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ABSTRACT 

Surgeon expertise can be difficult to capture through direct robot programming. Deep imitation 

learning (DIL) is a popular method for teaching robots to autonomously execute tasks through 

learning from demonstrations. DIL approaches have been previously applied to surgical 

automation. However, previous approaches do not consider the full range of robot dexterous 

motion required in general surgical task, by leaving out tooltip rotation changes or modeling one 

robotic arm only. Hence, they are not directly applicable for tasks that require rotation and dual-

arm collaboration such as debridement. We propose to address this limitation by formulating a 

DIL approach for the execution of dual-arm surgical tasks including changes in tooltip orientation, 

position and gripper actions. 

In this thesis, a framework for multi-step surgical task automation is designed and implemented 

by leveraging deep imitation learning. The framework optimizes Recurrent Neural Networks 

(RNNs) for the execution of the whole surgical tasks while considering tooltip translations, 

rotations as well as gripper actions. The network architecture proposed implicitly optimizes for the 

interaction between two robotic arms as opposed to modeling each arm independently. The 

networks were trained directly from the human demonstrations and do not require to create task 

specific hand-crafted models or to manually segment the demonstrations.  

The proposed framework was implemented and evaluated in simulation for two relevant surgical 

tasks, the peg transfer task and the surgical debridement. The tasks were tested under random 

initial conditions to challenge the robustness of the networks to generalize to variable settings. The 

performance of the framework was assessed using task and subtask success as well as a set of 

quantitative metrics. Experimental evaluation showed favorable results for automating surgical 

tasks under variable conditions for the surgical debridement, which obtained a task success rate 

comparable to the human task success. For the peg transfer task, the framework displayed 

moderate overall task success. Quantitative metrics indicate that the robot generated trajectories 

possess similar or better motion economy that the human demonstrations. 
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 INTRODUCTION 

Robotic Assisted Surgery (RAS) has impacted the surgical field drastically. As of 2019, four 

million procedures have been completed with the da Vinci Surgical Systems utilizing more than 

4,000 surgical systems installed around the world (Miller & Curet, 2019). RAS has advanced 

minimally invasive surgery by enhancing the view of the surgical field, providing additional 

dexterity and precision as well as clinical benefits such as decreased blood loss, reduced procedure 

time and hospital stay (Mukherjee & Sinha, 2020).  

In MIS, the automation of surgical procedures can provide benefits such as reducing surgeon 

fatigue over long operations (Hwang et al., 2020; Watanabe et al., 2016) as well as assisting the 

surgeon on repetitive tasks such as suturing (Dolph et al., 2019). Surgical automation can also be 

beneficial for long-distance robot teleoperated surgery that can be vulnerable to cyberattacks 

(Bonaci et al., 2015) and often exhibit a limited bandwidth, latency, and even loss of signal 

(Marescaux et al., 2002). In these cases, automation could potentially be used to take over the 

surgical task until reliable communication is restored. 

Surgical tasks are often multi-step containing several steps or primitive actions that can be repeated 

within the task. For example, suturing involves several primitive actions such as inserting the 

needle in the skin, running the suture through the tissue, and pulling the thread tight, among others. 

Previous advances in task automation have primarily focused on creating models for specific 

surgical tasks; such as tumor palpation (Garg et al., 2016), debridement (B. Kehoe et al., 2014; 

Richter et al., 2019; Seita et al., 2018), suturing (Sen et al., 2016) bowel anastomosis (Shademan 

et al., 2016) and blunt dissection (Nagy & Haidegger, 2019). These works generally rely on human 

expert knowledge to model suitable robot actions or predefined movements, for example 

generating trajectories parametrized according to the specific task or its constituent primitive 

actions. These models do not generalize to new tasks without requiring new expert knowledge. 

Our work aims at learning full task automation directly from human demonstrations without the 

need of creating individual models for each task or its primitive actions. The expert knowledge is 

inherently learned from the demonstrations allowing to model distinct tasks and bypassing the 

need of hand-crafted models for task execution. 
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With the advent of deep learning, intelligent systems can potentially be trained to learn implicit 

models for surgical task execution directly from human demonstrations.  Deep learning approaches 

have been employed to learn full tasks from demonstrations in tissue manipulation (Shin et al., 

2019) and autonomous tool navigation inside the eye (J. W. Kim et al., 2019). These works model 

tooltip position throughout the surgical task but do not consider changes in tooltip orientation. In 

order to replicate human skills in surgical tasks such as knot-tying, modeling tooltip orientations 

as well as its position, is required. Therefore, we leverage on deep learning approaches to model 

the complexity of surgical tasks from human demonstrations considering dexterous tooltip motion 

as well as dual-arm interaction. 

We leverage deep learning to model task execution directly from expert demonstrations. This is 

known as Deep Imitation Learning (DIL). DIL employs human demonstrations to approximate 

robot control policies that predict the robot actions (e.g. joint commands) based on a set of 

observations (e.g. current joint states, state of the environment). Learning such policies from 

human expert demonstrations can be beneficial to learn models for task execution that implicitly 

learn user preferences or task constraints that cannot be easily programmed. 

This thesis presents a framework that leverages DIL and human demonstrations to train robot 

control policies for the execution of distinct multi-step surgical tasks. The framework optimizes 

Recurrent Neural Networks (RNNs) to model robot tooltip position, orientation, and gripper 

actions while implicitly optimizing for the interaction between two robotic arms in multilateral 

manipulation. Such an approach offers a holistic framework to learn dual-arm robot control 

policies for surgical tasks from human demonstrations. The RNNs can be trained over the data of 

the full task, allowing the network to implicitly learn full task execution. Thus, eliminating the 

need to model individual primitive actions for a specific task. The proposed framework can also 

be applied to different surgical tasks by training the robot control policy over the dataset of the 

new task.  

First, a dataset for learning two tasks pertinent to surgical robotics is built. This is done by creating 

an intuitive system for data collection from human demonstrations. A simulation environment and 

virtual reality technologies are used for this purpose. The proposed method for data collection aims 

to capture significant variability in the setting by embedding randomization in the environment’s 
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initial state. For instance, by modifying the starting position and orientation of the pegboard in a 

peg transfer task. Such variation increases robustness in the imitation learning algorithm and 

improves the applicability of the framework to test scenarios with highly variable initial conditions. 

Our framework for task learning leverages commonalities between task demonstrations. This 

allows us to map different variations from an original setting to a coordinate space representation 

where control policies are learned more efficiently. The proposed framework uses spatial 

knowledge of task variation, such as environment rotations, scale, and translations to represent 

user demonstrations in a unified coordinate space where the demonstrated trajectories share 

common traits, such as the start and the goal positions of the target object. This representation is 

used to train RNNs with fewer examples, as one example in the unified space can represent 

different spatial variations in the original robot setting. 

Our approach is validated through experiments comparing robot to human performance during 

task execution in two surgical tasks, surgical debridement and peg transfer task. The performance 

of the networks is determined by the full task and subtask success as well as quantitative metrics 

over the generated trajectories related to task completion time and economy of motion. 

1.1 Problem statement. 

Design and implement a framework that leverages deep learning and human demonstrations to 

learn dual-arm tasks in the context of surgical robotics. Such framework includes modeling 

different surgical tasks with multiple steps in a generalizable manner. 

1.1.1 Research questions 

RQ1: How can deep imitation learning be used to learn multi-step tasks in the context of surgical 

robotics? 

This question relates to the development and implementation of a learning framework for 

the execution of a dexterous surgical task.  

RQ2: How to integrate dual-arm task learning for deep imitation learning? 

This question pertains to the formulation of an architecture to train robot control policies 

for dual-arm task execution. 



 

 

16 

RQ3: How to evaluate the success of the proposed framework? 

This question refers to the validation, metrics, and assessment of the proposed framework 

by evaluating the performance of the learned policies in a simulated environment for two distinct 

surgical tasks. 

1.2 Thesis structure 

The remainder of this thesis is structured as follows. Chapter 2 presents a literature review that 

summarizes previous related work. Chapter 3 describes the methodology applied to the problem 

of autonomous execution of surgical tasks. An overview of the learning framework is described 

with a description of the recurrent neural network architecture, data processing, and training 

methodology. The system for data collection and testing of task execution are described as well. 

In Chapter 4, the experiments and results are described and discussed. Finally, Chapter 5 discusses 

the conclusions and future work. 

1.3 Summary 

This section introduced the motivation for researching deep imitation learning approaches for 

surgical task execution. Then, an introduction of our proposed framework is presented. At last, 

three research questions are described: the first explores imitation learning frameworks for the 

execution of surgical tasks. The second question explores the integration of dual-arm task learning 

in deep imitation learning. The third poses the metrics and experiments to be conducted to evaluate 

the framework. 
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 LITERATURE REVIEW 

This chapter is a review of the previous and ongoing research on the main areas of learning and 

autonomy in surgical robotics. First, a background on major areas of learning through examples in 

robotics is presented, including imitation learning and reinforcement learning. Once the teaching 

techniques are covered, the main domain is discussed, which is surgical robotics. Research 

platforms and industrial settings related to surgical robotics are presented, and the extension of 3D 

printing technologies to enhance existing robots of this kind. Then, autonomous and semi-

autonomous surgical task execution is discussed. At last, deep learning approaches for imitation 

learning in robotic manipulation are presented. 

2.1 Online and offline learning 

Offline learning refers to the family of machine learning methods where a learning algorithm is 

trained with a collection of data that is given in advance (Aroussi & Mellouk, 2014). Once the 

model is trained over the entire dataset, it can be used to make predictions over new data. An 

example of offline learning is a neural network for image recognition that is trained on the 

previously available dataset ImageNet (Deng et al., 2009). The trained network can then be used 

to predict image labels in entirely new settings. 

In contrast, online learning refers to the methods that train a model from a sequence of data 

instances one by one at each time (Hoi et al., 2018). Thus, online learning focuses on the 

incremental acquisition of knowledge. For example, a commonly studied task in online learning is 

spam email filtering (W. Liu & Wang, 2012), where the model is continuously being updated as 

new information becomes available. 

In this thesis, a learning framework for robot task execution from human demonstrations is 

presented. Our approach employs human demonstrations collected in advance. Therefore, it falls 

within the category of offline machine learning approaches. 



 

 

18 

2.2 Imitation learning in robotics 

Imitation learning (IL) is referred to as the research area that focuses on learning techniques from 

demonstration, usually in the form of examples, provided by a human teacher (Osa, Pajarinen, et 

al., 2018). Imitation learning is also referred to as learning from demonstration (Atkeson & Schaal, 

1997). The basic idea of IL involves developing algorithms that can learn a behavior through 

demonstrations without explicitly programming such behavior. IL is a compelling approach for 

applications where the ideal behavior cannot be easily defined as an optimization problem but can 

be demonstrated (Ravichandar et al., 2020). Because the policies are learned directly from human 

demonstrations, IL has been found to implicitly learn user preference as well as task constraints 

that can enable adaptive behavior for unstructured environments (Kroemer et al., 2019; 

Ravichandar et al., 2020). 

The objective of IL consists of learning an underlying teacher policy that is unknown, except for 

(usually sparse and noisy) demonstrations that are presented as training examples (Chernova & 

Thomaz, 2014). Such demonstrations can be encoded as a set of state-action pairs, where the state 

can be defined, for example, as the current position of the robot, the state and velocity of the robot 

joints and the position of objects of interest (Hussein et al., 2017). Similarly, the corresponding 

action describes the control output, that can be represented as motor actions such as joint states, or 

higher-level instructions such as “pick up an object”. Imitation learning research interest has been 

steadily increasing over the past decade, being used for numerous applications in robotics 

(Ravichandar et al., 2020). IL has been used in autonomous vehicles, (Abbeel et al., 2010), 

specifically in helicopter acrobatic maneuvers by learning a library of short trajectories and using 

a high-level planner to concatenate such trajectories together into a sequence. For autonomous 

driving and aerial vehicles, IL has been used to create end-to-end controllers (Abdou et al., 2019; 

Bojarski et al., 2016; Loquercio et al., 2018). In surgical robotics, IL has been adopted for learning 

surgical tasks from teleoperated demonstrations, such as knot-tying (Berg et al., 2010; Mayer et 

al., 2006), pattern cutting, and debridement (Murali et al., 2015).  

Behavioral Cloning (BC), is a category of IL approaches that focusses on approximating a function 

to directly map input states to output actions (Ravichandar et al., 2020). In imitation learning, this 

function is called a policy, which can be learned, for example, using supervised learning 

approaches trained on a dataset of state-action pairs.  
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Inverse Reinforcement Learning (IRL) refers to a different category of IL methods that try to infer 

an underlying reward function from the demonstrations instead of learning a direct policy 

(Kroemer et al., 2019). Once learned, the reward function can be employed to compute optimal 

actions in classical reinforcement learning approaches. 

Deep Imitation Learning (DIL) refers to methods that train neural networks from demonstration to 

learn expert control policies (Ericson, 2018). In the literature, deep imitation learning generally 

refers to networks trained using supervised learning methods (Yu et al., 2020). For example, DIL 

can use behavioral cloning to train a neural network with a fixed dataset of state-action pairs 

collected from demonstrations (Kuefler et al., 2017). DIL has been used for several applications 

in robotics to train neural network control policies from human demonstrations (Aşık et al., 2018; 

J. W. Kim et al., 2019; Yuejiang Liu et al., 2018; Saleh et al., 2018).  

In DIL, the number of collected demonstrations can affect the success of the trained policies. (Nagy 

& Haidegger, 2019; T. Zhang et al., 2018) found that increasing the human demonstrations shows 

an improvement in the task execution success. When data is scarce, the observations can be 

generated artificially. For example, automatically generated trajectories have been proposed to 

bypass the problem of data acquisition in DIL (J. W. Kim et al., 2019). They have artificially 

generated over 2000 examples for the navigation of a surgical tool in the eye. (James et al., 2017b) 

have generated 4000 examples to solve a pick and place task.  In addition, data augmentation 

techniques have been proposed to facilitate learning of manipulation tasks based on original 

demonstrations collected by a human user. For example, when learning from trajectories, 

expanding the initialization position of trajectories (J. W. Kim et al., 2019), and adding artificial 

shifts and rotations to the demonstrations (Bojarski et al., 2016; Rahmatizadeh et al., 2016) have 

been applied for data augmentation. 

However, deciding on what type of transformations should be applied to augment the data in a 

meaningful manner, is challenging. Particularly, when the demonstrations represent both robot 

position and orientation, data augmentation should consider transformations that convey 

meaningful shifts, rotations, and scaling. Moreover, the choice of specific gripper orientation 

representation can affect the data efficiency of the model used to predict end-effector pose. 

Previous work by (Y. Zhou et al., 2019) shows that representing orientations (e.g. Euler, 
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quaternion) in an equivalent space (e.g. such as 6D rotation representations) facilitates training of 

neural networks. These findings suggest that alternative representations of pose trajectory 

demonstrations could potentially facilitate learning in neural networks for multiple applications. 

In our work, we leverage transformations commonly used for artificial data augmentation (e.g 

shifts, rotations, translations) to represent the human demonstrations in an equivalent space that 

facilitates learning of neural network control policies. 

2.3 Reinforcement learning 

Reinforcement learning (RL) is a type of machine learning algorithms where a policy is searched 

by an agent to solve sequential decision tasks. In RL, the policy learns the desired behavior to 

maximize a total expected reward through interaction with a dynamic environment by trial and 

error (Du & Swamy, 2019). Deep Reinforcement Learning (DRL), integrates neural networks to 

reinforcement learning. In the last years, the most common approach for reinforcement learning 

applications in robotics was deep neural networks. In this line of research, multiple DRL works 

have been proposed for industrial robot manipulation (Haarnoja et al., 2018; Levine et al., 2016; 

Mnih et al., 2015). 

In comparison to general imitation learning approaches, RL usually requires significantly more 

examples to train effective policies (Ravichandar et al., 2020; Sun et al., 2017). Empirical results 

have shown that training over IL requires fewer demonstrations than RL, in other words, IL is 

more sample efficient than RL (Abbeel et al., 2010; Kober & Peters, 2009; Osa, Pajarinen, et al., 

2018; Shin et al., 2019). With a growing number of possible states and actions in RL, the data and 

computational requirements increase rapidly and can become infeasible when the number of 

features grows even for problems with discrete states (Yueyue Liu et al., 2020). To overcome the 

sample efficiency problem in RL, (B. Kim et al., 2013; Nair et al., 2018; Richter et al., 2019; 

Taylor et al., 2011; Vecerik et al., 2018; Zhu et al., 2018) have combined reinforcement learning 

with imitation learning to reduce the amount of exploration required. 

Applying RL approaches to robotics imposes several challenges. RL methods require reward 

functions that are well-shaped and carefully designed. Such reward functions are difficult to 

specify in-advance (YuXuan Liu et al., 2018). Learning policies with RL can be challenging for 

robotic problems with high-dimensional continuous states and actions (Kroemer et al., 2019). 
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Moreover, the reward functions are specifically designed for each task (Hussein et al., 2017) which 

can limit their application to a wide variety of manipulation tasks. 

In contrast, a neural network policy learned using deep imitation learning can be extended to new 

tasks with minimal changes in the framework. This can be achieved by applying the same learning 

architecture to individual datasets for each task (Rahmatizadeh et al., 2016a; T. Zhang et al., 2018) 

or by learning different manipulation tasks jointly (R. Rahmatizadeh et al., 2018). Thus, deep 

imitation learning can be formulated for a broad range of manipulation tasks without the need to 

design specific reward functions. Furthermore, imitation learning can be particularly relevant for 

tasks where it is desired to not only accomplish the goal of the task but to also mimic the behavior 

of the human demonstrations. For example, an autonomous surgical assistant could better 

collaborate with a surgeon if the robot motions resemble what the surgeon would naturally expect 

from a human assistant. 

2.4 Surrogates for surgical robots 

Developments in medical robotics span several research areas and disciplines, from hardware 

enhancements (e.g. tools design, flexible robotics) to software developments (e.g. trajectory 

optimization, machine vision). Key aspects currently being studied by ergonomists, psychologists, 

and social scientists, in general, include multimodal communication, effective teaming, cognitive 

load, and interface usability assessment. These studies are usually done using virtual simulation or 

real-robotic systems. While the first option is more accessible, it provides lower face validity. 

Conversely, access to real medical robots imposes a challenge for most students given that they 

are scarcely available in teaching hospitals. When accessible, the studies are done using RAS 

research platforms available only to a limited number of research institutions. 

Two prominent RAS platforms are currently available to the research community: The da Vinci 

Research Kit (dVRK) from Surgical Intuitive and the RAVEN II research platform (Takacs et al., 

2015). The dVRK is a research kit consisting of a collection of robotic modules from the first-

generation da Vinci Surgical System (Da Vinci Surgery, 2020). The platform is used to perform 

computer-assisted surgery for both autonomous and teleoperated robots. The RAVEN II is an 

especially-aimed open platform for research in surgical robotics, and has been used to explore 

robotic planning in surgical tasks and teleoperation (Hu et al., 2015; Ben Kehoe et al., 2014). RAS 
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platforms such as MiroSurge and OP: Sense have also been developed as non-open source and 

with limited availability. Miro-Surge, developed by the German Aerospace Center, consists of 

three 7-degrees-of-freedom (DOF) robotic arms and specialized instruments that include force 

sensors for haptic feedback (Tobergte, 2010). OP: Sense is a research platform for surgical robotics 

developed by the Karlsruhe Institute of Technology that encompasses two KUKA LWR IV arms 

and a Stubli RX90 robot (Mönnich et al., 2012). SRI has made available the 7-DOF Taurus Robot, 

which was used to explore innovative HRI modalities (T. Zhou et al., 2016). More recently, a 

research platform has been proposed for micro robot surgery training (D. Zhang et al., 2020). 

Although these platforms allow the research community to gain access to medical robots and high-

level control routines, the cost of these technologies is still prohibitive for the majority of scientists 

and students interested in “hands-on” experience. For example, the dVRK is freely available, but 

controllers are required to operate the robot at a cost of over $20K assuming the availability of an 

experienced technician in order to install the system. In contrast, the cost of industrial robotic 

systems is only a fraction of the cost of the previously mentioned surgical robots. While all 

industrial robots may not fulfill all human-robot safety requirements or possess the necessary 

kinematics for surgery procedures, they still can be useful to practice the fundamentals of RAS 

(Shademan et al., 2016). 

2.4.1 Research platforms for RAS 

The dVRK is a complete platform for performing, programming, and simulating telerobotic mock 

surgical procedures. The system can be controlled with open-source software made available by 

(Kazanzides et al., 2014) using the Robot Operating System (ROS). The hardware can be obtained 

from Intuitive Surgical and consist of two master tool manipulators, two manipulators on the 

patient side, a stereo display, and a set of foot pedals. The da Vinci Research Kit community 

includes 30+ institutes and universities (Bolzoni Villaret et al., 2017). 

The Raven II robot was initially developed as an open-source platform for research at the 

University of Washington (Li et al., 2019). This system has two 3-DOF positioning system that 

can attach 4-DOF laparoscopic tools and one removable gripper. The software is built on Linux 

and ROS to facilitate software development between several universities and the robot research 

community. 
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The MiroSurge is a telepresence system for Minimally Invasive Surgery (MIS) that allows research 

on advanced user interaction modalities. The system is composed of 2 compliant MIRO robotic 

arms, 2 specialized instruments (MICA) for laparoscopic and open surgery, and 2 haptic input 

devices. The MICA tool assembled in the MIRO arm provides 6-DOF of motion control and 

force/torque measurements in all DOF (Tobergte, 2010).  

The microsurgical robot research platform (MRRP) is a robotic system developed for research in 

robot-assisted microsurgery (D. Zhang et al., 2020). The system has two 6-DOF robot arms 

controlled using a haptic input device and a hand-held custom controller. Two microscope, and 

multiple exchangeable microtools such as needles and forceps are included in the system.  

The MAZOR X system is a recently released robot for spinal surgery that comprises a workstation 

and a mechanical surgical arm (D’Souza et al., 2019). MAZOR X is a commercially available 

robot intended to provide planning and guidance during spine surgical procedures.  

The University of Nebraska-Lincoln has developed a series of single-incision robots designed for 

diverse surgical procedures (Dolph et al., 2019). The robotic systems include a base attached to 

two miniaturized robot arms designed to maneuver completely inside the peritoneal cavity to 

perform manipulation and cautery. The arms can fold inwards to allow for the insertion of the 

device in the peritoneum cavity through a single incision.  

The SmartArm system is a recently developed surgical robotic research platform for constrained 

spaces (Marinho et al., 2020).  The system is comprised of two industrial robot arms, each equipped 

with actuated flexible instruments such as forceps. The system is integrated with Linux and the 

robot operating system. The previous platforms can be costly, and often require a license 

agreement with robot manufacturing companies.  

Nowadays, industrial robots are highly effective and popular for repetitive and labor-intensive 

tasks due to their positioning accuracy, repeatability, durability, and robustness. One example of 

the use of industrial robots in surgery is the positioning of laparoscopes and FDA approved tools. 

Shademan et al. (2016) developed a surgical system to perform soft tissue surgery through 

supervised autonomy employing a KUKA robot. The robotic platform displayed positioning 

repeatability within 0.5mm. Capolei et al. (2017) proposed an autonomous robotic solution based 
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on an industrial manipulator to control the position of a laparoscopic camera. In Bolzoni Villaret 

et al. (2017) a hybrid robotic system was developed to assist in endoscopic skull base surgery. (X. 

Zhang et al., 2020) proposed the use of a UR5 industrial robot for control of a flexible tendon 

driven endoscope.  

2.4.2 3D Printing in surgical robotics 

Three-dimensional (3D) printing allows a quick and low-cost transition between conceptual design 

and a fully functional device optimized through iterative prototyping cycles. There are currently a 

variety of techniques integrating 3D printed parts with diverse tools in surgical systems. (Y. Kim 

et al., 2017) designed a 3D printed robot developed for brain tumor removal. Rateni et al. (2015) 

developed a grasping tool for MIS, based on a soft gripper created with an elastomeric material. 

The tool was adapted to the end-effector of a 6-DOF robotic platform using a rigid 3D printed base. 

Chandrasekaran et al. (2017) presented the design of an expendable tooltip for robotic surgery 

printed on a photopolymer. They propose a solution for power transmission based on magnetic 

coupling. (Guo et al., 2018) designed a 3-D printing disposable transmission system for a surgical 

robot to manipulate non-magnetic tools. Gerboni et al. (2016), developed a surgical gripper that 

combines metallic tooltips, a 3D printed mount, and linear actuators made of elastomeric material. 

These works show the feasibility of manufacturing processes for the development of tools for 

robotic surgery.  

Rigid plastic material has been used as the main material of 3D printed tools for surgical grippers. 

McKinley et al. (2016) proposed a system with interchangeable surgical instruments. The system 

is composed of 3D printed parts, namely a mounting mechanism for the da Vinci Surgical System, 

a tool-guide, and a sleeve to autonomously perform the change of surgical instruments. (Sheng et 

al., 2018) proposed a flexible robotic catheter developed with 3D printing technologies designed 

to ablate heart tissue. Mintenbeck et al. (2014) designed a 3D printed cable-driven snake robotic 

instrument with 4-DOF for MIS. The instrument was designed to be operated with the industrial 

robot KUKA LWR IV. (D. Zhang et al., 2020) has proposed the use of 3-D printing connectors 

for mounting microtools on the MRRP robotic platform. The previous systems leverage 3D 

printing technologies and fast prototyping to explore designs compatible with the current surgical 

robotics standards.  
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2.5 Surgical tasks 

Autonomy and/or semi-autonomy can release the operator from performing tasks that can easily 

be automated. Incorporating semi-automation in the operating room has been suggested to alleviate 

the cognitive load experienced by surgeons as well as to enable telesurgery in remote locations 

where there is limited medical personnel (Garcia et al., 2009). 

2.5.1 Skill and task learning in surgical robotics 

Task decomposition of complex surgical procedures into primitive motions or subtasks can help 

in task analysis and the automation of such tasks. A complex surgical task can be learned by 

dividing the task into a set of meaningful motion sequences that are learned independently. This 

process is known as surgical skills modeling (Moustris et al., 2011). These motions form a library 

of skills that can be learned and reused to execute high-level surgical tasks. An example of a skill 

that can be reused is the “pull” motion, which can be used for different tasks such as suturing and 

knot-tying. In surgical skills modeling, each task is comprised of a series of atomic elements 

referred to as primitive actions or surgemes (Gao et al., 2014). For instance, a suturing task is 

composed of the surgemes “reach for the needle”, “position needle”, “insert needle” and “pull/push 

the needle” etc. 

Surgemes have been used to model surgical gestures, and for motion generation in surgical task 

automation (Krishnan et al., 2015; Nagy & Haidegger, 2019; Reiley et al., 2010),  surgical skills 

assessment (Reiley & Hager, 2009; Varadarajan et al., 2009) and in the recognition and 

segmentation of surgical actions (Béjar Haro et al., 2012; Lin et al., 2006; Madapana et al., 2019). 

Early approaches in surgical automation have focused on generating robot trajectories for 

automating all or some of the primitive actions that compose a task. Mayer et al. (Mayer et al., 

2006) have employed recurrent neural networks to predict the trajectory of the winding portion of 

the knot-trying task, while the remainder of the task is preprogrammed. Berg et al. (2010) proposed 

a framework that utilizes Dynamic Time Warping (DTW) for temporal alignment of 

demonstrations to create smooth reference trajectories for a two-handed knot tie. Similarly, Reiley 

et al. (2010) modeled independent surgemes by using a gaussian mixture regression to extract a 
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smooth reference trajectory. However, these approaches focus on modeling individual sections of 

the task and assume a predefined order of primitive action execution. 

Later works evaluate the ability to generalize the demonstrated trajectories to variable settings 

during testing. (Schulman et al., 2013) presents an approach that finds a wrapping function that 

directly maps the demonstrations of a simplified suturing scenario into a test scene. The method 

cannot generalize to high variations in the environment, as the performance of the task gradually 

decreases for higher perturbations of the initial conditions. In contrast, (Osa, Sugita, et al., 2018) 

presented an approach that completed an online trajectory planning of a knot-tying task under 

changing conditions of the environment successfully. Their work used DTW to remove the 

temporal variance of the trajectory demonstrations and used Gaussian process regression to model 

the trajectory distribution given the current state of the system. These approaches focus on 

modifying demonstrated trajectories to adapt to new environment conditions. 

Alternative approaches focus on generating algorithms that automate a task by coordinating 

predefined or learned primitive actions. Approaches that combine primitive actions to perform 

complex tasks are referred to as high-level learning (Chernova & Thomaz, 2014). (Padoy & Hager, 

2011) proposed a high-level approach to combine manual and automatic subtasks in a suturing 

scenario. Their work presented a learning from demonstration approach that used Hidden Markov 

Models (HMM) for recognition of subtask completion. Once the subtasks were recognized, the 

execution of specific task segments was triggered based on a predefined order of motion sequence 

execution. In such approach, DTW was used to learn manually segmented primitives of a suturing 

task. Another high-level approach based on learning by demonstration was presented by (Murali 

et al., 2015) for the debridement and pattern cutting tasks. That approach relies on motion 

sequences that are identified and parametrized by experts. These motion sequences and the state 

of the environment obtained from a stereo camera were used to construct a Finite State Machine 

(FSM) to execute each task. In that work, empirical parameters were established in order to 

constrain the execution of motion sequences. For example, in the debridement task, once the target 

piece was grasped, it was retracted by a predetermined height. In addition, such approaches for 

high-level learning require expert knowledge to carefully design the finite states that compose the 

controller as well as to model the transitions between states. 
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Automation approaches that model primitive actions can rely on the manual identification and 

segmentation of the demonstrations. To address this limitation, approaches for autonomous task 

segmentation have been proposed to alleviate the labor of manual segmentation (Fard et al., 2017). 

However, generating autonomous task execution algorithms for complex tasks is complicated 

because: (1) we need to segment the task into meaningful primitive actions, (2) the automation of 

each primitive action and the design of high-level controllers are required to complete the whole 

task, (3) we require to assign labels to highly variable time-series data (Yip & Das, 2017).  

Moreover, the process of formulating adequate models and the definition of its parameters may 

consume significant time (Kassahun et al., 2016). For example, FSM models require the 

specification of meaningful states in the task as well as feasible state transitions. Learning 

individual models for a primitive action requires the segmentation of multiple trajectory 

demonstrations. This process can be particularly limiting when such steps need to be repeated for 

each individual task. In contrast, deep learning approaches are appealing because they can allow 

learning implicit models directly from sensory data. 

2.5.2 Deep learning in surgical tasks automation 

Deep learning has been recently proposed in combination with reinforcement learning for 

autonomous manipulation of soft tissue, which is a task frequently preformed in surgical 

procedures (Shin et al., 2019).  In particular, Deep Reinforcement Learning (DRL) has been 

proposed for controlling tensioning policies of a tissue phantom while scissors execute predefined 

contour trajectories in a pattern cutting task (Thananjeyan et al., 2017). Their work proposed DRL 

to learn tensioning policies of one pinch point during a 2D pattern cutting task using a finite-

element simulator. Their approach was extended in later work to learn tensioning directions of 

multiple pinch points over more complex contours (Nguyen et al., 2019). Such algorithms 

determine the direction of tension using the current state of the phantom sheet, the predefined 

trajectory, and the position of the cutting tool. In such approaches the environment state uses a 

model (mesh points on the tissue phantom) that is specific for the tensioning task and could not be 

directly applied to general surgical manipulation tasks. 

A different common surgical task is debridement. Debridement consists in the removal of foreign 

matter from a wound (Steed, 2004). In this context, a reinforcement learning algorithm has been 
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proposed to solve simple tasks in simulation by learning individual policies for the action 

primitives “pick” and “reach” that compose the task for one arm manipulator (Richter et al., 2019). 

Their work demonstrated a debridement task as a sequence of two actions, “pick” to pick the part 

from a known goal location and “reach” for handling the part to an assistant. RL was used for 

automating primitive actions in a mock-up surgical setting where each primitive action had a 

corresponding predefined goal. However, the approach has not yet demonstrated to be successful 

for tasks that require changes in tool-reorientation, as they simplified the problem by assuming the 

tool orientation to be fixed. Their work exploited the benefits of behavioral cloning for learning 

the “pick” policy as they were not able to learn the policy using RL alone.  

Reinforcement learning has been used in combination with imitation learning for autonomous 

tissue manipulation using two robot arms. (Shin et al., 2019) compared the performance of 2D arm 

motion policies obtained through reinforcement learning and imitation learning. Their work 

focused on learning motion policies for two robot arms in the 2D plane. The goal was to align 

points on a tissue with a desired position in the image. The authors determined that when the 

demonstrations encompass a wide range of desired positions, imitation learning was sufficient and 

additional exploration using RL was not necessary. 

A difficulty associated with reinforcement learning is that each additional feature added to the state 

increases the size of the solution space exponentially (Burton, 2010). For example, including 

tooltip orientation as part of the robot state would increase the dimensions of robot solution space 

(e.g. modeling orientation in 3 directions would add 3 additional features to the robot state). Policy 

learning can be challenging for RL in high-dimensional spaces (Kroemer et al., 2019). For this 

reason, additional research is required to explore the applicability of RL approaches to surgical 

tasks with high dimensional spaces. Examples of this, are surgical tasks with bimanual 

manipulation as well as end-effector position and orientation control.  

Deep Imitation Learning has been proposed as a feasible method for full tasks learning from 

demonstrations. (J. W. Kim et al., 2019) have proposed a DIL approach for autonomous surgical 

tools navigation inside the eye. In that work, a deep network was trained to imitate trajectories that 

were artificially generated based on information on the eye geometry. Data augmentation was 

achieved by varying the starting position of the trajectories. Although the approach simplified the 
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variability of the task by modeling artificial trajectories as straight lines and keeping the eye 

position and the tool orientation fixed, it demonstrated the feasibility of DIL methods. 

In summary, several methods have been recently introduced that show the potential of RL and, in 

general, IL for automation of surgical subtasks. These works have primarily modeled sections of 

the task and have limited the exploration space of the policy by keeping the tool orientation fixed 

or by modeling only one arm. Further research is desired to present deep imitation learning 

approaches that can be used for more complex surgical tasks such as peg transfer and knot-tying. 

These tasks require to model orientation for successful completion of the task. 

Deep Imitation Learning approaches have the potential to learn full multi-step tasks without the 

need for previous task segmentation. Furthermore, in DIL, it is not necessary to specify reward 

functions and goals for each primitive action. This would be challenging and onerous for multi-

step surgical tasks and would require expert domain knowledge.  

2.5.3 Surgical tasks 

The peg transfer task 

The peg transfer task involves the transfer of parts between pegs on a board, using the two robotic 

arms, through teleoperation. The task consists of picking the part with one gripper, pick it up, and 

transfer to the second arm, which is responsible for depositing it on top of a different peg. Due to 

the dexterity and precision required to solve this task, it is a key skill included in the Fundamentals 

of Laparoscopic Surgery (FLS) for surgical skills training (Ritter & Scott, 2007). The peg transfer 

task has attracted interest from the surgical robotics community for the evaluation of robot 

teleoperation interfaces (Abiri et al., 2019) and measurement of surgeon skills (Bark et al., 2012; 

Brown et al., 2017; Peng et al., 2019). This task can be evaluated at the trial level, where one 

transfer from peg to peg is assessed, or at the surgeme level (Madapana et al., 2019; Rahman et al., 

2019). As opposed to (Madapana et al., 2019; Rahman et al., 2019) in this thesis the goal is to learn 

to perform the whole task autonomously at once rather than a sequence of connected surgemes. 

In the robotics automation community, the peg transfer task has been identified as a challenging 

task to assess autonomous execution due to the dexterity required and the limited clearance 

between the blocks and pegs (B. Kehoe et al., 2014). Next, we describe a few attempts that have 
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been made for the automation of the peg transfer task using only one arm (no handover). (Rosen 

& Ma, 2015) proposed the use of finite state machines for path planning and task planning to 

automate the handover-free peg transfer task. The approach sequentially repeats steps 1 to 8 until 

the final state of the task has been reached. That approach employs artificially generated 

trajectories defined offline for each state as well as specific speed patters for each state transition. 

Another approach for automation of the handover-free version of the peg transfer task was 

proposed by (Hwang et al., 2020). In their work, they programmatically define each motion 

sequence based on detected candidate grasp points and executed the sequences in a predefined 

order.  

The aforementioned approaches for peg transfer automation do not account for the interaction 

between the two robotic arms during same object manipulation, which is required to achieve the 

original peg transfer task according to the FLS. (Nagy & Haidegger, 2019) proposed the 

automation of the dual-arm peg transfer task by using a hierarchical motion planning that executed 

a given sequence of independent surgemes. Each surgeme is executed based on a set of 

parametrized actions, obtained from the environment. For example, “grasp” consists of navigating 

to the parametrized approach position, then navigating to the grasp position, and finally executing 

the action to close the jaws. The previous approaches for peg transfer automation rely on a set of 

actions or motion sequences that were identified for each section of the task. Furthermore, such 

approaches require the user to program primitive actions and specify action parameters for 

successful task execution. In our work, we aim at learning a continuous controller for task 

execution from human demonstrations without explicit models for individual primitive actions.  

The surgical debridement task 

The surgical debridement task consists of removing diseased tissue from the neighboring healthy 

tissue. It is considered beneficial to the treatment of conditions (Granick et al., 2006) such as 

necrotic tissue (Steed, 2004), burn injuries (Duteille & Perrot, 2012), and non-healing wounds (J. 

Liu et al., 2011). (Seita et al., 2018) has proposed an approach for autonomous debridement that 

focused on developing a calibration procedure for cable-driven surgical systems such as the dVRK. 

In that work, the goal involved approaching detached foreign objects on a planar surface, grip them, 
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and transfer them to a container. That work relies on specific task handcrafted features such as 

approaching the target object with a fixed orientation.  

In a similar setup, (B. Kehoe et al., 2014) has demonstrated autonomous surgical debridement by 

using state machines for specifying high-level task integrated with a motion planning algorithm 

for preforming low-level subtasks. In that work, the surgical debridement consisted of retrieving 

fragments placed randomly on a planar work surface. In their system, the two arms did not interact 

with each other but could operate simultaneously to perform the task independently. The low-level 

motion planning algorithm plans optimal, collision-free trajectories for both arms while imposing 

collision, pose, and feasibility constraints. In a simulation environment, (Richter et al., 2019) 

implemented an RL method for the automation of the debridement task. In their work, the 

debridement task was segmented in two actions “pick” to collect the sample and “reach” to move 

the sample to a disposal location. 

Alternatively, the debridement task can also be designed to make use of the two arms which is the 

setting commonly used in surgical robotics. One arm is used for grasping the damaged tissue, and 

the other for separating it from the healthy tissue. (Nichols et al., 2015) implemented a finite state 

machine (FSM) to solve the dual-arm debridement task under different levels of autonomy. That 

work defined robotic actions such as “grasp”, “ungrasp” and “cut” which are sequenced to solve 

the autonomous debridement task. (Murali et al., 2015) proposed an FSM for automation of 

surgical debridement based on human demonstrations to retract and cut fragments embedded in a 

viscoelastic material that represent damaged tissue. In their approach, they identify, segment, and 

parametrize sequence of motions and sensorial information to construct a finite state machine for 

each task. Those works require to define the specific states that constitute the debridement task as 

well as the actions the robot can take at each step. Furthermore, such approaches require the 

definition of task-specific parameters which are generally determined empirically such as the depth 

of tissue retraction, gripper actions (open/close), the direction of motion for cutting, etc. 

In our work, we consider the debridement task from grasping the fragments, retracting, cutting the 

fragments to separate from the remaining tissue, and moving the debrided fragments to a surgical 

tray. We trained a continuous controller from human demonstrations to map robot and 
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environment states to actions of the robot without explicit definition of surgeme intrinsic 

parameters, nor the task primitives. 

2.6 Deep imitation learning for robot manipulation 

Recent approaches in deep learning have demonstrated the capability to model full manipulation 

tasks by learning from demonstrations. Convolutional Neural Networks (CNN) have been 

proposed to learn robot control policies for manipulation tasks. This includes end-to-end policies 

that map raw images and robot configurations to output motor torques (Levine et al., 2016). (T. 

Zhang et al., 2018) demonstrated the applicability of CNN policy representations for DIL in a 

variety of manipulation tasks. The latter approach used convolutional layers to process raw images 

and robot configurations from the last five steps to predict the linear and angular velocity of one 

robot manipulator as well as the gripper state. Their work demonstrated that neural networks are a 

feasible for policy representation in deep imitation learning using behavioral cloning. Such 

approaches indicate that the natural variations in human demonstrations allow better generalization 

in the imitation learning policy. 

As manipulation tasks can be represented as temporal sequences, Recurrent Neural Networks  

(RNN) (Mayer et al., 2006) have been proposed as an alternative to model time dependencies in 

robot execution. A class of RNN’s that models long time dependencies, is the Long-Short Term 

Memory Networks (LSTM) (Hochreiter & Schmidhuber, 1997). LSTM’s have been proposed to 

train visuomotor controllers in DIL for robot manipulation that output the robot’s joint control 

parameters based on the robot configuration and a third-person view image of the robot and the 

environment. James et al. (James et al., 2017a) have proposed a CNN+LSTM method to transfer 

visuomotor control policies trained from artificially demonstrations into a real system for a pick 

and place task. In that work, abundant demonstrations (~4000) were collected by moving the 

robot’s position over linear trajectories between key points in the task using a simulation 

environment. Examples of such key points are a point directly above the target object for executing 

the grasping action and a point located above the basket where the object needed to be placed. 

Another DIL visuomotor policy based on LSTM+CNN was proposed by (Rahmatizadeh et al., 

2018) to predict joint configuration commands from a third-person view image. The input image 

includes a view of the robot and the objects of interest. In this approach, the trajectory 
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demonstrations were obtained from a motion controller or by tracking the motion of the user’s 

hand. The visuomotor policy is tested for tasks such as push a tool to a given pose. These 

approaches demonstrate the ability of LSTM networks to represent deep imitation learning 

policies. Such policies aim to reproduce a desired end-effector’s position from human 

demonstrations or artificial trajectories. The previous DIL works predicted robot joint states as the 

output command and did not explicitly model robot end-effector orientation as part of their state-

action space. 

Alternatively, a deep imitation learning approach can explicitly account for robot orientation by 

encoding the robot state and action based on the robot pose and gripper state (open/close). This 

state-action representation has been proposed by (Rahmatizadeh et al., 2016a) to train LSTM 

networks policies for simple manipulation tasks such as pick and place of a cube and push cube to 

pose. They showed that recurrent networks (RNN), particularly LSTM, perform better in such 

manipulation tasks than direct feedforward neural networks due to their capability to encode long 

temporal dependencies. However, their application did not explicitly require precise end-effector 

control and additional research is required to determine whether such representation is sufficient 

to learn policies for tasks that are sensitive to accurate robot pose control. 

As surgical tasks often involve the collaboration of two robotic arms such as the peg transfer and 

the knot-tying tasks, there is a need to study DIL algorithms that can model such interaction 

between two arms (or more). In previous work, this interaction was modeled by learning the 

behavior of each arm independently and reproducing their actions sequentially. For example, 

(Padoy & Hager, 2011) have modeled the suturing scenario as a predefined sequence of actions of 

independent end-effectors such as “grasp needle with right arm” or “pull thread out using left arm”. 

More recently, (Murali et al., 2015) have attempted to learn such interactions from segmented 

sequences of the data, by modeling the primitive actions for a cutting task as a multi-arm maneuver. 

Approaches that are used to learn robot arm interactions from demonstrations can be relevant to 

learn user preference in task execution. For instance, in tasks such as the peg transfer, the user can 

naturally prefer one of the robot arms for picking up an object considering the direction of the peg 

transfer (e.g. left to right) and would use the opposite arm to place the object. It is of interest to 

generate task controllers that can model the interaction between different end-effectors according 

to user preferences, as their preferences can change with task conditions.  
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Dual-arm manipulation task coordination is not only essential in surgical robots, but there is also 

an increasing interest in anthropomorphic robotics and bimanual industrial manipulation (Smith et 

al., 2012). Some approaches model the coordination of two robotic arms explicitly, by detecting 

temporal dependencies using HMM’s (Asfour et al., 2006). (Gribovskaya & Billard, 2008) relied 

on a dynamical systems based approach to encode coordinated motion patterns.  (Pairet et al., 2019) 

modeled dual manipulation as a closed-chain system. (Pavlichenko et al., 2018; Tamei et al., 2011; 

Yuba et al., 2017) modeled the coordination of two robotic arms implicitly.  

In our work, we propose to exploit LSTM for training policies that jointly optimize for task 

automation while successfully addressing two-arm coordination. This is in contrast to modeling 

each subtask and robotic arm independently. We also evaluate the pose control policy for tasks 

that rely on accurate orientation control of the end-effector’s and we consider the generalization 

of the policy for high variations in unseen testing settings. 

2.7 Long-Short Term Memory (LSTM) networks  

Recurrent Neural Networks (RNN) are a type of Artificial Neural Networks (ANNs) that can 

consider previous inputs and states and use that information to predict the outputs by exploiting 

recurrent connections in the hidden layers (Diamantaras et al., 2010). In addition, LSTMs are 

capable of learning long-term dependencies in sequential data (Hochreiter & Schmidhuber, 1997). 

LSTMs have been employed in numerous robotic applications, such as motion planning (Finn & 

Levine, 2016; Inoue et al., 2019),  manipulation (Mott, 2019; R. Rahmatizadeh et al., 2018, p.; T. 

Wang et al., 2019) and human-robot interaction (Alahi et al., 2016; Y. Wang et al., 2017). In the 

medical field, it has been used to generate trajectories for the winding portion of the  knot-tying 

task (Mayer et al., 2006), recognizing surgical activities (DiPietro et al., 2016) and surgical skill 

evaluation (Ezziyyani, 2020) 

Stacking LSTM layers and generating direct connections between non-consecutive layers have 

been proposed to model deep LSTM networks as well as to avoid vanishing gradients (Gui et al., 

2019; Pundak & Sainath, 2017; Sak et al., 2014). A stacked LSTM architecture is a model 

composed of several LSTM layers representing multiple levels of abstractions over time (Graves 

et al., 2013). This makes stacked LSTMs a stable technique for challenging sequence prediction 
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problems (Brownlee, 2017), such as robot action prediction for manipulation tasks. An illustration 

of a stacked LSTM with skip-connections is shown in Figure 1. 

Skip-connections are direct connections between non-consecutive layers. Such connections have 

been found to facilitate training of deep LSTMs (Graves, 2014) by reducing the number of 

processing steps between different layers of the network. In robot manipulation, skip-connections 

have been previously employed to facilitate learning of LSTM of robot control policies in DIL 

(Rahmatizadeh et al., 2016a; R. Rahmatizadeh et al., 2018).  

 

Figure 1. Stacked LSTM of three layers for 4 time steps with skip connections between the 

inputs x and the layers 2 and 3. In this example, the output of the LSTM network is y, which is 

predicted using the sequence of inputs (x1,x2,x3,x4) 

 

In DIL policy learning, the inputs of the network (x) can be, for example, the state of the system 

encoded as the pose of the robot manipulator in the coordinate space. The output of the LSTM 

network (y) are the actions the system can take, which can encode for example the next end-

effector joint states. For the example shown in Figure 1, the LSTM network uses the state of the 

previous 4 time steps (x1,x2,x3,x4) to predict the action y4 at time t=4. 
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2.8 Quantitative metrics in surgical robotics 

The cumulative sum (CUSUM) analysis is a technique adopted by professionals in the medical 

field to analyze the learning curve of surgical procedures (Bokhari et al., 2011). The CUSUM 

technique has been applied for the analysis of single surgeon learning curves in several surgical 

fields such as thyroidectomy (Liao et al., 2014),  colorectal surgery (Bokhari et al., 2011), rectal 

cancer (Park et al., 2014; Yamaguchi et al., 2015), and gastric endoscopy (Yoshida et al., 2017).  

A surgeon learning curve (Khan et al., 2014) can be represented, for example, as the procedure 

completion time versus the number of procedures completed. The CUSUM analysis consists of 

transforming the raw data of the curve (e.g. completion time) into the cumulative sum of the data 

deviations from their mean. The cumulative sum can then be plotted to enable visualizing data 

trends, which are used to determine different learning phases of the curve. Such phases are used 

as an indication of different levels of surgeon expertise. 

Quantitative metrics have been proposed to measure surgical skills in open surgery and minimally 

invasive surgery. Path length is a widely used metric for skill evaluation that measures the length 

of the trajectory followed by the tip of the instruments during the task. Several researchers have 

found path length to be an objective metric to measure surgical skills (Clinkard et al., 2015; Rivard 

et al., 2014; Vedula et al., 2016). Task completion time is another common metric for skill 

assessment, which has been previously used to distinguish different levels of expertise (Hofstad et 

al., 2013; Oropesa et al., 2013; Reiley et al., 2011). Similar to path length, rotational changes in 

tooltip orientation during procedures can be used as time-invariant metrics to evaluate surgical 

skills. (Hofstad et al., 2013; Kundhal & Grantcharov, 2008) have evaluated angular length metrics 

by measuring the total change in instrument orientation throughout the procedure. The previous 

metrics will be used to make quantitative comparisons between robot generated trajectories and 

human demonstrations. 

2.9 Discussion 

The field of surgical robotics can benefit from controllers that merge dual-arm coordination with 

complete tasks modeling. Deep learning allows efficiently learning state-action controllers for 

tasks relying on two (or more) interacting robotic arms. Deep imitation learning approaches have 
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demonstrated to be an attractive venue for modeling policies for multiple manipulation tasks from 

demonstrations. Moreover, the policies obtained using DIL resemble human teacher behavior 

without the need for carefully defined reward functions. Furthermore, DIL frameworks can be 

directly applied to diverse execution tasks by training the network over different datasets. 

2.10 Summary 

This section discussed imitation learning in robotics, with an emphasis on applications of robot 

manipulation and, in particular, surgical robotics. Additionally, industrial robotics and 3D printing 

technologies are discussed in the context of surgical robotics platforms for robotic-assisted surgery. 

Then, a review of prominent task execution approaches in surgical robotics is presented. Then, an 

overview of deep imitation learning for robotic manipulation is discussed as well as their 

applicability to surgical robotics. Finally, task assessment metrics are discussed in the context of 

human vs. robot task execution. 
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  METHODOLOGY 

This section describes the main methods used for the formulation of an imitation learning approach 

for learning dual-arm dexterous manipulation tasks using long-short term memory networks 

(LSTMs). The main components of the robot learning approach are presented in Figure 2. The 

imitation learning algorithm is based on a three-layer stacked LSTM network with skip-

connections that learns a robot control policy for task execution. The learned policy 𝜋𝜃 uses as 

input the current observation 𝑜𝑡 to predict the robot arm’s poses (action)  𝑎𝑡 = 𝜋𝜃(𝑜𝑡) that will be 

sent as commands to the robotic system. The current observation 𝑜𝑡 = { 𝑠(𝑡−𝑛:𝑡) , 𝑒(𝑡−𝑛:𝑡)} is 

composed of the robot state 𝑠(𝑡−𝑛:𝑡) and the state of the environment 𝑒(𝑡−𝑛:𝑡) from the previous 𝑛 

time steps. The network is trained based on demonstrations from robot teleoperation collected by 

one user in a virtual reality setting. 

 

Figure 2. Overview of the approach for robot task learning of dual-arm tasks. 

The original robot coordinate space in which the demonstrations are collected is denoted with 𝑈. 

An affine transformation 𝛹 is applied to the demonstrations in the dataset 𝐷𝑡𝑎𝑠𝑘 = {(𝑜𝑡
(𝑖)

, 𝑎𝑡
(𝑖)

)} ∈

 𝑈 (set of observations 𝑜𝑡 and corresponding actions 𝑎𝑡) to map them to a robot coordinate space 

𝑈′ where the start position of the object of interest  𝑋𝑠 and its goal position 𝑋𝑔 are aligned. 
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Ψ:  𝜏𝑖  = {𝑜𝑖, 𝑎𝑖}  ∈   𝑈 → 𝜏′𝑖 = {𝑜′𝑖, 𝑎′𝑖} ∈   𝑈′   (1) 

This coordinate space representation will be referred to as the “unified robot coordinate space” 

denoted with 𝑈′, where Ψ: 𝑈 ⟶ 𝑈′.  The dataset represented in the unified robot coordinate space 

is denoted as  𝐷′𝑡𝑎𝑠𝑘. The policy 𝜋𝜃 is represented by an LSTM network trained with the dataset 

represented in the unified robot space, which allows to learn a policy for the execution of complex 

tasks from demonstrations provided by a human teacher. 

During robot execution, the affine mapping 𝛹 is used to transform the current observation 𝑜𝑡 to 

the unified robot space  𝑈′ where the LSTM network is evaluated.  

Ψ: 𝑜𝑡 =  { 𝑠(𝑡−𝑛:𝑡) , 𝑒(𝑡−𝑛:𝑡)} ∈   𝑈 → 𝑜′𝑡 =  { 𝑠′(𝑡−𝑛:𝑡) , 𝑒′(𝑡−𝑛:𝑡)} ∈   𝑈′   (2) 

The policy 𝜋𝜃   utilizes  the observation in the unified robot space to predict the next robot action. 

𝑎′𝑡 = 𝜋𝜃(𝑜′𝑡) (3) 

The robot action 𝑎𝑡′ ∈   𝑈′  predicted by the network policy is mapped back to the original robot 

space 𝑈 and sent as the next control command 𝑎𝑡 to the robotic system.  

Ψ−1:  𝑎𝑡
′ → 𝑎𝑡 (4) 

To validate the method in an online simulated setting, two networks have been trained to execute 

relevant mock-up surgical tasks (one network for each task) that require the coordination of two 

robotic arms: the debridement and peg transfer tasks.  

3.1 The robotic system 

The robotic platform used for this work is the industrial collaborative robot from ABB, YuMi  

which has been adapted as a surgical research platform using rapid prototyping.  In this section, 

an approach to adapt the industrial robot as a surgical research platform is presented. 3D printed 

gripper adaptations have been designed to transform the robot end-effector’s parallel motion into 

a gripping motion. The goal of this was to allow the tip to operate different tools for mock-up 

surgical tasks. Moreover, a simulation environment was developed for the adapted YuMi robot to 

be used as a platform for acquiring human demonstrations and as the testing platform for 

autonomous task execution (Sanchez-Tamayo & Wachs, 2018).  
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3.1.1 Gripper adaptations for surgical tasks 

The industrial robot 

The ABB YuMi Robot is a collaborative robot with a pair of 7-DOF arms (Taghbalout et al., 2019). 

Each arm is equipped with a parallel-jaw gripper and two pneumatic modules that can carry a 

payload of 500 grams with an accuracy of 0.02 mm (ABB, 2019) and gripping force of 20 Newtons. 

 

Figure 3. Original ABB YuMi Robot and gripper adaptations on the ABB YuMi robot. 

The gripper was designed to adapt the YuMi robot to surgical research-related tasks. The 

translational degree of freedom in the original robot’s parallel grip is transformed into a rotational 

pinch at the end-effector to operate forceps, scalpels, and scissors, among other surgical tools. The 

design of the gripper extension, presented in Figure 3, preserves the exterior of the original ABB 

robot to ensure proper enclosing of the gripper’s components and safe operation. The main 

components of the structure are designed to be prototyped in PLA material using a low-cost fused 

deposition modeling 3D printer, with production costs below $20 per gripper. The 3D printer used 

was the open-source Prusa i3 MK2 (Prusa, 2016). The internal components of the gripper 

adaptations are shown in Figure 4. 
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Figure 4. Cad Model of the gripper adaptation for the YuMi Robot. 

A rack and pinion mechanism coupled with a timing belt were used to transmit the parallel motion 

of the original YuMi’s finger base into a rotatory motion of the surgical tooltips. Two timing belts 

with 0.080” pitch, were chosen for power transmission to provide reliable rotation with no slippage 

on the surface. The timing belts were kept in place with radial bearings for minimum resistance 

and couple directly on the end-effector tooltips. The adaptations extend the tool center point of the 

gripper by 70 mm as shown in Figure 5. 

. 

 

Figure 5. Length comparison of original gripper (left) and surgical gripper adaptations (right). 
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3.1.2 Teleoperation of the real robotic system 

To achieve the adaptation of the industrial robotic platform to research in surgical robotics, we 

have created a system for operating the real robot using virtual reality controllers. An overview of 

the system architecture is shown in Figure 6. 

 

Figure 6. Overview of the robotic system 

The HTC VIVE set includes a Head-Mounted Display (HMD) and two controls that provide 

position and orientation tracking with submillimeter precision (Niehorster et al., 2017). To control 

the robot, the operator used two  HTC VIVE  controls as the main interface (one for each hand, 

corresponding to each robotic arm),  and can be seated in a remote location or directly beside the 

robot. Pose tracking of both controllers is performed with two lighthouse technologyTM stations 

allowing the robot’s end-effectors to be teleoperated simultaneously for grasping, translational 

motion, and orientation. Visual feedback from the surgical task can be obtained through direct 

observation of the robot’s performance when operating in situ or additional cameras located at the 

top of the surgical setup.  

VIVE 
controllers
Interface

Gripper adaptation for 
surgical tasks

ROS
Environment

Tooltips

ABB YuMi

Visual feedback

Human Operator
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Figure 7. Teleoperation of the real robot with the HTC VIVE controllers 

The HTC VIVE controls include 3 main buttons to trigger action events: the trackpad, trigger, and 

grip buttons shown in Figure 8. By pressing the trackpad button, the user controls the opening and 

closing of the gripper tooltips. When the trigger button is pressed, for each independent control, 

the operator drives the position and orientation of the robots’ end-effectors. When the trigger is 

first pressed the control’s reference frame is mapped to the end-effector of the robot, allowing to 

reset the working space by releasing the trigger. 

 

 

Figure 8. VIVE controls 

The VIVE controllers pose and button states are sent through ROS bridge. RAPID (Robotics, 2014) 

is the high-level programming language used to control ABB’s industrial robots. We created a 

package named YumiVive in the Robot Operating System (ROS) that sends RAPID commands to 

the YuMi Robot to control end-effector’s pose and gripper state using the YuMi-python interface 

(Liang et al., 2017) and the robot inverse kinematics. 

Trigger

Grip

Trackpad
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Gripper tools for surgical tasks 

Different tools have been designed for the surgical gripper extensions, including forceps and 

different cutting tools, such as scalpels and scissors. For the scalpel case, two designs were 

proposed: in the first design the scalpel is oriented in parallel with the gripping DOF of the robot 

and, in the second the scalpel is oriented perpendicularly to the timing belts’ actions. For both 

scalpel tools, 11 blades were used, which are one of the most commonly used in dermatology 

practice (Tobergte, 2010). In the case of scissors and forceps, the gripper’s DOF is used to close 

the robot’s tooltips allowing to cut and grasp tissue respectively. The forceps have a serrated 

surface design to correctly perform tissue grasping and skin retraction.  

 

Figure 9. Different surgical designs for surgical task 

Experimental evaluation of 3D printed adaptations on the real robotic system 

Different tools with surgical gripper adaptations were tested in two mock-surgical procedures 

related to diseased tissue removal. a) melanoma extraction Figure 10.A) and, b) debridement of 

unviable tissue (Figure 10.B). Tissue samples of cross-linked polymer were generated from 

polyvinyl-acetate and sodium tetraborate. A similar polymer has been used previously for robotic 

surgical research (Murali et al., 2015). Preliminary results included five repetitions performed for 

the melanoma excision task, while three were conducted for the debridement using each cutting 

tool. (Sanchez-Tamayo & Wachs, 2018) Each task consists of 4 steps: approach, pinch, retract, 

and cut (See Figure 10).  
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Figure 10. Steps of diseased tissue removal tasks: 1-Approach, 2-Pinch, 3-Retract, 4-Cut Action. 

The effectiveness of cutting action was measured based on the percentage of healthy tissue 

unnecessarily removed from cut samples. Figure 11 shows the averages of healthy tissue removal 

plotted as bars and the standard deviations are included for each condition. Performance time was 

measured as the percentage of completion time for cut action for each tool, while time variable is 

normalized based on the longest completion time for each surgical task. The results are presented 

in Figure 11. 

 

Figure 11. Left: Healthy tissue in removal. Right: Percentage of completion vs normalized time 

Dotted line (melanoma) solid line (debridement). 

A one-way ANOVA followed by a post hoc Tukey-Kramer procedure were conducted. The result 

shows that the percentage of healthy tissue unnecessarily removed using scissors (15%) was 

significantly lower than using the parallel scalpel (42%) as cutting tool in the melanoma task 
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(P=0.019). The scissors tool showed the highest effectiveness in the melanoma task, while the 

perpendicular scalpel did so in the debridement. 

In terms of performance time, the perpendicular scalpel showed the fastest completion time for 

both tasks while scissors and parallel scalpel showed comparable results.  

The surgical gripper adaptations were tested in the real robot to evaluate the feasibility of the YuMi 

platform to be used for surgical robotics research. In this work, our approach was implemented 

and validated in a robot simulation environment. Due to time constraints, the approach was not 

implemented in the physical robot. 

3.1.3 Robot simulation environment 

We have created a robot simulation environment for the ABB YuMi robot using the CoppeliaSim 

robotics simulator. The designed system allows to collect trajectory demonstrations from robot 

teleoperation of the simulated YuMi robot using a Virtual Reality (VR) interface as well as online 

testing of the robot’s control policies. The simulator environment was used to gather the datasets 

for the two tasks: the surgical debridement task and the peg transfer task. An overview of the robot 

simulation environment used for data collection is shown in Figure 12. 

 

Figure 12. Overview system for data collection of task execution in simulation using virtual 

reality teleoperation. 
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The robot model 

The simulated robot model was created based on the YuMi robot specifications and CAD model 

available in ABB’s official webpage (ABB, 2020). To successfully utilize the robot for mock-up 

surgical tasks, the CAD model of the surgical gripper adaptations previously described has been 

added as the robot’s end-effectors in the simulated environment. During data collection, the robot’s 

end-effectors poses (position 𝑝 and orientations �⃑�) were controlled by solving the robot inverse 

kinematics to follow the desired poses according to the VR motion controls.  

3.2 Dataset acquisition 

3.2.1 Specific hardware and software 

The teleoperation interface used to collect task demonstrations is based on the HTC VIVE virtual 

reality set. The software employed for robot simulation and data collection is the CoppeliaSim 

software (CoppeliaRobotics, 2020b) which offers multiple useful features such as multiple physics 

engines, user interaction with the environment during simulation and mesh manipulation and 

optimization (Pitonakova et al., 2018). The HTC VIVE can be used to interface with the simulation 

environment using the CoppeliaSim-VR-Toolbox by (Bogaerts et al., 2019). 

3.2.2 User interface 

We designed a virtual reality control interface for operating the YuMi robot intuitively in the 

CoppeliaSim simulation environment. The controller trackpad buttons operate the grippers 

individually for each robot arm and the trigger buttons enable/disables the motion of the robot. 

The immersive VR interface allows to map both the robot’s controllers and the robot arm’s pose 

to a common space in the virtual reality environment. When the trigger button on a robot controller 

is pressed, the corresponding robot arm updates its position and orientation according to the 

controller’s motions. When the trigger is disabled, the user can move his hands freely, rest or, 

adjust her hand’s pose for a more comfortable position without controlling the robot.  

To collect multiple task demonstrations over a single session (e.g. 50), the grip button on the right 

controller allows resetting the state of the environment. This action places the object of interest 

(also called target object) in a random start position in the space (denoted with variable 𝑋𝑠) and 



 

 

48 

marks the start of a new trial 𝑘  in the recorded dataset 𝐷𝑡𝑎𝑠𝑘 . The simulation environment is 

displayed in the VR headset granting the user control of the robot with a realistic 3D view of the 

robot workspace in VR. The environment is rendered in the virtual reality headset using the 

CoppeliaSim-VR-Toolbox. 

 

Figure 13. User view rendered in the VR teleoperation interface for the peg transfer task. The 

view shows the pegboard and the part to be transferred (purple). 

3.2.3 Description of the tasks 

Peg transfer surgical training task 

The peg transfer is a task for surgical skills training included in the Fundamentals of 

Laparoscopic Surgery (FLS) (Ritter & Scott, 2007) that consists of the transfer of triangle shaped 

parts between vertical pegs over a rectangle platform. In this work, we define one episode (trial) 

as the transfer of one part. Transferring a part consists in picking it up from a peg with one robot 

arm, handing over the part to the other robot arm, moving the part over another peg, and placing 

it on the goal peg (Hwang et al., 2020). This procedure can be divided into a series of primitive 

actions or “surgemes” that compose the full task. The surgemes that compose the peg transfer have 

been identified as “approach”, “align and grasp”, “lift”, “transfer-get arms together”, “transfer-

exchange”, “approach target peg” and “align and place” (Madapana et al., 2019) (shown in Figure 

14). 
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Figure 14. Surgemes for the peg transfer task. 

To execute the task in simulation using the YuMi robot, a simulation environment for the 

peg transfer task has been created in the software CoppeliaSim. For each episode of the task, the 

part of interest is located on a random peg on one side of the pegboard (start) which should be 

transferred to a random peg on the other side of the pegboard (goal). To facilitate data collection 

during robot teleoperation, the start peg is shown in green to the user while the goal peg is shown 

in red. The environment for the simulation of the peg transfer task is shown in Figure 15. 

 

Figure 15. CoppeliaSim simulation environment for the peg transfer task. 
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Surgical debridement task 

We have created a simulation environment that allows to simulate the debridement task, including 

the complexity of separating the tissue from the rest of the wound and retrieving the sample to a 

receptacle. The simulation environment for the debridement task is shown in Figure 16, the goal 

position of the debrided fragment is the location of the tray, denoted as 𝑋𝑔. 

  

 

Figure 16. CoppeliaSim simulation environment for the surgical debridement task. 

In our work, the debridement task involves picking up the diseased fragment from the wound, 

retracting the tissue to perform a cut action to separate the tissue fragment from the healthy tissue, 

and a final step where we deposit the tissue sample on a surgical tray. Based on this description, 

the key surgemes of the task can be identified as “approach”, “grasp”, “retract”, “cut”, and “place 

on tray” (shown in Figure 17). For each episode of this task, the tissue fragment is placed on a 

random location over the simulated tissue, and the tray is located on either side of the robot at a 

random distance from the robot base (in the x-axis). 
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Figure 17. Surgemes that compose the surgical debridement class. 

3.2.4 Data description 

During data collection, the simulation environment includes trajectory demonstrations of the task 

recorded at a rate of 20Hz (recommended simulation rate in the CoppeliaSim simulation 

environment). Each trajectory demonstration 𝜏 is constituted by a series of features ∅  (one for 

each point of the trajectory), related to the robot pose {𝑝,⃑⃑⃑ ⃑ �⃑�} and gripper state 𝑔, as well as the state 

of the environment 𝑒. The features recorded in the simulation environment are described on Table 

1. The poses (position and orientation) are recorded with respect to coordinate space of the robot 

base 𝑈. In this work, all orientations are represented using unit quaternions. 
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Table 1. Features included in the dataset. The subscripts r and l represent the right and left arms 

of the robotic system. 

Features recorded   

Trial # 𝑘 Trial id 

Timestamp 𝑡 Seconds 

Left and right end-effector orientation, 

respectively �⃑�𝑙(𝑡), �⃑�𝑟(𝑡) 

[𝑟𝑥, 𝑟𝑦 , 𝑟𝑧 , 𝑟𝑤] 

Left and right end-effector position, 

respectively �⃑�𝑙(𝑡), �⃑�𝑟(𝑡) 

[𝑝𝑥, 𝑝𝑦, 𝑝𝑧] 

Right and left gripper state 𝑔𝑟(𝑡), 𝑔𝑙(𝑡) open/close 

Left and right robot joints state 𝜑𝑙, 𝜑𝑟 (𝜑1, 𝜑2, 𝜑3, 𝜑4, 𝜑5, 𝜑6, 𝜑7) 

Object of interest position �⃑�𝑝 [𝑝𝑥, 𝑝𝑦, 𝑝𝑧] 

Start position 𝑋𝑠 [𝑝𝑥, 𝑝𝑦, 𝑝𝑧] 

Goal position 𝑋𝑔 [𝑝𝑥, 𝑝𝑦, 𝑝𝑧] 

Pegboard position 𝑏𝑝 [𝑝𝑥, 𝑝𝑦, 𝑝𝑧] 

Pegboard orientation 𝑏𝑞 [𝑟𝑥, 𝑟𝑦 , 𝑟𝑧 , 𝑟𝑤] 

Dominant side 𝑑𝑠 right/left 

The method presented in this work can be generalized to different mock-up surgical tasks by 

identifying the key variables in the task, which are the object of interest 𝑜𝑝 (target object), and the 

“start” 𝑋𝑠 and “goal” 𝑋𝑔 position. The environment state 𝑒 is captured by recording the positions 

of the objects of interest according to the task at hand. In the peg transfer task, the object of interest 

is the part to be transferred between pegs. In the peg transfer task, the “start position” is the position 

of the peg where the part starts and the “goal position” is the position of the peg where the part 

needs to be placed. In the surgical debridement task, the object of interest is the fragment of tissue 

that needs to be extracted. For this task, the “start position” is the starting position of the fragment, 

and the “goal position” is the position of the tray where the fragment needs to be deposited. The 

“dominant side” feature is defined as the side of the robot that is dominant for the task. For 

example, in the peg transfer task the dominant side is “left” when the peg transfer is performed 

from left to right. For the debridement task, the dominant side corresponds to the side of the robot 

where the surgical tray is located. 
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3.2.5 Data collection 

In the simulation environment, the user can start the data collection by pressing the right-hand 

gripper button, which resets the environment to a random state and marks the start of a new trial 

k. During teleoperation, the operator can mark a trial as a failure by pressing the grip button on the 

left arm and continue the data collection with a new trial. This system allows to continuously 

collect numerous robot teleoperated demonstrations as the system can automatically reset the 

environment and automatically annotate the data. In addition, the system allows to flag failed 

attempts to avoid the LSTM policy to learn undesired behavior. A trial marked as “fail” are those 

that include any of the following: failure to hold the part (dropping the part unintentionally), 

collisions between the robot arms, collisions with the surface, or failure to properly deposit the 

part at the goal location. 

During data collection, variability was added to the data by changing the initial state of the 

environment to a random initial configuration. For the peg transfer task, the board was placed at a 

random position following a uniform distribution with 10 cm of variation:  𝑏𝑝𝑦~𝑈(−5,5)  cm 

𝑏𝑝𝑥~𝑈(−5,5) cm from the center of the robot workspace. This distribution was selected to provide 

sufficient variation of the setup while keeping the center of the board in an area where both grippers 

can reach with ease. 

The board was randomly rotated around the z-axis with a rotation angle given by a uniform 

distribution of ~𝑈(−15°, 15°) . Further variations of the peg transfer task were obtained by 

randomly choosing any peg from each side of the pegboard, as the start and goal peg, respectively. 

The side from which the peg transfer task starts (left or right) was chosen at random as well. In the 

debridement task, variation was introduced by randomizing the position of the tissue part to be 

removed around the whole surface of the debridement simulator. To cover the surface of the 

debridement tissue simulator (15x10 cm), a uniform variation of 𝑜𝑝𝑦~𝑈(−7.5,7.5)  cm, 

𝑜𝑝𝑥~𝑈(−5,5) cm was chosen. The surgical Mayo tray can either be located on the left side of the 

robot or the right side, at a random distance in the x axis: 𝒢𝑝𝑥~𝑈(−10,10) cm. This variation 

allows the Mayo tray to cover the work surface of the robot with a clearance of 5 cm from the 

edges of the surface or the base of the robot. 



 

 

54 

A human operator collects over 1000 observations for each of the two tasks using the 

aforementioned data collection procedures. Once collected, the demonstrations were filtered to 

eliminate the failed trials. A summary of the collected datasets is presented in Table 2, only the 

successful demonstrations were included in the dataset resulting in 839 successful demonstrations 

obtained from peg transfer and 934 from debridement. 

Table 2. Summary of the collected datasets. 

Task Peg transfer Debridement 

Number of full task demonstrations 839 934 

Number of points in demonstrations 269,466 532,201 

Average demonstration length (waypoints) 321.18 569.81 

 

The original teleoperated demonstration recorded at 20Hz were subsampled at a lower frequency 

to train the LSTM for robot manipulation more efficiently as suggested in literature (R. 

Rahmatizadeh et al., 2018) More trajectories can be created from higher frequency recorded 

demonstrations as shown in Figure 18. The subsampling rate was varied as a hyperparameter 

during training and the best results were obtained using a 5Hz subsampling rate.  

 

Figure 18. Demonstrations of multiple trajectories sampled at 5Hz from the original trajectories 

obtained at 20Hz. 

3.3 Formulation of the imitation learning problem 

In this section, the imitation learning problem is formulated. The objective of imitation learning is 

to learn a control policy for task execution that replicates the behavior of demonstrations provided 

by a human teacher. The human operator records a series of trajectories 𝜏 = [∅0, … . , ∅𝑇] formed 
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by features ∅, where T is the total number of time steps that constitute the demonstration of one 

task episode (trial). The features recorded encompass the state of the robotic system 𝑠𝑡 and the 

state of the environment 𝑒𝑡 at every time step t. The state of the robotic system is given by the pose 

of the robot’s end-effectors and the grippers’ state 𝑃𝑙 = {𝑝𝑙, 𝑞𝑙 , 𝑔𝑙}𝑡, P𝑟 = {𝑝𝑟 , 𝑞𝑟 , 𝑔𝑟}𝑡 for the left 

and right gripper, respectively. The state of the environment at time step t is given by the position 

of the object of interest {𝑜𝑝}𝑡, the start position {𝑋𝑠}𝑡, the goal position  {𝑋𝑔}𝑡 and the dominant 

side {𝑑𝑠}𝑡.  

𝑠𝑡 = {𝑞𝑙, 𝑞𝑟 , 𝑝𝑙, 𝑝𝑟 , 𝑔𝑙 , 𝑔𝑟}𝑡,   𝑒𝑡 = {𝑜𝑝, 𝑋𝑠, 𝑋𝑔, 𝑑𝑠}𝑡 (5) 

Based on the demonstrated trajectories 𝜏, a dataset of demonstrations 𝐷𝑡𝑎𝑠𝑘 = {(𝑜𝑡
(𝑖)

, 𝑎𝑡
(𝑖)

)}  is 

formed as a set of observations 𝑜𝑡 paired with a corresponding action 𝑎𝑡. The observation  𝑜𝑡  at 

each time step 𝑡  is defined as the sequence of state of the robotic system 𝑠𝑡  and state of the 

environment 𝑒𝑡 for the previous n time steps. The action 𝑎𝑡 is defined as the state of the robotic 

system at the next time step. 

𝑜𝑡 = { 𝑠(𝑡−𝑛:𝑡) , 𝑒(𝑡−𝑛:𝑡)},    𝑎𝑡 = 𝑠𝑡+1 (6) 

The LSTM control policy 𝜋𝜃   is trained to predict the action 𝑎𝑡 based on the current observation 

𝑜𝑡. The policy is trained as a supervised learning problem by minimizing the mean square error 

loss function ℓ(𝑎𝑡) of the network action prediction for the next time step 𝑎𝑡 based on the dataset 

𝐷𝑡𝑎𝑠𝑘. The input to the network is defined as the follow observation: 

𝑜𝑡 = { 𝑠(𝑡−𝑛:𝑡) , 𝑒(𝑡−𝑛:𝑡)} = {𝑞𝑙, 𝑞𝑟 , 𝑝𝑙 , 𝑝𝑟 , 𝑔𝑙, 𝑔𝑟 , 𝑜𝑝, 𝑋𝑠, 𝑋𝑔, 𝑑𝑠}𝑡−𝑛:𝑡 (7) 

Each observation at time t includes the pose of the end-effectors’ tooltips and the gripper states 

from the previous n time steps, as well as the position of the target object, the start position, the 

goal position, and the dominant side. 

During execution, the policy 𝜋𝜃 generates the robot control action 𝑎𝑡 = 𝜋𝜃(𝑜𝑡) given the current 

observation 𝑜𝑡. Examples of current control actions are the position, orientation, and gripper state 

(open/close) of both arms. The control action 𝑎𝑡, is used to control the pose of each end-effector 

and the grippers’ state at the next time step {𝑝𝑙, 𝑞𝑙 , 𝑔𝑙} 𝑡+1, {𝑝𝑟 , 𝑞𝑟 , 𝑔𝑟} 𝑡+1.  
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𝑎𝑡 = {𝑞𝑙 , 𝑞𝑟 , 𝑝𝑙, 𝑝𝑟 , 𝑔𝑙, 𝑔𝑟}𝑡+1  (8) 

3.4 LSTM control policy for dual-arm tasks 

3.4.1 Network architecture 

The architecture of the network used is shown in Figure 19. The network is formed by a three-

layer staked Long-Short Term Memory (LSTM) with skip-connections that provides an additional 

connection of the input with the second and third LSTM layers. The neural network control policy 

is learned for the whole multistep task as opposed to modeling each subtask or “surgeme” 

independently. The inputs to the network, 𝑜𝑡 include the state of the robotic system and the state 

of the environment for the n most recent steps. The output of the LSTM network is the robot arms’ 

pose and gripper state for the next robot command action. 

 

Figure 19. LSTM skip-connection architecture for robot task learning. Three-layer stacked LSTM 

network takes as an input the n=15 most recent states of the system to predict the next robot action 

for each arm. 

The network learns a policy that controls both arms jointly by concatenating the features of each 

robot arm in the inputs 𝑜𝑡 and outputs 𝑎𝑡 of the network. 

𝑜𝑡 = {𝑞𝑙, 𝑞𝑟 , 𝑝𝑙 , 𝑝𝑟 , 𝑔𝑙, 𝑔𝑟 , 𝑜𝑝, 𝑋𝑠, 𝑋𝑔, 𝑑𝑠}𝑡−𝑛:𝑡 , 𝑎𝑡 = {𝑞𝑙, 𝑞𝑟 , 𝑝𝑙, 𝑝𝑟 , 𝑔𝑙, 𝑔𝑟}𝑡+1 (9) 

The state of the robotic system is represented by the pose of each robot arm (position and robot 

gripper orientation in quaternion) as well as the gripper state (open/close). The state of the 
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environment is represented by the position of the object of interest according to the task. The object 

of interest is the triangle shaped part in the peg transfer task and a tissue fragment to be debrided 

in the debridement task.  In addition to the variable features in the environment, the network takes 

as an input the start positions of the object of interest, its goal position, and the dominant side 

feature. 

3.5 Facilitating learning through affine transformations to a unified coordinate space 

Transforming highly variable demonstrations to a coordinate space where key points of the task 

are aligned can facilitate learning by reducing the exploration space in the coordinate system where 

the policy is learned. In this section, we present a formulation that relies on the use of affine 

transformations to map the trajectory demonstrations to a coordinate space representation where 

the network policy can be trained with higher sample efficiency. Moreover, the proposed approach 

maintains the applicability of the control policy to settings with high variability. 

For each episode of the task, an affine mapping can be defined to project the observations from 

the original robot space to a unified robot coordinate space where the start and goal positions of 

the object of interest are aligned to the same positions in the 3D space. Such mapping can transform 

large variations in the original robot space into a structured representation of the dataset that 

facilitates learning of the neural network. 

For each demonstration in the dataset, a unique affine transformation 𝛹 is defined to map the 

observations 𝑜𝑡 and action pairs 𝑎𝑡 from the original robot coordinate space 𝑈 to the unified robot 

coordinate space 𝑈′. As previously shown in equations (2) and (4). The dataset represented in the 

unified robot space 𝐷′𝑡𝑎𝑠𝑘  is then used to train the neural network policy. During test time, an 

analogous affine transformation is applied to the current observation to evaluate the network policy 

and obtain the robot control command in the unified space 𝑎𝑡
′ . Then, the inverse mapping is used 

to transform the output of the network to the original robot space 𝑎𝑡, which is sent to the robotic 

system as the next control command. The use of affine transformations within the architecture of 

the LSTM control policy is shown in Figure 20. 
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Figure 20. Transformation of the environment state to the reduced space for action prediction 

using LSTM and inverse transformation of the action to the original space   

Affine transformations are transformations that preserve collinearity and are generally composed 

of rotations, translations, scale and shear (Weisstein, 2020). The affine transformation 

homogeneous matrix is of the general form: 

𝑀 = [

𝑚00 𝑚10 𝑚20 𝑡𝑥

𝑚01 𝑚11 𝑚21 𝑡𝑦

𝑚02 𝑚12 𝑚22 𝑡𝑧

𝑝𝑖 𝑝𝑖 𝑝𝑖 𝑤

] 
(10) 

Where 𝑡𝑖 represents translation, 𝑝𝑖 are projections, w represents the homogeneous component and 

𝑚𝑖,𝑗 represent rotation, scale, and shear. 

In our work, we use an affine transformation composed by three components: scale, rotation, and 

translation. The scaling component of the affine transformation scales the X-Y plane to map the 

distance between the start and goal in the robot space to the distance of the start and goal expressed 

in the unified space. The Z-axis is not scaled. The scale transformation is followed by rotation and 

translation transformations that align the goal and start points from the demonstration to the goal 

and start points in the unified robot space.  
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Figure 21. Affine transformation (scale, rotation, and translation) to transform robot trajectories to 

a unified robot space where source and target of all demonstrations are aligned to the same points 

in the 3D space. 

Let  �⃑� be defined as the vector from the start to the goal in the original robot space, and let �⃑⃑⃑� be 

the vector from the start to the goal in the unified robot coordinate space (as shown in Figure 21).  

The affine transformation can be defined as the set of transformations to move �⃑� into �⃑⃑⃑�, which 

maps the original robot coordinate space 𝑈 into the unified robot coordinate space as 𝑈′.  

First, the centroids in both coordinate spaces 𝑄𝜒, 𝑄𝜒′ are found as the average of the start and goal 

positions. 

𝑄𝜒 =
1

2
(𝑋𝑠 + 𝑋𝑔) (11) 

𝑄𝜒′ =
1

2
(𝑋′𝑠 + 𝑋′𝑔) (12) 

The scale transformation scales the X-Y plane so that ‖�⃑⃑⃑�‖ = ‖�⃑�‖. This is obtained by scaling the 

plane by a factor 𝑆𝑓𝑎𝑐𝑡𝑜𝑟 in the direction of 𝑣. 𝑆𝑓𝑎𝑐𝑡𝑜𝑟 is given by: 

𝑆𝑓𝑎𝑐𝑡𝑜𝑟 =
‖�⃑⃑⃑�‖

‖�⃑�‖
, �̂� =

�⃑⃑⃑�

|�⃑⃑⃑�|
, 𝑣 =

�⃑�

|�⃑�|
 (13) 

The scale matrix is defined by (Goldman, 1990) as: 
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𝑆 = [
𝐼 − (1 − 𝑆𝑓𝑎𝑐𝑡𝑜𝑟)(𝑣𝑣𝑇) 0

((𝑆𝐹𝑎𝑐𝑡𝑜𝑟𝑄𝜒) ⋅  𝑣)�̂� 1
] (14) 

 

Where the centroid of the original space 𝑄𝜒 is the scaling origin and 𝐼 denotes the identify 

matrix.  

The rotation matrix 𝑅, is defined as the matrix that rotates the unit vector 𝑣  an angle 𝜃 into unit 

vector �̂�. Let �̂� denote the unitary vector describing the axis of rotation about which 𝑣 rotates. �̂� 

is the cross product of the vectors 𝑣 and �̂� which determine the plane of rotation. 

�̂� =
𝑣 × �̂�

|𝑣 × �̂�|
=

𝑣 × �̂�

sin 𝜃
 (15) 

𝐿𝑒𝑡 𝐻 = 𝑣 × �̂� = �̂� sin 𝜃 (16) 

The rotation matrix can be found using the Rodrigues formula (Murray et al., 1994): 

𝑅 = 𝐼 + [𝐾]× sin 𝜃 + [𝐾]2
×(1 − cos 𝜃) (17) 

Where [𝐾]× is the skew-symmetric cross-product matrix of �⃑⃑�.  

[𝐾]× ≝ [

0 −𝑘3 𝑘2

𝑘3 0 𝑘1

−𝑘 𝑘1 0
] 

(18) 

Expressing the rotation in terms of 𝑣 and �̂�, the rotation matrix is given by: 

𝑅 = 𝐼 + [𝐻]× + [𝐻]2
×

1 − cos 𝜃

sin 𝜃2
 (19) 

Where: 

sin 𝜃 ≝
|𝑣 × �̂�|

|𝑣||�̂�|
,   cos 𝜃 ≝

𝑣 ∙ �̂�

|𝑣||�̂�|
 

(20) 

[𝐻]× = [𝐾]× sin 𝜃 (21) 

[𝐻]2
× = [𝐾]2

× sin 𝜃2 (22) 

For tasks where the source and target are not co-planar, the unitary vectors 𝑣 and �̂� should be 

defined projected over the X-Y plane.  

The translation matrix is given by  

T= [
I ∆p

0 1
] 

(23) 
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Where  ∆𝑝 𝑖𝑠 𝑔𝑖𝑣𝑒𝑛 𝑏𝑦: 

∆𝑝= 𝑄𝜒′ − 𝑅𝑄𝜒 (24) 

Finally, the scale, rotation, and translation matrices can be combined to produce the affine 

transformation Ψ given by the matrix M: 

𝑀 = 𝑇 ∗ 𝑅 ∗ 𝑆 = [
𝐴 𝑡
0𝑇 1

] (25) 

The matrix M in its homogeneous form transforms all position features to the unified robot 

coordinate space by matrix multiplication. 

�⃑�′ = (

𝑥′

𝑦′

𝑧′

1

) = [

𝑚00 𝑚10 𝑚20 𝑡𝑥

𝑚01 𝑚11 𝑚21 𝑡𝑦

𝑚02 𝑚12 𝑚22 𝑡𝑧

0 0 0 1

] (

𝑥
𝑦
𝑧
1

) (26) 

Similarly, at prediction time the inverse matrix 𝑀−1  is used to transform the robot command 

computed at the output of the network into the original robot space for robot execution.   

𝑀−1 = [
𝐴 𝑡
0𝑇 1

]
−1

 (27) 

All orientation features are first transformed from quaternion to rotation matrices, where the 

rotation transformation is applied and then transformed back to quaternion form: 

𝑞𝑖 → 𝑅𝑖 (28) 

𝑅′𝑖 = 𝑅𝑅𝑖 → 𝑞′𝑖 (29) 

As defined, applying the affine transformation results in a dataset where the start and goal position 

of the object of interest are aligned. Figure 22 shows two trajectory demonstrations for the peg 

transfer task before and after applying the affine transformation mapping. An additional feature 

‖𝑣‖ is added to the network input to facilitate learning of commonalities in the original space.  In 

the peg transfer task for example, this feature could be important for the network to learn how far 

from the peg it needs to approach the object to successfully grasp it.  
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Figure 22. Example of two recorded demonstrations in the original robot space and their equivalent 

representation in the unified robot space. The demonstrations belong to the dataset of the peg 

transfer task. 

3.6 Training the network control policy 

The robot control policies are trained in Python using the Keras functional API (keras.io, 2020) on 

top of the Tensorflow framework. Keras is a high-level application programming interface for 

building and training deep learning models in python (Ramasubramanian & Singh, 2019). 

Tensorflow is an interface for the implementation of machine learning algorithms built by google 

(Martín Abadi et al., 2015). The robot control policies are tested on the robot simulator using the 

CoppeliaSim Python remote API (CoppeliaRobotics, 2020a).  

We used two networks for learning the peg transfer and the debridement tasks, respectively, with 

similar architectures. Each network was trained applying the mean square error loss function 𝑚𝑠𝑒 

on the prediction of the next robot state: 𝑎𝑡. The Adam optimization algorithm was used with an 

initial learning rate 𝑙𝑟 of 0.001 and all the parameters of the network were initialized using the 

glorot uniform initializer (Glorot & Bengio, 2010). The network was trained for 1000 epochs with 

early stopping when the loss during validation did not improve for 200 epochs. In addition, the 

learning rate 𝑙𝑟  was reduced by 0.3 if the validation loss plateaued for 100 epochs. From the 
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collected dataset, 80% of the demonstrations were used for training and 20% were used for 

validation and hyperparameter tuning.  

A MinMax scaler was used to map all the inputs to the range [0,1]. The positions in the cartesian 

space are scaled based on the same MinMax for all axis components (x,y,z). The limiting values 

for the position were determined based on the maximum and minimum values of the X,Y and Z 

coordinates in the dataset (as shown in Table 3). All quaternions have been normalized to fit the 

range [-1,1]. 

Table 3. Min-max scaler limits for the inputs of the network. 

Feature type  Min/Max scaler 

𝒑𝒐𝒔𝒊𝒕𝒊𝒐𝒏𝒔 (𝒑𝒙, 𝒑𝒚, 𝒑𝒛)] [-0.5,0.9] 

𝐪𝐮𝐚𝐭𝐞𝐫𝐧𝐢𝐨𝐧𝐬 [𝒓𝒙, 𝒓𝒚, 𝒓𝒛, 𝒓𝒘] [−1,1] 

In our LSTM architecture, each one of the stacked LSTM layers received as input the output of 

the previous layer concatenated with the input to the network using skip-connections. During 

training, different hyperparameters were considered such as the subsampling frequency of the data, 

the number of hidden nodes in each layer, dropout after each layer, initial learning rate and number 

of epochs. Although the subsampling frequency of the training data was varied during 

hyperparameter search, the rate of evaluation of the policy was maintained at 4Hz during validation 

and testing for consistency. 

For the debridement task, the best results were obtained with 3 stacked LSTM layers composed of 

256 hidden nodes each. For the peg transfer task, the best results were obtained with 3 stacked 

LSTM layers with 700 hidden nodes each. In order to increase generalization performance, 

gaussian noise was added to the input (0.01) and to the hidden layers (0.1) followed by batch 

normalization. The noise is a regularization layer and it is only active during training. In addition, 

dropout (0.25) was added after each LSTM layer to reduce overfitting. 
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3.7 Testing the network control policy 

 

Figure 23. Evaluation of the LSTM control policy in simulation. 

In order to validate the LSTM control policy in an imitation learning setting, the performance of 

the network was evaluated during task execution in a simulated scenario. The state of the 

environment was initialized in a new random configuration for the task as was done during data 

collection. The online evaluation of the robot control policy takes as an input the observation 𝑜𝑡 

which includes the state of the robot 𝑠𝑡 and the objects of interest in the environment 𝑒𝑡 for the 

n=15 most recent time steps. The output of the network is the prediction of the robot arm’s poses 

and the status of the grippers {𝑞𝑙 , 𝑞𝑟 , 𝑝𝑙, 𝑝𝑟 , 𝑔𝑙, 𝑔𝑟}𝑡+1 at time t+1, which is sent as a robot command 

𝑎𝑡 . Based on the robot command sent, the inverse kinematics configured in the simulated 

environment was used to solve for the robot positions required to reach the desired end-effector 

poses.  

The robot control policy was evaluated using the CoppeliaSim Python remote API. At each time 

step, the python script sent a robot command to control both robot arms and waited for a reply 

from the simulation environment that included the new robot and environment state {𝑠𝑡+1, 𝑒𝑡+1}. 

The robot control policy was evaluated at an average sample rate of 4Hz, which is sufficient for 

the robot to reach the predicted pose and retrieve the new robot and environment states from the 

simulation environment. For each testing trial, the policy was followed, frame by frame, until the 
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task was completed or to a maximum of 160 time step iterations. For consistency, the state of the 

robot was reset to the home position after each episode of the task.   

3.8 Discussion 

The proposed control policy implicitly optimizes for both the arms and the whole task as opposed 

to modeling each arm and subtasks independently. In the context of surgical robotics research, the 

method can be used to learn mock-up surgical tasks formed by several steps without the need to 

segment the demonstrations is surgical gestures. Moreover, the proposed architecture allows the 

LSTM network to jointly learn the control of both arms working in collaboration by concatenating 

the features for both end-effectors in the network’s input and output. Furthermore, the affine 

transformations can be employed to facilitate learning of multiple manipulation tasks by 

identifying two key points of the task (“start” and “goal”). For example, in a “push to pose” task 

the start position of the object can be defined as the “start” point and the desired position of the 

object as the goal. For tasks that have only one evident key position in the space such as a 

“grasping” task with no clear “goal”, the “goal” point can be replaced for a fixed point in the robot 

coordinate space such as the base of the robot.  

3.9 Summary 

This chapter formulates the problem of imitation learning for learning dexterous dual-arm tasks in 

the context of Robotic-Assisted Surgery (RAS) research. An approach was proposed for learning 

dual-arm control policies from robot teleoperated demonstrations based on LSTM networks with 

skip-connections. The use of affine transformations was proposed to map the trajectory 

demonstrations into a coordinate space that facilitates learning of the robot control policies. The 

robotic platform used for this work is introduced, which consists of the adaptation of an industrial 

dual-arm robot for surgical tasks based on 3D printed grippers extensions. A simulation 

environment for the collection of trajectory demonstrations in virtual reality was presented, as well 

as its use to test robot control policies. 

  



 

 

66 

 EXPERIMENTS AND RESULTS 

To validate the proposed framework, we conducted experiments of autonomous surgical task 

execution in a simulation environment. The experiments were performed for determining the 

feasibility of our approach to automate full dexterous surgical tasks that require the coordination 

of two robotic arms. We evaluate virtually the robot’s capability to execute independent surgemes 

as well as full task execution using trained policies. The task execution experiments aim at testing 

an important challenge in deep imitation learning, which is the ability of generalization of the 

learned policies on variable initial conditions.  

4.1 Description of the experimental setting 

We evaluated the robot control policies for both tasks in the CoppeliaSim robotics simulator for 

80 independent episodes (trials). At the beginning of each trial the robot was sent to a home 

position and the environment was initialized at a random state. The initial environment state was 

obtained from the same random distribution employed during data collection. During the peg 

transfer task, policy testing was performed over variations of pegboard rotation and translation as 

well as pegboard configurations (random peg number and direction of transfer, such as left-to-

right). In the debridement task, the position of the tissue to be removed and the tray position were 

randomized. 

For each episode of the task, the policy was run frame by frame until the task was completed or to 

a maximum of 160 time steps. The environment state and the robot state at each time step were 

stored for analysis of quantitative metrics over the generated trajectories. Per surgeme performance 

and overall task success were computed based on videos of experiments and recorded states of the 

system. 

4.2 Results on task execution  

Overall task success was determined programmatically based on the distance between the target 

object and the goal and corroborated visually over the recorded videos. The task was considered 

successful when the absolute distance was below the threshold 휀. 
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|𝑋𝑔  −  �⃑�𝑝| < 휀 (30) 

Surgeme execution success was calculated as an indicator of the capacity that the networks have 

for learning the motion primitives of the task. First, the observed surgemes in the video recordings 

of the experiments were manually annotated. The trials were segmented into surgemes using a 

video annotation tool for surgical tasks developed for this purpose (Xingguang et al., 2019). Figure 

24 shows the annotation tool utilized for the analysis. The annotation tool allows for precise 

annotation of beginning, end, name and success or failure. 

 

Figure 24. Tool used to annotate individual surgemes from recorded experiments. 

In the following section, the surgeme success rate and overall task success for both surgical tasks 

are reported. 

4.2.1 Peg transfer task evaluation 

In this section, results for task and surgeme execution for the peg transfer task are presented. The 

surgeme “approach” referred to as the initial motion of a robotic arm towards the start peg. If the 

robotic arms did not move towards the start peg, then the surgeme approach was considered a 

failure. The surgeme “align and grasp” consisted of a motion to align the gripper with the desired 

part and closing the gripper to grasp the part. If the part was not held by the gripper after the closing 
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action, then the grasping surgeme failed. After grasping the part, the “lift” surgeme, consisted of 

successfully lifting the part from the peg without dropping it.  

The surgeme “transfer - get together” consisted of the two robotic arms moving towards each 

other, while the surgeme “transfer – exchange” consisted of the opening of one of the grippers, 

having the other gripper grasp the part, and closing action of the first gripper, resulting in an 

exchange of a part between grippers.  During object exchange, the task required accurate forceps 

alignment and synchronization between the open and closing actions to provide an accurate grasp. 

After the part had been handed over to the second arm, the surgeme “approach target peg” 

consisted of moving the grasped peg towards the goal. Finally, the surgeme “align and place” 

consisted of aligning and positioning the part around the goal peg. A collision with the peg or lack 

of assembly onto the peg would be considered a failure. 

From the experiments observed, surgemes were assessed as success/failure using the evaluation 

process previously described. Figure 25 shows the results of this surgeme assessment. Because the 

task was evaluated in simulation instead of in a real setting, the success of the task could be 

confirmed programmatically. The overall peg transfer task was considered successful when the 

part was placed around the peg and the maximum distance from the part center to peg center was 

equal or less than 15 mm. A summary of the surgeme success rate and overall task success of our 

experiments is presented in Table 4. 

 

Figure 25. Successful and failed surgemes observed during task execution for the peg transfer task 
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Table 4. LSTM policy results for the peg transfer task. 

Surgemes Approach 
Align & 

grasp 
Lift 

Transfer 

get together 

Transfer 

Exchange 

Approach 

Target Peg 

Align & 

place 

Full 

Task 

Success 81 75 75 74 63 63 48 47 

Failure 2 6 0 1 12 0 15 33 

Total 83 81 75 75 75 63 63 80 

Success rate 98% 93% 100% 99% 84% 100% 76% 59% 

 

Most of the surgemes have an individual success rate over 90%, with the surgemes “lift” and 

“approach target peg” having a success rate of 100%. The surgemes that presented the lowest 

performance during task execution were the surgemes “transfer-exchange” with 84% success rate 

and the surgeme “align and place” with 76%. Conversely, the network policy execution results in 

an overall task success of 59%. 

The failures observed on the “approach” surgeme, corresponded to the robot arms not moving 

towards the start peg, which resulted in unsuccessful trials. During the “align and grasp” surgeme, 

the failures were characterized by not holding the part after gripper closure. After a failure in 

grasping, it was observed that the robot policy often attempted to grasp again, resulting in more 

grasping surgemes observed than evaluated trials. 

For the “transfer - exchange” surgeme, errors occurred when the first arm released the part before 

the second arm grasped it, or when the second gripper was not correctly aligned with the part 

before closing. For the “align and place” surgeme, errors were the result of poor alignment 

between the part and the goal peg. One potential reason for such errors is that the grasp obtained 

from part handover could have affected the precision of the part placement. 

4.2.2 Surgical debridement task evaluation 

In this section, performance metrics for surgemes and overall task success are presented for the 

debridement task. The surgeme “approach” is referred to as the initial motion of a robotic arm 

towards the tissue fragment to be debrided. The surgeme “grasp” consisted of successfully closing 

a gripper around the tissue fragment in a way that would be securely held by the gripper. After 

grasp, the “retract” surgeme consisted of pulling the grasped fragment upwards in order to 
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separate it from the remaining healthy tissue. At last, the surgeme “cut”, consisted of closing the 

forceps around the tissue that was connected to the fragment. 

In the simulation environment, a sensor was placed on each gripper to detect tissue located within 

the end-effector tooltips during the cut action. The cut action is successful when the end-effector 

closes around the tissue connected to the fragment. After cutting, the last surgeme, “place on tray” 

consisted of moving the excised tissue to the surgical tray. 

Each surgeme observed during the experiments was annotated using the annotation tool previously 

described. The success and failures of each surgeme are presented in Figure 26.  The overall task 

success for the debridement task measures whether the extracted tissue was properly positioned 

on the surgical tray. We considered this task successful if the tissue fragment was detached from 

the rest, and the tissue was properly deposited on the tray (within 4 cm or less of its center). Table 

5 shows the results for surgeme success rate and overall task performance. 

 

Figure 26. Results for surgeme success in task execution for the debridement task. 

Table 5. LSTM policy results for the debridement task. 

Surgemes Approach Grasp Retract Cut Place on tray Full task 

Successes 80 80 80 72 77 72 

Failures 0 0 0 8 0 8 

Total 80 80 80 80 77 80 

Success rate 100% 100% 100% 90% 100% 90% 
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Out of 80 trials, 72 were completed successfully while 8 were considered failures, leading to an 

overall task success of 90%. In terms of success rate in surgeme execution, we found that the 

overall success of the trial was determined by the cut surgeme. This surgeme was successful 90% 

of the times. The remaining surgemes “Approach”, “Grasp”, ”Retract”, and “Place on tray” were 

successful 100% of times.  

We identified two types of failures in the cutting action, which were: failed to start the cutting 

action and attempted to cut at the wrong position.  

4.2.3 Comparing robot performance with human demonstrations 

This section presents a comparison of robot performance versus human demonstrations.  

Human task success was calculated over the recorded demonstrations. The human task success 

metric corresponds to the number of successful demonstrations divided over the total number of 

demonstrations. This information could be retrieved from the data recorded sessions, as the task 

demonstrations errors were annotated during data collection using controller commands (refer to 

section Data collection for an explanation of this). Errors included collisions with the table or the 

peg, failing to grasp the target object, dropping the target object, or failing to cut the connecting 

tissue for debridement in one cutting action.  The results for human versus robot task success are 

shown in Table 6. 

Table 6. Task success comparison between human demonstrations and robot control policy. 

Task success 
 

Human demonstrations Robot 

Peg Transfer 

Successes 839 47 

Total episodes 1065 80 

Success rate 79% 59% 

Debridement 

Successes 934 72 

Total episodes 1102 80 

Success rate 85% 90% 

 

We can infer from these results that both tasks presented some difficulty to the human operator, as 

multiple errors occurred during task demonstrations. The lack of haptic feedback during robot 
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teleoperation in the virtual reality scenario would have been a factor that affected the performance 

of the human during task execution. The success rate for the human in the peg transfer task was 

lower than that for the surgical debridement, indicating that the peg transfer task was a more 

challenging task for both the human and the robot. The trained policy for the surgical debridement 

task shows a 5% higher success rate than the human counterpart, while the robot control policy for 

the peg transfer task was 20% less successful than the human during task execution. 

4.2.4 Comparison of orientation representation for robot pose control 

Experiments were conducted to study the impact of different orientation representations to 

describe tooltip pose during policy learning. Unit quaternions and Euler angles are orientation 

representations widely used in robotics. In this section, the impact of using unit quaternions versus 

employing XYZ Euler angles in task success is evaluated. 

To perform this comparison, Euler angle representations for robot tooltip orientation were 

extracted directly from the CoppeliaSim environment during data collection. These 

demonstrations were stored as an alternative dataset. For each rotation representation and task, five 

neural networks were trained according to the procedure described in section 3.6 for a range of 

hidden nodes per layer (from 64-800). The effects of the two representations in policy learning 

were evaluated during policy execution in the simulation environment. Each network was tested 

during 20 trials and their overall task success was computed. The results for task success and 

orientation representation are summarized in Table 7 and Table 8. 

Table 7. Task success rate in the peg transfer task for different orientation representations. 

Number of hidden nodes per layer 128 256 500 700 800 

Quaternion 5% 20% 50% 60% 20% 

Euler angles 0% 0% 15% 30% 0% 
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Table 8. Task success rate in the debridement task for different orientation representations. 

Number of hidden nodes per layer 64 128 256 500 700 

Quaternion 0% 20% 90% 65% 25% 

Euler angles 0% 10% 30% 30% 25% 

 

The results indicate that the tooltip orientation representation can greatly impact the performance 

of the task.  For both tasks, the networks that used quaternion representation displayed a higher 

task success rate than the networks trained using Euler angles. In the surgical debridement task, 

the best performing network (256 hidden nodes) using quaternion displayed 90% task success rate 

while the Euler network resulted in 30%. For the peg transfer task, using quaternion representation 

achieved 60% success rate, while the best result obtained using Euler angles was 30%. These 

results indicate that unit quaternions are a more adequate representation than Euler angles for robot 

pose control for LSTM network policy learning. 

The issues in training LSTM policies using Euler angles can be caused by the possible singularities 

of the Euler angles representation when two of the three rotations align. This problem is also 

known as gimbal lock (Lepetit & Fua, 2005). Our results were consistent with previous work on 

pose prediction using neural networks in forward kinematics (Grassmann & Burgner-Kahrs, 2019) 

and 3D point cloud pose estimation (Y. Zhou et al., 2019). Such works found that higher error 

rates for orientation estimation are found when using Euler angles than quaternion representations. 

The results of our comparison indicate that quaternions are also preferable for training LSTM 

networks for robot task execution. 

4.2.5 Unified robot coordinate space and original robot space comparison 

Experiments were conducted to show the effect of using the unified robot space to represent the 

input dataset 𝐷′𝑡𝑎𝑠𝑘  versus directly employing the original dataset 𝐷𝑡𝑎𝑠𝑘. For each task, an LSTM 

network was trained using the dataset in the original robot space by following the procedure 

described in section 3.6. The networks were tested in the simulation environment for 40 trials each. 

The observed surgemes were annotated and the overall task success computed.  
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Figure 27 and Figure 28 show a comparison between the performance obtained with the original 

robot space and the unified robot space. In these figures, the y-axis represents the percentage of 

trials for which the surgeme was executed successfully. This measurement is an indication of the 

level of task completion. The percentage of trials for which the last surgeme was successful is an 

indication of the percentage of trials for which the task was fully completed.  

 

 

Figure 27. Percentage of trials where each surgeme was performed successfully in the peg 

transfer task. 

 

Figure 28. Percentage of trials where each surgeme was performed successfully in the 

debridement task. 
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The networks trained using the original robot space produced lower results for full task execution 

compared to the unified space. In the peg transfer task, none of the trials for the original robot 

space were observed to successfully perform all surgemes to complete the full task, which resulted 

in a 0% success rate. For the debridement task, only 5% of the trials successfully performed all 

surgemes for the full completion of the task. The use of the unified robot space over the same 

dataset boosted the task execution performance from 0 to 59% for the peg transfer task and from 

5% to 90% for the debridement task. 

Training LSTM policies directly over the original dataset was found to be ineffective to learn full 

task execution. For both tasks, the policies trained with the original robot space were inaccurate, 

resulting in the majority of the trials failing to grasp the target objects. For the peg transfer tasks, 

only 30% of the trials were successful at grasping the object, versus 91% for the unified robot 

space. 13% of the trials successfully exchanged the peg, but additional difficulties during the object 

placement resulted in none of the trials successfully finishing the peg transfer. For the debridement 

task, only 35% of the trials could grasp the object successfully, versus 100% for the unified robot 

space. While only 5% of the trials demonstrated a successful cut, versus 90% for the unified space. 

The results showcase the benefit of using the unified robot space to train more successful robot 

control policies with the used LSTM network architecture.  

4.2.6 Discussion 

The task success of 90% obtained in the surgical debridement task shows that our network can 

achieve good performance during task execution and generalize to randomized settings. In contrast 

to previous work in debridement automation, our framework can automate the full bi-manual 

debridement task without the need for segmenting or preprogramming primitive actions.  

However, the results for the peg transfer task indicate that the approach cannot generalize equally 

well among tasks. Considering the high dexterity required for the peg transfer task, a 59% total 

execution success over a highly randomized scenario demonstrate encouraging results for its future 

automation. The peg transfer task is a complex task for automation because it requires precise 

tooltip orientation and position due to the shape of the object and the small clearance between the 

object and the peg.  For example, the target object needs to be grasped perpendicular to one of the 

sides of the triangle in order to generate a good grasp. This causes the ideal grasping points 
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demonstrated by the human to be misaligned with the center of the object. During policy training, 

the network is implicitly trying to optimize for ideal grasping solutions by minimizing the mean 

square error over the predictions. This can potentially lead the network to produce grasping 

attempts that aim at the average of the demonstrated grasping points. However, the average of the 

demonstrated grasps in the peg transfer task might be located in the middle of the part, which 

would not represent a good grasp solution. Such misalignment can difficult the learning process 

of the peg transfer task, while for the debridement task the ideal grasps would be aligned with the 

center of the object. 

In contrast to the debridement task, the peg transfer required to exchange the object between robot 

arms. Such maneuver required the object to be held by both grippers at the same time with adequate 

tool position and orientation. Additionally, if the first end-effector opened before the second had 

secured a good grasp, the object would fall. If the first end-effector does not release or is not 

retrieved from the object, then it can interfere with the motion of the other gripper that is holding 

the object.  

Previous work on peg transfer automation has parametrized the primitive actions or has simplified 

the task by not modeling the object handover portion of the task. Our framework considers the task 

complexity involved in object handover for full task automation. Moreover, the approach 

presented allowed learning the robot pose directly from human demonstrations and does not rely 

on primitive action segmentation or a predefined set of motion primitives. 

In contrast to the human, the robot control policy does not possess visual feedback about the quality 

of the grasp that it can use to correct for errors. Instead, the robot action predictions are based 

solely on the current position of the object. This represents an additional difficulty for the peg 

transfer task since the orientation of the triangular object is critical for the handover and part 

placement. Therefore, incorporating objects’ orientation or visual feedback in the framework could 

potentially improve task success rate. 

In non-surgical scenarios, it has been observed that increasing the number of human 

demonstrations results in a higher success rate for manipulation tasks. We believe that increasing 

the number of demonstrations and adding greater variability can improve the success rate of both 

tasks. Surgical teleoperated systems and surgical simulation software can potentially be employed 
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to acquire more demonstrations. Potentially, this can lead to higher success rates in dexterous task 

execution using our framework.  In this work, the human demonstrations were limited to one single 

user. Variability could potentially be added to the dataset by collecting demonstrations from 

different users. In addition, strategies to inject noise in teleoperation during data collection could 

be explored to force the operator to correct for the errors to increase the robustness of the learned 

policies. 

The results obtained for the debridement task show that the architecture proposed can be applied 

to general surgical tasks for learning dual-arm collaboration. We observe that training a policy for 

both arms allows the network to implicitly control one robot arm to perform the object picking 

operation and simultaneously control the opposite arm to perform the complementary action. This 

behavior indicates that our framework can learn robot arm coordination during manipulation for 

different surgical tasks directly from human demonstrations. 

4.3 Additional performance metrics 

In this section, we compare the trajectories generated by the robot control policy versus the human 

demonstrations, using a set of quantitative metrics. First, the learning curve of the human user 

demonstrations was evaluated using the CUSUM analysis, to establish the learning phases of the 

user in the learning curve. Then, the trajectory demonstrations of each human phase were analyzed 

against the trajectories obtained from the robot control policy. The assessed metrics include total 

movement path length, angular length, and task completion time. 

4.3.1 Cumulative Sum Analysis 

The CUSUM curve is the cumulative sum of the difference between each data point in the learning 

curve and the mean of all the data points. We created the CUSUM curve for the task completion 

time from human demonstrations provided by a single user during data collection. The CUSUM 

analysis (Liao et al., 2014) was applied to identify different phases of the learning curve in each 

surgical task by analyzing the peaks and trends in the learning curve. 
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The peaks in the curve were identified by the trial number 𝑥𝑖 where there was a local maximum in 

the CUSUM curve over the interval (𝑥𝑖 −  𝛿, 𝑥𝑖 + 𝛿). The local maximum was identified as the 

trial number 𝑥𝑖 where the following inequality holds: 

𝐶𝑈𝑆𝑈𝑀(𝑥) < CUSUM(𝑥i) ∀ 𝑥 ∈  (𝑥𝑖  −  𝛿, 𝑥𝑖  +  𝛿) 

The peak points in the CUSUM curve were identified using 𝛿 = 50  trials. Then, the peak 

prominence was calculated as the difference between the local maximum at 𝑥𝑖  and the local 

minima at 𝑥𝑗 over the interval (𝑥𝑖  −  𝛿, 𝑥𝑖  +  𝛿) for each identified peak. The local minima at 𝑥𝑗 

is the point where the following inequality holds: 

𝐶𝑈𝑆𝑈𝑀(𝑥) > CUSUM(𝑥𝑗) ∀ 𝑥 ∈  (𝑥𝑖  −  𝛿, 𝑥𝑖  +  𝛿) 

Thus, the peak prominence was defined as CUSUM(𝑥i)  − CUSUM(𝑥𝑗). 

In the peg transfer task, exactly 2 local maximum points were found on the learning curve using 

𝛿 = 50. By analyzing the trend of the curve around these peaks, 3 phases of the learning curve 

could be identified.  The Phase I or “novice phase” was observed from the beginning of the learning 

curve to the first peak at trial 287, characterized by a positive slope. The Phase II or “intermediate 

phase” was identified between the trials 288 and 510 which showed a change in the curve slope 

indicating accumulation of expertise. The Phase III or “expert” phase was identified from trials 

511 onward, which demonstrated a strong negative slope indicating mastery in the task. The 

CUSUM curve and the three identified phases are shown in Figure 29. 

 

Figure 29. Cumulative sum analysis for the demonstrations in the peg transfer task 



 

 

79 

For the surgical debridement task, three phases in the curve were identified between the two most 

prominent peaks. The Phase I or “novice” phase demonstrated a strong rising pattern from the start 

of the data collection to the first major peak at trial 386. The Phase II or “intermediate” phase was 

identified between the trials 387 and 581, which showed a fluctuating pattern until the second 

major peak. The Phase II or “expert” phase was identified after trial 581 and the CUSUM value 

was characterized by a strong decreasing trend which indicates gained expertise. The cumulative 

sum analysis and identified phases for the learning curve are shown in Figure 30 

 

Figure 30. Cumulative sum analysis for the demonstrations in the surgical debridement task 

Using the CUSUM analysis, 3 phases were identified, for each surgical task which can be used to 

assess quantitative metrics of movement over the trajectory demonstrations during different phases.  

4.3.2 Quantitative metrics of movement 

Three different metrics of movement were evaluated for comparison between the robot generated 

trajectories and three different learning phases of the human demonstrator. We compared two time-

independent metrics for the characterization of robot tooltip motion: the path length and the 

angular length. In addition to the time-independent metrics, the completion time of the recorded 

human demonstrations and the robot policy executions were recorded. We consider only the trials 

that were successful during execution (for both the human demonstrator and the robot), as they 

represent complete trajectories for the execution of the task. For the human demonstrations, the 

trajectories automatically annotated during data collection are used, from the first movement of 
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the robot until the end of the task marked by the human. For the robot control policy, the kinematic 

trajectories used are those recorded during task execution from the first command sent until task 

completion.  

Path length: The path length was computed as the length of the curve shown by the robotic tooltips 

during task performance (in m). This was calculated as the sum of the Euclidean distance between 

consecutive tooltip positions in the recorded trajectories. For each episode of the task, the total 

path length is reported, which is sum of the path length of the left and right tooltips. 

Angular length: The angular length refers to the cumulative changes in the rotation of the robot 

tooltips during task execution. The angular length was calculated based on the recorded 

quaternions as the sum of the geodesic distance between the quaternion of the previous and the 

current time step. This distance was calculated as the angle ∅ between subsequent quaternions 

(𝑞𝑖, 𝑞𝑖+1) which can be retrieved from the logarithmic mapping between them (Solà, 2017): 

∅𝑖 = |𝐿𝑜𝑔(𝑞𝑖
−1𝑞𝑖+1)| (31) 

The angular length is calculated as the cumulative sum of ∅ over all consecutive pairs of points in 

the recorded trajectories. 

𝐴𝐿 = ∑ |𝐿𝑜𝑔(𝑞𝑖
−1𝑞𝑖+1)|

𝑖=𝑁−1

𝑖=0

 
(32) 

We evaluate the total angular length as the sum of the angular length of the left and right tooltips. 

Completion time: It was calculated as the total time for task completion. It is computed from the 

start of the robot tooltip motion until the end of the annotated trajectory. 

Results for quantitative metrics of movement 

Path length 

The mean path length for the peg transfer task and the surgical debridement are shown in Figure 

31 and Figure 32 and respectively. A one-way ANOVA followed by a post hoc Tukey-Kramer 

procedure was applied to examine the significant differences for path length metrics between the 

three human learning phases and the robot control policy. 
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Figure 31. Path length results for the peg transfer task. Groups that do not share a symbol are 

significantly different p<0.05. 

 

Figure 32. Path length results for the surgical debridement task. Groups that do not share a 

symbol are significantly different p<0.05. 

The results for the debridement and the peg transfer task demonstrate similar trends in total path 

length comparison. For both tasks, the total path length between all the human phases and the robot 

are significantly different (p<0.05). The results of total path length between the human phases 

show that the path lengths are reduced as proficiency increases. By comparing the human with the 

robot, we found that the robot total path length was significantly shorter than all the human phases 

(p<0.001) for both tasks. These results indicate that the tooltip path length during robot execution 

displays a better economy of motion than the human demonstrations. 
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Angular length 

To analyze the changes in tool orientation between the human phases and the robot, the average 

total angular length for each surgical task was calculated. To analyze the robot control policy with 

respect to the human demonstrations, a one-way ANOVA and a Tukey-Kramer pairwise 

comparison for each one of the angular length metrics and tasks was conducted. The results for 

the angular length are reported in  Figure 33 and Figure 34. 

 

Figure 33. Angular length results for the peg transfer task. Groups that do not share a symbol are 

significantly different p<0.05 

 

Figure 34. Angular length results for the surgical debridement task. Groups that do not share a 

symbol are significantly different p<0.05. 
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In the peg transfer task, the angular length results show that the intermediate and expert have 

significantly less tool re-orientations than the novice (p<0.001). Similarly, the robot policy 

displays a significantly shorter angular length over the novice group (p<0.001). There is no 

significant difference between the angular length of the robot and the intermediate and expert user. 

These results indicate that the angular motions for the robot control policy display a better motion 

economy than the human novice and are similar in angular changes to the intermediate and expert.  

In the surgical debridement task, the expert displays a significantly shorter angular path than the 

intermediate and the novice (p<0.001). Thus, indicating than the expert human requires less tool 

reorientations to perform the task. The robot displays a significantly shorter angular path than all 

human phases (p<0.001), which shows that the robot can perform the task with less changes in 

tool orientation. 

While the path length indicates the translation of the tooltip motion, the angular length is an 

indication of how much the tool is reoriented during task execution. The results showed that 

experts on average display less tool reorientations throughout the task, which indicates that experts 

present more efficient motions in terms of tool orientation changes. A possible explanation for this 

pattern is that motions that represent orientation corrections during teleoperation can result in an 

increased angular length. 

Completion time 

The results of mean completion time for the surgical debridement and the peg transfer task are 

presented in Figure 36 and Figure 35 respectively. A one-way ANOVA was performed over the 

three human learning phases and the robot control policy, followed by a Tukey-Kramer pairwise 

comparison. The “Robot” completion time corresponds to the time from the start of the task to its 

successful completion during policy testing as described in the section 3.7. Such online policy 

testing relied on the communication between the python API and the environment in CoppeliaSim. 

The “robot theoretical” completion time, corresponds to the minimum time the robot required to 

execute the recorded trajectories in a sequence, by eliminating robot idle time caused by waiting 

for the next robot command through the python API. This “theoretical robot completion time” is 

calculated by loading the recorded trajectories during policy execution in the CoppeliaSim 
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environment and commanding the robot to follow such trajectories point by point. During this test, 

a point in the trajectory was considered achieved when the end-effector reached a position within 

0.5 mm of the target position and an orientation within 1 degree of the commanded orientation. 

Thus, the theoretical robot completion time corresponded to the minimum time the robot took to 

execute the given trajectories considering the YuMi robot maximum tooltip velocity of 1.5 m/s 

(ABB, 2019). In addition, the average computational time for robot output prediction using the 

LSTM network is added to the theoretical completion time for each point in the trajectory. The 

average computational time for robot output prediction is (𝜇 = 30.7 𝑚𝑠, 𝜎 = 1.3) for the peg 

transfer and (𝜇 = 29.7 𝑚𝑠, 𝜎 = 1.5) for the debridement task using the Nvidia GPU GeForce 

GTX 1070 8GB.  

 

Figure 35. Completion time for the peg transfer task. Groups that do not share a symbol are 

significantly different p<0.05. 

 

Figure 36. Completion time for the surgical debridement task. Groups that do not share a symbol 

are significantly different p<0.05. 
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The completion time for the peg transfer task shows statistical significance between all groups. 

The completion time for all human phases decreases as the expertise increases, with 18.8 sec for 

the novice, 15.1 for the “intermediate” and 14.2 for the “expert”. The task completion time for the 

robot in the peg transfer task is significantly higher than all human bases (20.6 s), which is 1.8 

seconds longer than the average novice demonstration. This result can be explained by the 

difference between the sampling rate of the features from the human demonstrations during 

network training and the feature sampling rate during execution. The policy execution sampling 

rate was 4Hz during all validation and testing. In contrast, the human demonstrations were 

subsampled at 5Hz for network training, which was selected as a hyperparameter during validation. 

Since the robot control policy is evaluated at 4Hz and the human data used for training was 

sampled at 5Hz, the control policy was tested at x0.8 times the sample rate of the human 

demonstrations employed for training. In contrast, the robot theoretical completion time for the 

peg transfer task was 12.1s (10s without the computational prediction time), which indicates that 

the autonomous execution of the peg transfer could potentially be reduced up to nearly half the 

completion time. 

The results for the debridement task show that the robot mean completion time is significantly 

faster than the human novice (31.62 s, p<0.001) and significantly faster than the expert (25.9 s, 

p=0.03). The mean completion time between the robot (27.46 s) and the intermediate phase (27.46 

s) were not significantly different (p=1). These results indicate that the trained robot policy for the 

debridement task was faster than the human novice demonstrations and slower than the human 

expert demonstrations. In addition, the theoretical robot completion time for the debridement task 

was 15.5s  (12.6s without computational prediction time) which indicates that the task completion 

time could be further reduced to be less than the completion time in all human groups. 

4.3.3 Discussion 

The analysis performed over the total path length showed that the robot control policy overall 

produced shorter trajectories than the human demonstrations for task completion. These results 

indicate that our framework can learn paths for task execution with good motion economy. The 

analysis performed over the angular path showed that the robot control policies for the debridement 

task required less reorientations than the human demonstrations. In contrast, for the peg transfer 
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task, the tool orientation changes were not significantly different from the intermediate and 

mastery phases. These results indicate that our learning framework produces trajectories with less 

or similar overall orientation changes that the human demonstrations. 

The completion time for the debridement task showed comparable completion times with the 

human, while the results for the peg transfer task showed a completion time of 1.8 seconds longer 

than the novice human. For future applications, the robot completion time for either task could be 

reduced by evaluating the robot control policy at a higher rate. Specifically, the next robot pose 

should be predicted as soon as the robot end-effectors reach the previously sent command in order 

reduce robot idle time between commands.  

4.4 Summary  

In this chapter, we presented the results for autonomous task execution for the peg transfer and the 

surgical debridement tasks using our framework. The surgeme success was analyzed to evaluate 

the capacity of the trained networks to learn different steps of the task. We calculated quantitative 

metrics of robot motion for the robot generated trajectories and compared them with human 

demonstrations. The task time completion was similar to the human for the debridement task and 

longer for the peg transfer task. Future work should focus on integrating the control policy with a 

real robotic system and optimizing the frequency of policy evaluation in such platform to reduce 

the task completion time. Our results indicate that our framework can learn dual-arm interaction 

for multi-step tasks such as the debridement. For the peg transfer task, the trained network 

displayed moderate performance and has not yet achieved the dexterity and precision necessary to 

reliably solve such a task. However, our work represents a step towards investigating intelligent 

algorithms for full task automation in dual-arm manipulation. 
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 CONCLUSIONS AND FUTURE WORK 

In this thesis, a framework for full task automation was presented as a holistic approach for 

learning two surgical tasks. An architecture for learning robot control policies using recurrent 

neural networks was proposed to execute the tasks while implicitly modeling dual-arm interaction. 

The proposed recurrent neural network takes, as an input, the state of the robot arms and the state 

of the environment. It continuously predicts the robot’s next arms poses throughout the duration 

of the task. Thus, avoiding the need for prior data segmentation, using customized models for 

subtasks, or the design high-level controllers for module coordination. Instead, the presented 

architecture can be trained over the full dataset of collected examples, making it suitable for the 

learning of new surgical tasks. This work represents a step towards the creation of smart algorithms 

that leverage artificial intelligence to learn the task directly from human demonstration. The 

presented approach aims at achieving full task automation without the need for task expert 

knowledge. This, in turn, could help decrease the time and manpower required to develop 

algorithms for autonomous surgical task execution. 

The presented approach generates policies for continuous robot control. Robot controllers that can 

continuously predict the next robot action based on the previous observations could have potential 

applications in semi-autonomous scenarios. For critical cases during teleoperation, when the user 

experiences loss of signal or communication delays, a continuous control policy could evaluate 

the stream of data that was last available by the human and automatically take over the task 

wherever the surgeon left off. Such capabilities could contribute to a natural switch between 

teleoperation and semi-automation in diverse scenarios. 

The framework presented in this work is formulated as a general approach for learning distinct 

tasks, by leveraging task-related features, such as target object start and goal. The generality of the 

approach was tested in two surgical tasks. The results for the debridement task showed that the 

proposed framework allows to learn robot control policies for full task execution that implicitly 

learn dual-arm interaction. The results for the peg transfer task showed that the control policies 

can also model the interaction between the arms for different tasks. In addition, the framework 

generates trajectories for task execution with similar or less changes in position and orientation of 
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the tooltips. Which demonstrated that the policy learns trajectories with good motion economy. 

Producing less changes in tool position and orientation can be beneficial during task execution to 

avoid repositioning of the tool through the procedure. Moreover, the results for testing the policies 

under random initial conditions indicate that the framework can generalize well to variable settings 

for tasks such as debridement. 

As the formulation is not limited to the selected tasks, it can be formulated for general robotic 

applications such as dual-arm object manipulation for industrial settings or household robotics. 

The proposed approach can potentially be used for an ample assortment of manipulation tasks, as 

it models the control of end-effector position, orientation as well as gripper opening and closing 

actions. For example, the framework could be formulated to perform a dual-arm robotic furniture 

assembly. 

To enable the use of deep learning approaches from demonstrations, we introduce the use of a 

coordinate space representation that captures commonalities between the recorded examples to 

encompass multiple variations from those examples in the original setting. We called this 

representation the unified robot coordinate space. By training the network using such 

representation, the knowledge of task variation can be exploited directly during network training. 

This allows to learn control policies in a more sample efficient manner since one example seen by 

the network conveys multiple variations of examples in the original robot setting. For instance, for 

the peg transfer case, a demonstration in the unified space conveys multiple rotations and 

translations of the beg board on the working surface of the robot. 

The integration of such representation to the learning pipeline allows learning control policies for 

complex tasks and enable its use in scenarios with variable initial conditions of the environment. 

Note that, the unified robot coordinate space is a technique to represent the dataset, which could 

be integrated into neural network architectures different than ours and applied to general 

manipulation tasks. 

5.1 Limitations  

The framework for surgical task execution was validated in a simulated setting. To transfer the 

robot control policies to a real robot setting, an autonomous vision system should be integrated to 
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capture the state of the environment. As simulation environments can differ from real settings, the 

policies trained in simulation might not be directly transferable to a real platform. For example, 

the framework assumes that the tissue to be removed in the debridement task is rigid. However, 

real tissue manipulation is subject to deformations that are not accounted for in simulation. Thus, 

better and more realistic simulation environments may be required to evaluate appropriate 

strategies to transfer policies trained in simulation to a real setting. 

Currently, the implementation of the algorithm in CoppeliaSim uses the python API. The python 

API suffers from latencies in the socket communication between python and the simulation 

environment, as well as delays between the main thread and other communication threads (James 

et al., 2019). Such latencies currently limit the communication rate between python and the robot 

simulated in CoppeliaSim. Future attempts should involve implementing the same framework 

using the PyRep toolkit (James et al., 2019) in order to reduce such delays and test robot control 

policies at higher communication rates. 

Currently, our framework is based on robot pose prediction and does not explicitly consider robot 

joint configuration. Thus, the method requires to employ a separate module that solves the inverse 

kinematics of the robot. For this reason, it is possible that some pose commands predicted by the 

network would produce strong changes in the robot configuration. Moreover, to achieve feasible 

robot commands, it is desirable to constrain the position of the relevant objects in the task to a 

subset of the robot workspace where the robot can comfortably operate. 

The framework is formulated for general dual-arm robotic systems. However, it was evaluated 

using only one robotic platform. Future work should focus on testing the validity of the framework 

in different surgical robotic systems such as the da Vinci Research Kit or the Taurus robot which 

are available at the lab. The Taurus robot has limited joint range and workspace compared to the 

YuMi robot. Thus, some commands predicted by the policy might not be reachable by the system 

or could potentially lead to robot joint configurations that are unsafe. In addition, our framework 

assumes that robot pose estimation is accurate. Implementing the policy in cable-driven systems 

such as the Raven II and the da Vinci research kit would require adding calibration routines to 

reduce possible inaccuracies in robot pose estimation (Hwang et al., 2020). 
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Only one subject was used to gather demonstrations for policy training. In order to make our 

approach generalizable, several users should execute the surgical tasks, and the models need to be 

trained with at least 10 users. Data coming from multiple users will add variations that could 

potentially increase performance and add robustness to the network. In our analysis, the robot 

control policies were compared with the demonstrations of one human that were classified in 3 

levels of expertise. The recruitment of new users for data collection should include those expertise 

levels (novice, intermediate, and expert). 

5.2 Future work 

Future work can focus on transferring robot control policies between domains. The control policies 

in our framework predict the required pose and gripper state for the robots’ end-effectors. Thus, 

policies trained on one platform could potentially be tested on a second system by commanding 

the robot to follow the predicted tooltip poses using inverse kinematics. Such policies might be 

transferable if the surgical tools are the same and the workspace of the second robotic system is 

similar to the workspace in the original system. 

Currently, the framework does not account for target object orientation. However, tasks such as 

suturing and needle insertion could heavily rely on modeling needle orientation for proper handling. 

Therefore, an extension of our approach to such tasks should consider adding additional features 

in the state space to convey the orientation of the target object. For example, the object orientation 

could be predicted with a vision module and added to the state space of the network. 

Future work will focus on extending the proposed framework for surgical tasks that possess more 

complex states. For example, the pattern cutting task cannot easily be modeled based on the 

position of one target object. Instead, it might be necessary to convey the desired pattern to be cut, 

the tension of the tissue, as well as to monitor the process of the cutting procedure. Incorporating 

visual feedback to the framework could be evaluated as an option for conveying more 

comprehensive states of the system that could enable modeling complex tasks. 
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5.3 Research questions 

Three research questions were posed at the beginning of this thesis and were addressed throughout 

this thesis. The first question concerned the formulation of a learning approach to learn multi-step 

tasks in the context of surgical robotics. The second question was about the integration of dual-

arm manipulation to deep imitation learning. The third question encompasses the metrics and 

experiments to be conducted to validate the developed framework for surgical task execution. 

Research question 1 (RQ1): How can deep imitation learning be used to learn multi-step tasks 

in the context of surgical robotics? 

To answer this question, a framework for learning surgical tasks from demonstrations was 

proposed. More specifically, a set of transformations were embedded in the learning pipeline to 

convey multiple variations of the original demonstrations during training. Such representation 

enabled training deep imitation learning policies for surgical tasks. The approach can be extended 

to additional tasks by directly applying the learning framework on the dataset of a new task. The 

framework proposed aims at modeling the full range of motions required in surgical tasks, which 

involve tooltip position, orientation, and gripper actions. Note that the method does not rely on the 

definition of domain-specific models for each task, therefore it could be formulated for an ample 

range of applications without the need for experts from the task domain. The application of the 

framework to general tasks was tested by its formulation and implementation in two distinct 

surgical tasks. 

Research question 2 (RQ2): How to integrate dual-arm task learning for deep imitation 

learning? 

To answer this question, a recurrent neural network architecture was formulated to jointly 

predict the control commands for two robotic arms as if they were part of the same system. More 

specifically, the state of the robot arms and their control commands were concatenated in the inputs 

and outputs of the recurrent neural network policy used for task execution. The policies produced 

collaborative behavior during task execution where both robot arms performed complementary 

actions necessary to fulfill the tasks. 
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Research question 3 (RQ3): How to evaluate the success of the learned framework? 

RQ3 refers to the evaluation of the proposed network for surgical task execution. To answer 

this question, experiments were conducted in a simulated setting to evaluate the performance of 

the learned networks for the execution of two surgical tasks (peg transfer and debridement). The 

overall task success, the success of primitive actions, and a set of quantitative metrics were 

evaluated and compared with the human demonstrations. The trained networks showed favorable 

results in automating dual-arm surgical tasks under variable task conditions for the debridement 

task only. The debridement task displayed a high success rate (90%) comparable with the 

performance of the human (85%) while the peg transfer task showed results of (59%) which are 

(20%) lower than the human (79%). Our experiments indicate that the proposed framework has 

potential to model dual-arm collaboration. The quantitative metrics over the robot generated 

trajectories indicate that the robot showed similar or shorter path trajectory in both translational 

and rotational changes. This indicates that the robot policy is learning efficient trajectories from 

the demonstrations. 
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