13, pages 21:1–21:16, 2013.

[5] Piotr Nienaltowski, Volkan Arslan, and Bertrand Meyer. Concurrent object-
oriented programming on .NET. IEE Proceedings - Software, 150(5):308–314,
2003.

[6] Carl Hewitt, Peter Bishop, and Richard Steiger. A Universal Modular ACTOR
Formalism for Artificial Intelligence. In IJCAI, pages 235–245, 1973.

[7] Svend Frølund. Coordinating Distributed Objects - An Actor-based Approach to
Synchronization. MIT Press, 1996.

[8] Peter Dinges and Gul Agha. Scoped synchronization constraints for large scale
actor systems. In Coordination Models and Languages - 14th International
Conference, COORDINATION’12, pages 89–103, 2012.

[9] Rumyana Neykova and Nobuko Yoshida. Multiparty session actors. In Proceed-
ings of the 16th IFIP WG 6.1 International Conference on Coordination Models
and Languages - Volume 8459, pages 131–146, 2014.

[10] Carlos H. C. Duarte. Proof-theoretic foundations for the design of actor systems.
Mathematical. Structures in Comp. Sci., 9(3):227–252, 1999.

[11] Arnd Poetzsch-Heffter, Ilham W. Kurnia, and Feller Christoph. Verification of
actor systems needs specification techniques for strong causality and hierarchi-
cal reasoning. In International Conference on Formal Verification of Object-
Oriented Software, FoVeOOS’11, pages 289–305, 2011.

[12] Ilham W. Kurnia and Arnd Poetzsch-Heffter. A Relational Trace Logic for
Simple Hierarchical Actor-based Component Systems. In Proceedings of the
2nd Edition on Programming Systems, Languages and Applications Based on
Actors, Agents, and Decentralized Control Abstractions, AGERE!’12, pages 47–
58, 2012.

https://aws.amazon.com/lambda/
https://docs.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-overview
https://docs.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-overview

126

[13] Ankush Desai, Vivek Gupta, Ethan K. Jackson, Shaz Qadeer, Sriram K. Raja-
mani, and Damien Zufferey. P: Safe Asynchronous Event-driven Programming.
In ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation, PLDI ’13, pages 321–332, 2013.

[14] Alexander J. Summers and Peter Müller. Actor services. In Proceedings of the
25th European Symposium on Programming Languages and Systems - Volume
9632, pages 699–726, 2016.

[15] Guy Golan-Gueta, Nathan Grasso Bronson, Alex Aiken, G. Ramalingam,
Mooly Sagiv, and Eran Yahav. Automatic Fine-grain Locking Using Shape
Properties. In Proceedings of the 26th Annual ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and Applications, OOP-
SLA’11, pages 225–242, 2011.

[16] John Field and Carlos A. Varela. Transactors: A programming model for main-
taining globally consistent distributed state in unreliable environments. In Pro-
ceedings of the 32nd ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL’05, pages 195–208, 2005.

[17] Philipp Haller and Martin Odersky. Capabilities for uniqueness and borrowing.
In Proceedings of the 24th European Conference on Object-oriented Program-
ming, ECOOP’10, pages 354–378, 2010.

[18] Sylvan Clebsch, Sophia Drossopoulou, Sebastian Blessing, and Andy McNeil.
Deny capabilities for safe, fast actors. In Proceedings of the 5th International
Workshop on Programming Based on Actors, Agents, and Decentralized Control,
AGERE!’15, pages 1–12, 2015.

[19] Elias Castegren and Tobias Wrigstad. Reference capabilities for concur-
rency control. In 30th European Conference on Object-Oriented Programming,
ECOOP’16, pages 5:1–5:26, 2016.

[20] Sylvan Clebsch, Juliana Franco, Sophia Drossopoulou, Albert Mingkun Yang,
Tobias Wrigstad, and Jan Vitek. Orca: GC and Type System Co-design for
Actor Languages. PACMPL, 1(OOPSLA):72:1–72:28, 2017.

[21] Carlos A. Varela and Gul Agha. A hierarchical model for coordination of con-
current activities. In Proceedings of the Third International Conference on Co-
ordination Languages and Models, COORDINATION’99, pages 166–182, 1999.

[22] Chandrasekhar Boyapati. SafeJava: A Unified Type System for Safe Program-
ming. PhD thesis, Massachusetts Institute of Technology, 2003.

[23] Christos Kotselidis, Mohammad Ansari, Kim Jarvis, Mikel Luján, Chris C.
Kirkham, and Ian Watson. Distm: A software transactional memory framework
for clusters. In 2008 International Conference on Parallel Processing, ICPP’08,
pages 51–58, 2008.

[24] Nir Shavit and Dan Touitou. Software transactional memory. Distributed Com-
puting, 10(2):99–116, 1997.

[25] Lukasz Ziarek, Adam Welc, Ali-Reza Adl-Tabatabai, Vijay Menon, Tatiana Sh-
peisman, and Suresh Jagannathan. A uniform transactional execution environ-
ment for java. In 22nd European Conference on Object-Oriented Programming,
ECOOP’08, pages 129–154, 2008.

127

[26] Janwillem Swalens, Joeri De Koster, and Wolfgang De Meuter. Chocola: In-
tegrating futures, actors, and transactions. In Proceedings of the 8th ACM
SIGPLAN International Workshop on Programming Based on Actors, Agents,
and Decentralized Control, AGERE!@SPLASH’18, pages 33–43, 2018.

[27] Joeri De Koster, Stefan Marr, Theo D’Hondt, and Tom Van Cutsem. Domains:
Safe Sharing Among Actors. Sci. Comput. Program., 98:140–158, 2015.

[28] Infinispan. Infinispan, January 2020.

[29] Robert Escriva, Bernard Wong, and Emin Gün Sirer. Warp: Lightweight multi-
key transactions for key-value stores. CoRR, abs/1509.07815, 2015.

[30] Autoscaling. https://aws.amazon.com/autoscaling/.

[31] Autoscaling Groups of Instances. https://cloud.google.com/compute/docs/
autoscaler/.

[32] Azure Autoscale. https://azure.microsoft.com/en-us/features/
autoscale/.

[33] Autoscaling with Heat. https://docs.openstack.org/senlin/latest/
scenarios/autoscaling_heat.html.

[34] Guy Bieber and Jeff Carpenter. Introduction to service-oriented programming
(rev 2.1). 2001.

[35] OASIS. OASIS SOA Reference Model TC. https://www.oasis-open.org/
committees/tc_home.php?wg_abbrev=soa-rm.

[36] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C Hsieh, Deborah A Wal-
lach, Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E Gruber.
Bigtable: A distributed storage system for structured data. ACM Transactions
on Computer Systems (TOCS), 26(2):4, 2008.

[37] James C Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher
Frost, Jeffrey John Furman, Sanjay Ghemawat, Andrey Gubarev, Christopher
Heiser, Peter Hochschild, et al. Spanner: Google’s globally distributed database.
ACM Transactions on Computer Systems (TOCS), 31(3):8, 2013.

[38] Hiep Nguyen, Zhiming Shen, Xiaohui Gu, Sethuraman Subbiah, and John
Wilkes. AGILE: elastic distributed resource scaling for infrastructure-as-a-
service. In 10th International Conference on Autonomic Computing, ICAC’13,
pages 69–82, 2013.

[39] Zhenhuan Gong, Xiaohui Gu, and John Wilkes. PRESS: predictive elastic
resource scaling for cloud systems. In Proceedings of the 6th International Con-
ference on Network and Service Management, CNSM’10, pages 9–16, 2010.

[40] Serverless. https://cloud.google.com/serverless/.

[41] Serverless Computing. https://azure.microsoft.com/en-us/overview/
serverless-computing/.

[42] Alex Ellis. Introducing Functions as a Service (OpenFaaS). https://blog.
alexellis.io/introducing-functions-as-a-service/.

https://aws.amazon.com/autoscaling/
https://cloud.google.com/compute/docs/autoscaler/
https://cloud.google.com/compute/docs/autoscaler/
https://azure.microsoft.com/en-us/features/autoscale/
https://azure.microsoft.com/en-us/features/autoscale/
https://docs.openstack.org/senlin/latest/scenarios/autoscaling_heat.html
https://docs.openstack.org/senlin/latest/scenarios/autoscaling_heat.html
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=soa-rm
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=soa-rm
https://cloud.google.com/serverless/
https://azure.microsoft.com/en-us/overview/serverless-computing/
https://azure.microsoft.com/en-us/overview/serverless-computing/
https://blog.alexellis.io/introducing-functions-as-a-service/
https://blog.alexellis.io/introducing-functions-as-a-service/

128

[43] Scott Hendrickson, Stephen Sturdevant, Tyler Harter, Venkateshwaran
Venkataramani, Andrea C Arpaci-Dusseau, and Remzi H Arpaci-Dusseau.
Serverless computation with openlambda. Elastic, 60:80, 2016.

[44] Amazon S3. https://aws.amazon.com/s3/.

[45] Memcached. http://memcached.org/.

[46] Redis. https://redis.io/.

[47] Russell Power and Jinyang Li. Piccolo: Building fast, distributed programs
with partitioned tables. 2010.

[48] Shaohua Wang, Iman Keivanloo, and Ying Zou. How do developers react to
restful api evolution? In International Conference on Service-Oriented Com-
puting, pages 245–259. Springer, 2014.

[49] Michael Zur Muehlen, Jeffrey V Nickerson, and Keith D Swenson. Developing
web services choreography standards–the case of REST vs. SOAP. Decision
Support Systems, 40(1):9–29, 2005.

[50] Andrew Newell, Gabriel Kliot, Ishai Menache, Aditya Gopalan, Soramichi
Akiyama, and Mark Silberstein. Optimizing distributed actor systems for dy-
namic interactive services. pages 38:1–38:15, 2016.

[51] Bo Sang, Gustavo Petri, Masoud Saeida Ardekani, Srivatsan Ravi, and
Patrick Th. Eugster. Programming scalable cloud services with AEON. In
Proceedings of the 17th International Middleware Conference, pages 16:1–16:14,
2016.

[52] Ahmad Al-Shishtawy and Vladimir Vlassov. Elastman: autonomic elasticity
manager for cloud-based key-value stores. In The 22nd International Sym-
posium on High-Performance Parallel and Distributed Computing, HPDC’13,
pages 115–116, 2013.

[53] Rebecca Taft, Essam Mansour, Marco Serafini, Jennie Duggan, Aaron J.
Elmore, Ashraf Aboulnaga, Andrew Pavlo, and Michael Stonebraker. E-
store: Fine-grained elastic partitioning for distributed transaction processing.
PVLDB, 8(3):245–256, 2014.

[54] Bailu Ding, Lucja Kot, Alan J. Demers, and Johannes Gehrke. Centiman:
elastic, high performance optimistic concurrency control by watermarking. In
Proceedings of the Sixth ACM Symposium on Cloud Computing, SoCC’15, pages
262–275, 2015.

[55] Josep M. Pujol, Vijay Erramilli, Georgos Siganos, Xiaoyuan Yang, Nikolaos
Laoutaris, Parminder Chhabra, and Pablo Rodriguez. The little engine(s) that
could: scaling online social networks. In Proceedings of the ACM SIGCOMM
2010 Conference on Applications, Technologies, Architectures, and Protocols for
Computer Communications, pages 375–386, 2010.

[56] Zuhair Khayyat, Karim Awara, Amani Alonazi, Hani Jamjoom, Dan Williams,
and Panos Kalnis. Mizan: a system for dynamic load balancing in large-scale
graph processing. In Proceedings of the 8th ACM European Conference on
Computer Systems, EuroSys’16. ACM, 2013.

https://aws.amazon.com/s3/
http://memcached.org/
https://redis.io/

129

[57] Apache Incubator Giraph. http://incubator.apache.org/giraph/.

[58] Grzegorz Malewicz, Matthew H Austern, Aart JC Bik, James C Dehnert, Ilan
Horn, Naty Leiser, and Grzegorz Czajkowski. Pregel: a system for large-scale
graph processing. In Proceedings of the 2010 ACM SIGMOD International
Conference on Management of data, pages 135–146, 2010.

[59] Semih Salihoglu and Jennifer Widom. Gps: a graph processing system. In
Proceedings of the 25th International Conference on Scientific and Statistical
Database Management, page 22. ACM, 2013.

[60] Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey Tumanov, Richard
Liaw, Eric Liang, Melih Elibol, Zongheng Yang, William Paul, Michael I. Jor-
dan, and Ion Stoica. Ray: A distributed framework for emerging AI applica-
tions. In Andrea C. Arpaci-Dusseau and Geoff Voelker, editors, 13th USENIX
Symposium on Operating Systems Design and Implementation, OSDI’18, pages
561–577, 2018.

[61] Qifan Pu, Shivaram Venkataraman, and Ion Stoica. Shuffling, fast and slow:
Scalable analytics on serverless infrastructure. In Jay R. Lorch and Minlan Yu,
editors, 16th USENIX Symposium on Networked Systems Design and Imple-
mentation, NSDI’19, pages 193–206, 2019.

[62] Ana Klimovic, Yawen Wang, Patrick Stuedi, Animesh Trivedi, Jonas Pfefferle,
and Christos Kozyrakis. Pocket: Elastic ephemeral storage for serverless ana-
lytics. ;login:, 44(1), 2019.

[63] Amazon ElastiCache Redis. https://aws.amazon.com/elasticache/redis/.

[64] Gul Agha and Carl Hewitt. Actors: A conceptual foundation for concurrent
object-oriented programming. In Research Directions in Object-Oriented Pro-
gramming, pages 49–74. 1987.

[65] Bo Sang, Srivatsan Ravi, Gustavo Petri, Mahsa Najafzadeh, Masoud Saeida
Ardekani, and Patrick Eugster. Programmable elasticity for actor-based cloud
applications. In Proceedings of the 9th Workshop on Programming Languages
and Operating Systems, PLOS’17, pages 15–21, 2017.

[66] Chandra Krintz. Cloud computing. In Ling Liu and M. Tamer Özsu, editors,
Encyclopedia of Database Systems, Second Edition. Springer, 2018.

[67] Gul Agha. Concurrent object-oriented programming. Commun. ACM,
33(9):125–141, 1990.

[68] Akka. https://akka.io/.

[69] Philipp Haller and Martin Odersky. Scala actors: Unifying thread-based and
event-based programming. Theor. Comput. Sci., 410(2-3):202–220, February
2009.

[70] Microsoft. Asynchronous Agents Library, January 2020.

[71] Dominik Charousset, Raphael Hiesgen, and Thomas C. Schmidt. Revisiting
Actor Programming in C++. Computer Languages, Systems & Structures,
45:105–131, April 2016.

http://incubator.apache.org/giraph/
https://aws.amazon.com/elasticache/redis/
https://akka.io/

130

[72] Akka.NET, January 2020.

[73] Sergey Bykov, Alan Geller, Gabriel Kliot, James R. Larus, Ravi Pandya, and
Jorgen Thelin. Orleans: cloud computing for everyone. pages 16:1–16:14, 2011.

[74] Orleans. Orleans, January 2020.

[75] Christos H. Papadimitriou. The Serializability of Concurrent Database Updates.
J. ACM, 26:631–653, 1979.

[76] Doug Lea. The java.util.concurrent Synchronizer Framework. Sci. Comput.
Program., 58(3):293–309, 2005.

[77] AWS. AWS, January 2020.

[78] Philip A. Bernstein, Vassos Hadzilacos, and Nathan Goodman. Concurrency
Control and Recovery in Database Systems. Addison-Wesley, 1987.

[79] Maurice Herlihy and Ye Sun. Distributed transactional memory for metric-space
networks. In Proceedings of the 19th International Conference on Distributed
Computing, DISC’05, pages 324–338, 2005.

[80] Dominik Aumayr, Stefan Marr, Elisa Gonzalez Boix, and Hanspeter Mössen-
böck. Asynchronous Snapshots of Actor Systems for Latency-sensitive Appli-
cations. In Proceedings of the 16th ACM SIGPLAN International Conference
on Managed Programming Languages and Runtimes, MPLR’19, pages 157–171,
2019.

[81] Red Hat. JBoss Middleware, January 2020.

[82] Microsoft. Who is Using Orleans?, January 2020.

[83] Shams M. Imam and Vivek Sarkar. Savina - an actor benchmark suite: Enabling
empirical evaluation of actor libraries. In Proceedings of the 4th International
Workshop on Programming Based on Actors Agents & Decentralized Control,
AGERE ’14, pages 67–80, 2014.

[84] Robert Escriva and Emin Gün Sirer. The design and implementation of the warp
transactional filesystem. In 13th USENIX Symposium on Networked Systems
Design and Implementation, NSDI’16, pages 469–483, 2016.

[85] HyperDex Warp. GyperDex Warp, January 2020.

[86] Faith Ellen, Panagiota Fatourou, Eric Ruppert, and Franck van Breugel. Non-
Blocking Binary Search Trees. In Proceedings of the 29th Annual ACM Sympo-
sium on Principles of Distributed Computing, PODC’10, pages 131–140, 2010.

[87] Apache. Hadoop, January 2020.

[88] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified Data Processing
on Large Clusters. Commun. ACM, 51(1):107–113, 2008.

[89] Marcos Kawazoe Aguilera, Wojciech M. Golab, and Mehul A. Shah. A practical
scalable distributed b-tree. PVLDB, 1(1):598–609, 2008.

131

[90] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and
Russell Sears. Benchmarking cloud serving systems with YCSB. In Proceedings
of the 1st ACM Symposium on Cloud Computing, SoCC’10, pages 143–154,
2010.

[91] Wikipedia. DDR3 SDRAM, January 2020.

[92] Danamma M Bulla and VR Udupi. Cloud Billing Model: A Review. In In-
ternational Journal of Computer Science and Information Technologies, pages
1455–1458, 2014.

[93] Module: Coordinate a Serverless Image Processing Workflow with AWS Step
Functions. https://github.com/aws-samples/aws-serverless-workshops/
tree/master/ImageProcessing.

[94] Cloud IoT Core. https://cloud.google.com/iot-core/.

[95] Tomás Cerný, Michael J. Donahoo, and Jiri Pechanec. Disambiguation and
comparison of soa, microservices and self-contained systems. In Proceedings of
the International Conference on Research in Adaptive and Convergent Systems,
RACS’17, pages 228–235, 2017.

[96] Amazon Lambda Programming Model. https://docs.aws.
amazon.com/lambda/latest/dg/gettingstarted-features.html#
gettingstarted-features-programmingmodel.

[97] Cloud Functions Programming Model. https://docs.microsoft.com/en-us/
azure/azure-functions/functions-reference.

[98] Amazon CloudWatch. https://aws.amazon.com/cloudwatch/.

[99] Overview of Azure Monitor . https://docs.microsoft.com/en-us/azure/
monitoring-and-diagnostics/monitoring-overview-azure-monitor.

[100] Martin Odersky and al. An Overview of the Scala Programming Language.
Technical Report IC/2004/64, EPFL Lausanne, Switzerland, 2004.

[101] Sergey Brin and Lawrence Page. The anatomy of a large-scale hypertextual
web search engine. In Proceedings of the Seventh International Conference on
World Wide Web 7, WWW7, pages 107–117, 1998.

[102] Caitie McCaffrey. Architecting and launching the halo 4 services. In USENIX
Association, Santa Clara, CA, 2015.

[103] Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty, Priyal Rathi, Nayan
Katarki, Ariana Bruno, Justin Hu, Brian Ritchken, Brendon Jackson, Kelvin
Hu, Meghna Pancholi, Yuan He, Brett Clancy, Chris Colen, Fukang Wen,
Catherine Leung, Siyuan Wang, Leon Zaruvinsky, Mateo Espinosa, Rick Lin,
Zhongling Liu, Jake Padilla, and Christina Delimitrou. An open-source bench-
mark suite for microservices and their hardware-software implications for cloud
& edge systems. In Proceedings of the Twenty-Fourth International Conference
on Architectural Support for Programming Languages and Operating Systems,
ASPLOS’19, pages 3–18, 2019.

https://github.com/aws-samples/aws-serverless-workshops/tree/master/ImageProcessing
https://github.com/aws-samples/aws-serverless-workshops/tree/master/ImageProcessing
https://cloud.google.com/iot-core/
https://docs.aws.amazon.com/lambda/latest/dg/gettingstarted-features.html#gettingstarted-features-programmingmodel
https://docs.aws.amazon.com/lambda/latest/dg/gettingstarted-features.html#gettingstarted-features-programmingmodel
https://docs.aws.amazon.com/lambda/latest/dg/gettingstarted-features.html#gettingstarted-features-programmingmodel
https://docs.microsoft.com/en-us/azure/azure-functions/functions-reference
https://docs.microsoft.com/en-us/azure/azure-functions/functions-reference
https://aws.amazon.com/cloudwatch/
https://docs.microsoft.com/en-us/azure/monitoring-and-diagnostics/monitoring-overview-azure-monitor
https://docs.microsoft.com/en-us/azure/monitoring-and-diagnostics/monitoring-overview-azure-monitor

132

[104] The Graphs Blog. https://thegraphsblog.wordpress.com/
presentations/.

[105] Marco Serafini, Essam Mansour, Ashraf Aboulnaga, Kenneth Salem, Taha
Rafiq, and Umar Farooq Minhas. Accordion: Elastic scalability for database
systems supporting distributed transactions. PVLDB, 7(12):1035–1046, 2014.

[106] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakula-
pati, Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter
Vosshall, and Werner Vogels. Dynamo: amazon’s highly available key-value
store. In Proceedings of the 21st ACM Symposium on Operating Systems Prin-
ciples, SOSP’07, pages 205–220, 2007.

[107] METIS Graph Partition Library. http://exoplanet.eu/catalog.php.

[108] Erlang. https://www.erlang.org/.

[109] Philipp Haller and Martin Odersky. Scala actors: Unifying thread-based and
event-based programming. Theor. Comput. Sci., 410(2-3):202–220, 2009.

[110] Haryadi S. Gunawi, Thanh Do, Pallavi Joshi, Peter Alvaro, Joseph M. Heller-
stein, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau, Koushik Sen, and
Dhruba Borthakur. Fate and destini: A framework for cloud recovery testing.
In Proceedings of the 8th USENIX Conference on Networked Systems Design
and Implementation, NSDI’11, 2011.

[111] Xingbo Wu, Li Zhang, Yandong Wang, Yufei Ren, Michel Hack, and Song Jiang.
zexpander: A key-value cache with both high performance and fewer misses.
In Proceedings of the Eleventh European Conference on Computer Systems, Eu-
roSys’16, pages 14:1–14:15, 2016.

[112] Bakhtiar Khan Kasi and Anita Sarma. Cassandra: Proactive conflict minimiza-
tion through optimized task scheduling. In Proceedings of the 2013 International
Conference on Software Engineering, pages 732–741, 2013.

[113] Swarnendu Biswas, Minjia Zhang, Michael D Bond, and Brandon Lucia. Valor:
efficient, software-only region conflict exceptions. ACM SIGPLAN Notices,
50(10):241–259, 2015.

[114] Mário Luís Guimarães and António Rito Silva. Improving early detection of
software merge conflicts. In Proceedings of the 34th International Conference
on Software Engineering, pages 342–352. IEEE Press, 2012.

[115] Brendan Jennings and Rolf Stadler. Resource management in clouds: Sur-
vey and research challenges. Journal of Network and Systems Management,
23(3):567–619, Jul 2015.

[116] SNAP. https://snap.stanford.edu/data/.

[117] AWS Instance Scheduler. https://aws.amazon.com/answers/
infrastructure-management/instance-scheduler/.

https://thegraphsblog.wordpress.com/presentations/
https://thegraphsblog.wordpress.com/presentations/
http://exoplanet.eu/catalog.php
https://www.erlang.org/
https://snap.stanford.edu/data/
https://aws.amazon.com/answers/infrastructure-management/instance-scheduler/
https://aws.amazon.com/answers/infrastructure-management/instance-scheduler/

	LIST OF TABLES
	LIST OF FIGURES
	ABSTRACT
	INTRODUCTION
	Thesis Statement
	Contributions
	Dissertation Organization

	RELATED WORK
	Programming Language and Serializability in Distributed Systems
	Elasticity Management

	AEON: SCALABLE AND SERIALIZABLE NETWORKED MULTI-ACTOR PROGRAMMING LANGUAGE
	Background: Actor Model and Distributed Programming
	A Primer
	Scenario
	Actors
	Events

	Programming Model
	Execution Model Overview
	Actors and Objects
	References and Ownership
	Methods and Events

	Semantics
	Overview
	Intra-actor Semantics
	Inter-actor Semantics
	Refinements

	Properties of AEONcore
	Summary

	AEON RUNTIME DESIGN AND IMPLEMENTATION
	Multi-Actor Synchronization
	Synchronization under Static Ownership
	Synchronization under Dynamic Ownership

	Elasticity
	Actor Mapping
	Elasticity Policy

	Implementation
	Prototype
	Fault Tolerance (FT)

	Evaluation
	Synopsis
	RQ1: Two-phase Locking in C++
	RQ2: Manual Synchronization on Binary Trees in Akka and C++
	RQ3: Metadata Store with HyperDex Warp
	RQ3 and RQ4: Game App with Infinispan and Orleans
	RQ5: Game App Scalability
	RQ5: B Tree

	Summary

	PLASMA: PROGRAMMABLE ELASTICITY FOR STATEFUL CLOUD COMPUTING APPLICATIONS
	Background: Elasticity Management
	Motivation and Overview
	Elastic PageRank
	PLASMA Overview

	Elasticity Programming Language (EPL)
	Actor-based Elasticity
	Syntax
	Examples
	Discussion on Language

	Elasticity Management Runtime (EMR)
	Elasticity Profiling Runtime (EPR)
	Elasticity Execution Runtime (EER)
	Discussion on Runtime

	Evaluation
	Synopsis
	PLASMA's Runtime Overhead
	Metadata Server
	PageRank
	E-Store
	Media Service
	Halo Presence Service

	Summary

	CONCLUSION
	REFERENCES

