
STUDY OF THE EFFECTS OF UNSTEADY HEAT RELEASE IN

COMBUSTION INSTABILITY

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Arnau Pons

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

August 2020

Purdue University

West Lafayette, Indiana



ii

THE PURDUE UNIVERSITY GRADUATE SCHOOL

STATEMENT OF DISSERTATION APPROVAL

Prof. William E. Anderson, Chair

School of Aeronautics and Astronautics

Prof. Charles L. Merkle

School of Mechanical Engineering, and School of Aeronautics and Astronautics

Prof. Carson Slabaugh

School of Aeronautics and Astronautics

Prof. Carlo Scalo

School of Mechanical Engineering

Dr. Swanand Sardeshmukh

School of Aeronautics and Astronautics

Approved by:

Prof. Gregory A. Blaisdell

Head of the Graduate Program



iii

To my family and friends. Per aspera ad astra.



iv

ACKNOWLEDGMENTS

First of all, I would like to thank my advisor Prof. William Anderson for giving

me this wonderful opportunity and for his continuous guidance and insightful advice.

I would also like to acknowledge the thoughtful comments of my committee members,

Dr. Merkle, Dr. Slabaugh, Dr. Scalo and Dr. Sardeshmukh. Their inputs inspired

me to seek a deeper understanding in this research.

I would also like to acknowledge the support of the Obra Social “la Caixa” Fel-

lowship Program for the financial support provided for my Ph.D. studies at Purdue

University. In addition, I would also like to thank the financial support received from

the Air Force Office of Scientific Research, and the Air Force Center of Excellence

Multy-Fidelity Modeling of Rocket Combustion Dynamics with Dr. Mitat Birkan as

program manager.

I would like to thank Dr. Swanand V. Sardeshmukh for his help and mentorship

on high-fidelity simulations as well as my fellow colleagues, Dr. Gowtham Manikanta

Reddy Tamanampudi, Dr. Tristan Fuller, Mr. Michael Orth and Dr. Michael Bedard.

All in all, I would like to show my gratefulness to all the Zucrow team for their kindness

and friendship over this time. A special mention goes to my fellow magnificent seven

Rufat, Timo, Kota, Vlad, Dasheng, and Wes.

I would like to acknowledge the encouragement of my parents, sister, grandma,

and entire family to complete this studies. I would also like to acknowledge the

support received from the Space Generation Advisory Council family during all this

time. Foremost, I would like to thank my wife Orzuri for her unwavering support,

help, love, and patience.



v

TABLE OF CONTENTS

Page

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

SYMBOLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix

ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxi

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxii

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Motivation and Background . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Combustion Instability . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3.1 Thermoacoustic Modeling . . . . . . . . . . . . . . . . . . . . . 8
1.4 Pressure Response to Unsteady Heat Release . . . . . . . . . . . . . . . 9

1.4.1 Lighthill’s Analogy . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.4.2 Energy Balance . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.4.3 High-Fidelity Simulations . . . . . . . . . . . . . . . . . . . . . 18

1.5 Objectives and Methodology . . . . . . . . . . . . . . . . . . . . . . . . 20

2 MODELING OF THERMOACOUSTIC INSTABILITIES . . . . . . . . . . . 26
2.1 Conservation Equations . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.2 Acoustic Wave Equation with an Unsteady Heat Source . . . . . . . . . 28
2.3 Initial Value Problem of the Acoustic Wave Equation . . . . . . . . . . 31
2.4 Rayleigh Criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3 FLOW RESPONSE TO A HEAT RELEASE PULSE IN 1D . . . . . . . . . 35
3.1 Overview of the Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2 Heat Source with Gaussian Spatial Distribution and Step Temporal

Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.3 Heat Source with Gaussian Spatial and Temporal Distribution . . . . . 50
3.4 Parametric Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.5 Constant Pressure and Constant Volume Limits . . . . . . . . . . . . . 61
3.6 Comparison of Analytical and Numerical Results . . . . . . . . . . . . 67

3.6.1 Solver Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.6.2 Simulation Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.6.3 Results Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.7 Application to a Real Combustor: CVRC . . . . . . . . . . . . . . . . . 74



vi

Page
3.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4 FLOW RESPONSE TO A HEAT RELEASE PULSE IN 3D . . . . . . . . . 80
4.1 Planar Symmetry vs Cylindrical and Spherical Symmetry . . . . . . . . 81
4.2 Acoustic Wave Equation with Cylindrical Symmetry . . . . . . . . . . 84
4.3 Pressure Response to a Heat Release Pulse with Spherical Symmetry . 86
4.4 Derivation of Velocity, Density, and Temperature Expressions with

Spherical Symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.5 Heat Source with Gaussian Spherical Distribution and Step Temporal

Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.5.1 Acoustically compact and noncompact cases . . . . . . . . . . . 93

4.6 Heat Source with Gaussian Spherical Distribution and Gaussian Tem-
poral Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.7 Parametric Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
4.8 Comparison of Analytical and Numerical Results . . . . . . . . . . . 111

4.8.1 Simulation Setup . . . . . . . . . . . . . . . . . . . . . . . . . 111
4.8.2 Results Discussion . . . . . . . . . . . . . . . . . . . . . . . . 113

4.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5 FLOW RESPONSE TO A FLUCTUATING HEAT RELEASE SOURCE
IN 1D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
5.1 Heat Source with Flat Spatial Distribution and Sinusoidal Temporal

Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
5.1.1 Acoustically Compact vs Noncompact Regime . . . . . . . . . 132

5.2 Heat Source with Gaussian Spatial Distribution and Sinusoidal Tem-
poral Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
5.2.1 Acoustically Compact vs Noncompact Regime . . . . . . . . . 149

5.3 Parametric Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
5.4 Comparison of Analytical and Numerical Results . . . . . . . . . . . 158

5.4.1 Simulation Setup . . . . . . . . . . . . . . . . . . . . . . . . . 158
5.4.2 Results Discussion . . . . . . . . . . . . . . . . . . . . . . . . 160

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

6 EFFECTS OF UNSTEADY HEAT RELEASE ON A LONGITUDINAL
ACOUSTIC MODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
6.1 Pressure Solution for a Harmonic Velocity Fluctuation in an Open-

ended Cavity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
6.2 Interaction of a Fluctuating Pressure Field with an Unsteady Heat

Release Pulse in an Open-ended Cavity . . . . . . . . . . . . . . . . . 178
6.3 Establishment of a Longitudinal Acoustic Mode in a Combustor . . . 183
6.4 Interaction of a 1L acoustic Mode with an Unsteady Heat Release Pulse187
6.5 Comparison of Analytical and Numerical Results . . . . . . . . . . . 196

6.5.1 Simulation Setup . . . . . . . . . . . . . . . . . . . . . . . . . 196
6.5.2 Results Discussion . . . . . . . . . . . . . . . . . . . . . . . . 198



vii

Page

6.6 Nonlinear effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
6.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

7 CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
7.1 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

A APPENDIX A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
A.1 Total Heat for Gaussian Spherical Distribution and Step Temporal Profile224
A.2 Total Heat for Gaussian Spherical Distribution and Temporal Profile 224

B APPENDIX B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
B.1 Derivation of the pressure response to a heat source with Gaussian

spatial and temporal distribution . . . . . . . . . . . . . . . . . . . . 226
B.2 Derivation of the pressure response to a heat source with flat spatial

distribution and sinusoidal temporal profile . . . . . . . . . . . . . . . 231

VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235



viii

LIST OF TABLES

Table Page

3.1 Limiting expressions for the flow field response to a heat source with Gaus-
sian spatial distribution and step temporal profile. The subscript “ff”
refers to far field values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2 Limiting expressions for the flow field response to a heat source with Gaus-
sian spatial and temporal distribution. . . . . . . . . . . . . . . . . . . . . 55

3.3 Perfect gas mean flow properties like that of CO2 and heat release energy
used for all the analytical and numerical simulations of Chapter 3. . . . . . 68

4.1 Limiting expressions for the flow field response to a heat source with Gaus-
sian spherical distribution and step temporal profile. . . . . . . . . . . . . 94

4.2 Perfect gas mean flow properties like that of CO2 used for all the analytical
and numerical simulations of Chapter 4. . . . . . . . . . . . . . . . . . . 111

5.1 Limiting expressions for the flow field response to a heat source with flat
spatial distribution and sinusoidal temporal profile. The subscript “ff”
refers to far field values. . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

5.2 Limiting expressions for the flow field response to a heat source with Gaus-
sian spatial distribution and sinusoidal temporal profile. The subscript “ff”
refers to far field values. . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

5.3 Perfect gas mean flow properties like that of CO2 used for all the analytical
and numerical simulations of Chapter 5. . . . . . . . . . . . . . . . . . . 159

6.1 Expressions for the heat release pulse left and right-traveling waves and
their reflections against the combustor walls at x = 0 and x = L. Where
0 ≤ xf ≤ L. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

6.2 Perfect gas mean flow properties like that of CO2 and parameters used for
all the analytical and numerical simulations of Chapter 6. . . . . . . . . . 198

6.3 Parameters of the two cases of Section 6.5. . . . . . . . . . . . . . . . . . 199



ix

LIST OF FIGURES

Figure Page

1.1 Feedback mechanisms involved in combustion instability. . . . . . . . . . . 4

1.2 Diagram of the main processes that can cause combustion instabilities in
a liquid rocket combustor with a gas centered swirl coaxial injector. . . . . 5

1.3 Laminar flame structure for methane-air flame (Source [47]). . . . . . . . . 12

1.4 Historical evolution of energy balance analysis methods. . . . . . . . . . . 15

3.1 Schematic of a general one-dimensional combustor model. The fluctua-
tions of heat release in the flame provoke pressure fluctuations that prop-
agate across the combustor. . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2 Normalized Gaussian heat release profiles with respect to the flat pro-
file heat release intensity, qha, heat release length, Lha, and heat release
duration, ∆tha. Both heat source profiles input the same total energy, Eha. 37

3.3 Time evolution of the chemical heat release during the ignition process of
a stoichiometric mixture of gaseous methane and oxygen (T0 = 300 K and
p0 = 0.5 MPa). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.4 Chemical heat release spatial distribution during the maximum intensity
of the ignition process of a stoichiometric mixture of gaseous methane and
oxygen (T0 = 300 K and p0 = 0.5 MPa). . . . . . . . . . . . . . . . . . . . 39

3.5 Pressure response of a perfect gas with properties like that of CO2 to a heat
release source with Gaussian spatial distribution and step temporal profile.
Compact case (L): He = 0.0593 < 1/2, qha = 2.5 · 1012 W/m3, Lha =
100 µm and ∆tha = 1 µs. Noncompact case (R): He = 0.9487 > 1/2,
qha = 2.5 · 1012 W/m3, Lha = 400 µm, Lff = 166.62 µm (Lff = 0.42Lha)
and ∆tha = 0.25 µs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.6 Evolution of pressure amplitude of a perfect gas with properties like that
of CO2 over the distance for the response to a heat release source with
Gaussian spatial distribution and step temporal profile. Compact case
(L): He = 0.0593, qha = 2.5 · 1012 W/m3, Lha = 100 µm and ∆tha = 1 µs;
Noncompact case (R): He = 0.9487, qha = 2.5 · 1012 W/m3, Lha = 400 µm
and ∆tha = 0.25 µs. Eha/(HhaWha) = 250 J/m2 for both cases. . . . . . . . 48



x

Figure Page

3.7 Map of the pressure amplitude for constant values of heat release intensity
qha in W/m3 for a heat source with Gaussian spatial distribution and step
temporal profile (L), and a Gaussian spatio-temporal distribution (R),
respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.8 Evolution of pressure amplitude of a perfect gas with properties like that
of CO2 over the distance for the response to a heat release source with
Gaussian spatio-temporal distribution. Compact case (L): He = 0.0593,
qha = 2.5 · 1012 W/m3, Lha = 100 µm and ∆tha = 1 µs; Noncompact case
(R): He = 0.9487, qha = 2.5 · 1012 W/m3, Lha = 400 µm and ∆tha =
0.25 µs. Eha/(HhaWha) = 250 J/m2 for both cases. . . . . . . . . . . . . . 56

3.9 Map of the far field pressure amplitude (L) and pν work efficiency (R) of
the response of a perfect gas with properties like that of CO2 to a heat
release source with Gaussian spatial distribution and step temporal profile
(Hecr = 1/2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.10 Map of the minimum density (L) and maximum temperature (R) of the
response of a perfect gas with properties like that of CO2 to a heat re-
lease source with Gaussian spatial distribution and step temporal profile
(Hecr = 1/2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.11 Map of the far field pressure amplitude (L) and pν work efficiency (R) of
the response of a perfect gas with properties like that of CO2 to a heat
release source with Gaussian spatial and temporal distribution (Hecr =√

2/7). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.12 Map of the minimum density (L) and maximum temperature (R) of the
response of a perfect gas with properties like that of CO2 to a heat release
source with Gaussian spatial and temporal distribution (Hecr =

√
2/7). . . 60

3.13 Diagram of pressure and specific volume at x = 0 for a fixed heat release
length Lha = 200 µm and for different He. The heat release sources are a
Gaussian spatial distribution and step temporal profile (L), and Gaussian
spatial and temporal distribution (R), respectively. . . . . . . . . . . . . . 62

3.14 Evolution of the maximum pressure and far field pressure amplitude for
fixed heat release lengths Lha with respect to He. The heat release sources
are a Gaussian spatial distribution and step temporal profile (L), and
Gaussian spatial and temporal distribution (R), respectively. . . . . . . . . 64

3.15 Evolution of the maximum pressure with respect to the constant volume
pressure limit as a function of He. Heat source 1 and 2 are the Gaussian
spatial distribution and step temporal profile, and Gaussian spatial and
temporal distribution, respectively. . . . . . . . . . . . . . . . . . . . . . . 66



xi

Figure Page

3.16 Schematic of the computational domain used in the numerical simulations. 68

3.17 Compact case, He = 0.0593 < 1/2. Flow field response to a heat source
with Gaussian spatial distribution and step temporal profile. Solid lines
represent the analytical solution whereas dashed lines are the numerical
solution. Heat release parameters: qha = 2.5 · 1012 W/m3, Lha = 100 µm,
∆tha = 1 µs. In this plot and the subsequent ones, φ = ρ, T , c, γ are
scaled with respect to the right hand side axis. . . . . . . . . . . . . . . . . 70

3.18 Noncompact case, He = 0.9487 > 1/2. Flow field response to a heat source
with Gaussian spatial distribution and step temporal profile. Solid lines
represent the analytical solution whereas dashed lines are the numerical
solution. heat release parameters: qha = 2.5 · 1012 W/m3, Lha = 400 µm,
∆tha = 0.25 µs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.19 Compact case, He = 0.0593 <
√

2/7. Flow field response to a heat source
with Gaussian spatial and temporal distribution. Solid lines represent the
analytical solution whereas dashed lines are the numerical solution. heat
release parameters: qha = 2.5 · 1012 W/m3, Lha = 100 µm, ∆tha = 1 µs. . . 72

3.20 Noncompact case, He = 0.9487 >
√

2/7. Flow field response to a heat
source with Gaussian spatial and temporal distribution. Solid lines rep-
resent the analytical solution whereas dashed lines are the numerical so-
lution. heat release parameters: qha = 2.5 · 1012 W/m3, Lha = 400 µm,
∆tha = 0.25 µs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.21 Contour plot of the numerically computed Henum distribution for two time
instances of a typical 1L mode acoustic cycle of the CVRC combustor. The
nominal chamber pressure is 1.4 MPa [73]. . . . . . . . . . . . . . . . . . . 75

3.22 Contour plot of the numerically computed standard deviation of the speed
of sounds over the local mean speed of sound (σc(x)/c0(x)) of the CVRC
combustor. The nominal chamber pressure is 1.4 MPa [73]. . . . . . . . . . 77

4.1 Comparison of planar vs cylindrical vs spherical symmetry (Source [79]). . 83

4.2 Evolution of the maximum amplitude with respect to the Helmholtz num-
ber for the response of a perfect gas with properties like that of CO2 to a
heat release source with Gaussian spherical distribution and step temporal
profile (L), and Gaussian spherical distribution and temporal profile (R),
respectively. Eha = 4

3
π10−7 J. . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.3 Map of the maximum pressure amplitude (L) and pν work efficiency (R)
of the response of a perfect gas with properties like that of CO2 to a heat
release source with Gaussian spherical distribution and step temporal profile.108



xii

Figure Page

4.4 Map of the minimum density (L) and maximum temperature (R) of the
response of a perfect gas with properties like that of CO2 to a heat release
source with Gaussian spherical distribution and step temporal profile. . . 109

4.5 Map of the maximum pressure amplitude (L) and pν work efficiency (R)
of the response of a perfect gas with properties like that of CO2 to a heat
release source with Gaussian spherical distribution and temporal profile. 109

4.6 Map of the minimum density (L) and maximum temperature (R) of the
response of a perfect gas with properties like that of CO2 to a heat release
source with Gaussian spherical distribution and temporal profile. . . . . 110

4.7 Schematic of the spherical computational domain used in the numerical
simulations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

4.8 Compact case, He = 0.0593 <
√

8/3. Pressure response of a perfect gas
with properties like that of CO2 to a heat source with Gaussian spherical
distribution and step temporal profile. Heat release parameters: qha,sph =
1011 W/m3, Rha = 50 µm, ∆tha = 1 µs, and Eha = 5

3
π10−8 J. . . . . . . . 114

4.9 Compact case, He = 0.0593 <
√

8/3. Velocity response of a perfect gas
with properties like that of CO2 to a heat source with Gaussian spherical
distribution and step temporal profile. Heat release parameters: qha,sph =
1011 W/m3, Rha = 50 µm, ∆tha = 1 µs, and Eha = 5

3
π10−8 J. . . . . . . . 114

4.10 Compact case, He = 0.0593 <
√

8/3. Density response of a perfect gas
with properties like that of CO2 to a heat source with Gaussian spherical
distribution and step temporal profile. Heat release parameters: qha,sph =
1011 W/m3, Rha = 50 µm, ∆tha = 1 µs, and Eha = 5

3
π10−8 J. . . . . . . . 115

4.11 Compact case, He = 0.0593 <
√

8/3. Temperature response of a per-
fect gas with properties like that of CO2 to a heat source with Gaussian
spherical distribution and step temporal profile. Heat release parameters:
qha,sph = 1011 W/m3, Rha = 50 µm, ∆tha = 1 µs, and Eha = 5

3
π10−8 J. . . 115

4.12 Noncompact case, He = 1.897 >
√

8/3. Pressure response of a perfect gas
with properties like that of CO2 to a heat source with Gaussian spherical
distribution and step temporal profile. Heat release parameters: qha,sph =
1.25 · 1011 W/m3, Rha = 400 µm, ∆tha = 0.25 µs, and Eha = 8

3
π10−6 J. . 116

4.13 Noncompact case, He = 1.897 >
√

8/3. Velocity response of a perfect gas
with properties like that of CO2 to a heat source with Gaussian spherical
distribution and step temporal profile. Heat release parameters: qha,sph =
1.25 · 1011 W/m3, Rha = 400 µm, ∆tha = 0.25 µs, and Eha = 8

3
π10−6 J. . 116



xiii

Figure Page

4.14 Noncompact case, He = 1.897 >
√

8/3. Density response of a perfect gas
with properties like that of CO2 to a heat source with Gaussian spherical
distribution and step temporal profile. Heat release parameters: qha,sph =
1.25 · 1011 W/m3, Rha = 400 µm, ∆tha = 0.25 µs, and Eha = 8

3
π10−6 J. . 117

4.15 Noncompact case, He = 1.897 >
√

8/3. Temperature response of a per-
fect gas with properties like that of CO2 to a heat source with Gaussian
spherical distribution and step temporal profile. Heat release parame-
ters: qha,sph = 1.25 · 1011 W/m3, Rha = 400 µm, ∆tha = 0.25 µs, and
Eha = 8

3
π10−6 J. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

4.16 Evolution of the maximum pressure over the radial distance for a heat
source with Gaussian spherical distribution and step temporal profile. L)
Compact case: He = 0.0593, qha,sph = 1011 W/m3, Rha = 50 µm, ∆tha =
1 µs, and Eha = 5

3
π10−8 J. R) Noncompact case: He = 1.897, qha,sph =

1.25 · 1011 W/m3, Rha = 400 µm, ∆tha = 0.25 µs, and Eha = 8
3
π10−6 J. . 118

4.17 Compact case, He = 0.0593 <
√

8/3. Pressure response of a perfect gas
with properties like that of CO2 to a heat source with Gaussian spheri-
cal distribution and temporal profile. Heat release parameters: qha,sph =
1011 W/m3, Rha = 50 µm, ∆tha = 1 µs, and Eha = 5

3
π10−8 J. . . . . . . . 119

4.18 Compact case, He = 0.0593 <
√

8/3. Velocity response of a perfect gas
with properties like that of CO2 to a heat source with Gaussian spheri-
cal distribution and temporal profile. Heat release parameters: qha,sph =
1011 W/m3, Rha = 50 µm, ∆tha = 1 µs, and Eha = 5

3
π10−8 J. . . . . . . . 120

4.19 Compact case, He = 0.0593 <
√

8/3. Density response of a perfect gas
with properties like that of CO2 to a heat source with Gaussian spheri-
cal distribution and temporal profile. Heat release parameters: qha,sph =
1011 W/m3, Rha = 50 µm, ∆tha = 1 µs, and Eha = 5

3
π10−8 J. . . . . . . . 120

4.20 Compact case, He = 0.0593 <
√

8/3. Temperature response of a per-
fect gas with properties like that of CO2 to a heat source with Gaus-
sian spherical distribution and temporal profile. Heat release parameters:
qha,sph = 1011 W/m3, Rha = 50 µm, ∆tha = 1 µs, and Eha = 5

3
π10−8 J. . . 121

4.21 Noncompact case, He = 1.897 >
√

8/3. Pressure response of a perfect gas
with properties like that of CO2 to a heat source with Gaussian spherical
distribution and temporal profile. Heat release parameters: qha,sph = 1.25 ·
1011 W/m3, Rha = 400 µm, ∆tha = 0.25 µs, and Eha = 8

3
π10−6 J. . . . . 121



xiv

Figure Page

4.22 Noncompact case, He = 1.897 >
√

8/3. Velocity response of a perfect gas
with properties like that of CO2 to a heat source with Gaussian spherical
distribution and temporal profile. Heat release parameters: qha,sph = 1.25 ·
1011 W/m3, Rha = 400 µm, ∆tha = 0.25 µs, and Eha = 8

3
π10−6 J. . . . . 122

4.23 Noncompact case, He = 1.897 >
√

8/3. Density response of a perfect gas
with properties like that of CO2 to a heat source with Gaussian spherical
distribution and temporal profile. Heat release parameters: qha,sph = 1.25 ·
1011 W/m3, Rha = 400 µm, ∆tha = 0.25 µs, and Eha = 8

3
π10−6 J. . . . . 122

4.24 Noncompact case, He = 1.897 >
√

8/3. Temperature response of a per-
fect gas with properties like that of CO2 to a heat source with Gaus-
sian spherical distribution and temporal profile. Heat release parame-
ters: qha,sph = 1.25 · 1011 W/m3, Rha = 400 µm, ∆tha = 0.25 µs, and
Eha = 8

3
π10−6 J. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

4.25 Evolution of the maximum pressure over the radial distance for a heat
source with Gaussian spherical distribution and temporal profile. L) Com-
pact case: He = 0.0593, qha,sph = 1011 W/m3, Rha = 50 µm, ∆tha = 1 µs,
and Eha = 5

3
π10−8 J. R) Noncompact case: He = 1.897, qha,sph = 1.25 ·

1011 W/m3, Rha = 400 µm, ∆tha = 0.25 µs, and Eha = 8
3
π10−6 J. . . . . 123

5.1 Compact case. Pressure response of a perfect gas with properties like that
of CO2 to a heat release source with flat spatial distribution and sinusoidal
temporal profile. He = 0.0734, qha,s = 2.5 · 1012 W/m3, Eha/(HhaWha) =
1000 J/m2, Lha = 100 µm and f = 2.5 · 105 Hz. . . . . . . . . . . . . . . 133

5.2 Noncompact case. Pressure response of a perfect gas with properties
like that of CO2 to a heat release source with flat spatial distribution
and sinusoidal temporal profile. He = 1.174, qha,s = 2.5 · 1012 W/m3,
Eha/(HhaWha) = 1000 J/m2, Lha = 400 µm and f = 106 Hz. . . . . . . . 134

5.3 Evolution of pressure amplitude over the distance for the response of a
perfect gas with properties like that of CO2 to a heat release source with
flat spatial distribution and sinusoidal temporal profile. Compact case (L):
He = 0.0734, qha,s = 2.5 · 1012 W/m3, Lha = 100 µm and f = 2.5 · 105 Hz;
Noncompact case (R): He = 1.174, qha,s = 2.5 · 1012 W/m3, Lha = 400 µm
and f = 106 Hz. Eha/(HhaWha) = 1000 J/m2 for both cases. . . . . . . . 135

5.4 Evolution of the maximum and far field pressure amplitude with respect
to the Helmholtz number for the response of a perfect gas with properties
like that of CO2 to a heat release source with flat spatial distribution and
sinusoidal temporal profile. Eha/(HhaWha) = 1000 J/m2. . . . . . . . . . 135



xv

Figure Page

5.5 Compact case. Pressure response of a perfect gas with properties like
that of CO2 to a heat release source with Gaussian spatial distribution
and sinusoidal temporal profile. He = 0.0734, qha,s = 2.5 · 1012 W/m3,
Eha/(HhaWha) = 1000 J/m2, Lha = 100 µm and f = 2.5 · 105 Hz. . . . . 149

5.6 Noncompact case. Pressure response of a perfect gas with properties like
that of CO2 to a heat release source with Gaussian spatial distribution
and sinusoidal temporal profile. He = 1.174, qha,s = 2.5 · 1012 W/m3,
Eha/(HhaWha) = 1000 J/m2, Lha = 400 µm and f = 106 Hz. . . . . . . . 150

5.7 Evolution of pressure amplitude over the distance for the response of a
perfect gas with properties like that of CO2 to a heat release source with
Gaussian spatial distribution and sinusoidal temporal profile. Compact
case (L): He = 0.0734, qha,s = 2.5 · 1012 W/m3, Lha = 100 µm and
f = 2.5·105 Hz; Noncompact case (R): He = 1.174, qha,s = 2.5·1012 W/m3,
Lha = 400 µm and f = 106 Hz. Eha/(HhaWha) = 1000 J/m2 for both cases. 151

5.8 Evolution of the maximum pressure amplitude with respect to the Helmholtz
number for the response of a perfect gas with properties like that of CO2

to a heat release source with Gaussian spatial distribution and sinusoidal
temporal profile. Eha/(HhaWha) = 1000 J/m2. . . . . . . . . . . . . . . . 151

5.9 Map of the far field pressure amplitude of the response of a perfect gas
with properties like that of CO2 to a heat release source with flat spatial
distribution and sinusoidal temporal profile (Hecr = 0.371). Constant
energy Eha/(HhaWha) = 500 J/m2. . . . . . . . . . . . . . . . . . . . . . 154

5.10 Map of the minimum density (L) and maximum temperature (R) of the
response of a perfect gas with properties like that of CO2 to a heat re-
lease source with flat spatial distribution and sinusoidal temporal profile.
Constant energy Eha/(HhaWha) = 500 J/m2. . . . . . . . . . . . . . . . . 155

5.11 Map of the far field pressure amplitude of the response of a perfect gas
with properties like that of CO2 to a heat release source with flat spatial
distribution and sinusoidal temporal profile, for constant values of heat
release intensity qha,s (Hecr = 0.371). Note that in this case the energy
level Eha/(HhaWha) is not constant across the map of Lha and f . . . . . 156

5.12 Map of the maximum pressure amplitude of the response of a perfect gas
with properties like that of CO2 to a heat release source with Gaussian spa-
tial distribution and sinusoidal temporal profile (Hecr = 1.37). Constant
energy Eha/(HhaWha) = 500 J/m2. . . . . . . . . . . . . . . . . . . . . . 157



xvi

Figure Page

5.13 Map of the minimum density (L) and maximum temperature (R) of the
response of a perfect gas with properties like that of CO2 to a heat release
source with Gaussian spatial distribution and sinusoidal temporal profile.
Constant energy Eha/(HhaWha) = 500 J/m2. . . . . . . . . . . . . . . . . 157

5.14 Schematic of the computational domain used in the numerical simulations. 158

5.15 Noncompact case, He = 1.174. Pressure response of a perfect gas with
properties like that of CO2 to a heat release source with flat spatial
distribution and sinusoidal temporal profile. Heat release parameters:
Lha = 400 µm and f = 106 Hz. . . . . . . . . . . . . . . . . . . . . . . . 161

5.16 Noncompact case, He = 1.174. Velocity response of a perfect gas with
properties like that of CO2 to a heat release source with flat spatial
distribution and sinusoidal temporal profile. Heat release parameters:
Lha = 400 µm and f = 106 Hz. . . . . . . . . . . . . . . . . . . . . . . . 162

5.17 Noncompact case, He = 1.174. Density response of a perfect gas with
properties like that of CO2 to a heat release source with flat spatial
distribution and sinusoidal temporal profile. Heat release parameters:
Lha = 400 µm and f = 106 Hz. . . . . . . . . . . . . . . . . . . . . . . . 163

5.18 Noncompact case, He = 1.174. Temperature response of a perfect gas
with properties like that of CO2 to a heat release source with flat spa-
tial distribution and sinusoidal temporal profile. Heat release parameters:
Lha = 400 µm and f = 106 Hz. . . . . . . . . . . . . . . . . . . . . . . . 164

5.19 Compact case, He = 0.0734. Pressure response of a perfect gas with
properties like that of CO2 to a heat release source with Gaussian spa-
tial distribution and sinusoidal temporal profile. Heat release parameters:
Lha = 100 µm and f = 2.5 · 105 Hz. . . . . . . . . . . . . . . . . . . . . . 166

5.20 Compact case, He = 0.0734. Velocity response of a perfect gas with
properties like that of CO2 to a heat release source with Gaussian spa-
tial distribution and sinusoidal temporal profile. Heat release parameters:
Lha = 100 µm and f = 2.5 · 105 Hz. . . . . . . . . . . . . . . . . . . . . . 167

5.21 Compact case, He = 0.0734. Density response of a perfect gas with
properties like that of CO2 to a heat release source with Gaussian spa-
tial distribution and sinusoidal temporal profile. Heat release parameters:
Lha = 100 µm and f = 2.5 · 105 Hz. . . . . . . . . . . . . . . . . . . . . . 168

5.22 Compact case, He = 0.0734. Temperature response of a perfect gas with
properties like that of CO2 to a heat release source with Gaussian spa-
tial distribution and sinusoidal temporal profile. Heat release parameters:
Lha = 100 µm and f = 2.5 · 105 Hz. . . . . . . . . . . . . . . . . . . . . . 169



xvii

Figure Page

5.23 a) Sketch of acoustic pressure over time at a sufficiently distant point
from an oscillating transducer for the formation of a sawtooth profile; b)
sketch of acoustic pressure over the distance for a particular instant of
time, depicting the evolution of the pressure from a harmonic signal to a
sawtooth profile (Source [90]). . . . . . . . . . . . . . . . . . . . . . . . . 170

6.1 One-dimensional duct with a velocity forcing perturbation that excites the
system to an acoustic longitudinal mode. An external heat source provokes
pressure fluctuations that interact with the acoustic modes of the duct. . 173

6.2 Diagram of a moving surface generating harmonic velocity fluctuations. . 176

6.3 Evolution of the far field pressure of a harmonic pressure fluctuation in-
teracting with a heat release pulse with a Gaussian spatial and temporal
distribution, for different Helmholtz numbers and constant heat addition
length Lha, and energy Eha/(HhaWha) = 5000 J/m2. . . . . . . . . . . . . 182

6.4 Map of the maximum far field pressure (L) and ratio of periods (R) of a
harmonic pressure fluctuation interacting with a heat release pulse with a
Gaussian spatial and temporal distribution. In the left plot, the constant
heat addition qha lines range from 107 to 1014 W/m3 growing from right
to left. Parameters: f = 5000 Hz, φpq = 0, and Eha/(HhaWha) = 5000 J/m2.182

6.5 Pressure trace comparison of the solution of a 1L longitudinal acoustic
mode with the resulting pressure field started with a moving surface fluc-
tuating over one full cycle. Parameters: L = 0.1 m, n = 1, and uf = 20
m/s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

6.6 Normalized longitudinal acoustic mode shapes for the first three modes. . 185

6.7 Pressure trace for the heat release pulse left-traveling wave (L) and right-
traveling wave (R), and their reflections against the duct walls at x = 0
and x = L, respectively. Parameters: L = 0.1 m, Lha = L/10, ∆tha = L

5c0
,

xf = L/3, and thab = 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

6.8 Superposition of an acoustic longitudinal mode and an unsteady heat re-
lease pulse in a 1D duct. . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

6.9 Short heat release pulse for a 1L mode. Evolution of the maximum pressure
in the interaction between a 1L acoustic mode and a heat release source
with Gaussian spatial and temporal distribution. . . . . . . . . . . . . . 193

6.10 Heat release pulse representing a bulk mode. Evolution of the maximum
pressure in the interaction between a 1L acoustic mode and a heat release
source with Gaussian spatial and temporal distribution. . . . . . . . . . . 193



xviii

Figure Page

6.11 Pressure trace (T) and its decomposition (B) of the interaction between
a 1L acoustic mode and a heat release source with Gaussian spatial and
temporal distribution. Short heat release pulse for a 1L mode (L) and
heat release pulse representing a bulk mode (R). Nc = 2 for both cases. . 194

6.12 Schematic of the computational domain used in the numerical simulations. 197

6.13 Short heat release pulse for a 1L mode. Comparison of the analytical and
numerical solution of the interaction between a 1L acoustic mode and a
heat release source with Gaussian spatial and temporal distribution. . . . 200

6.14 Short heat release pulse for a 1L mode. Comparison of the analytical and
numerical solution of the interaction between a 1L acoustic mode and a
heat release source with Gaussian spatial and temporal distribution. . . . 201

6.15 Heat release pulse representing a bulk mode. Comparison of the analytical
and numerical solution of the interaction between a 1L acoustic mode and
a heat release source with Gaussian spatial and temporal distribution. . . 203

6.16 Heat release pulse representing a bulk mode. Comparison of the analytical
and numerical solution of the interaction between a 1L acoustic mode and
a heat release source with Gaussian spatial and temporal distribution. . . 204

6.17 Example of experimental pressure trace in a liquid rocket combustor (Source
[94]). Pressure trace at 0.3” downstream the dump plane for the case
Tox = 730 K. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

6.18 Shock amplitude of an originally sinusoidal wave. Inset depicts the wave-
form at various distances from the source (Source [96]). . . . . . . . . . . 208



xix

SYMBOLS

Ap1, Ap2, Ap3, Pressure amplitude constant

Ap4, Ap5, Ap6 of profiles 1, 2, 3, 4, 5, and 6

c Speed of Sound [m/s]

cp Constant pressure specific heat capacity [J/kg/K]

cv Constant volume specific heat capacity [J/kg/K]
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ABSTRACT

Pons, Arnau Ph.D., Purdue University, August 2020. Study of the effects of unsteady
heat release in combustion instability. Major Professor: William E. Anderson.

Rocket combustors and other high-performance chemical propulsion systems are

prone to combustion instability. Recent simulations of rocket combustors using de-

tailed chemical kinetics show that the constant pressure assumption used in classical

treatments may be suspect due to high rates of heat release. This study is a explo-

ration on the effects of these extraordinary rates of heat addition on the local pressure

field, and interactions between the heat release and an acoustic field.

The full problem is decomposed into simpler unit problems focused on the par-

ticular interactions of physical phenomena involved in combustion instability. The

overall strategy consists of analyzing fundamental problems with simplified scenarios

and then build up the complexity by adding more phenomena to the analysis. Seven

unit problems are proposed in this study.

The first unit problem consists of the pressure response to an unsteady heat release

source in an unconfined one-dimensional domain. An analytical model based on the

acoustic wave equation with planar symmetry and an unsteady heat source is derived

and then compared against results from highly-resolved numerical simulations. Two

different heat release profiles, one a Gaussian spatial distribution with a step tempo-

ral profile, and the other a Gaussian spatial distribution with a Gaussian temporal

distribution, are used to model the heat source. The analytical solutions predict two

different regimes in the pressure response depending on the Helmholtz number, which

is defined as the ratio of the acoustic time over the duration of the heat release pulse.

A critical Helmholtz number is found to dictate the pressure response regime. For

compact cases, in the subcritical regime, the amplitude of the pressure pulse remains
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constant in space. For noncompact cases, above the critical Helmholtz number, the

pressure pulse reaches a maximum at the center of the heat source, and then decays

in space converging to a lower far field amplitude. At the limits of very small and very

large Helmholtz numbers, the heat release response tends to be a constant pressure

process and a constant volume process, respectively. The parameters of the study

are chosen to be representative of the extreme conditions in a rocket combustor. The

analytical models for both heat source profiles closely match the simulations with a

slight overprediction. The differences observed in the analytical solutions are due to

neglecting mean flow property variations and the absence of loss mechanisms. The

numerical simulations also reveal the presence of nonlinear effects such as weak shocks

that cannot be captured by the linear acoustic wave equation.

The second unit problem extends the analysis of the pressure response of an un-

steady heat release source to an unconfined three-dimensional domain. An analytical

model based on the spherical acoustic wave equation with an unsteady heat source

is derived and then compared against results from highly-resolved three-dimensional

numerical simulations. Two different heat release profiles, a three-dimensional Gaus-

sian spherical distribution with either a step or a Gaussian temporal distribution, are

used to model the heat source. Two different regimes in the pressure response de-

pending on the Helmholtz number are found. This analysis also reveals that whereas

for the one-dimensional case the pressure amplitude is constant over the distance, for

the three-dimensional case it decays with the radial distance from the heat source. In

addition, although for moderate heat release values the analytical solution is able to

capture the dynamics of the fluid response, for large heat release values the nonlinear

effects deviate the highly-resolved numerical solution from the analytical model.

The third unit problem studies the pressure response of a fluctuating unsteady

heat release source to an unconfined one-dimensional domain. An analytical model

based on the acoustic wave equation with planar symmetry and an unsteady heat

source is derived and then compared against results from highly-resolved numerical

simulations. Two different heat release profiles, a flat spatial distribution with sinu-
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soidal temporal profile and a Gaussian spatial distribution and sinusoidal temporal

profile, are used to model the heat source. For both cases, the acoustically compact

and noncompact regimes depending on the Helmholtz number are analyzed. While

in the compact regime the amplitude of the pressure is constant over the distance,

in the noncompact regime the amplitude of the pressure fluctuation is larger within

the heat source area of application, and once outside the heat source decays to a far

field pressure value. In addition, the analytical model does not capture the nonlinear

effects present in the highly-resolved numerical simulations for large rates of heat

release such as the ones present in rocket combustors.

Finally, the last four unit problems focus on the interaction between unsteady heat

release and the longitudinal acoustic modes of a combustor. The goal is to assess and

quantify how pressure fluctuations due to unsteady heat release amplify a longitudinal

acoustic mode. To investigate the nonlinear effects and the limitations based on the

acoustic wave equation, the analytical models are compared against highly-resolved

numerical simulations. The fourth unit problem consists of the pressure response

to a moving rigid surface that generates a forced sinusoidal velocity fluctuation in a

one-dimensional open-ended cavity. The fifth unit problem combines an analytical

solution from the velocity harmonic fluctuation with an unsteady heat pulse with

Gaussian spatial and temporal distribution developed in the first unit problem. The

choice of an open-ended cavity simplifies the analysis and serves as a stepping stone

to the sixth unit problem, which also includes the pressure reflections provoked by

the acoustic boundaries of the duct. This sixth unit problem describes the estab-

lishment of a 1L acoustic longitudinal mode inside a closed duct using the harmonic

velocity fluctuations from the fourth unit problem. A wall on the left end of the duct

is only moved for one cycle at the 1L mode frequency to establish a 1L mode in the

initially quiescent fluid. The last unit problem combines the analytical solution of the

1L mode acoustic field developed in the sixth unit problem with an unsteady heat

pulse with Gaussian spatial and temporal distribution, and also accounts for pressure

reflections. The derivation of the present analytical models includes the identification
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of relevant length and time scales that are condensed into the Helmholtz number, the

phase shift between the longitudinal fluctuating pressure field and the heat source,

and ratio of the fluctuating periods. The analytical solution is able to capture with

an acceptable degree of accuracy the pressure trace of the numerical solution during

the fist few cycles of the 1L mode, but it quickly deviates very significantly from the

numerical solution due to wave steepening and the formation of weak shocks. There-

fore, models based on the acoustic wave equation can provide a good understanding

of the combustion instability behavior, but not accurately predict the evolution of

the pressure fluctuations as the nonlinear effects play a major role in the combustion

dynamics of liquid rocket engines.
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1. INTRODUCTION

1.1 Motivation and Background

The presence of combustion instabilities in gas turbines and liquid rocket engines

can lead to high-amplitude pressure oscillations with the potential to damage or de-

stroy combustors [1–3]. Liquid rocket engines may experience more severe pressure

fluctuations than gas turbines due to the high rates of volumetric heat release driven

by the high operating pressure in near-stoichiometric conditions. The accurate pre-

diction of combustion instability represents a formidable challenge in the development

of propulsion and power systems. The nonlinear coupling of physical phenomena such

as acoustics, hydrodynamics and chemical kinetics, which occurs at different spatial

and temporal scales, further complicates the task of modeling combustion instabili-

ties. The coupling between the unsteady pressure field and heat release represents a

primary mechanism that drives combustion instability [4]. Thus, correctly capturing

the unsteady heat release and its coupling with pressure fluctuations has a paramount

importance in the construction of relevant combustion instability models.

The fluctuation of chemical heat release generates acoustic waves that propagate

across the combustor and interact with the present acoustic field. These interactions

are not necessarily a linear superposition of acoustic signals due to the nonlinearity of

the governing equations and physics involved. Furthermore, the combustion regime

for rockets is characterized by high rates of heat release, which can surpass TW/m3

and generate very high amplitude pressure oscillations, which are orders of magnitude

larger than gas turbines. In addition, the non-premixed turbulent combustion of

rockets differs from the smoother more continuous flames encountered in gas turbines.

Many researchers have analytically modeled unsteady heat release as harmonic

oscillations with smooth temporal variations [5,6]. This idealized view of combustion
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instability is quite different than the physics that occur in a rocket combustor, where

the level of unsteadiness, large gradients of mixture, high pressure, and high energy of

the propellants provokes extremely large heat release fluctuations. These character-

istics of rockets along with the non-premixed turbulent combustion regime introduce

stochastic behavior to the system that differs from purely harmonic fluctuations. As

Dowling showed [7], in turbulent combustion the acoustic pressure is a stochastic

variable. Ignition and extinction events result in a discontinuous flame that can be

thought of as a combination of pockets of propellants that burn to produce unsteady

heat release fluctuations. Bragg [8] proposed a theory envisioning turbulent flame as

a collection of statistically uncorrelated eddies, undergoing various stages of chemical

reaction. Each eddy, which acts as a monopole source of sound, has its own heat

release rate that is statistically independent of the neighboring eddies. Altogether,

in his theory the rate at which the combustion volume is contracting or expanding is

the sum of the contraction or expansion of the individual eddies [8, 9]. However, in

turbulent flames, turbulence and chemistry affect each other in a mutual nonlinear

interaction [10]. In a real combustor, the unsteady heat release in an eddy generates

a pressure fluctuation that propagates in all directions perturbing the local flow field

of neighboring eddies, and hence, their turbulence-chemistry interactions. All these

factors contribute to a highly stochastic behavior that is not included in the classical

harmonic treatments. In addition, there are no prior analytical models to predict the

pressure response to unsteady heat release sources typical of rocket engines. Thus,

the complexity of the problem calls for the use of high-fidelity numerical simulations.

Modern LES/DES methods have shown the ability to model and reproduce combus-

tion instability in real combustors [11,12]. However, the high degree of complexity of

the system makes it very difficult to isolate the different mechanisms and assess the

relative contribution of each physical phenomena to combustion instability.

An analytical solution of the pressure response to an unsteady heat release source

with a Gaussian profile can be used to extract physical insight of turbulent flame

noise, and study its effects on combustion instability. Moreover, the detailed study of
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the pressure response to unsteady heat release facilitates the comprehension of how

the combination of a large number of unsteady heat release events interact with the

acoustic modes of a combustor. The analysis can be improved by adding vortex shed-

ding to the interactions between acoustics and heat release. Indeed, vortex shedding

is a common flow phenomenon seen in rocket combustors that has important effects

on combustion instability. Altogether the research goal is to contribute to the under-

standing of the effects of high rates of unsteady heat release on combustion instability

in liquid rockets.

1.2 Combustion Instability

Combustion instability occurs when unsteady heat release couples with the acous-

tic modes of a combustor, which in turn may generate high-amplitude pressure oscil-

lations. This coupling is governed by the nonlinear interactions of multiple physical

mechanisms that can be encompassed in three phenomena: unsteady heat release,

acoustics, and hydrodynamics. Fig. 1.1 shows the traditional direction of the feed-

back mechanisms that may lead to combustion instability. Although this diagram

sets a given direction for the combustion instability feedback mechanisms, the inter-

actions happen in both directions. For instance, acoustic pressure fluctuations may

vary the chemical equilibrium of combustion reactions thereby affecting heat release,

vortex shedding can generate pressure oscillations, and unsteady heat release gener-

ates turbulence-chemistry interactions that can perturb the vortex dynamics in the

combustor, to name a few.
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Figure 1.1. Feedback mechanisms involved in combustion instability.

Acoustic modes are in general longitudinal, transverse, or Helmholtz-type with

the type of mode determined by the geometry of the combustion chamber [13, 14].

Longitudinal and transverse modes have been extensively studied in the literature.

However, Helmholtz-type combustion instabilities, which are also known as bulk mode

instabilities, are barely addressed in case of non-premixed flames. Unlike longitudinal

modes which resonate at higher frequencies and vary with the span of the combustor

depending on the boundary conditions, Helmholtz-type combustion instabilities are

characterized by low frequencies and no spatial dependence for the pressure. Com-

bustors may exhibit low frequency instabilities identified as bulk modes, which in

turn interact with the heat release dynamics of the chamber [14].

Fig. 1.2 depicts a diagram of the main physical phenomena involved in combustion

instability in liquid rocket engines with a gas centered swirl coaxial injector. This

research work focuses on the regime of high-performance methane-LOX liquid rocket

engines.
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Figure 1.2. Diagram of the main processes that can cause combustion instabilities in
a liquid rocket combustor with a gas centered swirl coaxial injector.

Combustion Instability Mechanisms

• Unsteady heat release:

a) Flame area fluctuations and turbulence-chemistry interactions: the rate

of chemical heat release is directly linked to the flame surface area [15]. In a

combustor, the flame surface area fluctuates due to effects such as acoustic ve-

locity oscillations (stretching-contraction) as well as hydrodynamic phenomena

that perturb the flame e.g vortex shedding, flow separation, large scale mix-

ing [1]. The variation of the flame surface area provokes fluctuations in heat

release. In turbulent flames, the mutual interactions between turbulence and

flame are nonlinear and depend on the relative strengths of chemical and tur-

bulent processes [10]. For instance, turbulence effects such as straining and

wrinkling of the flame provoke variations of the flame surface area with the

consequent unsteady heat release fluctuations [16]. In turn, chemical heat re-

lease provokes changes to fluid properties such as the density and viscosity that

affect the structure and dynamics of the turbulence. As turbulence transports

the reactants and products, it affects the structure of the flame thereby closing

the feedback mechanism [10].
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b) Equivalence ratio fluctuations: the fluctuations in the mixing processes

of fuel and oxidizer downstream the injectors along with the oscillations in the

propellant feed systems provoke variations in the reactive mixture equivalence

ratio [1]. As the mixture is convected downstream and reacts at the flame, the

variations of the equivalence ratio generate fluctuations in heat release.

• Direct combustion noise: the fluctuation of chemical heat release provokes

acoustic pressure perturbations that propagate in all directions. Effectively, the

fluctuation of heat release generates a volumetric expansion or contraction in

the local flow field that propagates in the form of acoustic perturbations. In con-

trast, steady combustion leads to a constant rate of expansion, and hence, does

not generate combustion noise [7]. The coupling of unsteady combustion heat

release with the acoustic modes of the combustor may provoke high amplitude

pressure fluctuations that lead to combustion instability [2].

• Indirect combustion noise: the interaction of the vortical and entropic per-

turbations with the mean flow velocity gradient at the nozzle results in energy

transfer to an acoustic mode [17].

a) Entropy waves: the spatial and temporal fluctuations of heat release gen-

erate entropy fluctuations in the form of hot and cold spots, which are convected

downstream the flame with the mean flow. The imperfect mixing of propellants

also provokes entropy inhomogeneities. These entropy fluctuations, known as

entropy waves, propagate across the combustor at the flow bulk velocity. At the

nozzle, the acceleration of entropy waves with the mean flow generates acoustic

pressure fluctuations because regions of fluid with different densities undergo

a volume contraction [18]. In turn, the acoustic pressure waves caused by the

acceleration of entropy waves propagate upstream where they can perturb the

flame, thereby closing the feedback mechanism [7].

b) Vorticity inhomogeneities: similarly to entropy waves, the advection of

vorticity inhomogeneities with the mean flow and its acceleration through the
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nozzle generates pressure perturbations, which are then propagated back into

the combustor.

• Fluctuations in the propellant feed systems: the pressure drop across

nonchocked injectors varies for constant upstream pressure of the combustion

chamber. As the pressure in the combustor varies, the pressure drop across

the injectors is perturbed provoking fluctuations of the propellants mass flow

rate [1]. The oscillation of the oxidizer and fuel mass flow rate perturbs the

mixture equivalence ratio as well as the mixing processes thereby generating

fluctuations in the chemical heat release. The feedback mechanism is closed

as the variations in heat release provoke pressure fluctuations that perturb the

combustor pressure, with the consequent change in pressure drop across the

injectors.

• Vortex shedding: in a combustor, the areas of flow separation or rapid ex-

pansion can cause the formation of large-scale vortical structures [1]. In Fig.

1.2, the dump plane represents a sudden expansion where vortex shedding may

occur. As vortices from the mixing shear layer convect downstream the dump

plane, there is mixing of cold reactants with hot gases from the recirculation

zone. As these eddies with fresh reactants heat up with the surrounding hot

gas, they ignite and generate unsteady heat release with the consequent pres-

sure fluctuations. In strong combustion instabilities, large pressure oscillations

create vortices by inducing large velocity variations of the inlet flow rate [13].

These vortices are then convected downstream affecting the mixing processes

and distorting the flame structure with the consequent fluctuations in heat re-

lease.
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1.3 Literature Review

1.3.1 Thermoacoustic Modeling

Combustion instabilities can be modeled through different levels of fidelity, rang-

ing from low-order models to Large Eddy Simulations (LES). Their major differences

consist of the degree of mathematical modeling, their capability to predict linear

or nonlinear instability, geometrical simplifications, and associated computational

cost [19]. Additionally, frequency-domain and time-domain methods can be used

to capture combustion instabilities. The former describes the system by means of

periodical domains; the latter, follows a more physical approach modeling the pro-

cesses that take place in initial, transient and long-term stages. The main advantage

of the frequency-domain is that it allows the identification of patterns such as the

most unstable mode that could not be visualized in the time-domain. Nonetheless,

the frequency-domain does not allow the prediction of the amplitude of the actual

perturbations in a straightforward way.

On the low-order side, the linear acoustic wave equation has been extensively used

to model the coupling between unsteady heat release and acoustic modes in a combus-

tor [5,6,20]. As the acoustic wave equation assumes zero Mach number, these models

cannot capture mean flow effects such as entropy waves, which puts some limitations

on their use and accuracy [6]. The mean flow effects can be considered instead by

modeling the thermoacoustic problem with Linearized Euler Equations (LEE) [7].

Both methods can also be extended for the study of more complex configurations

by using network models that connect the different cavities of a combustor [5, 21].

In this latter approach, the geometry of the combustor is modeled by a network of

one- or two dimensional axisymmetric acoustic elements of constant density where

the acoustic problem can be solved analytically [13]. Infinitely thin flame is only

added at the interface between the large and low temperature segments and jump

relations are used to enforce flow rate conservation and pressure continuity between

the elements. The main benefit of this approach is that few lumped elements are



9

only used to describe the complex system providing an extremely low order model

adequate for design purposes [22]. However, the geometrical details of the combustor

cannot be accounted for and only the first equivalent longitudinal modes are sought

for.

As an intermediate approach between low-order models and LES, Helmholtz solvers

have been widely employed in the prediction of thermoacoustic instabilities [22]. The

Helmholtz equation is derived by transforming the acoustic wave equation into the

frequency domain, which can then be treated as an eigenvalue problem that solves

for the thermoacoustic modes of the combustor. However, the zero Mach number

assumption in Helmholtz solvers leads to errors that can be quantified by means

of LEE solvers [23, 24]. Helmholtz solvers require flame transfer functions. These

transfer functions are often in the form of Crocco’s n − τ model [25, 26], but other

forms such as flame describing functions [27,28] can also be combined with Helmholtz

solvers. The flame transfer functions are calibrated either by using data sets from

LES simulations [22] or from experiments [29]. A comparison of different levels of

modeling fidelity is presented by Selle et al. [30] in a study of a liquid rocket engine

combustor using a Helmholtz solver, LEE solver and LES.

1.4 Pressure Response to Unsteady Heat Release

In liquid rocket engines, due to non-premixed injection, the ignition and extinction

of heterogeneous mixtures may result in intermittent and discontinuous flames that

produce exceptional degrees of unsteadiness and localized pressure pulsations. Bragg

[8] proposed a theory envisioning turbulent flames as a collection of statistically un-

correlated eddies undergoing various stages of chemical reaction. Each eddy, acting

as a monopole source of sound, has a statistically independent heat release rate. The

rate of expansion or contraction of the total combustion volume is then postulated as

the sum of the contraction or expansion of the individual eddies [8, 9]. However, in
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turbulent flames, turbulence and chemistry affect each other in a mutual nonlinear

manner [10].

To model the energy deposition process, Kassoy [31] performed asymptotic-based

analyses of the governing equations that study the response of an inert gas volume to

localized, spatially distributed, transient energy deposition. A later work broadened

the analysis to a systematic formulation for the thermomechanical response of a finite

volume of inert gas to a very general, spatially distributed, transient heat deposition

with arbitrary profile [32]. This work was later extended to gain a deeper understand-

ing of the cause-effect relationship between combustion-generated energy deposition

and pressure oscillations in liquid rocket engines [33–35]. The pressure response of a

fluid kernel subject to an external heat source can also be expressed as an integral

equation that can be numerically integrated using a given heat pulse profile as an

input [36]. For reacting cases, the dynamic response of a chemically homogeneous re-

acting center has been modeled by integrating numerically the simplified conservation

equations and kinetic rate equations [37,38].

Damköhler numbers, representing ratios of characteristic physical time scales, pro-

vide substantive information to classify and understand a combustion process. One

such Damköhler number can be defined as the ratio of the characteristic conduction

time over the chemical reaction time. For gaseous reacting mixtures subject to lo-

calized and instantaneous energy sources, there is a critical value of this Damköhler

number that leads to an ignition [39, 40]. The third Damköhler number, which is

equivalent to the Helmholtz number,He and defined as the ratio of acoustic time over

chemical time, was proposed by Zhang et al. [41] as a metric to distinguish whether

a combustion process operates in constant volume or constant pressure regime. The

Helmholtz number can also be defined for other cases such as a fluctuating pressure

field in a nozzle [42, 43]. For large He, the expansion induced by the combustion

process has not enough time to be completed leading to a constant volume com-

bustion process, whereas for low He the pressure expansion results in a constant

pressure combustion process [41]. A parameter “m” equivalent to He was also used
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by Crighton [44] to study the pressure response to defined heat source profiles and

distinguish between different regimes with compact cases for m� 1 and noncompact

cases for m � 1. For compact cases, the pressure fluctuations follow the temporal

variation of the heat release profile, whereas for noncompact cases the sound follows

the spatial variations of the heat release profile [44].

The unsteady heat release that occurs when a pocket of propellants, carried along

within an eddy, ignites and burns can be modeled as a heat source with a Gaussian

spatial and temporal distribution. A Gaussian distribution in time and space de-

posited at the beam focus location was proposed to numerically study the ignition

sequence measured in a laboratory-scale single-injector rocket chamber ignited by a

laser that used gaseous oxygen and hydrogen as propellants [45]. The Gaussian profile

represented fairly well the experimentally measured fluctuating heat release rate [46]

and it was proved that the temporal rate of the fluctuating heat release rate relates

well with the spatial correlation of the Gaussian profile [46]. The direct numerical

simulation (DNS) study also revealed that the planar laminar flame thermal thickness

can be used as the characteristic length scale of the unsteady heat release profile [46].

Gaussian distribution is also a typical representation of the laminar flame structure

for methane-air flame as shown in Fig. 1.3 [47]. Therefore, a Gaussian spatial dis-

tribution has been chosen in this work to consider the effects of the flame thickness

in the pressure response to unsteady heat release. Although there exist simpler heat

source spatial distributions such as the Dirac delta [48,49], these do not consider the

effects of the flame thickness which is key for the study of acoustically noncompact

flames. The temporal profile used in the heat source is either a step or a Gaussian

temporal distribution. Whereas the step temporal profile is an idealized simplification

with less physical significance, it exhibits more marked trends which serve as a step-

ping stone to better understand the dynamics of the more realistic Gaussian temporal

distribution. The step temporal profile has been chosen for its simplicity in spite of

its limited applications, one of which could be the study of a heat deposition process

using a planar laser sheet. In contrast, the Gaussian temporal profile can be used
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Figure 1.3. Laminar flame structure for methane-air flame (Source [47]).

to model the fluctuating combustion heat release rate in turbulent flames [46]. Low

order models that established the proportionality between the pressure oscillation at

a previous time step and heat release through a Gaussian distribution multiplied by

a constant have also been used to reproduce some of the main characteristics of com-

bustion instability such as the growth rates or the amplitude of the limit cycle [50].

1.4.1 Lighthill’s Analogy

There exist more complex acoustic pressure wave equations which take into ac-

count more physical phenomena and reduce the number of assumptions. Departing

from the work of Lighthill [51], Dowling [52] derived an inhomogeneous wave equa-
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tion that includes unsteady heat release, non-isomolar combustion, species and heat

diffusion, viscous dissipation, inter-alia, as follows
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where the terms responsible for acoustic propagation are presented in the left-hand-

side and the sources in the right-hand-side. It is noted that in Eq. (1.1) D/Dt

represents the substantial derivative and ρe is the excess mass density defined as

pe = ρ− ρ∞ −
p− p∞
c2

0

(1.2)

which for small perturbations, it corresponds to the difference of the mass density

fluctuation generated by an isentropic compression (i.e. acoustics) with respect to

the overall mass density fluctuation. In the right-hand-side of Eq. (1.1), the fourth

term corresponds to the quadrupole source and drives to the aerodynamic noise found

in the original work of Lighthil [51]. The fifth term of the right-hand-side appear when

the propagation medium is not uniform. Based on Dowling’s work [6,7], the first two

terms are responsible for the combustion noise as it accounts for the variation of the

heat release rate, and are classified as monopole type. Finally, the last term of the

right-hand-side that contains ρe is related with the indirect combustion noise, also

known as entropy noise and is a dipole type. Indeed, this latter term captures the

noise when ρe is accelerated.

An alternative expression was provided by Bailly et al. [53] based on the Phillip’s

equation for low Mach numbers.
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Based on the framework of Lighthill’s analogy [51], Crighton et al. [52] and Dowl-

ing et al. [7] also demonstrated that the far-field sound pressure fluctuation resulting

from the direct noise is given by

p1(~x, t) =
γ − 1

4πc2
0|~x|

∫
V

∂

∂t

[
q

(
t− |~x|

c0

)]
d3~y (1.3)

where V represents the volume containing the combustion region. For the derivation

of Eq. (1.3), it was assumed that the ratio of specific heats, γ is independent of

the temperature, that the combustion is isobaric taking place in ambient pressure

and consequently, ρc2 = γp0 = ρ0c
2
0 applies. In addition, it was considered that the

unsteady heat release term is the dominant term and that flame is compact as ~x was

located in the far-field.

1.4.2 Energy Balance

Energy balance methods are very useful for enhancing the understanding of com-

bustion processes by means of computing the energy budget and integrating the

fluctuating energy mechanisms in a combustor. Chu and Kovsznay work [17,54] laid

a solid theoretical foundation for the development of an energy balance framework

for the analysis of fluctuations in a fluid flow. Departing from their work, succes-

sive authors such as Myers [55] and Flandro [56] built their theories including more

phenomena and reducing the level of assumptions.
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Figure 1.4. Historical evolution of energy balance analysis methods.

To study the nonlinear interactions in a compressible flow, Chu [17,54] and Kovsz-

nay [17] proposed a framework based on three basic fluctuation modes, i.e. vorticity,

entropy and sound (acoustic) modes. Their view was that “the non-linearity of the

Full Navier-Stokes equations can be interpreted as an interaction between the three

basic modes”. In this way, they showed that the linearized theory does not indi-

cate any interaction between the modes. Thus, the flow field fluctuations can be

interpreted as a superposition and interaction of the three basic modes of fluctua-

tion. Departing from this principle, they decomposed systematically the nonlinear

phenomena as interactions between the three basic fluctuation modes. In turn, these

fluctuation modes were expressed as a large or infinite number of Fourier components,

which for limitations of their time, could only be expressed theoretically and not

quantitatively assessed. Their analysis included a detailed study of the second-order

nonlinear interactions of the three modes assessing the relative order of magnitude of

each cross-interaction.



16

Rayleigh Criterion

The Rayleigh criterion, which computes the coupling between heat release and

pressure fluctuations, is the most common measure for assessing the stability of a

combustor. This criterion states that if pressure and heat release fluctuations are in

phase, then instability can be amplified by the flame/acoustics coupling. In 1878,

Lord Rayleigh [4] described the phenomenon of vibrating tones in a Rijke tube as

follows:

“If heat be periodically communicated to, and abstracted from, a mass

of air vibrating (for example) in a cylinder bounded by a piston, the effect

produced will depend upon the phase of the vibration at which the transfer

of heat takes place. If heat be given to the air at the moment of greatest

condensation, or be taken from it at the moment of greatest rarefaction,

the vibration is encouraged. On the other hand, if heat be given at the

moment of greatest rarefaction, or abstracted at the moment of greatest

condensation, the vibration is discouraged.”

This explanation of the physical phenomena of pressure fluctuations in a Rijke

tube came to be known as the “Rayleigh criterion”. Mathematically, the classical

Rayleigh criterion states that combustion instability will occur if the fluctuating heat

release and the acoustic field are in phase as:

∫
V

p′q′dV > 0 (1.4)

where V is the volume of the flow field domain and p′ and q′ represent the pressure

and heat release fluctuations, respectively. This equation is integrated across the

combustor volume over a time period to determine the stability of the system for a

given frequency and its sign may change with the phase alignment between p′ and q′.

Fluctuation energy budgets are often used to discuss the validity of the Rayleigh

criterion. These methods consist of the assessment of the balance of all energy dis-

turbances in a flow accounting for mechanisms such as acoustics, hydrodynamics,
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turbulence, species diffusion, viscous effects, chemical reactions, heat transfer, inter-

alia. In this way, fluctuation energy balances contribute to the understanding of the

driving mechanisms and transfer of energy between different modes and mechanisms.

To study thermoacoustic instabilities, Chu [54] proposed a fluctuation energy that

integrates the fluctuations of three variables (i.e. pressure, velocity, and entropy) and

provides a more complete picture with respect to the Rayleigh criterion, which only

accounts for pressure and velocity perturbations.

However, the linearization of the problem neglects the influence of the nonlinear

effects present in actual combustors. This non-linearity is all the more important

in high-pressure rockets due to the high-density heat release rates within a non-

premixed unsteady combustion. The large magnitude of the heat release provokes

non-linear responses that may not be adequately captured by linearized methods. The

intermittency of the unsteady heat release also deviates from the assumption of a flame

with smooth fluctuations in a constant pressure combustion regime. Taking advantage

of modern high-fidelity computational fluid dynamics (CFD) simulations, we can now

compute the nonlinear terms such as the continuous generation of vorticity due to

turbulence, the generation of aerodynamic sound, acoustic streaming, or scattering

of sound waves by turbulence, inter-alia.

Energy Corollaries

Building from the previous work, researchers such as Myers [55] and Flandro [56]

developed Energy Corollary Methods as a framework to analyze the perturbations in

a flow field from an energy perspective. The basic energy equation is derived from a

combination of the Navier-Stokes equations and written as a conservation equation

∂Ed
∂t

+∇ ·W = D (1.5)

where Ed is the system energy, W is the energy flux vector accounting for all the

driving and damping mechanisms through the boundaries of the system, and D is the

source term adding or subtracting energy to the system as a result of effects such as
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heat release, viscous losses, vorticity, body forces, etc. Over time, researchers have

varied the level of assumptions such as zero Mach number mean flow, small-amplitude

perturbations, isentropic flow, homentropic flow, etc. depending on their particular

applications. Furthermore, the formulations of energy balance corollaries have been

developed for first order, second order, and exact (under certain conditions).

The energy balance analysis of combustion is essential for assessing the effects

and coupling that drive the stability of combustors. Computing the energy balance

of the system allows the quantification of the efficiency and the relative contribution

of each physical phenomena involved in combustion instability. High-fidelity CFD

simulations provide a complete picture of the combustion processes with access to

areas that cannot be studied experimentally due to physical limitations. In this

work, the energy balance analysis is used to post-process high-fidelity simulations to

quantify the relative contribution of each mechanism to combustion instability.

1.4.3 High-Fidelity Simulations

In liquid rocket engines, the non-premixed turbulent combustion regime is charac-

terized by high levels of unsteadiness, large gradients of mixture, high pressure, and

extreme rates of heat release, all of which contribute to making the problem highly

nonlinear. Several studies have assessed this nonlinear nature of combustion insta-

bility [57–60], including the presence of shock waves in rocket combustors [61]. The

linear methods in such cases are therefore inherently limited [62–64]. The complexity

of combustion instability thus requires the use of high-fidelity numerical simulations

to account for all the nonlinear interactions. Modern LES and Detached Eddy Sim-

ulations (DES) have demonstrated the ability to reproduce combustion instability

in gas turbines and model rocket combustors [65–74]. Nevertheless, even when LES

simulations determine the stability of a combustor, these do not necessarily explain

the causes of instability and how to control them [22].
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LES explicitly compute the three-dimensional unsteady Navier-Stokes equations,

and thus, include both a solution for the mean flow field and for the fluctuations [19].

The LES method resolves eddies larger than the computational mesh whereas the

effects of the smallest eddies are modeled [13]. Altogether, LES allows the consid-

eration of the effects of chemical reactions, compressibility and viscosity as well as

turbulence, allowing to capture the interactions between the flame dynamics, acous-

tics and mixing. The method does not present any constraint in terms of geometrical

complexity or flow configurations.

LES can capture the onset of the instability and its quasi-linear growth as well

as the non-linear mechanisms such as the limit cycle [19]. However, in rocket engine

calculations, LES simulations are in general still limited to scaled domains such as

single-element injector cases due to the prohibitive requirements for full scale designs

in terms of computational time and memory [22]. In addition, even when LES can

predict the appearance of combustion instability in a combustor, it is an open research

task to determine its cause and mechanisms to control it [19,22]. Additional tools for

the analysis of LES results and for application to practical problems are required for

that purpose.

Chemical kinetics, high-pressure and local effects due to unsteady heat release are

critical parameters that need to be addressed for high-fidelity modeling of unsteady

combustion [12]. The accuracy of chemical kinetics models can be improved by in-

creasing the number of species but this in turn increases the computational demand

for modeling reacting flows. The high-pressures present in rocket engines challenge

unsteady combustion modeling due to trans- and supercritical effects that affect the

injection of propellants under normal [75] or acoustically excited cases [76]. Finally,

local unsteady heat release not only interacts with the acoustics but also acts as trig-

gering mechanism of large scale phenomena under the conditions of coherence [11].

The understanding of these local-global relationships is of paramount importance to

properly capture unsteady heat release dynamics in LES and its effects over the rocket

engine.
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The complex interactions between acoustics, hydrodynamics, and chemical reac-

tions add great difficulty to the task of assessing the relative contribution of each

physical phenomena in the prediction of combustion instability. The overall system

may be better understood by breaking down the problem into simpler models and

then building up the complexity by adding one physical process at a time. An exami-

nation of the high-fidelity simulations of the Continuously Variable Resonance Cham-

ber (CVRC) and other rocket combustors developed at Purdue University reveals the

presence of highly unsteady intermittent flames and localized high-amplitude pressure

pulses as a result of the extreme rates of heat release [69, 70, 73]. The fluctuations

of heat release generate a flow expansion proportional to the time rate of change of

the heat release rate [15,77]. The analysis of this phenomenon motivated the present

study on the flow field response to heat release rates typical of high-pressure rocket

combustors, which can surpass TW/m3.

1.5 Objectives and Methodology

The goal of this research work is to gain insight into the fundamental effects of

high rates of unsteady heat release in combustion instability in liquid rocket engines.

In addition, the aim is to establish the limitations of classical treatments based on

linear analysis when studying combustion instability in liquid rockets. To do so, the

full problem is decomposed into fundamental unit problems focused on the particular

interactions of physical phenomena involved in combustion instability. The overall

strategy consists of analyzing these fundamental problems with simplified scenarios

and then building up the complexity by adding more phenomena to the study. In

particular, the focus is the fluid response to unsteady heat release.

The unit problems start with a heat release pulse in an unconfined one-dimensional

domain, which is then extended to three dimensions to study the dimensionality

of the problem. Then, a continuously fluctuating heat source is studied in order

to further resemble the combustion heat release from actual flames responding to
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acoustic modes in a combustor. Finally, the heat source is introduced in a closed

duct to study the interactions of unsteady heat release with a longitudinal acoustic

mode in a combustor.

There are five main objectives to this study as follows:

• Analytically model the local pressure response to an unsteady heat release

source.

• Analytically model the interaction between an unsteady heat release source and

the longitudinal acoustic modes in a combustor.

• Compare the analytical models to high-fidelity numerical simulations to assess

its range of application, and the relative importance of nonlinear effects.

• Identify relevant physical parameters from the analytical models such as char-

acteristic length and time scales, as well as characterize different regimes of

operation.

• Compute the energy efficiency of the pressure expansion due to unsteady heat

release.

Research Approach

Departing from the linearized Navier-Stokes equations, analytical models of the

pressure response to unsteady heat release are derived based on the inhomogeneous

acoustic wave equation. In addition, the acoustic wave equation can model the inter-

action between unsteady heat release and longitudinal acoustic modes in a combustor.

Two different heat release source profiles are used: Gaussian spatial distribution with

a step temporal profile, and Gaussian spatial distribution with a Gaussian tempo-

ral distribution. From each analytical solution, relevant physical parameters like

characteristic length and time scales are identified, which are later used to character-

ize different regimes of operation. High-fidelity simulations using Purdue’s in-house

Navier-Stokes solver “General Equation and Mesh Solver” (GEMS) are performed
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with the aim of assessing the validity of the analytical models and their limitations.

Furthermore, parametric studies are also carried out to study the different regimes

of operation of unsteady heat release response, and quantify relevant metrics such as

pν work efficiency and energy budget of the mechanisms.

As shown in Fig. 1.1, the physical mechanisms that can lead to combustion

instability can be encompassed in three main physical phenomena: unsteady heat

release, acoustics, and hydrodynamics. This research seeks to gain insight into the

effects of unsteady heat release on acoustics in the context of combustion instability in

liquid rockets. To do so, four fundamental unit problems are proposed as simplified

representations of important mechanisms by which unsteady heat release impacts

combustion instability. The analysis of these unit problems allows to isolate the

particular interactions between physical phenomena and assess how their behavior

changes as more mechanisms are included in the study. These four unit problems are

presented in Chapters 3-6 of this work.

This dissertation is organized in eight chapters as follows:

Chapter 1 introduces the research carried out as part of this PhD thesis. It

provides a literature review of the current state of the art in the study of unsteady

heat release effects in combustion instability, outlines the objectives and the research

approach.

Chapter 2 provides the baseline formulation of the analytical models used to com-

pute the results presented in Chapters 3-6. It derives the acoustic wave equation with

an unsteady heat source departing from the Navier-Stokes equations. It also presents

in detail the assumptions and simplifications carried out in the linearization process.

Finally, the derivation of the Rayleigh criterion from the linearization process is also

provided.

Chapter 3 studies the pressure response to an unsteady unsteady heat release

source in an open one-dimensional domain. This unit problem is a simplified rep-

resentation of an unsteady heat release event provoked by the sudden ignition of a

small pocket of propellants. The sudden ignition of these small pockets of propellant
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generates unsteady heat release that in turn provoke pressure fluctuations. For this

unit problem, quiescent perfect gas with properties like that of CO2 in an enclosed

open domain is heated in a small band, allowing careful control of the spatio-temporal

variations of the heat source parameters. A Gaussian profile is specified spanning the

bandsize chosen for heat addition and the time duration is specified such that the

total energy added to the flow is constant for all the conditions investigated. The

variations studied represent flames of varied thickness and intensity. The derivation

of the present analytical model includes the identification of relevant length and time

scales that are condensed into the Helmholtz number. Unsteady heat release, and

linear and nonlinear acoustics are the key physics that manifest in this unit problem.

Chapter 4 extends the analysis of the pressure response to an unsteady heat release

source from a one-dimensional domain to a three-dimensional open domain. The aim

of the chapter is to examine the differences between the one-dimensional results and

a three-dimensional case, which more realistically models the sudden ignition of a

small pocket of propellants. A quiescent perfect gas with properties like that of CO2

in an open spherical domain is heated in the center, allowing careful control of the

spatio-temporal variations of the heat source parameter. A Gaussian spherical profile

is specified spanning the radius chosen for heat addition and the time duration is

specified such that the total energy added to the flow is constant for all the conditions

investigated. The analytical solutions are assessed against highly-resolved numerical

simulations so that the analytical modeling limitations are highlighted.

Chapter 5 also presents an unit problem to analyze the pressure response to an

unsteady heat release source in a one-dimensional open domain. However, instead

of focusing on a single pressure pulse generated by the heat release source as in the

previous two chapters, this chapter aims to model heat release sources that fluctuate

over a time at the frequency of acoustic modes of a combustor. In this unit problem,

a quiescent perfect gas with properties like that of CO2 in an open domain is also

heated in a small band, allowing careful control of the spatio-temporal variations of

the heat source parameter. The fluctuating heat release source is modeled by means
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of a sinusoidal temporal profile for both a flat and a Gaussian spatial distribution.

The pressure response is therefore a continuous pressure signal and the variations

studied represent flames of varied thickness and intensity relevant to rocket combus-

tors. Highly-resolved numerical solutions are used to evaluate the limitations of the

analytical solutions derived.

Chapter 6 analyzes the effects of high rates of unsteady heat release on longitudinal

acoustic modes in a combustor. The mechanism by which unsteady heat release

pressure fluctuations interact with the acoustic modes of a combustor to amplify or

damp them is of paramount importance in the study of combustion instability. Indeed,

the Rayleigh criterion, which is a fundamental concept for combustion instability, is

centered around the assessment of the relative phase between unsteady heat release

and pressure fluctuations. In turn, this criterion is used as a measure of how unsteady

heat release amplifies acoustic pressure modes, thereby determining the stability of

a combustor. However, the nonlinearities of the governing equations deviate the

problem of adding pressure fluctuations due to unsteady heat release and acoustic

pressure oscillations from a purely linear superposition. This unit problem represents

a simplification of a flame generating pressure fluctuations that interact with the

longitudinal acoustic modes of a combustor. The flame is modeled as an external

heat source in a non-reacting fluid. An analytical solution is derived based on the

acoustic wave equation following the same strategy as the first unit problem and

then compared against highly-resolved numerical simulations. A parametric study

varying the Gaussian heat source temporal and spatial parameters as well as the

flame location and its phase with the 1L mode pressure field. The results assess the

evolution of the amplitude of the pressure fluctuations, and the overall effects after

multiple compression-expansion cycles.

Chapter 7 summarizes the research work presented, and outlines future work that

could be performed as a result of the current research work.

Chapter 8 presents the main references of this work.
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Finally, Appendix A and B provide additional formulation complementary for the

derivation of the analytical solutions.
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2. MODELING OF THERMOACOUSTIC INSTABILITIES

This chapter presents the derivation of the acoustic wave equation with an unsteady

heat source departing from the Navier-Stokes equations. The assumptions and simpli-

fications carried out in the linearization process are described in detail. This deriva-

tion forms the basis of the analytical models and results presented in Chapters 3-6.

Finally, this chapter also presents the derivation of the Rayleigh criterion using the

linearized conservation equations.

2.1 Conservation Equations

The Navier-Stokes equations describe the conservation of mass, momentum and

energy for a compressible viscous fluid

Dρ

Dt
+ ρ∇ · ~u = 0 (2.1)

ρ
D~u

Dt
= −∇p+∇ · ~~τ + ρ~fb (2.2)

ρ
D

Dt

(
e+

u2

2

)
= −∇ · (p~u) +∇ · (λ∇T ) +∇ ·

(
~u · ~~τ

)
+ q + ρ~u · ~fb (2.3)

where ρ, ~u, p, T , ~~τ , ~fb, e, q, λ are the density, velocity, pressure, temperature, tensor

of viscous stress, body force per unit mass, internal energy, heat release rate per unit

volume, and thermal conductivity, respectively. The equations Eqs. (2.1, 2.2, 2.3) are

written in the non-conservation form. In the formulation, the substantial derivative

in the equations is expressed as D
Dt

= ∂
∂t

+ ~u · ∇. Taking the dot product of the
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momentum equation Eq. (2.2) with ~u yields to the equation of conservation of the

kinetic energy

ρ
D

Dt

(
u2

2

)
= −∇ · (p~u ) + p (∇ · ~u ) + ~u ·

(
∇ · ~~τ

)
+ ρ~u · ~fb (2.4)

where the identity ∇ · (p~u ) = p (∇ · ~u ) + ~u · ∇p has been used. The subtraction of

Eq. (2.4) from Eq. (2.3) yields to the internal energy conservation equation

ρ
De

Dt
= −p (∇ · ~u ) +∇ · (λ∇T ) + ~~τ : ∇~u+ q (2.5)

where the identity ∇ ·
(
~u · ~~τ

)
= ~u ·

(
∇ · ~~τ

)
+ ~~τ : ∇~u has been used, in which the

second term is the viscous dissipation Φ = ~~τ : ∇~u.

The combination of the 1st and 2nd Laws of Thermodynamics yields to the known

thermodynamic expression of the Gibbs equation (Tds = de + pdν), which can be

applied on a fluid element as

T
Ds

Dt
=
De

Dt
+ p

Dν

Dt
(2.6)

Multiplying Eq. 2.6 by the density and writing the specific volume ν in terms of ρ

yields to

ρT
Ds

Dt
= ρ

De

Dt
− p

ρ

Dρ

Dt
(2.7)

where s is the entropy. The second term on the right hand side can be computed

from the mass conservation equation, Eq. (2.1) using Dρ
Dt

= −ρ∇ · ~u. Combining Eq.

(2.5) with Eq. (2.7) yields to the entropy conservation equation

ρT
Ds

Dt
= ∇ · (λ∇T ) + ~~τ : ∇~u+ q (2.8)
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2.2 Acoustic Wave Equation with an Unsteady Heat Source

An acoustic wave equation with an unsteady heat source can be derived by simpli-

fying and linearizing the equations of conservation of mass, momentum and entropy.

We assume inviscid flow and neglect thermal conduction and body forces. The single

species gas mixture is assumed to behave as a perfect gas with the equation of state

given by p = ρRT , where the gas constant R is given by R = cp − cv in which cp and

cv are the specific heat capacities at constant pressure and volume, respectively. In

turn, R = Ru
W

, where Ru is the universal gas constant and W is the molecular weight

of the fluid. Under these assumptions the conservation equations become

Dρ

Dt
+ ρ∇ · ~u = 0 (2.9)

ρ
D~u

Dt
= −∇p (2.10)

ρT
Ds

Dt
= q (2.11)

The linearization of the equations begins with the decomposition of the variables

into mean flow (subscript 0) and fluctuation parts (subscript 1) as φ(~x) = φ0(~x) +

φ1(~x, t), where φ0 is the mean flow value and φ1 is the small-amplitude fluctuation

(φ1
φ0

= ε � 1). It is assumed that the mean flow variables are function of the space

alone.

∂ (ρ0 + ρ1)

∂t
+ (~u0 + ~u1) · ∇ (ρ0 + ρ1) + (ρ0 + ρ1)∇ · (~u0 + ~u1) = 0 (2.12)

(ρ0 + ρ1)

[
∂ (~u0 + ~u1)

∂t
+ (~u0 + ~u1) · ∇ (~u0 + ~u1)

]
= −∇ (p0 + p1) (2.13)

(ρ0 + ρ1) (T0 + T1)

[
∂ (s0 + s1)

∂t
+ (~u0 + ~u1) · ∇ (s0 + s1)

]
= q0 + q1 (2.14)
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Furthermore, the mean flow has also to satisfy the equations of conservation of mass,

momentum and entropy as follows

Dρ0

Dt
+ ρ0∇ · ~u0 = 0 (2.15)

ρ0
D~u0

Dt
= −∇p0 (2.16)

ρ0T0
Ds0

Dt
= q0 (2.17)

The equations Eqs. (2.12, 2.13, 2.14) are further simplified by keeping only the

linear terms (order ε) and neglecting higher order terms. In addition, the mean flow

is assumed to have zero Mach number (u0 ' 0). The zero Mach number assumption,

which greatly simplifies the equations, is valid as long as the characteristic Mach

number of the mean flow is small compared to the ratio of the reaction zone length

over the acoustic wavelength [22]. In a combustor, the reaction zone length is typically

related to the flame thickness whereas the acoustic length is the characteristic length

of the main acoustic modes of a combustor. For instance, the characteristic acoustic

length in longitudinal modes and transverse modes is the length of the combustor and

the diameter, respectively. Under these assumptions, the simplified and linearized

conservation equations read as follows

∂ρ1

∂t
+ ~u1 · ∇ρ0 + ρ0∇ · ~u1 = 0 (2.18)

ρ0
∂~u1

∂t
= −∇p1 (2.19)

∂s1

∂t
+ ~u1 · ∇s0 =

q1

ρ0T0

(2.20)

In the mean flow, the time independence and zero Mach number condition imply

that ∇p0 = 0 and q0 = 0. These two results are derived from the fact that the mean

flow satisfies the momentum and entropy conservation equations, Eqs. (2.16, 2.17),
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respectively. Using the Gibbs equation, the entropy is rewritten in terms of the state

variables as

Tds = de− p

ρ2
dρ (2.21)

Under the perfect gas assumption, the Gibbs equation can be rewritten as

ds = cv
dT

T
− p

ρ2T
dρ (2.22)

Using the differential form of the ideal gas equation of state

dp

p
=
dρ

ρ
+
dT

T
(2.23)

Substituting Eq. (2.23) into Eq. (2.22) yields to

ds = cv
dp

p
− cv

dρ

ρ
− p

ρ2T
dρ = cv

dp

p
−
(
cv +

p

ρT

)
dρ

ρ
(2.24)

Using p = ρRT and the relation R = cp − cv, the Eq. (2.24) becomes

ds = cv
dp

p
− cp

dρ

ρ
(2.25)

The term ∇s0 on the l.h.s. of the entropy equation, Eq. (2.20) can be calculated by

taking the gradient of the Gibbs equation on the mean flow

∇s0 =
cv
p0

∇p0 −
cp
ρ0

∇ρ0 =
cp
T0

∇T0 +
R

p0

∇p0 (2.26)

Since ∇p0 = 0 due to the zero Mach number condition, it follows that ∇s0 =

− cp
ρ0
∇ρ0 = cp

T0
∇T0. Then, applying the Gibbs equation in the form of Eq. (2.25),

reads as
Ds

Dt
=
cv
p

Dp

Dt
− cp
ρ

Dρ

Dt
(2.27)
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Linearizing Eq. (2.27) following the above mentioned process and imposing the zero

Mach number mean flow condition results in

∂s1

∂t
+ ~u1 · ∇s0 =

cv
p0

∂p1

∂t
− cp
ρ0

∂ρ1

∂t
− cp
ρ0

~u1 · ∇ρ0 (2.28)

Substituting Eq. (2.28) and ∂ρ1
∂t

from Eq. (2.18) into Eq. (2.20) yields to

cv
p0

∂p1

∂t
+
cp
ρ0

(~u1 · ∇ρ0 + ρ0∇ · ~u1)− cp
ρ0

~u1 · ∇ρ0 =
q1

ρ0T0

(2.29)

Using the ideal gas equation, the relation R = cp − cv and the ratio of specific heats,

γ = cp/cv, Eq. (2.29) can be rewritten as

∂p1

∂t
+ γp0∇ · ~u1 = (γ − 1) q1 (2.30)

Taking the time derivative of Eq. (2.30) and substituting ∂~u1
∂t

from Eq. (2.19) yields to

the acoustic wave equation with an unsteady heat source, as obtained in [22], reading

as
1

ρ0c2
0

∂2p1

∂t2
−∇ ·

(
1

ρ0

∇p1

)
=
γ − 1

ρ0c2
0

∂q1

∂t
(2.31)

where c2
0 = γRT0 is the square of the speed of sound of the mean flow. In Eq.

(2.31), ρ0 and c0 may vary spatially, whereas γ can have a small dependence on

the temperature. Assuming that the mean flow properties are spatially uniform, the

acoustic wave equation with an unsteady heat source simplifies, resulting in the most

common form of the acoustic wave equation with an unsteady heat source as derived

in [6],
1

c2
0

∂2p1

∂t2
−∇2p1 =

γ − 1

c2
0

∂q1

∂t
(2.32)

2.3 Initial Value Problem of the Acoustic Wave Equation

The problem considered in this work consists of the response of a quiescent fluid

with uniform properties subjected to an unsteady heat release source in an unconfined
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one-dimensional domain. This can be posed as an initial value problem governed by

the one-dimensional inhomogeneous acoustic wave equation. The initial conditions

correspond to a quiescent flow with constant p = p0 across the domain. The mean

flow properties c0 and γ are uniform and assumed to remain constant. The initial

conditions φ(x) and ψ(x), and the source term f(x, t) can be expressed as together

with the inhomogeneous acoustic wave equation as

Initial value problem



∂2p1
∂t2
− c2

0
∂2p1
∂x2

= f(x, t)

p1(x, 0) = φ(x) = 0

∂p1
∂t

(x, 0) = ψ(x) = 0

f(x, t) = (γ − 1)∂q1
∂t

(2.33)

for −∞ < x < ∞, t > 0. The solution of the above problem gives the pressure

response of the fluid, consisting of a mean flow pressure and a fluctuation part, i.e.

p(x, t) = p0 +p1(x, t). In turn, the fluctuation part is composed of a homogeneous and

a particular solution as p1(x, t) = p1,h(x, t)+p1,p(x, t). Applying the initial conditions

φ(x) and ψ(x) on d’Alembert’s solution, the homogeneous solution vanishes

p1,h (x, t) =
1

2
[φ(x+ c0t) + φ(x− c0t)] +

1

2c0

∫ x+c0t

x−c0t
ψ(s)ds = 0 (2.34)

The particular solution p1,p(x, t) can be calculated by applying Duhamel’s principle

to d’Alembert’s solution, which results in the following integral

p1,p(x, t) =
1

2c0

∫ t

0

∫ x+c0(t−s)

x−c0(t−s)
f(z, s)dzds (2.35)

As the initial conditions imply that p1,h(x, t) = 0, it follows that the pressure fluctu-

ation p1(x, t) is determined by the particular solution p1,p(x, t) alone, which is driven

by the unsteady heat source term (γ − 1)∂q1
∂t

.
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2.4 Rayleigh Criterion

The Rayleigh criterion can be derived from the combination of Eq. (2.30) divided

by c2
0 and Eq. (2.19), as presented in [13]. For reference, both equations are recalled

below
1

c2
0

∂p1

∂t
+ ρ0∇ · ~u1 =

γ − 1

c2
0

q1 (2.36)

ρ0
∂~u1

∂t
+∇p1 = 0 (2.37)

Multiplying Eq. (2.36) by p1/ρ0 and performing the dot product of Eq. (2.37) by ~u1

∂

∂t

(
1

2ρ0c2
0

p2
1 +

1

2
ρ0u

2
1

)
+∇ · (p1~u1) =

γ − 1

ρ0c2
0

p1q1 (2.38)

where the p2
1 term represents the acoustic pressure energy and u2

1 is the kinetic energy,

respectively. The ∇· (p1~u1) term represents the boundary work or pν work conducted

by the fluid in the control surfaces. The p1q1 term on the right hand side is precisely

the Rayleigh index, which is the source term that relates the interaction between the

unsteady heat release and the fluctuating pressure field. Eq. (2.38) can be integrated

over the combustor control volume and during an acoustic cycle period (e.g. 1L

acoustic mode period) to determine whether the interaction between the pressure

field and the unsteady heat release results in combustion instability.

∂

∂t

∫
V

(
1

2ρ0c2
0

p2
1 +

1

2
ρ0u

2
1

)
dV =

∫
V

γ − 1

ρ0c2
0

p1q1dV −
∮
S

p1~u1 · ~n dS (2.39)

dE

dt
= R−B (2.40)

where E is the energy of the combustor system, R the Rayleigh index and B the

boundary work, respectively. If the pressure and heat release fluctuations are in

phase, the p1q1 term will be positive thereby increasing the energy of the system.

The boundary work term acts as a sink that draws energy from the system. If the

p1q1 term is larger than the boundary work term, the energy of the system will build
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up cycle after cycle as the boundaries (combustor’s inlets and outlets) will not be

able to evacuate sufficient energy, hence leading to combustion instability.

Eq. (2.39) assumes linear fluctuations and omits several terms such as viscosity,

heat conduction and other energy loss mechanisms, which are present in a real com-

bustor. However, even in this simplified version, the Rayleigh criterion offers a clear

picture of the most important terms in thermoacoustic instabilities. In essence, the

Rayleigh criterion is an energy balance that compares the sources and sinks of energy

present in the fluid to assess the stability behavior of a combustor.

The Rayleigh criterion has traditionally been used to determine the stability of

a combustor by assessing the relative phase of unsteady heat release with respect

to acoustic pressure fluctuations. A positive Rayleigh index is a necessary but not

sufficient condition for a combustor to be unstable. As presented in Eq. (2.39)

the combustor boundaries may act as energy sinks that evacuate energy from the

system stabilizing the combustor. Moreover, as described in Section 1.4.2, there are

a number of terms that act as energy sources and sinks in a real combustor, such

as vortex shedding, Kelvin-Helmholtz instabilities, or viscous dissipation and heat

losses, all of which contribute to the stability behavior of a liquid rocket engine.
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3. FLOW RESPONSE TO A HEAT RELEASE PULSE IN

1D

This chapter is a slightly modified version of “Analytical and numerical solution of the

pressure response to an unsteady heat release pulse in 1D” submitted to Combustion

and Flame and has been reproduced here with the permission of the copyright holder.

This chapter presents an analytical model based on the linear acoustic wave equation

of the fluid response to an unsteady heat release pulse for two different Gaussian heat

source profiles. The choice of a non-reacting fluid in an unconfined one-dimensional

domain simplifies the analysis while maintaining the physical significance of the effects

of unsteady heat release. The derivation of the present analytical model includes the

identification of relevant length and time scales that are condensed into the Helmholtz

number, He. The Helmholtz number represents the ratio of the acoustic time over

the duration of the heat release pulse. The study parameters are selected to be rep-

resentative of the extreme conditions in a rocket combustor. The analytical solutions

distinguish between two regimes of the pressure response depending on He. The ac-

curacy and limitations of the model are assessed by comparing the analytical solution

to highly-resolved computational fluid dynamics simulations. Finally, the concepts

developed in the analytical model are applied to a real combustor: CVRC [78]. Such

an application is useful for assessing the extent to which the combustion process

approximates to a constant pressure or a constant volume process. These observa-

tions also reflect on the feasibility of employing simplified models in the areas of a

combustor with significant local flow variations.
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OutletInlet Flame
Throat

Combustion chamber Nozzle

Figure 3.1. Schematic of a general one-dimensional combustor model. The fluctua-
tions of heat release in the flame provoke pressure fluctuations that propagate across
the combustor.

3.1 Overview of the Cases

The pressure response to unsteady combustion heat release is one of the most

important mechanisms of combustion instability. The fluctuation of combustion heat

release generates pressure oscillations that propagate in all directions and interact

with the acoustic field present in the combustor. Combustion instability will occur if

the oscillations of heat release couple and align with those of the acoustic modes in

the combustor.

Figs. 3.3 and 3.4 show the temporal and spatial profiles of chemical heat release

during the ignition of a stoichiometric mixture of gaseous methane and oxygen. In this

case, the initial temperature and pressure of the mixture are 300 K and 0.5 MPa, re-

spectively. The heat release is computed with a single-step reaction model. This case

represents a general combustor example of an ignition event of a pocket mixture of

cold reactants. In spite of unsteady heat release events in liquid rockets deviate from

ideal Gaussian spatial and temporal profiles, the Gaussian distribution, from which

an analytical solution can be derived, offers a simplified representation of complex

real heat release events. In addition, the choice of a non-reacting fluid in an uncon-

fined one-dimensional domain simplifies the analysis while maintaining the physical

significance of the effects of unsteady heat release. As Cohen et al. noted [38], the

artifice of a perfect gas with constant specific heats, when subjected to a heat source,
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Figure 3.2. Normalized Gaussian heat release profiles with respect to the flat profile
heat release intensity, qha, heat release length, Lha, and heat release duration, ∆tha.
Both heat source profiles input the same total energy, Eha.
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would experience essentially the same dynamic behavior as that of a reacting mix-

ture. All in all, the objective of this study is to gain insight into the key physics

that govern the behavior of the pressure response to unsteady heat release. Although

the analytical solutions derived in this study have limitations as consequence of the

modeling assumptions, they capture the main physics and provide useful knowledge

and quantification on the how unsteady heat release events generate acoustic waves.
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Figure 3.3. Time evolution of the chemical heat release during the ignition process of
a stoichiometric mixture of gaseous methane and oxygen (T0 = 300 K and p0 = 0.5
MPa).
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Figure 3.4. Chemical heat release spatial distribution during the maximum intensity
of the ignition process of a stoichiometric mixture of gaseous methane and oxygen
(T0 = 300 K and p0 = 0.5 MPa).

3.2 Heat Source with Gaussian Spatial Distribution and Step Temporal

Profile

The present case consists of a heat source per unit volume q1(x, t) with a Gaussian

spatial distribution and a step temporal profile defined as

q1(x, t) = Kha1exp

[
−1

2

(
x

σx

)2
]

(H(t− thab)−H(t− thae)) (3.1)

where H(t− τ) is the unit Heaviside function, thab is the time in which the heat pulse

begins, thae is the time in which the heat pulse ends, and Kha1 is the heat source

magnitude parameter of the first heat source profile, defined as

Kha1 =
Eha√

2πσxHhaWha(thae − thab)
=
qhaLha√

2πσx
(3.2)

where Eha is the total energy input, and Vha, Lha, Hha, and Wha stand for the volume,

length, height, and depth of the heat source, respectively. The standard deviation
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of the Gaussian spatial profile is set to σx = Lha/7 for all the cases described sub-

sequently in this chapter. The flat profile heat release rate qha corresponds to an

equivalent constant heat release value, which gives the same total energy input as

that obtained by integrating the heat source profile over space and time

Eha =

∫ ∞
−∞

∫ ∞
−∞

q1(x, t) dV dt =

∫ ∞
−∞

∫ ∞
−∞

qha dV dt = qhaVha∆tha (3.3)

where ∆tha stands for the duration of the heat pulse as ∆tha = thae − thab. The flat

profile heat release value, qha is given by

qha =
Eha

Vha∆tha
=

Eha
LhaHhaWha(thae − thab)

(3.4)

Hereinafter, the values of heat source intensity for the study cases are reported

using the equivalent flat profile value, qha, which inputs the same heat as the Gaussian

profile. Applying the temporal derivative of the heat source of Eq. (3.1) as stated in

Eq. (2.33) yields to

f(x, t) =(γ − 1)
∂q1

∂t

=(γ − 1)Kha1exp

[
−1

2

(
x

σx

)2
]

(δ(t− thab)− δ(t− thae))
(3.5)

where δ(t − τ) is the Dirac delta function. The substitution of Eq. (3.5) into Eq.

(2.35) provides the expression to be integrated for obtaining the pressure response

p1,p(x, t) =
1

2c0

∫ t

0

∫ x+c0(t−s)

x−c0(t−s)
(γ − 1)Kha1e

− 1
2

( z
σx

)2 [δ(s− thab)− δ(s− thae)]dzds (3.6)

The Gaussian heat addition profile in Eq. (3.6) can be integrated using the error

function

erf(x) =
2√
π

∫ x

0

e−z
2

dz (3.7)
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Changing the integration variable in Eq. (3.7) to z = x√
2σx

allows to relate the

error function with the Gaussian distribution, and write the Gaussian cumulative

distribution function Φg(x) as follows

Φg(x) =
1√

2πσx

∫ x

−∞
e−

1
2( z

σx
)
2

dz =
1

2

[
1 + erf

(
x√
2σx

)]
(3.8)

Changing the limits of integration to generic values x1 and x2 (with x2 > x1) provides

the expression needed to integrate the pressure response of Eq. (3.6)

Φg(x2)− Φg(x1) =
1√

2πσx

∫ x2

x1

e−
1
2( z

σx
)
2

dz =
1

2

[
erf

(
x2√
2σx

)
− erf

(
x1√
2σx

)]
(3.9)

Integrating Eq. (3.6) and writing x ± c0t as c0 (x/c0 ± t) lead to the solution of

the pressure response of a quiescent fluid to an unsteady heat source with Gaussian

spatial distribution and step temporal profile

p1(x, t) =
Ap1
2

[{
erf

(
c0√
2σx

(
x

c0

+ (t− thab)
))

−erf
(

c0√
2σx

(
x

c0

− (t− thab)
))}

H(t− thab)

−
{
erf

(
c0√
2σx

(
x

c0

+ (t− thae)
))

−erf
(

c0√
2σx

(
x

c0

− (t− thae)
))}

H(t− thae)
]

(3.10)

where the pressure fluctuation solution is the particular solution (p1(x, t) = p1,p(x, t))

due to p1,h(x, t) = 0 as presented in Section 2.3. The constant multiplying all terms

in Eq. (3.10) is given by

Ap1 = 2
(γ − 1)Kha1σx

√
2π

4c0

=
Eha(γ − 1)

2c0HhaWha∆tha
=

(γ − 1)qhaLha
2c0

(3.11)
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The result of the amplitude of the pressure fluctuations (see Eq. (3.11)) is consis-

tent with the result obtained by Chu [48] for an infinitely thin heat source (modeled

as q1(x, t) = ω0δ(x)H(t))) and step temporal profile

Ap1,Chu =
(γ − 1)qha

2c0

(3.12)

where ω0 is the constant heat release rate with units of energy per unit area per unit

time (W/m2). Chu [48] indicated that this result would be valid for ω0

c0p0
� 1. Instead

of using the Duhamel’s principle applied to d’Alembert’s solution as presented in Eq.

(2.35), Chu [48] used the mathematical analogy of two pistons moving away from each

other thereby generating acoustic pressure fluctuations. Indeed, the heat addition

process generates a localized gas expansion known as “piston effect” that provokes

mechanical disturbances in the surrounding gas adjacent to the heated volume [35].

Small values of energy deposition can be modeled with linear acoustic waves, whereas

larger values lead to shocks [35]. Chu [48] predicted that for large rates of heat release

two shock waves would form and propagate in opposite directions. As later presented

in Section 3.6, the numerical results reveal that large magnitudes of heat release

provoke the formation of weak shocks that propagate as steepened front waves.

The solution described by Eq. (3.10) contains two characteristic time scales that

determine the type of pressure response a fluid will exhibit when subjected to the heat

source of Eq. (3.1). The first time scale is the duration of heat release ∆tha. The

second time scale is the characteristic acoustic time, τac, which appears as a constant

inside the error function terms of Eq. (3.10), given by

τac =

√
2σx
c0

(3.13)

The Helmholtz number can therefore be defined as the ratio of the characteristic

acoustic time over the heat release duration as

He =
τac

∆tha
. (3.14)
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Rewriting the solution of Eq. (3.10) in terms of the characteristic acoustic time scale

τac yields to

p1(x, t) =
Ap1
2

[{
erf

( x
c0

+ (t− thab)
τac

)
− erf

( x
c0
− (t− thab)

τac

)}
H(t− thab)

−
{
erf

( x
c0

+ (t− thae)
τac

)
− erf

( x
c0
− (t− thae)

τac

)}
H(t− thae)

] (3.15)

The pressure solution is then used to derive the solutions for velocity, density and

temperature. Using the linearized momentum conservation equation (Eq. (2.19)),

the velocity field can be derived from the pressure solution as

u1(x, t) = − Ap1
2ρ0c0

[{
erf

( x
c0

+ (t− thab)
τac

)
+ erf

( x
c0
− (t− thab)

τac

)
−2 erf

(
x

c0τac

)}
H(t− thab)−

{
erf

( x
c0

+ (t− thae)
τac

)
+erf

( x
c0
− (t− thae)

τac

)
− 2 erf

(
x

c0τac

)}
H(t− thae)

] (3.16)

The density field can be computed using the linearized mass conservation equation

(Eq. (2.18)). As the mean flow properties are assumed to be uniform across the

domain, it follows that ∇ρ0 = 0 so that Eq. (2.18) is simplified into

∂ρ1

∂t
= −ρ0

∂u1

∂x
(3.17)
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Following the same methodology as for the derivation of the velocity field and using

Eq.(3.17), the density field can be computed as

ρ1(x, t) =
Ap1
2c2

0

[{
erf

( x
c0

+ (t− thab)
τac

)
− erf

( x
c0
− (t− thab)

τac

)
− 4√

πτac
exp

(
−
(

x

c0τac

)2
)

(t− thab)
}
H(t− thab)−

{
erf

( x
c0

+ (t− thae)
τac

)

− erf
( x

c0
− (t− thae)

τac

)
− 4√

πτac
exp

(
−
(

x

c0τac

)2
)

(t− thae)
}
H(t− thae)

]
(3.18)

Finally, the temperature field can be calculated from the pressure and density solu-

tions using the linearized equation of state

p1

p0

=
ρ1

ρ0

+
T1

T0

. (3.19)

The temperature field then reads as

T1(x, t) =
(γ − 1)T0Ap1

2ρ0c2
0

[{
erf

( x
c0

+ (t− thab)
τac

)
− erf

( x
c0
− (t− thab)

τac

)
+

4

(γ − 1)
√
πτac

exp

(
−
(

x

c0τac

)2
)

(t− thab)
}
H(t− thab)

−
{
erf

( x
c0

+ (t− thae)
τac

)
− erf

( x
c0
− (t− thae)

τac

)
+

4

(γ − 1)
√
πτac

exp

(
−
(

x

c0τac

)2
)

(t− thae)
}
H(t− thae)

]
(3.20)

A careful examination of the solutions of pressure, velocity, density, and tempera-

ture from Eqs. (3.15, 3.16, 3.18, 3.20) allows the extraction of the limits for the primi-

tive variables as presented in Table 3.1. The analysis of the pressure limits reveals that

the ratio between the acoustic time and heat release duration, i.e. He = τac/∆tha,

determines the behavior of the pressure response to the heat release pulse. As shown

in Fig. 3.7 (L), there appears to be a critical Helmholtz number, Hecr, that separates
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Table 3.1. Limiting expressions for the flow field response to a heat source with
Gaussian spatial distribution and step temporal profile. The subscript “ff” refers to
far field values.

Variable Location Formula

pmax x = 0 p0 + (γ−1)Eha
2c0HhaWha∆tha

erf
(

∆tha
τac

)
pff |x|> Lff p0 + (γ−1)Eha

2c0HhaWha∆tha
erf

(
∆tha
2τac

)
uff |x|> Lff

(γ−1)Eha
2ρ0c20HhaWha∆tha

erf
(

∆tha
2τac

)
ρmin x = 0 ρ0 − (γ−1)Eha√

2πc20σxHhaWha

Tmax x = 0 T0 + (γ−1)EhaT0√
2πρ0c20σxHhaWha

{
1 + (γ−1)

√
πτac

2∆tha
erf

(
∆tha
τac

)}
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the pressure response into two distinct regimes. To determine Hecr, we analyze the

amplitude of the pressure pulse in the far field for a constant value of qha, which is

equivalent to setting the product Lha∆tha equal to a constant, while also maintaining

Eha, Hha, and Wha constant. With these considerations, removing the constants and

writing the remaining variables in terms of He, the second expression of Table 3.1

becomes
√
He erf(1/(2He)). This expression peaks at Hecr = 1/2, which divides

the pressure response into compact and noncompact regimes.

In the compact regime (He < Hecr = 1/2), the amplitude of the pressure response

is determined by the heat release duration and is independent of the length scale Lha

or the standard deviation σx of the Gaussian profile of the heat source. Applied to a

flame, this implies that the amplitude of the pressure pulse will depend on the time

rate of change of the heat release and not on the flame thickness. The dependence is

an inverse proportionality, i.e. pmax, pff ∝ 1/∆tha, indicating that sharp temporal

variations in heat release provoke stronger pressure fluctuations. In this regime, the

pressure pulse reaches its full amplitude at x = 0 and propagates in both directions

maintaining the amplitude of the pulse constant. The constant amplitude is due

to the fact that the model is one-dimensional and neglects viscous losses and heat

conduction. In this regime, the pulse time width is of the order of ∆tha. The temporal

variation of the heat source also determines the shape of the pressure pulse, which is

consistent with the compact cases described by Crighton [44]. The maximum pressure

reads as

pmax,comp = p0 +
Eha(γ − 1)

2c0HhaWha∆tha
(3.21)

In the noncompact regime (He > Hecr = 1/2), the amplitude of the pressure

response is determined by both the duration and the length scale of the heat source. In

compact cases, the error function term disappears from Eq. (3.21) as erf(1/He) ≈ 1.

In contrast, in the noncompact regime the erf term is important as 0 ≤ erf(1/He) ≤

1, revealing that the amplitude of the pressure pulse depends on He. In this regime,

the maximum pressure amplitude occurs at x = 0 (center of the heat release profile)

and then decays over the distance converging to a far field value, as defined in Eq.
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(3.24). After reaching the far field amplitude value at a distance Lff , the pressure

pulse amplitude remains constant due to the absence of loss mechanisms and the

restriction of the problem to one dimension. In the noncompact regime, the pulse

time width is of the order of Lha/c0. The spatial distribution of the heat source

profile determines the shape of the pressure pulse, which is in agreement with the

observations by Crighton [44] for the so-called noncompact cases. At x = 0 the

pressure reaches a maximum value of

pmax,noncomp(x = 0) = p0 +
Eha(γ − 1)

2c0HhaWha∆tha
erf

(
∆tha
τac

)
(3.22)

The far field response occurs at a distance Lff away from the center of the heat

release profile corresponding to

Lff = 2τacc0 = 2
√

2σx (3.23)

The pressure amplitude in the far field is given by

pmax,noncomp(x > Lff ) = p0 +
Eha(γ − 1)

2c0HhaWha∆tha
erf

(
∆tha
2τac

)
(3.24)

Both Eq. (3.22) and Eq. (3.24) are listed in Table 3.1. However, it should be

noted that the expressions of Table 3.1 apply to both regimes, irrespective of the

value of the He.

Fig. 3.5 depicts a compact and noncompact case of the analytical pressure re-

sponse of perfect gas with properties like that of CO2 to a heat release source with

Gaussian spatial distribution and step temporal profile. Both cases have the same

total energy input Eha (see Table 3.3) as well as the same heat release magnitude qha.

The two cases are set apart by their He which is determined by their different length

scale and duration of the heat source. Fig. 3.5 (L) shows that in the compact case the

amplitude of the pressure pulse remains constant over the distance. In contrast, the

noncompact case depicted in Fig. 3.5 (R) shows a maximum pressure amplitude at
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Figure 3.5. Pressure response of a perfect gas with properties like that of CO2 to
a heat release source with Gaussian spatial distribution and step temporal profile.
Compact case (L): He = 0.0593 < 1/2, qha = 2.5 · 1012 W/m3, Lha = 100 µm and
∆tha = 1 µs. Noncompact case (R): He = 0.9487 > 1/2, qha = 2.5 · 1012 W/m3,
Lha = 400 µm, Lff = 166.62 µm (Lff = 0.42Lha) and ∆tha = 0.25 µs.

Figure 3.6. Evolution of pressure amplitude of a perfect gas with properties like that
of CO2 over the distance for the response to a heat release source with Gaussian
spatial distribution and step temporal profile. Compact case (L): He = 0.0593, qha =
2.5 ·1012 W/m3, Lha = 100 µm and ∆tha = 1 µs; Noncompact case (R): He = 0.9487,
qha = 2.5 ·1012 W/m3, Lha = 400 µm and ∆tha = 0.25 µs. Eha/(HhaWha) = 250 J/m2

for both cases.
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Figure 3.7. Map of the pressure amplitude for constant values of heat release intensity
qha in W/m3 for a heat source with Gaussian spatial distribution and step temporal
profile (L), and a Gaussian spatio-temporal distribution (R), respectively.
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x = 0, which then decays over the distance until converging to the far field pressure

pff after the pulse travels a distance Lff . It is noteworthy that the far field pressure

in this case remains higher than the compact case.

3.3 Heat Source with Gaussian Spatial and Temporal Distribution

The pressure response of a fluid to an unsteady heat source with Gaussian spatial

and temporal distribution is analyzed, where the heat source is given by

q1(x, t) = Kha2 exp

[
−1

2

(
x

σx

)2
]
exp

[
−1

2

(
t− tc
σt

)2
]

(3.25)

where tc is the center time of the Gaussian temporal profile, and Kha2 is the heat

source magnitude parameter of the second heat source profile, defined as

Kha2 =
Eha

2πσxσtHhaWha

=
qhaLha∆tha

2πσxσt
(3.26)

where qha is the flat profile heat release value defined in Eq. (3.4). The shape of

the heat source is depicted in Fig. 3.2 (R). The standard deviations that define the

Gaussian spatial and temporal profiles are set to σx = Lha/7 and σt = ∆tha/7. The

source term f(x, t) in Eq. (2.33) is obtained by taking the temporal derivative of the

heat source of Eq. (3.25) as follows

f(x, t) = (γ − 1)
∂q1

∂t

= −(γ − 1)Kha2

σ2
t

exp

[
−1

2

(
x

σx

)2
]

(t− tc) exp

[
−1

2

(
t− tc
σt

)2
]

(3.27)

Substitution of Eq. (3.27) into Eq. (2.35) provides the integral expression required

to compute the pressure response as

p1,p(x, t) =
1

2c0

∫ t

0

∫ x+c0(t−s)

x−c0(t−s)

(1− γ)Kha2

σ2
t

e−
1
2( z

σx
)
2

(s− tc) e
− 1

2

(
s−tc
σt

)2

dzds (3.28)
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After integrating with respect to the spatial variable z, and recalling that p1(x, t) =

p1,p(x, t) as presented in Section 2.3, the resulting expression is

p1(x, t) =
(1− γ)Kha2

2c0σ2
t

∫ t

0

[√
2πσx
2

erf

(
z√
2σx

)]x+c0(t−s)

x−c0(t−s)

(s− tc) e
− 1

2

(
s−tc
σt

)2

ds .

(3.29)

Subsequently integrating Eq. (3.29) with respect to the temporal variable s leads to

the pressure response solution as

p1(x, t) =

Ap,2

[
erf

(
c0√
2σx

(
x

c0

− t
))

e
− 1

2

(
tc
σt

)2

− erf
(

c0√
2σx

(
x

c0

+ t

))
e
− 1

2

(
tc
σt

)2

+
1√

1 + σ2
x

c20σ
2
t

exp

−
(
x
c0
− t+ tc

)2

2σ2
t

(
1 + σ2

x

c20σ
2
t

)
 ·

{
erf

 c0√
2σx

√
1 +

σ2
x

c2
0σ

2
t

t+
c0√
2σx

x
c0
− t− σ2

x

c20σ
2
t
tc√

1 + σ2
x

c20σ
2
t


−erf

 c0√
2σx

x
c0
− t− σ2

x

c20σ
2
t
tc√

1 + σ2
x

c20σ
2
t

}+
1√

1 + σ2
x

c20σ
2
t

exp

−
(
x
c0

+ t− tc
)2

2σ2
t

(
1 + σ2

x

c20σ
2
t

)
 ·

{
erf

 c0√
2σx

√
1 +

σ2
x

c2
0σ

2
t

t− c0√
2σx

x
c0

+ t+ σ2
x

c20σ
2
t
tc√

1 + σ2
x

c20σ
2
t


+erf

 c0√
2σx

x
c0

+ t+ σ2
x

c20σ
2
t
tc√

1 + σ2
x

c20σ
2
t

}] ,

(3.30)

where the constant Ap,2 is defined in Eq. (3.34). The center time of the Gaussian

temporal profile should be set to tc ≥ 3.5σt to ensure that the Gaussian temporal

profile is effectively represented and is not truncated to a fraction of the total energy

input. Under this condition, the two terms multiplied by e
− 1

2

(
tc
σt

)2

can be dropped

as the exponential term at this point becomes negligible. Hereinafter, for all the

analytical and numerical cases tc is set to be equal to (thab + thae)/2.
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The characteristic acoustic time τac also appears in the solution of the pressure

response to an unsteady heat source with Gaussian spatial and temporal distribution

given by Eq. (3.30) as

τac =

√
2σx
c0

. (3.31)

The Helmholtz number can be defined in the same manner as in the previous case as

the ratio of the characteristic acoustic time over the duration of heat release as

He =
τac

∆tha
=
τac
7σt

, (3.32)

with the temporal standard deviation of the Gaussian profile set to σt = ∆tha/7

for all cases. The definition of He for the current case could also be based on the

standard deviation σt, as an alternative to the heat release duration ∆tha, which in

turn will imply no having the factor of 7 in the denominator. However, in the interest

of maintaining consistency and for the purpose of comparison, ∆tha is kept as the

parameter of choice. In addition to τac and ∆tha, the solution for this case contains

another time scale, ζxt, which is the ratio of characteristic times defined as

ζxt =

√
1 +

σ2
x

c2
0σ

2
t

=

√
1 +

1

2

(
τac
σt

)2

=

√
1 +

72

2
He2 . (3.33)

ζxt is a measure of how fast the fluid responds with respect to the duration of the

unsteady heat release pulse. The constant Ap,2 multiplying all the terms in Eq. (3.30)

reads as

Ap,2 =
(γ − 1)Eha

4c0

√
2πσtζxtHhaWha

. (3.34)
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Rewriting the solution of Eq. (3.30) in terms of the characteristic time scales τac, ζxt

and the constant Ap,2 yields to

p1(x, t) =

Ap,2

[
exp

(
−
( x

c0
− (t− tc)√

2σtζxt

)2
){

erf

(
x
c0

+ (ζ2
xt − 1)(t− tc)
τacζxt

)

− erf

(
x
c0
− t− (ζ2

xt − 1)tc

τacζxt

)}
+ exp

(
−
( x

c0
+ (t− tc)√

2σtζxt

)2
)
·{

erf

(
− x
c0

+ (ζ2
xt − 1)(t− tc)
τacζxt

)
+ erf

(
x
c0

+ t+ (ζ2
xt − 1)tc

τacζxt

)}]
.

(3.35)

The velocity field can be computed from the pressure solution Eq. (3.35) using the

linearized momentum conservation equation (Eq. (2.19)), reading as

u1(x, t) =

Ap,2
ρ0c0

[
exp

(
−
( x

c0
− (t− tc)√

2σtζxt

)2
){

erf

(
x
c0

+ (ζ2
xt − 1)(t− tc)
τacζxt

)

− erf

(
x
c0
− t− (ζ2

xt − 1)tc

τacζxt

)}
− exp

(
−
( x

c0
+ (t− tc)√

2σtζxt

)2
)
·{

erf

(
− x
c0

+ (ζ2
xt − 1)(t− tc)
τacζxt

)
+ erf

(
x
c0

+ t+ (ζ2
xt − 1)tc

τacζxt

)}]
.

(3.36)
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The density field can also be calculated using the linearized mass conservation equa-

tion assuming uniform mean flow properties (see Eq. (3.17)), resulting in

ρ1(x, t) =
Ap,2
c2

0

[
−2
√

2σtζxt
τac

exp

(
−
(

x

c0τac

)2
){

erf

(
t− tc√

2σt

)
+ erf

(
tc√
2σt

)}

+ exp

(
−
( x

c0
− (t− tc)√

2σtζxt

)2
){

erf

(
x
c0

+ (ζ2
xt − 1)(t− tc)
τacζxt

)

− erf

(
x
c0
− t− (ζ2

xt − 1)tc

τacζxt

)}
+ exp

(
−
( x

c0
+ (t− tc)√

2σtζxt

)2
)
·{

erf

(
− x
c0

+ (ζ2
xt − 1)(t− tc)
τacζxt

)
+ erf

(
x
c0

+ t+ (ζ2
xt − 1)tc

τacζxt

)}]
.

(3.37)

Finally, the temperature field can be calculated using the linearized equation of state,

Eq. (3.19) as

T1(x, t) =
(γ − 1)T0Ap,2

ρ0c2
0

·[
2
√

2σtζxt
(γ − 1)τac

exp

(
−
(

x

c0τac

)2
){

erf

(
t− tc√

2σt

)
+ erf

(
tc√
2σt

)}

+ exp

(
−
( x

c0
− (t− tc)√

2σtζxt

)2
){

erf
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+ exp
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·{
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− x
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)
+ erf

(
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c0

+ t+ (ζ2
xt − 1)tc

τacζxt

)}]
.

(3.38)

Table 3.2 presents the summary of the limiting cases of pressure, velocity, density

and temperature derived from the solutions of Eqs. (3.35, 3.36, 3.37, 3.38).

Following the same behavior as the previous case, the pressure response to a Gaus-

sian spatio-temporal heat source exhibits two distinct regimes separated by Hecr.

Both the compact and noncompact regimes feature the same trends and characteris-

tics described in Section 3.2. Figs. 3.19 and 3.20 depict an example of compact and
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Table 3.2. Limiting expressions for the flow field response to a heat source with
Gaussian spatial and temporal distribution.

Variable Location Formula

pmax

∣∣∣
He�Hecr

x = 0 p0 + (γ−1)Eha
2
√

2πc0σtζxtHhaWha
erf

(
ζxttc
τac

)
pmax

∣∣∣
He�Hecr

x = 0 p0 + (γ−1)Eha√
2πc0σtζxtHhaWha

exp

[
−
(

∆tha
2
√

2σtζxt

)2
]

pff |x|> Lff p0 + (γ−1)Eha
4
√

2πc0σtζxtHhaWha

{
1 + erf

(
ζxttc
τac

)}
uff |x|> Lff

(γ−1)Eha
4
√

2πρ0c20σtζxtHhaWha

{
1 + erf

(
ζxttc
τac

)}
ρmin x = 0 ρ0 − (γ−1)Eha

2
√

2πc20σxHhaWha

{
1 + erf

(
tc√
2σt

)}
Tmax

∣∣∣
He�Hecr

x = 0 T0 + (γ−1)EhaT0
2
√

2πρ0c20σxHhaWha

{
1 + erf

(
tc√
2σt

)}
Tmax

∣∣∣
He�Hecr

x = 0 T0 + (γ−1)EhaT0
2
√

2πρ0c20σxHhaWha

{
1 + erf

(
tc√
2σt

)
+ 2(γ−1)τac√

2σtζxt

}

noncompact case, respectively. In compact cases, once the pressure pulse reaches its

maximum amplitude, it maintains that amplitude during its propagation. In contrast,

for noncompact cases, the maximum pressure amplitude occurs at x = 0 and then

decays over the distance converging to a far field value pff . The far field response

can be observed beyond the distance Lff away from the center of the Gaussian heat

release profile corresponding to Lff = 2τacc0 = 2
√

2σx, which is the same as that

obtained for the first heat source profile in Eq. (3.23).

The analysis of the pressure limits in Table 3.2 allows us to deduct the Hecr for

this type of heat source. We focus on the constant Ap2 (see Eq. (3.34)) and explore

the amplitude of the pressure pulse for a constant heat release intensity qha, which

is equivalent to setting the product Lha∆tha equal to a constant (noting that Eha,

Hha and Wha are also constant). Under these conditions, the variation of the pressure

pulse amplitude exhibits a turning point at the He that minimizes the product σtζxt.

Recalling that He = τac/∆tha = τac/(7σt), this corresponds, for a fixed heat release

intensity qha, to minimizing the term
√

1
He

+ 72

2
He. In this way, the latter expression
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Figure 3.8. Evolution of pressure amplitude of a perfect gas with properties like that of
CO2 over the distance for the response to a heat release source with Gaussian spatio-
temporal distribution. Compact case (L): He = 0.0593, qha = 2.5 · 1012 W/m3, Lha =
100 µm and ∆tha = 1 µs; Noncompact case (R): He = 0.9487, qha = 2.5 · 1012 W/m3,
Lha = 400 µm and ∆tha = 0.25 µs. Eha/(HhaWha) = 250 J/m2 for both cases.

reaches its minimum for He =
√

2/7. Thus, in this case the critical value of He is

Hecr =
√

2/7.

3.4 Parametric Study

A parametric study with quiescent perfect gas with properties like that of CO2

has been conducted to assess the trends of the fluid response to the two heat release

profiles used in this study. Table 3.3 summarizes the mean flow conditions and heat

release total energy input used for all the cases in this work. The heat release band

size Lha varies from 10 to 105 µm, and the heat release duration ∆tha ranges from

0.1 to 103 µs. The energy level, mean flow conditions, and range of length and time

scales of the heat source have been sized to be representative of unsteady heat release

events in a high pressure rocket engine.

Fig. 3.9 (L) depicts the map of far field pressure pff for the range of length

and time scales explored. The critical line He = Hecr separates the two regimes of

the pressure response. Above the critical line, in the compact regime, the far field
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Figure 3.9. Map of the far field pressure amplitude (L) and pν work efficiency (R) of
the response of a perfect gas with properties like that of CO2 to a heat release source
with Gaussian spatial distribution and step temporal profile (Hecr = 1/2).

amplitude of the pressure pulse is inversely proportional to the heat release duration

but independent of the length scale Lha. Below the critical line, in the noncompact

regime, for a given length Lha the far field amplitude of the pressure pulse converges

to a constant volume limiting value irrespective of the heat release duration ∆tha.

Effectively, the pressure response in the compact regime is controlled by the temporal

profile of the heat source (∆tha) whereas in the noncompact regime it is controlled

by the spatial distribution (Lha).

The pν work efficiency, ηpν , is a metric of interest that represents the efficiency of

converting heat release into acoustic pressure energy. This quantity is very similar to

the thermoacoustic efficiency term ηac = Pac/(ṁfH) used in combustion noise studies

such as Swaminathan [46], in which Pac is the acoustic power, ṁf is the fuel mass

flow rate, and H is the lower heating value of the fuel. The pν work efficiency can be

defined as the pν work generated by the pressure at the control volume boundaries

divided by the total heat energy released, Eha. The control volume is located away

from the center of the heat release source in order to capture the far field pressure

response. The pν work efficiency reads as
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Figure 3.10. Map of the minimum density (L) and maximum temperature (R) of the
response of a perfect gas with properties like that of CO2 to a heat release source
with Gaussian spatial distribution and step temporal profile (Hecr = 1/2).
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ηpν =
Wb

Eha
=

∫ T
0

∮
∂Ω
p (~u · ~n) dsdt∫ T

0

∫
Ω
qdV dt

=
1

Eha

∫ T

0

∮
∂Ω

(p0 + p1) ( ~u1 · ~n) dsdt (3.39)

noting that ~u = ~u1 due to the zero Mach number assumption (~u0 = 0).

Fig. 3.9 (R) shows a map of the pν work efficiency, ηpν , as defined in Eq. (3.39).

The pν work efficiency map reveals that for large length and time scales of the heat

source profile (Lha and ∆tha), the efficiency of converting heat release into acoustic

pressure energy decreases until it plateaus to a lower limit approaching to a constant

pressure process. In contrast, for very small length and time scales, when the heat

release values per unit length and time are extremely large, the pν work efficiency

increases as the process tends to become a constant volume process. However, this

increasing pν work efficiency for large values of qha can materialize only to a certain

extent as nonlinear effects start to become important due to the significant devia-

tions from the model assumptions including constant mean flow properties, linear

fluctuations, inviscid flow and negligible heat conduction.

Fig. 3.10 depicts the minimum density and maximum temperature predicted by

the analytical solution. The minimum density plot is particularly useful as the zero

level clearly marks the threshold at which the above mentioned assumptions of the

acoustic wave equation break down. For short heat release lengths Lha the density

transitions from positive to negative, and starts to asymptotically tend to −∞ for

Lha → 0. The temperature tends to ∞ for Lha → 0.

The map of far field pressure amplitude (L) and the pν work efficiency (R) for the

heat source with Gaussian spatio-temporal distribution is shown in Fig. 3.11. Both

of these quantities exhibit the same trends and characteristics as the previous case.

However, a comparison reveals that the Gaussian spatial and temporal distribution

features higher far field pressure amplitude and pν work efficiency for the same value

of heat release length and time scale. This is a result of the differences in the peak

values of the heat source profiles (i.e. higher qmax), as shown in Fig. 3.2.
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Figure 3.11. Map of the far field pressure amplitude (L) and pν work efficiency (R) of
the response of a perfect gas with properties like that of CO2 to a heat release source
with Gaussian spatial and temporal distribution (Hecr =

√
2/7).
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response of a perfect gas with properties like that of CO2 to a heat release source
with Gaussian spatial and temporal distribution (Hecr =

√
2/7).
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Fig. 3.12 shows the map of minimum density (L) and maximum temperature (R)

for the heat source with Gaussian spatial and temporal distribution. The observed

trends are consistent with those observed with the Gaussian spatial distribution and

step temporal profile.

For large rates of heat release (qha > 1011 W/m3), the analytical model starts to

deviate from the numerical solution due to the presence of nonlinear effects such as

temperature dependence of the local speed of sound, wave front steepening, formation

of weak shocks, and neglecting loss mechanisms such as viscosity and heat conduction.

Although the parametric study covers a wide range of length and time scales, the

applicability of the analytical model is limited to low and moderate heat release

rates. For large heat release values the assumptions of the analytical model deviate

from the actual conditions provoking a loss of accuracy as the conditions become

more extreme.

3.5 Constant Pressure and Constant Volume Limits

The Helmholtz number condenses the effects of relevant length and time scales

that characterize the different regimes of pressure response of a fluid to an unsteady

heat release event. In addition to distinguishing between regimes of operation, He

also determines whether the pressure response to unsteady heat release tends towards

a constant pressure or a constant volume process. Fig. 3.13 depicts a diagram of the

thermodynamic process paths of pressure and specific volume for both heat release

profiles. For He� Hecr the pressure response tends to a constant pressure process,

whereas for He � Hecr the response tends to a constant volume process. As noted

by Meyer and Oppenheim [36], at the He = 0 limit the heat addition process occurs

at constant pressure, whereas for He =∞ this results in a constant volume process.

All the curves in Fig. 3.13 start at (ν/ν0, p/p0) = (1, 1), which corresponds to the

initial conditions of ρ0 and p0, then follow with an increase in pressure and specific

volume during the heat addition phase, and finally proceed to an expansion as the
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Figure 3.13. Diagram of pressure and specific volume at x = 0 for a fixed heat release
length Lha = 200 µm and for different He. The heat release sources are a Gaussian
spatial distribution and step temporal profile (L), and Gaussian spatial and temporal
distribution (R), respectively.
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heat release abates. In this final phase, the paths collapse towards the Hugoniot

curve [36,38,79], which is given by

p

p0

=

2QH
p0ν0

+ γ+1
γ−1
− ν

ν0(
γ+1
γ−1

)
ν
ν0
− 1

, (3.40)

where QH represents the energy per unit mass added during the heat addition process.

For both heat source profiles of Fig. 3.13, He = 0.01 represents a compact case

with a low He that approaches to a constant pressure process. In contrast, He = 5

represents a noncompact case with a high He that tends towards a constant volume

heat addition process. In Fig. 3.13 (L), the heat source with Gaussian spatial dis-

tribution and step temporal profile shows a clear distinction between compact and

noncompact cases, below and above Hecr = 1/2, respectively. Below Hecr, once

the pressure reaches its maximum amplitude it remains constant until the expansion

begins once the heat addition finalizes. Above Hecr, the pressure reaches its max-

imum at the time at which the heat addition ends, and then it decays as there is

no longer heat release to continue supporting the pressure increase. The evolution

of the pressure amplitude for the compact and noncompact cases of Fig. 3.13 (L)

follows the same trends exhibited by the two cases from Fig. 3.5. For both compact

and noncompact cases, the time at which heat addition ends marks a sharp change

in the pressure response leading to a sudden pressure expansion that coincides with

the Hugoniot curve. This sharp change is caused by the abrupt removal of the heat

source in just a time instant (t = thae). In constraint, in Fig. 3.13 (R), for the heat

source with Gaussian spatial and temporal distribution, the difference between com-

pact and noncompact cases is not as clear since the temporal profile varies smoothly.

The Gaussian temporal profile therefore experiences a smooth-varying expansion that

collapses to the Hugoniot curve as the heat release decreases. The distinction of both

pressure response regimes for the second heat source profile is shown in Fig. 3.19 and

Fig. 3.20 by comparing the pressure pulse amplitude at different locations.
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Figure 3.14. Evolution of the maximum pressure and far field pressure amplitude for
fixed heat release lengths Lha with respect to He. The heat release sources are a
Gaussian spatial distribution and step temporal profile (L), and Gaussian spatial and
temporal distribution (R), respectively.
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Fig. 3.14 shows the maximum and the far field pressure amplitude as a function of

He. At a given heat release length scale Lha, the amplitude of the pressure pulse grows

as He increases until reaching the maximum value corresponding to the constant

volume limit. For a given length scale Lha, regardless of how short the duration

of the heat addition becomes, the pressure amplitude will reach an upper constant

volume process limit. Thus, the constant volume limit of the pressure response to

a heat source with Gaussian spatial distribution and step temporal profile can be

calculated by fixing σx (equivalent to fixing Lha), and computing the limit of pmax in

Table 3.1 for He→∞ as

pmax1,CV C = lim
He→∞

p0 +
(γ − 1)Eha

2c0HhaWha∆tha
erf

(
∆tha
τac

)
=

lim
He→∞

p0 +
(γ − 1)EhaHe

2
√

2σxHhaWha

erf

(
1

He

)
= p0 +

(γ − 1)Eha√
2πσxHhaWha

,

(3.41)

where ∆tha is expressed in terms of He by substituting ∆tha = τac
He

=
√

2σx
c0He

. It

should be noted that He · erf(1/He) = 2/
√
π in the limit He→∞. For the far field

pressure amplitude constant volume limit, the term He·erf( 1
2Da

) becomes 1/
√
π when

He→∞. On the other side, the constant volume limit of the pressure response to a

heat source with Gaussian spatial and temporal distribution can be computed in the

same fashion departing from the second equation from Table 3.2 as

pmax2,CV C = lim
He→∞

p0 +
(γ − 1)Eha√

2πc0σtζxtHhaWha

exp

[
−
(

∆tha

2
√

2σtζxt

)2
]

=

lim
He→∞

p0 +
7(γ − 1)Eha

√
2π
√

2σx
1
He

√
1 + 72

2
He2HhaWha

exp

−
 7

2
√

2
√

1 + 72

2
He2

2
= p0 +

7(γ − 1)Eha
√

2π
√

2σx

√
72

2
HhaWha

= p0 +
(γ − 1)Eha√
2πσxHhaWha

.

(3.42)

The results of Eqs. (3.41-3.42) are remarkable as they reveal that for noncompact

cases with He � Hecr, the maximum amplitude of the pressure response to an

unsteady heat release event is limited to the same constant volume limit regardless
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Figure 3.15. Evolution of the maximum pressure with respect to the constant volume
pressure limit as a function of He. Heat source 1 and 2 are the Gaussian spatial dis-
tribution and step temporal profile, and Gaussian spatial and temporal distribution,
respectively.

of the temporal profile of the heat source. Furthermore, for a fixed γ and energy

level Eha/(HhaWha), the constant volume limit pressure amplitude is controlled by

the heat release length scale σx (equivalently Lha).

In Fig. 3.14 (R) the Gaussian spatial and temporal distribution follows the same

trends and same limits as the Gaussian spatial distribution and step temporal profile

(Fig. 3.14 (L)) but with the curves slightly shifted towards lower He values. Fig. 3.15

shows that the ratio (pmax − p0)/(pcvc − p0) only depends on He since γ, Eha, Hha,

Wha, and σx cancel out. For the first heat source, which has a simple solution, this

ratio is equal to (
√
π/2)He · erf(1/He). Therefore, within the range of application of

the analytical model, each heat release source has a single curve that uniquely relates

He with said ratio.
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3.6 Comparison of Analytical and Numerical Results

3.6.1 Solver Details

High-fidelity DES simulations have been conducted with the aim of assessing the

accuracy and limitations of the analytical solutions derived in this study. The numer-

ical simulations are performed using an in-house Navier-Stokes solver called General

Equation and Mesh Solver (GEMS) [80–82]. GEMS is an implicit dual time stepping

coupled solver. The numerical integration of the conservation equations is second-

order accurate in both space and time. The solution of the linear system is obtained

by line Gauss-Seidel method. This solver is capable of handling multi-step detailed

chemical kinetics. Message passing interface is used for parallelization. The code

is capable of handling both unstructured and structured meshes. GEMS has been

extensively developed and used to analyze high-pressure turbulent combustion flows

in unstable combustors resulting in qualitative good agreement with experimental

results [69–74].

3.6.2 Simulation Setup

The case study consists of a uniform quiescent fluid that responds to the two

aforementioned heat release source profiles. The dimensions of the domain are set

such that the simulation concludes before the induced pressure waves reach the ver-

tical boundaries. This condition eliminates any acoustic reflections at the boundaries

and limits the influence of boundary conditions on the solution. The computational

domain is depicted in Fig. 3.16 and it consists of a two-dimensional cavity of 15 mm

× 0.015 mm. The top and bottom boundaries are set as periodic boundary condi-

tions so as to maintain a one-dimensional solution. The left and right boundaries

are treated as inviscid, adiabatic walls. The heat release is modeled as an external

source in the energy equation, located at the center of the domain. The total number

of cells is 100,000, and the mesh is divided in 100 partitions. The structured grid is
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Figure 3.16. Schematic of the computational domain used in the numerical simula-
tions.

Table 3.3. Perfect gas mean flow properties like that of CO2 and heat release energy
used for all the analytical and numerical simulations of Chapter 3.

p0 T0 u0 ρ0 c0 γ0 Eha/(HhaWha)

(MPa) (K) (m/s) (kg/m3) (m/s) (J/m2)

1.0 500.0 0.0 10.59 340.72 1.2253 250.0

uniform with a cell size of 1.5 µm in the x and y directions across all the domain. To

accurately capture the transient, the time step is limited to 2 ns and the simulations

captures 12.5 µs of physical time.

The study has been conducted using perfect gas with properties like that of CO2

as the working fluid with the conditions and energy level summarized in Table 3.3.

A pressure of 1 MPa and a temperature of 500 K are chosen as the initial conditions,

which are representative of the interaction between hot and cold gases in the shear

layer region of a non-premixed, shear-coaxial injector used in rocket engines.

3.6.3 Results Discussion

The comparison of the analytical and numerical solutions of the fluid response

to a heat source with Gaussian spatial distribution and step temporal profile are

depicted in Fig. 3.17 and Fig. 3.18, which represent a compact and a noncompact

case, respectively. Although both cases use the same initial conditions, energy level
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Eha/(HhaWha) and heat release intensity qha, the noncompact case features a higher

pressure amplitude as it releases the same amount of total energy within a shorter

time ∆tha. As it occurred in Fig. 3.5, the compact case maintains the amplitude of the

pressure pulse over the distance whereas in the noncompact case the pressure pulse

peaks at x = 0, and then decays until converging to the far field pressure amplitude.

As shown in Figs. 3.17(L) and 3.18(L), the analytical solution reasonably captures

the pressure response with a slight overshoot in the amplitude. The difference between

the analytical and numerical solutions is due to the assumption of constant mean

flow properties and the absence of loss mechanisms as heat conduction and viscous

losses are neglected in the analytical model. At the center of the heat source, as

the temperature increases substantially due to the heat release, the speed of sound

also increases following its strong temperature dependence. From Eqs. (3.11) and

(3.15) it follows that an increase in speed of sound decreases the effectiveness by

which unsteady heat release generates acoustic pressure waves. This effect is clearly

seen in Fig. 3.17(L) as the pressure from the numerical solution starts to deviate

from the analytical solution as the speed of sound increases. After reaching the

maximum value (around t/∆tha = 0.12), the numerical pressure decays in a quasi-

linear fashion following the increasing trend of the speed of sound. As expected, the

analytical model does not capture this local effect on account of its constant mean

flow properties assumption.

Within the heated zone, the pressure amplitude and drop in density are overesti-

mated by the analytical solution, whereas the temperature rise can be either over- or

under-predicted, depending on He. In all the cases, the dominant cause for the devi-

ations is the assumption of constant mean flow properties, as the losses due to heat

conduction or viscous effects are estimated to be insignificant. The deviation of the

analytical solution from the numerical result becomes notable when the local speed

of sound varies over 5% from the mean. Density and temperature analytical solutions

exhibit large errors for significant variations of the speed of sound, whereas the pres-
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Figure 3.17. Compact case, He = 0.0593 < 1/2. Flow field response to a heat source
with Gaussian spatial distribution and step temporal profile. Solid lines represent
the analytical solution whereas dashed lines are the numerical solution. Heat release
parameters: qha = 2.5 · 1012 W/m3, Lha = 100 µm, ∆tha = 1 µs. In this plot and the
subsequent ones, φ = ρ, T , c, γ are scaled with respect to the right hand side axis.
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sure solution continues to predict a close amplitude result even for large deviations

from the mean value.

The minimum density expression from Table 3.1 shows that an increase in the

speed of sound results in a greater density than the value predicted by the analytical

solution. For large values of heat release and small length scales, the minimum density

predicted by the analytical solution can become negative as seen from Fig. 3.17(L).

This result is consistent with Chu’s prediction [48] that ρ(x = 0)→ −∞ and T (x =

0)→∞ for an infinitely thin heat source. A negative density, which is an unphysical

result, is therefore an effective threshold to determine the range of applicability of the

acoustic wave equation in thermoacoustic problems. It should be noted that away

from the heat release zone, the density returns to feasible values. Whereas the relation

between pressure, temperature and density are clearly nonisentropic at the centerline

due to heat release, outside of the heat release zone (|x| >Lha/2) the isentropic gas

relations remain valid. The analytical expression for the maximum temperature given

in Table 3.1 shows that with increasing speed of sound the temperature can be either

over- or under-estimated depending on He. The analytical solution underestimates

the temperature for compact cases and slightly overestimates it for noncompact cases,

respectively. The deviation of the numerically obtained ratio of specific heats γ from

the constant mean flow value appears to be minimal, indicating that a constant γ is

a justifiable assumption.

Figs. 3.19-3.20 show the comparison of the numerical and analytical solutions of

the fluid response to the second heat release profile, with Gaussian spatial and tem-

poral distribution. The analytical solution captures reasonably well the dynamics of

the numerical solution as in the previous case. An overshoot in amplitude is observed

due primarily to the constant mean flow assumption. A greater pressure amplitude

than the previous case is present due to the heat source is more concentrated at the

center (see Fig. 3.2).

The comparison of the analytical and numerical solutions in Figs. 3.17-3.20 also

highlights the importance of nonlinear effects that are not captured by the linear
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Figure 3.18. Noncompact case, He = 0.9487 > 1/2. Flow field response to a heat
source with Gaussian spatial distribution and step temporal profile. Solid lines rep-
resent the analytical solution whereas dashed lines are the numerical solution. heat
release parameters: qha = 2.5 · 1012 W/m3, Lha = 400 µm, ∆tha = 0.25 µs.

0 0.5 1 1.5 2

t/∆tha

0.82

0.88

0.94

1

1.06

1.12

1.18

1.24

p
/
p
0

-0.5

0

0.5

1

1.5

2

2.5

3

φ
/
φ
0

x = 0

pan
p0

p
p0

T
T0

Tan

T0

ρ
ρ0

ρan
ρ0

c
c0

γ
γ0

0 0.5 1 1.5 2

t/∆tha

0.98

1

1.06

1.12

1.18

1.24

p
/
p
0

0.98

1

1.06

1.12

1.18

1.24

φ
/
φ
0

x = Lha

pan
p0

p
p0

Tan

T0

T/T0

ρ
ρ0

ρan
ρ0

c/c0

γ/γ0

Figure 3.19. Compact case, He = 0.0593 <
√

2/7. Flow field response to a heat source
with Gaussian spatial and temporal distribution. Solid lines represent the analytical
solution whereas dashed lines are the numerical solution. heat release parameters:
qha = 2.5 · 1012 W/m3, Lha = 100 µm, ∆tha = 1 µs.
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Figure 3.20. Noncompact case, He = 0.9487 >
√

2/7. Flow field response to a
heat source with Gaussian spatial and temporal distribution. Solid lines represent
the analytical solution whereas dashed lines are the numerical solution. heat release
parameters: qha = 2.5 · 1012 W/m3, Lha = 400 µm, ∆tha = 0.25 µs.
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acoustic wave equation. For instance, the extreme rates of heat release induce weak

shocks in the pressure pulses. Away from the heat release zone, as shown in Figs.

3.18 (R) and 3.20 (R), the numerical solution shows that the pressure pulse undergoes

a wave steepening process. This is a well known nonlinear acoustic phenomenon

caused by the local increase in the speed of sound [83]. Over the distance, this

effect compounds until the pressure pulse evolves into a weak shock. The numerical

solutions for both heat release profiles also show that the pressure pulse slowly decays

over the distance. This is due to both physical (viscous losses) and numerical loss

mechanisms that are absent in the analytical model.

3.7 Application to a Real Combustor: CVRC

The methodology developed in this paper can be applied to a flow field prediction

of a real combustor to assess the degree to which a combustion process tends to

constant pressure or constant volume combustion. Furthermore, the application to a

real case allows to test the analytical model assumptions, and hence, the applicability

of models based on the acoustic wave equation in LRE. The CVRC [78] is selected

as example of the real combustor. The numerical simulation of this combustor with

detailed chemical kinetics has been previously reported by Sardeshmukh et al. [73]

and others [30, 69, 70, 84]. He is computed for a typical instantaneous solution from

this simulation and shown in Fig. 3.21. The CVRC is a single element combustor

that experimentally demonstrated the dependence of the self-excited instabilities on

the length of the oxidizer post. This combustor uses decomposed hydrogen peroxide

as oxidizer and gaseous methane injected at room temperature as the fuel. Further

details are presented in the prior work reported by Yu [78].

The main feature of the numerical Henum calculation is the isolation of the flames

and corresponding length scales. This is accomplished by first defining a threshold

for the heat release as 50% of the maximum heat release in the domain. The heat

release scale is typically exponential and hence the threshold defined herein repre-
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Low part of the cycle

High part of the cycle

Figure 3.21. Contour plot of the numerically computed Henum distribution for two
time instances of a typical 1L mode acoustic cycle of the CVRC combustor. The
nominal chamber pressure is 1.4 MPa [73].
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sents the flame zones without pre-heat or post-flame zones. The cells isolated with

this criterion are then segregated on the basis of their contiguity. As evident from

Fig. 3.21, the length scales of the flame zones are smaller than their span in either

x− or y−coordinate directions. For the sake of simplicity and conservative approach,

the flame length scale is defined as the minimum of the spans of the flame in the

Cartesian coordinate directions. This assumption primarily affects the acoustic time

scale and estimates this on the higher side. The calculated Henum is therefore ex-

pected to be greater than the exact value. The chemical time scale is approximated

with a numerical derivative of the heat release, computed using a backward difference

operator. The estimated numerical Helmholtz number, Henum is thus obtained as

Henum =
τac
τch

=
Lf/c

q/q̇
, (3.43)

where Lf is the length scale of the flame zone (flame thickness), c is the local speed

of sound, τch is the chemical time (heat release time scale), and q̇ is the time rate of

change of the volumetric heat release rate q.

The range of Henum shown in Fig. 3.21 varies from 10−4 to 1, with very few

sporadic points overcoming the upper limit of 1. In this case, the reference He

has been chosen based on Hecr of the Gaussian spatial and temporal distribution

(Hecr =
√

2/7) as it represents a more realistic heat release profile for a combustion

flame than the first profile. As the Henum of Eq. (3.43) has a factor of 7/
√

2 with

respect to the analytical He of Eq. (3.32)(i.e. τac = (
√

2Lha)/(7c0)), the translation of

the Hecr into the simulation scale results in Hecr,num = 1. The flame zones around the

reacting shear layer feature He numbers close but below the numerical Hecr of 1, while

other zones outside of this area clearly have compact values below 1. This difference

may be attributed to the higher temperatures due to partially burned mixtures. The

contrast between the near-critical values at the reacting shear layer with respect

to the predominantly compact regions outside this zone, reveal the dominance of

moderate Henum zones in CVRC. The combustion mostly occurs from compact to
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Figure 3.22. Contour plot of the numerically computed standard deviation of the
speed of sounds over the local mean speed of sound (σc(x)/c0(x)) of the CVRC com-
bustor. The nominal chamber pressure is 1.4 MPa [73].

near-critical Henum regimes so that the temporal variations of heat release dominate

the pressure response with minimal effects from the spatial distribution. The latter

only start to appear for noncompact cases as demonstrated previously. The fact

that the local Henum for the CVRC lies within a range from 0 to 1, reveals that its

combustion process is an intermediate state between constant pressure and constant

volume combustion. For a clear constant pressure combustion regime, Henum would

have to be on the order of 0.01 or lower in all flame zones.

Fig. 3.22 shows the magnitude of the standard deviation of the local speed of

sound with respect to the mean flow field. The shear layer, which is the primary

combustion zone, features a speed of sound variation of the order of 20 to 30% of the

local mean value. The shear layer will therefore be susceptible to significant errors in

acoustic and Helmholtz solvers as the speed of sound variation is higher than the 5%

threshold noted above.

3.8 Summary

Departing from the acoustic wave equation, an analytical model of the pressure

response to an unsteady heat release source has been derived for an unconfined one-

dimensional domain. A uniform and initially quiescent perfect gas with properties

like that of the CO2 gas is subjected to a heat release source with a Gaussian spatial

distribution with either a step or a Gaussian temporal profile. The magnitude of the
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heat sources is based on large eddy simulations of a rocket combustor using detailed

kinetics. The analytical solutions contain important length and time scales that can

be condensed into the Helmholtz number. This non-dimensional number is defined

as the ratio between the characteristic acoustic time and the duration of the heat

release pulse. For both heat source profiles, a critical Helmholtz number is identified

as a threshold to distinguish between two regimes of pressure response. For compact

cases, in the subcritical regime, the amplitude of the pressure response is determined

by the duration of the heat release and it is independent of the length scale of heat

source. Applied to a flame, this implies that the pressure fluctuation amplitude

will only depend on the time rate of change of the heat release and not on the flame

thickness. For noncompact cases, above the critical Helmholtz number, the amplitude

of the pressure response is determined by both the length and time scales of the heat

source.

Whereas in compact cases the amplitude of the generated pressure pulse remains

constant over the distance, in noncompact cases the pressure pulse peaks at the center

of the heat source, and then decays until converging to a constant far field pressure

amplitude. As such, He represents an effective metric to determine to which extent

the pressure response to an unsteady heat release event approaches to a constant

pressure or a constant volume process. For He� Hecr, the pressure response tends to

a constant pressure process, whereas for He� Hecr the response tends to a constant

volume process. The analytical model shows that the maximum amplitude of the

pressure response to an unsteady heat release event is limited to the same constant

volume limit regardless of the temporal profiles of the heat sources considered.

The comparison between the analytical and high-fidelity numerical solutions re-

veals that, within its range of application, the analytical model effectively captures

the dynamics of the pressure response to an unsteady heat release event. The over-

shoots in the pressure amplitude, however, are observed to be common for both the

heat sources. The density drop is shown to be overestimated in general and pres-

ence of unphysical values indicate the limitations of the analytical assumptions for
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extremes rates of heat release. The maximum temperature error is shown to depend

on He. In the heated zone, which determines the shape of the pressure pulse, the as-

sumption of constant mean flow properties is the major cause of discrepancy between

the analytical model and the numerical simulation. Away from the heated zone, the

numerical solutions reveal the presence of important nonlinear effects that are not

captured by methods based on the acoustic wave equation. Indeed, the addition of

extreme rates of heat release induces weak shocks in the pressure pulses.

From an application point of view based on the magnitudes of heat release, gas

turbines operate in an isentropic compression regime, liquid rocket engines experience

weak shocks, and pressure-gain combustion devices feature strong shocks. For low

and moderate heat release rates, characteristic of gas turbines, models based on the

acoustic wave equation will show a good agreement in the prediction of the amplitude

and shape of the pressure response of a fluid to unsteady heat release events. How-

ever, this type of methods such as 1D acoustic models, network models, or Helmholtz

solvers, will overpredict the pressure response as the local speed of sound deviates

more than 5% from the mean flow value. For high-pressure liquid rocket engines,

these methods will accumulate significant errors, worsening with increasing operating

pressure due to the extreme rates of heat release. In addition, such methods will fail

to capture important nonlinear effects such as weak shocks, which are common in lon-

gitudinal acoustic modes of liquid rocket engine combustors [61]. Even though some

acoustic solvers can incorporate a time-varying mean speed of sound, their inability

to capture rapid increases in the local speed of sound due to unsteady combustion of

pockets of propellants will remain a source of error.
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4. FLOW RESPONSE TO A HEAT RELEASE PULSE IN

3D

This chapter extends the analysis of the fluid response to an unsteady heat release

pulse in an unconfined three-dimensional domain. An analytical model based on

the acoustic wave equation with spherical symmetry is derived to study the fluid

response to two different heat source profiles, corresponding to a Gaussian spherical

distribution and step temporal profile, and a Gaussian spherical and temporal profile.

The analytical method developed for the one-dimensional cases from Chapter 3 is

adapted to model three-dimensional cases with spherical symmetry. The use of a

non-reacting fluid simplifies the derivation while maintaining the physical significance

of the effects of unsteady heat release. By extending the analysis from one dimension

to three dimensions, the model approaches to a more realistic scenario.

In the derivation of the analytical model, the Helmholtz number appears again

as an important parameter that condenses the relevant length and time scales of the

problem. The Helmholtz number represents the ratio of the acoustic time over the

duration of the heat release pulse. The analytical solutions reveal the presence of

two distinct regimes of the pressure response, acoustically compact and noncompact,

separated by a critical Helmholtz number. In contrast with the one-dimensional case,

which maintains a constant pressure amplitude over the distance, the pressure pulse in

the spherical case continuously decays with the radial distance from the heat source.

The accuracy and limitations of the model are assessed by comparing the an-

alytical solution to highly-resolved computational fluid dynamics simulations. For

moderate values of heat release, the analytical solution is able to capture the dynam-

ics of the fluid response. However, for large values of heat release rate the presence

of nonlinear effects deviates the numerical solution from the analytical model.
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4.1 Planar Symmetry vs Cylindrical and Spherical Symmetry

The analytical solutions derived in Section 3 correspond to the response of an uni-

form quiescent fluid to an unsteady heat release pulse in an unconfined domain with

one-dimensional planar symmetry. The choice of one-dimensional planar symmetry

simplifies the analysis and integration of the analytical solutions, while maintaining

the physical significance of the effects of unsteady heat release events in a fluid.

In their study of the ignition process of a gaseous reacting mixture subject to an

energy source for different regimes, Vázquez-Esṕı and Liñán [39] modeled the problem

by means of the conservation equations of mass, momentum and energy expressed in

terms of a parameter j that defines the level of symmetry, as shown below

∂ρ

∂t
= − 1

rj
∂

∂r

(
rjρu

)
(4.1)

Du

Dt
= −1

ρ

∂p

∂r
(4.2)

ρT
Ds

Dt
= q (4.3)

where r is the radius and the substantial derivative is given by D
Dt

= ∂
∂t

+ u ∂
∂r

. In

this case, the energy equation presented in [39] has been substituted for the entropy

equation Eq. (4.3) in order to be consistent with the derivation presented in Section

2.2. The parameter j determines the type of symmetry of the flow field as follows:
j = 0→ for planar symmetry

j = 1→ for cylindrical symmetry

j = 2→ for spherical symmetry
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Analogously, the acoustic wave equation with uniform mean flow properties and

unsteady heat source Eq. (2.32) can also be expressed in terms of the flow field

symmetry parameter j as

1

c2
0

∂2p1

∂t2
− 1

rj
∂

∂r

(
rj
∂p1

∂r

)
=
γ − 1

c2
0

∂q1

∂t
(4.4)

Cohen [38] and Zajac [37] also used the parameter j to specify the type of sym-

metry for similar problems, although their models were derived from different forms

of the conservation equations with respect to Eqs. (4.1-4.3). Both studies analyzed

numerically the ignition process of a reacting mixture of hydrogen-oxygen for different

types of symmetry. The results from Cohen [38] and Zajac [37] showed that, in the

kernel (zone of application of the heat release source), the pressure response to an

unsteady heat release event follows the same trends for planar, cylindrical and spher-

ical symmetry cases. However, as shown in Fig. 4.1 the amplitude of the fluctuations

is highest for the planar symmetry case, followed in decreasing order by cylindrical

symmetry and spherical symmetry, respectively. It should be noted that this behav-

ior occurs at the center location, which is the center of symmetry. Away from the

center, as the generated pressure pulse travels outwards, the trends for the cylindrical

and spherical cases start to differ from the planar symmetry as the amplitude of the

pressure wave decreases with the distance. Therefore, in the vicinity of the center

location, the trends obtained from the planar analytical solutions derived in this pa-

per would also occur for cylindrical and spherical cases but featuring lower pressure

amplitudes.

The solutions based on the acoustic wave equation will exhibit different trends of

pressure decay over the distance based on the type of symmetry as follows
Planar symmetry→ Pressure amplitude does not decay

Cylindrical symmetry→ Pressure amplitude decays with
√
r

Spherical symmetry→ Pressure amplitude decays with r
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Figure 4.1. Comparison of planar vs cylindrical vs spherical symmetry (Source [79]).
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4.2 Acoustic Wave Equation with Cylindrical Symmetry

Recalling the three-dimensional acoustic wave equation with an unsteady heat

source, Eq. (2.32) reads as

1

c2
0

∂2p1

∂t2
−∇2p1 =

γ − 1

c2
0

∂q1

∂t
(4.5)

In cylindrical coordinates, the Laplacian ∇2p1 is given by

∇2p1 =
1

r

∂

∂r

(
r
∂p1

∂r

)
+

1

r2

∂2p1

∂ϕ2
+
∂2p1

∂z2
(4.6)

Applying z-invariant circular symmetry, the pressure response is only function of the

radial distance and time, i.e. p1 = f(r, ϕ, z, t) = f(r, t). Then, Eq. (4.6) can be

simplified as

∇2p1 =
1

r

∂

∂r

(
r
∂p1

∂r

)
(4.7)

The substitution of Eq. (4.7) into Eq. (4.5) leads to

1

c2
0

∂2p1

∂t2
− 1

r

∂

∂r

(
r
∂p1

∂r

)
=
γ − 1

c2
0

∂q1

∂t
(4.8)

It should be noted that Bessel functions can be used to derive exact solutions to

the wave equation with cylindrical symmetry given by of Eq. (4.8) [85]. The use

of Bessel functions to develop analytical solutions for pressure, velocity, density, and

temperature fields is out of scope of this work due to the difficulty associated with

integrating and deriving those exact solutions. However, to understand what happens

at large distances from the source (i.e. r →∞), an approximate solution of Eq. (4.8)

can be derived as follows [85]

∇2p1 =
1

r

∂

∂r

(
r
∂p1

∂r

)
=

1√
r

∂2(p1

√
r)

∂r2
+

1

4r2
p1 (4.9)
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To proof the result of Eq. (4.9), it is noted that the first derivative of p1

√
r is given

as
∂(p1

√
r)

∂r
=
∂p1

∂r
r1/2 +

1

2
p1r
−1/2 (4.10)

The second derivative is computed from the differentiation of Eq. (4.10) as

∂2(p1

√
r)

∂r2
= r1/2

(
∂2p1

∂r2
+
∂p1

∂r
r−1 − 1

4
p1r
−2

)
(4.11)

Dividing Eq.(4.11) by r1/2 =
√
r leads to

1√
r

∂2(p1

√
r)

∂r2
=
∂2p1

∂r2
+
∂p1

∂r
r−1 − 1

4
p1r
−2 = ∇2p1 −

1

4
p1r
−2 (4.12)

where Eq. (4.9) is computed from the rearrangement of the terms of Eq. (4.12). For

values of r far away from the heat source, the term 1
4
p1r
−2 of Eq. (4.12) becomes

negligible and thus, ∇2p1

∣∣
r→∞ is given by

∇2p1

∣∣
r→∞ ≈

1√
r

∂2 (p1

√
r)

∂r2
For r →∞ (4.13)

The substitution of Eq. (4.13) into Eq. (4.5) yields to an approximate solution for the

acoustic wave equation in cylindrical coordinates and far away from the heat source

as
1

c2
0

∂2(p1

√
r)

∂t2
− ∂2 (p1

√
r)

∂r2
≈ γ − 1

c2
0

∂ (q1

√
r)

∂t
(4.14)

As the main focus of this work is the analysis of local effects on the flow field, not

only far away from the heat source but specifically near it, the use of Eq. (4.14) to

develop pressure, velocity, density, and temperature fields has been disregarded.
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4.3 Pressure Response to a Heat Release Pulse with Spherical Symmetry

In spherical coordinates, the Laplacian ∇2p1 is given by

∇2p1 =
1

r2

∂

∂r

(
r2∂p1

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂p1

∂θ

)
+

1

r2 sin2 θ

∂2p1

∂ϕ2
(4.15)

where r, θ and ϕ, are the radial distance, polar angle and azimutal angle, respectively.

Considering spherical symmetry, the pressure response is only a function of the radial

distance and time, i.e. p1 = f(r, θ, ϕ, t) = f(r, t), so that the Laplacian ∇2p1 reads as

∇2p1 =
1

r2

∂

∂r

(
r2∂p1

∂r

)
=
∂2p1

∂r2
+

2

r

∂p1

∂r
(4.16)

Hence, applying spherical symmetry, the acoustic wave equation Eq. (4.5) results in

1

c2
0

∂2p1

∂t2
− 1

r2

∂

∂r

(
r2∂p1

∂r

)
=
γ − 1

c2
0

∂q1

∂t
(4.17)

The Laplacian from Eq. (4.16) can also be expressed in terms of rp1 as follows

∇2p1 =
1

r

∂2

∂r2
(rp1) =

1

r

∂

∂r

(
∂

∂r
(rp1)

)
=

1

r

∂

∂r

(
p1 + r

∂p1

∂r

)
=

1

r

(
∂p1

∂r
+
∂p1

∂r
+ r

∂2p1

∂r2

)
=
∂2p1

∂r2
+

2

r

∂p1

∂r

(4.18)

Using this expression, Eq. (4.17) can be written as

1

c2
0

∂2p1

∂t2
− 1

r

∂2

∂r2
(rp1) =

γ − 1

c2
0

∂q1

∂t
(4.19)

Multiplying both sides by r, the acoustic wave equation with an unsteady heat source

with spherical symmetry yields to

1

c2
0

∂2

∂t2
(rp1)− ∂2

∂r2
(rp1) =

γ − 1

c2
0

∂

∂t
(rq1) (4.20)
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Eq. (4.20) shares the same form as the one-dimensional acoustic wave equation after

replacing p1 with rp1, and q1 with rq1, respectively. The pressure response to heat

release can then be calculated using a modified version of Eq. (2.35), which accounts

for the change in variables of p1 and q1, to rp1 and rq1, respectively. The source team

f(r, t) is given by

f(r, t) = (γ − 1)
∂

∂t
(rq1) (4.21)

The integral of the pressure response then reads as

p1(r, t) =
1

2c0r

∫ t

0

∫ r+c0(t−s)

r−c0(t−s)
f (z, s) dzds (4.22)

Applying the heat source results in the final expression to be integrated

p1(r, t) =
γ − 1

2c0r

∫ t

0

∫ r+c0(t−s)

r−c0(t−s)

∂

∂t
(zq1) dzds (4.23)

4.4 Derivation of Velocity, Density, and Temperature Expressions with

Spherical Symmetry

The linearized momentum equation (see Eq. (2.19)) allows the derivation of the

velocity field from the pressure solution. Eq. (2.19) is recalled here reading as

ρ0
∂~u1

∂t
= −∇p1 (4.24)

For spherical coordinates (r, θ, ϕ), the gradient of p1 is computed as

∇p1 =
∂p1

∂r
ûr +

1

r

∂p1

∂θ
ûθ +

1

r sin θ

∂p1

∂ϕ
ûϕ (4.25)
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where ûr, ûθ, and ûϕ are the radial, polar, and azimutal direction unit vectors, re-

spectively. Assuming spherical symmetry, the pressure is only a function of the radial

distance and time as p1(r, θ, ϕ, t) = p1(r, t), and hence, Eq. (4.25) simplifies to

∇p1 =
∂p1

∂r
ûr (4.26)

Substituting Eq.(4.26) into Eq. (4.24), the velocity field in spherical coordinates can

be calculated from the pressure solution as

∂u1

∂t
= − 1

ρ0

∂p1

∂r
(4.27)

where u1 is the velocity field in the radial direction as ~u1 = u1ûr.

In turn, the density field can be obtained from the velocity field using the linearized

mass conservation equation given by Eq. (2.18) with the assumption that ∇ρ0 = 0,

reading as
∂ρ1

∂t
+ ρ0∇ · ~u1 = 0 (4.28)

The condition that ∇ρ0 = 0 comes from the assumption that the mean flow gas mix-

ture has spatially uniform conditions, i.e. ρ0(x, y, z) = ρ0, ∀x, y, z. The divergence

of the velocity field in spherical coordinates is given by

∇ · ~u1 =
1

r2

∂

∂r

(
r2u1

)
+

1

r sin θ

∂

∂θ
(u1 sin θ) +

1

r sin θ

∂u1

∂ϕ
(4.29)

Imposing again the spherical symmetry condition, ~u1 does not dependent on θ and ϕ

and thus, Eq. (4.29) simplifies to

∇ · ~u1 =
1

r2

∂

∂r

(
r2u1

)
(4.30)
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Then, substituting Eq. (4.30) into Eq. (4.28), the density field can be obtained using

the velocity field solution as

∂ρ1

∂t
= −ρ0

r2

∂

∂r

(
r2u1

)
(4.31)

Finally, the temperature field can be computed from the results of the pressure

and density solutions using the linearized equation of state (Eq. 3.19), which reads

as

T1 = T0

(
p1

p0

− ρ1

ρ0

)
(4.32)

4.5 Heat Source with Gaussian Spherical Distribution and Step Temporal

Profile

The present case consists of a heat source per unit volume q1(x, y, z, t) = q1(r, t)

with a Gaussian spherical distribution and step temporal profile defined as

q1(r, t) = Kha3 exp

[
−1

2

(
r

σr

)2
]

(H(t− thab)−H(t− thae)) (4.33)

Fig. 4.7 depicts a schematic of the three-dimensional spherical domain with the heat

source at centered at the origin. In Eq. (4.33), H(t−τ) is the unit Heaviside function,

thab is the time in which heat pulse begins, thae is the time in which the heat pulse

ends, and Kha3 is the heat source magnitude parameter defined as

Kha3 =
Eha

(2π)3/2 σ3
r∆tha

=

√
2

π

qha,sphR
3
ha

3σ3
r

(4.34)

where σr is the standard deviation of the Gaussian spherical profile, and ∆tha =

thae − thab. The standard deviation of the Gaussian spherical profile has been set to

σr = Rha/3.5 for all the cases in this study, where Rha is the radius of the sphere in
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which the heat source is applied. In this case, the flat profile heat release value qha,sph

is given by

qha,sph =
Eha

Vha∆tha
=

Eha
4
3
πR3

ha∆tha
(4.35)

Applying the temporal derivative of the heat source of Eq. (4.33) as stated in Eq.

(4.20) yields to

f(r, t) = (γ − 1)
∂

∂t
(rq1)

= (γ − 1)Kha3r exp

[
−1

2

(
r

σr

)2
]

(δ(t− thab)− δ(t− thae))
(4.36)

The substitution of Eq. (4.36) into Eq. (4.22) provides the expression to be integrated

to solve the pressure response

p1(r, t) =
1

2c0r

∫ t

0

∫ r+c0(t−s)

r−c0(t−s)
(γ−1)Kha3ze

− 1
2

( z
σr

)2 [δ(s− thab)−δ(s− thae)]dzds (4.37)

Integrating Eq. (4.37) with respect to the spatial variable z yields to

p1(r, t) =
(1− γ)Kha3

2c0r

∫ t

0

[
σ2
re
− 1

2
( z
σr

)2 [δ(s− thab)− δ(s− thae)]
]r+c0(t−s)

r−c0(t−s)
ds (4.38)

Integrating Eq. (4.38) with respect to the temporal variable s leads to the solution of

the pressure response to a heat source with Gaussian spherical distribution and step

temporal profile

For r > 0 p1(r, t) =
Ap3
r

{[
exp

(
−
(
r − c0(t− thab)√

2σr

)2
)

−exp

(
−
(
r + c0(t− thab)√

2σr

)2
)]

H(t− thab)−

[
exp

(
−
(
r − c0(t− thae)√

2σr

)2
)

−exp

(
−
(
r + c0(t− thae)√

2σr

)2
)]

H(t− thae)

}
(4.39)
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where the constant multiplying the pressure expression Ap3 is given by

Ap3 =
(γ − 1)Kha3σ

2
r

2c0

=
(γ − 1)Eha√
32π3c0σr∆tha

(4.40)

As it occurred in the one-dimensional cases of Chapter 3, the characteristic acoustic

time τac appears in the pressure response of Eq. (4.39) as

τac =

√
2σr
c0

(4.41)

Rewriting Eq. (4.39) in terms of the characteristic time scale τac yields to

For r > 0 p1(r, t) =
Ap3
r

{[
exp

(
−
( r

c0
− (t− thab)

τac

)2
)

−exp

(
−
( r

c0
+ (t− thab)

τac

)2
)]

H(t− thab)−

[
exp

(
−
( r

c0
− (t− thae)

τac

)2
)

−exp

(
−
( r

c0
+ (t− thae)

τac

)2
)]

H(t− thae)

} (4.42)

The Helmholtz number can be defined as the ratio of the characteristic acoustic time

over the heat release duration as

He =
τac

∆tha
(4.43)
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The velocity field can be calculated in the same fashion as in the one-dimensional

case by using the linearized momentum equation (Eq. (4.27)), which leads to

For r > 0 u1(r, t) =
(γ − 1)Eha√

32π3ρ0c2
0σr∆tha

· 1

r{[
exp

(
−
( r

c0
− (t− thab)

τac

)2
)

+ exp

(
−
( r

c0
+ (t− thab)

τac

)2
)

−2exp

(
−
(

r

c0τac

)2
)]

H(t− thab)−

[
exp

(
−
( r

c0
− (t− thae)

τac

)2
)

+exp

(
−
( r

c0
+ (t− thae)

τac

)2
)
− 2exp

(
−
(

r

c0τac

)2
)]

H(t− thae)

}

− (γ − 1)Eha
8πρ0c2

0∆tha
· 1

r2

{[
erf

( r
c0
− (t− thab)

τac

)

+erf

( r
c0

+ (t− thab)
τac

)
− 2erf

(
r

c0τac

)]
H(t− thab)

−

[
erf

( r
c0
− (t− thae)

τac

)
+ erf

( r
c0

+ (t− thae)
τac

)
− 2erf

(
r

c0τac

)]
H(t− thae)

}
(4.44)

The density field can be computed using the linearized mass conservation (Eq.

(4.31)), reading as

For r > 0 ρ1(r, t) =
(γ − 1)Eha√
32π3c3

0σr∆tha
· 1

r{[
exp

(
−
( r

c0
− (t− thab)

τac

)2
)
− exp

(
−
( r

c0
+ (t− thab)

τac

)2
)]

H(t− thab)

−

[
exp

(
−
( r

c0
− (t− thae)

τac

)2
)
− exp

(
−
( r

c0
+ (t− thae)

τac

)2
)]

H(t− thae)

}

− (γ − 1)Eha√
8π3c2

0σ
3
r∆tha

exp

(
−
(

r

c0τac

)2
)[

(t− thab)H(t− thab)− (t− thae)H(t− thae)

]
(4.45)
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In turn, the temperature field can be calculated from the results from Eqs. (4.42)

and (4.45) using the linearized equation of state (Eq. (4.32)), yielding to

For r > 0 T1(r, t) =
(γ − 1)2EhaT0√
32π3ρ0c3

0σr∆tha
· 1

r{[
exp

(
−
( r

c0
− (t− thab)

τac

)2
)
− exp

(
−
( r

c0
+ (t− thab)

τac

)2
)]

H(t− thab)

−

[
exp

(
−
( r

c0
− (t− thae)

τac

)2
)
− exp

(
−
( r

c0
+ (t− thae)

τac

)2
)]

H(t− thae)

}

+
(γ − 1)EhaT0√
8π3ρ0c2

0σ
3
r∆tha

exp

(
−
(

r

c0τac

)2
)[

(t− thab)H(t− thab)− (t− thae)H(t− thae)

]
(4.46)

4.5.1 Acoustically compact and noncompact cases

The careful analysis of the solutions of pressure, density and temperature from

Eqs. (4.42, 4.45, 4.46) allows the extraction of the limits for the main flow field

variables as presented in Table 4.1. In the spherical case, the amplitude of the pressure

fluctuation decays with r. Therefore, the far field values as described in Chapter 3

are not of interest, and hence the focus is put on the maximum values at the center

of the heat source. The Helmholtz number He, which represents the ratio between

the acoustic time and heat release duration, distinguishes between the compact and

noncompact regimes of the pressure response to the heat release pulse. The maximum

and minimum values of the state variables occur at the center of the heat source. Since

the direct substitution of r = 0 in Eqs. (4.42, 4.45, 4.46) leads to a singularity, a

Taylor series expansion around r = 0 has been used to find the expressions for pmas,

ρmin, and Tmax, as presented in Table 4.1.

The critical Helmholtz number Hecr can be derived from the maximum pressure

expression from Table 4.1 for He >
√

2, pmax

∣∣∣
He>

√
2
. Following the same process as in

Section 3.2, He is varied for a constant value of heat release qha,s, while maintaining

also constant Eha. This is equivalent to maintaining the product of R3
ha∆tha equal to
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Table 4.1. Limiting expressions for the flow field response to a heat source with
Gaussian spherical distribution and step temporal profile.

Variable Location Formula

pmax

∣∣∣
He≤

√
2

r = 0 p0 + (γ−1)Eha√
8π3c0σ2

r∆tha
e−

1
2

pmax

∣∣∣
He>

√
2

r = 0 p0 + (γ−1)Eha
2
√
π3c0σ2

r∆thaHe
e−

1
He2

ρmin

∣∣∣
He≤

√
2

r = 0 ρ0 − (γ−1)Eha√
8πc20σ

3
r

(
1 + He√

2
e−

1
2

)
ρmin

∣∣∣
He�

√
2

r = 0 ρ0 − (γ−1)Eha√
8πc20σ

3
r∆tha

(
(tm − thab)e−( tm−thabτac

)
2

−(tm − thae)e−( tm−thaeτac
)
2

+ ∆tha

)
where tm = τac

He

(
1 +

√
3He2

2
+ 1

)
+ thab

Tmax

∣∣∣
He≤

√
2

r = 0 T0 + (γ−1)EhaT0√
8πc20σ

3
rρ0

(
1 + He√

2
e−

1
2

)
Tmax

∣∣∣
He�

√
2

r = 0 T0 + (γ−1)EhaT0√
8πc20σ

3
r∆thaρ0

(
(tm − thab)e−( tm−thabτac

)
2

−(tm − thae)e−( tm−thaeτac
)
2

+ ∆tha

)
where tm = τac

He

(
1 +

√
3He2

2
+ 1

)
+ thab
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a constant k1. The Helmholtz number can then be written in terms of this constant k1

as He =
√

2σr
c0∆tha

= 2
√

2Rha
7c0∆tha

=
2
√

2R4
ha

7c0k1
. It should be noted that σr = 2Rha

7
. Substituting

Rha =
(

7c0k1
2
√

2

) 1
4
He

1
4 and qha,s into the pmax

∣∣∣
He>

√
2

expression leads to

pmax

∣∣∣
He>

√
2
− p0 =

(γ − 1)Eha

2
√
π3c0σ2

r∆thaHe
e−

1
He2

=
72 (γ − 1) qha,s

6
√
πc0

Rha

He
e−

1
He2 = k2He

− 3
4 e−

1
He2

(4.47)

where k2 is a constant that encompasses all the constant terms of Eq. (4.47). Dif-

ferentiating Eq. (4.47) with respect to He, and equating it to 0 in order to find the

maximum, the critical Helmholtz number for the heat source with Gaussian spherical

distribution and step temporal profile results in

Hecr =

√
8

3
= 1.633 (4.48)

As shown in Fig. 4.2 (L), the Hecr separates the pressure response into two

recognizable regimes, the compact and noncompact regime, respectively. Figs. 4.8-

4.16 show more results of the flow field response for compact and noncompact regime

with Gaussian spherical distribution and step temporal profile.

4.6 Heat Source with Gaussian Spherical Distribution and Gaussian Tem-

poral Profile

The present case consists of a heat source per unit volume q1(x, y, z, t) = q1(r, t)

with a Gaussian spherical distribution and Gaussian temporal profile defined as

q1(r, t) = Kha4 exp

[
−1

2

(
r

σr

)2
]
exp

[
−1

2

(
t− tc
σt

)2
]

(4.49)

where σt and tc are the standard deviation and the center time of the Gaussian tem-

poral profile, respectively. The Gaussian spherical and temporal standard deviations
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Figure 4.2. Evolution of the maximum amplitude with respect to the Helmholtz
number for the response of a perfect gas with properties like that of CO2 to a heat
release source with Gaussian spherical distribution and step temporal profile (L), and
Gaussian spherical distribution and temporal profile (R), respectively. Eha = 4

3
π10−7

J.



97

are set to σr = Rha/3.5 and σt = ∆tha/7, respectively. The Gaussian temporal profile

center time is tc = (thab + thae) /2, and it should be set to be tc ≥ 3.5σt to ensure that

the Gaussian temporal profile is not truncated to a fraction of the total energy input.

Kha4 is the heat source magnitude parameter defined as

Kha4 =
Eha

4π2σ3
rσt

=
qha,sphR

3
ha∆tha

3πσ3
rσt

(4.50)

where qha,sph has the same value as in the previous heat source profile as defined in

Eq. (4.35). Applying the temporal derivative of the heat source of Eq. (4.49) as

stated in Eq. (4.20) yields to

f(r, t) = (γ − 1)
∂

∂t
(rq1)

= −(γ − 1)Kha4

σ2
t

r exp

[
−1

2

(
r

σr

)2
]

(t− tc) exp

[
−1

2

(
t− tc
σt

)2
]

(4.51)

The substitution of Eq. (4.51) into Eq. (4.22) provides the expression to be integrated

to solve the pressure response

p1(r, t) = −(γ − 1)Kha4

2c0σ2
t r

∫ t

0

∫ r+c0(t−s)

r−c0(t−s)
ze−

1
2(

z
σr )

2

(s− tc) e−
1
2(

s−tc
σt

)
2

dzds (4.52)

Integrating Eq. (4.52) with respect to the spatial variable z yields to

p1(r, t) =
(γ − 1)Kha4

2c0σ2
t r

∫ t

0

[
σ2
re
− 1

2(
z
σr )

2

(s− tc) e−
1
2(

s−tc
σt

)
2]r+c0(t−s)

r−c0(t−s)
ds (4.53)

The pressure response p1(r, t) can be decomposed into inward travelling wave p−1 (r, t),

following r + c0(t − s), and outward travelling wave p+
1 (r, t), following r − c0(t − s),

reading as

p1(r, t) = p−1 (r, t) + p+
1 (r, t) (4.54)
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where the inwards and outwards travelling waves are respectively

p−1 (r, t) =
(γ − 1)Kha4σ

2
r

2c0σ2
t r

∫ t

0

e−
1
2(

r+c0(t−s)
σr )

2

(s− tc) e−
1
2(

s−tc
σt

)
2

ds (4.55)

p+
1 (r, t) = −(γ − 1)Kha4σ

2
r

2c0σ2
t r

∫ t

0

e−
1
2(

r−c0(t−s)
σr )

2

(s− tc) e−
1
2(

s−tc
σt

)
2

ds (4.56)

The integral of Eq. (4.56) can be rewritten in terms of a new variable τ = s− tc as

p+
1 (r, t) = −(γ − 1)Kha4σ

2
r

2c0σ2
t r

∫ t−tc

−tc
e−

1
2(

r−c0(t−τ−tc)
σr )

2

τe−
1
2(

τ
σt

)
2

dτ (4.57)

We now focus on the integral term of Eq. (4.57)

I1 =

∫ t−tc

−tc
τe−(a1τ+b1)

2

e−a
2
2τ

2

dτ (4.58)

where the constants are given by

a1 =
c0√
2σr

b1 =
r − c0 (t− tc)√

2σr

a2 =
1√
2σt

(4.59)

Eq. (4.58) can be further developed into

I1 = e−b
2
1

∫ t−tc

−tc
τe−(a21+a22)τ2−2a1b1τdτ (4.60)

This integral has a known solution that is developed in [86] and presented here

∫
τe−a

2τ2+bτdτ =
1

2a2
exp

(
b2

4a2

){
b
√
π

2a
erf

(
aτ − b

2a

)
− exp

[
−
(
aτ − b

2a

)2
]}

(4.61)
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where the constants are given by

a =
√
a2

1 + a2
2 =

c0√
2σr

√
1 +

σ2
r

c2
0σ

2
t

=
ζrt
τac

(4.62)

b = −2a1b1 = − c
2
0

σ2
r

(
r

c0

− (t− tc)
)

= −2

( r
c0
− (t− tc)
τ 2
ac

)
(4.63)

The constants a and b contain relevant characteristic time scales such as the acoustic

time, τac, and the ratio of characteristic times, ζrt, respectively.

τac =

√
2σr
c0

(4.64)

ζrt =

√
1 +

σ2
r

c2
0σ

2
t

=

√
1 +

1

2

(
τac
σt

)2

(4.65)

Integrating Eq. (4.60) with respect to the temporal variable τ using the results of

Eqs. (4.61)-(4.63) yields to

I1 =
1

2

(
τac
ζrt

)2

exp

(
−
( r

c0
− (t− tc)√

2σtζrt

)2
)
·

[
−

√
π
(
r
c0
− (t− tc)

)
τacζrt

erf

(
r
c0
− (t− tc) + ζ2

rtτ

τacζrt

)

−exp

−( r
c0
− (t− tc) + ζ2

rtτ

τacζrt

)2
]∣∣∣t−tc
−tc

(4.66)
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Evaluating the integral limits of Eq. (4.66) results in

I1 =
1

2

(
τac
ζrt

)2

exp

(
−
( r

c0
− (t− tc)√

2σtζrt

)2
)
·

{√
π
(
r
c0
− (t− tc)

)
τacζrt

[
erf

(
r
c0
− t− (ζ2

rt − 1)tc

τacζrt

)
− erf

(
r
c0

+ (ζ2
rt − 1) (t− tc)
τacζrt

)]

+exp

−( r
c0
− t− (ζ2

rt − 1)tc
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Combining the result of I1 from Eq. (4.67) with Eq. (4.57) leads to the pressure

response of the outwards travelling wave p+
1 (r, t) as

For r > 0 p+
1 (r, t) = −Ap4
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(4.68)

Following the same procedure for the inward travelling wave p−1 (r, t) defined by

Eq. (4.55) results in

For r > 0 p−1 (r, t) = −Ap4
r
exp

(
−
( r

c0
+ (t− tc)√

2σtζrt

)2
)
·

{√
π
(
r
c0

+ (t− tc)
)

τacζrt

[
erf

(
r
c0
− (ζ2

rt − 1) (t− tc)
τacζrt

)
− erf

(
r
c0

+ t+ (ζ2
rt − 1)tc

τacζrt

)]

+exp

−( r
c0
− (ζ2

rt − 1) (t− tc)
τacζrt

)2
− exp

−( r
c0

+ t+ (ζ2
rt − 1)tc

τacζrt

)2
}
(4.69)
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Substituting the results from Eqs. (4.68)-(4.69) into Eq. (4.54), the pressure response

to a heat source with Gaussian spherical distribution and Gaussian temporal profile

reads as

For r > 0 p1(r, t) = −Ap4
r
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(4.70)

where Ap4 is defined as

Ap4 =
(γ − 1)Kha4σ

2
rτ

2
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4c0σ2
t ζ

2
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=
(γ − 1)Eha(ζ

2
rt − 1)

8π2c0σrσtζ2
rt

(4.71)
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In Eq. (4.70) two of the exponential terms cancel out mutually as their product is

equivalent
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(4.72)

The two other products of exponential terms yield to the following simpler expressions

after decomposing and rearranging the terms

E1 = exp

(
−
( r

c0
+ (t− tc)√

2σtζrt

)2
)
exp

−( r
c0

+ t+ (ζ2
rt − 1)tc

τacζrt

)2
 =

exp

(
−
( r

c0
+ t

τac

)2
)
exp

(
−
(

tc√
2σt

)2
) (4.73)
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Combining both terms E1 and E2 and carrying the signs from Eq. (4.70) results in

the grouping of the remaining products of exponential terms
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(4.75)

Although the exponential terms E1 and E2 do not cancel out, they are orders of

magnitude smaller by a factor of
√
π/(τacζrt) with respect to the remaining terms



103

of Eq. (4.70), which are composed of the combined product of exponential, linear

and error function terms. For all practical combustion engineering cases, with flame

thicknesses on the order of 10−2−10−5 m, and speeds of sound on the order of 102−103

m/s, the factor
√
π/(τacζrt) is a large number (order 104 or larger). Therefore, the

exponential product terms E1 and E2 are negligible in comparison with the rest of

terms of Eq. (4.70), and hence, they can be dropped from said equation thereby

simplifying the pressure response solution as follows
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(4.76)

Eq. (4.76) is the final result of the pressure response to a heat source with Gaus-

sian spherical distribution and Gaussian temporal profile. As in the previous case,

the velocity field can be computed from the pressure solution using the linearized

momentum conservation equation (Eq. (4.27)) as follows
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For r > 0 u1(r, t) =
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Similarly to the previous case, the density field can be computed using the lin-

earized mass conservation equation (Eq. (4.31)), reading as
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(4.78)

The linear term in the density Eq. (4.78) is dropped because it is very small

compared to the rest of the terms, and otherwise it would continue growing after the

heat release source stops acting. This latter fact does not have a physical sense and

hence, after dropping the linear term, the final density expression becomes
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For r > 0 ρ1(r, t) = −Ap4
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Finally, the temperature field can be calculated from the solutions of the pressure

Eq. (4.76) and density response Eq. (4.79) by using the linearized equation of state

(Eq. (4.32)), resulting in
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For the Gaussian spherical distribution and temporal profile, there is again a

critical Helmholtz number, Hecr that separates the pressure response into two recog-

nizable regimes, the compact and noncompact regime, respectively as shown in Fig.

4.2 (R). Figs. 4.17-4.25 show more results of the flow field response for compact and

noncompact regime with Gaussian spherical distribution and step temporal profile.

For this particular case, the value of Hecr is numerically computed and is equal to

Hecr = 0.541.

4.7 Parametric Study

The maximum pressure from Fig. 4.3 and Fig. 4.5 clearly distinguishes between

the acoustically compact regime above the critical Helmholtz number diagonal, and

the noncompact regime below Hecre. The noncompact regime resembles the trends

shown in Chapter 3 for the one-dimensional cases. However, the compact regime

is different with respect to the one-dimensional case in the fact that the maximum

pressure continues to be a function of the heat release duration and the length scale

of the heat source (Rha in this case).

The pν work efficiency, ηpν , is a metric of interest that represents the efficiency

of converting heat release into acoustic pressure energy. The control volume is con-

veniently located away from the heat release center in order to capture the far field

pressure response. In the spherical case, the pν work efficiency reads as

ηpν =

∫ T
0

∮
∂Ω p (~u · ~n) dsdt∫ T
0

∫
Ω qdV dt

=
1

Eha

∫ T

0

∫ Rcv

0

(p0 + p1)u14πr2drdt (4.81)

As shown in Fig. 4.3, the pν work efficiency levels for the Gaussian spherical

distribution and step temporal profile are much higher than in the one-dimensional

case. This higher efficiency of the spherical case is due to the heat source is acting

as a monopole of sound, which is the most efficient way of radiating sound. This

effect also occurs for the Gaussian spherical distribution and temporal profile from
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Figure 4.3. Map of the maximum pressure amplitude (L) and pν work efficiency (R)
of the response of a perfect gas with properties like that of CO2 to a heat release
source with Gaussian spherical distribution and step temporal profile.

and Fig. 4.5. For both heat source profiles, the pν work efficiency plateaus for low

heat release rates reaching a constant pressure limit efficiency. In turn, the minimum

temperature and maximum temperature solutions follow the same trends featured in

Chapter 3 for the one-dimensional cases.

Finally, it should be pointed out that for extreme rates of heat release, the an-

alytical model starts to deviate from the numerical solution due to the presence of

nonlinear effects and the deviation from the model assumptions, such as temperature

dependence of the local speed of sound, using constant mean flow properties, and

neglecting loss mechanisms such as viscosity and heat conduction. However, these

deviations are not as evident as in the case of the one-dimensional case presented in

Chapter 3 due to the predominant effect of the decay of pressure fluctuations over

the radial distance.
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Figure 4.4. Map of the minimum density (L) and maximum temperature (R) of the
response of a perfect gas with properties like that of CO2 to a heat release source
with Gaussian spherical distribution and step temporal profile.

Figure 4.5. Map of the maximum pressure amplitude (L) and pν work efficiency (R)
of the response of a perfect gas with properties like that of CO2 to a heat release
source with Gaussian spherical distribution and temporal profile.
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Figure 4.6. Map of the minimum density (L) and maximum temperature (R) of the
response of a perfect gas with properties like that of CO2 to a heat release source
with Gaussian spherical distribution and temporal profile.
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Table 4.2. Perfect gas mean flow properties like that of CO2 used for all the analytical
and numerical simulations of Chapter 4.

p0 T0 u0 ρ0 c0 γ0

(MPa) (K) (m/s) (kg/m3) (m/s) (-)

1.0 500.0 0.0 10.59 340.72 1.2253

4.8 Comparison of Analytical and Numerical Results

4.8.1 Simulation Setup

The case study consists of an uniform quiescent fluid that responds to two un-

steady heat release source profiles, consisting of a Gaussian spherical distribution

and step temporal profile, and a Gaussian spherical and temporal distribution, re-

spectively. In order to maintain the unconfined domain condition of the problem, the

dimensions of the domain are set such that the simulation concludes before pressure

waves induced from the heat release pulse reach the boundaries of the domain, thereby

preventing any pressure reflection from affecting the zone of study. The computational

domain is depicted in Fig. 4.7 and it consists of a three-dimensional spherical cavity

with 5 mm outer radius. The outer boundary is modeled as an inviscid, adiabatic

wall. The unsteady heat release is modeled as an external heat source in the energy

equation, located at the center of the spherical domain. The total number of cells is

107,136, and the mesh is divided in 200 partitions. The structured grid evolves the

cell size from 3 µm in the to 100 µm. To accurately capture the transient, the time

step is limited to 2 ns and the simulations capture 12.5 µs of physical time.

The study has been conducted using perfect gas with properties like that of CO2

as the working fluid with the conditions and energy level summarized in Table 4.2.

A pressure of 1 MPa and a temperature of 500 K are chosen as the initial conditions,

which are representative of the interaction between hot and cold gases in the shear

layer region of a non-premixed, shear-coaxial injector used in rocket engines. All
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𝜌

 𝑢𝑟

Figure 4.7. Schematic of the spherical computational domain used in the numerical
simulations.
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the highly-resolved DES simulations have been performed using the in-house Navier-

Stokes solver GEMS, which has been presented in Section 3.6.1.

4.8.2 Results Discussion

The comparison of the analytical and numerical solutions of the fluid response

to a heat source with Gaussian spherical distribution and step temporal profile are

presented in Figs. 4.8-4.16. An acoustically compact case is studied in Figs. 4.8-

4.11, whereas a noncompact case is presented in Figs. 4.12-4.15. For both cases, the

analytical solution is able to predict with a good level of agreement the results from

the numerical simulations. It should be pointed out that in this case the heat release

rate is moderate so as to avoid excessive temperature increase at the center of the

heat source.

The compact and noncompact regimes exhibit a different type of pressure re-

sponse, with certain similarities to the one-dimensional cases from Chapter 3. The

most relevant difference between the one-dimensional and three-dimensional case is

that in the latter the amplitude of the pressure fluctuation decays with the radial

distance, whereas in the former the amplitude of the pulse remains constant after

reaching the far field distance. Furthermore, in the one-dimensional case the pressure

fluctuation is always larger or equal than the mean flow pressure p0. In contrast, in

the three-dimensional spherical case the amplitude of the pressure fluctuation falls

below p0 after the heat release source stops. For both heat source profiles, in the

compact case the analytical solution predicts a symmetric increase and decrease of

the pressure fluctuation as the heat source ramps up and down the heat release rate.

For both heat sources, the analytical solution is able to better predict the compression

portion of the pressure fluctuation than the rarefaction portion. In the noncompact

cases the pressure compression and rarefaction are not symmetric with respect to p0.
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Figure 4.8. Compact case, He = 0.0593 <
√

8/3. Pressure response of a perfect gas
with properties like that of CO2 to a heat source with Gaussian spherical distribution
and step temporal profile. Heat release parameters: qha,sph = 1011 W/m3, Rha =
50 µm, ∆tha = 1 µs, and Eha = 5

3
π10−8 J.

Figure 4.9. Compact case, He = 0.0593 <
√

8/3. Velocity response of a perfect gas
with properties like that of CO2 to a heat source with Gaussian spherical distribution
and step temporal profile. Heat release parameters: qha,sph = 1011 W/m3, Rha =
50 µm, ∆tha = 1 µs, and Eha = 5

3
π10−8 J.

In addition, as shown in Fig. 4.16 and Fig. 4.25, the amplitude of the pressure

fluctuation decays over the radial distance in a sharper way in the noncompact regime

with respect to the compact regime.
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Figure 4.10. Compact case, He = 0.0593 <
√

8/3. Density response of a perfect gas
with properties like that of CO2 to a heat source with Gaussian spherical distribution
and step temporal profile. Heat release parameters: qha,sph = 1011 W/m3, Rha =
50 µm, ∆tha = 1 µs, and Eha = 5

3
π10−8 J.

Figure 4.11. Compact case, He = 0.0593 <
√

8/3. Temperature response of a
perfect gas with properties like that of CO2 to a heat source with Gaussian spherical
distribution and step temporal profile. Heat release parameters: qha,sph = 1011 W/m3,
Rha = 50 µm, ∆tha = 1 µs, and Eha = 5

3
π10−8 J.
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Figure 4.12. Noncompact case, He = 1.897 >
√

8/3. Pressure response of a perfect
gas with properties like that of CO2 to a heat source with Gaussian spherical distri-
bution and step temporal profile. Heat release parameters: qha,sph = 1.25·1011 W/m3,
Rha = 400 µm, ∆tha = 0.25 µs, and Eha = 8

3
π10−6 J.

Figure 4.13. Noncompact case, He = 1.897 >
√

8/3. Velocity response of a perfect
gas with properties like that of CO2 to a heat source with Gaussian spherical distri-
bution and step temporal profile. Heat release parameters: qha,sph = 1.25·1011 W/m3,
Rha = 400 µm, ∆tha = 0.25 µs, and Eha = 8

3
π10−6 J.
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Figure 4.14. Noncompact case, He = 1.897 >
√

8/3. Density response of a perfect gas
with properties like that of CO2 to a heat source with Gaussian spherical distribution
and step temporal profile. Heat release parameters: qha,sph = 1.25 · 1011 W/m3,
Rha = 400 µm, ∆tha = 0.25 µs, and Eha = 8

3
π10−6 J.

Figure 4.15. Noncompact case, He = 1.897 >
√

8/3. Temperature response of a
perfect gas with properties like that of CO2 to a heat source with Gaussian spherical
distribution and step temporal profile. Heat release parameters: qha,sph = 1.25 ·
1011 W/m3, Rha = 400 µm, ∆tha = 0.25 µs, and Eha = 8

3
π10−6 J.
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Figure 4.16. Evolution of the maximum pressure over the radial distance for a heat
source with Gaussian spherical distribution and step temporal profile. L) Compact
case: He = 0.0593, qha,sph = 1011 W/m3, Rha = 50 µm, ∆tha = 1 µs, and Eha =
5
3
π10−8 J. R) Noncompact case: He = 1.897, qha,sph = 1.25 · 1011 W/m3, Rha =

400 µm, ∆tha = 0.25 µs, and Eha = 8
3
π10−6 J.
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Figure 4.17. Compact case, He = 0.0593 <
√

8/3. Pressure response of a perfect gas
with properties like that of CO2 to a heat source with Gaussian spherical distribution
and temporal profile. Heat release parameters: qha,sph = 1011 W/m3, Rha = 50 µm,
∆tha = 1 µs, and Eha = 5

3
π10−8 J.

The comparison of the analytical and numerical solutions of the fluid response

to a heat source with Gaussian spherical distribution and Gaussian temporal profile

are presented in Figs. 4.17-4.25. The flow field results from the compact regime are

depicted in Figs. 4.17-4.20 and the ones of the noncompact regime in Figs. 4.21-4.24.

Similarly to what happens with the Gaussian spherical distribution and step temporal

profile, both regimes exhibit different behaviors.

In addition to the aforementioned differences with the one-dimensional case, the

nonlinear effects appear to play a smaller role in the three-dimensional spherical case

due to the dominant effect of the fluctuation decay with the radial distance r. Indeed,

whereas in the one-dimensional case the pressure fluctuations tended to steepen and

eventually form weak shocks, in the three-dimensional case the fast decay caused by

the spherical symmetry acts as a counter to reduce the pressure fluctuation. Since

the pressure fluctuation decays with the distance, the temperature dependence of the

local speed of sound becomes smaller and smaller the further the pressure fluctuation

travels away from the source. This condition leads to a better agreement of the

analytical solution with the numerical simulations.
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Figure 4.18. Compact case, He = 0.0593 <
√

8/3. Velocity response of a perfect gas
with properties like that of CO2 to a heat source with Gaussian spherical distribution
and temporal profile. Heat release parameters: qha,sph = 1011 W/m3, Rha = 50 µm,
∆tha = 1 µs, and Eha = 5

3
π10−8 J.

Figure 4.19. Compact case, He = 0.0593 <
√

8/3. Density response of a perfect gas
with properties like that of CO2 to a heat source with Gaussian spherical distribution
and temporal profile. Heat release parameters: qha,sph = 1011 W/m3, Rha = 50 µm,
∆tha = 1 µs, and Eha = 5

3
π10−8 J.
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Figure 4.20. Compact case, He = 0.0593 <
√

8/3. Temperature response of a
perfect gas with properties like that of CO2 to a heat source with Gaussian spherical
distribution and temporal profile. Heat release parameters: qha,sph = 1011 W/m3,
Rha = 50 µm, ∆tha = 1 µs, and Eha = 5

3
π10−8 J.

Figure 4.21. Noncompact case, He = 1.897 >
√

8/3. Pressure response of a perfect
gas with properties like that of CO2 to a heat source with Gaussian spherical distri-
bution and temporal profile. Heat release parameters: qha,sph = 1.25 · 1011 W/m3,
Rha = 400 µm, ∆tha = 0.25 µs, and Eha = 8

3
π10−6 J.
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Figure 4.22. Noncompact case, He = 1.897 >
√

8/3. Velocity response of a perfect
gas with properties like that of CO2 to a heat source with Gaussian spherical distri-
bution and temporal profile. Heat release parameters: qha,sph = 1.25 · 1011 W/m3,
Rha = 400 µm, ∆tha = 0.25 µs, and Eha = 8

3
π10−6 J.

Figure 4.23. Noncompact case, He = 1.897 >
√

8/3. Density response of a perfect gas
with properties like that of CO2 to a heat source with Gaussian spherical distribution
and temporal profile. Heat release parameters: qha,sph = 1.25 · 1011 W/m3, Rha =
400 µm, ∆tha = 0.25 µs, and Eha = 8

3
π10−6 J.
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Figure 4.24. Noncompact case, He = 1.897 >
√

8/3. Temperature response of a
perfect gas with properties like that of CO2 to a heat source with Gaussian spherical
distribution and temporal profile. Heat release parameters: qha,sph = 1.25·1011 W/m3,
Rha = 400 µm, ∆tha = 0.25 µs, and Eha = 8

3
π10−6 J.

Figure 4.25. Evolution of the maximum pressure over the radial distance for a heat
source with Gaussian spherical distribution and temporal profile. L) Compact case:
He = 0.0593, qha,sph = 1011 W/m3, Rha = 50 µm, ∆tha = 1 µs, and Eha = 5

3
π10−8

J. R) Noncompact case: He = 1.897, qha,sph = 1.25 · 1011 W/m3, Rha = 400 µm,
∆tha = 0.25 µs, and Eha = 8

3
π10−6 J.
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4.9 Summary

The extension of the fluid response to an unsteady heat release pulse in an un-

confined three-dimensional domain was presented in this chapter. The objective was

to identify and evaluate the similarities and differences between the phenomena cap-

tured with the planar symmetry presented in Chapter 3 and a three-dimensional

case, which more closely resembles the sudden reaction of a pocket of propellants.

The chapter derived an analytical model based on the acoustic wave equation with

spherical symmetry. To do so, the analytical methodology developed for the one-

dimensional cases from Chapter 3 has been adapted to model three-dimensional cases

with spherical symmetry. For modeling purposes, two different heat profiles have been

used corresponding to a Gaussian spherical distribution and step temporal profile, and

a Gaussian spherical and temporal profile have been considered.

In the analytical derivation, the Helmholtz number, continues to play a major role

in distinguishing between different pressure response regime. He is defined as the ra-

tio of the acoustic time over the duration of the heat release pulse. The analytical

solutions have been compared against highly-resolved numerical simulation to evalu-

ate the accuracy and limitations of the spherical wave equation. The analytical fluid

response exhibited excellent agreement with the highly-resolved numerical solutions

for moderate values of heat release.

Although the one-dimensional and three-dimensional cases exhibited important

similarities, there are a few key differences that separate their pressure response to

unsteady heat release. The most important difference between the two cases is that

the amplitude of the pressure fluctuation decays with the radial distance in the three-

dimensional case, whereas it remains constant after reaching the far field distance

in the one-dimensional case. Furthermore, the nonlinear effects appear to be of less

significance in the three-dimensional spherical case due to the dominant effect of the

pressure decay with the radial distance r. In the one-dimensional case, for large values

of heat release, the pressure fluctuations tend to steepen and form weak shocks. In
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contrast, in the three-dimensional case the fast decay caused by the spherical symme-

try acts as a counter to reduce the amplitude of the pressure fluctuation. In this way,

the dependence of the speed of sound on the local temperature decreases the further

the pressure fluctuation travels away from the source. This dimensional phenomenon

results in a better agreement of the analytical solution with the numerical simulations

for the three-dimensional case with respect to the one-dimensional case.
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5. FLOW RESPONSE TO A FLUCTUATING HEAT

RELEASE SOURCE IN 1D

This chapter presents an analytical model of the fluid response to a fluctuating un-

steady heat release source for two different profiles, consisting of a flat spatial dis-

tribution and sinusoidal temporal profile, and a Gaussian spatial distribution and

sinusoidal temporal profile. The analytical solution is based on the acoustic wave

equation applied to an unconfined one-dimensional domain in a non-reacting fluid.

In Chapter 3 and Chapter 4 the heat release source generated a single pressure

pulse. In these previous cases, the heat source would activate, follow a certain tempo-

ral profile, and then deactivate after which the heat source would cease to act, thereby

allowing the pressure pulse to propagate across the medium without further external

influence. These types of unsteady heat release pulses often occur in liquid rocket

engines when a pocket of mixed propellants quickly reacts after accumulating in the

recirculation zone close to the dump plane of a combustor. However, an even more

common occurrence are heat release sources that fluctuate over time at the frequency

of the acoustic modes of a combustor. Indeed, self-excited combustion instabilities

require a coupling of the combustion heat release with the acoustic pressure field in

the combustor. The flame is then assumed to respond to the pressure or velocity fluc-

tuations following a given flame transfer model, such as Crocco’s n− τ model [25,26],

for instance. This unit problem takes the opposite approach by analyzing the pressure

response to a fluctuating heat release source. The pressure response is therefore not

limited to a single pulse, but it is a continuous pressure signal.

The derivation of the analytical model confirms again the importance of the

Helmholtz number, He, as the parameter that combines the relevant length and

time scales. In a fluctuating heat source the Helmholtz number is defined as ratio of
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the acoustic time over the fluctuating period, which can also be expressed as the ratio

of the heat release length scale over the fluctuating wavelength. A critical Helmholtz

number separates the pressure response into acoustically compact and noncompact

regimes. In the compact regime, the amplitude of the pressure fluctuations is con-

stant over the distance. In contrast, in the noncompact regime, the amplitude of the

pressure fluctuations is larger within the heat source area of application, and then

decays to a far field pressure value outside the heat source. A parametric study has

been conducted to further investigate the two pressure response regimes. The study

parameters are selected to be representative of the extreme conditions in a rocket

combustor.

In order to assess the accuracy and limitations of the model, the analytical solu-

tions have been compared against highly-resolved numerical simulations. As described

in previous chapters, the analytical model shows a good agreement with the numerical

simulations for moderate values of heat release rate. This holds true while the flow

conditions remain close to the model assumptions. Nevertheless, for large rates of

heat release, the presence of nonlinear effects deviate the numerical solution from the

analytical model. For such large values, as the conditions separate ever more from

the model assumptions, such as the constant mean flow speed of sound, the analytical

model cannot capture the rapid accumulation of nonlinear effects.

5.1 Heat Source with Flat Spatial Distribution and Sinusoidal Temporal

Profile

The present case consists of a heat source per unit volume q1(x, t) with a flat

spatial distribution and a sinusoidal temporal profile defined as

q1(x, t) = Kha5 sin (ωt)

[
H

(
x+

Lhab
2

)
−H

(
x− Lhab

2

)]
(5.1)



128

where H(x − L) is the unit Heaviside function, ω is the angular frequency of the

fluctuating heat source, Lha is the length of the heat source, and Kha5 is the heat

source magnitude parameter defined as

Kha5 =
Ehaπf

2LhaHhaWha

=
Ehaω

4LhaHhaWha

(5.2)

where f is the frequency of the fluctuating heat source. It is noted that for the present

case cold flame is assumed [49], which implies not using a constant heat source term

along the sinusoidal term, i.e. q0(1 + sin (ωt)). If the cold flame assumption is not

considered, the mean flow temperature would increase over time due to the constant

heat source. This in turn will increase the speed of sound of the fluid and hence

separate further and further the analytical solution from the actual case. The cold

flame assumption has been adopted by many researchers [49,87] to obtain analytical

scaling regarding thermoacoustic instabilities, but it may have non-negligible effect

compared to actual phenomena [88].

The total energy inputted by the heat source during a full period cycle (Tper =

1
f

= 2π
ω

) has a zero net contribution

Qc =

∫ Tper

0

∫ ∞
−∞

q1(x, t)dV dt =∫ Tper

0

∫ Lha
2

−Lha2
Kha5

[
H

(
z +

Lhab
2

)
−H

(
z − Lhab

2

)]
sin (ωs)HhaWhadzds =

Kha5LhaHhaWha

[
− 1

ω
cos (ωs)

]Tper
0

=
Kha5LhaHhaWha

ω
[− cos (2π) + cos (0)] = 0

(5.3)
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For a half period cycle, the net energy contribution is

Q1/2c =

∫ Tper
2

0

∫ Lha
2

−Lha2
q1(x, t)dV dt =

Kha5LhaHhaWha

[
− 1

ω
cos (ωs)

]Tper
2

0

=
2Kha5LhaHhaWha

ω
=
Eha
2

(5.4)

Then, the flat profile heat release intensity for the fluctuating heat source, qha,s, can

be defined based on Q1/2c as follows

Q1/2c =
Eha
2

=

∫ Tper
2

0

∫ Lha
2

−Lha2
qha,sdV dt = qha,sLhaHhaWha

Tper
2

(5.5)

Thus, the flat profile heat release intensity reads as

qha,s =
Ehaf

LhaHhaWha

(5.6)

All cases in Chapter 5 report the heat release intensity using the value qha,s from Eq.

(5.6). The source term f(x, t) in Eq. (2.33) is computed by applying the temporal

derivative of the heat source of Eq. (5.1) as follows

f(x, t) = (γ − 1)
∂q1

∂t
= (γ − 1)Kha5ω cos (ωt)

[
H

(
x+

Lhab
2

)
−H

(
x− Lhab

2

)]
(5.7)

The substitution of Eq. (5.7) into Eq. (2.35) provides the expression to be integrated

to solve the pressure response

p1,p(x, t) =
(γ − 1)Kha5ω

2c0

∫ t

0

∫ x+c0(t−s)

x−c0(t−s)
cos (ωs)

[
H

(
z +

Lhab
2

)
−H

(
z − Lhab

2

)]
dzds

(5.8)
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After integrating with respect to the spatial variable z, and recalling that p1(x, t) =

p1,p(x, t) as presented in Section 2.3, the integral reads as

p1(x, t) =
(γ − 1)Kha5ω

2c0

∫ t

0

cos (ωs)

[
max

(
0, z +

Lhab
2

)

−max
(

0, z − Lhab
2

)]x+c0(t−s)

x−c0(t−s)

ds

(5.9)

After integrating Eq. (5.9) with respect to the temporal variable s, the solution of the

pressure response of a quiescent fluid to a heat source with flat spatial distribution

and sinusoidal temporal profile reads as

p1(x, t) = Ap5

{[
1 + cos

(
ω

c0

ξ1

)
(H (χ1)− 1)− cos (ωt)H (χ1)

]
H (ξ1)

−
[
1 + cos

(
ω

c0

ξ2

)
(H (χ2)− 1)− cos (ωt)H (χ2)

]
H (ξ2)

−
[
cos (ωt) + cos

(
ω

c0

η1

)
(H (η1)− 1)−H (η1)

]
H (χ1)

+

[
cos (ωt) + cos

(
ω

c0

η2

)
(H (η2)− 1)−H (η2)

]
H (χ2)

}
(5.10)

where the auxiliar variables ξ1, ξ2, η1, η2, χ1, and χ2 are defined as
ξ1 = x+ c0t+ Lha

2
; ξ2 = x+ c0t− Lha

2
;

η1 = x− c0t+ Lha
2

; η2 = x− c0t− Lha
2

;

χ1 = x+ Lha
2

; χ2 = x− Lha
2

;

(5.11)

In addition, the amplitude constant Ap5 is given by

Ap5 =
(γ − 1)Eha

8LhaHhaWha

(5.12)
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The velocity field can be calculated from the pressure solution Eq. (5.10) using

the linearized momentum conservation equation (Eq. (2.19)). The velocity field then

reads as

u1(x, t) =
Ap5
ρ0c0

{[
1− cos

(
ω

c0

ξ1

)]
(H (χ1)− 1)H (ξ1)

−
[
1− cos

(
ω

c0

ξ2

)]
(H (χ2)− 1)H (ξ2) +

[
1− cos

(
ω

c0

η1

)]
(H (η1)− 1)H (χ1)

−
[
1− cos

(
ω

c0

η2

)]
(H (η2)− 1)H (χ2)

}
(5.13)

In turn, the density field can computed from the velocity field solution using the

linearized mass conservation equation assuming that the mean flow properties are

uniform (see Eq. (3.17)). The density field then reads as

ρ1(x, t) =
Ap5
c2

0

{[
1− cos

(
ω

c0

ξ1

)]
(1−H (χ1))H (ξ1)

−
[
1− cos

(
ω

c0

ξ2

)]
(1−H (χ2))H (ξ2) +

[
1− cos

(
ω

c0

η1

)]
(H (η1)− 1)H (χ1)

−
[
1− cos

(
ω

c0

η2

)]
(H (η2)− 1)H (χ2)

}
(5.14)
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Finally, the temperature field can be computed using the linearized equation of

state (Eq. (3.19)) as

T1(x, t) =
(γ − 1)Ap5T0

ρ0c2
0

{[
1 + cos

(
ω

c0

ξ1

)
(H (χ1)− 1)

]
H (ξ1)

−
[
1 + cos

(
ω

c0

ξ2

)
(H (χ2)− 1)

]
H (ξ2) +

[
H (η1)− cos

(
ω

c0

η1

)
(H (η1)− 1)

]
H (χ1)

−
[
H (η2)− cos

(
ω

c0

η2

)
(H (η2)− 1)

]
H (χ2)

+
γ cos (ωt)− 1

γ − 1

[
(1 +H (ξ2))H (χ2)− (1 +H (ξ1))H (χ1)

]}
(5.15)

5.1.1 Acoustically Compact vs Noncompact Regime

Analogously as in Chapter 3, a Helmholtz number can be defined as the ratio

of the characteristic acoustic time over the heat release fluctuating time period (i.e.

τha = 1/f) as

He =
fLha
c0

=
ωLha
2πc0

(5.16)

A careful examination of the solutions of pressure, velocity, density and tempera-

ture from Eqs. (5.10, 5.13, 5.14, 5.15) allows the extraction of the limits for the main

flow field variables as presented in Table 5.1. It should be noted that the results in

Table 5.1 are reported as the steady state, which happens at least after t > Lha
2c0

.

The critical Helmholtz number can be derived from the far field pressure expression

from Table 5.1 for low He numbers, pff

∣∣∣
He≤0.5

. Following the same process as in

Section 3.3, we vary He for a constant value of heat release intensity qha,s, while

maintaining also constant Eha, Hha, and Wha. This is equivalent to maintaining the

ratio f/Lha equal to a constant k1. The Helmholtz number can be written in terms
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Figure 5.1. Compact case. Pressure response of a perfect gas with properties like
that of CO2 to a heat release source with flat spatial distribution and sinusoidal
temporal profile. He = 0.0734, qha,s = 2.5 · 1012 W/m3, Eha/(HhaWha) = 1000 J/m2,
Lha = 100 µm and f = 2.5 · 105 Hz.
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Figure 5.2. Noncompact case. Pressure response of a perfect gas with properties
like that of CO2 to a heat release source with flat spatial distribution and sinusoidal
temporal profile. He = 1.174, qha,s = 2.5 · 1012 W/m3, Eha/(HhaWha) = 1000 J/m2,
Lha = 400 µm and f = 106 Hz.
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Figure 5.3. Evolution of pressure amplitude over the distance for the response of a
perfect gas with properties like that of CO2 to a heat release source with flat spatial
distribution and sinusoidal temporal profile. Compact case (L): He = 0.0734, qha,s =
2.5·1012 W/m3, Lha = 100 µm and f = 2.5·105 Hz; Noncompact case (R):He = 1.174,
qha,s = 2.5 · 1012 W/m3, Lha = 400 µm and f = 106 Hz. Eha/(HhaWha) = 1000 J/m2

for both cases.

Figure 5.4. Evolution of the maximum and far field pressure amplitude with respect
to the Helmholtz number for the response of a perfect gas with properties like that
of CO2 to a heat release source with flat spatial distribution and sinusoidal temporal
profile. Eha/(HhaWha) = 1000 J/m2.
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Table 5.1. Limiting expressions for the flow field response to a heat source with flat
spatial distribution and sinusoidal temporal profile. The subscript “ff” refers to far
field values.

Variable Location Formula

pmax

∣∣∣
He≤1

x = 0 p0 + (γ−1)Eha
2LhaWhaWha

cos
(
π
2

(1−He)
)

pmax

∣∣∣
He>1

x = 0 p0 + (γ−1)Eha
2LhaWhaWha

pff

∣∣∣
He≤0.5

|x|> Lff p0 + (γ−1)Eha
4LhaWhaWha

cos
(
π
2

(1− 2He)
)

pff

∣∣∣
He>0.5

|x|> Lff p0 + (γ−1)Eha
4LhaWhaWha

uff

∣∣∣
He≤0.5

|x|> Lff
(γ−1)Eha

4ρ0c0LhaWhaWha
cos
(
π
2

(1− 2He)
)

uff

∣∣∣
He>0.5

|x|> Lff
(γ−1)Eha

4ρ0c0LhaWhaWha

ρmin x = 0 ρ0 − (γ−1)Eha
2c20LhaHhaWha

Tmax x = 0 T0 + (γ−1)2EhaT0
4ρ0c20LhaHhaWha

[
cos (ωtm − πHe)− γ cos (ωtm)−1

γ−1

]
where tm = 1

ω
tan−1

(
sin (πHe)

cos (πHe)− γ
γ−1

)
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of this constant k1 as He = fLha
c0

= f2

k1c0
. Substituting f =

√
k1c0

√
He and qha,s into

the pff

∣∣∣
He≤0.5

expression leads to

pff

∣∣∣
He≤0.5

− p0 =
(γ − 1)Eha

4LhaWhaWha

cos
(π

2
(1− 2He)

)
=

(γ − 1) qha,s

4
√
k1c0

√
He

cos
(π

2
(1− 2He)

)
=

k2√
He

cos
(π

2
(1− 2He)

) (5.17)

where k2 is a constant that encompasses all the constant terms of Eq. (5.17). The

cosine term from Eq. (5.17) can be approximated for small values using a Taylor

expansion centered around the origin as cos (x) ≈ 1 − x2

2
, leading to the following

approximation

pff

∣∣∣
He≤0.5

− p0 ≈
k2√
He

(
1− π2

8

(
1− 2He2

))
(5.18)

Differentiating Eq. (5.18) with respect to He and finding the maximum result, the ap-

proximate critical Helmholtz number for the heat source with flat spatial distribution

and sinusoidal temporal profile is given by

Hecr ≈
1 +

√
1− 3

(
8
π2 − 1

)
6

= 0.3754 (5.19)

Alternatively, the numerical computation of the maximum from Eq. (5.17) leads to

Hecr = 0.371, which is close to the approximate value from Eq. (5.19). Hecr = 0.371

has been set as the critical Helmholtz number for this heat source profile.

5.2 Heat Source with Gaussian Spatial Distribution and Sinusoidal Tem-

poral Profile

The present case consists of a heat source per unit volume q1(x, t) with a Gaussian

spatial distribution and a sinusoidal temporal profile defined as

q1(x, t) = Kha6exp

[
−1

2

(
x

σx

)2
]

sin (ωt) (5.20)
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where σx is the standard deviation of the Gaussian spatial profile, which has been set

to σx = Lha/7 for all cases, and Kha6 is the heat source magnitude parameter defined

as

Kha6 =
Ehaπf√

8πσxHhaWha

=
Ehaω√

32πσxHhaWha

(5.21)

The source term f(x, t) in Eq. (2.33) is computed by applying the temporal derivative

of the heat source of Eq. (5.20) as follows

f(x, t) = (γ − 1)
∂q1

∂t
= (γ − 1)Kha6ω cos (ωt)exp

[
−1

2

(
x

σx

)2
]

(5.22)

The substitution of Eq. (5.22) into Eq. (2.35) provides the expression to be integrated

to solve the pressure response

p1,p(x, t) =
(γ − 1)Kha6ω

2c0

∫ t

0

∫ x+c0(t−s)

x−c0(t−s)
e−

1
2(

x
σx )

2

cos (ωs)dzds (5.23)

After integrating with respect to the spatial variable z, and recalling that p1(x, t) =

p1,p(x, t) as presented in Section 2.3, the integral reads as

p1(x, t) =
(γ − 1)Kha6ω

2c0

∫ t

0

[√
2πσx
2

erf

(
z√
2σx

)
cos (ωs)

]x+c0(t−s)

x−c0(t−s)

ds (5.24)

Applying the integral spatial limits, the pressure response can be decomposed as

p1(r, t) = p−1 (r, t) + p+
1 (r, t) with inward and outward travelling waves, p−1 (r, t) and

p+
1 (r, t), respectively. The inwards and outwards travelling waves are respectively

p−1 (r, t) =
(γ − 1)Kha6ω

√
2πσx

4c0

∫ t

0

erf

(
x+ c0(t− s)√

2σx

)
cos (ωs)ds (5.25)

p+
1 (r, t) = −(γ − 1)Kha6ω

√
2πσx

4c0

∫ t

0

erf

(
x− c0(t− s)√

2σx

)
cos (ωs)ds (5.26)
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The integral of Eq. (5.25) can be written in simpler terms as

p−1 (r, t) = C

∫ t

0

erf (a1s+ b1) cos (ωs)ds (5.27)

where the constants are given by
a1 = − c0√

2σx
b1 =

x+ c0t√
2σx

C =
(γ − 1)Kha6ω

√
2πσx

4c0

(5.28)

Similar integrals with respect to Eq. (5.27) have known solutions that are developed

in [86] and presented here

∫
erf (az) cos (bz)dz =

1

b
sin (bz)erf (az) +

i

2b
exp

(
− b2

4a2

)[
erf

(
az − ib

2a

)

−erf
(
az +

ib

2a

)]
(5.29)

∫
erf (az) sin (bz)dz = −1

b
cos (bz)erf (az) +

1

2b
exp

(
− b2

4a2

)[
erf

(
az − ib

2a

)

+erf

(
az +

ib

2a

)]
(5.30)

Eq. (5.27) can be rewritten again with the aim of condensing the a1s+ b1 term inside

the error function into a single term a1ξ as follows

p−1 (r, t) = C

∫ t+
b1
a1

b1
a1

erf (a1ξ) cos

(
ω

(
ξ − b1

a1

))
dξ (5.31)
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where ξ = s+ b1
a1

. In turn, the cosine term can be expanded as follows

cos

(
ω

(
ξ − b1

a1

))
= cos (ωξ) cos

(
ωb1

a1

)
+ sin (ωξ) sin

(
ωb1

a1

)
(5.32)

With this expansion, the integral of Eq. (5.31) can be expressed in the same form as

the solutions Eq. (5.29) and Eq. (5.30), reading as

p−1 (r, t) = C cos

(
ωb1

a1

)∫ t+
b1
a1

b1
a1

erf (a1ξ) cos (ωξ)dξ

+C sin

(
ωb1

a1

)∫ t+
b1
a1

b1
a1

erf (a1ξ) sin (ωξ)dξ

(5.33)

where the cosine and sine terms of ωb1
a1

are constants that can be moved outside of the

integral. Integrating Eq. (5.33) using the results of Eq. (5.29) and Eq. (5.30) yields

to the pressure response to Gaussian spatial distribution and sinusoidal temporal

profile

p1(x, t) = Ap6

{
cos

(
ω
x

c0

)
erf (x̂)

[
sin (ωα1) + sin (ωα2)

]
− sin

(
ω
x

c0

)
erf (x̂)

[
cos (ωα1) + cos (ωα2)

]}
+
Ap6
2
exp

(
−He2

x

){

− sin (ωα1)

[
erf (x̂+ iHex) + erf (x̂− iHex)− erf (β1 + iHex)− erf (β1 − iHex)

]

− sin (ωα2)

[
erf (x̂+ iHex) + erf (x̂− iHex)− erf (β2 + iHex)− erf (β2 − iHex)

]

+i cos (ωα1)

[
erf (x̂+ iHex)− erf (x̂− iHex)− erf (β1 + iHex) + erf (β1 − iHex)

]

+i cos (ωα2)

[
erf (x̂+ iHex)− erf (x̂− iHex)− erf (β2 + iHex) + erf (β2 − iHex)

]}
(5.34)
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where the variables α1, α2, β1, β2, and x̂, and the Helmholtz number Hex are defined

as 
α1 = x

c0
+ t ; α2 = x

c0
− t ;

β1 =
x
c0

+t

τac
; β2 =

x
c0
−t

τac
;

x̂ = x√
2σx

; Hex = ωσx√
2c0

= 2ωτac ;

(5.35)

The characteristic acoustic time τac appears again in the pressure solution, reading

as

τac =

√
2σx
c0

(5.36)

In addition, the amplitude constant Ap6 is defined as

Ap6 =
C

ω
=

(γ − 1)Kha6

√
2πσx

4c0

=
(γ − 1)Ehaω

16c0HhaWha

(5.37)

The Helmholtz number Hex can be related to the He defined for the previous case

in Eq. (5.16) as

Hex =
ωσx√

2c0

= 2ωτac =

√
2π

7
He (5.38)

The relation of Eq. (5.38) considers that σx = Lha/7. To facilitate the comparison of

both heat source profiles, the results in Chapter 5 are reported using the He defined

in Eq. (5.16).
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It should be noted that the result of pressure fluctuation given by Eq. (5.34)

corresponds to a real value, as it can be rewritten as

p1(x, t) = Ap6

{
cos

(
ω
x

c0

)
erf (x̂)

[
sin (ωα1) + sin (ωα2)

]
− sin

(
ω
x

c0

)
erf (x̂)

[
cos (ωα1) + cos (ωα2)

]}
− Ap6 · exp

(
−He2

x

){

sin (ωα1)

[
< (erf (x̂+ iHex))−< (erf (β1 + iHex))

]

+ sin (ωα2)

[
< (erf (x̂+ iHex))−< (erf (β2 + iHex))

]

+ cos (ωα1)

[
= (erf (x̂+ iHex))−= (erf (β1 + iHex))

]

+ cos (ωα2)

[
= (erf (x̂+ iHex))−= (erf (β2 + iHex))

]}

(5.39)
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Similarly to the previous case, the velocity field can be calculated from the pres-

sure solution Eq. (5.34) using the linearized momentum conservation equation (Eq.

(2.19)). The velocity field then reads as

u1(x, t) = −Ap6
2ρ0

exp
(
−He2

x

){

+
1

c0

sin (ωα1)

[
−erf (x̂+ iHex)− erf (x̂− iHex) + erf (β1 + iHex) + erf (β1 − iHex)

]

− 1

c0

sin (ωα2)

[
−erf (x̂+ iHex)− erf (x̂− iHex) + erf (β2 + iHex) + erf (β2 − iHex)

]

+
i

c0

cos (ωα1)

[
erf (x̂+ iHex)− erf (x̂− iHex)− erf (β1 + iHex) + erf (β1 − iHex)

]

− i

c0

cos (ωα2)

[
erf (x̂+ iHex)− erf (x̂− iHex)− erf (β2 + iHex) + erf (β2 − iHex)

]

+

√
2

ω
√
πσx

[
cos (ωα1)− cos (ωα2)

][
exp

(
− (x̂+ iHex)

2)+ exp
(
− (x̂− iHex)2)]}

+

√
2i

ω
√
πσx

[
sin (ωα1)− sin (ωα2)

][
exp

(
− (x̂+ iHex)

2)− exp (− (x̂− iHex)2)]}
(5.40)
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The velocity field given in Eq. (5.40) also corresponds to a real value, as it can be

simplified as

u1(x, t) = −Ap6
2ρ0

exp
(
−He2

x

){
2

c0

sin (ωα1)

[
−<(erf (x̂+ iHex)) + <(erf (β1 + iHex))

]

− 2

c0

sin (ωα2)

[
−<(erf (x̂+ iHex)) + <(erf (β2 + iHex))

]

+
2

c0

cos (ωα1)

[
−=(erf (x̂+ iHex)) + =(erf (β1 + iHex))

]

− 2

c0

cos (ωα2)

[
−=(erf (x̂+ iHex)) + =(erf (β2 + iHex))

]

+

√
2

ω
√
πσx

[
cos (ωα1)− cos (ωα2)

][
exp

(
− (x̂+ iHex)

2)+ exp
(
− (x̂− iHex)2)]}

+

√
2i

ω
√
πσx

[
sin (ωα1)− sin (ωα2)

][
exp

(
− (x̂+ iHex)

2)− exp (− (x̂− iHex)2)]}
(5.41)
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Then, the density field can computed from the velocity field given in Eq. (5.40) using

the linearized mass conservation equation assuming uniform mean flow properties (see

Eq. (3.17)). The density field reads as

ρ1(x, t) =
Ap6
2c0

exp
(
−He2

x

){

+
1

c0

sin (ωα1)

[
−erf (x̂+ iHex)− erf (x̂− iHex) + erf (β1 + iHex) + erf (β1 − iHex)

]

+
1

c0

sin (ωα2)

[
−erf (x̂+ iHex)− erf (x̂− iHex) + erf (β2 + iHex) + erf (β2 − iHex)

]

+
i

c0

cos (ωα1)

[
erf (x̂+ iHex)− erf (x̂− iHex)− erf (β1 + iHex) + erf (β1 − iHex)

]

+
i

c0

cos (ωα2)

[
erf (x̂+ iHex)− erf (x̂− iHex)− erf (β2 + iHex) + erf (β2 − iHex)

]

+
2
√

2

ω
√
πσx

[
cos (ωα1) + cos (ωα2)− 2 cos

(
ω
x

c0

)]
[
exp

(
− (x̂+ iHex)

2)+ exp
(
− (x̂− iHex)2)]

+
2
√

2i

ω
√
πσx

[
sin (ωα1) + sin (ωα2)− 2 sin

(
ω
x

c0

)]
[
exp

(
− (x̂+ iHex)

2)− exp (− (x̂− iHex)2)]

− 2c0

ω2
√
πσ2

x

[
sin (ωα1) + sin (ωα2)− 2 sin

(
ω
x

c0

)]
[

(x̂+ iHex) exp
(
− (x̂+ iHex)

2)+ (x̂− iHex) exp
(
− (x̂− iHex)2)]

+
2c0 i

ω2
√
πσ2

x

[
cos (ωα1) + cos (ωα2)− 2 cos

(
ω
x

c0

)]
[

(x̂+ iHex) exp
(
− (x̂+ iHex)

2)− (x̂− iHex) exp
(
− (x̂− iHex)2)]}

(5.42)
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Similarly to the pressure and velocity fields, the result of the density field is a real

value, as Eq. (5.42) can be simplified as

ρ1(x, t) =
Ap6
c0

exp
(
−He2

x

){

+
1

c0

sin (ωα1)

[
−<(erf (x̂+ iHex)) + <(erf (β1 + iHex))

]

+
1

c0

sin (ωα2)

[
−<(erf (x̂+ iHex)) + <(erf (β2 + iHex))

]

+
1

c0

cos (ωα1)

[
−=(erf (x̂+ iHex)) + =(erf (β1 + iHex))

]

+
1

c0

cos (ωα2)

[
−=(erf (x̂+ iHex)) + =(erf (β2 + iHex))

]

+

√
2

ω
√
πσx

[
cos (ωα1) + cos (ωα2)− 2 cos

(
ω
x

c0

)]
[
exp

(
− (x̂+ iHex)

2)+ exp
(
− (x̂− iHex)2)]

+

√
2i

ω
√
πσx

[
sin (ωα1) + sin (ωα2)− 2 sin

(
ω
x

c0

)]
[
exp

(
− (x̂+ iHex)

2)− exp (− (x̂− iHex)2)]

− c0

ω2
√
πσ2

x

[
sin (ωα1) + sin (ωα2)− 2 sin

(
ω
x

c0

)]
[

(x̂+ iHex) exp
(
− (x̂+ iHex)

2)+ (x̂− iHex) exp
(
− (x̂− iHex)2)]

+
c0 i

ω2
√
πσ2

x

[
cos (ωα1) + cos (ωα2)− 2 cos

(
ω
x

c0

)]
[

(x̂+ iHex) exp
(
− (x̂+ iHex)

2)− (x̂− iHex) exp
(
− (x̂− iHex)2)]}

(5.43)
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Finally, the temperature field can be computed using the linearized equation of state

(Eq. (3.19)) as

T1(x, t) =
Ap6T0γ

ρ0c2
0

erf

(
x√
2σx

){
cos

(
ω
x

c0

)
erf

(
x√
2σx

)[
sin (ωα1) + sin (ωα2)

]
− sin

(
ω
x

c0

)
erf

(
x√
2σx

)[
cos (ωα1) + cos (ωα2)

]}
+
Ap6 (γ − 1)T0

2c2
0ρ0

exp
(
−He2

x

){

− sin (ωα1)

[
erf (x̂+ iHex) + erf (x̂− iHex)− erf (β1 + iHex)− erf (β1 − iHex)

]

− sin (ωα2)

[
erf (x̂+ iHex) + erf (x̂− iHex)− erf (β2 + iHex)− erf (β2 − iHex)

]

+i cos (ωα1)

[
erf (x̂+ iHex)− erf (x̂− iHex)− erf (β1 + iHex) + erf (β1 − iHex)

]

+i cos (ωα2)

[
erf (x̂+ iHex)− erf (x̂− iHex)− erf (β2 + iHex) + erf (β2 − iHex)

]}

−Ap6T0

2c0ρ0

exp
(
−He2

x

){ 2
√

2

ω
√
πσx

[
cos (ωα1) + cos (ωα2)− 2 cos

(
ω
x

c0

)]
[
exp

(
− (x̂+ iHex)

2)+ exp
(
− (x̂− iHex)2)]

+
2
√

2i

ω
√
πσx

[
sin (ωα1) + sin (ωα2)− 2 sin

(
ω
x

c0

)]
[
exp

(
− (x̂+ iHex)

2)− exp (− (x̂− iHex)2)]

− 2c0

ω2
√
πσ2

x

[
sin (ωα1) + sin (ωα2)− 2 sin

(
ω
x

c0

)]
[

(x̂+ iHex) exp
(
− (x̂+ iHex)

2)+ (x̂− iHex) exp
(
− (x̂− iHex)2)]

+
2c0 i

ω2
√
πσ2

x

[
cos (ωα1) + cos (ωα2)− 2 cos

(
ω
x

c0

)]
[

(x̂+ iHex) exp
(
− (x̂+ iHex)

2)− (x̂− iHex) exp
(
− (x̂− iHex)2)]}

(5.44)
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Similarly to the previous cases, the temperature field is a real value, as it can be

simplified as

T1(x, t) =
Ap6T0γ

ρ0c2
0

erf

(
x√
2σx

){
cos

(
ω
x

c0

)
erf

(
x√
2σx

)[
sin (ωα1) + sin (ωα2)

]
− sin

(
ω
x

c0

)
erf

(
x√
2σx

)[
cos (ωα1) + cos (ωα2)

]}
− Ap6 (γ − 1)T0

c2
0ρ0

exp
(
−He2

x

){

sin (ωα1)

[
<(erf (x̂+ iHex))−<(erf (β1 + iHex))

]

sin (ωα2)

[
<(erf (x̂+ iHex))−<(erf (β2 + iHex))

]

+ cos (ωα1)

[
=(erf (x̂+ iHex))−=(erf (β1 + iHex))

]}

+ cos (ωα2)

[
=(erf (x̂+ iHex))−=(erf (β2 + iHex))

]}

−Ap6T0

c0ρ0

exp
(
−He2

x

){ √
2

ω
√
πσx

[
cos (ωα1) + cos (ωα2)− 2 cos

(
ω
x

c0

)]
[
exp

(
− (x̂+ iHex)

2)+ exp
(
− (x̂− iHex)2)]

+

√
2i

ω
√
πσx

[
sin (ωα1) + sin (ωα2)− 2 sin

(
ω
x

c0

)]
[
exp

(
− (x̂+ iHex)

2)− exp (− (x̂− iHex)2)]

− c0

ω2
√
πσ2

x

[
sin (ωα1) + sin (ωα2)− 2 sin

(
ω
x

c0

)]
[

(x̂+ iHex) exp
(
− (x̂+ iHex)

2)+ (x̂− iHex) exp
(
− (x̂− iHex)2)]

+
c0 i

ω2
√
πσ2

x

[
cos (ωα1) + cos (ωα2)− 2 cos

(
ω
x

c0

)]
[

(x̂+ iHex) exp
(
− (x̂+ iHex)

2)− (x̂− iHex) exp
(
− (x̂− iHex)2)]}

(5.45)
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Figure 5.5. Compact case. Pressure response of a perfect gas with properties like
that of CO2 to a heat release source with Gaussian spatial distribution and sinusoidal
temporal profile. He = 0.0734, qha,s = 2.5 · 1012 W/m3, Eha/(HhaWha) = 1000 J/m2,
Lha = 100 µm and f = 2.5 · 105 Hz.

5.2.1 Acoustically Compact vs Noncompact Regime

From the examination of the solutions of pressure, velocity, density and tempera-

ture from Eqs. (5.34, 5.40, 5.42, 5.44) the limits for the main flow field variables as

presented in Table 5.2 are extracted. It should be noted that the results in Table 5.2
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Figure 5.6. Noncompact case. Pressure response of a perfect gas with properties like
that of CO2 to a heat release source with Gaussian spatial distribution and sinusoidal
temporal profile. He = 1.174, qha,s = 2.5 · 1012 W/m3, Eha/(HhaWha) = 1000 J/m2,
Lha = 400 µm and f = 106 Hz.
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Figure 5.7. Evolution of pressure amplitude over the distance for the response of a
perfect gas with properties like that of CO2 to a heat release source with Gaussian
spatial distribution and sinusoidal temporal profile. Compact case (L): He = 0.0734,
qha,s = 2.5 · 1012 W/m3, Lha = 100 µm and f = 2.5 · 105 Hz; Noncompact case (R):
He = 1.174, qha,s = 2.5 ·1012 W/m3, Lha = 400 µm and f = 106 Hz. Eha/(HhaWha) =
1000 J/m2 for both cases.

Figure 5.8. Evolution of the maximum pressure amplitude with respect to the
Helmholtz number for the response of a perfect gas with properties like that of CO2

to a heat release source with Gaussian spatial distribution and sinusoidal temporal
profile. Eha/(HhaWha) = 1000 J/m2.
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Table 5.2. Limiting expressions for the flow field response to a heat source with
Gaussian spatial distribution and sinusoidal temporal profile. The subscript “ff”
refers to far field values.

Variable Location Formula

pmax

∣∣∣
Hex≤4

x = 0 p0 + (γ−1)Ehaω
8c0HhaWha

e−He
2
x

[
sin
(
ωtmp

)
− cos

(
ωtmp

)
erfi (Hex)

]
where tmp = 1

ω
tan−1

(
1

−erfi(Hex)

)
pmax

∣∣∣
Hex>4

x = 0 p0 + (γ−1)Ehaω
4
√
πc0HhaWha

D+(Hex)

pff

∣∣∣
Hex<

Lha√
2σx

|x|> Lff p0 + |2C1 sin2 (2πHe)− 2C2 cos2 (2πHe) + C3 sin (4πHe) |

uff

∣∣∣
Hex<

Lha√
2σx

|x|> Lff
1

ρ0c0
|2C1 sin2 (2πHe)− 2C2 cos2 (2πHe) + C3 sin (4πHe) |

ρmin

∣∣∣
Hex≤4

x = 0 ρ0 + (γ−1)Ehaω

8c30LhaHhaWha
e−He

2
x

[
sin
(
ωtmρ

)
− cos

(
ωtmρ

)
erfi (Hex)

]
+ (γ−1)Eha

4
√

2πc20LhaHhaWhaσx

[
cos
(
ωtmρ

)
− 1
]

where tmρ = 1
ω

[
π + tan−1

(
e−He

2
x

1√
πHex

−erfi(Hex)e−He
2
x

)]
ρmin

∣∣∣
Hex>4

x = 0 ρ0 − (γ−1)Ehaω

4
√
πc30HhaWha

D+(Hex)

Tmax

∣∣∣
Hex≤4

x = 0 T0 + (γ−1)2EhaT0ω

8c30ρ0LhaHhaWha
e−He

2
x

[
sin (ωtmT )− cos (ωtmT )erfi (Hex)

]
− (γ−1)EhaT0

4
√

2πc20ρ0LhaHhaWhaσx

[
cos (ωtmT )− 1

]
tmT = 1

ω
tan−1

(
(γ−1)e−He

2
x

− 1√
πHex

−(γ−1)erfi(Hex)e−He
2
x

)
Tmax

∣∣∣
Hex>4

x = 0 T0 + (γ−1)EhaT0ω

4
√
πc30ρ0HhaWha

[
(γ − 1)D+(Hex) + 1

Hex

]
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are reported as the steady state, which happens at least at t > 2ωτ 2
ac. It is noted that

in Table 5.2, erfi(x) is the imaginary error function, which is given by

erfi(x) = −ierf(ix) =
2√
π

∫ x

0

et
2

dt (5.46)

and D+(x) is the Dawson function, which reads as

D+(x) = e−x
2

∫ x

0

et
2

dt (5.47)

The Dawson function and the imaginary error function can be related as erfi(x) =

2√
π
ex

2
D+(x). The constants C1, C2, and C3 of Table 5.2 are defined as


C1 = Ap6

[
cos (2πHe) erf

(
Lha√
2σx

)
− e−He2x<

(
erf

(
Lha√
2σx

+ iHex

))]
C2 = Ap6e

−He2x

C3 = −Ap6
[
sin (2πHe) erf

(
Lha√
2σx

)
− e−He2x=

(
erf

(
Lha√
2σx

+ iHex

))] (5.48)

The critical Helmholtz number, Hecr has been computed from the maximum pres-

sure expression from Table 5.2 for Hex ≤ 4. In this numerical computation, the max-

imum of said expression while maintaining constant Eha, Hha, Wha and qha,s, which

leads to Hecr = 1.37.

5.3 Parametric Study

A parametric study with quiescent perfect gas with properties like that of CO2

has been conducted to assess the trends of the fluid response to the heat release

profile with Gaussian spatial distribution and sinusoidal temporal profile. Table 5.3

summarizes the mean flow conditions. The heat release band size Lha varies from 10

to 105 µm, and the heat release oscillation frequency f ranges from 103 to 106 Hz.
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Figure 5.9. Map of the far field pressure amplitude of the response of a perfect gas with
properties like that of CO2 to a heat release source with flat spatial distribution and
sinusoidal temporal profile (Hecr = 0.371). Constant energy Eha/(HhaWha) = 500
J/m2.

The energy level, mean flow conditions, and range of length and time scales of the

heat source have been sized to be representative of unsteady heat release events in a

high pressure rocket engine.

As discussed in Section 3.4, the parametric study covers a wide range of length

and time scales, but the applicability of the analytical model is limited to low and

moderate heat release rates. For large heat release values the assumptions of the

analytical model deviate from the actual conditions due to the presence of nonlinear

effects such as temperature dependence of the local speed of sound, wave front steep-

ening, formation of weak shocks, and neglecting loss mechanisms such as viscosity

and heat conduction.
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Figure 5.10. Map of the minimum density (L) and maximum temperature (R) of
the response of a perfect gas with properties like that of CO2 to a heat release
source with flat spatial distribution and sinusoidal temporal profile. Constant en-
ergy Eha/(HhaWha) = 500 J/m2.
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c) Constant qha,s = 1011 W/m3
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d) Constant qha,s = 1012 W/m3

Figure 5.11. Map of the far field pressure amplitude of the response of a perfect gas
with properties like that of CO2 to a heat release source with flat spatial distribution
and sinusoidal temporal profile, for constant values of heat release intensity qha,s
(Hecr = 0.371). Note that in this case the energy level Eha/(HhaWha) is not constant
across the map of Lha and f .
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Figure 5.12. Map of the maximum pressure amplitude of the response of a perfect
gas with properties like that of CO2 to a heat release source with Gaussian spa-
tial distribution and sinusoidal temporal profile (Hecr = 1.37). Constant energy
Eha/(HhaWha) = 500 J/m2.

Figure 5.13. Map of the minimum density (L) and maximum temperature (R) of the
response of a perfect gas with properties like that of CO2 to a heat release source
with Gaussian spatial distribution and sinusoidal temporal profile. Constant energy
Eha/(HhaWha) = 500 J/m2.
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Heat addition zone

15 mm

0.015 mm

Periodic boundary 
conditions

p0, u0, T0, 𝜌0

q1(x,t)

Wall

Wall

Figure 5.14. Schematic of the computational domain used in the numerical simula-
tions.

5.4 Comparison of Analytical and Numerical Results

5.4.1 Simulation Setup

The case study consists of an uniform quiescent fluid that responds to two un-

steady heat release source profiles; one with flat spatial distribution and sinusoidal

temporal profile, and the other with Gaussian spatial distribution and sinusoidal tem-

poral distribution, respectively. The dimensions of the domain are set such that the

simulation concludes before the induced pressure waves reach the vertical boundaries.

The influence of the boundary conditions in the solution are limited by this condition

and acoustic reflections are eliminated. The computational domain, which is the same

as the one presented in Chapter 3. It consists of a two-dimensional cavity of 15 mm

×0.015 mm. Periodic boundary conditions are set at the bottom and top boundaries

to keep a one-dimensional solution. Both left and right boundaries are treated as

inviscid, adiabatic walls. An external source in the energy equation is used to model

the heat release, which is located in the center of the domain. In this case, the heat

source does not generate a single pulse but a continuous sinusoidal signal. The total

number of cells is 100,0000, and the mesh is divided in 100 partitions. The structured

grid is uniform with a cell size from 1.5 µm in the x and y directions across the entire

domain. The time step is limited to 2 ns and the simulations capture 12.5 µs of

physical time to be able to properly capture the transient behavior.
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Table 5.3. Perfect gas mean flow properties like that of CO2 used for all the analytical
and numerical simulations of Chapter 5.

p0 T0 u0 ρ0 c0 γ0

(MPa) (K) (m/s) (kg/m3) (m/s)

1.0 500.0 0.0 10.59 340.72 1.2253
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The study has been conducted using perfect gas with properties like that of CO2

as the working fluid with the conditions summarized in Table 5.3. A pressure of

1 MPa and a temperature of 500 K are chosen as the initial conditions, which are

representative of the interaction between hot and cold gases in the shear layer region of

a non-premixed, shear-coaxial injector used in rocket engines. All the highly-resolved

DES simulations have been performed using the in-house Navier-Stokes solver GEMS,

which has been presented in Section 3.6.1.

In order to study cases with similar length and time scales as in Chapter 3, the

same computational domain has been used for convenience. Thus, the frequencies of

the heat source are very high, on the order of 105−106 Hz, compared to normal liquid

rocket engines which feature frequencies of order 103 − 104 Hz. Heat sources with

very high frequencies, at the megahertz range, may trigger nonlinear gas dynamics

effects such as quick steepening of the wave fronts and formation of shocks [89].

Section 5.4.2 reveals the presence of these nonlinear effects in the comparison of the

analytical solutions against the highly-resolved numerical simulations.

5.4.2 Results Discussion

The comparison of the analytical and numerical solutions of the fluid response to a

heat source with flat spatial profile and sinusoidal temporal distribution are depicted

in Figs. 5.15-5.18. Flow field results at two points of interests are shown, x = 0

which represents the central location of the heat source and x = Lha which is outside

the area of application of heat addition, respectively. For this heat source profile,

results of the noncompact regime are presented for two heat release intensities, qha,

one representing a moderate level of heat release (qha = 1 · 1011 W/m3) and the

other being a large level of heat release rate (i.e. qha = 2.5 · 1012 W/m3). The latter

heat release intensity is a representative of rocket combustor. For moderate levels

of heat release, the analytical and high-resolved numerical solutions show a good

agreement regardless of the point selected. However, for large heat release values the
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qha = 1 · 1011 W/m3 qha = 1 · 1011 W/m3

qha = 2.5 · 1012 W/m3 qha = 2.5 · 1012 W/m3

Figure 5.15. Noncompact case, He = 1.174. Pressure response of a perfect gas with
properties like that of CO2 to a heat release source with flat spatial distribution and
sinusoidal temporal profile. Heat release parameters: Lha = 400 µm and f = 106 Hz.

numerical solution diverges from the analytical model as the nonlinear effects start

to become important. The assumption of constant speed of sound, which relies on a

constant mean flow temperature, quickly breaks down for large values of heat release

as the local temperature deviates from the mean. Since the velocity, density and

temperature are computed from the pressure solution, any deviation from the latter

will drag the error for the former solutions.
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qha = 1 · 1011 W/m3 qha = 2.5 · 1012 W/m3

Figure 5.16. Noncompact case, He = 1.174. Velocity response of a perfect gas with
properties like that of CO2 to a heat release source with flat spatial distribution and
sinusoidal temporal profile. Heat release parameters: Lha = 400 µm and f = 106 Hz.
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qha = 1 · 1011 W/m3 qha = 1 · 1011 W/m3

qha = 2.5 · 1012 W/m3 qha = 2.5 · 1012 W/m3

Figure 5.17. Noncompact case, He = 1.174. Density response of a perfect gas with
properties like that of CO2 to a heat release source with flat spatial distribution and
sinusoidal temporal profile. Heat release parameters: Lha = 400 µm and f = 106 Hz.
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qha = 1 · 1011 W/m3 qha = 1 · 1011 W/m3

qha = 2.5 · 1012 W/m3 qha = 2.5 · 1012 W/m3

Figure 5.18. Noncompact case, He = 1.174. Temperature response of a perfect gas
with properties like that of CO2 to a heat release source with flat spatial distribution
and sinusoidal temporal profile. Heat release parameters: Lha = 400 µm and f = 106

Hz.
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The comparison of the analytical and numerical solutions of the fluid response to

a heat source with Gaussian spatial profile and sinusoidal temporal distribution are

depicted in Figs. 5.19-5.22. The flow field results are reported for a compact case at

two locations inside and outside the heat addition zone, as well as for two levels of

heat release intensity. The two heat release intensities qha represent a moderate level

of heat release (qha = 1 ·1011 W/m3) and a larger level of heat release (qha = 2.5 ·1012

W/m3). It is noted that the variation from compact to noncompact can be achieved

by varying the value of the Helmholtz number, He. For moderate levels of heat

release, the analytical and high-resolved numerical solutions show a good agreement

regardless of the point selected. Nonetheless, for large values of heat release, both

results diverge considerably regardless of the point selected as the analytical model

is unable to capture the nonlinear effects. In addition, as it occurred in Chapter 3,

for the compact cases the amplitude of the pressure fluctuations is constant over the

distance. In contrast, for the noncompact regime the pressure fluctuations are larger

within the heat source area of application and then, these decay to a far field value

once the pressure waves travel outside the heat source.

The discrepancy of the analytical model with the numerical solutions for large

values of heat release is mostly caused by the deviation from the model assumptions.

For large values of heat release, the local temperature increases significantly thereby

deviating the local speed of sound from the mean flow value. In addition, the large

pressure amplitudes for the extreme heat release intensities provokes the steepening

of the wave front. As shown in Fig. 5.23, a harmonic pressure fluctuation tends to

a sawtooth profile over time due to nonlinear gas dynamics effects. These nonlinear

phenomena are the steepening of the wave front and the eventual formation of weak

shocks. A more detailed discussion regarding the nonlinear effects is provided in

Section 6.6 from Chapter 6.
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qha = 1 · 1011 W/m3 qha = 1 · 1011 W/m3

qha = 2.5 · 1012 W/m3 qha = 2.5 · 1012 W/m3

Figure 5.19. Compact case, He = 0.0734. Pressure response of a perfect gas with
properties like that of CO2 to a heat release source with Gaussian spatial distribution
and sinusoidal temporal profile. Heat release parameters: Lha = 100 µm and f =
2.5 · 105 Hz.
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qha = 1 · 1011 W/m3 qha = 2.5 · 1012 W/m3

Figure 5.20. Compact case, He = 0.0734. Velocity response of a perfect gas with
properties like that of CO2 to a heat release source with Gaussian spatial distribution
and sinusoidal temporal profile. Heat release parameters: Lha = 100 µm and f =
2.5 · 105 Hz.
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qha = 1 · 1011 W/m3 qha = 1 · 1011 W/m3

qha = 2.5 · 1012 W/m3 qha = 2.5 · 1012 W/m3

Figure 5.21. Compact case, He = 0.0734. Density response of a perfect gas with
properties like that of CO2 to a heat release source with Gaussian spatial distribution
and sinusoidal temporal profile. Heat release parameters: Lha = 100 µm and f =
2.5 · 105 Hz.
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qha = 1 · 1011 W/m3 qha = 1 · 1011 W/m3

qha = 2.5 · 1012 W/m3 qha = 2.5 · 1012 W/m3

Figure 5.22. Compact case, He = 0.0734. Temperature response of a perfect gas with
properties like that of CO2 to a heat release source with Gaussian spatial distribution
and sinusoidal temporal profile. Heat release parameters: Lha = 100 µm and f =
2.5 · 105 Hz.



170

Figure 5.23. a) Sketch of acoustic pressure over time at a sufficiently distant point
from an oscillating transducer for the formation of a sawtooth profile; b) sketch of
acoustic pressure over the distance for a particular instant of time, depicting the
evolution of the pressure from a harmonic signal to a sawtooth profile (Source [90]).
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5.5 Summary

The chapter sought to analyze the interaction of the pressure response to a fluc-

tuating heat release source. The coupling of the combustion heat release with the

acoustic pressure field in a combustor may lead to combustion instabilities. Heat

release sources that fluctuate over time at the frequency of the acoustic modes of the

combustor are then a precursor to these phenomena. An opposite viewpoint to the

traditional flame transfer models such as Crocco’s n− τ model [25,26] is proposed in

order to study the pressure response to a fluctuating heat release source.

An unconfined one-dimensional domain in a non-reacting fluid has been set as a

unit problem to derive analytical models based on the acoustic wave equation. Two

different heat release sources, one consisting of a flat spatial distribution and sinu-

soidal temporal profile and the other a Gaussian spatial distribution and sinusoidal

temporal profile have been considered. For both of the profiles, the Helmholtz num-

ber, He, emerged as the parameter that drives the pertinent length and time scales,

and separates the regimes of pressure response. For a fluctuating heat source, He

is specified as the ratio of the acoustic time over the fluctuating period. Acousti-

cally compact and noncompact regimes were also identified in the pressure response

as a function of the critical Helmholtz number, Hecr. While in the compact regime

the amplitude of the pressure fluctuations is constant over the distance, in the non-

compact regime the amplitude of the pressure fluctuations is larger within the heat

source area of application. Then, for the noncompact regime, the amplitude of the

pressure fluctuation decays to a far field pressure value outside the heat source. The

two pressure response regimes have been further analyzed by means of a parametric

study that varied the parameters so as to be representative of the extreme conditions

in a rocket combustor.

Highly-resolved numerical simulations have been used to compare against the

analytical solutions to evaluate the accuracy and limitations posed by the adoption

of the wave equation. Similarly to the results presented in previous chapters, for
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moderate values of heat release rate, the analytical and numerical results agree well.

If the flow conditions remain close to the model assumptions, this holds true. However,

for large rates of heat release the analytical model is not able to capture the nonlinear

physics of the problem such as steepening of the wave front, formation of weak shocks,

as well as local variation of the speed of sound.
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6. EFFECTS OF UNSTEADY HEAT RELEASE ON A

LONGITUDINAL ACOUSTIC MODE

The coupling of unsteady heat release with the acoustic modes of a combustor may

generate high amplitude pressure fluctuations that result in combustion instability.

Traditionally, the Rayleigh criterion has been used to determine the stability of a

combustor by assessing the relative phase of unsteady heat release with respect to

acoustic pressure fluctuations. If the unsteady heat release is in phase with the

pressure field, the amplitude of the pressure fluctuations will grow over time. To

better understand the spatio-temporal effects of heat release on this fundamental

phenomenon, a study is made of the interaction of an unsteady heat release pulse

with a longitudinal acoustic mode of a one-dimensional duct in a non-reacting gas

mixture.

The aim is to evaluate and quantify how pressure fluctuations due to unsteady

heat release amplify a longitudinal acoustic mode. The high rates of unsteady heat

release characteristic of rocket engines along with the presence of nonlinearities such

L

Acoustic
boundary

q1(x,t)

u1

Flow 
perturbation

Acoustic longitudinal mode

Figure 6.1. One-dimensional duct with a velocity forcing perturbation that excites the
system to an acoustic longitudinal mode. An external heat source provokes pressure
fluctuations that interact with the acoustic modes of the duct.
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as nonlinear acoustics [91], may provoke that the addition of pressure fluctuations

due to unsteady heat release to acoustic pressure oscillations differs from a linear

superposition. The non-premixed turbulent combustion regime of rocket engines is

characterized by high pressure, high degree of unsteadiness, near-stoichiometric com-

bustion, multiple ignition and extinction events, and extremely large heat release

rates [78, 92]. Altogether, these characteristics contribute to introduce a stochastic

behavior to the system that differs from purely harmonic oscillations. The analytical

models are compared against highly-resolved numerical simulations to assess nonlin-

ear effects and limitations of models based on the acoustic wave equation.

As shown in Fig. 6.1, the model of the interaction between an unsteady heat

release pulse and a longitudinal acoustic mode is built by sequentially adding unit

problems, which combined, result in a simplified model with a closed analytical solu-

tion. The first unit problem consists of the pressure response to a moving rigid surface

that generates a velocity harmonic fluctuation in a one-dimensional open-ended cav-

ity. This forced velocity perturbation provokes in turn harmonic pressure fluctuations

that propagate freely without the presence of an acoustic boundary away from the

moving surface. Section 6.2 presents the second unit problem which combines the

analytical solution from the velocity harmonic fluctuation with an unsteady heat

pulse with Gaussian spatial and temporal distribution (see Section 3.3). This case,

which still remains as an open-ended cavity, allows the analysis of how an unsteady

heat release pulse superposed with a harmonic pressure fluctuation that propagates

as a traveling wave. The choice of an open-ended cavity simplifies the analysis and

serves as a stepping stone to the next unit problem which includes pressure reflections

provoked by the acoustic boundaries of the duct.

Section 6.3 describes the third unit problem as the establishment of a 1L acoustic

longitudinal mode inside a closed duct using the harmonic velocity fluctuations from

Section 6.1. Departing from a quiescent fluid, a moving wall on the left end of the

duct is used to generate pressure fluctuations at the 1L mode frequency for one cycle

after which the wall stops its motion and the 1L mode acoustic pressure field is
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established. The fourth unit problem is described in Section 6.4 by combining the

analytical solution of the 1L mode acoustic field from Section 6.3 with an unsteady

heat release pulse with Gaussian spatial and temporal distribution from Section 3.3.

This unit problem includes pressure reflections in the analysis thereby approaching

the model one step closer to a real scenario.

The derivation of the present analytical models include the identification of rele-

vant length and time scales that are condensed into the Helmholtz number, He, the

phase shift between the longitudinal fluctuating pressure field and the heat source,

φpq, and ratio of the fluctuating periods, Θpq. The study parameters are selected to

be representative of the conditions in a rocket combustor. Finally, a comparison of

the analytical and numerical simulations is presented in Section 6.5.

6.1 Pressure Solution for a Harmonic Velocity Fluctuation in an Open-

ended Cavity

This case consists of a forcing harmonic velocity fluctuation that generates pres-

sure fluctuations in an open-ended one-dimensional cavity. To generate velocity fluc-

tuations, a moving surface on the left end of the cavity vibrates with an angular

frequency ω and a velocity amplitude uf (see Fig. 6.2).

The velocity fluctuation imparted by the moving surface reads as

us(t) = uf sin (ωt) (6.1)

Departing from the homogeneous acoustic wave equation, which is recalled here

∂2p1

∂t2
= c2

0

∂2p1

∂x2
(6.2)

We seek a pressure solution using the principle of separation of variables

p1(x, t) = η(t)ψ(x) (6.3)
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ω

Figure 6.2. Diagram of a moving surface generating harmonic velocity fluctuations.

Differentiating p1(x, t) following Eq. (6.2) yields to

ψ(x)η̈(t) = c2
0ψ
′′(x)η(t) (6.4)

where η̈(t) = ∂2η
∂t2

and ψ′′(x) = ∂2ψ
∂x2

, respectively. Rearranging Eq. (6.4) results in

η̈(t)

η(t)
= c2

0

ψ′′(x)

ψ(x)
= −λ2 (6.5)

For Eq. (6.5) to have solution, both quotients have to be equal to a constant (being

λ in this case). Thus, Eq. (6.5) can be separated into two equations each depending

on x and t. The equation for the temporal function η(t) is given by

η̈(t) + λ2η(t) = 0 (6.6)

Applying a harmonic solution η(t) = ejωt in Eq. (6.6), it follows that the constant

λ = ω. In turn, the equation for the spatial function ψ(x) reads as

c2
0ψ
′′(x) + λ2ψ(x) = 0 (6.7)

Eq. (6.7) has a harmonic solution ψ(x) = Xejkx, yielding to

ψ(x) = Aejkx +Be−jkx (6.8)
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where k = ω
c0

. Combining the harmonic temporal and spatial solutions, η(t) and

ψ(x), respectively, leads to the pressure solution

p1(x, t) = Aej(ωt+kx) +Bej(ωt−kx) (6.9)

where A corresponds to the complex constant for the left-traveling wave, and B to

the right-traveling wave. As there are no reflections moving leftwards due to the

vibrating surface, the left-traveling wave term is A = 0 [93], thereby simplifying Eq.

(6.9) into

p1(x, t) = Bej(ωt−kx) (6.10)

The fluctuating pressure and velocity are related through the linearized momentum

equation (Eq. (2.19)) as

∂u1

∂t
= − 1

ρ0

∂p1

∂x
=
jk

ρ0

Bej(ωt−kx) (6.11)

At the vibrating surface, the fluid velocity is equal to the surface velocity with the

condition u1(x = 0, t) = us(t), which extends to its temporal derivatives

∂u1

∂t
(0, t) =

jω

ρ0c0

Bejωt = ωuf cos (ωt) (6.12)

Rearranging the terms of Eq. (6.12), the complex constant B results in

B = −jufρ0c0 (6.13)

Taking the real part of p1(x, t) from Eq. (6.10), the pressure solution of a moving

rigid surface reads as

ph(x, t) = <
(
−jufρ0c0e

j(ωt−kx)
)

(6.14)
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The real part is equal to

For x > 0 ph(x, t) = ufρ0c0 sin

(
ω

(
t− x

c0

))
(6.15)

The velocity field can be computed using Eq. (2.19), reading as

For x > 0 uh(x, t) = uf sin

(
ω

(
t− x

c0

))
(6.16)

6.2 Interaction of a Fluctuating Pressure Field with an Unsteady Heat

Release Pulse in an Open-ended Cavity

Since the acoustic wave equation Eq. (2.32) is linear, it admits the use of the

superposition principle so that a pressure solution can be derived by superposing

multiple particular solutions to the homogeneous solution. This case consists of the

superposition between a harmonic fluctuating pressure field and an unsteady heat

release pulse. The goal is to assess the effect of an unsteady heat release pulse on

the harmonic fluctuating pressure field after one cycle. The one-dimensional domain

is constrained by the moving surface on the left end (x = 0) but it is open-ended

on the right side (x = ∞). Since the right end is at x = ∞, there are no pressure

reflections from the right end. The pressure solution is then composed of the pressure

solution for a harmonic velocity fluctuation presented in Section 6.1, and the pressure

response to a heat release pulse with Gaussian spatial and temporal distribution as

described in Section 3.3.

p1(x, t) = ph(x, t) + pq(x, t) (6.17)

where ph(x, t) is the homogeneous solution from Eq. (6.15) and pq(x, t) is the par-

ticular solution corresponding to the pressure pulse from Eq. (3.35). The unsteady

heat release pulse is given by the heat source profile q1(x, t) from Eq. (3.25). The

pressure response to the heat source with Gaussian spatial and temporal distribution
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Eq. (3.35) is recalled here, displacing the center of the heat source a distance xf from

the origin

pq(x, t) =

Ap,2

[
exp

−( x−xf
c0
− (t− tc)√
2σtζxt

)2
{erf ( x−xf

c0
+ (ζ2

xt − 1)(t− tc)
τacζxt

)

− erf

(
x−xf
c0
− t− (ζ2

xt − 1)tc

τacζxt

)}
+ exp

−( x−xf
c0

+ (t− tc)√
2σtζxt

)2
 ·

{
erf

(
−x−xf

c0
+ (ζ2

xt − 1)(t− tc)
τacζxt

)
+ erf

(
x−xf
c0

+ t+ (ζ2
xt − 1)tc

τacζxt

)}]
(6.18)

where xf represents the center of the “flame”, which in this case is the center of

the heat source in a non-reacting fluid. The phase shift between the longitudinal

fluctuating pressure field ph(x, t) and the heat source q1(x, t) is given by

φpq = ∠phq1 (6.19)

This phase shift can be set as an independent parameter of the study. The time

parameters of the heat source can be a made function of the phase between the

pressure and heat release as follows

thab =
xf
c0

+
1

ω

(π
2

+ φpq + 2kc1π
)
− ∆tha

2
(6.20)

where kc1 ensures that thab > 0 as follows

kc1 =

⌈
1

2π

(
ω∆tha

2
− ωxf

c0

− π

2
− φpq

)⌉
(6.21)

where dxe is the ceiling of x. In addition, ∆tha = thae − thab and tc = (thab + thae)/2.

The period of the fluctuating pressure field ph(x, t) is given by

τh =
2π

ω
(6.22)
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In turn, the period of the pressure pulse caused by the unsteady heat release source

depends on the Helmholtz number He from Eq. (3.14), which is recalled here

Heq =
τac

∆tha
=

√
2σx

c0∆tha
(6.23)

Assuming σx = Lha/7, the above expression becomes Heq =
√

2Lha
7c0∆tha

. In addition,

there is another relevant Helmholtz number that relates the flame thickness (i.e. heat

source length scale Lha) with the harmonic fluctuating pressure field wavelength as

follows

Hef =
ωLha
2πc0

(6.24)

After reaching the far field response (x− xf > Lff ), the period of the pressure pulse

from Eq. (6.18) can be approximated to

τq ≈ 5
√

2σtζxt = 5∆tha

√
2

72
+He2 (6.25)

where the right-most expression assumes that σt = ∆tha/7. The result of Eq. (6.25)

confirms the analysis of the compact and noncompact regimes from Chapter 3:Compact regime: Heq � Hecr → τq ≈ ∆tha

Noncompact regime: Heq � Hecr → τq ≈ Lha
c0

The ratio of both periods, Θpq, is an important relationship for the interaction of

the fluctuating pressure field with the unsteady heat release pulse

Θpq =
τh
τq

(6.26)
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The far field pressure can be computed combining Eq. (6.15) and the far field

value from Table 3.2, reading as

For x− xf > Lff pff,pq = p0 + ph0 sin
(π

2
+ φpq

)
+

(γ − 1)Eha

4
√

2πc0σtζxtHhaWha

[
1 + erf

(
ζxt∆tha

2τac

)] (6.27)

where ph0 = ufρ0c0 and is the amplitude of the fluctuating pressure ph(x, t).

Fig 6.3 depicts the amplitude of the combination of the fluctuating pressure field

with the pressure pulse caused by the unsteady heat source, as described in Eq. (6.27).

As expected, the amplitude of the combined pressure fluctuation is maximum when

the unsteady heat release source is in phase with the fluctuating pressure field, i.e.

φpq = 0, φpq = 2π. In addition, higher Helmholtz numbers of the heat release source

lead to higher pressure fluctuation amplitudes. This effect comes from the result

depicted in Fig. 3.14, which shows that, for a given heat release length scale Lha, the

amplitude of the pressure pulse grows as He increases until reaching the maximum

value corresponding to the constant volume limit.

A parametric analysis of the far field pressure fluctuation amplitude from Eq.

(6.27) is presented in Fig. 6.4(L). The parameters used in the results from Fig. 6.3

and Fig. 6.4 are presented in Table 6.2. The maximum far field far field pressure

in Fig. 6.4 (L) is mapped for a range of Hef and Heq values so as to reflect the

trends of the pressure fluctuation amplitudes for different conditions. As shown in

Fig. 6.4(L), the amplitude of the far field pressure fluctuation increases for lower

Hef values which corresponds to concentrating the heat release source to smaller

length scale Lha. In addition, there is a very clear distinction in the trends marked

by the critical Helmholtz number of the heat source Heq,cr =
√

2/7. Below Heq,cr,

for compact cases, the isolines of the maximum far field pressure amplitude follow a

linear trend with Hef . In contrast, above Heq,cr, for noncompact cases, the isolines

follow a vertical line with fixed Hef . Fig. 6.4(R) shows that the ratio of periods
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Figure 6.3. Evolution of the far field pressure of a harmonic pressure fluctuation in-
teracting with a heat release pulse with a Gaussian spatial and temporal distribution,
for different Helmholtz numbers and constant heat addition length Lha, and energy
Eha/(HhaWha) = 5000 J/m2.

Figure 6.4. Map of the maximum far field pressure (L) and ratio of periods (R) of a
harmonic pressure fluctuation interacting with a heat release pulse with a Gaussian
spatial and temporal distribution. In the left plot, the constant heat addition qha
lines range from 107 to 1014 W/m3 growing from right to left. Parameters: f = 5000
Hz, φpq = 0, and Eha/(HhaWha) = 5000 J/m2.
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follows the same trends as the maximum far field pressure amplitude. The pressure

amplitude thus grows with Θpq.

6.3 Establishment of a Longitudinal Acoustic Mode in a Combustor

In contrast with the open-ended cavity from the previous case in Section 6.2, a

combustor is a cavity that is constrained by boundaries from all sides such as inlets,

outlets, walls, inter-alia. In a one-dimensional case, a combustor can be represented

by a constant area duct of length L. The combustor can be modeled with different

types of boundary conditions such as a plenum (p1 = 0), a wall (u1 = 0), or a complex

function representing a more realistic impedance such as a nozzle.

This case consists of the establishment of a longitudinal acoustic mode in a com-

bustor. The case can be derived using the pressure solution from Eq. (6.9) and

applying appropriate boundary conditions. In a real combustor, x = 0 represents the

dump plane whereas x = L represents the nozzle entrance. In a simplified scenario,

both ends can be modeled with a wall condition, i.e. u1(0, t) = u1(L, t) = 0. Using the

linearized momentum equation Eq. (2.19), the velocity fluctuation can be computed

on the pressure solution from Eq. (6.9) as follows

∂u1

∂t
= − 1

ρ0

∂p1

∂x
=

jω

ρ0c0

[
−Aej

(
ωt+ ω

c0
x
)

+Be
j
(
ωt− ω

c0
x
)]

(6.28)

Integrating Eq. (6.28) with respect to time the velocity fluctuation reads as

u1(x, t) =
1

ρ0c0

[
−Aej

(
ωt+ ω

c0
x
)

+Be
j
(
ωt− ω

c0
x
)]

(6.29)

Applying the boundary condition at left boundary of the combustor, u1(0, t) = 0,

leads to A = B. Then, applying the boundary condition at right boundary, u1(L, t) =

0 results in the following condition

cos

(
2ωL

c0

)
= 1 (6.30)
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Eq. (6.30) is satisfied by the duct resonant frequencies, ωn, which read as

ωn =
nπc0

L
with n = 1, 2, 3, ... (6.31)

At these frequencies the pressure oscillations do not decay [6]. Thus, the pressure

solution becomes

p1(x, t) = A

[
e
j
(
ωnt+

ωn
c0
x
)

+ e
j
(
ωnt−ωnc0 x

)]
(6.32)

A longitudinal acoustic mode can be established by applying harmonic velocity

fluctuations on the left end (x = 0) of the combustor during one cycle (T = 2π
ω

),

and then letting the ensuing pressure waves propagate back and forth across the

combustor. The harmonic velocity fluctuations are generated by the moving surface

described in Section 6.1 with the following velocity profile 0 ≤ t ≤ 2π
ωn

→ us(t) = uf sin (ωnt)

t > 2π
ωn

→ us(t) = 0

(6.33)

In this way, the solution from Eq. (6.32) can be related to Eq. (6.15) by setting

the complex constant A equal to B = −jufρ0c0 from Eq. (6.13). Taking the resulting

real part from Eq. (6.32), the pressure solution for the longitudinal acoustic mode

reads as

pL(x, t) = <
(
−jufρ0c0

[
e
j
(
ωnt+

ωn
c0
x
)

+ e
j
(
ωnt−ωnc0 x

)])
(6.34)

The real part from Eq. (6.34) is given by

pL(x, t) = ufρ0c0

[
sin

(
ωnt−

ωn
c0

x

)
+ sin

(
ωnt−

ωn
c0

x

)]
(6.35)
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Figure 6.5. Pressure trace comparison of the solution of a 1L longitudinal acoustic
mode with the resulting pressure field started with a moving surface fluctuating over
one full cycle. Parameters: L = 0.1 m, n = 1, and uf = 20 m/s.

Figure 6.6. Normalized longitudinal acoustic mode shapes for the first three modes.
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Rearranging the sine terms from Eq. (6.35), the pressure solution of a longitudinal

acoustic mode established after the vibration of the left wall of the duct for one full

cycle with a harmonic velocity fluctuation results in

pL(x, t) = 2ufρ0c0 cos

(
ωn
c0

x

)
sin (ωnt) (6.36)

In contrast with Eq. (6.15), which represents a right-traveling wave, the pressure

solution of a longitudinal acoustic mode from Eq. (6.36) is a standing wave that varies

over time in an harmonic fashion. In addition, the longitudinal acoustic pressure mode

shapes are given by

p̂L(x) = 2ufρ0c0 cos
(nπx
L

)
with n = 1, 2, 3, ... (6.37)

After one full cycle, i.e. t > 2π
ωn

, the resulting pressure field started with the

moving surface from Eq. (6.33) will match the pressure solution from the longitudinal

acoustic mode of Eq. (6.36), as shown in Fig. 6.5. The numerical integration of Fig.

6.5 has been performed by integrating Eq. (6.38) with a central differences spatial

discretization and Runge-Kutta 4 time marching scheme.


∂u1

∂t
= − 1

ρ0

∂p1

∂x
∂p1

∂t
= −ρ0c

2
0

∂u1

∂x

(6.38)

The first equation from Eq. (6.38) is the linearized momentum equation Eq.

(2.19), whereas the second equation comes from Eq. (2.30) with the absence of a

heat source term.

In Fig. 6.5 (R), the pressure fluctuation is zero after one cycle since x = L/2 is

a pressure node in the 1L longitudinal acoustic mode. Fig. 6.6 shows the first three

longitudinal modes, clearly marking the presence of pressure nodes and anti-nodes.
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6.4 Interaction of a 1L acoustic Mode with an Unsteady Heat Release

Pulse

The pressure response to a Gaussian spatial and temporal distribution from Eq.

(3.35) consists of a left and right-traveling wave, pq(x, t) = A− (x, t) +A+ (x, t). The

left-traveling wave reads as

A− (x, t) = Ap,2 exp

(
−
( x

c0
+ (t− tc)√

2σtζxt

)2
){

erf

(
− x
c0

+ (ζ2
xt − 1)(t− tc)
τacζxt

)

+erf

(
x
c0

+ t+ (ζ2
xt − 1)tc

τacζxt

)} (6.39)

and the right-traveling wave is given by

A+ (x, t) = Ap,2 exp

(
−
( x

c0
− (t− tc)√

2σtζxt

)2
){

erf

(
x
c0

+ (ζ2
xt − 1)(t− tc)
τacζxt

)

−erf

(
x
c0
− t− (ζ2

xt − 1)tc

τacζxt

)} (6.40)

Eq. (3.35) is the pressure response to an unsteady heat release pulse in an un-

confined one-dimensional domain. If the same unsteady heat source was introduced

inside a 1D duct, the boundaries at x = 0 and x = L would provoke pressure re-

flections. The 1D duct boundary conditions at x = 0 and x = L are assumed to

behave as walls. The wall boundary condition is modeled as a pressure plane-wave

reflection at a flat rigid surface, with the condition ~u(xs, t) · ~ns = 0, where xs is the

x-coordinate of the wall surface and ~ns is the normal vector of the surface. Alter-

natively, this boundary condition can be expressed as ∂
∂x
p(xs, t) = 0. In this way,

the ~u(xs, t) · ~ns = 0 condition requires that (~uI + ~uR) · ~ns = 0 at x = xs [90], where

the subscript I stands for incident wave and R for the reflected wave at the surface,

respectively. Using these boundary conditions, Table 6.1 presents the relationship

between the initial left and right travelling waves from Eq. (6.39) and Eq. (6.40)
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Figure 6.7. Pressure trace for the heat release pulse left-traveling wave (L) and right-
traveling wave (R), and their reflections against the duct walls at x = 0 and x = L,
respectively. Parameters: L = 0.1 m, Lha = L/10, ∆tha = L

5c0
, xf = L/3, and

thab = 0.

with their corresponding reflections at the walls in x = 0 and x = L, as shown in Fig.

6.7.
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Table 6.1. Expressions for the heat release pulse left and right-traveling waves and
their reflections against the combustor walls at x = 0 and x = L. Where 0 ≤ xf ≤ L.

Incident left-traveling wave Reflection at x = 0

A− (x− xf , t) A+ (x+ xf , t)

Incident right-traveling wave Reflection at x = L

A+ (x− xf , t) A− (x+ xf − 2L, t)
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Based on the expressions from Table 6.1, we can build a pressure solution to the

heat release pulse that propagates back and forth between the two walls of the duct

for Nc cycles as follows

pq(x, t) =
Nc∑
k=0

A+ (x− xf + 2kL, t) + A− (x+ xf − 2L (k + 1) , t)

+A− (x− xf − 2kL, t) + A+ (x+ xf + 2kL, t)

(6.41)

The number of cycles Nc represents the number of times the pressure pulse resonates

inside the duct before fading away due to loss mechanisms such as viscosity and heat

conduction. In the analytical model there are no loss mechanisms as it based on the

acoustic wave equation, and hence, a pressure pulse would reflect against the duct

walls an infinite number of times. Therefore, Nc is introduced in the model as an

artifice in order to provoke the extinction of the pressure pulse after a few 1L mode

cycles. This artificial parameter is used to better approach the numerical model as the

latter contains loss mechanisms that will provoke the decay of the pressure pulse over

time. In this case, the assumption of wall boundary conditions with perfect reflection

leads to pick a small Nc so as to be more representative of actual scenarios in a

combustor, in which a large unsteady heat release pressure pulse will decay rapidly.

As in the previous case, the phase shift φpq = ∠pLq1 between the longitudinal

acoustic mode and the heat release pulse can be set as an independent parameter of

the study. Thus, the heat source time parameters can be related to the phase between

the pressure and heat release as follows

thab =
1

ω

(π
2

+ φpq + 2kc2π
)
− ∆tha

2
(6.42)

where kc2 ensures that thab > 0 as follows

kc2 =

⌈
1

2π

(
ω∆tha

2
− π

2
− φpq

)⌉
(6.43)
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ω ≤ ≤ π ω

π ω

Figure 6.8. Superposition of an acoustic longitudinal mode and an unsteady heat
release pulse in a 1D duct.
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Since the acoustic wave equation admits the principle of superposition, the inter-

action of a longitudinal acoustic mode with an unsteady heat release pulse can be

derived from the combination of the two individual solutions as follows

p1(x, t) = pL(x, t) + pq(x, t) (6.44)

where pL(x, t) comes from Eq. (6.36) and pq(x, t) from Eq. (6.41), respectively. As

described in Section 6.3, pL(x, t) is the solution of the longitudinal acoustic mode once

it is fully established. To reach the 1L mode acoustic pressure field departing from

a fluid at rest, the wall at x = 0 vibrates during one full cycle following the velocity

profile from Eq. (6.33). Fig. 6.8 depicts the construction of this superposition model

by following the next steps:

1. Establishment of the 1L acoustic mode (0 ≤ t ≤ ω
2π

)

2. 1L mode fully established (t > ω
2π

)

3. Heat release pulse applied

4. Interaction of 1L mode with heat release pulse, along with pressure reflections

against the duct walls

Parametric analyses of the pressure solution to the interaction of a 1L acoustic

mode with an unsteady heat release pulse from Eq. (6.44) are presented in Figs.

6.9 - 6.10. The parameters for these results are described in Tables 6.2 - 6.3. Figs.

6.9 - 6.10 depict the maximum amplitude of the resulting pressure fluctuation for a

short heat release pulse typical of combustors 1L mode, and a long heat release pulse

representing a chugging or bulk mode, respectively. In both cases, the heat release

pulse center location xf and phase with the 1L mode pressure field φpq is varied in

order to study the effects of the “flame” location and its relative phase with the

pressure.

The short pulse case in Fig. 6.9 features a shorter heat release duration (∆tha =

τ1L/10) than the period of the 1L mode (τ1L = c0
2L

), whereas the bulk mode case of
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Figure 6.9. Short heat release pulse for a 1L mode. Evolution of the maximum
pressure in the interaction between a 1L acoustic mode and a heat release source
with Gaussian spatial and temporal distribution.

Figure 6.10. Heat release pulse representing a bulk mode. Evolution of the maximum
pressure in the interaction between a 1L acoustic mode and a heat release source with
Gaussian spatial and temporal distribution.

Fig 6.10 has a heat release pulse with a longer duration (∆tha = 3τ1L). By comparing

these two characteristic cases it is possible to discern the effect of the heat release

duration on the interaction of a 1L acoustic mode with an unsteady heat release pulse.

As shown in Fig. 6.9, for flame locations very close to the left wall and short

heat release pulses (∆tha < τ1L), the maximum amplitude of the resulting pressure
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Figure 6.11. Pressure trace (T) and its decomposition (B) of the interaction between
a 1L acoustic mode and a heat release source with Gaussian spatial and temporal
distribution. Short heat release pulse for a 1L mode (L) and heat release pulse
representing a bulk mode (R). Nc = 2 for both cases.
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fluctuation occurs when the unsteady heat release pulse is in phase with the 1L

compression of the acoustic mode, i.e. φpq = 0, 2π. When the heat release pulse occurs

during the expansion of the 1L mode, i.e. φpq = π, the resulting maximum pressure

falls back to the baseline amplitude of the 1L acoustic mode |pL|= 2ufρ0c0 (assuming

max(pq) < |pL|). However, as the flame location xf moves away from x = 0, the

optimum phase between the unsteady heat release pulse and the 1L acoustic mode

changes. This variation of the optimum φpq as a function of xf is caused by the fact

that the unsteady heat release pulse will take a time xf/c0 and (L− xf )/c0 to reach

the walls at x = 0 and x = L, respectively. Therefore, short heat release pulses

with respect to the 1L mode exhibit a variation of the maximum resulting pressure

fluctuation as a function of the flame location and the phase between the heat release

pulse and the 1L mode.

In contrast with the short heat release pulse behavior from Fig. 6.9, the bulk mode

heat release pulse from Fig. 6.10 reveals that for long heat release duration (∆tha >

τ1L) the resulting amplitude of the pressure fluctuation is independent from the flame

location and the phase between the heat release pulse and the 1L mode. Indeed,

a heat release pulse with a long duration with respect to the 1L mode effectively

behaves as a bulk mode or chug mode, with no spatial or phase dependence of the

flame.

Fig. 6.11 depicts the pressure trace and its decomposition of the short and bulk

mode heat release pulses for a given spatial location, flame location and phase. For

the short heat release pulse case shown in Fig. 6.11 (L), the unsteady heat release

pulse rides on top of the pre-existing 1L mode and bounces back and forth the walls

at x = 0 and x = L. For xf = 0 the combination of the unsteady heat release pressure

pulse and the 1L mode leads to the maximum pressure from all the flame locations

(only equaled at x = L). In turn, the bulk mode heat release pulse presented in Fig.

6.11 (R) exhibits a much smoother increase in the pressure fluctuation caused by the

unsteady heat release pulse that lasts several 1L mode cycles. In this case, the slow

bulk mode pressure pulse gradually varies the overall mean pressure level so that the
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1L acoustic mode maintains its harmonic behavior but displaced to higher and lower

baseline pressures based on the heat release pulse.

6.5 Comparison of Analytical and Numerical Results

6.5.1 Simulation Setup

This case study consists of the interaction of an unsteady heat release pulse with

a 1L longitudinal acoustic mode in a 1D duct, as presented in Section 6.4. Initially

the fluid is quiescent, and then the wall at x = 0 vibrates at a frequency ω = nπc0
L

,

with n = 1 in order to generate pressure oscillations that match the frequency of the

first longitudinal mode of the combustor. As described in Section 6.3, after one full

cycle the wall at x = 0 stops its motion and the 1L mode acoustic pressure field is

established. Once the 1L mode is fully established, an external heat source with a

Gaussian spatial and temporal distribution generates a pressure pulse that interacts

with the pre-existing 1L mode pressure field. The external heat source is not affected

by the 1L mode pressure field, but considered as an independent source. The walls at

x = 0 and x = L provoke pressure reflections on the resulting pressure response. In

addition, the number of cycles that the unsteady heat release pulse reflects against

the walls has been set to Nc = 4. This number of cycles has been chosen in order to

better approach the analytical solution to the numerical simulation, so as to better

represent the fact that large unsteady heat release pressure pulses only reflect a few

cycles before rapidly decaying.

Highly-resolved numerical simulations have been conducted using GEMS with the

aim of investigating the accuracy and limitations of the analytical solutions derived

in Section 6.4. The computational domain is depicted in Fig. 6.12 and it consists of

a two-dimensional cavity with dimensions L x H of 100 mm x 0.1 mm, respectively.

During the establishment of the 1L mode (0 ≤ t ≤ 2π
ω

), the wall at x = 0 is modeled as

a viscous, adiabatic wall that vibrates in a sinusoidal fashion at an angular frequency

ω. After the 1L mode is established (t > 2π
ω

), the same wall is modeled as an inviscid,
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π ω

𝜌

Figure 6.12. Schematic of the computational domain used in the numerical simula-
tions.



198

Table 6.2. Perfect gas mean flow properties like that of CO2 and parameters used
for all the analytical and numerical simulations of Chapter 6.

p0 T0 u0 uf L f = ω
2π

ρ0 c0 γ0

(MPa) (K) (m/s) (m/s) (m) (Hz) (kg/m3) (m/s) (-)

1.0 500.0 0.0 20.0 0.1 1703.6 10.59 340.72 1.2253

adiabatic wall. The wall at x = L is modeled as an inviscid, adiabatic wall throughout

the whole simulation. The unsteady heat release is modeled as an external heat source

in the energy equation, centered around xf = L/4. The total number of cells is 25,000,

and the mesh is divided in 200 partitions. The structured grid has an uniform cell

size with ∆x = ∆y = 20 µm. To accurately capture the transient and several 1L

mode acoustic cycles, the time step is limited to 50 ns and the simulations capture 5

ms of physical time.

6.5.2 Results Discussion

Two representative cases commonly found in liquid rocket engines combustion in-

stabilities are presented in this section, corresponding to a typical short heat release

pulse for a 1L mode and a heat release pulse representing a bulk mode. The param-

eters for both cases are presented in Table 6.3. In addition, Section 6.4 also shows

results on these two cases in Fig. 6.9 and Fig. 6.10.

In the short heat release pulse case, the heat addition duration (∆tha) is a tenth of

the 1L mode period (τ1L), whereas the bulk mode heat release pulse duration is three

times as long. Thus, the short heat release pulse case represents a typical unsteady

heat release event occurring in the 1L mode cycle that will trigger a pressure pulse.

These type of events can for instance be caused by the quick combustion of a pocket

of mixed propellants that in the recirculation zone close to the dump plane of a

combustor. In contrast, the chug pulse represents a combustion process driven by the

bulk pressure of the combustor. The acoustic dynamics of a combustor interconnected
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Table 6.3. Parameters of the two cases of Section 6.5.

Case Eha
HhaWha

qha Heq Hef Lha xf τ1L ∆tha Θpq φpq

(J/m2) (W/m3) (-) (-) (m) (m) (s) (s) (-) (rad)

Short pulse 5000 8.52·109 0.101 0.05 L
10

L
4

2L
c0

τ1L
10

8.85 0

Bulk pulse 50000 2.84·109 0.0034 0.05 L
10

L
4

2L
c0

3τ1L 0.33 0

with a pressure manifold may lead to a degree of Helmholtz resonance in the form of

an acoustic bulk mode, in which the chamber pressure varies at a low frequency with

no spatial variation of the pressure mode. As a reference, Fig 6.17 from [94] depicts an

example of a real liquid rocket engine experimental pressure trace featuring a strong

1L and chug modes.

Fig. 6.13 and Fig. 6.14 show the comparison of the pressure trace of the analytical

and numerical solutions for the short heat release pulse case for different spatial

locations. For the first two cycles of the 1L mode (ωt
2π

< 2) the analytical solution

is able to follow the pressure trace of the numerical solution with a fair level of

agreement. However, as time progresses the numerical simulation quickly deviates

very significantly from the analytical solution.

The main cause for the discrepancy between the analytical and numerical solution

for both cases is the steepening of the pressure waves with the eventual formation

of weak shocks. This nonlinear acoustic phenomenon is described in more detail in

Section 6.6. As the pressure waves propagate with the local speed of sound, and

the latter is a function of the local temperature, the compression portion of the wave

propagates at a faster speed than the rarefaction portion, leading to a distortion of the

wave front. In the compression portion of the wave front, the velocity and temperature

gradients increase monotonically over time until forming a weak shock. At this point,

the assumption of negligible viscosity and heat conduction is no longer valid, so that

the isentropic relations no longer apply. The weak shock wave propagates at the at

the local sound speed.
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Figure 6.13. Short heat release pulse for a 1L mode. Comparison of the analytical
and numerical solution of the interaction between a 1L acoustic mode and a heat
release source with Gaussian spatial and temporal distribution.
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Figure 6.14. Short heat release pulse for a 1L mode. Comparison of the analytical
and numerical solution of the interaction between a 1L acoustic mode and a heat
release source with Gaussian spatial and temporal distribution.
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Figs. 6.15 - 6.16 present the comparison between the analytical and numerical

solutions for the bulk mode heat release pulse. As it occurred in the short heat re-

lease pulse case, the analytical solution follows the numerical solution with a good

agreement until the second cycle of the 1L mode. After the second cycle, the numer-

ical solution quickly differs from the analytical solution due to mostly the nonlinear

steepening of the wave front.

For both cases, away from the pressure node (at x = 0.5L), the analytical solution

is able to capture with a reasonable degree of accuracy the pressure amplitude of the

numerical solution for the fist few cycles of the 1L mode. After several cycles, the

nonlinear weak shock formation and propagation, as well as the effects of viscous losses

provoke the pressure amplitude of the numerical solution to decay. Since the analytical

solution is based on the acoustic wave equation, which neglects loss mechanisms such

as viscous losses or heat conduction, it cannot predict the decay of the amplitude

of the pressure waves. Furthermore, the analytical model assumes that the pressure

waves propagate at a constant speed of sound c0, whereas in reality pressure waves

propagate at the local speed of sound, which provokes the steepening of the wave

front and eventual weak shock formation. In addition, as described in Eq. (6.50), the

irreversibility of shocks provokes their amplitude decay over time.

Fig. 6.17 shows an experimental pressure trace in a liquid rocket engine with

strong 1L and chug modes. The comparison of the pressure trace from Fig. 6.17 with

Figs. 6.13-6.16 reveals that real rocket combustors exhibit steep fronted waves and

weak shocks that differ significantly from harmonic pressure fluctuations. Whereas

highly-resolved numerical simulations are able to capture the nonlinear dynamics

of real combustors, analytical models based on the acoustic wave equation will not

be able to predict weak shocks or the effects of loss mechanisms (viscosity, heat

conduction).
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Figure 6.15. Heat release pulse representing a bulk mode. Comparison of the analyt-
ical and numerical solution of the interaction between a 1L acoustic mode and a heat
release source with Gaussian spatial and temporal distribution.
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Figure 6.16. Heat release pulse representing a bulk mode. Comparison of the analyt-
ical and numerical solution of the interaction between a 1L acoustic mode and a heat
release source with Gaussian spatial and temporal distribution.
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Figure 6.17. Example of experimental pressure trace in a liquid rocket combustor
(Source [94]). Pressure trace at 0.3” downstream the dump plane for the case Tox =
730 K.
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6.6 Nonlinear effects

In contrast with electromagnetic waves, which propagate at the constant speed of

light (an absolute constant), acoustic pressure waves propagate with the local speed

of sound, c.

c2 =
∂p

∂ρ

∣∣∣
s

(6.45)

For an ideal gas, the speed of sound is given by

c =
√
γRT =

√
γp

ρ
(6.46)

Using the isentropic relationship p/ργ = constant, Eq. (6.46) becomes

c =

√
γp0

ρ0

(
ρ

ρ0

)γ−1

= c0

(
ρ

ρ0

) γ−1
2

(6.47)

Using the linearized state variables, ρ = ρ0 + ρ1 and p = p0 + p1, the speed of sound

reads as

c = c0

(
1 +

ρ1

ρ0

) γ−1
2

= c0

(
1 +

p1

p0

) γ−1
2γ

(6.48)

With γ > 1, Eq. (6.48) shows that the portion of pressure fluctuations above the

mean flow p0 will propagate at a higher local speed of sound than c0, thereby steep-

ening the compression portion of the pressure fluctuations. On the contrary, in the

rarefaction portion the pressure fluctuations are below the mean flow p0, and hence,

propagate at a lower local speed of sound than c0. The steepening of wave fronts and

formation of shocks are derived from the momentum equation in the Navier-Stokes

equations. Indeed, the ~u · ∇~u term from the velocity substantial derivative from Eq.

(2.2) D~u
Dt

= ∂~u
∂t

+~u·∇~u is responsible for the wave steepening, which provokes the even-

tual formation of shocks. However, the viscous terms of the Navier-Stokes equations

generate a dissipating effect that competes with the wave steepening.

In liquid rocket combustors, in extreme cases of combustion instabilities, the large

amplitude pressure fluctuations may evolve into weak shocks [91]. These weak shocks
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are caused by the steepening of the wave front due to the dependence of the speed of

sound on the local temperature, as well as due to unsteady heat release pulses with

very large heat release rates [63, 95].

If no shocks are present, nonlinear effects do not change the net acoustic energy

associated with a pulse, but they cause a rearrangement of the frequency distribution

of the energy [90]. However, once shocks form, their peak pressure decreases over the

distance [90,96]. From [90], the net energy per unit area transverse to the propagation

direction for a pulse of finite duration is given by

E(t) =
1

ρc2

∫ ∞
−∞

p2dx (6.49)

For the case in which there is a shock present, Pierce [90] presents an expression for

the energy time rate of change from Rudnick [97], which reads as

dE

dt
= − β

6ρ2c3
[f(φ−)− f(φ+)]3 = −ρcT0∆s (6.50)

where T0 is the temperature, β is the coefficient of thermal expansion (fractional in-

crease in volume per unit increase in temperature at constant pressure), and ∆s is

the entropy change across the shock, respectively. Eq. (6.50) reveals that the pres-

ence of shock waves causes the energy in the pressure wave to decrease over time

due to the entropy increase across the shock, ∆s > 0. Nonlinear effects can there-

fore provoke dissipation of acoustic energy even when no dissipation mechanisms are

explicitly considered (i.e. no viscosity or heat conduction) [90]. Since the analytical

model assumes a constant speed of sound c0, and it neglects viscous losses and heat

conduction, it cannot capture these nonlinear gas dynamics phenomena.

As an example of these nonlinear gas dynamics phenomena, Fig. 6.18 from [96]

shows the evolution over the distance of an originally sinusoidal pressure wave evolv-

ing into a sawtooth profile due to nonlinear steepening of the wave front. The initial

sinusoidal wave steepens its profile over the distance due to the temperature depen-

dence on the local speed of sound until it eventually becomes a weak shock. Once the
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Figure 6.18. Shock amplitude of an originally sinusoidal wave. Inset depicts the
waveform at various distances from the source (Source [96]).

shock forms, the peak pressure decays over the distance as described in Eq. (6.50).

For an originally sinusoidal pressure wave evolving into a sawtooth profile, Pierce [90]

provides the following expression to compute the peak overpressure at fixed x at large

distances, reading as

pmax(x) ≈ P0πx̄

x
=
πρc3

βωx
(6.51)

Therefore, the shock peak overpressure decreases inversely with x, which is a phe-

nomenon known as saturation. Indeed, the numerical results from Figs. 6.13-6.16

show that the weak shocks peak pressure decays over time. This pressure decay

is caused by the aforementioned effects as well as losses due to viscosity and heat

conduction.

6.7 Summary

This chapter studied the interaction of an unsteady heat release pulse with a lon-

gitudinal acoustic mode on a one-dimensional duct with a non-reacting gas mixture.

Analytical solutions based on the acoustic wave equation have been derived for four

unit problems to evaluate and quantify how pressure fluctuations due to unsteady heat
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release amplify a longitudinal acoustic mode. These analytical models have been then

compared against highly-resolved numerical simulations to asses the nonlinear effects

and the limitations of the acoustic wave equation. Four different unit problems with

their corresponding analytical solutions have been derived throughout the chapter.

The study parameters have been selected to be representative of the conditions in a

rocket combustor. Relevant length and time scales such as the Helmholtz number,

the phase shift between the fluctuating pressure field and the heat source, and ratio

of the fluctuating periods are identified in the derivation of the analytical models.

The first unit problem of the chapter presents an analytical model of the pressure

response to a moving rigid surface that generates a velocity harmonic fluctuation in

a one-dimensional open-ended cavity. The second unit problem combines the pre-

vious analytical solution from the velocity harmonic fluctuation with the pressure

response to an unsteady heat release pulse with Gaussian spatial and temporal dis-

tribution developed in Chapter 3. The analysis of the relevant time scales confirmed

the behavior encountered for compact and noncompact regimes in Chapter 3. The

maximum amplitude of the combined pressure fluctuation is reached when the fluc-

tuating pressure field is in phase with the unsteady heat release source. There are

two relevant Helmholtz number that influence the amplitude of the resulting pressure

fluctuations. On the one hand, the heat source Helmholtz number, Heq, relates the

characteristic acoustic time with the duration of the heat release pulse. On the other

hand, Hef , represents the ratio of the flame thickness over the fluctuating pressure

field wavelength. The amplitude of the pressure fluctuations increases with the heat

source Helmholtz number, Heq. The parametric analysis also reveals that the critical

Helmholtz number of the heat source Heq,cr marks the onset of the compact and

noncompact behavior. Reducing Hef effectively translates in concentrating the heat

source in a smaller characteristic length, thereby increasing the resulting pressure

fluctuation.

The third unit problem consists of the establishment of a 1L acoustic mode in

a 1D duct using the analytical solution of the first unit problem. In this case, the
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model takes into account the pressure reflections provoked by the acoustic boundaries

of the duct, both of which are assumed to be walls. The analytical solution models

the establishment of a 1L acoustic longitudinal using the solution from the harmonic

velocity fluctuations developed in the first unit problem. Departing from a quiescent

fluid, the wall on the left end of the duct vibrates in a harmonic fashion for one cycle

at the 1L mode resonance frequency. After vibrating for one full cycle, the left wall

stops its motion and the 1L acoustic mode pressure field is established.

The fourth, and last, unit problem combines the analytical solution of the 1L mode

acoustic field developed in the third unit problem with an unsteady heat release pulse

with Gaussian spatial and temporal distribution. Pressure reflections against the duct

walls are also included in the analysis in order to provide a more realistic model. The

model has been applied to two representative cases commonly encountered in com-

bustion instabilities of liquid rocket combustors, corresponding to a short heat release

pulse for a 1L mode and a long heat release pulse representing a bulk mode. A para-

metric analysis has been conducted to study the maximum amplitude of the resulting

pressure fluctuations as a function of the flame location and the phase between the

heat release pulse and the 1L acoustic mode. For the short heat release pulse, the am-

plitude of pressure fluctuations depends on the flame location and the phase between

the heat release pulse and the 1L mode. When the flame is close to the duct left wall,

the pressure is maximum when the heat release pulse is in phase with the 1L pressure

field. In contrast, in the bulk mode heat release pulse case, the resulting amplitude

of the pressure fluctuations is independent from the phase between the heat release

pulse and the 1L mode, and flame location. Indeed, the long duration of the heat

release pulse with respect to the 1L mode effectively drives the pressure response to

behaves as a bulk mode or chug mode, with no spatial or phase dependence of the

flame.

Finally, the analytical solution of the fourth unit problem has been compared

against highly-resolved numerical simulations in order to assess the accuracy and

limitations of the model, as well as the importance of nonlinear effects in modeling
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combustion instabilities. For both cases studies, the analytical solution is able to

capture with an acceptable degree of accuracy the pressure trace of the numerical

solution during the fist two cycles of the 1L mode. However, after a few cycles the

numerical solution quickly deviates very significantly from the analytical solutions

due to wave steepening and the formation of weak shocks. These nonlinear gas

dynamic effects are caused by the steepening of the wave front due to the temperature

dependence of the local speed of sound, as well as due to unsteady heat release

pulses with very large heat release rates [54, 87]. The analytical model does not

capture the steepening of the wave front and eventual weak shock formation as it

assumes a spatially constant speed of sound c0, whereas in reality the pressure wave

propagate at the local speed of sound. Since the acoustic wave equation used to

develop the analytical solutions also neglects loss mechanisms such as viscous losses

or heat conduction, it cannot predict the decay of the amplitude of the pressure waves.

In addition, other nonlinear phenomena such as the irreversibility of shocks provokes

the decay of their amplitude over time. All in all, models based on the acoustic wave

equation can provide a good understanding of the combustion instability behavior,

but not accurately predict the evolution of the pressure fluctuations as the nonlinear

effects play a major role in the combustion dynamics of liquid rocket engines.
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7. CONCLUSIONS

Combustion instabilities are a common phenomena in rocket combustors and other

high-performance chemical propulsion systems. Highly-resolved numerical simulation

of rocket combustors using detailed kinetics indicate that the presence of high rates

of heat release may question the constant pressure assumption. This research work

explored the effects of these high rates of heat addition on the local pressure as well as

the interactions between the acoustic field and heat release. Simplified unit problems

that dealt with some of the particular interactions of physical phenomena involved

in combustion instability have been used to decompose the entire problem. Seven

unit problems have been proposed in this study. Each of them analyzed fundamental

problems with simplified scenarios and then, more phenomena haven been added to

the analysis increasing the complexity to model a more realistic behavior.

In the first unit problem, departing from the acoustic wave equation, an analytical

model of the pressure response to an unsteady heat release source has been derived for

an unconfined one-dimensional domain. An uniform and initially quiescent perfect gas

with properties like that of CO2 is subjected to a heat release source with a Gaussian

spatial distribution with either a step or a Gaussian temporal profile. The magnitude

of the heat source is based on large eddy simulations of a rocket combustor using

detailed kinetics. The analytical solutions contain important length and time scales

that can be condensed into the Helmholtz number. This non-dimensional number

is defined as the ratio between the characteristic acoustic time and the duration of

the heat release pulse. For both heat source profiles, a critical Helmholtz number is

identified as a threshold to distinguish between two regimes of pressure response. For

compact cases, in the subcritical regime, the amplitude of the pressure response is

determined by the duration of the heat release and it is independent of the length

scale of heat source. Applied to a flame, this implies that the pressure fluctuation
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amplitude will only depend on the time rate of change of the heat release and not on

the flame thickness. For noncompact cases, above the critical Helmholtz number, the

amplitude of the pressure response is determined by both the length and time scales

of the heat source.

Whereas in compact cases the amplitude of the generated pressure pulse remains

constant over the distance, in noncompact cases the pressure pulse peaks at the center

of the heat source, and then decays until converging to a constant far field pressure

amplitude. As such, He represents an effective metric to determine to which extent

the pressure response to an unsteady heat release event approaches to a constant

pressure or a constant volume process. For He� Hecr, the pressure response tends to

a constant pressure process, whereas for He� Hecr the response tends to a constant

volume process. The analytical model shows that the maximum amplitude of the

pressure response to an unsteady heat release event is limited to the same constant

volume limit regardless of the temporal profiles of the heat sources considered.

The comparison between the analytical and high-fidelity numerical solutions re-

veals that, within its range of application, the analytical model effectively captures

the dynamics of the pressure response to an unsteady heat release event. Overshoots

in the pressure amplitude, however, are observed to be common for both the heat

sources. The density drop is shown to be overestimated in general and the pres-

ence of unphysical values indicate the limitations of the analytical assumptions for

extremes rates of heat release. The maximum temperature error is shown to depend

on He. In the heated zone, which determines the shape of the pressure pulse, the as-

sumption of constant mean flow properties is the major cause of discrepancy between

the analytical model and the numerical simulation. Away from the heated zone, the

numerical solutions reveal the presence of important nonlinear effects that are not

captured by methods based on the acoustic wave equation. Indeed, the addition of

extreme rates of heat release induces weak shocks in the pressure pulses.

The analytical models show a good agreement with the numerical simulations for

moderate values of heat release rate. This holds true while the flow conditions remain
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close to the model assumptions. Nevertheless, for large rates of heat release, the pres-

ence of nonlinear effects deviate the numerical solution from the analytical model. For

such large values, as the conditions separate ever more from the model assumptions,

such as the constant mean flow speed of sound, the analytical model cannot capture

the rapid accumulation of nonlinear effects. In liquid rocket combustors, in extreme

cases of combustion instabilities, the large amplitude pressure fluctuations may evolve

into weak shocks [91]. These weak shocks are caused by the steepening of the wave

front due to the dependence of the speed of sound on the local temperature, as well

as due to unsteady heat release pulses with very large heat release rates [63,95].

In Chapter 6 the analytical solution is able to capture with a reasonable degree of

accuracy the pressure amplitude of the numerical solution for the fist few cycles of the

1L mode. After several cycles, the nonlinear weak shock formation and propagation,

as well as the effects of viscous losses provoke the pressure amplitude of the numer-

ical solution to decay. Since the analytical solution is based on the acoustic wave

equation, which neglects loss mechanisms such as viscous losses or heat conduction,

it cannot predict the decay of the amplitude of the pressure waves. Furthermore, the

analytical model assumes that the pressure waves propagate at a constant speed of

sound c0, whereas in reality pressure waves propagate at the local speed of sound,

which provokes the steepening of the wave front and eventual weak shock formation.

In addition, the irreversibility of shocks provokes their amplitude decay over time.

Whereas highly-resolved numerical simulations are able to capture the nonlinear

dynamics of real combustors, analytical models based on the acoustic wave equation

will not be able to predict weak shocks or the effects of loss mechanisms such as

viscosity or heat conduction. All in all, models based on the acoustic wave equation

can contribute to providing a good understanding of combustion instabilities, but not

accurately predict the evolution of the pressure fluctuations as the nonlinear effects

play a major role in the combustion dynamics of liquid rocket engines.

From an application point of view based on the magnitudes of heat release, gas

turbines operate in an isentropic compression regime, liquid rocket engines experience
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weak shocks, and pressure-gain combustion devices feature strong shocks. For low

and moderate heat release rates, characteristic of gas turbines, models based on the

acoustic wave equation will show a good agreement in the prediction of the amplitude

and shape of the pressure response of a fluid to unsteady heat release events. How-

ever, this type of methods such as 1D acoustic models, network models, or Helmholtz

solvers, will overpredict the pressure response as the local speed of sound deviates

more than 5% from the mean flow value. For high-pressure liquid rocket engines,

these methods will accumulate significant errors, worsening with increasing operating

pressure due to the extreme rates of heat release. In addition, such methods will fail

to capture important nonlinear effects such as weak shocks, which are common in lon-

gitudinal acoustic modes of liquid rocket engine combustors [61]. Even though some

acoustic solvers can incorporate a time-varying mean speed of sound, their inability

to capture rapid increases in the local speed of sound due to unsteady combustion

will remain a source of error.

7.1 Recommendations

The numerical simulations have revealed the presence of nonlinear gas dynamics

effects that appear to be very important in the pressure response to unsteady heat

release. The current work has identified the main nonlinear phenomena such as wave

front steepening and the formation of weak shocks, which separate the analytical

solution from the real pressure response. It would be very useful to investigate in

detail at which point the assumptions from the analytical models start to break in

a real case. In particular, the investigation of the range of heat release values at

which the shocks start to form would greatly contribute to better assess the range of

operation in which acoustic models can be used versus more complex models.

The assumption of constant mean flow speed of sound appears to be the most

restricting assumption limiting the range of application of the acoustic wave equation

for predicting the pressure response to unsteady heat release. In order to test this
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assumption, it would be very practical to compare the relative accuracy of the ana-

lytical solution based on the acoustic wave equation with constant speed of sound, a

numerically-integrated acoustic wave equation with a temperature-dependent speed

of sound, a 1D Euler model with temperature-dependent speed of sound, and finally

highly-resolved Navier-Stokes equations.

Furthermore, the current model assumes zero Mach number for the mean flow.

Although this assumption greatly simplifies the derivation, it also eliminates any

convective effects such as entropy waves. It would be very useful to test the current

models in cases with low mean flow velocity, such as a planar flame in a 1D duct with

an inlet and outlet as boundaries.

This work showed that the Helmholtz number represents an effective metric to

determine to which extend a combustion process tends to either a constant pressure

or a constant volume process. This analysis was then applied to a real combustor,

the CVRC, in order to assess the regime of the combustion flame. Although this

application was focused on gaining a deeper understanding of the fundamental com-

bustion process, the use of the Helmholtz number could also be extended to inform

the development of numerical combustion models for LES.
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A. APPENDIX A

A.1 Total Heat for Gaussian Spherical Distribution and Step Temporal

Profile

The total heat addition is given by

Q =

∫
t

∫
V

qdV dt =

∫ thae

thab

∫ Rha

0

Kha3e

(
− 1

2( r
σr

)
2
)
4πr2drdt (A.1)

where Kha3 is defined as

Kha3 =
Eha

(2π)3/2σ3
r∆tha

(A.2)

where ∆tha is defined as

∆tha = thae − thab (A.3)

Integrating by parts Eq. (A.1) leads to

Q =
2Eha√

2π

[
− Rha

σr
e
− 1

2

(
Rha
σr

)2

+

√
2π

2
erf

(
Rha√
2σr

)]
(A.4)

A.2 Total Heat for Gaussian Spherical Distribution and Temporal Profile

Q =

∫
t

∫
V

qdV dt =

∫ thae

thab

∫ Rha

0

Kha4e

(
− 1

2( r
σr

)
2
)
e

(
− 1

2

(
t−tc
σt

)2
)

4πr2drdt (A.5)

where Kha4 is defined as

Kha4 =
Eha

4π2σ3
rσt

(A.6)
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Integrating by parts Eq. (A.5) leads to

Q =
2Eha√

2π

[
− Rha

σr
e
− 1

2

(
Rha
σr

)2

+

√
2π

2
erf

(
Rha√
2σr

)]
erf

(
∆tha

2
√

2σr

)
(A.7)

where ∆tha is defined in Eq. (A.3).
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B. APPENDIX B

B.1 Derivation of the pressure response to a heat source with Gaussian

spatial and temporal distribution

The heat source with with Gaussian spatial and temporal distribution is given by

q1(x, t) = Kxt exp

[
−1

2

(
x

σx

)2
]
exp

[
−1

2

(
t− tc
σt

)2
]

(B.1)

where tc is the center time of the Gaussian temporal profile, and Kxt is the heat

source magnitude parameter defined as

Kxt =
Eha

2πσxσtHhaWha

=
qhaLha∆tha

2πσxσt
(B.2)

where qha is the flat profile heat release value defined in Eq. (3.4). The shape of

the heat source is depicted in Fig. 3.2 (R). The standard deviations that define the

Gaussian spatial and temporal profiles are set to σx = Lha/7 and σt = ∆tha/7. The

source term f(x, t) in Eq. (2.33) is computed by applying the temporal derivative of

the heat source of Eq. (B.1) as follows

f(x, t) = (γ − 1)
∂q1

∂t

= −(γ − 1)Kxt

σ2
t

exp

[
−1

2

(
x

σx

)2
]

(t− tc) exp

[
−1

2

(
t− tc
σt

)2
]

(B.3)

The substitution of Eq. (B.3) into Eq. (2.35) provides the expression to be integrated

to solve the pressure response

p1,p(x, t) =
1

2c0

∫ t

0

∫ x+c0(t−s)

x−c0(t−s)

(1− γ)Kxt

σ2
t

e−
1
2( z

σx
)
2

(s− tc) e
− 1

2

(
s−tc
σt

)2

dzds (B.4)
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After integrating with respect to the spatial variable z, and recalling that p1(x, t) =

p1,p(x, t) as presented in Section 2.3, the integral reads as

p1(x, t) =
(1− γ)Kxt

2c0σ2
t

∫ t

0

[√
2πσx
2

erf

(
z√
2σx

)]x+c0(t−s)

x−c0(t−s)

(s− tc) e
− 1

2

(
s−tc
σt

)2

ds .

(B.5)

For the sake of easing the derivation, the integral of Eq. (B.5) is fully derived for

the left traveling term p−1,p(x, t) related to x + c0(t − s). The derivation of the right

traveling term p+
1,p(x, t) related to x− c0(t− s) is identical and displayed in the final

result. Thus, adding the left and right traveling parts yields to the complete solution

as follows

p1,p(x, t) = p+
1,p(x, t) + p−1,p(x, t) , (B.6)

where the left and right traveling solutions are, respectively

p−1,p(x, t) =
(1− γ)Kxt

√
2πσx

4c0σ2
t

∫ t

0

erf

(
x+ c0(t− s)√

2σx

)
(s− tc) e

− 1
2

(
s−tc
σt

)2

ds , (B.7)

p+
1,p(x, t) = −(1− γ)Kxt

√
2πσx

4c0σ2
t

∫ t

0

erf

(
x− c0(t− s)√

2σx

)
(s− tc) e

− 1
2

(
s−tc
σt

)2

ds . (B.8)

The term
(
x±c0(t−s)√

2σx

)
inside the error function in Eq. (B.7) and Eq.(B.8) is rewritten

in Eq.(B.9) in terms of constants accompanying the temporal integration variable s

to simplify the calculations
(
x+c0(t−s)√

2σx

)
= (a1s+ b1)→ a1 = − c0√

2σx
; b1 = x+c0t√

2σx
.(

x−c0(t−s)√
2σx

)
= (a2s+ b2)→ a2 = c0√

2σx
; b2 = x−c0t√

2σx
.

(B.9)

Integrating Eq. (B.7) by parts using
∫
udv = uv −

∫
vdu

 u = erf (a1s+ b1) du = 2a1√
π
e−(a1s+b1)2

v = −σ2
t e
− 1

2

(
s−tc
σt

)2

dv = (s− tc) e
− 1

2

(
s−tc
σt

)2

ds

(B.10)
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p−1,p(x, t) = −Cerf (a1s+ b1)σ2
t e
− 1

2

(
s−tc
σt

)2∣∣∣t
0

+C

∫ t

0

σ2
t e
− 1

2

(
s−tc
σt

)2 2a1√
π
e−(a1s+b1)2ds ,

(B.11)

where the constant C multiplying both terms in Eq. (B.11) is given by

C =
(1− γ)Kxt

√
2πσx

4c0σ2
t

. (B.12)

p−1,p(x, t) is split into two terms I1 + I2 in Eq. (B.11). After evaluating the integral

limits, the first term is given by

I1 = −Cerf (a1t+ b1)σ2
t e
− 1

2

(
t−tc
σt

)2

+ Cerf (b1)σ2
t e
− 1

2

(
tc
σt

)2

. (B.13)

Substituting C, plugging in the parameters of Eq. (B.9), and writing x + c0t as

c0

(
x
c0

+ t
)

yields to

I1 =
(γ − 1)Kxt

√
2πσx

4c0

[
erf

(
x√
2σx

)
e
− 1

2

(
t−tc
σt

)2

−

erf

(
c0√
2σx

(
x

c0

+ t

))
e
− 1

2

(
tc
σt

)2
]
.

(B.14)

The second term I2 in Eq. (B.11) is given by

I2 =
2a1Cσ

2
t√

π

∫ t

0

e
− 1

2

(
s−tc
σt

)2
−(a1s+b1)2

ds . (B.15)

Expanding the exponent of e yields to

I2 =
2a1Cσ

2
t√

π
e
− 1

2

(
tc
σt

)2

e−b
2
1

∫ t

0

e
−s2

(
1+2σ2t a

2
1

2σ2t

)
+s

(
tc
σ2t
−2a1b1

)
ds . (B.16)
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It should be pointed out that the terms e
− 1

2

(
tc
σt

)2

and e−b
2
1 are constant with respect

to the integration variable s, and hence, can be put outside of the integral. This

integral can be solved analytically as presented in [86] as

∫
e−a

2z2+bzdz =

√
π

2a
exp

[(
b

2a

)2
]
erf

(
az − b

2a

)
. (B.17)

In case of Eq. (B.16), the equivalent a, b and z terms of Eq. (B.17) are
a =

√
1+2σ2

t a
2
1

2σ2
t

b = tc
σ2
t
− 2a1b1

z = s

(B.18)

Using the reference solution of Eq. (B.17), the integral of Eq. (B.16) results in

I2 =
a1Cσ

2
t

√
2σt√

1 + 2σ2
t a

2
1

e
− 1

2

(
tc
σt

)2

e−b
2
1 exp

 t2c
2σ2
t
− 2a1b1tc + 2σ2

t a
2
1b

2
1

1 + 2σ2
t a

2
1

x

erf

(√
1 + 2σ2

t a
2
1

2σ2
t

s+

√
2σt√

1 + 2σ2
t a

2
1

(
a1b1 −

tc
2σ2

t

)) ∣∣∣t
0
.

(B.19)

After evaluating the limits of the integral in Eq. (B.19), and combining all the

exponentials into a single one, I2 reads as

I2 =
a1Cσ

3
t

√
2√

1 + 2σ2
t a

2
1

exp

(
−(b1 + a1tc)

2

1 + 2σ2
t a

2
1

)
x

[
erf

(√
1 + 2σ2

t a
2
1

2σ2
t

t

+

√
2σt√

1 + 2σ2
t a

2
1

(
a1b1 −

tc
2σ2

t

))
− erf

( √
2σt√

1 + 2σ2
t a

2
1

(
a1b1 −

tc
2σ2

t

))]
.

(B.20)
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Substituting the value of C from Eq. (B.12), writing x + c0t as c0

(
x
c0

+ t
)

, and

plugging in the terms from Eq. (B.9) into the result of I2 yields to

I2 =
(γ − 1)Kxt

√
2πσx

4c0

√
1 + σ2

x

c20σ
2
t

exp

−
(
x
c0

+ t− tc
)2

2σ2
t

(
1 + σ2

x

c20σ
2
t

)
x

[
erf

(
c0√
2σx

√
1 +

σ2
x

c2
0σ

2
t

t

− c0√
2σx

x
c0

+ t+ σ2
x

c20σ
2
t
tc√

1 + σ2
x

c20σ
2
t

)
+ erf

 c0√
2σx

x
c0

+ t+ σ2
x

c20σ
2
t
tc√

1 + σ2
x

c20σ
2
t

] .
(B.21)

On the last term, the antisymmetry property of the error function is used (i.e.

erf(−x) = −erf(x)). Finally, the combination of I1 and I2 yields to the left traveling

portion of the pressure response to unsteady heat release with Gaussian spatial and

temporal profile. Substituting also the value of Kxt from Eq. (B.2) yields to

p−1,p(x, t) =
(γ − 1)Eha

4c0

√
2πσtHhaWha

[
erf

(
x√
2σx

)
e
− 1

2

(
t−tc
σt

)2

−erf
(

c0√
2σx

(
x

c0

+ t

))
e
− 1

2

(
tc
σt

)2

+
1√

1 + σ2
x

c20σ
2
t

exp

−
(
x
c0

+ t− tc
)2

2σ2
t

(
1 + σ2

x

c20σ
2
t

)


[
erf

 c0√
2σx

√
1 +

σ2
x

c2
0σ

2
t

t− c0√
2σx

x
c0

+ t+ σ2
x

c20σ
2
t
tc√

1 + σ2
x

c20σ
2
t


+erf

 c0√
2σx

x
c0

+ t+ σ2
x

c20σ
2
t
tc√

1 + σ2
x

c20σ
2
t

]] .

(B.22)
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Applying the same resolution method for the right traveling portion of the pressure

response p+
1,p(x, t) yields to

p+
1,p(x, t) =

(γ − 1)Eha

4c0

√
2πσtHhaWha

[
−erf

(
x√
2σx

)
e
− 1

2

(
t−tc
σt

)2

+erf

(
c0√
2σx

(
x

c0

− t
))

e
− 1

2

(
tc
σt

)2

+
1√

1 + σ2
x

c20σ
2
t

exp

−
(
x
c0
− t+ tc

)2

2σ2
t

(
1 + σ2

x

c20σ
2
t

)


[
erf

 c0√
2σx

√
1 +

σ2
x

c2
0σ

2
t

t+
c0√
2σx

x
c0
− t− σ2

x

c20σ
2
t
tc√

1 + σ2
x

c20σ
2
t


−erf

 c0√
2σx

x
c0
− t− σ2

x

c20σ
2
t
tc√

1 + σ2
x

c20σ
2
t

]] .

(B.23)

B.2 Derivation of the pressure response to a heat source with flat spatial

distribution and sinusoidal temporal profile

The heat source with with a flat spatial distribution and a sinusoidal temporal

profile defined as

q1(x, t) = Kha3 sin (ωt)

[
H

(
x+

Lhab
2

)
−H

(
x− Lhab

2

)]
(B.24)

where H(x − L) is the unit Heaviside function, ω is the angular frequency of the

fluctuating heat source, Lha is the length of the heat source, and Kha3 is the heat

source magnitude parameter defined as

Kha3 =
Ehaf

LhaHhaWha

=
Ehaω

2πLhaHhaWha

(B.25)
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where f is the frequency of the fluctuating heat source. The source term f(x, t) in

Eq. (2.33) is computed by applying the temporal derivative of the heat source of Eq.

(B.24) as follows

f(x, t) = (γ − 1)
∂q1

∂t
= (γ − 1)Kha3ω cos (ωt)

[
H

(
x+

Lhab
2

)
−H

(
x− Lhab

2

)]
(B.26)

The substitution of Eq. (B.26) into Eq. (2.35) provides the expression to be integrated

to solve the pressure response

p1,p(x, t) =
(γ − 1)Kha3ω

2c0

∫ t

0

∫ x+c0(t−s)

x−c0(t−s)
cos (ωs)

[
H

(
z +

Lhab
2

)
−H

(
z − Lhab

2

)]
dzds

(B.27)

After integrating with respect to the spatial variable z, and recalling that p1(x, t) =

p1,p(x, t) as presented in Section 2.3, the integral reads as

p1(x, t) =
(γ − 1)Kha3ω

2c0

∫ t

0

cos (ωs)

[
max

(
0, z +

Lhab
2

)

−max
(

0, z − Lhab
2

)]x+c0(t−s)

x−c0(t−s)

ds

(B.28)

Applying the limits of z yields to

p1(x, t) =
(γ − 1)Kha3ω

2c0

∫ t

0

cos (ωs)

[
max

(
0, x+ c0(t− s) +

Lhab
2

)
−max

(
0, x+ c0(t− s)− Lhab

2

)
−max

(
0, x− c0(t− s) +

Lhab
2

)
+max

(
0, x− c0(t− s)− Lhab

2

)]
ds = Ψ1 + Ψ2 + Ψ3 + Ψ4

(B.29)

where

Ψ1 =
(γ − 1)Kha3ω

2c0

∫ t

0

cos (ωs) max

(
0, x+ c0(t− s) +

Lhab
2

)
ds (B.30)
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Ψ2 = −(γ − 1)Kha3ω

2c0

∫ t

0

cos (ωs) max

(
0, x+ c0(t− s)− Lhab

2

)
ds (B.31)

Ψ3 = −(γ − 1)Kha3ω

2c0

∫ t

0

cos (ωs) max

(
0, x− c0(t− s) +

Lhab
2

)
ds (B.32)

Ψ4 =
(γ − 1)Kha3ω

2c0

∫ t

0

cos (ωs) max

(
0, x− c0(t− s)− Lhab

2

)
ds (B.33)

Integrating Eqs. (B.30)-(B.33) with respect to the temporal variable s yields to

Ψ1 = Ap3

[
1 + cos

(
ω

c0

ξ1

)
(H (χ1)− 1)− cos (ωt)H (χ1)

]
H (ξ1) (B.34)

Ψ2 = −Ap3
[
1 + cos

(
ω

c0

ξ2

)
(H (χ2)− 1)− cos (ωt)H (χ2)

]
H (ξ2) (B.35)

Ψ3 = Ap3

{[
cos

(
ω

c0

η1

)
− cos (ωt)

]
H (χ1) +

[
1− cos

(
ω

c0

η1

)]
H (η1)

}
(B.36)

Ψ4 = Ap3

[
cos (ωt) + cos

(
ω

c0

η2

)
(H (η2)− 1)−H (η2)

]
H (χ2) (B.37)

where the auxiliar variables ξ1, ξ2, η1, η2, χ1, and χ2 are defined as
ξ1 = x+ c0t+ Lha

2
; ξ2 = x+ c0t− Lha

2
;

η1 = x− c0t+ Lha
2

; η2 = x− c0t− Lha
2

;

χ1 = x+ Lha
2

; χ2 = x− Lha
2

;

(B.38)

In addition, the amplitude constant Ap3 is given by

Ap3 =
(γ − 1)Eha

4πLhaHhaWha

(B.39)
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Combining the above expression leads to the solution of the pressure response of a

quiescent fluid to a heat source with flat spatial distribution and sinusoidal temporal

profile

p1(x, t) = Ap3

{[
1 + cos

(
ω

c0

ξ1

)
(H (χ1)− 1)− cos (ωt)H (χ1)

]
H (ξ1)

−
[
1 + cos

(
ω

c0

ξ2

)
(H (χ2)− 1)− cos (ωt)H (χ2)

]
H (ξ2)

+

[
cos

(
ω

c0

η1

)
− cos (ωt)

]
H (χ1) +

[
1− cos

(
ω

c0

η1

)]
H (η1)

+

[
cos (ωt) + cos

(
ω

c0

η2

)
(H (η2)− 1)−H (η2)

]
H (χ2)

}
(B.40)
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