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ABSTRACT

Ayyaswamy, Abhinand MS, Purdue University, August 2020. Computational Mod-
eling of Hypersonic Turbulent Boundary Layers by using Machine Learning. Major
Professor: Dr. Haifeng Wang.

A key component of research in the aerospace industry constitutes hypersonic

flights (M > 5) which includes the design of commercial high-speed aircrafts and

development of rockets. Computational analysis becomes more important due to the

difficulty in performing experiments and reliability of its results at these harsh oper-

ating conditions. There is an increasing demand from the industry for the accurate

prediction of wall-shear and heat transfer with a low computational cost. Direct Nu-

merical Simulations (DNS) create the standard for accuracy, but its practical usage is

difficult and limited because of its high cost of computation. The usage of Reynold’s

Averaged Navier Stokes (RANS) simulations provide an affordable gateway for indus-

try to capitalize its lower computational time for practical applications. However, the

presence of existing RANS turbulence closure models and associated wall functions

result in poor prediction of wall fluxes and inaccurate solutions in comparison with

high fidelity DNS data. In recent years, machine learning emerged as a new approach

for physical modeling. This thesis explores the potential of employing Machine Learn-

ing (ML) to improve the predictions of wall fluxes for hypersonic turbulent boundary

layers. Fine-grid RANS simulations are used as training data to construct a suitable

machine learning model to improve the solutions and predictions of wall quantities

for coarser meshes. This strategy eliminates the usage of wall models and extends the

range of applicability of grid sizes without a significant drop in accuracy of solutions.

Random forest methodology coupled with a bagged aggregation algorithm helps in

modeling a correction factor for the velocity gradient at the first grid points. The

training data set for the ML model extracted from fine-grid RANS, includes neighbor
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cell information to address the memory effect of turbulence, and an optimal set of

parameters to model the gradient correction factor (β) using the greedy algorithm.

The successful demonstration of accurate predictions of wall-shear for coarse grids

using this methodology, provides the confidence to build machine learning models to

use DNS or high-fidelity modeling results as training data for reduced-order turbu-

lence model development. This paves the way to integrate machine learning with

RANS to produce accurate solutions with significantly lesser computational costs for

hypersonic boundary layer problems.
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1. INTRODUCTION

1.1 Hypersonic Turbulent boundary layers

Research in hypersonic flow which indicates analysis and understanding flow physics

of M > 5 has become extremely important with the growth and technological ad-

vancement in space industry and commercial air travel. The visualization and knowl-

edge of Hypersonic Turbulent Boundary Layers (HTBL) through experiments has

become increasingly difficult due to the nature of flow conditions. Predictions of

flow solutions and analysis through Computational Fluid Dynamics (CFD) solvers

are extremely helpful to design devices and equipments for hypersonic applications.

1.1.1 Current modeling approaches for high speed problems

The majority of high-fidelity turbulent boundary layer simulations for a range of

flows from incompressible to hypersonic speeds comes from Direct Numerical Simu-

lations (DNS). In DNS, the Navier-Stokes equations are solved by resolving all the

scales of motion from the largest scale to the Kolmogorov scale with suitable bound-

ary and initial conditions to solve a particular type of flow (Pope [21]). Conceptually

it is the simplest approach and when it can be applied, it is unrivaled in accuracy for

each simulation producing a single realization of the flow.

Large-Eddy Simulations (LES) were used for an effective prediction of unsteady

and transitional turbulent flows since it is comparatively cheaper than DNS. Earliest

modeling approaches included the usage of dynamic Smagorinsky model (Moin [19])

and the the direct modeling of the SGS-stress tensor in the monotonically integrated

LES approach (MILES) shown by Urbin [34]. More recent developments described

by Stolz [33] used an approximate deconvolution closure model (ADM) where an
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approximation of the unfiltered solution is constructed and introduced directly to the

non linear terms in the transport equation.

Reynold’s Averaged Navier Stokes (RANS) simulations are often preferred due to

its lowest computational cost for both industrial and scientific research in high speed

flows. Earlier RANS calculations used the Spalart-Allmaras (one equation model),

and recent calculations of high-speed boundary layer problems involve turbulence

closure models like the k−ε model, the k−ω model (Wilcox [38]) and their variations.

RANS simulations by Huang [9] and Georgiadis [6] use the modified k − ω model by

the inclusion of shear stress transport closure given by Menter [18]. The SST model

is a two-layer model which involves the k−ω in the inner region and the k− ε in the

outer regions of boundary layers. There is a transformation of the outer region model

with a blending function to transition smoothly between the two sets of equations.

High-speed flow calculations involve the usage of density-based solvers (Huang [9]) for

better convergence and the k−ω SST models also involve compressibility corrections

(Wilcox [37]) which modify the coefficients of destruction term in the k − ω model.

The usage of full Reynold’s stress models is not common, since it usually does not

offer significant advantages to make up for the associated cost of solving the individual

Reynold’s stress terms (Sharif [29]) than the conventional two-equation k-ω models.

A few hybrid LES techniques like the LES/RANS (Fulton [5]) are used where

the solution is calculated by unifying two simulation concepts. The larger scales of

turbulent motion are solved using a spatially filtered Navier-stokes equations with

an associated subgrid scale model similar to a standard LES approach. In addition,

the near-wall regions employ a standard RANS turbulence closure by adopting any

of the aforementioned models. This hybrid techniques are helpful in improving the

solutions of separated flow, high shear and shock problems where the turbulent flow

structures are not captured sufficiently by the conventional RANS models.
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1.1.2 Drawbacks of present approaches and turbulence models

The computer requirements associated with Direct Numerical Simulations (DNS)

increase rapidly with Reynold’s numbers and hence it is important to understand that

the computational cost is extremely high. It is for this reason, DNS are used only

for flows pertaining low to moderate Reynold’s numbers. Large Eddy Simulations

(LES) on the other hand, offer a reasonable improvement in the computational cost

since it does not solve all the turbulent scales of motion. However, the subgrid scale

models used in LES are not devoid of modeling parameters set by to solve a particular

problem. The presence of these models affect the quality of solution when dealing

with complex flow conditions and is not comparable to the DNS results. In LES

approaches, as the grid sizes are decreased, more turbulent structures are resolved

rather than modeled and hence the solutions can change upon grid variation posing

its unreliability (Georgiadis [6]). In comparison, RANS techniques produce a grid

independent solution upon grid refinement.

RANS models are preferred for its lowest CPU time, but suffer from large pre-

dictive inaccuracies compared to the reference (DNS). RANS models often are built

by formulations of turbulence closure models which are not effective for a wide range

of compressible flows. Constant values of turbulent Prandtl and Schmidt numbers

are used which can pose a significant limitation. An important problem with RANS

model is the usage of wall-models in the near wall region to avoid solving the full

transport equations. Wall functions often involve the introduction of various model

constants in order to make the solution stable and capture different flow phenomena

(like shock BL interactions). These wall functions are highly dependent on the pres-

ence of correct y+ (wall-distance scaling) values. The presence of wall models make it

impossible to work with coarse meshes since the y+ lies outside the specific range used

in the formulation of these wall functions. Additionally, most two-equation models

use the boussinesq approximation for the prediction of shear stresses, which poses a
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significant problem when dealing with highly compressible flows and hence cannot

correctly predict the Reynold’s stresses.

With steady improvement in solutions of RANS models, its utility can be applied

to various industrial problems where DNS or high-fidelity solutions are used in spite of

its significant computational overhead. The prediction of heat-transfer and the wall-

shear are extremely important in the design of re-entry vehicles and RANS models

do not offer high accuracy in the prediction of wall fluxes. This can be directly

attributed to the usage of wall functions and the inherent turbulence closure models

used in RANS solvers. Hence there is a need to improve the predictive accuracy of

these quantities through novel methods and ideas which can be built into the CFD

solvers for accurate solutions and preserving its cost-effectiveness.

1.2 Machine learning - a prospective method for predictive modeling

Machine learning (ML) has seen a growing interest in CFD research due to its

versatility and compatibility to solve highly nonlinear equations with just the pres-

ence of high-quality data. The utilization of available high-fidelity data from DNS

and LES results are suitable candidates for training-data to create machine learn-

ing models which can be used either separately or built in conjunction with RANS

to improve the RANS results for larger grid sizes. Recent research (Wu [40], [41])

has stemmed from the usage of DNS and LES data to use machine learning in var-

ious forms. Physics-informed machine learning for predictive turbulence modeling

helps in improving the Reynold’s stress discrepancies by adding additional ML re-

gression functions constructed from training data (Wang [36]). The regression func-

tions are constructed by training using Random Forest (RF) models. Zhang [44] uses

high-fidelity simulations and Artificial Neural Networks (ANN) to work on the re-

construction of function arising from Bayesian inference applied to bypass transition

and channel flows. Machine learning has shown promise to be a viable and source

of improving traditional RANS models to improve the efficacy using existing DNS
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simulations. The usage of accurate solutions and the quality of data is extremely

important in modeling the Random Forest (RF) or ANN algorithms. To extend the

applicability of machine learning models to various problems, it is necessary to train

the data-set with various test cases to enable the model to understand different flow

conditions. The large amount of existing simulations pave the perfect path for ma-

chine learning to utilize the data and aid in useful predictions of hypersonic flows

where experimental studies are increasingly difficult.

1.3 Thesis Outline and major contributions

This thesis addresses the specific problem to minimize the loss of prediction ac-

curacy of RANS results by using coarser grids. Fine grid RANS simulations will be

performed and used to provide the training data for machine learning.

The thesis is divided into a total of five chapters. Chapter 1 focuses on giving a

brief introduction and literature review outlining the different traditional approaches

used in the simulation of high-mach number simulations. This chapter also presents

the need of using cheaper simulation techniques for research and industry thereby

also outlining the incapability of RANS models to effectively predict important flow

quantities due its conventional closure models and wall functions.

Chapter 2 provides a viable structure and framework to generate fine-grid RANS

results. Common techniques and rescaling methods are adapted from DNS simula-

tions to decrease the cost of conducting fine-grid simulations even in RANS models.

This chapter is important in generating useful training data from RANS models which

will be used in the forthcoming chapters to create a viable machine learning model

for coarse grid simulations. The initial part of this chapter talks about the details of

the numerical methods, the turbulence closure models and near wall treatment used

in RANS solvers.

Chapter 3 introduces the concept of machine learning and the type of algorithms

which can be used for CFD applications. It starts with a general discussion of basic
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data fitting using linear regression and slowly transitioning to specific details of the

random-forest machine learning algorithms.

With the knowledge of the framework of random forest models, Chapter 4 outlines

the model methodology in constructing a velocity gradient correction factor using the

fine-grid results from Chapter 2. This chapter also includes details on the selection

of training data, the type of parameters and the usage of different model strategies

to help improve the predictions from the traditional RANS models. The last section

of this chapter gives a quantitative performance of the machine learning algorithms

in the prediction of wall shear.

The last chapter summarizes the work done in this thesis and posits future work

using these strategies.

The major contributions of this thesis include:

� Exploration of the feasibility and applicability of machine learning for modeling

of hypersonic boundary layer problems.

� Usage of rescaling methodology to aid in the generation of fine-grid RANS

simulations at significantly lesser computational costs.

� Development of a novel approach to use random forest machine learning al-

gorithms to help improve the computational accuracy of coarse grid RANS

simulations.

� Build a velocity gradient correction factor model and utilize the fine-grid RANS

simulation data conducted using the rescaling methods as training data set.

This thesis also presents a successful A priori testing of coarse grid prediction

of wall shear from the constructed machine learning model.

� Discuss the possibility of eliminating wall functions and improve turbulence

model closures in RANS by using machine learning algorithms to help in accu-

rate predictions of solutions to hypersonic boundary layer problems.
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2. FINE GRID RANS SIMULATIONS - DATA FOR

MACHINE LEARNING

An important component of building the machine learning models in this work is

the availability of accurate fine grid results. These fine grid simulations serve as

the training data to build models for accurate prediction of coarser meshes. In this

chapter, RANS simulations of fine grid are performed to generate data for training

of machine learning models. In addition, a strategy from traditional direct numerical

simulations is used to further reduce the computational cost of fine grid calculations.

2.1 Hypersonic boundary layer test cases

Two similar hypersonic flow conditions were taken as test cases to understand the

performance of RANS models. Williams [39] performed experiments on a smooth,

flat plate boundary layer with free stream mach number of 7.5. DNS simulations

by Priebe [22] was used as a suitable reference for comparison with the experiments

owing to the similar flow conditions of high-speed turbulent boundary layer.

Table 2.1. Flow conditions of test cases - An overview

Case M ps(kPa) T0(K) Tw(K) Tw/Tr

Expt [39] 7.25 1.24±0.03 756±18 562±12.5 0.83

DNS [22] 7.21 1.39 717 340 0.53

Table 2.1 lists the flow conditions of the hypersonic boundary layer test cases.

Here, M is the free stream mach number, ps is the free stream static pressure, T0
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represents the free stream stagnation temperature, Tw is the wall temperature and Tr

is the recovery temperature of the flow.

(a) Contour plot of Pressure (p) (b) Contour plot of Mach number (M)

(c) Sketch of Flow domain

Fig. 2.1. Schematic of Boundary layer flow

Figure 2.1a clearly show the presence of shock which emanates from the stagnation

point of the flow over a flat plate. It can also be observed that due to the presence of

shock, there is a sudden increase the values of p and M when moving perpendicular

to the shock line. Figure 2.1b shows the growth of the boundary layer inside the

domain with a no-slip boundary condition at the wall. Figure 2.1c shows a two

layer grid construction used in this study. The boundary layer grid where points

are arranged in a geometric progression to capture the boundary layer in the flow

which is gradually blended with the uniform outer layer grid. For high-speed flow,
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Morkovin [20] proposed that the correct velocity scale for the turbulence ought to be

the density-weighted velocity scale,

u∗ =

√
τw
ρ

= uτ

√
ρw
ρ
, (2.1)

where uτ =
√
τw/ρw is the friction velocity, τw and ρw are the wall shear stress and

the density at the wall respectively. This morkovin scaling is applied to the turbulent

stresses rather than the velocity variances. The experiment performed by Williams

[39] was able to show the collapse of the streamwise turbulent intensities, which was

an extension to the results of Morkovin for hypersonic flow. Both the experiment

and the DNS case serve as accurate references for the solution of the current RANS

calculations.

2.2 RANS modeling approaches

Reynolds-Averaged Navier Stokes(RANS) equations are solved to produce results

for comparison with the aforementioned experiment and DNS. ANSYS 19.2.0, a com-

mercial computational fluid dynamics code, is used to obtain the results of the hyper-

sonic flow calculations. The DNS adopts a strategy to reduce the computational cost

of simulations by employing a recycling-rescaling approach. The same idea is used

in RANS by creating auxiliary User Defined Functions(UDF) in C language which

can be compiled with ANSYS-Fluent to work in tandem with the flow equations to

perform flat plate boundary layer calculations in an inexpensive way. This is an im-

portant step in developing a robust method to obtain fine-grid RANS results which

are subsequently used as training data for the machine learning model.

2.2.1 Governing Equations

For flows problems, ANSYS Fluent [24] solves conservation equations for mass and

momentum. It also becomes important to solve the energy equation in hypersonic
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flows since the flow conditions correspond to viscous heating attributed due to high

stream-wise velocities at these Mach numbers.

The general equation of conservation of mass, or continuity equation for incom-

pressible and compressible flows, can be written as

∂ρ

∂t
+∇ · (ρ~v) = Sm, (2.2)

where ρ is the density, ~v is the velocity vector, Sm represents any external mass added

to the continuous dispersed second phase or any user-defined sources.

The general equation of conservation of momentum for compressible flows in an

inertial (non-accelerating) reference frame is given by

∂

∂t
(ρ~v) +∇ · (ρ~v~v) = −∇p+∇ · (τ) + ρ~g + ~F , (2.3)

where p is the static pressure, τ is the stress tensor (described below), ρ~g and ~F are

the gravitational body force and external body forces. The stress tensor τ is given by

τ = µ

[(
∇~v +∇~vT

)
− 2

3
∇ · ~vI

]
, (2.4)

where µ is the molecular viscosity and I is the unit tensor.

The general equation for energy conservation is in the following form:

∂

∂t
(ρE) +∇ · (~v(ρE + p)) = ∇ ·

(
keff∇T −

∑
j

hjJj + (τ eff · ~v)

)
+ Sh, (2.5)

where E is the total energy per unit mass, keff is the effective conductivity (keff = k+

kt, where kt is the turbulent thermal conductivity, defined according to the turbulence

model being used), and J j is the diffusion flux of species j. The first three terms on

the right-hand side of Eq. (2.5) represent energy transfer due to conduction, species

diffusion and viscous dissipation, respectively. Sh includes the heat of reaction of

external volumetric heat sources defined in a problem.
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2.2.2 Numerical methodology

The problem statement concerns highly compressible flow and hence the density

based solver is preferred. The density based approach solves the governing equations

of continuity, momentum, energy fully coupled. Since the governing equations are

highly non-linear and coupled, several iterations of the solution loop must be per-

formed before a converged solution is obtained. Each iteration consists of the steps

given by Fig. 2.2

Fig. 2.2. Overview of steps performed on a density-based solver in Fluent

In the density-based solution methods, the discrete, non-linear governing equa-

tions are linearized to produce a system of equations for the dependent variables

in every computational cell. The resultant linear system is then solved to yield an

updated flow-field solution. The discretization approaches used in this study are

summarized in Appendix A.
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2.2.3 Turbulence Models

Favre averaging is a method by which the solution variables in the instanta-

neous (exact) Navier-Stokes equations are decomposed into the Favre mean (density-

weighted) and fluctuating components. Favre averaging is preferred over Reynolds

(ensemble averaging) due to the compressible nature of the flow conditions. For

example, the instantaneous velocity and a scalar is split as follows:

ui = ũi + u′′i φi = φ̃+ φ′′ (2.6)

where ũi and u′′i are the mean and fluctuating components of velocity for (i= 1, 2, 3).

Similarly, φ̃ and φ′′ correspond to the mean and fluctuating parts of some scalar φ.

Cartesian tensor form of the continuity and momentum governing equations after

substitution of Reynolds averaging yields:

∂ρ

∂t
+

∂

∂xi
(ρũi) = 0 (2.7)

∂

∂t
(ρũi) +

∂

∂xj
(ρũiũj) = − ∂p

∂xi
+

∂

∂xj

[
µ

(
∂ũi
∂xj

+
∂ũj
∂xi
− 2

3
δij
∂ũk
∂xk

)]
+

∂

∂xj
(−ρu′′i u′′j )︸ ︷︷ ︸

Additional term
which needs modeling

(2.8)

where (�) represents reynolds averaging and (�̃) is favre averaging. Eq. (2.7) and

Eq. (2.8) are called the Reynolds Averaged Navier Stokes (RANS) equations. They

are similar to Eq. (2.2) and Eq. (2.3) but now the solution variables representing

favre-averaged values. An additional term representing the effects of turbulence needs

to be modeled to close the Eq. (2.8).

The purpose of turbulence models is to model the last term in Eq. (2.8) to close

the momentum equation. This section presents a description of two different types of

turbulent models used in the analysis of RANS simulations, Reynolds stress Model

(RSM) and the Standard k-ω Model (k-ω). In Reynolds Stress models (RSM) for
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2-D flows, five additional transport equations are required solving the shear stresses

ρu′′i u
′′
j .

∂

∂t
(ρu′′i u

′′
j )︸ ︷︷ ︸

Local Time Derivative

+
∂

∂xk
(ρũku′′i u

′′
j )︸ ︷︷ ︸

Cij ≡ Convection

= − ∂

∂xk

[
ρu′′i u

′′
ju
′′
k + p′(δkju′′i + δiku′′j )

]
︸ ︷︷ ︸

DT,ij ≡ Turbulent Diffusion

+
∂

∂xk

[
µ
∂

∂xk
(u′′i u

′′
j )

]
︸ ︷︷ ︸
DL,ij ≡ Molecular Diffusion

− ρ
(
u′′i u

′′
k

∂ũj
∂xk

+ u′′ju
′′
k

∂ũi
∂xk

)
︸ ︷︷ ︸

Pij ≡ Stress Production

− ρζ ′
(
giu′′j θ + gju′′i θ

)︸ ︷︷ ︸
Gij ≡ Buoyancy Production

+ p′
(
∂u′′i
∂xj

+
∂u′′j
∂xi

)
︸ ︷︷ ︸
φij ≡ Pressure Strain

− 2µ
∂u′′i
∂xk

∂u′′j
∂xk︸ ︷︷ ︸

εij ≡ Dissipation

+ Suser︸︷︷︸
User-Defined Source Term

(2.9)

The terms Cij, DL,ij and Pij do not require any modeling. However the other terms

DT,ij, Gij, φij and εij need to be modeled to close the equations. The standard

modeling procedures for these terms are shown in Appendix B.1.

The standard k − ω model in Fluent is based on the model developed by Wilcox

[38] which incorporates compressibility and modifications to low-Reynolds number

effects. This model is an empirical model based on model transport equations for the

turbulence kinetic energy (k) and the specific dissipation rate (ω = ε/k).

∂

∂t
(ρk) +

∂

∂xi
(ρkui) =

∂

∂xj

(
Γk

∂k

∂xj

)
+Gk − Yk + Sk (2.10)

∂

∂t
(ρω) +

∂

∂xi
(ρωui) =

∂

∂xj

(
Γω

∂ω

∂xj

)
+Gω − Yω + Sω, (2.11)

whereGk andGω represent the generation of k and ω, respectively Γk and Γω represent

the effective diffusivity of k and ω, and YK and Yω represent the dissipation of k and
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ω due to turbulence, respectively. The modeling of the unknown terms in Eq. (2.10)

and Eq. (2.11) are discussed in Appendix B.2.

2.2.4 Modeling approaches for walls

The presence of walls have a crucial effect on the determination of solution of a

turbulent flow problem. The near wall region adds complication and expense to the

task of performing turbulence-model calculations of turbulent flows. The idea of the

’wall function’ approach is commonly used to apply boundary conditions (based on

log-law relations) some distance away from the wall, so that the turbulence-model

equations are not solved close to the wall. These semi-empirical formulae are used to

bridge the viscosity affected region between the wall and fully-turbulent region.

An important shortcoming of all wall functions is that the numerical results de-

teriorate on variation of grid sizes. This necessitates the need to move to a new

method of determining the variables near the wall region thus completely eliminating

the influence of wall functions. The next chapter introduces the concept of Machine

Learning which can be helpful in improving the quality of results regardless of the size

of grids. It is also important to ensure that the entire boundary layer is sufficiently

resolved and the correct y+ is ensured during the construction of the grids for effective

performance of the wall functions.

There are several formulations of wall functions like the Standard Wall functions,

Non-Equilibrium wall functions and Scalable wall functions. The choice of wall func-

tions depends on the type of the problem and the model methodology is appropriately

different for each of the aforementioned wall functions. This thesis uses an Enhanced

Wall function approach to model the near wall cells which is a two layer blending

approach for the viscosity-affected region and the outer turbulent flow region. A

brief discussion of enhanced wall functions and the modeling equations are given in

Appendix C.
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2.3 Rescaling and Recycling approach for hypersonic boundary layer sim-

ulations

In this section, an adaptation of the Recycling approach is applied to work in

conjunction with the RSM and k − ω model in Fluent by developing user defined

functions. Since the problem concerns a compressible flow at M = 7, there is a

need to improve the calculation of viscosity at extremely low static temperatures and

hence Keyes Model of viscosity (Keyes [12]) is adopted. A brief discussion between

the existing models is given in Appendix D.

Rescaling and Recycling (RR) is a popular approach used in DNS calculations to

extract instantaneous planes of velocity data from an auxiliary simulation of a zero

pressure gradient boundary layer. This spatially developing simulation is capable of

generating its own inflow conditions by a process of rescaling and recycling from a

specific position in the downstream location to the inlet. In DNS simulations of tur-

bulent boundary layer problems, a common technique to improve the computational

cost is by the usage of Rescaling methods (Lund [17], Spalart [31], Xu [42]).

Fig. 2.3. Schematic of the rescaling methodology

This method uses scaling laws by rescaling the flow field at some downstream

station and recycling it to the upstream inlet. Earlier methods of rescaling equations

did not include the effects of compressibility for high mach numbers and used the

same scaling for all the mean and fluctuating variables (Stolz [33], Urbin [34]). More

recent approaches (Xu [42]) correctly disregard the Taylor hypothesis and rescale
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equations of zero-pressure gradient boundary layers (ZPGBL) using the Morkovin

scaling (Morkovin [20]) for density effects. A correct method of using rescaling tem-

perature is also required by the usage of temperature-velocity relationships given by

Walz [35].

Figure 2.3 shows a diagrammatic representation of the rescaling and recycling

approach. The data is extracted from a recycling station ‘re’, rescaled the variables

accordingly and fed back to the inlet as a boundary condition. This work is a adapted

to convert and use it for an inbuilt RANS simulation which uses RSM and k−ω models

as turbulence models.

This rescaling method when coupled with RANS simulations, presents a computa-

tionally effective way to generate fine-case simulation data which are eventually used

as training data for machine learning models discussed in Chapter 4. The developed

rescaling and recycling approach and the pertaining equations for RANS modeling of

hypersonic boundary layer is described in Appendix E.

2.4 Results and Discussion

This section explains the key results and the performance of traditional RANS

models along with the addition of rescaling methods. The main goal is to provide

validated fine-grid RANS results for the purpose of machine learning described in later

discussions. This section will initially include a parametric study and the reason for

choosing a specific turbulence models and wall functions in the computational analysis

of Hypersonic Turbulent Boundary Layer (HTBL) flows.

2.4.1 Parametric Analysis

This section shows a parametric study of the performance of different turbulence

models and the effect of wall functions pertaining to the DNS test case. In each of

the following results, the boundary layer growth, and the profiles of reynolds stress

quantities are compared at the suitable locations for a correct comparison.
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2.4.1.1 Effect of Turbulence models

Two different turbulence models, k−ω and RSM models were used to simulate a

hypersonic flow.

Table 2.2. Boundary layer results for parametric study on turbulence models

Model Tw(K) U∞(m/s) δ(mm) uτ (m/s) Reθ Reτ Cf x 104

DNS [22] 340 1146.1 4.5 60.7 3300 200 11.73

k− ω 340 1150.2 4.5 52.4 3080 169.4 6.78

RSM 340 1149.5 4.5 67.08 2940 220.18 14.02

Expt [39] 562±12.5 1158 9.5 71.75 4940 180 8.68

k− ω 575 1161.6 9.5 44.32 4230 153.1 4.63

RSM 575 1160.4 9.5 73.12 4110 226.24 8.1

Table 2.2 lists the boundary layer properties taken at two locations δ = 4.5mm

and 9.5mm. Here, Reθ = U∞θ/ν∞ is the Reynolds number based on momentum

thickness θ, Reτ = uτδ/νw is the Reynolds number based on friction velocity and

Cf = τw/(ρ∞U
2
∞/2) is the skin friction coefficient, τw is the wall shear stress, and ν∞,

ρ∞ and U∞ are the free stream kinematic viscosity, density and velocity respectively.

Figure 2.4 shows that the growth of turbulent boundary layer is vastly different

from the RSM model and the k − ω model shows a significantly lower growth rate

in comparison to the other. In Figure 2.5 the k − ω model cannot provide a good

estimate of the wall fluxes in comparison with the RSM model.

Analysis of the results from Table 2.2 taken at δ = 4.5mm (DNS) and δ = 9.5mm

(EXPT) gives a clearer picture about the inability of the k − ω model to sufficiently

predict the values of fluxes and boundary layer parameters than the RSM. Figure 2.6

also shows that the peak in ũ cannot be predicted with the k−ω model even though
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the wall-normal fluctuations are pretty good. The RSM model also does better with

the profiles of Reynold’s stresses inside the boundary layer.

Fig. 2.4. Growth of boundary layer properties (a) Boundary layer thickness(δ) (b)
Momentum thickness (θ)

Fig. 2.5. Profiles of wall-fluxes along the wall (a) Skin-friction (b) Wall shear (c)
Heat Flux

Figure 2.7 shows that the profiles of the U+ vs y+ plot are significantly better

in correspondence with the DNS profiles for the RSM model. Although the RSM

model cannot sufficiently predict the correct magnitude of the peak, the trend and
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the general structure of the profile is predicted better than the k − ω model. Hence,

the RSM model is the chosen turbulence model for the RANS simulations in this

section.

Fig. 2.6. Turbulence profiles inside the boundary layer using Morkovin scaling at
δ = 4.5mm (a) Stream-wise and (b) Wall-normal r.m.s velocities (c) Reynold’s shear
stress, DNS by Priebe [22] (Reθ = 3300, M = 7.21, Tw = 340K)

Fig. 2.7. Mean stream-wise velocity normalized by friction velocity vs wall-normal
coordinate at Reθ = 3300, DNS, Log-law with κ = 0.4 and B = 5.1
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2.4.1.2 Effect Wall function models

The RANS simulation of hypersonic flow was tested with four different wall

functions working with the RSM turbulence model namely Standard Wall functions

(SWF), Scalable Wall functions (ScWF), Non-equilibrium Wall functions (NEWF)

and Enhanced Wall functions (EWF).

Fig. 2.8. Turbulence profiles for different wall functions (a) Stream-wise and (b)
Wall normal r.m.s velocities (c) Reynolds Stress, DNS at Reθ = 3300

Figure 2.8 shows the variations with different wall functions. Standard wall func-

tions uses an empirical formulation to construct a value for the turbulence variables

and velocity profile in the near wall region. Scalable wall functions forces the usage of

the log law in conjunction with the standard wall functions approach. This is achieved

by introducing a limiter in the y+ calculations such that y+ = max(y+, 11.225).

The non-equilibrium wall functions and enhanced wall functions use a two layer ap-

proach to blend the laminar-viscosity affected region and the turbulent region. The

above plot, shows that the enhanced wall functions correctly predict the variation of

Reynold’s stress and r.m.s velocity profiles near the wall. The correct usage of wall

functions ensures the production of a streamwise r.m.s velocity peak near the wall

region as indicated by the DNS profiles.
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2.4.2 Comparison of RANS with DNS and Experimental case

In this section, RANS simulations are done for both the reference conditions with

a RSM model and an Enhanced Wall treatment as wall model in the viscosity affected

region.

Fig. 2.9. Comparison of turbulence quantities for Expt [39] at Reθ = 4940 and DNS
[22] at Reθ = 3300

Although the test cases are performed at similar mach numbers and the profiles

are analyzed at a similar Reθ, Figure 2.9 shows there is a significant distinction in the

magnitudes of streamwise, wall-normal r.m.s velocity fluctuations and the Reynold’s

shear stress profiles. The only significant distinction correspond to the wall tempera-

ture (Tw) and the Tw/Tr values. The experimental test case was performed at a wall

temperature of 570K and Tw/Tr of 0.82, whereas the DNS used a value of 340K and

0.53 indicating a cold-wall test case. We try to narrow down two important things in

this section. Since the DNS work used a recycling approach, we try to find if recycling

causes any difference to the prediction of turbulence quantities. An important take-

away from these plots are the prediction of wall shear stress. A significant component

of the Morkovin scaling (see Eq. 2.1) is the friction velocity (uτ ) which contains the

value of wall shear stress (τwall).
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Fig. 2.10. Stream-wise turbulence scalings. The r.m.s velocity is represented in (a)
inner and (b) semi-local scaling

In the forthcoming chapters, an effort is made through machine learning to predict

the correct value of wall-shear for coarser grids and a strategy is outlined to enable

RANS models to capture the value of wall shear and thereby the turbulence profiles

effectively.

2.4.3 Effect of Rescaling-Recycling (RR) mechanism

This section describes the comparison of simple-RR and modified-RR method on

RANS simulations of the DNS (Priebe [22]) test conditions. These results are simul-

taneously compared with a test case where no rescaling is implemented (no-RR). At

the end of this section, important uses and advantages in utilizing the RR method is

discussed.

The DNS test conditions represent a hypersonic flat plate boundary layer flow with

δinlet = 2.25mm, θinlet = 0.0875mm and the outlet conditions with δoutlet = 4.5mm,

θoutlet = 0.175mm.
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Figure 2.11 shows the growth of boundary layer using rescaling to be comparable

with the DNS results. It should also be noted that the modified RR method does

slightly better in predicting the correct boundary layer growth although for simplicity

any of these methods are equally efficient.

Fig. 2.11. Effect of Rescaling-Recycling (RR) on boundary layer growth

Fig. 2.12. Effect of Rescaling-Recycling (RR) on wall shear stress and heat transfer
(a) Skin-friction (b) Wall-shear (c) Heat Flux

Figure 2.12 shows the magnitude of skin friction, wall shear and heat flux along the

streamwise direction. An important observation is the vertical line on these figures.
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This line represents the start of solutions which are unaffected due to the process of

recycling. The initial portion of the computational domain is affected by the recovery

of the boundary layer due to the rescaling process and must be discarded (refer

Priebe [22]). This is also observed with the reference DNS data. We can definitely

see a good comparison and agreement of the modified RR method with a test case

where rescaling is not done (noRR case). An area which needs improvement is the

magnitude of wall shear stress, which essentially is a key component in the prediction

of turbulence profiles.

Fig. 2.13. Effect of Rescaling-Recycling (RR) on turbulence profiles. (a) Stream-
wise and (b) wall-normal velocity r.m.s (c) Reynold’s shear stress, DNS [22] at
Reθ = 3300

The streamwise, wall normal r.m.s velocities, and Reynold’s shear stress are com-

parable with the no-RR case, in reproducing the correct trend of results using the

RSM model. Figure 2.13 also shows although the rescaling approach for modified

and simple cases, are able to replicate the no-RR case, the process does not change

the solution from a generic test no-RR test case. The overall profiles of rescaling are

slightly lower in comparison with the no-RR case, however none of the RANS results

are able to accurately predict the magnitude represented in the DNS results. The
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poor prediction of wall shear which is an effect of the nature of turbulence model

influences the overall comparison with the DNS results.

Table 2.3. Boundary layer results to compare the effect of recycling methods

Model U∞ δ(mm) uτ (m/s) Reθ Reτ Cf x 104

DNS [22] 1146.1 4.5 60.7 3300 200 11.73

no-RR 1149.5 4.5 67.08 2940 220.18 14.02

Simple RR 1146.1 4.5 68.13 3153.4 230.65 14.87

Modified RR 1146.1 4.5 67.2 3288.3 218.44 14.18

Table 2.3 shows that the Rescaling-Recycling methodology is helpful in capturing

the correct free stream velocity, Reθ in addition to predicting a decent estimate of uτ

and Cf which is directly affected by the value of wall-shear stress. Figure 2.14 shows

the streamwise r.m.s velocity fluctuations normalized by the morkovin scaling used

in the inner and semi-local scaling. The inner scaling is equivalent to the traditional

y+ values, whereas the semi-local scaling is a new coordinate scaling given by y∗ =

(yu∗)/ν.

Figure 2.15 shows good comparison and the structure of the U+ vs y+ plot. Al-

though the magnitude of the streamwise scaling is not accurate as the DNS, an

accurate estimation of the wall-shear stress which directly affects the scaling of U will

help in improving the value in the outer region.
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Fig. 2.14. Effect of Recycling method on streamwise fluctuations using morkovin
scaling. The r.m.s velocity is represented in (a) inner and (b) semi-local scaling

Fig. 2.15. Effect of recycling on streamwise velocity normalized by friction velocity
vs wall-normal coordinate (inner scaling)
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2.4.3.1 Advantages and Disadvantages

The previous section showed a fair estimation of the RANS simulation with/without

recycling methods. However, there are some important reasons why RR methods are

helpful and useful in RANS simulations that the conventional method.

� The Rescaling-Recycling (RR) method is computationally much cheaper to sim-

ulate a turbulent boundary layer simulation. The cost of calculation of a flat

plate boundary layer increases several folds when it is necessary to extract useful

information from locations far from the leading edge of the plate.

� This method of rescaling eliminates the presence and production of laminar-

boundary layer transition during simulation of flat plate boundary layer simu-

lations. The location of transition can affect the solution downstream due to the

inability of the turbulence model to accurately capture the physics associated

with transition.

� The usage of RR method helps in a cost-effective preparation of fine-grid re-

sults which will essentially be the main source of training data for the machine

learning models discussed in Chapter 4.

� When RANS results are used directly as training data for machine learning

without any rescaling, it poses a problem due to the presence of stagnation

point. There is a spike in the values of wall-shear, heat flux, pressure and other

turbulence values near the stagnation point and makes it difficult for machine

learning models to adapt to such regions, in addition to the formulating a model

for the overall structure of the flow domain.

One important concern regarding the RR methods is the presence of a small region

in the streamwise direction from the inlet which is affected due to the rescaling of

downstream quantities to the inlet boundary. This is observed even in DNS simula-

tions (Priebe [22], Xu [42]) and is essential to discard these values when extracting

and analyzing useful information from the CFD solution. However, the advantages
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associated with using the RR methods outweighs this minor fact making it a useful

tool to generate high-quality fine grid results for machine learning.

2.5 How does the grid size affect the CFD solution?

The purpose of this section is to identify the problems in using coarse grids and

illustrate the need to develop a robust method to tackle the problems and help in

accurately predicting the results for inexpensive meshes. Computational cost is ex-

tremely important when simulations are done at an industrial level to help in solving

complex fluid flow simulations efficiently.

2.5.1 Grid preparation

This section describes the method of generation of coarse grids for problems con-

cerning flat plate boundary layer flows. Since the flow domain under consideration

(see Figure 2.1c) is a rectangular domain, there is a need to properly create coarse-

grids which preserve the aspect ratio, similar to the generation of coarse meshes for

a square flow domain. To construct a boundary layer mesh in the wall-normal di-

rection, there are two important parameters to specify namely Distance of first grid

point (dS) and Growth Rate (GR).

The mesh in wall-normal distance is composed of a fine boundary layer mesh

which is blended with a uniform mesh in the far-field region. This is to reduce the

computational cost, since the variation in solution in the outer region is minimal.

The points in a boundary layer mesh are constructed as a geometric progression with

points (y1 = dS, y2 = dS · GR, y3 = dS · GR2...) up to a distance of 10mm, a value

chosen to fully enclose the boundary layer for the entire domain. The stream-wise

direction consists of points corresponding to a traditional uniform grid.
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(a) Fine (b) Coarse

Fig. 2.16. Illustration of a boundary layer mesh in the wall-normal direction (Y-axis)

Fig. 2.17. Effect of boundary layer parameters in the construction of a mesh.
(a) Variation in Distance of first grid point (dS) with fixed GR = 1.1 (b) Variation
in Growth Rate (GR) with fixed dS = 0.01mm
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Fig. 2.18. Selection of a boundary layer parameters to pick a reference equation.
Reference trajectory equation used for construction of various grids

Figure 2.18 shows the trajectory equation used in constructing coarse grids. The

strategy of generating a fine/coarse mesh is with a multiplication factor ‘P’. The num-

ber of points in the base mesh [Nx x (NBL +Nouter)]·P is given by [150 x (66 + 30)]·P ,

where

P ≡


> 2, Fine-grids

1, Baseline case

< 1, Coarse-grids

(2.12)

Figure 2.19 illustrates the method of determining the points for constructing a coarse

mesh. The reference equation is chosen to have dS = 0.05 and GR = 1.03. To

determine the location of points, the number of points calculated using the base

mesh (with P and NBL), seen as points from a square mesh are mapped on to the

trajectory to generate the spacing for the new boundary layer mesh.
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Fig. 2.19. Generation of coarse grids using a reference trajectory using mapping (a)
Reference equation trajectory using dS = 0.05 and GR = 1.03 (b) Construction of
points for a coarse grid (P=1/4)

2.5.2 Overview of grids for analysis

Table 2.4 gives the set of meshes constructed and taken into consideration for

computational analysis and performance in prediction of wall-shear and other impor-

tant variables for hypersonic flow conditions. The test case with P = 2 is considered

to be the fine-case simulation and the other test cases serve as coarse meshes with

the coarsest mesh P = 0.125 to have a size (1/16)th relative to the fine-grid.
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Table 2.4. Number of points in grids using reference trajectory (dS = 0.05 and GR
= 1.03). Nx, NBL and Nouter represent number of points in streamwise, boundary
layer and uniform grid region in the wall-normal direction respectively.

Grid multiplier (P) Nx NBL Nouter

2 300 132 80

1 150 66 40

0.5 75 33 20

0.25 38 17 10

0.167 25 11 7

0.125 19 8 5

2.6 Performance of RANS models on coarse grids

This section provides an qualitative analysis on the performance of grids on the

RANS simulation of test conditions represented by the DNS studies. The grids con-

structed using the approach outlined in the previous section is used in conjunction

with the modified-RR method to calculate the solution of a flat plate hypersonic

turbulent boundary layer. Figure 2.20 clearly indicates the gradual deterioration in

prediction of overall boundary layer growth structure and there is a trend of over-

prediction of the boundary layer thickness (δ). Figure 2.21 is an excellent represen-

tation of how the values of wall-shear are not predicted accurately when the solver

is subjected to variation in grid sizes. We can also see a trend in under-prediction of

the values of heat fluxes which are also important in the analysis of hypersonic flow.
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Fig. 2.20. Effect of Grid sizes on growth of boundary layer (a) Boundary layer
thickness (δ) (b) Momentum Thickness (θ)

Fig. 2.21. Effect of Grid sizes on the prediction of (a) Skin-friction (b) Wall-shear
(c) Heat-Flux on the wall surface

Figure 2.22 shows a clear trend in the turbulence profiles illustrating that the

poor prediction in wall shear stress manifests itself as a trend of decreasing r.m.s

fluctuations and shear stress profiles. Figures 2.23a and 2.23b also show a trend from

the fine-grid cases, owing to the changes in wall-shear. The analysis of these plots

and Table 2.5 indicate the poor prediction of wall-shear which is caused by the values
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of gradient at the first grid point is responsible for variation in turbulence profiles

with increasing mesh sizes.

Table 2.5. Number of points in each sub-layer of turbulent boundary layer for
different grid sizes

Grid Multiplier Number of points Wall properties

P y+ < 5 5 < y+ < 30 30 < y+ < 300 y+ > 300 τw(N/m2) uτ (m/s)

2 4 17 84 26 66.25 65.8

1 2 8 42 13 67.17 66.42

1/2 1 4 20 7 68.08 68.19

1/4 0 2 10 4 74.57 72.4

1/6 0 1 7 2 81.62 75.88

1/8 0 1 4 2 80.57 77.1

Fig. 2.22. Effect of Grid sizes on turbulence profiles scaled by friction velocity (uτ )
(a) Stream-wise and (b) Wall-normal r.m.s velocity fluctuations (c) Reynold’s shear
stress
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(a) Stream-wise velocity scaled by uτ vs
y+ (inner scaling) at Reθ = 3300

(b) Temperature inside boundary layer
at Reθ = 3300

Fig. 2.23. Effect of grid sizes

In the forthcoming chapters, we will illustrate a method using machine learning

by utilizing the fine-grid (P = 2) as the training data to help in the correction of

gradient at the first grid point of the mesh, which in turn ensures proper estimation

of wall shear for larger size grids.
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3. MACHINE LEARNING - A NEW TOOL FOR

SOLVING PROBLEMS

Machine learning is a field of study which helps machines (or computers) to mimic

problem solving abilities and learning as exhibited by a human mind. A concise

definition by Tom Mitchell states that (Andrew Ng [23]) :

“A computer program is said to learn from experience E with respect to some class

of tasks T and performance measure P, if its performance at tasks in T, as measured

by P, improves with experience E”.

There is a clear distinction in the way of defining a traditional classical algorithm and

a machine learning algorithm. Classical algorithms are programmed methodically

with exact rules to complete a particular type of task. On the other hand, machine

learning algorithms are given general guidelines that define the model, along with a

specific dataset. This data should contain information to create a model to complete

that specific task. Essentially, we try to adjust the model to fit the data, or that

“the model has to be trained on the data” (Rocca [26]). In general, machine learning

is incredibly useful for difficult tasks when we have incomplete fields or information

that is too complex to code manually. In these cases the model “learns” the missing

information that it needs by itself.

3.1 Types of machine learning techniques

Machine learning techniques are divided into two categories Supervised Learning

and Unsupervised Learning. Supervised learning works by building a relationship

between the input and the output features of a given problem, however Unsupervised

learning try to infer the natural structure present in the data. Supervised learning

is used to predict the value of dependent variable using the model parameters. For
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example fitting a curve through a set of points is the simplest regression problem. In

a 2-D space, to fit a 3rd degree curve through a set of points the model formulation

will be given as

y = a0 + a1x+ a2x
2 + a3x

3. (3.1)

A model is fit to the given data-set thereby determining model constants a0 to a3 for

predictions with new data.

Fig. 3.1. Types of machine learning problems

Figure 3.1 represents a map of machine learning problems. Since engineering sim-

ulations deal with continuous data and prediction of parameters rather than labeling,

numerous techniques are implemented to solve regression problems. Decision trees

help in solving problems where conventional mathematical functions cannot fit the

variation in data corresponding to non-linear equations.

3.2 Decision Trees and Ensemble learning

An important category of machine learning techniques which are widely used

in complex regression problems are Decision trees. Computational Fluid Dynamics

(CFD) simulations are solutions of complex non-linear partial differential equations

and hence the method of linear or logistic regressions are not a viable or practical

to predict the solution of these equations. Decision trees are extremely useful in

calculating variables which involve complex relationships with the parameters.
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Figure 3.2 shows the structure of a regression tree for a single parameter variation

of drug effectiveness with drug usage. There are three main components of a decision

tree namely Root, Node and Leaf. The first decision of the tree is termed as Root

and the subsequent subtree decisions are called Nodes. The terminal decision at the

end of each subtree where it does not connect to any other decision is called the Leaf

or Terminal Node. Decision tree splitting is based on an important quantity called

the Residual Sum of Squares (RSS).

Fig. 3.2. Regression tree for a single parameter dataset [Root, Node = Blue and
Leaf = Green] (Starmer [32])

Residual Sum of Squares (RSS)

The Residual sum of squares (RSS) is an important parameter which decides the

location of split and the decision which characterizes every node on a decision tree.

R1(j, s) = {X|Xj ≤ s} and R2(j, s) = {X|Xj ≥ s} (3.2)

RSS =
∑

i:xi∈R1(j,s)

(yi − yR1
)2 +

∑
i:xi∈R2(j,s)

(yi − yR2
)2 (3.3)

The decision tree algorithm works by splitting the data into two regions R1 and R2

to the left and right of each true data. From Eq.(3.2) and Eq.(3.3) the value of RSS
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is calculated for each independent variable in the dataset. The root and the nodes of

subsequent trees are decided by finding the variable which produces the least residual

sum of squares. This process is done recursively to split the regions determined in

the parent tree to produce subtrees.

A machine learning model will have high variance if it fits the training data per-

fectly and has poor performance with new data. Tree Pruning is a method by which

decision trees stop creation of extremely dense trees which over-fit the data. This is

done by stopping the splitting process if a region contains a certain maximum number

of true data. The final values of the leaf node is always calculated by the average

of true values in that specific subregion of that subtree. For datasets with multiple

parameter variations, the decisions for the nodes are calculated by taking the least

value of RSS amongst the values considering each feature separately.

Ensemble Learning use multiple learning techniques/algorithms to obtain better

predictive performance than could be obtained from any of the constituent learning

algorithms alone. The usage of a combination of decision tree ensembles increases the

flexibility in the functions which they represent. This amount of flexibility is crucial

in reducing over-fitting of data, which is a common problem in machine learning.

The next section discusses the most important type of ensemble learning methods

used for prediction of wall-shear in simulating Computational Fluid dynamics(CFD)

problems.

3.3 Random Forest approach

Random forests or random decision forests are an ensemble learning method which

combines multiple decision trees in a single framework and produce an output which

is the average of decision trees (regression) or the mode of the tree-classes (clas-

sification). A random forest can be used in a regression problem by constructing

{h(x, θk), k = 1, ...} where the {θk} are independent identically distributed random

vectors and k unique collection of regression-trees, where the final decision is the



40

mean of the individual subtrees at a specific input x (Breiman [3]). Individual tree

classifier or predictor will have only an accuracy only slightly better than a random

choice of class. But combining tree predictors can produce improved accuracy and

this becomes the basis of any random forest model. Two important forms of random

forests are Bagged Aggregation method and Boosted Random forest method. The

boosted version involves bagged estimations but also includes weights for each deci-

sion tree and dynamically uses a learning parameter to adjust the weights with the

creation of every new subtree. A brief description of these models will be given in

the next sections.

An important feature of the random forest (bagged models) is the ability to pre-

vent over-fitting. Random forest models employ the concept of Strong Law of Large

numbers from probability where, the mean of the trials converge towards the expecta-

tion. Extrapolating this concept to machine learning, Breiman [3] proves that as the

number of trees are increased in building a random forest, the final prediction using

the subtrees always converges and just produces a limiting value of the generalization

error given by

EX,Y (Y − h(X))2 (3.4)

where Y is the true value, h(X) is the hypothesized model and E denotes the gener-

alization error with the true value. In conclusion, a random forest combines several

decision trees which are built separately using the concepts of bagged aggregation

and produces the mean of constructed subtrees as the final prediction for some input.

3.3.1 Bagged vs Least Squared Boost

Random forests uses two key concepts which makes this method more reliable for

accurate predictions (Koehrsen [13])

1. Creation of bootstrapped dataset for each tree.

2. Selection of random features for each tree.
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Decision trees are highly dependent on the type and quality of data they are trained

and the generation of trees vary with changes in the training dataset. Random forests

creates a bootstrapped data by creating a random subset of input from the training

dataset with replacement. This concept of drawing random samples with replacement

is called Bootstrapping or Bagging which enables samples to be duplicates when

building a specific subtree (Yiu [43]). The concept of bagging helps to reduce overall

variance which essentially denotes a model which can predict training set perfectly

but performs poor with new data.

The bagging algorithm works by generating new set of data from a primary set S

by drawing random samples with replacement for each decision tree. For large sizes

of S, each subset Si for individual trees i is expected to have the fraction (1− 1/e)(∼

63.2%) of the unique samples of S and the rest being duplicates (Javed [1]). The

generation of each subtree also involves sampling random subset of features for a

multivariate dataset which helps in improving the flexibility of the model. Finally the

bootstrap dataset is combined by taking the mean of the predictor values of subtrees

in the forest. The minimum number of observations per leaf is 5 to implement tree

pruning and the number of trees is set to 100 for balance of computational cost and

predictive accuracy. A commercial computational and data analysis tool- MATLAB

is used for generating a ML model using the random forest algorithm by feeding a

fine-case training data-set using the methods described in Chapter 2.

Boosting is a modification done to bagged aggregation algorithm where weights are

added to individual learning trees. The boosting method improves the prediction of

each subtree by using a parameter to learn the difference between observed prediction

and aggregated prediction of all subtrees which are grown in the previous iteration

([25]). This method fits to minimize the mean-squared error given by Eq. (4.7) in

the next chapter. The level of learning can be adapted by

yn − Plearnf(xn) (3.5)
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where yn is the observed response, f(xn) is the aggregated prediction from all weak

learners grown up to a particular iteration for observations xn, and Plearn is the

learning rate. The final prediction from the boosted model is a weighted average of

the individual decision where some trees might be favored more than other.

Advantages and Disadvantages

� Random forests use bagging to reduce the variance of individual trees and use

a multitude of decision trees for the final prediction. This algorithm provides

an optimum balance between making ineffective training data predictions (high

bias) and inability of the model to adapt to generalized data (high variance).

� Linear regression problems often associate with renormalization to fit the ranges

of different features within a suitable limit to extract maximum performance.

Since Random forests work with decisions rather than the actual values of data,

the individual ranges of data become irrelevant.

� One of the biggest advantages of random forest is its ability to circumvent

extreme over-fitting due to the nature of its methodology. Also, tuning inherent

hyper-parameters can also improve the result, however the default methods

provide enough accuracy for general tests.

� The introduction of large number of trees makes this algorithm difficult to make

fast real time predictions. The computational time is affected more for new pre-

dictions than for training. The adjustments in properties like leaf size, number

of trees and the provision of rich data-set alleviates these minor problems to

create a robust model for CFD simulations to dynamic problems.

The next chapter will see the modeling approach of the gradient correction factor

using MATLAB, which essentially is used in the prediction of wall-shear for coarse

meshes.
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4. MACHINE LEARNING FOR HYPERSONIC

BOUNDARY LAYERS

This chapter develops from the idea of machine learning discussed in Chapter 3, to

help in the formulation of a tangible machine learning model to correct the value of

wall-shear stress. Section 2.6 shows a clear trend in the deterioration of predictive

accuracy when the grid size is gradually increased to computationally coarser grids.

When the size of the mesh increases, the solver cannot predict the gradients (velocity

and temperature) due to the large distance of the first grid point from the wall. The

purpose of Chapter 2 is to help in the generation of training data which will be used

to create a robust ML model.

4.1 Modeling Approach

The modeling approach constitutes the determination of a gradient correction

factor at each streamwise location using the value of wall-shear from the fine case as

a reference. As the mesh becomes more finer, the effect of wall-functions are irrelevant

and the value of wall shear is represented as a finite difference formulation:

(τw)fine = µw
dU

dy

∣∣∣∣
w

= µw
U1 − U0

y1 − y0

, (4.1)

where U1, y1 are the values of velocity and wall coordinate at the first grid point

and U0, y0 represent the values at the wall node. Another advantage of modeling

the gradients near the wall, is to eliminate the calculation of RANS solutions using

traditional wall function models which are highly dependent on type of grids and do

not cater to all type of flow conditions.
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4.1.1 Gradient Correction Factor

β(x) =
(τw(x))fine

(τw(x))coarse
(4.2)

βtrue(x) =
(τw(x))fine

µw
Ui(x)
yi(x)

(4.3)

where β(x) is the velocity gradient correction factor at a particular stream-wise loca-

tion x, Ui, yi are the series of imaginary first grid points in the wall-normal direction

inside the mesh structure of a fine-grid case for each streamwise location. From the

no-slip condition, U0 = 0 and y0 = 0 at the wall for each streamwise location. Eq.

(4.3) shows the modeling structure for obtaining the correction factor, where the se-

ries of points chosen vary from distance of first grid point of fine-grid (P=2, dS =

0.0246mm) to the coarsest-grid under consideration (P=1/8, dS = 0.52mm). From

Eq. (4.3) it is easy to understand that the gradient correction factor (β) will be used

as a multiplicative parameter to the value of wall-shear for coarse grids. The gradient

correction factor at each x is multiplied with the wall-shear to predict the correct

value of shear stress at the wall which matches with fine-grid results.

Fig. 4.1. Outline of Machine learning methodology and implementation
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Figure 4.1 illustrates the steps involved in building and using machine learning

to predict the wall-shear of coarse grids. After obtaining fine-grid data the next step

involves creation of a dataset which includes the calculation of βtrue from Eq. (4.3)

and corresponding interpolation of all other variables (flow,turbulence and properties)

for each specific location. This exhaustive dataset is fed into a Random-Forest (RF)

model implementation which gives us a model to utilize certain variables from the

data-set to generate the correction factor based on the variables given by βpred. The

ML-corrected value of wall-shear is given by

(τw)fine = (τw)coarseML−corrected = βpred · (τw)coarse (4.4)

and

βpred(x) = G(A′(x)) (4.5)

where A′(x) is a subset of the exhaustive set of all variables (A(x)) from a fine-grid

RANS solution given to the ML model (G(x)) by the user.

Table 4.1. Data collection strategy for training ML model using fine-grid RANS
simulations

βtrue y X δ ε A,..

β11 y11 ε11 A11, ..

. . X1 δX1 . .

β1m y1m ε1m A1m, ..

β21 y21 ε21 A21, ..

. . X2 δX2 . .

β2m y2m ε2m A2m, ..

... ... ... ... ... .,..

βn1 yn1 εn1 An1, ..

. . Xn δXn . .

βnm ynm εnm Anm, ..
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Eq.(4.4) and Eq.(4.5) illustrate the method of correcting the wall shear values

for coarse grid cases after modeling the correction factor using machine learning.

Table 4.1 shows the method of collecting data as a matrix which will be fed to the

machine learning model for training. Here, βtrue is the true value of gradient computed

using Eq. (4.3), m is the number of representative wall-normal coarse grid locations

interpolated, n is the number of streamwise locations, X is the streamwise location,

δ is the corresponding boundary layer thickness, y is the set of ‘M’ interpolated wall-

normal distances, ε is the interpolated dissipation rate at each streamwise location

and wall-normal location and A represents the set of all other solution variables from

the RANS simulations.

4.1.2 Training ML model

Data collected in the structure given by Table 4.1 is used to feed to the random

forest model using MATLAB, a commercial mathematical software used for data

analysis and computational work. An important step in machine learning is to choose

the number of parameters to be selected as independent variables. The objective is to

maximize the predictive accuracy while choosing the minimum number of variables.

Variables taken into consideration are

� General (β,X, y, δ, θ)

� Flow and Thermodynamic (U, V, P, T, ρ, ..)

� Turbulence (k, ε, u′iu
′
j, µt...)

� Properties (Cp, Pr, γ, α, ...)

We can observe from Figures 4.2a and 4.2b the usage of all parameters produce

excellent correlation with the true value of wall-shear. It should also be noted that

the bagged aggregation model reduced the spread of data which reflects in higher

value of R2.
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(a) Bagged RF model (b) Least-Squared Boosted RF model

Fig. 4.2. Comparison of βtrue with ML-predicted βpred using all parameters, Line
of equality, 5% error, 10% error

4.1.2.1 Greedy Algorithm for selection of parameters

The method of selection of parameters uses the Greedy Algorithm (Hiremath [8]),

where parameters are selected in each iteration until there are no more parameters

which fit a particular selection criteria. The method of selection is based on two

important parameters:

� Coefficient of determination or R-squared (R2)

� Mean squared Error (MSE)

If (βi)
pred is the predicted value using ML model and (βi)

true is the true value of

correction factor obtained from Eq. (4.3) then,

SSres =
nm∑
i

((βi)
true − (βi)

pred)2, SStot =
nm∑
i

((βi)
true − βi

true
)2 (4.6)

and

R2 = 1− SSres
SStot

, MSE =
SSres
n

(4.7)



48

where βi
true

is the mean of true values, nm is the total number of data points.

The greedy algorithm works by initializing two sets, Set {G: Good-set} as empty

and Set {A: Set of all variables} which contains all the parameters in the dataset.

1. Iterate through the set of all parameters to find the parameter which records

the highest R2 or lowest MSE value when training the dataset with the chosen

parameter.

2. The chosen parameter is removed from Set A and transferred to Set G while

recording the R2 value and this completes one stage (iteration).

3. The next stage, follows the same procedure by choosing the parameter from Set

A, and run the ML model along with the previous parameter chosen in Set G.

4. The parameter is selected if the R2 of this stage is greater than the previous

stage. The stage is completed upon recording the new updated R2 for compar-

ison.

5. This operation is repeated until the Set A is empty or the addition of parameters

does not change the R2 or MSE value from the previous stage.

Fig. 4.3. Selection of parameters using Greedy Algorithm
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Figure 4.3 shows the selection of 5 important parameters which influence the correct

prediction of βtrue. The selected parameters are (ε,M, δ, y, u′v′) and the low values

of MSE and 1 − R2 after the selection of 5 parameters indicate a good fit from the

constructed machine learning model.

4.1.2.2 Inclusion of neighbor cell information

There has been significant amount of research on the memory effect of turbulence,

which indicates that the information calculated downstream is dependent on the value

of variables upstream to that specific location. A similar methodology is discussed

in this section, where the inclusion of neighboring cell information while training the

data helps in understanding the flow structure and essentially help in improving the

predictive accuracy of the ML model.

If there are NP parameters chosen in a conventional method, the inclusion of

neighbor cell increases the size of training data-set to 2NP + 1. For each parameter

chosen for modeling represented by A(x), the neighbor cell model includes two extra

parameters A(x-dx) and dx (small streamwise distance). Hence the training data-set

becomes

A(x)− > (A(x− dx), A(x), dx) (4.8)

The gain in the predictive accuracy allows us to use the neighbor cell model over the

traditional method even though the cost of computation becomes marginally higher.

The inclusion of neighbor cells provides a richer dataset for better prediction of the

training variable.

4.1.2.3 How much data is enough data?

In machine learning based models, it is a distinctive fact that more data equates

to better prediction. However the size of the data-set and the equivalent number of

parameters increase the computational cost of model development and operation. So
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it is necessary to find a balance in feeding the model with an optimum amount of data

which is capable of producing accurate results and lowering the CPU time in ensemble

learning of the decision trees. The data collection increases by choosing finer intervals

of data interpolation in the wall normal direction effectively increasing the value of m

in Table 4.1. The dataset can also be increased in streamwise direction by increasing

n, however the increase in the length of fluid domain adds to the computational cost

apart from training the ML model using the dataset. Figure 4.4 shows a saturation

in the values of MSE and R2 while increasing the value of points in the wall-normal

direction for data collection. Hence an optimum range of m = (180 − 300) would

be sufficient to obtain a good prediction of the gradient correction factor using the

parameters chosen in the ML model.

Fig. 4.4. Convergence test to understand the optimum size of training dataset.
X-axis represents [Interval size(Number of pts)]

In Figure 4.4 represents the y-axis represents the size of interval in choosing the

points along the wall-normal direction. The total number of points chosen for that

test-case is also provided inside the parenthesis.
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4.2 Results and Discussion

In line with the previous sections the parameters are chosen using the Greedy

Algorithm and 4 important parameters are chosen to be sufficient to produce a good

prediction of the gradient correction factors.

� Turbulent Dissipation Rate (ε)

� Mach Number (M)

� Boundary Layer Thickness (δ)

� Distance of first grid point (dS)

In other words,

βpred = G(ε,M, δ, dS) (4.9)

For the purpose of computational cost effectiveness, we perform A priori testing with

the first two parameters, but also include a plot to compare the effect of inclusion of

all four aforementioned parameters as a comparison.

The following plots clearly illustrate the importance of including the neighbor cell

information. Figure 4.5b clearly has a better fitting with βtrue with the substantial

decrease in the MSE value of Figure 4.5a. The inclusion of the neighbor cell model

helps in creating a better fit using the information of upstream locations for a specific

streamwise-location (X).

We saw in earlier discussions that bagged aggregated model performs slightly

better than the boosted model when all parameters are taken for modeling. The next

two plots shows the behaviour of the two random forest modeling techniques in the

prediction of first grid point gradients when only two parameters are considered i.e.,

β = G(ε,M)
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(a) General method with no neighbor cell inclusion

(b) Inclusion of neighbor cell information

Fig. 4.5. Effect of neighbor-cell information on a single parameter random forest
model βpred = G(ε), (a) Line of equality, 5% error, 10% error (b) β
comparison on the wall for 3 values of ‘dS’

Figure 4.6b shows an improvement in the R2 value with lower relative errors when

using a bagged aggregate random forest model in comparison with Figure 4.6a.
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(a) Least-Square Boosted Random forest model

(b) Bagged Random Forest model

Fig. 4.6. Different types of random forest model for 2 parameter model given by
βpred = G(ε,M) with inclusion of neighbor-cell information, (a) Line of equality,

5% error, 10% error (b) β comparison on the wall for 3 values of ‘dS’

In later sections we will show that the Least square boosted model is helpful in

getting a fit for any set of parameters, but is a lot less smoother than the bagged

model due to extensive weighting of individual decision trees. (see Section 4.2.1)
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4.2.1 A priori testing of ML model on coarse grids

This section provides an A priori testing of the ML model on the interpolated

coarse grid information from the training data set to see its performance on the

prediction of wall-shear.

Table 4.2. Performance of ML model (Average of streamwise locations) for β =
G(ε,M)

Grid multiplier (P) τCOARSEw τML
w Relative Error reduction

2 (FINE) 71.158 71.158 -

1 70.21 71.17 2.07

0.5 65.1 72.12 9.74

0.25 53.88 72.16 25.49

0.167 42.21 72.02 41.71

0.125 32.39 72.05 55.5

Table 4.2 shows the prediction of wall-shear (mean of streamwise locations) for

coarser grids before and after machine learning. The last column depicts the also

improvement in the relative error of wall-shear from coarse-grid with the usage of

machine learning. A good predictive estimation for coarse grids can be made with

just two parameters (β = G(ε,M)) which helps in reducing the modeling complexity.

We also observe that even though Figure 4.7a can predict the trend of the wall-shear

profile well, the prediction consists of a noises (small spikes) in the reconstruction of

the profile using the coarse grid parameters. However, Figure 4.7b which implements

the bagged aggregate model has a much smoother curve even for small number of

parameters.
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(a) Least-Square Boosted Random forest model

(b) Bagged Random Forest model

Fig. 4.7. Prediction of wall-shear using 2 parameter model given by βpred = G(ε,M)
with inclusion of neighbor-cell information, ML-corrected, Coarse-grid
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(a) Least-Square Boosted Random forest model

(b) Bagged Random Forest model

Fig. 4.8. Prediction of wall-shear using 4 parameter model given by
βpred = G(ε,M, δ, dS) with inclusion of neighbor-cell information, ML-corrected,

Coarse-grid
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The increase in number of parameters directly influences the modeling complexity

but can help in accurate prediction of the dependent variable. Figure 4.8a does not

show the trend of spikes during prediction of the values as seen in comparison with

Figure 4.7a. The bagged model shows its superiority over the LS-boosted model

in this particular type of problem with smooth curves and accurate prediction of

interpolated coarse grid information from the training data set. Hence it becomes

a choice of the user to use the applicable model depending on the type of flow and

modeling circumstances.

These results suggest a successful validation of the model in A priori testing and

gives us the confidence to utilize this model in conjunction with an in-situ simulation

with any CFD solver.
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5. CONCLUSIONS

This chapter summarizes this work based on the results from Chapters 2 and 4 and

presents the future prospects of this research.

5.1 Results and Discussion

� We observe a difference in the values of turbulence and reynolds stress quan-

tities between the DNS and experimental test conditions even though the flow

conditions are very similar. One possible reason for this difference is the poor

prediction of wall shear and other wall fluxes in RANS models which gives us

the motivation for finding a viable solution.

� Two methods of rescaling are used in conjunction with the RANS simulations

through an external UDF. This method has proved to be effective in reduc-

ing the computational cost of fine-grid simulations which are imperative for

the machine learning model construction. Rescaling methods not only improve

the computational cost, but also help in eliminating problems caused due to

laminar-boundary transition when simulating flat plate boundary layer prob-

lems. The rescaling technique also helps in providing a rich dataset for training

machine learning algorithms.

� The proposed machine learning methodology works by correcting the velocity

gradient at the first grid point in coarse-grids using the fine-grid results as

training dataset. The data set considers the memory effect of turbulence by

using information from neighboring cells to produce a richer dataset. An optimal

set of parameters are chosen using the greedy algorithm for the bagged random

forest model which has an important attribute of eliminating data over-fit.
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� We find that the model gives very good predictive accuracy in capturing the

correct value of βpred for different coarse grids when compared with expected

value of βtrue from fine case solutions using just two parameters (ε and M). A

higher quality solution can be obtained by using 4 parameters (ε,M, δ, dS) to

model the gradient correction factor (β).

� The choice of the type of random forest model (bagged aggregation) or LS-

boosted bag aggregation depends on the type of flow. For this type of problem

discussed in this thesis, bagged aggregation method has proved to be a better

predictive model than the LS-boosted algorithm. It is also indicative from the

thesis that the memory effect of turbulence described in DNS simulations is used

in the machine learning model which helps in improving the accuracy. Methods

to determine the size of optimal dataset and finding a balance between the

modeling complexity and computational cost are also important in building a

robust machine learning model which can be used in any CFD solver.

� A priori testing of the machine learning model done on coarse grid points from

the training dataset produce excellent improvement in the prediction of wall-

shear giving vast improvements, reducing the relative error from 54% to 2%

even for extremely coarse meshes (P=1/8, dS = 0.52mm).

5.2 Future Work

Due to time limitations, only A priori testing of the machine learning model was

performed in this thesis. The prospective future work is discussed below:

� Posteriori testing of the proposed machine learning model by building the model

inside any CFD solver and finding its total overall performance.

� Development of a machine learning model to simulate flows for all ranges (in-

compressible, supersonic and hypersonic) so that the model is not restricted to

only certain type of problems.
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� The incorporation of DNS results as training data instead of fine-grid RANS

results for improving the predictions of turbulence closure models present in

RANS simulations and reduce the usage of wall functions.

� Extend this machine learning model methodology to also produce accurate pre-

dictions of heat transfer in compressible turbulent boundary layer flows.
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APPENDIX A: DISCRETIZATION APPROACHES

A.1 Spatial Discretization

This section describes the approach taken to discretize the RANS equations for a

steady-state hypersonic flow over a 2D flat plate.

Fig. A.1. Gradient evaluation from cell centers for some scalar φ

The CFD solver stores discrete values of the scalars φ (eg., Temperature) at the cell

centers. A Second-Order Upwind (SOU) Scheme is used for computing the scalars φ at

cell faces using a multi-dimensional linear reconstruction approach. In this approach,

a Taylor series expansion of the cell-centered solution about the centroid is performed

by the solver. It is computed by the following expression:

φface,SOU = φ+∇φ · ~r, (A.1)

where φ and ∇φ are the cell-centered value and its gradient in the upstream cell, and

~r is the displacement vector from the upstream cell centroid to the face centroid. A
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brief summary of the calculation of gradient is discussed in the next section. The

diffusion terms are central-differenced and are always second order accurate.

A.2 Least Squares Cell-Based Gradient Evaluation

The calculation of gradient is needed for the construction of scalar at the cell

faces, and for computing the secondary diffusion terms and velocity derivatives. The

change in values between the cell c0 and ci along the vector ∆ri from the centroid of

these cells can be expressed as

(∇φ)c0 ·∆ri = (φci − φc0). (A.2)

Extending Eq. (A.2) to all surrounding cells we obtain a matrix form

[J ](∇φ)c0 = ∆φ, (A.3)

where [J ] is the coefficient matrix which is purely a function of geometry. In order to

determine the cell gradient ∇φc0 = φxî + φy ĵ + φzk̂, a least squared approach solu-

tion is determined resembling a minimization problem. The coefficient matrix [J ] is

solved using a Gram-Schmidt process to calculate 3 weights for the three components

W x
i0
,W y

i0
,W z

i0
for each individual cell c0. Therefore, the gradient at the cell center can

then be computed as follows:

(φx)c0 =
nx∑
i=1

W x
i0
· (φci − φc0), (A.4)

(φy)c0 =

ny∑
i=1

W y
i0
· (φci − φc0), (A.5)

(φz)c0 =
nz∑
i=1

W z
i0
· (φci − φc0). (A.6)
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APPENDIX B: MODELING OF UNKNOWN TERMS

USED IN RANS TURBULENCE MODELS

B.1 Reynolds Stress Model

B.1.1 Modeling Turbulent Diffusive Transport

The traditional gradient-diffusion model is modeled as:

DT,ij = Cs
∂

∂xk

(
ρ
ku′ku

′
l

ε

∂u′iu
′
j

∂xl

)
. (B.1)

A simplification to the gradient-diffusion model done by Fluent [24] gives:

DT,ij =
∂

∂xk

(
µt
σk

∂u′iu
′
j

∂xk

)
(B.2)

and

µt = ρCµ
k2

ε
, (B.3)

where Cµ = 0.09. A value for σk = 0.82 was derived by Lien [15] by applying the

gradient-diffusion model to planar homogeneous shear flow.

B.1.2 Modeling the Pressure-Strain term

A Linear Pressure Strain Model is used to model the Pressure-Strain term in the

transport equation. It is modeled using the classical approach given by Gibson [7]

and Launder [14]: The pressure strain term is decomposed as

φij = φij,1 + φij,2 + φij,w, (B.4)
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where φij,1 is the slow pressure-strain term, also known as return-to-isotropy term,

φij,2 is called the rapid pressure strain term, and φij,w is the wall-reflection term.

The slow-pressure strain term φij,1, is modeled as

φij,1 ≡ −C1ρ
ε

k

[
u′iu
′
j −

2

3
δijk

]
, (B.5)

with C1 = 1.8.

φij,2 ≡ −C2[(Pij + Fij + 5/6Gij − Cij)−
2

3
δij(P + 5/6G− C)], (B.6)

where C2 = 0.60,Pij, Fij, Gij and Cij are defined as per Eq. (2.9), P = 1
2
Pkk,G = 1

2
Gkk

and C = 1
2
Ckk.

The wall-reflection term, φij,w is one of the most important terms to model cor-

rectly. It is responsible for the redistribution of normal stresses near the wall. Its

works on dampening the normal stress perpendicular to the wall, while enhancing the

stresses parallel to the wall. This term is modeled as

φij,w ≡ C ′1
ε

k

(
u′ku

′
mnknmδij −

3

2
u′iu
′
knjnk −

3

2
u′ju

′
knink

)
Clk

3/2

εd
,

+ C ′2

(
φkm,2nknmδij −

3

2
φik,2njnk −

3

2
φjk,2nink

)
Clk

3/2

εd
,

(B.7)

where C ′1 = 0.5, C ′2 = 0.3, nk is the xk component of the unit normal to the wall, d is

the normal distance to the wall, and Cl = C
3/4
µ /κ, where Cµ = 0.09 (model-constant)

and κ is the von Kármán constant(=0.4187).

B.1.3 Modeling the Turbulence Kinetic Energy

The Turbulence Kinetic Energy(TKE) is obtained by taking the trace of the

Reynolds stress tensor:

k =
1

2
u′iu
′
i. (B.8)
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The values of TKE at all locations in the computational domain is calculated by using

the Eq. (B.8). The near-wall values are computed by employing the appropriate

wall-functions instead of solving a transport equation. A detailed description of the

wall-functions used in the RANS code is discussed in section 2.2.4.

B.1.4 Modeling the Turbulence Dissipation Rate

The dissipation tensor, εij is modeled as

εij =
2

3
δij(ρε+ YM), (B.9)

where YM = 2ρεM2
t is a “dilatation dissipation” adapted from the model by Sarkar

[28]. The turbulent mach number in this term is defined as

Mt =

√
k

a2
, a =

√
γRT . (B.10)

Since we are solving a compressible flow, this dilatation dissipation is very important

in the calculation of dissipation tensor. The scalar dissipation rate, ε is solved as a

standard transport equation given by:

∂

∂t
(ρε) +

∂

∂xi
(ρεui) =

∂

∂xj

[(
µ+

µt
σε

)
∂ε

∂xj

]
+ Cε1

1

2
[Pii + Cε3Gii]

ε

k
− Cε2ρ

ε2

k
+ Sε,

(B.11)

where σε = 1.0, Cε1 = 1.44, Cε2 = 1.92 and Cε3 is evaluated as function of local flow

relative to the gravitational vector and Sε is a user-defined source term.

B.2 k − ω model

B.2.1 Modeling of Effective Diffusivity terms

Γk = µ+
µt
σk
, Γω = µ+

µt
σω
, (B.12)
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where σk and σω are the turbulent Prandtl numbers of k and ω. The turbulent

viscosity term is modeled as

µt = α∗
ρk

ω
, (B.13)

where α∗ in high-reynolds number form is 1.0.

B.2.2 Modeling of Production terms

The generation term from the exact equation for the transport of k is given by

Gk = ρu′iu
′
j

∂uj
∂xi

. (B.14)

With Boussinesq hypothesis,

Gk = µtS
2 (B.15)

where S is the modulus of the mean rate of strain tensor, defined as S ≡
√

2SijSij

and µt is defined as per Eq. (B.3).

The production of ω is given by

Gω = α
ω

k
Gk, (B.16)

where Gk is given by Eq. (B.14). The coefficient α is given by

α =
α∞
α∗

(
α0 +Ret/Rw

1 +Ret/Rw

)
, Ret =

ρk

µk
, (B.17)

where Rω = 2.95.

B.2.3 Modeling of Dissipation terms

The dissipation of k is given by

Yk = ρβ∗fβ∗kω, (B.18)
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where

fβ∗ =

1, χk ≤ 0

1+680χ2
k

1+400χ2
k
, χk > 0

(B.19)

where

χk =
1

ω3

∂k

∂xj

∂ω

∂xj
, (B.20)

and

β∗ = β∗i [1 + 1.5 · F (Mt)], β∗i = 0.09

(
4/15 + (Ret/8)4

1 + (Ret/8)4
,

)
(B.21)

Ret is given by Eq. (B.17).

The compressibility correction(FMt) is important in the determination of the dis-

sipation terms (Wilcox [37])

F (Mt) =

0, Mt ≤ 0.25

M2
t −M2

t0, Mt > 0.25

(B.22)

where

Mt =
2k

a2
, a =

√
γRT . (B.23)

The dissipation of ω is given by,

Yω = ρβ′fβω
2 and fβ =

1 + 70χω
1 + 80χω

. (B.24)

χω =

∣∣∣∣ΩijΩjkSki
(0.09ω)3

∣∣∣∣ , Ωij =
1

2

(
∂ui
∂xj
− ∂uj
∂xi

)
and Sij =

1

2

(
∂uj
∂xi
− ∂ui
∂xj

)
. (B.25)

Also in the context of compressible flows,

β′ = 0.09

[
1− β∗i

βi
1.5 · F (Mt)

]
, (B.26)

β∗i and F (Mt) are defined by Eq. (B.21) and Eq. (B.22).
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APPENDIX C: WALL TREATMENT

C.1 Enhanced Wall functions

Enhanced Wall functions are used in conjunction with the turbulence model to

calculate the flow variables in the viscosity-affected (near-wall) and the outer tur-

bulent region. Enhanced Wall Treatment for the ε-equation constitutes a near-wall

modeling approach which uses a two layer model. This approach is useful in an inte-

gral part used to specify both ε and µt in the wall boundary cells. The two layers are

separated using a wall-distance based parameter, turbulent Reynolds number, Rey

define as

Rey ≡
ρy
√
k

µ
, y ≡ min

~rw∈Γw
‖~r − ~rw‖ , (C.1)

where y is the wall-normal distance calculated using cell-centers, ~r & ~rw correspond

to the position vector at the near field point and the position of wall boundary respec-

tively and Γw is the union of all the wall boundaries involved in the computational

domain.

µt,2layer = ρCµlµ
√
k, lµ = yC∗l (1− e−Rey/Aµ). (C.2)

Here lµ is the length scale used for modeling turbulent viscosity. The two layer

blending approach given by Jongen [10] suggests the effective turbulent viscosity

given by:

µt,enh = λεµt + (1− λε)µt,2layer, (C.3)

where µt is defined as per Eq. (B.3). The blending is done in a way that λε is unity

away from wall boundaries and zero near the walls to combine the viscous region and

the outer region. Also,

λε =
1

2

[
1 + tanh

(
Rey −Re∗y

A

)]
, A =

|∆Rey|
arctanh(0.98)

, (C.4)



73

where Re∗y = 200 and ∆Rey is usually 5-20% of Re∗y. The ε field in the viscosity

affected region is calculated as:

ε =
k3/2

lε
, lε = yC∗l (1− e−Rey/Aε). (C.5)

If the flow domain is completely inside the viscosity affected region, ε is solved alge-

braically using Eq. (C.5) instead of solving the transport equation. The blending of

the ε is similar to the model used in Eq. (C.3). The constants used in Eq. (C.2) and

Eq. (C.5) are set as

C∗l = κC−3/4
µ , Aµ = 70, Aε = 2C∗l . (C.6)

C.1.1 Modeling momentum and heat transfer

Fluent uses the law of the wall formulation for the mean velocity as

U∗ =
1

κ
ln(Ey∗), (C.7)

where

U∗ ≡ UPC
1/4
µ k

1/2
P

τw/ρ
, y∗ ≡ ρC

1/4
µ k

1/2
P yP

µ
. (C.8)

Here,

U∗ = dimensionless velocity

y∗ = dimensionless distance from the wall

κ = von Kármán constant(= 0.4187)

E = Empirical constant(= 9.793)

UP = mean velocity of the fluid at the near-wall node P

kP = turbulence kinetic energy at the near-wall node P

yP = distance from point P to the wall

µ = dynamic viscosity of the fluid
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The blending formulation for the velocity variable extending its applicability

throughout the near-wall region is given by Kader [11] is given by:

du+

dy+
= eΓdu

+
lam

dy+
+ e1/Γdu

+
turb

dy+
, (C.9)

Γ =
a(y+)4

1 + by+
, (C.10)

where a = 0.01 and b = 5.

The model for the enhanced turbulent law of the wall for compressible flow is

given by [24]
du+

turb

dy+
=

1

κy+

[
S ′(1− βu+ − γ(u+)2)

]1/2
, (C.11)

where

S ′ =

1 + αy+ fory+ < y+
s

1 + αy+
s fory+ ≤ y+

s

(C.12)

and

α ≡ νw
τwu∗

dp

dx
=

µdp

ρ2(u∗)3dx
, β ≡ σtqw

ρCpu∗Tw
, γ ≡ σt(u

∗)2

2CpTw
. (C.13)

In Eq. (C.12) y+
s = 60 where it represents the location at which log-law slope is fixed.

The coefficients α, β and γ in Eq. (C.13) correspond to pressure gradient and thermal

effects respectively in a compressible flow problem.

The laminar law of the wall is determined by:

du+
lam

dy+
= 1 + αy+. (C.14)

The determination of heat transfer for a compressible flow using EWF follows a

similar approach to the momentum methodology given by Kader [11]

T+ ≡ (Tw − TP )ρCpuP
q̇

= eΓT+
lam + e1/ΓT+

turb. (C.15)
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The notations are similar to the ones described in Eq. (C.8) and the blending function

is given by

Γ = − a(Pry+)4

1 + bPr3y+
, (C.16)

where Pr is the molecular Prandtl number, and the coefficients a and b is same as

the blending function for the model used for momentum.

T+
lam = Pr

(
u+
lam +

ρu∗

2q̇
u2

)
, (C.17)

T+
turb = Prt

{
u+
turb + P +

ρu∗

2q̇

[
u2 −

(
Pr

Prt
− 1

)
(u+

c )2(u∗)2

]}
, (C.18)

where u+
c is the crossover between the laminar and turbulent region. The function P

is given by

P = 9.24

[(
Pr

Prt

)3/4

− 1

]
[1 + 0.28e−0.007Pr/Prt ]. (C.19)
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APPENDIX D: MODELING OF LAMINAR VISCOSITY

IN HYPERSONIC CALCULATIONS

Sutherland’s law for viscosity for air as a working fluid is given by:

µlam = µ0

(
T

T0

)3/2
T0 + S

T + S
, (D.1)

where T is the static temperature of the flow, µ0 = 1.716 x 10−5 kg/m-s, T0 =

273.11K, and S = 110.56K.

A model for a more robust calculation of viscosity as given by Keyes [12] is used

in the code.

µlam = 1.488 x 10−6

√
T

1 +
(

122.1
T

)
10−5/T

, (D.2)

The two viscosity laws agree for temperatures T > 150K, for which the relative error

is < 1%. At lower temperatures, the viscosity laws diverge. Figure D.1 shows that

Keyes law is more accurate and its use is recommended over Sutherland’s Law at

extremely low temperatures as suggested by Roy [27].

Fig. D.1. Comparison of Laminar viscosity models for hypersonic flows
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APPENDIX E: RESCALING EQUATIONS

Throughout the discussion of Rescaling-Recycling (RR) methods in this section,

here are some important information. The equations described are for any general

3-D flow simulation, however it is appropriately used to derive and implement for a

planar 2-D hypersonic turbulent boundary layer simulation.

The streamwise, wall-normal and span-wise velocity components are given by

u(= U + u′), v(= V + v′) and w(= W + w′) where the capital letters represent the

mean quantities and the lower-case letters with a prime represent the fluctuating

components. It is also noted that (.)in represents the inlet station and (.)re represents

the recycle station. In order to fully specify suitable boundary conditions at the inlet

station of RANS calculations with RSM and k−ω model, the rescaling equations for

the following variables are completely essential:

� Mean flow quantities (U, V,W )

� Turbulent Kinetic Energy (u′, v′, w′, k)

� Turbulent Dissipation (ε)

� Reynolds Stresses (u′u′, v′v′, w′w′, u′v′)

� Mean Temperature (T )

� Mean Pressure and Density (P, ρ)

E.1 Simple RR method

The simple Rescaling-Recycling(RR) method is the first work done after significant

modifications to the work of Spalart [31]. Lund [17] worked on developing a method-

ological way to convert the idea from Spalart to a more easy and programmable way

without the need for coordinate transformation of the Navier stokes equations. The
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main complications of [31] method is the complications which arise out of the need

to introduce a coordinate transformation that minimizes streamwise inhomogeneity.

This method circumvents the problem of evaluating the growth terms throughout the

solution domain by just transforming the boundary conditions. The calculation of

growth terms necessitates multiple simulations to estimate streamwise gradients of

mean flow quantities.

Although the method by Spalart [31] gives a ingenious transformation to calcu-

late spatially evolving boundary layers with periodic boundary conditions in stream-

wise direction, and is highly accurate, it poses the problem of being complicated

for the purpose of generating just the inflow data for simulation. This method in-

volves estimation of velocity at the inlet plane as a boundary conditions using the

solution downstream. The use of periodic boundary conditions in the streamwise di-

rection is removed and therefore a Fourier transformation is impossible. The existing

inflow-outflow simulation code can be made use to generate valuable inflow boundary

conditions to create a solution domain which starts from a specified boundary layer

thickness or user defined boundary conditions extracted from the downstream solu-

tion. The outlet boundary condition remain unchanged however the velocity field in a

chosen downstream location (Recycle plane) is extracted, rescaled using the concepts

of Spalart [31] and recycled to give as a boundary condition to the inlet.

E.1.1 Scaling of Mean Velocity

The simple RR method consists of rescaling the mean velocity according to two

regions, law of the wall (INNER) and defect law (OUTER) region. The law of the

wall yields:

U inner = uτ (x)f1(y+), (E.1)
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where uτ =
√
νw(∂u/∂y)w is the friction velocity, y+ = (uτy)/νw is the wall coordinate

and f1 is a universal function. Similarly, the defect law formulated by Coles [4]:

U∞ − U outer = uτ (x)f2(η), (E.2)

where η = y/δ is the outer coordinate (δ is the boundary layer thickness), U∞ is the

free-stream velocity and f2 is another universal function. The actual formulation of

f1&f2 is not essential for the derivation of the rescaling equations for the mean flow

quantities.

The rescaling of mean streamwise velocities(U) is given by:

U inner
in = ωuτUre(y

+
in) and U outer

in = ωuτUre(ηin) + (1− ωuτ )U∞, (E.3)

where

ωuτ =
(uτ )in
(uτ )re

and ωνw =
(νw)in
(νw)re

. (E.4)

The independent variables y+ and η are the inner and outer coordinates of the grid

nodes at the inlet station. The location at the inlet in the wall-normal direction will

not be the same as the inlet and a suitable location of the variables is taken for each

individual inlet location given by: If f1&f2 are assumed as a universal functions

yin =
ωνw
ωuτ

yre, yin =
δre
δin
yre. (E.5)

According to Eq. (E.5) the location of extraction of variables are chosen and recycled

for the inner and outer regions respectively.

Similarly, for the mean wall-normal velocities are assumed to scale by,

V inner = U∞f3(y+), V outer = U∞f4(η), (E.6)
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where f3&f4 are assumed as universal functions. The rescaling is given by:

V inner
in = Vre(y

+
in), V outer

in = Vre(ηin). (E.7)

The span wise velocity should be zero in the mean quantities and hence recycling is

not required.

E.1.2 Scaling of Velocity Fluctuations

The velocity fluctuations in the inner and outer regions are assumed to have this

form (Lund [17]):

(u′)inneri = uτgi(x, y
+, z, t) and (u′)outeri = uτhi(x, η, z, t). (E.8)

Since there is an explicit dependence on uτ it is assumed that gi and hi are ap-

proximately homogeneous in the streamwise direction. There is a one-way coupling

between recycle station and inlet through Eq. (E.8) but no downstream transfer

of information from inlet. The recycling equations for all the fluctuating variables

u′i(= u′, v′, w′) are given by:

(u′i)
inner
in = ωuτ (u

′
i)re(y

+
in, z, t) (E.9)

and

(u′i)
outer
in = ωuτ (u

′
i)re(ηin, z, t).. (E.10)

Using Eq .(E.3),(E.7),(E.9) and Eq .(E.10) a composite velocity profile can be con-

structed using suitable weight functions to blend the inner and the outer regions.

(ui)in = [(Ui)
inner
in + (u′i)

inner
in ][1−W (ηin)] + [(Ui)

outer
in + (u′i)

outer
in ]W (ηin). (E.11)
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The weighting function W (η) is defined as (see Lund [17])

W (η) =
1

2

1 +
tanh

[
a(η−b)

(1−2b)η+b

]
tanh(a)

 , (E.12)

where a = 4 and b = 0.2. The weighting function is such that its unity at η = 1 and

zero at η = 0. Also, since the RANS simulations cater to only the mean quantities

in the overall boundary conditions, the RANS form requires just the mean version of

the composite velocity profiles from Eq. (E.11) given by:

(Ui)in = (Ui)
inner
in [1−W (ηin)] + (Ui)

outer
in W (ηin). (E.13)

An important step in the rescaling operation requires the value of scaling parameters

uτ and δ at both the inlet and recycle stations. These quantities can be determined

during calculation from the mean velocity profile. Lund [17] and Xu [42] say that the

problem becomes over-constrained if we determine the values of the scaling parameters

both from the solution of the mean velocity profile. Hence the usage of an empirical

relation for the value of uτ is recommended since, defining a boundary layer thickness

at the inlet according to the problem is more beneficial than specifying the friction

velocity at the inlet. The friction velocity follows an empirical relation given by

Ludwig [16]

(uτ )in = (uτ )re

(
θre
θin

)[1/2(n−1)]

, n = 5, (E.14)

where θ is the momentum thickness. This relation is a direct correlation derived from

standard power law approximations of Cf ∼ Re
−1/n
x , θ/x ∼ Re

−1/n
x .

E.1.3 Scaling of Turbulence quantities

The Turbulent kinetic energy is calculated from its standard definition given by:

k =
1

2
u′iu
′
i =

1

2
(u′2 + v′2 + w′2). (E.15)
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The rescaling equation is of the form

kinnerin = ω2
uτkre(y

+
in, z, t), and kouterin = ω2

uτkre(ηin, z, t). (E.16)

The Turbulent Dissipation for a homogeneous compressible flow can be split into a

solenoidal part and a dilatational part. The magnitude of dilatational dissipation is

much smaller than the solenoidal part for wall bounded compressible flows (see Sinha

[30]). In an incompressible flow the turbulent dissipation is given by

εI = 2νS ′ijS
′
ij ' 2νu′i,ju

′
i,j. (E.17)

However for a compressible flow the solenoidal dissipation can be derived from the

enstrophy equation as:

εS = ν(u′i,ju
′
i,j − u′i,ju′j,i) = νω′iω

′
i. (E.18)

The paper by Sinha [30] gives a convincing argument to prove that the magnitude

of the second part of εS is insignificant and for most general compressible flows the

dissipation is equivalent to the incompressible version.

ω′iω
′
i = u′i,ju

′
i,j − u′i,ju′j,i

= u′i,ju
′
i,j −

∂

∂xj
u′iu
′
j,i −

∂

∂xj
u′iθ
′ + θ′2 .

(E.19)

where θ′ is the fluctuating dilatation. It is seen in the paper that after comparing

with the budget terms from the transport equation of the enstrophy equation,

u′j,iu
′
i,j � u′i,ju

′
i,j.
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Thus εS can be split to a part identical to εI and a second term which represents the

effect of inhomogeneity and compressibility. So

εS ' νu′i,ju
′
i,j. (E.20)

Thus the equation for ε is given by

ε = ν
∂ui
∂xj

∂ui
∂xj

. (E.21)

The recycling equation is given by:

εinnerin = ω2
uτ εre(y

+
in, z, t), and εouterin = ω2

uτ εre(ηin, z, t). (E.22)

The same blending function given by Eq. (E.12) is used to produce a single composite

value of k and ε. The reynolds stress quantities are computed using the rescaling

equations Eq. (E.9) and Eq. (E.10) to construct a rescaling factor for the stress

variables according to the need of the boundary conditions in RANS.

E.1.4 Scaling for Mean Temperature, Pressure and Density

There is a stark correlation between the velocity and temperature for turbulent

boundary layer flows with constant wall temperature, given by a temperature-velocity

coupling relation (see Walz [35]). For a zero-pressure gradient boundary layer, Walz’s

equation is given by:

T

T∞
=
Tw
T∞

+
Tr − Tw
T∞

(
U

U∞

)
−Rγ − 1

2
M2
∞

(
U

U∞

)2

, (E.23)
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where Tr is the recovery temperature, γ is the ratio of specific heats and M∞ is the free

stream mach number. The recovery temperature is the temperature corresponding

to the total enthalpy contained by a system and is given by:

Tr
T∞

=

(
1 +R

γ − 1

2
M2
∞

)
, (E.24)

where R is the recovery factor of the flow. The rescaling of the temperature is

computed from the mean velocity field as per Eq. (E.23)

T innerin

T∞
=
Ure(y

+
in)

U∞
,

T outerin

T∞
=
Ure(ηin)

U∞
. (E.25)

The density of the recycling is performed by a direct interpolation in the temper-

ature field which correspond to the same value of density. Since the thermodynamic

variables do not change during the spatial evolution of the boundary layer, the density

extracted from the downstream location at the same temperature preserves itself in

the inlet domain. The temperature of each wall normal coordinate is calculated by

the aforementioned method, and a direct interpolation of that specific temperature

is performed on the temperature field in the recycle station to obtain a value of the

density at the inlet grid coordinate.

The recycle equation for pressure follows the general ideal gas equation given by:

P = ρRgT, (E.26)

where Rg denotes the gas constant for air.

E.2 Modified RR method

Modified RR method is a method inspired from the scaling methodology discussed

in the previous section, but include slight improvements to improve the rescaling

equations for the individual variables (see Xu [42]). Firstly, the mean streamwise
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velocities are split into 3 individual regions than 2 regions in the simple RR method.

The mean streamwise velocities are split into 3 regions (VISCOUS, LOG & WAKE),

and the rescaling equations for the other variables consist of just two regions (INNER,

OUTER). A rigorous treatment for the wall normal velocity is not done because

it is not a dynamically dominant quantity. For a flat plate zero-pressure gradient

boundary layer (ZPGBL) the mean spanwise velocity is zero dye to the spanwise

statistical symmetry.

E.2.1 Scaling of Mean streamwise velocity

The rescaling equations are given for the three different regions separately and

then blended together using weights (Bi) to construct a composite velocity profile.

In the VISCOUS region, it is assumed that

US

uτ
= y+, (E.27)

where uτ and y+ follow the usual definition of friction velocity and the wall coordinate.

The term US refers to the transformed velocity which directly takes into account

the effect of viscosity variation inside the boundary layer. The mean streamwise

transformed velocity is defined by

US =

∫ U

0

µ

µw
dU. (E.28)

It is assumed that the for the viscous and the log region, rescaling happens when the

wall coordinate indices of the inlet and recycling station are equal whereas for the

wake region, the location of extraction correspond to the outer region as the simple

RR method where η = y/δ is equal for both the stations. The location of extractions

are similar to Eq. (E.5). The rescaling equations for viscous region is given by:

(US)in = ωuτ (U
S)re. (E.29)
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In the LOG region or the inertial sublayer, the logarithmic law is relevant for turbulent

flows.
U∗∗

uτ
=

1

κ
lny+ + C, (E.30)

where C is a constant, and U∗∗ is the van Driest transformed velocity defined as,

U∗∗ =

∫ U

0

√
Tw
T
dU. (E.31)

The logarithmic region follows a self-similar expression

U∗∗

uτ
= flog(y

+), (E.32)

where flog is a universal function. So when (y+)in = (y+)re, the rescaling equations

for this region is given by,

(U∗∗)in = ωuτ (U
∗∗)re. (E.33)

For the outer layer or the WAKE region, a different kind of similarity law is used

where,
U∗∗e − U∗∗

uτ
= fwake(η), η = y/θ. (E.34)

Here fwake is yet another universal function, with the normalizing constant for η taken

as the momentum thickness (θ). The rescaling equations for this region is given by,

(U∗)in = ωuτ (U
∗
re), U∗ = U∗∗e − U∗∗ =

∫ Ue

U

√
Tw
T
dU. (E.35)

E.2.2 Scaling of wall-normal velocity

An approximation from the mean continuity equation can be made as,

V = −1

ρ

∫ y

0

∂ρU

∂x
dy. (E.36)
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Hence an appropriate scaling for the wall normal velocity is given by,

V

uτ

√
ρ

ρw
= finner(y

+), and
V

uτ

√
ρ

ρw
= fouter(η). (E.37)

Hence the rescaling equations are given by,

(V )in = ωuτωρw

√
(ρ)re
(ρ)in

(V )re, ωρw =

√
(ρw)in
(ρw)re

. (E.38)

E.2.3 Scaling of Turbulence Quantities

The scaling of the turbulence quantities are based on the work of Morkovin [20]

and Bradshaw [2] where a mean-density variation is important in the analysis of

hypersonic turbulent boundary layers. When the velocity fluctuations are normalized

by the inclusion of
√

(ρw/ρ) to the friction velocity, the plots of compressible flows

collapse clearly with the incompressible data. The recycling equations are therefore

given by,

(u′i)in = ωuτωρw

√
(ρ)re
(ρ)in

(u′i)re. (E.39)

The rescaling of the reynolds stresses are based on the scaling factor for velocity

fluctuations given by,

ζ = ωuτωρw

√
(ρ)re
(ρ)in

. (E.40)

The rescaling of the P , ρ, T , k and ε are followed on a similar methodology as

described in section E.1.4 and section E.1.3.

Using Eq .(E.29), (E.33), (E.35) and Eq .(E.39), a composite velocity profile is

constructed using weight functions. The streamwise velocity has 3 distinct layers

whereas the other variables have only 2 distinguished regions where the blending is

necessary. For example, the mean streamwise velocity is computed as:

Uin = U viscB1(y) + U logB2(y) + UwakeB3(y), (E.41)
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and the velocity fluctuations are computed as

u′in = (u′)inner[1−B3(y)] + (u′)outerB3(y). (E.42)

The weight functions are constructed from hyperbolic-tangent functions as

B1(k) =
1

2

{
1− tanh

[
c1

k − ka1

klogs − kvisc

]}
, (E.43)

B2(k) =
1

2

{
tanh

[
c1

k − ka1

klogs − kvisc

]
− tanh

[
c2

k − ka2

kwake − kloge

]}
, (E.44)

B1(k) =
1

2

{
1 + tanh

[
c2

k − ka2

kwake − kloge

]}
, (E.45)

Here, k is the wall coordinate, c1 = 5.1 and c2 = 6.2 are user defined constants which

specify the steepness of the weight functions. It is to be noted that kvisc,klogs,kloge

and kwake are the wall normal indices which denote the different regions inside the

boundary layer, ka1 = (kvisc + klogs)/2 and ka2 = (kloge + kwake)/2 The values of kvisc,

klogs, kloge and kwake are chosen to correspond y+ = 3, y+ = 25, y/δ = 0.4 and

y/δ = 0.8 respectively. Figures E.1a and E.1b show the variation in the value of

weights across the boundary layer in terms of normalized wall normal distances.

(a) Weight function used for simple
RR method (Lund [17])

(b) Weight functions used for modified RR
method
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A comprehensive tabulation of the scaling approaches used in the aforementioned

methods of rescaling is given in Table E.1.

Table E.1. Rescaling equations for flow and turbulence quantities

Variable Simple RR Modified RR

U inner
in = ωuτUre(y

+
in) (US)viscin = ωuτ (U

S)re(y
+
in)

U (U∗∗)login = ωuτ (U
∗∗)re(y

+
in)

U outer
in = ωuτUre(ηin) (U∗)wakein = ωuτ (U

∗)re(ηin)

V V inner
in = Vre(y

+
in) V inner

in = ζVre(y
+
in)

V outer
in = Vre(ηin) V outer

in = ζVre(ηin)

T innerin = fwalz(U
inner
in (y+

in)) T viscin = fwalz(U
visc
in (y+

in))

T T login = fwalz(U
log
in (y+

in))

T outerin = fwalz(U
outer
in (ηin)) Twakein = fwalz(U

wake
in (ηin))

u′, v′,w′ (u′i)
inner
in = ωuτu

′
i,re(y

+
in) (u′i)

inner
in = ζu′i,re(y

+
in)

(u′i)
outer
in = ωuτu

′
i,re(ηin) (u′i)

outer
in = ζu′i,re(ηin)

k kinnerin = ω2
uτkre(y

+
in) kinnerin = ζ2kre(y

+
in)

kouterin = ω2
uτkre(ηin) kouterin = ζ2kre(ηin)

ε εinnerin = ω2
uτ εre(y

+
in) εinnerin = ζ2εre(y

+
in)

εouterin = ω2
uτ εre(ηin) εouterin = ζ2εre(ηin)

ρinnerin = ρre(T
inner, y+

in) ρviscin = ρre(T
visc, y+

in)

ρ ρlogin = ρre(T
log, y+

in)

ρouterin = ρre(T
outer, ηin) ρwakein = ρre(T

wake, ηin)

P P = ρRgT P = ρRgT
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