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ABSTRACT

Xiaorong Cai Ph.D., Purdue University, December 2020. Phase Field Modeling of Mi-
crostructure Evolution in Crystalline Materials. Major Professor: Marisol Koslowski,
School of Mechanical Engineering.

The material responses and the deformation pattern of crystals are strongly influ-

enced by their microstructure, crystallographic texture and the presence of defects of

various types.

In electronics, Sn coatings are widely used in circuits to protect conductors, reduce

oxidation and improve solderability. However, the spontaneous growth of whiskers

in Sn films causes severe system failures. Based on extensive experimental results,

whiskers are observed to grow from surface grains with shallow grain boundaries. The

underlying mechanism for these surface grains formation is crucial to predict potential

whisker sites. A phase field model is coupled with a single crystal plasticity model and

applied to simulate the grain boundary migration as well as the grain rotation process

in Sn thin film, which are two possible mechanisms for surface grain formation. The

grain boundary migration of three columnar grains is modeled and no surface grain is

formed due to large plastic dissipation. In polycrystal Sn thin film, the nucleation of

subgrains with shallow grain boundaries is observed for certain grain orientations on

the film surface and the location of which corresponds to the regions with high strain

energy density. From these simulations, it can be concluded that the grain rotation is

the mechanism for whisker grain formation and the nucleated subgrains may be the

potential whisker sites.

Sn-based solders are also widely used in electronics packaging. The reliability and

the performance of SAC (Sn-Ag-Cu) solders are of key importance for the miniaturiza-

tion of electronics. The interfacial reaction between Cu substrates and Sn-based sol-

ders forms two types of brittle intermetallic compounds (IMCs), Cu6Sn5 and Cu3Sn.
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During the operation, the interconnecting solders usually experience thermal loading

and electric currents. These environmental conditions result in the nucleation of voids

in Cu3Sn layer and the growth of the IMCs. A phase field damage model is applied

to model the fracture behavior in Cu/Sn system with different initial void densities

and different Cu3Sn thickness. The simulation results show the fracture location is

dependent on the Cu3Sn thickness and the critical stress for fracture can be increased

by lowering the void density and Cu3Sn thickness.

In alloys, the stacking fault energy varies with the local chemical composition.

The effects of the stacking fault energy fluctuation on the strengthening of alloys

are studied using phase field dislocation method (PFDM) simulations that model the

evolution of partial dislocations in materials at zero temperature. Some examples are

shown to study the dependency of the yield stress on the stacking fault energy, the

decorrelation of partial dislocations in the presence of impenetrable and penetrable

particles. Simulations of the evolution of partial dislocations in a stacking fault energy

landscape with local fluctuations are presented to model the responses of high entropy

alloys. A strong size dependency is observed with a maximum strength when the mean

region size approaches the average equilibrium stacking fault width. The strength of

high entropy alloys could be improved by controlling the disorder in the chemical

misfit.
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1. INTRODUCTION

Crystalline materials, although considered macroscopically homogeneous in macro-

scopic, exhibit heterogeneity at the mesoscale level. Over the past decades, extensive

work has been done to study the influence of the microstructure and crystallographic

texture on the properties of crystalline materials. The microstructure of crystalline

materials is composed of grains with different orientations, thus rendering different

mechanical and physical properties locally. So, it is important to take these factors

into consideration when studying the microstructure evolution and the deformation

in crystals. Along with the local misfit, defects of various types also have a great in-

fluence on the deformation mechanisms of crystalline materials. The arrangement of

atoms of a crystal can be interrupted by crystallographic defects, examples of which

are voids, dislocations, grain boundaries, stacking faults, twins and cracks. To model

the local variation of material properties as well as the existence of the defects, phase

field methods [1–5] are applied in different situations such as grain growth, grain ro-

tation, phase formation, fracture and dislocations. In the phase field approach, the

total free energy of the material is calculated and the evolution of microstructure

follows an energy minimization process.

In Chapter 2, the problem of Sn whisker formation is studied. In the electronics

industry, Sn coatings are widely used in electric circuits to protect conductors, re-

duce oxidation and improve solderability [6]. The spontaneous growth of whiskers in

the Sn thin films arouses many concerns with regard to the reliability issues. Severe

system failures are reported due to whisker growth. A number of experiments have

been performed to investigate the whisker formation process. Sn grains are usually

observed to form columnar structures with vertical grain boundaries after the depo-

sition. However, the cross sections of Sn films from extensive experiments show that

Sn whiskers grow from surface grains with shallow grain boundaries. Based on the
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observations, different models of whisker nucleation mechanisms have been proposed

to explain the microstructure evolution in the Sn thin films. Chason et al. [7, 8] ob-

served in the experiments that the whiskers grew out of the pre-existing grains and

thus, proposed a strain-induced grain boundary migration model for creation of sur-

face grains. Vianco et al. [9,10] and Kakeshita et al. [11] stated that the shallow grain

boundaries were created by recrystallization.

However, there is still a gap between the experiments and the theories. It is al-

most infeasible to obtain the cross section of the whisker root during the whisker grain

formation process in the experiments and yet no simulations have been performed to

study this process. The evolution of the Sn grains from vertical boundaries to shal-

low boundaries remains unknown. Research showing microstructure evolution and

whisker formation is needed to bridge the gap. The relationship between deformation

and microstructure can be investigated by developing models and performing simu-

lations at microscopic scale. Here, a phase field model of grain boundary migration

and grain rotation are developed and applied to study the surface grain formation.

Sn-based solder materials are also widely used in the electronics packaging indus-

try. In the recent years, the demand to decrease the size of the flip-chips increases the

importance of the reliability and performance of solder joints. The interconnecting

material widely used in Pb-free solder joints, are SAC (Sn-Ag-Cu). The interfacial re-

action between Cu and Sn forms two types of brittle intermetallic compounds (IMCs),

Cu6Sn5 and Cu3Sn. During the operation of the electronic devices, the solder joints

usually experience a current density up to 105 A/cm2 [12], which results in a joule

heating effect and mass transport due to electromigration. The on-going electro-

migration nucleates micro voids in the brittle IMC layers and affects the reliability

of the solder joints. Besides the electric currents, the portable electronics may also

experience shock loadings, mechanical loading or other operational environments.

To better understand the SAC solder performance in various environmental con-

ditions, a phase field damage model is applied to study the voids evolution and crack
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propagation in the solder joints. The effects of void density and the thickness of IMCs

on the fracture evolution are investigated.

Chapter 4 presents the study of stacking fault strengthening of Ni-based alloys.

The plasticity behavior of materials is reflected by the slipping of dislocations. Dislo-

cations are linear defects, around which the atoms are not perfectly aligned. Under an

applied deformation, dislocations can be generated and move. The interaction of the

dislocations and the interaction between dislocations and other defects can result in

the strengthening of the materials. The presence of dislocations increases the energy

in materials compared with perfect crystals. A full dislocation can dissociate into two

partial dislocations to lower its energy. Between two partial dislocations, a stacking

fault will be generated. Stacking faults are planar defects which are defined as the

disorder of the stacking sequence of layers in crystals.

In alloys, the energy of stacking faults varies with the local composition. The

effects of the stacking fault energy fluctuations on the strengthening of alloys can

be studied by tracking the evolution of partial dislocations in FCC metals at zero

temperature. The classical deformation models are not capable of capturing the

individual dislocation activities. The challenges of dislocation simulations not only

lie in creating physically accurate models, but also using an appropriate simulation

scale for efficiency. A phase field theory of dislocation dynamics is able to study

dislocation behaviors such as dislocation loop nucleation, bowing out, pinching, and

the formation of Orowan loops [13]. Phase field method is originally developed to

solve interfacial problems, and is extended for a large variety of microscopic processes.

Individual dislocations can be represented and evolved by phase field parameters. In

this work, the influence of stacking fault energy on the strength of materials is studied

by the motion of dislocations using phase field dislocation dynamics.

The structure of this report is constructed as follows.

The first chapter is the introduction, including the background knowledge, the

research topics and the approaches used in the study.
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Chapter 2 presents the surface grain formation in the Sn thin films. A single

crystal plasticity model is discussed and the related parameters for material Sn are

calibrated. A grain boundary migration model based on phase field method is in-

troduced and applied to simulate compressive deformation of Sn grains. The effect

of grain orientation on the shallow grain boundary formation is shown in the simu-

lations. A grain nucleation mechanism is discussed and critical nucleation sizes are

calculated for different grain boundary energies.

Chapter 3 contains the fracture evolution in the Cu/Sn solders. A phase field

damage model is used to simulate the fracture behavior in the IMC layer. The effects

of IMC thickness, the void density are studied to predict and improve the reliability

of the solder joints.

Chapter 4 presents the effects of the stacking fault energy fluctuations on the

strengthening of alloys. Relevant stacking fault strengthening models are reviewed

and a phase field dislocation method (PFDM) is derived with emphasis on the incor-

poration of the gamma-surface. Some examples indicating the capabilities of PFDM

are shown including the dependency of the yield stress on the stacking fault energy,

the decorrelation of partial dislocations in the presence of impenetrable and penetra-

ble particles. Simulations of the evolution of partial dislocations in a stacking fault

energy landscape with local fluctuations are presented to model the responses of high

entropy alloys.
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2. SHALLOW GRAIN FORMATION IN TIN THIN FILM

Note part of this chapter is reproduced from “Shallow grain formation in Sn thin

films”in Acta Materialia, 192, pp. 1-10 [14].

2.1 Introduction

With the development of the electronics industry, the reliability of electronic com-

ponents becomes increasingly important in the electronics manufacturing. Sn is ex-

tensively used as coatings for its superior corrosion and oxidation resistance as well as

easy bonding with other metals such as copper. Sn has long been used in alloys with

Pb as solders and coatings for electric circuits in order to protect conductors, reduce

oxidation and improve solderability [6]. The spontaneous growth of Sn whiskers and

hillocks poses reliability concerns for inducing short circuits between electrical con-

ductors. Adding Pb to Sn is an effective way to suppress whisker growth. Under the

environmental regulations RoHS (Restriction of Hazardous Substances) [6], Pb-free

manufacturing brings up whisker issues once again.

A number of experiments have been performed over years using different tech-

niques to study Sn whisker growth. Experimental results show a variety of whisker

morphologies including straight, kinked, bent, clustered, and plate-like [15]. The

most common whisker morphology is either long and narrow or short and stubby.

The length of whiskers is mostly around hundreds microns but some long whiskers

can be up to millimeters. The growth morphology of Sn whiskers is highly likely

related to the whisker nucleation mechanism, which still remains unclear. The objec-

tives of this work is to apply phase field models to simulate two possible mechanisms

and fully understand the whisker grain formation process.
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2.1.1 Mechanisms for whisker growth

There are many significant whisker growth theories proposed to explain the growth

mechanism. Several dislocation based theories were proposed during 1950s to 1970s.

Peach [16] first came up with an explanation stating that a whisker grew at the tip

by a screw dislocation in the center of the whisker. However, experiments performed

by Koonce and Arnold [17] demonstrated that whiskers grew at the root rather than

the tip. Later in 1953, Eshelby [18] proposed that whiskers grew by absorbing a

dislocation loop generated by a Frank-Read source at the base. In the same year,

Frank [19] stated that an rotating edge dislocation pinned by a screw dislocation

would add an extra layer to the whisker root, and thus, extended the whisker length.

However, the electron microscopy study of LeBret and Norton [20] suggested that the

whiskers and the grains beneath them were defect free and contained no dislocations.

Other possible whisker formation mechanisms then came into being. Tu et al. [21]

proposed that whisker growth could be analyzed as a model of grain boundary fluid

flow, the rate of which was observed to be in agreement with whisker growth rate.

Kakeshita et al. [11] studied grain size effect on Sn whisker growth. He proposed

that a recrystallized grain would be generated and grew upwards as a whisker with

the help of the internal stress. Vianco et al. [9, 10] stated dynamics recrystallization

to be the mechanism for Sn whisker development. The recrystallized grains form to

lower the strain energy and become the potential whisker sites. Chason et al. [7, 8]

observed in the experiments that the whiskers grew out of the pre-existing grains and

proposed a strain-induced grain boundary migration model for creation of surface

grains. Handwerker and Blendell et al. [22,23] performed thermal cycling experiments

and developed a model based on coupling between localized Coble creep and grain

boundary sliding which explained the observed surface morphologies, the changing

growth rate over time, and the dependence on the grain geometry.

The whisker growth mechanisms are closely related with the grain boundary struc-

ture. Sn grains in the thin films usually form columnar structures. The grains extend
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to the bottom of the films with relatively vertical grain boundaries. Observations

from extensive experiments show that whiskers always grow from surface grains with

shallow grain boundaries. A typical example of the cross section of a whisker root

is shown in reference [23]. The grain boundaries exhibit angles to the film normal,

which is different from typical Sn grains in the films.

The nucleation process of whisker grains with shallow grain boundaries are de-

bated. There is still controversy whether the whiskers grow from newly recrystallized

grains or pre-existing grains. Since surface grains are potential whiskers, understand-

ing the underlying mechanisms for surface grain formation can help predict whisker

sites and thus, is of key importance for whisker study. Here, two possible mechanisms,

grain boundary migration and grain nucleation, to create shallow grain boundaries

are considered in the following sections.

2.1.2 Driving forces for whisker growth

It is well accepted that whisker growth is a stress relaxation mechanism in the

thin films. The stress in the thin films comes from many different sources, such

as residual stress from plating process, oxidation process, mechanical deformation

and a mismatch of thermal expansion coefficients between Sn film and the substrate

[6]. Cu5Sn5 IMC (intermetallic compound) formation at the Sn film/Cu substrate

interface is one of the most important stress sources for spontaneous whisker growth.

Since the diffusion of Cu atoms into Sn is much faster than that of Sn atoms into

Cu, the intermetallics tend to grow in the Sn film rather than the substrate, resulting

in a compressive stress in the Sn film [24–26]. The oxide layer on the top of Sn

film effectively prevents the diffusion of atoms to the surface, thus, surpressing the

relaxation of the stress.

Besides global stress from these sources, the local stress also plays an important

part in the driving relaxation in the this film. Since β−Sn is a highly anisotropic

material, the mismatch of the elasticity tensor and thermal expansion coefficients in
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polycrystalline can not be neglected. The local hetergeneous stress distribution and

microstructure of the film lead to multiple stress relaxation mechanisms rather than

a single static process.

The other responses to relax stress except for whisker growth include: grain bound-

ary sliding, cracks, extrusions, intrusions, grain boundary grooves, twins, recrystal-

lization and grain growth [27]. The particular mechanisms dominating the stress

relaxation process in the thin film depend on various factors. The factors include

film thickness, global and local crystallographic texture, composition, microstructure,

the substrate material, temperature and mechanical loading conditions and previous

strain history.

In this work, two possible models for shallow grain boundary formation are dis-

cussed and simulated. In section 2.2, single crystal plasticity model is presented and

calibration for Sn is discussed. In section 2.3, a phase field grain boundary migration

model is developed to simulate the motion of grain boundary. In section 2.3.2, a

deformation induced subgrain nucleation model is presented. 2d and 3d Simulations

of single crystal, bicrystal and polycrystal are performed. The grain rotation for

different orientations is shown and the stochastic analysis is performed.

2.2 Material Model

Sn has a body-centered-tetragonal crystal structure with highly anisotropic mate-

rial properties. The yield stress of Sn is relatively low and therefore, plasticity plays

a significant role even at small strains during deformation. In this section, a single

crystal plasticity model is presented and calibrated to describe the plastic behav-

ior of Sn. The models are implemented in Multiphysics Object Oriented Simulation

Environment (MOOSE) [28] and are used to carry out all the simulations in this

paper.
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The conservation of momentum [29, 30] with the corresponding boundary condi-

tions are:

∇ · σ = ρ
∂2u

∂2t
in Ω,

u = g on Γg,

σ · n = t on Γt,

(2.1)

where σ is the Cauchy stress tensor, u is the displacement vector and ρ is the material

density in the domain Ω. g and t are the prescribed displacement and traction on

the boundary. The Cauchy stress tensor is related to the 2nd Piola-Kirchhoff stress

tensor as

σ =
1

detF e
F e · S · F e (2.2)

with S = C ·Ee, where Ee = 1
2

(
F eTF e − I

)
is the Lagrange elastic strain, and C

is the elasticity tensor.

2.2.1 Single Crystal Plasticity

In finite deformation, the deformation gradient, F , is decomposed into its elastic,

F e, and plastic, F p, parts as:

F = F e · F p (2.3)

The elastic deformation gradient F e represents the reversible material responses

including rotation and stretching. The plastic deformation gradient F p represents the

irreversible response of material due to shearing. The rate of the plastic deformation

gradient can be expressed as

Ḟ p = Lp · F p (2.4)

where Lp is the plastic part of the velocity gradient and it is represented by the sum

of the slip rates, γ̇α, over all the slip systems:

Lp =
N∑
α=1

γ̇αmα ⊗ sα (2.5)

where N represents the total number of slip systems, sα is the unit vector in the slip

direction, mα is the unit vector normal to slip plane in the slip system α and ⊗ is the
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second order tensor product. The Schmid tensor, mα ⊗ sα projects the amounts of

slip on slip system α on the reference configuration. The evolution of the slip on each

slip plane follows a power-law flow rule as a function of the critical resolved shear

stress ταc and the resolved shear stress τα:

γ̇α = γ̇0

∣∣∣∣ταταc
∣∣∣∣n sign (τα) (2.6)

where γ̇0 is a reference strain rate and n is the strain rate slip sensitivity parameter.

The sign function sign() gives values +1 or -1, depending on the sign of resolved

shear stress. A hardening law is used to represent the increase of slip resistance due

to dislocations accumulation on all slip systems, known as latent hardening:

˙ταc =
N∑
1

hαβ

∣∣∣γ̇β∣∣∣ , (2.7)

with an initial threshold stress τα(t = 0) = τα0 , and a hardening matrix of the form:

hαβ = qαβ

[
h0

(
1− τβc

τs

)a]
(2.8)

where hαβ is the hardening matrix, h0, a and τs are slip hardening parameters. h0 is

the initial hardening rate and τs is the saturated slip resistance. The parameter qαβ

is the latent hardening ratio, that specifies the ratio of the hardening between the

second slip system β to that of the primary slip system α [31]. The value of qαβ is

taken as

qαβ =

1.0 if α, β are coplanar

1.4 otherwise
(2.9)

2.2.2 Calibration for Sn

Sn has a BCT crystal structure with lattice parameter a = b = 583.18 pm and

c = 318.19 pm [32], shown in Figure 2.1. There are 32 possible slip systems reported

in the literature [33–35], listed in Table 2.1 and shown in Figure 2.2. The slip systems

in the table are ordered according to the slip resistance, τ0, from low to high. The

elastic constants of Sn are reported in Table 2.2.
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Figure 2.1. Crystal structure of β-Sn.

Table 2.1. Slips systems for Sn. [33–35]

Number Slip system Multiplicity τ0[MPa]

1 {100} < 001 > 2 20

2 {110} < 001 > 2 20

3 {100} < 010 > 2 20

4 {110} < 11̄1 > /2 4 22

5 {110} < 11̄0 > 2 22

6 {100} < 011 > 4 22

7 {001} < 010 > 2 25

8 {001} < 110 > 2 25

9 {011} < 011̄ > 4 25

10 {211} < 011̄ > 8 25

Table 2.2. Elastic constants (GPa) of Sn. [33–35]

C11 C22 C33 C44 C55 C66 C12 C23 C13

72.3 72.3 88.4 22.0 22.0 24.0 59.4 35.8 35.8

The work by Bieler [33–35] is used here to calibrate the single crystal plasticity

model in Equation 2.6. The parameters n = 2.5 and γ̇0 = 0.00025s−1 are chosen
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(a) {100} plane (b) {110} plane (c) {001} plane

(d) {011} plane (e) {211} plane

Figure 2.2. Slip systems of Sn.

by fitting the stress-strain curves reported in Bieler′s work [33]. These values are

reasonable compared to copper [29, 36]. The values of the other parameters in the

model are listed in Table 2.3. The stress-strain curves using these parameters are

compared to Bieler’s results [33] in Figure 2.3 with the crystal orientation and loading

axis indicated in the figure. The yield stress calculated from this model also fits with

the experimental data reported by Duzgun et al. [37] and Tucker et al. [38].

Table 2.3. Material parameters used in crystal plasticity for Sn. [33–35]

τs(MPa) h0(MPa) a n γ̇0(s−1)

30 80 2.0 2.5 0.00025
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Figure 2.3. Strain-stress curves using the model presented above.
The plasticity parameters for solid lines are reported in Table 2.3.
The dashed lines are extracted from Bieler′s work [33]. The Bunge
Euler angles and the tensile directions are specified in the legend.

2.2.3 Capability of Model

The single crystal plasticity shown in this section is capable of describing compre-

hensive material behaviors. In the experiments, a strong rate-dependent behavior of

Sn is observed [38, 39]. In Figure 2.4, different strain rates, 0.01 s−1, 0.005 s−1 and

0.001 s−1, are applied to a single crystal. The yield stress increases with the strain

rate. When incremental strain is applied, the incremental deformation gradient, Ḟ , is

calculated and the stress tensor, σ, is updated. So the material response is dependent

on the loading path, which is the strain rate.

In Figure 2.5, cyclic loading is applied to a single crystal. The initial compres-

sive strength is lower than the initial tensile strength, which can be explained by

Bauschinger effect. After two cycles, the material is hardened.

These simulations show the capability of the single crystal plasticity model. It is

able to describe the strain rate hardening, cyclic hardening as well as latent hardening.

Using this model, the plastic behavior of Sn can be captured and the evolution of

microstructure can be predicted.
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Figure 2.4. Strain-stress curves using the single crystal plasticity
model. The applied strain rate is indicated in the figure.

Figure 2.5. Strain-stress curves for cyclic loading.

2.3 Shallow grain formation simulations

The whisker growth process is closely related with the grain boundary structure.

Sn grains in the as-deposited thin films usually form columnar structures. The grains
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extend to the bottom of the films with relatively vertical grain boundaries [6, 24].

However, observations from extensive experiments show that whiskers always grow

from surface grains with shallow grain boundaries [22,23].

The origin of these surface grains are debated. The experimental results by Chason

et al. [7, 40] show that whiskers grow from pre-existing grains. The transition from

vertical to shallow grain boundary is a boundary migration process and the orientation

of the whisker grains do not change. Therefore, a strain induced grain boundary

migration model is proposed to explain for shallow grain formation.

Another possible mechanism proposed to nucleate shallow grains is recrystalliza-

tion [9, 20, 24, 41,42]. Recrystallization is the rotation of the lattice, following by the

formation of new grain boundaries. The nucleated new grain with oblique boundary

can be potential whiskers grains.

In this section two different mechanisms are explored, grain boundary migration

and recrystallization. Finite element simulations are carried out to studied the two

possible mechanisms for shallow grain formation.

2.3.1 Grain boundary migration

Figure 2.6 is a schematic diagram that represents the grain boundary motion

process to form a shallow grain. The as-deposited Sn film structure contains columnar

grains as shown in Figure 2.6 (a). In Figure 2.6 (b), residual or thermo-mechanical

stresses will make the grain boundary move to reduce the strain energy while the

grain boundary is pinned on the surface due to the attachment to the oxide layer and

the bottom due to the substrate. When the grain boundaries coalesce, shallow grains

are formed in Figure 2.6(c). However, Chason et al. [7] demonstrated that larges

stresses than the one expected during thin film relaxation are needed to nucleated

these shallow grains. To study this process a phase field model is presented and used

to simulate grain boundary migration.
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(a) Initial grain structures (b) Grain boundary migration (c) Shallow grain formation

Figure 2.6. Schematic diagram of the grain boundary migration model.

In the phase field model each grain is represented by a phase field parameter

η [1, 36, 43] The parameter ηa is equal to 1 inside the grain a and 0 outside. Figure

2.7 is a representation showing the values of two phase field parameters η1 and η2 in

two neighbouring grains.

Figure 2.7. A schematic profile of phase field parameters of two
neighboring grains. The blue line represents the phase field parameter
value for grain 1 and the red line represents grain 2.

Time dependent Ginzburg-Landau equations are solved to calculate the evolution

of the non-conserved order parameters ηa [43] by minimization of the free energy:

∂ηa
∂t

= −L δΨ
δηa

, a = 1 to N (2.10)
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where t is time and L is related to the grain boundary mobility. The total free

energy Ψ includes the grain boundary energy, the elastic energy and plastic dissipation

[43–45] and it can be expressed as

Ψ(η,F e,F p) =

∫
V

(fbulk + fgrad + ψe(F e) + ψp(F p)) dV (2.11)

where η contains all the phase fields η = (η1, η2, η3, ...), V is the volume of the whole

system, N is the total number of grains and κa is the energy gradient coefficient.

Each terms will be explained in detail in the following.

The first two terms are the functional of the phase field parameters η and their

gradients. The homogeneous bulk free energy density fbulk follows the model proposed

by Moelans et al. [1]:

fbulk = µ

(
N∑
a

(
η4
a

4
− η2

a

2

)
+

3

2

N∑
a=1

N∑
b6=a

η2
aη

2
b +

1

4

)
(2.12)

where µ is a parameter related to the grain boundary energy and width. The value of

γ is chosen to be 1.5 according to Moelans et al. [1]. From the definition in Equation

2.12 the value of fbulk is always 0 inside each grain and is only non-zero in the grain

boundaries.

The second term calculates the gradients of the phase field parameters. It controls

the width of the grain boundaries and is defined as:

fgrad =
N∑
a

κ

2
(∇ηa)2 (2.13)

The coefficient κa is calculated from the grain boudnary energy and width, which

is strictly positive. In the grain boundary where the gradients are non-zero, this term

would attribute to the increase of the total energy. The integration of the first two

terms accounts for the total energy due to the presence of grain boundary in a system.

The elastic energy density ψe is

ψe =
1

2
Ee : C : Ee (2.14)

where C is the fourth-order elasticity tensor and Ee is the elastic strain.
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The plastic energy density ψp can be written as [36]

ψp = A

(∑
α

∑
β

aαβ
∣∣γαγβ∣∣)3/4

(2.15)

Here, aαβ is an interaction coefficient associated with the dislocations on each slip

system, and the value is taken to be the same as qαβ. γα is the slip strain of slip

system α defined in Equation 2.6. A is a parameter related with heat dissipation

during plastic work, the value of which depends upon specific materials. By fitting

to experimental data [36], A is inversely proportional to the the average slip strain.

A =
1

k · γ̄
MPa (2.16)

where k is a coefficient taken as 7.2 following [36]. The average slip strain γ̄ over all

the slip systems is γ̄ = 1
N

∑
α γ

α.

An interpolation function h (ηa) is used to calculate the elastic and plastic energy

density at any point of the domain including the grain boundaries.

h (ηa) =
1

2
(1 + sin (π (ηa − 0.5))) (2.17)

Here, the value of h (ηa) is 0 when ηa = 0 and 1 when ηa = 1. Using Equation 2.17

the elastic energy density ψe in the grain boundaries can be calculated as a weighted

average of the elastic energy density within neighboring grains.

ψe =

∑N
a h (ηa)ψ

e
a∑N

a h (ηa)
(2.18)

and its partial derivative with respect to the phase field parameter ηa is

∂ψe

∂ηa
= h′ (ηa)

ψea − ψe∑N
a h (ηa)

(2.19)

Similar to the elastic energy density, the derivative of the plastic energy density

ψp with respect to the phase field parameter ηa is

∂ψp

∂ηa
= h′ (ηa)

ψpa − ψp∑N
a h (ηa)

(2.20)
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The three parameters used in Allen-Cahn equation, L, κ, µ are related to three

grain boundary properties: the grain boundary mobility MGB, the grain boundary

energy γGB and the interfacial width lGB [1] as follows:

L =
4

3

MGB

lGB

κ =
3

4
γGBlGB

µ = 6
γGB
lGB

(2.21)

The upper bound of the grain boundary energy γGB can be estimated from the

unstable stacking fault energy [46] of Sn which is in the range 0.1 to 0.4 J/m2 [47].

The grain boundary energy reported by Chason et al. is 1 to 100 mJ/m2. So here

its value is taken to be 0.1 J/m2. The grain boundary mobility, Mgb, grain boundary

energy, γgb, and grain boundary width, lgb, used in the simulations are approximated

values, and are listed in Table 2.4. The grain boundary evolution is predicted by

solving simultaneously Equation 2.1 with the plasticity model in Equations 2.5, 2.6,

and 2.7, and the system in Equation 2.10.

Table 2.4. Grain boundary properties used in the simulations.

MGB (m4/ (Js)) γGB (J/m2) lGB (um)

2× 10−8 0.1 50

The evolution of three columnar grains is simulated to study grain boundary

migration using 2D plane strain condition. A schematic figure of the simulation

geometry and boundary conditions is shown in Figure 2.8 (a). The bottom surface

is fixed in the vertical direction and the left boundary is fixed in the horizontal

direction. A compressive displacement is applied to the right boundary at strain rate

of 0.001s−1. The grain boundaries are pinned on the top surface and the bottom.

Material properties of Sn used in the simulations are listed from Table 2.1 to Table 2.4.

Different grain orientations are assigned to each grain and the inverse pole figure (IPF)

coloring is used to represent the orientations. The grain width is w = 3.5µm and three
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different film thickness are used, l1 = 2 µm, l2 = 3.5 µm, and l3 = 5 µm. The grain

boundaries are indicated in red from (b) to (d).

(a) Initial configuration

(b) 6 % strain without plasticity

(c) 10 % strain without plasticity

(d) 10 % strain with plasticity

Figure 2.8. Grain boundary migration simulations. The amount of
applied strain is indicated in the figure.

In Figure 2.8 (b) and (c) where the plasticity is not considered in the simulations,

the only way to minimized the energy in the material is by grain boundary migration.

Under this condition, the stress in the film reaches 4 GPa when the applied strain

is 6%. As is shown in the figures, when the material is compressed, the two nearby
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(a) Initial configuration

(b) 6 % strain without plasticity

(c) 10 % strain without plasticity

(d) 10 % strain with plasticity

Figure 2.9. Grain boundary migration simulations. The amount of
applied strain is indicated in the figure.

boundaries move closer and coalesce due to the large strain energy. Then they become

shallow grain boundaries and surface grains are formed.

In Figure 2.8 (d) where crystal plasticity is considered, the grain boundaries hardly

move and no shallow grain boundary is formed after applying 10% of strain. The

reason is that the plastic behavior of Sn greatly helps the stress relaxation in the

material, and thus the strain energy in the material is very low. Since the grain

boundaries are pinned at the surface and the bottom, the strain energy is not sufficient

for the creation of the boundary curvature. The same behavior is observed for different
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grain orientations and different film thickness, see Figure 2.9. Simulation results show

that the strain driven grain boundary migration is not likely to happen in Sn thin

film.

In the experiments by Chason et al. [7], the average grain size is around 3µm,

which is comparable to our simulation. The compressive stress in the thin film is

reported to be 20 MPa. However, using a bulk material nucleation model, the stress

required for nucleation is within 142 MPa to 45 GPa, which is much higher than the

yield stress of Sn. Taking plasticity into consideration, it is unlikely to nucleate these

shallow grains by grain boundary migration.

(a) (b)

Figure 2.10. (a) A schematic figure of grain boundary migration
distance. (b) Grain boundary migration distance d vs applied strain.
The solid and hollow circles represent two elastic simulations with
different grain orientations, see Figure 2.8 and Figure 2.9.

Figure 2.10 shows the grain boundary migration distance as a function of the

applied strain. The hollow circles represent the elastic simulations in Figure 2.8 and

the solid circles represent the elastic simulations in Figure 2.9. The plot compares the

grain boundary migration distances for three different film thickness. When the film

is thicker, there is less curvature needed for the boundary to coalesce, and thus less
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strain energy needed to move the grain boundary. For different grain orientations, the

energy difference between two nearby grains are different, so the migration velocities

can differ. This indicates that the grain boundary migration and the microstructure

evolution are greatly influenced by the film texture.

2.3.2 Deformation induced subgrain nucleation

During deformation, the grains of a polycrystal develop heterogeneous deforma-

tion patterns with local variations of the stress and strain fields. These heterogenous

fields are of key importance in microstructural evolution, such as grain growth and

recrystallization [48], as well as in strain hardening, Hall-Petch effect and inelastic

recovery [46, 49]. When polycrystalline metals are strained the crystallographic slip

varies from grain to grain and causes local lattice rotations within a grain. These

changes of lattice orientation may develop to maintain the compatibility of the de-

formation with neighboring grains and are accommodated by geometrically necessary

dislocations (GND). These dislocation structures inside the original grain form inter-

nal grain boundaries leading to new smaller grains or subgrains. The lattice rotation

or GND can be used to identify the new grains. Both quantities are measured by the

elastic and plastic deformation gradients as follows.

In the continuum framework, total deformation gradient F has to be compatible,

while F e and F p may not necessarily be compatible. The incompatibility in the lattice

comes from the dislocations. Nye’s dislocation tensor measures the incompatibility of

the plastic part of the deformation gradient, and it is related to the dislocation dis-

tribution. The connection between the deformation fields and dislocation structures

is established by Nye’s dislocation tensor [50,51]:

α = curlF p (2.22)
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Other equivalent defect measurements have been used. For example, Cermelli and

Gurtin [52] define the GND density tensor as

α =
F p

det(F p)
curlF p = det(F e)F e−1curlF e−1 (2.23)

where the last equality is obtained imposing the compatibility of F .

In finite deformation, the total deformation gradient F can be decomposed into

an elastic part and a plastic part. The elastic part of the deformation gradient can be

further decomposed into a rotation tensor Re, and the stretch tensor, U e. Therefore,

the rotation of the lattice can be obtained from the elastic deformation gradient using

polar decomposition:

F e = ReU e (2.24)

The rotation tensor can be written as a function of the rotation angle, θ, and the

rotation axis w using Rodrigues rotation formula:

Re
ij = cos θδij + wiwj(1− cos θ) + εikjwk sin θ (2.25)

where δij is the Kronecker delta and εikj is the permutation tensor.

The lattice rotation angle θ can be calculated from [53]

Re −ReT = 2 sin θ


0 −w3 w2

w3 0 −w1

−w2 w1 0

 (2.26)

The low angle rotation (θ below 2 degrees) are associated with GND, and higher

values with subgrain and new grain boundaries [54–57]. Here, the formation of new

subgrain structures are identified as the regions with lattice rotation larger than 3◦.

2.3.3 Single grain simulations

As an example of the effect of the crystal orientation on the formation of subgrains,

the deformation of a single grain with different orientations is analyzed. A compressive

displacement is applied on one boundary with a strain rate 0.001s−1 while the other
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three boundaries are fixed, see Figure 2.11. Plane stress condition is applied. Different

orientations are created by rotating an angle α along the [110] direction.

Figure 2.11. A schematic figure of single crystal lattice rotation simulation.

Figure 2.12 shows lattice rotation in the single crystals after applying 10% strain.

A common representation of rotation, Rodrigues vector λ is shown in black and is

defined as

λ = tan

(
θ

2

)
w (2.27)

where the vector direction is the rotation axis w and the length of the vector is

characterized by the rotation angle θ. The Rodrigues vector field indicates the rota-

tion axis and the amount of rotation. The largest rotation occurs at the boundaries

and subgrain stuctures are created. The subgrains are defined as the area where the

rotation angle is larger than 3◦.

In Figure 2.13, the subgrain fraction is plotted as a function of α. For 2d simula-

tions on x-y plane, the rotation along [110] direction is symmetric along 90 degrees,

as observed in the plot.

2.3.4 Bicrystal simulations

To better study the subgrain structures formation, bicrystal simulations are per-

formed with random grain orientations. The grain size is 3.5µm×3.5µm. Figure 2.14

is a schematic figure of a bicrystal under plane strain condition. The bottom bound-
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2.12. Lattice rotation of single grains after 10% compressive
strain. The Rodrigues vector field λ is indicated on the contour plot.
α indicates the rotation around the [110] direction.

Figure 2.13. Subgrain area as a function of the rotation α along [110] direction.
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ary is fixed in the vertical direction and the left boundary is fixed in the horizontal

direction. A compressive displacement is applied to the right boundary with a strain

rate 0.001s−1.

Figure 2.14. A schematic figure of bicrystal lattice rotation simulation.

In Figure 2.15, the orientations of the grains are assigned randomly. The contour

plots show the rotation angles θ after applying 10% strain. From the figure, subgrain

structures are likely to form at the region near the grain boundary.

To study the factors affecting the subgrain formation, misorientation of the grain

boundary is calculated and the subgrain area fraction is plotted as a function as the

misorientation. In Figure 2.16 (a), it is clear that as when the misorientation angle

increases, the subgrain structure is more likely to form and its area is larger. However,

a large grain misorientation does not necessarily lead to subgrain nucleation, which

means that the formation of subgrains may also depend on other factors such as

loading direction. Given the same misorientation, the mismatch between two crystals

can be different due to the anisotropy of Sn. In general, there is a positive correlation

between grain rotation and misorientation, and the effects of anisotropy should not be

neglected. In Figure 2.16 (b), the distribution of the lattice rotation angles θ is ploted

for applied strain 6%, 8% and 10%. The average rotation angles are indicated on the

x axis as θ̄6%, θ̄8% and θ̄10%, respectively. From the plot, when more deformation is

applied, there is an increase in the average rotation angle as well as the subgrain area,

which is defined as the region with more than 3◦ rotation.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 2.15. Bicrystal simulations. The inverse pole figure (IPF)
coloring is used to represent the orientations. The Rodrigues vector
field λ is indicated on the contour plots.

Figure 2.17 shows 3d bicrystal simulations. The grain size is 3.5 µm. The left

boundary is fixed in x direction, the back boundary is fixed in y direction and the

bottom boundary is fixed in z direction. A compressive displacement is applied to
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(a) (b)

Figure 2.16. 2D simulations. (a) Subgrain structure area vs misori-
entation at 10% applied strain. (b) Rotation angle distribution.

(a) (b) (c) (d)

Figure 2.17. 3D bicrystals simulations with subgrains (in red) formed
after a 10% compressive strain is applied.

the right boundary with a strain rate 0.001s−1. The grain orientations are assigned

randomly and represented by the IPF color.

In 3d simulations, the subgrain is defined as the region where the rotation angle

is larger than 3◦ and is indicated in red. It is observed that the subgrains appear

at the grain boundaries and near the free surfaces. In most cases, the nucleated

subgrain structures have shallow boundaries and in some cases, they extend through

the thickness of the thin film, see Figure 2.17 (c).
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(a) (b)

Figure 2.18. 3D simulations. (a) Subgrain structure volume vs mis-
orientation at 10% applied strain. (b) Rotation angle distribution.

In Figure 2.18 (a), the subgrain volume fraction is plotted as a function of grain

boundary misorientation and the rotation angle distribution is plotted in (b). Com-

paring to Figure 2.16, similar conclusions can be drawn and the positive correlation

between grain rotation and grain boundary misorientation can be extended from 2d

to 3d.

2.3.5 Polycrystal simulations

Figure 2.19 is a schematic figure of 3d polycrystal simulation. The simulation

domain is 15µm ∗ 15µm ∗ 3µm with 25 grains. The average grain size is around

3.5µm. The random grain orientations are assigned to each grain. The bottom

boundary is fixed in the vertical direction, the left boundary is fixed in the horizontal

direction and the back boundary is fixed in the out-of-plane direction. A compressive

displacement is applied with a strain rate 0.001s−1 at the right boundary.

Figures 2.20 (a-d) show the top view of the thin film with random grain orienta-

tions indicated by the IPF colors. Subgrains start forming when the applied strain

reaches approximately 3%. The subgrains are depicted in red in Figures 2.20 (e-h)

when the thin film is strained by 10%. In all the cases, subgrains form close to grain
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Figure 2.19. Geometry used in polycrystal simulations.

boundaries. However, not all grains contain newly formed subgrain structures. The

different initial grain orientations in Figures 2.20 (a-d) affect the location and size of

subgrains in Figures 2.20 (e-h).

The density of GND can be calculated directly from the gradients of the slip

strains. In particular, the density of edge and screw dislocations can be estimated as:

ρedge =
N∑
α=1

| 1

bα
sα · ∇γα | and ρscrew =

N∑
α=1

| 1

bα
lα · ∇γα | (2.28)

where lα = mα × sα and bα is the length of the Burgers vector in the slip plane α.

In Figures 2.20 (i-l) the density of edge GND and (m-p) screw GND are plotted after

the film is strained by 10%. Because edge dislocations are related to tilt boundaries,

larger densities of edge dislocations are observed in regions where subgrains is formed

due to lattice rotation.

Figure 2.21 contains 3D views of the evolution of subgrains structures obtained in

the simulations using the orientations presented in Figure 2.20(c). When the film is

strained by 6% new subgrains form on the top surface close to grain boundaries. As

more strain is applied the subgrain structures grow and new ones are nucleated.

To compare with the experiments conducted by Pei et al. [58], a domain with

the grains oriented with the [001] and [010] directions perpendicular to the thin film

surface is generated, see Figure 2.22 (a). Unfortunately, the other orientation in-

formation is not reported by the authors and therefore, Euler angles [0, 0, 0] and
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 2.20. Top view of Sn thin films. (a-d) Grain orientations are
represented by the IPF color. (e-h) Subgrains (in red) formed after
10% strain is applied. (i-l) Edge dislocation density and (m-p) screw
dislocation density at the surface.
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(a) 6.5 % strain (b) 7 % strain (c) 7.5 % strain

(d) 8 % strain (e) 9 % strain (f) 10 % strain

Figure 2.21. Process of subgrain structure formation with increasing strain.

[90◦, 90◦, 0] are assigned to the grains in the simulation. For comparison, another

microstructure, shown in Figure 2.22 (d), with grain orientations near [001] and [010]

was also simulated.

In agreement with the experimental results, most subgrains form in the [001]

oriented grains in regions neighboring [010] grains. However, some of these subgrains

are not shallow and extend through the thickness of the thin film, as shown in Figures

2.22 (b-c). The subgrains are less columnar when the orientations are slightly different

in Figures 2.22 (e-f). It is important to notice that the amount of strain in the

simulations is much larger that the one in the experiments. Furthermore, other

relaxation mechanisms, such as whisker growth and grain boundary sliding, that may

reduce the stress and stop the growth of subgrains are not included in the simulations.

To understand a possible correlation between subgrain structures and grain ori-

entation, contour plots of the edge and screw dislocation densities, components of

the elastic strain, and the strain energy density are presented in Figure 2.23. In

agreement with the results in Figure 2.20, there is a strong correlation between the
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(a) Initial grain orientation (b) 6 % strain (c) 8 % strain

(d) Initial grain orientation (e) 6 % strain (f) 8 % strain

Figure 2.22. Evolution of the subgrain structures in Sn thin films
with grains oriented in the [001] and [010] directions (a-c) and near
[001] and [010] directions (d-f).

location of subgrains and edge dislocation density at the surface of the thin film in

Figures 2.23 (b) and (c).

During loading, the thin film is compressed in the x direction and expands in the

y and z directions. For [001] oriented grains the in plane elastic tensor components

are C11 = C22 = 72.3 GPa. When the grain is oriented with the [010] direction

perpendicular to the surface, the the elastic strain tensor component in the x direction

is C33 = 88.4 GPa, see Table 2.2. Therefore, grains oriented in the [001] direction

have larger in plane strain components (Ee
xx and Ee

yy) than grains oriented in the

[010] direction. The strain energy density is also larger for [001] grains, see Figures

2.23 (e), (f), and (h). Due to the anisotropy of the elastic constants the shear strain

component Ee
xy, presented in Figure 2.23 (g) is larger in the grain boundaries that are

shared by [010] and [001] oriented grains. The other strain components, not shown

in Figure 2.23 remain almost homogeneous in all the grains.
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(a) Initial grain orien-

tation

(b) Subgrain structures (c) Edge dislocation

density

(d) Screw dislocation

density

(e) Ee
xx (f) Ee

yy (g) Ee
xy (h) Strain energy den-

sity

Figure 2.23. Top view of Sn thin films with grains oriented in [001]
and [010] directions. (a) Initial grain orientation, (b) subgrain struc-
tures (in red) after 10% strain in the x direction, (c) edge dislocation
density, (d) screw dislocation density, (e) Ee

xx, (f)Ee
yy, (g) Ee

xy and (h)
strain energy.

In agreement with the results in Figure 2.20, there is a strong correlation between

the location of the subgrains and high edge dislocation density. It can also bee seen in

Figure 2.23 (g) that larger values of in plane shear strain appear in the same regions.

2.4 Summary

It is accepted that whiskers growth is a process of atom diffusion driven by the

stress gradients in the film [7,23,24,59]. However, it is not clear under what conditions

whisker grain will nucleate and how it nucleate under mechanical loading. Cross

sectional measurements of the microstructure usually show shallow grains at the root

of the whiskers [7, 23, 60]. Based upon this observation, two possible mechanisms for
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nucleation of surface grains are investigated using finite element simulations: grain

boundary migration and subgrain formation by lattice rotation.

In the simulations shown in Figure 2.9 and Figure 2.9, the stress needed to move

the grain boundary and form a shallow grain by boundary migration is 2 to 3 orders

of magnitude larger than the stress observed in Sn thin films in the experiments. Pre-

vious efforts arrived to the same conclusion using a nucleation model [7]. Therefore,

the grain boundary migration is not the main mechanism by which shallow grains

form in Sn films.

Under deformation, the anisotropy of Sn results in highly localized strain in the

regions near grain boundaries in the polyscrstals. The dislocations generated and

accumulated in these regions subdivide the grains into subgrains by rotating the lat-

tice with respect to the original grain [55, 56, 61]. To take into account of all these

deformation mechanisms, a finite element model that included finite deformation and

elasto-plastic anisotropy is used to simulate the mechanical responses of polycrys-

talline thin films, including the formation of subgrains due to lattice rotation. The

new subgrains are identified as regions where the lattice rotation is larger than 3◦.

Grain geometry in Figure 2.19 is generated and various textures are created by as-

signing random initial grain orientations. In all the simulations, subgrains form close

to the surface of the thin film. A special case in which most grains are oriented in the

directions [001] and [010] normal to the film surface shows subgrain nucleation in the

grains oriented in the [001] direction which is in agreement with the experiments [58].

However, the subgrains extend through the thickness of the film. Small variations of

the [001] and [010] orientations render more shallow grains. It is important to notice

that other stress relaxation mechanisms, such as grain boundary sliding and whisker

growth, that would prevent further growth of the subgrains are not included in the

current simulations.

The only correlation with texture is that subgrains form in grains oriented such

that their in plane strain components and consequently their strain energy density

are larger in agreement with previous results [62]. It is clear that lattice rotation is
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the result of the large elasto-plastic anisotropy of Sn and its relatively low yield stress.

This phenomenon may be exacerbated at temperatures above room temperature with

a more pronounced plastic deformation due to the reduction of the yield stress and

the large anisotropy of the thermal expansion coefficients of Sn. In summary, these

simulations show that lattice rotation induced by deformation may be an important

contributing mechanism to nucleate shallow grains in Sn thin films that could become

potential sites for whisker growth.
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3. RELIABILITY STUDY OF SAC SOLDERS

3.1 Introduction

In electronic industry, the packaging technology has been significantly developed.

In recent years, the demand for the miniaturization of electronics generates big con-

cerns on the safety of the package. The reliability and the performance of the package

is greatly dependent on the interconnecting materials. For environmental concerns,

the usage of Pb-free solders emphasize the importance on the interfaical reactions and

metallurgical evolution in the solder system. The most widely used solder system is

SAC (Sn-Ag-Cu), while the employment of other metals such as Ni, Au also influence

component metallizations and the solder performance [63]. The study of the Cu/Sn

alloy system focused on the IMC formation and growth during the solder operation.

The interfacial reaction between Cu and Sn under operational temperature results in

two types of IMCs: Cu6Sn5 (η) and Cu3Sn (ε). It is reported from various experi-

mental studies that the failure of the solder joints is mostly dominated by the IMC

layers [64–67] and yet the finite element simulations conducted so far are not able

to model the IMC morphology and the voids inside. The objectives of this chapter

is to provide a more accurate model to depict the fracture behavior and predict the

strength of the solder joints.

3.1.1 Fracture of IMC

Experiments by Wang et al. [68] showed that the formation of Cu6Sn5 and Cu3Sn

layers at the interface between Cu and Sn and following growth of Cu3Sn at the

expense of Cu6Sn5. Tu et al. and Liu et al. [69, 70] studied the morphology and the

orientation of Cu6Sn5 phase after thermal reflow process. The SEM and EBSD results

showed that Cu6Sn5 grains are scalloped shaped and each ’scallop’ is a single crystal.
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Cu3Sn grains are usually long and thin and columnar shaped [68]. The Cu3Sn grain

width is much smaller than the Cu6Sn5 grains.

In a solder joint, Sn and Cu are ductile while the interface IMCs are brittle. In

the literature, the fracture property of Cu6Sn5 and Cu3Sn are well studied and the

fracture toughness for the bulk and thin film are reported [71]. Extensive experiments

are performed to study the fracture behavior in the solder balls. Lee et al. [72]

performed ball pull and ball shear tests in a series of solder balls and studied the

failure modes on the fracture surfaces. The results showed that in Cu/Sn solders

the only failure mode was brittle fracture which happened in the IMC layers. This

observation agreed with the tensile experiments by Dutta et al. [73] that the cracks

propagated through the IMCs. The later experiments [64,74] found that the fracture

location was dependent on the thickness of the IMC layers. When the Cu3Sn layer

is thin, the fracture takes place at the interface between the Cu3Sn and the Cu6Sn5

layers. As the Cu3Sn layer becomes thicker, the intergranular fracture of the Cu3Sn

layer begins to be dominant.

The effects of the IMC thickness also include the solder strength. In the exper-

iments by Zhang et al. [66], the fracture strength of the solders was plotted as a

function of the IMC thickness. At low stran rates, the fracture strength dropped

from 110 MPa to 40 MPa as the IMC grew from 2 µm thick to 11 µm thick. Qin et

al. [67] performed thermal aging experiment and results showed the thickness of IMC

increased and the strength of the solder decreased during the aging.

Finite element simulations were performed to model the fracture process in the

solders balls [73,75,76]. However, the modeling scale of these FEM simulations is too

large to resolve for the IMC morphology and microstructure, and thus they not able

to capture the detailed fracture behavior. In this chapter, the fracture behavior of

Cu/Sn solder is studied in detail using a phase field damage model and simulations

are presented to show the crack propagation process and the strength of the solder.
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3.1.2 Void Nucleation Under Electromigration

In integrated circuit, the current density can reach up to 105 A/cm2 [12] due

the miniaturization of electronics. The shrinkage of size intensifies the problem of

electromigration which is generally accepted as the main reason for void nucleation in

the solder joints. The motion of the electron is caused by the direct electric current

and can diffuse the atoms. The accumulating effect of the atom diffusion is the void

formation and joint failure.

The electromigration experiments by Chang et al. [77,78] showed the void forma-

tion process in the solder bumps under current density ranging from 103 A/cm2 to

104 A/cm2. In the experiments by Ross et al. [79], the average void density ranged

from 0 to 0.4 N/µm2 and the average size ranged from 0 to 0.2 µm2, depending

upon the purity of the Cu substrate. The nucleated voids were observed mostly in

the Cu3Sn layer and near the interface between Cu3Sn and Cu. Same observations

were reported in Laurila et al. [63] and Luo et al. [80] when the materials were under

thermal annealing and thermal aging.

In this work, the phase field damage model is applied to simulate the crack propa-

gation with initial voids in the Cu/Sn system. The IMC morphology and microstruc-

ture are considered and effect of the IMC layer thickness are investigated.

3.2 Models

3.2.1 Plasticity model

When the solder bumps is under tensile or shear loading, the brittle IMCs tend to

break while Cu and Sn exhibit plastic deformation. Sn is an anisotropic material with

a body-centered tetragonal structure. The yield stress of Sn is dependent on its grain

orientation, ranging from 40 MPa to 50 MPa [14,33,38]. In the following simulations,

for simplicity the grain orientation of Sn is not considered and a perfect plasticity

model is used with the yield stress 40 MPa. In the SAC solders, the oxygen-free-high
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conductivity (OFHC) Cu is usually used for its excellent electrical conductivity and

chemical purity. Here, the yield stress is taken to be 50 MPa [81,82].

3.2.2 Damage Model

The phase field damage model is an approach describing the damage evolution by

energy minimization in the system. The total energy in the material is consist of two

part, the strain energy We and the fracture energy Wf :

W (ε, c) = We(ε, c) +Wf (c) (3.1)

where ε is the strain tensor and the variable c is a phase field damage parameter

ranging from 0 to 1. c = 0 represents the undamaged material and c = 1 represents

completely damaged material. Ω is the domain containing a crack.

According to Griffiths criterion, the fracture energy Wf is

Wf =

∫
Γ

GcdΓ (3.2)

where Gc is the surface energy for brittle materials and Γ represents the crack surface.

In phase field method, the crack surface Γ can be approximated by diffuse delta

function γ(c) [3, 83,84]:

dΓ(c,∇c) = γ(c,∇c)dV =

(
1

2l0
c2 +

l0
2
|∇c|2

)
dV (3.3)

Here, l0 is a length scale which defines the width of the damaged area [85–87]. Using

the Equation 3.3, the fracture energy can be expressed as

Wf =

∫
Ω

Gc

(
1

2l0
c2 +

l0
2
|∇c|2

)
dV (3.4)

The strain energy in the domain is

We =

∫
Ω

a(ε, c)dV (3.5)

where a(ε, c) is the strain energy density. In the damaged regions, the stiffness of the

material is degraded and the strain energy density can be decomposed into two parts:

a(ε, c) =
[
(1− c)2] a+(ε) + a−(ε) (3.6)
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where a+(ε) is the part contributing to the damage and a−(ε) is the part not affected

by the damage.

For isotropic materials, one of the decomposition proposed [86, 87] for the strain

energy density is:

a+(ε) =
λ

2
〈tr(ε)〉2 + µtr

((
ε+
)2
)

(3.7)

a−(ε) =
λ

2
(tr(ε)− 〈tr(ε)〉)2 + µtr

((
ε−
)2
)

(3.8)

where λ and µ are the Lamé constants and 〈x〉 is defined as

〈x〉 =

 x for x > 0

0 for x ≤ 0
(3.9)

ε+ and ε− are defined as

ε+ =


〈ε1〉 0 0

0 〈ε2〉 0

0 0 〈ε3〉

 (3.10)

and

ε− =


ε1 − 〈ε1〉 0 0

0 ε2 − 〈ε2〉 0

0 0 ε3 − 〈ε3〉

 (3.11)

where ε1, ε2 and ε3 are principal strains. Equation 3.6 to Equation 3.11 ensure that

damage only evolve due to the positive principal strains or simple shearing. The

rate of the fracture dissipation needs to be positive to guarantee that damage is

irreversible:

Ẇf =

∫
Ω

Gcγ̇(c,∇c)dV =

∫
Ω

Gcδcγ · ċdV ≥ 0 (3.12)

This leads to the conditions δcγ ≥ 0 and ċ ≥ 0, where δcγ = ∂cγ − ∇ · ∂∇cγ is the

functional derivative.

To couple the damage field and the deformation field, a Lagrangian is defined as:

L (u̇, ε, c) = K (u̇)−We (ε, c)−Wf (c) (3.13)

where K (u̇) is the kinetic energy:

K (u̇) =

∫
Ω

1

2
ρ|u̇|2dV (3.14)
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Here, ρ is the material density and u̇ is the velocity vector. The Euler-Lagrange

−∂We (ε, c)

∂u
=

d

dt

∂K (u̇)

∂u̇
(3.15)

leads to the conservation of momentum:

∇ · σ = ρ
∂2u

∂2t
(3.16)

where the stress tensor σ is calculated from the strain energy density:

σ =
∂a (ε, c)

∂ε
=
[
(1− c)2] ∂a+ (ε)

∂ε
+
∂a− (ε)

∂ε
(3.17)

For the damage field, the Euler-Lagrange equation is as follows

−∂We (ε, c)

∂c
− ∂Wf (c)

∂c
= 0 (3.18)

Equation 3.4 - 3.8, together with Equation 3.18 can lead to

2(1− c)a+ (ε) = Gc

(
c

l0
− l0∆c

)
(3.19)

A time-dependent form of Equation 3.19 is used here for the damage evolution [88]:

ċ =
1

η

〈
l0∆c+ 2(1− c)∂a

+ (ε)

Gc

− c

l0

〉
(3.20)

where η controls the system relaxation.

Equation 3.16 and Equation 3.20 are implemented and solved numerically in a

finite element software MOOSE (Multiphysics Object-Oriented Simulation Environ-

ment) [28]. All the following simulations are carried out using MOOSE framework.

3.3 Results

The extensive experiments have found that the fracture of the Cu/Sn solder joints

is dominated by the interface fracture. [64,65,72,73,89]. In this section, the fracture

behavior in the Cu/Sn interface is modeled to study the effect of the IMC thickness

on the solder strength.
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3.3.1 Elastic simulations

2D finite element simulations are performed under plane strain condition. Figure

3.1 shows the geometry of the simulation domain and the boundary conditions. The

left and the right boundary are fixed in the x direction and the bottom is fixed in the

y direction. A tensile loading is applied in the y direction on the top. The domain

contains four phases including Cu, Cu3Sn, Cu6Sn5 and Sn. Each phase is represented

by a different color. In Figure 3.1 (a), the thickness of Cu3Sn layer is 2 µm with

waviness of 0.5 µm and in (b), the thickness is 5 µm with the same waviness.

The domain size is 20 µm∗15 µm.The element size is 0.1 µm is the interface

between Cu3Sn and Cu6Sn5 layers and 0.15 µm elsewhere. The total element number

in the two geometries are 32414 and 35228, respectively. The length scale parameter

l0 is chosen to be 0.6 µm, which is 4 times the element size in the IMCs.

The material properties used in the simulations are list in Table 3.1. All the

materials are assumed to be isotropic and elastic. The plasticity of Cu and Sn are

not included here. The surface energy Gc is calculated from the fracture toughness

KIC reported in the literature [90–92] using the relation Gc = K2
IC/E

′ where E ′ = E

for plane stress condition and E ′ = E/(1 − v2) for plane strain condition [83]. The

fracture toughness in the interface is within the range 2 J/m2 to 20 J/m2 according

to the reference [89]. In the following simulations, the interface Gc is chosen to be 10

J/m2 while the other properties used for the interface are the same as Cu3Sn.

In many experiments [63,79,80], voids are observed in the Cu3Sn layer due to the

applied current or thermal processing. The average void density is reported within

0 to 0.4 N/µm2 [79] and the equivalent diameter of most voids is around 0.2-0.4

µm [94]. The location of the nucleated voids is mostly in the Cu3Sn layer and near

the interface between Cu and Cu3Sn. The existence of voids in brittle Cu3Sn layer

in general affects the damage nucleation and evolution. In the follosing simulations,

three different void densities are assigned to the Cu3Sn layer, 0.05 N/µm2, 0.125
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(a) Thin Cu3Sn layer

(b) Thick Cu3Sn layer

Figure 3.1. Geometry of (a) thin Cu3Sn layer and (b) thick Cu3Sn layer.

N/µm2 and 0.25 N/µm2, to study the influence of initial void density. The average

void size is 0.36*0.36 µm2 for all cases

The void evolution at the Cu/Sn interface with thin Cu3Sn layer is shown in Figure

3.2. When the initial void density is 0.05 N/µm2, it is clear that the fracture starts
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Table 3.1. Material properties used in the simulations. [71,90–93]

Young’s modulus Poissons ratio Density Surface energy

E (GPa) v ρ (g/cm3) Gc (J/m2)

Sn 50 0.36 7.3 4000

Cu6Sn5 96.9 0.309 8.45 19

IMC interface 123.2 0.319 9.14 10

Cu3Sn 123.2 0.319 9.14 22

Cu 117 0.34 8.96 9000

at the interface between Cu3Sn and Cu6Sn5 layers at 1% of applied strain. Then

the entire interface is fractured. For larger void density, the initial voids first grow

and coalesce with the neighbouring voids. As the increasing applied strain, the voids

evolve into cracks and propagate along the interface, see Figure 3.3. The reason is

that the interface is weaker than the IMCs due to the lower surface energy and it is

easier for the interface to break. This result matches with the experimental results

reported in Lee et al. [64] that the fracture happens near the interface between the

two IMCs.

For thick Cu3Sn layer, the void evolution follows the same trend for all three

different void densities, as is shown in Figure 3.4. The crack grows along the voids

which are mostly at the bottom of the Cu3Sn layer and away from the interface. So

the intergranular fracture within the Cu3Sn layer dominates the failure pattern. Same

result is observed in the experiments [64].

The effect of the Cu3Sn thickness on the strength of the solders can be studied

by the stress strain curves in Figure 3.5. For the same void density, fracture happens

earlier at the solder joints with the thicker Cu3Sn, i.e., for the void density 0.125

N/µm2, in thick Cu3Sn layer the critical stress for the fracture to start is around 0.6

GPa when the applied strain is around 0.6% while the critical stress in thin Cu3Sn

layer is almost 0.8 GPa with 0.8% applied strain. In the work by Qin et al. [67], it is
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(a) 0.7% applied strain

(b) 0.8% applied strain

(c) 0.9% applied strain

(d) 1.0% applied strain

Figure 3.2. Fracture evolution at the Cu/Sn interface with thin
Cu3Sn layer. The void densities are 0.05 N/µm2, 0.125 N/µm2 and
0.25 N/µm2 from left to right, respectively.



48

Figure 3.3. Crack evolution at the Cu/Sn interface with void density 0.25 N/µm2.

reported that the thickness of IMCs increases during thermal aging while the tensile

strength of the solder joints shows a decrease, which agrees with the simulation results.

In addition to the IMC thickness, the thermal processing also contributes to the void

nucleation [79,80]. It is another reason why the longer thermal processing causes low

strength. In the simulations, it is shown that the higher the void density, the easier

for the solder to break, i.e., for thick Cu3Sn layer, the critical stress to initiate fracture

drops from 0.8 GPa to 0.4 GPa when the void density increases from 0.05 N/µm2

to 0.25 N/µm2. However, the stress observed in the experiments is one magnitude

smaller than the stress shown in the simulations. The reason accounts for this large

difference is that the plasticity of Sn and Cu is not included here. The simulations

with plasticity are presented in the following.

3.3.2 Plastic simulations

The above simulation reuslts show the capacity of the phase field damage model.

To further model the plasticity behavior of Cu and Sn, the perfect plasticity model

described in 3.2 is used. The same geometries and boundary conditions shown in

Figure 3.1 are used. The material properties are listed in Table 3.2.

The fracture evolution at Cu/Sn interface when Cu and Sn plasticity is coupled

is presented in Figure 3.6 and Figure 3.7. Similar fracture behavior is observed as
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(a) 0.5% applied strain

(b) 0.6% applied strain

(c) 0.7% applied strain

(d) 0.8% applied strain

(e) 1.0% applied strain

Figure 3.4. Fracture evolution at the Cu/Sn interface with thick
Cu3Sn layer. The void densities are 0.05 N/µm2, 0.125 N/µm2 and
0.25 N/µm2 from left to right, respectively.
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(a) void density = 0.05 N/µm2 (b) void density = 0.125 N/µm2

(c) void density = 0.25 N/µm2

Figure 3.5. Stress strain curve comparison for different Cu3Sn thickness.

Table 3.2. Material properties used in the simulations with plasticity.
[14,71,81,82,90,93]

Young’s modulus Poissons ratio Density Yield Stress Surface energy

E (GPa) ν ρ (g/cm3) σY (MPa) Gc (J/m2)

Sn 50 0.36 7.3 40 /

Cu6Sn5 96.9 0.309 8.45 / 19

IMC

interface
123.2 0.319 9.14 / 10

Cu3Sn 123.2 0.319 9.14 / 22

Cu 117 0.34 8.96 50 /
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Figure 3.2 and Figure 3.4. When the Cu3Sn layer is thin, the crack propagates along

the IMC interface. In the simulations with thick Cu3Sn layer, the damage initiates

at the IMC interface when the void density is low while the damage grows from the

initial voids when the void density is high. The fracture location shifts from the IMC

interface to Cu3Sn as the thickness of Cu3Sn layer increases, which is the same as the

experimental results in Zhang et al. [66].

The stress strain curves in Figure 3.8 show the effects on plasticity of Cu and Sn.

When the plastic behavior is considered, the fracture stress decreases from about 800

MPa to about 25 MPa, which is the same magnitude as the experimental results [67].

For low void densities, the fracture stress is the same for two geometries because

the fracture starts at the IMC interface, see Figure 3.8 (a) and (b). When the void

density is high, a decrease of 4 MPa in fracture stress is observed in Figure 3.8 (c)

for thicker Cu3Sn layer.

3.3.3 Plastic simulations with Cu3Sn grain boundary

While the above plastic simulations do provide a realistic prediction of fracture

strength, the reason for the fracture location shift needs to be studied further. In the

experiments by Lee et al. [64], TEM images show the structure evolution of the Cu3Sn

layer during the thermal aging, which may explains the shifting of fracture location.

In Figure 3.9, two geometries are shown to capture Cu3Sn grain morphology.

In the initial stage of thermal aging experiments on solders joints, large, micro-

sized, scalloped shaped Cu6Sn5 grains are formed, followed by the nucleation of a layer

of elongated Cu3Sn grains, with grain width up to a few hundreds nm [64,68,70]. The

cross sectional microstructure is represented in Figure 3.9 (a). This geometry contains

3 Cu6Sn5 grains and 24 Cu3Sn grains with average grain width 0.8 µm. The thickness

of Cu3Sn layer is 2 µm with waviness of 0.5 µm.

During thermal aging, the thickness of the IMCs layer increases [66, 67]. In the

experiments of Cu-Sn-Cu sandwhich-like samples, it is observed that Cu3Sn layer
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(a) 0.03% applied strain

(b) 0.04% applied strain

(c) 0.05% applied strain

(d) 0.06% applied strain

Figure 3.6. Fracture evolution at the Cu/Sn interface with thin
Cu3Sn layer. The void densities are 0.05 N/µm2, 0.125 N/µm2 and
0.25 N/µm2 from left to right, respectively. The plasticity of Cu and
Sn are coupled.
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(a) 0.03% applied strain

(b) 0.04% applied strain

(c) 0.05% applied strain

(d) 0.06% applied strain

Figure 3.7. Fracture evolution at the Cu/Sn interface with thick
Cu3Sn layer. The void densities are 0.05 N/µm2, 0.125 N/µm2 and
0.25 N/µm2 from left to right, respectively. The plasticity of Cu and
Sn are coupled.
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(a) void density = 0.05 N/µm2 (b) void density = 0.125 N/µm2

(c) void density = 0.25 N/µm2

Figure 3.8. Stress strain curve comparison for different Cu3Sn thick-
ness. The plasticity of Cu and Sn are coupled.

grow at the expense of the previously formed Cu6Sn5 layer [64, 68, 69, 95–97]. The

TEM images show that nucleation of new Cu3Sn grains during the solid state thermal

aging and the single-stack structure becomes a multi-stack structure [64, 98]. The

geometry of the solders under longer thermal aging time is shown in Figure 3.9 (b).

The thickness of Cu3Sn layer is 5 µm with the same waviness and number of grains

is 78.

In the geometries in Figure 3.9, the element size is 0.04 µm in Cu3Sn grains, grain

boundaries and the interface between Cu3Sn and Cu6Sn5. The average element size

is 0.14 µm in the Cu6Sn5 layer and 0.3 µm elsewhere. The total element number

in the simulation geometries are 60404 and 122151, respectively. The length scale
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(a) Thin Cu3Sn layer

(b) Thick Cu3Sn layer

Figure 3.9. Geometries with Cu3Sn grain boundaries.

parameter l0 is chosen to be 0.16 µm, which is 4 times the element size in Cu3Sn

grains and grain boundaries.

The material properties are listed in Table 3.3. The properties of Cu3Sn grain

boundary are the same as the Cu3Sn grains except the surface energy is taken to be

5 J/m2.
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Table 3.3. Material properties used in the simulations with grain
boundaries. [14, 71,81,82,90,93]

Young’s modulus Poissons ratio Density Yield Stress Surface energy

E (GPa) ν ρ (g/cm3) σY (MPa) Gc (J/m2)

Sn 50 0.36 7.3 40 /

Cu6Sn5 96.9 0.309 8.45 / 19

IMC

interface
123.2 0.319 9.14 / 10

Cu3Sn 123.2 0.319 9.14 / 30

Cu3Sn grain

boundary
123.2 0.319 9.14 / 5

Cu 117 0.34 8.96 50 /

Similar to the above simulations, three different initial void densities are used,

0.05 N/µm2, 0.125 N/µm2 and 0.25 N/µm2. The simulation without initial voids are

also studied. The average void size is 0.2*0.2 µm2 for all cases and the distribution

of the initial voids is shown in Figure 3.10.

(a) no initial voids (b) void density 0.05

N/µm2

(c) void density 0.125

N/µm2

(d) void density 0.25

N/µm2

Figure 3.10. Initial void distribution. The initial voids are indicated in white.
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The crack evolution at the Cu/Sn interface with thin Cu3Sn layer is shown in

Figure 3.11 and the volumetric stress evolution is shown in Figure 3.12. When ap-

plying a tensile loading to the domain, the cracks first nucleate at the Cu3Sn grain

boundaries because the value of surface energy Gc in the grain boundary is half of

the IMC interface. Since the Cu3Sn layer is a single-stack structure with columnar

grains, the grain boundary cracks grow vertically and extend into the IMC interface.

As the applied strain is increased, the crack keeps propagating horizontally along the

IMC interface and the entire domain breaks. In this case, the presence of Cu3Sn grain

boundaries does not have a significant influence the crack propagation comparing to

Figure 3.6.

(a) 0.027% applied strain

(b) 0.029% applied strain

(c) 0.031% applied strain

Figure 3.11. Fracture evolution at the Cu/Sn interface. The Cu3Sn
layer is 2 µm. The void densities are 0, 0.05 N/µm2, 0.125 N/µm2

and 0.25 N/µm2 from left to right, respectively.
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(a) 0.027% applied strain

(b) 0.029% applied strain

(c) 0.031% applied strain

Figure 3.12. Volumetric stress evolution at the Cu/Sn interface. The
Cu3Sn layer is 2 µm. The void densities are 0, 0.05 N/µm2, 0.125
N/µm2 and 0.25 N/µm2 from left to right, respectively.

For the geometry with a thick Cu3Sn layer, the crack evolution is shown in Figure

3.13 and the volumetric stress evolution is shown in Figure 3.14. Similar to Figure

3.11, the cracks also initiate at the grain boundaries. In this geometry, the Cu3Sn layer

is now a multi-stack structure with both vertical and horizontal grain boundaries.

When under a tensile loading in the y direction, the cracks prefer to grow horizontally

within the grain boundaries before extending to the IMC interface. Same result is

reported in the literature [64] that intergranular fracture of Cu3Sn grains is observed

when the solder ball is under 1000 hour thermal aging and a thick Cu3Sn layer is
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formed. This results reveal the importance of Cu3Sn grain structure on the fracture

evolution in Cu/Sn solders.

(a) 0.022% applied strain

(b) 0.03% applied strain

(c) 0.04% applied strain

(d) 0.048% applied strain

Figure 3.13. Fracture evolution at the Cu/Sn interface. The Cu3Sn
layer is 5 µm. The void densities are 0, 0.05 N/µm2, 0.125 N/µm2

and 0.25 N/µm2 from left to right, respectively.

The effect of the Cu3Sn thickness on the strength of the solders can be studied by

the stress strain curves in Figure 3.15. The stress strain curves are extracted from
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(a) 0.022% applied strain

(b) 0.03% applied strain

(c) 0.04% applied strain

(d) 0.048% applied strain

Figure 3.14. Volumetric stress evolution at the Cu/Sn interface. The
Cu3Sn layer is 5 µm. The void densities are 0, 0.05 N/µm2, 0.125
N/µm2 and 0.25 N/µm2 from left to right, respectively.
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the simulations without initial voids. The figure shows the fracture stress decreases

with the thickness of the Cu3Sn layer. The same trend is reported in many literatures

[66, 67, 99]. The critical stress for the crack to nucleate is around 25 MPa and the

reported fracture stress from the experiments is around 30-40 MPa [67]. The difference

may due to the size of the simulation domain and texture of the IMCs.

Figure 3.16 presents the stress strain curves for the simulations with different ini-

tial void densities. In both cases, the void density doesn’t appear to have a significant

effect on the fracture behavior. This is due to the large value of surface energy Gc

in the Cu3Sn grains compared to the grain boundary and the IMC interface, which

results in the nucleation and propagation of the cracks before growth of the initial

voids.

(a)

Figure 3.15. Stress strain curve comparison for different Cu3Sn thickness.

3.4 Summary

The reliability of the Cu/Sn solders is studied in this chapter using the phase field

damage model. The model is able to describe the fracture evolution in the material by

energy minimization and the driving force for the fracture is the mechanical loading.

2D finite element simulations are performed under plane strain condition and

the effects of IMC thickness and void density are investigated. Three different void
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(a) Thin Cu3Sn layer (b) Thick Cu3Sn layer

Figure 3.16. Stress strain curve comparison for different void densities.

densities are assigned in the simulations and the result show that solder joints with

higher void density tend to have lower strength. The fracture occurs at different

locations depending on the Cu3Sn thickness. For thin Cu3Sn layer, the fracture is

observed at the interface between the two IMCs while for thick Cu3Sn layer, the crack

propagates along Cu3Sn grain boundary. The increasing thickness of Cu3Sn layer

results in a decrease in the solder strength. These results agree with the experiments

[64,100].

In summary, the phase field damage model used in this chapter is able to predict

the fracture behavior of the Cu/Sn solder joints. The reliability and the performance

of the solders can be improved by restricting the growth of the IMCs and the nucle-

ation of the voids.
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4. STACKING FAULT STRENGTHENING OF ALLOYS

Note part of this chapter is reproduced from “Effects of the Stacking Fault Energy

Fluctuations on the Strengthening of Alloys”in Acta Materialia, 164, pp. 1-11 [101].

4.1 Introduction

Predictive models of flow, strengthening, ductility, fatigue, and other macroscopic

quantities are fundamental to advance the design of alloys by selecting the compo-

sition required to achieve a specific purpose. Therefore, it is of key importance to

understand how lattice distortion, elastic modulus misfit, and stacking fault or chem-

ical misfit contribute to strengthening of alloys. There are multiple theories [102–105]

and simulations [106–109] for alloys and super alloys that focus on strengthening due

to impenetrable solutes. The theoretical work of Hirch and Kelly [110], on the other

hand, focuses on the strengthening of alloys due to the presence of solutes with lower

stacking fault energy.

High entropy alloys (HEAs) are solid-solution alloys with five or more combined

elements in nearly equiatomic concentrations. The name derives from the concept

that entropy of mixing is responsible for stabilizing the phases in a many components

system. Other names are also used for these alloys, including, multicomponent con-

centrated solid solution alloy and multi-principal element alloy [111]. These materials

exhibit superior functional properties, including thermal, electric, corrosion and ox-

idation resistance as well as improved mechanical properties. For example, at room

temperature, the yield strength for the BCC AlCoCrFeNiTix alloy system is about

3 GPa and in a temperature ranging from 4.2 K to 300 K, Al0.5CoCrCuFeNi can

reach 30% plastic strain [112–116]. Most models and simulations of HEAs focus on
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the effects of lattice distortion, but there are recent approaches that also include the

chemical misfit [107,116–119].

Molecular dynamics simulations of the FCC HEA Co30Fe16.67Ni36.67Ti16.67 by Rao

et al. [120] show that the value of the stacking fault energy depends locally on the

composition and it is lower than that in pure FCC materials. The structure of edge

and screw a/2 〈110〉 dislocations obtained in these simulations shows variations of

the stacking fault width along the dislocation line. Molecular dynamics simulations

also show that the critical stress to move a dislocation in Co30Fe16.67Ni36.67Ti16.67 is

increased by approximately one order of magnitude with respect to pure Ni [120].

Rao et al. find a similar range of yield stress to that measured in the Cantor al-

loy CrMnFeCoNi [114]. Experiments in CrMnFeCoNi show large variability in the

stacking fault width in agreement with atomistic simulations [121]. Recent simula-

tions of FCC HEAs predict negative values of stacking fault energies that indicate

the metastability of the material [122,123].

Curtin et al. [117, 118, 124–126] derive an atomistic based model to predict the

critical strength of HEAs. In this theory, strengthening is the result of local fluctua-

tions which impede the motion of dislocations. The flow stress at zero temperature

obtained by Curtin et al. is:

τc =
π

2

∆Eb
bLcwc

(4.1)

where ∆Eb is an energy barrier, Lc is the length of a dislocation segment fluctuation

in the direction of the dislocation line, wc is the amplitude of the dislocation bowing,

and b is the magnitude of the Burgers vector.

In this work, dislocation dynamics simulations are used to predict the effect of

the stacking fault variability on the strengthening of Ni-based alloys. To this end,

the evolution of partial dislocations is simulated with a phase field dislocation model

(PFDM) for FCC metals [4, 5] in which the stacking fault energy is varied locally

to qualitatively represent the energy landscapes of HEAs. Relevant stacking fault

strengthening models are reviewed in Section 4.2. The PFDM is derived in Section

4.3 with emphasis on the incorporation of the gamma-surface [127]. Several examples
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that highlight the capabilities of PFDM are described in Section 4.4. The examples

include, the dependency of the yield stress on the stacking fault energy in Section

4.4.1, the decorrelation of partial dislocations in the presence of impenetrable parti-

cles in Section 4.4.2, and the strengthening of alloys with penetrable particles which

have different stacking fault energy values in Section 4.4.3. In Section 4.5, PFDM

simulations of the evolution of partial dislocations in a stacking fault energy land-

scape with local fluctuations are used to model the response of HEAs. In particular,

the yield stress dependency on these fluctuations is predicted and compared with a

theoretical strengthening model.

The simulations predict a range of behaviors in agreement with observation, in-

cluding: a yield stress increase with decreasing stacking fault energy; decorrelation of

the leading and trailing partial dislocations when extended dislocations interact with

impenetrable obstacles [128, 129]; strengthening in alloys with penetrable particles

which have different stacking fault energy values [110, 130]. Finally, the evolution of

partial dislocations in stacking fault energy landscapes with local fluctuations predicts

an increase of the yield stress. Furthermore, along with the strengthening character-

istics of the system, the simulations also predict a maximum of the yield stress when

the size of the regions where different values of stacking fault energy are assigned,

approaches the size of the average equilibrium stacking fault width in the alloy.

4.2 Stacking fault strengthening

Extended dislocations can lower their energy by being in regions with lower stack-

ing fault energy. Therefore, an external stress needs to be applied to move a dislo-

cation from a region with stacking fault energy γ1, to another with larger stacking

fault energy γ2. This critical stress is calculated here, following the work of Hirsch

and Kelly [110]. The forces on each partial dislocation due to an external stress σ,
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the elastic interaction with the other partial dislocation, and the stacking fault are in

equilibrium, therefore:

K

R12

+ γ1 + σ · b1 · n = 0,

− K

R12

− γ2 + σ · b2 · n = 0.

(4.2)

where R12 is the distance between the two dislocations, b1 and b2 are the Burgers

vectors of the partial dislocations, n is the normal of the slip plane, and

K =
µb2

1(2− ν)

8π(1− ν)

(
1− 2νcos2θ

2− ν

)
(4.3)

where θ is the angle between the Burgers vector of the full dislocation b = b1 + b2

and the dislocation line direction, µ is the shear modulus, and ν is the Poisson’s ratio.

In Equation 4.2, it is assumed that the boundary between the two regions is straight

and parallel to the full dislocation line.

Adding the two Equations 4.2 and noting that (b1 + b2)T · σ ·n = τb, where τ is

the resolved shear stress for the full dislocation, the critical resolved shear stress to

move the extended dislocation is [110,130]:

τγ =
γ2 − γ1

b
. (4.4)

Equation 4.4 indicates that strengthening is expected only if γ2 > γ1. The equi-

librium distance between the two dislocations can also be obtained from Equation 4.2

as:

R12 =
2K

(γ1 + γ2) + σ · (b2 − b1) · n
(4.5)

4.2.1 Stacking fault strengthening in alloys

In alloys containing precipitates with lower stacking fault energy than the matrix,

extended dislocations would reduce their energy by being in the precipitates. This

results in an increase on the critical stress needed to make dislocations glide. A

theory of stacking fault strengthening in alloys was developed by Hirsch and Kelly

[110] extending Suzuki’s work [130] for extended dislocations gliding in a matrix with
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intrinsic stacking fault energy, γm, and circular particles with intrinsic stacking fault

energy, γp, with γm > γp.

The critical stress needed to move an extended dislocation from the particle is

derived with the help of the precipitation strengthening here and it agrees with the

results of Hirsch and Kelly [110]. Under an externally applied stress, dislocations bow

out between the solutes and in equilibrium the line tension, T , balances the maximum

force, Fmax, that an obstacle can sustain. At zero-temperature the increase in the

critical stress needed to overcome the obstacles is [102]:

∆τc =

(
2T

bL

)
βc (4.6)

where L is the effective distance between precipitates and

βc =
Fmax
2T

. (4.7)

Note that in Equation 4.6, ∆τc is the increment of the yield stress compared to

the yield stress of the matrix without the precipitates. In this model, strengthening

is the result of dislocations being pinned by precipitates. This mechanism is generally

divided into two categories: strong and weak pinning [102]. The strong-pinning or

Friedel’s theory [103,131,132] treats the solutes as localized point obstacles that pin

the dislocations. The zero-temperature critical stress at which the dislocations are

able to overcome the point obstacles [102] with Friedel’s theory is:

∆τF =

(
2T

b

)
β

3
2
c c

1
2 , (4.8)

where c is the number of obstacles per unit area. In the weak-pinning or Labusch’s

theory [104, 133, 134] a characteristic length scale, w, within which solutes interact

with dislocations is added. The zero-temperature critical stress for this model is:

∆τL = C

(
2T

b

)
β

4
3
c (wc2)

1
3 . (4.9)

where C is a factor of order one that depends on the kind of interaction between

the obstacles and the dislocations [104,105]. The force on the dislocation due to the

difference between the stacking fault in the matrix and in the solutes is:

Fmax = ∆γLd, (4.10)
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where Ld is the length of the dislocation inside the particle at the critical breaking

condition. The value of Ld depends on the stacking fault energy, the size of the

particle, r, and the stacking fault width of the dislocation inside the particle,

Rp =
K

γp
(4.11)

The analytical estimates of Ld derived by Hirsch and Kelly [110] for different

regimes are used here. When r > Rp,

Ld =

√
Kr

γ̄
, (4.12)

where γ̄ = 0.5(γp + γm), and for r < Rp,

Ld = 2r, (4.13)

It is important to notice that the regime transition at Rp is dominated not only by

the particle size but also by K/γ̄. Furthermore, comparing Equations 4.12 and 4.13 it

is clear that the strengthening of larger particles scales with r1/2 reducing the effective

strengthening mechanism compared to smaller particles. Replacing Equations 4.10,

4.12, and 4.13 in Equation 4.8, the critical stress for Friedel’s statistics is:

∆τF =


2Tr3/2c1/2

b5/2

(
∆γb
T

)3/2
if r ≤ Re

2Tr3/4c1/2

b7/4

(
∆γ
2T

√
Kb
γ̄

)3/2

if r ≥ Re

(4.14)

Similarly, the critical stress for Labusch’s statistics can be obtained replacing

Equations 4.10 , 4.12, and 4.13 in Equation 4.9

∆τL =

C
2Tr5/3c2/3

b7/3

(
∆γb
T

)4/3
if r ≤ Re

C 2Tc2/3r
b5/3

(
∆γ
2T

√
Kb
γ̄

)4/3

if r ≥ Re

(4.15)

where w = r is used in Equation 4.15.

Figure 4.1 shows the dependency of the increment of the yield stress on the size

of the particles with f = πr2c = 0.1, T = αµb2, α = 0.12, ∆γ = 135.52 mJ/m2, b =

0.25 nm, C = 1, and θ = π
2

in Equation 4.3. The dashed lines indicate that Equations
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4.14 and 4.15 are not valid when r approaches Rp but a maximum is expected when

the particle size is close to Rp.

Figure 4.1. Critical stress increment due to the presence of precipi-
tates using Equations 4.14 to 4.15.

4.3 Phase field dislocations model

In the PFDM, a displacement in a slip system in FCC materials can be described

by the sum scalar phase field variables ξα(x) as:

∆(x) = b
3∑

α=1

ξα(x)sα. (4.16)

where s1 =
√

2/2[01̄1], s2 =
√

2/2[101̄], and s3 =
√

2/2[1̄10] are the directions of the

three Burgers vectors in the slip plane (111).

For example, the displacement of the atoms in the stacking fault area shown as

Region 2 in Figure 4.2 can be expressed as:

∆2 = b1
p =

√
2b

6
[21̄1̄] =

√
2b

6
s2 −

√
2b

6
s3 (4.17)
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Likewise, the displacement in Region 3 in Figure 4.2 is the sum of the the two

Shockley partials:

∆3 = b1
p + b2

p =

√
2b

6
[21̄1̄] +

√
2b

6
[12̄1] = bs1 (4.18)

which corresponds to ξ1 = 1 and ξ2 = ξ3 = 0 in Equation 4.16. Integer values of

the phase field variables, see Equation 4.18, indicate that the crystal remains with

perfect crystalline structure.

Figure 4.2. Sketch of a stacking fault region in FCC crystals. The
black lines are the leading and trailing partial dislocations. The ar-
rows indicate the direction of the Shockley partials. The blue atoms
are the A layer and the red atoms are the B layer in the FCC stacking
sequence.

To identify stacking fault regions the projection of the displacement on a Burgers

vector direction can be used. For example, Hunter et al. [4] utilized the projection of

the displacement on the Burgers vector of a perfect dislocation, s1, which results in:

∆2 · s1 =
b

6
[21̄1̄] · [11̄0] = 0.5b (4.19)

Cao et al. [5] used the projection of the displacement on one of the partial dislo-

cation Burgers vector:

∆2 · b2
p =

b2

6
√

3
[21̄1̄] · [12̄1] = 0.289b (4.20)
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and

∆2 · b1
p =

b2

6
√

3
[21̄1̄] · [21̄1̄] = 0.578b. (4.21)

4.3.1 Dislocation energies

The evolution of the phase field variables introduced in Equation 4.16 follows from

the minimization of the total energy of the dislocation ensemble [5,135]. This energy

is composed of the strain energy, Ee, and the misfit energy, Em, that accounts for

the formation of stacking faults through the introduction of the parametrization of

the gamma-surface [4, 136] and it is described in the following sections.

Strain energy

The plastic distortion βpij can be written in terms of the phase field variables as

βpij(x) =
1

d

N∑
α=1

bαξα(x)mα
i s

α
j (4.22)

where N is the total number of slip systems, d is the distance between slip planes,

and mα is the normal to the slip plane α. The total distortion can be obtained using

the elastic Green’s function Gij [13, 51] as

βij(x) = −Gik,l ? (Cklmnβ
p
mn(x)),j (4.23)

where Cklmn is the tensor of elastic constants and (?) represents the convolution

operator. The strain energy can be calculated as

Ee =
1

2

∫
Ω

Cijkl(εij − εpij)(εkl − ε
p
kl)d

3x (4.24)

where Ω is the domain, the strain εij = sym(βij) is the symmetric part of the distor-

tion, and εpij = sym(βpij) is the plastic strain. To express the strain energy in terms

of the plastic strain only, the total strain can be obtained from Equation 4.23 as

εij(x) = −
∫
Ĝjk(k)kiklCklmnε̂pmn(k)eik·x

d3k

(2π)3
+ ε̄pij + εbcij (4.25)
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where the symbolˆdenotes the Fourier transform of a function, ki are the wave vectors,

the symbol −
∫

is the principal value of the integral, and the average plastic strain is

ε̄pij =
1

Ω

∫
Ω

εpijd
3x (4.26)

The last term in Equation 4.25 is determined by the boundary conditions [5]. If

the average strain ε̄ij is controlled:

εbcij = ε̄ij − ε̄pij (4.27)

while in the stress controlled case

εbcij = Sijklσ
ap
ij . (4.28)

Inserting Equation 4.25 in Equation 4.24, the strain energy is obtained as a func-

tion of plastic strain for the strain controlled case:

Ee = −
∫

1

2
Âmnuv(k)ε̂pmn(k)ε̂p∗uv(k)

d3k

(2π)3
− ε̄ij

∫
Ω

Cijklε
p
kl(x)d3x+

V

2
Cijklε̄ij ε̄kl (4.29)

where the symbol ∗ denotes the complex conjugate, and

Âmnuv(k) = Cmnuv − CkluvCijmnĜkikjkl. (4.30)

The strain energy for the stress controlled case can be obtained by inserting Equa-

tion 4.25 in Equation 4.24 and adding a term −V σapij ε̄
p
ij representing the relaxation of

the elastic energy during stress controlled condition. The elastic energy for the stress

controlled case results:

Ee = −
∫

1

2
Âmnuv(k)ε̂pmn(k)ε̂p∗uv(k)

d3k

(2π)3
− V

2
Sijklσ

ap
ij σ

ap
kl − σ

ap
ij ε̄

p
ij. (4.31)

Misfit energy

The gamma-surface is the energy per unit area that dislocations experience when

the crystal is subjected to a shear displacement [127]. Figure 4.3 shows this energy

density as a function of the displacement in the [11̄0] direction for Nickel [136].
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Figure 4.3. Stacking fault energy profile in the direction [11̄0].

The incorporation of the gamma-surface in the PFDM [4, 136] makes it possible

to predict the equilibrium stacking fault width of several FCC metals [4], the nucle-

ation of partial dislocations in nanocrystalline materials [5], and twinning [137] in

good agreement with atomistic simulations and experiments. The gamma-surface is

introduced as the integral over the slip planes of the energy per unit area obtained

from atomistic simulations [4]:

Em =
N∑
α=1

∫
Sα

φ[ξ]d2x, (4.32)

where the integral is over the slip planes Sα. A representation as a 2D Fourier series

in terms of the displacement on the slip planes proposed by Schoeck [138] is used in

the PFDM approach [4]:

φ(ξ1, ξ2, ξ3) ={c0 + c1[cos 2π(ξ1 − ξ2) + cos 2π(ξ2 − ξ3) + cos 2π(ξ3 − ξ1)]

+ c2[cos 2π(2ξ1 − ξ2 − ξ3) + cos 2π(2ξ2 − ξ3 − ξ1) + cos 2π(2ξ3 − ξ1 − ξ2)]

+ c3[cos 4π(ξ1 − ξ2) + cos 4π(ξ2 − ξ3) + cos 4π(ξ3 − ξ1)]

+ c4[cos 4π(3ξ1 − ξ2 − 2ξ3) + cos 4π(3ξ1 − 2ξ3 − ξ3) + cos 4π(3ξ2 − ξ3 − 2ξ1)

+ cos 4π(3ξ2 − 2ξ3 − ξ1) + cos 4π(3ξ3 − ξ1 − 2ξ2) + cos 4π(3ξ3 − 2ξ1 − ξ2)]

+ a1[sin 2π(ξ1 − ξ2) + sin 2π(ξ2 − ξ3) + sin 2π(ξ3 − ξ1)]

+ a3[sin 4π(ξ1 − ξ2) + sin 4π(ξ2 − ξ3) + sin 4π(ξ3 − ξ1)]}.

(4.33)
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The material-dependent coefficients, c0, c1, c2, c3, c4, a1, a3, are determined by fit-

ting this approximation to the gamma-surface obtained by atomistic simulations. The

values of these coefficients for Nickel are listed in Table 4.1 [4].

Table 4.1. Coefficients (mJ/m2) used in Equation 4.33 to parametrize
the gamma-surface for Nickel [4].

Material c0 c1 c2 c3 c4 a1 a3

Ni 410.0 -52.0 -120.6 35.2 0.6 -66.2 -75.3

A simplified form of the expression in Equation 4.33 can be written as an explicit

function of the intrinsic stacking fault energy, γ, and the unstable stacking fault

energy, γu, [4, 136,139,140]:

φ(ξ) = γ sin2 (πξ) + (γu − γ/2) sin2 (2πξ) . (4.34)

The advantage of this simplification is that depends directly on γ and γu, but the

limitation is that Equation 4.34 can be used only for displacements represented with

a single phase field.

Energy minimization

The equilibrium configuration of the a dislocation ensemble is obtained from the

minimization of the total energy. This results in a system of α coupled equations for

the phase field variables of the form:

δEe[ξ(x)] + Em[ξ(x)]

δξα(x)
= 0 (4.35)

Materials parameters for Ni, listed in Table 4.2 are used in all the simulations

unless otherwise noted.
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Table 4.2. Material parameters for Nickel [136,141].

µ (GPa) ν b (nm) γ(mJ/m2) γu(mJ/m2)

75.0 0.33 0.249 84.7 211.7

4.4 Examples

In this section several examples of the behavior of extended dislocations are pre-

sented to illustrate the capabilities of the PFDM. The dependency of the yield stress

on the stacking fault energy and the interaction of extended dislocations with obsta-

cles are studied. The elastic constants used in the simulations are listed in Table 4.2,

while different values of the unstable and intrinsic stacking fault energies are chosen

for each simulation.

4.4.1 Yield stress and stacking fault width calculation

Atomistic and dislocation dynamics simulations show that the equilibrium stack-

ing fault width depends on the intrinsic and the unstable stacking fault energies

[4, 142]. Therefore, both quantities influence the structure of the dislocation and the

response of the material. To study the effect of the stacking fault energies on the

yield stress PFDM simulations are performed in which an extended edge dislocation

is placed in a domain with the dimension 512b × 256b × 32b. Different values of

unstable and intrinsic stacking fault energies are assigned to the domain. The yield

stress is defined as the minimum externally applied stress needed for the dislocation

to glide. Figure 4.4 shows the predicted yield stress as a function of the difference

between the unstable and intrinsic stacking fault energies. The arrow indicates the

value of yield stress predicted with the values in Table 4.2 for Nickel. There is a linear

relationship between the yield stress, τc, and the difference between the unstable and

intrinsic stacking fault energies. Table 4.3 contains selected values of yield stress and

the equilibrium stacking fault width obtained with the PFDM simulations. From the
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table, the stacking fault width Re decreases with respect to the intrinsic stacking fault

energy, which is in agreement with Equation 4.11.

Figure 4.4. Simulated yield stress τc versus γu − γ.

Table 4.3. Calculated critical stress for a uniform distribution of
stacking fault energy with γu = 211.7 mJ/m2. The error in Re is the
grid size.

γ (mJ/m2) τc (MPa) Re (nm)

35.0 400 5.2± 0.25

72.0 235 3.0± 0.25

84.7 220 2.6± 0.25

127.1 145 1.7± 0.25

4.4.2 Solute strengthening in alloys

In the presence of impenetrable particles, dislocations bend to enter the regions

between two neighboring particles. A decorrelated motion of the partial dislocations

is observed in these channels, and as a result the stacking fault width changes as the
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two partial dislocations move [108,128,129]. The response of an extended dislocation

interacting with an array of impenetrable circular particles under the applied stress

in different directions is studied in this section.

The evolution of an extended edge dislocation with full Burgers vector in the

direction [110] is shown in Figures 4.5, 4.6, and 4.7. The Burgers vectors of the

decorrelated partial dislocations are indicated in the Figure 4.2. The projection of

the applied stress on the slip plane is indicated in each configuration and the stacking

fault is shown in green. The radius of the particles is 11.2 nm and the distance

between two neighbouring particles is 9.6 nm. The elastic constants and the stacking

fault energy used in the simulations are listed in Table 4.2.

In Figure 4.5, the applied stress is in the same direction as the Burgers vector of

the extend dislocation. The magnitude of the stress resolved on both the leading and

trailing dislocations are the same. The extended dislocation bends in the channels

between two neighbouring particles and when the applied stress is sufficient enough

the dislocation overcomes the particles leaving behind loops.

Figure 4.5. PFDM simulation showing an extended dislocation inter-
acting with impenetrable particles. The resolved shear stress is the
same on both partial dislocations.

Figure 4.6 shows the evolution of the dislocation when the projection of the ap-

plied stress on the slip plane forms a 60o angle with the [110] direction. Under this

condition, the resolved shear stress is zero for the leading partial. Therefore, the lead-

ing partial blocks the movement of the trailing partial and the stacking fault width

decreases.
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Figure 4.6. PFDM simulation showing an extended dislocation inter-
acting with impenetrable particles. The resolved shear stress is zero
for the leading partial.

In Figure 4.7 the resolved shear stress on the trailing dislocation is zero. The

increase in the stacking fault width is evident in the figure. This decorrelation mech-

anism was observed in super alloys [128, 129, 139] and it is of key importance to un-

derstand deformation twinning [106,108] and strengthening that cannot be explained

without taking into account partial dislocations [107,109].

Figure 4.7. PFDM simulation showing an extended dislocation inter-
acting with impenetrable particles. The resolved shear stress is zero
for the trailing partial.

4.4.3 Stacking fault strengthening in alloys

PFDM simulations of an extended edge dislocation moving through an array of

particles are performed in a 512b × 256b × 32b domain. The material properties of

Nickel listed in Table 4.2 are used in the matrix. The elastic constants of Ni are also
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used in the particles, while the effects of different values of the stacking fault energy

are studied. The intrinsic stacking fault energy γp and the unstable stacking fault

energy γup in the particles are listed in Table 4.4. The radius of the particles is 28.2

nm and the distance between two particles is 9.9 nm. In all the cases, the projection

of the applied stress on the slip plane is in the direction [110].

Table 4.4. Stacking fault energy in the particles in the simulations.

Case 1 Case 2 Case 3 Case 4

γp (mJ/m2) 43.9 175.4 84.7 84.7

γup (mJ/m2) 211.7 211.7 105.8 423.4

(a) Case 1

(b) Case 2

Figure 4.8. An extended dislocation passing through an array of
particles with (a) lower and (b) higher intrinsic stacking fault energy
than the matrix.

Figure 4.8 (a) shows the evolution of the dislocations when the intrinsic stacking

fault energy in the particles is 43.9 mJ/m2 which is lower than the matrix. The
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leading partial remains straight, while the trailing partial curves inside the particle

producing a larger stacking fault width. The applied stress required to move the

extended dislocation away from the particles needs to be increased. The simulation

for Case 2 is shown in Figure 4.8 (b). The intrinsic stacking fault energy in the

particles is larger than the matrix. The stacking fault width is smaller inside the

particles and no strengthening is observed which is in agreement with Equations 4.14

and 4.15 for r > Rp.

In Cases 3 and 4, γup is modified with respect to the unstable stacking fault energy

of the matrix. When the unstable stacking fault energy is reduced in Case 3 in Figure

4.4.3 (a), the dislocation segments inside the particles advance ahead of the segments

in the matrix and no strengthening is observed. For Case 4, shown in Figure 4.4.3

(b), the dislocation bows out and leaves loops inside the particles that shrink and

disappear to reduce the energy. The stress required to move the extended dislocation

is greatly increased.

(a) Case 3

(b) Case 4

Figure 4.9. An extended dislocation passing through an array of
particles with (a) lower and (b) higher unstable stacking fault energy
than the matrix.
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Several simulations with the geometry shown in Figure 4.8 are performed with

different intrinsic stacking fault energies in the particles. The critical resolved shear

stress is calculated as the minimum applied stress needed to overcome the particles.

The increase of the critical stress, ∆τc, as a function of the stacking fault energy

difference in particle and the matrix, ∆γ = γm − γp, is shown in Figure 4.10. For

comparison the critical stress obtained using Friedel and Labusch statistics for large

particles, Equations 4.14 and 4.15, are also included, with α = 0.07, f = 0.28,

and θ = π
2
. Note that the critical stress for ∆γ = 0 corresponds to the case with

no particles and that no strengthening is predicted if ∆γ ≤ 0 in agreement with

Equations 4.14 and 4.15.

(a)

Figure 4.10. Simulated critical stress for particles in a matrix with
different intrinsic stacking fault energy as a function of ∆γ = γm−γp.
Analytical solutions using Friedel’s and Labusch’s models are also
included.

4.5 Stacking fault strengthening in HEAs

Atomistic simulations of HEAs show that the stacking fault energy varies locally

with the local composition of the alloy [117, 120, 121]. The effects of these local

variations on the core structure of the dislocations and on the critical resolved shear
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stress are studied in this section. To isolate the result of the chemical misfit, the

lattice misfit is not included in the simulations.

In the PFDD simulations, different values of the intrinsic stacking fault energy

are assigned randomly to regions on the slip plane, while all other material properties

are the same. The regions are defined using a Voronoi tessellation algorithm with

average region size ranging from 0.5 nm to 12.0 nm. Two examples are shown in

Figure 4.11. This range is chosen following the concentration fluctuations observed

in the experiments [143] and the range of characteristic lengths from 0.4 nm to 12.0

nm used in Curtin’s model.

The values of the intrinsic stacking fault energy assigned to each region are cho-

sen from uniform distributions with standard deviation, σγ = γmax−γmin
2
√

3
, support

[γmin, γmax], and average γ̄ = γmax+γmin

2
. The average value γ̄ is chosen from values

reported by Varvenne et al. [118] for the Ni-Co-Fe-Cr-Mn family of high entropy

alloys, in the range of 20 mJ/m2 to 100 mJ/m2.

Two straight extended dislocations with Burgers vectors in the [110] direction

are placed on the slip plane, as shown in Figure 4.11. Under no applied stress, each

dislocation splits into two partials, the stacking fault region is shown in grey in Figure

4.11 for γ̄ = 35.0 mJ/m2 and d = 5.8 nm, and for γ̄ = 72.0 mJ/m2 and d = 3.2 nm.

The critical stress is defined as the minimum applied stress at which the extended

dislocations glide. This critical stress is calculated for different distributions of stack-

ing fault energy landscapes similar to Figure 4.11.

Figure 4.12 shows the critical stress increment, ∆τc, as a function of the stacking

fault region size for γ̄ = 35.0 mJ/m2, 84.7 mJ/m2, and 127.1 mJ/m2 with σγ =

12 mJ/m2. For each data point, three realizations are performed to eliminate the

possible errors. Each critical stress shown in the figure is calculated as the average

value from three realizations. The critical stress increment, ∆τc, is calculated with

respect to the critical stress obtained with a constant stacking fault energy equal to

γ̄. These values are listed in Table 4.3 and shown in Figure 4.4.
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(a) d = 5.8 nm

(b) d = 3.2 nm

Figure 4.11. Two extended dislocations in a random stacking fault
landscape with (a) d = 5.8 nm and γ̄ = 35.0 mJ/m2, (b) d = 3.2 nm
and γ̄ = 72.0 mJ/m2.

It is shown in Figure 4.12 that ∆τc has a maximum in the region 2.0 nm ≤ d ≤

4.0 nm for γ̄ = 127.0 mJ/m2; 2.0 nm ≤ d ≤ 6.0 nm for γ̄ = 84.7 mJ/m2; and 4.0

nm ≤ d ≤ 8.0 nm for γ̄ = 35.0 mJ/m2. This behavior is similar to the stacking fault

strengthening model for alloys presented in Figure 4.1, in which the strengthening
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Figure 4.12. ∆τc versus stacking fault region size d. The stacking
fault energies are chosen randomly from uniform distributions with
standard deviation σγ = 12.0 mJ/m2.

reaches a maximum when the particle size approaches the stacking fault width inside

the particles.

In the current simulations this response can be explained following the solid so-

lution hardening model presented in Section 4.2.1 and assuming that the region size

d scales with the radius of the particles r, the particle concentration c = 1/d2,

∆γ = γmax − γmin, and replacing Rp with R̄e in Equations 4.14 and 4.15. This

leads to a critical stress increment for Friedel’s statistics:

∆τF =


2T
b

(
∆γ
T

)3/2
d1/2 if d < R̄e

2T
b

(
∆γ
2T

√
K
γ̄

)3/2

d−1/4 if d > R̄e

(4.36)

and similarly, the critical stress for Labusch’s statistics is:

∆τL =


2T
b

(
∆γ
T

)4/3
d1/3 if d < R̄e

2Tb
(

∆γ
2T

√
Kb
γ̄

)4/3

d−1/3 if d > R̄e

(4.37)
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In equations 4.36 and 4.37 the critical stress increases with the region size when

d < R̄e and decreases for d > R̄e in agreement with the simulation results in Figure

4.12.

Finally, all the simulations are compiled in Figure 4.13 which presents the critical

stress as a function of the difference between γu and γ̄. The dashed line is the yield

stress calculated with a constant value of the stacking fault energy and it is extracted

from Figure 4.4. The largest increase in the yield stress, shown as solid symbols, is

obtained for region sizes d ∼ R̄e. A maximum increase of up to 40% on the yield

stress is observed for the largest standard deviation σγ studied here.

Figure 4.13. Simulated yield stress τc versus γu− γ̄. The dashed line
correspond to a constant value of stacking fault energy.

4.6 Summary and concluding remarks

The theoretical model and dislocation dynamics simulations explored in this chap-

ter show that the yield stress can be increased by local fluctuations of the stacking

fault energy. The theoretical strengthening model extends the work of Hirsch and

Kelly [110] from circular precipitates to include the local variations of the stacking

fault energy on the slip plane. This model predicts a maximum in the strength when
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the average size of the stacking fault regions, d, is close to the average equilibrium

stacking fault width, R̄e.

The critical stress to move two partial dislocations is predicted with PFDM sim-

ulations with several distributions of stacking fault energy that replicate the stacking

fault energy landscape found in atomistic simulations of HEAs [117,120,121]. A para-

metric study of Ni-based HEAs is performed with the average stacking fault energy

ranging from 35 mJ/m2 to 127 mJ/m2 while leaving all the other material parameters

fixed to the values reported in Table 4.2.

The simulations show maximum strengthening for d ∼ R̄e, in agreement with

the theoretical model in Equations 4.36 and 4.37. The increase of the critical stress

is calculated with respect to the value obtained with a simulation with constant

stacking fault energy over the slip plane, see dashed line in Figure 4.13. Increasing

the variability of the stacking fault energy distribution further increases the critical

stress. Furthermore, reducing the value of the average stacking fault energy increases

the value of the critical stress as shown in Figures 4.12 and 4.13. Atomistic simulations

that also include lattice misfit predict an increase of up to one order of magnitude

with respect to the critical resolved shear stress of pure Ni [120]. This confirms that

the contributions of the chemical fluctuations are smaller than the lattice misfit in

agreement with previous studies [118]. However, its effect cannot be neglected.

The structure of extended dislocations is studied with the PFDM. The simula-

tions capture similar features observed in atomistic simulations and experiments of

extended dislocations [117,120,121] including core size variations of up to 50% along

the dislocation line. Atomistic simulations that also include the lattice misfit of the

precipitates and thermal fluctuations predict variations of up to 3 factors for the core

spread [120].

In particular, the simulations presented here show that extended dislocations bend

to remain in zones with lower stacking fault energy. These low stacking fault energy

regions pin the dislocations resulting in an increase of the critical stress. The simula-

tions also show that extended dislocations do not present waviness if the size of the
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regions is smaller than R̄e. Therefore, the strengthening is limited for d < R̄e. As

expected the fluctuations of the core spread are only observed when d > R̄e due to the

competition between the line tension and the stacking fault energy. For d ≤ R̄e the

line tension contribution is larger than the stacking fault energy change and therefore,

partial dislocations remain straight.

The results presented here give insight information to the design of HEAs with

improved strength at zero temperature by tailoring the stacking fault energy. In

particular, the yield stress increases when:

• the local fluctuations of the stacking fault energy have the same characteristic

length as the average equilibrium stacking fault width.

• the average stacking fault energy is reduced.

• the fluctuations of the stacking fault energy are increased.
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5. SUMMARY

In this work, the crystalline materials are studied using a phase field method includ-

ing the mechanical properties, the deformation mechanisms and the fracture behavior.

Phase field method is able to model the evolution of the microstructure of the crys-

talline materials by energy minimization.

In Chapter 2, two mechanisms for Sn whisker grain formation are studied using

a phase field approach. The single crystal plasticity model for Sn is presented and

the material parameters are obtained by fitting to the experiments. Grain boundary

migration simulations are performed and the results show that the strain energy in

the material is not sufficient to form surface grain due the plastic dissipation. Grain

rotation simulations are preformed using random orientations and subgrain nucleation

is observed. A polycrystal thin film is simulated using grain orientations [010] and

[001] and the subgrains formed are mostly in [001] direction, which is in agreement

with the experiments [58]. The elastic strains, dislocation densities and the strain

energy density is plotted and it is shown that the location of subgrain structures is

related to high strain energy density.

In Chapter 3, the reliability of the Cu/Sn solder joints is studied by a phase field

fracture model. Extensive experiments show that brittle IMCs, Cu6Sn5 and Cu3Sn,

form at the interface between Cu and Sn in solder joints. The electric current and

the thermal processing can result in the growth of the IMCs and the nucleation of the

voids. 2D finite element simulations are performed to model the fracture behavior

at Cu/Sn interface. Geometries with two different Cu3Sn thickness are created and

three different initial void densities are assigned to the Cu3Sn layer. The simulation

results show that fracture occurs at interface between Cu6Sn5 and Cu3Sn when the

Cu3Sn is thin and within Cu3Sn layer when it is thick. It agrees with the experimental

observations by Lee et al. [64]. The strength of the solder joints shows a decrease
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as the increase of the Cu3Sn thickness while the influence of the void density is not

significant. To improve the reliability and the performance of Cu/Sn solders, the

growth of the IMCs needs to be restricted.

In Chapter 4, the strength of the Ni-based alloys are studied using a phase field

dislocation method. In incorporation of the gamma-surface, a full dislocation split

into two partial dislocations. The decorrelation of dislocations is modeled at the

presence of an array of impenetrable and penetrable particles with different stacking

fault energies. To model the microstructure of the high entropy alloys, different values

of intrinsic stacking fault energy are assigned to regions the size of which ranges from

0.5 nm to 12 nm. The strength of the alloys is obtained by applying a shear stress

to move the dislocation on the slip plane. The local fluctuation of the stacking fault

energy can strengthen the material and a strong size dependency is observed. The

maximum strengthening can be attained when the average region size is the same as

the equilibrium stacking fault width.
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