
NUMERICAL SIMULATION OF DENDRITES GROWTH IN

CONTINUOUS CASTING BY USING OPEN SOURCE SOFTWARE

by

Xiang Zhou

A Thesis

Submitted to the Faculty of Purdue University

In Partial Fulfillment of the Requirements for the degree of

Master of Science in Mechanical Engineering

Department of Mechanical and Civil Engineering

Hammond, Indiana

August 2022

2

THE PURDUE UNIVERSITY GRADUATE SCHOOL

STATEMENT OF COMMITTEE APPROVAL

Dr. Chenn Q. Zhou, Chair

Department of Mechanical and Civil Engineering

Dr. Hansung Kim

Department of Mechanical and Civil Engineering

Dr. Xiuling Wang

Department of Mechanical and Civil Engineering

Approved by:

Dr. Chenn Q. Zhou

3

To the people I love

4

ACKNOWLEDGMENTS

I would like to express my deepest appreciation to those who encouraged me to complete this

thesis. First, a greatest gratitude I give to my academic advisor, Prof. Chenn Q Zhou. She offered

the opportunity for me to study at Purdue. Only with her careful guidance and encouragement, I

can successfully complete the thesis. I would like to thank Prof. Hansung Kim and Prof. Xiuling

Wang for serving on my advisory committee and providing valuable suggestions and research

experiences during the courses and regular meetings.

I would like to thank the colleagues in the Center for Innovation through Visualization and

Simulation (CIVS) at Purdue University Northwest for their kind help and encourage to me. A

special gratitude I would like to give to my CIVS mentor, Haibo Ma, whose professional advice

and a wealth of knowledge help me a lot during the study of the thesis. Also, I would like to thank

him for his co-supervision and forgiving me for many mistakes. Without his help, I will not be on

the right track in this project.

I would like to thank Prof. David Montiel, doctoral student Zhenjie Yao from University of

Michigan and one of my best friends Liyang Qin for helping me a lot in the field of computer

programming and phase field method.

I would like to acknowledge support from the Steel Manufacturing Simulation and Visualization

Consortium (SMSVC) throughout the course of this research.

I would like to thank my parents. Thank them for always supporting me to complete my studies

on both physical and mental aspects.

5

TABLE OF CONTENTS

LIST OF TABLES .. 7

LIST OF FIGURES .. 8

NOMENCLATURE ... 11

ABSTRACT .. 13

 INTRODUCTION ... 14

1.1 Background and Motivation ... 14

1.2 Literature Review ... 17

 METHODOLOGY .. 19

2.1 Phase Field Method .. 19

2.1.1 Sharp Interface and Diffuse Interface Model .. 19

2.1.2 Order Parameter .. 21

2.2 Pure Material Solidification ... 24

2.2.1 Kobayashi Model .. 24

2.2.2 Adjusted equations for programming .. 26

2.3 Directional Alloy Solidification ... 27

2.3.1 Directional Alloy Solidification Model ... 27

2.3.2 Adjusted equations for programming .. 29

Dimensionless Procedure .. 29

Time Discretization ... 30

Weak Formulation ... 31

 NUMERICAL SIMULATION SETUPS .. 32

3.1 Simulations of Pure Material Solidification ... 32

3.1.1 Materials for Pure Material Solidification .. 32

3.1.2 Mesh and Time Step for Pure Material Solidification .. 33

3.1.3 Initial Conditions and Boundary Conditions for Pure Material Solidification 36

3.2 Simulations of Alloy Directional Solidification ... 40

3.2.1 Materials for Directional Alloy Solidification .. 40

3.2.2 Mesh and Time Step for Directional Alloy Solidification 41

6

3.2.3 Initial Conditions and Boundary Conditions for Directional Alloy Solidification . 42

 RESULTS AND DISCUSSIONS.. 43

4.1 Results of Pure Material Solidification .. 44

4.1.1 Simulation Results ... 44

4.1.2 Parametric Study ... 50

Anisotropy Strength 𝜺𝜺 ... 50

Dimensionless Latent Heat K .. 57

4.1.3 Validation .. 62

4.2 Results of Directional Alloy Solidification .. 65

4.2.1 Simulation results .. 65

4.2.2 Parametric Study ... 67

Temperature Gradient ... 67

Cooling Rate .. 73

4.2.3 Validation .. 78

4.3 Discussions ... 82

 CONCLUSION .. 83

APPENDIX A. EXAMPLE OF DIMENSIONLESS PROCEDURE .. 84

APPENDIX B. CODE FOR PURE MATERIAL SOLIDIFICATION .. 85

APPENDIX C. CODE FOR DIRECTIONAL ALLOY SOLIDIFICATION 110

REFERENCES ... 132

7

LIST OF TABLES

Table 1. Physical Parameters of Pure Material Solidification .. 32

Table 2. Physical Parameters of Directional Alloy Solidification .. 40

8

LIST OF FIGURES

Figure 1. Continuous Casting Process [2]... 14

Figure 2. Physical phenomena inside both primary and secondary cooling zones [3]. 15

Figure 3. 2D simulation of dendritic growth of a pure substance in a highly undercooled melt [4].

... 16

Figure 4. 3D simulation of dendritic growth of a pure substance in a highly undercooled melt [5].

... 16

Figure 5. (a) Diffuse interface. (b) Sharp interface [16]. .. 20

Figure 6. Simulation of formation for snowflake by using phase field method [16]. 22

Figure 7. Directional solidification simulation for Fe-C-Mn alloy by using commercial software

Micress®. .. 22

Figure 8. Three order Parameters are used to distinguish different crystal structures[15]. 23

Figure 9. The solid/liquid interface is expressed by the phase field variable 25

Figure 10. Mesh for pure water solidification, finer mesh can be clearly seen at the tip and side

branches region of dendrites. .. 33

Figure 11. Mesh for pure iron solidification with only one dendrite, finer mesh can be clearly seen

at the tip and side branches region of dendrites. ... 34

Figure 12. Mesh for pure iron solidification with multiple dendrites, finer mesh can be clearly seen

at the tip and side branches region of dendrites. ... 35

Figure 13. Initial conditions of phase field variable in pure water solidification. The red dot at the

center is the nucleus of which the initial value is 1. ... 37

Figure 14. Initial conditions of phase field variable 𝜑𝜑 in pure iron solidification. (a)The red dot at

the bottom center is the nucleus of which the initial value is 1. (b) The three red dots at the bottom

is the nucleus of which the initial value is 1. .. 38

Figure 15. Boundary conditions of pure iron solidifications. Bottom temperature is 1537°C. The

upper boundary value of temperature can be seen in the color bar on the right. 39

Figure 16. An example of mesh for directional alloy solidification. .. 41

Figure 17. Result of phase field variable 𝜑𝜑 for pure water solidification. 44

Figure 18. Result of temperature field 𝑇𝑇 for pure water solidification. .. 45

Figure 19. Result of phase field variable 𝜑𝜑 for pure iron solidification with single dendrite. 46

9

Figure 20. Result of temperature field 𝑇𝑇 for pure water solidification with single dendrite. 47

Figure 21. Result of phase field variable 𝜑𝜑 for pure iron solidification with multiple dendrites. 48

Figure 22. Result of temperature field 𝑇𝑇 for pure water solidification with multiple dendrites. .. 49

Figure 23. Columnar dendrites and equiaxed dendrites in the sample taken from steel billet (left)

and a schematic picture of an ideal columnar dendrite (right) [30] .. 51

Figure 24. Result of anisotropy strength 𝜀𝜀 = 0.000 ... 52

Figure 25. Result of anisotropy strength 𝜀𝜀 = 0.005 ... 53

Figure 26. Result of anisotropy strength 𝜀𝜀 = 0.010 ... 54

Figure 27. Result of anisotropy strength 𝜀𝜀 = 0.020 ... 55

Figure 28. Result of anisotropy strength 𝜀𝜀 = 0.050 ... 56

Figure 29. Result of dimensionless latent heat 𝐾𝐾 = 0.8 ... 57

Figure 30. Result of dimensionless latent heat 𝐾𝐾 = 1.0 ... 58

Figure 31. Result of dimensionless latent heat 𝐾𝐾 = 1.2 ... 59

Figure 32. Result of dimensionless latent heat 𝐾𝐾 = 1.6 ... 60

Figure 33. Result of dimensionless latent heat 𝐾𝐾 = 2.0 ... 61

Figure 34. Comparison between results at different anisotropy strength 𝜀𝜀 63

Figure 35. Comparison between results at different dimensionless latent heat 𝐾𝐾. 64

Figure 36. simulation #1 of directional alloy solidification. ... 65

Figure 37. simulation #2 of directional alloy solidification. ... 66

Figure 38. simulation #3 of directional alloy solidification. ... 67

Figure 39. Result of temperature gradient 𝐺𝐺 = 3700𝐾𝐾/𝑚𝑚 .. 68

Figure 40. Result of temperature gradient 𝐺𝐺 = 3800𝐾𝐾/𝑚𝑚 .. 69

Figure 41. Result of temperature gradient 𝐺𝐺 = 3900𝐾𝐾/𝑚𝑚 .. 70

Figure 42. Result of temperature gradient 𝐺𝐺 = 4000𝐾𝐾/𝑚𝑚 .. 71

Figure 43. Result of temperature gradient 𝐺𝐺 = 4100𝐾𝐾/𝑚𝑚 .. 72

Figure 44. Result of cooling rate 𝑅𝑅 = 0.045𝐾𝐾/𝑠𝑠 ... 73

Figure 45. Result of cooling rate 𝑅𝑅 = 0.050𝐾𝐾/𝑠𝑠 ... 74

Figure 46. Result of cooling rate 𝑅𝑅 = 0.055𝐾𝐾/𝑠𝑠 ... 75

Figure 47. Result of cooling rate 𝑅𝑅 = 0.060𝐾𝐾/𝑠𝑠 ... 76

Figure 48. Result of cooling rate 𝑅𝑅 = 0.065𝐾𝐾/𝑠𝑠 ... 77

Figure 49. PDAS in simulation #1 .. 78

10

Figure 50. PDAS in simulation #2 .. 79

Figure 51. PDAS in simulation #3 .. 80

11

NOMENCLATURE

𝜑𝜑 phase field variable

𝜏𝜏 interface relaxation time

𝑊𝑊 interface layer width

𝑊𝑊� average interface layer width

𝑚𝑚 free energy driving force

𝜃𝜃 angle between interface normal direction and positive x-axis direction

T temperature

𝑇𝑇0 initial temperature

𝑇𝑇𝑒𝑒 equilibrium temperature

𝛼𝛼 coupling constant

𝛾𝛾 coupling constant

𝑎𝑎1 coupling coefficient

𝑎𝑎2 coupling coefficient

𝜀𝜀 anisotropy strength

𝐾𝐾 dimensionless latent heat

𝑗𝑗 mode number

𝑅𝑅1 residual function 1

𝑅𝑅2 residual function 2

𝑎𝑎𝑠𝑠 anisotropy term

𝑑𝑑0 solute capillary length

12

𝜆𝜆 coupling constant

𝜆𝜆1 primary dendrite arm spacing

𝑐𝑐0 initial concentration

𝜃𝜃0 initial rotational angle

𝑈𝑈 dimensionless supersaturation

𝐷𝐷 diffusion coefficient

𝐷𝐷𝑠𝑠 diffusion coefficient in solid

𝐷𝐷𝑙𝑙 diffusion coefficient in liquid

𝐺𝐺 temperature gradient

𝑅𝑅 cooling rate

𝑚𝑚𝑙𝑙 liquidus slope

𝑉𝑉𝑝𝑝 pulling speed

𝑦𝑦� dimensionless location in y axis

𝑉𝑉𝑝𝑝� dimensionless pulling speed

𝑡̃𝑡 dimensionless time

𝑙𝑙𝑡𝑡� dimensionless thermal length

𝜇𝜇𝑎𝑎𝑎𝑎𝑎𝑎 auxiliary variable

𝜔𝜔 test function

13

ABSTRACT

Cracking in continuous casting has always been one of the main problems of steel mills. Many

cracks that occur during solidification are difficult to observe from outside the industrial mold. In

order to better understand the formation of this defect, compared with the large-scale simulation

used in the entire industrial process, microsimulation is also essential because The micro-

segregation between dendrites at the solidification front is the one of the causes of crack formation.

Besides, the cracks are mainly formed between the grain boundaries. A comprehensive study of

using phase field method to simulate microstructure evolution has been conducted. A variety of

two-dimensional models based on phase-filed method has been developed in order to simulate

dendrites growth in continuous casting process. The basic concepts of phase-field method are

presented. Among those models, Kobayashi model was first introduced to describe the

morphology of pure material solidification, in this article, which are pure water and pure iron. In

order to get closer to the actual situation of continuous casting, a multi-component model was

introduced to solve the problem. To go a step further, by introducing a series of temperature

parameters and modifications to a series of terms, the Fe-C binary alloy directional solidification

model was used to simulate the process of dendrite growth in continuous casting. Furthermore, the

detailed derivation of the binary alloy solidification model and how to apply the model in open

source software will also be introduced in this article. The effects of physical parameters such as

anisotropic strength, temperature gradient and cooling rate on the growth and evolution of the

dendrite interface were quantitatively analyzed. Finally, potential improvement of this model,

optimization to primary cooling section in continuous casting process and various applications of

the simulation were discussed.

14

 INTRODUCTION

1.1 Background and Motivation

Continuous casting (CC) technology has become the most widely used method for casting steel.

Today, Continuous casting accounts for nearly 90% of the world’s steel production [1]. In general,

people divide continuous casting into two major parts: primary cooling and secondary cooling.

Primary cooling consists of the mold region where steel solidification initiates along the external

perimeter of the molten steel, inclosing it within a thin-walled shell. Secondary cooling is the

region past the mold in which the steel shell further solidifies. In recent years, engineers devote

themselves to reducing the formation of defects during the process in order to improve the quality

and increase the production of steel. The formation of defects in the continuous casting is a very

complicated process, which is the result of the interaction of heat transfer, mass transfer and stress.

Figure 1. Continuous Casting Process [2].

For example, among the various defects of continuous casting slabs, cracks are one of the

important defects. According to the statistics, about 50% of various defects in the slab originate

from slab cracks. The small internal cracks in the slab may be welded in the subsequent rolling

process, but due to factors such as the quality of the slab and the compression ratio limitation,

15

some internal cracks will remain in the subsequent products, which will affect the product quality

and cause hidden safety risks. Internal cracks are hard to observe from the appearance of slab and

it might be costly to take samples from semi-finished products for the sake of keeping steel quality.

Besides adjusting several industrial parameters like cooling rate, pulling speed, macroscale

simulation along with microscale simulation becomes a significant and efficient way to help

predict defects in steel production. Macroscale and microscale simulations both have their

advantages and limitations. By comprehensively considering the results of the two simulation

methods, we are more likely to make accurate predictions.

Figure 2. Physical phenomena inside both primary and secondary cooling zones [3].

Microscale simulation and crystal growth are almost inseparable. Through the microscope, people

will find that crystal growth also has a charm that cannot be ignored. The growth of crystals is

extremely contrast and random, and it can form very complicated shapes even in a very simple and

uniform environment. By using phase-field method, it will be possible to simulate complex shape.

Dendritic structures are commonly seen in solidification of metals and plays an important role in

the mechanism of internal crack formation. The aim of this project is to develop a model which

can describe the dendritic pattern formations under different cooling conditions and obtain the

16

crystal parameters in order to help conduct macroscale simulation, or even predict the formation

of cracks.

Figure 3. 2D simulation of dendritic growth of a pure substance in a highly undercooled melt [4].

Figure 4. 3D simulation of dendritic growth of a pure substance in a highly undercooled melt [5].

A few commercial software may have the above-mentioned functions but are extremely expensive.

Open source software can use phase-field method to simulate dendrite growth to a certain extent,

but for directional solidification, which is close to actual steel continuous casting situation, is not

feasible or to be developed. And this is the value of using existing open source software to finally

achieve simulated directional solidification. This article will introduce step by step from the

application of the most basic phase field method to a more complex directional solidification

model. If new features are added to the open source program, the model can still improve the

morphological accuracy through simple modification. The simulation results were compared with

the empirical formula results.

17

1.2 Literature Review

Numerical simulation of microstructure is of great significance to the development and application

of metal materials, and it is also one of the main development directions of computer application

in the field of materials science. The main methods of numerical simulation of microstructure are:

deterministic method, stochastic method and phase field method. Among them, the phase field

method is a powerful tool for describing the evolution of complex phase interfaces in non-

equilibrium states. It is not necessary to track the complex solid-liquid interface to simulate the

complex morphology of dendrite growth during metal solidification. With the development of

various related technologies, the phase field method is currently the international frontier research

field of solidification simulation. The phase field method is based on the theory of Ginzburg and

Landau [9]. First of all, differential equations are used to realize the combined effects of diffusion,

potential energy and thermodynamic driving force, and then the above equations are solved by

computer programming to obtain the instantaneous state of the research system in time and space.

The phase field method is a derivative of an interdisciplinary subject, which comprehensively

utilizes materials science, mathematics and physics, and computer programming. The phase field

method has become a wide choice for simulating the microstructure evolution during solidification.

the seminal paper of Alain Karma [6] about dendritic alloy solidification marks a breakthrough

towards quantitative simulation [7].

The concept of “phase-field” is from Ryo Kobayashi’s paper [4]. Ryo Kobayashi proposed a

solution to solve the solidification problem of pure materials in supercooled melts by replacing the

sharp moving interface with a diffuse interface.

At the very beginning, Van der Waal [8] has modeled a liquid-gas system by continuous density

function at the liquid-gas interface. Ginzburg and Landau [9] established a model first using order

parameters and their gradients. Meanwhile Cahn and Hilliard [10] derived a thermodynamic

formula that combined thermodynamic properties in the system with diffusion interfaces. However,

it is quite a short time, only 20 years ago, the concept of diffusion interface was introduced into

microstructure modeling which becomes the one of the foundations of phase field method.

The researchers are not satisfied with the theoretical model of the phase field method to simulate

dendrite morphology, they tried to couple various physical parameters and combined them with

other disciplines or newly developed method. Wang et al [11] derived the equations appropriate

18

for the adiabatic systems with temperature changes which makes the theoretical model more

realistic. After that, Alain Karma [5] and Blas Echebarria [12] expanded application of the method

to simulate microstructural pattern of dilute binary alloy for low speed directional solidification.

Furthermore, Tomohiro Takaki [13] presented large scale competitive dendritic growth during

directional solidification of Al–Si alloy. H. Yin, S.D. Felicelli [14] simulated the dendrite growth

during solidification in the LENS process. And recently, Zhu et al [15] applied adaptive mesh and

successfully add noise term to the directional solidification model. Phase field method becomes

increasingly practical and absorbs other new methods to optimize the accuracy of the results.

19

 METHODOLOGY

2.1 Phase Field Method

There are many kinds of materials used in industry, and most materials are heterogeneous at the

microscopic level. In material science, their microstructure is composed of grains or phases.

Different materials have different structure, orientation and chemical composition of their grains

or phases. Their macroscopic physical and mechanical properties are highly dependent on crystal

grains or the shape, size and distribution of crystal grains. Therefore, it is extremely important to

understand the mechanism of microstructure formation and evolution. However, since the

microstructure evolution is extremely complex and diverse, a large amount of theoretical and

experimental research is required. Furthermore, the microstructure is essentially a

thermodynamically unstable structure. The microstructure has no fixed shape, and its chemical

potential is high. Once the thermodynamic parameters change, the higher driving force will make

the organization continue to evolve or transform spontaneously. According to people's general

thinking, it is determined that the evolution of microstructure is to track the continuous evolution

of the frontier interface. Therefore, a large number of data points are needed in numerical

simulation. Considering the characteristics of the microstructure listed above, this treatment

method is undoubtedly undesirable and inefficient. And this indirectly led to the generation of the

phase field method. The phase field method has become a powerful tool that can be used to

simulate the evolution of microstructures in a variety of materials, such as solidification, phase

transformation and grain growth.

2.1.1 Sharp Interface and Diffuse Interface Model

It is already mentioned that there are a lot of phase field models applied to different fields of scie-

ntific research. They are all based on a same foundation: diffuse interface model：the interface’s

properties between phases are continuous changing within a very narrow region (Figure 5a).

Correspondingly, the sharp interface model only allows the interfaces between phases are infinitely

sharp (Figure 5b) which means the properties’ value are discontinuous.

20

Figure 5. (a) Diffuse interface. (b) Sharp interface [16].

The following uses mathematical formulas to explain more specifically. Considering the diffusion-

controlled growth. There are two phases A and B. According to Fick’s second law, the equations

for solute concentration in each phase are:

𝜕𝜕𝑐𝑐𝛼𝛼

𝜕𝜕𝜕𝜕
= 𝐷𝐷𝛼𝛼∇2𝑐𝑐𝛼𝛼 , 𝑓𝑓𝑓𝑓𝑓𝑓 𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎 𝛼𝛼 (1)

 𝜕𝜕𝑐𝑐
𝛽𝛽

𝜕𝜕𝜕𝜕
= 𝐷𝐷𝛽𝛽∇2𝑐𝑐𝛽𝛽 , 𝑓𝑓𝑓𝑓𝑓𝑓 𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎 𝛽𝛽 (2)

The flux balance equation that presents solute conservation at the interface is:

𝑐𝑐𝛼𝛼0 − 𝑐𝑐𝛽𝛽0 = 𝐷𝐷𝛽𝛽 𝜕𝜕𝑐𝑐𝛽𝛽

𝜕𝜕𝑟𝑟
− 𝐷𝐷𝛼𝛼 𝜕𝜕𝑐𝑐𝛼𝛼

𝜕𝜕𝜕𝜕
 (3)

The chemical potential at the interface should be in equilibrium state:

𝜇𝜇𝛼𝛼(𝑐𝑐𝛼𝛼0)= 𝜇𝜇𝛽𝛽(𝑐𝑐𝛽𝛽0) (4)

𝑐𝑐𝛼𝛼and 𝑐𝑐𝛽𝛽 are the molar concentrations of the solute in the α-phase and the β-phase respectively,

 𝑐𝑐𝛼𝛼0 and 𝑐𝑐𝛽𝛽0are the molar concentrations at the interface. 𝐷𝐷𝛼𝛼 and 𝐷𝐷𝛽𝛽 are the diffusion coefficients.

𝜇𝜇𝛼𝛼and 𝜇𝜇𝛽𝛽are the chemical potentials of the solute in the α-phase and the β-phase respectively. 𝑟𝑟

is the spatial coordinate perpendicular to the interface. From above equations, the sharp interface

21

model requires tracking the location and chemical components of the moving interface between

the α-phase and the β-phase. Sharp interface model can efficiently solve the problems related to

one-dimensional system and simple grain morphologies like spherical grains, since it is very easy

to get the spatial coordinate. When the problem is expanded to two-dimensional complex alloy

dendrite morphology, the model will be difficult to implement or even unfeasible from a

mathematical point of view.

In the diffuse model, the physical meaning of these parameters will not change. In general, instead

of tracking the moving interface to describe the microstructure, the microstructure is described by

a set of continuous functions of space and time, which are called phase-field variables. The

microstructure evolution is defined over the whole system. Resulting it is possible to predict the

microstructure evolution even it is complicated grain morphology.

2.1.2 Order Parameter

In the previous section, phase-field variables were mentioned. Such variables can be related to

many physicochemical parameters in governing equations to solve the expected practical problems.

More importantly, it can also be used with a non-conservative quantity called order parameter. The

actual meaning of this variable depends on the problem to be solved. In solidification problem, it

can represent the state of substance. Take water for instance, if water is in liquid state, we can set

order parameter 𝜑𝜑 = 0. If water turns into ice, we can set the order parameter 𝜑𝜑 = 1. By solving

the governing equations, the value distribution of order parameter 𝜑𝜑 can be presented on a plane

(Figure 6). In Figure 6, the blue part represents liquid water (𝜑𝜑 = 0), and the red part represents

ice (𝜑𝜑 = 1). The function of phi is continuous, the value of 𝜑𝜑 varies continuously from 0 and 1at

the interface between two phases. In Figure 6, a very narrow white curve is used. In this case, 𝜑𝜑

represents the fraction of solid phase. It should be noted that the threshold of 𝜑𝜑 is not necessarily

0 and 1. Depending on the selected model, the available values are -1, 0, 1, 2, etc. The common

points of these values are integers, which helps to divide the boundaries for display.

22

Figure 6. Simulation of formation for snowflake by using phase field method [16].

Figure 7. Directional solidification simulation for Fe-C-Mn alloy by using commercial software
Micress®.

 𝛾𝛾 ∶ 𝜑𝜑 = 0,𝛼𝛼 − 𝐹𝐹𝐹𝐹:𝜑𝜑 = 1, 𝛾𝛾 − 𝐹𝐹𝐹𝐹: 𝜑𝜑 = 2.

Besides solidification, phase field method is widely used in solid phase transformation. Here will

briefly introduce the principle of how to achieve this function. When a substance changes from

one phase to another, the crystal system tends to change accordingly, meaning that the

23

corresponding crystal parameters also change, such as side length of cubic unit cell (Figure 8). Set

the initial side length of the cubic unit cell to be 𝑎𝑎𝑐𝑐 and three order parameters indicate whether

the length, width and height of the cube cell have changed. The phase transformation can obtained

by tracking the value of 𝜂𝜂1, 𝜂𝜂2, 𝜂𝜂3.

Figure 8. Three order Parameters are used to distinguish different crystal structures[15].

24

2.2 Pure Material Solidification

In continuous casting, dendrites grow from the cold mold wall. The thermodynamical environment

is complicated inside the mold. Hence, a simplified model with only one composition and fixed

temperature boundary conditions was first introduced to simulate the dendrite growth. There are

two types of dendrite forms: equilibrium and growth. In equilibrium form, if it is isotropic, crystal

surface tends to be sphere in order to minimize the surface energy. If there is anisotropy exists, the

shape tends to become polyhedron. Apparently, dendrites are not equilibrium forms because of the

complicated shapes which are formed under the surface tension and thermodynamical driving

force: supercooling or supersaturation. Supercooling is the difference between the theoretical

crystallization temperature and the actual given crystallization temperature and supersaturation

refers to the state of supersaturation of a solution. The reason is that the temperature decreases or

the solute increases or the solvent decreases. However, dendrites growth simulation cannot be

accomplished by only these two parameters. Anisotropy which greatly affect the growth of

dendrites should also be included in the solidification model. In this chapter, the pure material

dendrite growth model will be explained, say Kobayashi model.

2.2.1 Kobayashi Model

There are two variables in this model; one is phase field 𝜑𝜑, and the other is temperature field 𝑇𝑇.

They are both the function of location and time. The phase field variable 𝜑𝜑 is an order parameter

represents the status of substance. 𝜑𝜑 = 0 means being liquid and 𝜑𝜑 = 1 means being solid. The

steep layer of 𝜑𝜑, represents the interface, is consists of a series of continuous values between 0 and

1. Figure 9 shows how phase field variable 𝜑𝜑 is used to describe the shape of dendrites.

25

Figure 9. The solid/liquid interface is expressed by the phase field variable .

The governing equations of 𝜑𝜑 in this model is:

𝜏𝜏 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= − 𝜕𝜕
𝜕𝜕𝜕𝜕
�𝑊𝑊𝑊𝑊′ 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
� + 𝜕𝜕

𝜕𝜕𝜕𝜕
�𝑊𝑊𝑊𝑊′ 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
� + ∇ ∙ (𝑊𝑊2∇𝜑𝜑) + 𝜑𝜑(1 − 𝜑𝜑)(𝜑𝜑 − 1

2
+ 𝑚𝑚) (5)

Equation (5) express the evolution of 𝜑𝜑. Where 𝜏𝜏 is a small positive constant called interface

relaxation time. The thermodynamical driving force is given by parameter 𝑚𝑚.

𝑚𝑚 = 𝛼𝛼
𝜋𝜋

arctan[𝛾𝛾(𝑇𝑇𝑒𝑒 − 𝑇𝑇)] (6)

𝛼𝛼 and 𝛾𝛾 are positive constant coefficients. 𝑇𝑇𝑒𝑒 represents the equilibrium temperature. Hence, the

driving force in solidification is proportional to the degree of supercooling.

In order to take anisotropy into account, interface layer width 𝑊𝑊 is in following form:

𝑊𝑊 = 𝑊𝑊� [1 + 𝜀𝜀cos (𝑗𝑗𝑗𝑗)] (7)

Where 𝑊𝑊� is the mean value of 𝑊𝑊. 𝜀𝜀 and j are the anisotropy strength and anisotropy mode number

relatively. 𝜃𝜃 represents the angle between the interface normal direction and the positive direction

of x axis.

𝜃𝜃 = arctan (𝜕𝜕𝜕𝜕
𝜕𝜕𝑦𝑦

/ 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

) (8)

From conservation law of enthalpy, the evolution equation for temperature field 𝑇𝑇 is:

26

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= ∇2𝑇𝑇 + 𝐾𝐾 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 (9)

𝐾𝐾 in here represents the dimensionless latent heat which is proportional to the latent heat.

2.2.2 Adjusted equations for programming

The simulations for dendrite growth are accomplished by using C++based open source software.

Due to the different advantages and disadvantages of various open source software, the simulations

shown in this article will use two different software. Their advantages and disadvantages will also

be described in the corresponding chapters. For pure material solidification, the simulations are

accomplished by using MOOSE Framework. MOOSE Framework integrates some commonly

used phase field models, called kernels, such as diffusion kernels and. If the desired simulation is

developed based on existing kernels, it will be very fast and convenient. But it will be very difficult

to achieve further development if the equations or initial conditions used beyond the range of

existing kernels.

In MOOSE Framework, there is no need to derive the weak form for governing equations. The

things need to do are getting the residuals ready and divide each term in residuals into the existing

kernels.

The residuals and kernels are present below

𝑅𝑅1 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕⏟

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷

− 1
𝜏𝜏
�− 𝜕𝜕

𝜕𝜕𝜕𝜕
�𝑊𝑊𝑊𝑊′ 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
�� + 1

𝜏𝜏
𝜕𝜕
𝜕𝜕𝜕𝜕
�𝑊𝑊𝑊𝑊′ 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
������������������������

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑖𝑖1

− 1
𝜏𝜏
∇ ∙ (𝑊𝑊2∇𝜑𝜑)���������

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑖𝑖2

−

1
𝜏𝜏
𝜑𝜑(1 − 𝜑𝜑) �𝜑𝜑 − 1

2
+ 𝑚𝑚������������������

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴

] (10)

𝑅𝑅1 is the residual derived from equation (5), four kernels called Time Derivative,

ACinterfaceKobayashi1, ACinterfaceKobayashi2, ACParsed are used in further development.

𝑅𝑅2 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕⏟

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷

− ∇2𝑇𝑇�
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷

− 𝐾𝐾 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕�

𝐶𝐶

 (11)

𝑅𝑅2 is the residual derived from equation (8), three kernels called Time Derivative, Diffusion,

CoefCoupledTimeDerivative are used in further development.

27

2.3 Directional Alloy Solidification

2.3.1 Directional Alloy Solidification Model

To make the simulation more accurate, the alloy composition must be incorporated into the

simulation. Besides, more detailed thermodynamic conditions must also be involved in governing

equations. Compared with pure material solidification, directional solidification for alloy is much

more difficult to obtain the same reasonable results. The first reason for the difficulty is that the

diffusion rate in solid and liquid is significantly different: in liquid phase, the solute diffusion will

be much faster which will cause nonequilibrium at the interface. Another is the solute trapping

effect which lead to solute atoms cannot escape solidification front to achieve equilibrium state at

the interface.

First, we introduce equations to describe the simplified alloy solidification model, called

isothermal solidification model:

𝜏𝜏𝑎𝑎𝑠𝑠2
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝛻𝛻[𝑊𝑊(𝜃𝜃)2𝛻𝛻𝛻𝛻] + 𝜕𝜕
𝜕𝜕𝜕𝜕
�|𝛻𝛻𝜑𝜑2|𝑊𝑊(𝜃𝜃) 𝜕𝜕𝜕𝜕(𝜃𝜃)

𝜕𝜕�𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕�
� + 𝜕𝜕

𝜕𝜕𝜕𝜕
�|𝛻𝛻𝜑𝜑2|𝑊𝑊(𝜃𝜃) 𝜕𝜕𝜕𝜕(𝜃𝜃)

𝜕𝜕�𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕�
� + 𝜑𝜑 − 𝜑𝜑3 −

𝜆𝜆(1 − 𝜑𝜑2)2𝑈𝑈 (12)

Equation (11) is the evolution equation for phase field variable 𝜑𝜑 . Here, 𝜏𝜏 is the interface

relaxation time.

𝜏𝜏 = 𝑎𝑎1𝑎𝑎2𝜉𝜉3𝑑𝑑02

𝐷𝐷𝑙𝑙
 (13)

In equation (12), 𝑎𝑎1 and 𝑎𝑎2 are constant coefficients. 𝑎𝑎1 = 0.8839, 𝑎𝑎2 = 0.6267, 𝜉𝜉 is the interface

layer width parameter, 𝑑𝑑0 is the solute capillary length. 𝜆𝜆 is the coupling constant.

𝑑𝑑0 = Γ
𝑚𝑚𝑙𝑙𝑐𝑐0(𝑘𝑘−1)

 (14)

Γ is the Gibbs-Thomson coefficient. 𝑚𝑚𝑙𝑙 represents the liquidus slope. 𝑐𝑐0 is the initial concentration

and 𝑘𝑘 is Solubility partition coefficient. 𝑊𝑊(𝜃𝜃) is the gradient energy coefficient. 𝑎𝑎𝑠𝑠 is the

anisotropy term for alloy solidification. 𝜉𝜉 is the interface layer width parameter.

𝑊𝑊(𝜃𝜃) = 𝑊𝑊 ∙ 𝑎𝑎𝑠𝑠 (15)

28

𝑊𝑊 = 𝜉𝜉 ∙ 𝑑𝑑0 (16)

𝑎𝑎𝑠𝑠 = 1 + 𝜀𝜀𝑐𝑐𝑐𝑐𝑐𝑐4(𝜃𝜃 − 𝜃𝜃0) (17)

As mentioned, 𝜀𝜀 is the anisotropic strength. 𝜃𝜃 is the angle between the normal direction and the

positive direction of the interface. 𝜃𝜃0 is the initial rotational angle with respect to the simulation

frame.

Besides considering the evolution of phase field variable 𝜑𝜑 . The evolution of dimensionless

supersaturation should also be involved in the model.

[(1 + 𝑘𝑘) − (1 − 𝑘𝑘)𝜑𝜑] 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝛻𝛻[𝐷𝐷𝐷𝐷(𝜑𝜑)𝛻𝛻𝛻𝛻] + [1 + (1 − 𝑘𝑘)𝑈𝑈] 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 (18)

Equation (16) is the evolution equation for the dimensionless supersaturation variable 𝑈𝑈. And 𝑈𝑈

has a close relationship with concentration:

𝑈𝑈 = 𝑐𝑐−𝑐𝑐0
𝑐𝑐0(1−𝑘𝑘)

 (19)

𝑞𝑞(𝜑𝜑) in here is to eliminate the effect of different diffusion rates in solid and liquid.

𝑞𝑞(𝜑𝜑) = (1 − 𝜑𝜑) + 𝑘𝑘(1 + 𝜑𝜑)𝐷𝐷𝑠𝑠/𝐷𝐷𝑙𝑙

𝐷𝐷𝑠𝑠 and 𝐷𝐷𝑙𝑙 in here represent the solute diffusion coefficient in solid and liquid respectively.

In order to add the directional solidification effect and eliminate the solute trapping effect.

Equation (12) and (16) should be rewritten as:

𝜏𝜏 �1 + 𝐺𝐺𝐺𝐺−𝑅𝑅𝑅𝑅
𝑚𝑚𝑙𝑙𝑐𝑐0

� 𝑎𝑎𝑠𝑠2
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝛻𝛻[𝑎𝑎𝑠𝑠2𝛻𝛻𝛻𝛻] + 𝜕𝜕
𝜕𝜕𝜕𝜕
�|𝛻𝛻𝜑𝜑2|𝑎𝑎𝑠𝑠

𝜕𝜕𝑎𝑎𝑠𝑠
𝜕𝜕�𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕�

� + 𝜕𝜕
𝜕𝜕𝜕𝜕
�|𝛻𝛻𝜑𝜑2|𝑎𝑎𝑠𝑠

𝜕𝜕𝑎𝑎𝑠𝑠
𝜕𝜕�𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕�

� + 𝜑𝜑 − 𝜑𝜑3 −

𝜆𝜆(1 − 𝜑𝜑2)2(𝑈𝑈 − 𝐺𝐺𝐺𝐺−𝑅𝑅𝑅𝑅
𝑚𝑚𝑙𝑙𝑐𝑐0

) (20)

[(1 + 𝑘𝑘) − (1 − 𝑘𝑘)𝜑𝜑] 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝛻𝛻[𝐷𝐷𝐷𝐷(𝜑𝜑)𝛻𝛻𝛻𝛻 − 𝑗𝑗𝑎𝑎𝑎𝑎] + [1 + (1 − 𝑘𝑘)𝑈𝑈] 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 (21)

Equation (18) and (19) are the modified equations from isothermal solidification model to simulate

the directional solidification. Where 𝐺𝐺 is the temperature gradient. 𝑅𝑅 is the cooling rate.

The temperature field for directional solidification along the y-axis can be described as:

𝑇𝑇(𝑦𝑦) = 𝑇𝑇0 + 𝐺𝐺(𝑦𝑦 − 𝑉𝑉𝑝𝑝𝑡𝑡) (22)

29

𝑉𝑉𝑝𝑝 is the pulling speed which equals to 𝑅𝑅/𝐺𝐺. 𝑇𝑇0 is the initial temperature.

To eliminate the solute trapping effect, the term needs to be proportional to the moving speed at

the interface which is 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

. Besides it is also related the interface layer width and local concentration

and served as a function to transport the solute atoms from solid to liquid. Hence, 𝑗𝑗𝑎𝑎𝑎𝑎 is called anti-

trapping term and has following expression:

𝑗𝑗𝑎𝑎𝑎𝑎 = − 1
√2
𝑊𝑊[1 + (1 − 𝑘𝑘)𝑈𝑈] 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
∇𝜑𝜑

|∇𝜑𝜑|
 (23)

The phase field variable 𝜑𝜑 in directional solidification model is varies from -1 to 1. 𝜑𝜑 = 1

indicating the solid phase, 𝜑𝜑 = −1 represents the liquid phase.

2.3.2 Adjusted equations for programming

The simulation of dendrites directional solidification was accomplished by using PRISMS-PF.

Compared to MOOSE, PRISMS-PF allow users to customize governing equations and initial

conditions more freely. This is a significant advantage for handling complicated equations.

PRISMS-PF requires users to provide weak form for programming.

Dimensionless Procedure

In this case, the first step is to change the governing equations to dimensionless type to simplify

coding and avoid the inaccuracy caused by very small values which means the simulation is scaled

by the interface layer width 𝑊𝑊 and interface relaxation time 𝜏𝜏.

Hence, the governing equations become:

�1 − (1 − 𝑘𝑘) 𝑦𝑦�−𝑉𝑉𝑝𝑝
�𝑡̃𝑡
𝑙𝑙𝑇𝑇�

� 𝑎𝑎𝑠𝑠2
𝜕𝜕𝜕𝜕
𝜕𝜕𝑡̃𝑡

= 𝛻𝛻[𝑎𝑎𝑠𝑠2𝛻𝛻𝛻𝛻] + 𝜕𝜕
𝜕𝜕𝑥𝑥�
�|𝛻𝛻𝜑𝜑2|𝑎𝑎𝑠𝑠

𝜕𝜕𝑎𝑎𝑠𝑠
𝜕𝜕�𝜕𝜕𝜕𝜕𝜕𝜕𝑥𝑥��

� + 𝜕𝜕
𝜕𝜕𝑦𝑦�
�|𝛻𝛻𝜑𝜑2|𝑎𝑎𝑠𝑠

𝜕𝜕𝑎𝑎𝑠𝑠
𝜕𝜕�𝜕𝜕𝜕𝜕𝜕𝜕𝑦𝑦��

� + 𝜑𝜑 − 𝜑𝜑3 −

𝜆𝜆(1 − 𝜑𝜑2)2(𝑈𝑈 + 𝑦𝑦�−𝑉𝑉𝑝𝑝�𝑡̃𝑡
𝑙𝑙𝑇𝑇�

) (24)

[(1 + 𝑘𝑘) − (1 − 𝑘𝑘)𝜑𝜑] 𝜕𝜕𝜕𝜕
𝜕𝜕𝑡̃𝑡

= 𝛻𝛻�𝐷𝐷�𝑞𝑞(𝜑𝜑)𝛻𝛻𝛻𝛻 − 𝑗𝑗𝑎𝑎𝑎𝑎� + [1 + (1 − 𝑘𝑘)𝑈𝑈] 𝜕𝜕𝜕𝜕
𝜕𝜕𝑡̃𝑡

 (25)

An example of detailed derivation of dimensionless equation is attached to the Appendix A.

30

Next step is to use an auxiliary variable 𝜇𝜇𝑎𝑎𝑎𝑎𝑎𝑎 to further simplified the equations.

�1 − (1 − 𝑘𝑘) 𝑦𝑦�−𝑉𝑉𝑝𝑝
�𝑡̃𝑡
𝑙𝑙𝑇𝑇�

� 𝑎𝑎𝑠𝑠2
𝜕𝜕𝜕𝜕
𝜕𝜕𝑡̃𝑡

= 𝜇𝜇𝑎𝑎𝑎𝑎𝑎𝑎 (26)

[(1 + 𝑘𝑘) − (1 − 𝑘𝑘)𝜑𝜑] 𝜕𝜕𝜕𝜕
𝜕𝜕𝑡̃𝑡

= 𝛻𝛻�𝐷𝐷�𝑞𝑞(𝜑𝜑)𝛻𝛻𝛻𝛻 − 𝑗𝑗𝑎𝑎𝑎𝑎� + [1 + (1 − 𝑘𝑘)𝑈𝑈] 𝜇𝜇𝑎𝑎𝑎𝑎𝑎𝑎

�1−(1−𝑘𝑘)
𝑦𝑦�−𝑉𝑉𝑝𝑝� 𝑡𝑡�

𝑙𝑙𝑇𝑇�
�𝑎𝑎𝑠𝑠2

 (27)

𝜇𝜇𝑎𝑎𝑎𝑎𝑎𝑎 = 𝛻𝛻(𝑎𝑎𝑠𝑠2𝛻𝛻𝛻𝛻) + 𝜕𝜕
𝜕𝜕𝑥𝑥�
�|𝛻𝛻𝜑𝜑2|𝑎𝑎𝑠𝑠

𝜕𝜕𝑎𝑎𝑠𝑠
𝜕𝜕�𝜕𝜕𝜕𝜕𝜕𝜕𝑥𝑥��

� + 𝜕𝜕
𝜕𝜕𝑦𝑦�
�|𝛻𝛻𝜑𝜑2|𝑎𝑎𝑠𝑠

𝜕𝜕𝑎𝑎𝑠𝑠
𝜕𝜕�𝜕𝜕𝜕𝜕𝜕𝜕𝑦𝑦��

� + 𝜑𝜑 − 𝜑𝜑3 − 𝜆𝜆(1 − 𝜑𝜑2)2(𝑈𝑈 +

𝑦𝑦�−𝑉𝑉𝑝𝑝�𝑡̃𝑡
𝑙𝑙𝑇𝑇�

) (28)

Time Discretization

Considering Euler explicit time stepping, we have the time discretized equations:

𝜑𝜑𝑛𝑛+1 = 𝜑𝜑𝑛𝑛 + 𝜇𝜇𝑎𝑎𝑎𝑎𝑎𝑎,𝑛𝑛∆𝑡𝑡

�1−(1−𝑘𝑘)
𝑦𝑦�−𝑉𝑉𝑝𝑝� 𝑡𝑡�

𝑙𝑙𝑇𝑇�
�𝑎𝑎𝑠𝑠2

 (29)

𝑈𝑈𝑛𝑛+1 = 𝑈𝑈𝑛𝑛 + ∆𝑡𝑡 �𝛻𝛻[𝐷𝐷�𝑞𝑞(𝜑𝜑)𝛻𝛻𝑈𝑈𝑛𝑛−𝑗𝑗𝑎𝑎𝑎𝑎]
[(1+𝑘𝑘)−(1−𝑘𝑘)𝜑𝜑𝑛𝑛] + [1+(1−𝑘𝑘)𝑈𝑈]𝜇𝜇𝑎𝑎𝑎𝑎𝑎𝑎,𝑛𝑛

[(1+𝑘𝑘)−(1−𝑘𝑘)𝜑𝜑𝑛𝑛]�1−(1−𝑘𝑘)
𝑦𝑦�−𝑉𝑉𝑝𝑝� 𝑡𝑡�

𝑙𝑙𝑇𝑇�
�𝑎𝑎𝑠𝑠2
� (30)

𝜇𝜇𝑎𝑎𝑎𝑎𝑎𝑎,𝑛𝑛+1 = 𝛻𝛻(𝑎𝑎𝑠𝑠2𝛻𝛻𝛻𝛻) + 𝜕𝜕
𝜕𝜕𝑥𝑥�
�|𝛻𝛻𝜑𝜑2|𝑎𝑎𝑠𝑠

𝜕𝜕𝑎𝑎𝑠𝑠
𝜕𝜕�𝜕𝜕𝜕𝜕𝜕𝜕𝑥𝑥��

� + 𝜕𝜕
𝜕𝜕𝑦𝑦�
�|𝛻𝛻𝜑𝜑2|𝑎𝑎𝑠𝑠

𝜕𝜕𝑎𝑎𝑠𝑠
𝜕𝜕�𝜕𝜕𝜕𝜕𝜕𝜕𝑦𝑦��

� + 𝜑𝜑 − 𝜑𝜑3 −

𝜆𝜆(1 − 𝜑𝜑2)2(𝑈𝑈 + 𝑦𝑦�−𝑉𝑉𝑝𝑝�𝑡̃𝑡
𝑙𝑙𝑇𝑇�

) (31)

By using chain rules 𝜕𝜕𝑎𝑎𝑠𝑠
𝜕𝜕�𝜕𝜕𝜕𝜕𝜕𝜕𝑥𝑥��

= 𝜕𝜕𝑎𝑎𝑠𝑠
𝜕𝜕(𝜃𝜃) ∙

𝜕𝜕𝜕𝜕

𝜕𝜕�𝜕𝜕𝜕𝜕𝜕𝜕𝑥𝑥��
, equation (28) can be written more compactly.

𝜇𝜇𝑎𝑎𝑎𝑎𝑎𝑎,𝑛𝑛+1 = 𝛻𝛻 �(𝑎𝑎𝑠𝑠2
𝜕𝜕𝜑𝜑𝑛𝑛
𝜕𝜕𝑥𝑥�

+ 𝑎𝑎𝑠𝑠𝑎𝑎𝑠𝑠′
𝜕𝜕𝜑𝜑𝑛𝑛
𝜕𝜕𝑦𝑦�

) + (𝑎𝑎𝑠𝑠2
𝜕𝜕𝜑𝜑𝑛𝑛
𝜕𝜕𝑦𝑦�

− 𝑎𝑎𝑠𝑠𝑎𝑎𝑠𝑠′
𝜕𝜕𝜑𝜑𝑛𝑛
𝜕𝜕𝜕𝜕

)� + 𝜑𝜑𝑛𝑛 − 𝜑𝜑𝑛𝑛3 − 𝜆𝜆(1 − 𝜑𝜑𝑛𝑛2)2(𝑈𝑈𝑛𝑛 +

𝑦𝑦�−𝑉𝑉𝑝𝑝�𝑡̃𝑡
𝑙𝑙𝑇𝑇�

) (32)

Equation (26), (27) and (29) are going to be used for weak formulation and then convert to code.

31

Weak Formulation

The advantage of PRISMS-PF is that it simplifies the programming process of the finite element

method, users do not need to have too much programming knowledge and skills. The weak form

of the equations is the most important part that users need to input to PRISMS-PF.

By using Green theorem and divergence theorem. The weak form of equation (26), (27) and (29)

are:

∫𝜔𝜔𝜑𝜑𝑛𝑛+1𝑑𝑑𝑑𝑑 = ∫𝜔𝜔�𝜑𝜑𝑛𝑛 + 𝜇𝜇𝑎𝑎𝑎𝑎𝑎𝑎,𝑛𝑛∆𝑡𝑡

�1−(1−𝑘𝑘)
𝑦𝑦�−𝑉𝑉𝑝𝑝� 𝑡𝑡�

𝑙𝑙𝑇𝑇�
�𝑎𝑎𝑠𝑠2
� 𝑑𝑑𝑉𝑉 (33)

∫𝜔𝜔𝑈𝑈𝑛𝑛+1𝑑𝑑𝑉𝑉 = ∫𝜔𝜔 �𝑈𝑈𝑛𝑛 + [1+(1−𝑘𝑘)𝑈𝑈𝑛𝑛]𝜇𝜇𝑎𝑎𝑎𝑎𝑎𝑎,𝑛𝑛∙∆𝑡𝑡

[(1+𝑘𝑘)−(1−𝑘𝑘)𝜑𝜑𝑛𝑛]�1−(1−𝑘𝑘)
𝑦𝑦�−𝑉𝑉𝑝𝑝� 𝑡𝑡�

𝑙𝑙𝑇𝑇�
�𝑎𝑎𝑠𝑠2
� − ∇𝜔𝜔 �𝛻𝛻[𝐷𝐷�𝑞𝑞(𝜑𝜑)𝛻𝛻𝑈𝑈𝑛𝑛−𝑗𝑗𝑎𝑎𝑎𝑎]∆𝑡𝑡

[(1+𝑘𝑘)−(1−𝑘𝑘)𝜑𝜑𝑛𝑛] � 𝑑𝑑𝑉𝑉 (34)

∫𝜔𝜔𝜇𝜇𝑎𝑎𝑎𝑎𝑎𝑎,𝑛𝑛+1𝑑𝑑𝑉𝑉 = ∫𝜔𝜔 �𝜑𝜑𝑛𝑛 − 𝜑𝜑𝑛𝑛3 − 𝜆𝜆(1 − 𝜑𝜑𝑛𝑛2)2(𝑈𝑈𝑛𝑛 + 𝑦𝑦�−𝑉𝑉𝑝𝑝�𝑡̃𝑡
𝑙𝑙𝑇𝑇�

)� −𝛻𝛻𝛻𝛻 �(𝑎𝑎𝑠𝑠2
𝜕𝜕𝜑𝜑𝑛𝑛
𝜕𝜕𝑥𝑥�

+ 𝑎𝑎𝑠𝑠𝑎𝑎𝑠𝑠′
𝜕𝜕𝜑𝜑𝑛𝑛
𝜕𝜕𝑦𝑦�

) +

(𝑎𝑎𝑠𝑠2
𝜕𝜕𝜑𝜑𝑛𝑛
𝜕𝜕𝑦𝑦�

− 𝑎𝑎𝑠𝑠𝑎𝑎𝑠𝑠′
𝜕𝜕𝜑𝜑𝑛𝑛
𝜕𝜕𝜕𝜕

)� 𝑑𝑑𝑑𝑑 (35)

Here, 𝜔𝜔 represents the test function. Equation (30), (31) and (32) are the final form to be converted

to code.

32

 NUMERICAL SIMULATION SETUPS

In this part, the simulated objects, parameters, initial conditions and boundary conditions will be

included. Some detailed information to obtain the value of parameter is also included.

3.1 Simulations of Pure Material Solidification

3.1.1 Materials for Pure Material Solidification

In Kobayashi model, pure water and pure iron will be simulated to grow dendrites. The physical

properties and other simulation parameters that used in simulations are shown in Table 1.

Table 1. Physical Parameters of Pure Material Solidification

Physical parameters Parameter value of water Parameter value of iron

Interface relaxation time, 𝜏𝜏 0.0003s 0.0003s

Constant coefficient, 𝛼𝛼 0.9 0.9

Constant coefficient, 𝛾𝛾 10.0 10.0

Equilibrium temperature,𝑇𝑇𝑒𝑒 1°C 1539°C

Mean value of interface width, 𝑊𝑊� 0.01μm 0.01μm

Anisotropy strength, 𝜀𝜀 0.02 0.02

Mode number, 𝑗𝑗 6 4

Dimensionless latent heat, K -1.8 -1.8

33

3.1.2 Mesh and Time Step for Pure Material Solidification

The computational domain for pure material solidification is a 2D square area. The domain size is

9.0 μm × 9.0 μm which is same as Kobayashi’s setting. The initial number of elements in x and y

directions are 14. And the element type is linear element. Due to MOOSE framework uses adaptive

mesh, there are much finer meshes in dendrite growth region. The time step for simulations is

0.0005s. According to Kobayashi [3] and Blas Echebarria [11], the value of time step is small

enough to obtain accurate and clear results.

Figure 10. Mesh for pure water solidification, finer mesh can be clearly seen at the tip and side
branches region of dendrites.

34

Figure 11. Mesh for pure iron solidification with only one dendrite, finer mesh can be clearly
seen at the tip and side branches region of dendrites.

35

Figure 12. Mesh for pure iron solidification with multiple dendrites, finer mesh can be clearly
seen at the tip and side branches region of dendrites.

36

3.1.3 Initial Conditions and Boundary Conditions for Pure Material Solidification

In MOOSE Framework, it is very intuitive and convenient to defining initial conditions. Users can

set single nucleus or multiple nuclei to grow dendrites. At the beginning, the nucleus itself is a

solid, and there is a liquid to be solidified outside the nucleus. Hence, we can set initial conditions

for phase field variable 𝜑𝜑 as:

𝑣𝑣(𝑟𝑟)

⎩
⎪
⎪
⎨

⎪
⎪
⎧ 𝑣𝑣𝑖𝑖𝑖𝑖, 𝑓𝑓𝑓𝑓𝑓𝑓 |𝑟𝑟| ≤ 𝑅𝑅0 −

𝑊𝑊
2

𝑣𝑣𝑜𝑜𝑜𝑜𝑜𝑜 +
1
2

(𝑣𝑣𝑖𝑖𝑖𝑖 − 𝑣𝑣𝑜𝑜𝑢𝑢𝑢𝑢)[1.0 + cos�𝜋𝜋
|𝑟𝑟|����⃗ − 𝑅𝑅 + 𝑊𝑊

2
𝑊𝑊 �

𝑣𝑣𝑜𝑜𝑜𝑜𝑜𝑜 , 𝑓𝑓𝑓𝑓𝑓𝑓 |𝑟𝑟| ≥ 𝑅𝑅0 +
𝑊𝑊
2

, 𝑓𝑓𝑓𝑓𝑓𝑓 𝑅𝑅0 −
𝑊𝑊
2
≤ |𝑟𝑟| ≤ 𝑅𝑅0 +

𝑊𝑊
2

Here, r represents the displacement of the current location to the center of the nucleus. 𝑣𝑣𝑖𝑖𝑖𝑖 is the

value of the phase field variable inside the nucleus. 𝑣𝑣𝑜𝑜𝑜𝑜𝑜𝑜 is the value outside the nucleus. 𝑅𝑅0 in

here is the initial radius of nucleus. 𝑊𝑊 is the interface width. This cosine profile initial conditions

allows phase field variable varies continuously from 0 to 1 at the interface.

37

Figure 13. Initial conditions of phase field variable in pure water solidification. The red dot at
the center is the nucleus of which the initial value is 1.

38

Figure 14. Initial conditions of phase field variable 𝜑𝜑 in pure iron solidification. (a)The red dot at
the bottom center is the nucleus of which the initial value is 1. (b) The three red dots at the

bottom is the nucleus of which the initial value is 1.

39

For pure water solidification, Neumann boundary conditions are used for temperature field and

phase field in the computational domain:

�

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 0

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 0

For pure iron solidification, Neumann boundary condition is used for phase field and Dirichlet

boundary condition is used for temperature field at the bottom in the computational domain:

�

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 0

𝑇𝑇𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 1539°C

Figure 15. Boundary conditions of pure iron solidifications. Bottom temperature is 1537°C. The
upper boundary value of temperature can be seen in the color bar on the right.

40

3.2 Simulations of Alloy Directional Solidification

3.2.1 Materials for Directional Alloy Solidification

In directional solidification model, low carbon steel (0.13%C) will be simulated to grow dendrites.

The carbon contents of steel and major physical properties of steel were obtained from Won Y.M,

and Thomas B.G’s paper [18]. The physical properties and other simulation parameters that used

in simulations are shown in Table 2.

Table 2. Physical Parameters of Directional Alloy Solidification

Physical parameters Parameter value

Solute diffusion coefficient in solid, 𝐷𝐷𝑠𝑠 8.92 × 10−12𝑚𝑚2/𝑠𝑠

Solute diffusion coefficient in liquid, 𝐷𝐷𝑙𝑙 5.66 × 10−9𝑚𝑚2/𝑠𝑠

Initial liquid temperature, 𝑇𝑇0 1808.15K

Gibbs-Thomson coefficient, Γ 5.39 × 10−7𝑚𝑚2 ∙ 𝐾𝐾

Liquidus slope, 𝑚𝑚𝑙𝑙 -78.0 K/wt.%

The initial concentration, 𝑐𝑐0 0.13 wt.%

Temperature gradient, 𝐺𝐺. 3700 K/m

Cooling rate, 𝑅𝑅 0.045 K/s

Pulling speed, 𝑉𝑉𝑝𝑝 1.22 × 10−5𝑚𝑚/𝑠𝑠

Solubility partition coefficient, 𝑘𝑘 0.19

Interface width parameter, 𝜉𝜉 40

Anisotropy strength, 𝜀𝜀 0.02

41

3.2.2 Mesh and Time Step for Directional Alloy Solidification

The computational domain for directional alloy solidification is a 2D 500 × 500 square area. The

initial number of elements in x and y directions are 18. And the element type is cubic element.

PRISMS also uses adaptive mesh which can generate finer meshes in dendrite growth region. The

time step for simulations is 0.01. The length and time in this simulation are scaled by 𝑊𝑊 and 𝜏𝜏.

The computational domain can accommodate up to three dendrites for competitive growth.

Therefore, the simulation which has random nucleus location will be repeated many times to

improve the credibility of the results.

Figure 16. An example of mesh for directional alloy solidification.

42

3.2.3 Initial Conditions and Boundary Conditions for Directional Alloy Solidification

The directional solidification simulation has two variables need to be iterated. One is

dimensionless supersaturation 𝑈𝑈 , the other is phase field variable 𝜑𝜑. For dimensionless

supersaturation, according to Karma [5]’s paper, the initial value is -0.55. For phase field variable

𝜑𝜑, it varies from -1 to 1 in the directional solidification. Hence, the tanh profile was used to

describe the initial conditions of 𝜑𝜑:

𝑣𝑣(𝑟𝑟) = �1 − tanh
(|𝑟𝑟| − 𝑅𝑅0)

√2
� − 1

In directional solidification, temperature gradient and cooling rate were taken into consideration.

Hence, there is no need to apply Dirichlet boundary conditions. Neumann boundary conditions

were applied to whole computational domain:

�
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 0
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 0

43

 RESULTS AND DISCUSSIONS

In this section, the results of a series of solidifications and the results of directional solidification

will be shown.

The simulation of pure material solidification is one of the initial attempts of the phase field method.

It focuses more on how to successfully simulate the complex morphology of dendrites, so the

results of its physical parameters will be less accurate. Considering this situation, the simulation

of pure material solidification will proceed parametric study and will be validated with literature

from Kobayshi Ryo [3].

The simulation of directional solidification. The directional solidification simulation considers

more physical and thermodynamic effects. Therefore, it can obtain more accurate crystal

parameters. Parametric studies will also be conducted. The result will be validated with empirical

formula and data from literatures.

44

4.1 Results of Pure Material Solidification

4.1.1 Simulation Results

The results of pure material solidification that used the simulation parameters listed in Table.1

were shown below.

Figure 17. Result of phase field variable 𝜑𝜑 for pure water solidification.

The snowflake pattern in the center is the crystal dendrites of water. The crystal dendrites fully

conform to the previously setting of mode number which equals to 6 and the primary dendrites

grow along six directions spaced 60 degrees apart. Because the MOOSE framework has the setting

of adding noise term, the secondary dendrites which are the side branches of the 6 primary

dendrites can also be seen clearly from Figure 18.

45

Figure 18. Result of temperature field 𝑇𝑇 for pure water solidification.

The result of temperature field shows the temperature inside the crystal is about 0 °C. The

temperature range at the interface is 0.4 °C to 0.6 °C which can be further solidified. The

temperature of the melt environment is equal to 1.1 due to the heat released by the solidification

of the crystal.

46

Figure 19. Result of phase field variable 𝜑𝜑 for pure iron solidification with single dendrite.

For pure iron solidification, nucleus grow from the bottom with initial temperature at 1537 °C

which represents the cold mold wall in continuous casting process. Primary and secondary

dendrites also formed successfully in this case.

47

Figure 20. Result of temperature field 𝑇𝑇 for pure water solidification with single dendrite.

The temperature of dendrites is about 900 °C to 1000 °C. And the temperature range at the interface

is 1100 °C to 1200°C which can be further solidified. Due to the limitation of visualization tool,

the highest temperature in the melt environment can only be accurate to the hundred which means

the highest temperature is between 1500 °C and 1600 °C.

48

Figure 21. Result of phase field variable 𝜑𝜑 for pure iron solidification with multiple dendrites.

By adding more nuclei to grow from the bottom cold wall. Dendrites will grow competitively

resulting dendrites tend to form longer secondary dendrites.

49

Figure 22. Result of temperature field 𝑇𝑇 for pure water solidification with multiple dendrites.

Temperature field for multiple dendrites in pure iron solidification is similar to the case of single

dendrite. The Kobayashi model is a successful attempt to simulate complex dendrite morphology

using the phase field method. However, due to its limitations, it does not include more detailed

material properties and heat transfer models corresponding to the coupling. It pays more attention

to the evolution of complex morphology during dendrite growth, so its temperature field results

are not accurate. In this simulation, the pure substances are almost fixed temperature for different

state. It does not take into account heat conduction and heat convection, and this is unreasonable

in actual industrial production. In the process of production, there is a very important parameter

called primary dendrite arm spacing (PDAS) and secondary dendrite arm spacing (SDAS) in

unidirectional solidification. During the solidification process, primary dendrites grow out of the

condensation nucleus, secondary dendrites grow from the primary dendrites and form the side

branches. The PDAS is the distance between two adjacent primary dendrites and the SDAS is the

distance between two adjacent secondary dendrites. Generally speaking, small dendrite spacings

50

will make the mechanical properties of the material better. And the degree of influence is greater

than the effect of grain size on mechanical properties. This is also one of the reasons why micro-

simulation is now valued. The Kobayashi model does not consider directional solidification, so it

is meaningless to discuss the dendrite arm spacing in this section. The results of this important

parameter will be discussed in later sections.

4.1.2 Parametric Study

In this section, parametric study will focus on dimensionless latent K and anisotropy strength 𝜀𝜀.

Different anisotropy strength and dimensionless latent heat will be used to conduct parametric

study to explore its impact on the simulation and will be validated with literature.

Anisotropy Strength 𝜺𝜺

Five different anisotropy strength were selected to conduct parametric study of pure iron

solidification at fixed dimensionless latent heat K= 2.0 according the Kobayashi’s paper [3]. The

following pictures are the result of different anisotropic strength. Anisotropic strength is a

simulation parameter and does not have too many physical connections with other parameters. It

only affects the growth pattern of dendritic branches. For 𝜀𝜀 = 0.000, dendrites tend to form

viscous fingering shape. For 𝜀𝜀 = 0.005, isotropic and dendritic features can be seen from crystal

shapes, viscous finger-like structure is still existing on the side branches. For 𝜀𝜀 = 0.010 ~ 0.050,

the results in this interval are very close to the actual metal crystal morphology. By comparing the

dendrite morphology of the actual metal crystal under the scanning electron microscope, the most

suitable anisotropic strength can be obtained for simulation. For a specific material, the optimal

anisotropy strength used for simulation is a fixed value. From Figure 24, the side branches

dendrites tend to grow perpendicularly. This corresponds to the situation where 𝜀𝜀 equals to 0.020

~0.050. Hence, the values of the anisotropic strength (𝜀𝜀 = 0.020) selected in this paper are

reasonable

51

Figure 23. Columnar dendrites and equiaxed dendrites in the sample taken from steel billet (left)
and a schematic picture of an ideal columnar dendrite (right) [30]

1:PDAS 2:SDAS

52

Figure 24. Result of anisotropy strength 𝜀𝜀 = 0.000

53

Figure 25. Result of anisotropy strength 𝜀𝜀 = 0.005

54

Figure 26. Result of anisotropy strength 𝜀𝜀 = 0.010

55

Figure 27. Result of anisotropy strength 𝜀𝜀 = 0.020

56

Figure 28. Result of anisotropy strength 𝜀𝜀 = 0.050

57

Dimensionless Latent Heat K

Similarly, five different dimensionless latent heat were selected to conduct parametric study of

pure water solidification at fixed dimensionless anisotropy strength 𝜀𝜀 = 0.040 according the

Kobayashi’s paper [3]. The energy released during the solidification process is latent heat, so it

determines whether the condensation nucleus can form dendrites. The following pictures are the

result of different dimensionless latent heat. According to the results, the dimensionless latent heat

K needs to be greater than 1.6 to form a reasonable dendrite morphology.

Figure 29. Result of dimensionless latent heat 𝐾𝐾 = 0.8

58

Figure 30. Result of dimensionless latent heat 𝐾𝐾 = 1.0

59

Figure 31. Result of dimensionless latent heat 𝐾𝐾 = 1.2

60

Figure 32. Result of dimensionless latent heat 𝐾𝐾 = 1.6

61

Figure 33. Result of dimensionless latent heat 𝐾𝐾 = 2.0

62

4.1.3 Validation

The results of parametric study were validated with the results from Kobayashi’s paper [3].

Figure 34 shows the comparison of the results at different anisotropy strength 𝜀𝜀. The results on the

right are Kobayashi’s result in 1992. For the first simulation, where 𝜀𝜀 = 0.000, it is in perfect

isotropic growth condition. The tip will split as the crystal grows. For 𝜀𝜀 = 0.005, the crystal

structure has the features of both isotropic and dendritic structure. When 𝜀𝜀 = 0.010, the result

shows the typical dendritic structure. The formation of side branches can be seen at the primary

dendrite in the middle. For 𝜀𝜀 = 0.020, the simulation result on the left is not so consistent with the

results on the right. This may be because when the anisotropic intensity is greater than 0.02, the

dendrite morphology becomes complicated. For complex shapes, MOOSE needs more computing

time to obtain the next simulation results. In the process of operation, some reasonable results in

Kobayashi code may be ignored by MOOSE due to the large errors, resulting small shorter PDAS

and SDAS in the left simulation results. But it has the features of dendrites tend to grow

perpendicularly. For 𝜀𝜀 = 0.050, compared to 𝜀𝜀 = 0.020, competition between dendrites is clearly

shown from the left result. And the side branches are longer than previous one. It is very clear that

the side branch structure has highly dependency on anisotropy strength.

Figure 35 shows the comparison of the results at different dimensionless latent heat 𝐾𝐾. For the

results using different values of K, the results are very consistent with the results of Kobayashi.

For 𝐾𝐾 = 0.8, the crystal structure tends to be convex. But as K increases, such tendency will

disappear. For 𝐾𝐾 = 1.0, the crystal has a tendency to grow in six directions. For 𝐾𝐾 = 1.2, coarse

snowflake pattern can be seen, and there are signs of dendrites on both sides of the tip. For 𝐾𝐾 =

1.6, the crystal shows the side branch structure. As dimensionless latent heat 𝐾𝐾 increases, the side

branches will become thinner. At 𝐾𝐾 = 2.0, we can get a typical snowflake pattern for pure water

solidification.

63

Figure 34. Comparison between results at different anisotropy strength 𝜀𝜀 .

64

Figure 35. Comparison between results at different dimensionless latent heat 𝐾𝐾.

65

4.2 Results of Directional Alloy Solidification

4.2.1 Simulation results

The 500 × 500 computational domain can accommodate up to three dendrites for competitive

growth. Therefore, three typical repetitive simulations were conducted in order to improve

accuracy and credibility of results. The results are shown below. The PDAS are measured by using

visualization tool Paraview.

Figure 36. simulation #1 of directional alloy solidification.

The primary dendrite arm spacings (PDAS) in this simulation are 213.57 and 249.26.

66

Figure 37. simulation #2 of directional alloy solidification.

The primary dendrite arm spacings (PDAS) in this simulation are 150.87 and 295.14.

67

Figure 38. simulation #3 of directional alloy solidification.

The primary dendrite arm spacings (PDAS) in this simulation are 225.70 and 151.91.

4.2.2 Parametric Study

In this section, parametric study will focus on temperature gradient 𝐺𝐺 and cooling rate 𝑅𝑅 which

closely related to steel continuous casting process.

Temperature Gradient

All the parameters except temperature gradient 𝐺𝐺 are fixed and 𝐺𝐺 is increasing gradually from

3700K/m.

68

Figure 39. Result of temperature gradient 𝐺𝐺 = 3700𝐾𝐾/𝑚𝑚

69

Figure 40. Result of temperature gradient 𝐺𝐺 = 3800𝐾𝐾/𝑚𝑚

70

Figure 41. Result of temperature gradient 𝐺𝐺 = 3900𝐾𝐾/𝑚𝑚

71

Figure 42. Result of temperature gradient 𝐺𝐺 = 4000𝐾𝐾/𝑚𝑚

72

Figure 43. Result of temperature gradient 𝐺𝐺 = 4100𝐾𝐾/𝑚𝑚

73

Cooling Rate

All the parameters except cooling rate 𝑅𝑅 are fixed and 𝑅𝑅 is increasing gradually from 0.045K/m.

Figure 44. Result of cooling rate 𝑅𝑅 = 0.045𝐾𝐾/𝑠𝑠

74

Figure 45. Result of cooling rate 𝑅𝑅 = 0.050𝐾𝐾/𝑠𝑠

75

Figure 46. Result of cooling rate 𝑅𝑅 = 0.055𝐾𝐾/𝑠𝑠

76

Figure 47. Result of cooling rate 𝑅𝑅 = 0.060𝐾𝐾/𝑠𝑠

77

Figure 48. Result of cooling rate 𝑅𝑅 = 0.065𝐾𝐾/𝑠𝑠

In the continuous casting process, process parameters will affect the size and morphology of

primary dendrite arm spacing (PDAS), secondary dendrite arm spacing (SDAS) and primary

dendrite arm aspect ratio. The continuous casting process parameters include supercooling,

secondary cooling specific water volume, pulling speed, electromagnetic stirring, etc. And at the

same time, Carbon content and other factors will also affect the primary dendrite spacing,

secondary dendrite spacing and primary dendrite arm aspect ratio. It has been proved that as the

cooling rate and temperature gradient increase, the PDAS will gradually decrease. As the cooling

rate and temperature gradient increase, the primary dendrite arm spacing will gradually decrease.

The simulation results basically conform to this law.

78

4.2.3 Validation

From simulation results in section 4.2.1. Mean value of PDAS can be obtained:

Figure 49. PDAS in simulation #1

79

Figure 50. PDAS in simulation #2

80

Figure 51. PDAS in simulation #3

𝜆𝜆1��� =
213.57 + 249.26 + 150.87 + 295.14 + 225.70 + 151.91

6
= 214.41

The length in the directional alloy simulation was scaled by interface layer width 𝑊𝑊. Hence, the

value of PDAS in SI unit is:

𝜆𝜆1��� × 𝑊𝑊 = 𝜆𝜆1��� × 𝜉𝜉𝑑𝑑0 = 𝜆𝜆1��� ×
ξΓ

𝑚𝑚𝑙𝑙𝑐𝑐0(𝑘𝑘 − 1)
= 5.63 × 10−4𝑚𝑚 = 563𝜇𝜇𝜇𝜇

81

According to Won Y.M and Thomas B.G’s paper [17], their measured PDAS for unidirectionally

solidified crystal is 360 𝜇𝜇𝜇𝜇. Besides, their empirical formula [18] for low carbon steel to determine

the PDAS is:

𝜆𝜆1 = 278.748 × 𝑅𝑅−2.06277638 × 𝑐𝑐0
−0.316225+2.0325𝑐𝑐0 (36)

Here, 𝑅𝑅 is the cooling rate and 𝑐𝑐0 is the initial carbon concentration. By using the parameter values

from Table 2. PDAS can be calculated as:

𝜆𝜆1 = 278.748 × 0.045−2.06277638 × 0.13−0.316225+2.0325×0.13 = 587.62𝜇𝜇𝜇𝜇

The deviation between the simulated value and the calculated value is:

563 − 587.62
587.62

× 100% = −4.19%

For the model that only considers part of the continuous casting process parameters, the degree of

deviation is acceptable.

82

4.3 Discussions

The models provided in this article is a prototype of the phase field method developed using finite

element software. It has the basic functions of showing the evolution of microscopic morphology,

roughly showing the temperature field distribution and obtaining dendrite structure parameters.

These functions can help to carry out or verify the macro simulation. Through the combination of

these basic functions and experiments, researchers can accumulate experimental data to form a

database of microstructures to further accurately predict or directly provide related crystal

parameters.

Due to the complexity of the equations used in the phase field method, the method used in this

article to classify the equations in the code to achieve modularity. This also means that this code

has the potential for subsequent development. For example, for the directional solidification of the

alloy, the morphology of the secondary dendrites cannot be well displayed due to the absence of

noise term. When open source software provides this function, the function can be easily added to

the code to get a better morphology. And accurate microstructure morphology can be applied to

particle entrapment in industry.

 In addition to being used in continuous casting of steel, many emerging technologies are now also

used in industry. The model has been shown to simulate the evolution of microstructure in these

emerging technologies by coupling a series of governing equations. For example, laser

manufacturing technology and additive manufacturing technology. Simulation of microstructures

helps researchers and engineers predict or even directly design the function of materials.

83

 CONCLUSION

Simple analytical models of pure material solidification and directional alloy solidification based

on phase field method have been developed, which involves the effect of anti-trapping and

difference of diffusion rate in solid and liquid.

The results of pure material solidification have highly dependence on anisotropy strength and

dimensionless latent heat. The anisotropic strength determines the crystal growth mode and the

features of dendrites. Dimensionless latent heat determines whether the crystal can branch to grow.

High anisotropy strength and dimensionless latent will make the crystal tend to grow more primary

dendrites, secondary dendrites and even tertiary dendrites, resulting complicated shapes of crystal.

From the results of parametric study, it can be seen that the values of 𝜀𝜀 = 0.02 and 𝐾𝐾 = 1.8 set by

the simulations are also relatively reasonable.

The results of directional alloy solidification are reasonable with deviation equals to -4.19%. With

the change of temperature gradient and cooling rate, the change of PDAS conforms to the rule

obtained in the experiments.

The simple model presented here can be effectively integrated into macro simulations, for example

to help simulate the mushy zone in primary cooling section.

84

APPENDIX A. EXAMPLE OF DIMENSIONLESS PROCEDURE

Original Equation (SI Units):

𝜏𝜏0 �1 + 𝐺𝐺𝐺𝐺−𝑅𝑅𝑅𝑅
𝑚𝑚𝑙𝑙𝑐𝑐0

� 𝑎𝑎𝑠𝑠2
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝛻𝛻[𝑎𝑎𝑠𝑠2𝛻𝛻𝛻𝛻] + 𝜕𝜕
𝜕𝜕𝜕𝜕
�|𝛻𝛻𝜑𝜑2|𝑎𝑎𝑠𝑠

𝜕𝜕𝑎𝑎𝑠𝑠
𝜕𝜕�𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕�

� + 𝜕𝜕
𝜕𝜕𝜕𝜕
�|𝛻𝛻𝜑𝜑2|𝑎𝑎𝑠𝑠

𝜕𝜕𝑎𝑎𝑠𝑠
𝜕𝜕�𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕�

� + 𝜑𝜑 − 𝜑𝜑3 −

𝜆𝜆(1 − 𝜑𝜑2)2(𝑈𝑈 − 𝐺𝐺𝐺𝐺−𝑅𝑅𝑅𝑅
𝑚𝑚𝑚𝑚𝑐𝑐0

)

Dimensionless Equation:

�1 − (1 − 𝑘𝑘) 𝑦𝑦−𝑉𝑉𝑝𝑝𝑡𝑡
𝑙𝑙𝑇𝑇

� 𝑎𝑎𝑠𝑠2
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝛻𝛻[𝑎𝑎𝑠𝑠2𝛻𝛻𝛻𝛻] + 𝜕𝜕
𝜕𝜕𝜕𝜕
�|𝛻𝛻𝜑𝜑2|𝑎𝑎𝑠𝑠

𝜕𝜕𝑎𝑎𝑠𝑠
𝜕𝜕�𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕�

� + 𝜕𝜕
𝜕𝜕𝜕𝜕
�|𝛻𝛻𝜑𝜑2|𝑎𝑎𝑠𝑠

𝜕𝜕𝑎𝑎𝑠𝑠
𝜕𝜕�𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕�

� + 𝜑𝜑 − 𝜑𝜑3 −

𝜆𝜆(1 − 𝜑𝜑2)2(𝑈𝑈 + 𝑦𝑦−𝑉𝑉𝑝𝑝𝑡𝑡
𝑙𝑙𝑇𝑇

)

The dimensionlee equation is derived from original equation in SI units. Here the LHS of original

equation is taken as an example to carry out the dimensionless procedure.

First, we define the dimesionless parameter:

⎩
⎪
⎪
⎨

⎪
⎪
⎧ 𝑡̃𝑡 =

𝑡𝑡
𝜏𝜏

𝑉𝑉𝑝𝑝� =
𝑉𝑉𝑝𝑝𝜏𝜏
𝑊𝑊

=
𝑅𝑅𝑅𝑅
𝐺𝐺𝑊𝑊

𝑦𝑦� =
𝑦𝑦
𝑊𝑊

𝑙𝑙𝑇𝑇� =
𝑙𝑙𝑇𝑇
𝑊𝑊

=
|𝑚𝑚|𝑐𝑐0(1 − 𝑘𝑘)

𝐺𝐺𝐺𝐺

𝜏𝜏 �1 + 𝐺𝐺𝐺𝐺−𝑅𝑅𝑅𝑅
𝑚𝑚𝑙𝑙𝑐𝑐0

� 𝑎𝑎𝑠𝑠2
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝜏𝜏 �1 + 𝐺𝐺𝐺𝐺−𝑅𝑅𝑅𝑅
𝑚𝑚𝑙𝑙𝑐𝑐0

� 𝑎𝑎𝑠𝑠2
𝜕𝜕𝜕𝜕

𝜕𝜕(𝜏𝜏0𝑡̃𝑡) = �1 + 𝐺𝐺𝐺𝐺−𝑅𝑅𝑅𝑅
𝑚𝑚𝑙𝑙𝑐𝑐0

� 𝑎𝑎𝑠𝑠2
𝜕𝜕𝜕𝜕
𝜕𝜕𝑡̃𝑡

= �1 +
𝑦𝑦−𝑅𝑅𝐺𝐺𝑡𝑡
𝑚𝑚𝑙𝑙𝑐𝑐0
𝐺𝐺
� 𝑎𝑎𝑠𝑠2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑡̃𝑡

= �1 − (1 − 𝑘𝑘) 𝑦𝑦−𝑉𝑉𝑝𝑝𝑡𝑡
𝑚𝑚𝑙𝑙𝑐𝑐0(1−𝑘𝑘)

𝐺𝐺

� 𝑎𝑎𝑠𝑠2
𝜕𝜕𝜕𝜕
𝜕𝜕𝑡̃𝑡

(𝑚𝑚 < 0)= �1 − (1 − 𝑘𝑘) 𝑦𝑦−𝑉𝑉𝑝𝑝𝑡𝑡

𝑙𝑙𝑇𝑇
� 𝑎𝑎𝑠𝑠2

𝜕𝜕𝜕𝜕

𝜕𝜕𝑡𝑡̃

= �1 − (1 − 𝑘𝑘)
𝑦𝑦�∗𝑊𝑊−𝑉𝑉�𝑝𝑝∗

𝑊𝑊
𝜏𝜏 ∗𝜏𝜏0𝑡̃𝑡

𝑙𝑙𝑡𝑡∗�𝑊𝑊
� 𝑎𝑎𝑠𝑠2

𝜕𝜕𝜕𝜕
𝜕𝜕𝑡̃𝑡

= �1 − (1 − 𝑘𝑘) 𝑦𝑦�−𝑉𝑉
�𝑝𝑝𝑡̃𝑡
𝑙𝑙𝑡𝑡�

� 𝑎𝑎𝑠𝑠2
𝜕𝜕𝜕𝜕
𝜕𝜕𝑡̃𝑡

85

APPENDIX B. CODE FOR PURE MATERIAL SOLIDIFICATION

1. Simulation execution file for pure water solidification：

[Mesh]

 type = GeneratedMesh

 dim = 2

 nx = 14

 ny = 14

 xmax = 9

 ymax = 9

 uniform_refine = 3

[]

[Variables]

 [./phi]

 [../]

 [./T]

 [../]

[]

[ICs]

 [./phiIC]

86

 type = SmoothCircleIC

 variable = phi

 int_width = 0.1

 x1 = 4.5

 y1 = 0

 radii = 0.07

 outvalue = 0

 invalue = 1

 [../]

[]

[Kernels]

 [./phi_dot]

 type = TimeDerivative

 variable = phi

 [../]

 [./anisoACinterface1]

 type = ACInterfaceKobayashi1

 variable = phi

 mob_name = M

 [../]

 [./anisoACinterface2]

 type = ACInterfaceKobayashi2

87

 variable = phi

 mob_name = M

 [../]

 [./AllenCahn]

 type = AllenCahn

 variable = phi

 mob_name = M

 f_name = fbulk

 args = T

 [../]

 [./T_dot]

 type = TimeDerivative

 variable = T

 [../]

 [./CoefDiffusion]

 type = Diffusion

 variable = T

 [../]

 [./phi_dot_T]

 type = CoefCoupledTimeDerivative

 variable = T

 v = phi

 coef = -1.8

88

 [../]

[]

[Materials]

 [./free_energy]

 type = DerivativeParsedMaterial

 f_name = fbulk

 args = 'phi T'

 constant_names = pi

 constant_expressions = 4*atan(1)

 function = 'm:=0.9 * atan(10 * (0 - T)) / pi; 1/4*w^4 - (1/2 - m/3) * w^3 + (1/4 - m/2) * w^2'

 derivative_order = 2

 outputs = exodus

 [../]

 [./material]

 type = InterfaceOrientationMaterial

 op = phi

 mode_number = 6

 [../]

 [./consts]

 type = GenericConstantMaterial

 prop_names = 'M'

 prop_values = '3333.333'

89

 [../]

[]

[Preconditioning]

 [./SMP]

 type = SMP

 full = true

 [../]

[]

[Executioner]

 type = Transient

 scheme = bdf2

 solve_type = PJFNK

 petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart'

 petsc_options_value = 'hypre boomeramg 31'

 nl_abs_tol = 1e-10

 nl_rel_tol = 1e-08

 l_max_its = 30

 end_time = 1

90

 [./TimeStepper]

 type = IterationAdaptiveDT

 optimal_iterations = 6

 iteration_window = 2

 dt = 0.0005

 growth_factor = 1.1

 cutback_factor = 0.75

 [../]

 [./Adaptivity]

 initial_adaptivity = 3 # Number of times mesh is adapted to initial condition

 refine_fraction = 0.7 # Fraction of high error that will be refined

 coarsen_fraction = 0.1 # Fraction of low error that will coarsened

 max_h_level = 5 # Max number of refinements used, starting from initial mesh (before uniform

refinement)

 weight_names = 'w T'

 weight_values = '1 0.5'

 [../]

[]

[Outputs]

 interval = 5

 exodus = true

[]

91

2. Simulation execution file for pure iron solidification:

[Mesh]

 type = GeneratedMesh

 dim = 2

 nx = 14

 ny = 14

 xmax = 9

 ymax = 9

 uniform_refine = 3

[]

[Variables]

 [./phi]

 [../]

 [./T]

 [../]

[]

[ICs]

 [./phiIC]

 type = SpecifiedSmoothCircleIC

 variable = phi

 int_width = 0.1

92

 x_positions = '1 4.5 7.5'

 y_positions = '0 0 0'

 z_positions = '0 0 0'

 radii = '0.05 0.07 0.10'

 outvalue = 0

 invalue = 1

 [../]

[]

[BCs]

 [./bottom_T]

 type = DirichletBC

 variable = T

boundary = 0

value = 1539

 [../]

[]

[Kernels]

 [./phi_dot]

 type = TimeDerivative

 variable = phi

93

 [../]

 [./anisoACinterface1]

 type = ACInterfaceKobayashi1

 variable = phi

 mob_name = M

 [../]

 [./anisoACinterface2]

 type = ACInterfaceKobayashi2

 variable = phi

 mob_name = M

 [../]

 [./AllenCahn]

 type = AllenCahn

 variable = phi

 mob_name = M

 f_name = fbulk

 args = T

 [../]

 [./T_dot]

 type = TimeDerivative

 variable = T

 [../]

 [./CoefDiffusion]

94

 type = Diffusion

 variable = T

 [../]

 [./phi_dot_T]

 type = CoefCoupledTimeDerivative

 variable = T

 v = phi

 coef = -1.8

 [../]

[]

[Materials]

 [./free_energy]

 type = DerivativeParsedMaterial

 f_name = fbulk

 args = 'phi T'

 constant_names = pi

 constant_expressions = 4*atan(1)

 function = 'm:=0.9 * atan(10 * (1 - T)) / pi; 1/4*phi^4 - (1/2 - m/3) * phi^3 + (1/4 - m/2) * phi^2'

 derivative_order = 2

 outputs = exodus

 [../]

 [./material]

95

 type = InterfaceOrientationMaterial

 op = phi

 mode_number = 4

 [../]

 [./consts]

 type = GenericConstantMaterial

 prop_names = 'M'

 prop_values = '3333.333'

 [../]

[]

[Preconditioning]

 [./SMP]

 type = SMP

 full = true

 [../]

[]

[Executioner]

 type = Transient

 scheme = bdf2

 solve_type = PJFNK

 petsc_options_iname = '-pc_type -pc_hypre_type -ksp_gmres_restart'

96

 petsc_options_value = 'hypre boomeramg 31'

 nl_abs_tol = 1e-10

 nl_rel_tol = 1e-08

 l_max_its = 30

 end_time = 1

 [./TimeStepper]

 type = IterationAdaptiveDT

 optimal_iterations = 6

 iteration_window = 2

 dt = 0.0005

 growth_factor = 1.1

 cutback_factor = 0.75

 [../]

 [./Adaptivity]

 initial_adaptivity = 3 # Number of times mesh is adapted to initial condition

 refine_fraction = 0.7 # Fraction of high error that will be refined

 coarsen_fraction = 0.1 # Fraction of low error that will coarsened

 max_h_level = 5 # Max number of refinements used, starting from initial mesh (before uniform

refinement)

 weight_names = 'phi T'

97

 weight_values = '1 0.5'

 [../]

[]

[Outputs]

 interval = 5

 exodus = true

[]

3. Kernels

#include "ACInterfaceKobayashi1.h"

registerMooseObject("PhaseFieldApp", ACInterfaceKobayashi1);

InputParameters

ACInterfaceKobayashi1::validParams()

{

 InputParameters params = JvarMapKernelInterface<KernelGrad>::validParams();

 params.addClassDescription("Anisotropic gradient energy Allen-Cahn Kernel Part 1");

 params.addParam<MaterialPropertyName>("mob_name", "L", "The mobility used with the

kernel");

 params.addParam<MaterialPropertyName>("eps_name", "eps", "The anisotropic interface

parameter");

 params.addParam<MaterialPropertyName>(

98

 "deps_name",

 "deps",

 "The derivative of the anisotropic interface parameter with respect to angle");

 params.addParam<MaterialPropertyName>(

 "depsdgrad_op_name",

 "depsdgrad_op",

 "The derivative of the anisotropic interface parameter eps with respect to grad_op");

 params.addParam<MaterialPropertyName>(

 "ddepsdgrad_op_name", "ddepsdgrad_op", "The derivative of deps with respect to grad_op");

 return params;

}

ACInterfaceKobayashi1::ACInterfaceKobayashi1(const InputParameters & parameters)

 : DerivativeMaterialInterface<JvarMapKernelInterface<KernelGrad>>(parameters),

 _L(getMaterialProperty<Real>("mob_name")),

 _dLdop(getMaterialPropertyDerivative<Real>("mob_name", _var.name())),

 _eps(getMaterialProperty<Real>("eps_name")),

 _deps(getMaterialProperty<Real>("deps_name")),

 _depsdgrad_op(getMaterialProperty<RealGradient>("depsdgrad_op_name")),

 _ddepsdgrad_op(getMaterialProperty<RealGradient>("ddepsdgrad_op_name"))

{

 // reserve space for derivatives

 _dLdarg.resize(_n_args);

99

 _depsdarg.resize(_n_args);

 _ddepsdarg.resize(_n_args);

 // Iterate over all coupled variables

 for (unsigned int i = 0; i < _n_args; ++i)

 {

 _dLdarg[i] = &getMaterialPropertyDerivative<Real>("mob_name", i);

 _depsdarg[i] = &getMaterialPropertyDerivative<Real>("eps_name", i);

 _ddepsdarg[i] = &getMaterialPropertyDerivative<Real>("deps_name", i);

 }

}

RealGradient

ACInterfaceKobayashi1::precomputeQpResidual()

{

 // Set modified gradient vector

 const RealGradient v(-_grad_u[_qp](1), _grad_u[_qp](0), 0);

 // Define anisotropic interface residual

 return _eps[_qp] * _deps[_qp] * _L[_qp] * v;

}

RealGradient

100

ACInterfaceKobayashi1::precomputeQpJacobian()

{

 // Set modified gradient vector

 const RealGradient v(-_grad_u[_qp](1), _grad_u[_qp](0), 0);

 // dvdgrad_op*_grad_phi

 const RealGradient dv(-_grad_phi[_j][_qp](1), _grad_phi[_j][_qp](0), 0);

 // Derivative of epsilon wrt nodal op values

 Real depsdop_i = _depsdgrad_op[_qp] * _grad_phi[_j][_qp];

 Real ddepsdop_i = _ddepsdgrad_op[_qp] * _grad_phi[_j][_qp];

 ;

 // Set the Jacobian

 RealGradient jac1 = _eps[_qp] * _deps[_qp] * dv;

 RealGradient jac2 = _deps[_qp] * depsdop_i * v;

 RealGradient jac3 = _eps[_qp] * ddepsdop_i * v;

 return _L[_qp] * (jac1 + jac2 + jac3);

}

Real

ACInterfaceKobayashi1::computeQpOffDiagJacobian(unsigned int jvar)

101

{

 // get the coupled variable jvar is referring to

 const unsigned int cvar = mapJvarToCvar(jvar);

 // Set modified gradient vector

 const RealGradient v(-_grad_u[_qp](1), _grad_u[_qp](0), 0);

 // Set off-diagonal jaocbian terms from mobility dependence

 Real dsum =

 _L[_qp] * (_deps[_qp] * (*_depsdarg[cvar])[_qp] * _phi[_j][_qp] * v * _grad_test[_i][_qp]);

 dsum +=

 _L[_qp] * (_eps[_qp] * (*_ddepsdarg[cvar])[_qp] * _phi[_j][_qp] * v * _grad_test[_i][_qp]);

 dsum += (*_dLdarg[cvar])[_qp] * _phi[_j][_qp] * _eps[_qp] * _deps[_qp] * v *

_grad_test[_i][_qp];

 return dsum;

}

#include "ACInterfaceKobayashi2.h"

registerMooseObject("PhaseFieldApp", ACInterfaceKobayashi2);

InputParameters

ACInterfaceKobayashi2::validParams()

102

{

 InputParameters params = JvarMapKernelInterface<KernelGrad>::validParams();

 params.addClassDescription("Anisotropic Gradient energy Allen-Cahn Kernel Part 2");

 params.addParam<MaterialPropertyName>("mob_name", "L", "The mobility used with the

kernel");

 params.addParam<MaterialPropertyName>("eps_name", "eps", "The anisotropic parameter");

 params.addParam<MaterialPropertyName>(

 "depsdgrad_op_name",

 "depsdgrad_op",

 "The derivative of the anisotropic interface parameter eps with respect to grad_op");

 return params;

}

ACInterfaceKobayashi2::ACInterfaceKobayashi2(const InputParameters & parameters)

 : DerivativeMaterialInterface<JvarMapKernelInterface<KernelGrad>>(parameters),

 _L(getMaterialProperty<Real>("mob_name")),

 _dLdop(getMaterialPropertyDerivative<Real>("mob_name", _var.name())),

 _eps(getMaterialProperty<Real>("eps_name")),

 _depsdgrad_op(getMaterialProperty<RealGradient>("depsdgrad_op_name")),

 _dLdarg(_n_args),

 _depsdarg(_n_args)

{

 // Iterate over all coupled variables

103

 for (unsigned int i = 0; i < _n_args; ++i)

 {

 _dLdarg[i] = &getMaterialPropertyDerivative<Real>("mob_name", i);

 _depsdarg[i] = &getMaterialPropertyDerivative<Real>("eps_name", i);

 }

}

RealGradient

ACInterfaceKobayashi2::precomputeQpResidual()

{

 // Set interfacial part of residual

 return _eps[_qp] * _eps[_qp] * _L[_qp] * _grad_u[_qp];

}

RealGradient

ACInterfaceKobayashi2::precomputeQpJacobian()

{

 // Calculate depsdop_i

 Real depsdop_i = _depsdgrad_op[_qp] * _grad_phi[_j][_qp];

 // Set Jacobian using product rule

 return _L[_qp] *

 (_eps[_qp] * _eps[_qp] * _grad_phi[_j][_qp] + 2.0 * _eps[_qp] * depsdop_i * _grad_u[_qp]);

104

}

Real

ACInterfaceKobayashi2::computeQpOffDiagJacobian(unsigned int jvar)

{

 // get the coupled variable jvar is referring to

 const unsigned int cvar = mapJvarToCvar(jvar);

 // Set off-diagonal jaocbian terms from mobility and epsilon dependence

 Real dsum = _L[_qp] * 2.0 * _eps[_qp] * (*_depsdarg[cvar])[_qp] * _phi[_j][_qp] * _grad_u[_qp]

*

 _grad_test[_i][_qp];

 dsum += _eps[_qp] * _eps[_qp] * (*_dLdarg[cvar])[_qp] * _phi[_j][_qp] * _grad_u[_qp] *

 _grad_test[_i][_qp];

 return dsum;

}

#include "CoefCoupledTimeDerivative.h"

registerMooseObject("PhaseFieldApp", CoefCoupledTimeDerivative);

InputParameters

CoefCoupledTimeDerivative::validParams()

105

{

 InputParameters params = CoupledTimeDerivative::validParams();

 params.addClassDescription("Scaled time derivative Kernel that acts on a coupled variable");

 params.addRequiredParam<Real>("coef", "Coefficient");

 return params;

}

CoefCoupledTimeDerivative::CoefCoupledTimeDerivative(const InputParameters & parameters)

 : CoupledTimeDerivative(parameters), _coef(getParam<Real>("coef"))

{

}

Real

CoefCoupledTimeDerivative::computeQpResidual()

{

 return CoupledTimeDerivative::computeQpResidual() * _coef;

}

Real

CoefCoupledTimeDerivative::computeQpOffDiagJacobian(unsigned int jvar)

{

 return CoupledTimeDerivative::computeQpOffDiagJacobian(jvar) * _coef;

}

106

#include "InterfaceOrientationMaterial.h"

#include "MooseMesh.h"

#include "MathUtils.h"

registerMooseObject("PhaseFieldApp", InterfaceOrientationMaterial);

InputParameters

InterfaceOrientationMaterial::validParams()

{

 InputParameters params = Material::validParams();

 params.addParam<Real>(

 "anisotropy_strength", 0.04, "Strength of the anisotropy (typically < 0.05)");

 params.addParam<unsigned int>("mode_number", 6, "Mode number for anisotropy");

 params.addParam<Real>(

 "reference_angle", 90, "Reference angle for defining anisotropy in degrees");

 params.addParam<Real>("eps_bar", 0.01, "Average value of the interface parameter epsilon");

 params.addRequiredCoupledVar("op", "Order parameter defining the solid phase");

 return params;

}

InterfaceOrientationMaterial::InterfaceOrientationMaterial(const InputParameters & parameters)

 : Material(parameters),

 _delta(getParam<Real>("anisotropy_strength")),

107

 _j(getParam<unsigned int>("mode_number")),

 _theta0(getParam<Real>("reference_angle")),

 _eps_bar(getParam<Real>("eps_bar")),

 _eps(declareProperty<Real>("eps")),

 _deps(declareProperty<Real>("deps")),

 _depsdgrad_op(declareProperty<RealGradient>("depsdgrad_op")),

 _ddepsdgrad_op(declareProperty<RealGradient>("ddepsdgrad_op")),

 _op(coupledValue("op")),

 _grad_op(coupledGradient("op"))

{

 // this currently only works in 2D simulations

 if (_mesh.dimension() != 2)

 mooseError("InterfaceOrientationMaterial requires a two-dimensional mesh.");

}

void

InterfaceOrientationMaterial::computeQpProperties()

{

 const Real tol = 1e-9;

 const Real cutoff = 1.0 - tol;

 // cosine of the gradient orientation angle

 Real n = 0.0;

108

 const Real nsq = _grad_op[_qp].norm_sq();

 if (nsq > tol)

 n = _grad_op[_qp](0) / std::sqrt(nsq);

 if (n > cutoff)

 n = cutoff;

 if (n < -cutoff)

 n = -cutoff;

 const Real angle = std::acos(n) * MathUtils::sign(_grad_op[_qp](1));

 // Compute derivative of angle wrt n

 const Real dangledn = -MathUtils::sign(_grad_op[_qp](1)) / std::sqrt(1.0 - n * n);

 // Compute derivative of n with respect to grad_op

 RealGradient dndgrad_op;

 if (nsq > tol)

 {

 dndgrad_op(0) = _grad_op[_qp](1) * _grad_op[_qp](1);

 dndgrad_op(1) = -_grad_op[_qp](0) * _grad_op[_qp](1);

 dndgrad_op /= (_grad_op[_qp].norm_sq() * _grad_op[_qp].norm());

 }

109

 // Calculate interfacial parameter epsilon and its derivatives

 _eps[_qp] = _eps_bar * (_delta * std::cos(_j * (angle - _theta0 * libMesh::pi / 180.0)) + 1.0);

 _deps[_qp] = -_eps_bar * _delta * _j * std::sin(_j * (angle - _theta0 * libMesh::pi / 180.0));

 Real d2eps =

 -_eps_bar * _delta * _j * _j * std::cos(_j * (angle - _theta0 * libMesh::pi / 180.0));

 // Compute derivatives of epsilon and its derivative wrt grad_op

 _depsdgrad_op[_qp] = _deps[_qp] * dangledn * dndgrad_op;

 _ddepsdgrad_op[_qp] = d2eps * dangledn * dndgrad_op;

}

110

APPENDIX C. CODE FOR DIRECTIONAL ALLOY SOLIDIFICATION

The code for directional alloy solidification has 4 parts: equation.cc, ICs_and_BCs.cc,

customPDE.h and parameters. In

1. equation.cc

void variableAttributeLoader::loadVariableAttributes(){

 // Variable 0

 set_variable_name (0,"U");

 set_variable_type (0,SCALAR);

 set_variable_equation_type (0,EXPLICIT_TIME_DEPENDENT);

 set_dependencies_value_term_RHS(0, "U,mu,phi,grad(phi)");

 set_dependencies_gradient_term_RHS(0, "grad(U),grad(phi),phi");

 // Variable 1

 set_variable_name (1,"phi");

 set_variable_type (1,SCALAR);

 set_variable_equation_type (1,EXPLICIT_TIME_DEPENDENT);

 set_dependencies_value_term_RHS(1, "phi,U,mu");

 set_dependencies_gradient_term_RHS(1, "");

 // Variable 2

111

 set_variable_name (2,"mu");

 set_variable_type (2,SCALAR);

 set_variable_equation_type (2,AUXILIARY);

 set_dependencies_value_term_RHS(2, "phi,U,grad(phi)");

 set_dependencies_gradient_term_RHS(2, "grad(phi)");

}

template <int dim, int degree>

void

customPDE<dim,degree>::explicitEquationRHS(variableContainer<dim,degree,dealii::Vectorize

dArray<double> > & variable_list,

 dealii::Point<dim, dealii::VectorizedArray<double> > q_point_loc)

const {

// --- Getting the values and derivatives of the model variables ---

// The dimensionless solute supersaturation and its derivatives

scalarvalueType U = variable_list.get_scalar_value(0);

scalargradType Ux = variable_list.get_scalar_gradient(0);

// The order parameter and its derivatives

scalarvalueType phi = variable_list.get_scalar_value(1);

112

scalargradType phix = variable_list.get_scalar_gradient(1);

// The auxiliary parameter and its derivatives

scalarvalueType mu = variable_list.get_scalar_value(2);

// --- Setting the expressions for the terms in the governing equations ---

// The azimuthal angle(checked)

scalarvalueType theta;

for (unsigned i=0; i< phi.n_array_elements;i++){

 theta[i] = std::atan2(phix[0][i],phix[1][i]);

}

// Anisotropic term(checked)

scalarvalueType a_n;

a_n = (constV(1.0)+constV(epsilon)*std::cos(constV(4.0)*(theta-constV(theta_0))));

//coefficient before phi

scalarvalueType t_n = constV(userInputs.dtValue*this->currentIncrement);

scalarvalueType y = q_point_loc[1];

scalarvalueType coef_phi = (constV(1.0)-constV(1.0-k)*(y-Vp*t_n)/l_t);

113

// coeffcient before U

scalarvalueType coef_U = (constV(1.0+k)-constV(1.0-k)*phi);

// q(phi) term

scalarvalueType q_phi = ((constV(1.0)-phi)+constV(k)*(constV(1.0)+phi)*constV(Ds/Dl));

// grad_phi and grad_U dot product term

scalarvalueType prod_term = (constV(D*(1.0-k))*(phix*Ux)/coef_U/coef_U);

// coef_j

vectorvalueType coef_j =constV(1.0-k)*phix/coef_U/coef_U;

// Antitrapping term

scalargradType j_at;

//j_at[0] = constV(-1.0)/constV(sqrt(2.0))*constV(W0)*(constV(1.0)+(constV(1.0-

k))*U)*(mu/a_n/a_n/coef_phi)*(std::cos(theta));

//j_at[1] = constV(-1.0)/constV(sqrt(2.0))*constV(W0)*(constV(1.0)+(constV(1.0-

k))*U)*(mu/a_n/a_n/coef_phi)*(std::sin(theta));

// Define required equations

114

scalarvalueType eq_U = (U+constV(userInputs.dtValue)*(constV(1.0)+constV(1.0-

k)*U)*mu/a_n/a_n/coef_phi/coef_U-constV(userInputs.dtValue)*q_phi*prod_term);

//

scalargradType eqx_U = (constV(-1.0)*constV(userInputs.dtValue)*D*Ux*q_phi-j_at/coef_U);

//

scalarvalueType eq_phi = (phi+constV(userInputs.dtValue)*mu/a_n/a_n/coef_phi);

// --- Submitting the terms for the governing equations ---

// Terms for the equation to evolve the concentration

variable_list.set_scalar_value_term_RHS(0,eq_U);

variable_list.set_scalar_gradient_term_RHS(0,eqx_U);

// Terms for the equation to evolve the order parameter

variable_list.set_scalar_value_term_RHS(1,eq_phi);

}

//

===

// nonExplicitEquationRHS (needed only if one or more equation is time independent or auxiliary)

/==

115

template <int dim, int degree>

void

customPDE<dim,degree>::nonExplicitEquationRHS(variableContainer<dim,degree,dealii::Vect

orizedArray<double> > & variable_list,

 dealii::Point<dim, dealii::VectorizedArray<double> > q_point_loc)

const {

 // --- Getting the values and derivatives of the model variables ---

// The temperature and its derivatives

 scalarvalueType U = variable_list.get_scalar_value(0);

// The order parameter and its derivatives

 scalarvalueType phi = variable_list.get_scalar_value(1);

 scalargradType phix = variable_list.get_scalar_gradient(1);

// --- Setting the expressions for the terms in the governing equations ---

 // The azimuthal angle

 scalarvalueType theta;

 for (unsigned i=0; i< phi.n_array_elements;i++){

 theta[i] = std::atan2(phix[0][i],phix[1][i]);

 }

// Anisotropic term

 scalarvalueType a_n;

 a_n = (constV(1.0)+constV(epsilon)*std::cos(constV(4.0)*(theta-constV(theta_0))));

116

//gradient energy coefficient, its derivative and square

 scalarvalueType a_d = constV(-4.0)*constV(epsilon)*std::sin(constV(4.0)*(theta-

constV(theta_0)));

// The anisotropy term that enters in to the equation for mu

 scalargradType aniso;

 aniso[0] = a_n*a_n*phix[0]-a_n*a_d*phix[1];

 aniso[1] = a_n*a_n*phix[1]+a_n*a_d*phix[0];

 // Define the terms in the equations

scalarvalueType t = constV(userInputs.dtValue*this->currentIncrement);

scalarvalueType y = q_point_loc[1];

scalarvalueType eq_mu =

((phi-constV(lamda))*(U+(y-constV(Vp)*t)/l_t)*(constV(1.0)-phi*phi)*(constV(1.0)-phi*phi));

 scalargradType eqx_mu = (-aniso);

 // --- Submitting the terms for the governing equations ---

 variable_list.set_scalar_value_term_RHS(2,eq_mu);

 variable_list.set_scalar_gradient_term_RHS(2,eqx_mu);

}

//

===

// equationLHS (needed only if at least one equation is time independent)

//

===

117

template <int dim, int degree>

void

customPDE<dim,degree>::equationLHS(variableContainer<dim,degree,dealii::VectorizedArray

<double> > & variable_list,

 dealii::Point<dim, dealii::VectorizedArray<double> > q_point_loc) const {

}

2. ICs_and_BCs.cc

template <int dim, int degree>

void customPDE<dim,degree>::setInitialCondition(const dealii::Point<dim> &p, const unsigned

int index, double & scalar_IC, dealii::Vector<double> & vector_IC){

 double center[3][3] = {{0.18,0,0},{0.63,0,0},{0.95,0,0}};

 double rad[3] = {1.0,0.8,0.9};

 double dist;

 scalar_IC = 0;

 // Initial condition for the concentration field

 if (index == 0){

 scalar_IC = -0.55;

 }

 // Initial condition for the order parameter field

 else if (index == 1) {

 // Initial condition for the order parameter field

118

 for (unsigned int i=0; i<3; i++){

 dist = 0.0;

 for (unsigned int dir = 0; dir < dim; dir++){

 dist += (p[dir]-

center[i][dir]*userInputs.domain_size[dir])*(p[dir]-center[i][dir]*userInputs.domain_size[dir]);

 }

 dist = std::sqrt(dist);

 scalar_IC += 0.5*(1.0-std::tanh((dist-rad[i])/1.414));

 }

 scalar_IC = 2*scalar_IC-1;

 }

}

template <int dim, int degree>

void customPDE<dim,degree>::setNonUniformDirichletBCs(const dealii::Point<dim> &p, const

unsigned int index, const unsigned int direction, const double time, double & scalar_BC,

dealii::Vector<double> & vector_BC)

{

3. CustomPDE.h

#include "../../include/matrixFreePDE.h"

119

template <int dim, int degree>

class customPDE: public MatrixFreePDE<dim,degree>

{

public:

 // Constructor

 customPDE(userInputParameters<dim> _userInputs):

MatrixFreePDE<dim,degree>(_userInputs) , userInputs(_userInputs) {};

 // Function to set the initial conditions (in ICs_and_BCs.h)

 void setInitialCondition(const dealii::Point<dim> &p, const unsigned int index, double &

scalar_IC, dealii::Vector<double> & vector_IC);

 // Function to set the non-uniform Dirichlet boundary conditions (in ICs_and_BCs.h)

 void setNonUniformDirichletBCs(const dealii::Point<dim> &p, const unsigned int index, const

unsigned int direction, const double time, double & scalar_BC, dealii::Vector<double> &

vector_BC);

private:

 #include "../../include/typeDefs.h"

 const userInputParameters<dim> userInputs;

 // Function to set the RHS of the governing equations for explicit time dependent equations

(in equations.h)

120

 void explicitEquationRHS(variableContainer<dim,degree,dealii::VectorizedArray<double> >

& variable_list,

 dealii::Point<dim, dealii::VectorizedArray<double> >

q_point_loc) const;

 // Function to set the RHS of the governing equations for all other equations (in equations.h)

 void

nonExplicitEquationRHS(variableContainer<dim,degree,dealii::VectorizedArray<double> > &

variable_list,

 dealii::Point<dim, dealii::VectorizedArray<double> >

q_point_loc) const;

 // Function to set the LHS of the governing equations (in equations.h)

 void equationLHS(variableContainer<dim,degree,dealii::VectorizedArray<double> > &

variable_list,

 dealii::Point<dim, dealii::VectorizedArray<double> >

q_point_loc) const;

 // Function to set postprocessing expressions (in postprocess.h)

 #ifdef POSTPROCESS_FILE_EXISTS

 void postProcessedFields(const

variableContainer<dim,degree,dealii::VectorizedArray<double> > & variable_list,

 variableContainer<dim,degree,dealii::VectorizedArray<double> > & pp_variable_list,

121

 const dealii::Point<dim, dealii::VectorizedArray<double> >

q_point_loc) const;

 #endif

 // Function to set the nucleation probability (in nucleation.h)

 #ifdef NUCLEATION_FILE_EXISTS

 double getNucleationProbability(variableValueContainer variable_value, double dV)

const;

 #endif

 //

==

 // Methods specific to this subclass

 //

==

 //

==

 // Model constants specific to this subclass

 //

==

// Matrial Properties constant

122

 //double ml = userInputs.get_model_constant_double("ml");

 double c0 = userInputs.get_model_constant_double("c0");

 double Dl = userInputs.get_model_constant_double("Dl");

 double Ds = userInputs.get_model_constant_double("Ds");

 //double gamma = userInputs.get_model_constant_double("gamma");

 //double d0 = userInputs.get_model_constant_double("d0");

//Dimensionless parameters

 //double Tl = userInputs.get_model_constant_double("Tl");

 //double G = userInputs.get_model_constant_double("G");

 //double R = userInputs.get_model_constant_double("R");

 //double Vp = userInputs.get_model_constant_double("Vp");

 //double dt = userInputs.get_model_constant_double("dt");

 //double dx = userInputs.get_model_constant_double("dx");

// New input

 double W0 = userInputs.get_model_constant_double("W0");

 double tau0 = userInputs.get_model_constant_double("tau0");

 double epsilon = userInputs.get_model_constant_double("epsilon");

 double k = userInputs.get_model_constant_double("k");

123

 double lamda = userInputs.get_model_constant_double("lamda");

 double D = userInputs.get_model_constant_double("D");

 double Vp = userInputs.get_model_constant_double("Vp");

 double l_t = userInputs.get_model_constant_double("l_t");

 double theta_0 = userInputs.get_model_constant_double("theta_0");

 //

==

};

4. Parameters.in

===

============

Set the number of dimensions (2 or 3 for a 2D or 3D calculation)

===

============

set Number of dimensions = 2

===

============

Set the length of the domain in all three dimensions

124

(Domain size Z ignored in 2D)

===

============

Each axes spans from zero to the specified length

set Domain size X = 500

set Domain size Y = 500

set Domain size Z = 500

===

============

Set the element parameters

===

============

The number of elements in each direction is 2^(refineFactor) * subdivisions

Subdivisions Z ignored in 2D

For optimal performance, use refineFactor primarily to determine the element size

set Subdivisions X = 3

set Subdivisions Y = 3

set Subdivisions Z = 3

set Refine factor = 6

125

Set the polynomial degree of the element (allowed values: 1, 2, or 3)

set Element degree = 3

===

============

Set the adaptive mesh refinement parameters

===

============

Set the flag determining if adaptive meshing is activated

set Mesh adaptivity = true

Set the maximum and minimum level of refinement

When adaptive meshing is enabled, the refine factor set in the block above is

only used to generate the first pass of the mesh as the initial conditions are

applied. It should be set somewhere between the max and min levels below.

set Max refinement level = 6

set Min refinement level = 0

Set the number of time steps between remeshing operations

set Steps between remeshing operations = 250

Set the criteria for adapting the mesh

subsection Refinement criterion: phi

126

 # Select whether the mesh is refined based on the variable value (VALUE),

 # its gradient (GRADIENT), or both (VALUE_AND_GRADIENT)

 set Criterion type = VALUE

 # Set the lower and upper bounds for the value-based refinement window

 set Value lower bound = -0.9999

 set Value upper bound = 0.9999

end

===

============

Set the time step parameters

===

============

The size of the time step

set Time step = 0.01

The simulation ends when either the number of time steps is reached or the

simulation time is reached.

set Number of time steps = 500000

127

===

============

Set the boundary conditions

===

============

Set the boundary condition for each variable, where each variable is given by

its name, as defined in equations.h. The four boundary condition

types are NATURAL, DIRICHLET, NON_UNIFORM_DIRICHLET and PERIODIC. If all

of the boundaries have the same boundary condition, only one boundary condition

type needs to be given. If multiple boundary condition types are needed, give a

comma-separated list of the types. The order is the minimum of x, maximum of x,

minimum of y, maximum of y, minimum of z, maximum of z (i.e left, right, bottom,

top in 2D and left, right, bottom, top, front, back in 3D). The value of a

Dirichlet BC is specified in the following way -- DIRCHILET: val -- where 'val' is

the desired value. If the boundary condition is NON_UNIFORM_DIRICHLET, the

boundary condition should be specified in the appropriate function in 'ICs_and_BCs.h'.

Example 1: All periodic BCs for variable 'c'

set Boundary condition for variable c = PERIODIC

Example 2: Zero-derivative BCs on the left and right, Dirichlet BCs with value

1.5 on the top and bottom for variable 'n' in 2D

set Boundary condition for variable n = NATURAL, NATURAL, DIRICHLET: 1.5,

DIRICHLET: 1.5

128

PERIODIC, NATURAL, PERIODIC, NATURAL

set Boundary condition for variable U = NATURAL

set Boundary condition for variable phi = NATURAL

set Boundary condition for variable mu = NATURAL

===

============

Set the model constants

===

============

Set the user-defined model constants, which must have a counter-part given in

customPDE.h. These are most often used in the residual equations in equations.h,

but may also be used for initial conditions and nucleation calculations. The type

options currently are DOUBLE, INT, BOOL, TENSOR, and [symmetry] ELASTIC

CONSTANTS

where [symmetry] is ISOTROPIC, TRANSVERSE, ORTHOTROPIC, or ANISOTROPIC.

Solute diffusion coefficient in solids

set Model constant Ds = 8.92e-12, DOUBLE

Solute diffusion coefficient in liquid

set Model constant Dl = 5.66e-9, DOUBLE

129

Anisotropy strength

set Model constant epsilon = 0.02, DOUBLE

Solubility partition coefficient

set Model constant k = 0.19, DOUBLE

initial bulk concentration

set Model constant c0 = 0.13, DOUBLE

Coupling constant

set Model constant lamda = 35.356 , DOUBLE

dimensionless length unit

set Model constant W0 = 1.0, DOUBLE

dimensionless time unit

set Model constant tau0 = 1.0, DOUBLE

dimensionless diffusion

set Model constant D = 22.16, DOUBLE

dimensionless pulling speed

set Model constant Vp = 0.1252, DOUBLE

130

dimensionless thermal length

set Model constant l_t = 847.266, DOUBLE

initial angle

set Model constant theta_0 = 2.36, DOUBLE

===

============

Set the output parameters

===

============

Type of spacing between outputs ("EQUAL_SPACING", "LOG_SPACING",

"N_PER_DECADE",

or "LIST")

set Output condition = EQUAL_SPACING

Number of times the program outputs the fields (total number for "EQUAL_SPACING"

and "LOG_SPACING", number per decade for "N_PER_DECADE", ignored for "LIST")

set Number of outputs = 100

The number of time steps between updates being printed to the screen

131

set Skip print steps = 1000

===

============

Set the checkpoint/restart parameters

===

============

Whether to start this simulation from the checkpoint of a previous simulation

set Load from a checkpoint = false

Type of spacing between checkpoints ("EQUAL_SPACING", "LOG_SPACING",

"N_PER_DECADE",

or "LIST")

set Checkpoint condition = EQUAL_SPACING

Number of times the creates checkpoints (total number for "EQUAL_SPACING"

and "LOG_SPACING", number per decade for "N_PER_DECADE", ignored for "LIST")

set Number of checkpoints = 2

132

REFERENCES

[1] J. P. Birat et al., The Making, Shaping and Treating of Steel: Casting Volume, 11th ed.

Warrendale: Association for Iron & Steel Technology, 2010.

[2] JFE 21st Century Foundation, retrieved from http://www.jfe-21st-cf.or.jp/chapter_2/2j_2.html

[3] B. G. Thomas, “Intro to Continuous Casting - CCC - U of I,” Continuous Casting Consortium.

[Online]. Available: http://ccc.illinois.edu/introduction/basicphenom.html. [Accessed: 16-

Feb-2018].

[4] Kobayashi R 1993 Modelling and numerical simulations of dendritic crystal growth Physica D

63 410-23

[5] Kobayashi R 1994 A numerical approach to three-dimensional dendritic solidification Exp.

Math. 359–81

[6] Karma A 2001 Phase-field formulation for quantitative modeling of alloy solidification Phys.

Rev. Lett. 87 115701

[7] Ingo Steinbach, Ingo Steinbach, “Phase-field models in materials science” Published 30 July

2009.Online at stacks.iop.org/MSMSE/17/073001.

[8] J. Rowlinson, Translation of J.D. van der Waals’ “The thermodynamic theory of capillarity

under the hypothesis of a continuous variation of density”, J. Statist. Phys. 20 (2) (1979)

197–245.

[9] V. Ginzburg, L. Landau, On the theory of superconductivity, Zh. Eksp. Teor. Fiz. 20 (1950)

1064–1082. Translation in Collected papers of L.D. Landau, Pergamon, Oxford, 1965, pp.

546–568.

[10] J.W. Cahn, J.E. Hilliard, Free energy of a nonuniform system. I.Interfacial free energy, J.

Chem. Phys. 28 (1958) 258–267. [9] Kobayashi R 1993 Modelling and numerical

simulations of dendritic crystal growth Physica D 63 410-23.

133

[11] Wang S-L, Sekerka R F, Wheeler A A, Murray B T, Coriell S R, Rraun R J and McFadden G

B 1993 Thermodynamically-consistent phase-field models for solidification Physica D 69 189–

200.

[12] Blas Echebarria, Quantitative phase-field model of alloy solidification PHYSICAL REVIEW

E 70, 061604 (2004).

[13] Tomohiro Takaki, Phase-field Modeling and Simulations of Dendrite Growth, ISIJ

International, Vol. 54 (2014), No. 2, pp. 437–444.

[14] H. Yin, S.D. Felicelli, Dendrite growth simulation during solidification in the LENS process,

Acta Materialia 58 (2010) 1455–1465.

[15] Chang-sheng Zhu, Sheng Xu, Li Feng, Dan Han, Kai-ming Wang, Phase-field model

simulations of alloy directional solidification and seaweed-like microstructure evolution

based on adaptive finite element method, Computational Materials Science 160 (2019) 53–

61.

[16] Nele Moelans, Bart Blanpain, Patrick Wollants, An introduction to phase-field modeling of

microstructure evolution, Computer Coupling of Phase Diagrams and Thermochemistry 32

(2008) 268–294.

[17] Hsu YR, Lin MC, Lin HK, Chang YH, Lu CC, et al. (2018) Numerical simulation of nanopost-

guided self-organization dendritic architectures using phase-field model. PLOS ONE 13(7)

[18] Won Y M, Thomas B G. Simple model of microsegregation during solidification of steel.

Metallurgical and Material Transactions A, 2001, 32(7): 1755-1767

[19] El-Bealy M, Thomas B G. Prediction of dendrite arm spacing for low alloy steel casting

processes[J]. Metallurgical and materials transactions B, 1996, 27(4): 689-693.

[20] Pierer R, Bernhard C. On the influence of carbon on secondary dendrite arm spacing in steel[J].

Journal of materials science, 2008, 43(21): 6938-6943.

[21] Weisgerber B, Hecht M, Harste K. Investigations of the solidification structure of

continuously cast slabs[J]. Steel research, 1999, 70(10): 403-411.

134

[22] Young K P, Kerkwood D H. The dendrite arm spacings of aluminum-copper alloys solidified

under steady-state conditions[J]. Metallurgical Transactions A, 1975, 6(1): 197-205.

[23] Ganguly S, Choudhary S K. Quantification of the Solidification Microstructure in

Continuously-Cast High Carbon Steel Billets[J]. Metallurgical and Materials Transactions

B, 2009, 40(3): 397-404.

[24] H. Xing, X. Dong, H. Wu, et al., Degenerate seaweed to tilted dendrite transition and their

growth dynamics in directional solidification of non-axially oriented crystals: a phase-field

study, Sci Rep. 6 (2016) 26625.

[25] N. Provatas, Q. Wang, M. Haataja, et al., Seaweed to dendrite transition in

directionalsolidification, Phys. Rev. Lett. 91 (2003).

[26] N. Provatas, N. Goldenfeld, J. Dantzig, Adaptive mesh refinement computation of soli-

dification microstructures using dynamic data structures, J. Comput. Phys. 148 (1999)

265–290.

[27] Ruo Li, On multi-mesh H-adaptive methods, J. Sci. Comput. 24 (2005) 321–341.

[28] X. Hu, R. Li, T. Tang, A Multi-mesh adaptive finite element approximation to phase field

models, Comm. Comput. Phys. 5 (2009) 1012–1029.

[29] C.S. Zhu, P. Lei, R.Z. Xiao, et al., Phase-field modeling of dendritic growth under forced flow

based on adaptive finite element method, Trans. Nonferr. Metals Soc. China 25(2015) 241–

248.

[30] Seppo Louhenkilpi, Continuous Casting of Steel, Treatise on Process Metallurgy: Industrial

Processes, 2014

	LIST OF TABLES
	LIST OF FIGURES
	NOMENCLATURE
	ABSTRACT
	1. INTRODUCTION
	1.1 Background and Motivation
	1.2 Literature Review

	2. METHODOLOGY
	2.1 Phase Field Method
	2.1.1 Sharp Interface and Diffuse Interface Model
	2.1.2 Order Parameter

	2.2 Pure Material Solidification
	2.2.1 Kobayashi Model
	2.2.2 Adjusted equations for programming

	2.3 Directional Alloy Solidification
	2.3.1 Directional Alloy Solidification Model
	2.3.2 Adjusted equations for programming
	Dimensionless Procedure
	Time Discretization
	Weak Formulation

	3. NUMERICAL SIMULATION SETUPS
	3.1 Simulations of Pure Material Solidification
	3.1.1 Materials for Pure Material Solidification
	3.1.2 Mesh and Time Step for Pure Material Solidification
	3.1.3 Initial Conditions and Boundary Conditions for Pure Material Solidification

	3.2 Simulations of Alloy Directional Solidification
	3.2.1 Materials for Directional Alloy Solidification
	3.2.2 Mesh and Time Step for Directional Alloy Solidification
	3.2.3 Initial Conditions and Boundary Conditions for Directional Alloy Solidification

	4. RESULTS AND DISCUSSIONS
	4.1 Results of Pure Material Solidification
	4.1.1 Simulation Results
	4.1.2 Parametric Study
	Anisotropy Strength 𝜺
	Dimensionless Latent Heat K

	4.1.3 Validation

	4.2 Results of Directional Alloy Solidification
	4.2.1 Simulation results
	4.2.2 Parametric Study
	Temperature Gradient
	Cooling Rate

	4.2.3 Validation

	4.3 Discussions

	5. CONCLUSION
	APPENDIX A. EXAMPLE OF DIMENSIONLESS PROCEDURE
	APPENDIX B. CODE FOR PURE MATERIAL SOLIDIFICATION
	APPENDIX C. CODE FOR DIRECTIONAL ALLOY SOLIDIFICATION
	REFERENCES

