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ABSTRACT 

Animal species that consume carrion provide an essential ecosystem service by recycling the 

resource’s nutrients into the ecosystem. Carrion is an unpredictable and ephemeral resource that is 

variable across a landscape and is an important resource to many taxa. Furthermore, the 

colonization of small vertebrate carcasses by different species influences competition and 

coexistence dynamics, which in turn influence species dominance. The American burying beetle, 

Nicrophorus americanus (ABB) has recently experienced a dramatic decline in abundance and 

geographic range. An essential requirement of the ABBs life cycle is the availability of small 

vertebrate carcasses for reproduction. We know little about the preferred carrion base necessary to 

support a healthy ABB population. However, we know that reproduction is costly in buying beetles, 

and physiological trade-offs associated with resource use likely influences metabolic activity, 

fecundity, and survivorship. Furthermore, successful monitoring of wildlife populations requires 

reliable estimates of abundance, dispersal, and population demographics. This is often problematic 

within ABB populations because they are elusive, nocturnal, often occur at low population 

densities, and are a species of conservation concern. These factors constitute a management and 

conservation challenge in ecology and conservation biology. Therefore, identifying and evaluating 

the resources used for reproduction, along with life history trade-offs associated with resource use, 

in addition to species abundance within a habitat are key requirements for this species’ 

conservation and management. We used stable isotope analysis of carbon and nitrogen to 

determine the carrion base used by burying beetles in situ. Additionally, we evaluated resting 

metabolic rate and the energetics of prehatching parental care using flow through respirometry. 

Finally, we investigated the utility of using photographs with an individual identification machine 

learning software program paired with program MARK to estimate population abundances of 

burying beetles. 

Between populations, ABBs are not specializing on either avian or mammalian carrion but 

are using both natural and provisioned carrion for reproduction. Furthermore, among co-occurring 

burying beetle species, we observed large niche overlap in both populations. Periods of sexual 

development and prehatching parental care were periods of elevated metabolic activity, which 

provides insight into life-history tradeoffs associated with resource quality. Carcass size did not 

significantly influence the metabolic rate of parents, however, the number of days needed to 
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prepare a small carcass was significantly shorter compared to large carcass preservation. 

Furthermore, beetle pairs on larger carcasses accumulated significantly larger metabolic cost over 

the course of parental care. Additionally, using digital images of naturally occurring spot patterns 

on beetles’ elytra, we tested the feasibility and the application of photographic mark-recapture 

(PMR) using machine learning software. We demonstrated the utility of using PMR in estimating 

population abundance for Nicrophorus spp. based on elytral spot patterns. Future research is 

needed to fully quantify reproductive resource use over time, and how it influences ABB 

abundance in extant and reintroduced populations. For successful management and reintroduction 

of ABBs, managers must consider the resources used for reproduction, the composition and 

availability of appropriately sized potential reproductive carrion, they should limit intra-

/interspecific competition for carrion resources and need accurate data on species abundance. 
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 BURYING BEETLE ECOLOGY AND CONSERVATION 

1.1 Introduction 

Beetles from the genus Nicrophorus (Coleoptera: Silphidae: Nicrophorinae), bury and 

prepare small vertebrate carcasses as food for their young. This resource is necessary for 

reproduction; however, carrion is a short-lived resource that is unreliable temporally and spatially 

and the resource is sought out by many taxa (Scott 1998). Carrion provides a critical resource for 

a subset of animal species that preform a vital service to the ecosystem by utilizing dead animal 

remains and recycling its nutrients. In most ecosystems, carcasses represent a relatively small part 

of the total available detritus for decomposers, however, its role in community interactions, 

community distributions, and nutrient cycling is uneven when compared to plant detritus because 

carrion is more nutrient rich, and is utilized by organisms at a much faster pace than plant detritus 

(Barton et al. 2013). These characteristics make carrion resources critical components of detritus 

in ecosystems. In addition, organisms that colonize carrion, such as microbes, flies, and burying 

beetles, play a vital role in coexistence dynamics through competitive interactions, which in turn 

effects species dominance (Scott 1998, Barton et al. 2013). 

In burying beetles, the “small carrion” niche is differentiated by spatial and temporal patterns 

of activity and by the body size of beetles, which dictates preference in carcass size (Scott 1998). 

Additionally, seasonal patterns of reproductive activity vary among burying beetle communities, 

and emergence times as well as patterns of sexual maturity differ. In North American communities, 

Nicrophorus sayi, becomes reproductively active in early spring. In late spring, populations of 

burying beetles emerge to dominate the ecosystem until late summer. These species include 

Nicrophorus orbicollis and Nicrophorus defodiens (Anderson 1981, Scott 1998). Of the rarer 

species, Nicrophorus americanus emerges in late spring while Nicrophorus pustulatus first 

appears in early May but is reproductively active in the late summer (Anderson 1981). Additionally, 

Nicrophorus tomentosus, is reproductively active from late summer into the fall.  

Temperature and competition between species for carrion resources appear to be a driving 

force in shaping seasonal and temporal activity patterns among burying beetles. North American 

burying beetles are active earlier and longer in southern locations compared to more northern 

populations. However, in southern locations, late summer species begin to breed about two months 
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later and thus avoid substantial overlap with the summer breeders (Trumbo 1990). Even though 

there are longer seasons in southern locations, burying beetle communities are less rich in these 

habitats (Scott 1998). It has been proposed that the geographical range of some burying beetle 

species is determined by competition with larger beetles within the genus (Scott 1998, Bedick et 

al. 1999). However, in areas where species co-occur, it appears that temperature may be 

influencing competitive interactions. In a field experiment where carcasses were placed out over 

consecutive nights, N. orbicollis found the highest proportion of experimental carcasses on 

relatively warm nights, but N. defodiens was able to find and bury carcasses at lower temperatures. 

Thus, cool nights are thought to be serving as a temporal refuge for coexistence between the 

species. This is further backed up by the fact that in more southern locations, where cool nights 

are absent, N. defodiens are not found as they cannot compete with the larger N. orbicollis (Wilson 

et al. 1984). 

Most burying beetle communities are characterized by a broad overlap in habitat use 

(Anderson 1981, Lomolino et al. 1995), and ecological opportunities such as available carrion type, 

success in locating carcasses, competition with other species, and breeding on a carcass can 

influence niche variation within and among species and may differ among habitats and over time. 

It is well documented that different burying beetle species exhibit preference for carcass size (Scott 

1998); however, it is unclear if individual species have resource preferences beyond carcass mass 

(i.e. preference for mammals or birds). Additionally, more information is needed to determine how 

much niche variation occurs in burying beetle communities that share a home range. Some studies 

have attempted to provide insight into niche variation in burying beetle communities by conducting 

dietary analysis of carrion using stable isotopes. Studies in burying beetles have focused on 

resource preference in a salmon fed watershed (Hocking et al. 2006), niche variation associated 

with marine and terrestrial carrion (Hocking et al. 2007; Hocking et al. 2009), and niche variation 

in relation to body size (Ikeda et al. 2006). These studies confirm that differences in available 

carrion and variation in burying beetle body size allow for additional niche variation, however this 

has not been evaluated in populations where more than two species co-occur, and up to this point, 

little effort has been made to evaluate carcass preference in N. americanus, a necessary component 

for ongoing conservation efforts.  

The American burying beetle was first listed as endangered in 1989 by the US Fish and 

Wildlife Service (Federal Register 1989). As recently as the 1920’s, N. americanus was considered 
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common across most of the eastern half of North America and was known from 35 states and three 

Canadian provinces (Anderson 1982). However, the species now occurs in 5-10% of its former 

range. Extant populations are restricted to Block Island, Rhode Island, and the western periphery 

of the historic range (western Arkansas, eastern Oklahoma, central and southern Nebraska, 

southeastern Kansas, and southcentral South Dakota; Sikes and Raithel 2002). The species has 

been the subject of intense study and speculation since its decline was announced in 1980, as it is 

difficult to imagine a scenario that would lead to the dramatic range collapse and endangerment of 

N. americanus, which is physically dominant within its guild, to the brink of extinction and leave 

its eight sympatric congeners untouched (Lomolino et al. 1995, Sikes and Raithel 2002). 

Reasons for the decline of the species are not well understood but several hypotheses have 

been proposed and may include pesticide use such as exposure to DDT, artificial lighting, disease, 

and habitat alteration (decreased carrion abundance, habitat change, or increased competition from 

vertebrates and other carrion beetle species; USFWS 1997, Lomolino et al. 1995, Szalanski et al. 

2000). However, it is likely that multiple effects interacted to influence the decline of N. 

americanus (Sikes and Raithel 2002). The most plausible explanation for the decline of this species 

incorporates hypotheses including the reduction of optimally sized carrion, increased vertebrate 

scavenger competition for carrion, and increased congener competition (USFWS 1997, Lomolino 

et al. 1995). Nicrophorus americanus is the largest species of Nicrophorus in North America and 

requires carcasses of 100-200g to maximize its fecundity, whereas all other Nicrophorus species 

can breed on much smaller carcasses (Scott 1998). At least one bird species in the ideal weight 

range and the historical geographic range of N. americanus, the Passenger pigeon (Ectopistes 

migratorius) is extinct, and additional ground nesting birds of the ideal weight and size have 

declined throughout their ranges during the last century (Sikes and Raithel 2002), however this 

hypothesis has yet to be tested. Furthermore, although passenger pigeons were of ideal weight and 

shared much of its historic range with N. americanus, it is unlikely that they would have been a 

consistently reliable carrion source for N. americanus across the entire home range due to 

migratory and feeding patterns of the species (J.C. Creighton personal communication).  

With habitat alteration, one would expect both an increase in vertebrate scavenger pressure, 

and a decrease in potential carrion of ideal weight and size (Gibbs and Stanton 2001; Creighton et 

al. 2009); the competition between N. americanus and sympatric congeners for sub-optimally sized 

carcasses would also be expected to increase (Lomolino and Creighton 1996, Szalanski et al. 2000). 
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Nicrophorus orbicollis, the sister species to N. americanus, appears to be less successful in using 

large carcasses (> 100 g) but evidence suggests they may outcompete N. americanus on smaller 

and medium sized carcasses (Scott 1998). However, to what extent N. americanus is losing 

potential breeding carcasses to congeners throughout its range remains unstudied.  

It should be noted that several investigations important to our understanding of the decline 

of N. americanus remain to be done. Studies that contrast multiple portions of the historical center 

of N. americanus’ range with the eastern and western extant populations with regards to habitat 

fragment size, available carrion, vertebrate predation, scavenger pressure, and congener 

competition are of upmost importance for future management and conservation of the species 

(Sikes and Raithel 2002). Burying beetles must coordinate reproduction with the location of a 

critical resource that is unpredictable in space and time. They make up an essential component of 

the detrital food web, and their unique behavior and ecology help shape the small carrion niche 

throughout the Northern Hemisphere. Research on burying beetles can provide key insights into 

carrion use and nutrient cycling within many ecosystems. 

1.2 Journal Selections and Justification 

The following chapters are formatted differently as per the requirements by the selected 

journal. I organized Chapter 2, entitled “Stable Isotope Ecology in Insects: A Review”, to the 

requirements of Ecological Entomology because of the journal’s focus on insect studies and 

methodologies and their connection to insect ecology. For Chapter 3, entitled “Evaluation of the 

Vertebrate Carrion Resources Used by the American Burying Beetle (Nicrophorus americanus)”, 

I used the formatting for Biological Conservation because the focus of the journal is advancement 

of the science and practice of conservation and conservation management. For Chapter 4, entitled 

“Evaluating Resting Metabolic Rate and the Effect of Resource Size on Carcass Preparation 

Energetics in a Burying Beetle”, I used the formatting for the Journal of Experimental Biology 

because the focus of the journal is comparative physiology regarding the form and function of 

living organisms. Finally, Chapter 5, titled “Estimating Population Abundance of Burying Beetles 

Using Photo-Identification and Mark-Recapture Methods”, I present using the guidelines for 

Environmental Entomology because of its focus on interactions of insects with biological and 

physical aspects of their environment. 
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 STABLE ISOTOPE ECOLOGY IN INSECTS: A REVIEW 

Brandon M. Quinby, J. Curtis Creighton, and Elizabeth A. Flaherty 

2.1 Abstract 

1. The use of stable isotope analysis (SIA) in ecological research has dramatically increased 

in recent years largely because it allows researchers to investigate ecological questions 

that have been previously difficult to address.  

2. Ecological applications of SIA include estimating fundamental niche space and overlap, 

evaluating trophic or species level interactions, and investigating food web structure. 

Increasingly, researchers have been incorporating SIA in studies of animal migration, 

disease transmission, diet composition, nutrient assimilation, and body condition to list a 

few.  

3. Compared to other taxa, studies using SIA to evaluate the ecology of terrestrial insects 

are lacking. This poor representation of stable isotope studies in publications likely stems 

from a lack of familiarity of entomologists with this technique.  

4. An improved understanding of SIA, as well as the advantages and disadvantages 

specifically related to insect research, will benefit the field of entomology. Additionally, 

insect model systems provide unique opportunities for entomologists to incorporate SIA 

in their research to advance our knowledge of insect biology and the stable isotope 

ecology of insects. 

5. We provide background information on stable isotopes, explain sources of isotopic 

variation, describe the processes of how isotopes are differentially routed and 

incorporated into an individual’s tissues, explain the principles that influence isotopic 

fractionation and discrimination, highlight different methods and advancements in SIA, 

review innovative stable isotope studies, and provide an overview of common mistakes, 

considerations, and future directions entomologists can explore. 
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2.2 Introduction 

2.2.1 Stable Isotopes in Entomology 

While the number of stable isotope studies published in ecological journals continues to 

increase rapidly, studies of terrestrial insects has lagged behind other taxonomic groups (Fig. 1). 

This under-representation may reflect a lack of understanding among entomologists regarding 

applications of this technique. Previous reviews encouraging the use of stable isotope analysis 

(SIA) in entomological studies focused on applications to a specific taxon (i.e. termites [Tayasu, 

1998], ants [Feldhaar et al., 2010], collembolans [Semenina & Tiunov, 2011]), or narrowly focused 

on aspects of arthropod physiology and trophic ecology [Hood-Nowotny & Knols, 2007; Hyodo, 

2015]). However, SIA has a much broader range of potential applications to entomology. 

Moreover, insect model systems provide an excellent opportunity to advance the field of stable 

isotope ecology.  

Since the publication of previous reviews of SIA in entomological studies (Tayasu, 1998; 

Feldhaar et al., 2010; Semenina & Tiunov, 2011; Hood-Nowotny & Knols, 2007; Hyodo, 2015), 

there have been important analytical and conceptual developments in the larger realm of stable 

isotope ecology (Ben-David & Flaherty, 2012; Hyodo, 2015). Our goals for this review are to 

introduce entomologists to these advances in stable isotope ecology and discuss how other animal 

ecologists use these techniques to explore ecological questions and concepts. We expand on the 

previous entomological reviews and introduce potential questions that SIA can address beyond 

specific study systems and trophic ecology. We discuss common mistakes and the advantages and 

disadvantages of SIA specifically related to entomological research. Finally, we discuss future 

research needs and opportunities for the application in entomology. 

2.2.2 Stable Isotope Ecology Basics 

In nature, isotopes differ from the most common form of an element by possessing 

additional neutrons in the nucleus. Commonly used isotopes in ecological studies include hydrogen, 

oxygen, carbon, and nitrogen. Isotopes have the same physical and chemical properties as the most 

common form of the element, but have different physiochemical reaction rates (i.e., reaction rate 

and bond strength due to differences in vibrational energy). This physical difference leads to 

variation in the isotope composition of organic compounds because of slight differences in atomic 
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mass (Fry, 2006; Sulzman, 2007). These heavier isotopes are extremely rare compared to the most 

common form (Sharp, 2007). We express stable isotope ratios in most ecological applications 

using the following equation,  

 

𝛿𝑋 = [ (
 𝑅Sample

𝑅Standard
⁄ )  − 1] × 1000(‰)      (1) 

 

where Rsample and Rstandard are the corresponding ratios of heavy to light isotopes (e.g. 13C/12C) in 

the sample and the standard, respectively. We express stable isotope ratios in delta (δ) notation in 

parts per thousand (‰). 

How dietary isotopes incorporate into an individual organism depends on the metabolic 

pathways employed during assimilation. The metabolic pathways are characterized by a preference 

for a specific carbon isotope (usually the lighter 12C) during anabolism and catabolism, resulting 

in the reduction of 13C between the resources consumed and the organism. In general, the 

partitioning into biomass during anabolism is less than partitioning during catabolism, and 

turnover rates in metabolically active tissues are faster than rates in less active tissues (Tieszen et 

al., 1983; Freude & Blaser, 2016).   

Most SIA studies are considered natural abundance studies because they exploit the natural 

variations in stable isotope signatures within ecosystems. Variation in the natural abundance of 

isotope ratios create spatial and temporal patterns that allow us to estimate habitat use (Schell et 

al., 1989; Koch et al., 1995; Post, 2002), track the flow of nutrients (Collier et al., 2002; Post, 

2002; Fischer et al., 2003), evaluate nutritional status (Hobson et al., 1993; Gannes et al., 1998; 

Polischuk et al., 2001), determine nutrient assimilation into tissue (Tiezen et al., 1983, Tieszen & 

Farge, 1993; Martínez del Rio & Carleton, 2012), evaluate trophic relationships (Hobson et al., 

1994; Pethybridge et al., 2018; Santi-Júnior et al., 2018), estimate animal diets (Ben-David et al., 

1997a; 1997b; Stewart et al., 2003; Newsom et al., 2007; Divine et al., 2017; Gómez et al., 2018), 

assess species interactions (Caut et al., 2006; Sagouis et al., 2015) and determine animal 

movements (Macneale et al., 2005; Vander Zanden et al., 2015; Santi-Júnior et al., 2018). In 

contrast, SIA studies that use artificially enriched isotopes as tracers are referred to as enrichment 

studies (see McDermott et al., 2019). 
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2.2.3 Sources of Variation in Stable Isotopes 

Naturally occurring and artificially enriched stable isotopes, primarily carbon and nitrogen, 

to study animals since the late 1970s. Isotope signatures of organisms reflect the ratios of heavy to 

light isotopes of the resources consumed and the physiological processes (i.e. enzymatic reactions) 

used when assimilating resources in body tissues and discarding unused products (Peterson & Fry, 

1987; Vander Zanden et al., 1999; Post, 2002; Bearhop et al., 2002; Ben-David & Flaherty, 2012). 

Isotopes of carbon and nitrogen behave differently from each other. Differences in δ13C among 

plants is determined by isotopic fractionation of carbon during photosynthesis (C3, C4, or CAM 

plants) or by other physiological factors that allow for differentiation of plant use by herbivores 

(DeNiro & Epstein, 1978; 1981; Peterson & Fry, 1987; Post, 2002). These differences transfer up 

the food web into the tissues of predators.  

Compared to carbon (δ13C), the processes that generate variation in nitrogen (δ15N) are 

understudied. Stable isotope ecologists use nitrogen isotopes to evaluate ecological processes, 

relying on the existence of isotopic differences and patterns, however, they do not fully understand 

the processes and mechanisms that create them (Karasov & Martínez del Rio, 2007). Primary 

producers differ in δ15N, in part, because: (1) δ15N values vary widely in soils, (2) shallow-rooted 

plants tend to be depleted in 15N relative to deep-rooted plants, (3) nitrogen-fixing plants tend to 

be depleted (more negative) in 15N by approximately 2-4‰ relative to non-nitrogen-fixing plants, 

and (4) compared to terrestrial plants, marine phytoplankton tends to be enriched (more positive) 

by about 4‰ (Kelly, 2000; Karasov & Martínez del Rio, 2007). Variation in δ15N values generated 

by these cases is broad (approximately 26‰), which allows stable isotope ecologists to track the 

contribution of different plants into consumers (Karasov & Martínez del Rio, 2007). However, the 

isotopic variation among individuals and species is often too large to identify the relative 

contribution of various primary producers to food chains using nitrogen isotope ratios alone. 

Therefore, ecologists often use values for 15N in combination with other isotopes such as 13C 

(Karasov & Martínez del Rio, 2007). Traditionally, the primary use of nitrogen isotope ratios has 

been to estimate a species trophic level because nitrogen isotope values are usually enriched in 

consumers when compared to isotope levels in their diets (Peterson & Fry, 1987; Post 2002; Ben-

David & Flaherty, 2012).  

Isotopic ratios are naturally variable with respect to photosynthetic pathways, trophic 

position, latitude, elevation, precipitation, light availability, soil characteristics, marine vs. 
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terrestrial resource use, and climate (West et al., 2006; Flaherty & Ben-David, 2010). This, 

coupled with the tendency of animals to incorporate ratios of stable isotopes into their tissues with 

predictable modifications, allows for the investigation of animal diets, body composition, nutrient 

flow, metabolic rates, species interactions, and trophic relationships (West et al., 2006; Caut et al., 

2009; Ben-David & Flaherty, 2012). Additional studies focused on factors that affect isotopic 

signatures such as incorporation into animal tissues (Fry & Arnold, 1982; Tieszen et al., 1983; 

Carleton & Martínez del Rio, 2005), routing of different dietary constituents (proteins, lipids, and 

carbohydrates) to different tissues (‘isotopic routing’; Schwarcz, 1991; Bearhop et al., 2002), and 

isotopic discrimination between the diet source and consumer tissues (Caut et al., 2009; Robins et 

al., 2010; Ben-David et al., 2012). 

2.2.4 Stable Isotope Incorporation 

The incorporation of stable isotope signatures into a consumer’s tissue is complex and 

depends on the physiological condition (Carleton & Martínez del Rio, 2005), animal size (Lorrain 

et al., 2004; Carleton & Martínez del Rio, 2005), age (Reich et al., 2008), feeding behaviour (Lee 

et al., 2005), tissues sampled (Tieszen et al., 1983; Kurle et al., 2014), composition of the diet 

(Pearson et al., 2003; Kurle et al., 2014), and assimilation efficiency of dietary items (Martínez 

del Rio & Wolf, 2005; Martínez del Rio & Carleton, 2012; Ben-David & Flaherty, 2012). 

Consideration of incorporation rates of isotopes into an animal’s tissue and the cellular turnover 

rates within the tissue are critical because they determine the timeline for evaluating the animal’s 

diet (Newsome et al., 2007; Martínez del Rio et al., 2009). For example, an insect’s exoskeleton 

is deposited in a discrete interval and reflects the isotopic composition of resources incorporated 

during development (Schimmelmann, 2011), whereas reproductive and fatty tissues have a shorter 

cellular turnover rate reflecting diet over days (e.g., five days in Harmonia axyridis Pallas and 

Coccinella septempunctata Linnaeus, Coleoptera: Coccinellidae; Gratton & Forbes, 2006). 

2.2.5 Stable Isotope Routing 

Isotopic routing occurs because there is variation in the distribution of isotopically distinct 

dietary components to various tissues (Schwarcz, 1991). Internal routing of dietary components 

can result in a nonuniform distribution of the isotopes acquired from dietary resources. For 
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example, a carbon isotope attached to an essential amino acid is preserved as the molecule is 

assembled to form proteins (Podlesak & McWilliams, 2006) whereas –NH (amino groups) of 

many amino acids undergo transamination before protein synthesis (Schwarcz, 1991). This is 

problematic with omnivores that obtain carbohydrates or lipids from different dietary sources than 

protein (Martínez del Rio et al., 2009) and is important when estimating trophic enrichment (Caut 

et al., 2010). This is because the preservation of some isotopes and not others can lead to incorrect 

calculations of the proportions of nutrients resulting in over- or under-estimates of their importance 

in the diet (Schwarcz, 1991). 

When reconstructing an animal’s diet, different tissues may provide different information 

(Voigt et al., 2008; Martínez del Rio et al., 2009) because they reflect varying time scales of 

assimilation and isotopic incorporation into tissue (i.e., turnover rates). Although specific tissue 

types can confound results if the tissue does not reflect the proper timeline (Podlesak & 

McWilliams, 2006; Martínez del Rio et al., 2009), sampling different tissue types in a single 

individual allows researchers to explore how organisms use resources over different temporal 

scales (Martínez del Rio et al., 2009).  

Insect life cycles, hemimetabolous or holometabolous, influence tissue development and affect the 

temporal scale of isotope incorporation (Webb et al., 1998; Hood-Nowotny et al., 2006). Turnover 

rates result from tissue growth and catabolic turnover (Fry & Arnold, 1982) and they vary for 

insect tissues at each life stage (Webb et al., 1998; Gratton & Forbes, 2006). The temporal scales 

over which isotope values vary depends on the species in question (Gratton & Forbes, 2006). For 

vertebrates, isotopic signatures of blood, muscle, skin, hair, feathers, and bones represent time 

scales from days to months or years (Kelly, 2000; Post 2002; Martínez del Rio & Wolf, 2005; Ben-

David & Flaherty, 2012; Ben-David et al., 2012), whereas signatures in whole body invertebrate 

samples can experience rapid change (5-10 days; Ostrom et al., 1996; Gratton & Forbes, 2006). 

Less metabolically active tissues (e.g., exoskeleton) reflect dietary intake over longer periods (e.g., 

months or specific life stages; Gratton & Forbes, 2006; Schimmelman, 2011; Quinby et al 2020) 

and remain understudied. 

2.2.6 Diet-Tissue Discrimination 

Isotopic discrimination (enrichment, trophic shift, which is noted by Δ, is the difference 

between the consumer’s isotopic ratios and the isotopic ratios of its prey; Tayasu, 1998; Feldhaar 
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et al., 2010) results from selective assimilation of heavy to light isotopes from consumed resources 

(McCutchan et al., 2003; Ben-David & Flaherty, 2012). Before investigating animal diets, nutrient 

flows, trophic relations, or species interactions,  researchers must consider and incorporate diet-

tissue trophic discrimination factors because they vary among species, tissues within species, and 

across diets (Newsome et al., 2012; Brauns et al., 2018). Determination of discrimination factors 

for all dietary sources should be confirmed experimentally with controlled feeding trials, however, 

this is not always possible (Martínez del Rio et al., 2009; Wolf et al., 2009). When discrimination 

factors that are species-specific have not been previously determined, it is common to use a 1‰ 

discrimination for δ13C and 3‰ for δ15N (DeNiro & Epstein, 1978; 1981; Martínez del Rio et al., 

2009) or to use discrimination factors from the literature (Post, 2002; Trapp et al., 2017). 

Discrimination factors have been experimentally determined for some invertebrates (Scrimgeour 

et al., 1995; Haubert et al., 2005; deVries et al., 2015, Quinby et al., 2020) but are lacking for 

most insects. 

2.3 Quantifying Nutrient Flows, Trophic Relations, and Insect Diets Using Natural 

Abundance Stable Isotopes 

2.3.1 Stable Isotope Mixing Models 

Stable-isotope mixing models (SIMMs) are an important tool when determining the 

relative contributions of different dietary sources to the overall bulk diet mixture of individuals 

(Fry, 2006). Before assessing trophic relationships and insect diets, isotope ratios of all potential 

foods should be quantified with verification that their signatures are unique before incorporation 

into separate analyses (Rosing et al., 1998). For large sample sizes consisting of many different 

potential dietary sources that are normally distributed, we recommend using a multivariate analysis 

of variance with the dietary sources as grouping variables and the stable isotopes of interest as 

dependent variables (Blüthgen et al., 2003; Stewart et al., 2003). When sample sizes are small, we 

suggest using the K nearest-neighbor randomization test described by Rosing et al., (1998) because 

it has high power with comparatively low displacement for dietary sources (Ben-David & Flaherty, 

2012). It is important to incorporate any known or unknown priors into SIMMs before analysis as 

they may strongly influence the model’s output (Ward et al., 2010; Phillips et al., 2014, Derbridge 

et al., 2015). Accounting for uncertainty in the mean and variance of multiple sources, 

fractionation, isotope signatures, and including prior source information into your chosen SIMM 
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can reduce deviations in source contribution estimations (Ward et al., 2010; Phillips et al., 2014). 

Furthermore, accounting for prior unknowns in SIMM inputs can change the magnitude, 

variability, and ranking orders of estimated source compositions to the overall dietary mixture 

(Moore & Semmens, 2008; Phillips et al., 2014). 

To account for these variations, standard linear SIMMs assume that the relative 

contribution of a dietary source to a mixture or specific tissue is the same for each element (e.g., 

C, N). However, this is not always realistic because some dietary sources are rich or poor in one 

element (e.g., N), which can lead to a proportionate change in that source’s contribution to the 

mixture for that element (Phillips & Koch, 2002). Concentration-dependent SIMMs account for 

large variations in source elemental concentrations and assume the dietary source’s contribution 

to the mixture is directly proportional to the  mass of the consumed resource multiplied by the 

concentration of elements in the source (Phillips & Koch, 2002; Phillips et al., 2014). Thus, they 

better identify known proportions of food sources that vary widely in source elemental 

concentrations when compared to standard models (Hopkins & Ferguson, 2012; Philips et al., 2014; 

Hopkins et al., 2017). Phillips and Koch (2002) highlight that isotopic routing or the use of internal 

nutrient stores under nutritional stress can only be reliably detected and quantified once elemental 

concentration variation in potential food sources are accounted for in an appropriate SIMM. 

Therefore, whenever elemental concentrations of dietary sources vary greatly we recommend 

using concentration-weighted linear mixing models. Elemental concentrations for δ13C and δ15N 

are often provided in outputs from commercial analysis laboratories. 

The earliest SIMMs were arranged as a linear algebra equation that allowed for n +1 

sources. These initial SIMMS were limited to systems involving a single consumer (or the mean 

of multiple consumers) resulting in a single solution (Parnell et al., 2012). Advances in SIMMs 

resulted from a rigorous Bayesian statistical framework that allowed researchers to incorporate a 

larger numbers of sources, differences in concentration dependences, system uncertainties, , 

discrimination factors, as well as other variables (Phillips et al., 2014). These models include 

MixSIR (Semmens & Moore, 2008), SIAR (Parnell & Jackson, 2008), IsotopeR (Hopkins & 

Ferguson, 2012), MixSIAR (Stock & Semmens, 2013), FRUITS (Fernandes et al., 2014) and 

SISUS (Erhardt et al., 2014). An additional benefit of these SIMMs is that they are open source, 

most are available in R, and can be updated and individualized for specific systems as knowledge 

advances. 
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2.3.2 Lipid Extraction Versus Concentration-Dependent Mixing Models 

Variation in lipids among tissue types sampled or organisms consumed can introduce 

considerable bias into SIA that use δ13C (Post et al., 2007). Compared to carbohydrates and 

proteins, lipids are depleted in 13C (DeNiro & Epstein, 1977; Griffiths, 1991). The lipid effect on 

δ13C has been investigated (Phillips & Koch, 2002; Post et al., 2007; Logan et al., 2008; Tarroux 

et al., 2010), but the effect of lipid removal on δ15N remains understudied (Bodin et al., 2007). An 

increasing number of studies have evaluated the effects of lipid removal on stable isotope ratios 

(Sotiropoulos et al., 2004; Sweeting et al., 2006; Bodin et al., 2007; Yurkowski et al., 2015) by 

extracting lipids chemically or using mathematical normalization methods (Post et al., 2007; 

Tarroux et al., 2010; Yurkowski et al., 2015). 

 Logan et al., (2008) evaluated the effects of different correction approaches (lipid 

extraction versus concentration-dependent corrections) on carbon and nitrogen isotopes in fishes 

and aquatic invertebrates. They determined that for almost all species and tissue types δ13C values 

increased significantly following lipid extraction. In contrast, for only a few freshwater and marine 

species lipid extraction affected δ15N but only in muscle and whole-body samples (Logan et al., 

2008). Using C:N as a representation of lipid content, models predicted lipid-corrected δ13C more 

closely with factors specific to the tissue type and species, indicating that tissue- and species-

specific models on C:N are a dependable alternative to lipid extraction methods (Logan et al., 

2008). Another step in determining if lipids bias the interpretation of diet reconstruction results is 

testing the sensitivity of SIMMs to lipid extraction. Analyzing a representative number of samples 

before and after extraction allows researchers to evaluate when to use lipid extraction methods or 

mathematical models to avoid biased results (Tarroux et al., 2010). If there is substantial variation 

among the concentration of elements and the food sources connected with the isotopic values used 

(e.g., C for δ13C), then a concentration-dependent SIMM should be considered (Phillips & Koch, 

2002; Philips et al., 2014).  

2.3.3 Compound-Specific Isotope Analysis 

Compound-specific stable isotope analysis (CSIA) enables researchers to exploit the 

molecular specificity and isotopic signatures of different compounds simultaneously, providing a 

tool for tracking the origin and eventual fate of matter in ecosystems (Evershed et al., 2007), as 
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well as many other applications (Schmidt et al., 2004; Bradley et al., 2015). Biochemical 

components of organic materials that are similar structurally can develop from multiple sources 

and can potentially reveal differences in isotopic signatures (e.g., palmitic acid found in some soils 

can originate from microbes, plants, or invertebrates; O’Brien et al., 2002; Jim et al., 2003; Corr 

et al., 2005). The preferential breakdown of components that are isotopically heavy would result 

in a lowering of bulk isotopic values (Evershed et al., 2007). Using CSIA paired with structurally 

diagnostic biomarkers in chemically complex materials can reveal information on biochemical 

pathways or biological process unobtainable through bulk SIA alone (Lichtfouse, 2000; Schmidt 

et al., 2004; Bradley et al., 2015). For example, Matos et al., (2018) used CSIA of amino acids to 

distinguish types of metabolism at different life stages in blowflies (Calliphora vicina Robineau-

Desvoidy). Essential amino acids did not undergo isotopic fractionation because they were 

unaffected by blowfly metabolic processes. However, non-essential amino acids were more 

positive in larvae and pupae but depleted in adults relative to the carrion (Matos et al., 2018). The 

results suggest that it is possible to exclude carrion as potential larval food sources, and that amino 

acid-specific CSIA could improve the accuracy of post-mortem interval determinations based on 

blowfly development. 

2.4 Stable Isotope Applications in Entomological Research 

2.4.1 Carbon and Nitrogen Stable Isotopes in Entomology 

Entomologists have used carbon and nitrogen isotope signatures to study food preferences 

(Petelle et al., 1979; Akamatsu et al., 2004; Adams et al., 2016), feeding strategies (Paetzold et 

al., 2005a; Chari et al., 2018), sperm transfer (Helinski et al., 2007; Helinski et al., 2008), natal 

origins (Hobson et al., 2012), dispersal patterns (Medeiros et al., 2017; Madeira et al., 2019), 

disease transmission (Kaufman et al., 2010; Hamer et al., 2014), trophic position (Tillberg et al., 

2006; Hyodo, 2015), predator-prey relationships (Paetzold et al., 2005b; Wise et al., 2006), and 

nitrogen transfer (Täyasu et al., 1994; Nardi et al., 2002; summarized in Table 1). Researchers use 

naturally occurring differences in isotopes to follow flows and processes. In contrast, enrichment 

studies (using commercially available isotope-enriched compounds in feeding regimes) provide 

an opportunity for enriched isotopes to be incorporated in capture-recapture (Opiyo et al., 2016; 
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McDermott et al., 2019), feeding preference (Spence & Rosenheim, 2005), and resource allocation 

studies (Oelbermann & Scheu, 2002). 

2.4.2 Hydrogen and Oxygen Stable Isotopes in Entomology 

Hydrogen and oxygen isotopes are less commonly used in entomological research. 

However, hydrogen and oxygen isotopes exhibit predictable patterns over the earth’s surface 

waters (Bowen et al., 2005; West et al., 2006; West et al., 2009). In North America, 2H and δ18O 

tend to become progressively depleted on a southeast to northwest gradient (West et al., 2006; 

West et al., 2009). Studies determined 2H signatures of keratin in wings of monarch butterflies 

(Danaus plexippus Linnaeus) indicated natal origins when combined with keratin 13C signatures 

(which shows a general pattern of enrichment along a southeast to northeast gradient) in their 

wings (Wassenaar & Hobson, 1998; Hobson et al., 1999; Flockhart et al., 2013; 2017). Doucett et 

al., (2007) estimated energy flow partitioning in aquatic ecosystems by evaluating contributions 

of aquatic and terrestrial sources of 2H to aquatic insects and fish using SIMMs. Stable isotopes 

of oxygen and carbon were used to identify spruce budworm (Choristoneura fumiferana Clem.) 

outbreaks in a boreal forest of northeastern North America (Simard et al., 2008). Wang et al., 

(2009) used oxygen and hydrogen isotope analyses of chironomid larvae (Chironomidae: Diptera) 

to identify the degree to which water and diet influence the δ18O and δ2H signatures of these 

organisms. The isotope composition of chironomid subfossils explained changes in the oxygen 

and hydrogen isotope values of paleoenvironments when paired with other geological evidence 

(Wang et al., 2009). 

2.4.3 Diet Assimilation and Turnover 

Evaluating how different environmental, physiological, biochemical, and behavioural 

factors influence the rates of assimilation and turnover into specific compounds such as 

carbohydrates, amino acids, and lipids leads to an improved understanding of an organism’s 

biochemistry (Webb et al., 1998; Gratton & Forbes, 2006). Chamberlain et al., (2004) evaluated 

the relationship between lipid content and δ13C values of Collembola and their diet. They found 

that fatty acid δ13C values did not reflect those of bulk dietary fatty acids alone. Instead, δ13C 



 

 

31 

compositions routed into fatty acid biosynthesis, suggesting that fatty acid composition of 

Collembola is a combination of both diet and biosynthesized sources. 

2.4.4 Feeding Behaiour 

Entomologists have used SIA to evaluate different aspects of feeding behaviour. 

Researchers used differences in δ13C values to study food preference in crop pests (Petelle et al., 

1979; Prasifka & Heinz, 2004). Trimble and Sagers, (2004) discovered differences in feeding 

strategies among ants, which were opportunistic foragers at lower elevations and specialized 

foragers at higher elevations. Another study determined that riparian spiders that forage between 

aquatic and terrestrial environments obtain greater than 50% of their diet from aquatic insects 

(Akamatsu et al., 2004). In multitrophic systems, entomologists use enriched isotopes to study 

food-web complexities. Fischer et al., (2003) evaluated symbiotic relationships of ants (Pheidole 

bicornis Forel) and their host-plant. Researchers provided ants with a food source enriched in 15N 

glycine and followed the fate of the nitrogen excreted by the ants, which eventually transferred to 

the host-plant (Fischer et al., 2003). 

2.4.5 Dispersal 

Knowledge of dispersal distances, locations, and timing is central to our understanding of 

insect ecology and behaviour and is necessary for effective pest control or conservation efforts. It 

is possible to use the natural variation of isotopes, or enriched isotopes, to determine the range, 

migration patterns, or drift of insects. Naturally occurring isotope markers do not require pre-

marking individuals because they vary over geographical area and often have distinctive profiles 

based on local biogeochemical processes (Hood-Nowotny & Knols, 2007). For example, 

geographic variation in oxygen and hydrogen isotope signatures of insects will reflect the signature 

of their water source and geographic variation in carbon and nitrogen signatures will reflect their 

diet (Gratton & Forbes, 2006; Hamer et al., 2014). 

Using SIA of insects provides increasingly useful tools in wildlife forensics (Bowen et al., 

2005). In the case of pest management, studies investigated the movement patterns of natural 

enemies and parasitoids of pests (Prasifka & Heinz, 2004). Using an ecophysiological perspective 

to study insect dispersal, researchers employed enriched isotopes (Macneale et al., 2004; 2005). 
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In a study attempting to identify the region of origin in an invasive pest (Helicoverpa armigera), 

researchers determined the region of origin for 73.3% of individual moths using a multivariate 

combination of δ2 H, 87Sr/86Sr, 208Pb/206Pb, and 208Pb/207Pb (Holder et al., 2014).   

Enrichment methods allow for marking insects with isotopes as an effective method for 

labelling individuals within populations and determining habitat use when paired with mark-

release-recapture techniques (MRR; Hagler & Jackson, 2001; McDermott et al., 2019). Insect 

MRR protocols should incorporate techniques that do not affect the insect’s fecundity or behaviour, 

are durable, non-toxic, easy to apply, clearly identifiable, cost effective, and retained by the 

individual (Hagler & Jackson, 2001). Stable isotopes meet these criteria, thus providing 

opportunities for incorporation into ecological studies as natural tracers (Macneal et al., 2005; 

Hood-Nowotny et al., 2006). Incorporating enriched isotopes is a minimally invasive method to 

label a distinct proportion of an ecosystem to determine dispersal patterns (Macneal et al., 2005). 

One limitation of this technique is that analysis methods for insects are often destructive; therefore, 

methods that require the researcher to capture marked individuals multiple times are not always 

possible (Hood-Nowothny & Knols, 2007). Enrichment studies with wild populations are 

sometimes difficult because they rely on the ability to recapture previously labeled individuals. 

In a study evaluating the role of adult mosquitos (Culex pipiens Linnaeus) in West Nile Virus 

transmission, Hamer et al., (2014) implemented enriched isotopes in an MRR study to observe 

mosquito dispersal patterns. They determined that 90% of female Culex mosquitoes remained 

within 3 km of their larval habitat, corresponding with the distance-limited genetic variation of 

West Nile Virus in their study region (Hamer et al., 2014). Furthermore, SIA differentiated 

between flies (Musca domestica Linnaeus) that developed on a range of substrates and determined 

the likely source of nuisance insects, which is useful in pest management practices (Heinrich et al., 

2012). 

2.4.6 Mating and Sperm Competition 

Similar to studies of feeding behaviour, the study of insect mating traditionally relied on 

direct observation or the use of chemical/radioactive tracers (Dame & Schmidt, 1964; Sivinski & 

Smittle, 1987; Hood-Nowotny & Knols, 2007). Researchers used differences in spermatophores’ 

isotopic signatures in European corn borers (Ostrinia nubilalis Hübner) reared on C3 and C4 plants 

to evaluate assortative mating strategies (Posnard et al., 2004; Malausa et al., 2005). Scientists 
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examined sperm transfer and multiple mating by tracing the fate of labelled sperm into female 

spermathecae from male mosquitoes labelled with 13C (Helinski et al., 2007; Helinski et al., 2008). 

Although entomologists use SIA less frequently in mating and sperm competition studies, it 

provides useful information on host-plant and insect interactions, oviposition preferences, and 

assortative mating strategies (Ponsard et al., 2004) and offers an area for more research. 

2.5 Mistakes, Considerations, and Future Directions 

2.5.1 Use Previous Knowledge and Caution 

It is important that entomologists use informed knowledge when considering SIA (Post, 

2002; Dalerum & Angerbjörn, 2005; Ben-David & Flaherty, 2012; Phillips et al., 2014). For 

example, SIA is an attractive tool to determine diet. However, initially, some researchers did not 

consider that the sample collected was influenced by spatial and temporal scales based on habitat 

(Flaherty & Ben-David, 2010; Cummings et al., 2012), or assimilation and turnover rates (Kelly, 

2000; Robbins et al., 2010; Ben-David et al., 2012), and additional uncertainties (Phillips et al., 

2014). For example, in a homogeneous system (e.g. C4 dominated agricultural fields) there is less 

isotopic variation among food sources. If the composition of specific diet items varies across 

spatial scales and a species’ range, then conclusions using site specific isotopes might be 

misinformed (Kelly, 2000; Phillips et al., 2014). Additionally, in longitudinal studies it is 

necessary to account for anthropogenic inputs of carbon and nitrogen that have resulted in 

atmospheric depletion in δ 13C and δ 15N through time because this affects isotope signatures in 

both consumers and their diet (Schell, 2001; Long et al., 2005; Hobson et al., 2010; Ben-David & 

Flaherty, 2012). 

A well-founded understanding of the study system including, but not limited to, its 

environmental conditions, the composition and availability of primary producers, feeding 

behaviours, nutrient quality, life stages, and biochemical processes result in a more informative 

stable isotope study (Fig. 3). To alleviate the possibility of uninformative or erroneous results, 

researchers should identify potential dietary food items of the study organism prior to sample 

collection and determine the temporal and spatial variation in sources from the literature or collect 

samples to quantify the variation at the study site (Ben-David & Flaherty, 2012; Phillips et al., 

2014). Most importantly, it is beneficial to plot the data before running a SIMM. If values for the 
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consumer fall outside of the possible range of potential diet sources, an important source is missing 

or discrimination factors are incorrect. This highlights the importance of knowing dietary habits 

of study species before attempting SIA. Developing an understanding of stable isotopes and their 

behaviour (especially in the system under study) and the available tools, techniques, and outputs 

as discussed above should help researchers avoid these limitations. Like any experiment, 

developing a sound hypothesis with testable predictions and a robust design will help ensure that 

the methodology is appropriate for the questions asked. SIA and SIMMS are not a cure-all and the 

ability to interpret results is dependent on the questions asked and the experimental design (Phillips 

et al., 2014). 

2.5.2 Quality Control 

An increasing interest of SIA as a research tool for ecological studies paired with the 

simplicity of automated analysis has led to a gap in knowledge between ecologists and technicians 

of isotope ratio mass spectrometry (IRMS) equipment. Additionally, ease of sample preparation 

and analysis has resulted in a deterioration of the understanding of methodological procedures and 

the proper dissemination of findings in the ecological literature (Jardine & Cunjak, 2005). When 

submitting samples for SIA, researchers should review laboratory standards whether from the 

International Atomic Energy Agency or internal laboratory standards used to calibrate data. In 

addition, researchers should review the number of sample replicates analyzed within and across 

runs to ensure data quality and consistency (Jardine & Cunjack, 2005). Samples should be run in 

duplicate when possible, and results should only be accepted if the variance between duplicate 

samples does not exceed 0.15‰, and machine linearity does not deviate from 0.99 (Ben-David et 

al., 1997a; 1997b; Flaherty & Ben-David, 2010). Researchers should provide measures of both 

precision and accuracy in publications (Stephenson & Lyon, 1982; Schelske & Hodell, 1995; 

Doucett et al., 1999) to ensure that reviewers can judge the reliability of data. Jardine and Cunjak 

2005, recommend 1) reporting accuracy by comparing measured values (mean ± 1 standard 

deviation; SD) for the calibrated commercially available standards alongside the samples, and 2) 

reporting precision (mean ± 1SD) by including values for measured standards (across run precision 

during sample analysis), repeated samples (within run precision) and for a single sample analyzed 

every time samples are run (across runs precision). 
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2.5.3 Insect Specific Considerations 

A number of insect-specific factors can influence SIA. For example, in terrestrial 

ecosystems, insect carbon and nitrogen isotopic signatures can reflect both trophic interactions and 

soil microbial processes, such as humidification and fungal development (Hyodo, 2015). In 

addition, the ectothermic physiology and size of insects need consideration when using SIA 

because metabolic rate and body size affect how organisms assimilate isotopes into their tissue 

(Tieszen et al., 1983; Martínez del Rio & Carleton, 2012). Metabolic activity differences influence 

the rate of isotopic discrimination differently across taxa and affect SIMMs (Post, 2002; Caut et 

al., 2009; Phillips et al., 2014). Because of the reasons mentioned above, more research using SIA 

in insect systems is needed. 

2.5.4 Future Directions for Entomological Studies 

Insect model systems provide unique opportunities for entomologists to incorporate SIA in 

their research to advance our knowledge of insect biology and the stable isotope ecology of insects. 

Entomologists can employ model systems to evaluate factors that influence isotopic discrimination, 

isotopic routing, and assimilation rates, which are lacking in insect ecology and are difficult to 

address experimentally in other taxa (Wolf et al., 2009). Furthermore, entomologists can evaluate 

how specific compounds incorporate into tissues, gaining a better understanding of properties of 

insect biochemistry. 

The estimation of discrimination factors using feeding trials is an important study area to 

inform SIA in insects. Many studies document considerable variation in discrimination factors 

(Hobson et al., 1993; Hobson et al., 1996; Hobson & Cherel, 2006; Caut et al., 2009; Franssen et 

al., 2017) and SIMMs are sensitive to differences in discrimination factors (Post, 2002; Phillips et 

al., 2014). Unlike other taxa, insects are amenable to experimental manipulation, have short 

lifespans, and can easily be reared in laboratory settings. As a result, insects make excellent 

systems to evaluate the effects of biochemical, physiological, and behavioural factors on 

incorporation, routing, assimilation and turnover. 

Entomologists can explore feeding relationships in systems where direct observation or 

traditional methods are not feasible (Hood-Nowotny & Knols, 2007; Hyodo, 2015; Quinby et al., 

2020), and explore ecological interactions that are complex and cover multiple levels of 
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organization (Ben-David & Flaherty, 2012). Stable isotopes allow researchers to evaluate the 

response of individuals to environmental conditions (Norris et al., 2007), explore how individual 

responses influence fitness (Sorensen et al., 2009), population dynamics (Rubenstein et al., 2002), 

and community and ecosystem processes (Kennedy et al., 2018; Rosumek et al., 2018). 

Furthermore, SIA is the only way for paleoentomologists to evaluate foraging ecology and 

paleoenvironments of extinct insects (Koch, 2007; Wang et al., 2009). 

2.6 Conclusions 

Field studies that use SIA to evaluate ecological problems outnumber experimental studies 

clarifying mechanisms that describe ecological patterns (Gannes et al., 1997; Wolf et al., 2009). 

Although SIA provides opportunities for addressing a variety of unknowns in entomological 

research that use an ecosystem approach, the technique is underutilized. For instance, SIA is used 

in conservation efforts in other taxa (Hilderbrand et al., 1999; Pain et al., 2004) but is nearly absent 

in the insect literature, potentially because analysis methods in insects are usually destructive 

(Hood-Nowothny & Knols, 2007). However, in larger bodied insects, small clippings of tissue (i.e. 

elytra notches; Fig. 2) are less invasive (Gratton & Forbes, 2006; Quinby et al., 2020). Further 

studies evaluating routing, assimilation, species-specific discrimination factors, and CSIA provide 

opportunities for entomologists to add to the field of stable isotope ecology while at the same time 

gain insight to previously unanswered questions. Incorporating insect model systems into stable 

isotope ecology will advance the stable isotope ecology of insects and our knowledge of insect 

biology. 
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Table 2.1. Entomological Research using Stable Isotopes 

Examples of the application of stable isotopes in entomology. 

Study Topics Invertebrate 

Study System 

Isotopes Used References 

Diet    

Food preference  Coleoptera, 

Lepidoptera, & 

Hymenoptera; 

Mosquitoes; 

Ants: 

Moths 

13C; 

13C & 15N; 

13C & 15N; 

13C & 15N 

Petelle et al., 1979; 

Akamatsu et al., 2004; 

Feldhaar et al., 2010 

Adams et al., 2016 

    

Food web structure Ants; 

Ants; 

Aquatic insects 

& Spiders; 

Benthic 

invertebrates 

13C & 15N ; 

13C & 15N ; 

13C & 15N; 

2H 

Blüthgen et al., 2003; 

Feldhaar et al., 2010; 

Paetzold et al., 2005; 

Doucett et al., 2007 

    

Dietary niche Ants; 

Odonata; 

Ants; 

Coleoptera 

13C & 15N; 

13C & 15N; 

13C & 15N; 

13C & 15N 

Feldhaar et al., 2010; 

Chari et al., 2018; 

Rosumek et al., 2018; 

Santi-Júnior et al., 2018 

    

Resource contribution 

to biomass 

Spiders; 

 

 

Mosquitoes 

13C & 15N; 

 

 

13C & 15N 

Collier et al., 2002, 

Oelbermann & Scheu, 2004, 

Akamatsu et al., 2004; 

Kaufman et al., 2010 
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Table 2.1 continued 

    

Trophic enrichment, 

discrimination, and 

fractionation 

Beetles; 

Beetles; 

Termites; 

General insects; 

Herbivorous 

insects; 

Collembola; 

Invertebrates; 

Ants 

Collembola; 

Ephemeroptera; 

Blowflies; 

Beetles 

13C & 15N; 

13C & 15N; 

13C & 15N; 

13C & 15N; 

13C & 15N; 

13C & 15N; 

15N; 

13C & 15N; 

13C; 

13C & 15N; 

Scrimgeour et al., 1995; 

Ostrom et al., 1996; 

Tayasu, 1998; 

McCutchan et al., 2003; 

Spence & Rosenheim, 

2005; 

Haubert et al., 2005 

Caut et al., 2009; 

Feldhaar et al., 2010 

Semenina & Tiunov, 2011; 

Brauns et al., 2018; 

Matos et al., 2018; 

Quinby et al., 2020 

Trophic relationships Coleoptera & 

Aphids; 

Ants; 

Moths 

15N;  

13C & 15N; 

13C & 15N; 

13C & 15N 

Scrimgeour et al., 1995; 

Tillberg et al., 2006; 

Hyodo, 2015 

Adams et al., 2016 

    

Feeding Strategies Ants; 

Spiders; 

Odonata; 

Coleoptera 

13C & 15N; 

13C & 15N; 

13C & 15N; 

13C & 15N 

Trimble & Sagers, 2004; 

Paetzold et al., 2005; 

Chari et al., 2018; 

Santi-Júnior et al., 2018 

    

Movement    

Population marker Mosquitoes; 

Mosquitoes; 

Biting midges 

13C; 

13C & 15N 

13C & 15N 

Hood-Nowotny et al., 2006; 

Opiyo et al., 2016; 

McDermott et al., 2019 
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Table 2.1 continued 

    

Dispersal Coleoptera; 

European corn 

borer 

Stoneflies; 

Mosquitoes; 

Mosquitoes; 

Heteroptera 

13C; 

13C; 

15N; 

15N; 

13C & 15N; 

13C & 15N 

Ponsard et al., 2004; 

Prasifka & Heinz, 2004; 

Macneale et al., 2004 & 

Macneale et al., 2005; 

Hamer et al., 2014; 

Mederios et al., 2017;  

Madeira et al., 2019 

Multi-generational 

colonization of 

breeding grounds 

Butterflies 2H & 13C Flockhart et al., 2013 

Natal origin Butterflies; 

Butterflies; 

Houseflies; 

Dragonflies; 

Cotton 

bollworm; 

Butterflies 

2H & 13C; 

2H & 13C 

13C & 15N; 

2H; 

2H, 87Sr, 207Pb, & 

208Pb; 

2H & 13C 

Wassenaar & Hobson, 

1998; 

Hobson et al., 1999; 

Heinrich et al., 2012; 

Hobson et al., 2012; 

Holder et al., 2014 

Flockhart et al., 2017 

    

Predator-Prey 

Relationships 

   

Nitrogen transfer 

from prey to predator 

Aphids, flies, 

beetles, & 

Spiders 

15N Nienstedt & Poehling, 2004 

Host specificity Ants 13C & 15N Trimble & Sagers, 2004 

Effects of predation 

on abundance and 

biomass of aquatic 

insect emergence 

Aquatic insects 

& Spiders 

13C & 15N Paetzold & Tockner, 2005 
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Table 2.1 continued 

    

Shifts in prey 

consumption 

Spiders 13C & 15N Wise et al., 2006 

Disease Transmission    

Tick-borne diseases Ticks 13C & 15N Schmidt et al., 2010 

Feeding Habits Mosquitoes 13C, 15N, & 34S Njabo et al., 2013 

West Nile Virus Mosquitoes 13C & 15N Hamer et al., 2014 

    

Mating    

Spermatophore as 

host plant indicator & 

ovipositioning 

preference  

European corn 

borer 

13C Ponsard et al., 2004 

Assortative mating in 

sympatric host 

European corn 

borer 

13C Malausa et al., 2005 

Sperm transfer Mosquitoes 13C; 

13C & 15N 

Helinski et al., 2007; 

Helinski et al., 2008 

    

Energy Flow    

Nitrogen transfer Termites; 

Termites; 

Ants 

13C & 15N; 

13C & 15N; 

15N 

 Tayasu, 1998;  

Nardi et al., 2002; 

Fischer et al., 2003 

Quantifying energy 

flows in 

agroecosystems  

Beetles 13C & 15N Ostrom et al., 1996 

Nitrogen fluxes to 

plants 

Ants 15N Fischer et al., 2003 

Aquatic subsidies to 

terrestrial food webs 

Aquatic insects 

& Spiders 

13C & 15N Paetzold et al., 2005a 
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Table 2.1 continued 

    

Terrestrial subsidies 

to aquatic food webs 

Benthic 

invertebrates 

2H Doucett et al., 2007 

Terrestrial subsidies 

through trophic 

positions 

Spiders 13C & 15N Kennedy et al., 2018 

    

Effects on isotope 

signatures 

   

Diet quality 

influences isotope 

signature and 

biochemical 

components 

Locust 13C & 15N Webb et al., 1998 

Diet and water Chironomidae 2H & 18O Wang et al., 2009 

Nutritional status Collembola 15N Semenina & Tiunov, 2011 

Lipid extraction Aquatic 

invertebrates 

13C & 15N Logan et al., 2008 

Lipid content and 

carbon assimilation 

Collembola 13C Chamberlain et al., 2004 

Isotope incorporation 

rate 

Beetles; 

General Insects 

 

13C; 

13C, 15N, & 18O 

Gratton & Forbes, 2006; 

Schimmelman, 2011 

Tissue type  Beetles; 

General Insects 

13C; 

13C, 15N, & 18O 

Gratton & Forbes, 2006; 

Schimmelman, 2011 

Food quality, 

starvation and life 

stage impacts on 

isotope fractionation 

Collembola 13C & 15N Haubert et al., 2005 
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Table 2.1 continued 

    

Amino acid nitrogen 

recycling during 

fasting 

Coleoptera 15N Scrimgeour et al., 1995 

Dietary sources 

contribution to amino 

acids in eggs 

Lepidoptera 13C O’Brien et al., 2002 

Amino acids at 

different life stages 

Blowflies 13C Matos et al., 2018 

Turnover and half-life 

in tissues 

Invertebrates 13C, 15N, & 34S Vander Zanden et al., 2015 

    

Insect Pest    

Crop pest Herbivorous 

and Parasitic 

Insects 

13C Petelle et al., 1979 

Pest management Coleoptera; 

Flies 

13C; 

13C & 15N 

Prasifka & Heinz, 2004; 

Heinrich et al., 2012 

Insect pest outbreaks Spruce 

budworm 

13C & 18O Simard et al., 2008 

    

Additional Reviews    

Stable isotopes in 

termite research 

Termites 13C & 15N Tayasu, 1998 

Stable isotope 

methods in biology 

and ecology 

General 

Arthropods 

2H, 13C, 15N, 18O, 

34S, & 84Sr 

Hood-Nowotny & Knols, 

2007 

Ant nutrition Ants 13C & 15N Feldhaar et al., 2010 

    

    



 

58 

Table 2.1 continued 

    

Stable isotopes 

evaluating 

Collembola 

Collembola 15N Semenina & Tiunov, 2011 

Stable isotopes in 

trophic ecology 

General Insects 13C & 15N Hyodo, 2015 
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Figure 2.1. Publications Using Stable Isotopes in Wildlife Research  

Total number of published papers in which stable isotope analysis was used to determine migration, diet, niche, parasite-host 

interactions or condition of terrestrial insects, aquatic insects, mammals, birds, and fish. We conducted our literature search using Web 

of Science and the terms “stable isotopes” and “insects/mammals/birds/fish”. 
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Figure 2.2. Burying Beetle Elytral Notch 

Example of a minimally invasive elytral notch used to determine stable isotope signatures (δ13C 

and δ15N) in the Federally Endangered American burying beetle (Nicrophorus americanus; 

Quinby et al., 2020). 
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Figure 2.3. Factors that Influence Stable Isotope Ratios 

Chemical reactions and biological events that effect stable isotope signatures of adult herbivorous, carnivorous, and omnivorous 

insects, including biochemical processes, underlined physical processes, and rectangles surround the behavioural processes. 

Ecological interactions are denoted by solid lines, whereas aspects influencing enzymatic reactions and diffusion rates (i.e., nutrient 

cycling, nutrient routing, and photosynthesis) are denoted with dotted lines. Isotopic values from tissues of a consumer that is 

omnivorous is influenced by multiple ecological properties including physiological processes, behavioural processes, and various 

effects from the ecosystem. Additional considerations for insects as interactions between processes such trophic enrichment during 

metamorphosis; soil microbial processes; decomposition; and methane-derived C for insects that have aquatic stages will also 

influence stable isotope ratios (Hyodo, 2015). Modified from Ben-David et al., (2001) and Ben-David & Flaherty, (2012). 
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 EVALUATION OF THE VERTEBRATE CARRION 

RESOURCES USED BY THE AMERICAN BURYING BEETLE 

(NICROPHORUS AMERICANUS)  

Brandon M. Quinby, J. Curtis Creighton, and Elizabeth A. Flaherty 

3.1 Highlights 

• American burying beetles use natural carrion for reproduction. 

• Nantucket Island American burying beetles rely on provisioned carrion for reproduction.  

• Co-occurring burying beetles exhibit large niche overlap. 

• Ring-necked pheasant is an important resource on Block Island but not Nantucket. 

• Long-term provisioning of quail may be necessary for successful recruitment. 

3.2 Abstract 

The last naturally occurring American burying beetle, Nicrophorus americanus (ABB) on 

Nantucket Island, Massachusetts was recorded in 1926. Beginning in 1993, laboratory-reared 

offspring of wild-caught individuals from Block Island, Rhode Island were reintroduced onto 

Nantucket. After an initially successful reintroduction, the population shows little evidence of 

recruitment and likely requires provisioning of quail carcasses for long-term success. A key 

requirement of the ABB’s life cycle is the availability of small vertebrate carcasses used for 

breeding. Despite over 30 years of research, we know little about the preferred carrion base 

necessary to support a healthy ABB population. We investigated carrion use and feeding 

relationships of local burying beetles within an extant and reintroduced population using stable 

isotope analysis (δ13C and δ15N) conducted on elytral samples collected from live-captured 

specimens. Our results suggested that ABBs are not specializing on avian or mammalian carrion 

and are using both natural and provisioned carrion for reproduction. On Block Island, estimates 

for the highest proportional dietary resource for ABBs was ring-necked pheasant (Phasianus 

colchicus) at 28% for 2017 and 2018. On Nantucket Island, where pheasant are less abundant, 

estimates for the highest proportional dietary resource for ABBs in 2017 was small mammals at 

50%, and granivorous birds at 65% in 2018. Additionally, we observed large niche overlap in both 

populations. For successful management and reintroduction, conservation managers must consider 
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the availability of natural carrion resources. Lastly, we recommend long-term provisioning of quail 

at reintroduction sites for successful recruitment. 

3.3 Introduction 

Anthropogenic habitat alteration can lead to a change in ecological niche structure that 

reduces essential resources for many species (Severns and Warren, 2008; Preston et al., 2012). 

Changes in resource availability has a negative impact on species that specialize on these depleted 

resources, which can change community composition and species interactions (Jonsson et al., 2015; 

Seidl et al., 2017). For example, Berg and Ellers (2010) determined that species exhibiting 

plasticity in resource requirements as a result of changes in resource availability can result in an 

enlarged fundamental niche for that species and causes a reduction of vacant niches for others. 

Furthermore, plasticity in the proportional resource uptake for a species results in the expansion 

of its realized niche, causing a reduction in the possibility for coexistence with other species (Berg 

and Ellers, 2010). 

In most terrestrial ecosystems competition between invertebrate decomposers and 

vertebrate scavengers  direct the role of carrion energy transfer in food webs (DeVault et al., 2011). 

In carrion feeding guilds competition for resources can be intense, and insects and microbes have 

evolved efficient ways of monopolizing carrion (Janzen, 1977; Burkepile et al., 2006). However, 

anthropogenic habitat alteration has a significant impact of the available carrion base by changing 

community structure (Gibbs and Stanton, 2001; Wilson and Wolkovich, 2011). For example, 

habitat alteration changes the relative abundance of different  size classes of small mammals: larger 

species tend to disappear and smaller species increase in population size (Nupp and Swihart, 2000).  

Habitat alteration also can lead to an increase in vertebrate scavengers that in turn changes 

competitive interactions among the vertebrate and invertebrate carrion feeding guilds (DeVault et 

al., 2004).  

Burying beetles are an essential component in carrion food webs of many terrestrial 

ecosystems (Parmenter and MacMahon, 2009; Barry et al., 2019). These beetles use carrion for 

both nonreproductive feeding and for reproduction as food for their offspring (Scott, 1998). For 

reproduction burying beetles specialize on small vertebrate carcasses, which developing young 

feed on after the carcass is preserved and buried by their parents. Because carrion is highly sought 

after and unpredictable in space and time (Hanksi and Cambefort 1991; Darimont et al., 2008), 
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available carcasses for reproduction is hypothesized to be the limiting resource for burying beetle 

species (Lomolino and Creighton, 1996).  

Among burying beetle species, carrion size used for reproduction is highly correlated with 

body size (Scott, 1998). For example, the federally endangered Nicrophorus americanus (ABB) is 

the largest member of the North American burying beetle guild and generally uses larger carcasses 

for reproduction (range between 80-200 g; Kozol et al., 1988). This makes larger burying beetle 

species such as the ABB disproportionately impacted by habitat fragmentation because of a loss 

of optimal-sized carcasses for reproduction (Nupp and Swihart, 2000). The concurrent increase in 

smaller mammal species that can be used only by smaller burying beetle species and an increase 

in vertebrate scavengers associated with habitat fragmentation potentially changes the dynamics 

of interspecific competition for carrion resources (DeVault et al., 2011; Hopwood et al., 2016a). 

Thus, from a conservation perspective, effective management of the ABB requires both an 

understanding of its critical habitat and limiting resources and an understanding of how potential 

anthropogenic changes in the habitat impacts community structure and competitive interactions 

among species (Poole et al., 2014).  

Burying beetles partition resources depending on breeding season, daily activity patterns, 

habitat use, and carcass size used for reproduction (Trumbo, 1990; Lomolino et al., 1995; 

Creighton, 2005; Cook et al., 2019). For breeding, it is hypothesized that burying beetles have 

broad preferences for a variety of small vertebrate carrion types but a strong preference for carrion 

size (Lomolino and Creighton, 1996; Scott, 1998; Hocking et al., 2007; Quinby et al., 2020). 

Furthermore, it is highly likely that burying beetles exhibit a nested hierarchy in ecological niches 

that includes specialist species with a narrow niche breadth, generalist species with a wider niche 

breadth, or a combination of both (Araújo et al., 2010; Robertson et al., 2015; Quinby et al., 2020).  

Although burying beetle ecology and behavior has been extensively studied over the last 

30 years (Kozol et al., 1988; Eggert et al., 1998; Creighton, 2005; Cook et al., 2019), we know 

little about what burying beetles actually use for breeding under natural conditions. Using stable 

isotopes, researchers recently evaluated feeding relationships of co-occurring, wild-caught burying 

beetles (Quinby et al., 2020). They determined that co-occurring burying beetles from their study 

area were all using a similar carrion base of mammalian carrion for reproduction (Quinby et al., 

2020). However, due to small sample sizes of potential reproductive carrion, their study was unable 

to distinguish among small vertebrate species used by burying beetles for reproduction in the wild 
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(Quinby et al., 2020). Additionally researchers used stable isotopes to characterize within- and 

among-population variation in dietary niche in populations and communities of burying beetles by 

evaluating niche partitioning among species focused on differentiation in carcass use in relation to 

body size (Ikeda et al., 2006) and niche variation associated with terrestrial and marine carrion 

(Hocking et al., 2007). However, there are still many unknowns in regards to burying beetle 

resource use under natural conditions especially in areas of conservation concern.   

The ABB was listed as a federally endangered species in 1989 (Federal Register 1989).  

Historically, ABBs were distributed across 35 states three Canadian provinces in eastern and 

central temperate forested areas of North America but has recently undergone a dramatic decline 

in its abundance and geographic range (Anderson, 1982; Lomolino et al., 1995; Backlund et al., 

2008; Mckenna-Foster et al., 2016). Today, extant populations are constrained to the western and 

eastern limits of its historic range including, Arkansas, Kansas, Nebraska, Oklahoma, Rhode Island, 

South Dakota, and Texas (Anderson, 1982; U.S. Fish and Wildlife Service, 1991; Leasure and 

Hoback, 2017). Sikes and Raithel (2002) proposed several hypotheses to explain the species 

decline, but it is likely that the primary influences leading to its endangered status are its 

specialized breeding behavior and large body size. Reintroduction efforts are underway or have 

been attempted in Massachusetts (on Nantucket Island), Missouri, and Ohio that exhibit varying 

degrees of success (Barnhart and Brown, 2002; Selbo, 2009; Mckenna-Foster et al., 2016; Perrotti 

and Mckenna-Foster, 2019).  

Efforts to reintroduce ABBs to Nantucket Island began in 1993 with initial success 

(Mckenna-Foster et al., 2016). However, the 2016 surveys on Nantucket resulted in the lowest 

number of captures in the 23 years of organized surveys (L. Perrotti pers. comm.) suggesting that 

the population is not self-sustaining and may require human assistance for long-term maintenance 

(Mckenna-Foster et al., 2016). Although the ABB has been studied extensively relative to habitat 

use (Creighton et al., 1993; Lomolino et al., 1995; Bedick et al., 1999), its feeding relationships 

and availability of preferred food sources under natural conditions has received relatively little 

attention (Quinby et al., 2020), and knowledge of what species and sizes of small vertebrates ABBs 

are using for reproduction is lacking. Furthermore, it is unclear how the reintroduction of one 

species of burying beetles following local extirpation affects resource partitioning among the 

extant species. This challenges appropriate management of habitat for extant and reintroduced 

populations. Therefore, characterizing suitable habitat and managing existing and reintroduced 
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ABB populations depend on knowing the distribution and availability of all reproductive carrion 

sources. Furthermore, interspecific interactions among burying beetles can influence reproduction 

and establishment of reintroduced ABBs. It is therefore important to understand interspecific 

interactions including potential competition among members of the burying beetle community, 

especially in respect to carrion used for reproduction, to better evaluate factors affecting population 

dynamics. 

Stable isotope analysis provides indirect techniques to evaluate the community ecology 

and resource use of species, and can offer insights into the feeding ecology and trophic 

relationships of organisms (Fleming et al., 1993; Voigt et al., 2008; Dammhahn et al., 2015). 

Furthermore, stable isotope analysis is beneficial because it can reveal differences in the overall 

composition of diet (Gratton and Forbes, 2006; Flaherty et al., 2010; Chikaraishi et al., 2011), 

niche partitioning (Wolf et al., 2002; Blüthgen et al., 2003; Barnum et al., 2013), and trophic 

position (Tooker and Hanks, 2004; Tillberg et al., 2006; Lorrain et al., 2009) among species that 

are problematic or impossible to identify using traditional methods (i.e., direct observation, gut 

content analysis, and pigment tracing; Pearson et al., 2003; Hood-Nowotny and Knols, 2007; 

Flaherty et al., 2010; Ruhl et al., 2020). As organisms consume prey items the isotopic values of 

assimilated prey are incorporate into the consumer’s tissues to varying degrees (DeNiro and 

Epstein, 1978; Ruhl et al., 2020). Using the isotopic composition of diet items and tissue samples 

from consumers and including diet-tissue discrimination (Hobson and Clark, 1992; Dalerum and 

Angerbjörn, 2005), researchers can incorporate mathematical mixing models into their research to 

approximate the relative contributions of dietary items to a consumer’s diet (Parnell et al., 2013; 

Phillips et al., 2014).  

The goals of our current study were to provide conservation managers with information on 

carrion resources ABBs use in situ for reproduction by evaluating the isotopic signatures of co-

occurring burying beetles, locally available carrion and provisioned quail carrion. Burying beetle 

larval diet is restricted to the  single small vertebrate carcass that their parents bury and preserve 

using oral and anal secretions (Scott, 1998). As result, the body tissues of the adult beetles, 

including the elytra, reflect the isotopic signature of their larval food source (Gratton and Forbes, 

2006; Schimmelman, 2011; Quinby et al., 2020). Using elytron clippings, we evaluated the 

isotopic niche of co-occurring burying beetles between an extant population on Block Island, 

Rhode Island and a reintroduced population on Nantucket Island, Massachusetts to provide insight 
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into intra-population factors that influence resource use and feeding relationships between 

populations. An understanding of feeding relationships will provide critical information necessary 

to manage existing ABB populations and to inform ongoing reintroduction efforts and habitat 

management. We hypothesized that ABBs within the extant Block Island population are using 

locally available ring-necked pheasant (Phasianus colchicus) as a reproductive resource (Sikes 

and Raithel, 2002). Within this population, we hypothesized that the availability of a large reliable 

carrion source (ring-necked pheasant) allows for niche separation between ABBs and other local 

burying beetle species on Block Island because smaller local burying beetle species are less 

capable of using pheasants for reproduction (Creighton et al., 2009; Hopwood et al., 2016b). 

However, on Nantucket Island, the ring-necked pheasant is extremely rare (Mckenna-Foster et al., 

2016), and we hypothesized that ABBs rely on smaller carrion, which in turn increases niche 

overlap and competition among burying beetles in that population. Additionally, we predicted that 

the reintroduced ABB population relies more heavily on provisioned farm-raised quail for 

reproduction when compared to the extant population. 

3.4 Materials and Methods 

3.4.1 Study Area 

We conducted our study on Block Island, Rhode Island (Lat. 41.1617°N, Long. 71.5843°W; 

Fig. 1A), and Nantucket Island, Massachusetts (Lat. 41.2835°N, Long. 70.0995°W; Fig. 1B). 

Study sites largely were composed of maritime shrub thickets, costal moraine grassland, and 

agricultural pastures on Block Island (Kozol et al., 1988; Amaral et al., 1997), and sandplain 

grassland, costal heathland, and mixed forest on Nantucket Island (Mckenna-Foster et al., 2019, 

2016). Vegetation communities on the islands largely consist of scrub oak (Quercus ilicifolia) and 

pitch pine (Pinus rigida) among a mosaic of low grasses and shrubs (Kozol et al., 1988; Amaral 

et al., 1997; Mckenna-Foster et al., 2019, 2016). 

3.4.2 Sample Collection 

Burying Beetle Sampling 

In the summers of 2017 and 2018 (12 June – 30 June), we used pitfall traps to collect 

burying beetles. We followed the ongoing trapping protocol originally described by Kozol (1991). 
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Pitfall traps contained a 946 ml mason jar buried flush to the top level of the soil. We placed a 

screw-on mesh lid on the top of a small plastic container full of aged chicken inside of each pitfall 

trap. Before baiting traps, we aged it for 7-8 days in a plastic container maintained at room 

temperature. We also placed a moist sponge in each trap to help prevent beetle desiccation. We 

covered each jar with a square piece of hardware cloth with a 3 x 3 cm hole in the center that 

allowed beetles access to the trap and helped prevent disturbance from other wildlife. We placed 

a disposable aluminum pan lid over the pitfall trap and staked it down with ground staples to 

exclude rain and provide shade. We checked traps every morning between 0600 and 1000 hr EST 

thus ensuring we removed all burying beetles before environmental temperatures became lethally 

warm for beetles. We collected all ABBs captured in single occupancy containers to await 

provisioning, and a subset of the other burying beetle species captured were frozen until they were 

processed for analysis (Tables 1, 2).  

On Nantucket Island, we collaborated with the United States Fish and Wildlife Service 

(USFWS), Roger Williams Park Zoo (RWPZ), Maria Mitchell Association of Nantucket (MMA), 

and Nantucket Conservation (NC) on pitfall trapping efforts that began in 1993 (Perrotti and 

Mckenna-Foster, 2019). During the summer of 2017, we set traps on the night of 12 June and 

trapped continuously until 28 June. For the summer of 2018, we set traps on the night of 13 June 

and trapped continuously until 25 June. We placed 60 total pitfall traps spaced 20 m apart at 12 

sites arranged in individual linear transects in eastern Nantucket Island for a total sampling effort 

of 720 trap-nights/yr.  

 On Block Island, we collaborated with the Nature Conservancy (TNC), Rhode Island 

Department of Environmental Management (RDEM), USFW, and RWPZ during their annual 

monitoring of the ABB population, which began in 1991 (Raithel et al., 2006). The annual Block 

Island survey involves three consecutive nights of pitfall trapping during the last week of June. 

During the summers of 2017 and 2018, we set traps on the night of 28 June and trapped 

continuously until 30 June. We placed 50 total pitfall traps, 20 m apart from one another, at three 

sites arranged in individual linear transects in southwest Block Island, for a total sampling effort 

of 150 trap-nights per year.  

We collected tissue for stable isotope analysis from four species of burying beetles (ABB, 

Nicrophorus orbicollis, Nicrophorus tomentosus, and Nicrophorus marginatus; Table A1). To 

determine feeding relationships of ABBs, we analyzed stable isotopes (δ13C and δ15N) using a 
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small clip from the elytra of live-captured specimens (Fig. 2); we used the whole elytra for all 

other burying beetle species. We collected all samples for stable isotope analysis during the peak 

reproductive season in mid-summer. 

Small Mammal and Bird Sampling 

To compare to the signatures of the burying beetle species and determine carrion food 

sources, we collected whole blood, muscle tissue, and feather samples from locally available small 

mammals and birds for 2017 and 2018 on both Block Island and Nantucket Island (Tables 1, 2). 

We collected samples from all potential small mammal species on both islands and based the avian 

species sampled on bird surveys previously conducted by RDEM and Massachusetts Division of 

Fisheries and Wildlife. Body mass of most sampled species ranged between 100-300 g (Schwartz 

and Schwartz, 2001) and could provide a suitable carrion base for ABBs. The goal in our sampling 

was to represent variation in size and functional groups (e.g., herbivores versus insectivores) of 

the small vertebrate fauna. We followed recommendations by the Ornithological Council (Fair et 

al., 2010) and the American Society of Mammologists (Sikes et al., 2016) for all small mammal 

and bird surveys. None of the potential carrion species collected were of conservation concern on 

Block Island or Nantucket Island, and Purdue University’s Institutional Animal Care and Use 

Committee (PACUC) approved all methods involving live vertebrates (PACUC protocol No. 

1705001577). We handled all live mammals in accordance with State Permits (180.17SCM and 

062.18SCM for Nantucket Island; 2017-32-W and 2018-14-W for Block Island). We handled all 

live invertebrates in accordance with State Permits (182.17SCI and 064.18SCI for Nantucket 

Island; 2017-32-W and 2018-14-W for Block Island) and Federal Permits (TE-41559C-1). We 

handled all live birds in accordance with State Permits (181.17SCB and 063.18SCB for Nantucket 

Island; 2017-32-W and 2018-14-W for Block Island) under Federal Banding Permit Numbers 

(22795 Nantucket Island; and 09636 Block Island). 

We live trapped locally available small mammals in the summers of 2017 and 2018 (28 

June – 30 September; Table A1). We collected ≤100 μL of whole blood samples from small 

mammals using submandibular venipuncture (Berl et al., 2017). The basic sampling scheme at 

each small mammal trapping site consisted of a 1 × 5 trapping line transect of Sherman live-traps 

(LAFAHD Folding Live Capture, H. B. Sherman, Tallahassee, FL, USA; 7.62 × 8.89 × 22.86 cm) 

each separated by 20 m. Additionally, we mist-netted during the summers of 2017 and 2018 in 
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collaboration with ongoing bird monitoring surveys conducted by MMA and TNC. We 

opportunistically removed molt feathers from birds and stored the samples at –18° C in a 

disposable plastic bag (Podlesak et al., 2005; Ruhl et al., 2020; Vitz and Rodewald, 2012; Table 

A1, A2). We collected ≤100 μL of whole blood samples from birds using brachial venipuncture 

(Pearson et al., 2003; Podlesak et al., 2005; Ruhl et al., 2020; Table 1, 2). To capture birds we used 

a basic sampling scheme at each mist-netting site consisting of 3, 12 m long, 30 mm mesh, 2 tier, 

black, tethered, nylon mist nets. During the summers of 2017 and 2018, MMA and TNC provided 

additional feather and muscle tissue (1-3 g) samples from mammals and birds previously donated 

and frozen (Tables A1, A2). We stored all samples of vertebrate muscle and blood tissue in 

microcentrifuge tubes and feather samples in plastic bags in a freezer at –18 °C until processing. 

3.4.3 Stable Isotope Sample Analysis 

We prepared all samples for isotope analysis in the Wildlife Physiology Laboratory at 

Purdue University. We prepared feathers by washing them with a 2:1 mixture of chloroform and 

methanol (Hobson and Bairlein, 2003; Ruhl et al., 2020) and dried consumer (burying beetle) 

tissues and prey items in an oven for 48 hr at 60°C. We cut feathers into small pieces using scissors 

then used a mixer mill (Retsch MM 200, Glen Mills Inc., Clinton, NJ), to grind and homogenize 

invertebrate and muscle tissue samples. To maximize sample yield for ABB elytral clips or whole 

blood samples from mammals and birds, we used a mortar and pestle. Finally, we weighed all 

samples in miniature tin weigh boats (3 mm × 5mm; Costech Analytical Tech Inc., Balencia, 

California, USA) using a Sartorius microbalance (model CPA2P; Sartorius, Arvada, Colorado, 

USA). 

If sample quantity allowed, we submitted samples in duplicate for analysis to the 

University of Wyoming Stable Isotope Facility (UWSIF; University of Wyoming, Laramie, WY). 

We analyzed all samples for δ13C and δ15N using an elemental analyzer and isotope ratio mass 

spectrometer (Thermo Finnigan Delta Plus XP, Costeck 4010 and Carlo Erba 1110 Elemental 

Analyzer, Costec Zero Blank Autosampler, Finnigan Conflo III Interface). During analysis, 

UWSIF used the standards PeeDee Belemnite (for δ13C) and atmospheric air (for δ15N). 

Additionally, they used alfalfa, chitin, glutamic 1, glutamic 2, keratin, liver, and whole blood as 

reference materials for quality control. Mean standard uncertainty was 0.1 for δ13C and 0.09 for 

δ15N. To determine if lipid correction using mathematical calculations was needed, we calculated 
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the carbon-to-nitrogen (C:N) mass ratio of each sample ( Post, 2002; Cherel et al., 2005). We 

employed mathematical corrections to account for effects of lipids on δ13C values for beetle species 

and carrion categories with C/N ratios > 4 (Post, 2002; Post et al., 2007). We used sample results 

for analysis only if the two subsamples’ variance did not exceed the standards’ variance, which 

ranged between 0.1–0.3‰ based on individual runs (Ben-David and Flaherty, 2012). To complete 

all analyses for each sample, we used the mean values of the two subsamples for δ13C and δ15N. 

3.4.4 Statistical Analysis  

We used multivariate analysis of variance (MANOVA) with post hoc Tukey’s HSD (Zar, 

2014) and a K nearest-neighbor randomization test (Rosing et al., 1998), before incorporation into 

stable isotope mixing models in program R (v. 3.6.1, (R Core Team 2019) to evaluate isotopic 

signatures among vertebrate dietary items to ensure that all of the potential vertebrate prey were 

significantly different in bivariate mixing space. We combined data for diet items that did not 

differ significantly (P>0.05) in δ13C and δ15N. In addition, we used a MANOVA in program R to 

assess differences in isotopic signature among seasons and localities for species of burying beetles 

and potential prey (Table 1, 2, A2). We determined different dietary source profiles among burying 

beetle species based on ongoing ABB management plans (Mckenna-Foster et al., 2016; Perrotti 

and Mckenna-Foster, 2019). We did not include farm-raised quail in the source profiles of N. 

orbicollis, N. marginatus, or N. tomentosus because we did not detect any evidence of carcass 

takeover on farm-raised quail from these species after provisioning (L. Perrotti personal 

communication).  

 We used the dual-isotope linear mixing model package SISUS (Stable Isotope Sourcing 

Using Sampling; Erhardt et al., 2014) to determine the relative contribution of potential food items 

to the diet of burying beetles in a Bayesian framework. To avoid issues with model convergence 

(Moore and Semmens, 2008), we used SISUS because it allows users to specify the number of 

probabilistic exact solutions derived from the mixing model and it outperforms deterministic 

methods (Erhardt et al., 2014). We adjusted source estimates for isotopic signatures using diet-

consumer discrimination factors published in the literature for ABBs (Δ birds 
13C = –1.3‰ and Δ 

birds 
15N = 2.4 ‰; Δ mammals 

13C = 0.6 ‰ and Δ mammals 
15N = 2.9 ‰; Quinby et al. 2020). There are 

known changes in discrimination associated with light availability and decomposition (Gebauer 

and Schulze, 1991; West et al., 2006). Because N. marginatus is diurnal (Bedick et al., 2006) we 
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adjusted isotopic source estimates using discrimination factors reported in the literature (Δ birds 
13C 

= –2.5‰ and Δ birds 
15N = 2 ‰; Δ mammals 

13C = – 1.4 ‰ and Δ mammals 
15N = 2 ‰; (Hyodo, 2015; 

Matos et al., 2018). If we had determined a priori to test for the contribution of a source of interest 

(e.g., proportional contribution of farm-raised quail for ABBs) we included them in mixing models. 

We also used kernel utilization density (KUD) methods with the rKIN package in program R to 

estimate isotopic niche space and percent overlap for the 50%, 75%, and 95% contours (Eckrich 

et al., 2020). Due to constraints in sample size, we combined Nantucket Island ABBs from 2017 

and 2018 for KUD methods, and we did not include N. tomentosus in KUD calculations on 

Nantucket Island.  

3.5 Results 

3.5.1 Reproductive Carrion 

The final assemblage of potential reproductive carrion resources used in mixing models 

contained insectivorous birds, pheasant, farm raised quail, Norway rats, and native small mammals 

on Block Island (Table A2.) and generalist birds, insectivorous birds, granivorous birds, farm 

raised quail, Norway rats, and small mammals on Nantucket Island (Table A2). We combined 

reproductive food resources into 5 and 7 distinct groups based on results of the K nearest-neighbor 

test (P < 0.01) for Block Island and Nantucket Island, respectively. 

3.5.2 Stable Isotope Analysis 

Block Island 

On Block Island, we collected tissue samples from 69 ABBs, 29 N. orbicollis, 23 N. 

tomentosus, and 52 N. marginatus. We found a significant difference in both δ13C values (F (4,130) 

= 19.56; p<0.01; partial η2 = 0.376) and δ15N values (F (4,130) = 9.59; p<0.01; partial η2 = 0.228) 

among different species of wild-caught burying beetles (Table 1; Fig. 3A). Mean isotopic 

signatures for δ13C and δ15N for all Block Island burying beetles did not differ between years 

(Table 1). Block Island ABBs had significantly different δ13C values than N. orbicollis, N. 

marginatus, and N. tomentosus (Table 1). The δ15N values for Block Island ABBs were 

significantly different from N. marginatus, but not N. orbicollis and N. tomentosus (Table 1).  



 

73 

Additionally, δ13C and δ15N values differed significantly among potential reproductive 

carrion (F (8,128) = 84.23; p<0.01; Wilk’s Λ = 0.025; partial η2 = 0.84; Table 1; Fig. 3A). The δ13C 

values were significantly different between farm-raised quail and all other potential reproductive 

carrion (Table 1). Values for δ13C for Norway rats did not differ significantly from insectivorous 

birds, pheasant, or small mammals (Table 1). Values for δ13C between small mammals and 

insectivorous birds or pheasant did not differ significantly (Table 1). Additionally, values for δ13C 

in insectivorous birds and pheasant were not significantly different (Table 1).  

The δ15N values were significantly different between quail and all other potential 

reproductive carrion (Table 1). Values for δ15N in small mammals were significantly different 

from Norway rats, insectivorous birds, and pheasant (Table 1). The δ15N values in Norway rats 

differed from δ15N values pheasant but not insectivorous birds (Table 1). Additionally, δ15N values 

in insectivorous birds and pheasant were significantly different between groups (Table 1). 

Nantucket Island 

We collected tissue samples from 30 ABBs, 65 N. orbicollis, 3 N. tomentosus, and 36 N. 

marginatus on Nantucket Island. We found a significant difference in δ13C (F (3,75) = 14.42; p<0.01; 

partial η2 = 0.37) and δ15N values (F (3,75) = 19.47; p<0.01; partial η2 = 0.44) among different 

species of wild-caught burying beetles (Table 2; Fig. 3B). The mean isotopic signatures for 

Nantucket Island burying beetles are summarized in Table 2. The mean isotopic signatures for 

Nantucket Island burying beetles did not differ significantly between years except for ABBs (Table 

2).  

Additionally, δ13C and δ15N values differed significantly among potential reproductive 

carrion (F (8,210) = 52.56; p<0.01; Wilk’s Λ = 0.111; partial η2 = 0.67; Table 2; Fig. 3B). The δ13C 

values were significantly different between sea birds and all other potential reproductive carrion 

except farm raised quail (Table 2). Values for δ13C between native small mammals and Norway 

rats did not differ significantly (Table 2). Additionally, values for δ13C between small mammals 

and insectivorous, granivorous, and generalist birds did not differ significantly, but they 

significantly differed between small mammals and farm-raised quail (Table 2). Values for δ13C in 

Norway rats and insectivorous, granivorous, or generalist birds were not significantly different 

(Table 2). However, there was a significant difference between δ13C values between quail and 
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insectivorous, granivorous, and generalist birds, as well as between quail and Norway rats (Table 

2). 

The δ15N values were significantly different between seabirds and all other potential 

reproductive carrion (Table 2). Values for δ15N in small mammals and quail did not differ between 

one another, however, δ15N values in small mammals differed from δ15N values in insectivorous, 

granivorous, generalist birds, and Norway rats (Table 2). Additionally, δ15N values in 

insectivorous, granivorous, and generalist birds and Norway rats were not significantly different 

between groups (Table 2). 

3.5.3 Mixing Model Analysis 

Based on the results of the stable isotope mixing model, Block Island burying beetles used 

all available carrion categories for reproduction. The largest estimated proportional reproductive 

carrion resource for all Block Island burying beetle species except N. marginatus was pheasant 

(Table 3). Estimates for N. marginatus suggested a larger proportion of sampled individuals relied 

on insectivorous birds for reproductive carrion (Table 3). 

 Similar to Block Island populations, Nantucket Island burying beetles used carrion from 

all available carrion categories for reproduction. For ABBs sampled in 2017, the largest estimated 

proportional reproductive carrion resource was small mammals; however, for ABBs sampled in 

2018 it was granivorous birds (Table 3). For all other Nantucket Island burying beetles, the largest 

estimated proportional reproductive carrion resource was small mammals (Table 3). 

3.5.4 KUD Analysis 

We identified a significant amount of niche overlap among all burying beetle species on both 

islands using the KUD analysis (Table 6; Fig. 4). On Block Island, we observed ≥50% overlap of 

core-niche-space estimates among ABBs, N. orbicollis, and N. tomentosus but not for N. 

marginatus (Table 6). Isotopic niche-space estimates on Block Island were largest for ABBs 

(Table 6). Among ABBs, N. orbicollis, and N. marginatus on Nantucket Island, we observed <50% 

overlap of core-niche-space estimates (Table 6). Similar to Block Island beetles, ABBs on 

Nantucket Island had the largest isotopic niche-space estimates (Table 6). 
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3.6 Discussion 

American burying beetles from Block Island used a broad range of carrion including both 

naturally available carrion and provisioned quail for reproduction (Table 3). Our results did not 

identify a significant reproductive carrion preference for Block Island ABBs and the largest 

estimated proportional source contribution for any reproductive carrion source was ring-necked 

pheasant (28%; Table 3). Similarly, non-endangered burying beetle species on Block Island used 

a variety of naturally available carrion for reproduction, however they did not use provisioned 

quail (Table 3). Avian reproductive carrion resources were important for all Block Island burying 

beetle species, comprising 61-97% of the estimated proportional source contributions (Table 3). 

All four co-occurring species on Block Island used ring-necked pheasant for reproductive 

carrion (Table 3). Furthermore, ring-necked pheasant is estimated to be the largest proportional 

source contribution for reproductive carrion among all Block Island burying beetles except for N. 

marginatus (Table 4). We observed evidence of large niche overlap among all Block Island 

burying beetles (Table 4; Fig. 4A) suggesting that they were competing for similar reproductive 

carrion resources to raise their young. This was contrary to our hypothesis that the large size and 

availability of ring-necked pheasant would allow for niche separation among ABBs and co-

occurring burying beetle species on Block Island. The larger niche-space estimates for ABBs are 

likely a result of provisioned farm-raised quail (Table 4). 

Similar to Block Island, Nantucket Island ABBs are using a broad range of both naturally 

available carrion and provisioned quail for reproduction (Table 4). Our results did not identify a 

significant reproductive carrion preference for ABBs. In 2017, the largest estimated proportional 

source contribution for any reproductive carrion source was for small mammals at 50%, however, 

in 2018 it was for granivorous birds at 65% (Table 4). Non-endangered burying beetles on 

Nantucket Island were using a variety of naturally available carrion but they are not using 

provisioned quail for reproduction (Table 4). The largest estimated proportional reproductive 

carrion source contribution for non-endangered co-occurring burying beetles was native small 

mammals for N. marginatus on Nantucket Island at 86%; however, all other proportional 

reproductive carrion source estimates were < 70% among non-endangered burying beetle species 

on Nantucket Island (Table 4). Mammalian reproductive carrion resources were important for most 

Nantucket Island burying beetle species, comprising 55-86% of estimated proportional source 

contributions (Table 4). Conversely, for 2018 ABBs our results estimated a heavy reliance on avian 
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reproductive carrion resources that comprised 90% of estimated proportional source contributions 

(Table 4). Unlike burying beetles from Block Island, Nantucket Island beetles do not appear to be 

using ring-necked pheasant as a reproductive resource (Table 4). This is most likely because ring-

necked pheasants are in low abundance and are unreliable as a carrion resource (Mckenna-Foster 

et al., 2016). 

Classical theories on niche variation (Gause, 1934; Van Valen, 1965) and competitive 

exclusion (MacArthur, 1958; Sugihara, 1980) are often centered around specific species and focus 

on their interactions while ignoring intraspecific variability in trophic position (Zalewski et al., 

2014). However, research on character displacement (Kirschel et al., 2019) and competitive release 

(Segre et al., 2016) as well as food web dynamics, all focus on the importance of intraspecific 

variability over temporal and spatial scales (Bolnick et al., 2011; Zalewski et al., 2014) in 

organizing trophic relationships (Nakazawa et al., 2010), competitive interactions and species 

associations (Lichstein et al., 2007; Bolnick et al., 2011).  

In the present study, our ability to sample all co-occurring burying beetle species allowed 

us to assess variability in the isotopic niche space among and within species simultaneously. On 

both Block Island and Nantucket Island, we observed evidence of large niche overlap between all 

burying beetle species (Fig. 4B), suggesting that they are competing for similar reproductive 

carrion resources to raise their young. Additionally, the largest species niche-space estimate on 

Block Island and Nantucket Island were for ABBs, which is likely a result of provisioned farm-

raised quail (Table 6). Our results are similar to studies reporting high niche overlap between 

species of similar functional diversity (Semenyuk and Tiunov, 2011; Zalewski et al., 2014).  

Quinby et al. (2020) did not compare niche overlap between co-occurring species, however, 

they determined that co-occurring burying beetles in Oklahoma used mammalian carrion and not 

avian carrion for reproduction. Similarly, Holloway and Schnell (1997) identified significant 

correlations of habitat use of ABBs with the number of individual mammals; the biomass of 

mammals, biomass of mammals plus birds; and the numbers of species of mammals in western 

Arkansas. In our study, we identified large overlap in carrion resources used for reproduction that 

included both avian and mammalian carrion as main components of ABBs reproductive carrion 

using isotopic analysis of elytral clippings. These findings differ from western populations; 

however, the observed large niche overlap may also be influenced by a lack of functionally diverse 

potential reproductive carrion and its availability at our study sites (Semenyuk and Tiunov, 2011). 
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Because of differences in the carrion base used across the extant range of ABBs, our study suggest 

that a range-wide management prescription may not be suitable for conservation of ABBs. 

However, future studies determining the abundance of potential reproductive carrion as well as 

resource selectivity, in the context of isotopic diet analysis, is needed to provide clarity for resource 

use between populations and over time to compare all ABB populations more thoroughly. 

 Temporal variability in the isotopic signatures of potential reproductive carrion items may 

have contributed to the variation in carrion use detected by our stable isotope analysis (Goetz et 

al., 2017; Ruhl et al., 2020). We detected moderate variation within isotopic levels of prey tissues 

(Appendix Table A1); however, to account for this variability in our isotope analyses we included 

standard deviations for each reproductive carrion resource contribution in SISUS mixing models. 

Additionally, we only included potential reproductive carrion items in final analyses if they were 

isotopically distinct as determined by preliminary MANOVA and K-nearest neighbor tests (Rosing 

et al., 1998; Phillips et al., 2005, 2014). Lastly, a two-way ANOVA confirmed that variation 

among-groups explained much of the variation in total isotopic signatures.   

3.7 Conclusions 

Studies evaluating within and among population variation in dietary niche and resource use 

has significant usefulness for the field of conservation and management, especially with 

Nicrophorus beetles. With recent habitat alteration and the extirpation of ABBs from more than 

90% of its historic range, our understanding of the extent to which reintroduction affects feeding 

relationships and resource use within reintroduced populations is important for conservation 

efforts. We used stable isotope analysis to evaluate the diet of larval ABBs within an extant and 

reintroduced population using elytral clippings. Our results provide information to the intricate 

trophic associations within these systems.  

 Based on our results, management of ABBs should consider long term provisioning of 

farm-raised quail that may supplement a potential lack of naturally occurring reproductive carrion 

resources at reintroduction sites. We suggest evaluating small mammal and bird abundances at 

reintroduction sites to determine the size and availability of potential reproductive carrion. 

Specifically, managers should consider the habitat matrix at reintroduction sites and select sites 

that promote larger bodied small vertebrates that ABBs prefer. Furthermore, studies evaluating 
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inter- and intraspecific competition for carrion resources will provide managers with vital 

information needed to conserve endangered populations.  
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Table 3.1. Stable Isotope Results in Beetles and Carrion 

Sample size (n) and mean isotopic signature (± SD) for δ13C and δ15N for burying beetles [Nicrophorus americanus (Na); N. orbicollis 

(No), N. marginatus (Nm), and N. tomentosus (Nt)] and each collected diet item [Insectivorous birds (IB); Pheasant (Ph); Farm-raised 

quail (FRQ); Norway rats (NR); Small mammals (SM); Generalist birds (Gen B); Granivorous birds (Gra B); Insectivorous birds (IB); 

Sea birds (SB)] for from Block Island (BI) and Nantucket Island (NI). Difference in δ13C and δ15N values calculated from a multivariate 

analysis of variance (MANOVA) with a post hoc Tukey’s multiple comparison test (Zar 2014) and a k-nearest neighbor analysis (Rosing 

et al. 1998). 

Block Island   Tukey’s HSD 

Burying beetles δ13C n 

2017 

ABB 

2018 

ABB 

2017 

No 

2018 

No 

2017 

Nm 

2018 

Nm 

2018 

Nt 

2017 ABB –24.73 ± 1.63 39 – > 0.05 < 0.01 <0.01 <0.01 <0.01 <0.01 

2018 ABB –24.25 ± 1.54 26 > 0.05 – < 0.01 <0.01 <0.01 <0.01 <0.01 

2017 No –26.04 ± 0.54 4 < 0.01 <0.01 – > 0.05 <0.01 <0.01 <0.01 

2018 No –25.68 ± 0.98 17 < 0.01 <0.01 > 0.05 – <0.01 <0.01 <0.01 

2017 Nm –26.83 ± 0.88 15 <0.01 <0.01 <0.01 <0.01 – > 0.05 <0.01 

2018 Nm –27.13 ± 0.71 15 <0.01 <0.01 <0.01 <0.01 > 0.05 – <0.01 

2018 Nt –25.82 ± 1.18 19 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 – 

 δ15N n 

2017 

ABB 

2018 

ABB 

2017 

No 

2018 

No 

2017 

Nm 

2018 

Nm 

2018 

Nt 

2017 ABB 7.24 ± 1.29 39 – > 0.05 0.565 0.565 <0.01 <0.01 0.409 

2018 ABB 8.40 ± 1.70 26 > 0.05 – 0.565 0.565 <0.01 <0.01 0.409 

2017 No 6.57 ± 1.01 4 0.565 0.565 – > 0.05 <0.01 <0.01 1.000 

2018 No 7.94 ± 2.64 17 0.565 0.565 > 0.05 – <0.01 <0.01 1.000 

2017 Nm 5.62 ± 1.69 15 <0.01 <0.01 <0.01 <0.01 – > 0.05 <0.01 

2018 Nm 5.99 ± 0.88 15 <0.01 <0.01 <0.01 <0.01 > 0.05 – <0.01 

2018 Nt 7.54 ± 1.48 19 0.409 0.409 1.000 1.000 <0.01 <0.01 – 

Diet Items δ13C n IB Ph FRQ NR SM 

IB -24.79 ± 0.69 26 – 0.461 <0.01 0.748 0.891 

Ph -24.79 ± 0.59 12 0.461 – <0.01 0.253 0.061 

FRQ -20.22 ± 0.30 18 <0.01 <0.01 – <0.01 <0.01 

NR -25.31 ± 1.92 2 0.748 0.253 <0.01 – 0.923 

SM -24.97 ± 0.51 13 0.891 0.061 <0.01 0.923 – 
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Table 3.1 continued 

 δ15N n IB Ph FRQ NR SM 

IB 6.59 ± 0.49 26 – <0.01 <0.01 1.000 <0.01 

Ph) 4.42 ± 0.92 12 <0.01 – <0.01 <0.01   0.02 

FRQ 3.61 ± 0.47 18 <0.01 <0.01 – <0.01 <0.01 

NR 6.57 ± 1.00 2 1.000 <0.01 <0.01 – <0.01 

SM 5.06 ± 0.46 13 <0.01 <0.01 <0.01 <0.01 – 
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Table 3.2. Stable Isotope Results in Beetles and Carrion 

Sample size (n) and mean isotopic signature (± SD) for δ13C and δ15N for burying beetles [Nicrophorus americanus (Na); N. orbicollis 

(No), N. marginatus (Nm), and N. tomentosus (Nt)] and each collected diet item [Insectivorous birds (IB); Pheasant (Ph); Farm-raised 

quail (FRQ); Norway rats (NR); Small mammals (SM); Generalist birds (Gen B); Granivorous birds (Gra B); Insectivorous birds (IB); 

Sea birds (SB)] for from Block Island (BI) and Nantucket Island (NI). Difference in δ13C and δ15N values calculated from a multivariate 

analysis of variance (MANOVA) with a post hoc Tukey’s multiple comparison test (Zar 2014) and a k-nearest neighbor analysis (Rosing 

et al. 1998). 

Nantucket 

Island   

Tukey’s HSD 

Burying beetles δ13C n 

2017 

ABB 

2018 

ABB 

2017 

No 

2018 

No 

2017 

Nm 

2018 

Nm 

2018 

Nt 

2017 ABB –23.50 ± 2.15 22 – 1.000 <0.01 <0.01 <0.01 0.914 0.914 

2018 ABB –23.38 ± 1.02 8 1.000 – 0.078 <0.01 <0.01 0.942 0.942 

2017 No –25.43 ± 1.18 32 <0.01 0.078 0.634 0.427 0.427 1.000 1.000 

2018 No –25.87 ± 1.47 33 <0.01 0.078 – 0.427 0.427 1.000 1.000 

2017 Nm –26.45 ± 1.10 34 <0.01 <0.01 0.427 – >0.05 1.000 1.000 

2018 Nm –26.76 ± 1.02 32 <0.01 <0.01 0.427 >0.05 – 1.000 1.000 

2018 Nt –25.41 ± 2.44 3 0.914 0.942 1.000 1.000 1.000 – – 

 δ15N n 

2017 

ABB 

2018 

ABB 

2017 

No 

2018 

No 

2017 

Nm 

2018 

Nm 

2018 

Nt 

2017 ABB 6.29 ± 0.96 22 – 0.046 <0.01 <0.01 <0.01 <0.01 0.974 

2018 ABB 8.93 ± 1.40 8 0.046 – <0.01 <0.01 <0.01 <0.01 0.904 

2017 No 5.88 ± 1.03 32 <0.01 <0.01 – >0.05 0.770 0.770 1.000 

2018 No 5.60 ± 1.23 33 0.983 <0.01 0.341 – 0.770 0.770 1.000 

2017 Nm 5.27 ± 1.00 34 0.282 <0.01 0.770 0.770 – >0.05 0.974 

2018 Nm 5.32 ± 1.00 32 0.283 <0.01 0.770 0.770 >0.05 – 0.974 

2018 Nt 6.73 ± 1.11 3 1.000 0.904 1.000 1.000 0.974 0.974 – 
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Table 3.2 continued 

Diet Items δ13C n IB FRQ NR SM Gen B Gra B SB 

FRQ -20.22 ± 0.30 18 <0.01 – <0.01 <0.01 <0.01 <0.01 0.071 

Gen B -24.72 ± 1.21 31 <0.01 <0.01 1.000 1.000 – <0.01 <0.01 

Gran B -22.85 ± 2.01 13 <0.01 <0.01 1.000 1.000 <0.01 – <0.01 

IB -25.48 ± 0.89 4 – <0.01 1.000 1.000 <0.01 <0.01 <0.01 

SB -19.65 ± 4.26 6 <0.01 0.071 <0.01 <0.01 <0.01 <0.01 – 

NR -24.78 ± 1.30 7 1.000 <0.01 – 1.000 1.000 1.000 <0.01 

SM -24.80 ± 1.33 90 1.000 <0.01 1.000 – 1.000 1.000 <0.01 

 δ15N n IB FRQ NR SM Gen B Gra B SB 

FRQ (NI/BI) 3.61 ± 0.47 18 0.100 – <0.01 0.321 <0.01 <0.01 <0.01 

Gen B (NI) 6.63 ± 1.77 31 1.000 <0.01 <0.01 <0.01 – 1.000 <0.01 

Gran B (NI) 7.49 ± 2.56 13 1.000 <0.01 1.000 <0.01 1.000 – <0.01 

IB (NI) 6.25 ± 1.20 4 1.000 0.100 1.000 <0.01 1.000 1.000 <0.01 

SB (NI) 12.01 ± 3.06 6 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 – 

NR (NI) 6.45 ± 1.39 7 1.000 <0.01 – <0.01 1.000 1.000 <0.01 

SM (NI) 2.57 ± 1.77 90 <0.01 0.321 <0.01 – <0.01 <0.01 <0.01 
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Table 3.3. Proportional Composition of Reproductive Carrion to Burying Beetles 

Relative contribution to the reproductive diet of (Nicrophorus americanus; N. orbicollis, N. 

marginatus, and N. tomentosus) from Block Island (BI) and Nantucket Island (NI). We estimated 

proportions of reproductive diet items relative to different burying beetle species using dual-

isotope mixing model. 

Species Reproductive 

Carrion  

Relative Contribution 

Block Island  Nantucket Island 

N. americanus Farm-raised quail 0.16 — 

 Pheasant 0.28 — 

 Norway rat 0.13 — 

 Small mammals 0.26 — 

 Insectivorous birds 0.17 — 

2017 N. americanus Farm-raised quail — 0.32 

 Norway rat — 0.05 

 Small mammals — 0.50 

 Insectivorous birds — 0.05 

 Granivorous birds — 0.04 

 Generalist birds — 0.04 

2018 N. americanus Farm-raised quail — 0.23 

 Norway rat — 0.09 

 Small mammals — 0.01 

 Insectivorous birds — 0.01 

 Granivorous birds — 0.65 

 Generalist birds — 0.01 

N. orbicollis Pheasant 0.60 — 

 Norway rat 0.02 0.00 

 Small mammals 0.03 0.68 

 Insectivorous birds 0.35 0.32 

 Granivorous birds — 0.00 

 Generalist birds — 0.00 
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Table 3.3 Continued 

    

N. tomentosus Pheasant 0.67 — 

 Norway rat 0.01 0.14 

 Small mammals 0.02 0.47 

 Insectivorous birds 0.30 0.14 

 Granivorous birds — 0.09 

 Generalist birds — 0.16 

N. marginatus Pheasant 0.37 — 

 Norway rat 0.04 0.01 

 Small mammals 0.05 0.86 

 Insectivorous birds 0.54 0.10 

 Granivorous birds — 0.01 

 Generalist birds — 0.02 
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Table 3.4. Niche Overlap Between Burying Beetles on Block Island 

Percent overlap estimates of isotopic niche space for Block Island burying beetles (N. americanus, N. orbicollis, N. tomentosus, and N. 

marginatus) generated using kernel utilization density methods for at 50%, 75%, and 95% contour levels.  

Note: A dash (—) indicates 100% overlap.  

 

 N. americanus  N. orbicollis N. tomentosus N. marginatus 

50% 75% 95% 50% 75% 95% 50% 75% 95% 50% 75% 95% 

N. americanus             

50% — — — 0.37 0.56 0.87 0.67 0.88 0.98 0.01 0.16 0.41 

75% 0.47 — — 0.20 0.40 0.61 0.40 0.59 0.77 0.06 0.18 0.36 

95% 0.22 0.46 — 0.09 0.19 0.37 0.21 0.39 0.56 0.08 0.15 0.29 

N. orbicollis             

50% 0.86 — — — — — 0.75 0.99 — 0.02 0.40 0.87 

75% 0.59 0.83 0.95 0.45 — — 0.58 0.83 0.99 0.12 0.45 0.78 

95% 0.45 0.66 0.87 0.22 0.48 — 0.43 0.67 0.93 0.13 0.33 0.60 

N. tomentosus             

50% 0.70 0.89 — 0.33 0.56 0.88 — — — 0.00 0.16 0.55 

75% 0.45 0.64 0.94 0.22 0.41 0.68 0.50 — — 0.11 0.26 0.54 

95% 0.27 0.45 0.73 0.12 0.26 0.50 0.27 0.54 — 0.13 0.27 0.51 

N. marginatus             

50% 0.01 0.27 0.75 0.02 0.23 0.53 0.00 0.43 — — — — 

75% 0.16 0.38 0.72 0.17 0.43 0.65 0.15 0.50 0.99 0.49 — — 

95% 0.19 0.36 0.62 0.17 0.34 0.54 0.25 0.48 0.86 0.22 0.46 — 
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Table 3.5. Niche Overlap Between Burying Beetles on Nantucket Island 

Percent overlap estimates of isotopic niche space for Nantucket Island burying beetles (N. americanus, N. orbicollis, N. tomentosus, and 

N. marginatus) generated using kernel utilization density methods for at 50%, 75%, and 95% contour levels.  

Note: A dash (—) indicates 100% overlap.  

 N. americanus  N. orbicollis N. marginatus 

50% 75% 95% 50% 75% 95% 50% 75% 95% 

N. americanus          

50% — — — 0.18 0.32 0.51 0.02 0.14 0.30 

75% — — — 0.17 0.34 0.50 0.06 0.16 0.35 

95% 0.57 0.46 — 0.15 0.28 0.49 0.08 0.17 0.33 

N. orbicollis          

50% 0.31 0.64 0.98 — — — 0.32 0.74 — 

75% 0.28 0.63 0.92 0.48 — — 0.31 0.57 0.95 

95% 0.22 0.43 0.76 0.23 0.47 — 0.16 0.34 0.64 

N. marginatus          

50% 0.06 0.31 0.77 0.46 0.93 — — — — 

75% 0.17 0.41 0.76 0.50 0.78 — 0.47 — — 

95% 0.19 0.45 0.75 0.34 0.67 0.96 0.24 0.52 — 
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Table 3.6. Isotopic Niche-Space Estimates 

Isotopic niche-space estimates generated using kernel utilization density methods for (Nicrophorus 

americanus; N. orbicollis, N. marginatus, and N. tomentosus) from Block Island (BI) and 

Nantucket Island (NI) for elytra samples at 50%, 75%, and 95% contour levels. 

Species Contour (%) Elytra Population 

N. americanus 50 9.30 BI 

 75 19.79 BI 

 95 43.29 BI 

N. orbicollis 50 3.97 BI 

 75 8.75 BI 

 95 18.10 BI 

N. marginatus 50 4.50 BI 

 75 9.24 BI 

 95 20.04 BI 

N. tomentosus 50 8.95 BI 

 75 18.01 BI 

 95 33.51 BI 

N. americanus 50 12.70 NI 

 75 26.84 NI 

 95 47.45 NI 

N. orbicollis 50 7.08 NI 

 75 14.64 NI 

 95 30.85 NI 

N. marginatus 50 4.97 NI 

 75 10.61 NI 

 95 20.62 NI 
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Figure 3.1. Study Sites 

Study area and location of extant (A) and reintroduced (B) populations of the Federally 

Endangered American burying beetle (Nicrophorus americanus). 
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Figure 3.2. Burying Beetle Elytra Notch 

Example of an elytral notch used to determine stable isotope signatures (δ13C and δ15N) in the 

Federally Endangered American burying beetle (Nicrophorus americanus; Quinby et al. 2020). 
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Figure 3.3. Stable Isotope Space Between Burying Beetles and Reproductive Carrion 

Range of isotopic means (± SD) for groups of potential reproductive carrion items (circles) for (Nicrophorus americanus; N. orbicollis, 

N. marginatus, and N. tomentosus; squares) from Block Island (A) and Nantucket Island (B) collected in the summer of 2017 and 2018. 
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Figure 3.4. Isotopic Niche-Space Estimates 

Isotopic niche-space estimates generated using kernel utilization density methods for (Nicrophorus americanus; N. orbicollis, N. 

marginatus, and N. tomentosus) from Block Island (A) and Nantucket Island (B) at 50%, 75%, and 95% contour levels collected in the 

summer of 2017 and 2018. The large amount of overlap in contour levels among co-occurring species on each island indicates that 

beetles in both populations are using similar carrion for reproduction. 

 



 

101 

 ENERGETICS OF REPRODUCTION AND 

PREHATCHING PARENTAL CARE IN BURYING BEETLES 

Brandon M. Quinby, J. Curtis Creighton, and Elizabeth A. Flaherty 

4.1 Summary Statement 

Our study indicated that sexual development and prehatching parental care are periods of 

elevated metabolic activity in Nicrophorus orbicollis and provide insight into life-history tradeoffs 

associated with resource quality. 

4.2 Abstract 

Life-history theory dictates that there are trade-offs between current and future reproductive 

attempts. These trade-offs are associated with the allocation of assimilated resources to growth, 

reproduction, and self-maintenance. Additionally, they directly influence life-history 

characteristics such as breeding behavior, clutch size, lifespan, fecundity, and parental care.  

Trade-offs associated with the cost of reproduction are studied extensively in respect to longevity 

of individuals, however, the energetics underlying this relationship are not well understood. We 

used the burying beetle Nicrophorus orbicollis to examine the energetics of individual males and 

females during sexual maturation, and the energy expenditures of breeding pairs during carcass 

preparation to quantify the energetic costs associated with reproduction and prehatching parental 

care. There were no differences in resting metabolic rate (RMR) between male and female N. 

orbicollis during sexual maturity. However, metabolic activity decreased over time following 

eclosion and stabilized by day 13, indicating a potential reproductive diapause. We evaluated the 

effects of resource quality (carcass size) on metabolic costs associated with prehatching parental 

care. Carcass size did not significantly influence the metabolic rate of parents; however, the 

number of days needed to prepare small carcasses was significantly shorter compared to larger 

carcasses. Beetle pairs on larger carcasses experienced significantly greater metabolic cost over 

the course of parental care. These observations indicate that sexual development and prehatching 

parental care are periods of elevated metabolic activity and provide further insight into life-history 



 

102 

tradeoffs associated with resource quality. Furthermore, these results highlight energy use in 

association with ideal carcass size. 

4.3 Introduction 

A central concept of life-history theory is the cost of reproduction, which states that there 

are trade-offs between current and future reproductive events (Williams, 1966). Trade-offs 

associated with the cost of reproduction influence fundamental life history characteristics such as 

the timing of breeding (Low et al., 2015), clutch size and inter-clutch intervals (Forsman, 2001), 

parental care (Gilbert and Manica, 2010), and lifespan and fecundity (Creighton et al., 2009; 

Trumbo and Rauter, 2014). The relationship between resource availability and energy use, 

especially during reproduction, provides critical information on trade-offs associated with an 

organism’s life history strategies such as resource allocation to growth, reproduction, and body 

maintenance (Jervis et al., 2008). Furthermore, variation in resource quality may affect how an 

organism allocates resources and accumulates reproductive costs over a lifetime (Fox and 

Mousseau, 1996; Creighton et al., 2009). High quality resources may reduce reproductive costs by 

allowing for a sufficient allocation of energy to both offspring and individual somatic maintenance 

(van Noordwijk and de Jong, 1986; Pärt, 2001). Conversely, these high-quality resources may 

require additional effort to acquire and process, as well as defend, from competitors (Trumbo, 

1992). If reproduction outcompetes other organismic processes for limited resources or supplies 

of energy, then future reproduction and survival are affected (Calow, 1979; Schaub and von 

Hirschheydt, 2009). As such, optimal resources should lead to the best balance in energetic cost; 

however, it is unclear how resource variation affects the buildup of added reproductive costs, and 

how these reproductive costs shape the metabolic physiology of an organism.  

Survival trade-offs associated with the cost of reproduction are studied extensively 

(Magnhagen, 1991; Harshman and Zera, 2007; Creighton et al., 2009; Dale, 2016; Macario et al., 

2017); however, the physiological mechanisms underlying this relationship are not well 

understood (Fedorka et al., 2004; Fowler and Williams, 2017). The field of ecological energetics 

integrates metabolic processes along with external and internal constraints to the individual 

organism to track the quantities of nutrients and ingested energy and the subsequent distribution 

by the organism to fitness-enhancing processes (Tomlinson et al., 2014; Llandres et al., 2015). 

Ecological energetic models are often used to assess responses to global changes (Llandres et al., 
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2015), evaluate the structure and stability of food webs (Getz, 2011; Lercari et al., 2015), 

characterize ecological niche (Kearney et al., 2010; Friedlaender et al., 2011), and researchers also 

apply them to conservation physiology and biology (Raubenheimer et al., 2012; Birnie-Gauvin et 

al., 2017). A central assumption of the metabolic theory of ecology suggests that metabolic rate 

dictates the pace of biological processes at all levels of organization from the organism to the 

ecosystem as a whole (Brown et al., 2004; Price et al., 2012; Pontzer et al., 2014; Glazier, 2015). 

Therefore, studies that integrate behavior, energy metabolism, and life histories are key to 

addressing conservation questions with broad ecosystem implications (Foster and Vincent, 2004; 

Biro and Stamps, 2010; Auer et al., 2016).  

Burying beetles (Silphidae: Nicrophorus) are large-bodied invertebrates found throughout 

most of North America that may be impacted by varying resource availability, specifically the 

availability and size of small vertebrate carcasses used for reproduction (Lomolino and Creighton, 

1996; Scott, 1998). Burying beetles are ideal model organisms to evaluate the relationship between 

resource quality and reproductive costs because they use discrete, quantifiable resources for 

reproduction (Creighton et al., 2009). When a breeding pair secures a carcass, both parents work 

to preserve the carcass for their young. Parents provide biparental care during the carcass 

preparation stage, which includes burying the carcass, removing feathers fur or scales, forming the 

carcass into a sphere, and applying antimicrobial secretions (Scott, 1998; Creighton et al., 2009; 

Trumbo et al., 2016; Miller et al., 2019). The pair mates repeatedly as they prepare the carcass, 

and females will begin to oviposit 12–48 h after locating a carcass (Scott and Traniello, 1990; 

Scott, 1998). After approximately five days, larvae start to arrive on the carcass to feed at an 

opening prepared by the parents. Parents provide the young with regurgitated tissue from the 

carcass beginning at their first instar stage. As young develop through the third instar, they begin 

to rely on self-feeding until they disperse into the surrounding soil where they pupate (Scott, 1998). 

For large-bodied species (e.g. N. americanus and N. orbicollis) larvae complete development and 

disperse to the soil to pupate in approximately six to eight days (Scott and Traniello, 1990; Scott, 

1998). Adult beetles emerge from the soil after approximately four to five weeks (length of 

pupation), and become sexually mature by three weeks after emerging from the soil (Trumbo, 

2009).   

The preservation of a carcass and reproduction is costly in burying beetles (Creighton et 

al., 2009). These costs increase with increasing carcass size, and physiological trade-offs 
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associated with resource use influence a females’ fecundity and longevity (Creighton et al., 2009), 

which can ultimately affect survival and population abundance. In their study, Creighton et al. 

(2009) determined that females manipulated to overproduce offspring on larger carcasses suffered 

a reduction in fecundity and lifespan when compared to control females, and females given larger 

carcasses (30 g) reproduced fewer times and had a shorter lifespan than females given smaller 

carcasses (20 g). Additionally, females fed low-quality diets produce fewer eggs when given a 

carcass for reproduction (Trumbo and Robinson, 2004). These data suggest that a resource-

allocation trade-off may be one mechanism underlying the cost of reproduction that can result in 

fewer offspring during a reproductive attempt.  

Burying beetles can use a range of carcass sizes from only a few grams to several hundred 

grams, and brood size and offspring body size increase with carcass size (Scott, 1998); however 

when females are physiologically unable to produce the number of offspring that is optimal for a 

particular carcass size, both parents and offspring use the additional resources to grow to a larger 

size (Trumbo, 1990). Thus, for burying beetles, carcass size represents a quantifiable measurement 

of resource quality (Trumbo, 1992). While the costs and benefits associated with carcasses of 

different sizes may vary considerably, they are also a rare and ephemeral reproductive resource 

that is limiting for burying beetles (Scott, 1998). For the federally endangered American burying 

beetle (Nicrophorus americanus), the availability of appropriately sized carcasses is vital for 

management and recovery of the species (Mckenna-Foster et al., 2016). However, very little is 

known about this relationship, and a critical first step in conservation and management of this 

species is to evaluate how resource quality (i.e. carcass size and age) affects reproductive costs.  

Although burying beetles have been studied extensively (Creighton et al., 1993; Schnell et 

al., 2008; Trumbo, 2017), investigations into the effects on metabolic rate and energetic costs 

during reproduction and carcass preparation are few (Trumbo and Rauter, 2014). Nicrophorus 

orbicollis is the sister species to the American burying beetle (Sikes and Venables, 2013), and 

shares a geographic range similar to the historic range of N. americanus (Anderson, 1982; Wilson 

et al., 1984; Scott, 1998). With such an expansive range, N. orbicollis populations experience a 

wide environmental gradient, similar to historic populations of N. americanus, and this 

environmental gradient is expected to influence resource quantity and quality (Ho and Pennings, 

2013) and impact the metabolic rate of reproducing beetles.  
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The objectives of this study were to examine the energetics of reproduction and prehatching 

parental care in burying beetles. First, we examined how resting metabolic rate (RMR) changed 

over the course of sexual maturation. We measured the RMR of newly eclosed beetles until sexual 

maturation at 21 days post eclosion. In Monarch butterflies (Danaus plexippus), males and females 

exhibit considerable development of reproductive tissues and accessory glands after eclosion, but 

then undergo reproductive diapause after these tissues are formed (Tatar and Yin, 2001). Therefore, 

we predicted that newly eclosed individual’s RMR would be greatest close to eclosion and 

decrease as they become sexually mature. Secondly, we determined the relationship between 

carcass size with the energetic costs related to prehatching parental care (carcass preparation) for 

reproducing burying beetles. We predicted that the overall energetic cost during carcass 

preparation will increase with carcass size because larger carcasses require more time to prepare 

(Scott and Traniello, 1990; Scott, 1998). Furthermore, we predicted that there will be a plateau in 

metabolic effort on the largest carcasses as beetles specialize on specific carcass sizes and they 

work close to maximal capacity when preparing carcasses (Fetherston et al., 1990; Rauter and 

Moore, 2004; Creighton et al., 2015).  

4.4 Materials and Methods 

4.4.1 Field Sample Collection and Establishment of Laboratory Population 

We collected N. orbicollis from a bottomland forest located at Purdue University’s Martell 

Forest, Tippecanoe County, Indiana (40.455°N -86.925°W) in May of 2019. We captured all 

beetles using pitfall traps baited with aged chicken. We used the wild caught N. orbicollis to 

generate the laboratory population used in our experiments. We housed individual wild-caught 

burying beetles in small plastic containers (15 × 11 × 7 cm) with a moistened paper towel at 21°C 

and maintained the beetles on a diet of chicken liver fed ad libidum with a 14:10 LD cycle. We 

selected these conditions because they replicated the natural temperature and light/dark pattern 

consistent with the beetles’ natural environment during their summer breeding season (Cook et al., 

2019). To establish the laboratory population used for experiments, we placed a wild-caught male 

and female pair in a 29 × 18 × 11 cm container, two-thirds filled with soil, and provided them 

with a mouse carcass (30 g). We allowed beetles to breed and generate the laboratory population. 

We removed the wild-caught males when larvae first appeared on the carcass, and then removed 
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wild-caught females when larvae dispersed from the carcass. We left first-generation larvae 

undisturbed until eclosion (approximately 28-30 days). 

4.4.2 Resting Metabolic Rate 

On the day beetles eclosed, we randomly selected an individual male and female from one of 

10 laboratory lines (for a total of 10 males and 10 females) at 15:30 h (when nonreproducing 

beetles are inactive). We then transferred beetles individually into a sealable 15 mL canonical 

polypropylene centrifuge tube, each fitted with a three-way stopcock valve and a 15 mL syringe 

to act as a constant volume respirometry chamber. Before placing beetles into centrifuge tubes, we 

purged tubes with air that was first scrubbed of H2O using a Dririte column (W.A. Hammond 

Drierite Co. LTD, Xenia, Ohio, USA). We placed the centrifuge tubes containing individual 

beetles in an environmental chamber at 21°C under red light to replicate the conditions in the 

ground (Trumbo and Rauter, 2014). After 30 min, we removed 12 mL of air from the sealed 

centrifuge tube and injected it into a flow-through respirometry system at a rate of 150 mL∙min-1 

entering the gas analyzer (Lighton, 2008; Field Metabolic System (FMS); Stable Systems 

International, Las Vegas, NV, USA) that monitored and recorded the percent O2 and percent CO2 

every 0.5 s. We connected a personal computer running Expedata software (v. 1.8.4, Stable 

Systems International, Las Vegas, NV, USA) to the FMS to record the percent O2 and percent CO2 

measurements. We used dried atmospheric air to calibrate the gas analyzer before each trial. Three 

times a week we used pure N2 gas to test the system for leaks (Williams, 1983; Flaherty et al., 

2014). For 10 min prior and 10 min following the injection of samples into the FMS, we collected 

baseline percent O2 and CO2 samples to correct for the inherent drift in the analyzer. Based on 

Lighton (2008), we calculated the rate of O2 consumption (VO2) and CO2 production (VCO2) using 

the following equations: 

 

(1) 𝑉𝑂2 = (𝐹𝑖𝑂2 − 𝐹𝑒𝑂2) × 𝑓𝑙𝑜𝑤 𝑟𝑎𝑡𝑒 

 

(2) 𝑉𝐶𝑂2 = (𝐹𝑒𝐶𝑂2 − 𝐹𝑖𝐶𝑂2) × 𝑓𝑙𝑜𝑤 𝑟𝑎𝑡𝑒 

 

Where Fi is the fractional concentration of incurrent air entering the animal chamber and Fe is the 

fractional concentration of excurrent air leaving the animal chamber. In addition, we recorded 



 

107 

individual’s pronotum width (mm) before metabolic measurements, additionally before and after 

each metabolic measurement we weighed beetles to the nearest 0.001 mg and used the mean of 

the two mass measurements to calculate the mass-specific rate of O2 consumption (VO2; Suarez et 

al., 1996; Suarez, 2000) and CO2 production (VCO2; Trumbo and Rauter, 2014). We converted 

the percent O2 and percent CO2 measurements to the mass-specific rate of oxygen consumption 

(VO2 measured as mL O2 ∙  mg-1 ∙ s-1; (Lighton, 1991; Suarez et al., 1996; Bastías et al., 2019) and 

carbon dioxide production (VCO2 measured as mL CO2 ∙  mg-1 ∙ s-1; (Lighton, 1991; Beaupre and 

Zaidan III, 2001; Doubell et al., 2017). After each RMR trial, we transferred individuals into a 

small plastic container (15 × 11 × 7 cm) with a moistened paper towel at 21°C and maintained the 

beetles on a diet of chicken liver fed twice weekly with a 14:10 LD cycle. We evaluated RMR 

daily using these methods beginning with the date of eclosion and continuing until 21 days post 

eclosion. 

4.4.3 Metabolic Rate and Carcass Quality 

 We placed one of two commercially available thawed mouse carcass (20 g fresh or 120 g 

fresh) in a flow-through breeding chamber (33 × 23 × 12 cm) filled 1/4 with topsoil. We placed 

breeding chambers containing mouse carcasses in an environmental chamber at 21°C for 24 h 

before recording initial percent O2 and percent CO2 measurements of the breeding chamber. Then 

using beetles that were not previously used for RMR measurements, we recorded pronotum widths 

(mm) of males and females and weighed them to the nearest 0.001 mg before establishing the 

sexually mature pairs on either 20 g or 120 g carcasses. The range of carcass sizes encompasses 

the preferred range of carrion for the American burying beetle (Trumbo, 1992). We placed the 

breeding chambers with beetle pairs and a carcass in an environmental chamber at 21°C under red 

light. After 1 h, we attached the breeding chamber to a flow-through respirometry system at a rate 

of 350 mL∙min-1 (the approximate volume of the breeding chamber head space) before entering 

the FMS gas analyzer (Lighton, 2008) that monitored and recorded the percent O2 and percent CO2 

every 0.5 s for a total of 5.0 min. We used Expedata to record the percent O2 and percent CO2 

measurements. As previously described, we used calibrated the gas analyzer with dried 

atmospheric air prior to each experiment, and tested the system for leaks using pure N2 gas several 

times a week (Williams, 1983; Flaherty et al., 2014). For 10 min prior and 10 min following the 

connection of breeding chambers to the FMS, we collected baseline percent O2 and CO2 samples 
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to correct for drift in the analyzer. We used Expedata, equations modified from Withers (1977) 

and Fedak et al. (1981), and a respiratory quotient of 0.054 that we calculated from our RMR data. 

Based on (Lighton, 2008), we calculated the rate of O2 consumption (VO2) and CO2 production 

(VCO2) using the following equations:  

 

(1)   𝑉𝑂2 = [𝑆𝑇𝑃 × (𝐹𝑖𝑂2 − 𝐹𝑒𝑂2) × 𝐹𝑅]/[1 − 𝐹𝑖𝑂2 + 𝑅𝑄 × (𝐹𝑖𝑂2 − 𝐹𝑒𝑂2)] 

 

(2)   𝑉𝐶𝑂2 = [𝑆𝑇𝑃 × (𝐹𝑖𝐶𝑂2 − 𝐹𝑒𝐶𝑂2) × 𝐹𝑅]/[1 − 𝐹𝑖𝐶𝑂2 + 𝑅𝑄 × (𝐹𝑖𝐶𝑂2 − 𝐹𝑒𝐶𝑂2)], 

 

where Fi is incurrent air, Fe is excurrent air, FR is flow rate (mL∙s-1), and RQ is respiratory quotient 

(Lighton, 2008). After each measurement, we removed the male and female pair and transferred 

them into a small plastic container (15 × 11 × 7 cm) with a moistened paper towel at 21°C. We 

left the breeding chamber in the environmental chamber for one hour before taking additional 

measurements of the breeding chamber without male and females present, using the previously 

methods. After we recorded the breeding chamber (minus the beetle pair) measurements, we 

placed the male and female pair back into the breeding chamber. We repeated these methods every 

24 h until larvae appeared on the carcass. For each day, we subtracted the average VCO2 of the 

breeding chamber with soil and the mouse carcass from the average VCO2 of the breeding chamber 

with soil, the mouse carcass, and the breeding pair of beetles and multiplied this value by 86,400 

s ∙ day-1 to calculate the daily average metabolic rate of carcass preparation for each breeding pair 

(MRCP). 

 In the case of respirometry data collection that is time-dependent, the flow rate of air should 

be high enough from the chamber to the gas analyzer to reduce lag between the percent O2 and 

CO2 in the chamber and the recorded measurement by the gas analyzer (Lighton and Halsey, 2011; 

Flaherty et al., 2014). We ensured that the quantity of O2 and CO2 in the chamber was accurately 

reflected by allowing the measurements to stabilize before collecting data (Lighton and Halsey, 

2011). Additionally, we corrected for a lag in response between the chamber and the gas analyzer 

using a 𝑧  transformation (Lighton, 2008; Lighton and Halsey, 2011). Therefore, our VCO2 

estimates should not be influenced by the system’s lagged response (Flaherty et al., 2014).  
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4.4.4 Statistical Analysis 

We performed all statistical computations in program R (version 3.6.1, Core Team 2019), 

using the ‘nlme’ library for the linear mixed-effects models. To compare male and female RMR, 

we calculated the mean VO2 and VCO2 value for each animal for each day and used a repeated 

mixed-measures analysis of variance (ANOVA) model in which the day of measurement, beetle 

sex, mass, and pronotum width were fixed factors and the interaction between the day of 

measurement and the identity of individual beetles were random factors (Zar, 2014). To compare 

the effects of carcass size on MRCP, we calculated the mean VO2 and VCO2 value of each breeding 

pair for each day using a repeated mixed-measures ANOVA model in which carcass size, day of 

measurements, male and female mass and pronotum width were fixed factors, and time before 

larvae appeared on the carcass as a random factor (Zar, 2014). 

4.5 Results 

4.5.1 Resting Metabolic Rate 

The overall observed RMR among all beetles and days was 1.611 ± 0.012 mL O2·g
-1·h-1 

and 1.315 ± 0.013 mL CO2·g
-1·h-1, mean ± SE; n=20. There was no difference between the male 

and females in measured O2 consumption (males: 1.596 ± 0.014 mL O2·g
-1·h-1; females: 1.626 ± 

0.011 mL O2·g
-1·h-1; F[1,2] = 0.09, p = 0.77) or CO2 production (males: 1.266 ± 0.349 mL CO2·g

-

1·h-1; females: 1.365 ± 0.326 mL CO2·g
-1·h-1; F[1,2] = 0.03, p = 0.87). Consumption of O2 decreased 

over time after eclosion (Fig. 1A; F[1,178] = 28.65, p ˂ 0.001). Similarly, production of CO2 

decreased over time after eclosion (Fig. 1B; F[1,178] = 23.62, p ˂ 0.001). Average overall beetle 

mass was 285.0 ± 0.3 mg, and it significantly influenced observed VCO2 (F[176,178] = 1.31, p = 

0.030), with larger beetles producing more CO2 daily. However, beetle size, as measured by 

pronotum width did not significantly influence observed VO2 (F[8,110] = 0.35, p = 0.921) or 

observed VCO2 (F[8,110] = 1.30, p = 0.343). 

4.5.2 Metabolic Rate and Carcass Quality 

The overall observed MRCP across all days of the trials was 5.306 ± 2.72 mL O2·day-1 and 

1.09 ± 0.14 mL CO2·day-1, mean ± SE; n=195. Time before larvae appeared on a carcass was the 

only significant factor that influenced observed VO2 (F[1,29] = 1.97, p = 0.047; Table 1; Fig. 2A). 
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However, the number of days male and female pairs were preserving carcasses significantly 

influenced observed VCO2 (F[1,29] = 2.50, p = 0.012; Fig. 2B). The average observed O2 consumed 

by carcasses without beetles for 20 g carcasses was significantly different from 120 g carcasses 

(VO2 =  293± 0.53 mL O2·carcass-1; VO2 =  960 ± 0.69 mL O2·carcass-1; F[1,29] = 2.95, p < 0.01 

respectively). The average CO2 production of carcasses without beetles for 20 g carcasses was 

(VCO2 = 45.55 ± 1.26 mL CO2·carcass-1), and was greater for 120 g carcasses (VCO2 = 183.22 ± 

4.33 mL CO2·carcass-1; F[1,192] =8.33, p ˂ 0.01). The number of days male and female pairs were 

preserving carcasses did not influence carcass O2 production (F[1,140] =1.57, p = 0.13; Fig. 3A). 

However, the number of days male and female pairs were preserving carcasses significantly 

influenced carcass CO2 production (F[1,140] = 15.45, p < 0.01; Fig. 3B). The overall accumulated 

VO2 for breeding pairs during carcass preparation on 20 g carcasses was (VO2 =  145.84 ± 0.53 

mL O2·carcass-1) and was significantly different from 120 g carcasses (VO2 = 379.55 ± 0.69 mL 

O2·carcass-1; F[1,195] = 2.95, p < 0.01; Fig. 4A). The overall accumulated VCO2 for breeding pairs 

during carcass preparation on 20 g carcasses was (42.71 ± 0.13 mL CO2·carcass-1), and was greater 

for 120 g carcasses (VCO2 = 170.55 ± 0.20 mL CO2·carcass-1; F[1,195] =6.28, p = 0.012; Fig. 4B). 

However, there was no significant difference between MRCP based on male and female mass, male 

and female body size, or the carcass size (Table 1). 

4.6 Discussion 

This study demonstrates that the time in which beetles become sexually mature is a time 

of elevated metabolic rates in N. orbicollis and provides new information on metabolic trade-offs 

associated with sexual development (Trumbo and Rauter, 2014). As predicted, the RMR of newly 

eclosed beetles was greatest after emerging from the soil. This high metabolic activity soon after 

emergence may coincide with an increase and eventual plateau of juvenile hormone that coincides 

with an increase in developing reproductive tissue size, before a suitable reproductive resource is 

secured (Trumbo, 1997). This is similar to findings in insects where adult reproductive diapause 

is delineated by a period of diapause in oogenesis in females and the accessory gland development 

in males, along with a change in behaviors and somatic metabolic processes in both sexes (Herman, 

1981; Pener, 1992; Tatar and Yin, 2001). As metabolic processes influence how organisms allocate 

energy to reproduction, self-maintenance, and growth (Gillooly et al., 2001; Brown et al., 2004), 
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variation in metabolic rate is expected to change the shape of the relationship among life history 

traits (Sibly and Calow, 1987; Clarke, 1993). For example, in insects a prolonged elevated RMR 

can inhibit immune responses (Ardia et al., 2012) and increase oxidative stress (Lalouette et al., 

2011), which may result in a change in the energetic allocation between competing functions such 

as maintenance and reproduction (Lann et al., 2011).  

Similar to our RMR results, we demonstrated that carcass preparation during prehatching 

parental care increases metabolic activity, providing insights into trade-offs associated with the 

cost of prehatching parental care (De Gasperin et al., 2016; Trumbo, 2017). The metabolic cost of 

reproduction is hypothesized to be a byproduct of an general increase in metabolic intensity (i.e. 

mass-specific metabolic rate) of parental tissue (Angilletta and Sears, 2000). In our study, the 

greatest metabolic cost for prehatching carcass preparation occurred with the larger carcass 

treatment. However, metabolic cost associated with carcass preparation appear to be cumulative 

because they were only significantly different between treatments based on the number of days 

beetles were preparing their carcass (Table 1). Many studies use resource manipulation to separate 

the cost of parental care in insects (Boggs, 1981; Rauter and Moore, 2004; Creighton et al., 2009; 

Trumbo and Rauter, 2014; Capodeanu-Nägler et al., 2016), however few evaluate the cost of 

prehatching parental care (De Gasperin and Kilner, 2015; De Gasperin et al., 2016; Trumbo, 2017).  

Previous studies in burying beetles evaluating prehatching parental care evaluated cost 

associated with parental longevity (De Gasperin et al., 2016; Trumbo, 2017). De Gasperin et al. 

(2016) determined that the roundness of a carcass after preparation influenced beetle lifespan, 

where females with rounder carcass nests had longer lifespans after reproduction. However, 

measures of offspring success or offspring performance was not associated with the roundness of 

carcass nests (De Gasperin et al., 2016). Trumbo (2017) evaluated carcass quality in terms of the 

freshness of the reproductive resource. In the study, offspring reared on aged carcasses had lower 

average mass, however the parent’s longevity and future reproduction were not affected. This 

suggest that in a challenging environment, parents are able to alleviate the cost of current and 

future reproduction attempts (Trumbo, 2017). Trumbo and Rauter (2014), determined that there 

was an absence of a significant longevity cost for prehatching care in terms of egg production. 

However, our study suggest that the cost associated with prehatching parental care is in 

relationship to the length of carcass preparation.  
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The effects of prehatching parental care is widely studied across a variety of taxa (Simon, 

1983; Eggert et al., 1998; Schwagmeyer et al., 1999; Villuendas and Sarzo, 2003; Liker and 

Székely, 2005; Liker et al., 2015; Takahashi et al., 2017). In a study evaluating prehatching 

parental care in the kestrel, Falco tinnunculus, researchers determined that the daily energy 

expenditure of parents increased as resource quantity and quality decreased (Masman et al., 1989). 

We observed similar results, in that breeding pairs’ cumulative metabolic rate was greater on larger 

carcasses, which constitute a greater challenge when preserving carcasses (Trumbo and Fernandez, 

1995; Rozen et al., 2008; Trumbo, 2017). In these studies, aged carcasses resulted in lower average 

larval body mass, lower brood sizes, and fewer surviving offspring. In our experiment, we 

provided the same age carcass to breeding pairs. However, the time before larvae arrived on a 

carcass was significantly different between treatments (F[1,28] = 89.60, p = <0.001). For example, 

on 20 g carcasses average larval arrival time was (4.6 ± 0.2 days), whereas on 120g carcasses 

average larval arrival was (7.8 ± 0.3 days). For their experiment, Rozen et al. (2008) provided 

mated females with either a freshly thawed mouse, or a carcass that was aged for 7 days to enable 

the progression through putrefaction due to microbial growth. Therefore, larger carcasses may be 

more similar to aged carcasses in that they take more time to prepare, because of their size (Trumbo, 

1994; Scott, 1998), and this may result in higher rates of putrefaction and increased microbial 

growth on the resource.  

In our study we did not evaluate measures of larval performance, parental fecundity or 

lifespan. However, researchers evaluated the cost-of-reproduction (Williams, 1966) and the 

terminal-investment hypothesis (Clutton-Brock, 1984) in N. orbicollis (Creighton et al., 2009). In 

their study, they determined that female lifespan was influenced by brood size and carcass size. 

Female N. orbicollis exhibited shorter lifespans when they raised larger broods and when they 

used larger carcasses for reproduction over their lifespan (Creighton et al., 2009). Our results 

complement this study evaluating cost associated with parental care by quantifying cost before 

larvae arrive on the prepared carcass. Paired with previous research on the reproductive benefits 

of parental care in Nicrophorus spp. beetles (Trumbo, 1990; Trumbo, 1991; Trumbo and 

Fernandez, 1995; Creighton, 2005; Creighton et al., 2009; Ward et al., 2009; Trumbo and Rauter, 

2014; De Gasperin and Kilner, 2015; De Gasperin et al., 2016; Trumbo, 2017), our study provides 

new insight into how parents accumulate metabolic cost during prehatching parental care when 

presented with resources that vary in quality.  
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The results of the present study indicate that energetic cost associated with prehatching 

parental care is magnified by the time it takes beetles to preserve a carcass and not the size of the 

resource. Furthermore, larger carcasses may represent a lower quality resource if they are above 

an optimal size for parents. The co-occurrence of heightened metabolic rates and elevated parental 

activity during prehatching parental care in N. orbicollis is consistent with previous research 

focusing on posthatching parental care (Trumbo and Rauter, 2014). However, the energetic cost 

of parental care and reproduction has important implications for studies of intraspecific variation 

in reproductive effort, and an enhanced understanding of factors that influence the metabolic cost 

associated with reproduction will improve efforts to understand intraspecific variation in life 

history (Angilletta and Sears, 2000). Further research is needed to determine the relationship 

between metabolic rate, optimal carcass size, larval performance, and parental performance on 

longevity and the cost associated with parental care in burying beetles. Additionally, Nicrophorus 

spp. beetles exhibit niche variation in respect to spatial and temporal patterns as well as carcass 

size (Scott, 1998; Hopwood et al., 2016), and provide opportunities to further evaluate these trade-

offs. 
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Table 4.1. Fixed Effects ANOVA Table for Metabolic Rate 

ANOVA table for fixed effects on metabolic rate and carcass quality experiment. Bold values are 

statistically significant. 

Response Variable df 

num/den 

F-value p-value 

Time (days)-O2 9/140 1.61 0.117 

Days before larvae arrive on carcass-O2 9/140 1.97 0.047 

Carcass size-O2 1/29 1.73 0.199 

Female mass (mg) -O2 1/140 2.62 0.108 

Female pronotum width (mm) -O2 1/140 0.00 0.957 

Male mass (mg) -O2 1/140 3.21 0.075 

Male pronotum width (mm) -O2 1/140 0.01 0.941 

Time (days)-CO2 9/140 2.47 = 0.012 

Days before larvae arrive on carcass-CO2 9/140 0.64 0.764 

Carcass size-CO2 1/29 0.01 0.924 

Female mass (mg) -CO2 1/140 0.02 0.894 

Female pronotum width (mm) -CO2 1/140 0.09 0.762 

Male mass (mg) -CO2 1/140 2.05 0.155 

Male pronotum width (mm) -CO2 1/140 0.60 0.441 
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Figure 4.1. Resting Metabolic Rate 

Measured resting metabolic rate from eclosion to sexual maturity [calculated as VO2 (A) and VCO2 

(B)], ± SE, for male and female N. orbicollis from a captive population at the Purdue University.   
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Figure 4.2. Metabolic Rate of Carcass Preparation 

Measured metabolic rate of carcass preparation [calculated as VO2 (A) and VCO2 (B)], ± SE, for 

breeding pairs of N. orbicollis on 20 g or 120 g mouse carcasses.   
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Figure 4.3. Metabolic Activity of Breeding Chamber 

Measured metabolic activity of breeding chamber without beetles [calculated as VO2 (A) and 

VCO2 (B)], ± SE, for either 20 g or 120 g mouse carcass treatments.   
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Figure 4.4. Cumulative Metabolic Rate of Carcass Preparation 

Measured cumulative metabolic rate of carcass preparation [calculated as VO2 (A) and VCO2 (B)], 

± SE, for breeding pairs of N. orbicollis on 20 g or 120 g mouse carcasses. 
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 ESTIMATING POPULATION ABUNDANCE OF 

BURYING BEETLES USING PHOTO-IDENTIFICATION AND MARK-

RECAPTURE METHODS 

5.1 Abstract 

Successful conservation and management of protected wildlife populations requires reliable 

population abundance data. Traditional capture-mark-recapture methods can be costly, time 

consuming, and invasive. Photographic mark-recapture (PMR) is a cost-effective, minimally 

invasive way to study population dynamics in species with distinct markings or color patterns. We 

tested the feasibility and the application of PMR using the software Hotspotter to identify 

Nicrophorus spp. from digital images of naturally occurring spot patterns on their elytra. We 

conducted a laboratory study evaluating the identification success of Hotspotter on Nicrophorus 

americanus Olivier and Nicrophorus orbicollis Say before implementation of a mark-recapture 

study in situ. We compared the performance of Hotspotter using both ‘high-quality’ and ‘low-

quality’ photographs. For high-quality photographs, Hotspotter had a false rejection rate of 2.7-

3.0 % for laboratory-reared individuals and 3.9 % for wild-caught individuals. For low-quality 

photographs, the false rejection rate was much higher, 48.8-53.3 % for laboratory-reared 

individuals and 28.3 % for wild-caught individuals. We subsequently analyzed encounter histories 

of wild-caught individuals with closed population models in Program MARK to estimate 

population abundance. In our study, we demonstrated the utility of using PMR in estimating 

population abundance for Nicrophorus spp. based on elytral spot patterns. 

5.2 Introduction 

Successful monitoring of wildlife populations requires reliable estimates of abundance, dispersal, 

and population demographics (Morris and Doak 2002, De Gasperis et al. 2017, Croose et al. 2019). 

It is often problematic to collect accurate data for wildlife populations, especially if they are cryptic, 

elusive, nocturnal, occur at low densities, or are species of conservation concern, and estimating 

abundance of these populations constitutes a management and conservation challenge in ecology 

and conservation biology (Wilson and Delahay 2001, Croose et al. 2019, Ruzzante et al. 2019). 

Evaluating animal population dynamics requires recognizing and following individual animals 



 

128 

through space and time (Bolger et al. 2012). Traditionally, individual recognition is accomplished 

by capturing animals and uniquely marking them (Sutherland 2006, Bolger et al. 2012, Morrison 

et al. 2016), which can be physically invasive, and can influence the behavior, development, or 

persistence of wildlife (McMahon et al. 2005, Scherer et al. 2005, Butler et al. 2012). Additionally, 

these methods do not always scale well to large populations or to populations with low densities 

and can be expensive (Elbin and Burger 1994, Crall et al. 2013, Recio et al. 2019).  

Many direct and indirect methods are used to survey wildlife and estimate population 

abundances (Seber 1986, Wilson and Delahay 2001, Acevedo et al. 2010, Ruzzante et al. 2019). 

However, the most commonly used observational animal survey methods do not observe all 

individuals within a population (Pierce et al. 2012). Mark-recapture models are analytical methods 

used to estimate population abundance from known marked individuals within a population (Otis 

et al. 1978, White et al. 1982, White and Burnham 1999, summarized by Williams et al. 2002). 

With mark-recapture models, researchers use marked animals within a population to estimate 

detection probabilities that can then be used to estimate population abundance (White et al. 1982). 

Mark-recapture surveys must meet the assumptions that: 1) marked and unmarked individuals have 

the same probability of capture; 2) all marked individuals are identifiable (marks are not lost or 

overlooked by observers), 3) marks have no effect on the probability of survival or the behavior 

of marked individuals, 4) for closed population models, the population is closed to additions 

(immigration and birth) and deletions (emigration and death) between marking and recapture (Otis 

et al. 1978, White et al. 1982).  

An alternative approach to traditional capture-based marking methods for mark-recapture 

studies is the application of digital photography and image analysis tools to develop photographic 

mark-recapture (PMR) techniques. PMR can be used in studies evaluating a wide variety of species 

with natural patterns or marks, reducing the need to physically mark individuals (Bolger et al. 2012, 

Crall et al. 2013, Morrison et al. 2016). Photographic identification is minimally invasive, can 

provide a variety of information (e.g., cameras provide data on locations, temperature, and diurnal 

and nocturnal activity patterns), is relatively inexpensive, and archives information on individuals 

for long-term monitoring of sensitive species (Morrison et al. 2011, 2016, Crall et al. 2013). 

Computer-assisted photo identification has been used to identify individuals of a diverse set of 

taxa, including mammals (Bolger et al. 2012, Crall et al. 2013, Gilman et al. 2016), amphibians 

(Bendik et al. 2013, Morrison et al. 2016, Kim et al. 2017), fish (Crall et al. 2013), birds (Burghardt 
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2008, Sherley et al. 2010), reptiles (Treilibs et al. 2016, Suriyamongkol and Mali 2018), and insects 

(Caci et al. 2013, De Gasperis et al. 2017). Conditions for PMR require that: 1) researchers capture 

photographs of individuals that are either free-ranging or live-captured, with remotely-triggered or 

hand-held cameras; 2) individuals have unique marks or patterns on their body that allow observers 

to differentiate among individuals; and 3) individual’s patterns are stable over the length of the 

study period and are photographable across a range of environmental conditions (Bolger et al. 

2012). 

Early uses of PMR employed hard copy photographs that were manually compared by 

researchers to determine whether new images were individuals new to the study or resightings 

(recaptures) of previously ‘marked’ individuals (Friday et al. 2000, Bolger et al. 2012). This 

procedure was particularly successful for small populations of marine mammals and mammalian 

terrestrial predators (Rugh et al. 1992, Karanth and Nichols 1998, Friday et al. 2000). However, 

this is not always possible with large populations, and as the number of images increases successful 

identification decreases (Gamble et al. 2008, Bolger et al. 2012, Crall et al. 2013). There have been 

several attempts to use computers to semi-automate the matching process in studies evaluating 

large populations (Adams et al. 2006, Town et al. 2013). Recently, advances in systems with image 

analysis algorithms allow researchers to detect, store, and compare information on natural 

markings from digital images (Sherley et al. 2010, Bolger et al. 2012, Crall et al. 2013). These 

advanced systems (e.g., Wild-ID and HotSpotter) typically include: a database of acquired images, 

a landmark or pattern extraction method that reduces the amount of information from images, and 

an algorithm that compares the pattern information from new images to images from the 

photograph library and returns a score signifying the closeness of the match (Bolger et al. 2012, 

Crall et al. 2013). These software systems allow researchers to examine a reduced number of the 

potential matching images to reject false-positives or confirm true-positive matches, compile 

individuals into histories of encounters, and then analyze them using mark-recapture methods (Otis 

et al. 1978, White and Burnham 1999). 

Using photographic mark-recapture methods can be useful in assessing population 

dynamics if they provide capture histories and can be evaluated in a cost-effective manner using 

mark-recapture modelling (Bolger et al. 2012). Additionally, many mark-recapture analytical 

methods frequently require large amounts of data to produce sufficient sample sizes, which is often 

cost prohibitive (McClintock and White 2009). Compared to traditional mark-recapture methods, 
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photographic mark-recapture allows for larger sample sizes when applied to species with natural 

markings unique to individuals (Bolger et al. 2012, Crall et al. 2013). Additionally, PMR reduces 

match or mismatch decisions that traditionally relied on the ability of an individual observer to 

differentiate between images (Morrison et al. 2011, 2016). Individual photographic identification 

software can result in higher recapture rates, and increase the power of demographic estimates and 

estimation of a greater number of population parameters because the processing of a greater 

number of images requires less effort than manual inspection of images (Morrison et al. 2016).  

Using computer-assisted photo identification systems paired with PMR can result in 

fabundance (Yoshizaki et al. 2009, Marshall and Pierce 2012). If markings vary temporally or are 

relatively constant across individuals, misidentification errors are possible, and mark-recapture 

assumptions are violated (Morrison et al. 2011). In addition, the inability of PMR to correctly 

match multiple photographs for the same individual makes it vulnerable to errors. Common in 

biometric recognition, this “false reject error” (FRR), is a type I error (Jain 2007). Even moderate 

FRR levels may result in an overestimate of abundance leading to an underestimate of survival 

within a mark-recapture framework. Additionally, if an individual’s “unique” pattern changes over 

time, false acceptance errors (i.e., falsely matching photographs of two different individuals) can 

increase, leading to an underestimate of abundance (Yoshizaki et al. 2009). Therefore, determining 

misidentification error is a necessary when evaluating success of identification software (Bendik 

et al. 2013, Morrison et al. 2016, De Gasperis et al. 2017).  

 Our study used beetles from the genus Nicrophorus (Coleoptera: Silphidae: Nicrophorinae) 

to evaluate whether machine-learning individual-identification software can be used in 

combination with photographic mark-recapture to estimate population abundance in situ. Beetles 

from the genus Nicrophorus are fossorial species that bury and prepare small vertebrate carcasses 

for use as food by their young (Lomolino et al. 1995, Creighton 2005). The American burying 

beetle (Nicrophorus americanus Olivier) once occurred in 35 states, the District of Columbia, and 

three Canadian provinces in eastern and central North America (Backlund et al. 2008). It has 

disappeared from most of its former range, and has since been listed as Federally Endangered 

(Federal Register 1989). The U.S. Fish and Wildlife Service (USFWS) established a recovery plan 

with three criteria to delist the species including: 1) the discovery of existing populations or 

successful re-introduction of ABBs throughout the historical range, 2) that for a minimum of five 
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years these populations be self-supporting, and 3) that a minimum of 500 adults are present in 

these populations each year (USFWS 1991).  

In order to accurately estimate population abundance among extant and reintroduced 

populations, researchers need a method of trapping and marking individual beetles that is retained 

by the individual and does not influence behavior or reduce survivorship (Butler et al. 2012). 

Several marking techniques are used in burying beetle demographic studies including temporary 

marks (enamel paint or bee tags) and permanent marks (elytron-clipping or elytron-cauterizing; 

Kozol et al. 1988, Lomolino and Creighton 1996, Butler et al. 2012). For temporary marks, average 

retention rates ranged from seven to 12.8 days (Butler et al. 2012), which could bias population 

estimate results if study timelines are greater than mark retention, which would then violate the 

assumptions for using mark-recapture. It is recommended to use a combination of temporary and 

permanent marks for burying beetle demographic studies. However, permanent marking 

techniques (i.e., elytron-clipping) change stridulatory characteristics and reduce reproductive 

success (Hall et al. 2015). These findings highlight the need for a replacement marking technique 

that is non-invasive to ensure conservation of this endangered species. 

 Our study used laboratory-reared and wild-caught individuals to investigate the efficacy 

of using elytra spot patterns as a non-invasive mark to individually identify both N. americanus 

and Nicrophorus orbicollis Say to potentially incorporate a machine-learning individual 

identification software (Hotspotter; Crall et al. 2013) into reintroduction programs and long-term 

population monitoring. Our goals were to 1) evaluate the advantages and limitations of using 

machine-learning individual identification software in Nicrophorus spp.; 2) determine the 

accuracy of automated photo matching using both “high” and “low-quality” photographs; and 3) 

confirm field applications by using PMR in coordination with mark-recapture modeling to estimate 

the population size of local burying beetles.  

5.3 Materials and Methods 

5.3.1 Laboratory Population Data Collection 

We photographed individuals of known identity from three captive breeding populations at Purdue 

University in West Lafayette Indiana, Purdue University Northwest in Hammond Indiana, and 

Roger Williams Park Zoo in Providence Rhode Island during the summer of 2018 and 2019. 
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Photographs from Purdue University included 40 individual N. orbicollis. Photographs from 

Purdue University Northwest and Roger Williams Park Zoo included 35 individual N. americanus 

(n = 20 and n = 15 respectively). Because beetles were part of laboratory populations we assured 

that all beetles were unique (e.g., a single container housed an individual beetle of known 

identification). To standardize the distance and resolution of all images, we photographed each 

beetle from a standard distance of 12 cm. We captured multiple photographs (minimum of 5 per 

individual) using a camera phone (Samsung Galaxy S5, Samsung Electronics, Suwon, South Korea) 

of the dorsal region of each individual. Pictures were taken without the flash setting to reduce glare 

and while the beetle was in hand to minimize movement. We used these photographs to build a 

reference database in HotSpotter to test the accuracy and efficiency in identifying individual 

beetles. Before conducting analyses, we standardized the orientation and extent of images. We 

rotated images to orient the anterior region of the beetle to the right. We included both low-quality 

photos (ones with glare and lower resolution) and high-quality photos (ones with less glare and 

high resolution) to test the ability of HotSpotter to identify correctly individual beetles (Fig. 1). 

For N. orbicollis, we restricted images to include the dorsal region, from the anterior of the elytra 

to the posterior of the elytra, to focus on the spot patterns of beetles (Fig. 1). For N. americanus, 

we restricted images to include the dorsal region, from the anterior of the pronotum to the posterior 

of the elytra, to include the spot pattern that is present in N. americanus but absent in other 

Nicrophorus species (Fig. 1).   

5.3.2 Performance of HotSpotter Software 

We evaluated the ability of a free and open-source wildlife identification software package: 

HotSpotter (ver. 1.0; Crall et al. 2013) to individually identify Nicrophorus beetles. HotSpotter 

has successfully identified unique patterns in zebras (Equus grevyi, E. quagga, and E. zebra zebra; 

Lea et al. 2018), giraffes (Giraffa camelopardalis), jaguars (Panthera onca), lionfish (Pterois 

volitans; Crall et al. 2013),  Nautilus spp. (Barord et al. 2014), and leopards (Panthera pardus; 

Balme et al. 2019). On average HotSpotter correctly identifies approximately 98% of individuals 

among the first five identities proposed by the software (Crall et al. 2013), outperforming another 

open-source wildlife identification software (Wild-ID) developed by Bolger et al. (2012). 

HotSpotter uses viewpoint invariant descriptors and a scoring mechanism that emphasizes the most 

distinctive key points and descriptors. First, HotSpotter uses an algorithm that employs a scale 
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invariant feature transformation (SIFT) operator, similar to the algorithm used by Wild-ID’s SIFT 

(Lowe 2004). This algorithm identifies “key points” or “landmarks” within the patterns of 

photographed individuals in all photographs in the database that are invariant to rotation and scale. 

Second, HotSpotter uses an additional algorithm that relates all pattern descriptors from 

individuals (not photos) in the database (called the “local naïve Bayes nearest-neighbor” 

algorithm). HotSpotter’s final scoring uses a combination of both algorithms and provides 

similarity scores that are rankable, with higher scores indicating more likely matches. 

 Because the individual identities of beetles were already known within our database, we 

followed the protocol used by (Morrison et al. 2016) and assumed HotSpotter correctly identified 

matching pairs if they were within the top 20 highest-ranking candidate matches. Similarly, if 

matching pairs were outside of the top 20 high-scoring candidate matches, we regarded them as 

false rejections and reported error rates in terms of the FRR (Jain 2007, Bolger et al. 2012, Bendik 

et al. 2013, Morrison et al. 2016).  

Our test data set contained many pictures of individuals with multiple matching images, 

and these would be over-represented in the estimate of misidentification probability. Therefore, 

we calculated misidentification from a subset of two randomly selected images per individual, and 

repeated this random process 1000 times. We reported the mean misidentification probability 

across all iterations for the entire data set (Bendik et al. 2013, Morrison et al. 2016). We performed 

all statistical computations in program R (Version 3.6.1, Core Team 2019). 

5.3.3 Field Site 

We performed all fieldwork at one site within a section of bottomland forest located at Purdue 

University’s Martell Forest, Tippecanoe County, Indiana (Lat. 40.455°N, Long. -86.925°W) in 

July of 2019. The study site is predominately a mixed hardwood forest dominated by tree genera 

including oak (Quercus spp.), hickory (Carya spp.), and maple (Acer spp.). We selected the time 

and site of trapping based on the reproductive period of N. orbicollis and their habitat preference 

(Scott 1998).  
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5.3.4 Population Size Estimates from the MARK Closed Population Estimator 

We collected beetles from 16–19 July 2019 using a single transect of five pitfall traps spaced 10 

m apart and baited with aged chicken. We marked individual wild-caught beetles with oil-based 

paint markers applied to the pronotum. To ensure that wild-caught beetles would not lose marks, 

we tested how long laboratory beetles retained them. On average, laboratory beetles retained marks 

for 4.88 days ± 1.03 SD, a timeframe beyond our study design. We released beetles back into the 

study site daily within 2 hr of collection after marking each individual with a unique color pattern 

and capturing multiple pictures. We used Program MARK, version 9.x (White and Burnham 1999) 

for estimating population abundance for individuals collected on all three nights. We used the 

MARK closed population estimator to estimate population abundance from non-invasive 

photographic data (Bolger et al. 2012). We analyzed data as conventional mark-release-recapture 

(MRR; Hagler and Jackson 2001) data using the closed-capture models of MARK (White and 

Burnham 1999). We considered four models in our analysis [Mh (heterogeneous capture 

probability), Mt (capture probability varies with time), Mb (capture probability varies with animal 

behavior), and Mo (constant capture probability); Table 2)]. The estimate from the best 

approximating model of the candidate set was the most parsimonious, minimized estimate bias, 

and optimized precision based on the lowest Akaike’s Information Criterion corrected for small 

sample size (AICc; Burnham et al. 2011). 

5.4 Results 

5.4.1 Performance of HotSpotter Software 

Spot patterns for adult Nicrophorus beetles were uniquely identifiable and persisted through 

adulthood (Fig. 1). For laboratory and wild-caught populations, HotSpotter produced high 

matching success (reported as mean misidentification probability), particularly in the high-quality 

datasets (Table 1). The overall FRR for all photographs of laboratory-reared N. americanus was 

16.0%. The quality of photographs influenced the FRR for laboratory-reared N. americanus with 

low-quality photographs resulting in an FRR of 53.3% and high-quality photographs resulting in 

an FRR of 3.0% (Table 1). The overall FRR for all photographs of laboratory-reared N. orbicollis 

was 17.4%. Similar to laboratory-reared N. americanus, the quality of photographs influenced the 
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FRR for laboratory-reared N. orbicollis. Low-quality photographs resulted in an FRR of 48.8% 

and high-quality photographs resulted in an FRR of 2.7% (Table 1). 

 The overall FRR for all photographs of wild-caught N. orbicollis was 2.6%, and 11.1% for 

photographs of recaptured individuals (Table 1). Similar to photographs of laboratory-reared 

beetles, the quality of photographs influenced the FRR of wild-caught beetles. Low-quality 

photographs resulted in an FRR of 28.3%, whereas high-quality photographs resulted in an FRR 

of 3.9% in all wild-caught individuals (Table 1).  

5.4.2 Population Size Estimates from the MARK Closed Population Estimator 

For mark-recapture analysis, we collected 518 suitable images from N. orbicollis at Martell Forest. 

After processing with HotSpotter, these images represented 98 unique individuals. We used the 

encounter histories of all 98 individuals for mark-recapture analysis. 

The top-ranked model in our dataset, as indicated by the lowest AICc, was the Mo model 

that accounted for constant capture and recapture probabilities (Table 2). To account for model 

selection uncertainty, we computed model averaged parameter estimates (Table 3; Burnham and 

Anderson 2002). The population abundance estimated for the top-ranked model was 343 

individuals (± 89 SE; Table 4). 

5.5 Discussion 

5.5.1 Performance of HotSpotter Software 

The use of machine-learning software for photographic-identification in Nicrophorus spp. has 

several advantages over traditional marking approaches. Compared to traditional mark-recapture 

techniques, computer-assisted machine-learning PMR is less invasive, it requires less equipment 

and therefore is less expensive, it is relatively rapid, and little experience is required to produce 

quality photographs (Bendik et al. 2013). As demonstrated by our study, elytron spot patterns are 

individually unique in burying beetles. Furthermore, spot patterns provide a appropriate basis for 

beetle identification, while having less potential for animal stress or negative survival effects 

(McMahon et al. 2005, Scherer et al. 2005, Hall et al. 2015). False rejection rates increased when 

using score-based image matching with low-quality photographs (Table 1). Poor photo quality and 

visual inspection for more image pairs increases the need to manually inspect images and the 
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benefits of individual identification using semi-automation via score-sorting decreases (Bendik et 

al. 2013). However, with high-quality photographs, the machine-learning identification PMR 

scheme using Hotspotter displayed high success for identifying individual burying beetles with 

greater precision than traditional methods (Table 1; Butler et al. 2012). Compared to other studies, 

our error rates, FRR and mean misidentification probability, were relatively low when using high-

quality photographs versus low-quality photographs (Gope et al. 2005, Foster et al. 2007, Bendik 

et al. 2013, Morrison et al. 2016). In these studies, FRR ranged from 0.0076–0.675, whereas our 

FRR ranged from 0.027–0.039. If patterns can be localized and described by computer-assisted 

identification software, then modifications to the SIFT algorithm and local naïve Bayes Nearest-

Neighbor algorithm in Hotspotter may reduce error rates (Morrison et al. 2016). Given the low 

FRR we observed with Hotspotter, we did not test other software platforms. However, the 

relatively high matching successes obtained with the Hotspotter software in our study may not 

hold for other types of spot patterns in different species (Bolger et al. 2012, Morrison et al. 2016). 

 Similar to Bendik et al. (2013), our results suggested that computer-assisted individual 

photo identification in which matches are distinguished based on a relative score is appropriate for 

data sets with high-quality and large quantities of photographs. Although computer-assisted 

individual-identification has promise to save time compared to manual photo matching (Morrison 

et al. 2011), it can still be a labor-intensive process for studies that include large libraries of 

photographs (Morrison et al. 2016). Furthermore, PMR using Hotspotter has the potential to obtain 

estimates of population abundance rapidly (over several days of surveying), because it does not 

require extensive training or expensive equipment (Bendik et al. 2013, Crall et al. 2013). In our 

study, Hotspotter demonstrated utility in estimating demographic parameters of Nicrophorus 

populations.  

Furthermore, as demonstrated by our results and previous PMR studies (Stevick et al. 2001, 

Davies et al. 2012, Morrison et al. 2016), researchers need to assure that they are collecting high-

quality photographs because image quality can significantly influence matching success. Several 

studies and reviews have focused on camera features that ensure high quality photographs for 

wildlife studies (Meek and Pittet 2012, Rovero et al. 2013, Meek et al. 2014, Trolliet et al. 2014). 

For Nicrophorus spp. we recommend researchers use a camera with ≥ 16 megapixel resolution, 

capture pictures of beetles in hand to reduce movement that results in blurry imagining, photograph 
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beetles from a standardized distance of 12 cm, and reduce image glare by using natural lighting 

instead of the camera’s flash.    

 

5.5.2 Population Size Estimates from the MARK Closed Population Estimator 

Traditionally, mark-recapture studies of burying beetles rely on a combination of temporary and 

permanent marks (Lomolino and Creighton 1996, Bedick et al. 2006, Raithel et al. 2006, Backlund 

et al. 2008). Our study incorporated PMR with MARK to estimate the abundance of N. orbicollis 

at our sampling site. Recapture rates and standard errors were reasonable compared to other mark-

recapture studies with insects (López-Pantoja et al. 2008, Torres-Vila et al. 2012, De Gasperis et 

al. 2016), despite the rather limited sampling effort in this preliminary study (our sampling 

occurred over only three days). Despite this limitation, we produced data on the capture history of 

98 individual beetles and produced estimates of abundance that are problematic to acquire in a rare 

or evasive species (Karanth and Nichols 1998, Karanth et al. 2006).  

Our capture-history data fit best with the closed capture-recapture null model (Mo; Table 

2). Our models’ estimates of beetle abundance have relatively narrow variances and averaged 269 

individuals (Table 4). The estimates are not inclusive of the entire population of N. orbicollis at 

our study site, but rather represent the total number of beetles present within the estimated capture 

distance (0.8 km; Perrotti and Mckenna-Foster 2019). This noninvasive and efficient sampling 

approach is appropriate to use in studies evaluating burying beetle population dynamics across 

populations, but needs testing over a longer sampling period that mirrors ongoing species 

monitoring efforts (Backlund et al. 2008, Perrotti and Mckenna-Foster 2019). Furthermore, 

incorporating mark-recapture techniques into studies estimating demographic factors such as 

survival requires multiple trapping sessions (Borchers and Efford 2008, Fletcher and Efford 2009). 

For our study, as well as previous studies that employed temporary marks in Nicrophorus beetles 

(Kozol et al. 1988, Lomolino and Creighton 1996, Butler et al. 2012), average temporary mark 

retention was between five and 12 days. Under these conditions, it would be difficult to design a 

mark-recapture experiment that spans multiple trapping sessions, however PMR using permanent 

markings facilitates a study design that covers multiple trapping sessions and allows researchers 

to estimate demographic factors (Morrison et al. 2011, Bolger et al. 2012). Furthermore, it is 
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critical that researchers consider these PMR specific limitations and exercise caution when using 

PMR to ensure that mark-recapture assumptions are not violated. 

5.5.3 Conservation Implications 

A fast, accurate, inexpensive, and comparatively non-invasive method for monitoring/tracking 

endangered or threatened species is necessary for conservation and species management because 

it provides efficient and reliable population estimates for monitoring species (Jackson et al. 2006, 

Bendik et al. 2013, Crall et al. 2013, Morrison et al. 2016). In burying beetles, there are many 

studies focused on the understanding of population dynamics and dispersal (Lomolino et al. 1995, 

Lomolino and Creighton 1996, Raithel et al. 2006, Backlund et al. 2008, Schnell et al. 2008), but 

few with reintroduced populations (Mckenna-Foster et al. 2016, Perrotti and Mckenna-Foster 

2019). More demographic studies among both extant and reintroduced populations are needed to 

meet USFWS recovery goals. Our results demonstrate that it is possible to identify individual 

beetles and obtain estimates of population abundance in a system where traditional mark-recapture 

techniques may bias results or be detrimental to fitness or survival of individuals within the 

population (Butler et al. 2012, Hall et al. 2015). However, when monitoring population trends, 

there are several considerations (Tikkamäki and Komonen 2011). The location of release sites for 

beetles and weather conditions influences daily variation in trapping success and flight behavior 

(Raithel et al. 2006). Additionally, long-term population dynamics of burying beetles are poorly 

understood (Lomolino et al. 1995, Raithel et al. 2006, Schnell et al. 2008, Perrotti and Mckenna-

Foster 2019), and thus PMR should be conducted over many years and at different field sites. The 

advantages of computer-assisted photographic-identification over traditional methods, as 

demonstrated here, may provide researchers with much needed population abundance information 

for burying beetles that will ultimately help guide conservation efforts and sound management 

practices. 
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Table 5.1. HotSpotter Performance 

False rejection rates (i.e., the frequency that two photos of the same individual were falsely 

identified) of laboratory-reared Nicrophorus americanus and N. orbicollis and wild-caught N. 

orbicollis using Hotspotter. Higher FRR and values imply poorer matching performance. We 

included multiple images of each individual including low-quality photos (ones with glare and 

lower resolution) and high-quality photos (ones with less glare and high resolution) in our dataset. 

Additionally, we randomly selected two images per individual and calculated a misidentification 

probability from this subset of images (Bendik et al. 2013; Morrison et al. 2016). We repeated this 

random process 1000 times and reported the mean misidentification probability across all 

iterations for the entire data set. 

 

Category 

Sample size 

(Number of 

photos) 

False rejection 

rate (FRR) 

Mean 

misidentification 

probability 

Laboratory-reared    

N. americanus 50 0.160 0.075 

N. orbicollis 500 0.174 0.235 

Photo quality    

Low-quality N. americanus 15 0.533 0.419 

High-quality N. americanus 35 0.030 0.049 

Low-quality N. orbicollis 164 0.488 0.313 

High-quality N. orbicollis 336 0.027 0.027 

Wild-caught    

N. orbicollis 518 0.026 0.041 

N. orbicollis recaptures 35 0.111 0.152 

Photo quality    

Low-quality wild-caught 60 0.283 0.059 

High-quality wild-caught 493 0.039 0.012 



 

147 

Table 5.2. Closed Model Selection Program MARK 

Program MARK closed model selection results for Nicrophorus orbicollis collected in west-

central Indiana, 2019. Akaike Information Criteria (AICc), the difference in AICc values between 

the ith model and the model with the lowest AICc value (Δi), Akaike weights (wi), number of 

parameters (K), and deviance are presented. 

  

Model Description AICc Δi wi K Deviance 

Mo Constant capture probability -419.68 0.000 1.000 5 3.960 

Mt Time varying capture probability -413.93 5.750 0.052 2 15.877 

Mb Behavioral response -412.747 6.933 0.029 3 15.019 

Mh Heterogeneous capture probability -381.10 38.58 0.000 2 48.706 
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Table 5.3. Model Parameter Estimates 

Parameter estimates for Nicrophorus orbicollis inside the study area in west-central Indiana in July 

2019. Parameter estimates are for the top-ranked AICc model. 

Parameter a Estimate SE 
CI 

Lower Upper 

1:p 0.347 0.048 0.260 0.446 

2:p 0.672 0.059 0.549 0.775 

3:p 1.000 0.337E-5 0.999 1.000 

4:c 0.088 0.049 0.029 0.240 

5:c 0.104 0.035 0.053 0.194 

6:f0 0.248E-8 0.161E-4 0.674E-12 0.914E-5 
a p = probability of capture; c = probability of recapture. 
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Table 5.4. Population Size Estimates 

Estimates from program MARK of the total population size of Nicrophorus orbicollis inside the 

study area in west-central Indiana in July 2019. 

Model Description �̂� SE 
95% CI 

Lower Upper 

Mo Constant capture probability 343 89 222 584 

Mt Time varying capture probability 350 98 219 621 

Mb Behavioral response 200 80 125 493 

Mh Heterogeneous capture probability 184 13 162 214 
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Figure 5.1. High-Quality and Low-Quality Photographs 

Example of photos used for spot pattern recognition in Nicrophorus orbicollis and Nicrophorus 

americanus from laboratory populations in the summer of 2018 and 2019. We cropped pictures of 

N. orbicollis to include the dorsal region from the anterior of the elytra to the posterior of the elytra. 

We cropped pictures of N. americanus to include the pronotum because of the potential of it being 

unique to an individual. Additionally, the picture of N. orbicollis represents a lower quality 

photograph with less contrast, whereas the picture of N. americanus represents a higher quality 

photograph with sharper contrast
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 SUMMARY 

6.1 Summary 

Overall, my dissertation incorporated multiple techniques to assess niche relationships, 

energetics, and techniques for population abundance estimates. Collectively, my dissertation 

highlights how stable isotope techniques can be used in entomological studies to further advance 

our knowledge of insect biology and the stable isotope ecology of insects, it evaluates resource 

use and trophic niche overlap in burying beetles from the genus Nicrophorus (Coleoptera: 

Silphidae: Nicrophorinae), it investigates energetic trade-offs associated with sexual maturation 

as well as resource use in relation to resource quality and size, and tests the feasibility and the 

application of photographic mark recapture methods in estimating population abundances for 

Nicrophorus spp. Because of the endangered status of the American burying beetle (Nicrophorus 

americanus), an understanding of population abundance, the resources used for reproduction, 

and the life history trade-offs associated with resource use is beneficial to future conservation 

efforts.  

Although American burying beetle reintroduction sites are selected based on similar 

habitat and resource availability, potential vertebrate carrion species compositions sometimes 

differ between locations. For example, within the extant population on Block Island, Rhode 

Island, ring-necked pheasant (Phasianus colchicus) is abundant, however it is absent from the 

reintroduced site on Nantucket Island, Massachusetts. My ability to sample all co-occurring 

burying beetle species allowed me to simultaneously assess variability in the isotopic niche space 

among and within species. I provide baseline estimates of resource use that indicate that both 

avian and mammalian carrion are main components of co-occurring burying beetles’ 

reproductive carrion. On both Block Island and Nantucket Island, I document evidence of large 

niche overlap between all burying beetle species, suggesting that co-occurring burying beetles 

are competing for similar reproductive carrion resources to raise their young. However, the large 

observed isotopic niche overlap may also be influenced by a lack of functionally diverse 

potential reproductive carrion and its availability at our study sites. Therefore, future studies 

determining the size and abundance of potential reproductive carrion as well as resource 

selectivity, in the context of isotopic diet analysis, is needed to provide clarity for resource use 



 

 

152 

between populations over time. Based on my results, management of American burying beetles 

should consider long term provisioning of farm-raised quail that may supplement a potential lack 

of naturally occurring reproductive carrion resources at reintroduction sites. Furthermore, studies 

evaluating inter- and intraspecific competition for carrion resources will provide managers with 

vital information needed to conserve endangered populations.  

Ideally the composition of potential vertebrate carrion at reintroduction sites would be 

within the preferred carcass size range for American burying beetles, and competition for these 

resources would be low. However, this is not always the case. Increased rates of habitat 

fragmentation throughout the historical range of American burying beetles has led to a decrease 

in appropriately sized small mammal and avian communities. Furthermore, the increase in edge 

habitat has resulted in increasing competition for reproductive carrion with co-occurring burying 

beetles and vertebrate scavengers. These factors set the stage for situations where American 

burying beetles may be forced to use a vertebrate carrion resource that is of low quality (i.e. 

suboptimal size or not fresh). My dissertation identified energetic trade-offs associated with 

variation in resource quality during prehatching parental care. My results indicate that the 

metabolic cost associated with prehatching parental care is magnified by the time it takes beetles 

to preserve a carcass, providing new insight into how parents accumulate metabolic cost during 

prehatching parental care. However, further study is needed to determine the relationship 

between metabolic rate, optimal carcass size, larval performance, and parental performance on 

longevity and the energetic cost associated with parental care in burying beetles. Insight into 

these questions will improve our understanding of burying beetle resource use and its influence 

on life history trade-offs. 

Lastly, successful monitoring of wildlife populations requires reliable estimates of 

abundance, dispersal, and population demographics. However, it is often problematic to collect 

accurate data for wildlife populations, especially if they are cryptic, elusive, nocturnal, occur at 

low densities, or are species of conservation concern such as the American burying beetle. 

Traditionally estimating the abundance of American burying beetle within extant populations has 

constituted a management and conservation challenge. Using machine-learning software for 

photographic-identification in Nicrophorus spp. my dissertation demonstrates that elytron spot 

patterns are individually unique in burying beetles and provide a suitable bases for identification, 

while having a lower potential for animal stress or negative survival effects. I document 
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individual identification using machine-learning paired with photographic-identification in a 

mark-recapture study with a success rate greater than using traditional methods (i.e. bee-tags and 

elytron notching). There are many studies focused on the understanding of population dynamics 

and dispersal in burying beetles, however few have been conducted within reintroduced 

populations. Further study is needed to evaluate abundance, dispersal, and population 

demographics within extant and reintroduced populations of American burying beetles. 

Additionally, long-term population dynamics of burying beetles are poorly understood, and thus 

photographic-mark-recapture should be conducted over many years and at different field sites. 

This will further clarify how populations respond to environmental pressures and management 

strategies over time. 
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APPENDIX 

Table A.6.1. Appendix Table Stable Isotope Results 

Stable isotope results from potential reproductive carrion and wild-caught burying beetles (δ13C 

and δ15N). Means are shown. Stable isotopes are presented in delta notation (δ). All isotope values 

are presented in per mil (‰). We used the mathematical correction described in Post et al. (2007) 

to correct for effects of lipids on δ13C values when C/N > 4. 

Species Population δ13C(‰) C% δ15N(‰) N% C/N 

Nicrophorus americanus Nantucket Island -24.216 48.302 5.982 9.750 5.0 

Nicrophorus americanus Nantucket Island -23.654 48.589 6.225 9.936 4.9 

Nicrophorus americanus Nantucket Island -26.958 46.992 7.522 9.738 4.8 

Nicrophorus americanus Nantucket Island -23.356 48.906 6.293 10.027 4.9 

Nicrophorus americanus Nantucket Island -24.237 48.402 5.749 10.058 4.8 

Nicrophorus americanus Nantucket Island -23.877 46.996 5.490 8.906 5.3 

Nicrophorus americanus Nantucket Island -23.19 47.807 6.740 10.008 4.8 

Nicrophorus americanus Nantucket Island -22.532 47.920 6.416 10.301 4.7 

Nicrophorus americanus Nantucket Island -27.43 47.539 5.618 9.950 4.8 

Nicrophorus americanus Nantucket Island -25.641 46.439 7.222 10.944 4.2 

Nicrophorus americanus Nantucket Island -24.789 48.337 5.013 10.125 4.8 

Nicrophorus americanus Nantucket Island -23.536 48.053 5.564 10.239 4.7 

Nicrophorus americanus Nantucket Island -24.029 48.490 4.830 10.266 4.7 

Nicrophorus americanus Nantucket Island -27.03 47.172 5.279 10.218 4.6 

Nicrophorus americanus Nantucket Island -20.455 45.353 7.978 9.678 4.7 

Nicrophorus americanus Nantucket Island -20.662 45.173 7.644 9.513 4.7 

Nicrophorus americanus Block Island -23.11 48.549 8.908 10.069 4.8 

Nicrophorus americanus Block Island -26.461 41.510 5.534 8.438 4.9 

Nicrophorus americanus Block Island -24.144 48.444 8.009 9.788 4.9 

Nicrophorus americanus Block Island -25.103 48.365 6.699 9.697 5.0 

Nicrophorus americanus Block Island -25.953 48.802 8.305 9.899 4.9 

Nicrophorus americanus Block Island -21.521 48.789 9.775 9.859 4.9 

Nicrophorus americanus Block Island -22.592 48.980 6.835 10.214 4.8 

Nicrophorus americanus Block Island -26.672 48.363 7.822 10.007 4.8 

Nicrophorus americanus Block Island -25.473 48.094 5.902 9.786 4.9 

Nicrophorus americanus Block Island -25.478 49.656 6.797 10.184 4.9 

Nicrophorus americanus Block Island -26.794 48.466 8.268 10.026 4.8 

Nicrophorus americanus Block Island -24.352 47.185 7.105 9.878 4.8 

Nicrophorus americanus Block Island -26.356 48.730 9.613 9.934 4.9 

Nicrophorus americanus Block Island -24.756 48.038 6.967 9.846 4.9 
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Table A.3.1 continued 

       

Nicrophorus americanus Block Island -24.225 48.031 7.059 9.761 4.9 

Nicrophorus americanus Block Island -25.561 48.111 8.407 10.085 4.8 

Nicrophorus americanus Block Island -25.088 49.352 7.609 9.867 5.0 

Nicrophorus americanus Block Island -24.62 48.534 5.284 9.865 4.9 

Nicrophorus americanus Block Island -21.993 48.468 9.790 9.845 4.9 

Nicrophorus americanus Block Island -25.749 48.985 7.931 10.129 4.8 

Nicrophorus americanus Block Island -25.812 49.950 5.949 9.987 5.0 

Nicrophorus americanus Block Island -25.903 49.069 6.630 9.979 4.9 

Nicrophorus americanus Block Island -24.905 49.541 7.077 9.900 5.0 

Nicrophorus americanus Block Island -25.685 48.680 7.974 9.986 4.9 

Nicrophorus americanus Block Island -27.123 48.397 7.447 9.934 4.9 

Nicrophorus americanus Block Island -23.939 49.137 8.883 9.939 4.9 

Nicrophorus americanus Block Island -24.923 49.051 7.407 10.067 4.9 

Nicrophorus americanus Block Island -23.166 48.226 5.962 9.849 4.9 

Nicrophorus americanus Block Island -23.048 48.257 5.666 9.828 4.9 

Nicrophorus americanus Block Island -26.725 48.337 6.822 9.935 4.9 

Nicrophorus americanus Block Island -25.906 49.869 6.586 10.100 4.9 

Nicrophorus americanus Block Island -25.901 47.941 6.237 9.744 4.9 

Nicrophorus americanus Block Island -21.684 49.261 4.203 9.989 4.9 

Nicrophorus americanus Block Island -23.787 47.561 9.243 9.867 4.8 

Nicrophorus americanus Block Island -28.177 47.820 5.751 9.798 4.9 

Nicrophorus americanus Block Island -27.337 48.721 6.509 9.896 4.9 

Nicrophorus americanus Block Island -25.552 43.735 6.632 8.873 4.9 

Nicrophorus americanus Block Island -26.327 49.115 7.540 9.941 4.9 

Nicrophorus americanus Block Island -22.491 47.112 7.546 9.630 4.9 

Nicrophorus tomentosus Nantucket Island -23.705 48.813 7.627 9.858 5.0 

Nicrophorus marginatus Nantucket Island -26.037 47.321 6.843 9.066 5.2 

Nicrophorus marginatus Nantucket Island -26.852 48.265 4.658 9.331 5.2 

Nicrophorus marginatus Nantucket Island -26.197 48.250 4.829 9.542 5.1 

Nicrophorus marginatus Nantucket Island -25.833 47.500 4.544 9.521 5.0 

Nicrophorus marginatus Nantucket Island -27.2 48.168 5.737 9.473 5.1 

Nicrophorus marginatus Nantucket Island -26.179 49.217 3.985 9.860 5.0 

Nicrophorus marginatus Nantucket Island -24.665 45.731 6.745 9.425 4.9 

Nicrophorus marginatus Nantucket Island -24.326 50.553 5.398 9.401 5.4 

Nicrophorus marginatus Nantucket Island -27.208 50.428 4.197 9.179 5.5 

Nicrophorus marginatus Nantucket Island -24.985 51.396 5.116 9.283 5.5 

Nicrophorus marginatus Nantucket Island -27.527 50.565 4.215 9.624 5.3 

Nicrophorus marginatus Nantucket Island -27.046 49.454 5.241 9.642 5.1 

Nicrophorus marginatus Nantucket Island -26.963 47.360 4.128 9.632 4.9 
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Table A.3.1 continued 

       

Nicrophorus marginatus Nantucket Island -27.327 49.108 4.532 9.756 5.0 

Nicrophorus marginatus Nantucket Island -25.811 48.592 5.396 9.744 5.0 

Nicrophorus marginatus Nantucket Island -26.968 48.202 3.873 9.611 5.0 

Nicrophorus marginatus Nantucket Island -27.417 47.916 3.744 9.416 5.1 

Nicrophorus marginatus Nantucket Island -26.312 48.055 5.224 9.691 5.0 

Nicrophorus marginatus Nantucket Island -26.07 48.599 7.788 9.759 5.0 

Nicrophorus marginatus Nantucket Island -26.368 49.753 3.902 9.768 5.1 

Nicrophorus orbicollis Nantucket Island -26.68 51.269 4.662 9.367 5.5 

Nicrophorus orbicollis Nantucket Island -24.454 50.836 5.107 9.605 5.3 

Nicrophorus orbicollis Nantucket Island -27.921 50.072 4.922 9.828 5.1 

Nicrophorus orbicollis Nantucket Island -27.539 51.912 7.155 9.317 5.6 

Nicrophorus orbicollis Nantucket Island -24.442 54.121 4.535 8.837 6.1 

Nicrophorus orbicollis Nantucket Island -24.661 54.698 6.049 8.778 6.2 

Nicrophorus orbicollis Nantucket Island -25.318 54.389 6.313 8.603 6.3 

Nicrophorus orbicollis Nantucket Island -23.477 51.631 5.376 9.546 5.4 

Nicrophorus orbicollis Nantucket Island -24.753 49.223 5.069 10.003 4.9 

Nicrophorus orbicollis Nantucket Island -24.58 53.554 5.311 9.217 5.8 

Nicrophorus orbicollis Nantucket Island -24.873 49.906 7.391 9.877 5.1 

Nicrophorus orbicollis Nantucket Island -25.956 51.491 6.540 9.504 5.4 

Nicrophorus orbicollis Nantucket Island -25.435 49.321 6.993 9.845 5.0 

Nicrophorus orbicollis Nantucket Island -26.041 49.536 5.531 10.041 4.9 

Nicrophorus orbicollis Nantucket Island -26.682 52.192 6.028 9.686 5.4 

Nicrophorus orbicollis Nantucket Island -26.27 49.847 4.957 10.008 5.0 

Nicrophorus orbicollis Nantucket Island -24.9 49.429 4.969 9.690 5.1 

Nicrophorus orbicollis Nantucket Island -26.31 48.393 5.446 10.112 4.8 

Nicrophorus orbicollis Nantucket Island -26.235 48.985 6.033 9.856 5.0 

Nicrophorus orbicollis Nantucket Island -25.268 49.401 4.769 9.706 5.1 

Nicrophorus orbicollis Nantucket Island -25.791 49.685 7.585 9.568 5.2 

Nicrophorus orbicollis Nantucket Island -28.238 47.100 5.129 9.388 5.0 

Nicrophorus orbicollis Nantucket Island -26.207 47.787 6.549 9.626 5.0 

Nicrophorus orbicollis Nantucket Island -25.21 48.726 6.340 9.572 5.1 

Nicrophorus orbicollis Nantucket Island -26.218 48.867 6.800 9.621 5.1 

Nicrophorus orbicollis Nantucket Island -25.594 49.675 5.755 9.942 5.0 

Nicrophorus orbicollis Nantucket Island -27.056 49.919 3.632 9.698 5.1 

Nicrophorus orbicollis Nantucket Island -22.84 50.079 8.179 9.446 5.3 

Nicrophorus orbicollis Nantucket Island -24.788 49.551 6.584 9.597 5.2 

Nicrophorus orbicollis Nantucket Island -25.231 50.043 4.493 9.456 5.3 

Nicrophorus orbicollis Nantucket Island -25.115 50.276 5.979 9.456 5.3 

Nicrophorus orbicollis Nantucket Island -26.18 49.543 5.457 9.570 5.2 
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Nicrophorus orbicollis Nantucket Island -26.333 51.669 5.818 9.283 5.6 

Nicrophorus orbicollis Nantucket Island -24.515 48.458 5.509 9.549 5.1 

Nicrophorus orbicollis Nantucket Island -25.783 48.984 6.907 9.619 5.1 

Nicrophours marginatus Block Island -25.538 50.121 9.081 9.748 5.1 

Nicrophorus orbicollis Block Island -26.228 44.596 5.186 8.803 5.1 

Nicrophorus orbicollis Block Island -27.074 48.474 7.145 9.775 5.0 

Nicrophours marginatus Block Island -27.752 47.873 9.460 9.661 5.0 

Nicrophours marginatus Block Island -26.055 49.277 4.203 9.319 5.3 

Nicrophours marginatus Block Island -27.418 48.482 5.042 9.242 5.2 

Nicrophours marginatus Block Island -26.84 48.203 4.306 9.379 5.1 

Nicrophorus orbicollis Block Island -25.951 47.982 7.470 9.658 5.0 

Nicrophours marginatus Block Island -27.761 49.605 4.986 9.304 5.3 

Nicrophours marginatus Block Island -27.537 47.754 6.120 9.399 5.1 

Nicrophorus orbicollis Block Island -25.897 46.935 6.465 9.603 4.9 

Nicrophours marginatus Block Island -26.994 47.235 7.198 9.560 4.9 

Nicrophours marginatus Block Island -25.583 45.940 4.131 8.934 5.1 

Nicrophours marginatus Block Island -26.763 47.343 5.053 9.486 5.0 

Nicrophours marginatus Block Island -27.338 50.890 4.991 10.100 5.0 

Nicrophours marginatus Block Island -26.939 48.093 4.515 9.438 5.1 

Nicrophours marginatus Block Island -26.865 46.822 5.941 9.510 4.9 

Nicrophours marginatus Block Island -28.571 49.279 4.547 9.221 5.3 

Nicrophours marginatus Block Island -28.308 48.694 4.696 9.570 5.1 

Agelaius phoeniceus Nantucket Island -19.426 46.100 6.115 13.746 3.4 

Peromyscus leucopus Nantucket Island -24.814 47.873 5.281 13.947 3.4 

Peromyscus leucopus Nantucket Island -24.888 49.119 5.996 14.195 3.5 

Agelaius phoeniceus Nantucket Island -21.59 45.665 5.732 13.753 3.3 

Cardinalis cardinalis Nantucket Island -24.201 44.523 5.488 13.437 3.3 

Dumetella carolinensis Nantucket Island -25.389 45.937 6.884 13.780 3.3 

Dumetella carolinensis Nantucket Island -24.637 46.330 3.789 14.077 3.3 

Dumetella carolinensis Nantucket Island -26.089 46.676 8.151 14.206 3.3 

Dumetella carolinensis Nantucket Island -25.616 33.958 7.050 9.951 3.4 

Dumetella carolinensis Nantucket Island -24.947 45.188 6.182 13.766 3.3 

Dumetella carolinensis Nantucket Island -24.989 43.989 7.703 13.104 3.4 

Dumetella carolinensis Nantucket Island -25.092 42.655 5.599 12.875 3.3 

Cardinalis cardinalis Nantucket Island -24.551 48.093 5.567 13.049 3.7 

Turdus migratorius Nantucket Island -25.563 42.904 7.126 13.150 3.3 

Bombycilla cedrorum Nantucket Island -25.125 43.296 4.274 12.852 3.4 

Sciurus carolinensis Nantucket Island -25.395 54.493 2.457 10.706 5.1 

Sciurus carolinensis Nantucket Island -25.568 52.040 0.175 10.309 5.0 
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Sciurus carolinensis Nantucket Island -24.104 50.397 6.994 11.929 4.2 

Sciurus carolinensis Nantucket Island -23.551 46.478 4.783 13.157 3.5 

Sciurus carolinensis Nantucket Island -24.337 45.416 7.020 12.689 3.6 

Sciurus carolinensis Nantucket Island -25.001 50.778 2.123 11.191 4.5 

Sciurus carolinensis Nantucket Island -24.455 45.846 5.154 13.731 3.3 

Sciurus carolinensis Nantucket Island -24.306 47.951 6.017 11.709 4.1 

Sciurus carolinensis Nantucket Island -24.032 44.084 1.717 13.338 3.3 

Rattus norvegicus Nantucket Island -23.738 54.261 7.960 11.378 4.8 

Rattus norvegicus Nantucket Island -24.583 53.829 5.238 11.777 4.6 

Rattus norvegicus Nantucket Island -23.381 59.050 5.706 8.609 6.9 

Rattus norvegicus Nantucket Island -26.89 53.742 8.653 9.905 5.4 

Rattus norvegicus Nantucket Island -25.795 53.893 5.495 9.544 5.6 

Rattus norvegicus Nantucket Island -24.601 51.919 5.469 11.093 4.7 

Sciurus carolinensis Nantucket Island -23.457 48.262 0.367 12.977 3.7 

Sciurus carolinensis Nantucket Island -23.99 46.661 2.565 13.731 3.4 

Sciurus carolinensis Nantucket Island -23.946 44.886 1.812 12.537 3.6 

Turdus migratorius Nantucket Island -25.759 44.886 6.066 12.537 3.6 

Turdus migratorius Nantucket Island -25.297 45.061 7.553 13.250 3.4 

Turdus migratorius Nantucket Island -25.46 44.750 6.081 13.938 3.2 

Turdus migratorius Nantucket Island -25.253 43.499 4.910 13.533 3.2 

Dumetella carolinensis Nantucket Island -23.718 42.197 7.458 12.400 3.4 

Colaptes auratus Nantucket Island -26.153 45.711 6.787 13.971 3.3 

Cyanocitta cristata Nantucket Island -23.321 45.918 4.156 13.481 3.4 

Scolopaz minor Nantucket Island -24.309 48.930 4.481 12.260 4.0 

Scolopaz minor Nantucket Island -25.247 46.747 6.606 12.475 3.7 

Anas platyrhynchos Nantucket Island -23.43 43.696 7.936 13.370 3.3 

Larus argentatus Nantucket Island -17.719 44.900 13.948 13.622 3.3 

Corvus brachyrhynchos Nantucket Island -21.133 45.841 6.952 13.083 3.5 

Cartharus guttatus Nantucket Island -26.198 45.443 7.135 12.954 3.5 

Aix sponsa Nantucket Island -28.69 50.111 6.623 12.690 3.9 

Fulica americana Nantucket Island -23.483 52.816 8.786 12.004 4.4 

Melanitta nigra Nantucket Island -18.189 41.472 11.199 12.033 3.4 

Clangula hyemalis Nantucket Island -17.241 45.062 13.163 13.391 3.4 

Somateria mollissima Nantucket Island -18.074 45.451 11.983 13.347 3.4 

Colinus virginianus Nantucket Island -20.267 47.360 2.857 13.945 3.4 

Colinus virginianus Nantucket Island -20.236 47.552 3.164 13.987 3.4 

Colinus virginianus Nantucket Island -20.074 47.067 3.119 13.980 3.4 

Colinus virginianus Nantucket Island -20.064 47.614 2.905 14.067 3.4 

Sylvilagus floridanus Nantucket Island -23.917 48.240 0.938 14.090 3.4 



 

 

159 

Table A.3.1 continued 

       

Sciurus carolinensis Nantucket Island -23.835 49.060 1.157 13.372 3.7 

Sciurus carolinensis Nantucket Island -24.118 48.259 2.006 13.331 3.6 

Sciurus carolinensis Nantucket Island -23.244 47.681 1.276 13.898 3.4 

Sciurus carolinensis Nantucket Island -25.097 48.900 1.413 11.352 4.3 

Rattus norvegicus Nantucket Island -26.199 51.756 7.232 11.962 4.3 

Sciurus carolinensis Nantucket Island -23.415 47.368 2.266 14.351 3.3 

Sciurus carolinensis Nantucket Island -25.582 55.359 2.687 10.275 5.4 

Sciurus carolinensis Nantucket Island -25.043 52.419 0.174 11.363 4.6 

Sciurus carolinensis Nantucket Island -24.252 49.443 0.134 13.821 3.6 

Sciurus carolinensis Nantucket Island -23.779 47.935 2.514 14.025 3.4 

Sciurus carolinensis Nantucket Island -26.98 56.043 2.061 8.982 6.2 

Sylvilagus floridanus Nantucket Island -26.652 43.344 3.522 13.148 3.3 

Sylvilagus floridanus Nantucket Island -28.538 46.099 3.009 13.030 3.5 

Sylvilagus floridanus Nantucket Island -27.731 44.240 4.004 13.000 3.4 

Sylvilagus floridanus Nantucket Island -27.537 30.381 3.291 9.447 3.2 

Sylvilagus floridanus Nantucket Island -27.035 43.828 1.877 13.039 3.4 

Dumetella carolinensis Nantucket Island -24.73 46.597 6.698 12.326 3.8 

Dumetella carolinensis Nantucket Island -24.849 43.578 9.407 10.832 4.0 

Passer domesticus Nantucket Island -25.928 46.094 5.660 11.443 4.0 

Dumetella carolinensis Block Island -24.777 45.925 7.049 12.331 3.7 

Rattus norvegicus Block Island -26.672 45.347 5.864 13.449 3.4 

Rattus norvegicus Block Island -23.955 43.909 7.279 12.837 3.4 

Peromyscus leucopus Nantucket Island -24.01 49.138 1.609 9.722 5.1 

Peromyscus leucopus Nantucket Island -24.463 47.535 2.079 13.834 3.4 

Peromyscus leucopus Nantucket Island -23.452 46.084 1.504 13.505 3.4 

Peromyscus leucopus Nantucket Island -23.047 41.351 2.979 12.327 3.4 

Peromyscus leucopus Nantucket Island -25.755 47.137 2.089 13.984 3.4 

Peromyscus leucopus Nantucket Island -23.958 46.084 0.816 13.505 3.4 

Peromyscus leucopus Nantucket Island -23.931 48.593 2.243 14.238 3.4 

Peromyscus leucopus Nantucket Island -24.496 47.011 1.695 13.940 3.4 

Peromyscus leucopus Nantucket Island -23.831 48.063 0.644 13.916 3.5 

Microtus pennsylvanicus Nantucket Island -23.411 20.906 0.469 6.299 3.3 

Microtus pennsylvanicus Nantucket Island -25.221 21.738 1.443 6.504 3.3 

Microtus pennsylvanicus Nantucket Island -24.413 47.451 1.038 14.181 3.3 

Microtus pennsylvanicus Nantucket Island -24.372 32.344 2.936 9.549 3.4 

Microtus pennsylvanicus Nantucket Island -24.438 47.657 2.933 12.788 3.7 

Microtus pennsylvanicus Nantucket Island -25.952 48.168 0.820 14.388 3.3 

Microtus pennsylvanicus Nantucket Island -25.856 31.118 1.146 9.298 3.3 

Microtus pennsylvanicus Nantucket Island -23.813 45.629 0.253 13.777 3.3 
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Microtus pennsylvanicus Nantucket Island -24.497 45.098 0.829 13.559 3.3 

Microtus pennsylvanicus Nantucket Island -25.387 39.966 1.167 12.050 3.3 

Microtus pennsylvanicus Nantucket Island -25.605 15.028 0.647 4.576 3.3 

Microtus pennsylvanicus Nantucket Island -25.118 46.484 1.251 14.227 3.3 

Microtus pennsylvanicus Nantucket Island -25.382 44.969 0.424 13.800 3.3 

Microtus pennsylvanicus Nantucket Island -24.485 18.832 1.134 5.890 3.2 

Phasianus colchicus Block Island -23.636 43.957 4.415 13.893 3.2 

Phasianus colchicus Block Island -24.458 47.745 3.789 14.625 3.3 

Phasianus colchicus Block Island -24.059 47.508 6.210 15.109 3.1 

Nicrophorus orbicollis Nantucket Island -27.798 41.803 5.591 7.965 5.2 

Nicrophorus orbicollis Nantucket Island -26.453 50.594 4.188 9.351 5.4 

Nicrophorus orbicollis Nantucket Island -26.299 50.209 4.737 9.770 5.1 

Nicrophorus orbicollis Nantucket Island -26.758 49.761 7.775 9.383 5.3 

Nicrophorus orbicollis Nantucket Island -24.791 49.993 5.778 9.774 5.1 

Nicrophorus orbicollis Nantucket Island -22.121 49.577 4.993 9.900 5.0 

Nicrophorus orbicollis Nantucket Island -26.49 50.741 4.847 9.718 5.2 

Nicrophorus orbicollis Nantucket Island -25.607 46.869 8.710 9.323 5.0 

Nicrophorus orbicollis Nantucket Island -27.194 48.695 6.436 9.866 4.9 

Nicrophorus orbicollis Nantucket Island -24.677 48.318 5.282 9.633 5.0 

Nicrophorus orbicollis Nantucket Island -27.394 51.459 4.566 9.908 5.2 

Nicrophorus orbicollis Nantucket Island -26.993 49.854 5.253 9.523 5.2 

Nicrophorus orbicollis Nantucket Island -25.794 49.820 4.573 9.859 5.1 

Nicrophorus orbicollis Nantucket Island -28.766 49.549 7.494 9.768 5.1 

Nicrophorus tomentosus Nantucket Island -27.382 46.905 5.939 10.246 4.6 

Nicrophorus tomentosus Nantucket Island -23.928 46.988 7.521 10.188 4.6 

Nicrophorus marginatus Nantucket Island -27.334 51.070 5.274 9.853 5.2 

Nicrophorus marginatus Nantucket Island -27.96 49.045 4.609 9.498 5.2 

Nicrophorus marginatus Nantucket Island -25.2 50.131 6.486 10.052 5.0 

Nicrophorus marginatus Nantucket Island -28.006 49.761 5.606 9.966 5.0 

Nicrophorus marginatus Nantucket Island -28.145 50.430 3.770 9.283 5.4 

Nicrophorus orbicollis Nantucket Island -24.17 50.413 6.495 9.858 5.1 

Nicrophorus orbicollis Nantucket Island -27.084 50.514 4.208 9.985 5.1 

Nicrophorus orbicollis Nantucket Island -22.931 50.028 4.737 9.910 5.0 

Nicrophorus orbicollis Nantucket Island -26.235 51.016 6.042 9.612 5.3 

Nicrophorus orbicollis Nantucket Island -27.865 50.693 4.009 9.700 5.2 

Nicrophorus orbicollis Nantucket Island -24.643 46.722 6.895 9.352 5.0 

Nicrophorus orbicollis Nantucket Island -26.431 50.560 3.570 9.718 5.2 

Nicrophorus orbicollis Nantucket Island -26.37 50.443 5.314 9.646 5.2 

Nicrophorus orbicollis Nantucket Island -26.09 49.680 5.330 9.780 5.1 
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Nicrophorus marginatus Nantucket Island -26.926 50.858 7.625 10.034 5.1 

Nicrophorus marginatus Nantucket Island -25.972 49.795 4.894 9.947 5.0 

Nicrophorus marginatus Nantucket Island -27.815 51.438 4.247 9.769 5.3 

Nicrophorus marginatus Nantucket Island -27.38 50.908 5.028 9.858 5.2 

Nicrophorus marginatus Nantucket Island -26.864 50.658 3.903 9.866 5.1 

Nicrophorus marginatus Nantucket Island -27.343 50.570 6.349 9.742 5.2 

Nicrophorus marginatus Nantucket Island -26.535 50.693 5.185 10.278 4.9 

Nicrophorus marginatus Nantucket Island -27.486 50.260 5.309 10.062 5.0 

Nicrophorus marginatus Nantucket Island -28.235 50.611 5.631 10.224 5.0 

Nicrophorus marginatus Nantucket Island -26.004 50.163 4.539 10.114 5.0 

Nicrophorus marginatus Nantucket Island -24.963 50.052 5.841 10.809 4.6 

Nicrophorus orbicollis Nantucket Island -26.389 51.667 4.313 10.012 5.2 

Nicrophorus orbicollis Nantucket Island -25.331 50.097 5.853 10.078 5.0 

Nicrophorus orbicollis Nantucket Island -27.845 50.747 6.815 9.872 5.1 

Nicrophorus orbicollis Nantucket Island -25.275 50.659 6.497 9.912 5.1 

Nicrophorus orbicollis Nantucket Island -28.118 51.221 6.977 9.572 5.4 

Nicrophorus orbicollis Nantucket Island -25.937 50.435 5.895 10.366 4.9 

Nicrophorus orbicollis Nantucket Island -25.784 51.651 4.782 9.855 5.2 

Nicrophorus tomentosus Block Island -27.31 46.386 7.729 10.901 4.3 

Nicrophorus tomentosus Block Island -25.654 47.091 9.992 11.065 4.3 

Nicrophorus tomentosus Block Island -25.032 47.012 7.070 10.881 4.3 

Nicrophorus tomentosus Block Island -26.388 47.488 7.755 10.996 4.3 

Nicrophorus tomentosus Block Island -28.527 47.538 6.682 11.000 4.3 

Nicrophorus tomentosus Block Island -25.335 48.574 7.597 10.862 4.5 

Nicrophorus tomentosus Block Island -26.124 47.509 6.232 10.525 4.5 

Nicrophorus tomentosus Block Island -27.802 48.688 4.610 10.446 4.7 

Nicrophorus tomentosus Block Island -24.978 44.204 7.162 11.043 4.0 

Nicrophorus tomentosus Block Island -27.388 46.963 6.926 10.724 4.4 

Nicrophorus tomentosus Block Island -25.104 45.339 6.552 10.964 4.1 

Nicrophorus tomentosus Block Island -24.888 47.515 7.841 10.027 4.7 

Nicrophorus tomentosus Block Island -25.229 47.202 8.600 11.245 4.2 

Nicrophorus tomentosus Block Island -26.492 43.390 9.326 10.945 4.0 

Nicrophorus tomentosus Block Island -27.2 46.625 8.421 11.143 4.2 

Nicrophorus tomentosus Block Island -24.413 47.073 9.958 10.937 4.3 

Nicrophorus tomentosus Block Island -26.133 46.169 8.454 11.168 4.1 

Nicrophorus tomentosus Block Island -26.643 47.857 4.600 9.838 4.9 

Nicrophorus tomentosus Block Island -24.668 47.125 7.736 11.232 4.2 

Nicrophorus marginatus Block Island -27.193 49.687 4.487 9.761 5.1 

Nicrophorus marginatus Block Island -27.164 49.332 5.346 9.786 5.0 
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Nicrophorus marginatus Block Island -28.12 49.584 5.555 9.820 5.0 

Nicrophorus marginatus Block Island -26.84 48.903 5.486 9.786 5.0 

Nicrophorus marginatus Block Island -27.788 50.367 5.880 10.167 5.0 

Nicrophorus marginatus Block Island -28.014 49.471 5.007 9.802 5.0 

Nicrophorus marginatus Block Island -27.514 47.848 7.039 9.868 4.8 

Nicrophorus marginatus Block Island -26.029 49.751 6.348 9.951 5.0 

Nicrophorus marginatus Block Island -28.048 50.748 5.596 10.014 5.1 

Nicrophorus marginatus Block Island -27.922 49.832 5.365 10.065 5.0 

Nicrophorus marginatus Block Island -27.998 49.378 6.515 10.069 4.9 

Nicrophorus marginatus Block Island -26.544 50.163 7.303 10.502 4.8 

Nicrophorus marginatus Block Island -26.669 49.599 6.014 10.036 4.9 

Nicrophorus marginatus Block Island -28.279 49.270 6.208 10.214 4.8 

Nicrophorus marginatus Block Island -26.644 48.733 7.724 10.361 4.7 

Nicrophorus orbicollis Block Island -26.124 47.725 8.741 9.336 5.1 

Nicrophorus orbicollis Block Island -25.736 49.628 7.523 10.142 4.9 

Nicrophorus orbicollis Block Island -25.809 49.710 8.549 10.686 4.7 

Nicrophorus orbicollis Block Island -26.537 49.763 4.452 10.083 4.9 

Nicrophorus orbicollis Block Island -25.889 49.172 6.005 10.103 4.9 

Nicrophorus orbicollis Block Island -27.942 50.005 6.745 10.515 4.8 

Nicrophorus orbicollis Block Island -26.164 49.156 10.986 10.752 4.6 

Nicrophorus orbicollis Block Island -26.71 49.969 6.821 10.178 4.9 

Nicrophorus orbicollis Block Island -27.03 48.786 6.483 10.550 4.6 

Nicrophorus orbicollis Block Island -24.544 50.364 16.650 10.826 4.7 

Nicrophorus orbicollis Block Island -26.584 50.470 7.145 9.848 5.1 

Nicrophorus orbicollis Block Island -24.739 49.097 7.687 10.391 4.7 

Nicrophorus orbicollis Block Island -25.789 50.612 8.037 9.941 5.1 

Nicrophorus orbicollis Block Island -23.669 49.783 8.588 9.880 5.0 

Nicrophorus orbicollis Block Island -25.542 50.846 7.045 10.087 5.0 

Nicrophorus orbicollis Block Island -26.095 49.192 7.093 10.162 4.8 

Nicrophorus orbicollis Block Island -25.948 50.014 6.504 10.176 4.9 

Colinus virginianus Nantucket Island -20.933 46.198 3.825 9.058 5.1 

Colinus virginianus Nantucket Island -20.058 35.257 4.471 10.366 3.4 

Colinus virginianus Nantucket Island -20.157 43.750 3.720 12.646 3.5 

Colinus virginianus Nantucket Island -20.047 32.045 3.472 9.883 3.2 

Colinus virginianus Nantucket Island -19.663 36.889 4.369 11.390 3.2 

Colinus virginianus Nantucket Island -19.898 34.818 4.056 10.083 3.5 

Colinus virginianus Nantucket Island -19.966 44.135 3.905 13.481 3.3 

Colinus virginianus Nantucket Island -20.152 46.070 3.146 14.461 3.2 

Peromyscus leucopus Block Island -25.627 40.597 4.805 9.365 4.3 
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Peromyscus leucopus Nantucket Island -24.343 43.866 5.649 12.934 3.4 

Peromyscus leucopus Nantucket Island -24.269 44.279 5.361 13.000 3.4 

Peromyscus leucopus Nantucket Island -24.839 48.756 6.534 14.179 3.4 

Turdus migratorius Nantucket Island -25.564 30.256 12.508 9.084 3.3 

Dumetella carolinensis Nantucket Island -23.939 47.174 5.977 14.276 3.3 

Dumetella carolinensis Nantucket Island -26.585 46.526 7.611 13.915 3.3 

Dumetella carolinensis Nantucket Island -25.247 45.885 5.144 13.553 3.4 

Cardinalis cardinalis Nantucket Island -19.487 48.190 7.400 14.138 3.4 

Cardinalis cardinalis Nantucket Island -24.247 45.246 4.046 13.859 3.3 

Peromyscus leucopus Block Island -25.47 46.766 5.158 13.391 3.5 

Peromyscus leucopus Block Island -25.362 47.913 5.127 14.097 3.4 

Peromyscus leucopus Block Island -24.048 46.217 4.705 13.692 3.4 

Peromyscus leucopus Block Island -25.348 48.563 5.400 14.152 3.4 

Peromyscus leucopus Block Island -24.737 31.115 5.245 9.092 3.4 

Peromyscus leucopus Block Island -25.119 47.971 6.184 13.977 3.4 

Peromyscus leucopus Block Island -24.199 48.096 4.263 14.123 3.4 

Peromyscus leucopus Block Island -24.67 49.118 5.015 14.299 3.4 

Peromyscus leucopus Block Island -25.584 45.452 4.969 13.451 3.4 

Peromyscus leucopus Block Island -24.551 47.591 4.829 14.414 3.3 

Peromyscus leucopus Block Island -25.16 45.932 5.017 13.463 3.4 

Peromyscus leucopus Nantucket Island -24.487 48.537 4.982 14.490 3.3 

Peromyscus leucopus Nantucket Island -23.314 35.232 3.316 10.346 3.4 

Microtus pennsylvanicus Nantucket Island -22.967 42.153 5.385 12.500 3.4 

Peromyscus leucopus Nantucket Island -26.18 47.170 2.318 13.692 3.4 

Peromyscus leucopus Nantucket Island -23.509 43.148 3.724 12.674 3.4 

Peromyscus leucopus Nantucket Island -23.566 49.010 3.309 14.298 3.4 

Peromyscus leucopus Nantucket Island -23.334 44.847 1.993 12.843 3.5 

Peromyscus leucopus Nantucket Island -23.408 46.989 4.065 13.784 3.4 

Peromyscus leucopus Nantucket Island -23.411 49.317 5.585 14.374 3.4 

Peromyscus leucopus Nantucket Island -23.013 26.862 4.228 7.739 3.5 

Peromyscus leucopus Nantucket Island -23.832 42.346 3.171 11.937 3.5 

Peromyscus leucopus Nantucket Island -23.849 48.030 3.677 13.789 3.5 

Peromyscus leucopus Nantucket Island -25.166 44.273 5.360 13.110 3.4 

Peromyscus leucopus Nantucket Island -23.794 46.636 3.069 13.696 3.4 

Microtus pennsylvanicus Nantucket Island -23.493 43.768 2.767 12.550 3.5 

Microtus pennsylvanicus Nantucket Island -26.384 48.605 2.367 14.672 3.3 

Microtus pennsylvanicus Nantucket Island -26.429 42.824 0.823 13.160 3.3 

Microtus pennsylvanicus Nantucket Island -26.697 45.405 0.988 13.209 3.4 

Microtus pennsylvanicus Nantucket Island -26.494 43.498 2.091 13.265 3.3 
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Table A.3.1 continued 

       

Microtus pennsylvanicus Nantucket Island -26.052 47.414 0.941 13.583 3.5 

Microtus pennsylvanicus Nantucket Island -26.091 48.628 1.676 14.654 3.3 

Microtus pennsylvanicus Nantucket Island -26.642 46.317 2.131 13.637 3.4 

Microtus pennsylvanicus Nantucket Island -26 32.085 1.627 9.559 3.4 

Microtus pennsylvanicus Nantucket Island -27.003 49.371 1.862 14.700 3.4 

Microtus pennsylvanicus Nantucket Island -25.79 46.075 0.691 13.759 3.3 

Colinus virginianus Nantucket Island -20.314 49.631 3.463 12.479 4.0 

Colinus virginianus Nantucket Island -20.155 45.095 3.372 12.697 3.6 

Colinus virginianus Nantucket Island -20.382 43.654 3.859 12.158 3.6 

Colinus virginianus Nantucket Island -21.163 50.718 3.648 10.467 4.8 

Colinus virginianus Nantucket Island -20.309 46.150 4.092 12.123 3.8 

Colinus virginianus Nantucket Island -20.864 49.822 3.633 10.919 4.6 

Agelaius phoeniceus Nantucket Island -23.321 47.026 13.915 14.512 3.2 

Pipilo erythrophthalmus Nantucket Island -22.314 48.008 6.645 14.867 3.2 

Pipilo erythrophthalmus Nantucket Island -24.217 45.178 8.061 13.909 3.2 

Agelaius phoeniceus Nantucket Island -18.639 46.636 8.519 14.603 3.2 

Passer domesticus Nantucket Island -24.729 44.365 10.137 13.682 3.2 

Passer domesticus Nantucket Island -23.189 47.645 5.015 14.159 3.4 

Pipilo erythrophthalmus Nantucket Island -24.815 47.512 6.612 14.538 3.3 

Agelaius phoeniceus Nantucket Island -23.38 47.196 9.197 14.180 3.3 

Turdus migratorius Nantucket Island -24.178 47.781 6.365 14.810 3.2 

Pipilo erythrophthalmus Nantucket Island -22.45 48.032 6.724 14.525 3.3 

Nicrophorus americanus Block Island -20.483 47.339 8.710 9.862 4.8 

Nicrophorus americanus Block Island -25.941 47.522 7.909 9.921 4.8 

Nicrophorus americanus Block Island -25.906 41.330 7.760 8.716 4.7 

Nicrophorus americanus Block Island -27.279 47.799 5.895 9.717 4.9 

Nicrophorus americanus Block Island -24.052 46.754 9.355 9.819 4.8 

Nicrophorus americanus Block Island -26.822 48.411 11.459 10.403 4.7 

Nicrophorus americanus Block Island -26.201 46.657 5.526 9.559 4.9 

Nicrophorus americanus Block Island -25.389 47.421 7.684 9.783 4.8 

Nicrophorus americanus Block Island -25.58 45.745 7.926 9.734 4.7 

Nicrophorus americanus Block Island -24.512 47.528 8.738 10.609 4.5 

Nicrophorus americanus Block Island -24.241 47.459 13.955 9.741 4.9 

Nicrophorus americanus Block Island -22.63 46.318 10.112 9.709 4.8 

Nicrophorus americanus Block Island -24.38 46.896 8.259 9.841 4.8 

Nicrophorus americanus Block Island -25.079 47.195 7.226 9.796 4.8 

Nicrophorus americanus Block Island -22.871 48.470 8.392 10.333 4.7 

Nicrophorus americanus Block Island -23.889 47.894 9.924 10.140 4.7 

Nicrophorus americanus Block Island -23.812 46.287 7.209 9.379 4.9 
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Table A.3.1 continued 

       

Nicrophorus americanus Block Island -25.789 47.304 7.975 9.593 4.9 

Nicrophorus americanus Block Island -25.473 46.951 7.323 9.626 4.9 

Nicrophorus americanus Block Island -24.769 46.810 7.722 9.727 4.8 

Nicrophorus americanus Block Island -24.093 46.600 8.106 9.386 5.0 

Nicrophorus americanus Block Island -22.969 46.498 9.097 9.389 5.0 

Nicrophorus americanus Block Island -25.164 47.781 9.434 9.649 5.0 

Nicrophorus americanus Block Island -22.676 47.878 6.960 9.869 4.9 

Nicrophorus americanus Block Island -25.557 46.902 8.476 9.558 4.9 

Nicrophorus americanus Block Island -22.339 47.554 7.317 9.744 4.9 

Nicrophorus americanus Nantucket Island -22.491 46.991 6.438 9.436 5.0 

Nicrophorus americanus Nantucket Island -24.599 49.868 9.316 9.569 5.2 

Nicrophorus americanus Nantucket Island -22.076 48.789 9.619 10.126 4.8 

Nicrophorus americanus Nantucket Island -24.225 47.945 9.659 9.841 4.9 

Nicrophorus americanus Nantucket Island -23.162 49.881 9.596 10.729 4.6 
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Table A.6.2. Mammal and Avian Carrion Groups 

Mammalian and avian species used to determine diet item groups, including sample size, sample 

type, and islands where we sourced carcasses. We collected all muscle samples from frozen 

carcasses donated to the Maria Mitchell Association of Nantucket. Group letters represent the final 

reproductive diet category and a significant (α = 0.05) difference in δ13C and δ15N values calculated 

from a multivariate analysis of variance (MANOVA) with a post hoc Tukey’s multiple comparison 

test (Zar 2014) and a k-nearest neighbor analysis (Rosing et al. 1998; Table 2). 

 

  

Species Source Location n Sample type Group 

Peromyscus leucopus Block Island 13 Blood E 

Peromyscus leucopus Nantucket Island 30 Blood K 

Sciurus carolinensis Nantucket Island 22 Muscle K 

Rattus norvegicus Nantucket Island 7 Muscle J 

Rattus norvegicus Block Island 2 Muscle D 

Sylvilagus floridanus Nantucket Island 7 Muscle K 

Microtus pennsylvanicus Nantucket Island 31 Blood K 

Agelaius phoeniceus Nantucket Island 6 Blood G 

Cardinalis cardinalis Nantucket Island 3 Blood G 

Dumetella carolinensis Block Island 14 Feather/Muscle A 

Dumetella carolinensis Nantucket Island 3 Blood F 

Turdus migratorius Block Island 1 Blood A 

Turdus migratorius Nantucket Island 2 Blood F 

Bombycilla cedrorum Nantucket Island 1 Blood F 

Colaptes auratus Nantucket Island 1 Muscle H 

Cyanocitta cristata Nantucket Island 1 Muscle G 

Scolopaz minor Nantucket Island 2 Muscle H 

Anas platyrhynchos Nantucket Island 1 Muscle F 

Sturnus vulgaris Block Island 4 Feather A 

Sturnus vulgaris Nantucket Island 20 Blood/Muscle F 

Larus argentatus Nantucket Island  1 Muscle I 

Corvus brachyrhynchos Nantucket Island 1 Muscle F 

Cartharus guttatus Nantucket Island 1 Muscle H 

Aix sponsa Nantucket Island 1 Muscle I 

Fulica americana Nantucket Island 1 Muscle I 

Melanitta nigra Nantucket Island 1 Muscle I 

Clangula hyemalis Nantucket Island 1 Muscle I 

Somateria mollissima Nantucket Island 1 Muscle I 

Colinus virginianus Nantucket Island 18 Muscle C 

Pipilo erythrophthalmus Nantucket Island 4 Blood F 

Passer domesticus Nantucket Island 3 Blood G 

Phasianus colchicus Block Island 12 Feather B 

Setophaga ruticilla Block Island 2 Feather A 

Setophaga palmarum Block Island 5 Feather A 
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