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ABSTRACT

Creighton, Christopher E. Ph.D., Purdue University, August 2020. Automorphism
Groups and Chern Bounds of Fibrations. Major Professor: Donu V. Arapura.

In this thesis, I study two problems. First, I generalize a result by H-Y Chen

[1] to show that if X is a smooth variety of general type and irregularity q ≥ 1

that embeds into its Albanese variety as a smooth variety Y of general type with

codimension one or two, then |Aut(X)| ≤ |Aut(Fmin)||Aut(Y )| where Fmin is the

minimal model of a general fiber. Then I describe a special type of fibration called a

K-Fibration as a generalization to Kodaira Fibrations where we can compute its Chern

numbers in dimensions 2 and 3. K-Fibrations act as an initial step in constructing

examples of varieties that satisfy the generalization with the goal of computing their

automorphism group explicitly.
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1. INTRODUCTION

I work over C. It is historical fact, proved by A. Hurwitz [2], that for a smooth curve

C of genus g of at least 2, the cardinality of its automorphism group has an upper

bound of 42(2g − 2). In 1963, H. Matsumura showed that for a variety of general

type, the automorphism group is finite [3] spurring a search for a bound. In the early

1990s, G. Xiao proved that for a minimal smooth surface S of general type (which

for curves means genus at least two) that it has as upper bound of (42KS)2 where KS

is the canonical divisor of S [4,5]. Most recently in 2013, C.D. Hacon, J. McKernan,

and C. Xu [6] proved the most general case that if X is a smooth variety then there

exists a fixed constant C for each dimension with the automorphism group bounded

by CV (X) where V (X) is the volume of the canonical divisor. Presently, the value

of the constant for dimensions 3 and higher is unknown and is currently an ongoing

search.

In chapter two, I prove the following result relating the automorphism group of a

variety to that of its image in the Albanese.

Theorem 1. Suppose that X is a smooth variety of general type, Aut(X) fixes a

point P0 and irregularity q(X) ≥ 1 such that its image Y in Alb(X) is smooth and

such that the general fiber F of X → Y has general type and dimension one or two.

Let Fmin be the minimal model of F . Then we have

|Aut(X)| ≤ |Aut(Fmin)||Aut(Y )| (1.1)

A future goal is to determine how fine of an inequality this is for bounding the

automorphism group, leading to a search for examples of n-folds X that satisfy the

conditions of the above theorem and have ample canonical bundles such that we can

compute their automorphism groups explicitly. In this case, using the above theorem,
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the automorphism group would be bounded by cK
dim(F )
Fmin

K
dim(Y )
Y , if KY is ample, with

some constant c. This bound has a nice relation to the first Chern numbers of both

Fmin and Y . For a smooth variety V with KV ample, the first Chern class of the

tangent bundle is c1(TV ) = −KV so that the bound can be written in terms of the

first Chern number of the tangent bundle c1(TV )dim(V ) = (−KV )dim(V ). In fact, the

automorphism group of a minimal variety can be viewed as a bound on the first Chern

number.

Stemming from this search for an example of such a fibration, where we can ex-

plicitly compute its automorphism group, we develop K-Fibrations as a generalization

to Kodaira Fibrations [7]. What is fascinating about K-Fibrations is, due to their

inductive construction as certain r-cyclic covers, we can compute their Chern num-

bers and determine relations between the Chern numbers in special cases. Future

work will focus on adjusting this construction to allow for the determination of their

automorphism group and to use it as a basis to find an example of a variety that

embeds into its Albanese such that the general fibers are curves or surfaces.

As a review, Chern classes ci of a vector bundle are characteristic classes in coho-

mology. The first Chern class for line bundles, c1 is a homomorphism from Pic(X)

to H2(X,Z), which gives c1(LB) = c1(OX(B)) = B where LB is the line bundle as-

sociated with a divisor B. The intermediate Chern classes ci land in H2i(X,Z) and

their construction can be found in [8] or [9].

Chern numbers of a smooth variety are the intersection of the Chern classes ci(TX),

where TX is the tangent bundle of X, that yield integer values. For example, curves

have a single Chern number, c1(TX) = − deg(KX) = 2 − 2g in H2(X,Z) ∼= Z while

surfaces have two c21(TX) and c2(TX) in H4(X,Z) ∼= Z as c1(TX) = −KX is a divisor

in H2(X,Z) thus not an integer. I will use ci(X) = ci(TX) for simplicity.

Chern numbers of the tangent bundle are isomorphism invariants defined by S.S.

Chern [10], that is if X ∼= Y , then the Chern numbers are the same. Thus if the

numbers are different, then the spaces are not isomorphic. The converse does fail.
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For example, if you take two elliptic curves with different j-invariants they are not

isomorphic but their first Chern numbers are both zero.

Chern numbers are not birational invariants of smooth varieties as seen by the

blow-up b : Y → X of a smooth surface X at a single point. The canonical divisor

of Y is KY = b∗KX + E where E is the exceptional divisor and hence has a Chern

number

c21(Y ) = K2
Y = b∗c21(X) + 2b∗c1(X) · E + E2 (1.2)

which is not c21(X).

In the third chapter, I review historical bounds on Chern numbers then use a result

by Hunt [11] and Hirzebruch-Riemann-Roch to obtain new relations in dimensions 3

and 4.

In the fourth chapter, I describe a generalization to a construction described by

Kodaira [7] called K-Fibrations and prove a few new properties of these varieties.

In the fifth chapter, I compute the Chern numbers of the K-Fibration in dimension

2 as done in [12] and in dimension 3 to get a new asymptotic relations and bounds

on Chern numbers in a special case as described by Kas [13].

Lastly, I include an appendix outlining the relation between vector bundles and

locally free sheaves along with the construction of the tautological section of a sheaf

as review.
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2. AUTOMORPHISMS OF FIBRATIONS EMBEDDED

INTO THE ALBANESE

The question of finding the automorphism group or its order of a smooth variety is

a very active one. One of the goals of bounding the automorphism group is to do go

in terms of its volume V (X) where

V (X) = limsupm
h0(X,mKX)

mdim(X)/dim(X)!
. (2.1)

. Recall that X is of general type if its Kodaira dimension κ(X) = dim(X) and

minimal if for any curve C in X, then KX ·C ≥ 0. When X is minimal and of general

type, this can be written in terms of the canonical divisor or first Chern number:

V (X) = K
dim(X)
X = (−1)dim(X)c1(X). In 2011, H-Y. Chen proved the following result

for a smooth projective threefold with a certain fibration property over its Albanese:

Theorem 2 (H-Y. Chen [1]). Let X be a smooth projective threefold of general type,

and let albX : X → A be the Albanese map of X. Suppose that the image of albX is

a curve C with genus g(C) ≥ 2. Then the order of the automorphism group of X is

|Aut(X)| ≤ 1

3
423V (X) (2.2)

The goal of this section is to provide more detail of the proof that the map

φ : Aut(X) → Aut(albX(X)) is well-defined as, unfortunately, there is a small gap

in the proof and to generalize the result to a smooth projective n-fold with the

codimension of the image of X in alb(X) at most 2.

Let us quickly recall that the Albanese of X is defined to be

Alb(X) = H0(X,Ω1)∨/H1(X,Z) (2.3)

with the Albanese map αP0 : X → Alb(X) with base point P0 in X taking

P 7→ (

∫ P

P0

ω1, . . . ,

∫ P

P0

ωq) (2.4)
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where q = dim(H0(X,Ω1
X)) is the irregularity and ω1, . . . , ωq a basis for H0(X,ΩX).

This map does depend on choice of base point P0 ∈ X.

Lemma 1. Suppose that X is a smooth variety with irregularity q ≥ 1. Suppose that

Aut(X) is finite, fixes a point P0 ∈ X, and that it embeds into its Albanese variety as a

smooth variety Y = αP0(X), then there is a well-defined map φ : Aut(X)→ Aut(Y ).

Proof. Let G = Aut(X) and H = Aut(Y ). Let q = dim(H0(X,Ω1
X)).

Suppose the action of G on X fixes a point P0. Then define the Albanese map

αP0 : X → Y by

αP0(P ) =

(∫ P

P0

ωi

)
i=1,...,q

(2.5)

where the ωi is a basis of H0(X,Ω1
X). Define for g ∈ G

φ(g)(αP0(P )) =

(∫ g(P )

P0

g∗ωi

)
i=1,...,q

(2.6)

which is a group homomorphism as needed.

There is an issue if Aut(X) does not fix a point of X. Without a fixed point,

the universal property of the Albanese does not have the same image in Alb(X)

when permuted by the action of Aut(X), though the images are isomorphic. Spe-

cial care is needed when defining a map above or via the universal property from

Aut(X) to Aut(Y ) which is an area of future work. I do believe that the fix point

condition can be dropped. One approach is to define a map X → Symn(X) where

n = |Aut(X)| that now presents fixed points of the induced action of Aut(X) on

Symn(X). Additionally, this action is an embedding of Aut(X) in Aut(Symn(X))

(In fact, Aut(X) ∼= Aut(Symd(X)) if X is a curve of genus g > 2 and d > 2g − 2

was shown recently by Biswas and Gómez in [14]). Next, construct a map from

Symn(X)→ Alb(X) such that it sends a base point P0 of the Albanese to the origin

so that the composition X → Symn(X)→ Alb(X) factors through the Albanese map

αP0 . What is left is to define a map from Aut(X) as acting on Symn(X) to Aut(Y ).

The issue issue is to define it in such that it is a group homomorphism.
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Theorem 3. Suppose that X is a smooth variety of general type, Aut(X) fixes a

point P0, and X has irregularity q ≥ 1 such that its image Y in Alb(X) is smooth

and such that the general fiber F of X → Y has general type and dimension one or

two. Let Fmin be the minimal model of F . Then we have

|Aut(X)| ≤ |Aut(Fmin)||Aut(Y )| (2.7)

Proof. By Lemma 1 we have an exact sequence

0 K Aut(X) Aut(Y )
φ

(2.8)

where K is the kernal of the group homomorphism φ.

Next, we need K injects into Aut(Fmin). If F is a curve, this is clear. If F is a

surface, then we will have an embedding of K into Aut(F ). But this embeds into

the birational automorphism group, which can be identified with Aut(Fmin). Hence

|K| ≤ |Aut(Fmin)|.

Thus by the exact sequence, we have

|Aut(X)| ≤ |K||Aut(Y )| ≤ |Aut(Fmin)||Aut(Y )|

.

Remark. In higher codimensions (i.e. the general fibers F have dimension 3 or higher),

there are major issues concerning the uniqueness of a minimal model.

To relate the automorphism groups of Fmin and Y to the volume of X, we use the

following result of Y. Kawamata:

Theorem 4 (Y. Kawamata [15]). Let f : X → Y be a surjective morphism of smooth

projective varieties with connected fibers. Assume that both Y and the general fiber F

of f are varieties of general type. Then

V (X)

dim(X)!
≥ V (Y )

dim(Y )!

V (F )

dim(F )!
(2.9)

We will apply this to theorem 3.
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Corollary 1. Suppose that X is a smooth variety of general type with the assumptions

of theorem 3. Then we have

|Aut(X)| ≤ CV (X) (2.10)

where if dim(X) = 3 then C = 1
3
423; C = 1

3
424 if both F and Y are surfaces, and C

is a constant that only depends on dim(X) in all other cases.

Proof. By Theorem 3, we know that

|Aut(X)| ≤ |Aut(Fmin)||Aut(Y )|.

As a summary of known general bounds, we have

i. |Aut(C)| ≤ 42V (C) for C a curve [2]

ii. |Aut(S)| ≤ 422V (S) for S a surface [4, 5]

iii. |Aut(X)| ≤ cV (X) for X a n-fold n > 2 and c > 0 depending only on dim(X) [6]

If dim(X) = 3, this was done in [1] for Y a curve. Likewise if Y is a surface and

F a curve, we get the bound

|Aut(X)| ≤ 423V (F )V (Y ) ≤ 1

3
423V (X).

If dim(X) = 4, we have three cases (a) Y is a surface, (b) Y is a 3-fold, or (c) Y

a curve.

For case (a), we have

|Aut(X)| ≤ 424V (F )V (Y ) ≤ 1

3
424V (X).

For (b), we need to apply bound (iii) to get

|Aut(X)| ≤ 42cV (F )V (Y ) ≤ 1

4
42cV (X).

For (c), we need to apply bound (iii) to Aut(Fmin) to get

|Aut(X)| ≤ 42cV (F )V (Y ) ≤ 1

4
42cV (X).
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If dim(X) ≥ 5, if F is a curve we have

|Aut(X)| ≤ 42c

dim(X)
V (X)

and if F is a surface

|Aut(X)| ≤ 2 · 422c

dim(X)(dim(X)− 1)
V (X).

The following chapters stem from work with trying to construct a concrete example

of a variety X with the conditions of Theorem 3 where we can explicitly compute its

automorphism group to determine how firm the inequality is on the automorphism

bound. It is known via the Hurwitz Formula that if X = F × Y , for non-isomorphic

curves F and Y , that Aut(X) ∼= Aut(F )×Aut(Y ). In this case, Theorem 3 in equality

even if the conditions are not met. The challenge is to satisfy the conditions.

The underlying idea is if we can construct a smooth curve C of genus at least 2

in an Abelian variety A and then construct a fibration X → C such that C is the

image of the Albanese from α : X → Alb(X) for some base point via the universal

property. I.e., if f : X → C ⊂ A, then there is a map h : Alb(X) → A which gives

a factoring h ◦ α = h by the universal property of the Albanese. We now have an

induced map h : α(X)→ C via this composition and if α(X) is a smooth curve, they

are isomorphic. In this case, what would be left to determine is the contribution of

the fibration on the automorphism group.

This principle has led to the following construction and discussion of K-Fibrations

which were meant as a potential means to satisfy these conditions with future work

of computing their automorphism group.
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3. RELATIONSHIPS BETWEEN CHERN NUMBERS

Before going into K-Fibrations, we review Chern numbers of smooth varieties.

Chern numbers are the intersection of an appropriate amount of Chern classes of

the tangent bundle TX of a smooth variety X. To be an integer, if n = dim(X) and

Ni such that n =
∑n

i=1 iNi, then the intersection cN1
1 · . . . · cNn

n (TX) is an integer. For

simplicity, we write cN1
1 · . . . · cNn

n (X) instead of with the tangent bundle.

Chern numbers are related by a variety of inequalities. The most famous being

the [16] where Yau show that for a variety X of dimension n ≥ 2 and ample canonical

divisor KX that

(−1)ncn1 (X) ≤ (−1)n
2(n+ 1)

n
cn−21 c2(X) (3.1)

with equality if and only if X is a compact quotient of the n-ball.

For surfaces, the Chern numbers for a minimal surface X of general type satisfy

the following inequalities [12]:

i. c21(X) > 0

ii. c2(X) > 0

iii. c21(X) ≤ 3c2(X)

iv. c21(X) + c2(X) = 12χ(X)

v. c21 ≥ c2(X)/5− 36/5 if c21(X) is even

vi. c21(X) ≥ c2(X)/5− 6 if c21(X) is odd

with the last two being related to Noether’s inequality.

For threefolds X, less is known. For when KX is ample we have by [11] that

i. c31(X) < 0,
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ii. c1c2(X) < 0,

iii. c1c2(X) = 24χ(X),

iv. −c31(X) ≤ 8
3
(−c1c2(X)).

To get an inequality regarding c3(X), Hunt in his paper [11], at a suggestion of

Ven de Ven, uses the following procedure which I generalize for dim(X) = n.

Assuming that KX is very ample, let i : X → PN be the canonical embedding

with KX = i∗OPN (1) and let f : X → G(n+ 1, N + 1) taking x to the tangent plane

to X at x be the Gauss map.

There is a bundle sequence on G(n+ 1, N + 1) with S be universal bundle [8]

0 S CN+1 Q 0

Pulling it back to a sequence on X via f

0 f ∗S f ∗CN+1 f ∗Q 0.

Now on PN , we have the standard sequence

0 OPN (OPN (1))N+1 TPN 0

so twisting gives

0 OPN (−1) (OPN )N+1 TPN (−1) 0

and going back to X

0 i∗OPN (−1) i∗(OPN )N+1 i∗TPN (−1) 0.

Now, using i and adjunction, we have on X the sequence

0 TX i∗TPN NPn/X 0

so twisting by -1 to align the TPN (−1) gives

0 TX(−1) i∗TPN (−1) NPn/X(−1) 0.
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Piecing these sequences together, we get the following diagram on X:

0 0

f ∗S TX(−1)

0 i∗OPN (−1) i∗(OPN )N+1 i∗TPN (−1) 0

f ∗Q NPN/X(−1)

0 0

(2)

(3)
(1)

with (1) by construction of S (fibers are planes), (2) coming from the natural inclusion

of C in OPN , and composition of several above sequences giving (3). Thus along this

new map we get the sequence

0 OX(−KX) f ∗S TX(−KX) 0.

Then applying the Chern character gives

ch(f ∗S) = ch(OX(−KX))ch(TX(−KX)). (3.2)

Using Gauss-Bonnet Theorem I [8], we have that cn(f ∗S) = f ∗cn(S) = (−1)n ·

f ∗σ∗1,...,1 where σ∗1,...,1 is the Poincaré dual of the Schubert cycle σ1,...,1. Coupled with

knowing in the intersection pairing in homology of G(n+ 1, N + 1) that σ1,...,1 ·σa ≥ 0

for any Schubert cycle σa, we find that cn(f ∗S) ≥ 0 if n is even and cn(f ∗S) ≤ 0 if n

is odd. By taking the n-graded piece on the right side of 3.2 and knowing the sign of

cn(f ∗S), we can generate new relations on the Chern numbers.

Thus we get in dimension 3,

c3(f
∗S) = c3(TX(−KX))−KX · c2(TX(−KX)) ≤ 0

so that we have relation

c3(X) + 2c1c2(X) + 7c31(X) ≤ 0.
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In dimension 4, we obtain

c4(f
∗S) = −KXc3(TX(−KX)) + c4(TX(−KX))

giving

9c41(X) + 3c21c2(X) + 2c1c3(X) + c4(X) ≥ 0

which is missing a term containing c22.

Application of Hirzebruch-Riemann-Roch

To obtain more relations, we note that as KX is ample, then by Kodaira Vanish-

ing (or more generally if KX is numerically effective (NEF) and big by Kawamata-

Viehweg Vanishing) we have that 0 < χ(mKx) for m > 1. Thus Hirzebruch-Riemann-

Roch [9] gives

0 < χ(mKX) =

∫
X

ch(mKX)td(TX).

This yields in dimension 2,

(1 + 6m2)c21(X) + c2(X) > 0, (3.3)

in dimension 3 we have

(1− 2m)c1c2(X) + 2(−m+ 3m2 − 2m3)c31(X) > 0, (3.4)

and

(−1 + 30m2 − 60m3 + 30m4)c41(X) + (4− 30m+ 30m2)c21c2(X)

+ 3c22(X) + c1c3(X)− c4(X) > 0 (3.5)

in dimension 4. Fortunately, we have obtained a relation involving all five Chern

Numbers in dimension 4. A quick analysis yeilds that the minimum of the coefficients

occurs when m = 2 in dimensions 2 and 4 and maximum at m = 2 in dimension 3.
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4. K-FIBRATIONS

We will build a fibration X → C where the canonical divisor can be computed along

each step for X of dimension 2 or larger. As the techniques are based upon the

construction of Kodaira Fibrations [12] which already refer to a few mathematical

objects, I will name these K-Fibrations with level n where n = dim(X) − 1.

These will be defined inductively. A K-Fibration of level n will be a family of smooth

curves over a K-Fibration of level n− 1.

The aim of this construction is to provide a scaffolding to compute Chern numbers

in higher dimension in addition to a potential means to construct an example of a

fibration over the Albanese as discussed in chapter 1.

4.1 THE CONSTRUCTION

We follow the initial construction in [12]. Let D0 be a complex smooth connected

curve of genus at least 2. Take a covering map D → D0 with covering group G of

order kr for some k > 0. Note the action of G on D is fixed-point-free as G is the

group of deck transformations on the covering map. To construct h : C → D with

the property that all elements of h∗H1(D,Z) are r-divisible in H1(C,Z), we pass to

topology.

We have surjections π1(D) → H1(D,Z) and H1(D,Z) → H1(D,Z/rZ) allowing

us to treat H1(D,Z/rZ) as a quotient of π1(D). Thus take h : C → D to be the

unbranched cover with covering group H1(X,Z/rZ). We then have the following

exact sequence

0 π1(C) π1(D) H1(X,Z/rZ) 0 (4.1)
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and with applying the right-exact abelianization functor we get h∗(H1(C,Z)) is r-

divisible in H1(D,Z). By duality, h∗H1(D,Z) is r-divisible in H1(C,Z). Another

way to obtain r-divisibility is if we have a r-torsion group H (all elements have order

r) with a surjective map H1(X,Z) → H, then we can take the unbranched covering

space associated to this quotient with covering group H and h∗H1(C,Z) having the

property that
∑

g∈G(gh)∗α = 0 mod r for all α ∈ H1(C,Z). This r-divisibility

condition is needed momentarily to construct a needed line bundle and collections

(h : C → D,G, r) that satisfy it are called admissible [13].

Let Bg be the graph Γ(g◦h) ⊂ C×D for g ∈ G and set B = ∪g∈GBg. Then B is a

smooth curve in C×D with |G| components. By the following Lemma, there is a line

bundle L in Pic(C ×D) with OC×D(B) = L⊗r. We construct a r-fold cyclic covering

k1 : X1 → C ×D that is ramified over B. Let p : L→ C ×D be the projection from

the total space L of L, s ∈ Γ(C × D,OC×D(B)) and t ∈ Γ(L, p∗L) the tautological

section. We get the map k1 = p|X1 : X1 → C × D where X1 is the analytic space

p∗s− tr in L.

Lemma 2 ( [12]). OC×D(B) is r-divisible in Pic(C ×D).

Proof. As Pic0(C × D) is an abelian variety, if OC×D(B) is in it, then OC×D(B)

is r-divisible. This means we just need to check if c1(OC×D(B)) is r-divisible in

H2(C ×D,Z).

The cup product <,> on H2(C×D,Z)×H4−2(C×D,Z)→ Z is a perfect pairing,

so it is enough to prove the intersection

< c1(O(B)), α >≡ 0 mod r

for all α ∈ H2(C × D,Z). By the Künneth formula, we have three cases: (1) α ∈

p∗CH
2(C,Z), (2) α ∈ P ∗DH

2(D,Z), and (3) α ∈ p∗CH
1(C,Z) ⊗ p∗DH

1(D,Z). In the

cases (1) and (2), the intersection of B with divisors of the forms P ×D for P ∈ C

and C × Q for Q ∈ D (and hence linear combinations of them over Z) are divisible

by |G| and hence by r. For case (3), let α = p∗C(γ) · p∗D(β). Then we have
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< c1(O(B)), α > =
∑
g∈G

< c1(O(Bg)), p
∗
C(γ) · p∗D(β) >

=
∑
g∈G

< γ, pC∗(c1(O(Bg)) · p∗D(β)) >

=
∑
g∈G

< γ, h∗g∗β >≡ 0 mod r

by the projection formula of Chern classes and h∗H1(D,Z) is r-divisible in H1(C,Z).

Let pC : C ×D → C be the projection. Then we say that f1 = pC ◦ k1 : X1 → C

is a K-Fibration of level 1. As a Diagram, we have

X1 C ×D B

C D

f1

k1

pC

h

(4.2)

where the dash indicates that it is branched over B.

Let d = deg(h) and g(C) and g(D) denote the genus of C and D. Then deg(f) = d

by this construction.

We build the next level inductively. Let Xn be a level n K-Fibration with

fn : Xn → C. Then we have a map f ′n = h ◦ fn : Xn → D with the same G acting on

D without fixed points. Then, we mirror the same construction. Let Bg = Γ(g ◦ f ′n)

and Bn = ∪g∈GBg be the union of graphs in Xn ×D. We then take a r-fold ramified

cover, which exists by the following Lemma, of Xn×D ramified over Bn to get a map

kn+1 : Xn+1 → Xn × D. Then fn+1 = fn ◦ pXn ◦ kn+1 : Xn+1 → C is a K-Fibration

of level n + 1. We treat X0 = C and f0 = idC in this notation. Again, we have the

diagram

Xn+1 Xn ×D Bn

Xn D

C

fn+1

kn+1

pXn

h◦fn

fn

(4.3)
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The map kn+1 exists due to the following Lemma.

Lemma 3. OXn×D(Bn) is r-divisible in Pic(Xn ×D).

Proof. As in the prior proof, using the cup product we need to check that

c1(OXi×D(Bi)) _ α ≡ 0 mod r (4.4)

for α ∈ H2(i+1)(Xi × D,Z). As D is a complex curve so that H i(D,Z) = 0 for

i > 2, by the Künneth formula we have three cases: (1) α ∈ p∗Xi
H2(i+1)(Xi,Z), (2)

α ∈ p∗Xi
H2(i+1)−1(Xi,Z)⊗p∗DH1(D,Z), and (3) α ∈ p∗Xi

H2(i+1)−2(Xi,Z)⊗p∗DH2(D,Z).

In case (1), p∗Xi
(∆) intersects Bi |G| times and hence by r.

For case (3), by commutativity of intersections, the intersection class of p∗D(β)

with Bi is divisible by |G| thus by r.

Lastly, case (2), the harder case. As h∗H1(D,Z) is r-divisible in H1(C,Z), then

under the pull-back fi to Xi we also have f ∗i h
∗H1(D,Z) is r-divisible in H1(Xi,Z).

Let α = p∗Xi
(∆) · p∗D(γ) in p∗Xi

H2(i+1)−1(Xi,Z)⊗ p∗DH1(D,Z). We then have

< c1(O(Bi)), α > =
∑
g∈G

< c1(O(Big)), p
∗
Xi

(∆) · p∗D(γ) > (4.5)

=
∑
g∈G

< ∆, pXi∗(c1(O(Big)) · p∗D(γ)) > (4.6)

=
∑
g∈G

< ∆, f ∗i h
∗g∗γ >≡ 0 mod r (4.7)

The K-Fibration construction allows us to have intersection calculations on X

reduced to fibration calculations with h : C → D and numbers |G| and r.

In [13], A. Kas describes an example construction which we will discuss in Chapter

5.
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4.2 PROPERTIES OF K-FIBRATIONS

We have the following property of cyclic coverings that is highly useful for com-

putations.

Proposition 1 (Lemma I.17.1 of [12]). Let f : X → Y be an n-cyclic covering

branched along a smooth effective divisor B in Y and with Ln = OY (B) and B1 the

reduced divisor of f−1(B) in X. Then

(i) OX(B1) = f ∗L

(ii) f ∗B = nB1

(iii) KX = f ∗(KY ⊗ L⊗(n−1))

Proof. See [12] Lemma I.17.1.

Proposition 2. If f : X → C is a K-Fibration, then KX is ample.

Proof. Suppose this is a level n K-Fibration. Then we show this by induction as

KXn = k∗(KXn−1 ⊗ Lr) and k is a finite surjective map. Thus it is left to show that

KC×D is ample or that L is ample. But these hold as C and D have genus at least

two and Lr = O(B).

Proposition 3. If f : X → C is a K-Fibration, then X is of general type.

Proof. KX is an ample line bundle we have that for some m large that Km
X is very

ample. Thus the map induced by the linear system |Km
X | is an embedding having

dimension dim(X) = k(X).



18

5. CHERN NUMBERS OF K-FIBRATIONS

Algebraic Geography is the study of the distribution of the Chern numbers of a

variety where you can take X as a point [cn1 (X), . . . , cn(X)] in Pn−1 . For a surface,

this corresponds to the Enrique-Kodaira Classification [12]. For higher dimensions,

not much is known in general about regions [11].

Using the structure of K-Fibrations, we are able to compute the Chern numbers

in dimensions 2 and 3, that is, K-Fibrations of levels 1 and 2 using results of T.

Izawa on Chern Numbers for ramified coverings [17]. For a K-Fibration of level 3,

new intersection computations appear involving the intermediate Chern classes of the

branch locus B which pose new challenges not addressed in this thesis.

We know cn(X) = χ(X) is the topological Euler characteristic by Gauss-Bonnet [8]

or Hirzebruch–Riemann–Roch [9]. Additionally, as c1(X) = −KX , we can compute

cn1 (X) = (−KX)n if the form of KX is known. The more challenging intersections are

the products ci1(X) · . . . · cik(X) for i1 + . . .+ ik = n. For these, T. Izawa proved the

following theorem.

Theorem 5 (Izawa [17]). Let f : Y → X be a ramified covering with multiplicity

µ between complex manifolds of dimension n, Rf =
∑

i riRi the ramification divisor

of f , and Bf =
∑

i biBi the branch locus of f . We set f ∗Bi =
∑

t nitRit where nit

denotes the mapping degree of the induced map f |Rit
: Rit → Bi with bi =

∑
t nitrit.

We assume that the ramification divisor and the irreducible components Bi of the

branch locus Bf are all non-singular, and suppose that n =
∑n

i+1 iNi. Then:

cN1
1 · · · cNn

n (Y )− µcN1
1 · · · cNn

n (X) =∑
i

n−1∑
α=0

(∑
t

nit(1− (rit + 1)α+1)

(rit + 1)α

)
Pα(c1(Bi) · · · cn−1(Bi)) · c1(LBi

)α _ [Bi], (5.1)
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where we set

n−1∑
α=0

Pα(c1 · · · cn−1)lα = l−1

(
n∏
i=1

(ci(B) + ci−1(B)l)Ni − cN1
1 · · · cNn

n (B)

)
. (5.2)

LBi
is the line bundle corresponding to Bi, _ is the cap product, and the formula

for Pα should be interpreted formally as the cap product reduces to the intersection

on X with Bi. In our K-Fibration setting, this reduces to the following corollary

using the properties of a cyclic covering 1.

Corollary 2. Let kn+1 : Xn+1 → Xn×D be a ramified cyclic covering with multiplicity

r, Rk =
∑

g(r− 1)Dg the ramification divisor of kn+1, and Bn =
∑

g∈GBg the branch

locus of kn+1. Then k∗Bg = rDg. We assume that the ramification divisor and the

irreducible components Bg of the branch locus Bk are all non-singular, and suppose

that n =
∑n

i+1 iNi. Then:

cN1
1 · · · cNn

n (Y )− rcN1
1 · · · cNn

n (X) =∑
g∈G

n−1∑
α=0

(∑
t

(1− rα+1)

rα

)
Pα(c1(Bg) · · · cn−1(Bg)) · c1(LBg)α _ [Bg], (5.3)

where we set

n−1∑
α=0

Pα(c1 · · · cn−1)lα = l−1

(
n∏
i=1

(ci(B) + ci−1(B)l)Ni − cN1
1 · · · cNn

n (B)

)
. (5.4)

5.1 LEVEL 1 K-FIBRATION

I start with the construction in [12] about Kodaira Fibrations. We will review the

computations of c2(X) and c21(X) as done in [12]. Starting with

KX = k∗(KC×D ⊗ L⊗(r−1)) (5.5)

which gives that for C0 = c0 ×D and D0 = C × d0 and using

KC×D = p∗CKC + p∗DKD = (2g(C)− 2)C0 + (2g(D)− 2)D0 (5.6)
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we have that

c21(X) = K2
X = r

(
KC×D +

(
r − 1

r

)
B

)2

= 2rχ(C)χ(D)− 2(r − 1)|G|χ(C)−
(
r2 − 1

r

)
deg(h)|G|χ(D) (5.7)

By Hurwitz, we have that χ(C) = deg(h)χ(D) as the covering map is unramified

which allows for the elimination of g(C) in the computation and reducing K2
X to the

numbers g(D), deg(h), |G|, and r.

Next, we have that c2(X) = χ(X). To compute then, let F be a general fiber of

f : X → C so that χ(X) = χ(F )χ(C), so all we have to compute is χ(F ). Let P ∈ C

be a point so p−1C (P ) = P ×D ⊂ C ×D. Then we have the map k : F → P ×D of

degree r and ramified over (P ×D) ∩B. This gives

χ(F ) = deg(k)χ(D)− (P ×D) ·B = rχ(D)− (r − 1)|G| (5.8)

hence

c2(X) = χ(X) = χ(C)(rχ(D)− (r − 1)|G|) (5.9)

Lastly, we have by Riemann-Roch for surfaces that

χ(OX1) =
1

12
(c21(X1) + c2(X1)) (5.10)

which we will need for later.

5.2 LEVEL 2 K-FIBRATION

As these are built inductively, let f = f1 ◦ pX1 ◦ k2 : X2 → C be a level 2 K-

Fibration over the level 1 K-Fibration f1 = pC ◦ k1 : X1 → C. We will use the

calculations for the level 1 to get the level 2 calculations. Let B be the ramification

divisor on C ×D and B1 the ramification divisor on X1 ×D.

For the 3-fold X2, we need to compute c3(X2), c1c2(X2), and c31(X2). We have the

following facts for any 3-fold X which we will use:

1) c3(X) = χ(X)
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2) c1c2(X) = 24χ(OX)

3) c31(X) = −K3
X

with the second item a consequence of Hirzebruch–Riemann–Roch [9].

Again, we have that (with L⊗r2 = O(B1) the covering bundle)

KX2 = k∗2(KX1×D ⊗ L
⊗(r−1)
2 ) (5.11)

so that

−c31(X2) = K3
X2

= r

(
KX1×D +

(
r − 1

r

)
B1

)3

(5.12)

where KX1 is the canonical bundle from the level 1 K-Fibration. Expanding this out

we get

c31(X2) = rc31(X1×D)−3
(r − 1)2

r
KX1×D ·B2

1−3(r−1)K2
X1×D ·B1−

(r − 1)3

r2
B3

1 . (5.13)

For c31(X1 ×D) we have that

c31(X1 ×D) = −K3
X1×D

= −P ∗X1
K3
X1
− 3P ∗X1

K2
X1
· P ∗DKD − 3P ∗X1

KX1 · P ∗DK2
D − P ∗DK3

D (5.14)

= 3c21(X1)χ(D)

To see KX1×D ·B2
1 = rdeg(h)|G|χ(D)(−rχ(D) + (r − 1)|G|) we have

KX1×D ·B2
1 = P ∗X1

KX1 ·B2
1 + P ∗DKD ·B2

1 . (5.15)

Now, let l = h1 × id : X1 ×D → D ×D where h1 = h ◦ f1 : X1 → D. Then as

B2
1 =

∑
g∈G

g∗Γ(h1)
2 +

∑
g1 6=g2∈G

g∗1Γ(h1) · g∗2Γ(h1) =
∑
g∈G

g∗Γ(h1)
2

as G acts on D freely so that each component of B1 is disjoint. Then we have

Γ(h1)
2 = l∗(∆2) = χ(D)l∗(P × P )

for some P ∈ D. Hence we can write

B2
1 = |G|χ(D)l∗(P × P ) = |G|χ(D)h∗1(P )× P
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on X1. Moreover, as h1 = h ◦ PC ◦ k we have that

h∗(P ) = k∗P ∗Ch
∗(P )

= k∗P−1C (Q)deg(h) (5.16)

= k∗(Q×D)deg(h)

= rdeg(h)Q×D (5.17)

as curves on X1 leaving us to compute KX1 ·Q×D.

KX1 ·Q×D = (P ∗CKC + P ∗DKD +
r − 1

r
B) · (Q×D)

= −χ(D) +
r − 1

r
|G| (5.18)

so that

P ∗X1
KX1 ·B2

1 = deg(h)|G|χ(D)(−rχ(D) + (r − 1)|G|). (5.19)

Next we have that

P ∗DKD ·B2
1 = |G|χ(D)(−χ(D))(C × P ) · (h−1(P )× P ) = 0 (5.20)

as we have that C ×P is birational to C ×Q for some Q not any of the potential P s.

Thus

KX1×D ·B2
1 = deg(h)|G|χ(D)(−rχ(D) + (r − 1)|G|). (5.21)

For K2
X1×D ·B1, as

P ∗X1
KX1 · P ∗DKD ·B1 = −χ(D)P ∗X1

KX1 · (X1 ×Q) ·B1

= −χ(D)|G|KX1 · h∗1(Q) (5.22)

= −χ(D)|G|deg(h)(−rχ(D) + (r − 1)|G|)

we have that

K2
X1×D ·B1 = (P ∗X1

KX1 + P ∗DKD)2 ·B1

= PX1K
2
X1
·B1 + 2P ∗X1

KX1 · P ∗DKD ·B1 + P ∗DK
2
D ·B1 (5.23)

= |G|c21(X1)− 2χ(D)|G|deg(h)(−rχ(D) + (r − 1)|G|)
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Lastly, using adjunction (KB1 = (KX1×D +B1)|B1) and the prior parts along with

the fact that B1 is isomorphic to |G| copies of X1 we have

B3
1 = K2

B1
−KX1×D ·B2

1 − 2KX1×D ·B2
1

= |G|c21(X1)− deg(h)|G|χ(D)(−rχ(D) + (r − 1)|G|) (5.24)

− 2(|G|c21(X1)− 2χ(D)|G|deg(h)(−rχ(D) + (r − 1)|G|))

Thus we have

c31(X2) = rc31(X1 ×D)− 3
(r − 1)2

r
KX1×D ·B2

1 − 3(r − 1)K2
X1×D ·B1 −

(r − 1)3

r2
B3

1

= 3rc21(X1)χ(D)− 3
(r − 1)2

r
(deg(h)|G|χ(D)(−rχ(D) + (r − 1)|G|))

− 3(r − 1)(c21(X1)− 2χ(D)|G|deg(h)(−rχ(D) + (r − 1)|G|)) (5.25)

− (r − 1)3

r2

[
(|G|c21(X1)− deg(h)|G|χ(D)(−rχ(D) + (r − 1)|G|)

− 2(|G|c21(X1)− 2χ(D)|G|deg(h)(−rχ(D) + (r − 1)|G|))
]

Next, we have c3(X2) = χ(X2), the topological Euler number. This gives

c3(X) = χ(X2) = rχ(X1 ×D)− (r − 1)χ(B1)

= rχ(X1)χ(D)− (r − 1)|G|χ(X1) (5.26)

= c2(X1)(rχ(D)− (r − 1)|G|)

Lastly, we have by Cor. (2) and c1c2(X) = 24χ(OX) that

c1c2(X2) = 24rχ(OX1×D) + (r − 1)χ(B1) + (r − 1)K2
B1

−
(

1− r2

r

)
(KX1×D ·B2

1 +B3
1) (5.27)
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where χ(OX1×D) is the arithmetic genus. Using the above computations we get that

c1c2(X2) = 24rχ(OX1×D) + (r − 1)(χ(B1) +K2
B1

−
(

1− r2

r

)
(KX1×D ·B2

1 +B3
1) (5.28)

= 12rχ(OX1)χ(D) + (r − 1)|G|(c21(X1) + c2(X1))

−
(

1− r2

r

)
(deg(h)|G|χ(D)(−rχ(D) + (r − 1)|G|)) (5.29)

−
(

1− r2

r

)[
(|G|c21(X1)− deg(h)|G|χ(D)(−rχ(D) + (r − 1)|G|)

− 2(|G|c21(X1)− 2χ(D)|G|deg(h)(−rχ(D) + (r − 1)|G|))
]

5.3 DISCUSSION OF COMPUTATIONS

A. Kas gives an explicit construction of an example of a level 1 K-Fibration (Ex-

ample 1 in [13]) which we will discuss a generalization of it here to allow for numerical

computation. As in section 4, take a curve D0 of genus 2 and an unbranched cover

D → D0 of order r with cyclic covering group G being the group of sheet interchange

on the cover of order r with generator ρ. Then the genus of D is g = r+ 1. Choose a

basis {β1, . . . , β2g} of H1(D,Z) such that the map ρ∗ : H1(D,Z)→ H1(D,Z) operates

on this basis as

ρ∗(βi) = βi for i = 1, 2;

ρ∗(βi) = βi+1 for i = 3, . . . , r + 1;

ρ∗(βr+2) = β3;

ρ∗(βi) = βi+1 for i = r + 3, . . . , 2r + 1;

ρ∗(β2r+2) = βr+3.

Then define a surjective homomorphism f : H1(D,Z)→ Z/rZ⊕ Z/rZ by taking

β =
∑
i

miβi 7→

(
r+2∑
i=3

mi mod r,
2r+2∑
i=r+3

mi mod r

)
(5.30)
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in Z/rZ⊕ Z/rZ. This satisfies the criterion of r-divisibility we discussed in Chapter

4 and thus gives a covering map h : C → D with covering group Z/rZ ⊕ Z/rZ and

degree r2. The main point is that determining the degree of the covering map h is

dependent upon construction and challenging in most generality.

As an example, consider the situation with r = 2, |G| = 2, χ(D) = −4, deg(h) = 4,

and χ(C) = deg(h)χ(D) = −16 as in Example 1 of [13]. The Chern numbers for this

are

c21(X1) = 368

c2(X1) = 160

χ(OX1) = 44

so that c21(X1)/c2(X1) = 2 + 3
10

.

In the book Compact Complex Surfaces [12], the authors claim that the ratio

c21(X)/c2(X) satisfies

2 <
c21(X)

c2(X)
<

7

3
(5.31)

by taking the limit as r → ∞ which is a sharper bound than c21(X) ≤ 3c2(X) [18].

This is not quite correct, but not far off. To see this, write χ(D) = |G|χ(D/G) and

note that χ(D/G) is at most -2 since the genus of D/G is at least 2. The quotient is

c21(X)

c2(X)
=

2rχ(C)χ(D)− 2(r − 1)|G|χ(C)−
(
r2−1
r

)
deg(h)|G|χ(D)

χ(C)(rχ(D)− (r − 1)|G|)
(5.32)

= 2− (r2 − 1) |G|
r2χ(D)− r(r − 1)|G|

(5.33)

= 2− (r2 − 1)

r2χ(D/G)− r(r − 1)
(5.34)

≤ 2 +
(r2 − 1)

3r2 − r
(5.35)

This rational function achieves a maximum at r = 6 of 2+ 35
102

. This can be constructed

by taking D as a 6-fold cover over a curve of genus 2 and covering group of order 6

via the A. Kas construction discussed just prior. of Hence we have the following:

Theorem 6. 2 <
c21(X)

c2(X)
≤ 2 + 35

102
.
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The issue is that the authors in [12] took the limit at Eqn. (5.34), but the χ(D/G)

has r dependence as well. Asymptotically, taking the limit as r goes to infinity in

Eqn. (5.34), the quotient
c21(X)

c2(X)
approaches 7/3, so for larger covering spaces, we will

be away from the upper bound and close to 7/3.

Taking the A. Kas general construction, we have χ(D/G) = −2 as our base D0 is

genus 2 and we can explicity write the Chern numbers explicitly in r only:

c21(X) = 14r5 − 4r4 − 2r3, (5.36)

c2(X) = 6r5 − 2r4. (5.37)

Thus Eqn. (5.34) is
c21(X)

c2(X)
= 2 +

r2 − 1

3r2 − r
(5.38)

which is precisely the maximal upper bound. Moreover, as this is a decreasing function

for r ≥ 6, this approaches the asymptote 7/3 from above.

For 3-folds, we have the following inequalities with their Chern numbers as Chap-

ter three on relations on Chern Numbers:

c31 ≥
8

3
c1c2, (5.39)

c3
c1c2

≥ −2− 7
c31
c1c2

. (5.40)

In general, not much can be said about c3 for 3-fold [11], but for level 2 K-

Fibrations we can say a bit in special cases. In our A. Kas example we have the

explicit formulas for the Chern numbers:

c31(X) = −12r4(12r3 − 7r3 − 2r + 1), (5.41)

c1c2(X) = 2r4(−33r3 + 20r2 + 3r − 2), (5.42)

c3(X) = −2r5(1− 3r)2. (5.43)

As an example, using r = 2, |G| = 2, χ(D) = −4, and deg(h) = 4 we have

c31(X2) = −12480

c1c2(X2) = −5760

c3(X2) = −1600
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which satisfy the Chern bounds above.

Notice that c31(X), c3(X), and c1c2(X) are all in degree 7 in r, taking the ratio

and the leading coefficient we get some asymptotic results.

Theorem 7.

c3(X2)

c1c2(X2)
→ 9

33
, (5.44)

c31(X2)

c1c2(X2)
→ 72

33
, (5.45)

c31(X2)

c3(X2)
→ 8. (5.46)

as r →∞.

Moreover, a quick analysis yields that for this example, c3(X2)/c1c2(X2) attains

a minimum at r = 6 of 51/188, c31(X2)/c1c2(X2) a max at r = 6 of 411/188, and

c31(X2)/c3(X2) a max at r = 6 as well of 137/17 so that with the initial value at r = 2

being the corresponding maximum or minimum we have the theorem:

Theorem 8.

51

188
≤ c3(X2)

c1c2(X2)
≤ 5

18
, (5.47)

13

6
≤ c31(X2)

c1c2(X2)
≤ 411

188
, (5.48)

31

5
≤ c31(X2)

c3(X2)
≤ 137

17
. (5.49)
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A. VECTOR BUNDLES AND SHEAVES

In the construction of the K-Fibration we relied on the construction of the total space

of a sheaf. In this appendix, I will review the relationship between vector bundles

and locally finite free sheaves along with the construction of the tautological section.

The principle source for the correspondence is from [19] Exercise II.5.17.

Let p : L→ X be a vector bundle. Define for an open set U of X a set

L(U) = {s : U → L : p ◦ s = idU}

called the set of sections.

Lemma 4. L is a sheaf on X as a locally free OX-module of rank r = rank(L).

This gives the map from the category of vector bundles on X to the category of

locally free OX-modules, up to isomorphism.

Let L be a locally finite free sheaf of rank r on a scheme X. The corresponding

vector bundle L of L is L = Spec(Sym(L∨)). This creates L is a rank r vector bundle

over X via p : L → X. This construction gives the sheaf corresponding to L being

L∨∨ = L (hence why we need the dual).

This construction yields a bijection between vector bundles over X and locally

finite free sheafs on X, so the total space L of L is the corresponding vector bundle.

For L a vector bundle, we want to define a tautological section t ∈ Γ(L, p∗L) (as

named in [12]). For any morphism f : Y → X, we have the bijection

HomX(Y, L)←→ Γ(Y, f ∗L)).

For Y = L, then t is the section corresponding to the morphism induced by the

natural map f ∗f∗OL → OL.
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