
PRACTICAL TYPE AND MEMORY SAFETY

VIOLATION DETECTION MECHANISMS

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Yueseok Jeon

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

December 2020

Purdue University

West Lafayette, Indiana

ii

THE PURDUE UNIVERSITY GRADUATE SCHOOL

STATEMENT OF DISSERTATION APPROVAL

Dr. Mathias Payer, Co-Chair

Department of Computer Science

Dr. Changhee Jung, Co-Chair

Department of Computer Science

Dr. Byoungyoung Lee

Department of Computer Science

Dr. Xiangyu Zhang

Department of Computer Science

Dr. Pedro Fonseca

Department of Computer Science

Approved by:

Dr. Clifton W. Bingham

Head of the Department Graduate Program

iii

Dedicated to my wife Hyunmin Lee, my son Taehyeon Jeon, and my family

iv

ACKNOWLEDGMENTS

First and foremost, I would like to thank my major advisor Dr. Mathias Payer for

giving me a precious chance to pursue my Ph.D. in the USA and for his invaluable

guidance and support, as well as encouragement during my doctoral studies. I also

would like to thank my co-advisors Dr. Byoungyoung Lee for his invaluable help

and Dr. Changhee Jung for understanding and supporting me. To my committee

members, Dr. Xiangyu Zhang and Dr. Pedro Fonseca, I would like to thank them

for kindly agreeing to be on my committee, for their guidance, and for their valu-

able time. I would like to thank past and present colleagues in the HexHive group,

Priyam Biswas, Hui Peng, Nathan Burow, Scott Carr, Prashast Srivastava, Der-

rick McKee, Bader AlBassam, Adrian Herrera, Kyriakos Ispoglou, Naif Almakhdhub,

Abe Clements, Terry Hsu, Ahmed Hussein, Atri Bhattacharyya, Ahmad Hazimeh,

Uros Tesic, Nicolas Badoux, Jelena Jankovic, Jean-Michel Crepel, Antony Vennard,

and Andrés Sanchez, for their precious feedback, insightful discussions, and friend-

ship. I also would like to acknowledge my friends and inspirations outside Purdue,

Dr. Junghwan Rhee, Dr. Yonghwi Kwon, Dr. Chung Hwan Kim, Taegyu Kim, and

Alexander Yurkov for their invaluable help and friendship. Last but not least, I would

like to thank my family, especially my wife Hyunmin Lee, my son Taehyeon Jeon, my

parents, and my in-laws, for their trust, sacrifice, and support on this long journey.

v

TABLE OF CONTENTS

Page

LIST OF TABLES . vii

LIST OF FIGURES . ix

ABBREVIATIONS . xi

ABSTRACT . xii

1 INTRODUCTION . 1

2 HEXTYPE: EFFICIENT DETECTION OF TYPE CONFUSION ERRORS
FOR C++ . 7
2.1 HexType . 10

2.1.1 Background . 10
2.1.2 Threat Model . 17
2.1.3 HexType Design and Implementation 18
2.1.4 Implementation . 31
2.1.5 Evaluation . 32
2.1.6 Discussion . 40
2.1.7 Related Work . 40

2.2 Conclusion . 42

3 V-TYPE: INLINE TYPE INFORMATION TO COUNTER TYPE CON-
FUSION . 43
3.1 Background . 46

3.1.1 Classes Hierarchies & Polymorphism 46
3.1.2 Type confusion . 48
3.1.3 C++ Casting . 48

3.2 Design and Implementation . 50
3.2.1 Vtable inline metadata structure 51
3.2.2 Addressing compatibility issues 51
3.2.3 Increase detection coverage . 55
3.2.4 Only changing type related to type casting 56
3.2.5 Implementation . 57

3.3 Evaluation . 58
3.3.1 Coverage on type casting . 58
3.3.2 Performance Overhead . 59

3.4 Future Work . 60

vi

Page

4 FUZZAN: EFFICIENT SANITIZER METADARTA DESIGN FOR FUZZING61
4.1 Background and Analysis . 64

4.1.1 Fuzzing overhead . 65
4.1.2 Address Sanitizer . 66
4.1.3 Overhead Analysis of Fuzzing with ASan 66

4.2 FuZZan design . 68
4.2.1 FuZZan Metadata Structures 68
4.2.2 Dynamic metadata structure switching 73

4.3 Implementation . 75
4.4 Evaluation . 77

4.4.1 Detection capability . 78
4.4.2 Efficiency of new metadata structures 79
4.4.3 Efficiency of dynamic metadata structure 83
4.4.4 Real-world fuzz testing . 87
4.4.5 Bug finding effectiveness . 87
4.4.6 FuZZan Flexibility . 89

4.5 Discussion . 91
4.6 Related Work . 92

4.6.1 Reducing Fuzzing Overhead . 92
4.6.2 Optimizing Sanitizers . 93

4.7 Conclusion . 95

5 THE DIRECTION OF FUTURE RESEARCH 96

6 SUMMARY . 97

REFERENCES . 98

VITA . 107

vii

LIST OF TABLES

Table Page

2.1 Detection coverage number . 33

2.2 HashMap miss rate number . 37

2.3 The number of safe objects identified by HexType’s optimization algo-
rithm. HexType does not keep track of these safe objects. 38

2.4 Performance Overhead . 38

3.1 Detection coverage comparison with other pointer casting monitor approaches55

3.2 The evaluation of typecasting verification coverage against SPEC CPU2006.
The # indicates the number of verified casting operations during SPEC
CPU2006 test. The k represents thousand, m represents million, and b
represents billion. 58

3.3 SPEC CPU2006 benchmark performance overhead for Clang-CFI and V-
Type. The first column with % denotes the ratio between Native and
Clang-CFI. The next column denotes the ratio between Native and V-
Type. 59

4.1 Comparison between native and ASan executions with a breakdown of
time spent in memory management, and time spent for ASan’s initializa-
tion and logging. Results are aggregated over 500,000 executions of the
full Google fuzzer test suite [95]. Times are shown in milliseconds, and %
denotes the ratio to total execution time. 64

4.2 Comparison of metadata structures. 69

4.3 Three different metadata structure modes’ detection capability based on
the Juliet Test Suite for memory corruption CWEs. FuZZan and ASan
have identical results. Good tests have no memory corruption to check for
false positives. Bad tests are intentionally buggy to check for false negatives.78

4.4 Comparison between four min-shadow memory modes, RB tree, Native,
and ASan execution overhead during input record and replay fuzz testing
with empty and provided seed sets. The time (s) indicates the average
of all 26 applications’ execution time during testing. Positive percentage
(e.g., 20%) denotes overhead while negative percentage indicates a speedup. 81

viii

Table Page

4.5 Comparison between FuZZan’s three different optimization modes, native
min-shadow memory (1G) mode, and min-shadow memory (1G) mode
with FuZZan’s two optimizations, and dynamic metadata structure switch-
ing (Dynamic) mode execution overhead during all 26 applications’ input
record and replay fuzz testing. 82

4.6 Comparison between native, ASan, min-shadow memory (1G), two opti-
mizations with min-shadow memory executions with a breakdown of time
spent in memory management, and time spent for ASan’s initialization
and logging. Results are aggregated over 500,000 executions of the full
Google fuzzer test suite. Times are shown in milliseconds, and % denotes
the ratio between single execution time and each section execution’s time. 82

4.7 Evaluating FuZZan’s total execution number and unique discovered path
for 24 hours fuzz testing with provided seeds. The (M) denotes 1,000,000
(one million) and ratio (%) is the ratio between ASan and FuZZan. 86

4.8 Evaluating FuZZan’s bug finding speed. The TTE denotes the mean time-
to-exposure. The AF is assertion error and the BO denotes buffer overflow. 88

4.9 Comparison between Native, MSan, MSan-nolock, and min-shadow mem-
ory execution overhead during input record and replay fuzz testing with
provided seed sets. MSan-nolock disables lock/unlock for MSan’s logging
depots. Time (s) indicates the average of execution time. Positive per-
centages denote overhead, negative percentages denote speedup. 89

ix

LIST OF FIGURES

Figure Page

2.1 Visualization of an example C++ type hierarchy, showing the directions
of (safe) upcasting and (unsafe) downcasting. 11

2.2 A code example and diagram of a type confusion problem where an ances-
tor class is incorrectly accessed using a pointer to a descendent class. The
static cast results in type confusion and accessing the field D→y results
in a memory safety violation. 12

2.3 A system overview of HexType. HexType consists of several modules
that analyze type relationship information and insert object tracing and
typecasting instrumentation to verify typecasting operation. 16

2.4 Code example for std::aligned storage using placement new and rein-
terpret cast to manage type allocation. 22

2.5 A snapshot example of object mapping table, showing how it maps an
object using a combination of fast-path and slow-path slots. When Hex-
Type looks up type information, an object address is used to obtain the
reference to the corresponding object mapping table entry. HexType first
matches the fast-path slot. If not present in the fast-path slot, HexType
then searches the corresponding red-black tree to find type information
(slow-path) and updates the fast-path accordingly. 24

2.6 An example of how reinterpret cast results in a type confusion problem.26

2.7 An example of how HexType creates a potentially unsafe object type set.
In the example, we assume that objects of type B and C are typecast.
HexType will identify these potentially unsafe types and all its children
types as unsafe. 28

2.8 An example for safe and unsafe casting. The three examples (line 9, 12,
and 16) are all safe casting. For the first two examples, each typecasting
operation obtains the object address using the address-of operator and the
array name. In the third example (line 14), we can simply determine the
object type using use-def chain analysis. The last example (line 22) is an
unsafe casting case when we cannot track the object type (i.e., external
function). 30

x

Figure Page

2.9 Overview of HexType’s implementation. HexType consists of several com-
piler passes in clang and LLVM that insert object tracing and typecasting
instrumentation and a corresponding runtime library. 31

3.1 Code example for type confusion . 47

3.2 Overview of V-Type’s architecture and workflow. 50

3.3 Change non-polymorphic into polymorphic object. 51

3.4 Code example for adding placement new before switching to union’s a
polymorphic object member. 53

3.5 Code example for defining the const variable of class outside the class . . . 54

3.6 An example of how V-Type creates a type set related to casting and only
changes type using this set. In the example, we assume that the object of
type B is typecast. V-Type will identify this type B and all its children
types as casting related types. 56

4.1 Overview of FuZZan’s architecture and workflow. 69

4.2 Design of FuZZan’s customized RB-tree. 70

4.3 ASan and min-shadow memory modes’ memory mapping on 64-bit plat-
forms. ASan (top) reserves 20TB memory space for heap and shadow
memory, conversely, min-shadow memory mode (bottom) reserves 4512MB
memory space for heap and shadow memory. Each application’s stack,
heap, and other sections (BSS, data, and text) map to the corresponding
shadow regions. Further, the shadow memory region is mapped inaccessible. 72

4.4 Evaluating the frequency of metadata structure switching and each meta-
data structure selection over the first 500,000 tests each for c-ares and
vorbis in Google’s fuzzer test suite and pngfix, size, and nm. The number
on each bar indicates the total metadata switches. 84

xi

ABBREVIATIONS

RTTI Run-Time Type Information

CFI Control Flow Integrity

TCB Trusted Computing Base

ODR One Definition Rule

CPI Code Pointer Integrity

AFL American Fuzzy Lop

ASAN Address Sanitizer

KASAN Kernel Address Sanitizer

MSAN Memory Sanitizer

TSAN Thread Sanitizer

OOM Out Of Memory

RNG Random Number Generator

SMT Simultaneous MultiThreading

xii

ABSTRACT

Yuseok Jeon Ph.D., Purdue University, December 2020. Practical type and memory
safety violation detection mechanisms. Major Professor: Mathias Payer.

System programming languages such as C and C++ are designed to give the

programmer full control over the underlying hardware. However, this freedom comes

at the cost of type and memory safety violations which may allow an attacker to

compromise applications.

In particular, type safety violation, also known as type confusion, is one of the

major attack vectors to corrupt modern C++ applications. In the past years, several

type confusion detectors have been proposed, but they are severely limited by high

performance overhead, low detection coverage, and high false positive rates. To ad-

dress these issues, we propose HexType and V-Type. First, we propose HexType, a

tool that provides low-overhead disjoint metadata structures, compiler optimizations,

and handles specific object allocation patterns. Thus, compared to prior work, Hex-

Type significantly improves detection coverage and reduces performance overhead. In

addition, HexType discovers new type confusion bugs in real world programs such as

Qt and Apache Xerces-C++. However, HexType still has considerable overhead from

managing the disjoint metadata structure and tracking individual objects, and has

false positives from imprecise object tracking, although HexType significantly reduces

performance overhead and detection coverage. To address these issues, we propose a

further advanced mechanism V-Type, which forcibly changes non-polymorphic types

into polymorphic types to make sure all objects maintain type information. By doing

this, V-Type removes the burden of tracking object allocation and deallocation and

of managing a disjoint metadata structure, which reduces performance overhead and

improves detection precision.

xiii

Another major attack vector is memory safety violations, which attackers can take

advantage of by accessing out of bound or deleted memory. For memory safety viola-

tion detection, combining a fuzzer with sanitizers is a popular and effective approach.

However, we find that heavy metadata structure of current sanitizers hinders fuzzing

effectiveness. Thus, we introduce FuZZan to optimize sanitizer metadata structures

for fuzzing. Consequently, FuZZan improves fuzzing throughput, and this helps the

tester to discover more unique paths given the same amount of time and to find bugs

faster.

In conclusion, my research aims to eliminate critical and common C/C++ memory

and type safety violations through practical programming analysis techniques. For

this goal, through these three projects, I contribute to our community to effectively

detect type and memory safety violations.

1

1 INTRODUCTION

C/C++ are low-level programming languages used everywhere from most operating

system kernels to modern browsers because of its high performance, rich function li-

braries, and low-level functionality, e.g., low-level memory access allowing the efficient

handling of memory allocations and deallocations.

However, enforcing memory safety (i.e., only accessing their intended referents)

and type safety (i.e., operations on the object always being compatible with the

object’s type) are left to the programmer. This lack of safety leads to memory and

type safety violations that can cause programs to crash unexpectedly, silently to

generate incorrect results, or to be abused to attack programs, allowing the attacker

to gain full privileges of these programs.

Type safety violations occur when one data type is mistaken for another due to

unsafe typecasting, leading to a reinterpretation of the underlying type representa-

tion in semantically mismatching contexts. For instance, a program may cast an

instance of a parent class to a descendant class, even though this is neither safe

nor allowed at the programming language level if the parent class lacks some of the

fields or virtual functions of the descendant class. When the program subsequently

uses the fields or functions, it may use data, say, as a regular field in one context

and as a virtual table (Vtable) pointer in another. Such type safety violations are

wide spread; many are found in a wide range of software products such as Google

Chrome V8 (CVE-2020-6418), WebKitGTK (CVE-2020-3897 and CVE-2020-3901),

Autodesk FBX SDK (CVE-2020-7081), Adobe Flash Player (CVE-2020-3757), Phan-

tomPDF (CVE-2020-15638), Firefox (CVE-2019-17026), Libxslt (CVE-2019-5815),

Ghostscript (CVE-2018-19134), Adobe Flash Playeri (CVE-2018-4944), and Foxit

PDF Reader (CVE-2018-9942). These type safety violations are also security critical,

as many are demonstrated to be easily exploitable due to deterministic runtime be-

2

haviors. At the same time, several type safety violation detection tools have also been

proposed. These tools detect type confusion by using a pointer casting monitor [1–4]

or a pointer usage monitor [5, 6]. However, these solutions are severely limited due

to the high runtime performance overhead as well as low coverage for object tracing

and detection.

Memory safety violations occur when an invalid pointer is dereferenced. More

specifically, these violations can be classified into two types: (i) temporal safety vio-

lation, which occurs when accessing a referent that is no longer valid and (ii) spatial

safety violation, which occurs when accessing the data at a location in memory that

is outside the bounds of an allocated object. Address sanitizer (ASan), the most

popular sanitizer, has detected over 10,000 memory safety bugs [7–9] in various ap-

plications (e.g., over 3,000 bugs in Chrome in 3 years [7]) and over 50 bugs [8] have

been reported in the Linux Kernel. Additionally, memory safety violations are the

most dangerous class of bugs, accounting for 70% of vulnerabilities at Microsoft [10].

To prevent the memory safety violations, various violation detection tools have

been proposed for temporal safety violations [11–18] and spatial safety violations [11–

16,19–34]. Among them, the combination of a fuzzer with ASan is the most common

approach to find memory safety violations, but some issues remain. Several of ASan’s

design choices (e.g., heavy metadata structure or unnecessary logging) are not geared

towards a fuzz testing environment (i.e., highly repetitive and short execution) and

reduce the benefit of combining the two.

Thus, to address these critical issues in type and memory safety detectors and to

propose advanced detectors, my thesis statement is as follows:

Practical type and memory safety violation detection mechanisms, im-

plemented through a combination of static and runtime compiler-based

techniques, enable efficient detection of policy violations.

In this thesis, we advance the state of the art for type and memory safety. More

specifically, for enforcing type safety, we propose two practical type confusion detec-

tors, which significantly improve detection coverage and remove performance overhead

3

to help find type confusion bugs quickly and accurately. As for memory safety, we

identify and analyze the primary source of overhead that occurs when sanitizers are

used with fuzzing, and in response we optimize the sanitizer for fuzzing to improve the

throughput and detect memory safety violations faster. For our two practical type

confusion detectors, first, we propose HexType, a mechanism that protects C++

software from type confusion by making all casts explicit. Each cast in the source

language (explicit or implicit, static or dynamic) is turned into a dynamic runtime

check. HexType records the type of each object and specific casts are replaced with

our instrumentation. We fundamentally address the challenges of earlier work by

(i) increasing coverage of typecasting checks and (ii) drastically reducing overhead.

Our prototype implementation of HexType vastly outperforms state-of-the-art type

confusion detectors, increasing coverage and often lowering overhead. Our reduced

overhead is the result of novel optimization techniques and using an efficient type

metadata structure. Due to our increased coverage, we discover four new type con-

fusion vulnerabilities (which evaded previous approaches) in two widely-used open

source libraries (Qt Base library and Apache Xerces-C++) during our evaluation.

For the Firefox benchmarks, HexType increases coverage by 1.1 – 6.1 times compared

to TypeSan with some increased performance overhead due to the vast increase in

coverage. For SPEC CPU2006 benchmarks with overhead, we show a 2 – 33.4 times

reduction in overhead.

Despite our advancements, disjoint metadata structure approaches including Hex-

Type incur considerable overhead because of the additional object tracking and meta-

data structure managing overhead. These approaches also have high false positive

rate issues because of their incorrect object tracking. Thus, we propose V-Type to

overcome these limitations. To improve precision and performance, we inline type

information via Vtable pointers. However, as this information only exists in poly-

morphic objects, we must forcibly change non-polymorphic objects into polymorphic

ones to ensure each object will maintain type information. When we forcibly insert

type information into non-polymorphic objects, however, several challenges occur: (1)

4

we need to insert constructor calls into all object allocation sites through the malloc

family to initialize a Vtable pointer, (2) we need to address standard violation issues

when we forcibly insert a Vtable pointer, and (3) we need to address issues when

the changed object will be used for communication with other components (e.g., li-

braries or kernel). To address these issues, V-Type inserts additional constructor

calls to initialize a Vtable pointer of forcibly changed polymorphic objects. Addi-

tionally, V-Type addresses standard violation issues by modifying compilers without

additional side effects. For communication issues with other components, V-Type

rebuilds related components with itself to make sure all components have the same

type layout. For optimization, V-Type only changes casting-related non-polymorphic

objects into polymorphic objects. Since objects unrelated to casting will never be

used for casting, V-Type does not need to change these non-polymorphic objects. To

further increase detection coverage, V-Type also detects type confusion from void* or

another unrelated type to the wrong dynamic type. According to our evaluation of

SPEC CPU2006, compared to native execution, V-Type shows negligible overhead,

only 1%, which is 11 times faster than HexType. Additionally, V-Type shows 10

times better detection coverage than Clang-CFI.

To detect memory safety violations, a combination of fuzzing and a sanitizer is

the most widely used combination. More specifically, fuzzing is a powerful and widely

used software security testing technique that randomly generates inputs to find bugs.

Despite fuzzing’s demonstrated bug-finding effectiveness, it only discovers relatively

simple bugs without assistance, e.g., failed assertions or memory errors such as seg-

mentation faults. Bugs that silently corrupt the program’s memory state, but do not

cause a crash, are missed. To detect such bugs, fuzzers must be paired with sani-

tizers that enforce additional security policies at runtime that make bugs detectable.

Unfortunately, current fuzzer plus sanitizer combinations trade increased detection

capabilities (more bug classes detected), for decreased throughput. The decreased

throughput is a direct result of the substantial overhead, e.g., up to 6.59× for ASan,

imposed by sanitizers on instrumented software. Thus, we identify and analyze the

5

primary source of overhead when ASan is used with fuzzing, and pinpointing the

design decisions that cause the overhead. We design and implement a sanitizer op-

timization (FuZZan) and apply it to ASan; that is, we design several new metadata

structures along with a dynamic metadata structure switching to choose the optimal

structure at runtime. Consequently, FuZZan improves performance over ASan by

48% with Google’s seed corpus, while detecting the same classes of vulnerabilities.

Contributions

We present novel mechanisms for detecting type and memory safety violations.

The work presented in this dissertation has all been peer reviewed and published,

with the exception of the V-Type project which is still in preparation for submission.

In particular, our advanced type confusion detector, HexType: Efficient Detection of

Type Confusion Errors for C++ [35] appeared at CCS ’17, and our optimized sanitiz-

ers for fuzzing, FuZZan: Efficient Sanitizer Metadata Design for Fuzzing appeared at

ATC ’20. Apart from my thesis, our initial type confusion detector, TypeSan: Prac-

tical Type Confusion Detection [3] appeared at CCS ’16, and our process-aware least

privilege approach for privilege manage APIs, PoLPer: Process-Aware Restriction of

Over-Privileged Setuid Calls in Legacy Applications [36] appeared at CODASPY ’19.

In summary, the core contributions of these papers are:

• Novel disjoint metadata structure based type confusion detector that reduces

performance overhead up to 33.4 times, improves detection coverage up to 6

times, and discovers new type confusion vulnerabilities in real world applica-

tions.

• Novel inline metadata structure based type confusion detector that shows 0.81%

overhead on the SPEC CPU2006, which is 11 times faster than HexType, and

has 10 times higher detection coverage than Clang-CFI.

6

• Optimized sanitizers for fuzzing that improve memory safety violation detection

throughput by 52% and find real-world memory safety violations up to 61%

faster.

7

2 HEXTYPE: EFFICIENT DETECTION OF TYPE CONFUSION ERRORS

FOR C++

Type confusion is the main attack vector to compromise modern C++ software like

browsers or virtual machines. Generally, type confusion vulnerabilities are, as the

name implies, vulnerabilities that occur when one data type is mistaken for another

due to unsafe typecasting, leading to a reinterpretation of the underlying type repre-

sentation in semantically mismatching contexts.

For instance, a program may cast an instance of a parent class to a descendant

class, even though this is neither safe nor allowed at the programming language level

if the parent class lacks some of the fields or virtual functions of the descendant class.

When the program subsequently uses the fields or functions, it may use data, say,

as a regular field in one context and as a virtual function table (vtable) pointer in

another. Such type confusion vulnerabilities are not only wide-spread (e.g., many

are found in a wide range of software products, such as Google Chrome (CVE-2017-

5023), Adobe Flash (CVE-2017-2095), Webkit (CVE-2017-2415), Microsoft Internet

Explorer (CVE-2015-6184) and PHP (CVE-2016-3185)), but also security critical

(e.g., many are demonstrated to be easily exploitable due to deterministic runtime

behaviors).

Previous research efforts tried to address the problem through runtime checks for

static casts. Existing mechanisms can be categorized into two types: (i) mechanisms

that identify objects through existing fields embedded in the objects (such as vtable

pointers) [37–40]; and (ii) mechanisms that leverage disjoint metadata [41,42]. First,

solutions that rely on the existing object format have the advantage of avoiding ex-

pensive runtime object tracking to maintain disjoint metadata. Unfortunately, these

solutions only support polymorphic objects which have a specific form at runtime that

allows object identification through their vtable pointer. As most software mixes both

8

polymorphic and non-polymorphic objects, these solutions are limited in practice —

either developers must manually blacklist unsupported classes or programs end up

having unexpected crashes at runtime. Therefore, recent state-of-the-art detectors

leverage disjoint metadata for type information. Upon object allocation, the runtime

system records the true type of the object in a disjoint metadata table. This approach

indeed does not suffer from non-polymorphic class issues, because type information

can be accessed without referring vtable pointers.

However, disjoint metadata schemes have to overcome two challenges: (i) due

to C++’s low level nature it is hard to identify all object allocations and (ii) the

lookup through this disjoint metadata table results in prohibitive overhead. Exist-

ing approaches with disjoint metadata precisely exhibit these drawbacks. Because

it is difficult to handle all C++ language quirks imposed by developers, they only

protect a small fraction of typecasts in practice. Due to the complexity of metadata

tracking, existing approaches introduce prohibitive overheads (TypeSan [42] has up

to 71.2% overhead for Firefox with a geometric mean of 30.8%; note that TypeSan

already improves performance over CaVer [41]). Control-Flow Integrity (CFI) tech-

niques [43–46] verify all indirect control-flow transfers within a program to detect

control-flow hijacking. However, these techniques address the type confusion prob-

lem only partially if control flow is hijacked, i.e., they detect usage of the corrupted

vtable pointer, ignoring any preceding data corruption. Similarly, vtable protection

schemes [39, 40] protect virtual calls from vtable hijacking attacks but do not block

type confusion attacks. Memory safety mechanisms [47–49] protect against spatial

and temporal memory safety violations but incur prohibitively high overhead in prac-

tice. Also, these mechanisms do not protect against type confusion, e.g., they do

not stop an int array of the correct size from being used in place of an object.

Control-flow hijacking protection and memory safety are therefore orthogonal to type

confusion detection. Type confusion may be used to cause a memory safety violation.

Detecting type confusion allows earlier detection of security violations for these cases.

9

We propose HexType, a mechanism that protects C++ software from type confu-

sion by making all casts explicit. Each cast in the source language (explicit or implicit,

static or dynamic) is turned into a dynamic runtime check. HexType records the type

of each object and specific casts are replaced with our instrumentation. We fundamen-

tally address the challenges of earlier work by (i) increasing coverage of typecasting

checks and (ii) drastically reducing overhead.

Our prototype implementation of HexType vastly outperforms state-of-the-art

type confusion detectors, increasing coverage and often lowering overhead. Our re-

duced overhead is the result of novel optimization techniques and using an efficient

type metadata structure. We leverage an analysis that identifies types that are used

in typecasting, allowing us to remove tracing overhead for any objects that are never

cast. For the type metadata structure, we design a two-layered data structure that

combines a hash table (fast-path) and red-black tree (slow-path) in order to reduce

object tracing overhead. Despite performance, our mapping scheme also overcomes

limitations of existing work such as relying on fixed addresses for metadata which

may run into compatibility issues if applications try to reuse the same addresses

To address the low coverage of related work, we developed allocation detectors

that track reuse of pre-allocated memory space cases for new objects (through place-

ment new) and transferring objects through reinterpret cast. Additionally,

HexType increases coverage for dynamic cast and reinterpret cast and goes

beyond static cast unlike all the previous works. In the case of dynamic cast,

HexType replaces the existing inefficient typecasting verification routine with a fast

lookup using our metadata. HexType supports reinterpret cast to increase

object tracing coverage and find additional bugs.

Due to our increased coverage, we discovered four new type confusion vulnera-

bilities (which evaded previous approaches) in two widely-used open source libraries

(Qt Base library and Apache Xerces-C++) during our evaluation. For the Firefox

benchmarks, HexType increases coverage by 1.1 – 6.1 times compared to TypeSan

with some increased performance overhead due to the vast increase in coverage. For

10

SPEC CPU2006 benchmarks with overhead, we show a 2 – 33.4 times reduction in

overhead.

Our major contributions can be summarized as:

1. An open source type confusion detector with low overhead and high coverage

(outperforming state-of-the-art detectors);

2. A novel optimization that greatly reduces the number of objects that need to be

tracked (as much as 54% – 100% on SPEC CPU2006), thus reducing overhead;

3. Design of efficient data structures that use a fast-path (O(1) time complexity)

for type information insertion and lookup (with a hit rate of 94.09% and 99.99%

on the SPEC CPU2006 and 98.76% and 95.20% for Firefox respectively);

4. Robust allocation identification implementation that greatly increases coverage

(1.1 - 6.1 times over TypeSan on Firefox) combined with also covering alternate

casting methods such as placement new;

5. Discovery of four new vulnerabilities in QT Base library and Apache Xerces-

C++;

2.1 HexType

2.1.1 Background

In this section, we provide background information on C++’s type system, various

cast operations, and previous type confusion detection tools necessary to understand

the design and implementation of HexType.

C++ Classes and Inheritance

C++ is an object-oriented programming language, with classes as the primary ab-

straction. Classes allow the programmer to define new types. A class can inherit from

11

DOMNode

DomCharacter
Data

DomDocument
Type DOMElement

DOMElement
Impl

U
pcast

(Safe)D
ow

nc
as

t
(U

ns
af

e)

DOMText
Impl

Figure 2.1.: Visualization of an example C++ type hierarchy, showing the directions
of (safe) upcasting and (unsafe) downcasting.

12

. . .
c l a s s Ancestor { i n t x ; } ;
c l a s s Descendant : Ancestor {
double y ;
} ;

Ancestor ∗A = new Ancestor () ;
Descendant ∗D;
D = s t a t i c c a s t <Ancestor∗>(A) ;
D−>y ; // error
. . .

Descendant::y

Access scope
 of *D

Access scope
 of *A

Figure 2.2.: A code example and diagram of a type confusion problem where an
ancestor class is incorrectly accessed using a pointer to a descendent class. The static
cast results in type confusion and accessing the field D→y results in a memory safety
violation.

multiple ancestor classes. The descendent class has all the same members (methods

and variables) as its ancestor(s) and optionally additional members defined in the

descendent class definition.

In C++, a pointer of type A can be cast into a pointer of another type, type B.

This effectively tells the compiler to treat the pointed-to object as being type B.

The crucial question is: when is a typecast safe? The answer depends on the type

of the pointed-to object and the destination type (type B in the previous example).

Focusing on casting between class types, the security objective of this work, casting

from descendant class to ancestor class is always safe since the members of the de-

scendant class are a superset of the members of the ancestor class. This operation is

called upcasting. For example, as shown in Figure 2.1, if we visualize the type hierar-

chy with the ancestor class at the top and descendants at the bottom, moving up the

13

hierarchy (upcasting) is safe. On the other hand, downcasting, casting from ancestor

to descendant, may not be safe if the ancestor misses any member of the descendant

class. This is depicted in Figure 2.2. Such downcasting has been abused by attack-

ers in a wide-range of popular C++ programs, which lead to complete compromises

of an underlying system, as recently shown for, e.g., Google Chrome (CVE-2017-

5023), Adobe Flash (CVE-2017-2095), Webkit (CVE-2017-2415), Microsoft Internet

Explorer (CVE-2015-6184) or PHP (CVE-2016-3185).

C++ Cast Operations

The C++ syntax allows four different types of casts to meet different requirements

of the developer. Each casting type performs unique casting operations, imposing

non-trivial security implications. In the following, we provide detailed information

on each casting type, particularly focusing on its security aspects in terms of type

confusion issues.

The example in Figure 2.1 shows a cast using static cast, but there are other

cast in C++ and their details are important to this work. The other cast types we are

concerned with are dynamic cast, reinterpret cast, and C-style typecasting.

s t a t i c c a s t <type>(exp r e s s i on)

dynamic cast<type>(exp r e s s i on)

r e in t e rpre t ca s t<type>(exp r e s s i on)

const cas t<type>(exp r e s s i on)

Static Cast A static cast casts an object of type A to an object of type B. The

check is executed purely at compile time and no runtime check is performed. Due to

the static nature of this check, the runtime type of the object is not considered and

the check is limited to check if the two types are compatible, i.e., there is a path in

the type hierarchy from expression’s type and type that involves upcasting and/or

downcasting.

14

While not incurring any performance overhead, the safety guarantees of static

casts are limited. Therefore, the programmer is responsible that an object of the

correct type is used, e.g., guaranteeing that the downcasted object is actually an

object of the derived type. In practice, since it is challenging to figure out such

compatibility at compile time, this has led to the unfortunate fact that type confusions

are dominating vulnerabilities in modern C++ programs [50].

Dynamic Cast A dynamic cast can safely convert types between classes in the

same class hierarchy. Whereas static cast only performs a compile time check, it

performs an additional runtime check using heavy-weight metadata, Run Time Type

Information (RTTI). As, in general, the dynamic runtime type of an object cannot

be determined statically, dynamic cast must leverage runtime type information

such as RTTI. RTTI encodes all type related information, and a compiler generates

this RTTI per type such that each type has its dedicated RTTI entry in a compiled

binary. The RTTI entry essentially forms a recursive structure in that each RTTI

entry points to another RTTI entry to represent the class hierarchy. A compiler

further appends a reference to the RTTI entry at the end of each virtual function

table, so that the RTTI entry can be retrieved at runtime using any virtual address

pointing to an object. In other words, since the first field in an object is typically

filled with a virtual function table pointer, dynamic cast can find the RTTI entry

given an object address using the virtual function table pointer. After locating the

corresponding RTTI entry, dynamic cast starts to recursively traverse RTTI to

verify the casting correctness (i.e., that the types are compatible). If there is a path

on the type hierarchy between expression’s type and the target type, then the types

are compatible. The types are compatible whenever the type of expression is an

descendant of type (upcast). The types can also be compatible when type is the

exact type of the object pointed to by expression. If the casting is incorrect (i.e., the

type of expression and type are incompatible), the cast fails in one of two ways:

• If type is a pointer type, it returns NULL.

15

• If type is a reference type, it throws a pre-defined exception (i.e., std::bad cast).

Due to the design of dynamic cast, its usage is strictly limited to polymorphic

objects. As mentioned before, dynamic cast relies on a virtual function table to

locate RTTI, but the virtual function table is only present in polymorphic objects.

Note that, given these limitations, dynamic cast can only be used for polymorphic

types. Thus, compilers simply generate a compile-time error if a dynamic cast is

used for a non-polymorphic type. Note that runtime errors are still possible.

Reinterpret Cast A reinterpret cast converts between any two (potentially in-

compatible) types. It instructs the compiler to reinterpret the underlying bit pattern

of the cast objects. Because it does neither create a copy nor perform any runtime

check, a reinterpret cast always incurs zero overhead. From the security stand-

point, programmers are responsible to ensure the correctness of reinterpret cast

similar to the case in static cast. Since reinterpret cast only changes the

object’s type, it simply returns the same address. This behavior can cause problems

for polymorphic classes or classes with multiple inheritance. For polymorphic classes,

reinterpret cast returns a pointer to an object with potentially the wrong vtable

pointer as reinterpret cast does not change the memory of the object. If the

object uses multiple inheritance, then a pointer to a base class may have the wrong

value (not a pointer to the object itself) [51]. However, if the exact source object

type information is known then reinterpret cast can be used to: (1) efficiently

construct an object without executing the constructor (reusing an old object of the

same type) and (2) restoring the actual type if a function returns a void* pointing

to an object.

Const Cast A const cast drops cv-qualifier (i.e., const or volatility) from an object

specified in the expression. Unlike previously mentioned static and dynamic casts,

const cast does not impact type confusion issues because type hierarchies are not

involved in this case. const cast still may introduce security issues (5.2.9/11 in

ISO/IEC 14882 [52]) if it is used in the wrong context—a read-only object has been

accidentally const cast, and thus overwrites such a write-protected object. These

16

class D : public B { …. };
……

trace_obj();
B *pB = new B;
……

verify_cast();
static_cast<D *>(pB)

-
- - -

- -

Per-entry
RB-tree

-
B

D B

B

D -

 Type
Relationship

Type Relationship
Information (§4.1)

Object Type
Tracing (§4.2)

HexObjTypeMap (§4.2)

Type Casting
Verification (§4.3)

Figure 2.3.: A system overview of HexType. HexType consists of several modules
that analyze type relationship information and insert object tracing and typecasting
instrumentation to verify typecasting operation.

issues can be addressed using other memory safety techniques [30,30,32,32] through

enforcing per-object write protection. Protecting const casts is therefore orthogonal

to the scope of this paper.

C-style Typecast Although C-style casts are discouraged in C++ programs, compilers

allow them to keep backward compatibility. More precisely, if C-style casting (5.4 in

ISO/IEC 14882 [52]) is encountered, the compiler translates the cast into a sequence

of casts: (i) const cast, (ii) static cast, and (iii) reinterpret cast. In

other words, compilers try to cast the objects using the sequence of casts above and

use the result of the first cast that succeeds without a compilation error. This in fact

implies that, from the standpoint of detecting type confusion issues, it is no different

from handling the above three cast types as C-style casting will finally be translated

into one of them.

17

Defenses against type confusion

Type confusion is a pressing problem and several mechanisms have been proposed

to detect and protect against type confusion. As mentioned earlier, the existing de-

fenses can be grouped into two categories: (i) those based on identifying objects based

on existing fields embedded in the object themselves (such as vtable pointers) [37–40];

and (ii) those based on disjoint metadata [41,42].

CaVer [41] uses disjoint metadata for all allocated objects to support non-polymorphic

classes without blacklisting. CaVer is the first typecasting detection tool (based on

disjoint metadata) that can verify type-casting for non-polymorphic objects. How-

ever, CaVer suffers from both security and performance issues — low safety coverage

on castings and high runtime overhead.

TypeSan [42] reduces the performance overhead by a factor of 3 – 6 compared to

CaVer and increases detection coverage by including C-style allocation (e.g., mal-

loc). However, the overhead of both disjoint metadata approaches is still high due to

inefficient metadata tracking, e.g., tracking most live objects. Also, while increasing

coverage compared to CaVer, TypeSan still has an overall low coverage rate. Espe-

cially, TypeSan has 12 ∼ 45% coverage rate for Firefox. These limitations motivated

us to design HexType, which overcomes the aforementioned limitations — namely

reducing per-cast check overhead, increasing coverage, and providing additional fea-

tures.

2.1.2 Threat Model

Our threat model assumes that the underlying application is benign but contains

a type confusion error that an attacker can find and exploit. The primary goal of our

defense mechanism is to prevent such type confusion attacks. Our defense mechanism

automatically detects such exploitation attempts, avoiding any negative security ram-

ifications. We further assume that the attacker may read arbitrary memory, and thus

our detection mechanism is designed not to rely on information hiding or randomiza-

18

tion. Attacks not based on type confusion, including control-flow hijacking, integer

overflow, and memory corruption, are out of scope and these can be protected by

other security hardening techniques. We assume that our instrumentation cannot be

removed by the attacker, i.e., our instrumented code is on a non-writable page. The

underlying operating system, program loader, and system libraries are in the Trusted

Computing Base (TCB).

2.1.3 HexType Design and Implementation

HexType is a Clang/LLVM-based type confusion detector for C++ programs.

During compilation of a target program, HexType generates a HexType-hardened

program. During runtime, if HexType detects a type confusion error, the program is

terminated with a detailed bug report.

Figure 2.3 illustrates an overview of HexType. Given the source code as input,

HexType generates a type table containing all type relationship information (sec-

tion 2.1.3) and, at runtime, information about the true types of each allocated object

is collected in the object mapping table (section 2.1.3). HexType verifies the correct-

ness of each cast using both the type relationship information and object mapping

table (section 2.1.3). HexType leverages a set of optimization techniques to reduce

performance overhead during the above processes (section 2.1.3).

Type Relationship Information

In order to verify typecasting operations, HexType needs to know a valid set

of destination types that can be cast from a given source type. Note that compilers

keep this information readily available during compilation to check the validity of casts

statically, but such checks are inherently limited as the true source type of an object is

only known at runtime. C++ applications generally do not keep explicit information

about the type hierarchy. This subsection describes how HexType generates and

19

maintains a hierarchical type information for executables and shared libraries. We

call this information type table.

During compilation, HexType extracts all type relationship information and pre-

pares metadata for each type. For example, as shown in Figure 2.1, for the type

DOMElementImpl, HexType first collects all types that are allowed to be cast (i.e.,

DOMElement and DOMNode), each of which is basically a parent class of DOMEle-

mentImpl. Instead of simply storing a type name in the type table, HexType stores

a string hash of the type name to avoid expensive string match operations, enabling

O(1) comparisons. HexType exports, per type, a list of hash values as a global vari-

able during the compilation, allowing other libraries to reuse this information. These

lists of hash values are sorted to efficiently search value from the target list using

binary search during runtime type casting verification. HexType generates one such

global variable per type.

DOMElementImpl: H(DOMElement), H(DOMNode), ...

In order to provide compatibility, HexType allows and the type table includes

phantom classes. A phantom class is a parent-child relationship where the data

layout of the child is equivalent to the data layout of the parent. HexType allows

downcasts from such a child to the parent as such phantom classes are frequently

used in practical environments to support interoperability between C and C++.

To manage the type table efficiently, HexType only records each type’s relationship

information once, following the one definition rule (ODR) [52] of the C++ standard.

According to this rule, the type definition of each object must be identical (each

object’s parent information is always the same) among all source code which will be

merged. Therefore, each type will have a uniquely identical list of hash values among

all source codes except for phantom classes. Since each object can have a derived

class as a phantom class and the set of the phantom classes cannot be determined

when each object type is defined (we also have to rely on information from each

object’s derived class defined site), HexType only needs to update this phantom class

information.

20

Object Type Tracing

In order to verify typecasting operations at runtime, HexType needs to locate

the type information based on the underlying object identified by the source pointer

address in the casting operation. Unlike dynamic cast, HexType does not utilize

RTTI to retrieve type information due to the following limitations of RTTI: (i) RTTI

only provides type information for polymorphic objects (not supporting typecasting

verification of non-polymorphic objects); (ii) RTTI incurs expensive typecasting ver-

ification costs due to its recursive structure; and (iii) RTTI significantly blows up the

size of the compiled binary.

For these reasons, HexType designs a new set of techniques, which aims at maxi-

mizing security coverage and minimizing performance overhead. In the following, we

first describe how HexType captures the underlying memory semantics with respect

to the type information. HexType systematically identifies all object allocation sites,

which significantly elevates the coverage for typecasting operations (section 2.1.3).

Next, we illustrate how HexType maintains such memory semantics at runtime. In

order to perform efficient lookup operations, HexType employs a new data structure,

type table, which supports both a fast-path for performance efficiency and a slow-path

for completeness (section 2.1.3).

Tracing Object Type Allocation

The C++ type system is not strongly constrained and thus developers can easily

change the object type at runtime as required. This flexibility, though it is one of the

main reason of C++’s popularity, introduces several challenges when tracking type

information. More precisely, HexType must identify the correct type information

imposed to certain runtime memory objects, but dynamic type changes complicate

the identification processes.

HexType comprehensively identifies all the sites that assign types, which can be

generally categorized into the following two cases depending on when the type as-

21

signment is performed—(1) at the time of creating an object and (2) at the time of

transferring an object. The first case includes the well known new operator which

allocates object memory space through typical system memory allocator (i.e., mal-

loc()) and initializes the object by invoking its associated constructor function.

The first case also includes placement new, which reuses specified memory space and

simply invokes the constructor for initialization. For these type allocation sites at

object creation time, HexType registers the type of the object in the type table by

passing the type information and the base pointer to the registration function. The

runtime library function updates the type table with this information

We describe more details how HexType maintains information in section 2.1.3.

The second case of type assignments happen while hard-copying objects that have

already been constructed. In C++, it is common to copy or move memory objects in

memory space for, e.g., object marshaling or when passing objects between allocation

spaces. Once the memory object is relocated in memory space, a developer is re-

sponsible to reassign the type of underlying memory objects. Developers can rely on

move or copy operators in C++ if the underlying object is a C++ class object con-

structed through new or placement new operators. Alternatively, they can explicitly

specify the type of underlying memory objects using reinterpret cast. This sec-

ond case is commonly used to work around system constraints. For example, when

an object is marshaled and unmarshaled to pass it between different components,

reinterpret cast can efficiently construct an object without explicitly executing

the class constructor again. To handle reinterpret cast, HexType instruments

reinterpret cast to call a runtime function with two pieces of information: (i)

destination type and (ii) source address information. In the runtime library function,

HexType inserts this information into the type table only if there is no matching

entry with reinterpret cast’s source address.

For example, Figure 2.4 shows how aligned storage creates and accesses objects.

In the initial step, aligned storage creates uninitialized memory blocks (line 5). In this

22

template<c l a s s T, std : : s i z e t N>
c l a s s s t a t i c v e c t o r
{

// p r o p e r l y a l i g n e d u n i n i t i a l i z e d s t o r a g e f o r N T ’ s
s i z e t S i z e = s i z e o f (T) ;
s i z e t Al ign = a l i g n o f (T) ;
typename std : : a l i g n e d s t o r a g e<Size , Align > : : type d [N] ;
.

publ i c :
template<typename . . . Args> void i n s e r t (Args &&.. . a rgs)
{

.
// Create an o b j e c t us ing placement new
new(d+m size) T(std : : forward<Args>(args) . . .) ;
.

}

const T& operator [] (s td : : s i z e t pos) const
{

// Access an o b j e c t us ing r e p i n t e r p r e t c a s t
return ∗ r e in t e rpre t ca s t<const T∗>(d+pos) ;

}
.

} ;

Figure 2.4.: Code example for std::aligned storage using placement new and rein-
terpret cast to manage type allocation.

23

uninitialized storage, the objects are created using placement new (line 13). Then,

we can access the allocated objects using reinterpret cast (line 20).

In fact, previous work including UBSan, CaVer, and TypeSan all fail to generally

handle type assignment sites. In the case of UBSan, it cannot capture the type infor-

mation of non-polymorphic objects as it has to rely on RTTI, resulting in unexpected

crashes at runtime. In the case of CaVer and TypeSan, they only consider new oper-

ator as type assignment sites and thus they miss all other assignment sites mentioned

above. As we will clearly demonstrate in the evaluation section, HexType showed 1.1

– 6.1 times higher coverage on Firefox benchmarks compared to TypeSan.

Mapping Objects to type table

HexType maintains an object mapping table, which maps runtime objects to its

associated type information in the type table. More specifically, a key in the object

mapping table is an object address and its mapped value is an address pointing to the

associated entry within the type table. It is performance critical for HexType to effi-

ciently design this object mapping table, because this mapping process through object

mapping table is performed every time HexType attempts to verify the typecasting

operations.

We found various object tracking methods in previous works [41,42]. TypeSan [42]

uses a memory shadowing scheme to track global, heap, and stack objects. However,

the TypeSan memory shadowing scheme has three limitations: (i) TypeSan uses a

fixed address for the metadata table (to enable faster lookups) which may result in

compatibility problems if applications reuse the same address, e.g., due to ASLR,

which we observed in practice;

(ii) TypeSan only updates objects in the “object to type” mapping table when

objects are allocated (it does not delete information when an object is deleted from

memory). Therefore stale metadata can create additional problems; (iii) TypeSan’s

memory shadowing scheme uses more memory resources compared to other non-

24

Fast-path Slot
Slow-

path Slot
(RB-tree

Ref)

Allocated
Object

Ref

Hashvalue
for Object

Name

Type
Relationship
Information

Ref

0x417000 2341234 0x51723D

0x41563C 1312321 0x51724D _

 0x41723D 7231234 0x51724D _

_ _ _ _

0x41563E 4232123 0x51623D

Per-entry
RB-tree

Figure 2.5.: A snapshot example of object mapping table, showing how it maps
an object using a combination of fast-path and slow-path slots. When HexType
looks up type information, an object address is used to obtain the reference to the
corresponding object mapping table entry. HexType first matches the fast-path slot.
If not present in the fast-path slot, HexType then searches the corresponding red-
black tree to find type information (slow-path) and updates the fast-path accordingly.

memory shadowing schemes. CaVer [41] uses a red-black tree to keep track of global

and stack objects. However, overhead becomes prohibitive for, e.g., stack objects, as

stack objects incur frequent insertions and deletions. Since a red-black tree generally

shows O(logN) time complexity to delete, insert, and search.

Toward this end, HexType leverages a new data structure to reduce performance

overheads in mapping operations. The key insight for object mapping table is that

some objects are accessed much more frequently than others. We therefore designed

a data structure that splits object lookup into a fast pass using a hash table and a

slow path using a red-black tree, see Figure 2.5. The first level of our data structure

is a hash table. We use the object’s address and a simple hash function to locate

the entry for a given object. Each hash table entry holds two slots: (1) the fast-

path slot for the least recently cast object, which holds the reference to the object

(to check if the object matches), the hash of the object’s type, and the reference to

25

object’s type relationship information (collects all destination types that are allowed

to be cast) and (2) the slow-path slot, which holds a reference to a per-slot red-black

tree maintaining a complete set of objects that map to the hash table entry. In

other words, once HexType locates a hash table entry, it simply reuses the value in

the fast-path slot if the object’s address in the fast-path slot matches. Otherwise,

HexType walks through the red-black tree pointed by the slow-path slot to address

collisions. Whenever a lookup in the red-black tree is performed, the fast-path is

updated with the most recent object. As a result, our mapping scheme with object

mapping table imposes O(1) time complexity for fast-path accesses and O(logN) for

slow-path accesses (where N is the number of values in the per-slot red-black tree).

In the SPEC CPU2006 C++ benchmarks, our approach uses the fast-path 99.68% of

time to update metadata and 100% of the time to lookup information from the type

table. We demonstrate that these design choices for the object mapping table are

reasonable in the evaluation section in subsection 2.1.5.

Type Casting Verification

We now describe the final step of HexType, typecasting verification, which checks

the safety of casting. HexType instruments typecasting operations with additional

verification code at compile time. At runtime, this instrumentation locates the ob-

ject’s true type information in the type table and then compares the target type with

the expected type at the cast site to determine if the cast is legal.

HexType instruments all type casting operations related to type confusion issues.

As described in section 2.1.1, these include static cast sites, where its casting

operation performs downcasting. More precisely, HexType instruments additional

code invoking a runtime verification function while passing necessary information

with respect to casting verification (i.e., a base object pointer subjected to casting

and a hash value of a destination type).

26

c l a s s Base1 { . . . } ;
c l a s s Base2 { . . . } ;

// m u l t i p l e i n h e r i t e n c e
c l a s s Derived : publ i c Base1 , publ i c Base2 { . . . } ;

Derived obj ;
Derived∗ dp = &obj ;

// i n d i c a t e s the Dervied ’ s Base2 o b j e c t
Base2∗ b2p = dp ;
// s t a t i c c a s t r e s t o r e s the o r i g i n a l p o i n t e r v a l u e
Derived∗ dps = s t a t i c c a s t <Derived∗>(b2p) ;
// r e i n t e r p r e t c a s t p e r s e r v e s the new p o i n t e r v a l u e
Derived∗ dpr = r e in t e rpre t ca s t<Derived∗>(b2p) ;

Figure 2.6.: An example of how reinterpret cast results in a type confusion
problem.

27

Additionally, HexType also verifies reinterpret cast. As mentioned in sec-

tion 2.1.1, reinterpret cast forces the casting operation by copying the memory

bits of a pointer value even though casting types are not compatible. Thus, this

operation is security critical if misused. For example, as shown in Figure 2.6, since

reinterpret cast simply returns the same unchanged address (line 15), a pointer

to a base class points to a semantically different object, which results in access to an

unexpected memory area. In other words, reinterpret cast does not properly

adjust the pointer according to the class hierarchy (line 5) as it simply hard-copies a

to-be-cast value, compared to static cast which adjusts the pointer.

Once a runtime verification function is invoked at runtime, HexType first locates

the object mapping table. Given the base pointer address of an object, HexType

computes the hash index within the object mapping table, which returns a reference

to the corresponding type table walking through either fast-path or slow-path (sec-

tion 2.1.3). Using this type table as well as the provided destination type information,

HexType reasons about whether the underlying object can be indeed a sub-object of

the destination type such that the casting itself is correct in the end. If HexType

detects type confusion at runtime, it displays a detailed report that includes allocated

object type, expected object type, and the type casting location. This information

allows the developer to triage the type casting issue quickly.

Optimization

Type casting verification supported by HexType may impose non-negligible per-

formance overhead as it involves additional computation. In order to make HexType

a truly practical security tool, we implement a set of performance optimization tech-

niques, namely only tracing unsafe objects, only verifying unsafe casting, and efficient

dynamic casting.

Only Tracing Unsafe Object HexType only traces type information on potentially

unsafe objects and does not trace safe objects. We define T as a safe object type if

28

Code
class D : public B { …. };
class F : public C { …. };
B *pB = new B;
C *pC = new C;

static_cast<D*>(pB);
static_cast<F*>(pC);

B, C, ...

(2) Initialize unsafe object type set (4) Extend unsafe object type set

A

B C

D E F
(1) Extract
 unsafe
 objects

Type hierarchy information

(3) Extract all children types

B, C, D, E, F, ...

Figure 2.7.: An example of how HexType creates a potentially unsafe object type set.
In the example, we assume that objects of type B and C are typecast. HexType will
identify these potentially unsafe types and all its children types as unsafe.

and only if T is never subject to typecasting. T is a potentially unsafe object type

otherwise. Since safe object types will never be used for casting at all, HexType

does not need to keep track of them to check casting validity. We assume that the

source pointer of a safe object always references an object of the correct type as no

casting operation in the program exists that breaks this assumption. As illustrated

in Figure 2.7, HexType performs the following two steps to identify unsafe objects.

First, it identifies a typecasting-related object set, which can be used for typecasting

operations. HexType identifies all type information both at the casting site and for

the cast object. An object that is cast can be of type X or any of the child classes of

type X. The type casting site therefore must accept all possible subtypes. Next, when

instrumenting object allocation sites, HexType selectively instruments allocation only

for typecasting-related objects.

While evaluating HexType, we found that tracking stack objects is the most crit-

ical performance bottleneck. Thus, considering allocation characteristics of stack

objects, we apply a special optimization scheme to conservatively distinguish safe

stack objects from unsafe stack objects.

29

First, we apply CaVer’s optimization technique which is based on the observation

that the lifetime of a stack object can be relatively well defined with respect to a

set of functions the object is active — a function (that the subjected stack object is

declared) and all of its callee functions, if there are no out-going indirect calls. Thus,

only if there are no out-going indirect calls, we perform an escape analysis for the

set of those functions so as to ensure that any reference to the stack object never

leaves the analyzed functions. Further more, if there are no typecasting operations

within these clustered and side-effect free functions, then the analyzed stack objects

will never be used for typecasting. In this case, it is truly a safe stack object that

does not need to be tracked at runtime.

We apply a more fine-grained analysis for functions that did not pass the previous

check: (i) we check whether each stack object in the function is a local variable using

SafeStack which is a component of CPI/CPS [46], since SafeStack supports local

variables detection and (ii) if these local stack objects are not used for any typecasting

operation within this function, we do not need to trace these stack objects.

Only Verifying Unsafe Casting Clearly HexType does not need to perform runtime

verification for a casting operation if it can be proven safe during compilation. We

call such a provably safe cast operation a safe casting, and unsafe casting otherwise.

Since HexType supports runtime casting verification, we can leverage an optimization

that relies on an imprecise yet conservative static analysis to distinguish these two

categories. In other words, given a casting operation, HexType determines if it is

safe casting only if HexType can be completely certain at compile time. If HexType

cannot determine it is safe in a compile time, HexType simply considers it unsafe

casting and falls back to a runtime check.

HexType leverages a conservative backward dataflow analysis to identify safe cast-

ing. Starting from a casting site, HexType reasons about type information of an

underlying object, i.e., how the underlying object has been allocated. To answer this

question, we perform an inter-procedural use-def chain analysis, where the use point

is defined as a casting site and the def point is defined as any object allocation sites.

30

c l a s s T : publ i c S { . . . } ;

void s a f e c a s t i n g e x () {
S t e s t 1 ;
S t e s t 2 [1 0 0 0] ;

// s a f e c a s t i n g : a lways c a s t from c l a s s S
// (case 1)
s t a t i c c a s t <T∗>(&t e s t 1) ;

// (case 2)
s t a t i c c a s t <T∗>(t e s t 2) ;

// (case 3)
S ∗ l o c a l o b j p t r = &t e s t 1 ;
s t a t i c c a s t <T∗>(l o c a l o b j p t r) ;

}

void u n s a f e c a s t i n g e x () {
// unsafe c a s t i n g : type i s hard to dertermine
S∗ o b j p t r = e x t e r n a l f u n c () ;
s t a t i c c a s t <T∗>(o b j p t r) ;

}

Figure 2.8.: An example for safe and unsafe casting. The three examples (line 9, 12,
and 16) are all safe casting. For the first two examples, each typecasting operation
obtains the object address using the address-of operator and the array name. In the
third example (line 14), we can simply determine the object type using use-def chain
analysis. The last example (line 22) is an unsafe casting case when we cannot track
the object type (i.e., external function).

For example, as shown in Figure 2.8, if the source of typecasting operation uses

the address-of operator(&) or array name directly to get the address of the object,

HexType can easily determine the source object type and verify the typecasting op-

eration at compile time. Also, we can predict the object type through the use-def

chain analysis. In these cases, we can remove HexType’s typecasting verification in-

strumentation and verify typecasting operations during compile time. However, if we

cannot determine the source type, HexType will again fall back to a runtime check.

31

Source
Code

* Typecasting verification
 instrumentation (§4.3).
* Dynamic_cast
 replacement (§4.4).

* Type relationship analysis (§4.1).
* Object tracing
 instrumentation (§4.2).

LLVM Compiler

HexType
harden binary

Figure 2.9.: Overview of HexType’s implementation. HexType consists of several
compiler passes in clang and LLVM that insert object tracing and typecasting instru-
mentation and a corresponding runtime library.

Efficient Dynamic Casting Since HexType offers efficient runtime casting verifica-

tion, the existing dynamic cast can be optimized accordingly. HexType therefore

replaces each dynamic cast with our fast lookup. In order to preserve the runtime

semantics of dynamic cast as dictated by the C++ standard, HexType takes ad-

ditional steps in response to an incorrect casting detected in runtime. As described

in section 2.1.1, HexType returns NULL for a pointer-typed casting and throws an

exception for a reference-typed casting. This optimization can be especially useful if

applications heavily rely on dynamic casting.

2.1.4 Implementation

We have implemented HexType, as shown in Figure 2.9, based on the LLVM Com-

piler infrastructure project [53] (version 3.9.0). The HexType implementation consists

of 4,677 lines of code that we added to Clang, an LLVM Pass, and our compiler-rt run-

time library. HexType’s LLVM Pass (i) creates type relationship information, and (ii)

instruments allocations of unsafe objects to record allocated object type information

into our object mapping table. Also, we modify Clang to (i) instrument all downcast

sites (the pointer type of casting operation is one of the parent objects of destination

type), and (ii) handle dynamic cast, reinterpret cast, and placement new.

32

At runtime, the instrumentation invokes HexType’s runtime library functions to up-

date object allocation information into object mapping table, and verifies typecasting

operation using type relationship information and object mapping table.

2.1.5 Evaluation

In this section, we evaluate HexType focusing on following aspects: (i) the detec-

tion coverage (section 2.1.5); (ii) newly discovered vulnerabilities by HexType (sec-

tion 2.1.5); (iii) the efficiency of object mapping table (section 2.1.5); and (iv) runtime

overhead (section 2.1.5).

Experimental Setting All evaluations were performed on Ubuntu 16.04.2 LTS with a

quad-core 3.60GHz CPU (Inter i7-4790), 250GB SSD-based storage, 1TB HDD, and

16GB RAM.

Evaluation Target Programs We have applied HexType to the following programs: all

seven C++ benchmarks from SPEC CPU2006 [54] and Firefox [55]. For Firefox, we

use Octane [56] and Dromaeo [57] benchmark suites. Moreover, in order to compare

HexType with previous work, we applied TypeSan as well, and ran these programs

under the same configuration. For CaVer, we use the numbers from the paper since

CaVer was developed almost three years ago and we encountered compatibility issues

with the current test environment and software (i.e., Firefox).

Coverage on Typecasting

One of the primary goals of HexType is in increasing the typecasting coverage

such that HexType can ensure that all different typecasting operations are correctly

performed. To evaluate typecasting coverage, we counted how many typecasting

operations were verified at runtime (shown in Table 2.1). We used two different

versions of HexType in this experiment, where each version either turned off or on

the optimization techniques presented in section 2.1.3 (denoted as HexType-no-opt

33

Table 2.1.: The evaluation of typecasting verification coverage against SPEC
CPU2006 and browser benchmarks. Columns with % present a coverage ratio and
columns with × present a coverage improvement ratio (i.e., HexType’s coverage di-
vided by TypeSan’s coverage).

of
casting

Type
San

HexType
-no-opt

HexType

% % × % ×
omnetpp 2,014m 100 100 1 100 1
xalancbmk 283m 89.5 99.8 1.1 99.8 1.1
dealII 3,596m 100 100 1 100 1
soplex 209k 100 100 1 100 1

ff-octane 623m 12 73.3 6.1 56.5 4.7
ff-drom-js 4,229m 23 80.1 3.5 59.4 2.6
ff-drom-dom 10,786m 45 88.8 2 54.9 1.2

34

and HexType, respectively). For TypeSan, we referred to the evaluation numbers

presented in the paper [42].

For SPEC CPU2006, HexType verifies almost all typecasting operations — 100%

for omnetpp, dealII, and soplex, and 99.8% for xalancbmk. Compared to TypeSan,

HexType improves the coverage number on xalancbmk (i.e., improved from 89% to

99.8%). This is because xalancbmk heavily uses placement new to allocate objects,

for which TypeSan looses information about the object at runtime. Thus TypeSan

fails to resolve type information associated with such objects. However, as described

in section 2.1.3, HexType correctly handles these new operator allocations, which

significantly raised the coverage ratio.

For Firefox, depending on the benchmark suite, HexType successfully covers type-

casting operations: ranging from 73% to 88% with HexType-no-opt; and ranging from

54% to 59% with HexType. During our evaluation, we found that HexType’s coverage

rate drops after applying our optimizations due to interactions with Firefox’s complex

object allocation patterns and how our optimizations handle and track allocations in

LLVM/Clang. While we are investigating and plan to fix this issue in the future,

HexType with optimization still shows better coverage rate than TypeSan. Most of

the missing type casts in xalancbmk and Firefox result from application-specific allo-

cation patterns. More specifically, Firefox creates a custom storage pool (typed as an

array of char), and manipulates the pool using memcpy or direct object initialization

(e.g., data.key = key; data.index = index; ..). Xalancbmk also uses a

special storage pool (SerializeEngine) that manages objects directly without calling

memory allocation functions. As these allocation patterns cannot be detected by

HexType during the instrumentation phase, HexType cannot track runtime object

types that are allocated through these patterns. Handling these missing allocations is

challenging. A naive approach would trace the custom storage pool (allocated as char

array) and its low-level allocation patterns using memcpy or direct object initializa-

tion. This would unfortunately result in high overhead. Alternatively, we propose to

modify the few locations in Firefox and annotate the object allocation accordingly.

35

Although this coverage ratio in Firefox may not be as impressive as HexType’s result

of the SPEC CPU2006 benchmarks, we emphasize it is significantly improved from the

state-of-the art tool, TypeSan. TypeSan only covered 27.75% of Firefox’s typecasting

on average, 52.98% and 29.18% less than HexType-no-opt and HexType, respectively,

highlighting HexType’s advantage in identifying allocation sites (section 2.1.3).

Newly Discovered Vulnerabilities

During the course of evaluating HexType by running the set of target programs,

we discovered four new type confusion vulnerabilities. In particular, HexType re-

ported four vulnerable cases in the Qt base library while evaluating Wireshark and

Apache Xerces-C++, all of which have been confirmed and patched by the corre-

sponding developer communities. For Apache Xerces-C++, HexType found two new

vulnerabilities. These vulnerabilities occurred due to type confusion issues between

DOMNodeImpl (indicated by DOMNode type pointer) and DOMTextImpl. Since the

DOMNodeImpl object is allocated using placement new from a pre-allocated memory

pool previous approaches cannot trace these objects. Therefore, these vulnerabilities

were not detected by previous schemes such as CaVer or TypeSan.

In addition, HexType found two new vulnerabilities in the Qt-based library. The

Qt team already patched our reported type confusion bugs [58]. HexType reported

type confusion issues when Qt performs a casting from QMapNodeBase (base class)

to QMapNode (derived class). Since QMapNode is not a subobject of QMapNode-

Base, it violates C++ standard rules 5.2.9/11 [52] (down casting is undefined if the

object that the pointer to be cast points to is not a subobject of down casting type)

and causes undefined behavior.

These new vulnerabilities discovered by HexType clearly demonstrate the security

advantage of HexType, especially compared to other previous work including Type-

San and CaVer. We would like to further point out that these new type confusion

vulnerabilities were discovered only with basic benchmark workloads. In the future,

36

we plan to run HexType under a fuzzing framework such as AFL [59]. to discover

more security critical vulnerabilities related to type confusions.

Efficiency of Object Tracing

Recall that the key runtime functions that HexType performs are (1) keeping

track of object types (at the time of object allocation) and (2) looking up an object

type (at the time of type casting). As described in section 2.1.3, we designed object

mapping table to efficiently handle these operations leveraging both a fast-path and a

slow-path. Therefore, the performance efficiency of object mapping table clearly relies

on the hit ratio of the fast-path (i.e., the number of operations that only access the

hash table) such that HexType does not need to consult the slow-path (i.e., accessing

not only the hash table but also the corresponding red-black tree) in most cases.

Table 2.2 lists the fast-path hit ratios while running the set of evaluation target

programs. Overall, most of operations showed high fast-path hit ratios, ranging from

98.820% and 99.999% to update object mapping table and from 94.099% and 100%

to lookup object mapping table. This high fast-path hit ratio was also maintained

when HexType was running large-scale programs such as Firefox, which creates more

than 37,000 million objects at runtime. This result implies that the design decision

of the object mapping table is efficient enough to support a wide range of programs,

which in turn significantly helped HexType to reduce runtime impact.

Performance Overhead

To analyze performance impacts imposed by HexType, this subsection measures

performance overhead in terms of runtime speed. Table 2.4 shows the performance

overhead on the SPEC CPU2006 and Firefox, handling placement new and rein-

terpret cast. For all seven C++ benchmarks in SPEC CPU2006, HexType out-

performed previous work in all cases. This is largely because of HexType’s optimiza-

tion algorithms (section 2.1.3) as well as object mapping table designs (section 2.1.3).

37

Table 2.2.: The number of traced objects and its fast-path hit ratio when HexType
lookup/update these objects into our the object mapping table.

allocated objects fast-path
hit ratio (%)

(update)

fast-path
hit ratio (%)

(lookup)
stack heap global

omnetpp 1m 478m 601 99.999 100

xalancbmk 3,150m 45m 3,098 99.998 99.999

dealII 497m 283m 200 99.988 100

soplex 21m 639m 197m 99.691 100

ff-octane 593m 7m 125k 98.820 98.649

ff-drom-js 2,875m 11m 125k 99.645 98.426

ff-drom-dom 34,900m 607m 125k 99.706 94.099

38

Table 2.3.: The number of safe objects identified by HexType’s optimization algo-
rithm. HexType does not keep track of these safe objects.

of
object

safe
casting
related

object (%)

safe
stack

objects (%)

total
safe

objects
rate (%)

omnetpp 480m 54.76 0.107 54.767

xalancbmk 3,196m 99.42 3.50 99.42

dealII 781m 83.81 51.07 83.81

soplex 858m 97.75 0.76 97.87

povray 6,550m 100 0.18 100

astar 28m 100 1.31 100

namd 2m 100 0 100

ff-octane 600m 42.69 1.96 44.11

ff-drom-js 2,491m 39.99 1.42 40.26

ff-drom-dom 37,538m 21.33 0.95 21.54

Table 2.4.: SPEC CPU2006 and browser benchmark performance overhead for CaVer,
TypeSan, and HexType. The ×1 column denotes the ratio between CaVer and Hex-
Type and ×2 denotes between TypeSan and HexType.

CaVer
Type
San

HexType

% % % ×1 ×2

omnetpp NA 49.13 9.69 NA 5.1
xalancbmk 29.6 41.35 1.25 23.7 33.1
dealII NA 78.23 13.13 NA 6
soplex 20.0 1.16 0.76 26.3 1.5
astar NA 0.36 0.34 NA 1.1
namd NA -0.37 -0.37 NA 1
povray NA 26.73 0.8 NA 33.4
ff-octane 45 19.37 30.87 1.5 -1.6
ff-drom-js 40 25.18 25.89 1.5 -1.03
ff-drom-dom 55 97.15 126.03 -2.3 -1.3

To clearly understand these, Table 2.3 reports how many objects HexType identi-

fied as safe objects. With the help of the optimization algorithm, HexType was able

to dramatically reduce the number of objects to be traced — reduced from 83% to

100% of tracing for all cases except omnetpp. For omnetpp, the number of casting

39

related classes (unsafe objects) is higher than other cases. However, we can reduce

almost 54% object of the tracing overhead. Interestingly, out of the seven SPEC

CPU2006 C++ benchmarks that we ran, povray, astar, and namd do not perform

any typecasting operation that HexType has to verify at runtime. This implicates

that HexType will have zero overhead for these cases since there are no object trac-

ing and typecasting operation. In comparison, TypeSan imposes 26.73% overhead for

povray.

In the case of omnetpp and dealII, HexType has shown significantly better perfor-

mance due to HexType’s optimization on replacing dynamic cast (section 2.1.3).

This optimization technique can show strong performance improvements, particularly

for the applications heavily relying on dynamic cast. We analyzed programs in

our evaluation set, and found that two SPEC CPU2006 C++ benchmarks, dealII and

omnetpp, perform a huge number of dynamic cast, 206 M and 47 M number, re-

spectively. Therefore, we replaced dynamic cast in our verification routines which

reduced the dealII’s performance overhead by 4%.

For Firefox, HexType showed similar or higher overhead than TypeSan. Note

that, when assessing performance, HexType vastly extends coverage compared to

TypeSan (past the differences in coverage).

Moreover, while HexType reduced object tracing by nearly 52 – 100% in SPEC

CPU2006, it only reduced the number of traced objects by about 21 – 44% in Firefox.

We also suspect this is because of the Firefox’s runtime characteristic — almost all

objects in Firefox, as shown in Table 2.2, are allocated on the stack. We note that

TypeSan’s object mapping scheme comes with a security rist as it never removes ob-

ject type information. As a result, if the stack location of a former properly allocated

object is used in a casting operating, it may be interpreted as a valid object. However,

since HexType properly deletes those information when the stack returns, HexType

does not suffer from these security issues.

40

2.1.6 Discussion

Coverage This paper extends the coverage of type confusion detection, particularly

in dynamic cast and reinterpret cast. In the future, it is also possible to

handle more subtle type confusion issues such as const cast’s undefined behavior

or union’s type confusion problem. In the case of const cast, it is only safe if

we are casting a variable that was originally non-const. Otherwise, a program may

modify an object that should be non-mutable, as const cast removes type-based

write protection imposed on const objects. Union can also cause a type confusion

problem when the attribute value which indicates the type of union is misused. A

union data type is similar to a struct data type since it consists of a number of

members with different names and types, each of which can be referred to individually.

However, unlike the struct type, since union members all occupy the same location

in memory, developers should use them mutually exclusively. The existence of these

types therefore introduces the possibility of mistakenly referring to a member of a

union that is invalid. For example, this problem can lead to an information leak [60].

Fuzzing for type violations Since HexType can identify type confusion issues at run-

time, HexType can be utilized to find new type confusion vulnerabilities with the help

of fuzzing frameworks such as AFL [59]. AFL is typically deployed with ASan [49],

an LLVM-based sanitizer that checks for (partial) memory safety violations, to in-

crease fuzzing throughput and precision. Without ASan, AFL detects only memory

safety violations that result in a segmentation fault and cannot detect silent corrup-

tion. As AFL already supports ASan, integrating another sanitizer like HexType

will be straight-forward, thereby extending AFL to trigger and detect dangerous type

confusion vulnerabilities as well.

2.1.7 Related Work

In this section, we summarize previous research works on typecast verification.

HexType focuses on type confusion attacks that violate pointer semantics in type-

41

casting operations. CaVer [41] first addressed such exploits due to type casting ver-

ification and identified eleven security vulnerabilities due to bad typecasting. Next,

TypeSan [42] improved the performance and coverage over CaVer. Similar to Hex-

Type, both CaVer and TypeSan are implemented on top of the LLVM compiler

framework, instrumenting code during compile time. For metadata allocation both

CaVer and TypeSan use a disjoint metadata scheme. TypeSan uses a shadow mem-

ory scheme for metadata and CaVer implements a per thread red-black tree for stack

objects and shadow memory for the heap. However, these schemes inhibit the iden-

tification of overall object allocation and increase the overhead. HexType uses a

global, whole address space two layer object-to-type mapping scheme to reduce over-

head and supports additional object allocation patterns through placement new and

reinterpret cast. Hence HexType vastly increases coverage compared to the

aforementioned approaches. Performance is comparable despite the increased cover-

age.

UBSan [38], another typecast verification framework, works only for polymor-

phic classes. It relies on runtime type information (RTTI) and instruments only

static cast and checks the casting during runtime. Thus it can only handle polymor-

phic classes problem as well as requires manual source modification. This makes it

difficult to use in large projects.

Several Control-Flow Integrity (CFI) techniques [43, 61–65] ensure the integrity

by checking any invalid control-flow transfer within the program. However, these

techniques address the type confusion problem only partially if control-flow hijacking

is performed via type exploitation. Similarly, defenses [40,66–68] that protect virtual

calls from vtable hijacking attacks considers only the type of the virtual calls. These

schemes do not address the overall bad casting problems. Another control-flow hi-

jack mitigation technique is Code Pointer Integrity (CPI) [46, 69], which guarantees

the integrity of all the code pointers in a program. This approach can prevent the

accessibility of corrupted pointers, but does not block type casting attacks.

42

Bad type casting can lead to memory corruption attacks where an attacker can

potentially get access to out-of-bounds memory of the cast object. Such attacks

can be identified by existing mechanisms. Defense techniques focusing on memory

corruption [11, 30, 32, 70–73] can detect exploits if a type confusion attack leads to

memory access past the cast object. These techniques efficiently detect such attacks,

but unlike HexType they cannot address type confusion issues.

2.2 Conclusion

Type casting vulnerabilities are a prominent attack vector that allows exploitation

of large modern software written in C++. While allowing encapsulation and abstrac-

tion, object oriented programming as implemented in C++ does not enforce type

safety. C++ oers several types of type casts and some are only checked statically and

others not at all, at runtime an object of a dierent type can therefore incorrectly pass

a type cast. To detect these illegal type casts, defenses need to both track the true

allocated type of each object and replace all casts with an explicit check. HexType

tracks the true type of each object by supporting various allocation patterns, sev-

eral of which (such as placement new and reinterpret cast) were not handled

in previous work. While previous work focused only static casts, HexType also

covers dynamic cast and reinterpret cast. To limit the overhead of these on-

line type checks, HexType both reduces the amount of incurred checks by removing

checks that can be proven correct statically and limiting the overhead per check due to

a set of optimizations. Our prototype results show that HexType has at least 1.1 – 6.1

times higher coverage on Firefox benchmarks. For SPEC CPU2006 benchmarks with

overhead, we show a 2 – 33.4 times reduction in overhead. In addition, HexType dis-

covered 4 new type confusion bugs in Qt and Apache Xerces-C++. The open-source

version of HexType is available at https://github.com/HexHive/HexType.

43

3 V-TYPE: INLINE TYPE INFORMATION TO COUNTER TYPE

CONFUSION

C++ is the world’s most popular object-oriented programming language and is widely

used in high-performance and large-scale applications. C++ enables high-level ab-

straction and modularity with low-level memory access and system intrinsics. This

design choice of C++ comes at the price of safety. The programmer is respon-

sible for carefully enforcing type and memory safety. In particular, the lack of

type safety leads to type confusion vulnerabilities, which is one of the main at-

tack vectors to compromise C++ applications. Type confusion vulnerabilities are

logical errors caused by misuse of resources such as a pointer, object, or variable

with an incompatible type, and may lead to unexpected program behavior. For

example, through down-casting, a pointer of a descendent type can point to an

object of a parent type. Using the illegally casted pointer, the attacker can trig-

ger out-of-bound memory access by accessing the data fields that are not avail-

able in the parent type. Further, if there is important metadata such as a Vtable

pointer next to the target object and can be accessed by a descendant type, an

attacker can overwrite this information to hijack control flow. Exploitable type con-

fusion vulnerabilities are found in a wide range of software products, such as Google

Chrome V8 (CVE-2020-6418), WebKitGTK (CVE-2020-3897 and CVE-2020-3901),

Autodesk FBX SDK (CVE-2020-7081), Adobe Flash Player (CVE-2020-3757), Phan-

tomPDF (CVE-2020-15638), Firefox (CVE-2019-17026), Libxslt (CVE-2019-5815),

Ghostscript (CVE-2018-19134), Adobe Flash Playeri (CVE-2018-4944), and Foxit

PDF Reader (CVE-2018-9942). Due to deterministic runtime behaviors, these vul-

nerabilities can be exploitable by attackers.

In the past years, several type confusion detectors have been devised. These ex-

isting detectors can be categorized into two categories: (i) pointer casting monitor;

44

and (ii) pointer usage monitor. First, pointer casting monitors detect type confusion

during casting. To detect type confusion, these approaches insert additional check

instrumentation for all down-casting sites. At runtime, inserted check instrumenta-

tion invokes a runtime library function to verify type casting through checking the

relationship between source and destination type of the casting operation. Clang

CFI [37] uses the Vtable pointer to figure out source object type pointed by source

pointer. However, this approach cannot verify typecasting between non-polymorphic

types as only polymorphic objects have Vtable pointer. Disjoint metadata struc-

ture approaches such as Caver [74], TypeSan [3], and HexType [35] use additional

disjoint metadata to maintain ”object to type” mapping table. To maintain this

disjoint metadata structure, these approaches insert additional instrumentation into

all object allocation and deallocation sites. However, these approaches have high

overhead issues because of the additional object tracking and metadata structure

managing overhead. These approaches also have high false positive detection rate

issues because of using outdated metadata created by incorrect object tracking (e.g.,

not removing deleted objects from corresponding metadata structure areas).

Second, pointer usage monitors [6, 75, 76] inspect load and store operations to

detect type confusion when a pointer with the incorrect type gets referenced. These

approaches mainly have high overhead issues as these have to insert all checks into

deference sites although these show high detection coverage (i.e., checking other po-

tentially dangerous ways such as union or reinterpret cast through pointer

usage monitoring).

These existing solutions have their own issues (e.g., high overhead or incorrect

object tracking), and those issues ultimately make it more difficult to find type con-

fusion bugs more effectively and accurately. Thus, we propose V-Type to improve the

precision and performance of the type confusion detector. For this, V-Type uses in-

line type information available as the Vtable pointer in each runtime-allocated object.

Considering this information only exists in polymorphic objects, we forcibly change

non-polymorphic objects objects into polymorphic ones to ensure each object will

45

maintain type information. However, several difficult challenges (e.g., need to add

additional instrumentation or to modify compiler) that arise when forcibly inserting

type information into non-polymorphic objects are as following: (1) we need to insert

additional constructor calls into all object allocation sites through the malloc family

to initialize Vtable pointer, (2) we need to address standard violation issues, such as

union having a polymorphic object as members, when we forcibly change the data

layout, and (3) we need to address issues when the changed object will be used for

communication with other components (e.g., libraries or kernel). To address these is-

sues, V-Type inserts additional constructor calls to initialize Vtable pointer of forcibly

changed polymorphic objects. Additionally, V-Type addresses standard violation is-

sues by modifying the compiler without additional side effects. For communication

issues with other components, V-Type rebuilds related libraries or software to make

sure all components have the same type layout. However, considering the burden

of rebuilding the kernel, we create wrapper functions to remove or reinsert Vtables,

which are forcibly inserted, before and after system calls.

For optimization, V-Type only changes casting related non-polymorphic objects

to polymorphic objects. Since objects unrelated to casting (distinguished via static

analysis) will never be used for casting, V-Type does not need to change these non-

polymorphic objects. To further increase detection coverage, V-Type also detects

type confusion from void* or another unrelated type to the wrong dynamic type.

According to our evaluation, V-Type only incurs 0.81% overhead on SPEC CPU2006,

which is 11 times faster than HexType. Additionally, V-Type shows 10 times higher

detection coverage than Clang-CFI. Finally, compared to the previous approaches,

V-Type has a low false positive rate for the type confusion detection because FuZZan

is free from incorrect object tracking.

Our contributions are:

1. Designing and implementing V-Type and addressing three main issues when we

forcibly change non-polymorphic type into polymorphic type.

46

2. Increasing detection coverage and reducing overhead using inline metadata

structure while it shows low false positive rates.

3.1 Background

In this section, we summarize C++ facilities for subtype polymorphism and dy-

namic dispatch, their implications for memory layout and type confusion vulnerabil-

ities.

3.1.1 Classes Hierarchies & Polymorphism

The C++ programming language facilitates subtype polymorphism as a mecha-

nism for implementing generic functions. Whenever an instance (pointer or reference)

of a type T is expected, this variant of polymorphism also accepts transitive subtypes

of T. In particular, instances of derived classes can safely be treated as instances

of their respective base classes. This allows reusing a single function for different

derived classes and hence decreases code duplication. C++ implements access to

member variables by laying out objects in memory such that instances of derived

class start with the layout of their base class. Additional member variables of derived

classes are appended afterwards.

Assume class A is subclassed by B and C. Objects of class A just have a single

member variable at offset 0. Objects of derived classes B and C commence with the

memory layout as A and proceed by appending their respective member variables.

A function f(A* a obj) specifying instances of class A as first parameter equally

accept instances of class B and C. This is a characteristic property of subtype polymor-

phism which postpones determination of concrete type to runtime. As the runtime

type of the object referenced by parameter ‘obj‘ might vary, the compiler restricts

member variable access to those variables common to all objects in this class hierar-

chy. I.e. only the member variables of class A are accessible through a variable of

type A even if the referenced object’s runtime type is B or C. This restriction imposed

47

c l a s s A {
i n t a i n t ;

} ;

c l a s s B : A {
i n t b i n t ;

} ;

c l a s s C : A {
char∗ c p t r ;

} ;

void f (A∗ a ob j) {
B∗ b obj = s t a t i c c a s t <B∗>(a ob j) ;

}

Figure 3.1.: Code example for type confusion

48

by the type system can be worked around by explicitly casting the variable of type A

to a variable of type B or C. Due to postponing concrete types to runtime, compilers

cannot determine whether the cast operation is correct in general. As compilers de-

fault to accepting the cast, it is the responsibility of the developer to ensure correct

runtime types.

3.1.2 Type confusion

Consider the casting operation in line 14 of figure Figure 3.1. After the cast,

member variables and methods of class B become accessible. Contrary to treating

an object as instance of a base class, treating it as instance of a derived class has

non-trivial implications w.r.t. correctness and security. Assuming a obj indeed

references an object of class B the program behaves correctly. However, a violation

of this assumption results in incorrect program behavior. Should the runtime type

of the object be class A, the member variables of B are outside of the allocation

boundaries of the object. Hence accessing these variables causes an out-of-bound

memory corruption.

Likewise, a obj referencing an object of class C causes a memory corruption as

well. Even though the access is not outside of the object’s allocation boundaries, the

member variables coincidentally sharing the same offset as ‘.‘ become overridden. In

our example, the member variable b int of B and c ptr of C share the same offset

of 8. Hence writing b int corrupts the pointer stored in c ptr.

3.1.3 C++ Casting

C++ features four different casting operators, each of them governed by distinct

rules and properties. It is up to developers to choose the appropriate casting operator.

The const cast operator allows stripping the const and volatile property of an

object. This operation is not without its own set of caveats, but unrelated to type

confusion. Hence we consider incorrect const cast to be out of scope.

49

The dynamic cast operator allows to change the static type of an object while

runtime verification validates the compatibility of the object’s dynamic type. The val-

idation routine mandated by the language specification generally requires the presence

of metadata in form of runtime type information (RTTI). As RTTI is only available

for polymorphic types dynamic cast it cannot be used for runtime verification of

casts to non-polymorphic objects. Embedding and traversing RTTI imposes signifi-

cant overhead in terms of binary size and performance. Hence performance sensitive

applications typically prohibit the usage of RTTI entirely. As a consequence, we

cannot assume to have RTTI metadata available.

The static cast operator changes the static type of an object similar to the

dynamic cast operator. However, no runtime checks are performed and RTTI is

unnecessary. A limited amount of casting validation is performed solely at compile

time. The verification checks whether there is a path of upcasts and downcasts allow-

ing to move from source to target type. Lacking any runtime verification, downcasts

with incorrect dynamic type pass the compile time checks. Casting a pointer from

outside the class hierarchy (e.g. char* or a void*) into an object of a specific class

is permissible as well. This eventuates in the same potential for incorrect casting, as

there are no runtime checks. Incorrect usage of static cast is the main culprit

for type confusion in C++ applications.

The reinterpret cast operator reinterprets the underlying bit pattern of the

source type as target type. Verification happens neither at compile time nor at run-

time. Ensuring the correctness of the cast is a manual task, similar to static cast.

As a consequence, the same security issues arise.

C-style casts are supported not only by C, but also C++. The compiler replaces

this cast with one of three C++ casting operators. A const cast is preferred

over a static cast, which in turn is more favorable than a reinterpret cast.

The replacement select the first operator nor causing a compilation error. Due to

the definition of C-style casts in terms of C++ casting operators they inherit the

underlying potential to type confusion vulnerabilities.

50

3.2 Design and Implementation

Figure 3.2 illustrates an overview of V-Type. V-Type is a Clang/LLVM-based

sanitizer that checks for type confusion violations. Given the source code as input,

V-Type forcibly changes any non-polymorphic type into a polymorphic type to ensure

all allocated objects maintain type information through Vtable. Since there are no

additional constructor calls when objects are allocated from malloc family, V-Type

inserts additional constructor call instrumentation after malloc family. V-Type

verifies the type casting operation based on Vtable pointer as Clang-CFI, although

V-Type can still support non-polymorphic objects’ type casting verification. For

optimization, as non-polymorphic objects unrelated to type casting will not be used

for type casting, V-Type only changes type related to casting. While compiling of

a target program, including this additional process, V-Type generates a V-Type-

hardened program. At runtime, V-Type verifies type casting and detects a type

confusion error if there is illegal down-casting.

Change non-
polymorphic objects

Test program
and related
software and
libraries’ source
codes

Clang/LLVM’s passes

Address
compatibility issues

Insert typecasting
verification calls

Extract casting related
types for optimization

Enable
V-type

Verify type casting

V-Type enabled software/libraries

System call wrapper
functions

Kernel

Communication via
unchanged objects

Compile-time adjustment Runtime environment

Figure 3.2.: Overview of V-Type’s architecture and workflow.

51

3.2.1 Vtable inline metadata structure

For type casting verification, we must know the type information of the object

pointed by the casting operation’s source pointer. In order to know this, existing

disjoint metadata structure approaches maintain object-to-type mapping metadata

structure. However, this disjoint metadata structure has several limitations such

as high overhead and false positive rate issues. To remove these limitations, V-

Type uses Vtable inline metadata structure, which is Vtable pointer. Thus, to en-

sure non-polymorphic objects also have Vtable pointer, we change non-polymorphic

class/structure into polymorphic class/structure as shown in Figure 3.3. For this, we

modify Clang to insert Vtable pointer and create corresponding Vtable and construc-

tors. For type casting verification, we rely on Clang CFI’s [37] type casting verification

function as it also uses Vtable pointer and has minor performance overhead for type

casting verification.

3.2.2 Addressing compatibility issues

Forcibly changing non-polymorphic type into polymorphic type brings several

challenges mainly because of the changed object layout. The main challenges are:

-
-

Non-polymorphic
 “foo”

 Changed
Non-polymorphic
 “foo”

Vptr

 foo’s Vtable

 -

 -

 foo’s
typeinfo

forcibly
change

Figure 3.3.: Change non-polymorphic into polymorphic object.

52

(i) handling changed polymorphic objects allocated by the malloc family that is

unaware of polymorphic types; and (ii) handling communication with other com-

ponents using changed polymorphic objects; and (iii) addressing standard violation

issues caused by the changed object layout. We address these issues by adding ad-

ditional instrumentation to handle the allocation of changed objects by the malloc

family, by rebuilding related components with FuZZan to handle compatibility is-

sues with the communication between components, and by modifying the compiler

to address standard violation issues.

Allocation with malloc family. Unlike new and delete operators in C++, although

an object is created, malloc family (e.g., malloc, realloc, or calloc) does not

call the constructor, which can initialize Vtable pointer. However, if the changed non-

polymorphic objects allocated from this malloc family, it causes issues that allocated

object’s Vtable pointer is not initialized because of missed constructor call. To address

this issue, if the malloc family functions allocate changed non-polymorphic object,

we add an additional constructor call after target malloc family function to initialize

Vtable pointer.

Communication with other libraries and software If a changed type in the target

test application is used for communication with other components (e.g., passing a

changed object as an external library function’s parameter without the ability of the

corresponding components, such as an external library, to recognize this change), this

inconsistency will create issues. For instance, the Vtable pointer of changed objects

can be misinterpreted as a predefined type by the external library functions. Thus,

we rebuild other components with V-Type to make sure all components have the

same type layout information. During the evaluation of SPEC CPU2006 [77], we find

these issues when communicating with the C++ library, and therefore we rebuild the

C++ library with V-Type in order to also change target non-polymorphic type into

polymorphic type in the C++ library.

Communication with the operating system The interaction between the target test

application and operating system through changed objects will create compatibility

53

union S {
std : : s t r i n g s t r ;
s td : : vector<int> vec ;
.

} ;

i n t main () {
S s = {” HelloWorld ” } ;
.
// need to use ” placement new” b e f o r e s w i t c h i n g
// to a polymorphic o b j e c t
new (&s . vec) std : : vector<int >;
s . vec . push back (1 0) ;
.

}

Figure 3.4.: Code example for adding placement new before switching to union’s a
polymorphic object member.

issues just as library and software cases do. Considering the burden of rebuilding the

kernel, we implement a wrapper function for system calls in libc to remove the Vtable

pointer before sending changed objects to the kernel, and the wrapper function then

adds the Vtable pointer back after the system call. To handle that, V-Type extracts

the set of changed non-polymorphic and casting-related (for optimization) types, in-

cluding inheritance (IS-A) or composition (HAS-A) relationships during compilation.

Based on this set, V-Type ’s system call wrappers can check whether the target pa-

rameter type has been modified. If the type of the variable has been modified, V-Type

removes or adds a Vtable pointer from this object. Note that, V-Type also handles

recursive object dependencies, i.e., if one of the reachable child objects’ types have

been modified, those must be adapted accordingly.

Standard violation issues Since V-Type forcibly changes non-polymorphic type into

polymorphic type, this might violates the C++ language standard. For instance, be-

fore the C++11 standard (it is legal after C++11), unions cannot have polymorphic

objects as member variables. Forcible changing a non-polymorphic type into a poly-

54

c l a s s T1 {
const in t t ; // i t cannot be d e f i n e d in c l a s s
publ i c :
T1(i n t c) : t (c) {}
.

} ;

// need to d e f i n e the cons t v a r i a b l e o u t s i d e the c l a s s
T1() : t (100){}

Figure 3.5.: Code example for defining the const variable of class outside the class

morphic type may violate the standard. This is due to the inability to predict which

member of the union will be activated to call its constructor. More specifically, let us

suppose we have a union with two polymorphic classes and an int variable. When

we create an object, we cannot predict how this object is constructed by default and

what member’s constructor should be called as we do not know which member of the

union will be activated later. Thus, the union cannot have a polymorphic object as

members or explicit constructors (e.g., placement new) are generally needed when

new members of the union are activated as shown in Figure 3.4. To automatically

address this, V-Type checks each block and inserts constructor call instrumentation

when a union’s polymorphic class member is first activated in the target “block”. In

the same block, if a union is switched to another type (e.g, A Õ B Õ A), V-Type

inserts an additional constructor call when a polymorphic class member is activated

again.

Another issue is the initialization of const variables in changed polymorphic

objects. More specifically, const variables cannot be not initialized during decla-

ration [78]. Thus, to initialize the const member using a constructor, we have to

use the initializer list that is used to initialize the data member of a class, as shown

in Figure 3.5. However, it is hard to predict the const variable’s initialization value

when we forcibly insert constructors to initialize the target object’s Vtable pointer. To

55

Table 3.1.: Detection coverage comparison with other pointer casting monitor ap-
proaches

Detector
Polymorphic object Non-Polymorphic object

Based-to-derived
void*/

unrelated type
Based-to-derived

void*/
unrelated type

Caver 3 7 3 7

HexType 3 7 3 7

TypeSan 3 7 3 7

BiType 3 7 3 7

Clang-CFI 3 3 7 7

V-Type 3 3 3 3

address this issue, we modify the compiler to ignore this violation and then forcibly in-

sert constructors without the initializer list only to initialize a Vtable pointer. This is

because native constructors will initialize these const variables, even though Vtable’s

additionally inserted constructors skip the initialization of const variables.

3.2.3 Increase detection coverage

As shown in Table 3.1, the existing pointer use checking approaches detect two

types of type confusion: (1) illegal down-casting during casts from a base class to a

derived class and (2) illegal casts from a pointer of type void* or another unrelated

type to the wrong dynamic type. No existing solution can cover both these two attacks

because of overhead—we still need to check all casts including the static cast—or

because of a design issue (e.g., Clang-CFI only being able to verify the casting of

polymorphic an objects). V-Type can cover both attack types as V-Type supports

the casting of non-polymorphic objects and has no high overhead issue because V-

Type is free from heavy object tracking and disjoint metadata structure management.

56

3.2.4 Only changing type related to type casting

Clearly, V-Type does not need to change non-polymorphic type into polymorphic

type if target type is not used for type casting. This further helps to reduce overhead.

For instance, V-Type does not need to add constructor calls for non-polymorphic ob-

jects unrelated to casting. As illustrated in Figure 3.6, V-Type performs the following

two steps to classify type casting related non-polymorphic objects. First, V-Type

checks all type casting and inserts type into the type set related to type casting if

the target type is used for type casting operations. Next, the type in a casting op-

eration can point to itself or any of the child type, which is always correct, as we

assume that type confusions do not occur before bad casting. Thus, we extend a

type casting-related type set to include all possible subtypes. Finally, when changing

non-polymorphic type into polymorphic, V-Type selectively changes type only for

type casting-related type. Note that this optimization is inspired by HexType’s [35]

only tracing type related to type casting optimization.

Code
class D : public B { …. };
B *pB = new B;

static_cast<D*>(pB);

B, ...

(2) Initialize casting
 related type set (4) Extend casting related type set

A

B

D E
(1) Extract
 casting
 related
 type

Type hierarchy
information

(3) Extract all children types

B, D, E, ...
(5) Only change type related to casting

-

Non-
polymorphic
“B, D, or E”

Changed
Non-
polymorphic
“B, D, or E”

Vptr

forcibly
change

-

Figure 3.6.: An example of how V-Type creates a type set related to casting and
only changes type using this set. In the example, we assume that the object of type
B is typecast. V-Type will identify this type B and all its children types as casting
related types.

57

3.2.5 Implementation

We have implemented V-Type based on the LLVM compiler infrastructure project

(version 9.0.0). The V-Type implementation consists of 3.7k lines of code that we

added to Clang, LLVM passes, and our compiler-rt runtime library. First, we modify

Clang to (i) change non-polymorphic into polymorphic objects, and (ii) instrument

target castings (Based-to-derived, void*, or unrelated type casting) that need to

be verified. When we add the Vtable pointer into a class template, which provides a

specification for generating classes based on parameters, we carefully modify compiler

since Clang separetely handles class template objects, e.g, use ClassTemplateDecl

(not CXXRecordDecl). We create LLVM passes to (i) address stability issues by,

for example, inserting an additional constructor to initialize the Vtable pointer of

changed non-polymorphic objects, and (ii) create type casting related type sets for

optimization. More specifically, to address compatibility issues for allocation with

the malloc family, V-Type recognizes the malloc family (i.e., malloc, realloc,

or calloc) and its allocation size to carefully insert constructor calls. Finally, at

runtime, V-Type ’s runtime library functions (invoked by instrumentation for type

casting operation) verify type casting operations using the Vtable pointer. Note

that for type casting verification, we reuse the implementation of Clang-CFI (marked

horizontal area in Figure 3.2) that extracting type information via Vtable pointer and

comparing source and destination types’ relationship (to verify type casting) because

of its efficiency.

Additionally, to address communication issues with other components, we select

LLVM libc++ [79] instead of libstdc++ [80] considering libc++’s compatibility with

the LLVM compiler (our target compiler). We rebuild LLVM libc++ with V-Type

to make sure class and structure in LLVM libc++ have the same type layout.

58

Table 3.2.: The evaluation of typecasting verification coverage against SPEC
CPU2006. The # indicates the number of verified casting operations during SPEC
CPU2006 test. The k represents thousand, m represents million, and b represents
billion.

Benchmark Clang-CFI (#) V-Type (#)

Omnetpp 1,879m 2,520m

Xalancbmk 282m 283m

DealII - 17b

Soplex - 290k

Povray - -

Astar - -

Namd - -

Sum 2b 20b

3.3 Evaluation

In this section, we evaluate V-Type focusing on the following aspects: (i) the

detection coverage; and (ii) runtime overhead;

Experimental Setting. All of our experiments are performed on a desktop running

Ubuntu 19.10 LTS with a 32-core AMD Ryzen Threadripper 2990WX, 64GB of RAM,

1TB SSD.

Evaluation Target Programs. We have applied V-Type to all seven C++ benchmarks

from SPEC CPU2006.

3.3.1 Coverage on type casting

Table 3.2 shows the type casting coverage of V-Type as compared to Clang-CFI,

which is a similar Vtable pointer based type confusion detector. According to our

evaluation, V-Type shows around 10 times more checks than Clang-CFI as V-Type

supports non-polymorphic objects’ type casting verification, which cannot be covered

by Clang-CFI. Note that for this evaluation we only target down-casting operations to

59

Table 3.3.: SPEC CPU2006 benchmark performance overhead for Clang-CFI and
V-Type. The first column with % denotes the ratio between Native and Clang-CFI.
The next column denotes the ratio between Native and V-Type.

Benchmark Clang-CFI (%) V-Type (%)

Omnetpp -0.60 0.00

Xalancbmk 1.99 2.12

DealII 0.60 1.45

Soplex 0.41 0.82

Povray 0.00 0.59

Astar -0.59 -1.47

Namd -0.40 -1.21

Sum 0.57 0.81

detect illegal down-casting just as other disjoint metadata structure approaches such

as HexType do. However, V-Type will show better coverage than HexType when we

detect type confusions from void* or another unrelated type to the wrong dynamic

type.

3.3.2 Performance Overhead

Table 3.3 shows the performance overhead on the SPEC CPU2006. For all

seven C++ benchmarks in SPEC CPU2006, V-Type shows significantly low over-

head around 0.81%. Compared to Clang-CFI, V-Type just shows 0.24% slower per-

formance than Clang-CFI although V-Type covers 10 times more type casting than

Clang-CFI. V-Type also outperforms other disjoint metadata structure approaches

such as HexType (8.54%) and Bitype (1.78%). More specifically, povray, astar, and

namd, in SPEC CPU2006, do not perform any type casting operation. Thus, it

shows almost zero overhead. Interestingly, remaining applications such as omnetpp,

xalancbmk, dealII, and soplex also show low overhead (up to 2%) although they have

considerable type casting operations (up to 17 billion). The main reason is that V-

60

Type removes heavy object tracking and disjoint metadata structure management

overhead.

3.4 Future Work

Although V-Type’s prototype demonstrates the efficiency of our inline type information-

based type confusion detector, this evaluation result is limited to the SPEC CPU2006

benchmark. Therefore, we will further evaluate the V-Type project. In the future, we

will assess V-Type’s performance overhead, detection coverage, and memory usage

with the more recent SPEC CPU2017 benchmark and complicated real-world appli-

cations such as Firefox and Chromium. We will also address additional compatibility

issues, which can occur during the testing of these real-world applications. The eval-

uation of V-Type is not complete and we anticipate some engineering overhead when

we implement support for large complex applications. We set this engineering efforts

aside as future work.

61

4 FUZZAN: EFFICIENT SANITIZER METADARTA DESIGN FOR FUZZING

Fuzzing [81] is a powerful and widely used software security testing technique that

uses randomly generated inputs to find bugs. Fuzzing has seen near ubiquitous adop-

tion in industry, and has discovered countless bugs. For example, the state-of-the-art

fuzzer American Fuzzy Lop (AFL) has discovered hundreds of bugs in widely-used

software [59], while Google has found 16,000 bugs in Chrome and 11,000 bugs in over

160 other open source projects using fuzzing [82]. On its own, fuzzing only discovers a

subset of all triggered bugs, e.g., failed assertions or memory errors causing segmenta-

tion faults. Bugs that silently corrupt the program’s memory state, without causing

a crash, are missed. To detect such bugs, fuzzers must be paired with sanitizers that

enforce security policies at runtime by turning a silent corruption into a crash. To

date, around 34 sanitizers [83] have been prototyped. So far, only the LLVM-based

sanitizers ASan, MSan, LeakSan, UBSan, and TSan have seen wide-spread use. For

brevity, we use sanitizers to refer to such frequently used sanitizers in the rest of the

paper.

Unfortunately, sanitizers are designed for developer-driven software testing rather

than fuzzing, and are consequently optimized for minimal per-check cost, not star-

tup/teardown of the metadata structure. Consequently, they are based around a

shadow-memory data structure wherein the address space is partitioned, and meta-

data is encoded into the “shadow” memory at a constant offset from program memory.

Optimizing for long executions makes sense in the context of developer-driven soft-

ware testing, which generally verifies correct behavior on expected input, leading to

relatively long test execution times. Fuzzing has a more diverse set of inputs that

cause both short (i.e., invalid inputs) and long running executions with billions of ex-

ecutions. For example, the Chrome developers use Address Sanitizer (ASan) for their

unit tests and long-running integration tests [84]. However, the underlying design

62

decisions that make ASan a highly performant sanitizer for long running tests result

in high performance overhead—up to 6.59×—for short executions, as observed in a

fuzzing environment1. This high overhead reduces throughput, thereby preventing a

fuzzer from finding bugs effectively.

We analyze the source of this overhead across a variety of sanitizers, and at-

tribute the cost to heavy-weight metadata structures employed by these sanitizers.

For example, Address Sanitizer maps an additional 20TB of memory for each exe-

cution, Memory Sanitizer (MSan) 72TB, and Thread Sanitizer (TSan) 97TB on a

64-bit platform. The high setup/teardown cost of heavy-weight metadata structures

is amortized over the long execution of programs due to the low per-check cost. In

contrast, a fuzzing campaign typically consists of massive amounts of short-lived ex-

ecutions, effectively transforming what is a large one-time cost into a large runtime

cost. For example, Table 4.1 indicates that memory management is the main source of

overhead for ASan under fuzzing on the Google fuzz test suite, accounting for 40.16%

of the total execution time we observe. Memory management is the key bottleneck

for using sanitizers with fuzzers, and has to date gone unaddressed.

Instead, increasing the efficiency and efficacy of fuzzing has received significant re-

search attention on two fronts: (i) mechanisms that reduce the overhead of fuzzers [59,

85, 86]; and (ii) mechanisms that reduce the overhead of sanitization on longer run-

ning tests and conflicts between sanitizers [87–91]. These works address fuzzers and

sanitizers in isolation, ignoring the core sanitizer design decision to optimize for long

running test cases using a heavy-weight metadata structure that limits sanitizer per-

formance in combination with fuzzers. Consequently, optimization of sanitizer mem-

ory management for short execution times remains an open challenge, motivated by

the need to design sanitizers that are optimal under fuzz testing.

We present FuZZan, which uses a two-pronged approach to optimize sanitizers

for short execution times, as seen under fuzzing: (i) two new light-weight metadata

1The average time for a single execution across the first 500,000 tests for the full Google fuzzer test
suite is 0.61ms.

63

structures that trade significantly reduced startup/teardown costs 2 for moderately

higher (or equivalent) per access costs and (ii) a dynamic metadata structure switch-

ing technique, which dynamically selects the optimal metadata structure during a

fuzzing campaign based on the current execution profile of the program; i.e., how of-

ten the metadata is accessed. Each of our proposed metadata structures is optimized

for different execution patterns; i.e., they have different costs for creating an entry

when an object is allocated versus looking up information in the metadata table.

By observing the metadata access and memory usage patterns at runtime, FuZZan

dynamically switches to the best metadata structure without user interaction, and

tunes this configuration throughout the fuzzing campaign.

We apply our ideas to ASan, which is the most widely used sanitizer [83, 92,

93]. ASan focuses on memory safety violations—arguably the most dangerous class

of bugs, accounting for 70% of vulnerabilities at Microsoft [10]—and has already

detected over 10,000 memory safety violations [7–9] in various applications (e.g., over

3,000 bugs in Chrome in 3 years [7]) and the Linux kernel (e.g., over 1,000 bugs [8,94])

by using a customized kernel address sanitizer (KASan). We further apply FuZZan

to MSan and MOpt-AFL.

FuZZan improves fuzzing throughput over ASan by 52% when starting with empty

seeds and 48% when starting with Google’s seed corpus, averaged across all applica-

tions in the Google fuzzer test suite [95] as part of our input record/replay fuzzing

experiment. Due to this improved throughput, FuZZan discovers 13% more unique

paths (with an improvement in throughput of 61% compared to ASan) given the

standard 24 hour fuzz testing with widely used real-world software and a provided

corpus of starting seeds.

Crucially, FuZZan achieves this without any reduction in bug-finding ability.

Therefore, FuZZan strictly increases the performance of ASan-enabled fuzzing, re-

sulting in finding the same bugs in less time than using ASan with the same fuzzer.

Our contributions are:

2Compared to ASan, our min-shadow memory mode reduces the time that startup/teardown func-
tions spend in the kernel by 62% on the first 500,000 tests across the full Google fuzzer test suite.

64

Table 4.1.: Comparison between native and ASan executions with a breakdown of
time spent in memory management, and time spent for ASan’s initialization and
logging. Results are aggregated over 500,000 executions of the full Google fuzzer test
suite [95]. Times are shown in milliseconds, and % denotes the ratio to total execution
time.

Modes
ASan’s

init time
ms (%)

ASan’s
logging time

ms (%)

Memory
mgmt. time

ms (%)
page faults

Native 0.00 (0.00%) 0.00 (0.00%) 0.05 (11.49%) 2,569

ASan 0.17 (10.58%) 0.30 (18.86%) 0.63 (40.16%) 11,967

1. Identifying and analyzing the primary source of overhead when sanitizers are

used with fuzzing, and pinpointing the sanitizer design decisions that cause the

overhead;

2. Designing and implementing a sanitizer optimization (FuZZan) and applying it

to ASan; that is, we design several new metadata structures along with a dy-

namic metadata structure switching to choose the optimal structure at runtime.

We also validate the generality of our design by further applying it to MSan

and MOpt-AFL;

3. Evaluating FuZZan on the Google fuzzer test suite and other widely used real-

world software and showing that FuZZan effectively improves fuzzing through-

put (and therefore discovers more unique bugs or paths given the same amount

of time).

4.1 Background and Analysis

We present an overview of fuzzing overhead and ASan (our target sanitizer). Fur-

ther, we detail the design conflicts between ASan and fuzzing when used in combina-

tion.

65

4.1.1 Fuzzing overhead

Given the same input generation capabilities, a fuzzer’s throughput (executions

per second) is critical to its effectiveness in finding bugs. Greater throughput re-

sults in more code and data paths being explored, and thus potentially triggers more

bugs. Running a fuzzer imposes some overhead on the program, a major compo-

nent of which is the repeated execution of the target program’s initialization rou-

tines. These routines—including program loading, execve, and initialization—do

not change across test cases, and hence result in repeated and unnecessary startup

costs. To reduce this overhead, many fuzzers leverage a fork server. A fork server

loads and executes the target program to a fully-initialized state, and then clones this

process to execute each test case. This ensures that the execution of each test case

begins from an initialized state, and removes the overhead associated with the initial

startup.

Another technique for reducing process initialization costs is in-process fuzzing,

such as AFL’s persistent mode and libFuzzer. In-process fuzzing wraps each test

in one iteration of a loop in one process, thus avoiding starting a new process for

each test. However, in-process fuzzing generally requires manual analysis and code

changes [96,97]. Additionally, in-process fuzzing requires the target code to be state-

less across executions as all tests share one process environment, otherwise the exe-

cution of one test may affect subsequent ones, potentially leading to false positives.

Consequently, testers should avoid in-process fuzzing for library code using global

variables. Bugs found from in-process fuzzing may not be reproducible as it is not

always possible to construct a valid calling context to trigger detected bugs in the tar-

get function, and side-effects across multiple function calls may not be captured [98].

Because of these limitations, in-process fuzzing is used on stateless functions in li-

braries, while the fork server model (i.e., out-of-process fuzzing) remains the most

general fuzzing mode for fuzzing programs.

66

4.1.2 Address Sanitizer

All sanitizers leverage a customized metadata structure [83]. Out of many different

metadata schemes, shadow memory (both direct-mapped or multi-level shadow) is the

most widely used [3, 5, 12, 13, 75, 99–104]. ASan enforces memory safety by encoding

the accessibility of each byte in shadow memory. Allocated (and therefore accessible)

areas are marked and padded with inaccessible red zones. In particular, direct-mapped

shadow memory encodes the validity of the entire virtual memory space, with every

8-bytes of memory mapping to 1-byte in shadow memory. Shadow memory encodes

the state of application memory. The 8-bit value k encodes that the 8-k bytes of the

mapped memory are accessible. The corresponding shadow memory address for a

byte of memory is at:

addr shadow = (addr >> 3) + offset

where addr is the accessed address. Generally, ASan only inserts redzones to the

high address side of each object as the preceding object’s redzone suffices for the

low address side. ASan also instruments each runtime memory access to check if the

accessed memory is in a red zone, and if so faults. ASan’s effectiveness in detecting

hard-to-catch memory bugs has led to its widespread adoption. It has become best

practice [83] to use ASan (or KASan [105], the kernel equivalent) with a fuzzer to

improve the bug detection capability.

4.1.3 Overhead Analysis of Fuzzing with ASan

To understand ASan’s overhead with fuzzing, we analyze the Linux kernel func-

tions used during fuzzing campaigns. Table 4.1 shows the overhead added by ASan,

broken out across ASan’s logging, ASan’s initialization, and memory management.

Our experiments measure the ratio of the time spent in the kernel functions compared

to the total execution time for a number of target programs.

67

Note that memory management makes up 40.16% of ASan’s total execution time,

as opposed to 11.49% for the base case, and that memory management is more than

double the overhead of ASan’s logging and initialization combined. ASan’s heavy

use of the virtual address space results in 4.66× page faults compared to native

execution. Our memory management overhead numbers reflect the time spent by the

kernel in the four core page table management functions: (i) unmap vmas (24.6%),

(ii) free pgtable (4.7%), (iii) do wp page (8.2%), and (iv) sys mmap (2.6%).

Notably, unmap vmas and free pgtable correspond to 73% of ASan’s mea-

sured memory management overhead across the four core page table management

functions. The execution time for these two functions (unmap vmas and free pgtable)

is 10x higher than when executing without ASan. To break this overhead down, when

executing a test under the fork server mode, a fuzzer needs to create a new process for

each test. During initialization, ASan reserves memory space (20TB total, including

16TB of shadow memory, and a separate 4TB for the heap on 64-bit platforms) and

then poisons the shadow memory for globals and the heap. Accessing these pages

incurs additional page faults, and thus page table management overhead in the kernel.

Note that the large heap area causes sparse page table entries (PTEs), which increase

the number of pages used for the page table and memory management overhead.

Existing techniques to deal efficiently with large allocations do not help here.

Lazy page allocation of the large virtual memory area used by ASan does not miti-

gate memory management overhead in this case, as many of the pages are accessed

when shadow memory is poisoned. Poisoning forces a copy even for copy-on-write

pages, and thus increases page table management cost. During execution, memory

allocations and accesses cause additional shadow memory pages to be used, again

with page faults and page table management. When the process exits, the kernel

clears all page table entries through unmap vmas and releases memory for the page

table (via free pgtables). The cost of these two functions are correlated with the

number of physical pages used by the process. As fuzzing leads to repeated, short ex-

ecutions, such bookkeeping introduces considerable memory management overhead.

68

In contrast to these active memory management functions, sys mmap only accounts

for 7% memory management overhead of ASan. This is the expense for reserving all

virtual memory areas. However, large areas that are actively accessed by ASan incur

considerable additional expenses as detailed above.

For completeness, we note that our analysis finds that ASan performs excessive

“always-on” logging (18.86%) by default, and that ASan’s initial poisoning of global

variables (10.58%) is inefficient. Combined, these additional sources of overhead

account for 29.44% overhead. We address these engineering shortcomings in our

evaluation, but they are neither our core contributions nor the choke point in fuzzing

with ASan.

4.2 FuZZan design

FuZZan has two design goals: (1) define new light-weight metadata structures,

and (2) automatically switch between metadata structures depending on the runtime

execution profile. In this section, we present how we design each component of FuZZan

to achieve both goals, as illustrated in Figure 4.1.

4.2.1 FuZZan Metadata Structures

To minimize startup/teardown costs while maintaining reasonable access costs,

FuZZan introduces two new metadata structures: (i) a Red Black tree (RB tree)

metadata structure, which has low startup and teardown costs, but has high per-

access costs; and (ii) min-shadow memory, which has medium startup/teardown costs

and low per-access costs (on par with ASan). Table 4.2 shows a qualitative comparison

of the different metadata schemes that we propose in this section, see Table 4.4 for

quantitative results. The RB tree is optimal for short executions with few metadata

accesses as it emphasizes low startup and teardown costs, while min-shadow memory

is best suited for executions with a mid-to-high number of metadata accesses as it

69

Table 4.2.: Comparison of metadata structures.

Metadata Structures
Startup/

Teardown Cost
Access Cost

ASan shadow memory High Low

FuZZan
Customized RB-tree Low High
Min-shadow memory Medium Low

has lower per metadata access costs while still avoiding the full startup/teardown

overhead imposed by ASan’s shadow memory.

Customized RB-Tree

To optimize ASan’s metadata structure for test cases where a fuzz testing appli-

cation only executes for a very short time with few metadata accesses, we introduce a

customized RB tree, shown in Figure 4.2. Nodes in the RB tree store the redzone for

FuZZan Min-
Shadow memory

Fuzzer

Fuzzing
Module

Metadata
structure
selector

(3) Switch to
 selected
 metadata
 structure
 (§ 3.2)

(1) Measure target program
 Behavior (§ 3.2.1)

(2) Calculate
 the best
 metadata
 structure
 (§ 3.2.2)

Dynamic feedback

FuZZan
RB-tree

ASan
shadow memorySwitch

FuZZan
sampling

Target

Figure 4.1.: Overview of FuZZan’s architecture and workflow.

70

each object. Although each metadata access operation (insert, delete, and search) in

the RB tree is slower than its counterpart in the shadow memory metadata structure,

our RB tree has the following benefits: (i) low total memory overhead (leading to

low startup/teardown overhead); (ii) removal of poisoning/un-poisoning page faults

(as each RB tree node compactly stores the redzone addresses and these nodes are

grouped together in memory); and (iii) a faster range search than shadow memory

for operations such as memcpy. For example, in order to check memcpy, ASan must

validate each byte individually using shadow memory. However, in our approach, we

can verify such operations through only two range queries for memcpy’s source and

destination memory address range.

In our RB tree design, when an object is allocated (e.g., through malloc), the

range of the object’s high address redzone is stored in a node of the RB tree. During

a query, if the address range of the target is lower than the start address of the node,

we search the left subtree (and vice versa). If the address is not found in the tree, it

is a safe memory access. During redzone removal, the requested address range may

Address area

 1
0x10007.. ~
0x10008..

 2
0x10008.. ~
0x10009..

 . ……..

 . ……..

...
0x02008.. ~
0x02009..

N
0xffffe.. ~
0xfffff..

Hash function
(address)

HashMap (optional)

Address Status

1 0x100.. Normal

2 0x200.. Normal

3 0x300.. Normal

Cache (optional)

Search Search
Fail

Insert/
Delete

One time
Insert/
Delete

One time
Range
Search

Figure 4.2.: Design of FuZZan’s customized RB-tree.

71

only be a subset of an existing node’s range (and not the full range of a target node

in the RB tree). In this case, the RB tree deletes the existing RB tree node, creates

new RB tree nodes which have non-overlapping address ranges (e.g., the left and right

side of an overlapped area), and inserts these nodes into the RB tree. Since we reuse

ASan’s memory allocator and memory layout (e.g., redzones between objects and a

quarantine zone for freed objects), FuZZan provides the same detection capability as

ASan.

Min-shadow memory

The idea behind Min-shadow memory (for executions with a mid-to-high num-

ber of metadata accesses) is to limit the accessible virtual address space, effectively

shrinking the size of the required shadow memory. As the size of shadow memory is

a key driver of overhead in the fuzzing environment, this enhances performance.

Figure 4.3 illustrates how min-shadow memory converts a 64-bit program running

in a 48-bit address space to run in a 32-bit address space window (1GB for the stack,

1GB for the heap, and 2GB for the BSS, data, and text sections combined). Note

that pointers remain 64 bits wide and the code remains unchanged: the mapped

address space is simply restricted, allowing min-shadow memory to have a partial

shadow memory map. To shrink a program’s memory space, we move the heap

(by modifying ASan’s heap allocator) and remap the stack to a new address space.

Min-shadow memory remaps parts of the address space but programs remain 64-

bit programs. To accommodate larger heap sizes, we create additional min-shadow

memory binaries with heap sizes of 4GB, 8GB, and 16GB.

Our approach allows testing 64-bit code with 64-bit pointers without having to

map shadow tables for the entire address space. We disagree with the recommenda-

tion of the ASan developers to compile programs as 32-bit executables, as changing

the target architecture, pointer length, and data type sizes will hide bugs. Further-

more, min-shadow memory provides greater flexibility compared to using the x32

72

ABI [106] mode (i.e., running the processor in 64-bit mode but using 32-bit pointers

and arithmetic, limiting the program to a virtual address space of 4GB), as min-

shadow memory can provide various heap size options.

Stack

Heap (4TB)

Shadow

Bad

Shadow

BSS & Data
& Text

Stack

Heap (4TB)

Shadow

Bad

Shadow

BSS & Data
& Text

Bad

Shadow

Stack (1GB)

Heap (1GB)

BSS & Data
& Text (2GB)

20TB
(Heap +
Shadow)

4GB

16TB
(Shadow
memory)

512MB
(Shadow
memory)

Address sanitizer memory mapping

FuZZan min-shadow memory mapping

Bad

Shadow

Stack (1GB)

Heap (1GB)

BSS & Data
& Text (2GB)

Figure 4.3.: ASan and min-shadow memory modes’ memory mapping on 64-bit plat-
forms. ASan (top) reserves 20TB memory space for heap and shadow memory, con-
versely, min-shadow memory mode (bottom) reserves 4512MB memory space for heap
and shadow memory. Each application’s stack, heap, and other sections (BSS, data,
and text) map to the corresponding shadow regions. Further, the shadow memory
region is mapped inaccessible.

73

4.2.2 Dynamic metadata structure switching

Dynamic metadata structure switching automatically selects the optimal meta-

data scheme based on observed behavior. At the beginning of a fuzzing campaign,

dynamic metadata structure switching assesses the initial behavior and then period-

ically samples behavior, adjusting the metadata structure if necessary. Our intuition

for dynamic metadata structure switching is that, during fuzzing, metadata access

patterns and memory usage remain similar across runs and change in phases. While

the fuzzer is mutating a specific input, the executions of the newly created inputs

are similar regarding their control flow and memory access patterns compared to the

source input. However, new coverage may lead to different execution behaviors. We

therefore design a dynamic metadata structure switching technique that periodically

and conditionally samples the execution and adjusts the underlying metadata struc-

ture according to the observed execution behavior.

Dynamic metadata structure switching compiles the program in four different ways

in preparation for fuzzing: ASan, RB tree, min-shadow memory, and sampling mode.

The sampling mode repeatedly samples the runtime parameters and then selects

the optimal metadata structure. The selection of the optimal metadata structure is

governed by FuZZan’s metadata structure switching policy.

Sampling mode

The sampling mode measures the behavior of the target program using the min-

shadow memory-1GB metadata mode and, based on the behavior, reports the cur-

rently optimal metadata structure. The sampling mode profiles the following param-

eters: (i) the number of metadata accesses during insert, delete, and search; and (ii)

memory consumption. Note that this information can be collected by simple counters:

profiling is therefore light-weight.

Dynamic metadata structure switching starts in sampling mode and selects the

optimal mode based on the observed behavior. Dynamic metadata structure switching

74

then periodically (e.g., every 1,000 executions) and conditionally (e.g., when the fuzzer

starts mutating a new test case) samples executions to select the optimal metadata

structure based on the current behavior. To reduce the cost of periodic sampling,

dynamic metadata structure switching implements a continuous back-off strategy

that gradually increases the sampling interval as long as the metadata structure does

not change (similar to TCP’s slow-start [107]). Note that bugs may be triggered

during sampling mode. As such, we maintain ASan’s error detection capabilities

while sampling to ensure that we do not miss any bugs.

Metadata structure switching policies

Our metadata structure switching policy is based on a mapping of metadata access

frequency to the corresponding metadata structure. This heuristic is relatively simple

in order to achieve a low sampling overhead. To determine the best cutoff points,

we compile all 26 applications in Google’s fuzzer test suite in two different ways: RB

tree and min-shadow memory. We then test these different configurations against

50,000 recorded inputs and determine the best metadata structure depending on the

observed parameters, measuring execution time. Profiling reveals that the frequency

of metadata access (insert, delete, and search) is the primary factor that influences

metadata structure overhead, which confirms our original assumption. In this policy,

depending on the metadata access frequency, we select different metadata structures

(based on statistics from profiling): RB tree if there are fewer than 1,000 accesses;

and min-shadow memory if there are more than 1,000 accesses. Additionally, if the

selected heap size goes beyond a threshold, we sequentially switch to other modes

(min-shadow memory-4G, 8G, 16G, and ASan), thus increasing heap memory for

continuous fuzzing.

75

4.3 Implementation

We implement FuZZan’s two metadata structures and dynamic metadata struc-

ture switching mode on top of ASan in LLVM [53] (version 7.0.0). We support and

interact with AFL [59] (version 2.52b). To address the other sources of overhead

in ASan (shown in Table 4.1), we also implement two additional optimizations: (i)

removal of unnecessary initialization; and (ii) removal of unnecessary logging. Our

implementation consists of 3.5k LOC in total (mostly in LLVM, with minor extensions

to AFL).

RB-tree. The RB tree requires modifications to ASan’s memory access instrumen-

tation, as our RB tree is not based on a shadow memory metadata structure. Thus,

we modify all memory access checks, including interceptors, to use the appropriate

RB tree operations instead of the equivalent shadow memory operations. As an op-

timization, and for compatibility with min-shadow memory mode, the RB tree mode

also reserves 1GB for the heap memory allocator. A compact heap reduces memory

management overhead. The RB tree mode is used when fuzz tests only execute for

a very short time with few metadata accesses (i.e., they allocate relatively a small

amount of memory).

Min-shadow memory. Unlike the RB tree, we are able to repurpose ASan’s existing

memory access checks, as the min-shadow memory metadata structure is based on

a shadow memory scheme. To shrink a 64-bit program’s address space, we modify

ASan’s internal heap setup and remap the stack using Kroes et al.’s linker/loader

tricks [108]. More specifically, based on this script, we hook libc start main

using “LD PRELOAD” and then remap the stack to a new address, update rbp and

rsp, and then call the original libc start main. This allows us to reduce

ASan’s shadow map requirements from 16TB of mapped (but not necessarily allo-

cated) virtual memory to 512MB (1 bit of shadow for each byte in our 4GB address

space window). We also create an additional 192MB shadow memory for ASan’s

secondary allocator and dynamic libraries (which are remapped above the stack). Fi-

76

nally, we implement four different min-shadow memory modes with increasing heap

sizes (1GB, 4GB, 8GB, and 16GB) to handle the different memory requirements of a

variety of programs.

Heap size triggers. As previously stated, min-shadow memory is configured for dif-

ferent heap sizes. We therefore use out of memory (OOM) errors to trigger callbacks

that notify FuZZan to increase the heap size.

AFL modifications. The target program is compiled once per FuZZan mode. By

default, AFL uses a random number generator (RNG) to assign an ID to each basic

block within the target program. Unfortunately, this would result in the same input

producing different coverage maps across the set of compiled targets, breaking AFL’s

code coverage analysis. We therefore modify AFL to use the same RNG seed across

the set of compiled targets. This ensures that the same input produces the same

coverage map across all compiled variants.

Removing unnecessary initialization. ASan makes a number of global constructor

calls on program startup, performing several do wp page calls for copy-on-write.

These constructor calls are unnecessarily repeated each time AFL executes a new test

input, leading to redundant operations. Unfortunately, the AFL fork server is unaware

of ASan’s initialization routines. Therefore, to remove unnecessary (re-)initialization

across fuzzing runs, we modify ASan’s LLVM pass so that global variable initialization

occurs before AFL’s fork server starts. This is achieved by adjusting the priority of

global constructors which contain ASan’s initialization function.

Removing unnecessary logging. ASan provides logging functionality for error report-

ing (e.g., saving allocation sizes and thread IDs during object allocation). Unfortu-

nately, this logging functionality introduces additional page faults and performance

overhead. However, this logging is unnecessary because fuzzing inherently enables re-

play by storing test inputs that trigger new behavior. Complete logging information

can be recovered by replaying a given input with a fully-instrumented program. We

therefore identify and disable ASan’s logging functionality (e.g., StackDepot) for

fuzzing runs, allowing it to be reenabled for reportable runs.

77

4.4 Evaluation

We provide a security and performance evaluation of FuZZan. First, we verify that

FuZZan and ASan have the same error-detection capabilities. Second, we evaluate

the efficiency of FuZZan’s new metadata structures and dynamic metadata structure

switching mode using deterministic input from a record/replay infrastructure to en-

sure fair comparisons. Next, to consider the random nature of fuzzing and to show

FuZZan’s real-world impact, we evaluate FuZZan’s efficiency without deterministic

input. Here we evaluate the number of code paths found by FuZZan in a 24 hour

time period, demonstrating the impact of FuZZan’s increased performance. We also

measure FuZZan’s bug finding speed by using known bugs in Google’s fuzzer test

suite to verify that FuZZan maximizes fuzzing execution speed while providing the

exact same bug detection capabilities as ASan. Finally, we port FuZZan to another

sanitizer (MSan) [99] and another AFL-based fuzzer (MOpt-AFL) [109] to verify its

flexibility.

Evaluation setup. All of our experiments are performed on a desktop running Ubuntu

18.04.3 LTS with a 32-core AMD Ryzen Threadripper 2990WX, 64GB of RAM, 1TB

SSD, and Simultaneous MultiThreading (SMT) disabled (to guarantee a single fuzzing

instance is assigned to each physical core). Across all experiments, we apply FuZZan

to AFL’s fork server mode, which is a widely-used and highly optimized out-of-process

fuzzing mode. We evaluate FuZZan on all applications in the Google fuzzer test

suite [95] and other widely used real-world software.

Evaluation strategy. Evaluating fuzzing effectiveness is challenging. In a recent study

of how to evaluate fuzzing by Klees et. al. [110], the authors find that the inherent

randomness of the fuzzer’s input generation can lead to seemingly large but spurious

differences in fuzzing effectiveness. However, we are at an advantage as we do not

need to compare different fuzzers nor do we change the input generation. We therefore

record the fuzzer-generated inputs during a regular run of AFL, and then replay these

recorded inputs to compare our different ASan optimizations to the same baseline,

78

Table 4.3.: Three different metadata structure modes’ detection capability based on
the Juliet Test Suite for memory corruption CWEs. FuZZan and ASan have identical
results. Good tests have no memory corruption to check for false positives. Bad tests
are intentionally buggy to check for false negatives.

CWD (ID)
Good tests

(Pass/Total)
Bad tests

(Pass/Total)

Stack-based Buffer Overflow (121) 2,432 / 2,432 2,314 / 2,432

Heap-based Buffer Overflow (122) 1,594 / 1,594 1,328 / 1,594

Buffer Under-write (124) 682 / 682 641 / 682

Buffer Over-read (126) 524 / 524 359 / 524

Buffer Under-read (127) 682 / 682 641 / 682

Total 5,914 / 5,914 5,283 / 5,914

effectively controlling for randomness in input generation by using the same input

for all experiments. For our experiments we record the first 500,000 executions for

replay, yielding a large enough test corpus for reasonable performance comparisons.

We also undertake a real-world fuzzing campaign (i.e., without inhibiting fuzzing

randomness by record/replay) to measure FuZZan’s real-world impact on code path

exploration. Finally, Klees et. al. demonstrate the importance of the initial seed(s)

when evaluating fuzz testing, as performance can vary substantially depending on

what seed is used. We therefore compare two scenarios: (i) starting with the empty

seed; and (ii) starting with a set of valid seeds (we use Google’s provided seeds for

the input record/replay experiment and randomly selected seeds of the right file type

for our real-world fuzz testing).

4.4.1 Detection capability

We verify that FuZZan and ASan detect the same set of bugs in three different

ways. First, we use the NIST Juliet test suite [111], which is a collection of test

cases containing common vulnerabilities based on Common Weakness Enumeration

(CWE). We use the full Juliet test suite for memory corruption CWEs to verify

79

FuZZan’s capability to detect the same classes of bugs as ASan, without introducing

false positives or negatives. Second, to verify that FuZZan and ASan also have the

same detection capability under fuzz testing, we use the Google fuzzer test suite and

our recorded input corpus. Finally, we leverage the complete set of ASan’s public

unit tests as a further sanity check.

For the Juliet test suite (Table 4.3), we select CWEs related to memory corruption

bugs and obtain the same detection results from the three different modes (ASan’s

shadow memory, RB tree, and min-shadow memory). To validate FuZZan against

ASan on the Google fuzzer test suite, we compare AFL crash reports across the full

set of target programs in the Google fuzzer test suite with our recorded inputs (to

identify both false positives and false negatives). Note that we force ASan to crash

(the default setting under fuzz testing) when a memory error happens as fuzzers

depend on program crashes to detect bugs. As expected, FuZZan’s different modes

all obtain the same crash results as ASan. However, we encounter minor differences

between FuZZan and ASan when sanity-checking on the ASan unit tests. These

differences are due to internal changes we made when developing FuZZan, such as

min-shadow memory’s changed memory layout (failed test cases include features such

as fixed memory addresses).

4.4.2 Efficiency of new metadata structures

We perform input record/replay fuzz testing to evaluate the effectiveness of FuZ-

Zan’s new metadata structures. Doing so isolates the effects of our metadata struc-

tures by removing most of the randomness/variation from a typical fuzzing run.

Over the full Google fuzzer test suite, the RB tree, without any other optimiza-

tion, shows shorter execution times than ASan if the target application has less than

1,000 metadata accesses; conversely, the RB tree is slower than ASan when the tar-

get application has more than 1,000 metadata accesses. On average, as shown in

80

Table 4.4, several applications in the Google fuzzer test suite have more than 1,000

metadata accesses, and so RB tree is overall slower than ASan on average.

Despite being slower on average, the RB tree can be faster on individual appli-

cations and inputs. For instance, FuZZan in RB tree mode demonstrates a 19%

performance improvement (up to 45% faster) for 15 applications (the remaining 11

applications show higher overhead compared to ASan) when benchmarked using the

inputs generated from an empty seed. On the subset of applications for which seeds

are provided, RB tree shows less performance improvement (17% and up to 39%

faster) for 14 applications (the remaining 12 applications show higher overhead than

ASan) when benchmarked using inputs generated from those seeds as provided seeds

help to create valid input, lengthening execution times and thus metadata accesses.

Note that RB tree shows the best fuzzing performance when the target application

(e.g., c-ares) has less 1,000 metadata access. Additionally, even for applications

where RB tree is slower across all inputs, it is still faster on inputs with few meta-

data accesses. The variable performance of RB tree, which is highly dependent on

the number of metadata accesses, highlights the need for dynamic metadata structure

switching to automatically select the optimal metadata structure.

Min-shadow memory mode, without additional optimization, outperforms ASan

on all 26 programs (for both empty and provided seeds), as shown in Table 4.4. More

specifically, the average improvement is 45% when starting with an empty seed and

43% when starting with the provided seeds. While different min-shadow memory heap

configurations show gradual increases in memory overhead (from 1GB to 16GB, in

line with the heap size), all of them outperform ASan (at worst, min-shadow memory

is still 36% faster than ASan with a provided seed).

Additionally, both metadata configurations can utilize our two engineering opti-

mizations; i.e., removing logging and modifying ASan’s initialization (as described in

section 4.3). Table 4.5 shows that the average improvement of removing unnecessary

logging is 24% when starting with an empty seed and 19% when starting with the

provided seeds. Similarly, modifying the initialization sequence improves performance

81

Table 4.4.: Comparison between four min-shadow memory modes, RB tree, Native,
and ASan execution overhead during input record and replay fuzz testing with empty
and provided seed sets. The time (s) indicates the average of all 26 applications’
execution time during testing. Positive percentage (e.g., 20%) denotes overhead while
negative percentage indicates a speedup.

Modes
Empty seed Provided seed

time
(s)

vs.
Native

(%)

vs.
ASan
(%)

time
(s)

vs.
Native

(%)

vs.
ASan
(%)

Native 199 - - 274 - -

ASan 809 306 - 1,105 303 -

RB tree 1,541 673 90 3,308 1,106 199

Min-1G 443 122 -45 632 131 -43

Min-4G 465 133 -43 666 143 -40

Min-8G 467 134 -42 685 150 -38

Min-16G 477 139 -41 710 159 -36

82

Table 4.5.: Comparison between FuZZan’s three different optimization modes, native
min-shadow memory (1G) mode, and min-shadow memory (1G) mode with FuZZan’s
two optimizations, and dynamic metadata structure switching (Dynamic) mode exe-
cution overhead during all 26 applications’ input record and replay fuzz testing.

Modes
Empty seed Provided seed

time
(s)

vs.
Native

(%)

vs.
ASan
(%)

time
(s)

vs.
Native

(%)

vs.
ASan
(%)

Logging-Opt. 613 208 -24 891 225 -19

Init-Opt. 686 244 -15 987 260 -11

Logging+Init 552 177 -32 826 201 -25

Min-Shadow 443 122 -45 632 131 -43

Min-Shadow-Opt. 385 93 -52 574 109 -48

Dynamic 387 94 -52 578 111 -48

Table 4.6.: Comparison between native, ASan, min-shadow memory (1G), two opti-
mizations with min-shadow memory executions with a breakdown of time spent in
memory management, and time spent for ASan’s initialization and logging. Results
are aggregated over 500,000 executions of the full Google fuzzer test suite. Times are
shown in milliseconds, and % denotes the ratio between single execution time and
each section execution’s time.

Modes
ASan’s

init time
ms (%)

ASan’s
logging time

ms (%)

Memory
manage time

ms (%)

Page fault
#

Native 0.00 (0.00%) 0.00 (0.00%) 0.05 (11.49%) 2,569

ASan 0.17 (10.58%) 0.30 (18.86%) 0.63 (40.16%) 11,967

Min 0.10 (9.51%) 0.01 (1.33%) 0.24 (24.77%) 7,386

Min-Opt. 0.00 (0.00%) 0.00 (0.00%) 0.24 (24.71%) 6,139

by 15% when starting with an empty seed and by 11% when starting with the pro-

vided seeds. Combining the two engineering optimizations with min-shadow memory

demonstrates synergistic effects: the combined performance is 52% (7% better than

native min-shadow memory) faster for empty seeds, and 48% (5% better than native

min-shadow memory) faster for provided seeds.

83

Overall, FuZZan’s metadata structures show better performance than ASan’s

shadow memory for all 26 Google fuzzer test suite applications. As shown in Ta-

ble 4.6, the main reasons for FuZZan’s improvement are: (i) the smaller memory

space reduces memory management overhead as page table management is more

lightweight and incurs fewer page faults, (ii) our two engineering optimizations fur-

ther reduce overhead and number of page faults by removing unnecessary operations,

and (iii) the min-shadow memory mode has the same O(1) time complexity for access-

ing target shadow memory as accessing the original ASan metadata. However, we also

observe that the RB tree is faster than min-shadow memory for some configurations

and programs (e.g., c-ares-CVE). This motivates the need for dynamic metadata

structure switching, which observes program behavior and dynamically selects the

best metadata structure based on this behavior.

4.4.3 Efficiency of dynamic metadata structure

As described in subsection 4.2.2, the dynamic metadata structure switching mode

leverages runtime feedback to select the optimal metadata structure, dynamically

tuning fuzzing performance according to runtime feedback. The intuition behind the

dynamic metadata structure switching mode is that (i) no single metadata structure

is best across all applications, (ii) the best metadata structure is not known a priori,

so the analyst cannot pre-select the optimal metadata structure, and (iii) fuzzing

goes through phases, e.g., alternating between longer running tests (e.g., exploring

new coverage) and shorter running tests (e.g., invalid input mutations searching for

new code paths). A consequence of the phases of fuzzing is that the same metadata

structure is not optimal for every input to a given application. To verify the effective-

ness of dynamic metadata structure switching, which is implemented based on these

intuitions, we apply dynamic metadata structure switching mode to fuzz testing for

seven widely used applications for fuzzing and all 26 applications’ in Google’s fuzzer

test suite.

84

c-ares vorbis pngfix size nm
0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

ASan shadow memory FuZZan RB-tree

FuZZan Min-shadow-1G FuZZan Min-shadow-4G

FuZZan Min-shadow-8G FuZZan Min-shadow-16G

270 350 60 95 682

Figure 4.4.: Evaluating the frequency of metadata structure switching and each meta-
data structure selection over the first 500,000 tests each for c-ares and vorbis in
Google’s fuzzer test suite and pngfix, size, and nm. The number on each bar indi-
cates the total metadata switches.

Our evaluation of dynamic metadata structure switching validates our intuitions,

as shown in Figure 4.4. Observe that different applications are dominated by different

metadata structures, e.g., c-ares for RB tree and pngfix for min-shadow mem-

ory. This is because dynamic metadata structure switching automatically selects the

optimal metadata structure (which is unknown a priori). Because dynamic metadata

structure switching is automatic, it prevents users from making errors such as select-

ing RB tree for applications with a large number of metadata accesses, and removes

the need for any user-driven profiling to make metadata decisions. Further, dynamic

metadata structure switching scales alongside with the required memory of applica-

tions as it increases when the fuzzer finds deeper test cases, as evidenced by size,

pngfix, or nm switching to different min-shadow memory modes (4GB, 8GB, and

16GB heap sizes), without user intervention. Without dynamic metadata structure

switching, inefficient min-shadow memory modes would be used at the beginning of

85

fuzzing campaigns, or users would have to pause and restart fuzzing campaigns to

change metadata modes.

As an extreme example highlighting the need for automatic metadata switching,

the nm benchmark changes metadata structures 682 times, underscoring the infeasi-

bility of having a human analyst determine the single best metadata structure.

As a result of these factors, FuZZan’s dynamic metadata structure switching mode

improves performance over ASan by 52% when starting with empty seeds and 48%

when starting with non-empty seeds. Further, ASan has 306% and FuZZan has 94%

(212% less) overhead with empty seeds and ASan has 303% and FuZZan has 111%

(192% less) overhead with non-empty seeds compared to native execution. Note that

dynamic metadata structure switching has identical fuzzing performance to using

min-shadow memory with 1GB heap alone, and improves performance over RB tree

up to 870%. Consequently, automating metadata selection is not adding noticeable

overhead, while substantially improving user experience. We recommend using dy-

namic metadata structure switching mode for the following four reasons: (i) if the

target application exceeds FuZZan’s heap memory limit (1GB), dynamic metadata

structure switching automatically increases the heap size for the few executions that

require it (a fixed heap size results in false positive crashes due to heap memory ex-

haustion), (ii) preventing users from selecting an incorrect metadata structure, (iii)

using only one metadata structure (e.g., min-shadow memory) may miss the oppor-

tunity to further improve throughput, as, in some cases, RB tree (or some future

metadata structure) may be faster than min-shadow memory; (iv) manually selecting

a metadata structure requires extra effort (e.g., measuring each metadata structure’s

efficiency for the target application), which dynamic metadata structure switching

mode avoids by automatically selecting the optimal metadata structure.

86

Table 4.7.: Evaluating FuZZan’s total execution number and unique discovered path
for 24 hours fuzz testing with provided seeds. The (M) denotes 1,000,000 (one million)
and ratio (%) is the ratio between ASan and FuZZan.

Programs
Native ASan FuZZan

exec
#

path
#

exec
#

path
#

exec
(%)

path
(%)

cxxfilt 86M 2,769 33M 2,442 51M (55%) 2,651 (9%)

file 29M 1,126 7M 763 9M (29%) 845 (11%)

nm 51M 1,272 7M 822 12M (71%) 872 (6%)

objdump 95M 883 15M 567 17M (13%) 595 (5%)

pngfix 36M 971 18M 912 33M (83%) 982 (8%)

size 52M 703 17M 626 32M (88%) 656 (5%)

tcpdump 70M 3,587 11M 1,540 20M (82%) 2,032 (32%)

Total 419M 11,311 108M 7,672 174M (61%) 8,633 (13%)

87

4.4.4 Real-world fuzz testing

Our experiments validating FuZZan use a record/replay approach to avoid any

impact of randomness, allowing meaningful comparisons to a baseline. However,

real-world fuzzing is highly stochastic, and so we also evaluate FuZZan in the con-

text of several real-world end-to-end fuzzing campaigns without deterministic input

record/replay. For this experiment, we select the following widely used programs:

cxxfilt, nm, objdump, size (all from binutil-2.31), file (version 5.35), png-

fix (from libpng 1.6.38) and tcpdump (version 4.10.0). Klees et al. [110] select and

test cxxfilt, nm, and objdump in their fuzzing evaluation study. The remaining

four programs (size, file, pngfix, and tcpdump) are widely tested by recent

fuzzing works [112–117]. For each binary, we run a fuzzing campaign. Each campaign

is conducted for 24 hours and repeated five times. We measure the number of total

executions and discovered unique paths when fuzzing with seeds from the seed corpus

of each program with the right type file and three different configurations: native,

ASan, and FuZZan’s dynamic metadata structure switching mode, and report the

mean over the five campaigns.

As a result, FuZZan improves throughput over ASan by 61% (up to 88%). Inter-

estingly, FuZZan discovers 13% more unique paths given the same 24 hours time due

to improved throughput. Our evaluation also shows that improved throughput in-

creases the possibility of finding more bugs in the same amount of time, as we discuss

next.

4.4.5 Bug finding effectiveness

FuZZan increases throughput while maintaining ASan’s bug detection capability,

potentially enabling it to find more bugs. To demonstrate this, we evaluate FuZZan’s

bug finding speed and compare it to a fuzzing campaign with ASan. In this evalua-

tion, we target five applications in Google’s fuzzer test suite. These applications are

chosen because we found bugs in them (using ASan and dynamic metadata structure

88

Table 4.8.: Evaluating FuZZan’s bug finding speed. The TTE denotes the mean
time-to-exposure. The AF is assertion error and the BO denotes buffer overflow.

Programs
ASan
TTE
(s)

FuZZan
Type (source)TTE

(s)
rate
(%)

c-ares 45 25 46 BO (ares create query.c:196)

json 29 11 61 AF (fuzzer-parse json.cpp:50)

libxml2 7,314 4,194 43 BO (CVE-2015-8317)

openssl-1.0.1f 443 336 24 BO (t1 lib.c:2586)

pcre2 7,056 4,020 43 BO (pcre2 match.c:5968)

Total 14,887 8,586 42 -

89

Table 4.9.: Comparison between Native, MSan, MSan-nolock, and min-shadow mem-
ory execution overhead during input record and replay fuzz testing with provided
seed sets. MSan-nolock disables lock/unlock for MSan’s logging depots. Time (s) in-
dicates the average of execution time. Positive percentages denote overhead, negative
percentages denote speedup.

Modes
time
(s)

vs.
Native

(%)

vs.
MSan
(%)

vs.
MSan
nolock

(%)

Native 146 - - -

MSan 14,074 9,575 - -

MSan-nolock 386 165 -97 -

Min-16G 335 130 -98 -13

switching mode) within a 24 hour fuzzing campaign. We use the seeds provided by

the test suite and repeated each campaign five times. Note that we do not replay

recorded inputs during these campaigns, instead letting the fuzzer generate random

inputs. Table 4.8 shows the mean time (over five campaigns) to find each bug. No-

tably, FuZZan finds all bugs up to 61% (mean 42%) faster than ASan, and is faster in

all cases. This experiment emphasizes our belief that throughput is paramount when

fuzzing with sanitizers.

4.4.6 FuZZan Flexibility

Appling FuZZan to Memory Sanitizer. Like ASan, numerous sanitizers use shadow

memory for their metadata structure [83]. For example, other popular sanitizers,

such as Memory Sanitizer (MSan) [99] and Thread Sanitizer (TSan) [100], also rely

on shadow memory for metadata. FuZZan optimizes sanitizer usage of shadow mem-

ory without modifying the stored shadow information or how the sanitizer uses that

information. Consequently, porting our shadow metadata improvements in FuZZan

from ASan to other sanitizers is a simple engineering exercise. To demonstrate this,

90

we port FuZZan to MSan. In so doing, we shrink MSan’s memory space to implement

min-shadow memory 16G for MSan (1GB for the stack, 16GB for the heap, and 2GB

for the BSS, data, and text sections combined). We only implement one metadata

mode for our MSan proof-of-concept to validate our claim that applies FuZZan to

other shadow memory based sanitizers is an engineering exercise.

Table 4.9 summarizes MSan’s performance overhead on different modes for all 26

evaluated applications. Initially, min-shadow memory shows high overhead—around

96 times native. Analyzing this, we found that MSan’s fork() interceptor locks

all logging depots before fork() and similarly unlocks them afterwards to avoid

deadlocks. However, as explained in section 4.3, locking/unlocking logging depots

is unnecessary for fuzzing because these logging depots exist for bug reporting and

fuzzing inherently enables replay by storing test inputs when the fuzzer finds bugs.

We thus disable these lock/unlock functions to create the MSan-nolock mode, which

has reasonable overhead (2.6 times that of native).

FuZZan’s MSan min-shadow memory 16G mode shows 13% performance improve-

ment compared to MSan-nolock mode, demonstrating FuZZan’s efficacy when applied

to MSan. We expect that additional optimization and the application of the dynamic

switch mode will lead to even higher performance improvement. We leave this engi-

neering as future work.

Applying FuZZan to MOpt-AFL. FuZZan is not coupled to a particular fuzzer or

fuzzer version. Most modern fuzzers [109,109,112,118] extend AFL, so our approach

applies broadly. To demonstrate this, we apply FuZZan to MOpt-AFL [109], which is

an efficient mutation scheduling scheme to achieve better fuzzing efficiency. We mod-

ify MOpt-AFL to add FuZZan’s profiling feedback and dynamic metadata switching

functions. To measure FuZZan’s impact on MOpt-AFL, we select seven real-world

applications (the same set as Table 4.7) and fuzz them for 24 hours each, repeating

the experiment five times to control for randomness in the results. On average, ASan-

MOpt-AFL mode discovers 85% more unique paths given the same 24 hours time due

to MOpt-AFL’s effectiveness compared to ASan. Notably, FuZZan-MOpt-AFL mode

91

discovers 112% more unique paths (27% higher than ASan-MOpt-AFL) due to the

improved throughput.

4.5 Discussion

In this section, we summarize some potential areas for future work, a possible

security extension enabled by FuZZan, and lessons learned in designing FuZZan.

Removing conflicts between sanitizers. ASan’s shadow memory scheme conflicts with

other sanitizers that are also based on shadow memory, e.g., MSan and TSan. Each

sanitizer interprets the shadow memory in a mutually exclusive manner, prohibiting

the use of multiple concurrent sanitizers. For example, ASan uses shadow memory

as a metadata store, while MSan prohibits access to the same memory range. FuZ-

Zan’s new metadata structures can be adapted to avoid this conflict, and enable true

composition of sanitizers, since we use lightweight, independent metadata structures.

Each sanitizer can map its own instance of our metadata structure, and all sanitizers

may coexist in a single process. However, some engineering effort is required to port

sanitizers to our new metadata structures. An alternate approach would be to have

one metadata structure that stores information for all sanitizers. Whether having a

unified metadata structure or a metadata structure per sanitizer is more efficient is

an interesting research question.

Possible security extension. Unfortunately, ASan’s virtual memory requirements di-

rectly conflict with fuzzers’ abilities to detect certain out-of-memory (OOM) bugs.

For example, fuzzers typically limit memory usage to detect OOM errors when parsing

malformed input. However, ASan’s large virtual memory requirement masks OOM

bugs, leaving them undetected because of the difficulty of setting precise memory lim-

its. Consequently, using a compact metadata structure with ASan not only improves

performance, but also can enable an extension of ASan’s policy to cover OOM bugs.

Lessons Learned. Our initial metadata design leveraged a two-layered shadow mem-

ory metadata structure that split metadata lookups into two parts: a lookup into

92

a top-level metadata structure, followed by a lookup into a second-level metadata

structure a la page tables. While this design vastly reduced memory consumption

and management overhead, the additional runtime cost per metadata access of the

additional indirection resulted in the two-layer structure being slower than ASan in

all cases.

For dynamic metadata structure switching, we evaluated two additional policies:

(i) utilizing more detailed metadata access information such as each object type’s

(e.g, stack) metadata access (e.g., insert) count and each operation’s microbenchmark

results, and (ii) running each metadata mode, measuring their execution time, and

selecting the fastest metadata mode. In our evaluation, the additional sampling

complexity of these policies outweighed any gains from more precisely selecting a

metadata structure.

4.6 Related Work

4.6.1 Reducing Fuzzing Overhead

Several approaches reduce the overhead of fuzzing. One approach is to reduce the

execution time of each iteration. AFL supports a deferred fork server which requires

a manual call to the fork server. The analyst is encouraged to use the deferred fork

server, and manually initiate the fork server as late as possible to reduce, not only

overhead from linking and libc initializations, but also overhead from the initialization

of the target program. Deferred mode, however, cannot reduce the teardown over-

head of heavy metadata structures. AFL’s persistent mode and libFuzzer eliminate

the overhead from creating a new process. However, these approaches require manual

effort, and users must know the target programs. Xu et al. [85] implement several

new OS primitives to improve the efficiency of fuzzing on multicore platforms. Espe-

cially, by supporting a new system call, snapshot instead of fork, they reduce the

overhead of creating a process. Moreover, they reduce the overhead from file system

93

contention through a dual file system service. However, this approach requires kernel

modifications for the new primitives, and does not reduce the overhead of sanitizers.

Another approach is to improve fuzzing itself so that it can find more crashes

within the same amount of executions. AFLFast [112] adopts a Markov chain model

to select a seed. If inputs mutated from a seed explore more new paths, the seed has

higher probability to be selected. With given target source locations, AFLGo [118]

selects a seed that has higher probabilities to reach the source locations. Several ap-

proaches adopt hybrid fuzzing, taint analysis, and machine learning to help fuzzers ex-

plore more paths. SAVIOR [119] uses hybrid fuzzing, combining it with concolic exe-

cution to explore code blocks guarded by complex branch conditions. RedQueen [114]

uses taint analysis and symbolic execution for the same purpose. VUzzer [120] also

uses dynamic taint analysis and mutates bytes which are related to target branch

conditions to efficiently explore paths. TIFF [121] infers the type of the input bytes

through dynamic taint analysis and uses the type information to mutate the input.

Matryoshka [122] uses both data flow and control flow information to explore nested

branches. In addition to hybrid fuzzing with traditional techniques such as symbolic

and concolic executions, NEUZZ [117] adapts neural network and sets the number

of covered paths as an objective function to maximize covered paths. Angora [115]

adapts both taint analysis and a gradient descent algorithm to improve the number of

covered paths. These approaches do not reduce the execution time of each iteration.

They are therefore orthogonal to our work. Thus, we can use these approaches to

further increase fuzzing performance.

4.6.2 Optimizing Sanitizers

Since C/C++ programming languages are memory and type unsafe languages,

several sanitizers [83] target memory safety violations [14, 74, 99, 101, 123] and type

safety violations [3–5,35]. Despite their broad use, sanitizers have several limitations

94

such as high overhead, limited detection abilities, and incompatibility with other

sanitizers.

To reduce sanitizer overhead, ASAP [87] and PartiSan [88] disable check instru-

mentation on the hot path according to their policies. The intuition of both ap-

proaches is that most of the sanitizer’s overhead comes from checks on a few hot code

paths that are frequently executed (e.g., instrumentation in a loop). ASAP removes

check instrumentation on the hot path based on pre-calculated profiling results at

compile time. In PartiSan [88], Lettner et al., propose runtime partitioning to more

effectively remove check instrumentation based on runtime information during exe-

cution. However, both approaches miss a main source of overhead when reducing the

cost of ASan during fuzzing campaigns: the overhead is due to memory management

and not due to the low overhead safety checks. As ASAP and PartiSan target the cost

of checks, they are complementary to FuZZan. To fuzz quickly, there is an option to

generate a corpus from a normal binary, and then feed the corpus to an ASan binary.

FuZZan can also adopt this option for fast fuzzing.

Pina et al., [89] use multi-version execution to concurrently run sanitizer-protected

processes together with native processes, synchronizing all versions at the system-

call level. To synchronize all versions, they use a system-call buffer and a Domain-

Specific Language [90] to resolve conflicts between different program versions. Xu et

al., [91] propose Bunshin to reduce the overhead of sanitizers and conflicts based on

the N-version system through their check distribution, sanitizer distribution, and cost

distribution policies. Since these approaches are based on N-version systems, they

increase hardware requirements such as several dedicated cores and at least N times

of memory. Also, these approaches do not address the fundamental problem of ASan

memory overhead.

95

4.7 Conclusion

Combining a fuzzer with sanitizers is a popular and effective approach to maxi-

mize bug finding efficacy. However, several design choices of current sanitizers hinder

fuzzing effectiveness, increasing the runtime cost and reducing the benefit of combin-

ing fuzzing and sanitization.

We show that the root cause of this overhead is the heavy metadata structure

used by sanitizers, and propose FuZZan to optimize sanitizer metadata structures for

fuzzing. We implement and apply these ideas to ASan. We design new metadata

structures to replace ASan’s rigid shadow memory, reducing the memory manage-

ment overhead while maintaining the same error detection capabilities. Our dynamic

metadata structure adaptively selects the most efficient metadata structure for the

current fuzzing campaign without manual configuration.

Our evaluation shows that FuZZan improves performance over ASan 52% when

starting with empty seeds (48% with Google’s seed corpus). Based on improved

throughput, FuZZan discovers 13% more unique paths given the same 24 hours and

finds bugs 42% faster. The open-source version of FuZZan is available at https:

//github.com/HexHive/FuZZan.

https://github.com/HexHive/FuZZan
https://github.com/HexHive/FuZZan

96

5 THE DIRECTION OF FUTURE RESEARCH

For future research, we plan to focus on type safety research to further improve

existing C++ type confusion detectors and detect type confusion problems in cross

language boundaries (e.g., foreign function interface).

In terms of improving existing C++ type confusion detectors, we plan to further

improve and evaluate the V-Type project. For this, we will evaluate V-Type with

more complicated real-world applications such as Firefox and Chromium. We will

also address additional compatibility issues, which can occur during the testing of

these real-world applications. To find type confusion bugs, we plan to apply V-Type

to fuzzing to find bugs effectively.

Additionally, we plan to propose IPCSan, which can detect type confusion prob-

lems in cross language boundaries between Rust (type safety language) and C/C++

(type unsafety language). Type safe languages have been developed to replace the

type unsafe languages C/C++. These days, one of the popular languages that guaran-

tee type safety is Rust. However, these guarantees are valid only for Rust applications,

that is, they may not hold when cross language compiled processes communicate. In

this work, we explore how type confusion vulnerabilities can arise in cross language

boundaries between Rust and C++. Thus, we will propose IPCSan, a tool for de-

tecting type confusion in cross language boundaries to support cross language type

safety. More specifically, IPCSan inserts instrumentation for object tracking to pre-

dict expected type and inserts runtime checks to verify whether the received type is

equivalent to the type expected.

97

6 SUMMARY

Computer systems and applications are mainly implemented in C/C++. However,

C/C++ trade type and memory safety for performance. Our system, HexType, in-

troduces a novel type confusion detection mechanism, which provides low-overhead

disjoint metadata structures, compiler optimizations, and handling specific object

allocation patterns. Consequently, compared to prior work, the HexType prototype

results show significantly improved detection coverage and reduced performance over-

head. Although HexType significantly reduces performance overhead and detection

coverage, HexType still has considerable overhead from managing disjoint metadata

structure and object tracking and has a false positive rate issue from incorrect ob-

ject tracking. In regards to our other type confusion detection mechanism, V-Type

addresses these issues via forcibly changing non-polymorphic objects into polymor-

phic ones to make sure all objects maintain type information. Through this method,

V-Type eliminates the burden of tracking objects and managing disjoint metadata

structure. We have another project, FuZZan, that optimizes sanitizer metadata struc-

tures for fuzzing. Because of this, FuZZan improves fuzzing throughput, and this helps

the tester to discover more bugs given the same amount of time. Combined, these

defenses, HexType, V-Type, and FuZZan, provide the capability for type and mem-

ory safety violations to be minimized, substantially increasing the security of C/C++

software.

REFERENCES

98

REFERENCES

[1] P. Muntean, S. Wuerl, J. Grossklags, and C. Eckert, “Castsan: Efficient de-
tection of polymorphic c++ object type confusions with llvm,” in European
Symposium on Research in Computer Security. Springer, 2018, pp. 3–25.

[2] C. Pang, Y. Du, B. Mao, and S. Guo, “Mapping to bits: Efficiently detecting
type confusion errors,” in Proceedings of the 34th Annual Computer Security
Applications Conference. ACM, 2018, pp. 518–528.

[3] I. Haller, Y. Jeon, H. Peng, M. Payer, C. Giuffrida, H. Bos, and E. van der
Kouwe, “Typesan: Practical type confusion detection,” in Proceedings of the
2016 ACM SIGSAC Conference on Computer and Communications Security.
ACM, 2016, pp. 517–528.

[4] B. Lee, C. Song, T. Kim, and W. Lee, “Type casting verification: Stopping an
emerging attack vector.” in USENIX Security Symposium, 2015, pp. 81–96.

[5] L. team, “Tysan: A type sanitizer,” 2018, [Online; accessed 11-May-2019].
[Online]. Available: https://reviews.llvm.org/D32199

[6] G. J. Duck and R. H. Yap, “Effectivesan: type and memory error detection
using dynamically typed c/c++,” in ACM SIGPLAN Notices, vol. 53, no. 4.
ACM, 2018, pp. 181–195.

[7] G. Dmitry Vyukov, “Address/thread/memorysanitizer slaughtering c++ bugs,”
https://www.slideshare.net/sermp/sanitizer-cppcon-russia, Online; accessed
11-May-2019.

[8] A. Konovalov, “Kerneladdresssanitizer (kasan) a fast memory error detector for
the linux kernel,” https://events.static.linuxfound.org/sites/events/files/slides/
LinuxConNorthAmerica2015KernelAddressSanitizer.pdf, Online; accessed 11-
May-2019.

[9] Google, “Addresssanitizerfoundbugs,” https://github.com/google/sanitizers/
wiki/AddressSanitizerFoundBugs, Online; accessed 11-May-2019.

[10] M. Miller, “Trends, challenge, and shifts in software vulnerability mit-
igation,” https://github.com/Microsoft/MSRC-Security-Research/blob/
master/presentations/2019 02 BlueHatIL/2019 01%20-%20BlueHatIL%
20-%20Trends%2C%20challenge%2C%20and%20shifts%20in%20software%
20vulnerability%20mitigation.pdf, Accessed 15-May-2019.

[11] R. Hastings and B. Joyce, “Purify: Fast detection of memory leaks and access
errors,” in In Proc. of the Winter 1992 USENIX Conference. Citeseer, 1991.

https://reviews.llvm.org/D32199
https://www.slideshare.net/sermp/sanitizer-cppcon-russia
https://events.static.linuxfound.org/sites/events/files/slides/LinuxCon North America 2015 KernelAddressSanitizer.pdf
https://events.static.linuxfound.org/sites/events/files/slides/LinuxCon North America 2015 KernelAddressSanitizer.pdf
https://github.com/google/sanitizers/wiki/AddressSanitizerFoundBugs
https://github.com/google/sanitizers/wiki/AddressSanitizerFoundBugs
https://github.com/Microsoft/MSRC-Security-Research/blob/master/presentations/2019_02_BlueHatIL/2019_01%20-%20BlueHatIL%20-%20Trends%2C%20challenge%2C%20and%20shifts%20in%20software%20vulnerability%20mitigation.pdf
https://github.com/Microsoft/MSRC-Security-Research/blob/master/presentations/2019_02_BlueHatIL/2019_01%20-%20BlueHatIL%20-%20Trends%2C%20challenge%2C%20and%20shifts%20in%20software%20vulnerability%20mitigation.pdf
https://github.com/Microsoft/MSRC-Security-Research/blob/master/presentations/2019_02_BlueHatIL/2019_01%20-%20BlueHatIL%20-%20Trends%2C%20challenge%2C%20and%20shifts%20in%20software%20vulnerability%20mitigation.pdf
https://github.com/Microsoft/MSRC-Security-Research/blob/master/presentations/2019_02_BlueHatIL/2019_01%20-%20BlueHatIL%20-%20Trends%2C%20challenge%2C%20and%20shifts%20in%20software%20vulnerability%20mitigation.pdf

99

[12] J. Seward and N. Nethercote, “Using valgrind to detect undefined value errors
with bit-precision.” in USENIX Annual Technical Conference, General Track,
2005, pp. 17–30.

[13] D. Bruening and Q. Zhao, “Practical memory checking with dr. memory,” in
Proceedings of the 9th Annual IEEE/ACM International Symposium on Code
Generation and Optimization. IEEE Computer Society, 2011, pp. 213–223.

[14] G. Project, “Address sanitizer,” https://github.com/google/sanitizers/wiki/
AddressSanitizer, Online; accessed 11-May-2019.

[15] B. Perens, “Electric fence malloc debugger,” Pixar Animation Studios, 1993.

[16] R. W. Jones and P. H. Kelly, “Backwards-compatible bounds checking for arrays
and pointers in c programs,” in Proceedings of the 3rd International Workshop
on Automatic Debugging; 1997 (AADEBUG-97), no. 001. Linköping University
Electronic Press, 1997, pp. 13–26.

[17] D. Dhurjati and V. Adve, “Efficiently detecting all dangling pointer uses in
production servers,” in International Conference on Dependable Systems and
Networks (DSN’06). IEEE, 2006, pp. 269–280.

[18] T. H. Dang, P. Maniatis, and D. Wagner, “Oscar: A practical page-permissions-
based scheme for thwarting dangling pointers,” in 26th {USENIX} Security
Symposium ({USENIX} Security 17), 2017, pp. 815–832.

[19] O. Ruwase and M. S. Lam, “A practical dynamic buffer overflow detector.” in
NDSS, vol. 2004, 2004, pp. 159–169.

[20] D. Dhurjati and V. Adve, “Backwards-compatible array bounds checking for c
with very low overhead,” in Proceedings of the 28th international conference on
Software engineering. ACM, 2006, pp. 162–171.

[21] P. Akritidis, M. Costa, M. Castro, and S. Hand, “Baggy bounds checking: An
efficient and backwards-compatible defense against out-of-bounds errors.” in
USENIX Security Symposium, 2009, pp. 51–66.

[22] F. C. Eigler, “Mudflap: Pointer use checking for c/c+,” Proceedings of the First
Annual GCC Developers’ Summit, pp. 57–70, 2003.

[23] Y. Younan, P. Philippaerts, L. Cavallaro, R. Sekar, F. Piessens, and W. Joosen,
“Paricheck: an efficient pointer arithmetic checker for c programs,” in Proceed-
ings of the 5th ACM Symposium on Information, Computer and Communica-
tions Security. ACM, 2010, pp. 145–156.

[24] G. J. Duck and R. H. Yap, “Heap bounds protection with low fat pointers,”
in Proceedings of the 25th International Conference on Compiler Construction.
ACM, 2016, pp. 132–142.

[25] G. J. Duck, R. H. Yap, and L. Cavallaro, “Stack bounds protection with low
fat pointers.” in NDSS, 2017.

[26] S. C. Kendall, “Bcc: Runtime checking for c programs,” in Proceedings of the
USENIX Summer Conference, 1983, pp. 5–16.

https://github.com/google/sanitizers/wiki/AddressSanitizer
https://github.com/google/sanitizers/wiki/AddressSanitizer

100

[27] J. L. Steffen, “Adding run-time checking to the portable c compiler,” Software:
Practice and Experience, vol. 22, no. 4, pp. 305–316, 1992.

[28] T. M. Austin, S. E. Breach, and G. S. Sohi, Efficient detection of all pointer
and array access errors. ACM, 1994, vol. 29, no. 6.

[29] H. Patil and C. Fischer, “Low-cost, concurrent checking of pointer and array
accesses in c programs,” Software: Practice and Experience, vol. 27, no. 1, pp.
87–110, 1997.

[30] S. Nagarakatte, J. Zhao, M. M. Martin, and S. Zdancewic, “Softbound: Highly
compatible and complete spatial memory safety for c,” ACM Sigplan Notices,
vol. 44, no. 6, pp. 245–258, 2009.

[31] G. C. Necula, S. McPeak, and W. Weimer, “Ccured: Type-safe retrofitting of
legacy code,” in ACM SIGPLAN Notices, vol. 37, no. 1. ACM, 2002, pp.
128–139.

[32] T. Jim, J. G. Morrisett, D. Grossman, M. W. Hicks, J. Cheney, and Y. Wang,
“Cyclone: A safe dialect of c.” in USENIX Annual Technical Conference, Gen-
eral Track, 2002, pp. 275–288.

[33] W. Xu, D. C. DuVarney, and R. Sekar, “An efficient and backwards-compatible
transformation to ensure memory safety of c programs,” ACM SIGSOFT Soft-
ware Engineering Notes, vol. 29, no. 6, pp. 117–126, 2004.

[34] N. Nethercote and J. Fitzhardinge, “Bounds-checking entire programs without
recompiling,” SPACE, 2004.

[35] Y. Jeon, P. Biswas, S. Carr, B. Lee, and M. Payer, “Hextype: Efficient detection
of type confusion errors for c++,” in CCS, 2017.

[36] Y. Jeon, J. Rhee, C. H. Kim, Z. Li, M. Payer, B. Lee, and Z. Wu, “Polper:
Process-aware restriction of over-privileged setuid calls in legacy applications,”
in Proceeding of ACM Conf on Data and Application Security and Privacy
(CODASPY), 2019.

[37] Clang, “Clang 3.9 documentation - control flow integrity,” http://clang.llvm.
org/docs/ControlFlowIntegrity.html, Online; accessed 17-May-2017.

[38] G. Project, “Undefinedbehavior sanitizer,” https://clang.llvm.org/docs/
UndefinedBehaviorSanitizer.html, Online; accessed 11-May-2019.

[39] I. Haller, E. Goktas, E. Athanasopoulos, G. Portokalidis, and H. Bos,
“Shrinkwrap: Vtable protection without loose ends,” in ACSAC, 2015.

[40] C. Zhang, S. A. Carr, T. Li, Y. Ding, C. Song, M. Payer, and D. Song, “Vtrust:
Regaining trust on virtual calls,” in NDSS, 2016.

[41] B. Lee, C. Song, T. Kim, and W. Lee, “Type casting verification: Stopping
an emerging attack vector,” in USENIX Security, 2015. [Online]. Avail-
able: https://www.usenix.org/conference/usenixsecurity15/technical-sessions/
presentation/lee

http://clang.llvm.org/docs/ControlFlowIntegrity.html
http://clang.llvm.org/docs/ControlFlowIntegrity.html
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/lee
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/lee

101

[42] I. Haller, Y. Jeon, H. Peng, M. Payer, C. Giuffrida, H. Bos, and E. van der
Kouwe, “Typesan: Practical type confusion detection,” in 23rd ACM SIGSAC
Conference on Computer and Communications Security, 2016.

[43] C. Tice, T. Roeder, P. Collingbourne, S. Checkoway, U. Erlingsson,
L. Lozano, and G. Pike, “Enforcing forward-edge control-flow integrity
in gcc & llvm,” in USENIX Security, 2014. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=2671225.2671285

[44] V. van der Veen, E. Goktas, M. Contag, A. Pawlowski, X. Chen, S. Rawat,
H. Bos, T. Holz, E. Athanasopoulos, and C. Giuffrida, “A tough call: Mitigating
advanced code-reuse attacks at the binary level,” in IEEE S&P, 2016.

[45] V. van der Veen, D. Andriesse, E. Göktaş, B. Gras, L. Sambuc, A. Slowinska,
H. Bos, and C. Giuffrida, “Practical Context-Sensitive CFI,” in CCS, 2015.

[46] V. Kuznetsov, L. Szekeres, M. Payer, G. Candea, R. Sekar, and D. Song, “Code-
pointer integrity,” in OSDI, 2014.

[47] S. Nagarakatte, J. Zhao, M. M. Martin, and S. Zdancewic, “Softbound: Highly
compatible and complete spatial memory safety for c,” in ACM Sigplan Notices,
vol. 44, no. 6. ACM, 2009, pp. 245–258.

[48] ——, “Cets: compiler enforced temporal safety for c,” in ACM Sigplan Notices,
vol. 45, no. 8. ACM, 2010, pp. 31–40.

[49] K. Serebryany, D. Bruening, A. Potapenko, and D. Vyukov, “Addresssanitizer:
A fast address sanity checker,” in Presented as part of the 2012 USENIX
Annual Technical Conference (USENIX ATC 12). Boston, MA: USENIX,
2012, pp. 309–318. [Online]. Available: https://www.usenix.org/conference/
atc12/technical-sessions/presentation/serebryany

[50] Microsoft, “Microsoft security intelligence report,” https://www.microsoft.
com/security/sir, Online; accessed 17-May-2017.

[51] CERT, “the cert c++ coding standard (5 the void section),” https://www.
securecoding.cert.org/confluence/display/cplusplus/5+The+Void/, Online; ac-
cessed 17-May-2017.

[52] JTC1/SC22/WG21, “Iso/iec 14882:2014 programming language c++,” http://
www.iso.org/iso/catalogue detail.htm?csnumber=64029, Online; accessed 17-
May-2017.

[53] llvm, “The llvm compiler infrastructure project,” http://llvm.org/, Online; ac-
cessed 11-May-2019.

[54] S. P. E. Corporation, “Spec cpu 2006,” http://www.spec.org/cpu2006, Online;
accessed 17-May-2017.

[55] T. M. Foundation, “Mozilla firefox,” https://www.mozilla.org/firefox, Online;
accessed 17-May-2017.

[56] Google, “Octane benchmark,” https://code.google.com/p/octane-benchmark,
Online; accessed 17-May-2017.

http://dl.acm.org/citation.cfm?id=2671225.2671285
http://dl.acm.org/citation.cfm?id=2671225.2671285
https://www.usenix.org/conference/atc12/technical-sessions/presentation/serebryany
https://www.usenix.org/conference/atc12/technical-sessions/presentation/serebryany
https://www.microsoft.com/security/sir
https://www.microsoft.com/security/sir
https://www.securecoding.cert.org/confluence/display/cplusplus/5+The+Void/
https://www.securecoding.cert.org/confluence/display/cplusplus/5+The+Void/
http://www.iso.org/iso/catalogue_detail.htm?csnumber=64029
http://www.iso.org/iso/catalogue_detail.htm?csnumber=64029
http://llvm.org/
http://www.spec.org/cpu2006
https://www.mozilla.org/firefox
https://code.google.com/p/octane-benchmark

102

[57] T. M. Foundation, “Dromaeo, javascript performance testing,” https://www.
webkit.org/perf/sunspider/sunspider.html, Online; accessed 17-May-2017.

[58] Q. C. Review, “Type confusion: From qmapnodebase to qmapnode,” https:
//codereview.qt-project.org/#/c/191188/, Online; accessed 17-May-2017.

[59] M. Zalewski, “American fuzzy lop.” http://lcamtuf.coredump.cx/afl, Online;
accessed 11-May-2019.

[60] “Webkit css type confusion,” http://em386.blogspot.com/2010/12/
webkit-css-type-confusion.html, Online; accessed 17-May-2017.

[61] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti, “Control-flow integrity,” in
CCS, 2005.

[62] J. Criswell, N. Dautenhahn, and V. Adve, “KCoFI: Complete control-flow in-
tegrity for commodity operating system kernels,” in Oakland: IEEE Symp. on
Security and Privacy, 2014.

[63] X. Ge, N. Talele, M. Payer, and T. Jaeger, “Fine-Grained Control-Flow In-
tegrity for Kernel Software,” in EuroSP: IEEE European Symp. on Security
and Privacy, 2016.

[64] M. Zhang and R. Sekar, “Control flow integrity for cots binaries,” in SEC:
USENIX Security Symposium, 2013.

[65] N. Burow, S. A. Carr, J. Nash, P. Larsen, M. Franz, S. Brunthaler, and
M. Payer, “Control-Flow Integrity: Precision, Security, and Performance,”
ACM Computing Surveys, vol. 50, no. 1, 2018, preprint: https://arxiv.org/
abs/1602.04056.

[66] P. Sarbinowski, V. P. Kemerlis, C. Giuffrida, and E. Athanasopoulos, “Vtpin:
practical vtable hijacking protection for binaries,” in Proceedings of the 32nd
Annual Conference on Computer Security Applications. ACM, 2016, pp. 448–
459.

[67] D. Jang, Z. Tatlock, and S. Lerner, “Safedispatch: Securing c++ virtual calls
from memory corruption attacks.” in NDSS, 2014.

[68] C. Zhang, C. Song, K. Z. Chen, Z. Chen, and D. Song, “Vtint: Protecting
virtual function tables’ integrity.” in NDSS, 2015.

[69] S. A. Carr and M. Payer, “DataShield: Configurable Data Confidentiality and
Integrity,” in AsiaCCS: ACM Symp. on InformAtion, Computer and Commu-
nications Security, 2017.

[70] K. Serebryany, D. Bruening, A. Potapenko, and D. Vyukov, “Addresssanitizer:
A fast address sanity checker.” in USENIX Annual Technical Conference, 2012,
pp. 309–318.

[71] N. Nethercote and J. Seward, “Valgrind: a framework for heavyweight dynamic
binary instrumentation,” in ACM Sigplan notices, vol. 42, no. 6. ACM, 2007,
pp. 89–100.

https://www.webkit.org/perf/sunspider/sunspider.html
https://www.webkit.org/perf/sunspider/sunspider.html
https://codereview.qt-project.org/#/c/191188/
https://codereview.qt-project.org/#/c/191188/
http://lcamtuf.coredump.cx/afl
http://em386.blogspot.com/2010/12/webkit-css-type-confusion.html
http://em386.blogspot.com/2010/12/webkit-css-type-confusion.html
https://arxiv.org/abs/1602.04056
https://arxiv.org/abs/1602.04056

103

[72] G. C. Necula, J. Condit, M. Harren, S. McPeak, and W. Weimer, “Ccured:
Type-safe retrofitting of legacy software,” ACM Transactions on Programming
Languages and Systems (TOPLAS), vol. 27, no. 3, pp. 477–526, 2005.

[73] J. Criswell, A. Lenharth, D. Dhurjati, and V. Adve, “Secure virtual architec-
ture: A safe execution environment for commodity operating systems,” in ACM
SIGOPS Operating Systems Review, vol. 41, no. 6. ACM, 2007, pp. 351–366.

[74] B. Lee, C. Song, Y. Jang, T. Wang, T. Kim, L. Lu, and W. Lee, “Preventing
use-after-free with dangling pointers nullification.” in NDSS, 2015.

[75] A. Loginov, S. H. Yong, S. Horwitz, and T. Reps, “Debugging via run-time type
checking,” in International Conference on Fundamental Approaches to Software
Engineering. Springer, 2001, pp. 217–232.

[76] L. Developers, “Tysan: A type sanitizer,” https://lists.llvm.org/pipermail/
llvm-dev/2017-April/111766.html.

[77] J. L. Henning, “Spec cpu2006 benchmark descriptions,” ACM SIGARCH Com-
puter Architecture News, vol. 34, no. 4, pp. 1–17, 2006.

[78] B. Stroustrup, “How do i define an in-class constant,” https://www.stroustrup.
com/bs faq2.html#in-class.

[79] L. Developers, “libc++, c++ standard library,” https://libcxx.llvm.org/.

[80] G. Developers, “The gnu c++ library,” https://gcc.gnu.org/onlinedocs/
libstdc++/.

[81] B. P. Miller, L. Fredriksen, and B. So, “An empirical study of the reliability of
unix utilities,” Communications of the ACM, 1990.

[82] Google, “Clusterfuzz,” https://google.github.io/clusterfuzz/, [Online; accessed
11-May-2019].

[83] D. Song, J. Lettner, P. Rajasekaran, Y. Na, S. Volckaert, P. Larsen, and
M. Franz, “Sok: Sanitizing for security,” arXiv preprint arXiv:1806.04355, 2018.

[84] T. C. Project, “Addresssanitizer (asan),” https://www.chromium.org/
developers/testing/addresssanitizer, Online; accessed 11-May-2019.

[85] W. Xu, S. Kashyap, C. Min, and T. Kim, “Designing new operating
primitives to improve fuzzing performance,” in Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security, ser. CCS
’17. New York, NY, USA: ACM, 2017, pp. 2313–2328. [Online]. Available:
http://doi.acm.org/10.1145/3133956.3134046

[86] L. team, “libfuzzer – a library for coverage-guided fuzz testing,” 2018, [Online;
accessed 11-May-2019]. [Online]. Available: https://llvm.org/docs/LibFuzzer.
html

[87] J. Wagner, V. Kuznetsov, G. Candea, and J. Kinder, “High system-code secu-
rity with low overhead,” in Security and Privacy (SP), 2015 IEEE Symposium
on. IEEE, 2015, pp. 866–879.

https://lists.llvm.org/pipermail/llvm-dev/2017-April/111766.html
https://lists.llvm.org/pipermail/llvm-dev/2017-April/111766.html
https://www.stroustrup.com/bs_faq2.html#in-class
https://www.stroustrup.com/bs_faq2.html#in-class
https://libcxx.llvm.org/
https://gcc.gnu.org/onlinedocs/libstdc++/
https://gcc.gnu.org/onlinedocs/libstdc++/
https://google.github.io/clusterfuzz/
https://www.chromium.org/developers/testing/addresssanitizer
https://www.chromium.org/developers/testing/addresssanitizer
http://doi.acm.org/10.1145/3133956.3134046
https://llvm.org/docs/LibFuzzer.html
https://llvm.org/docs/LibFuzzer.html

104

[88] J. Lettner, D. Song, T. Park, S. Volckaert, P. Larsen, and M. Franz, “Parti-
san: Fast and flexible sanitization via run-time partitioning,” arXiv preprint
arXiv:1711.08108, 2017.

[89] L. Pina, A. Andronidis, and C. Cadar, “Freeda: Deploying incompatible stock
dynamic analyses in production via multi-version execution,” System, vol. 9,
no. 10, p. 11, 2018.

[90] L. Pina, D. Grumberg, A. Andronidis, and C. Cadar, “A dsl approach to recon-
cile equivalent divergent program executions,” in USENIX ATC, vol. 17, 2017.

[91] M. Xu, K. Lu, T. Kim, and W. Lee, “Bunshin: Compositing security mecha-
nisms through diversification,” in 2017 {USENIX} Annual Technical Confer-
ence ({USENIX}{ATC} 17), 2017, pp. 271–283.

[92] K. Serebryany, “Sanitize, fuzz, and harden your c++ code,”
https://www.usenix.org/sites/default/files/conference/protected-files/
enigma slides serebryany.pdf, Online; accessed 11-May-2019.

[93] ——, “Sanitize, fuzz, and harden your c++ code,” https:
//github.com/google/sanitizers/blob/master/hwaddress-sanitizer/
HardwareMemoryTaggingtomakeC C++memorysafe(r)-iSecCon2018.pdf,
Online; accessed 11-May-2019.

[94] D. Vyukov, “Syzbot,” https://syzkaller.appspot.com/upstream.

[95] google team, “fuzzer test suite,” 2018, [Online; accessed 11-May-2019].
[Online]. Available: https://github.com/google/fuzzer-test-suite

[96] M. Zalewski, “New in AFL: persistent mode,” https://lcamtuf.blogspot.com/
2015/06/new-in-afl-persistent-mode.html.

[97] Google, “Libfuzzer tutorial,” https://github.com/google/fuzzer-test-suite/
blob/master/tutorial/libFuzzerTutorial.md.

[98] V. J. M. Manès, H. Han, C. Han, S. K. Cha, M. Egele, E. J. Schwartz, and
M. Woo, “The art, science, and engineering of fuzzing: A survey,” IEEE Trans-
actions on Software Engineering, 2019.

[99] E. Stepanov and K. Serebryany, “Memorysanitizer: fast detector of uninitialized
memory use in c++,” in Proceedings of the 13th Annual IEEE/ACM Interna-
tional Symposium on Code Generation and Optimization. IEEE Computer
Society, 2015, pp. 46–55.

[100] K. Serebryany and T. Iskhodzhanov, “Threadsanitizer: data race detection
in practice,” in Proceedings of the workshop on binary instrumentation and
applications. ACM, 2009, pp. 62–71.

[101] E. Van Der Kouwe, V. Nigade, and C. Giuffrida, “Dangsan: Scalable use-after-
free detection,” in Proceedings of the Twelfth European Conference on Computer
Systems. ACM, 2017, pp. 405–419.

[102] R. Hastings, “Purify: Fast detection of memory leaks and access errors,” in
Proceedings of the USENIX Security Symposium (SEC), 1992.

https://www.usenix.org/sites/default/files/conference/protected-files/enigma_slides_serebryany.pdf
https://www.usenix.org/sites/default/files/conference/protected-files/enigma_slides_serebryany.pdf
https://github.com/google/sanitizers/blob/master/hwaddress-sanitizer/Hardware Memory Tagging to make C_C++ memory safe(r) - iSecCon 2018.pdf
https://github.com/google/sanitizers/blob/master/hwaddress-sanitizer/Hardware Memory Tagging to make C_C++ memory safe(r) - iSecCon 2018.pdf
https://github.com/google/sanitizers/blob/master/hwaddress-sanitizer/Hardware Memory Tagging to make C_C++ memory safe(r) - iSecCon 2018.pdf
https://syzkaller.appspot.com/upstream
https://github.com/google/fuzzer-test-suite
https://lcamtuf.blogspot.com/2015/06/new-in-afl-persistent-mode.html
https://lcamtuf.blogspot.com/2015/06/new-in-afl-persistent-mode.html
https://github.com/google/fuzzer-test-suite/blob/master/tutorial/libFuzzerTutorial.md
https://github.com/google/fuzzer-test-suite/blob/master/tutorial/libFuzzerTutorial.md

105

[103] N. Hasabnis, A. Misra, and R. Sekar, “Light-weight bounds checking,” in Pro-
ceedings of the International Symposium on Code Generation and Optimization
(CGO), 2012.

[104] Y. Younan, “FreeSentry: protecting against use-after-free vulnerabilities due
to dangling pointers,” in Proceedings of the Network and Distributed System
Security Symposium (NDSS), 2015.

[105] L. kernel document, “The kernel address sanitizer (kasan),” https://www.
kernel.org/doc/html/v4.14/dev-tools/kasan.html, [Online; accessed 11-May-
2019].

[106] Wikipedia, “x32 ABI,” https://en.wikipedia.org/wiki/X32 ABI.

[107] V. Jacobson, “Congestion avoidance and control,” ACM SIGCOMM computer
communication review, 1988.

[108] T. Kroes, K. Koning, C. Giuffrida, H. Bos, and E. van der Kouwe, “Fast and
generic metadata management with mid-fat pointers,” in Proceedings of the
European Workshop on Systems Security (EuroSec), 2017.

[109] C. Lyu, S. Ji, C. Zhang, Y. Li, W.-H. Lee, Y. Song, and R. Beyah, “MOPT:
Optimized Mutation Scheduling for Fuzzers,” in Proceedings of the USENIX
Security Symposium (SEC), 2019.

[110] G. Klees, A. Ruef, B. Cooper, S. Wei, and M. Hicks, “Evaluating fuzz test-
ing,” in Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security. ACM, 2018, pp. 2123–2138.

[111] NIST, “Juliet test suite,” 2017, [Online; accessed 11-May-2019]. [Online].
Available: https://samate.nist.gov/SARD/testsuite.php

[112] M. Böhme, V.-T. Pham, and A. Roychoudhury, “Coverage-based greybox
fuzzing as markov chain,” in Proceedings of the 2016 ACM SIGSAC Confer-
ence on Computer and Communications Security. ACM, 2016, pp. 1032–1043.

[113] Y. Li, B. Chen, M. Chandramohan, S.-W. Lin, Y. Liu, and A. Tiu, “Steelix:
program-state based binary fuzzing,” in Proceedings of the 2017 11th Joint
Meeting on Foundations of Software Engineering. ACM, 2017, pp. 627–637.

[114] C. Aschermann, S. Schumilo, T. Blazytko, R. Gawlik, and T. Holz,
“REDQUEEN: Fuzzing with Input-to-State Correspondence,” in Proceedings
of the Network and Distributed System Security Symposium (NDSS), 2019.

[115] P. Chen and H. Chen, “Angora: Efficient fuzzing by principled search,” arXiv
preprint arXiv:1803.01307, 2018.

[116] H. Peng, Y. Shoshitaishvili, and M. Payer, “T-Fuzz: fuzzing by program trans-
formation,” in Proceedings of the IEEE Symposium on Security and Privacy
(SP), 2018.

[117] D. She, K. Pei, D. Epstein, J. Yang, B. Ray, and S. Jana, “Neuzz: Efficient
fuzzing with neural program smoothing,” in Proceedings of the IEEE Sympo-
sium on Security and Privacy (SP), 2019.

https://www.kernel.org/doc/html/v4.14/dev-tools/kasan.html
https://www.kernel.org/doc/html/v4.14/dev-tools/kasan.html
https://en.wikipedia.org/wiki/X32_ABI
https://samate.nist.gov/SARD/testsuite.php

106

[118] M. Böhme, V.-T. Pham, M.-D. Nguyen, and A. Roychoudhury, “Directed grey-
box fuzzing,” in Proceedings of the 24th ACM Conference on Computer and
Communications Security, ser. CCS, 2017, pp. 1–16.

[119] Y. Chen, P. Li, J. Xu, S. Guo, R. Zhou, Y. Zhang, L. Lu et al., “SAVIOR:
Towards Bug-Driven Hybrid Testing,” in Proceedings of the IEEE Symposium
on Security and Privacy (SP), 2020.

[120] S. Rawat, V. Jain, A. Kumar, L. Cojocar, C. Giuffrida, and H. Bos, “Vuzzer:
Application-aware evolutionary fuzzing,” in Proceedings of the Network and
Distributed System Security Symposium (NDSS), 2017.

[121] V. Jain, S. Rawat, C. Giuffrida, and H. Bos, “TIFF: Using Input Type In-
ference To Improve Fuzzing,” in Proceedings of the Annual Computer Security
Applications Conference (ACSAC), 2018.

[122] P. Chen, J. Liu, and H. Chen, “Matryoshka: Fuzzing Deeply Nested Branches,”
in Proceedings of the ACM Conference on Computer and Communications Se-
curity (CCS), 2019.

[123] N. Burow, D. McKee, S. A. Carr, and M. Payer, “Cup: Comprehensive user-
space protection for c/c++,” in Proceedings of the 2018 on Asia Conference on
Computer and Communications Security. ACM, 2018, pp. 381–392.

VITA

107

VITA

Yuseok Jeon received his Bachelor of Science (BS) in Computer Science from INHA

University, South Korea, in August 2007, and the Master of Science (MS) in Computer

and Communications Engineering from POSTECH, South Korea, in February 2010.

He has worked for the National Security Research Institute, Samsung, NEC Labs

America, and Intel. His primary interests are in solving software and systems security

problems via programming analysis.

	LIST OF TABLES
	LIST OF FIGURES
	ABBREVIATIONS
	ABSTRACT
	INTRODUCTION
	HEXTYPE: EFFICIENT DETECTION OF TYPE CONFUSION ERRORS FOR C++
	HexType
	Background
	Threat Model
	HexType Design and Implementation
	Implementation
	Evaluation
	Discussion
	Related Work

	Conclusion

	V-TYPE: INLINE TYPE INFORMATION TO COUNTER TYPE CONFUSION
	Background
	Classes Hierarchies & Polymorphism
	Type confusion
	C++ Casting

	Design and Implementation
	Vtable inline metadata structure
	Addressing compatibility issues
	Increase detection coverage
	Only changing type related to type casting
	Implementation

	Evaluation
	Coverage on type casting
	Performance Overhead

	Future Work

	FUZZAN: EFFICIENT SANITIZER METADARTA DESIGN FOR FUZZING
	Background and Analysis
	Fuzzing overhead
	Address Sanitizer
	Overhead Analysis of Fuzzing with ASan

	FuZZan design
	FuZZan Metadata Structures
	Dynamic metadata structure switching

	Implementation
	Evaluation
	Detection capability
	Efficiency of new metadata structures
	Efficiency of dynamic metadata structure
	Real-world fuzz testing
	Bug finding effectiveness
	FuZZan Flexibility

	Discussion
	Related Work
	Reducing Fuzzing Overhead
	Optimizing Sanitizers

	Conclusion

	THE DIRECTION OF FUTURE RESEARCH
	SUMMARY
	REFERENCES
	VITA

