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ABSTRACT

Wang, Michael MS, Purdue University, August 2020. Evaluating Tangent Spaces,
Distances, and Deep Learning Models to Develop Classifiers for Brain Connectivity
Data. Major Professor: Joaqúın Goñi.

A better, more optimized processing pipeline for functional connectivity (FC)

data will likely accelerate practical advances within the field of neuroimaging. When

using correlation-based measures of FC, researchers have recently employed a few

data-driven methods to maximize its predictive power. In this study, we apply a

few of these post-processing methods in both task, twin, and subject identification

problems. First, we employ PCA reconstruction of the original dataset, which has

been successfully used to maximize subject-level identifiability. We show there is

dataset-dependent optimal PCA reconstruction for task and twin identification. Next,

we analyze FCs in their native geometry using tangent space projection with various

mean covariance reference matrices. We demonstrate that the tangent projection of

the original FCs can drastically increase subject and twin identification rates. For

example, the identification rate of 106 MZ twin pairs increased from 0.487 of the

original FCs to 0.943 after tangent projection with the logarithmic Euclidean reference

matrix. We also use Schaefer’s variable parcellation sizes to show that increasing

parcellation granularity in general increases twin and subject identification rates.

Finally, we show that our custom convolutional neural network classifier achieves an

average task identification rate of 0.986, surpassing state-of-the-art results. These

post-processing methods are promising for future research in functional connectome

predictive modeling and, if optimized further, can likely be extended into clinical

applications.
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1. INTRODUCTION

The use of functional magnetic resonance imaging (fMRI) has revolutionized our

understanding of the human brain, allowing for the modeling of large-scale brain

networks in a non-invasive manner [1] [2]. Its capability of high spatial resolution

imaging of the brain yields detailed structural and functional connectivity networks.

Applications of brain functional connectivity include discovering clinical biomarkers

[3], identifying brain fingerprints that allow for the identification of individual subjects

on test/retest acquisitions [4], and highlighting task-dependent reconfiguration of

brain networks [5], among many others. In this study, we evaluate the effects of

processing methods including PCA reconstruction and tangent space projection for

classification of functional connectivity data. The processing methods evaluated are

optimal reconstruction based on principal components analysis and projections to

five different tangent spaces. Classification performance evaluated include test/retest

subject identification for each fMRI task, twins identification for each fMRI task, and

task identification across unrelated subjects.

1.1 Group vs. Subject Level Approaches in Functional Connectivity

With fMRI, researchers have analyzed functional brain connectivity patterns to

identify group-level differences in brain networks among clinical and healthy popula-

tions [6]. These brain disorder studies often use statistical tests to uncover significance

in the aggregated data. The performance of these tests is usually quantified by the

p-values between groups with a certain significance threshold. Group-level analyses

result in easier interpretation of the general networks that contribute to the differ-

ences between groups. However, by only analyzing at a group-average level, individual

variability within-group is largely ignored [7]. Individual variability within functional
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connectomes contains identifying features, or fingerprints, that can be used to identify

an individual apart from the cohort [4] [8]. Nevertheless, there is a large effect of mo-

tion on functional connectivity data and one may argue that subject-specific motion

could be partially driving the fingerprinting results. Finn et al. (2015) quelled this

concern by developing a metric that captures the movement patterns for each subject

per FC scan. These metrics were then used with the same identification pipeline that

they used for the subject identification of FC matrices. In the end, identification

rates based on movement alone were very low at 2.5% showing that motion noise is

not sufficient to identify a subject’s fingerprint. In contrast to group-level analyses,

the goal of subject classification is to classify each subject into groups based on pre-

determined labels (e.g., clinical vs. healthy) with supervised learning. The success of

this approach and classification problems in general is measured by the classification

accuracy. Showing group differences within FCs and prediction with FCs are very

different research questions, and in this study, we focus on the latter.

1.2 Traditional Machine Learning Algorithms and their Applications to

Brain Connectivity Data

Within traditional connectome predictive modeling methods, proper feature selec-

tion of the model is essential to ensure models avoid overfitting and are generalizable

to new data [11]. The majority of such studies that use machine learning for fMRI

classification use traditional algorithms such as support vector machines (SVM) and

regularized linear regression models. Specifically, a review of 77 papers using machine

learning on fMRI showed that over half of the articles used SVMs [12]. Support Vec-

tor Machines create a line or hyperplane that separates the data into classes. If a

clean line or hyperplane cannot be drawn within the dimensionality of the dataset,

the data is mapped into a higher dimension, a process known as kernelling. SVMs

perform well with smaller and cleaner datasets because they resist overfitting [13].
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Fig. 1.1. Group level representations of whole-brain functional connectiv-
ity for three different cohorts. Namely, healthy controls (HC), amnestic
mild cognitive impairment (aMCI), and Alzheimer’s disease (AD). Figure
adapted from [9].
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Fig. 1.2. Examples of three whole-brain resting-state functional connec-
tomes (FC) of three individual subjects from HCP dataset using Schaefer’s
parcellation with 100 brain regions [10].

However, they require careful feature selection, which can prove to be a difficult task

with high-dimensional data such as functional connectivity matrices.

Regularization is a method that simplifies a model to prevent overfitting and has

been widely used in the field of machine learning [15]. It is especially important

in the context of functional connectivity analysis due to the high dimensional space

and proneness to overfitting. One of the most popular regularized linear regression

models, elastic net, has yielded promising results [16]. Elastic net combines both L1
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Fig. 1.3. Example of binary class separation with SVM with various levels
of fit. Underfitting would produce a classifier that is too simple to model
the relationships within the data, whereas overtiffing would produce a
classifier that would learn relationships that are not generalizable to new
data. Figure adapted from [14]

norm and L2 norm with a hyperparameter. The L1 norm penalizes larger weights

more severely and prefers many weights close to 0 whereas the L2 norm encourages

a smaller, simpler model. A model with more sparse weights or parameters has

a few advantages in functional connectivity analysis. These include mitigation of

overfitting in high-dimensional feature spaces and interpretability. In the context of

deep learning models, regularization is necessary to prevent the overfitting of weights

to the training dataset. However, too strong of a regularization coefficient will cause

the model to be too simple and unable to learn the complex relationships within the

data. We can apply L2 regularization with the weight decay parameter within the

loss function.
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1.3 Deep Learning Methods

Within the field of machine learning, a subset of classifiers that has multiple layers

of nodes and weights are known as Deep Learning methods. Due to advancements in

deep learning methods, it is more viable to train these models on high-dimensional

datasets like fMRI than the traditional machine learning methods outlined above

[17]. Recently, it has been shown that fully connected deep neural networks can

be used successfully for connectome-based classification [18]. Furthermore, inspired

by the success of convolutional neural network (CNN) architectures in the famous

image classification challenge ImageNet [19], researchers have used CNNs to classify

functional connectivity data to great success [20]. The convolutional layer(s) in a

CNN apply a small, square filter to its input to perform a dot product calculation as

an activation. Repeated convolutions across the input create what is called a feature

map, which determines the presence of a particular feature in the input. This can be

interpreted as a form of automated feature selection.

Functional connectivity matrices, as a data structure, are conveniently similar

to input images in image classification. FC matrices are classically represented as

square matrices of size n × n. Here, n is the number of brain regions of a given

parcellation - the segmentation of the brain according to an atlas. The value of

the (i, j) location within the matrix represents the correlation between BOLD time

series of brain regions i and j. As such, these matrices may be interpreted as grayscale

images with pixel intensities between -1 and 1. One key difference between traditional

images and functional connectomes is that the local features of traditional images do

not smoothly translate to connectomes. For example, the clustering of a square 5× 5

group of pixels may include an outline of a dog’s ear in a traditional image whereas

for a functional connectome, this clustering depends on the network structure and

ordering of brain regions. Therefore, a strategic implementation of CNN architecture

including filter sizes and depths, as well as the ordering of brain regions, is necessary.
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Fig. 1.4. Convolutional neural network (CNN) architecture examples for
both binary image classification (top) and binary FC classification (bot-
tom). The input matrix to both CNNs contain values of pixel intensities
(top) or pearson correlation values (bottom). A convolution filter moves
along the input matrix and creates additional channels based on the filter
dimensions. Then, subsampling methods such as pooling are employed
to shrink the data into more interpretable features. This process is re-
peated until the network merges the features into fully connected layer(s).
Finally, the fully connected layer(s) produce an output layer the size of
the number of output labels. In the image classification example, the two
labels are Cat vs. Dog while in the FC classification example, the two
labels are Clinical and Healthy. Figure adapted from [21].

The quantity, quality, and size of publicly available neuroimaging datasets have

increased significantly in the past few years. Examples of these datasets include

the 1000 Functional Connectome Project [22], ADNI2 and ADNI3 [23] with clinical
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fMRI data for Alzheimer’s disease, and the 1200 Subjects Release of the Human

Connectome Project [24] [25] [26]. Although the additional data facilitates deep

learning classification, these neuroimaging datasets still pale in comparison to the size

of image recognition datasets. fMRI scans are expensive to collect and, consequently,

fMRI studies have at most a few thousand training examples. Compared to training

on the 1.2 million instances used in ImageNet, training on the smaller neuroimaging

datasets can often lead to overfitting. Therefore, it is important to take rigorous

steps for regularization and construct a relatively simple convolutional neural network

architecture. Nevertheless, deep learning methods have already been used to classify

autism spectrum disorder (ASD) [27], amnestic Mild Cognitive Impairment (aMCI)

[20], Alzheimer’s disease (AD) [28], cognitive impairment [29], and schizophrenia [30].

1.4 Clinical Applications of fMRI

Since its inception in the early 1990s, fMRI has reshaped the neuroimaging re-

search community. It has allowed for in-vivo characterization of whole brain func-

tional connectomes in humans [31], leading to the discovery of several critical brain

networks implicated in schizophrenia, attention deficit hyperactivity disorder, autism,

and Alzheimer’s disease (AD) [6]. Despite its popularity in academia, fMRI has seen

rather meager application in the clinical environment [32]. Abnormalities in brain

networks identified in clinical research datasets have not translated into practical di-

agnostic tools for use on individual patients. One major reason for this disconnect is

the low within-subject reliability and between-subject differentiability (‘fingerprint-

ing’) for subject-level prediction or diagnosis [33] [4]. fMRI data is contaminated with

noise including motion and scanner artifacts. Slight changes in subject positioning

can easily contaminate the fMRI signals. Because of the high spatial resolution of

fMRI, even the slightest of movements can trigger significant artifacts within the data.

There has been a great deal of research done on correction methods in frequency fil-
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ters to mitigate this issue [34]. Such artifacts lead to high inter-subject variability

which hinders the performance of subject-level classification.

Recent work in differential identifiability has shown that individuals can be rea-

sonably distinguished from each other using FC. The performance of distinguishing

individuals is measured by identification rate [4], perfect separability rate [35], or dif-

ferential identifiability [33]. Differential identifiability can be improved with increased

scan length and multiple scan sessions [36]. Consequently, studies have shown that

typical 6-minute fMRI acquisitions do not have adequate reliability, and likely causes

significant issues in using clinical fMRI datasets for subject-level modeling. Further,

a recent study has demonstrated that the use of multiple connectomes across sessions

additional tasks improves predictive power [37]. However, extended fMRI acquisi-

tions and the collection of task-based fMRI is often infeasible for clinical populations

who often have trouble completing tasks and enduring a long acquisition session [11].

Additionally, it has also been shown that the presence of neurologic or psychiatric

conditions makes differentiating between subjects more difficult [38]. To address these

issues, Amico and Goni proposed the differential identifiability framework [33], which

is a PCA-based denoising algorithm to uncover fingerprints in functional connectomes.

By separating the data into linearly independent principal components by decreasing

order of explained variance, researchers can then reconstruct the original dataset with

a subset of these principal components. In this study, subject-level identifiability was

maximized with a subset of the components that explain the most variance. Their

results suggest that this cleaning method can remove scanner and motion artifacts

while preserving the defining features on the individual level. They demonstrated

improvements in FC fingerprinting beyond what could be achieved by increasing scan

length [33]. Similar improvements have also been shown in inter-scanner and multi-

site identifiability where subjects are scanned at different locations with different

scanners [39]. The differential identifiability framework shows that improving across-

session reliability of functional connectomes (FCs) also improves reliability of derived
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network measures [8]. A similar improvement in FC fingerprinting was also found in

data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) [11].

Fig. 1.5. Positive-definite (full rank) functional connectomes (FCs) reside
in the interior of the positive semidefinite cone pictured above. Because
they are correlation matrices, they do not naturally form a Euclidean
space. The surface of this cone is comprised of all the rank-deficient
positive semi-definite FCs (having at least one 0 eigenvalue). Abbas et
al. showed that different magnitudes of λ for regularization offset the FCs
within the positive semi-definite cone. [40]

There has also been a push to use geometry-aware analysis methods on functional

connectivity data [41]. The reason is that non-geometry-aware similarities or distance

measurements such as Person’s correlation coefficient (r or 1 − r) assume that the
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underlying FC data lie in the Euclidean space. Instead, FC matrices computed by

Pearson correlating BOLD time series data lie on a non-linear manifold called the

positive semidefinite cone whose geometry is non-Euclidean [41]. Mathematical op-

erations that are commonly used in a classification algorithm such as addition and

multiplication do not translate to this space. By employing the geometry-aware pro-

jections outlined in Section 2.4.3, we can compare and classify functional connectomes

properly in their natural space.

1.5 Twin Studies and Behavior Genetics

Phenotypic variation in humans can be physical (e.g., height or weight), physiolog-

ical (e.g., blood pressure or brain volume), cognitive (e.g., memory), and psychological

(e.g., susceptibility to depression). The debate over the source of this variation be-

ing from genetics, environment, or a mixture of both is known as the nature versus

nurture debate. The classical twin study is a practical and powerful family design

to uncover sources of phenotypic variation. There are two types of twins: identical

(monozygotic; MZ) and non-identical (dizygotic; DZ) twins [42]. Monozygotic twins

form when the zygote (fertilized egg) divides, usually within 2 weeks of fertilization.

Both monogyzotic twin individuals originate from the same sperm and egg and share

identical genetic information. Dizygotic twins form when more than one egg is re-

leased by the ovaries at the same time each of the eggs is fertilized by a separate

sperm cell. Dizygotic twins, then, share the same amount of genetic information

as if they were siblings - roughly 50% [42]. However, they do have shared prenatal

environments, as they were conceived at the same time and shared the womb.

1.6 Aims and Hypotheses

The goal of this research is to investigate better data pipelines to process and

project functional connectivity data for predictive modeling. To do so, we investigate

the effects of two established data-based frameworks: the differential identifiability
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Fig. 1.6. Scatter plots of monozygotic (MZ) and digyzotic (DZ) twin pair
for height (cm) in males. Altogether, correlations for MZ and DZ suggest
a high heritability for this trait. Figure adapted from [42].

framework [33] and the use of geodesic distance [41]. It has been shown that there

exist task-evoked network architectures of the human brain and that different areas of

the brain are more or less involved in specific tasks [43]. Our hypothesis is that these

ask-specific functional connectivity networks are identifiable within each subject’s

functional connectome depending on the task being performed. We hypothesize that

aforementioned frameworks increase the power of the underlying networks and lead to

higher performance. Additionally, Amico and Goñi and Finn demonstrated that there

exists a subject-level fingerprint within functional connectivity data. We hypothesize

that this fingerprint also extends to twin studies where monozygotic and dizygotic

twins share portions of the subject-level fingerprint due to the sharing of genetic

material. Again, we aim to adapt both the differential identifiability framework and

the use of geodesic distance to maximize twin identifiability of functional connectivity

data.
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1.7 Optimizing the Processing of Functional Connectomes Based on Clas-

sification Performance

Analysis of fMRI data is held back by the lack of a common cleaning and analysis

pipeline within the neuroimaging community. Predictive models that use functional

connectivity typically follow three main steps: parcellating the brain into regions,

estimating the interactions between these defined regions, and feeding the data into

a classifier for prediction [16]. In this study, we attempt to address all three steps of

this pipeline by determining parcellation effects, data cleaning transformations, and

a robust deep learning classifier. The goal of this research is to apply these data

pipeline optimizations to maximize classification accuracy of functional connectivity

data.

With respect to parcellations, finer-grain segmentations yield higher spatial res-

olution and more functional connectivity information. However, the dimensionality

of the features scales exponentially and can easily lead to overfitting. We test the

various parcellations granularities of Schaefer’s brain atlas [10].

Next, to delineate the effects of data cleaning and processing, we use the minimally

processed functional connectomes as the control. We also apply PCA reconstruction

with varied levels of principal components (PCs). In within-task subject identifiabil-

ity, it has been shown that PCA reconstruction with slightly less than 50% of PCs

results in optimal performance [33]. It is thought that the functional connectivity

included in base function are represented by the first few principal components that

explain the most variance, and as the explained variance decreases, task and subject-

level variability are introduced. Finally, in the last 50% of PCs, scanner artifacts and

motion noise are likely introduced. For the other data cleaning method, we test tan-

gent space projection of the functional connectomes with various reference matrices.

These reference matrices can be as simple as the group mean of the entire dataset

and serve as an anchor into the tangent space. Since PCA reconstruction is a linear

combination of principal components, it cannot be used simultaneously with tangent
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space projection. Finally, for classification, we use both a distance-based K-Nearest

Neighbors classifier and a custom convolutional neural network (CNN) classifier. The

purpose of the K-Nearest Neighbors classifier is to serve as a proxy model in its sim-

plicity to be able to test many hyperparameters in both our proposed data cleaning

methods. Once the best parameters are identified, the input data from all three

pipelines are tested with the CNN model. The CNN creates a more complex model

with nonlinearities throughout the training of many weights within the hidden layers.

Because of the smaller size of the HCP dataset, we employ a simpler CNN model

architecture with proper regularization methods. We demonstrate that fine-grain

parcellations boost performance in the CNN. We also show that both PCA recon-

struction and tangent space projection clean the data for task classification, but with

some caveats in the latter data cleaning method. Finally, we present state-of-the-art

results with the optimized data pipeline in the classification of functional connectome

data.
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2. METHODS

2.1 Human Connectome Project Dataset

The main dataset analyzed during this study is the Human Connectome Project

1200 Subjects Release and is available online in the HCP repository established by

the National Institute of Health [44]. Per HCP protocol, all subjects gave written, in-

formed consent to the Human Connectome Project consortium. Of the 1200 subjects,

we use a subset of 424 unrelated subjects. This subset, as specified by the HCP, en-

sures that each individual is not related to any other subject within the subset. This

criterion was included in the early stages of this study to eliminate any genetic con-

founding factors within the study. All subjects gave written informed consent to the

Human Connectome Project consortium.

The HCP dataset consists of scans of the subjects at rest (resting state) and

while performing seven separate tasks: gambling, relational, social, working memory,

motor, language, and emotion. These 7 tasks and resting state represent 8 total

output labels in our predictive models. For each subject and task, there were two

fMRI data acquisition sessions, which function as replicates and are denoted by test

and retest. To avoid confounds due to the directionality of acquisition, the RL and LR

scans were randomly assigned to test and retest [45]. The working memory, gambling,

and motor tasks were completed on the first day of acquisition while the others were

completed on the second day. The HCP scanning protocol was approved by the local

Institutional Review Board at Washington University in St. Louis. All experiments

were performed in accordance with relevant guidelines and regulations.
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2.1.1 Twin Subset

The HCP 1200 Subject Release also includes 116 monozygotic twin pairs, who

share 100% of their genetic structure and a common environment, and 76 dizygotic

twin pairs, who share 50% of their genetic structure and a common environment. The

data structure is identical to the HCP dataset as described above as it is a subset of

the 1200 subjects. There are test and retest scans for each of the 8 tasks and for each

of the twin pair individuals.

2.1.2 Data Preprocessing

The HCP functional minimal preprocessing pipeline was used [24] which includes

artifact removal, motion correction, and registration to the standard space. Further

processing was done for both resting state and task fMRI data outlined by Amico,

Arenas, and Goñi [46]. This pipeline includes spatial preprocessing, in both volu-

metric and grayordinate forms with motion correction [47], weak high-pass temporal

filtering for slow drift removal, MELODIC ICA [48] applied to volumetric data, and

scanner artifacts identified and removed with FIX [49]. For the resting-state fMRI

data, global gray matter signal was regressed out of the time series [50]. A band-pass

first-order Butterworth filter in forward and reverse directions [0.001 Hz, 0.08 Hz] was

applied [50], and the voxel time courses were z-scored and averaged per brain region

to exclude outlier time points outside of 3 standard deviations from the mean [25].

For task fMRI data, we applied the same above mentioned steps with a less restrictive

range for the band-pass filter [0.001 Hz, 0.25 Hz].

2.1.3 Estimation of Subject-Level Functional Connectomes

For each task fMRI session of each subject, a functional connectivity matrix (i.e.

the functional connectome) was obtained by computing Pearson’s correlation coeffi-

cients between pairs of time courses of each brain region. These functional connec-
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tomes are symmetric of size n × n where n is the number of brain regions in the

given parcellation. The functional connectomes were neither thresholded nor bina-

rized and kept as correlation coefficients of values between -1 and 1. A value close

to 1 signifies strong functional connectivity between the brain regions as their BOLD

signal activity are closely correlated with each other. A value close to 0 means that

there is very little functional connectivity between the two brain regions. Finally, a

value close to -1 shows a strong negative correlation, but that one region tends to be

activated while the other one is at rest, and vice versa. The construction of functional

connectomes was done for all variable sized Schaefer parcellations with subcortical

regions. An example of an individual functional connectome from the Schaefer 100

brain parcellation is shown in Figure 2.1.3. The resulting individual functional con-

nectivity matrices are automatically ordered (rows and columns) according to seven

resting-state cortical subnetworks (RSNs) as proposed by Yeo et al. (2011). For com-

pleteness, an eighth subnetwork including the 14 HCP subcortical regions was added

(as analogously done in a recent paper; Amico et al., 2018) [45].

2.2 Task Classification

Task-based fMRI is regularly used to identify brain regions that are functionally

involved in the execution of a specific task, while resting state fMRI is more often

used to highlight the underlying brain networks. From Task-based fMRI, we can

use the information about which brain regions activate during which tasks to help

understand how the brain is organized in resting state fMRI [51]. We aim to classify

functional connectomes into each of the 8 different task labels (7 tasks and resting

state) from the Human Connectome Project dataset. Examples of each of the 7 task

FCs and resting state FC are shown in Figure 2.1.3. These example FCs all belong

to Subject 1 with Schaefer’s 100 brain region parcellation plus 14 subcortical regions.

Previous work has shown that there is much subject-level variation in functional

connectivity [46] [4]. To consistently classify individual FCs into the correct task
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Fig. 2.1. Example of 8 functional connectomes of Subject 1, one per fMRI
task with Schaefer’s parcellation with 100 brain regions and 14 subcortical
regions.

labels, the classifier must overcome subject-level differences and instead focus on task-

specific variability in the functional connectivity data. Previous studies have used the

HCP dataset to differentiate gambling and relational tasks (92% accuracy) [52], motor

and working memory tasks (95.9% accuracy) [53], and classify into all 7 HCP tasks

(93.7% accuracy) [18]. They use a variety of classifiers including SVMs [52], random

forests [53], and deep neural networks [18]. In this study, we will use both a distance-

based K-Nearest Neighbor classifier and a Convolutional Neural Network classifier.

Details on these algorithms will be discussed in the following sections.

2.3 Twin Identification

There is a strong individual ‘fingerprint’ within a subject’s functional connectome

[4]. Whether this fingerprint is determined by genetics, environment, or a mixture of

both is a question of nature versus nurture. A recent study has classified zygocity
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(monozygotic vs. dizygotic) in twin pairs with 92.23% accuracy [54]. Another study

has attempted to identify twin pairs with resting state fMRI data with 64% and 22%

accuracy for monozygotic (n = 25) and dizygotic (n = 25) twins pairs. We also assess

the identification problem on twin pairs with the Human Connectome Project’s subset

of monozygotic and dizygotic twins in an attempt to uncover the role of genetics in

subject-level identifiability. In addition to resting state fMRI, we also examine the

predictive power of task-based fMRI for twin pair identification. Each individual

in this dataset has a test and retest scan for each of the 7 tasks and resting state.

We employ post-processing techniques that are detailed in the following section to

optimize performance of our predictions with a distance-based classifier.

2.4 Functional Connectivity Parcellations and Post-Processing Methods

To best solve the aforementioned classification problems, we employ a variety

of post-processing methods in an attempt to increase performance. These methods

include increasing or decreasing granularity of brain parcellations, adapting the dif-

ferential identifiability framework to reconstruct functional connectomes (FCs), and

projecting FCs into the tangent space for geometry-aware analysis. We implement

these post-processing methods for all analyses with the goal to recommend best-

practice post-processing methods for functional connectivity data.
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Fig. 2.2. Schaefer’s cerebral cortex parcellations of the human brain with
(A) 400 regions (B) 600 regions (C) 800 regions and (D) 1000 regions.
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2.4.1 Brain Parcellations

In this study, we use Schaefer’s parcellation with variable brain regions. These

were each appended with an additional 14 subcortical regions for completeness [45].

Schaefer’s parcellation is a gradient-weighted Markov Random Field (gwMRF) model

that integrates both local gradient and global similarity approaches. One key advan-

tage to Schaefer’s proposed parcellation is that it has variable degrees of segmentation,

from 100-1000 brain region parcellations in intervals of 100 regions. In this study, we

use the 100-500 brain region parcellations due to the exponential increase in feature

space dimensionality of high resolution parcellations.

2.4.2 Differential Identifiabilty Framework Adapted for Classification

After segmenting the brain into regions of interest based on the aforementioned

parcellations and computing the minimally processed functional connectomes, we

adapt the differential identifiability framework to clean the data from noise and ar-

tifacts. Specifically, we reconstruct the original dataset with a subset of its principal

components (PCs). Principal component analysis computes the eigenvectors, or prin-

cipal axes, of the dataset and sorts them by their eigenvalues in decreasing order

of explained variance. Each principal component is a linear combination of the in-

puts (in this case, of functional connectomes). The data is centered by subtracting

its mean and is then projected onto these principal axes to yield principal compo-

nents (PCs). While PCA is typically used as a technique for dimensionality reduction

and/or feature selection, the PCs can be linearly combined to reconstruct the dataset.

The purpose of PCA reconstruction is to clean the data from noise that is contained

within the principal components with little explained variance. This method has been

used in optimizing subject-level differential identifiability [33] to great success. Differ-

ential identifiability assesses the strength of the individual fingerprint of a subject’s

connectome. Each entry in the identifiability matrix i, j represents the correlation

between connectome of subject i test and subject j retest. Thus, the correlation
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coefficients between replicates of the same subject is denoted as Iself and reside on

the main diagonal. The non-diagonal elements are the correlations between a run of

a subject i and subject j where i and j are different subjects (Iothers). Differential

identifiability is then defined as

Idiff = (Iself − Iothers)× 100 (2.1)

The differential identifiability framework and our adaptation requires at least two

samples of each label to calculate identification rate. In the context of subject iden-

tification, these are designated as test and retest scans. For twin identification, there

are four total samples for each twin pair (test and retest for each individual). To

maximize differential identifiability, there exists an optimal number of PCs to in-

clude in reconstruction. Amico and Goñi. (2018) found that including approximately

40-50% of the total principal components yielded the maximum differential subject

identifiability [33]. In this study, we use this finding as inspiration to maximize task

identifiability; that is, to differentiate one task functional connectome from other

tasks. We vectorize the upper triangular portion of each individual FC and aggregate

them into one large matrix of size m × n where m is the number of edges in the

flattened FC and n is the total number of FCs. PCA decomposition on this large

matrix is performed and separated into orthogonal eigenvectors W sorted by decreas-

ing order of explained variance. We subtract the mean and project the centered data

onto eigenvectors to create the principal components Z. Finally, we reconstruct the

large matrix of size m × n with a subset of k principal components and adding the

mean back into the matrix as shown in equation 2.2. Please refer to a visualization

of this process shown in Figure 2.4.2 adapted from Amico and Goñi.

Xr
m×n

= W
m×k
× Z′

k×n
+ µ (2.2)

We incrementally test the proportion of PCs to include in reconstruction to maxi-

mize classification accuracy. Due to the large search space of optimal reconstruction,

using an expensive model (i.e. convolutional neural network) to determine the best
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Fig. 2.3. Example of PCA reconstruction of the original dataset of func-
tional connectivity (FC) matrices. The upper triangular portion of the
original FCs are first vectorized and aggregated into a single large ma-
trix. Then, the eigenvalues and eigenvectors of this matrix are produced
through PCA decomposition. Finally, the original dataset is reconstructed
with a subset of principal components and reshaped into square, individ-
ual FC matrices.

proportion of PCs is infeasible. Rather, we use a simple distance-based classifier as

a stand-in and use the best configuration in the more complex and expensive CNN

model.

2.4.3 Tangent Space Projection

In many fMRI analyses, it is common to encounter the concept of quantifying

similarity between functional connectomes. The classic and intuitive approach is to

vectorize the upper triangular of the FC matrix excluding the main diagonal into

a one-dimensional vector and compute the correlation distance between the vectors.

Then, if two connectomes are similar their flattened matrices would yield a relatively

high correlation coefficient. The correlation distance approach has produced impres-

sive results in applications such as participant identification through ‘fingerprint-

ing’ [4] [33]. However, there exists another way to analyze functional connectomes

that, interestingly, preserves their native geometry.
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Fig. 2.4. Reference matrices calculated from the Human Connectome
Project (n = 424) with Schaefer’s 100 brain region parcellation. Note
that the scales are different for each reference matrix.

Table 2.1.
Reference matrices Cg for tangent space projection. Table adapted from
[16].

Reference Equation

Euclidean 1
N

∑
iCi

Harmonic ( 1
N

∑
iC
−1
i )−1

LogEuclid expm( 1
N

∑
i logmCi)

Kullback C
1
2
e (C

− 1
2

e ChC
− 1

2
e )αC

1
2
e

Riemmanian arg min(
∑

i δR(CeCi)
2)
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Matrices computed by correlating time series data are positive definite and lie

within a non-linear surface called the positive semidefinite cone. Suppose we are

given a simple example of an FC matrix with two brain regions:x z

z y


FC matrices always satisfy x ≥ 0 and y ≥ 0 because their self-correlation coefficient is

always 1 and xy − z2 ≥ 0; therefore, they are positive definite. Because of this, their

geometry is non-Euclidean and classic distance measures such as correlation distance

or euclidean distance cannot be used if geometry is to be preserved. The operations

that classification algorithms use such as addition, subtraction, multiplication, and

division operate within the Euclidean space. To preserve geometry and use such

classifiers, the Pearson correlated FC matrices must be first projected into the tangent

space [16]. Geodesic distance, a non-Euclidean distance metric that accounts for the

manifold on which the data lies, improves participant identification compared to

the Pearson correlation distance metric [41]. Geodesic distance, as defined by this

study, is the shortest path between two FC matrices along the semi-positive definite

manifold. As a result, a small euclidean distance does not always imply a small

geodesic distance, and vice versa.

For most state-of-the-art machine learning algorithms such as deep neural net-

works and SVMs, it is infeasible to operate on the positive semidefinite cone. Instead

of converting all Euclidean operations within these classifiers to geodesic distance-

based operations, we can project the FC matrices into the tangent space. From there,

the projected FC matrices can be treated as Euclidean objects and classification al-

gorithms can be simply applied as usual in the tangent space. Given a covariance

matrix C, in our case an FC matrix, we can project it into the tangent space with a

reference matrix Cg using the following equation:

Ĉ = logm (C
− 1

2
g CC

− 1
2

g ) (2.3)
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Reference matrix Cg serves as the group anchoring point in the tangent space.

There are many different methods to calculate a reference matrix. It is unclear

which group mean estimate produces the best results, so we test all the reference

matrices shown in Table 2.1. Visualizations of these reference matrices in respect

to the Human Connectome Project dataset with Schaefer’s 100 region parcellation

can be found in Figure 2.4.3. Examples of the functional connectomes after tangent

space projection of a constant subject with resting state FC are shown in figure 2.4.3.

Tangent projection potentially aids in classification by transforming the data into a

more representative space. All tangent space projections were performed with the

Python package pyriemann developed by Dr. Alexandre Barachant [55].

Fig. 2.5. Tangent projected FCs (by using different Cg) matrices) of Sub-
ject 1 resting state functional connectome with and without the five ref-
erence matrices.
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2.5 K-Nearest Neighbors Classifier

K-Nearest Neighbors is a simple machine learning algorithm that compares the

distances between the test sample and instances within the training dataset for clas-

sification. The output is a class label. The test sample is classified by a plurality

vote decided by the class most common among its k nearest neighbors. The value

of k is typically a small, positive integer. In the case where k = 1, the predicted

label is simply determined by the label of the closest instance within the training

set. This classification method is a type of instance-based learning where there is no

training of a model and the computational expense is deferred to test sample evalua-

tion. The best choice of the parameter k largely depends on the dataset. In general,

a larger value of k reduces the effect of noise on the classifier, but at the expense of

computation and less distinct boundaries between classes.

In many fMRI analyses, the common method of comparing similarity between FCs

is to flatten each FC matrix into one-dimensional vectors and compute the correlation

distance between the vectors. Two connectomes that are similar in the underlying

brain activity would yield a relatively lower distance. This can be seen in studies

that achieve impressive results in applications such as participant identification [4]

[33]. Here, we do the same flattening procedure and distance analysis with the K-

nearest neighbor classifier but with with some adjustments. These are various types of

similarity metrics and the value of k. For the similarity metrics, we first test euclidean

distance, cosine similarity, and correlation coefficients with Python’s scikit-learn

package and its KNN function.

Of all similarity measures, Euclidean distance is the most common and often serves

as a homonym of ‘distance’; it is the basis of many measures of similarity. Euclidean

distance calculates the square root of the sum of squared differences between two

vectors. Given two vectors x and y, euclidean distance d is calculated by

d(x, y) =

√√√√ n∑
i

(xi − yi)2 (2.4)
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Cosine similarity is the cosine of the angle between two n-dimensional vectors in

an n-dimensional space [56]. It is computed as the dot product of two vectors divided

by the product their Euclidean norms. Let x and y be two vectors for comparison,

then the cosine similarity S is given by

S(x, y) =
xy

‖x‖‖y‖
(2.5)

The last similarity metric used is the correlation between two vectors. Again, let

x and y be two vectors for comparison. The correlation coefficient r between two

vectors x and y is given by

r(x, y) =
1
n

∑
i xiyi − µxµy
σxσy

(2.6)

where values for µ are the means of the respective vectors and σ represents the

standard deviations of the vectors x and y. The covariance of x and y is represented

by the expression in the numerator. From there, we must standardize the covariance

to unit variance and therefore we divide by the product of the two vectors’ standard

deviation. A higher correlation value means that the two vectors are more similar to

each other.

2.5.1 Selection of k IN KNN

In KNN, determining a value for k is not very straightforward. It is highly de-

pendent on the dataset and the number of features. In general, a small value of k

means that noise will more strongly affect the classification but computation is effi-

cient. This is because low values of k mean less comparisons to the training set are

necessary. A larger value of k reduces the noise in the dataset but can make the

classifier very computationally expensive. A general rule of thumb in the machine

learning community is to try a value of k =
√
n where n is the number of training

samples. In the domain of functional connectivity, the dimensionality is quite large

as each correlation between brain regions is a single feature. For task classification,
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we tested values of k = {1, 5, 30}. For twin identification, because there were only 2

examples of each twin individual per task, a value of k = 1 was used. All analyses

were conducted with Python and scikit-learn class KNeighborsClassifier.

2.6 Deep Learning Classifier

For datasets with many features and dimensions, deep learning models can learn a

much more complex output function than can traditional machine learning methods

such as the KNN outlined above [17]. Deep learning is a subset of machine learning

which learns complex relationships of labeled data incrementally through its hidden

layer architecture. The hidden layers contain adjustable weights in the training pro-

cess. Deep neural networks contain an input layer, an output layer, and at least one

hidden layer in between. They employ nonlinear activation functions to learn complex

relationships between the input and output layers. Convolutional Neural Networks

(CNN) are one of the variants of deep neural networks and are commonly used com-

puter vision applications. It gets its name from its hidden layers that typically consist

of convolutional layers, pooling layers, and fully connected layers. Instead of using

the normal activation functions defined above, convolution and pooling functions are

also used as activation functions. The success of convolutional neural network (CNN)

architectures in the famous image classification challenge ImageNet [19], researchers

have used CNNs to classify functional connectivity data to great success [20]. A con-

volutional layer in a CNN applies a small, square filter to the input that performs the

dot product as an activation. Repeated convolutions across the input create what is

called a feature map, which determines the presence of a particular feature in the in-

put. Benefits of convolution layers include automatic feature learning, weight sharing

(decreasing the number of learnable weights significantly), and performance on image

recognition tasks. CNNs are sophisticated enough to learn the complex processes of

the brain, with the convolution layers, nonlinear transformations, and fully connected

layers. However, because of the large number of weights, deep learning methods re-
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Fig. 2.6. Example of the custom Convolutional Neural Network (CNN)
architecture applied to functional connectivity data based on Schaefer’s
100 region parcellation. Input matrices of size 114x114 and the output
are the 8 labels consisting of resting state and 7 HCP tasks. The CNN
architecture includes two convolution layers, two max pooling layers, and
two fully connected layers.

quire a large training set to reap the benefits of the algorithm’s complexity. For

this reason, we designed a relatively simple CNN architecture for classification of

functional connectivity matrices.

2.6.1 Neural Network Architecture

Inputs to the convolutional neural network (CNN) vary in size depending on

the brain parcellation used in data preprocessing. For example, the Schaefer’s 100

region parcellation has a total of 114 brain regions including subcortical regions. This

produces a functional connectivity matrix of size 114 × 114 as input into the CNN.

The CNN treats each of these square matrices as one training or test sample. Each FC

has a ground-truth label of the task that subject was performing in the scanner. For

the purpose of this example, we will show the architecture for the Schaefer 100 region

parcellation as depicted in Figure 2.6.1. Other parcellations have slightly different

dimensions for each hidden layer but have the same general steps.
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The input FCs of size 114 × 114 convolve into 6 channels with filter size 5, and

stride of 1. In the field of computer vision, a filter sizes are commonly either 5× 5 or

3× 3. An odd filter size allows us to center the filter on a specific pixel and mitigates

problems with input and output dimensions. We chose a the larger filter size of 5× 5

because a larger filter has a larger receptive field and can mitigate overfitting. Then,

a max pooling layer with a 3 × 3 filter is used to condense each 3 × 3 block into a

single value. Max pooling finds the maximum value within the filter’s receptive field,

essentially passing on only the most important feature. Then, a rectified linear unit

(ReLU) is applied as an activation layer. The ReLU activation function is superior

to other common activation functions such as sigmoid and tanh because it mitigates

the vanishing gradient problem. We then repeat this process by following up with a

second convolution layer with 12 output channels, a second max pooling layer, again

with filter size 3 × 3, and finally another ReLU activation. Between these layers,

batch normalization was applied to regularize the data and promote learning. After

convolution, pooling, and activation, we have 12 channels of a 10 × 10 matrix each.

The 3-dimensional layer is then flattened into a one-dimensional vector - in this case,

the size is 1× 1200. This flattened layer is fully connected to another hidden layer of

size 1× 128. Finally, the hidden layer is linked to the final output layer of 8 classes.

Recall that these 8 classes correspond to the task performed by the subject in the

fMRI scanner. Softmax probability assigns a likelihood estimate on each class; the

class with the highest softmax probability is the classifier’s prediction.

2.6.2 Training of the Classifier

The data was split into an 80-20 train-test split followed by another 80-20 split of

the training set into training and validation sets. The purpose of the validation set

is to provide feedback during the training loop to quantify overfitting or underfitting.

The 20% of data not included in training is set aside purely for testing. That is,

the neural network does not see this data until it is completely finished with train-
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ing. Then, we normalized the entire dataset by subtracting the training mean and

dividing by standard deviation. This helps us avoid slow or unstable learning during

training because the features are all similarly scaled and the gradients can be updated

uniformly. For the optimizer, we test stochastic gradient descent and Adam as an

additional hyperparameter to optimize. Stochastic gradient descent (SGD) samples

only one sample at a time to calculate the derivative of the loss function. It is com-

putationally efficient compared to batch optimizers but can be swayed by excessive

noise in the dataset since it only operates on one sample at a time. The Adam opti-

mizer features an adaptive per-parameter learning rate that improves performance on

problems with sparse gradients. Adam has found to be very adaptive and easy to use

without much hyperparameter tuning [57]. During our trials, however, we discovered

that SGD generally outperforms Adam in the domain of FC classification.

With respect to learning rates, we performed a rough hyperparameter optimization

by testing rates between 1e−2 to 1e−5 on a logarithmic scale. The standard learning

rate of 1e − 3 seemed to converge at a reasonable rate and did not suffer from the

problem of overshooting the global optimum that larger learning rates may encounter.

Small learning rates such as 1− e5 did not converge in a reasonable amount of time

in our application.

The model was built in PyTorch and employed CUDA for parallel computation on

an NVIDIA GTX960 GPU with 6GB of vRAM. GPU computing drastically shortens

computation time versus a multi-core CPU. Each instance of the model was trained

for 200 epochs with an early stopping parameter of 5 epochs. That is, whenever there

are 5 epochs in a row where the validation loss does not decrease, the training ends.

This also mitigates overfitting the model to the training data.

2.6.3 Evaluation of Post-processing Methods

We use the optimal configuration for PCA reconstruction found in Figure 3.2 at 80

principal components. We also evaluate the five tangent reference matrices from the
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previous KNN classifier results. The convolutional neural network architecture and

optimizing function introduce inherent randomness into the model. For this reason,

we tested 20 iterations of each pipeline to not only examine average performance but

also the variance of the classifier. Sources of variance include the stochastic gradient

descent optimizer where a different sample is used to calculate the gradient at each

step of the function. There is also a random test and train split of the data for

each iteration. An ideal classifier would not only have high performance but also low

variance for consistent results. We repeated this procedure for both the 100- and 300-

region Schaefer brain parcellation to determine the effect of parcellation granularity

on classifier performance.
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3. RESULTS

3.1 Task Classification: K-Nearest Neighbors

The K-Nearest Neighbor classifier was run for different values of k on 424 unre-

lated subjects from the Human Connectome Project for all 7 tasks and resting state

functional connectivity. Values for k tested included 1, 5, 10, 15, and 20. Distance

measures include correlation, cosine similarity, and Euclidean distance. The variable

for classification was the task that the subject was performing in each scan. Fig-

ure 3.1, shows the accuracy of K-Nearest Neighbor classifier in classifying 8 HCP

tasks with Schaefer’s 100 brain region parcellation. Correlation and cosine similarity

outperformed Euclidean distance for all values of k. As seen in Figure 3.1, within

the different values of k, a greater value generally resulted in greater performance.

However, when increasing the value of k for the K-Nearest Neighbor classifier, com-

putation time increases significantly. Since performance gains are minimal with k

values greater than 10, we decide to use k = 10 for the remaining experiments in task

classification with this classifier.

Adapted from the differential identifiability framework proposed by Amico and

Goñi [33], the entire vectorized (flattened) matrix of functional connectomes was

reconstructed with a specific percentage of the principal components. The task iden-

tification rates corresponding to each level of PCs used in PCA reconstruction are

shown in Figure 3.2. The input for PCA consists here of a large matrix of func-

tional connectomes (FCs) that cover a total of 6,874 scans, corresponding to a total

dimensionality of the data of 6,874 principal components. When we include 100% of

principal components in reconstruction, the output is identical to the original dataset

because the cumulative sum of all explained variance from PCs equals 100%. Since 0

principal components included in reconstruction results in a dataset of all zeros, we
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Fig. 3.1. Task identification rate of K-Nearest Neighbor classifier with
correlation, cosine, and Euclidean distance metrics and various levels of
k with Schaefer’s 100 brain region parcellation. A greater value of k
increases task identification rate but increases computational expense.
Correlation distance and cosine similarity consistently outperformed Eu-
clidean distance.

chose to start the first data point at one PC. Reconstruction was performed on Schae-

fer’s 100 brain region parcellation. The task identification rate increases sharply at

just 2% of PCs and then decreases until a minimum of 40% of PCs. From there, the

accuracy slowly but steadily climbs to the accuracy of the untouched original dataset.

At 2% principal components, we achieve a task identification rate on the test dataset

of approximately 0.87. Without PCA reconstruction, the task identification rate is

at 0.797 accuracy with the original FCs of the Schaefer 100 brain region parcellation.

Since there was significant spike between including just one PC and including 2%

(approximately 120 PCs) in accuracy, we then took a more fine-grain approach by

zooming in on this area of interest. Figure 3.2 also shows the accuracy between 10 and

200 components in intervals of 10 PCs. This appears to be a roughly convex function
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(b) Fine-grain proportions of PCs in reconstruction

Fig. 3.2. (a) Task identification rates of 7 HCP tasks and resting state of
the K-Nearest Neighbor classifier (k = 10) with variable percentages of
principal components (PCs) included in reconstruction. The total number
of PCs is 6,784. In (b) we repeated the experiment with a PC range of
10-200 components, approximately 0-2.5% of all PCs of the dataset.
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with a maximum at 80 principal components. Reconstruction at 80 PCs results in a

task identification rate of approximately 0.875%. Compared to the original FCs, this

is an improvement of over 0.07. Given the optimal performance seen in this particular

reconstruction, we will refer to reconstruction of the HCP dataset with 80 PCs in the

task identification problem as PCA - Optimal.

Figure 3.3 shows the KNN classifier’s task identification rates on the original

functional connectomes (FCs), PCA reconstructed dataset, and FCs projected into

the tangent plane with various tangent reference matrices with Schaefer’s 100 brain

region parcellation. Both PCA-reconstructed and a few of the best tangent projected

FCs produced higher performance than the original FCs. Of the reference matrices

in tangent projection, the logarithmic Euclidean and Kullback means outperformed

the others with task identification rates of 0.899 and 0.886, respectively, with the

correlation distance metric. Similar to our findings in Figure 3.1, we observe that the

correlation and cosine similarity measures performed the best within the K-Nearest

Neighbor classifier across post-processing methods.

3.2 Task Classification: Convolutional Neural Network

Figure 3.4 shows the validation and training loss of the convolutional neural net-

work (CNN) classifier in one example for each post-processing pipeline with Schae-

fer’s 100 brain region parcellation. These curves were obtained over the course of 200

training epochs. The post-processing pipelines include the original, minimally pro-

cessed functional connectomes (FCs), the optimally reconstructed FC matrices at 80

principal components, and tangent projected FC matrices with each of five reference

matrices. There are slight differences in the training curves of the CNN trained on

post-processed FCs versus the original FCs. First, in the case of the PCA optimally

reconstructed FCs, and tangent projected Euclidean and harmonic FCs, the training

and validation loss curves were more steep than that of the original FCs. Further-

more, the tangent projected FCs produced curves with miminal separation between
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Fig. 3.3. KNN (k = 10) test accuracy with tangent reference matri-
ces including Euclidean, Harmonic, logarithmic Euclidean, Kullback, and
Riemman means. The raw data was also directly intput to the KNN
classifier, denoted by none.

the training and validation curves. Furthermore, since the validation loss did not ever

increase for more than 5 epochs in a row, early stopping did not occur. Hence these

two observations suggest that the mitigation of overfitting was largely successful. In

the case of the tangent projected FCs with Riemann and logarithmic Euclidean FCs,

the loss curve decreased slower at first before sharply decreasing around epoch 15. In

the end, both the training and validation loss resulted in values lower than that of

the original FCs.

Figure 3.1 shows the task identification rates of the CNN classifier trained on

seven different sets of FCs. The violin plot visualizes the distribution of the 20 identi-

fication rates per all seven transformations. The original FCs resulted in a mean task

identification rate of 0.926 with a standard deviation of 0.006. All 6 of the other post-

processing methods produced FCs that resulted in increased average performance and

decreased variance. As shown above in Figure 3.2, PCA reconstruction with 80 prin-
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Fig. 3.4. Learning curve examples of CNN classifier on original functional
connectomes (FCs) and post-processed FCs over 200 epochs of training.
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Fig. 3.5. Task identification rates of the convolutional neural network
(CNN) classifier on original functional connectomes (FCs), optimally PCA
reconstructed FCs, and tangent projected FCs with various reference ma-
trices with Schaefer100 parcellation. The CNN model was trained 20
times per reference matrix to show within-classifier variability. Tangent
projected FCs with the harmonic mean reference resulted in the highest
mean task identification rate at 0.986 with a standard deviation of 0.0028.

Table 3.1.
Average task identification rates and standard deviations for all post-
processing methods

Post-processing Task Identification Rate SD (σ)

Original FCs 0.926 0.006

PCA - Optimal 0.945 0.003

Tan - Euclidean 0.973 0.004

Tan - Harmonic 0.986 0.003

Tan - LogEuclid 0.952 0.003

Tan - Kullback 0.953 0.005

Tan - Riemann 0.947 0.004
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cipal components resulted in the optimal task identification rate in the KNN classifier.

Due the expense of the CNN classifier, it was infeasible to again test the levels of PCs

used in reconstruction. Therefore, we used the same 80 PCs in reconstruction for

the CNN classifier. The average task identification rate of the 20 CNNs ran on PCA

optimally reconstructed FCs was 0.945 with a standard deviation of 0.003. Out of the

five tangent reference matrices, the harmonic mean outperformed the rest with an av-

erage task identification rate of 0.986 and a standard deviation of 0.003. Interestingly,

the logarithmic Euclidean, Kullback, and Riemann means performed the worst out

of the tangent projected FCs, opposite of the findings with the KNN classifier. These

results were obtained using Schaefer’s 100-region parcellation. Schaefer’s 300-region

parcellation was also tested, but due to the exponential increase in computation time,

it was infeasible to finish the experiment. However, preliminary findings suggest that

increase in parcellation granularity does not increase performance.

3.3 Twin Identification

As with task identification, we also experiment with various levels of PCs in-

cluded in PCA reconstruction for twin datasets using Schaefer’s 100-region parcel-

lation. Here, however, the classification problem is to match twin pairs. Therefore,

PCA reconstruction was done for each group of task FCs. In Figure 3.3, we show

the twin identification rates of the KNN classifier for resting state fMRI of monozy-

gotic (MZ) and dizygotic (DZ) twin pairs with 0 to 100% of the total PCs used in

reconstruction. Within the HCP dataset, there were 106 pairs of MZ twins and 58

pairs of DZ twins with data across all 7 tasks and resting state FCs. There is a peak

at roughly 50% of total PCs for MZ twins and at roughly 30% of total PCs for DZ

twins. The peak of the DZ twins occurs earlier than that of the MZ twins in terms

of number of PCs included in reconstruction. Also, it is important to note that the

twin identification rate of the MZ twin pairs is significantly higher than that of the

DZ twin pairs.
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(a) Monozygotic twin pairs
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(b) Digyzotic twin pairs

Fig. 3.6. Twin identification rates of 106 monozygotic (MZ) and 58 dizy-
gotic (DZ) twin pairs with variable proportions of principal components
(PCs) used in reconstruction of resting state FCs. Analysis uses Schae-
fer’s 100 brain region parcellation. There is an optimal reconstruction at
approximately 50% of PCs for MZ twins and at 30% of PCs for DZ twins.
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In Figure 3.7, we show the effects of the reference matrices used in tangent pro-

jection of the original FCs. Results are averaged from Schaefer’s 100, 200, 300 and

400-region parcellations. Parcellation effects will be shown and discussed in the next

figures. The KNN classifier was employed for each of the 7 tasks and resting state

FCs after tangent projection with each of the five reference matrices. The logarithmic

Euclidean, Kullback, and Riemann mean reference matrices performed the best across

tasks. The harmonic mean showed meager results with an average twin identification

rate across tasks of only 0.2. Out of the tasks, resting state functional connectivity

was the best predictor of twin pairs as represented by the blue bars. These results

were consistent overall for both MZ and DZ twin pairs.

In Figure 3.3, results of twin pair identification for monozygotic (MZ) and dizy-

gotic (DZ) twin pairs are shown. Each subplot within this figure shows a different

post-processing method applied to each of the 7 tasks and resting state FCs of the

twin pairs. Further, the color bars represent the various Schaefer parcellation gran-

ularities used in the analyses. The first visual conclusion from these plots is that

increasing parcellation granularity results in increased twin identification rates in the

original FCs, PCA with optimal reconstruction, and tangent projected FCs with loga-

rithmic Euclidean reference. These two references were chosen based on the former’s

high performance and the latter’s interesting dichotomy between resting state and

task FC identification rates. However, for the tangent Euclidean reference, a lower

twin identification rate was observed for the gambling, language, motor, relational,

and social tasks for parcellations of sizes 300 and 400. These findings were consis-

tent for both MZ and DZ twins. Due to some inconsistencies in the HCP dataset of

the 500-region parcellation, we were only able to obtain corresponding results for the

original and PCA reconstructed FCs of MZ twins.

In the original FCs, resting state FCs significantly outperformed the other tasks

with an average twin identification rate across parcellations of 0.487. Out of the

seven HCP tasks, social, language, and working memory FCs produced higher twin

identification rates than the other four tasks. However, after post-processing, the task
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(b) Digyzotic twin pairs

Fig. 3.7. Averaged twin identification rates of 106 monozygotic (MZ) and
58 dizygotic (DZ) twin pairs across Schaefer 100-400 parcellations with
tangent projected FCs using different reference matrices. The logarithmic
Euclidean and Kullback mean references resulted in the highest identifi-
cation rates.
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FCs matched or even in some cases surpassed the results obtained from resting state

FCs. Using the results obtained from Figure 3.3, for optimal PCA reconstruction, we

use 50% of PCs in MZ reconstruction and 30% of PCs in DZ reconstruction for each

task. After reconstructing the dataset, the KNN classifier was employed on each task

to produce the results shown in the upper-right subplot of both figures. Performance

increased due to PCA reconstruction for all 7 tasks and resting state fMRI.

In Figure 3.9, we show the results of the two optimal configurations of PCA re-

construction and tangent space projection of functional connectomes (FCs) alongside

the results of the original FCs. Again, both monozygotic (MZ) and dizyogtic (DZ)

twin pairs are shown in this figure. Across all parcellation sizes and types of twin

pairs, both PCA reconstruction and tangent space projection with the logarithmic

Euclidean reference significantly increase the task identification rates. For DZ twins,

tangent projection with logarithmic Euclidean reference produces task identification

rates higher than that of the original FCs of MZ twins. The highest task identifica-

tion rate was observed with the language FCs of Schaefer’s 400-region parcellation

with a rate of 0.943. For reference, the task identification rate of a random classifier

correctly matching a twin to one of 106 pairs is less than 0.01. In Figure 3.3, we

show the subject identification rates of 106 individuals. The identification rates of

the original FCs and PCA optimally reconstructed FCs are greater than the twin

identification rates. However, in the tangent projected FCs, the rest, gambling, lan-

guage, and working memory task FCs resulted in decreased subject identification

rates. Parcellation granularity again improves performance across all post-processing

methods with the exception of tangent projection with the Euclidean mean reference

matrix.
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(a) Monozygotic twin pairs

(b) Digyzotic twin pairs

Fig. 3.8. Twin identification rates of 106 monozygotic (MZ) and 58 dizy-
gotic (DZ) twin pairs across 7 HCP tasks and resting state functional con-
nectivity. Greater parcellation granularity results in higher performance
across all 8 categories for MZ twins.
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(a) Monozygotic twin pairs

(b) Digyzotic twin pairs

Fig. 3.9. Twin identification rates of 106 monozygotic (MZ) and 58 dizy-
gotic (DZ) twin pairs across 7 HCP tasks and resting state functional con-
nectivity. Both post-processing methods of PCA optimal reconstruction
and tangent projection with the logarithmic Euclidean reference improve
twin identification rates.
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(a) Parcellation effects on subject identification rates

(b) Post-processing method effects on subject identification rates

Fig. 3.10. Subject identification rates obtained with test and retest scans
of 106 individuals across resting state and 7 HCP task functional connec-
tivity. In (a), higher parcellation granularity improves subject identifica-
tion rate. In (b), both optimal PCA reconstruction and tangent projection
with logarithmic Euclidean references improves subject identification rates
across all tasks.
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4. DISCUSSION

Advancements in analytical methods and the increase in size of publicly available

neuroimaging datasets have resulted in many studies applying predictive modeling to

functional connectivity. For example, it has been shown that fully connected deep

neural networks can be used successfully for connectome-based classification [18].

However, any type of analysis of fMRI data is hindered by the lack of a common

post-processing and analysis pipeline within the neuroimaging community. Predictive

models that use functional connectivity typically follow three main steps: parcellating

the brain into regions, estimating the interactions between these defined regions, and

feeding the data into a classifier for prediction [16]. In this study, we attempted to

address all three steps by experimenting with various post-processing methods with

two different classifiers with the goal to identify a best-practice, robust data pipeline

functional connectivity analysis. In this section, we discuss the results and our overall

recommendations and their rationale.

4.1 Impact of k on Identification Rate

In the context of task identification, we find that a value of k = 10 yielded the best

overall performance. In K-Nearest Neighbors classifiers, the greater the value of k,

the less of an effect noise has on the results. This is because a larger voting population

smooths out the variance in the individual predictors. Because our best-performing

value of k = 10 is relatively small compared to the number of samples, 6, 784, we

infer that the nearest neighbors were usually representative of the actual underlying

space. For values of k greater than 10, we observed practically identical performances

but with the sacrifice of greater computational expense. For twin identification, for

each label there are only two samples within the test subset: the retest scans for each
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twin member. Therefore, a value of k = 1 was used to prevent ties in classification. A

KNN classifier with k = 1 is identical to the identification rate framework proposed by

Finn [4]. We also find that cosine similarity and correlation were the best predictors

in the KNN classifier as shown in Figure 3.1, with marginal differences between these

two similarity measures.

4.2 PCA Reconstruction

We applied PCA reconstruction with varied levels of principal components (PCs)

to the datasets. In the context of the differential identifiability framework with re-

spect to within-task subject identifiability, it has been shown that PCA reconstruction

with slightly less than 50% of PCs results in optimal performance [33]. The func-

tional connectivity included in basic functions of the human brain are represented

by the first few principal components. These components also explain the most vari-

ance and as the explained variance decreases, task and subject-level variability are

introduced. Then, in the last 50% of PCs, scanner artifacts and motion noise are

likely introduced due to the decline in differential identifiability. In this study, we see

some similarities with the findings in Amico et al. 2018. In twin identification, PCA

reconstruction was used for each task separately, similar to Amico’s study. As shown

in Figure 3.3, optimal reconstruction was observed at using approximately 50% and

30% of the total principal components of MZ and DZ twins pairs, respectively. For

task identification, we reach optimal accuracy with task identifiability at only 80 of

the 6,784 PCs included as shown in Figure 3.2. This is likely due to the much larger

dimensionality of this dataset and therefore many more principal components. In

fact, the first few principal components disproportionately explain the most variance

with over 40.8% of the total variance explained in the first 1% of components. We

observe that the explained variance in an equal proportion of components is greater

when the number of components is high. The added principal components that re-

sult from an increase in dimensionality do not scale linearly in terms of explained
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variance. Intuitively, it is apparent that most of the variance in the data attributed

to base human brain function is contained within the first few components. Variance

attributed to brain networks involved in cognitive tasks are likely included within

the next few components, up to approximately 80 components. We hypothesize this

because the task identification rate increases dramatically until the optimal recon-

struction at 80 components. From there, since task identification rate decreases, we

hypothesize that noise is slowly added back in. Sources of this noise may include

scanner artifacts, motion noise, and variance due to subject-specific brain networks

or ‘fingerprinting’ [4].

As shown in Figure 3.3, the KNN classifier on the original Schaefer 100-region

parcellation FCs achieved a task identification rate of 0.778 with the correlation mea-

sure. With PCA reconstruction with the optimal 80 PCs, the task identification rate

increased to 0.891, an increase of 0.113, with the correlation measure. In task identi-

fication with the CNN classifier, PCA reconstruction with 80 PCs increased the task

identification rate of the original FCs from an average of 0.926 to an average of 0.945,

an increase of 0.019. Further, the standard deviation of the classifier’s performance

also decreased from 0.0571 to 0.0280, a decrease of 0.0291. Similar improvements were

observed in the twin identification results in Figure 3.2. The use of PCA reconstruc-

tion is promising as a data cleaning method for functional connectivity data as we

show here. We extend the differential identifiability framework to successfully clean

FC data for classification. However, a limitation of this approach is that there is no

universal best proportion of principal components for reconstruction of the datasets

- it depends on the dataset itself. We recommend experimenting with different pro-

portions of PCs used in reconstruction to find an optimal configuration. With more

expensive classifiers such as the convolutional neural network used in this study, this

is often infeasible and, as such, a less expensive classifier can be used as a stand-in

to evaluate the optimal configuration of PCs. In summary, we show that the perfor-

mance of both the KNN and CNN classifiers achieve greater results on both task and

twin identification problems with PCA reconstruction than with the original FCs.
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Furthermore, PCA reconstruction decreases the variance in the deep learning task

classifier as shown in Figure 3.1 and yields more consistent results.

4.3 Tangent Space Projections

Functional connectivity matrices are computed by correlating BOLD time series

data and are positive definite. Therefore, they lie within a non-linear surface called

the positive semidefinite cone. Because of this, their geometry is non-Euclidean and

classic distance measures such as correlation distance or euclidean distance cannot

be used if geometry is to be preserved. To preserve geometry and to use the classi-

fiers such as those exemplified this study, the Pearson correlated FC matrices should

be first projected into the tangent space [16]. Geodesic distance, a non-Euclidean

distance metric that accounts for the manifold on which the data lies, improves par-

ticipant identification compared to the Pearson correlation distance metric [41] by

2% to 20% accuracy. To project FCs into the tangent space, we use Equation 2.3

with various reference matrices Cg shown in Table 2.1. First, we look at task iden-

tification. We found that in the context of twin identification for both monozygotic

(MZ) and dizygotic (DZ) twin pairs, the projected FCs with Riemann, Kullback, and

logarithmic Euclidean references resulted in the highest twin identification rates. In

the original FCs, resting state performed significantly better than the other 7 tasks.

Interestingly however, when projected into the tangent space with the three afore-

mentioned reference matrices, the across-task performance variability decreased. In

fact, for MZ twin pairs, language FCs outperformed resting state FCs as shown in

subfigure (a) in Figure 3.9. The Euclidean mean reference boosts the twin identifica-

tion rate of resting state and working memory FCs significantly but fails to achieve

high performance in the other task FCs. This suggests that the underlying networks

that are unique to the other tasks may not be translated well with tangent projec-

tion with the Euclidean reference. Finally, the harmonic mean resulted in very poor

performance compared to the other reference matrices. This may be the result of the
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scale of the harmonic mean being very small in magnitude compared to the others

as shown in Figure 2.4.3 and errors in calculation were introduced. For both DZ

and MZ twin matching, twin identification rates skyrocketed with tangent projec-

tion compared both to the original FCs and PCA-reconstructed FCs as we see in

the subfigures in Figure 3.7. The twin identification rates were improved across all

7 tasks and resting state. Again, these improvements were especially pronounced in

language, motor, and relational FCs where the twin identification rates were origi-

nally very low. Typically, clinical fMRI studies use resting state fMRI for prediction.

We suggest that the tangent projection of FCs especially enhances within-subject

identifiability of task FCs. It may be feasible or even preferred to use task fMRI for

the identification of clinical biomarkers in functional connectivity data.

When we employ the KNN classifier on tangent projected FCs in the context of

task identification, we obtained similar results to those described above. Specifically,

the task identification rates as shown in Figure 3.3 are very low for the harmonic

reference. We also showed that the logarithmic Euclidean, Kullback, and Riemann

mean references outperform the original FCs in task identification. However, the

results of the CNN classifier tell a different story. In Figure 3.1, these three refer-

ence matrices resulted in task identification rates lower than that of the harmonic

mean and Euclidean mean. In fact, the task identification rates resulting from the

five tangent reference matrices are essentially flipped in the CNN classifier versus

the KNN classifier. Our conclusion from this observation is that the performance of

each tangent reference matrix is highly classifier-dependent. The relatively simple

distance-based KNN classifier may have trouble identifying tasks due to the nature

of the tangent projections. The CNN classifier, however, is a more sophisticated deep

learning algorithm that can iteratively learn and modulate itself over hundreds of

training epochs. As shown in Figures 3.4 and 1 in the Appendix, the training and

validation loss and identification rates were relatively low in the first few epochs of

training. It is not until multiple iterations of weight optimizations that the classifier

produced excellent results. Therefore, while the tangent projected FCs with the har-
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monic mean reference fared poorly with the KNN classifier, this may be a great data

transformation for deep learning applications. We recommend that all five reference

matrices proposed in Pervaiz’s study [16] be experimented depending on the classifier

chosen for predictive modeling. All in all, tangent projection of functional connectiv-

ity preserves geometry and increases predictive power of the data in both task and

twin identification.

4.4 Impact of Brain Parcellation Granularity on Identification Rates

Recent studies have found that a 268-node atlas generated by Finn et al. 2015

resulted in higher identification rates than the FreeSurfer atlas, which has only 68

nodes. This suggests that higher resolution parcellations allows better detection of

individual features [58]. In fact, we show consistent findings with the KNN classi-

fier in the context of twin identification. Figure 3.3 shows that higher parcellation

granularity increases performance of the classifier across all post-processing methods,

suggesting that the algorithm successfully utilizes the increase in input data size. Due

to computational limits of the CNN classifier, the same experiment was infeasible to

test parcellation effects on task identification. We expect that a similar trend is also

true for this application for both the KNN and CNN classifier, although additional

research is necessary. We recommend studies that use predictive modeling to maxi-

mize parcellation granularity of their datasets given their practical constraints. The

increase in information of larger parcellations has shown to lead to greater perfor-

mance in the twin identification portion of this study. However, we must also proceed

cautiously in increasing parcellation resolution, as it has been suggested that doing

so may have some unintended consequences. Possibilities of these include creating in-

significant individual differences due to misalignment in the scanner or motion-related

artifacts [4]. Furthermore, we encountered memory issues while training the CNN on

the 400-region parcellation where the KNN classifier had no issues. Schaefer parcel-
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lations increase in increments of 100 up to 1000 brain regions, resulting in a matrix

size of over 1 million parameters [10].

4.5 Areas of Improvement and Future Work

In respect to the CNN architecture and design, a more structured hyperparameter

search would have been better suited to determine parameters such as the learning

rate, optimizing function, and loss function. Methods such as a grid or random

search on the logarithmic scale should be used here [59]. Future work in CNNs with

parcellation granularity should consider using big data software such as Spark to

handle the training of large datasets. It would be an interesting challenge to use all

the Schaefer parcellations up to 1000 brain regions.

A more detailed analysis of why and when certain reference matrices perform well

and fail to perform well is necessary before generalizing this post-processing method to

other FC applications. It would be helpful to analyze the difference in the encoding of

brain networks as a result of the tangent space projection with the different references.

Until then, we recommend testing multiple reference matrices when using tangent

projection of functional connectivity data. We have also shown PCA reconstruction

to be a consistent improvement upon using the minimally processed raw FC data

in both the simple distance classifier and the CNN classifier. The number of PCs

included in PCA reconstruction should be customized for each dataset depending on

finding the optimal performance metric. This is also true for the twin identification

where ideally, a customized number of PCs should be used for each task instead of only

using resting state FC as we did in this study. We did not attempt to combine both

PCA reconstruction and tangent space projection because of the intricacies involved

in the geometry, but this could be a potential avenue of research. Additionally, due

to the black-box nature of deep learning, it is difficult to get meaningful insights of

the underlying causes of the classifier’s decisions. Future work should be dedicated

to investigating the intermediate features of the convolutional neural network and
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their practical significance. We are optimistic that these post-processing methods are

robust enough to be used on clinical applications of fMRI, where previous predictive

modeling pipelines fail to achieve satisfactory results and if understood better, the

determining features may aid in diagnosis and tracking disease progression.
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5. CONCLUSION

Our results show that the use of post-processing techniques, including optimal recon-

struction via PCA as well as projection of the data to tangent spaces, may improve

functional connectivity classification methods. We have shown that optimal PCA

reconstruction consistently outperforms the original FCs and decreases variance in

both the convolutional neural network and K-Nearest Neighbors classifiers’ perfor-

mances. In task identification, we demonstrated that reconstruction with a small

proportion of principal components (PCs) (approximately 1%) achieves an optimal

task identification rate. In twin identification, PCA reconstruction was used on each

task independently with 50% and 30% of total PCs in monozygotic (MZ) and dizy-

gotic (DZ) twin pairs, respectively. To properly use mathematical functions in the

data’s native geometry, we projected FC matrices into the tangent space with various

reference matrices. We showed that reference matrices are likely classifier-specific in

performance. Specifically, we observe that the harmonic reference matrix performs

best in conjunction with the CNN classifier but performs poorly with the distance-

based KNN classifier. Conversely, the logarithmic Euclidean, Kullback, and Riemann

references perform well with the KNN classifier yet perform relatively worse with the

CNN classifier. Future study in the underlying effects of these reference matrices

is necessary. Additionally, we have demonstrated that increasing parcellation size

increases twin identification rate. However, the large size of these parcellations can

restrict the use of complex deep learning classifiers.

In the context of twin classification, state-of-the-art results have identification

rates of 0.64 and 0.25 for MZ and DZ twins, respectively, and sample sizes of n = 25

twin pairs. We achieved an identification rate of 0.943 with language FCs for MZ

twins and 0.517 with resting state FCs for DZ twins, both with Schaefer’s 400-region

parcellation with sample sizes of n = 106 and n = 58 twin pairs, respectively. Finally,
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in the context of task classification, we achieve an identification rate of over 0.986

with tangent projection with the harmonic mean reference, surpassing state-of-the-

art results in literature of 0.937 [18]. These post-processing methods are promising

for future research in functional connectome predictive modeling and, if optimized

further, can likely be extended into clinical applications.
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Van Essen, and M. F. Glasser, “Resting-state fMRI in the Human Connectome
Project,” NeuroImage, vol. 80, pp. 144–168, Oct. 2013. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1053811913005338

[48] M. Jenkinson, C. F. Beckmann, T. E. J. Behrens, M. W. Woolrich, and S. M. Smith,
“FSL,” NeuroImage, vol. 62, no. 2, pp. 782–790, Aug. 2012.

[49] G. Salimi-Khorshidi, G. Douaud, C. F. Beckmann, M. F. Glasser, L. Griffanti, and
S. M. Smith, “Automatic denoising of functional MRI data: combining independent
component analysis and hierarchical fusion of classifiers,” NeuroImage, vol. 90, pp.
449–468, Apr. 2014.

[50] J. D. Power, A. Mitra, T. O. Laumann, A. Z. Snyder, B. L. Schlaggar, and
S. E. Petersen, “Methods to detect, characterize, and remove motion artifact
in resting state fMRI,” NeuroImage, vol. 84, Jan. 2014. [Online]. Available:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3849338/

[51] “Components of the Human Connectome Project - Task fMRI - Connec-
tome.” [Online]. Available: https://www.humanconnectome.org/study/hcp-young-
adult/project-protocol/task-fmri

[52] B. Sen and K. K. Parhi, “Predicting Tasks from Task-fMRI Using Blind Source
Separation,” in 2019 53rd Asilomar Conference on Signals, Systems, and Computers,
Nov. 2019, pp. 2201–2205, iSSN: 2576-2303.

[53] A. W. Chung, E. Pesce, R. P. Monti, and G. Montana, “Classifying HCP
Task-fMRI Networks Using Heat Kernels,” arXiv:1604.08912 [q-bio], Apr. 2016,
arXiv: 1604.08912. [Online]. Available: http://arxiv.org/abs/1604.08912

[54] A. Gritsenko, M. Lindquist, and M. K. Chung, “Twin Classification in Resting-State
Brain Connectivity,” in 2020 IEEE 17th International Symposium on Biomedical
Imaging (ISBI), Apr. 2020, pp. 1391–1394, iSSN: 1945-8452.

[55] M. Congedo, A. Barachant, and R. Bhatia, “Riemannian geometry for EEG-based
brain-computer interfaces; a primer and a review,” Brain-Computer Interfaces,
vol. 4, no. 3, pp. 155–174, 2017, publisher: Taylor & Francis. [Online]. Available:
https://hal.archives-ouvertes.fr/hal-01570120



63

[56] “Cosine Similarity - an overview | ScienceDirect Topics.” [Online]. Available:
https://www.sciencedirect.com/topics/computer-science/cosine-similarity

[57] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimiza-
tion,” arXiv:1412.6980 [cs], Jan. 2017, arXiv: 1412.6980. [Online]. Available:
http://arxiv.org/abs/1412.6980

[58] T. Vanderwal, J. Eilbott, E. S. Finn, R. C. Craddock, A. Turnbull, and F. X. Castel-
lanos, “Individual differences in functional connectivity during naturalistic viewing
conditions,” NeuroImage, vol. 157, pp. 521–530, 2017.

[59] J. Bergstra and Y. Bengio, “Random Search for Hyper-Parameter Optimization,”
Journal of Machine Learning Research, vol. 13, no. 10, pp. 281–305, 2012. [Online].
Available: http://jmlr.org/papers/v13/bergstra12a.html



APPENDIX



64

Fig. 1. Task identification rate progression during training of single in-
stances of the CNN classifier on original function connectomes (FCs) and
post-processed FCs over 200 epochs.
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A confusion matrix of classification results of the same PCA reconstructed dataset

with 80 PCs is is shown in Figure 2. The resting state task was predicted correctly

most often, with only 1 false negative in motor task. However, other tasks such as

Emotion and Relational saw many misclassifications. The most mixed up categories

were Gambling scans predicted as Emotion and Working Memory scans predicted as

Relational. Other pipelines saw very similar results in the labels that were mostly

classified correctly and those that saw more misclassifications.

Fig. 2. Confusion matrix of CNN classification on Schaefer 100-region par-
cellated data after PCA reconstruction with 80 principal components


