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Dynamic system

Fractional calculus

Homogenous field

Mathematical model

Mittag-Leffler Function

Navier-Stokes

Riemann-Liouville

GLOSSARY

A system that consists of a mass-spring-damper and has a response
to a specific input or is in free response (Choudhuri & French,
2018).

A mathematical tool that utilizes a fractional order or imaginary
number order of a differentiation or integration operator in an
expression (Kulish & Lage, 2002).

A mathematical definition of a space that possess properties that
are the same throughout the space, such as, an ideal fluid or gas
(Choudhuri & French, 2018).

A set of equations and axioms that describe a physical behavior
under a certain set of constraints (Choudhuri & French, 2018).

A generalized two parameter complex function that is used for
solving of fractional order differential equations (Garrappa &
Popolizio, 2018).

A general equation that mathematically describes the motion of an
object in a homogenous field (Choudhuri & French, 2018).

A generalized form for evaluating an integral of fractional order
(Magin, 2006).
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ABSTRACT

Fractional calculus is the integration and differentiation to an arbitrary or fractional order.
The techniques of fractional calculus are not commonly taught in engineering curricula since
physical laws are expressed in integer order notation. Dr. Richard Magin (2006) notes how
engineers occasionally encounter dynamic systems in which the integer order methods do not
properly model the physical characteristics and lead to numerous mathematical operations. In the
following study, the application of fractional order calculus to approximate the angular position
of the disk oscillating in a Newtonian fluid was experimentally validated. The proposed
experimental study was conducted to model the nonlinear response of an oscillating system using
fractional order calculus. The integer and fractional order mathematical models solved the
differential equation of motion specific to the experiment. The experimental results were
compared to the integer order and the fractional order analytical solutions. The fractional order
mathematical model in this study approximated the nonlinear response of the designed system by
using the Bagley and Torvik fractional derivative. The analytical results of the experiment
indicate that either the integer or fractional order methods can be used to approximate the
angular position of the disk oscillating in the homogeneous solution. The following research was
in collaboration with Dr. Richard Mark French, Dr. Garcia Bravo, and Rajarshi Choudhuri, and

the experimental design was derived from the previous experiments conducted in 2018.
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CHAPTER 1. INTRODUCTION

1.1 Overview

Newton and Leibniz founded integer order calculus in the seventeenth century by
developing a general symbolic and systematic method of analytical operations. Fractional
calculus—the integration and differentiation to an arbitrary or fractional order—was
conceptualized nearly the same time as integer order calculus (Kulish & Lage, 2002). Fractional
calculus techniques are applied in the following experiment to model the nonlinear response of
the proposed oscillatory dynamic system. The comparison of the fractional and integer order
model data determines if the oscillatory decay of the spring-damped system demonstrates

fractional dynamic behavior.

1.2 Significance

The techniques of fractional calculus are not commonly taught in engineering curricula
since physical laws are expressed by integer order notation. Engineers, however, encounter
situations in which the integer order methods do not properly model the physical characteristics
of a dynamic system and lead to numerous mathematical operations (Magin, 2006). Magin
(2006) provides an example—derived from the original work of Torvik and Bagley (1984)—
where fractional calculus provided an alternative solution for the surface shear stress developed
by the transverse motion of a rigid flat plate in a homogeneous fluid. Kulish and Lage (2002)
demonstrated how fractional calculus methods yield the same result in one operation as integer
order calculus does in three operations. Fractional and integer order methods were applied in the
proposed experiment to model the angular position of the disk while oscillating in the
homogeneous fluid. The results from the analyses were then compared to the experimental
results. The oscillatory decay in the system exhibited fractional behavior since the experimental

results match the results obtained from the fractional analysis.
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1.3 Statement of Purpose

The problem addressed by the following experimental study is that integer order calculus
does not accurately model all the necessary physical characteristics of dynamic systems and
produces numerous mathematical operations (Magin, 2006). The purpose of the study was to
experimentally validate the fractional order model of the proposed dynamic system by
considering the closeness of fit between the fractional and integer order models compared to the

experimental data.

1.4 Experimental Setup

The proposed system, derived from previous experiments conducted by Choudhuri and
French (2018), was designed as an aluminum disk rotating about the vertical axis of a stainless-
steel shaft where both ends were supported by bearings. The upper-support beam fixed the top
end of the torsional spring. The bottom of the torsional spring connected to the upper part of the
shaft to enable the oscillating motion in the system. The aluminum disk and stainless-steel shaft
were joined using a force fit. The bottom end of the shaft was supported by a ball bearing in
which was attached to the bottom of the tank containing the homogeneous fluid. Figure 1.1

illustrates the ideal experimental configuration.

v

Torsional Spring

» Contact point - Bearing

+ Shaft

» Cylinder

................................ + Homogenous Field (Fluid)

» Contact point - Bearing

Figure 1.1 Ideal experimental setup (Choudhuri & French, 2018).
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1.5 Assumptions

The assumptions of the experiment are listed as follows:

The boundary conditions at the tank walls do not affect the motion of the disk
since the diameter of the tank is significantly larger (at least 3x) than the diameter
of the disk.

Fluid boundary layer effects on the shaft are negligible.

The surface finish of the disk is uniform meaning that the coefficient of drag is

uniform along the surface.

The contact point between the bottom of the shaft and the bearing fixed to the

bottom of the tank is frictionless.

The homogeneous fluid used in the experiment is considered ideal.

1.6 Limitations

The limitations of the experiment are listed as follows:

The static and dynamic relationship of the shaft and the disk must remain
perpendicular.

Inertial forces must be high enough, compared to the spring and damping forces,
to prevent rapid oscillatory decay.

The fatigue stresses acting on the torsional spring after each experiment run incurs

losses thus the spring must be replaced after each run.

1.7 Delimitations

The delimitations of the experiment are listed as follows:

Fluid boundary layer formation on the vertical shaft is not considered.

Variation of the cross-sectional area of the aluminum disk is not considered as it

has been machined with tight tolerances and is considered uniform.

Variation of the surface finish on the top and bottom face of the aluminum disk is
not considered as it has been machined with tight tolerances and is considered

uniform.

14



e The alignment of the stainless-steel shaft and aluminum disk is considered

perpendicular due to careful machining and tight tolerances.

1.8 Chapter Summary

Newton and Leibniz established the foundations of integer order and fractional order
calculus in the seventeenth century. Fractional order calculus is a mathematical concept in which
integration and differentiation is to an arbitrary, non-integer order (Kulish & Lage, 2002). The
fractional and integer order differential equations corresponding to the experiment were
evaluated to model the dynamics of the oscillating system. The purpose of this study was to
experimentally validate the application of fractional order calculus to approximate the angular
position of the oscillating disk in a homogeneous fluid . The following chapter goes into further

details regarding the history, fundamental theories, and applications of fractional order calculus.
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CHAPTER 2. REVIEW OF LITERATURE

2.1 Brief History of Fractional Order Calculus

The foundations of calculus emerged during the third century after Archimedes, the
father of statics, computed areas, volumes, and lengths of arcs by methods of exhaustion. The
method of exhaustion computed the desired area by inscribing polygons in a circle with an
increasing number of edges in which the area of the polygons converges to the area of the
containing shape (Rosenthal, 1951). Efforts from Stevin, Valerio, Kepler, Cavalieri, Fermat,
Pascal, Descartes, and many others set the stage for the two founding fathers of calculus. Newton
and Leibniz independently founded integer order calculus by developing a general symbolic and
systematic method of analytical operations independent of geometry during the seventeenth

d?f(x)
dx?

century (Rosenthal, 1951). The integer order notation %ix) or D1f (x), or D2f(x)isa

1
> 1

familiar concept. However, the fractional order notation s (lx ) or D2 f(x) is not easily
dx2

recognized, because textbooks often do not incorporate lessons on fractional order concepts

(Kleinz & Osler, 2000). Fractional calculus—the method of integration and differentiation to an
arbitrary, non-integer order—was conceived nearly the same time as integer order calculus in
1695 (Kulish & Lage, 2002). Fractional calculus operations are demonstrated on functions of
engineering interest with emphasis on Laplace transform methods to solve initial value problems
in the time domain and provide expressions describing sinusoidal steady-state behavior in the
following text. In real analyses, fractional order calculus is the generalization of integer order

calculus.

2.2 Fractional Order Calculus Explained

2.2.1 Fractional Derivative of Exponential Functions

Kleinz & Osler (2000) provide an explanation of fractional order calculus by examining
the exponential function below in equation 2.1.
f(x) =eP* (2.1)
The corresponding integer-based derivative of the first, second, and third order are shown

below in equation 2.2.
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fl(x) — Dlepx — pl x ePX
f?(x) = D?eP* = p? x eP* (2.2)
f3(x) — D3epx — p3 * epx
Assume that n is an integer number and a is a rational number. The general form of the
integer derivative of equation 2.2 is shown below in equation 2.3.
f™*(x) = D"eP* = p™ x eP* (2.3)
Substitute o (the rational number) where n (the integer number) appears from equation
2.3 to create equation 2.4 shown below.
f%(x) = D% P* = p% x eP* (2.4)
D* represents any value for a—integer, rational, irrational, or complex. For example,
dreplace a with the rational number %2 resulting in the %2 order derivative of the exponential

function as shown below in equation 2.5.

f%(x) — DzeP* = Jp * eP* (2.5)
A positive real o represents a derivative of the function and a negative a represents an
integral of the function for the example above (Kleinz & Osler, 2000). Note, fractional order
derivatives use previous information to converge to the solution; whereas, integer order

derivatives are defined completely at a point.

2.2.2 Fractional Derivative of Trigonometric Functions

Choudhuri and French (2018) derive the general form of the fractional order derivative of
trigonometric functions sine and cosine using Euler’s expression shown below in equation 2.6.

e/* = cos(x) + j * sin(x) (2.6)

Substitute equation 2.6 into equation 2.1 to obtain the general form of the fractional order

derivative of a trigonometric function shown below as equation 2.7.

D% x e/* = j% x )X = /(%) = cos (x + %a) + j * sin (x + %a) (2.7)

17



2.2.3 Fractional Derivative of Polynomial Functions

Kleinz and Osler (2000) provide the generalized derivative of a polynomial in equation
2.8 below.

(- (P-2)..(p—n+1D)(p—n)(p—n-1)..1 - p! -
Dn P — p P~ — = P77 2
x (p-m(p-n-1).1 x o-mt ™~ (2.8)

Equation 2.8 is the integer expression for D"xP and to replace the positive integer n by
the arbitrary number a, the gamma function must be used. The gamma function, introduced by
Euler in the 18" century, provides meaning to p! and (p — n)! when p and n are not integers. The
gamma function represented by equation 2.9 satisfies the property shown below in equation 2.10
(Podlubny, 1999).

r()= ["e tt*ldt (2.9)
'x+1) =xI(x) (2.10)
Equation 2.8 is then rewritten in the following form since integer n is replaced by the

non-natural number o as shown in equation 2.11 below.

a,p — r'(p+1) p—a
D%x To—arD* (2.11)

The concept of fractional derivatives is extended to cover a variety of functions by using

a Taylor series in terms of x shown below in equation 2.12.
fx) = Xaoanx™ (2.12)

Differentiate equation 2.12 term by term resulting in equation 2.13 shown below.
Def(x) = Xp=0an D%x™ = Y30 an

Equation 2.13 is the generalized definition of the fractional derivative (Kleinz & Osler, 2000).

rn+1) n_a
r(n—a+1)

(2.13)

2.2.4 Fractional Integrals

Kleinz and Osler (2000) provide the first and second definite integer order integral of a
function as shown in equation 2.14 and equation 2.15 below.

DT () = [y f(®)de (214)
D2f(x) = [ [;? f(ty) dtydt, (2.15)

The left-hand plot found in Figure 2 illustrates the area of integration represented by

equation 2.15 from above. The right-hand plot found in Figure 2.1 illustrates how the area of

18



integration has changed direction after rearranging the order of integration as shown below in

equation 2.16.
D7*f(x) = [§ f;, f(t) dtydty (2.16)

s 2 W 12

! / f
R

Figure 2.1 lllustration of the Lebesgue integral and Riemann integral, respectively (Kleinz &
Osler, 2000).

Equation 2.16 is changed by moving f(t,) outside the inner integral since f(t;) is nota

function of t, in this example resulting in equation 2.17 shown below.
D72 f(x) = [y f(©)(x — t)dt (2.17)
The same procedure is performed for the third and fourth integer-based integrals shown

in equation 2.18 and equation 2.19 below.
D3f(x) =2 [ f(0)(x — £)2dt (2.18)
D) = o fO G - )dt (2.19)

Considering equations 2.17 to 2.19, the generalized definition of the integer order integral

is shown in equation 2.20 below.
D"f(x) = ﬁ Jy F® @ — " tde (2.20)

Replace the -n term with the arbitrary o term and the factorial with the gamma function to

produce the definition of the Riemann-Liouville fractional order integral. The Riemann-Liouville

19



fractional integral expression shown below in equation 2.21 is derived from the Laplace
transform methods (Magin, 2006).

WD fx) = —— [¥ L& (2.21)

r(-a) b (x-t)ati

The fractional derivative symbol D¢ represents positive and negative values for a. The
integral is improper if o> -1 because as t = x, x — t — 0 causing the integral to diverge for every
a = 0. The improper integral converges whenever —1 < a < 0 indicating the o term must be
negative. Only negative values for o must be used in the example above to consider equation 2.21
as a definition for the fractional integral which is why limits are included (Kleinz & Osler, 2000).
The following section outlines how the limit resolves the inherent contradiction found in the
definition of fractional calculus and provides methods for solving fractional order differential

equations.

2.2.5 Solving Fractional Order Differential Equations

Integer order integrals are expected to have limits hence fractional order integrals are also
expected to have limits. Integer-based derivatives are not governed by limits; however, fractional
order derivatives surprisingly must have limits. Why must the limit be included for fractional
order derivatives if not included for integer order derivatives? Recall equation 2.4 from above
containing the fractional derivative for the exponential function. Substitute the fractional
derivative of the exponential function from equation 2.4 into the Taylor Series from equation
2.13 resulting in equation 2.22 shown below (Kleinz & Osler, 2000).

xn—a

[ee] 1 (o]
D%* = Yniop X" = Xnzotmsarn (2.22)

n!

The right side of equation 2.22 from above is equivalent to the Taylor series for e* only
when a is an integer. The case in which a is fractional results in two different functions. The
expression for the fractional derivative of the exponential function from equation 2.4 is
inconsistent with the expression for the fractional derivative of the power function from equation
2.13 since two different limits are being used (Choudhuri & French, 2018).

Notice the fractional integral for an exponential function in equation 2.23 shown below.

yDile® = f;eaxdx = %ea" — %eab (2.23)

20



The limit is incorporated to satisfy equation 2.23 from above. The term %eab = 0 when a is

positive and the lower limit b is equal to —oo represented by equation 2.24 below.

oD e™ = q%e™ (2.24)
The fractional integral with the lower limit equal to —oo is referred to as the Weyl fractional
derivative as seen in equation 2.24 above. The Weyl fractional derivative equation is derived
from the Riemann-Liouville fractional order integral expression hence equation 2.25 below
(Choudhuri & French, 2018).

1 x f(t)dt
—oD% f(x) = ) fb T (2.25)
2.3 Dynamics

2.3.1 Spring-damped System

Dynamics is defined as the branch of mechanics concerned with bodies in motion. The
following section explains how the equations of motion for a single degree of freedom system
govern the dynamics for the experimental apparatus by using the ideal mass-spring-damped
system for the example. The single degree of freedom mass-spring-damped system used in the
following experiment captures the basic behavior of vibrating structures since all structures have
mass and stiffness. Proportional damping closely resembles the behavior of vibrating structures
and simplifies the mathematical models used in the experiment. Other damping models exist but
add complexity to the mathematical models compared to proportional damping. Replacing the
proportional damper with the fractional damper presents the possibility of modeling more
complicated dynamic behavior. Figure 2.2 shown below illustrates the ideal mass-spring-damped
system.
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m T x(t)
T )

Figure 2.2 Ideal mass-spring-damped system (Jones, 2001).

The equation of motion for the ideal mass-spring-damped system with one degree of

freedom is written as:

d?x(t) dx(t) _
O+ 2O 4 () = £ (2.26)

where m is the mass, k is the spring stiffness, and c is the damping coefficient. Equation 2.26

d?x(t)

indicates the applied force f(t) is perfectly counteracted by the sum of the inertial force m —2

dx(t)

the stiffness force ¢ T

and the damping force kx(t).

The motion equation from above is rewritten considering the free response characteristic
of the system meaning that the external force on the system is equal to zero as shown below in
equation 2.27 (Jones, 2001).

d?x(t) dx(t) .
ooz + c o’ +kx(t)=0 (2.27)

Choudhuri and French (2018) provide the example in which x(t) = Ae*t is the

characteristic function hence equation 2.28 and equation 2.29 below.

22



Pm+Ac+k)Aer =0 =2 Pm+Ac+k=0 (2.28)

M= (=C + 7?2~ 1)\/5 (2.29)

The first and the second order eigenvalues are indicated by 4, , from equation 2.29.
Eigenvalues, in context of the proposed experimental study, are numbers that lie on the complex
plane and correspond to the roots of the natural frequencies of the system (Howle & Trefethen,
2001). The damping ratio, represented by ¢, is a dimensionless measure describing the
oscillatory decay of the system. The expression for the damping ratio is shown in equation 2.30
below.

{ = N% (2.30)

The damping ratio is expressed as a fraction of critical damping. Critically damping indicates
that the system returns to equilibrium without oscillating. The experimental apparatus was

designed as an underdamped system meaning the oscillatory decay is exponential.

2.3.2 Underdamped

The system is classified as underdamped when the damping ratio is 0 < { < 1. The roots
of the characteristic function from equation 2.28 above are calculated based on the resonant
frequency of the system shown in equation 2.31 below:

Mz = —Cw, Tiwg (2.31)

where w,, = \/% and wy = w,+/1 — {2 for the underdamped case. Figure 2.4 graphically

illustrates the underdamped behavior.
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Figure 2.3 Graph of the underdamped system (Mathworks, 2015).

2.4 Fluid Mechanics of the Rotating Disk

2.4.1 Boundary Layer Conditions

The fluid mechanics of the rotating disk are explained in the following section to provide
understanding of the boundary layer formation in the proposed experiment. Cham and Head
(1969) determined the distribution of the azimuthal and radial velocity field existing within the
turbulent boundary layer on a rotating disk as illustrated by Figure 2.4. The red lines model the
azimuthal (meaning in the Q-direction) velocity profiles corresponding to the theoretical laminar
flow, the solid black lines model the measured velocity profiles, and the dashed black line
models the boundary layer thickness. The azimuthal velocity at the outer part of the boundary
layer is less than 20% of the velocity of the disk at the same radius. The measured data starts
departing from the theoretical laminar flow model for Reynolds values above R = 550

(Imayama, Lingwood, & Alfredsson, 2014).
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Figure 2.4 Three-dimensional boundary layer formation on the disk (Choudhuri & French,
2018).

The viscous length scale increases proportionately to the radius for a given Reynolds

number as shown in the equation below:
L=2=2 2= Re‘zr\/z (2.32)
Vr NS cr
where the friction velocity v, = /T‘"T" , the wall shear stress in the azimuthal direction 7, ¢, and

2
the fluid density p. The skin friction coefficient ¢, = (ﬂz%)z is a decreasing function of the

Reynolds number (Imayama, Lingwood, & Alfredsson, 2014).
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The Navier-Stokes differential equation is used to model the flow of incompressible
fluids. Choudhuri and French (2018) derived the general form of the Navier-Stokes equation in
cylindrical coordinates to obtain the system of fractional order partial differential equations in
which model the fluid flow in the proposed experiment as shown in equations 2.33 to 2.35
below.

dvr dvr+ dv, v§+ dv,
Pl Py tegg 7 Ty,

dp d (1 1 d?*v, 2 dv,  d%v,
Pgr = dr+“(5(r (”’r)> T Erat ) @)

dt+vrd +r W-I_ r +77de

_1,ap (a1 a L, @2 dve | dv
Pe r * de +‘u(dr (r * (rvg)) r2 * dez  r2 * de + dz? ) (2.34)

(dvg dvg vg dvg vV dv9>

dv, dv, vg dv, dv,
(dt Uty *EJ"’ZE)

dpr 1 d dv, 1 d?v, = d?v,
g, — L Au(Gra(rB)+ 5 E+5E) @)

The continuity equation expresses conservation of mass in the system where the fluid is
flowing. The continuity equation and the expression for the shear stress acting on the surface of
the disk, shown below as equations 2.36 and 2.37 respectively, are applied to solve the fractional
differential equations derived from the Navier-Stokes equation (Choudhuri & French, 2018).

1 dvg

—*—(rvr)+—* + Lz

0452 =0 (2.36)

1 dvg

o= -2 GG+ T) G m e T (2:37)

2.5 Seminal Theoretical Proposal

Torvik and Bagley (1984) originally proposed the application of fractional calculus
methods to model the oscillating dynamic behavior of the large plate fixed to a massless spring

submerged in a homogeneous fluid illustrated in Figure 2.8 below.
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Figure 2.5 Plate with surface area A and mass m is connected to a massless spring with a spring
constant k (Magin, 2006).

Oscillatory motion is initiated by the force f(t) applied to the plate in the x-direction.
Magin (2006) explains how the application of Newton’s second law to the system from Figure 9
yields the following fractional order differential equation:

3
d2x(t) d2x(t)
m=Z2 4 kx(t) + 24,/pu at%t = £(t) (2.38)

where m is the mass of the plate, k is the spring constant, A is the surface area of the plate, p is
the fluid density, u is the fluid viscosity, and f(t) is the force applied to the plate in the x-
direction. The following experiment used the oscillating disk to eliminate leading and trailing
edges thus simplifying the mathematical models in comparison to Torvik and Bagley’s

experiment where a rectangular plate was used.

The general form of Green’s function appears in equation 2.39 below (Podlubny, 1999).
a DLy (t) +b oDf y(t) + c y(£) = £(t) (2.39)
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The Green’s function must be applied to equation 2.39 from above to solve the fractional
differential equation with constant coefficients and initial conditions. The analytical solution of

equation 2.40 appears below (Podlubny, 1999):
y(©) = [} Gt — Df (Ddr (2.40)

_lge (DK (g)" 2k+1 ok (_g ) ko adk _ v Ut
where G3 = AZk:O o \z) t E%’2+32_k A Vvt B = dyk Enu) = Xjlo JIT(Aj+Ak+w)’

andk=0,1,2,...

2.6  Applications

Fractional calculus models a variety of complex dynamic systems more accurately
compared to traditional calculus. Recent development for applications of fractional order
calculus include but is not limited to fluid mechanics, electrical circuits, heat transfer, signal
processing, chemical processes, bioengineering, and automatic control. Torvik and Bagley
(1984) experimentally validated the accuracy of the fractional order calculus model by the finite
analysis of transient motion in complex viscoelastically-damped structures. The application of
fractional calculus to model Proportional Integral Derivative (PID) controllers improved system
precision, efficiency, and overall quality of industrial process control compared to the integer
order model (Tepljakov, 2017). Ultracapacitors are electrical devices used to store and dissipate
energy in applications where a high current is supplied for brief time intervals. The study
conducted by Dzielinski, Sarwas, and Sierociuk (2011) revealed how ultracapacitor frequency
domain models are intrinsically fractional order. Richard Magin (2006) provides compelling
results in which describe the viscoelasticity of human lung tissue using pulmonary impedance

models of fractional order.

2.7 Chapter Summary

Fractional calculus—the method of integration and differentiation to an arbitrary, non-

integer order—was conceived through combined efforts nearly the same time as integer order

1
> 1
calculus in 1695 (Kulish & Lage, 2002). The fractional order notation ﬂ(f) or Dzf(x) is now

dx2z

familiar considering the fundamental theories and basic operations associated with fractional
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calculus methods were explained in detail. Torvik and Bagley (1984) originally proposed the
application of fractional calculus methods to model the dynamic behavior of the rectangular plate
fixed to a massless spring submerged in a homogeneous fluid. The following experiment
incorporated a disk to eliminate the leading and trailing edges thus simplifying the mathematical
models. The motivation for the proposed research is derived directly from previous efforts of
Choudhuri and French (2018) in which the dynamics of an oscillating cylinder were modeled and

experimentally validated to be of fractional order.
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CHAPTER 3. RESEARCH METHODOLOGY

3.1 Research Approach and Hypotheses

Can the angular position of a disk oscillating in a homogeneous fluid be calculated using a
fractional order mathematical model? Does the fractional order model calculating the angular
position of a disk oscillating in a homogeneous fluid yield a more accurate solution than the
integer order model? The purpose of this study is to experimentally validate the fractional order
model of the proposed dynamic system with a quantitative comparison between the fractional
and integer order models.

The margins of error must be considered to make such a comparison for each model. The
fractional order model, integer order model, and quantitative comparison to determine the
accuracy of each model are the key deliverables of this study. Frictional losses in the bearings,
static and dynamic alignment of the components, and rotational forces causing the support
structure to flex are key factors affecting the error in the experiment. The hypotheses tested
during the experiment are listed as follows:

* Ho: The fractional order model of the angular position of the oscillating disk produces
less error than the integer order model when comparing the mathematical models to the
experimental data.

* Ha: The integer order model of the angular position of the oscillating disk produces less
error than the fractional order model when comparing the mathematical models to the

experimental data.

3.2 Theoretical Models

3.2.1 Integer Order Model

The proposed research compares the integer-based and fractional-based models to
determine if the dynamics of the system are of inherent fractional order. The free body diagram

for the integer order theoretical model is illustrated by Figure 3.1 below.
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Figure 3.1 The free body diagram of the oscillating disk for the integer order model (Choudhuri
& French, 2018).

The integer order equation of motion for the system appears in equation 3.1 below.
daze o _
I?+CE+K9—f(t) (3.1)

The area moment of inertia for the cylinder is calculated using equation 3.2 and the spring
constant was calculated using equation 3.3.

h
I = % (r:uter - ri‘:mer) (32)
_ GT[D;}od
K = 92Pioa (3.3)

The general integer order equation for the dynamic system in free oscillation appears in equation
3.2 below:

0 = Asin(wt + ¢p)e ™t (3.4)
where A is the amplitude, w is the natural frequency of the system, ¢ is the phase difference, and
o is the shear stress (Choudhuri & French, 2018).

3.2.2 Fractional Order Model

The free body diagram for the fractional theoretical model used in the experiment is
illustrated by Figure 3.2 below.
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Figure 3.2 The free body diagram of the oscillating cylinder with initial boundary conditions for
the fractional model (Choudhuri & French, 2018).

The torsion spring with the spring stiffness K was assumed to be massless and did not cause
complications regarding the fluid mechanics of the system. The disk with mass M and area S was
assumed to oscillate in the homogeneous fluid with only one degree of freedom. The Bagley-
Torvik fractional differential equation was used to compute the numerical solution for the

fractional order model as shown in equation 3.3 below:
Ay"(©) + BoD”” +Cy(D) = f(©) (33)
A=M, B=2Jup, C=K
where the initial conditions were y(0) = 18.9132, y'(0) = 18.9132, f(t) = 0 (Podlubny,

1999, p. 229). The initial force was zero to simplify the mathematical models approximating the

angular position of the oscillating disk.

3.3 Related Experiment

Choudhuri and French (2018) conducted the experimental study of fractional calculus to
model the dynamics of a cylinder oscillating while submerged in a homogeneous fluid as

illustrated in Figure 2.9 below.
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Figure 3.3 Experimental setup from previous research (Choudhuri & French, 2018).

The apparatus illustrated in Figure 3.3 consists of a plastic cylinder made from polyvinyl
chloride, an acrylic fish tank, stainless steel shaft, ceramic bearings, steel ball bearing, brazing
rod for the spring, camera, and 3D printed material for some of the structural parts. The initial
force (spinning force) causes the cylinder to oscillate for 100 seconds before coming to rest
again. Testing was conducted in standard temperature and pressure where the cylinder was fully
submerged in the homogeneous fluid. The research previously conducted by Choudhuri and
French (2018) experimentally validated the fractional order model for the oscillating cylinder

submerged in the homogeneous fluid.
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3.4 Experimental Setup

The experimental apparatus used in this study was derived from the previous experiment
conducted by Choudhuri and French (2018) where an oscillating cylinder was used. The
experimental apparatus was designed as an underdamped system to satisfy the general integer
order equation of a body in free oscillation found in equation 3.4 above. In this experiment, an
aluminum disk was used as the body oscillating in the homogeneous fluid and was made from
6061 aluminum. The aluminum disk was machined to have an outer diameter of 9.817 inches, an
inner diameter of 0.4985 inches, and a height of 2.424 inches. The flatness and cylindricity
geometric tolerances were controlled while machining the aluminum disk to produce a uniform
surface finish. The inner diameter through hole tolerances were controlled to ensure a successful
shrink fit between the disk and shaft. The uniform surface finish of the disk produced a uniform
drag coefficient along the top and bottom surfaces. The precision ground, polished shaft was
purchased from McMaster Carr with a diametral tolerance of -0.0002 inches to 0 inches and a
straightness tolerance of 0 inches to 0.0048 inches per foot. The shaft was made from 303
stainless steel with a measured diameter of 0.5000 inches. Micrometers and calipers were used to
inspect the dimensions of the machined components. The disk and shaft were joined with a
shrink fit, and the disk was carefully positioned at half of the height of the tank which was 12
inches from the bottom of the tank. The tolerances of the components were ideal to minimize
fluid layer boundary effects incurring around the shaft and maintain the perpendicular alignment
required between the disk and the shaft. The disk oscillated about the vertical axis of the shaft
where both ends of the shaft were supported by bearings. A short shaft approximately 2 inches in
length was cut from the main section of the shaft and fixed into the base of the apparatus. The
base was a 3D printed housing designed for the short section of the shaft which was attached to
the bottom of the tank with epoxy. The short shaft and main shaft were coupled by the lubricated
0.25-inch ball bearing. Figure 3.3 is an image of the bottom support where the bottom shaft was
coupled to the main shaft with the 0.25-inch ball bearing. The tank used in the experiment had a
36-inch diameter with a 24-inch height.
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Figure 3.4 Image of the bottom support.

The upper end of the shaft was machined to allow one end of the music wire to slide inside the
pocket. Threaded holes were included for the set screws to fix the end of the wire in place. The
radial bearing purchased from Bearing Headquarters Company was pressed onto the upper end

of the shaft. Figure 3.4 is an image depicting the radial bearing pressed onto the upper end of the
shaft.

Threaded
holes for set

SCIrews

Radial

Bearing

Figure 3.5 Radial bearing pressed onto the upper end of the shaft.
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The radial bearing was then press-fitted into a 3D printed plate to support and center the vertical
alignment of the shaft. The 3D printed plate was fixed to the wooden frame using screws and
wing nuts. Figure 3.6 below contains a screenshot of the 3D model illustrating how the bearing
plate was fixed to the wooden frame. The music wire with a measured diameter of 0.21875-inch
and a measured length of 28 inches served as the torsional spring. The upper and lower
crossbeams of the wooden structure supported the top and bottom ends of the music wire in
which both ends were fixed by stainless steel set screws. Figure 3.7 found below contains an
image of the experimental setup. Figure 3.8 contains a screenshot of the 3D model of the

experimental apparatus.
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Figure 3.6 3D model of the bearing plate fixed to the wooden structure.

37



+— Camera

Support
Structure

Set
Screws

Radial
Bearing
Housing

Stainless
Steel Shaft
Ball
Bearing
Honllogeneous Contact
Fluid (water) Point
Aluminum
Disk Thuk

Figure 3.7 Experimental setup.
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Figure 3.8 3D model of the experimental apparatus.

The center axis of the camera lens was constrained to the vertical axis of the shaft to
eliminate parallax. The fully threaded rod supporting the tracer extends 12 inches from the
threaded hole through the shaft. The threaded rod extending from the shaft was considered as the

radius for calibration purposes. The camera was accurately positioned and calibrated by
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collecting data in Tracker and generating a plot of the radius versus time. The plot shown in
Figure 3.9 below verified the alignment of the center axis of the camera lens to the vertical axis

of the shaft by producing a constant value for radius as a function of time.
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Figure 3.9 Plot of radius (m) vs. time (sec) to verify camera alignment.

3.5 Data Acquisition

The experiment was conducted in an environment with standard temperature and pressure.
Video data was acquired using a Panasonic LUMIX G7 camera with specifications of 60 frames
per second and shutter speed of 1/1000 seconds. The camera was mounted 9 feet and 9 inches
from the ground pointed downward to view into the tank. The MP4 file created from the video
recording was uploaded into Tracker—an open source physics software. Figure 3.10 contains a
screenshot of the Tracker software interface displaying the camera’s view from above the

apparatus.
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Figure 3.10 Tracker software interface.

Using Tracker, the necessary frames of reference and relative positions for the components
were created by following the tracer. The tracer was a rectangular piece of white cardboard fixed
onto the end of the threaded rod. The black dot was placed in the center of the white cardboard
rectangle allowing the software to accurately track the radial position of the oscillating disk.

Figure 3.11 contains a screenshot of Tracker recording the position of the black dot.
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Figure 3.11 Tracker recording the position of the black dot.

The threaded hole was machined into the shaft to mate with a fully threaded rod
supporting the tracer. Plumbing tape was included where the fully threaded rod mated with the
shaft to damp the vibrations generated while applying the initial spin force. Figure 3.12 contains

an image of the fully threaded rod supporting the tracer used during the experiment.
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Figure 3.12 Image of the tracer used for Tracker.

3.6 Data Analysis

Tracker software was used to acquire the data and create a text file by exporting to the
Notepad application found on the computer. The text file containing the experimental data
collected by Tracker was imported to MATLAB using a built-in function and processed to
generate the fractional and integer order models. MATLAB produced graphical representations
of the integer and fractional order models superimposed on the experimental data plot. The
quantitative comparison between graphs determined if the dynamics of the spring-damped
oscillating system are considered intrinsically fractional order. The squared difference calculated
between the experimental data and the mathematical models was the primary metric to determine
error for each model in this study. The more accurate model incurred the least amount of error
when compared to the experimental data. Further details regarding error calculations are

included in the Results section below.
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3.7 Threats to Validity

Mechanical and frictional losses were controlled by proper alignment between
components. Tight machining tolerances were maintained throughout the development of the
experimental apparatus to ensure perpendicularity between the stainless steel shaft and the
aluminum disk. Uneven loading because of misalignment between the aluminum disk and
stainless steel introduces frictional forces to the system. The system is assumed to be in free
response meaning at t = 0 seconds the input force is f(t) = 0. Although the system is assumed
to be in free response, the input spin force needed to initiate oscillation potentially introduces
uneven loading considering the input spin force is performed by hand motion. Proper alignment
of the components was also verified by using a level to ensure the ground was not sloped where
the apparatus was placed. Additionally, the bottom of the tank was inspected to ensure that the
3D-printed bottom support was level. The torsion spring was replaced every trial to eliminate
mechanical losses caused by rotational fatigue stress and to minimize variation in the spring
stiffness since the mathematical models use constant coefficients to approximate the angular
position of the oscillating disk. Rotational angles of 30 degrees or larger resulted in plastic
deformation of the torsion spring, and the wooden support structure flexed while the angles of
rotation exceeded 30 degrees. The center axis of the camera lens was constrained to the vertical
axis of the stainless steel shaft to minimize parallax and a plot of radius versus time was created
to calibrate the camera position as seen in Figure 3.9 above. Quality inspections of component
dimensions were accomplished using measurement equipment such as micrometers and calipers.

All components of the experimental apparatus were visually inspected for defects before use.
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CHAPTER 4. RESULTS

4.1 Experimental Data

The experimental apparatus was designed to be an underdamped system; however, the
oscillatory decay does not perfectly mimic exponential decay. The input spin force is performed
by hand motion and suspected to cause uneven loading resulting in frictional loss until the
system balances and is in free response oscillation. The fatigue stresses acting on the torsion
spring are suspected to cause plastic deformation after 30-40 oscillations and are suspected to be
the source of difference after t = 15 seconds. The following sections explain further details
regarding the discrepancies of the data and elaborate on the quantitative comparison between the
mathematical models and the experimental data. The experimental data is graphically
represented in Figure 4.1 below and the table containing the experimental data is in Appendix A

located at the end of the document.
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