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ABSTRACT 

Cracking in continuous casting has always been one of the main problems of steel mills. Many 

cracks that occur during solidification are difficult to observe from outside the industrial mold. In 

order to better understand the formation of this defect, compared with the large-scale simulation 

used in the entire industrial process, microsimulation is also essential because The micro-

segregation between dendrites at the solidification front is the one of the causes of crack formation.  

Besides, the cracks are mainly formed between the grain boundaries. A comprehensive study of 

using phase field method to simulate microstructure evolution has been conducted. A variety of 

two-dimensional models based on phase-filed method has been developed in order to simulate 

dendrites growth in continuous casting process.  The basic concepts of phase-field method are 

presented. Among those models, Kobayashi model was first introduced to describe the 

morphology of pure material solidification, in this article, which are pure water and pure iron. In 

order to get closer to the actual situation of continuous casting, a multi-component model was 

introduced to solve the problem. To go a step further, by introducing a series of temperature 

parameters and modifications to a series of terms, the Fe-C binary alloy directional solidification 

model was used to simulate the process of dendrite growth in continuous casting. Furthermore, the 

detailed derivation of the binary alloy solidification model and how to apply the model in open 

source software will also be introduced in this article. The effects of physical parameters such as 

anisotropic strength, temperature gradient and cooling rate on the growth and evolution of the 

dendrite interface were quantitatively analyzed.  Finally, potential improvement of this model, 

optimization to primary cooling section in continuous casting process and various applications of 

the simulation were discussed. 
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 INTRODUCTION 

1.1 Background and Motivation 

Continuous casting (CC) technology has become the most widely used method for casting steel. 

Today, Continuous casting accounts for nearly 90% of the world’s steel production [1]. In general, 

people divide continuous casting into two major parts: primary cooling and secondary cooling. 

Primary cooling consists of the mold region where steel solidification initiates along the external 

perimeter of the molten steel, inclosing it within a thin-walled shell. Secondary cooling is the 

region past the mold in which the steel shell further solidifies. In recent years, engineers devote 

themselves to reducing the formation of defects during the process in order to improve the quality 

and increase the production of steel. The formation of defects in the continuous casting is a very 

complicated process, which is the result of the interaction of heat transfer, mass transfer and stress. 

 

  

Figure 1. Continuous Casting Process [2]. 
 

For example, among the various defects of continuous casting slabs, cracks are one of the 

important defects. According to the statistics, about 50% of various defects in the slab originate 

from slab cracks. The small internal cracks in the slab may be welded in the subsequent rolling 

process, but due to factors such as the quality of the slab and the compression ratio limitation, 
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some internal cracks will remain in the subsequent products, which will affect the product quality 

and cause hidden safety risks. Internal cracks are hard to observe from the appearance of slab and 

it might be costly to take samples from semi-finished products for the sake of keeping steel quality. 

Besides adjusting several industrial parameters like cooling rate, pulling speed, macroscale 

simulation along with microscale simulation becomes a significant and efficient way to help 

predict defects in steel production. Macroscale and microscale simulations both have their 

advantages and limitations. By comprehensively considering the results of the two simulation 

methods, we are more likely to make accurate predictions. 

 

 

Figure 2. Physical phenomena inside both primary and secondary cooling zones [3]. 
 

Microscale simulation and crystal growth are almost inseparable. Through the microscope, people 

will find that crystal growth also has a charm that cannot be ignored. The growth of crystals is 

extremely contrast and random, and it can form very complicated shapes even in a very simple and 

uniform environment. By using phase-field method, it will be possible to simulate complex shape. 

Dendritic structures are commonly seen in solidification of metals and plays an important role in 

the mechanism of internal crack formation. The aim of this project is to develop a model which 

can describe the dendritic pattern formations under different cooling conditions and obtain the 
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crystal parameters in order to help conduct macroscale simulation, or even predict the formation 

of cracks.  

  

 

 

Figure 3. 2D simulation of dendritic growth of a pure substance in a highly undercooled melt [4]. 

 

 
Figure 4. 3D simulation of dendritic growth of a pure substance in a highly undercooled melt [5]. 
 

A few commercial software may have the above-mentioned functions but are extremely expensive. 

Open source software can use phase-field method to simulate dendrite growth to a certain extent, 

but for directional solidification, which is close to actual steel continuous casting situation, is not 

feasible or to be developed. And this is the value of using existing open source software to finally 

achieve simulated directional solidification. This article will introduce step by step from the 

application of the most basic phase field method to a more complex directional solidification 

model. If new features are added to the open source program, the model can still improve the 

morphological accuracy through simple modification. The simulation results were compared with 

the empirical formula results. 
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1.2 Literature Review 

Numerical simulation of microstructure is of great significance to the development and application 

of metal materials, and it is also one of the main development directions of computer application 

in the field of materials science. The main methods of numerical simulation of microstructure are: 

deterministic method, stochastic method and phase field method. Among them, the phase field 

method is a powerful tool for describing the evolution of complex phase interfaces in non-

equilibrium states. It is not necessary to track the complex solid-liquid interface to simulate the 

complex morphology of dendrite growth during metal solidification. With the development of 

various related technologies, the phase field method is currently the international frontier research 

field of solidification simulation. The phase field method is based on the theory of Ginzburg and 

Landau [9]. First of all, differential equations are used to realize the combined effects of diffusion, 

potential energy and thermodynamic driving force, and then the above equations are solved by 

computer programming to obtain the instantaneous state of the research system in time and space. 

The phase field method is a derivative of an interdisciplinary subject, which comprehensively 

utilizes materials science, mathematics and physics, and computer programming. The phase field 

method has become a wide choice for simulating the microstructure evolution during solidification. 

the seminal paper of Alain Karma [6] about dendritic alloy solidification marks a breakthrough 

towards quantitative simulation [7].  

The concept of “phase-field” is from Ryo Kobayashi’s paper [4]. Ryo Kobayashi proposed a 

solution to solve the solidification problem of pure materials in supercooled melts by replacing the 

sharp moving interface with a diffuse interface.  

At the very beginning, Van der Waal [8] has modeled a liquid-gas system by continuous density 

function at the liquid-gas interface. Ginzburg and Landau [9] established a model first using order 

parameters and their gradients. Meanwhile Cahn and Hilliard [10] derived a thermodynamic 

formula that combined thermodynamic properties in the system with diffusion interfaces. However, 

it is quite a short time, only 20 years ago, the concept of diffusion interface was introduced into 

microstructure modeling which becomes the one of the foundations of phase field method. 

The researchers are not satisfied with the theoretical model of the phase field method to simulate 

dendrite morphology, they tried to couple various physical parameters and combined them with 

other disciplines or newly developed method. Wang et al [11] derived the equations appropriate 
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for the adiabatic systems with temperature changes which makes the theoretical model more 

realistic. After that, Alain Karma [5] and Blas Echebarria [12] expanded application of the method 

to simulate microstructural pattern of dilute binary alloy for low speed directional solidification. 

Furthermore, Tomohiro Takaki [13] presented large scale competitive dendritic growth during 

directional solidification of Al–Si alloy. H. Yin, S.D. Felicelli [14] simulated the dendrite growth 

during solidification in the LENS process. And recently, Zhu et al [15] applied adaptive mesh and 

successfully add noise term to the directional solidification model. Phase field method becomes 

increasingly practical and absorbs other new methods to optimize the accuracy of the results.
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 METHODOLOGY 

2.1 Phase Field Method 

There are many kinds of materials used in industry, and most materials are heterogeneous at the 

microscopic level. In material science, their microstructure is composed of grains or phases. 

Different materials have different structure, orientation and chemical composition of their grains 

or phases. Their macroscopic physical and mechanical properties are highly dependent on crystal 

grains or the shape, size and distribution of crystal grains. Therefore, it is extremely important to 

understand the mechanism of microstructure formation and evolution. However, since the 

microstructure evolution is extremely complex and diverse, a large amount of theoretical and 

experimental research is required. Furthermore, the microstructure is essentially a 

thermodynamically unstable structure. The microstructure has no fixed shape, and its chemical 

potential is high. Once the thermodynamic parameters change, the higher driving force will make 

the organization continue to evolve or transform spontaneously. According to people's general 

thinking, it is determined that the evolution of microstructure is to track the continuous evolution 

of the frontier interface. Therefore, a large number of data points are needed in numerical 

simulation. Considering the characteristics of the microstructure listed above, this treatment 

method is undoubtedly undesirable and inefficient. And this indirectly led to the generation of the 

phase field method. The phase field method has become a powerful tool that can be used to 

simulate the evolution of microstructures in a variety of materials, such as solidification, phase 

transformation and grain growth. 

2.1.1 Sharp Interface and Diffuse Interface Model 

It is already mentioned that there are a lot of phase field models applied to different fields of scie-

ntific research. They are all based on a same foundation: diffuse interface model：the interface’s 

properties between phases are continuous changing within a very narrow region (Figure 5a). 

Correspondingly, the sharp interface model only allows the interfaces between phases are infinitely 

sharp (Figure 5b) which means the properties’ value are discontinuous. 
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Figure 5. (a) Diffuse interface. (b) Sharp interface [16]. 
 

The following uses mathematical formulas to explain more specifically. Considering the diffusion-

controlled growth.  There are two phases A and B. According to Fick’s second law, the equations 

for solute concentration in each phase are: 

𝜕𝜕𝑐𝑐𝛼𝛼

𝜕𝜕𝜕𝜕
= 𝐷𝐷𝛼𝛼∇2𝑐𝑐𝛼𝛼 , 𝑓𝑓𝑓𝑓𝑓𝑓 𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎 𝛼𝛼                                                  (1) 

        𝜕𝜕𝑐𝑐
𝛽𝛽

𝜕𝜕𝜕𝜕
= 𝐷𝐷𝛽𝛽∇2𝑐𝑐𝛽𝛽 , 𝑓𝑓𝑓𝑓𝑓𝑓 𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎 𝛽𝛽                                                  (2) 

The flux balance equation that presents solute conservation at the interface is: 

𝑐𝑐𝛼𝛼0 − 𝑐𝑐𝛽𝛽0 = 𝐷𝐷𝛽𝛽 𝜕𝜕𝑐𝑐𝛽𝛽

𝜕𝜕𝑟𝑟
− 𝐷𝐷𝛼𝛼 𝜕𝜕𝑐𝑐𝛼𝛼

𝜕𝜕𝜕𝜕
                                                   (3) 

The chemical potential at the interface should be in equilibrium state: 

𝜇𝜇𝛼𝛼(𝑐𝑐𝛼𝛼0)= 𝜇𝜇𝛽𝛽(𝑐𝑐𝛽𝛽0)                                                              (4) 

𝑐𝑐𝛼𝛼and 𝑐𝑐𝛽𝛽 are the molar concentrations of the solute in the α-phase and the β-phase respectively, 

 𝑐𝑐𝛼𝛼0 and 𝑐𝑐𝛽𝛽0are the molar concentrations at the interface. 𝐷𝐷𝛼𝛼 and 𝐷𝐷𝛽𝛽 are the diffusion coefficients. 

𝜇𝜇𝛼𝛼and  𝜇𝜇𝛽𝛽are the chemical potentials of the solute in the α-phase and the β-phase respectively. 𝑟𝑟 

is the spatial coordinate perpendicular to the interface. From above equations, the sharp interface 
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model requires tracking the location and chemical components of the moving interface between 

the α-phase and the β-phase. Sharp interface model can efficiently solve the problems related to 

one-dimensional system and simple grain morphologies like spherical grains, since it is very easy 

to get the spatial coordinate. When the problem is expanded to two-dimensional complex alloy 

dendrite morphology, the model will be difficult to implement or even unfeasible from a 

mathematical point of view. 

In the diffuse model, the physical meaning of these parameters will not change. In general, instead 

of tracking the moving interface to describe the microstructure, the microstructure is described by 

a set of continuous functions of space and time, which are called phase-field variables. The 

microstructure evolution is defined over the whole system. Resulting it is possible to predict the 

microstructure evolution even it is complicated grain morphology. 

2.1.2 Order Parameter 

In the previous section, phase-field variables were mentioned. Such variables can be related to 

many physicochemical parameters in governing equations to solve the expected practical problems. 

More importantly, it can also be used with a non-conservative quantity called order parameter. The 

actual meaning of this variable depends on the problem to be solved. In solidification problem, it 

can represent the state of substance. Take water for instance, if water is in liquid state, we can set 

order parameter 𝜑𝜑 = 0. If water turns into ice, we can set the order parameter 𝜑𝜑 = 1. By solving 

the governing equations, the value distribution of order parameter 𝜑𝜑 can be presented on a plane 

(Figure 6). In Figure 6, the blue part represents liquid water (𝜑𝜑 = 0), and the red part represents 

ice (𝜑𝜑 = 1). The function of phi is continuous, the value of  𝜑𝜑 varies continuously from 0 and 1at 

the interface between two phases. In Figure 6, a very narrow white curve is used. In this case, 𝜑𝜑 

represents the fraction of solid phase. It should be noted that the threshold of 𝜑𝜑 is not necessarily 

0 and 1. Depending on the selected model, the available values are -1, 0, 1, 2, etc. The common 

points of these values are integers, which helps to divide the boundaries for display. 
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Figure 6. Simulation of formation for snowflake by using phase field method [16]. 
 

 

Figure 7. Directional solidification simulation for Fe-C-Mn alloy by using commercial software 
Micress®. 

 

 𝛾𝛾 ∶ 𝜑𝜑 = 0,𝛼𝛼 − 𝐹𝐹𝐹𝐹:𝜑𝜑 = 1, 𝛾𝛾 − 𝐹𝐹𝐹𝐹: 𝜑𝜑 = 2. 
 

Besides solidification, phase field method is widely used in solid phase transformation. Here will 

briefly introduce the principle of how to achieve this function. When a substance changes from 

one phase to another, the crystal system tends to change accordingly, meaning that the 
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corresponding crystal parameters also change, such as side length of cubic unit cell (Figure 8). Set 

the initial side length of the cubic unit cell to be 𝑎𝑎𝑐𝑐 and three order parameters indicate whether 

the length, width and height of the cube cell have changed. The phase transformation can obtained 

by tracking the value of 𝜂𝜂1, 𝜂𝜂2, 𝜂𝜂3.  

 

 

Figure 8. Three order Parameters are used to distinguish different crystal structures[15].  
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2.2 Pure Material Solidification 

In continuous casting, dendrites grow from the cold mold wall. The thermodynamical environment 

is complicated inside the mold. Hence, a simplified model with only one composition and fixed 

temperature boundary conditions was first introduced to simulate the dendrite growth. There are 

two types of dendrite forms: equilibrium and growth. In equilibrium form, if it is isotropic, crystal 

surface tends to be sphere in order to minimize the surface energy. If there is anisotropy exists, the 

shape tends to become polyhedron. Apparently, dendrites are not equilibrium forms because of the 

complicated shapes which are formed under the surface tension and thermodynamical driving 

force: supercooling or supersaturation. Supercooling is the difference between the theoretical 

crystallization temperature and the actual given crystallization temperature and supersaturation 

refers to the state of supersaturation of a solution. The reason is that the temperature decreases or 

the solute increases or the solvent decreases. However, dendrites growth simulation cannot be 

accomplished by only these two parameters. Anisotropy which greatly affect the growth of 

dendrites should also be included in the solidification model. In this chapter, the pure material 

dendrite growth model will be explained, say Kobayashi model. 

2.2.1 Kobayashi Model 

There are two variables in this model; one is phase field 𝜑𝜑, and the other is temperature field 𝑇𝑇. 

They are both the function of location and time. The phase field variable 𝜑𝜑 is an order parameter 

represents the status of substance. 𝜑𝜑 = 0 means being liquid and 𝜑𝜑 = 1 means being solid. The 

steep layer of 𝜑𝜑, represents the interface, is consists of a series of continuous values between 0 and 

1. Figure 9 shows how phase field variable 𝜑𝜑 is used to describe the shape of dendrites.  
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Figure 9. The solid/liquid interface is expressed by the phase field variable . 
 

The governing equations of 𝜑𝜑 in this model is: 

𝜏𝜏 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= − 𝜕𝜕
𝜕𝜕𝜕𝜕
�𝑊𝑊𝑊𝑊′ 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
� + 𝜕𝜕

𝜕𝜕𝜕𝜕
�𝑊𝑊𝑊𝑊′ 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
� + ∇ ∙ (𝑊𝑊2∇𝜑𝜑) + 𝜑𝜑(1 − 𝜑𝜑)(𝜑𝜑 − 1

2
+ 𝑚𝑚)           (5) 

Equation (5) express the evolution of 𝜑𝜑. Where 𝜏𝜏 is a small positive constant called interface 

relaxation time. The thermodynamical driving force is given by parameter 𝑚𝑚.  

𝑚𝑚 = 𝛼𝛼
𝜋𝜋

arctan[𝛾𝛾(𝑇𝑇𝑒𝑒 − 𝑇𝑇)]                                                        (6) 

𝛼𝛼 and 𝛾𝛾 are positive constant coefficients. 𝑇𝑇𝑒𝑒 represents the equilibrium temperature. Hence, the 

driving force in solidification is proportional to the degree of supercooling. 

In order to take anisotropy into account, interface layer width 𝑊𝑊 is in following form: 

𝑊𝑊 = 𝑊𝑊� [1 + 𝜀𝜀cos (𝑗𝑗𝑗𝑗)]                                                         (7) 

Where 𝑊𝑊�  is the mean value of 𝑊𝑊. 𝜀𝜀 and j are the anisotropy strength and anisotropy mode number 

relatively.  𝜃𝜃 represents the angle between the interface normal direction and the positive direction 

of x axis. 

𝜃𝜃 = arctan (𝜕𝜕𝜕𝜕
𝜕𝜕𝑦𝑦

/ 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

)                                                          (8) 

From conservation law of enthalpy, the evolution equation for temperature field 𝑇𝑇 is: 
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𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= ∇2𝑇𝑇 + 𝐾𝐾 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

                                                             (9) 

𝐾𝐾 in here represents the dimensionless latent heat which is proportional to the latent heat.  

2.2.2 Adjusted equations for programming 

The simulations for dendrite growth are accomplished by using C++based open source software. 

Due to the different advantages and disadvantages of various open source software, the simulations 

shown in this article will use two different software. Their advantages and disadvantages will also 

be described in the corresponding chapters. For pure material solidification, the simulations are 

accomplished by using MOOSE Framework. MOOSE Framework integrates some commonly 

used phase field models, called kernels, such as diffusion kernels and. If the desired simulation is 

developed based on existing kernels, it will be very fast and convenient. But it will be very difficult 

to achieve further development if the equations or initial conditions used beyond the range of 

existing kernels.  

In MOOSE Framework, there is no need to derive the weak form for governing equations. The 

things need to do are getting the residuals ready and divide each term in residuals into the existing 

kernels. 

The residuals and kernels are present below 

𝑅𝑅1 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕⏟

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷

− 1
𝜏𝜏
�− 𝜕𝜕

𝜕𝜕𝜕𝜕
�𝑊𝑊𝑊𝑊′ 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
�� + 1

𝜏𝜏
𝜕𝜕
𝜕𝜕𝜕𝜕
�𝑊𝑊𝑊𝑊′ 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
������������������������

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑖𝑖1

− 1
𝜏𝜏
∇ ∙ (𝑊𝑊2∇𝜑𝜑)���������

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑖𝑖2

−

1
𝜏𝜏
𝜑𝜑(1 − 𝜑𝜑) �𝜑𝜑 − 1

2
+ 𝑚𝑚������������������

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴

]                                                 (10) 

𝑅𝑅1 is the residual derived from equation (5), four kernels called Time Derivative, 

ACinterfaceKobayashi1, ACinterfaceKobayashi2, ACParsed are used in further development. 

𝑅𝑅2 =  𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕⏟

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷

− ∇2𝑇𝑇�
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷

− 𝐾𝐾 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕�

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

                        (11) 

𝑅𝑅2 is the residual derived from equation (8), three kernels called Time Derivative, Diffusion, 

CoefCoupledTimeDerivative are used in further development. 
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2.3 Directional Alloy Solidification 

2.3.1 Directional Alloy Solidification Model 

To make the simulation more accurate, the alloy composition must be incorporated into the 

simulation. Besides, more detailed thermodynamic conditions must also be involved in governing 

equations. Compared with pure material solidification, directional solidification for alloy is much 

more difficult to obtain the same reasonable results. The first reason for the difficulty is that the 

diffusion rate in solid and liquid is significantly different: in liquid phase, the solute diffusion will 

be much faster which will cause nonequilibrium at the interface. Another is the solute trapping 

effect which lead to solute atoms cannot escape solidification front to achieve equilibrium state at 

the interface. 

First, we introduce equations to describe the simplified alloy solidification model, called 

isothermal solidification model: 

𝜏𝜏𝑎𝑎𝑠𝑠2
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝛻𝛻[𝑊𝑊(𝜃𝜃)2𝛻𝛻𝛻𝛻] + 𝜕𝜕
𝜕𝜕𝜕𝜕
�|𝛻𝛻𝜑𝜑2|𝑊𝑊(𝜃𝜃) 𝜕𝜕𝜕𝜕(𝜃𝜃)

𝜕𝜕�𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕�
� + 𝜕𝜕

𝜕𝜕𝜕𝜕
�|𝛻𝛻𝜑𝜑2|𝑊𝑊(𝜃𝜃) 𝜕𝜕𝜕𝜕(𝜃𝜃)

𝜕𝜕�𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕�
� + 𝜑𝜑 − 𝜑𝜑3 −

𝜆𝜆(1 − 𝜑𝜑2)2𝑈𝑈                                                    (12) 

Equation (11) is the evolution equation for phase field variable  𝜑𝜑 . Here,  𝜏𝜏  is the interface 

relaxation time.  

𝜏𝜏 = 𝑎𝑎1𝑎𝑎2𝜉𝜉3𝑑𝑑02

𝐷𝐷𝑙𝑙
                                                              (13) 

In equation (12), 𝑎𝑎1 and 𝑎𝑎2 are constant coefficients.  𝑎𝑎1 = 0.8839, 𝑎𝑎2 = 0.6267, 𝜉𝜉 is the interface 

layer width parameter, 𝑑𝑑0 is the solute capillary length. 𝜆𝜆 is the coupling constant. 

𝑑𝑑0 = Γ
𝑚𝑚𝑙𝑙𝑐𝑐0(𝑘𝑘−1)

                                                           (14) 

Γ is the Gibbs-Thomson coefficient. 𝑚𝑚𝑙𝑙 represents the liquidus slope. 𝑐𝑐0 is the initial concentration 

and 𝑘𝑘  is Solubility partition coefficient.  𝑊𝑊(𝜃𝜃)  is the gradient energy coefficient. 𝑎𝑎𝑠𝑠  is the 

anisotropy term for alloy solidification. 𝜉𝜉 is the interface layer width parameter. 

𝑊𝑊(𝜃𝜃) = 𝑊𝑊 ∙ 𝑎𝑎𝑠𝑠                                                          (15) 
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𝑊𝑊 = 𝜉𝜉 ∙ 𝑑𝑑0                                                              (16) 

𝑎𝑎𝑠𝑠 = 1 + 𝜀𝜀𝑐𝑐𝑐𝑐𝑐𝑐4(𝜃𝜃 − 𝜃𝜃0)                                                    (17) 

As mentioned, 𝜀𝜀 is the anisotropic strength. 𝜃𝜃 is the angle between the normal direction and the 

positive direction of the interface. 𝜃𝜃0 is the initial rotational angle with respect to the simulation 

frame. 

Besides considering the evolution of phase field variable 𝜑𝜑 . The evolution of dimensionless 

supersaturation should also be involved in the model. 

[(1 + 𝑘𝑘) − (1 − 𝑘𝑘)𝜑𝜑] 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝛻𝛻[𝐷𝐷𝐷𝐷(𝜑𝜑)𝛻𝛻𝛻𝛻] + [1 + (1 − 𝑘𝑘)𝑈𝑈] 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

                   (18) 

Equation (16) is the evolution equation for the dimensionless supersaturation variable 𝑈𝑈. And 𝑈𝑈 

has a close relationship with concentration: 

𝑈𝑈 = 𝑐𝑐−𝑐𝑐0
𝑐𝑐0(1−𝑘𝑘)

                                                                  (19) 

𝑞𝑞(𝜑𝜑) in here is to eliminate the effect of different diffusion rates in solid and liquid. 

𝑞𝑞(𝜑𝜑) = (1 − 𝜑𝜑) + 𝑘𝑘(1 + 𝜑𝜑)𝐷𝐷𝑠𝑠/𝐷𝐷𝑙𝑙 

𝐷𝐷𝑠𝑠 and 𝐷𝐷𝑙𝑙 in here represent the solute diffusion coefficient in solid and liquid respectively. 

In order to add the directional solidification effect and eliminate the solute trapping effect. 

Equation (12) and (16) should be rewritten as: 

𝜏𝜏 �1 + 𝐺𝐺𝐺𝐺−𝑅𝑅𝑅𝑅
𝑚𝑚𝑙𝑙𝑐𝑐0

� 𝑎𝑎𝑠𝑠2
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝛻𝛻[𝑎𝑎𝑠𝑠2𝛻𝛻𝛻𝛻] + 𝜕𝜕
𝜕𝜕𝜕𝜕
�|𝛻𝛻𝜑𝜑2|𝑎𝑎𝑠𝑠

𝜕𝜕𝑎𝑎𝑠𝑠
𝜕𝜕�𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕�

� + 𝜕𝜕
𝜕𝜕𝜕𝜕
�|𝛻𝛻𝜑𝜑2|𝑎𝑎𝑠𝑠

𝜕𝜕𝑎𝑎𝑠𝑠
𝜕𝜕�𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕�

� + 𝜑𝜑 − 𝜑𝜑3 −

𝜆𝜆(1 − 𝜑𝜑2)2(𝑈𝑈 − 𝐺𝐺𝐺𝐺−𝑅𝑅𝑅𝑅
𝑚𝑚𝑙𝑙𝑐𝑐0

)                                                    (20) 

[(1 + 𝑘𝑘) − (1 − 𝑘𝑘)𝜑𝜑] 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝛻𝛻[𝐷𝐷𝐷𝐷(𝜑𝜑)𝛻𝛻𝛻𝛻 − 𝑗𝑗𝑎𝑎𝑎𝑎] + [1 + (1 − 𝑘𝑘)𝑈𝑈] 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

                 (21) 

Equation (18) and (19) are the modified equations from isothermal solidification model to simulate 

the directional solidification. Where 𝐺𝐺 is the temperature gradient. 𝑅𝑅 is the cooling rate.  

The temperature field for directional solidification along the y-axis can be described as: 

𝑇𝑇(𝑦𝑦) = 𝑇𝑇0 + 𝐺𝐺(𝑦𝑦 − 𝑉𝑉𝑝𝑝𝑡𝑡)                                                        (22) 
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𝑉𝑉𝑝𝑝 is the pulling speed which equals to 𝑅𝑅/𝐺𝐺. 𝑇𝑇0 is the initial temperature. 

To eliminate the solute trapping effect, the term needs to be proportional to the moving speed at 

the interface which is 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

. Besides it is also related the interface layer width and local concentration 

and served as a function to transport the solute atoms from solid to liquid. Hence, 𝑗𝑗𝑎𝑎𝑎𝑎 is called anti-

trapping term and has following expression: 

𝑗𝑗𝑎𝑎𝑎𝑎 = − 1
√2
𝑊𝑊[1 + (1 − 𝑘𝑘)𝑈𝑈] 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
∇𝜑𝜑

|∇𝜑𝜑|
                                          (23) 

The phase field variable 𝜑𝜑  in directional solidification model is varies from -1 to 1.  𝜑𝜑 = 1 

indicating the solid phase, 𝜑𝜑 = −1 represents the liquid phase. 

2.3.2 Adjusted equations for programming 

The simulation of dendrites directional solidification was accomplished by using PRISMS-PF. 

Compared to MOOSE, PRISMS-PF allow users to customize governing equations and initial 

conditions more freely. This is a significant advantage for handling complicated equations. 

PRISMS-PF requires users to provide weak form for programming.  

Dimensionless Procedure 

In this case, the first step is to change the governing equations to dimensionless type to simplify 

coding and avoid the inaccuracy caused by very small values which means the simulation is scaled 

by the interface layer width 𝑊𝑊  and interface relaxation time 𝜏𝜏. 

Hence, the governing equations become: 

�1 − (1 − 𝑘𝑘) 𝑦𝑦�−𝑉𝑉𝑝𝑝
�𝑡̃𝑡
𝑙𝑙𝑇𝑇�

� 𝑎𝑎𝑠𝑠2
𝜕𝜕𝜕𝜕
𝜕𝜕𝑡̃𝑡

= 𝛻𝛻[𝑎𝑎𝑠𝑠2𝛻𝛻𝛻𝛻] + 𝜕𝜕
𝜕𝜕𝑥𝑥�
�|𝛻𝛻𝜑𝜑2|𝑎𝑎𝑠𝑠

𝜕𝜕𝑎𝑎𝑠𝑠
𝜕𝜕�𝜕𝜕𝜕𝜕𝜕𝜕𝑥𝑥��

� + 𝜕𝜕
𝜕𝜕𝑦𝑦�
�|𝛻𝛻𝜑𝜑2|𝑎𝑎𝑠𝑠

𝜕𝜕𝑎𝑎𝑠𝑠
𝜕𝜕�𝜕𝜕𝜕𝜕𝜕𝜕𝑦𝑦��

� + 𝜑𝜑 − 𝜑𝜑3 −

𝜆𝜆(1 − 𝜑𝜑2)2(𝑈𝑈 + 𝑦𝑦�−𝑉𝑉𝑝𝑝�𝑡̃𝑡
𝑙𝑙𝑇𝑇�

)                                                      (24) 

[(1 + 𝑘𝑘) − (1 − 𝑘𝑘)𝜑𝜑] 𝜕𝜕𝜕𝜕
𝜕𝜕𝑡̃𝑡

= 𝛻𝛻�𝐷𝐷�𝑞𝑞(𝜑𝜑)𝛻𝛻𝛻𝛻 − 𝑗𝑗𝑎𝑎𝑎𝑎� + [1 + (1 − 𝑘𝑘)𝑈𝑈] 𝜕𝜕𝜕𝜕
𝜕𝜕𝑡̃𝑡

                (25) 

An example of detailed derivation of dimensionless equation is attached to the Appendix A. 
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Next step is to use an auxiliary variable 𝜇𝜇𝑎𝑎𝑎𝑎𝑎𝑎 to further simplified the equations.  

�1 − (1 − 𝑘𝑘) 𝑦𝑦�−𝑉𝑉𝑝𝑝
�𝑡̃𝑡
𝑙𝑙𝑇𝑇�

� 𝑎𝑎𝑠𝑠2
𝜕𝜕𝜕𝜕
𝜕𝜕𝑡̃𝑡

= 𝜇𝜇𝑎𝑎𝑎𝑎𝑎𝑎                                            (26) 

[(1 + 𝑘𝑘) − (1 − 𝑘𝑘)𝜑𝜑] 𝜕𝜕𝜕𝜕
𝜕𝜕𝑡̃𝑡

= 𝛻𝛻�𝐷𝐷�𝑞𝑞(𝜑𝜑)𝛻𝛻𝛻𝛻 − 𝑗𝑗𝑎𝑎𝑎𝑎� + [1 + (1 − 𝑘𝑘)𝑈𝑈] 𝜇𝜇𝑎𝑎𝑎𝑎𝑎𝑎

�1−(1−𝑘𝑘)
𝑦𝑦�−𝑉𝑉𝑝𝑝� 𝑡𝑡�

𝑙𝑙𝑇𝑇�
�𝑎𝑎𝑠𝑠2

        (27) 

𝜇𝜇𝑎𝑎𝑎𝑎𝑎𝑎 =  𝛻𝛻(𝑎𝑎𝑠𝑠2𝛻𝛻𝛻𝛻) + 𝜕𝜕
𝜕𝜕𝑥𝑥�
�|𝛻𝛻𝜑𝜑2|𝑎𝑎𝑠𝑠

𝜕𝜕𝑎𝑎𝑠𝑠
𝜕𝜕�𝜕𝜕𝜕𝜕𝜕𝜕𝑥𝑥��

� + 𝜕𝜕
𝜕𝜕𝑦𝑦�
�|𝛻𝛻𝜑𝜑2|𝑎𝑎𝑠𝑠

𝜕𝜕𝑎𝑎𝑠𝑠
𝜕𝜕�𝜕𝜕𝜕𝜕𝜕𝜕𝑦𝑦��

� + 𝜑𝜑 − 𝜑𝜑3 − 𝜆𝜆(1 − 𝜑𝜑2)2(𝑈𝑈 +

𝑦𝑦�−𝑉𝑉𝑝𝑝�𝑡̃𝑡
𝑙𝑙𝑇𝑇�

)                                                         (28) 

Time Discretization 

Considering Euler explicit time stepping, we have the time discretized equations: 

𝜑𝜑𝑛𝑛+1 = 𝜑𝜑𝑛𝑛 + 𝜇𝜇𝑎𝑎𝑎𝑎𝑎𝑎,𝑛𝑛∆𝑡𝑡

�1−(1−𝑘𝑘)
𝑦𝑦�−𝑉𝑉𝑝𝑝� 𝑡𝑡�

𝑙𝑙𝑇𝑇�
�𝑎𝑎𝑠𝑠2

                                           (29) 

𝑈𝑈𝑛𝑛+1 = 𝑈𝑈𝑛𝑛 + ∆𝑡𝑡 �𝛻𝛻[𝐷𝐷�𝑞𝑞(𝜑𝜑)𝛻𝛻𝑈𝑈𝑛𝑛−𝑗𝑗𝑎𝑎𝑎𝑎]
[(1+𝑘𝑘)−(1−𝑘𝑘)𝜑𝜑𝑛𝑛] +  [1+(1−𝑘𝑘)𝑈𝑈]𝜇𝜇𝑎𝑎𝑎𝑎𝑎𝑎,𝑛𝑛

[(1+𝑘𝑘)−(1−𝑘𝑘)𝜑𝜑𝑛𝑛]�1−(1−𝑘𝑘)
𝑦𝑦�−𝑉𝑉𝑝𝑝� 𝑡𝑡�

𝑙𝑙𝑇𝑇�
�𝑎𝑎𝑠𝑠2
�                     (30) 

𝜇𝜇𝑎𝑎𝑎𝑎𝑎𝑎,𝑛𝑛+1 =  𝛻𝛻(𝑎𝑎𝑠𝑠2𝛻𝛻𝛻𝛻) + 𝜕𝜕
𝜕𝜕𝑥𝑥�
�|𝛻𝛻𝜑𝜑2|𝑎𝑎𝑠𝑠

𝜕𝜕𝑎𝑎𝑠𝑠
𝜕𝜕�𝜕𝜕𝜕𝜕𝜕𝜕𝑥𝑥��

� + 𝜕𝜕
𝜕𝜕𝑦𝑦�
�|𝛻𝛻𝜑𝜑2|𝑎𝑎𝑠𝑠

𝜕𝜕𝑎𝑎𝑠𝑠
𝜕𝜕�𝜕𝜕𝜕𝜕𝜕𝜕𝑦𝑦��

� + 𝜑𝜑 − 𝜑𝜑3 −

𝜆𝜆(1 − 𝜑𝜑2)2(𝑈𝑈 + 𝑦𝑦�−𝑉𝑉𝑝𝑝�𝑡̃𝑡
𝑙𝑙𝑇𝑇�

)                                                 (31) 

By using chain rules 𝜕𝜕𝑎𝑎𝑠𝑠
𝜕𝜕�𝜕𝜕𝜕𝜕𝜕𝜕𝑥𝑥��

= 𝜕𝜕𝑎𝑎𝑠𝑠
𝜕𝜕(𝜃𝜃) ∙

𝜕𝜕𝜕𝜕

𝜕𝜕�𝜕𝜕𝜕𝜕𝜕𝜕𝑥𝑥��
, equation (28) can be written more compactly. 

𝜇𝜇𝑎𝑎𝑎𝑎𝑎𝑎,𝑛𝑛+1 =  𝛻𝛻 �(𝑎𝑎𝑠𝑠2
𝜕𝜕𝜑𝜑𝑛𝑛
𝜕𝜕𝑥𝑥�

+ 𝑎𝑎𝑠𝑠𝑎𝑎𝑠𝑠′
𝜕𝜕𝜑𝜑𝑛𝑛
𝜕𝜕𝑦𝑦�

) + (𝑎𝑎𝑠𝑠2
𝜕𝜕𝜑𝜑𝑛𝑛
𝜕𝜕𝑦𝑦�

− 𝑎𝑎𝑠𝑠𝑎𝑎𝑠𝑠′
𝜕𝜕𝜑𝜑𝑛𝑛
𝜕𝜕𝜕𝜕

)� + 𝜑𝜑𝑛𝑛 − 𝜑𝜑𝑛𝑛3 − 𝜆𝜆(1 − 𝜑𝜑𝑛𝑛2)2(𝑈𝑈𝑛𝑛 +

𝑦𝑦�−𝑉𝑉𝑝𝑝�𝑡̃𝑡
𝑙𝑙𝑇𝑇�

)                                                               (32) 

Equation (26), (27) and (29) are going to be used for weak formulation and then convert to code. 
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Weak Formulation 

The advantage of PRISMS-PF is that it simplifies the programming process of the finite element 

method, users do not need to have too much programming knowledge and skills. The weak form 

of the equations is the most important part that users need to input to PRISMS-PF. 

By using Green theorem and divergence theorem. The weak form of equation (26), (27) and (29) 

are: 

∫𝜔𝜔𝜑𝜑𝑛𝑛+1𝑑𝑑𝑑𝑑 = ∫𝜔𝜔�𝜑𝜑𝑛𝑛 + 𝜇𝜇𝑎𝑎𝑎𝑎𝑎𝑎,𝑛𝑛∆𝑡𝑡

�1−(1−𝑘𝑘)
𝑦𝑦�−𝑉𝑉𝑝𝑝� 𝑡𝑡�

𝑙𝑙𝑇𝑇�
�𝑎𝑎𝑠𝑠2
� 𝑑𝑑𝑉𝑉                                  (33)   

∫𝜔𝜔𝑈𝑈𝑛𝑛+1𝑑𝑑𝑉𝑉 = ∫𝜔𝜔 �𝑈𝑈𝑛𝑛 +  [1+(1−𝑘𝑘)𝑈𝑈𝑛𝑛]𝜇𝜇𝑎𝑎𝑎𝑎𝑎𝑎,𝑛𝑛∙∆𝑡𝑡

[(1+𝑘𝑘)−(1−𝑘𝑘)𝜑𝜑𝑛𝑛]�1−(1−𝑘𝑘)
𝑦𝑦�−𝑉𝑉𝑝𝑝� 𝑡𝑡�

𝑙𝑙𝑇𝑇�
�𝑎𝑎𝑠𝑠2
� − ∇𝜔𝜔 �𝛻𝛻[𝐷𝐷�𝑞𝑞(𝜑𝜑)𝛻𝛻𝑈𝑈𝑛𝑛−𝑗𝑗𝑎𝑎𝑎𝑎]∆𝑡𝑡

[(1+𝑘𝑘)−(1−𝑘𝑘)𝜑𝜑𝑛𝑛] � 𝑑𝑑𝑉𝑉  (34) 

∫𝜔𝜔𝜇𝜇𝑎𝑎𝑎𝑎𝑎𝑎,𝑛𝑛+1𝑑𝑑𝑉𝑉 = ∫𝜔𝜔 �𝜑𝜑𝑛𝑛 − 𝜑𝜑𝑛𝑛3 − 𝜆𝜆(1 − 𝜑𝜑𝑛𝑛2)2(𝑈𝑈𝑛𝑛 + 𝑦𝑦�−𝑉𝑉𝑝𝑝�𝑡̃𝑡
𝑙𝑙𝑇𝑇�

)� −𝛻𝛻𝛻𝛻 �(𝑎𝑎𝑠𝑠2
𝜕𝜕𝜑𝜑𝑛𝑛
𝜕𝜕𝑥𝑥�

+ 𝑎𝑎𝑠𝑠𝑎𝑎𝑠𝑠′
𝜕𝜕𝜑𝜑𝑛𝑛
𝜕𝜕𝑦𝑦�

) +

(𝑎𝑎𝑠𝑠2
𝜕𝜕𝜑𝜑𝑛𝑛
𝜕𝜕𝑦𝑦�

− 𝑎𝑎𝑠𝑠𝑎𝑎𝑠𝑠′
𝜕𝜕𝜑𝜑𝑛𝑛
𝜕𝜕𝜕𝜕

)� 𝑑𝑑𝑑𝑑                                                  (35) 

Here, 𝜔𝜔 represents the test function. Equation (30), (31) and (32) are the final form to be converted 

to code.  
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 NUMERICAL SIMULATION SETUPS 

In this part, the simulated objects, parameters, initial conditions and boundary conditions will be 

included.  Some detailed information to obtain the value of parameter is also included. 

3.1 Simulations of Pure Material Solidification 

3.1.1 Materials for Pure Material Solidification 

In Kobayashi model, pure water and pure iron will be simulated to grow dendrites. The physical 

properties and other simulation parameters that used in simulations are shown in Table 1. 

 

Table 1. Physical Parameters of Pure Material Solidification 

Physical parameters Parameter value of water Parameter value of iron 

Interface relaxation time, 𝜏𝜏 0.0003s 0.0003s 

Constant coefficient, 𝛼𝛼 0.9 0.9 

Constant coefficient, 𝛾𝛾 10.0 10.0 

Equilibrium temperature,𝑇𝑇𝑒𝑒 1°C 1539°C 

Mean value of interface width, 𝑊𝑊�  0.01μm 0.01μm 

Anisotropy strength, 𝜀𝜀  0.02 0.02 

Mode number, 𝑗𝑗 6 4 

Dimensionless latent heat, K -1.8 -1.8 
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3.1.2 Mesh and Time Step for Pure Material Solidification 

The computational domain for pure material solidification is a 2D square area. The domain size is 

9.0 μm × 9.0 μm which is same as Kobayashi’s setting. The initial number of elements in x and y 

directions are 14. And the element type is linear element. Due to MOOSE framework uses adaptive 

mesh, there are much finer meshes in dendrite growth region.  The time step for simulations is 

0.0005s. According to Kobayashi [3] and Blas Echebarria [11], the value of time step is small 

enough to obtain accurate and clear results. 

 

 

Figure 10. Mesh for pure water solidification, finer mesh can be clearly seen at the tip and side 
branches region of dendrites. 
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Figure 11. Mesh for pure iron solidification with only one dendrite, finer mesh can be clearly 
seen at the tip and side branches region of dendrites.  
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Figure 12. Mesh for pure iron solidification with multiple dendrites, finer mesh can be clearly 
seen at the tip and side branches region of dendrites. 
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3.1.3 Initial Conditions and Boundary Conditions for Pure Material Solidification 

In MOOSE Framework, it is very intuitive and convenient to defining initial conditions. Users can 

set single nucleus or multiple nuclei to grow dendrites. At the beginning, the nucleus itself is a 

solid, and there is a liquid to be solidified outside the nucleus. Hence, we can set initial conditions 

for phase field variable 𝜑𝜑 as:  

𝑣𝑣(𝑟𝑟)

⎩
⎪
⎪
⎨

⎪
⎪
⎧ 𝑣𝑣𝑖𝑖𝑖𝑖, 𝑓𝑓𝑓𝑓𝑓𝑓 |𝑟𝑟| ≤ 𝑅𝑅0 −

𝑊𝑊
2

𝑣𝑣𝑜𝑜𝑜𝑜𝑜𝑜 +
1
2

(𝑣𝑣𝑖𝑖𝑖𝑖 − 𝑣𝑣𝑜𝑜𝑢𝑢𝑢𝑢)[1.0 + cos�𝜋𝜋
|𝑟𝑟|����⃗ − 𝑅𝑅 + 𝑊𝑊

2
𝑊𝑊 �

𝑣𝑣𝑜𝑜𝑜𝑜𝑜𝑜 , 𝑓𝑓𝑓𝑓𝑓𝑓 |𝑟𝑟| ≥ 𝑅𝑅0 +
𝑊𝑊
2

, 𝑓𝑓𝑓𝑓𝑓𝑓 𝑅𝑅0 −
𝑊𝑊
2
≤ |𝑟𝑟| ≤ 𝑅𝑅0 +

𝑊𝑊
2

  

Here, r represents the displacement of the current location to the center of the nucleus. 𝑣𝑣𝑖𝑖𝑖𝑖 is the 

value of the phase field variable inside the nucleus. 𝑣𝑣𝑜𝑜𝑜𝑜𝑜𝑜 is the value outside the nucleus. 𝑅𝑅0 in 

here is the initial radius of nucleus. 𝑊𝑊 is the interface width. This cosine profile initial conditions 

allows phase field variable varies continuously from 0 to 1 at the interface.
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Figure 13. Initial conditions of phase field variable  in pure water solidification. The red dot at 
the center is the nucleus of which the initial value is 1. 
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Figure 14. Initial conditions of phase field variable 𝜑𝜑 in pure iron solidification. (a)The red dot at 
the bottom center is the nucleus of which the initial value is 1. (b) The three red dots at the 

bottom is the nucleus of which the initial value is 1.
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For pure water solidification, Neumann boundary conditions are used for temperature field and 

phase field in the computational domain: 

�

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 0

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 0
 

For pure iron solidification, Neumann boundary condition is used for phase field and Dirichlet 

boundary condition is used for temperature field at the bottom in the computational domain: 

�

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 0

𝑇𝑇𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 1539°C
 

 

Figure 15. Boundary conditions of pure iron solidifications. Bottom temperature is 1537°C. The 
upper boundary value of temperature can be seen in the color bar on the right. 
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3.2 Simulations of Alloy Directional Solidification 

3.2.1 Materials for Directional Alloy Solidification 

In directional solidification model, low carbon steel (0.13%C) will be simulated to grow dendrites. 

The carbon contents of steel and major physical properties of steel were obtained from Won Y.M, 

and Thomas B.G’s paper [18]. The physical properties and other simulation parameters that used 

in simulations are shown in Table 2. 

 

Table 2. Physical Parameters of Directional Alloy Solidification 

Physical parameters Parameter value 

Solute diffusion coefficient in solid, 𝐷𝐷𝑠𝑠 8.92 × 10−12𝑚𝑚2/𝑠𝑠 

Solute diffusion coefficient in liquid, 𝐷𝐷𝑙𝑙 5.66 × 10−9𝑚𝑚2/𝑠𝑠 

Initial liquid temperature, 𝑇𝑇0 1808.15K 

Gibbs-Thomson coefficient, Γ 5.39 × 10−7𝑚𝑚2 ∙ 𝐾𝐾 

Liquidus slope, 𝑚𝑚𝑙𝑙 -78.0 K/wt.% 

The initial concentration, 𝑐𝑐0 0.13 wt.% 

Temperature gradient, 𝐺𝐺. 3700 K/m 

Cooling rate, 𝑅𝑅 0.045 K/s 

Pulling speed, 𝑉𝑉𝑝𝑝 1.22 × 10−5𝑚𝑚/𝑠𝑠 

Solubility partition coefficient, 𝑘𝑘 0.19 

Interface width parameter, 𝜉𝜉 40 

Anisotropy strength, 𝜀𝜀 0.02 
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3.2.2 Mesh and Time Step for Directional Alloy Solidification 

The computational domain for directional alloy solidification is a 2D 500 × 500 square area. The 

initial number of elements in x and y directions are 18. And the element type is cubic element. 

PRISMS also uses adaptive mesh which can generate finer meshes in dendrite growth region.  The 

time step for simulations is 0.01. The length and time in this simulation are scaled by 𝑊𝑊 and 𝜏𝜏. 

The computational domain can accommodate up to three dendrites for competitive growth. 

Therefore, the simulation which has random nucleus location will be repeated many times to 

improve the credibility of the results. 

 

 

Figure 16. An example of mesh for directional alloy solidification. 
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3.2.3 Initial Conditions and Boundary Conditions for Directional Alloy Solidification 

The directional solidification simulation has two variables need to be iterated. One is 

dimensionless supersaturation 𝑈𝑈 , the other is phase field variable 𝜑𝜑.  For dimensionless 

supersaturation, according to Karma [5]’s paper, the initial value is -0.55. For phase field variable 

𝜑𝜑, it varies from -1 to 1 in the directional solidification. Hence, the tanh profile was used to 

describe the initial conditions of  𝜑𝜑: 

𝑣𝑣(𝑟𝑟) = �1 − tanh
(|𝑟𝑟| − 𝑅𝑅0)

√2
� − 1 

In directional solidification, temperature gradient and cooling rate were taken into consideration. 

Hence, there is no need to apply Dirichlet boundary conditions. Neumann boundary conditions 

were applied to whole computational domain: 

�
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 0
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 0
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 RESULTS AND DISCUSSIONS 

In this section, the results of a series of solidifications and the results of directional solidification 

will be shown.  

The simulation of pure material solidification is one of the initial attempts of the phase field method. 

It focuses more on how to successfully simulate the complex morphology of dendrites, so the 

results of its physical parameters will be less accurate. Considering this situation, the simulation 

of pure material solidification will proceed parametric study and will be validated with literature 

from Kobayshi Ryo [3].  

The simulation of directional solidification. The directional solidification simulation considers 

more physical and thermodynamic effects. Therefore, it can obtain more accurate crystal 

parameters. Parametric studies will also be conducted. The result will be validated with empirical 

formula and data from literatures.  
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4.1 Results of Pure Material Solidification 

4.1.1 Simulation Results 

The results of pure material solidification that used the simulation parameters listed in Table.1 

were shown below.  

 

 

Figure 17. Result of phase field variable 𝜑𝜑 for pure water solidification. 

 

The snowflake pattern in the center is the crystal dendrites of water. The crystal dendrites fully 

conform to the previously setting of mode number which equals to 6 and the primary dendrites 

grow along six directions spaced 60 degrees apart. Because the MOOSE framework has the setting 

of adding noise term, the secondary dendrites which are the side branches of the 6 primary 

dendrites can also be seen clearly from Figure 18. 
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Figure 18. Result of temperature field 𝑇𝑇 for pure water solidification. 
 

The result of temperature field shows the temperature inside the crystal is about 0 °C. The 

temperature range at the interface is 0.4 °C to 0.6 °C which can be further solidified. The 

temperature of the melt environment is equal to 1.1 due to the heat released by the solidification 

of the crystal. 
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Figure 19. Result of phase field variable 𝜑𝜑 for pure iron solidification with single dendrite. 

 

For pure iron solidification, nucleus grow from the bottom with initial temperature at 1537 °C 

which represents the cold mold wall in continuous casting process. Primary and secondary 

dendrites also formed successfully in this case. 
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Figure 20. Result of temperature field 𝑇𝑇 for pure water solidification with single dendrite. 

 

The temperature of dendrites is about 900 °C to 1000 °C. And the temperature range at the interface 

is 1100 °C to 1200°C which can be further solidified. Due to the limitation of visualization tool, 

the highest temperature in the melt environment can only be accurate to the hundred which means 

the highest temperature is between 1500 °C and 1600 °C. 
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Figure 21. Result of phase field variable 𝜑𝜑 for pure iron solidification with multiple dendrites. 

 
By adding more nuclei to grow from the bottom cold wall. Dendrites will grow competitively 

resulting dendrites tend to form longer secondary dendrites. 
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Figure 22. Result of temperature field 𝑇𝑇 for pure water solidification with multiple dendrites. 

 
Temperature field for multiple dendrites in pure iron solidification is similar to the case of single 

dendrite. The Kobayashi model is a successful attempt to simulate complex dendrite morphology 

using the phase field method. However, due to its limitations, it does not include more detailed 

material properties and heat transfer models corresponding to the coupling. It pays more attention 

to the evolution of complex morphology during dendrite growth, so its temperature field results 

are not accurate. In this simulation, the pure substances are almost fixed temperature for different 

state. It does not take into account heat conduction and heat convection, and this is unreasonable 

in actual industrial production. In the process of production, there is a very important parameter 

called primary dendrite arm spacing (PDAS) and secondary dendrite arm spacing (SDAS) in 

unidirectional solidification. During the solidification process, primary dendrites grow out of the 

condensation nucleus, secondary dendrites grow from the primary dendrites and form the side 

branches. The PDAS is the distance between two adjacent primary dendrites and the SDAS is the 

distance between two adjacent secondary dendrites. Generally speaking, small dendrite spacings 
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will make the mechanical properties of the material better. And the degree of influence is greater 

than the effect of grain size on mechanical properties. This is also one of the reasons why micro-

simulation is now valued. The Kobayashi model does not consider directional solidification, so it 

is meaningless to discuss the dendrite arm spacing in this section. The results of this important 

parameter will be discussed in later sections. 

4.1.2 Parametric Study 

In this section, parametric study will focus on dimensionless latent K and anisotropy strength 𝜀𝜀. 

Different anisotropy strength and dimensionless latent heat will be used to conduct parametric 

study to explore its impact on the simulation and will be validated with literature. 

Anisotropy Strength 𝜺𝜺 

Five different anisotropy strength were selected to conduct parametric study of pure iron 

solidification at fixed dimensionless latent heat K= 2.0 according the Kobayashi’s paper [3]. The 

following pictures are the result of different anisotropic strength. Anisotropic strength is a 

simulation parameter and does not have too many physical connections with other parameters. It 

only affects the growth pattern of dendritic branches. For 𝜀𝜀 = 0.000, dendrites tend to form 

viscous fingering shape. For 𝜀𝜀 = 0.005, isotropic and dendritic features can be seen from crystal 

shapes, viscous finger-like structure is still existing on the side branches. For 𝜀𝜀 = 0.010 ~ 0.050, 

the results in this interval are very close to the actual metal crystal morphology. By comparing the 

dendrite morphology of the actual metal crystal under the scanning electron microscope, the most 

suitable anisotropic strength can be obtained for simulation. For a specific material, the optimal 

anisotropy strength used for simulation is a fixed value. From Figure 24, the side branches 

dendrites tend to grow perpendicularly. This corresponds to the situation where 𝜀𝜀 equals to 0.020 

~0.050.  Hence, the values of the anisotropic strength (𝜀𝜀 = 0.020) selected in this paper are 

reasonable
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Figure 23. Columnar dendrites and equiaxed dendrites in the sample taken from steel billet (left) 
and a schematic picture of an ideal columnar dendrite (right) [30] 

1:PDAS 2:SDAS
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Figure 24. Result of anisotropy strength 𝜀𝜀 = 0.000
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Figure 25. Result of anisotropy strength 𝜀𝜀 = 0.005 
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Figure 26. Result of anisotropy strength 𝜀𝜀 = 0.010 



 

55 

 

Figure 27. Result of anisotropy strength 𝜀𝜀 = 0.020 
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Figure 28. Result of anisotropy strength 𝜀𝜀 = 0.050
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Dimensionless Latent Heat K 

Similarly, five different dimensionless latent heat were selected to conduct parametric study of 

pure water solidification at fixed dimensionless anisotropy strength 𝜀𝜀 = 0.040  according the 

Kobayashi’s paper [3]. The energy released during the solidification process is latent heat, so it 

determines whether the condensation nucleus can form dendrites. The following pictures are the 

result of different dimensionless latent heat. According to the results, the dimensionless latent heat 

K needs to be greater than 1.6 to form a reasonable dendrite morphology.  

 

 

Figure 29. Result of dimensionless latent heat 𝐾𝐾 = 0.8 
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Figure 30. Result of dimensionless latent heat 𝐾𝐾 = 1.0 
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Figure 31. Result of dimensionless latent heat 𝐾𝐾 = 1.2 
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Figure 32. Result of dimensionless latent heat 𝐾𝐾 = 1.6 
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Figure 33. Result of dimensionless latent heat 𝐾𝐾 = 2.0 
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4.1.3 Validation 

The results of parametric study were validated with the results from Kobayashi’s paper [3].  

Figure 34 shows the comparison of the results at different anisotropy strength 𝜀𝜀. The results on the 

right are Kobayashi’s result in 1992. For the first simulation, where 𝜀𝜀 = 0.000, it is in perfect 

isotropic growth condition. The tip will split as the crystal grows. For 𝜀𝜀 = 0.005, the crystal 

structure has the features of both isotropic and dendritic structure. When 𝜀𝜀 = 0.010, the result 

shows the typical dendritic structure. The formation of side branches can be seen at the primary 

dendrite in the middle. For 𝜀𝜀 = 0.020, the simulation result on the left is not so consistent with the 

results on the right. This may be because when the anisotropic intensity is greater than 0.02, the 

dendrite morphology becomes complicated. For complex shapes, MOOSE needs more computing 

time to obtain the next simulation results. In the process of operation, some reasonable results in 

Kobayashi code may be ignored by MOOSE due to the large errors, resulting small shorter PDAS 

and SDAS in the left simulation results. But it has the features of dendrites tend to grow 

perpendicularly. For 𝜀𝜀 = 0.050, compared to 𝜀𝜀 = 0.020, competition between dendrites is clearly 

shown from the left result. And the side branches are longer than previous one. It is very clear that 

the side branch structure has highly dependency on anisotropy strength. 

Figure 35 shows the comparison of the results at different dimensionless latent heat 𝐾𝐾. For the 

results using different values of K, the results are very consistent with the results of Kobayashi. 

For 𝐾𝐾 = 0.8, the crystal structure tends to be convex. But as K increases, such tendency will 

disappear. For 𝐾𝐾 = 1.0, the crystal has a tendency to grow in six directions. For 𝐾𝐾 = 1.2,  coarse 

snowflake pattern can be seen, and there are signs of dendrites on both sides of the tip. For 𝐾𝐾 =

1.6, the crystal shows the side branch structure. As dimensionless latent heat 𝐾𝐾 increases, the side 

branches will become thinner. At 𝐾𝐾 = 2.0, we can get a typical snowflake pattern for pure water 

solidification.
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Figure 34.  Comparison between results at different anisotropy strength 𝜀𝜀 . 
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Figure 35. Comparison between results at different dimensionless latent heat 𝐾𝐾.
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4.2 Results of Directional Alloy Solidification 

4.2.1 Simulation results 

The 500 × 500 computational domain can accommodate up to three dendrites for competitive 

growth. Therefore, three typical repetitive simulations were conducted in order to improve 

accuracy and credibility of results. The results are shown below. The PDAS are measured by using 

visualization tool Paraview. 

 

 

Figure 36. simulation #1 of directional alloy solidification. 
 

The primary dendrite arm spacings (PDAS) in this simulation are 213.57 and 249.26. 
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Figure 37. simulation #2 of directional alloy solidification. 
 

The primary dendrite arm spacings (PDAS) in this simulation are 150.87 and 295.14. 
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Figure 38. simulation #3 of directional alloy solidification. 
 

The primary dendrite arm spacings (PDAS) in this simulation are 225.70 and 151.91. 

4.2.2 Parametric Study 

In this section, parametric study will focus on temperature gradient 𝐺𝐺 and cooling rate 𝑅𝑅 which 

closely related to steel continuous casting process. 

Temperature Gradient 

All the parameters except temperature gradient 𝐺𝐺 are fixed and 𝐺𝐺 is increasing gradually from 

3700K/m. 
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Figure 39. Result of temperature gradient 𝐺𝐺 = 3700𝐾𝐾/𝑚𝑚 
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Figure 40. Result of temperature gradient 𝐺𝐺 = 3800𝐾𝐾/𝑚𝑚 
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Figure 41. Result of temperature gradient 𝐺𝐺 = 3900𝐾𝐾/𝑚𝑚 
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Figure 42. Result of temperature gradient 𝐺𝐺 = 4000𝐾𝐾/𝑚𝑚 
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Figure 43. Result of temperature gradient 𝐺𝐺 = 4100𝐾𝐾/𝑚𝑚 
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Cooling Rate 

All the parameters except cooling rate 𝑅𝑅 are fixed and 𝑅𝑅 is increasing gradually from 0.045K/m. 

 

 

Figure 44. Result of cooling rate 𝑅𝑅 = 0.045𝐾𝐾/𝑠𝑠 
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Figure 45. Result of cooling rate 𝑅𝑅 = 0.050𝐾𝐾/𝑠𝑠 
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Figure 46. Result of cooling rate 𝑅𝑅 = 0.055𝐾𝐾/𝑠𝑠 
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Figure 47. Result of cooling rate 𝑅𝑅 = 0.060𝐾𝐾/𝑠𝑠 
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Figure 48. Result of cooling rate 𝑅𝑅 = 0.065𝐾𝐾/𝑠𝑠 

 

In the continuous casting process, process parameters will affect the size and morphology of 

primary dendrite arm spacing (PDAS), secondary dendrite arm spacing (SDAS) and primary 

dendrite arm aspect ratio. The continuous casting process parameters include supercooling, 

secondary cooling specific water volume, pulling speed, electromagnetic stirring, etc. And at the 

same time, Carbon content and other factors will also affect the primary dendrite spacing, 

secondary dendrite spacing and primary dendrite arm aspect ratio. It has been proved that as the 

cooling rate and temperature gradient increase, the PDAS will gradually decrease. As the cooling 

rate and temperature gradient increase, the primary dendrite arm spacing will gradually decrease. 

The simulation results basically conform to this law. 
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4.2.3 Validation 

From simulation results in section 4.2.1. Mean value of PDAS can be obtained: 

 

 

Figure 49. PDAS in simulation #1
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Figure 50. PDAS in simulation #2
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Figure 51. PDAS in simulation #3 

 

𝜆𝜆1��� =
213.57 + 249.26 + 150.87 + 295.14 + 225.70 + 151.91

6
= 214.41 

The length in the directional alloy simulation was scaled by interface layer width 𝑊𝑊. Hence, the 

value of PDAS in SI unit is: 

𝜆𝜆1��� × 𝑊𝑊 = 𝜆𝜆1��� × 𝜉𝜉𝑑𝑑0 = 𝜆𝜆1��� ×
ξΓ

𝑚𝑚𝑙𝑙𝑐𝑐0(𝑘𝑘 − 1)
= 5.63 × 10−4𝑚𝑚 = 563𝜇𝜇𝜇𝜇 
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According to Won Y.M and Thomas B.G’s paper [17], their measured PDAS for unidirectionally 

solidified crystal is 360 𝜇𝜇𝜇𝜇. Besides, their empirical formula [18] for low carbon steel to determine 

the PDAS is: 

𝜆𝜆1 = 278.748 × 𝑅𝑅−2.06277638 × 𝑐𝑐0
−0.316225+2.0325𝑐𝑐0                         (36) 

Here, 𝑅𝑅 is the cooling rate and 𝑐𝑐0 is the initial carbon concentration. By using the parameter values 

from Table 2. PDAS can be calculated as: 

𝜆𝜆1 = 278.748 × 0.045−2.06277638 × 0.13−0.316225+2.0325×0.13 = 587.62𝜇𝜇𝜇𝜇 

The deviation between the simulated value and the calculated value is: 

563 − 587.62
587.62

× 100% = −4.19% 

For the model that only considers part of the continuous casting process parameters, the degree of 

deviation is acceptable. 
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4.3 Discussions 

The models provided in this article is a prototype of the phase field method developed using finite 

element software. It has the basic functions of showing the evolution of microscopic morphology, 

roughly showing the temperature field distribution and obtaining dendrite structure parameters. 

These functions can help to carry out or verify the macro simulation. Through the combination of 

these basic functions and experiments, researchers can accumulate experimental data to form a 

database of microstructures to further accurately predict or directly provide related crystal 

parameters.  

Due to the complexity of the equations used in the phase field method, the method used in this 

article to classify the equations in the code to achieve modularity. This also means that this code 

has the potential for subsequent development. For example, for the directional solidification of the 

alloy, the morphology of the secondary dendrites cannot be well displayed due to the absence of 

noise term. When open source software provides this function, the function can be easily added to 

the code to get a better morphology. And accurate microstructure morphology can be applied to 

particle entrapment in industry. 

 In addition to being used in continuous casting of steel, many emerging technologies are now also 

used in industry. The model has been shown to simulate the evolution of microstructure in these 

emerging technologies by coupling a series of governing equations. For example, laser 

manufacturing technology and additive manufacturing technology. Simulation of microstructures 

helps researchers and engineers predict or even directly design the function of materials. 
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 CONCLUSION 

Simple analytical models of pure material solidification and directional alloy solidification based 

on phase field method have been developed, which involves the effect of anti-trapping and 

difference of diffusion rate in solid and liquid. 

The results of pure material solidification have highly dependence on anisotropy strength and 

dimensionless latent heat. The anisotropic strength determines the crystal growth mode and the 

features of dendrites. Dimensionless latent heat determines whether the crystal can branch to grow. 

High anisotropy strength and dimensionless latent will make the crystal tend to grow more primary 

dendrites, secondary dendrites and even tertiary dendrites, resulting complicated shapes of crystal. 

From the results of parametric study, it can be seen that the values of 𝜀𝜀 = 0.02 and 𝐾𝐾 = 1.8 set by 

the simulations are also relatively reasonable. 

The results of directional alloy solidification are reasonable with deviation equals to -4.19%. With 

the change of temperature gradient and cooling rate, the change of PDAS conforms to the rule 

obtained in the experiments. 

The simple model presented here can be effectively integrated into macro simulations, for example 

to help simulate the mushy zone in primary cooling section. 
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APPENDIX A. EXAMPLE OF DIMENSIONLESS PROCEDURE 

Original Equation (SI Units): 

𝜏𝜏0 �1 + 𝐺𝐺𝐺𝐺−𝑅𝑅𝑅𝑅
𝑚𝑚𝑙𝑙𝑐𝑐0

� 𝑎𝑎𝑠𝑠2
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝛻𝛻[𝑎𝑎𝑠𝑠2𝛻𝛻𝛻𝛻] + 𝜕𝜕
𝜕𝜕𝜕𝜕
�|𝛻𝛻𝜑𝜑2|𝑎𝑎𝑠𝑠

𝜕𝜕𝑎𝑎𝑠𝑠
𝜕𝜕�𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕�

� + 𝜕𝜕
𝜕𝜕𝜕𝜕
�|𝛻𝛻𝜑𝜑2|𝑎𝑎𝑠𝑠

𝜕𝜕𝑎𝑎𝑠𝑠
𝜕𝜕�𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕�

� + 𝜑𝜑 − 𝜑𝜑3 −

𝜆𝜆(1 − 𝜑𝜑2)2(𝑈𝑈 − 𝐺𝐺𝐺𝐺−𝑅𝑅𝑅𝑅
𝑚𝑚𝑚𝑚𝑐𝑐0

) 

Dimensionless Equation: 

�1 − (1 − 𝑘𝑘) 𝑦𝑦−𝑉𝑉𝑝𝑝𝑡𝑡
𝑙𝑙𝑇𝑇

� 𝑎𝑎𝑠𝑠2
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝛻𝛻[𝑎𝑎𝑠𝑠2𝛻𝛻𝛻𝛻] + 𝜕𝜕
𝜕𝜕𝜕𝜕
�|𝛻𝛻𝜑𝜑2|𝑎𝑎𝑠𝑠

𝜕𝜕𝑎𝑎𝑠𝑠
𝜕𝜕�𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕�

� + 𝜕𝜕
𝜕𝜕𝜕𝜕
�|𝛻𝛻𝜑𝜑2|𝑎𝑎𝑠𝑠

𝜕𝜕𝑎𝑎𝑠𝑠
𝜕𝜕�𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕�

� + 𝜑𝜑 − 𝜑𝜑3 −

𝜆𝜆(1 − 𝜑𝜑2)2(𝑈𝑈 + 𝑦𝑦−𝑉𝑉𝑝𝑝𝑡𝑡
𝑙𝑙𝑇𝑇

) 

The dimensionlee equation is derived from original equation in SI units. Here the LHS of original 

equation is taken as an example to carry out the dimensionless procedure. 

First,  we define the dimesionless parameter: 

⎩
⎪
⎪
⎨

⎪
⎪
⎧ 𝑡̃𝑡 =

𝑡𝑡
𝜏𝜏

𝑉𝑉𝑝𝑝� =
𝑉𝑉𝑝𝑝𝜏𝜏
𝑊𝑊

=
𝑅𝑅𝑅𝑅
𝐺𝐺𝑊𝑊

𝑦𝑦� =
𝑦𝑦
𝑊𝑊

𝑙𝑙𝑇𝑇� =
𝑙𝑙𝑇𝑇
𝑊𝑊

=
|𝑚𝑚|𝑐𝑐0(1 − 𝑘𝑘)

𝐺𝐺𝐺𝐺
 

 

𝜏𝜏 �1 + 𝐺𝐺𝐺𝐺−𝑅𝑅𝑅𝑅
𝑚𝑚𝑙𝑙𝑐𝑐0
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𝜕𝜕𝜕𝜕
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𝑚𝑚𝑙𝑙𝑐𝑐0

� 𝑎𝑎𝑠𝑠2
𝜕𝜕𝜕𝜕
𝜕𝜕𝑡̃𝑡

= �1 +
𝑦𝑦−𝑅𝑅𝐺𝐺𝑡𝑡
𝑚𝑚𝑙𝑙𝑐𝑐0
𝐺𝐺
� 𝑎𝑎𝑠𝑠2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑡̃𝑡

 

= �1 − (1 − 𝑘𝑘) 𝑦𝑦−𝑉𝑉𝑝𝑝𝑡𝑡
𝑚𝑚𝑙𝑙𝑐𝑐0(1−𝑘𝑘)

𝐺𝐺

� 𝑎𝑎𝑠𝑠2
𝜕𝜕𝜕𝜕
𝜕𝜕𝑡̃𝑡
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𝑙𝑙𝑡𝑡∗�𝑊𝑊
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𝜕𝜕𝜕𝜕
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85 

APPENDIX B. CODE FOR PURE MATERIAL SOLIDIFICATION 

1. Simulation execution file for pure water solidification： 

[Mesh] 

  type = GeneratedMesh 

  dim = 2 

  nx = 14 

  ny = 14 

  xmax = 9 

  ymax = 9 

  uniform_refine = 3 

[] 

 

[Variables] 

  [./phi] 

  [../] 

  [./T] 

  [../] 

[] 

 

[ICs] 

  [./phiIC] 
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    type = SmoothCircleIC 

    variable = phi 

    int_width = 0.1 

    x1 =  4.5 

    y1 = 0 

    radii = 0.07 

    outvalue = 0 

    invalue = 1 

  [../] 

[] 

 

[Kernels] 

  [./phi_dot] 

    type = TimeDerivative 

    variable = phi 

  [../] 

  [./anisoACinterface1] 

    type = ACInterfaceKobayashi1 

    variable = phi 

    mob_name = M 

  [../] 

  [./anisoACinterface2] 

    type = ACInterfaceKobayashi2 
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    variable = phi 

    mob_name = M 

  [../] 

  [./AllenCahn] 

    type = AllenCahn 

    variable = phi 

    mob_name = M 

    f_name = fbulk 

    args = T 

  [../] 

  [./T_dot] 

    type = TimeDerivative 

    variable = T 

  [../] 

  [./CoefDiffusion] 

    type = Diffusion 

    variable = T 

  [../] 

  [./phi_dot_T] 

    type = CoefCoupledTimeDerivative 

    variable = T 

    v = phi 

    coef = -1.8 
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  [../] 

[] 

 

[Materials] 

  [./free_energy] 

    type = DerivativeParsedMaterial 

    f_name = fbulk 

    args = 'phi T' 

    constant_names = pi 

    constant_expressions = 4*atan(1) 

    function = 'm:=0.9 * atan(10 * (0 - T)) / pi; 1/4*w^4 - (1/2 - m/3) * w^3 + (1/4 - m/2) * w^2' 

    derivative_order = 2 

    outputs = exodus 

  [../] 

  [./material] 

    type = InterfaceOrientationMaterial 

    op = phi 

    mode_number = 6 

  [../] 

  [./consts] 

    type = GenericConstantMaterial 

    prop_names  = 'M' 

    prop_values = '3333.333' 
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  [../] 

[] 

 

[Preconditioning] 

  [./SMP] 

    type = SMP 

    full = true 

  [../] 

[] 

 

[Executioner] 

  type = Transient 

  scheme = bdf2 

  solve_type = PJFNK 

  petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart' 

  petsc_options_value = 'hypre    boomeramg      31' 

 

  nl_abs_tol = 1e-10 

  nl_rel_tol = 1e-08 

  l_max_its = 30 

 

  end_time = 1 
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  [./TimeStepper] 

    type = IterationAdaptiveDT 

    optimal_iterations = 6 

    iteration_window = 2 

    dt = 0.0005 

    growth_factor = 1.1 

    cutback_factor = 0.75 

  [../] 

  [./Adaptivity] 

    initial_adaptivity = 3 # Number of times mesh is adapted to initial condition 

    refine_fraction = 0.7 # Fraction of high error that will be refined 

    coarsen_fraction = 0.1 # Fraction of low error that will coarsened 

    max_h_level = 5 # Max number of refinements used, starting from initial mesh (before uniform 

refinement) 

    weight_names = 'w T' 

    weight_values = '1 0.5' 

  [../] 

[] 

 

[Outputs] 

  interval = 5 

  exodus = true 

[] 
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2. Simulation execution file for pure iron solidification: 

[Mesh] 

  type = GeneratedMesh 

  dim = 2 

  nx = 14 

  ny = 14 

  xmax = 9 

  ymax = 9 

  uniform_refine = 3 

[] 

 

[Variables] 

  [./phi] 

  [../] 

  [./T] 

  [../] 

[] 

 

[ICs] 

  [./phiIC] 

    type = SpecifiedSmoothCircleIC 

    variable = phi 

    int_width = 0.1 
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    x_positions = '1 4.5 7.5' 

    y_positions = '0 0 0' 

    z_positions = '0 0 0' 

    radii = '0.05 0.07 0.10' 

    outvalue = 0 

    invalue = 1 

  [../] 

[] 

 

[BCs] 

  [./bottom_T] 

    type = DirichletBC 

    variable = T 

boundary = 0 

value = 1539 

  [../] 

[] 

 

 

[Kernels] 

  [./phi_dot] 

    type = TimeDerivative 

    variable = phi 
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  [../] 

  [./anisoACinterface1] 

    type = ACInterfaceKobayashi1 

    variable = phi 

    mob_name = M 

  [../] 

  [./anisoACinterface2] 

    type = ACInterfaceKobayashi2 

    variable = phi 

    mob_name = M 

  [../] 

  [./AllenCahn] 

    type = AllenCahn 

    variable = phi 

    mob_name = M 

    f_name = fbulk 

    args = T 

  [../] 

  [./T_dot] 

    type = TimeDerivative 

    variable = T 

  [../] 

  [./CoefDiffusion] 
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    type = Diffusion 

    variable = T 

  [../] 

  [./phi_dot_T] 

    type = CoefCoupledTimeDerivative 

    variable = T 

    v = phi 

    coef = -1.8 

  [../] 

[] 

 

[Materials] 

  [./free_energy] 

    type = DerivativeParsedMaterial 

    f_name = fbulk 

    args = 'phi T' 

    constant_names = pi 

    constant_expressions = 4*atan(1) 

    function = 'm:=0.9 * atan(10 * (1 - T)) / pi; 1/4*phi^4 - (1/2 - m/3) * phi^3 + (1/4 - m/2) * phi^2' 

    derivative_order = 2 

    outputs = exodus 

  [../] 

  [./material] 
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    type = InterfaceOrientationMaterial 

    op = phi 

    mode_number = 4 

  [../] 

  [./consts] 

    type = GenericConstantMaterial 

    prop_names  = 'M' 

    prop_values = '3333.333' 

  [../] 

[] 

 

[Preconditioning] 

  [./SMP] 

    type = SMP 

    full = true 

  [../] 

[] 

 

[Executioner] 

  type = Transient 

  scheme = bdf2 

  solve_type = PJFNK 

  petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart' 
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  petsc_options_value = 'hypre    boomeramg      31' 

 

  nl_abs_tol = 1e-10 

  nl_rel_tol = 1e-08 

  l_max_its = 30 

 

  end_time = 1 

 

  [./TimeStepper] 

    type = IterationAdaptiveDT 

    optimal_iterations = 6 

    iteration_window = 2 

    dt = 0.0005 

    growth_factor = 1.1 

    cutback_factor = 0.75 

  [../] 

  [./Adaptivity] 

    initial_adaptivity = 3 # Number of times mesh is adapted to initial condition 

    refine_fraction = 0.7 # Fraction of high error that will be refined 

    coarsen_fraction = 0.1 # Fraction of low error that will coarsened 

    max_h_level = 5 # Max number of refinements used, starting from initial mesh (before uniform 

refinement) 

    weight_names = 'phi T' 
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    weight_values = '1 0.5' 

  [../] 

[] 

 

[Outputs] 

  interval = 5 

  exodus = true 

[] 

3. Kernels 

#include "ACInterfaceKobayashi1.h" 

 

registerMooseObject("PhaseFieldApp", ACInterfaceKobayashi1); 

 

InputParameters 

ACInterfaceKobayashi1::validParams() 

{ 

  InputParameters params = JvarMapKernelInterface<KernelGrad>::validParams(); 

  params.addClassDescription("Anisotropic gradient energy Allen-Cahn Kernel Part 1"); 

  params.addParam<MaterialPropertyName>("mob_name", "L", "The mobility used with the 

kernel"); 

  params.addParam<MaterialPropertyName>("eps_name", "eps", "The anisotropic interface 

parameter"); 

  params.addParam<MaterialPropertyName>( 
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      "deps_name", 

      "deps", 

      "The derivative of the anisotropic interface parameter with respect to angle"); 

  params.addParam<MaterialPropertyName>( 

      "depsdgrad_op_name", 

      "depsdgrad_op", 

      "The derivative of the anisotropic interface parameter eps with respect to grad_op"); 

  params.addParam<MaterialPropertyName>( 

      "ddepsdgrad_op_name", "ddepsdgrad_op", "The derivative of deps with respect to grad_op"); 

  return params; 

} 

 

ACInterfaceKobayashi1::ACInterfaceKobayashi1(const InputParameters & parameters) 

  : DerivativeMaterialInterface<JvarMapKernelInterface<KernelGrad>>(parameters), 

    _L(getMaterialProperty<Real>("mob_name")), 

    _dLdop(getMaterialPropertyDerivative<Real>("mob_name", _var.name())), 

    _eps(getMaterialProperty<Real>("eps_name")), 

    _deps(getMaterialProperty<Real>("deps_name")), 

    _depsdgrad_op(getMaterialProperty<RealGradient>("depsdgrad_op_name")), 

    _ddepsdgrad_op(getMaterialProperty<RealGradient>("ddepsdgrad_op_name")) 

{ 

  // reserve space for derivatives 

  _dLdarg.resize(_n_args); 



 

99 

  _depsdarg.resize(_n_args); 

  _ddepsdarg.resize(_n_args); 

 

  // Iterate over all coupled variables 

  for (unsigned int i = 0; i < _n_args; ++i) 

  { 

    _dLdarg[i] = &getMaterialPropertyDerivative<Real>("mob_name", i); 

    _depsdarg[i] = &getMaterialPropertyDerivative<Real>("eps_name", i); 

    _ddepsdarg[i] = &getMaterialPropertyDerivative<Real>("deps_name", i); 

  } 

} 

 

RealGradient 

ACInterfaceKobayashi1::precomputeQpResidual() 

{ 

  // Set modified gradient vector 

  const RealGradient v(-_grad_u[_qp](1), _grad_u[_qp](0), 0); 

 

  // Define anisotropic interface residual 

  return _eps[_qp] * _deps[_qp] * _L[_qp] * v; 

} 

 

RealGradient 
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ACInterfaceKobayashi1::precomputeQpJacobian() 

{ 

  // Set modified gradient vector 

  const RealGradient v(-_grad_u[_qp](1), _grad_u[_qp](0), 0); 

 

  // dvdgrad_op*_grad_phi 

  const RealGradient dv(-_grad_phi[_j][_qp](1), _grad_phi[_j][_qp](0), 0); 

 

  // Derivative of epsilon wrt nodal op values 

  Real depsdop_i = _depsdgrad_op[_qp] * _grad_phi[_j][_qp]; 

  Real ddepsdop_i = _ddepsdgrad_op[_qp] * _grad_phi[_j][_qp]; 

  ; 

 

  // Set the Jacobian 

  RealGradient jac1 = _eps[_qp] * _deps[_qp] * dv; 

  RealGradient jac2 = _deps[_qp] * depsdop_i * v; 

  RealGradient jac3 = _eps[_qp] * ddepsdop_i * v; 

 

  return _L[_qp] * (jac1 + jac2 + jac3); 

} 

 

Real 

ACInterfaceKobayashi1::computeQpOffDiagJacobian(unsigned int jvar) 
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{ 

  // get the coupled variable jvar is referring to 

  const unsigned int cvar = mapJvarToCvar(jvar); 

 

  // Set modified gradient vector 

  const RealGradient v(-_grad_u[_qp](1), _grad_u[_qp](0), 0); 

 

  // Set off-diagonal jaocbian terms from mobility dependence 

  Real dsum = 

      _L[_qp] * (_deps[_qp] * (*_depsdarg[cvar])[_qp] * _phi[_j][_qp] * v * _grad_test[_i][_qp]); 

  dsum += 

      _L[_qp] * (_eps[_qp] * (*_ddepsdarg[cvar])[_qp] * _phi[_j][_qp] * v * _grad_test[_i][_qp]); 

  dsum += (*_dLdarg[cvar])[_qp] * _phi[_j][_qp] * _eps[_qp] * _deps[_qp] * v * 

_grad_test[_i][_qp]; 

 

  return dsum; 

} 

#include "ACInterfaceKobayashi2.h" 

 

registerMooseObject("PhaseFieldApp", ACInterfaceKobayashi2); 

 

InputParameters 

ACInterfaceKobayashi2::validParams() 
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{ 

  InputParameters params = JvarMapKernelInterface<KernelGrad>::validParams(); 

  params.addClassDescription("Anisotropic Gradient energy Allen-Cahn Kernel Part 2"); 

  params.addParam<MaterialPropertyName>("mob_name", "L", "The mobility used with the 

kernel"); 

  params.addParam<MaterialPropertyName>("eps_name", "eps", "The anisotropic parameter"); 

  params.addParam<MaterialPropertyName>( 

      "depsdgrad_op_name", 

      "depsdgrad_op", 

      "The derivative of the anisotropic interface parameter eps with respect to grad_op"); 

  return params; 

} 

 

ACInterfaceKobayashi2::ACInterfaceKobayashi2(const InputParameters & parameters) 

  : DerivativeMaterialInterface<JvarMapKernelInterface<KernelGrad>>(parameters), 

    _L(getMaterialProperty<Real>("mob_name")), 

    _dLdop(getMaterialPropertyDerivative<Real>("mob_name", _var.name())), 

    _eps(getMaterialProperty<Real>("eps_name")), 

    _depsdgrad_op(getMaterialProperty<RealGradient>("depsdgrad_op_name")), 

    _dLdarg(_n_args), 

    _depsdarg(_n_args) 

{ 

  // Iterate over all coupled variables 
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  for (unsigned int i = 0; i < _n_args; ++i) 

  { 

    _dLdarg[i] = &getMaterialPropertyDerivative<Real>("mob_name", i); 

    _depsdarg[i] = &getMaterialPropertyDerivative<Real>("eps_name", i); 

  } 

} 

 

RealGradient 

ACInterfaceKobayashi2::precomputeQpResidual() 

{ 

  // Set interfacial part of residual 

  return _eps[_qp] * _eps[_qp] * _L[_qp] * _grad_u[_qp]; 

} 

 

RealGradient 

ACInterfaceKobayashi2::precomputeQpJacobian() 

{ 

  // Calculate depsdop_i 

  Real depsdop_i = _depsdgrad_op[_qp] * _grad_phi[_j][_qp]; 

 

  // Set Jacobian using product rule 

  return _L[_qp] * 

         (_eps[_qp] * _eps[_qp] * _grad_phi[_j][_qp] + 2.0 * _eps[_qp] * depsdop_i * _grad_u[_qp]); 
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} 

 

Real 

ACInterfaceKobayashi2::computeQpOffDiagJacobian(unsigned int jvar) 

{ 

  // get the coupled variable jvar is referring to 

  const unsigned int cvar = mapJvarToCvar(jvar); 

 

  // Set off-diagonal jaocbian terms from mobility and epsilon dependence 

  Real dsum = _L[_qp] * 2.0 * _eps[_qp] * (*_depsdarg[cvar])[_qp] * _phi[_j][_qp] * _grad_u[_qp] 

* 

              _grad_test[_i][_qp]; 

  dsum += _eps[_qp] * _eps[_qp] * (*_dLdarg[cvar])[_qp] * _phi[_j][_qp] * _grad_u[_qp] * 

          _grad_test[_i][_qp]; 

 

  return dsum; 

} 

#include "CoefCoupledTimeDerivative.h" 

 

registerMooseObject("PhaseFieldApp", CoefCoupledTimeDerivative); 

 

InputParameters 

CoefCoupledTimeDerivative::validParams() 
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{ 

  InputParameters params = CoupledTimeDerivative::validParams(); 

  params.addClassDescription("Scaled time derivative Kernel that acts on a coupled variable"); 

  params.addRequiredParam<Real>("coef", "Coefficient"); 

  return params; 

} 

 

CoefCoupledTimeDerivative::CoefCoupledTimeDerivative(const InputParameters & parameters) 

  : CoupledTimeDerivative(parameters), _coef(getParam<Real>("coef")) 

{ 

} 

 

Real 

CoefCoupledTimeDerivative::computeQpResidual() 

{ 

  return CoupledTimeDerivative::computeQpResidual() * _coef; 

} 

 

Real 

CoefCoupledTimeDerivative::computeQpOffDiagJacobian(unsigned int jvar) 

{ 

  return CoupledTimeDerivative::computeQpOffDiagJacobian(jvar) * _coef; 

} 
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#include "InterfaceOrientationMaterial.h" 

#include "MooseMesh.h" 

#include "MathUtils.h" 

 

registerMooseObject("PhaseFieldApp", InterfaceOrientationMaterial); 

 

InputParameters 

InterfaceOrientationMaterial::validParams() 

{ 

  InputParameters params = Material::validParams(); 

  params.addParam<Real>( 

      "anisotropy_strength", 0.04, "Strength of the anisotropy (typically < 0.05)"); 

  params.addParam<unsigned int>("mode_number", 6, "Mode number for anisotropy"); 

  params.addParam<Real>( 

      "reference_angle", 90, "Reference angle for defining anisotropy in degrees"); 

  params.addParam<Real>("eps_bar", 0.01, "Average value of the interface parameter epsilon"); 

  params.addRequiredCoupledVar("op", "Order parameter defining the solid phase"); 

  return params; 

} 

 

InterfaceOrientationMaterial::InterfaceOrientationMaterial(const InputParameters & parameters) 

  : Material(parameters), 

    _delta(getParam<Real>("anisotropy_strength")), 
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    _j(getParam<unsigned int>("mode_number")), 

    _theta0(getParam<Real>("reference_angle")), 

    _eps_bar(getParam<Real>("eps_bar")), 

    _eps(declareProperty<Real>("eps")), 

    _deps(declareProperty<Real>("deps")), 

    _depsdgrad_op(declareProperty<RealGradient>("depsdgrad_op")), 

    _ddepsdgrad_op(declareProperty<RealGradient>("ddepsdgrad_op")), 

    _op(coupledValue("op")), 

    _grad_op(coupledGradient("op")) 

{ 

  // this currently only works in 2D simulations 

  if (_mesh.dimension() != 2) 

    mooseError("InterfaceOrientationMaterial requires a two-dimensional mesh."); 

} 

 

void 

InterfaceOrientationMaterial::computeQpProperties() 

{ 

  const Real tol = 1e-9; 

  const Real cutoff = 1.0 - tol; 

 

  // cosine of the gradient orientation angle 

  Real n = 0.0; 
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  const Real nsq = _grad_op[_qp].norm_sq(); 

  if (nsq > tol) 

    n = _grad_op[_qp](0) / std::sqrt(nsq); 

  if (n > cutoff) 

    n = cutoff; 

 

  if (n < -cutoff) 

    n = -cutoff; 

 

  const Real angle = std::acos(n) * MathUtils::sign(_grad_op[_qp](1)); 

 

  // Compute derivative of angle wrt n 

  const Real dangledn = -MathUtils::sign(_grad_op[_qp](1)) / std::sqrt(1.0 - n * n); 

 

  // Compute derivative of n with respect to grad_op 

  RealGradient dndgrad_op; 

  if (nsq > tol) 

  { 

    dndgrad_op(0) = _grad_op[_qp](1) * _grad_op[_qp](1); 

    dndgrad_op(1) = -_grad_op[_qp](0) * _grad_op[_qp](1); 

    dndgrad_op /= (_grad_op[_qp].norm_sq() * _grad_op[_qp].norm()); 

  } 
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  // Calculate interfacial parameter epsilon and its derivatives 

  _eps[_qp] = _eps_bar * (_delta * std::cos(_j * (angle - _theta0 * libMesh::pi / 180.0)) + 1.0); 

  _deps[_qp] = -_eps_bar * _delta * _j * std::sin(_j * (angle - _theta0 * libMesh::pi / 180.0)); 

  Real d2eps = 

      -_eps_bar * _delta * _j * _j * std::cos(_j * (angle - _theta0 * libMesh::pi / 180.0)); 

 

  // Compute derivatives of epsilon and its derivative wrt grad_op 

  _depsdgrad_op[_qp] = _deps[_qp] * dangledn * dndgrad_op; 

  _ddepsdgrad_op[_qp] = d2eps * dangledn * dndgrad_op; 

}  
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APPENDIX C. CODE FOR DIRECTIONAL ALLOY SOLIDIFICATION 

The code for directional alloy solidification has 4 parts: equation.cc, ICs_and_BCs.cc, 

customPDE.h and parameters. In 

1. equation.cc 

void variableAttributeLoader::loadVariableAttributes(){ 

 // Variable 0 

 set_variable_name    (0,"U"); 

 set_variable_type    (0,SCALAR); 

 set_variable_equation_type  (0,EXPLICIT_TIME_DEPENDENT); 

 

    set_dependencies_value_term_RHS(0, "U,mu,phi,grad(phi)"); 

    set_dependencies_gradient_term_RHS(0, "grad(U),grad(phi),phi"); 

 

    // Variable 1 

 set_variable_name    (1,"phi"); 

 set_variable_type    (1,SCALAR); 

 set_variable_equation_type  (1,EXPLICIT_TIME_DEPENDENT); 

 

    set_dependencies_value_term_RHS(1, "phi,U,mu"); 

    set_dependencies_gradient_term_RHS(1, ""); 

 

 // Variable 2 
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 set_variable_name    (2,"mu"); 

 set_variable_type    (2,SCALAR); 

 set_variable_equation_type  (2,AUXILIARY); 

 

    set_dependencies_value_term_RHS(2, "phi,U,grad(phi)"); 

    set_dependencies_gradient_term_RHS(2, "grad(phi)"); 

} 

 

template <int dim, int degree> 

void 

customPDE<dim,degree>::explicitEquationRHS(variableContainer<dim,degree,dealii::Vectorize

dArray<double> > & variable_list, 

     dealii::Point<dim, dealii::VectorizedArray<double> > q_point_loc) 

const { 

 

// --- Getting the values and derivatives of the model variables --- 

 

// The dimensionless solute supersaturation and its derivatives 

scalarvalueType U = variable_list.get_scalar_value(0); 

scalargradType Ux = variable_list.get_scalar_gradient(0); 

 

// The order parameter and its derivatives 

scalarvalueType phi = variable_list.get_scalar_value(1); 
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scalargradType phix = variable_list.get_scalar_gradient(1); 

 

// The auxiliary parameter and its derivatives 

scalarvalueType mu = variable_list.get_scalar_value(2); 

 

// --- Setting the expressions for the terms in the governing equations --- 

 

// The azimuthal angle(checked) 

scalarvalueType theta; 

for (unsigned i=0; i< phi.n_array_elements;i++){ 

 theta[i] = std::atan2(phix[0][i],phix[1][i]); 

} 

 

 

// Anisotropic term(checked) 

scalarvalueType a_n; 

a_n = (constV(1.0)+constV(epsilon)*std::cos(constV(4.0)*(theta-constV(theta_0)))); 

 

 

//coefficient before phi 

scalarvalueType t_n = constV(userInputs.dtValue*this->currentIncrement); 

scalarvalueType y = q_point_loc[1]; 

scalarvalueType coef_phi = (constV(1.0)-constV(1.0-k)*(y-Vp*t_n)/l_t); 
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// coeffcient before U 

scalarvalueType coef_U = (constV(1.0+k)-constV(1.0-k)*phi); 

 

// q(phi) term 

scalarvalueType q_phi = ((constV(1.0)-phi)+constV(k)*(constV(1.0)+phi)*constV(Ds/Dl)); 

 

 

// grad_phi and grad_U dot product term 

scalarvalueType prod_term = (constV(D*(1.0-k))*(phix*Ux)/coef_U/coef_U); 

// coef_j 

vectorvalueType coef_j =constV(1.0-k)*phix/coef_U/coef_U; 

 

 

 

// Antitrapping term 

scalargradType j_at; 

//j_at[0] = constV(-1.0)/constV(sqrt(2.0))*constV(W0)*(constV(1.0)+(constV(1.0-

k))*U)*(mu/a_n/a_n/coef_phi)*(std::cos(theta)); 

//j_at[1] = constV(-1.0)/constV(sqrt(2.0))*constV(W0)*(constV(1.0)+(constV(1.0-

k))*U)*(mu/a_n/a_n/coef_phi)*(std::sin(theta)); 

 

// Define required equations 
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scalarvalueType eq_U =  (U+constV(userInputs.dtValue)*(constV(1.0)+constV(1.0-

k)*U)*mu/a_n/a_n/coef_phi/coef_U-constV(userInputs.dtValue)*q_phi*prod_term); 

 

// 

scalargradType eqx_U =  (constV(-1.0)*constV(userInputs.dtValue)*D*Ux*q_phi-j_at/coef_U); 

// 

scalarvalueType eq_phi = (phi+constV(userInputs.dtValue)*mu/a_n/a_n/coef_phi); 

 

 

// --- Submitting the terms for the governing equations --- 

 

// Terms for the equation to evolve the concentration 

variable_list.set_scalar_value_term_RHS(0,eq_U); 

variable_list.set_scalar_gradient_term_RHS(0,eqx_U); 

 

// Terms for the equation to evolve the order parameter 

variable_list.set_scalar_value_term_RHS(1,eq_phi); 

} 

 

// 

===================================================================== 

// nonExplicitEquationRHS (needed only if one or more equation is time independent or auxiliary) 

/==================================================================== 
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template <int dim, int degree> 

void 

customPDE<dim,degree>::nonExplicitEquationRHS(variableContainer<dim,degree,dealii::Vect

orizedArray<double> > & variable_list, 

     dealii::Point<dim, dealii::VectorizedArray<double> > q_point_loc) 

const { 

 // --- Getting the values and derivatives of the model variables --- 

// The temperature and its derivatives 

 scalarvalueType U = variable_list.get_scalar_value(0); 

// The order parameter and its derivatives 

 scalarvalueType phi = variable_list.get_scalar_value(1); 

 scalargradType phix = variable_list.get_scalar_gradient(1); 

// --- Setting the expressions for the terms in the governing equations --- 

     

 // The azimuthal angle 

 scalarvalueType theta; 

 for (unsigned i=0; i< phi.n_array_elements;i++){ 

  theta[i] = std::atan2(phix[0][i],phix[1][i]); 

 } 

// Anisotropic term 

 scalarvalueType a_n; 

 a_n = (constV(1.0)+constV(epsilon)*std::cos(constV(4.0)*(theta-constV(theta_0)))); 
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//gradient energy coefficient, its derivative and square 

 scalarvalueType a_d = constV(-4.0)*constV(epsilon)*std::sin(constV(4.0)*(theta-

constV(theta_0))); 

// The anisotropy term that enters in to the  equation for mu 

 scalargradType aniso; 

 aniso[0] = a_n*a_n*phix[0]-a_n*a_d*phix[1]; 

 aniso[1] = a_n*a_n*phix[1]+a_n*a_d*phix[0]; 

 // Define the terms in the equations 

scalarvalueType t = constV(userInputs.dtValue*this->currentIncrement); 

scalarvalueType y = q_point_loc[1]; 

scalarvalueType eq_mu = 

((phi-constV(lamda))*(U+(y-constV(Vp)*t)/l_t)*(constV(1.0)-phi*phi)*(constV(1.0)-phi*phi)); 

 scalargradType eqx_mu = (-aniso); 

  // --- Submitting the terms for the governing equations --- 

 variable_list.set_scalar_value_term_RHS(2,eq_mu); 

 variable_list.set_scalar_gradient_term_RHS(2,eqx_mu); 

} 

// 

===================================================================== 

// equationLHS (needed only if at least one equation is time independent) 

// 

===================================================================== 
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template <int dim, int degree> 

void 

customPDE<dim,degree>::equationLHS(variableContainer<dim,degree,dealii::VectorizedArray

<double> > & variable_list, 

  dealii::Point<dim, dealii::VectorizedArray<double> > q_point_loc) const { 

} 

2. ICs_and_BCs.cc 

template <int dim, int degree> 

void customPDE<dim,degree>::setInitialCondition(const dealii::Point<dim> &p, const unsigned 

int index, double & scalar_IC, dealii::Vector<double> & vector_IC){ 

     

    double center[3][3] = {{0.18,0,0},{0.63,0,0},{0.95,0,0}}; 

    double rad[3] = {1.0,0.8,0.9}; 

   double dist; 

   scalar_IC = 0; 

 

   // Initial condition for the concentration field 

   if (index == 0){ 

          scalar_IC = -0.55; 

   } 

   // Initial condition for the order parameter field 

   else if (index == 1) { 

    // Initial condition for the order parameter field 
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    for (unsigned int i=0; i<3; i++){ 

     dist = 0.0; 

     for (unsigned int dir = 0; dir < dim; dir++){ 

      dist += (p[dir]-

center[i][dir]*userInputs.domain_size[dir])*(p[dir]-center[i][dir]*userInputs.domain_size[dir]); 

     } 

     dist = std::sqrt(dist); 

              scalar_IC +=    0.5*(1.0-std::tanh((dist-rad[i])/1.414)); 

    } 

          scalar_IC = 2*scalar_IC-1; 

   } 

} 

 

 

template <int dim, int degree> 

void customPDE<dim,degree>::setNonUniformDirichletBCs(const dealii::Point<dim> &p, const 

unsigned int index, const unsigned int direction, const double time, double & scalar_BC, 

dealii::Vector<double> & vector_BC) 

{ 

 

3. CustomPDE.h 

#include "../../include/matrixFreePDE.h" 
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template <int dim, int degree> 

class customPDE: public MatrixFreePDE<dim,degree> 

{ 

public: 

    // Constructor 

    customPDE(userInputParameters<dim> _userInputs): 

MatrixFreePDE<dim,degree>(_userInputs) , userInputs(_userInputs) {}; 

 

    // Function to set the initial conditions (in ICs_and_BCs.h) 

    void setInitialCondition(const dealii::Point<dim> &p, const unsigned int index, double & 

scalar_IC, dealii::Vector<double> & vector_IC); 

 

    // Function to set the non-uniform Dirichlet boundary conditions (in ICs_and_BCs.h) 

    void setNonUniformDirichletBCs(const dealii::Point<dim> &p, const unsigned int index, const 

unsigned int direction, const double time, double & scalar_BC, dealii::Vector<double> & 

vector_BC); 

 

private: 

 #include "../../include/typeDefs.h" 

 

 const userInputParameters<dim> userInputs; 

 

 // Function to set the RHS of the governing equations for explicit time dependent equations 

(in equations.h) 
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    void explicitEquationRHS(variableContainer<dim,degree,dealii::VectorizedArray<double> > 

& variable_list, 

      dealii::Point<dim, dealii::VectorizedArray<double> > 

q_point_loc) const; 

 

    // Function to set the RHS of the governing equations for all other equations (in equations.h) 

    void 

nonExplicitEquationRHS(variableContainer<dim,degree,dealii::VectorizedArray<double> > & 

variable_list, 

      dealii::Point<dim, dealii::VectorizedArray<double> > 

q_point_loc) const; 

 

 // Function to set the LHS of the governing equations (in equations.h) 

 void equationLHS(variableContainer<dim,degree,dealii::VectorizedArray<double> > & 

variable_list, 

      dealii::Point<dim, dealii::VectorizedArray<double> > 

q_point_loc) const; 

 

 // Function to set postprocessing expressions (in postprocess.h) 

 #ifdef POSTPROCESS_FILE_EXISTS 

 void postProcessedFields(const 

variableContainer<dim,degree,dealii::VectorizedArray<double> > & variable_list, 

    

 variableContainer<dim,degree,dealii::VectorizedArray<double> > & pp_variable_list, 
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     const dealii::Point<dim, dealii::VectorizedArray<double> > 

q_point_loc) const; 

 #endif 

 

 // Function to set the nucleation probability (in nucleation.h) 

 #ifdef NUCLEATION_FILE_EXISTS 

 double getNucleationProbability(variableValueContainer variable_value, double dV) 

const; 

 #endif 

 

 // 

================================================================ 

 // Methods specific to this subclass 

 // 

================================================================ 

 

 

 // 

================================================================ 

 // Model constants specific to this subclass 

 // 

================================================================ 

     

// Matrial Properties constant 
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    //double ml = userInputs.get_model_constant_double("ml"); 

    double c0 = userInputs.get_model_constant_double("c0"); 

    double Dl = userInputs.get_model_constant_double("Dl"); 

    double Ds = userInputs.get_model_constant_double("Ds"); 

    //double gamma = userInputs.get_model_constant_double("gamma"); 

    //double d0 = userInputs.get_model_constant_double("d0"); 

     

  

//Dimensionless parameters 

  

 //double Tl = userInputs.get_model_constant_double("Tl"); 

 //double G = userInputs.get_model_constant_double("G"); 

 //double R = userInputs.get_model_constant_double("R"); 

 //double Vp = userInputs.get_model_constant_double("Vp"); 

  

 //double dt = userInputs.get_model_constant_double("dt"); 

 //double dx = userInputs.get_model_constant_double("dx"); 

     

// New input 

 double W0 = userInputs.get_model_constant_double("W0"); 

    double tau0 = userInputs.get_model_constant_double("tau0"); 

    double epsilon = userInputs.get_model_constant_double("epsilon"); 

    double k = userInputs.get_model_constant_double("k"); 
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    double lamda = userInputs.get_model_constant_double("lamda"); 

    double D = userInputs.get_model_constant_double("D"); 

    double Vp = userInputs.get_model_constant_double("Vp"); 

    double l_t = userInputs.get_model_constant_double("l_t"); 

    double theta_0 = userInputs.get_model_constant_double("theta_0"); 

 

 // 

================================================================ 

 

}; 

 

4. Parameters.in 

# 

=====================================================================

============ 

# Set the number of dimensions (2 or 3 for a 2D or 3D calculation) 

# 

=====================================================================

============ 

set Number of dimensions = 2 

 

# 

=====================================================================

============ 

# Set the length of the domain in all three dimensions 
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# (Domain size Z ignored in 2D) 

# 

=====================================================================

============ 

# Each axes spans from zero to the specified length 

set Domain size X = 500 

set Domain size Y = 500 

set Domain size Z = 500 

 

# 

=====================================================================

============ 

# Set the element parameters 

# 

=====================================================================

============ 

# The number of elements in each direction is 2^(refineFactor) * subdivisions 

# Subdivisions Z ignored in 2D 

# For optimal performance, use refineFactor primarily to determine the element size 

set Subdivisions X = 3 

set Subdivisions Y = 3 

set Subdivisions Z = 3 

 

set Refine factor = 6 
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# Set the polynomial degree of the element (allowed values: 1, 2, or 3) 

set Element degree = 3 

 

# 

=====================================================================

============ 

# Set the adaptive mesh refinement parameters 

# 

=====================================================================

============ 

# Set the flag determining if adaptive meshing is activated 

set Mesh adaptivity = true 

 

# Set the maximum and minimum level of refinement 

# When adaptive meshing is enabled, the refine factor set in the block above is 

# only used to generate the first pass of the mesh as the initial conditions are 

# applied. It should be set somewhere between the max and min levels below. 

set Max refinement level = 6 

set Min refinement level = 0 

# Set the number of time steps between remeshing operations 

set Steps between remeshing operations = 250 

 

# Set the criteria for adapting the mesh 

subsection Refinement criterion: phi 



 

126 

    # Select whether the mesh is refined based on the variable value (VALUE), 

    # its gradient (GRADIENT), or both (VALUE_AND_GRADIENT) 

    set Criterion type = VALUE 

    # Set the lower and upper bounds for the value-based refinement window 

    set Value lower bound = -0.9999 

    set Value upper bound = 0.9999 

end 

 

# 

=====================================================================

============ 

# Set the time step parameters 

# 

=====================================================================

============ 

# The size of the time step 

set Time step = 0.01 

 

# The simulation ends when either the number of time steps is reached or the 

# simulation time is reached. 

set Number of time steps = 500000 
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# 

=====================================================================

============ 

# Set the boundary conditions 

# 

=====================================================================

============ 

# Set the boundary condition for each variable, where each variable is given by 

# its name, as defined in equations.h. The four boundary condition 

# types are NATURAL, DIRICHLET, NON_UNIFORM_DIRICHLET and PERIODIC. If all 

# of the boundaries have the same boundary condition, only one boundary condition 

# type needs to be given. If multiple boundary condition types are needed, give a 

# comma-separated list of the types. The order is the minimum of x, maximum of x, 

# minimum of y, maximum of y, minimum of z, maximum of z (i.e left, right, bottom, 

# top in 2D and left, right, bottom, top, front, back in 3D). The value of a 

# Dirichlet BC is specified in the following way -- DIRCHILET: val -- where 'val' is 

# the desired value. If the boundary condition is NON_UNIFORM_DIRICHLET, the 

# boundary condition should be specified in the appropriate function in 'ICs_and_BCs.h'. 

# Example 1: All periodic BCs for variable 'c' 

# set Boundary condition for variable c = PERIODIC 

# Example 2: Zero-derivative BCs on the left and right, Dirichlet BCs with value 

# 1.5 on the top and bottom for variable 'n' in 2D 

# set Boundary condition for variable n = NATURAL, NATURAL, DIRICHLET: 1.5, 

DIRICHLET: 1.5 
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# PERIODIC, NATURAL, PERIODIC, NATURAL 

 

set Boundary condition for variable U = NATURAL 

set Boundary condition for variable phi = NATURAL 

set Boundary condition for variable mu = NATURAL 

 

# 

=====================================================================

============ 

# Set the model constants 

# 

=====================================================================

============ 

# Set the user-defined model constants, which must have a counter-part given in 

# customPDE.h. These are most often used in the residual equations in equations.h, 

# but may also be used for initial conditions and nucleation calculations. The type 

# options currently are DOUBLE, INT, BOOL, TENSOR, and [symmetry] ELASTIC 

CONSTANTS 

# where [symmetry] is ISOTROPIC, TRANSVERSE, ORTHOTROPIC, or ANISOTROPIC. 

# Solute diffusion coefficient in solids  

set Model constant Ds = 8.92e-12, DOUBLE 

 

# Solute diffusion coefficient in liquid  

set Model constant Dl = 5.66e-9, DOUBLE 
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# Anisotropy strength 

set Model constant epsilon = 0.02, DOUBLE 

 

# Solubility partition coefficient 

set Model constant k = 0.19, DOUBLE 

 

# initial bulk concentration  

set Model constant c0 = 0.13, DOUBLE 

 

# Coupling constant 

set Model constant lamda = 35.356 , DOUBLE 

 

# dimensionless length unit 

set Model constant W0 = 1.0, DOUBLE 

 

# dimensionless time unit 

set Model constant tau0 = 1.0, DOUBLE 

 

# dimensionless diffusion  

set Model constant D = 22.16, DOUBLE 

 

# dimensionless pulling speed 

set Model constant Vp = 0.1252, DOUBLE 
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# dimensionless thermal length  

set Model constant l_t = 847.266, DOUBLE 

 

# initial angle 

set Model constant theta_0 = 2.36, DOUBLE 

 

 

# 

=====================================================================

============ 

# Set the output parameters 

# 

=====================================================================

============ 

# Type of spacing between outputs ("EQUAL_SPACING", "LOG_SPACING", 

"N_PER_DECADE", 

# or "LIST") 

set Output condition = EQUAL_SPACING 

 

# Number of times the program outputs the fields (total number for "EQUAL_SPACING" 

# and "LOG_SPACING", number per decade for "N_PER_DECADE", ignored for "LIST") 

set Number of outputs = 100 

 

# The number of time steps between updates being printed to the screen 
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set Skip print steps = 1000 

 

# 

=====================================================================

============ 

# Set the checkpoint/restart parameters 

# 

=====================================================================

============ 

# Whether to start this simulation from the checkpoint of a previous simulation 

set Load from a checkpoint = false 

 

# Type of spacing between checkpoints ("EQUAL_SPACING", "LOG_SPACING", 

"N_PER_DECADE", 

# or "LIST") 

set Checkpoint condition = EQUAL_SPACING 

 

# Number of times the creates checkpoints (total number for "EQUAL_SPACING" 

# and "LOG_SPACING", number per decade for "N_PER_DECADE", ignored for "LIST") 

set Number of checkpoints = 2  
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