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ABSTRACT

Khoury, Fouad M.S., Purdue University, December 2020. Orbital Rendezvous and
Spacecraft Loitering in the Earth-Moon System. Major Professor: Kathleen C.
Howell.

To meet the challenges posed by future space exploration activities, relative satel-

lite motion techniques and capabilities require development to incorporate dynam-

ically complex regimes. Specific relative motion applications including orbital ren-

dezvous and spacecraft loitering will play a significant role in NASA’s Gateway and

Artemis missions which aim to land the first woman and next man on the Moon

by 2024. In this investigation, relative motion in the restricted 3-body problem is

formulated, validated, and tested in a rotating local-vertical-local-horizontal (LVLH)

frame situated at a target spacecraft and followed by a chaser. Two formulations of

the restricted 3-body problem are considered, namely the Circular Restricted 3-Body

Problem (CR3BP) and the Elliptical Restricted 3-Body Problem (ER3BP). Compar-

isons between the relative dynamical models in the CR3BP and ER3BP, respectively,

and other standard relative motion sets of equations such as the Euler-Hill (HCW)

model and the Linear Equations of Relative Motion (LERM) are accomplished to

identify limitations and inaccuracies pertaining to the in orbits that exist in the

CR3BP and ER3BP, respectively. Additionally, the relative motion equations are

linearized to develop computational tools for solutions to the rendezvous and space

loitering problems in the Earth-Moon system.
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1. INTRODUCTION

Relative satellite motion between manned orbiting spacecraft was initially imple-

mented for use in the Gemini and Apollo missions. In 1965, the first successful

crewed rendezvous between two spacecraft was performed with Gemini-6A (crewed

by Walter Schirra & Thomas Stafford) and Gemini 7 (crewed by Frank Borman &

James Lovell) in Earth orbit. Since then, relative satellite motion has played an es-

sential part in space missions with applications ranging from rendezvous & docking,

formation flying, and proximity operations. Moreover, proposed future applications

include satellite servicing, on-orbit assembly, and space debris removal. One of the

most successful applications of relative motion includes the cargo and crew resupply

missions with the International Space Station (ISS) in low Earth orbit. For almost

two decades, the ISS has served as an multinational platform for micro-gravity and

space environment research for established and emerging civilian space agencies.

The fundamental step in any relative motion analysis includes the formulation

and validation of the system’s equations of motion. Traditionally, a Keplerian model

frequently serves as the basis to characterize the dynamics of two spacecraft in orbit

around a main primary. From this initial assumption, a number of relative motion

models have been formulated, validated, and successfully implemented for real-world

missions. Historically, relative motion models have been formulated in a rotating

local-vertical-local-horizontal (LVLH) frame attached to a spacecraft along its orbit.

As a result, these models characterize the motion of another spacecraft termed as the

chaser or deputy with respect to the origin of the LVLH frame located at the target or

chief. Employing this local frame is particularly important for rendezvous, docking,

and formation flying missions since orbital motion is expressed from the perspective

of the target or chief. Moreover, the LVLH frame is used to assess trajectories and

ensure collision avoidance as well as facilitate proximity operations. Among the dy-
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namical models that are the most widely applied are the Euler Hill [2] equations (also

denoted as the Hill-Clohessy-Wiltshire (HCW) equations) introduced in 1960 for the

design of a terminal rendezvous guidance strategy for circular orbits. These equations

assume a target orbit to be circular and a chaser spacecraft in close proximity along

a slightly elliptic and possibly, slightly inclined orbit. If the nonlinear equations of

relative motion in the Keplerian model are formulated and subsequently linearized

by means of a Taylor expansion about the target position, the model is denoted the

Linear Equations of Relative Motion (LERM). These equations provide a good char-

acterization of the relative motion between the target and chaser vehicles assuming

the initial distance between the spacecraft is sufficiently small with respect to the

target orbit radius. According to Alfriend et al. [11], previous analysis suggests that

the LERM are best employed when the relative distance is smaller than 50 km. More

recently developed models include the Yamanaka-Ankersen STM [3] approximations

for arbitrary elliptical orbits. Although these models demonstrate continued success

in space missions appropriate to their respective regimes, they generate unacceptable

errors in their descriptions of relative orbits that exist with the incorporation of both

Earth and Moon gravity fields as point masses. Incorporation of both the Earth and

Moon gravity is necessary in formulations for relative motion analysis for orbits in

models with increased dynamical complexity and applications in cislunar space.

1.1 Problem Definition

NASA’s proposed Gateway and Artemis missions, as envisioned by the 2017 Space

Policy Directive [28], aim to land the first woman and next man on the Moon by 2024.

As part of the 2017 directive on space exploration, the agency seeks to establish a long

term presence in lunar orbit and on the Moon’s surface to develop new capabilities

for future missions to Mars and beyond. Although the Apollo program (1969 - 1972)

was largely successful in accomplishing its technical objectives, the missions were

characterized by short duration trips to the Moon (about 3 days) and remained in
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lunar orbit. In constrast, proposed mission architectures require longer durations

in the lunar vicinity and employ non-Keplerian orbits with favorable stability and

eclipse avoidance properties. Two proposed orbits for the Gateway and Artemis

programs include the 9:2 L2 lunar synodic resonant Near Rectilinear Halo Orbit

(NRHO) and a Distant Retrograde Orbit (DRO) with an altitude of approximately

70,400 km from the lunar surface. These orbits only exist in the CR3BP which

incorporate both the Earth and Moon gravity as point masses, in contrast to the

Keplerian 2-body model. Consequently, dynamical models that develop based on

the CR3BP assumptions must be derived and formulated to accurately represent the

physics of relative motion between a target and chaser spacecraft along these specified

trajectories. To reciprocate techniques employed for rendezvous operations in 2-body

regimes, equations of relative motion are formulated and derived in an LVLH frame

attached to a target spacecraft; however, definitions for the LVLH coordinates are

modified. Once established, these equations are validated against traditional relative

motion models to identify the limitations of the 2-body assumptions along the 9:2

L2 NRHO and DRO. Furthermore, these models are linearized about the target’s

position and employed to construct a maneuver scheme to address rendezvous and

space loitering problems in the Earth-Moon system. Finally, single and multiple

shooting approaches formulated specifically to the LVLH frame are introduced to

compute maneuvers and achieve terminal rendezvous or produce bounded motion in

the relative space.

1.2 Previous Contributions

Although relative motion problem in the 2-body problem has been studied exten-

sively, investigations of 3-body relative motion dynamics are more limitd. Neverthe-

less, there is some effort to develop strategies for rendezvous operations within the

context of the CR3BP. Colagrossi et al. [10] examine rendezvous and docking opera-

tions for a very large space structure in a halo orbit about L2. The model employed
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incorporates coupled orbit and attitude motion in the CR3BP and uses a lumped

parameter approach to accommodate the flexible dynamics. Murakami et al. [6] pro-

pose a practical rendezvous scenario for logistics missions to a cislunar space station in

the vicinity of the Earth-Moon L2 point. Both analyses formulate the dynamics in a

synodic frame based at the system barycenter. Franzini et al. [1] first formulated and

derived the nonlinear equations of motion in a LVLH frame based on assumptions

in the restricted 3-body problem. The equations and their linear counterparts are

validated against the HCW and LERM models along a NRHO. The analysis suggests

that the linearized equations are accurate near apolune but perform poorly in the

vicinity of perilune where rapid separation between the target and chaser exceeds the

range of validity for the linearization assumption. A maneuver scheme incorporating

single and multiple thruster firings is proposed and a number of rendezvous scenarios

are examined along an NRHO. Both impulsive and continuous thrust profiles are con-

sidered for initial relative separations of up to a few kilometers between the target and

chaser vehicles. This investigation aims to reproduce the formulation and validation

of the nonlinear equations of relative motion proposed by Franzini et al. and extend

the analyses to incorporate other target orbits of interest in the cislunar vicinity.

1.3 Document Outline

The basis for this work is the formulation of the set of equations of relative motion

in the restricted 3-body problem. Specifically, two formulations of the restricted 3-

body problem are investigated namely, the CR3BP and ER3BP. A derivation and

analysis of both models produces the desired reference orbit geometry for the target

spacecraft. Given these differential equations, the nonlinear relative equations of

motion are formulated and validated using the approach consistent with Franzini et

al [1]. The equations and their linear counterparts are also examined against the

HCW and LERM in a 9:2 L2 NRHO, large radius DRO, and small radius DRO.

Initial relative states between the target and chaser spacecraft are selected along
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the corresponding orbits for the validation procedure. Finally, single and multiple

shootings scheme are proposed to facilitate the computation in rendezvous and space

loitering problems for all three target orbits.

• Chapter 2: A brief overview of Keplerian motion is provided for reference. The

equations of motion for the restricted 3-body problem are derived along with

the appropiate assumptions to the model to include the ER3BP and CR3BP.

The equations are developed in two synodic reference frames: S , based at the

system barycenter; and M , originating at the center of the second primary. In

the ER3BP, a pseudo-potential function and equilibrium points are identified

to offer insight into the problem. Likewise, the CR3BP investigation includes

an overview of the pseudo-potential function, a single integral of the motion,

and the equilibrium points. Zero velocity surfaces and symmetry properties

supply intuition governing the dynamical flow. Variational equations for both

the ER3BP and CR3BP are summarized to highlight computation tools for rel-

ative solutions in both regimes. Finally, dynamical systems theory is employed

to introduce differential corrections techniques and a number of periodic orbit

families are computed. A multiple patch point framework is proposed to tran-

sition solutions from the CR3BP to the ER3BP and higher-fidelity ephemeris

models.

• Chapter 3: First, let L denote the LVLH frame L; an overview and appropri-

ate definition are introduced. Two relative motion models in 2-body problem,

expressed in frame L, are derived for reference. The nonlinear equations of rel-

ative motion in the ER3BP and CR3BP are then formulated and derived using

the process proposed by Franzini et al. Next, these relative motion models are

verified and validated along three target orbits: a 9:2 L2 NRHO, a high radius

DRO (about 70,400 km altitude), and a small radius DRO (about 9000 km

altitude). Finally, single and multiple shooting schemes are proposed to target

relative states and geometry in the LVLH frame.
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• Chapter 4: Two types of relative motion applications are examined, namely

orbital rendezvous and spacecraft loitering. A number of rendezvous scenarios

are investigated along all three target orbits with varying relative states. An

approach to address the spacecraft loitering problem for each of these orbits is

proposed along with examples that demonstrate bounded behavior in the LVLH

frame.

• Chapter 5: A summary of results is provided and recommendations for future

analysis and work are suggested.
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2. BACKGROUND

The motion of a body under the influence of a single primary has been studied ex-

tensively for centuries. Although an analytical closed-form solution exists for this

dynamical model, these two-body approximations can exhibit inaccuracies when an-

other primary is incorporated. However, multi-body systems (n ≥ 3) do not possess

analytical solutions for the motion and instead require numerical integration of the

governing equations of motion. First, to explore this problem, the restricted 3-body

problem is formulated for arbitrary masses in a synodic frame S centered at the sys-

tem barycenter. Simplifying assumptions are then employed to produce the ER3BP

and CR3BP equations of motion.

2.1 Keplerian Dynamics

The two-body problem has served as the basis for trajectory design in support

of many early spacecraft missions in the twentieth century. A number of simplify-

ing assumptions employed in the model include the representation of both bodies as

centrobaric point-masses and the inverse square law as the description of the gravita-

tional force between them. The general problem of two bodies is depicted in Figure

2.1.

Fig. 2.1. Diagram of the two-body model.
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An inertially fixed coordinate system is centered at the system barycenter B. An

inertial coordinate system I is defined as a dextral orthogonal triad represented by

directions X̂, Ŷ, and Ẑ. The quantities R1 and R2 denote the position vectors of the

first and second primary bodies as measured from B, respectively, and are assummed

to be point masses. If the inverse square law is employed to model the mutual

gravitational force between the two bodies, the motions of m1 and m2 are governed

by the following second-order vector differential equations

R̈1 =
Gm2

r3
12

r12 (2.1)

R̈2 = −Gm1

r3
12

r12 (2.2)

r̈12 = R̈2 − R̈1 = −G(m1 +m2)

r3
12

r12 = − µ
r3

r (2.3)

where µ is the gravitational constant, r12 is the relative position vector from m1 to m2,

and r12 is the norm of r12. For notation purposes, the subscript is dropped from r12

and for other expressions involving the two-body model. There are several methods

to produce the closed-form solution to Equations (2.1) - (2.3), but for simplicity

this investigation employs the process in Alfriend et al. [11]. To obtain the analytical

solution to Equation (2.3), it is useful to transform the inertially-based equations into

a rotating synodic frame S with axes x̂s, ŷs and ẑs analogous to polar coordinates.

In this frame, x̂s = r12/||r12||, ẑs coincides with the direction of the system angular

momentum vector (normal to the orbital plane), and ŷs completes the right-handed

set. Figure 2.2 depicts the two-body model in frame S. To that end, the following

kinematical expressions are first introduced

r = rx̂s (2.4)

ṙ = ṙx̂s + rθ̇ŷs (2.5)

r̈ = (r̈ − rθ̇2)x̂s + (2ṙθ̇ + rθ̈)ŷs (2.6)
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Fig. 2.2. Diagram of the two-body model in synodic frame S.

where θ is the argument of latitude and θ̇ = ωS/I is the angular velocity of frame

S with respect to the inertial frame I. The dot above the quantity θ̇ is taken as

the derivative with respect to time as observed from the inertial frame. Substituting

Equation (2.6) into Equation (2.3) yields the following scalar expressions represented

in frame S:

r̈ = rθ̇2 − µ

r2
(2.7)

θ̈ = −2ṙθ̇

r
(2.8)

The orbit angular momentum vector per unit mass, h, is defined as:

h = r× ṙ = r× v =


r

0

0

×

ṙ

rθ̇

0

 = r2θ̇ẑs = hẑs (2.9)

where ẑs is a unit vector normal to the orbital plane of the two bodies. It is observed

from Equation (2.8) that the scalar derivative

d

dt
(r2θ̇) = r(rθ̈ + 2ṙθ̇) = 0 (2.10)

Therefore, it is concluded that the angular vector h is time invariant and implies

conservation of angular momentum. Since h is a vector quantity, the derivative with

respect to time is
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ḣ = ṙ× ṙ + r× r̈ = − µ
r3

r× r = 0 (2.11)

Clearly, the magnitude h is constant as are each of its inertial components. Next, the

chain rule is applied to Equation (2.7) to obtain

r̈ =
d

dt

(
dr

dt

)
=
dr

dt

d

dr

(
dr

dt

)
= ṙ

d

dr
(ṙ) = d

(
ṙ2

2

)
(2.12)

To prove Equation (2.12), a u substitution is employed to express

ṙ
d

dr
(ṙ) = udu = d

(
u2

2

)
= d

(
ṙ2

2

)
Q.E.D (2.13)

If the expression for the scalar value r̈ from Equation (2.7) is substituted into Equation

(2.13), then

d

(
ṙ2

2

)
=

(
h2

r3
− µ

r2

)
(2.14)

Equation (2.14) is integrated to arrive at

E =
ṙ2

2
+

h2

2r2
− µ

r
=

(
ṙ2 + rθ̇2

2

)
− µ

r
=
v2

2
− µ

r
(2.15)

where the scalar E is a constant of integration, denoted as the specific energy, as

it is the sum of the kinetic and potential energies. Equation (2.15) demonstrates

conservation of energy for the two-body system. Finally, both constants of integration

yield the following expressions:

ṙ =

√√√√2

(
E +

µ

r

)
− h2

r2
(2.16)

θ̇ =
h

r2
(2.17)
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All of the above expressions include derivatives with respect to time, yet it is con-

venient to introduce the independent variable as a function of θ. Dividing Equation

(2.16) by Equation (2.17), the equation yields

dr

dθ
=
r2
√

2(E + µ/r)− h2/r2

h
(2.18)

It is observed that Equation (2.18) is a seperable differential expression, solved

through direct integration with initial condition θ0 by

θ =

∫
hdr

r2
√

2(E + µ/r)− h2/r2
+ θ0 = cos−1 1/r − µ/h2√

2E/h+ µ2/h4
+ θ0 (2.19)

and then r is solved in Equation (2.19) to obtain

r =
h2/µ

1 +
√

1 + 2Eh2/µ2 cos(θ − ω)
=

p

1 + e cos θ∗
(2.20)

where

ω = θ0 (2.21)

p = h2/µ (2.22)

e =
√

1 + 2Eh2/µ2 (2.23)

θ∗ = θ − ω (2.24)

are the argument of periapsis, semilatus rectum, eccentricity, and true anomaly, re-

spectively. Equation (2.19) admits solutions in the form of conic sections which

include a circle, ellipse, parabola, and hyperbola. Using the following expressions,

a =
p

1− e2
(2.25)

E = − µ

2a
(2.26)

classifications of each conic is parameterized based on eccentricity e, semimajor axis

a, and specific energy E as presented in Table 2.1.



12

Table 2.1.
Conic classification in the two-body problem

Conic a value e value E value

Circle a > 0 e = 0 E < 0

Ellipse a > 0 0 < e < 1 E < 0

Parabola a =∞ e = 1 E = 0

Hyperbola a < 0 e > 1 E > 0

The sign of E classifies the conic as either a closed (E < 0) or an open (E > 0) orbit.

The expressions are subsequently referenced in the investigation of ER3BP since the

motion of the second primary with respect to the first must be tracked to obtain the

correct relative distance and velocities between the two bodies.

2.2 Elliptical Restricted 3-Body Problem

The addition of another particle of interest is foundation of the formulation of the

general 3-body problem. The model is comprised of two primaries, m1 and m2, and a

body of interest m. Each body imparts its gravitational influence on the other masses

in the system. Figure 2.3 depicts the general three-body problem with inertial frame

I and synodic frame S.

Fig. 2.3. Diagram of the three-body model in synodic frame S.
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The general three-body problem operates on the assumption that all bodies can be

modeled as point masses. This assumption infers that all masses are centrobaric, a

reasonable approximation for planetary mass distributions. Consequently, the equa-

tions of motion are formulated as

[
R̈
]

I

= −Gm1

r3
1

r1 −
Gm2

r3
2

r2 (2.27)

[
R̈1

]
I

=
Gm2

r3
12

r12 +
Gm

r3
1

r1 (2.28)

[
R̈2

]
I

= −Gm1

r3
12

r12 +
Gm

r3
2

r2 (2.29)

where

r1 = R−R1 : relative position vector from m1 to m (2.30)

r2 = R−R2 : relative position vector from m2 to m (2.31)

r12 = R2 −R1 : relative position vector from m1 to m2 (2.32)

and
[
R̈
]

I

specifies the acceleration of body m as observed from an inertial frame of

reference I. Since accelerations are inertially based, they are subtracted to obtain the

acceleration of the relative vectors as follows

[
r̈1

]
I

=
[
R̈
]

I

−
[
R̈1

]
I

= −G(m+m1)

r3
1

−Gm2

(
r2

r3
2

+
r12

r3
12

)
(2.33)

[
r̈2

]
I

=
[
R̈
]

I

−
[
R̈2

]
I

= −G(m+m2)

r3
2

−Gm1

(
r1

r3
1

− r12

r3
12

)
(2.34)

As formulated above in Equations (2.33) and (2.34), no analytical solution exists to

describe the motion of m subject to gravitational forces from m1 and m2. Nonetheless,

Joseph Louis Lagrange (1736-1813) proposed a special circumstance where the mass

of the third body is assumed negligible. The assumption that mass m is assumed

to be much less than the other two primaries (m << m1,m2) is employed such the
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original formulation of three bodies is coined the restricted 3-body problem. The

mass of interest m then represents a spacecraft subject to the gravitational influence

of two primaries m1 and m2. As a result, Equations (2.33) and (2.34) become

[
r̈1

]
I

= −µ1
r1

r3
1

− µ2

(
r2

r3
2

+
r12

r3
12

)
(2.35)

[
r̈2

]
I

= −µ2
r2

r3
2

− µ1

(
r1

r3
1

− r12

r3
12

)
(2.36)

where µ1 = Gm1 and µ2 = Gm2 are the gravitational parameters of m1 and m2,

respectively. Since the mass m is negligible, the two primaries move on conics about

their common barycenter. In both the ER3BP and CR3BP, this motion is then the

solution of the two-body problem. Since the motion of the primaries is Keplerian,

their paths remain in a plane. Figure 2.4 depicts the geometry in the ER3BP as the

orbits of the primaries m1 and m2 are elliptical about their common barycenter.

Fig. 2.4. Diagram of the three-body model in synodic frame S.

The synodic frame S is assumed to rotate with respect to the inertial frame I with

angular velocity ωS/I = ωS/I ẑs. As a result, the basic kinematical equation is em-
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ployed to compute the velocity and accelerations of vector R from an inertial observer

as follows

R = xx̂s + yŷs + zẑs (2.37)[
Ṙ
]

I

=
[
Ṙ
]

S

+ ωS/I ×R (2.38)[
R̈
]

I

=
[
R̈
]

S

+ 2ωS/I ×
[
Ṙ
]

S

+
[
ω̇S/I

]
S

×R + ωS/I × (ωS/I ×R) (2.39)

Note that the position vector is expressed in terms of the synodic frame S. Without

loss of generality, frames S and I coincide at B so that Equation (2.27) is substituted

into Equation (2.39) to obtain

[
R̈
]

S

+ 2ωS/I ×
[
Ṙ
]

S

+
[
ω̇S/I

]
S

×R + ωS/I × (ωS/I ×R) = −µ1
r1

r3
1

− µ2
r2

r3
2

(2.40)

where position vectors r1 and r2, measured from the barycenter B, denote the space-

craft position vectors with respect to m1 and m2, respectively, as

r1 = (x+R1)x̂s + yŷs + zẑs (2.41)

r2 = (x−R2)x̂s + yŷs + zẑs (2.42)

In component-wise form along each of the axis directions in frame S, the equations

are expressed
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ẍ− 2ωS/I ẏ − ω̇S/Iy − ω2
S/Ix = −µ1

x+R1

r3
1

− µ2
x−R2

r3
2

(2.43)

ÿ + 2ωS/I ẋ+ ω̇S/Ix− ω2
S/Iy = −µ1

y

r3
1

− µ2
y

r3
2

(2.44)

z̈ = −µ1
z

r3
1

− µ2
z

r3
2

(2.45)

where the norm of the spacecraft distance from each of the primaries are expressed

r1 =
√

(x+R1)2 + y2 + z2 r2 =
√

(x−R2)2 + y2 + z2 (2.46)

To compute the distances of the scalar quantities R1 and R2, the center of mass

equation is employed at barycenter B. Using frame S, two equations are formulated

to produce the following relationship,

−µ1R1 + µ2R2 = 0 (2.47)

R1 +R2 = r12 (2.48)

where r12 is the relative distance between m1 and m2. By solving for R1 or R2 in

Equation (2.47) and substituting in Equation (2.48), the expressions yield

R1 = µsr12 (2.49)

R2 = (1− µs)r12 (2.50)

where µs is classified as the system mass parameter given by

µs =
µ2

µ1 + µ2

(2.51)

It is apparent from the formulation of Equations (2.43)-(2.45) that the positions of the

primaries R1 and R2 oscillate as the primaries m1 and m2 move along their respective
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orbits around barycenter B. It is sometimes useful to change the origin of the synodic

frame so that the spacecraft position is measured with respect to one of the primaries.

Thus, a rotating synodic frame M with axes x̂m, ŷm and ẑm is introduced so that the

spacecraft position vector is referenced from the second primary, m2. FrameM rotates

with the same angular velocity as S, yet the axes are defined with different directions

such that

x̂m = −r12

r12

= −x̂s (2.52)

ẑm =
h12

h12

= ẑs (2.53)

ŷm = ẑm × x̂m = −ŷs (2.54)

(2.55)

The formulation of synodic frame M is consistent with the definitions in Franzini et

al [1]. The positive x̂ direction is directed towards the larger primary m1 and ẑ is

parallel to the normal of the orbital plane of the two primaries. Figure 2.5 depicts the

differences of synodic frames S and M in the ER3BP. Both frames rotate with the

same angular velocity with respect to the inertial frame I, however, they originate at

different positions.

Fig. 2.5. Diagram of the ER3BP in synodic frames S (left) and M (right).
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The employment of frame M provides a description of the motion of m with respect

to the second primary m2. For applications in spacecraft missions, it is more useful

to reference a spacecraft’s motion with respect to a primary instead of the system

barycenter. Therefore, without loss of generality, if inertial frame I and synodic frame

M coincide at m2, the position, velocity, and acceleration of spacecraft m as expressed

in frame M coordinates are

r = xx̂m + yŷm + zẑm (2.56)[
ṙ
]
I

=
[
ṙ
]

M

+ ωM/I × r (2.57)[
r̈
]
I

=
[
r̈
]

M

+ 2ωM/I ×
[
ṙ
]

M

+
[
ω̇M/I

]
M

× r + ωM/I × (ωM/I × r) (2.58)

where r12 = −r12x̂m, and the spacecraft position vectors from first and second pri-

maries are defined as:

r1 = (x− r12)x̂m + yŷm + zẑm r = xx̂m + yŷm + zẑm (2.59)

In component-wise form, Equation (2.58) is written as

ẍ− 2ωM/I ẏ − ω̇M/Iy − ω2
M/Ix = −µ1

(
x− r12

r3
1

+
1

r3
12

)
− µ2

x

r3
(2.60)

ÿ + 2ωM/I ẋ+ ω̇M/Ix− ω2
M/Iy = −µ1

y

r3
1

− µ2
y

r3
(2.61)

z̈ = −µ1
z

r3
1

− µ2
z

r3
(2.62)

where the norm of the distances between the spacecraft and primary m1 and m2 are

evaluated as

r1 =
√

(x− r12)2 + y2 + z2 r =
√
x2 + y2 + z2 (2.63)
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In the study of dynamical systems, it is often convenient to nondimensionalize quan-

tities so that the equations of motion become functions of one parameter. Nondimen-

sionalization for the ER3BP equations is accomplished by normalizing the following:

• dimensional distances l by the primary m2 orbit semimajor axis a

• time t by the system mean motion n, i.e.,

n =

√
G(m1 +m2)

a3
(2.64)

and the introduction of a nondimensional time quantity τ such that τ = n(t−t0)

• mass quantities such that µ1 + µ2 = 1

As a consequence, any generic distance and its corresponding time derivatives are

nondimensionalized as follows

l = al̃ (2.65)

l̇ = a
dl̃

dτ

dτ

dt
= anl̃′ (2.66)

l̈ = an
dl̃′

dτ

dτ

dt
= an2l̃′′ (2.67)

where the quantities under the tilde symbol, i.e. l̃, denote nondimensionalized quan-

tities and the superscript prime symbol, i.e. l̃′, represents derivatives with respect

to τ . Angular quantities ω are nondimensionalized using a similar procedure, so it

follows that

ω = nω̃ (2.68)

ω̇ =
dω

dτ

dτ

dt
= n2ω̃′ (2.69)

The system mass parameter is defined in Equation (2.51) and then the mass param-

eters for the primaries m1 and m2 are obtained as
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µ2 = µ µ1 = 1− µ (2.70)

where µs = µ. Thus, it is assumed that 0 < µ < 0.5 if m1 > m2. The scalar

nondimensional equations of motion in the ER3BP then follow, expressed in terms of

components in Frame S as,

x̃′′ − 2ω̃S/I ỹ
′ − ω̃′S/I ỹ − ω̃2

S/I x̃ = −(1− µ)
x̃+ R̃1

r̃3
1

− µx̃− R̃2

r̃3
2

(2.71)

ỹ′′ + 2ω̃S/I x̃
′ + ω̃′S/I x̃− ω̃2

S/I ỹ = −(1− µ)
ỹ

r̃3
1

− µ ỹ
r̃3

2

(2.72)

z̃′′ = −(1− µ)
z̃

r̃3
1

− µ z̃
r̃3

2

(2.73)

Likewise, the ER3BP equations in terms of Frame M in nondimensional form are

defined as

x̃′′ − 2ω̃M/I ỹ
′ − ω̃′M/I ỹ − ω̃2

M/I x̃ = −(1− µ)

(
x̃− r̃12

r̃3
1

+
1

r̃2
12

)
− µ x̃

r̃3
(2.74)

ỹ′′ + 2ω̃M/I x̃
′ + ω̃′M/I x̃− ω̃2

M/I ỹ = −(1− µ)
ỹ

r̃3
1

− µ ỹ
r̃3

(2.75)

z̃′′ = −(1− µ)
z̃

r̃3
1

− µ z̃
r̃3

(2.76)

There are advantages to analysis based in the ER3BP in either frame S and frame

M , largely dependent on the type of application. Selected orbits in close proxim-

ity to the second primary can employ the M frame since it is expected that the

spacecraft position is measured from the m2 and not the barycenter B. Moreover,

nondimensional quantities are useful since they alleviate computational expense by

parameterizing equations with respect to one value, namely µ. For simplicity, the

tilde sign (x̃) is dropped from equations with the understanding that all quantities

are nondimensional. For reference, characteristic quantities for the Earth-Moon and

Sun-Earth system are listed in Table 2.2.
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Table 2.2.
Characteristic Quantities for Nondimensionalization

System distance a total mass m1 +m2 mean motion n sys. parameter µ

Earth-Moon 384400 km 6.0468e24 kg 2.6814e-6 rad/sec 0.01215

Sun-Earth 1.4965e8 km 1.9888e30 kg 1.98995e-7 rad/sec 3.00349e-6

2.2.1 Pseudo-potential Functions

The ER3BP equations of motion are further simplified by the introduction of a

pseudo-potential functions. Recall the inertial potential function is defined as

U =
1− µ
r1

+
µ

r2

(2.77)

Equation (2.77) is modified such that

U∗S =
ω2
S/I

2
(x2 + y2) +

1− µ
r1

+
µ

r2

=
ω2
S/I

2
(x2 + y2) + U (2.78)

U∗M =
ω2
M/I

2
(x2 + y2) + (1− µ)

(
1

r1

− x

r12

)
+
µ

r

=
ω2
M/I

2
(x2 + y2)− (1− µ)

x

r12

+ U (2.79)

where U∗S and U∗M are the pseudo-potential functions for frames S and M , respectively.

Therefore, Equations (2.71) - (2.73) in frame S is expressed as

x′′ − 2ωS/Iy
′ − ω′S/Iy =

∂U∗S
∂x

(2.80)

y′′ + 2ωS/Ix
′ + ω′S/Ix =

∂U∗S
∂y

(2.81)

z′′ =
∂U∗S
∂z

(2.82)
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Likewise, Equations (2.74) - (2.76) in frame M are rewritten as

x′′ − 2ωM/Iy
′ − ω′M/Iy =

∂U∗M
∂x

(2.83)

y′′ + 2ωM/Ix
′ + ω′M/Ix =

∂U∗M
∂y

(2.84)

z′′ =
∂U∗M
∂z

(2.85)

The pseudo-potential functions are used to develop system matrices to formulate the

equations of motion is state space form. As a result, first order variational equations

are obtained to construct differential corrections schemes to target states in frames S

and M .

2.3 Circular Restricted 3-Body Problem

A further assumption in addition to those governing the ER3BP delivers an addi-

tional formulation of the restricted three-body problem, the CR3BP. The primaries

m1 and m2 are already assumed to move on a Keplerian orbit. Now, the conic motion

is further assumed to be circular orbits about their common barycenter. Under this

assumption, there are two main simplications:

• The nondimensional angular velocity for both synodic frames S and M are

ωS/I = ωM/I = 1

• The distance between the two primaries is constant, thus

R1 = −µx̂s R2 = (1− µ)x̂s r12 = x̂s = −x̂m (2.86)

A depiction of the CR3BP appears in Figure 2.6, where the orbits of the primaries

are now circular about barycenter B. Equations (2.71) - (2.73) in the S frame are

reduced to
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x′′ − 2y′ − x = −(1− µ)
x+ µ

r3
1

− µx− 1 + µ

r3
2

(2.87)

y′′ + 2x′ − y = −(1− µ)
y

r3
1

− µ y
r3

2

(2.88)

z′′ = −(1− µ)
z

r3
1

− µ z
r3

2

(2.89)

where,

r1 =
√

(x+ µ)2 + y2 + z2 r2 =
√

(x− 1 + µ)2 + y2 + z2 (2.90)

Likewise, Equations (2.74) - (2.76) in the M frame then become

x′′ − 2y′ − x = −(1− µ)

(
x− 1

r3
1

+ 1

)
− µ x

r3
(2.91)

y′′ + 2x′ − y = −(1− µ)
y

r3
1

− µ y
r3

(2.92)

z′′ = −(1− µ)
z

r3
1

− µ z
r3

(2.93)

where,

r1 =
√

(x− 1)2 + y2 + z2 r =
√
x2 + y2 + z2 (2.94)

The CR3BP assumes that both the distances between the primaries and the nondi-

mensional angular velocity of frames S and M remain constant, greatly simplifying

the equations of motion. Moreover, Equations (2.91) - (2.93) are time-invariant which

classifies the CR3BP as an autonomous system. As a result, any solution obtained in

the CR3BP is valid for any point in time, both past and future.
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Fig. 2.6. Diagram of the CR3BP in synodic frames S (left) and M (right).

2.3.1 Pseudo-potential Functions

Given the circular assumption for the orbits of the two primaries, pseudo-potential

functions in Equations (2.78) and (2.79) are also simplified to obtain

Ω∗S =
1

2
(x2 + y2) +

1− µ
r1

+
µ

r2

=
1

2
(x2 + y2) + U (2.95)

Ω∗M =
1

2
(x2 + y2) + (1− µ)

(
1

r1

− x
)

+
µ

r

=
1

2
(x2 + y2)− (1− µ)x+ U (2.96)

where Ω∗S and Ω∗M denote the CR3BP pseudo-potential function in frames S and M ,

respectively. Equations (2.80) - (2.82) in frame S are then expressed as
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x′′ − 2y′ =
∂Ω∗S
∂x

(2.97)

y′′ + 2x′ =
∂Ω∗S
∂y

(2.98)

z′′ =
∂Ω∗S
∂z

(2.99)

Likewise, Equations 2.83 - 2.85 in frame M are given as

x′′ − 2y′ =
∂Ω∗M
∂x

(2.100)

y′′ + 2x′ =
∂Ω∗M
∂y

(2.101)

z′′ =
∂Ω∗M
∂z

(2.102)

The formulation of pseudo-potential functions in the CR3BP facilitate the derivation

of the model’s only integral of the motion. To admit an analytical solution, six

integrals of the motion must exist for the equations of motion in the rotating frame.

In fact, there is only one integral of the motion for the CR3BP so numerical integration

is required to obtain a time history of spacecraft m.

2.3.2 Jacobi Constant

The CR3BP, as formulated in the rotating synodic frame, admits an integral of

motion since it is regarded as a conservative system. Given that the pseudo-potential

Ω∗ is an time-invariant potential function, operating on the equations of motion yields

an energy-like constant. An approach to produce this constant is similar to the

derivation of the specific energy constant E in the two-body problem. First, a dot

product between the spacecraft velocity and acceleration vectors in the S frame yields

r′ · r′′ = x′x′′ + y′y′′ + z′z′′ =
∂Ω∗S
∂x

x′ +
∂Ω∗S
∂y

y′ +
∂Ω∗S
∂z

z′ +
∂Ω∗S
∂τ

(2.103)
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where the value
∂Ω∗S
∂τ

simplifies to zero, since the pseudo-potential function is derived

in an autonomous system. Scalar integration of Equation (2.103), yields

∫
r′ · r′′dτ =

1

2
(x′2 + y′2 + z′2) = Ω∗S − J (2.104)

J = 2Ω∗S − v2 (2.105)

where v is the magnitude of spacecraft velocity, i.e. speed, as observed in the rotating

frame S and J is denoted the Jacobi constant. The Jacobi constant represents an

energy-like quantity such that a decrease in J infers an increase in the spacecraft

energy as observed in S. The Jacobi constant is used to determine the range of

natural speeds available to a spacecraft given its unique position with respect to the

primaries.

2.3.3 Equilibrium Solutions

Five equilibria determined from the CR3BP equations of motion are available as

observed in the rotating frame. These solutions are usually denoted as the Lagrangian

or libration points, with the first three identified in 1763 by Leonhard Euler (1707-

1783) denoted as L1, L2 and L3. These three collinear points lie along the x̂s on the

line between the two primaries. In 1772, Lagrange produced the last two equilibrium

solutions L4 and L5, denoted as the equilateral points. To locate these points, the

vector gradient of the pseudo-potential function is set to zero, ∇Ω∗S = 0, such that

three scalar equations are obtained as

−(1− µ)
(xeq + µ)

r3
1

− µ(xeq − 1 + µ)

r3
2

+ xeq = 0 (2.106)

−(1− µ)
yeq
r3

1

− µyeq
r3

2

+ yeq = 0 (2.107)

−(1− µ)
zeq
r3

1

− µzeq
r3

2

= 0 (2.108)
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where xeq, yeq, and zeq represent the positions of the equilibrium points as measured

from the barycenter B in frame S. The equilibrium solutions must simultaneously

satisfy Equations (2.106) - (2.108). From first glance, it is apparent that zeq = 0

satisfies all the equations placing the equilibrium points in the x̂s − ŷs plane. The

collinear points are computed by setting yeq = zeq = 0 and, then, solving for the roots

of the Equation (2.106). Since there are no analytical solutions for this equation,

these points must be computed numerically. Szebehely [18] offers a series expansion

to approximate the L1 and L2 locations by defining

γ1 = rh

(
1− 1

3
rh −

1

9
r2
h + ...

)
(2.109)

γ2 = rh

(
1 +

1

3
rh +

1

9
r2
h + ...

)
(2.110)

where rh = 3
√
µ/3 is Hill’s radius which approximates the smaller primary’s gravi-

tational sphere of influence subject to perturbations from the larger primary. Con-

sequently, γ1 and γ2 are the distances from L1 and L2 to primary m2, respectively.

The two remaining equilateral points are evaluated by setting r1 = r2 = 1, which

form an equilateral triangle with primaries m1 and m2 as two of the vertices. Figure

2.7 depicts the locations of all five equilibria for CR3BP. Although all the libration

points satisfy Equations (2.106) - (2.108), they do not all emerge simultaneously. In

fact, they are numbered such that they are consistent with the order at which they

become accessible with decreasing values of Jacobi constant or

JL1 > JL2 > JL3 > JL4 = JL5 (2.111)

In other words, more libration points emerge as the orbital energy of the spacecraft

increases. It is worth noting that L4 and L5 emerge at the same Jacobi constant value

as a consequence of the mirror theorem. Nevertheless, L4 by convention denotes the

libration point ahead of the line between the primaries in their rotation whereas L5
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trails behind. Table 2.3 summarizes the locations of all the libration points for the

Earth-Moon and Sun-Earth systems.

Fig. 2.7. Positions of the Libration Points in Frame S.

Table 2.3.
Libration Point Positions for Different Systems

System L1[x, y] (nd) L2[x, y] (nd) L3[x, y] (nd) L4[x, y] (nd) L5[x, y] (nd)

Earth-Moon [0.8369 0] [1.1557 0] [−1.0051 0] [0.4878 0.866] [0.4878 − 0.866]

Sun-Earth [0.99 0] [1.01 0] [−1.0 0] [0.5 0.866] [0.5 − 0.866]
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2.3.4 Zero Velocity Surfaces

The Jacobi constant J is also employed to compute bounds on the spacecraft ac-

cessible regions given the position in the rotating frame. These bounds are visualized

as surfaces in configuration space, originating from its relationship with the space-

craft speed as expressed in Equation (2.105). Since spacecraft speed is by definition

non-imaginary, an inequality is formulated by setting v = 0 to obtain

2Ω∗S >= J (2.112)

where the pseudo-potential Ω∗S places bounds on the spacecraft position for a given

value of the Jacobi constant. The locus of points where v = 0 admits a three-

dimensional surface labelled a Zero-Velocity Surface (ZVS). Areas bounded by the

surfaces introduce forbidden regions since v < 0 for a spacecraft to realistically access

these areas of space. If a slice of the ZVS is taken at z = 0, the curve obtained

is denoted the Zero-Velocity Curve (ZVC). As previously mentioned, the libration

points emerge at different energy levels according to the pseudo-potential Ω∗S and the

spacecraft velocity. Table 2.4 lists approximate Jacobi constant values where each of

the libration points Li emerge for different systems.

Table 2.4.
Libration Point Jacobi Constants for Different Systems

System L1 (nd) L2 (nd) L3 (nd) L4 (nd) L5 (nd)

Earth-Moon 3.1883 3.1722 3.0122 2.9880 2.9880

Sun-Earth 3.0422 3.0403 3.0002 2.9998 2.9998

Figure 2.8 plots sample ZVS and ZVC for the Earth-Moon system at a Jacobi constant

value such that
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JL2 > J > JL3

In this example, it is observed that the set Jacobi constant value for the spacecraft

at J = 3.05 is sufficiently low enough such that L1 and L2 are accessible in cislunar

space. The boundaries of the accessible regions available to the spacecraft appear in

purple whereas the white spaces contain the forbidden regions. At this energy level,

the spacecraft possibly escapes the Earth-Moon system although it is impossible to

predict when or if this occurs. Nevertheless, at this Jacobi constant value, these

surfaces provide some insight regarding the dynamical flow in the system by extracting

the forbidden regions as the space bound by the ZVC in two-dimensional space and

the ZVS in three-dimensional space.

Fig. 2.8. ZVS boundaries (purple) and ZVC (black) case in the Earth-Moon system
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Consequently, the ZVCs for six different Jacobi constants are plotted in Figure 2.9,

where each case accesses more of the space until no forbidden region remain.

Fig. 2.9. Zero-Velocity Curves Progression for the Earth-Moon System

The ZVCs are obtained by taking a slice of the ZVS at z = 0 for different energy levels.

At the highest level of the Jacobi constant value (top-left of Figure 2.9), two regions

emerge around the primaries, an interior region around the Earth and an exterior

region around the Moon, yet they do not connect. An increase in spacecraft energy,

synonymous with a decrease in Jacobi constant value, opens a pathway at L1 (top-

middle of Figure 2.9) connecting the two regions around the primaries. As the Jacobi

constant value decreases further such that J < JL2 , a second pathway emerges at L2

(top-right of Figure 2.9) offering a possible escape path from the system. For this

reason, Szebehely [18] concludes that is easier to leave the Earth-Moon system through

passage by the Moon or the Sun-Earth system by the Earth. Further decreases in
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the Jacobi constant value allows passage to L3 (bottom-left of Figure 2.9) and the

L4, L5 points (bottom-middle of Figure 2.9) until the forbidden regions bounded by

the ZVCs in the x̂s−ŷs plane disappear rendering the entire space accessible (bottom-

right of Figure 2.9). It is worth noting that although the ZVCs in the x̂s − ŷs plane

disappear, there still remain inaccessible regions in the three-dimensional space above

and below the plan of the primaries.

2.3.5 Symmetry

Producing solutions of interest in the CR3BP, including periodic orbits, are en-

abled by exploiting a useful symmetry property admitted by the equations of mo-

tion. Suppose a set of coordinates (xα, yα, zα) are defined such that xα(τα) = x(τ),

yα(τα) = −y(τ), and zα(τα) = z(τ). The time variable τα is defined such that

d

dτα
= − d

dτ
d2

dτα2
= − d2

dτ 2

Thus, it is apparent that the new set of coordinates mirrors the formulated set (x, y,

z) across the x̂s − ẑs plane in reverse time. Substituting the new coordinate set into

Equation (2.97) - (2.99) yields

d2xα

dτα2
+ 2

dyα

dτα
=
∂Ω∗S
∂xα

(2.113)

d2yα

dτα2
− 2

dxα

dτα
=
∂Ω∗S
∂yα

(2.114)

d2zα

dτα2
=
∂Ω∗S
∂zα

(2.115)

Equations (2.113) - (2.115) admit a structure exact to Equations (2.97) - (2.99); there-

fore, any solution obtained in the CR3BP also admits a solution mirrored across the

x̂s−ẑs plane. Roy et al. [25] summarizes this result by postulating the mirror theorem.
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Theorem 2.1.1 (Mirror Theorem): If n point masses are acted upon by their

mutual gravitational forces only, and at a certain epoch each radius vector from the

center of mass of the system is perpendicular to every velocity vector, then the orbit

of each mass after that epoch is a mirror image of its orbit prior to that epoch.

The mirror theorem will be employed in section 2.4.1 to obtain periodic solutions in

the CR3BP by targeting perpendicular crossings along the x̂s − ẑs plane.

2.4 Differential Corrections

The CR3BP problem does not admit an analytical, closed-form solution. As a

result, numerical techniques , e.g., differential corrections and shooting algorithms,

are employed to facilitate the computation of solutions. As a dynamical system, the

CR3BP is chaotic meaning that any slight variations in the initial state result in larger

variations downstream. In this section, corrections strategies based on multi-variable

Newton methods are addressed and applied to a boundary value problem subject to

a given set of constraints.

2.4.1 State Transition Matrix

Any application of differential corrections requires an assessment of the sensitivi-

ties of the variables. A key element in such a process is to relate variations in the initial

state x(τ0) to variations downstream at x(τ,x(τ0)). The system equations of motion

are of the form x′(τ) = f(τ,x(τ),β) where the state vector is x(τ) = [x(τ) y(τ) z(τ)

x′(τ) y′(τ) z′(τ)]T and β represents a vector of parameters and constants pertain-

ing to the system of interest. Although not exclusive to any particular coordinate

frame representation, the following analysis assumes that variables and derivatives are

taken with respect to Frame S. Thus, the state vector contains position and velocity

coordinates relative to the system barycenter B. If the equations in Frame M are

employed for the analysis, the state vector includes position and velocity information
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for position vectors originating relative to the second primary m2. In either case, the

vector variation relative to some reference trajectory is defined as

δx(τ) = x(τ)− x∗(τ) (2.116)

where x∗(τ) indicates the state pertaining to the reference trajectory at time τ and

x(τ) represents the state on a path in close proximity to the reference solution. Em-

ploying a first-order Taylor expansion relative to the reference trajectory, the linear

variational equations of motion are written as

δx′(τ) =
∂f(τ,x(τ), β)

∂x(τ)
δx(τ) = A(τ)δx(τ) (2.117)

where A(τ) is termed the Jacobian matrix comprised of the associated partials per-

taining to the equations of motion evaluated on the reference trajectory. Equation

(2.117) admits a linear solution in the form of a matrix derivative relating variations

between variables from the initial to final state. Mathematically, the linear solution

is expressed as

δx(τ) =

(
∂x(τ)

∂x(τ0)

)
δx(τ0) (2.118)

To determine the components of the matrix derivative, a first-order differential equa-

tion is formulated such that

d

dτ

(
∂x(τ)

∂x(τ0)

)
=

d

dx(τ0)

(
∂x(τ)

∂τ

)
=

d

dx(τ0)
x′(τ) (2.119)

Since x(τ0) and τ are independent, they may be interchanged in Equation (2.119).

Consequently, the chain rule is employed to produce

d

dτ

(
∂x(τ)

∂x(τ0)

)
=

d

dx(τ0)
x′(τ) =

∂f(τ,x(τ), β)

∂x(τ)

∂x(τ)

∂x(τ0)
= A(τ)

∂x(τ)

∂x(τ0)
(2.120)
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The state transition matrix (STM) Φ is defined as the derivative matrix relating

initial variations in the state to those downstream, that is

Φ(τ, τ0) =
∂x(τ)

∂x(τ0)
=



∂x
∂x0

∂x
∂y0

∂x
∂z0

∂x
∂x′0

∂x
∂y′0

∂x
∂z′0

∂y
∂x0

∂y
∂y0

∂y
∂z0

∂y
∂x′0

∂y
∂y′0

∂y
∂z′0

∂z
∂x0

∂z
∂y0

∂z
∂z0

∂z
∂x′0

∂z
∂y′0

∂z
∂z′0

∂x′

∂x0
∂x′

∂y0
∂x′

∂z0
∂x′

∂x′0

∂x′

∂y′0

∂x′

∂z′0
∂y′

∂x0

∂y′

∂y0

∂y′

∂z0

∂y′

∂x′0

∂y′

∂y′0

∂y′

∂z′0

∂z′

∂x0
∂z′

∂y0
∂z′

∂z0
∂z′

∂x′0

∂z′

∂y′0

∂z′

∂z′0


=



φ11 φ12 φ13 φ14 φ15 φ16

φ21 φ22 φ23 φ24 φ25 φ26

φ31 φ32 φ33 φ34 φ35 φ36

φ41 φ42 φ43 φ44 φ45 φ46

φ51 φ52 φ53 φ54 φ55 φ56

φ61 φ62 φ63 φ64 φ65 φ66


(2.121)

Moreover, the first-order matrix differential equation governing the STM over time is

written as

Φ′(τ, τ0) = A(τ)Φ(τ, τ0) (2.122)

It is apparent from Equation (2.122) that the initial value of Φ at τ0 is the iden-

tity matrix I6×6. The individual elements of the STM are derived from the linear

variational equations of motion with respect to a baseline or reference solution. The

differential equations governing the behavior of these variations follow as

δx′′ − 2δy′ = Ω∗S,xxδx+ Ω∗S,xyδy + Ω∗S,xzδz (2.123)

δy′′ + 2δx′ = Ω∗S,yxδx+ Ω∗S,yyδy + Ω∗S,yzδz (2.124)

δz′′ = Ω∗S,zxδx+ Ω∗S,zyδy + Ω∗S,zzδz (2.125)

The above equations then form the system matrix A(τ) as

A(τ) =



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

Ω∗S,xx Ω∗S,xy Ω∗S,xz 0 2 0

Ω∗S,yx Ω∗S,yy Ω∗S,yz −2 0 0

Ω∗S,zx Ω∗S,zy Ω∗S,zz 0 0 0


(2.126)
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The scalar partial derivatives in A(τ) are evaluated as

Ω∗S,xx =
∂Ω∗S
∂x∂x

= 1− 1− µ
r3

1

− µ

r3
2

+
3(1− µ)(x+ µ)2

r5
1

+
3µ(x− 1 + µ)2

r5
2

(2.127)

Ω∗S,yy =
∂Ω∗S
∂y∂y

= 1− 1− µ
r3

1

− µ

r3
2

+
3(1− µ)y2

r5
1

+
3µy2

r5
2

(2.128)

Ω∗S,zz =
∂Ω∗S
∂z∂z

= 1− 1− µ
r3

1

− µ

r3
2

+
3(1− µ)z2

r5
1

+
3µz2

r5
2

(2.129)

Ω∗S,xy = Ω∗S,yx =
∂Ω∗S
∂x∂y

=
3(1− µ)(x+ µ)y

r5
1

+
3µ(x− 1 + µ)y

r5
2

(2.130)

Ω∗S,xz = Ω∗S,zx =
∂Ω∗S
∂x∂z

=
3(1− µ)(x+ µ)z

r5
1

+
3µ(x− 1 + µ)z

r5
2

(2.131)

Ω∗S,yz = Ω∗S,zy =
∂Ω∗S
∂y∂z

=
3(1− µ)yz

r5
1

+
3µyz

r5
2

(2.132)

where r1 and r2 denote the magnitudes of the nondimensional position vectors as

measured in frame S from primaries m1 and m2, respectively.

2.4.2 Monodromy Matrix

If the STM is evaluated over precisely one orbital period and is observed as a fixed

point on a stroboscopic map, the STM is labelled the monodromy matrix denoted as

Φ(t0 + P, t0). The monodromy matrix M possesses the following properties:

1. It possesses eigenvalues that emerge in reciprocal pairs

2. The determinate of M → det Φ(t0 + P, t0) is equal to unity

3. M is symplectic

Many applications in the CR3BP involve the momodromy matrix M , one of which

includes the assessment of orbital stability in a linear sense. Since it contains discrete-

time information, the M stability boundary is the unit circle and the eigenvalues λi,

provide information regarding the stability of the reference solution. A summary

of the eigenvalues and their classifications in a linear and a nonlinear context is

summarized in Table 2.5.



37

Table 2.5.
Monodromy Matrix Eigenvalue Decomposition & Stability Characteristics

Eigenvalue Conditions Linear Stability Assessment Nonlinear Stability Result

All λi < 0 Asymptotically Stable Asymptotically Stable

One λi > 0 Unstable Unstable

All λi = 1 Marginally Stable Unknown

Periodic orbits that exist in the CR3BP possess two eigenvalues equal to unity indi-

cating (i) the orbit periodicity and (ii) the orbit membership as part of a collective

family of solutions with similar characteristics. As periodic orbits are computed along

a family, changes in stability occur as determined by eigenvalues that may indicate

the presence of a bifurcation to a new family of solutions. A more detailed analysis

regarding bifurcations in the CR3BP is given by Zimovan et al. [26] and Bosanac

[27].

2.4.3 Shooting Algorithms

Differential corrections techniques are an invaluable tool for multi-body trajectory

design. In particular, they are used to vary design variables to construct specified

orbit geometries subject to a set of constraints. Consider the design variable vector

X defined as

X =


X1

X2

...

Xn

 (2.133)

In this formulation, there are n design variables in vector X that includes variables

representing, e.g., state elements and times of flight. The design variables are iterated

subject to a set of m constraints contained in the constraint vector F(X) or
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F(X) =


F1(X)

F2(X)
...

Fm(X)

 = 0 (2.134)

Constraints are parameterized using e.g., position, velocity, and TOF elements and

there exist numerous ways to formulate a wide variety of possible conditions depending

on the application. The objective is to formulate an iteration process to a design state

vector X∗ such that F(X∗) = 0 or, more accurately, until all specified constraints meet

a numerical tolerance. If the initial guess vector is denoted as X0, the constraint vector

is expanded using a Taylor series about the initial guess such that

F(X) = F(X0) +
∂F(X0)

∂X0
(X−X0) + · · · (2.135)

where ∂F(X0)
∂X0 orDF(X0) is defined as the Jacobian matrix withm rows and n columns.

The elements of the Jacobian matrix comprise of the partial derivatives of the con-

straints with respect to the design variables. If Equation (2.135) is retained to only

first order, then the equation simplifies to

0 = F(X) = F(X0) +DF(X0)(X−X0) (2.136)

Equation (2.136) is rewritten using the iterative update form such that

0 = F(Xj) +DF(Xj)(Xj+1 −Xj) (2.137)

where Xj indicates the current iteration of the design variable vector along with the

corresponding value of F(Xj). Likewise, Xj+1 refers to the next iteration of the design

variable vector. The iteration process continues until Xj+1 produces F(Xj+1) =

F(X∗) = 0 or within some specified numerical tolerance. In this investigation, the

numerical tolerance for the condition on the constraint vector follows as ||F(Xj+1|| <
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10−12 where the norm employed is the L2 norm or square root of the sum of the squares

of the elements also known as the Euclidean norm. Note that the state variables in

this formulation are nondimensional. Equation (2.137) is rearranged to solve for the

design vector Xj+1 to obtain

Xj+1 = Xj −DF(Xj)−1F(Xj) (2.138)

Equation (2.138) operates under the assumption that DF(Xj) is invertible, thus, pro-

viding an exact solution to the update design variable vector. Consequently, DF(Xj)

is invertible if and only if m constraints equal n free variables resulting in a square

Jacobian matrix. If there are more design variables than constraints (that is n > m),

the update equation admits an infinite number of solutions. Typically, the minimum

norm solution is sometimes employed as it seeks the solution Xj+1 that is closest

to the initial guess Xj. As a result, the final solution X∗ is as close as possible to

X0 and, thus, retains similar characteristics as the initial design variable vector. If

DF(Xj) is not square, Equation (2.138) is modified to solve for the minimum norm

solution by

Xj+1 = Xj −DF(Xj)T (DF(Xj)DF(Xj)T )−1F(Xj) (2.139)

Both forms of the update equation from Equations (2.138) and (2.139) depend on

the formulation of the design and constraint vectors. The onus is on the designer to

select the free variables and constraint conditions for the application considered.

Single Shooting Algorithms

The simplest targeting scheme using differential corrections employs the single

shooter method to obtain a solution to the two-point boundary value problem. Let

the initial state be represented as
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x(τ0) = [x(τ0) y(τ0) z(τ0) x′(τ0) y′(τ0) z′(τ0)] (2.140)

where the coordinates comprising the vector are measured in Frame S. Using the

initial state, the equations of motion x′(τ) = f(τ,x(τ), β) are propagated to some

later time τ0 + T where the final state of the spacecraft is defined as x(τ0 + T ). To

obtain an initial state such that the final state arrives at a desired position xd, the

update equations in Equations (2.138) or (2.139) are applied and iterated until the

condition on the constraint vector F(X) = 0 is met. As an example, let the design

vector be expressed as

X =


x′(τ0)

y′(τ0)

z′(τ0)

T

 (2.141)

where x′(τ0), y′(τ0), z′(τ0) are the initial velocities of the spacecraft and T refers to

the integration time. Likewise, the constraint vector F(X) is formulated such that

F(X) =


x(τ0 + T )− xd
y(τ0 + T )− yd
z(τ0 + T )− zd

 (2.142)

indicating that the only constraints are subjected to the spacecraft’s final position.

Consequently, the Jacobian matrix is computed using the partials of the constraint

variables with respect to the initial states as

DF(X) =


∂x(τ0+T )
∂x′(τ0)

∂x(τ0+T )
∂y′(τ0)

∂x(τ0+T )
∂z′(τ0)

∂x(τ0+T )
∂T

∂y(τ0+T )
∂x′(τ0)

∂y(τ0+T )
∂y′(τ0)

∂y(τ0+T )
∂z′(τ0)

∂y(τ0+T )
∂T

∂z(τ0+T )
∂x′(τ0)

∂z(τ0+T )
∂y′(τ0)

∂z(τ0+T )
∂z′(τ0)

∂z(τ0+T )
∂T

 =


φ14 φ15 φ16 x′(τ0 + T )

φ24 φ25 φ26 y′(τ0 + T )

φ34 φ35 φ36 z′(τ0 + T )


(2.143)
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where the elements φmn are defined from Equation (2.121). Figure 2.10 depicts a single

shooting technique for a case that allows only the initial velocities to vary in order to

reach the desired state in position. Since this example employs the integration time

T as a design variable, the algorithm uses a single shooter variable-time targeter to

arrive at an initial state to satisfy F(X) = 0. As a result, the minimum norm solution

of the update equation is employed since the number of constraints is less than the

number of design variables (m < n). If a fixed-time targeter is used instead, the

number of elements in the design vector X is identical to the constraint vector F(X),

thus, an exact solution to the update equation exists. In this investigation, variable-

time targeters are employed to compute periodic orbits in the CR3BP; fixed-time

targeters are applied to rendezvous scenarios that are subject to a TOF constraint.

Fig. 2.10. Single Shooting Algorithm Diagram

Multiple Shooting Algorithms

When trajectory design problems incorporate nonlinear dynamics (i.e., paths

passing near primaries) or lengthy integration times, a multiple-segment corrections

scheme is better equipped to produce a solution. This multiple shooting technique is

an extension to the single shooting method as it concurrently solves several two-point

boundary value problems subject to sets of constraints. As an example, a trajectory

is discretized into n patchpoints with n − 1 segments between them as depicted in
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Figure 2.11. In this scenario, x0
p for p = 1, ..., n constitute each of the six-dimensional

initial state vectors associated with the patchpoints as discretized from some trajec-

tory. Likewise, in a general sense, xfp(Tp, Ep) for p = 1, ..., n−1 denote the final states

at each of the patchpoints after some propagation time Ts and at the epoch time Es.

The epoch time is required for ephemeris models since they are time-dependent sys-

tems; however, the CR3BP does not require epochs since the equations of motion are

autonomous.

Fig. 2.11. Multiple Shooting Algorithm Diagram

In a multi-segment corrections scheme, the initial discretized segments along the tra-

jectory are not continuous, thus, the constraint vector F(X) enforces state continuity

conditions such that

xfp−1(Tp−1, Ep−1)− x0
p = 0 (2.144)

Equation (2.144) mandates that positions, velocities, and epoch times between patch-

points are continuous as depicted in Figure 2.12.
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Fig. 2.12. Corrected Multiple Shooting Algorithm Diagram
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Several different variations of the continuity constraints are implemented depend-

ing on the application. For example, for multiple impulsive thrust firings at patch-

points, velocities may vary as long as position continuiuty is met as illustrated in

Figure 2.13. Ultimately, this information is reflected in the constraint vector F(X).

Consider the design vector X for a multiple-shooting algorithm scheme to be defined

X =



x0
1

...

x0
n

T1

...

Tn−1

E1

...

En



(2.145)

where the elements in X denote the position and velocities for each patch point

x0
1, ...,x

0
n, the length of integration along each segment between patchpoints T1, ..., Tn−1,

and the epoch times at each patchpoint E1, ..., En. To enforce position and velocity

continuity between patchpoints, the constraint vector F(X) is formulated as

F(X) =



xf1(T1, E1)− x0
2

...

xfn−1(Tn−1, En−1)− x0
n

E1 + T1 − E2

...

En−1 + Tn−1 − En


(2.146)

Consequently, the Jacobian matrix DF(X) is evaluated as
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DF(X) =



∂xf
1

∂x0
1
−∂x0

2

∂x0
2

∂xf
1

∂T1

∂xf
1

∂E1

. . . . . . . . . . . .

∂xf
n−1

∂x0
n−1

−∂x0
n

∂x0
n

∂xf
n−1

∂Tn−1

∂xf
n−1

∂En−1

∂T1
∂T1

∂E1

∂E1
−∂E2

∂E2

. . . . . . . . .

∂Tn−1

∂Tn−1

∂En−1

∂En−1
−∂En

∂En


(2.147)

Abbreviated notation and the computation of partials simplify the elements of the

Jacobian matrix by arranging the matrix elements as

DF(X) =



Φ1 −I6×6 x′f1
∂xf

1

∂E1

. . . . . . . . . . . .

Φn−1 −I6×6 x′fn−1

∂xf
n−1

∂En−1

1 1 −1
. . . . . . . . .

1 1 −1


(2.148)

where Φs for s = 1, ..., n−1 denotes the state transition for each segment, x′fs for s =

1, ..., n−1 are the derivatives of the design variables with respect to Ts, and ∂xf
s

∂Es
for s =

1, .., n − 1 pertain to the partial derivatives of the design variables with respect to

epoch time Es. In the CR3BP, epoch variables are not applicable and, thus, are

omitted from the formulation of the design and constraint vectors. Moreover, the

sample case incoprates variation in Ts during the iteration process, yet a fixed-time

targeter eliminates the inclusion of time variables Ts in the formulation of the design

variable vector.
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Fig. 2.13. Multiple Thrust Firing Schematic

Periodic Orbit Computation Strategies

In space missions, periodic orbits are particular useful for designers since they

provide predictable and bounded behavior. In the CR3BP, periodic motion exists

around the two primaries and close to the libration points. As it turns out, similar

repeating behavior is also computed in a high-fidelity ephemeris model that is not

exactly periodic but adequate enough for certain applications. In these cases, peri-

odic orbits computed in the CR3BP are quasiperiodic in the higher fidelity ephemeris

model since the dynamics are time-variant.

There are many types of periodic orbits that exist in the CR3BP. The most

straightforward orbits to compute include those that are symmetric across the xs−zs

plane, which employ the mirror condition to target perpendicular crossings. Numer-

ical corrections schemes are employed to obtain periodic solutions using an initial

guess which can be drawn from a variety of different sources. For example, the linear

variational equations of motion for the CR3BP is applied to approximate periodic

motion in the vicinity of libration points. Moreover, two-body Keplerian motion pro-

vides reasonable approximations for periodic orbits close to each of the primaries.

Additionally, previously converged periodic solutions provide initial guesses for orbits

nearby and are used to construct continuation schemes to obtain similar orbits in a

family. Consider an example to find symmetric orbits across the xs − zs plane. An
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initial state is selected such that y0 = 0 and x′0 = z′0 = 0 to initialize a perpendicular

crossing. Consequently, the initial state vector is defined as

x0 = [x0 0 z0 0 ẏ0 0]T (2.149)

The design vector X includes the free variables from the initial state which ultimately

vary with iterations of the update equations. Thus,

X =


x0

z0

y′0

T

 (2.150)

where the integration time T is included to implement a variable-time single shooter.

Any omission of the initial state vector variables in the design variable vector forces

those missing quantities to stay constant throughout the iteration process. The con-

straint vector F(X) contains those variables which are targeted to produce a perpen-

dicular crossing on the xs − zs plane. Thus, the variables selected to be zero in the

initial state vector must also equate to zero at the crossing. The constraint vector is

thus formulated as

F(X) =


y(T )

x′(T )

z′(T )

 = 0 (2.151)

It follows then that the Jacobian matrix DF(X) is defined as

DF(X) =


φ21 φ23 φ25 y′(T )

φ41 φ43 φ45 x′′(T )

φ61 φ63 φ65 z′′(T )

 (2.152)

where φij are the elements of the STM and the last column are the variable rates

evaluated at final time T . Since the number of constraints is less than the number of
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design variables, a minimum norm solution is employed to iterate on the initial guess

until constraints are met within a numerical tolerance (10e− 12). The resulting solu-

tion will be a half revolution along a periodic orbit both originating and terminating

along the xs − zs plane. Once the half periodic solution is computed, the resulting

state X∗ can be integrated for 2T to yield the full periodic orbit. This same pro-

cess can be modified to obtain planar periodic orbits by setting z0 = 0 in the design

variable vector and constraint vector. Thus,

X =


x0

y′0

T

 (2.153)

and the constraint vector follows as

F(X) =

y(T )

x′(T )

 = 0 (2.154)

As a result, the Jacobian matrix is then expressed as

DF(X) =

φ21 φ25 y′(T )

φ41 φ45 x′′(T )

 (2.155)

With an accurate initial guess, the correcter converges at a solution satisfing the per-

pendicular crossing constraint along the x̂s − ẑs plane. Figure 2.14 demonstrates the

progression from an initial state to a final half-periodic orbit employing the perpen-

dicular crossing constraint.
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Fig. 2.14. Planar Periodic Orbit Computation

2.4.4 Periodic Family Continuation Techniques

Once a periodic orbit is computed, a continuation scheme is devised to obtain

other periodic orbits in close proximity to the previously converged solution. A group

of related periodic solutions is called a family and they deliver insight into the dy-

namical characteristics pertaining to a particular space. Families are also used in

trajectory design since each family contains periodic orbits with similar characteris-

tics. Assuming a converged solution exists, there are a number of ways to continue

solutions to obtain other periodic orbits in the family.



50

Natural Parameter Continuation

The first method to continue a converged solution is natural parameter continua-

tion (NPC). Once a solution satisfying a set of constraints is produced, one or more

parameters of the final state is varied by a small amount and reconverged using the

same numerical corrections process. The parameter with which the solution is per-

turbed can pertain to one of the state variables or other values like propagation time

T or Jacobi constant J . In any case, the new perturbed state does not automatically

meet the specified constraints and, thus, requires a corrections process to satisfy them

within a set numerical tolerance. As an example, a methodology to implement NPC

to continue a planar family of periodic orbits is outlined below.

1. First, assuming a solution exists, a converged state satisfying all constraints is

obtained with the conditions

x∗0,j =
[
x0,j 0 0 0 y′0,j 0

]T
where the quantity above refers to the corrected initial state which produces

the periodic orbit with period Pj.

2. Next, the previously converged state is incremented by a small quantity ε so

that the new state vector is expressed as

x0,j+1 =
[
x0,j + ε 0 0 0 y′0,j 0

]T
A typical value for ε in the Earth-Moon System is around 20-40 km if position

is the incremented variable. The TOF for the new perturbed state is still Pj,

but a variable-time shooter is employed to solve for the new period value.

3. The initial state x0,j+1 provides an initial guess for the differential corrections

procedure which converges to x∗0,j+1 with period Pj+1, a periodic solution near

x∗0,j. Note that x∗0,j+1 = x∗0,j if the x state is allowed to vary in the design

vector formulation. By omitting this state variable in the corrections scheme,

the targeter is forced to find a solution with x0,j + ε as the initial x state.
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4. The process is repeated until the family is computed.

Although intuitive and relatively straightforward to implement, NPC fails when the

geometry of the family is not known apriori. Moreover, difficulties emerge as the

obtained solutions increase in sensitivity. An adaptive step size ε is used to mitigate

the effects of sensitivities near regions of nonlinear dynamics, however, some intuition

is required to implement it as part of a numerical corrections scheme. Nevertheless,

NPC is useful for certain applications like continuing both periodic and non-periodic

trajectories, however, alternative continuation schemes are used to supplement short-

comings in its process.

Pseudo-Arclength Continuation

An alternative continuation scheme called pseudo-arclength continuation (PAC)

differs from NPC in the selection of the increment quantity used to advance to the

next member of the orbit family. This increment, ∆s, is in the direction tangent to the

family. In this continuation scheme, all free variables are updated simultaneously and

prior knowledge about the family evolution is not necessary. Although, PAC enables

a larger step size to be taken from the previously converged solution and is in general

more efficient at finding members of the same periodic family, the incremental variable

∆s is not an intuitive physical parameter. As a result, less insight is provided into

the relative differences between solutions. Consider a previously converged solution

denoted by design variable vector X∗j , thus F(X∗j) = 0. The initial guess for the next

member of the family that may not yet meet the constraints is denoted as X0
j+1. The

PAC scheme is outlined as follows:

1. Given X∗j , a unit vector is constructed from null vector ∆X∗j of the Jacobian

matrix DF(X∗j). The null vector is selected since adding a multiple of null space

vector to the first order update equation (F(X) = F(X0) +DF(X0)(X−X0))

does not change its solution.
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2. An additional constraint is added to F(Xj+1) to ensure that the next solution

Xj+1 is incremented by a small step ∆s along direction tangent to family. This

pseudo-arclength constraint is defined as

(Xj+1 −X∗j)
T∆X∗j −∆s = 0 (2.156)

The new constraint vector is then expressed as

G(Xj+1) =

 F(Xj+1)

(Xj+1 −X∗j)
T∆X∗j −∆s

 = 0 (2.157)

The derivative of the updated constraint vector, G(Xj+1), with respect to the

design variable vector Xj+1 produces an updated Jacobian matrix DG(Xj+1)

defined as

DG(Xj+1) =
∂G(Xj+1)

∂Xj+1

=

DF(Xj+1)

∆X∗Tj

 (2.158)

3. The new constraint vector G(Xj+1) and Jacobian matrixDG(Xj+1) are iterated

to yield a converged solution X∗j+1 which represents the next member in the orbit

family.

Both NPC and PAC can be utilized in a continuation scheme to obtain a variety of

orbit families in the CR3BP. In this investigation, a natural parameter continuation

is utilized to obtain the first member of an orbit family and PAC is employed to

compute the remaining orbits in the family.

2.4.5 Periodic Orbit Families

In this investigation, a number of periodic orbit families are computed and con-

tinued in the CR3BP. Single-shooter differential correction schemes are used to target

either perpendicular crossings or periodicity. Once a member in a family is converged,

pseudo-arclength continuation is employed to produce the family of periodic orbits.
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All the orbits formulated in the CR3BP considered in this investigation are symmet-

rical across x̂s− ẑs plane. Each periodic orbit family is introduced and plotted in two

different views, (i) to represent each member of of the family and (ii) to parameterize

the members of the family by Jacobi constant value.

Lyapunov Families

The Lyapunov orbits are two-dimensional families that originate from each of

the collinear libration points: L1, L2, and L3. At first, the first-order linear varia-

tional equations for the CR3BP are used to approximate periodic motion around the

libration points and a single-shooter corrections scheme is employed to produce tra-

jectories with perpendicular crossings. The L1 Lyapunov family is plotted in Figure

2.15. The left plot in Figure 2.15 illustrates each member in the L1 Lyapunov family

and the right plot identifies each of the orbits’ associated Jacobi constant value. An

assessment of the linear stability of each of the orbit members indicates that that

there are two bifurcations that exist in L1 Lyapunov family, (i) one to the L1 Halo

family and (ii) one to the L1 Axial family.

Fig. 2.15. L1 Lyapunovs in Earth-Moon System
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An identical procedure is employed to compute the L2 Lyapunov and the L3 Lyapunov

families as plotted in Figure 2.16 and 2.17, respectively. Similar to the L1 Lyapunovs,

the L2 Lyapunovs bifurcate to the L2 Halos and L2 Axials whereas the L3 Lyapunovs

bifurcate to the L3 Halos and L3 Axials, respectively.

Fig. 2.16. L2 Lyapunovs in Earth-Moon System

Fig. 2.17. L3 Lyapunovs in Earth-Moon System
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Halo Families

The Halo families are three-dimensional periodic orbits that also originate from

the collinear libration points. Consider the L1 Halo family as plotted in Figure 2.18.

The orbits are symmetrical across the x̂s − ẑs plane and originate from an L1 Lya-

punov. To compute the initial members of the L1 Halo family, a natural parameter

continuation scheme is applied to a L1 Lyapunov orbit that undergoes a stability

change (as indicated by the monodromy matrix for that particular orbit) by subse-

quently perturbing the state in either the +z or −z direction. The new perturbed

state is then corrected to yield a perpendicular crossing along the x̂s − ẑs plane.

A pseudo-arclength continuation scheme is implemented to compute the remaining

members of the orbit family. The orbits that possess apolune points above the plane

of the primaries comprise the L1 Northern Halo Family whereas those orbits that have

apolune points below are part of the L1 Southern Halo Family as presented in the

top and bottom parts of Figure 2.18, respectively. A similar procedure is employed to

obtain the L2 Halo Families and the L3 Halo Families, along with their corresponding

Northern and Southern divisions, in Figures 2.19 and 2.21, respectively.

Consider the L2 Southern Halo Family. Let the stability index for each orbit be

defined as

ζi =
Re(lnλi)

P
(2.159)

where the real part of the natural log of each eigenvalue λi is divided by the period of

the corresponding orbit P . According to Boudad et al. [29], there are multiple ways to

define the stability index, however, Equation (2.159) detects stability changes across

a family of solutions and is not biased by orbital period. Moreover, the stability

bound is equal to zero, therefore if all six eigenvalues are equal to zero then the

corresponding orbit is stable in a linear sense. On the contrary, if at least one of

the eigenvalues is non-zero, the orbit is unstable. A plot of the stability index value

over perilune radius for each orbit is given in Figure 2.20. According to Zimovan et
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al. [8], a subset of special orbits within the L2 Southern Halo Family form the L2

Near Rectilinear Halo Orbits (NRHOs) defined as the halo orbits between the first

and third stability changes in the region of the smaller primary, as indicated in the

left plot of Figure 2.20. These NRHOs are characterized by their extremely elongated

shape and close proximity to the Moon. Moreover, they possess desirable stability

properties and useful eclipse avoidance geometries in the Sun-Earth-Moon system.

In fact, the baseline orbit for Gateway, NASA’s proposed lunar outpost, is a specific

type of NRHO denoted as the 9:2 L2 Lunar Synodic Resonant NRHO. As the name

suggests, the 9:2 NRHO is resonant with the Lunar period completing nine orbits for

every two Lunar synodic revolutions around the Earth.

Fig. 2.18. L1 Northern (top) and Southern (bottom) Halo Families in
Earth-Moon System
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Fig. 2.19. L2 Northern (top) and Southern (bottom) Halo Families in
Earth-Moon System

Fig. 2.20. Stability index plot for Earth-Moon L2 Southern Halos
(left) and identification of NRHOs in purple (right)
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Fig. 2.21. L3 Northern (top) and Southern (bottom) Halo Families in
Earth-Moon System

Axial Families

The Axial Families are also another set of three-dimensional periodic orbits that

exists in the CR3BP. They originate from the collinear libration points and are ini-

tially computed by targeting a perpendicular crossing along the x̂s − ẑs plane. To

compute the first members of the L1 Axial Family, a L1 Lyapunov orbit selected as

the bifurcation orbit from the Halo to the Axial Family is slightly perturbed in the

ż direction. The perturbed state is targeted to obtain a perpendicular crossing and

the converged result is applied to a pseudo-arclength continuation scheme to generate

the other members of the family as plotted in Figure 2.22. A similar procedure is
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employed to compute the L2 and L3 Axial Families as shown in Figures 2.23 and 2.24,

respectively.

Fig. 2.22. L1 Axials in Earth-Moon System

Fig. 2.23. L2 Axials in Earth-Moon System
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Fig. 2.24. L3 Axials in Earth-Moon System

Vertical Families

The Vertical Families are three-dimensional periodic orbits characterized by a

substantial out-of-plane component of the motion in the CR3BP. The first member

of the L1 Vertical Family is initially computed by slightly perturbing the bifurcating

orbit from the L1 Axial to the L1 Vertical Family in the ż direction. The perturbed

state is corrected for a perpindicular crossing at the x̂s − ẑs plane and continued

using a pseudo-arclength continuation scheme as plotted in Figure 2.25. A similar

procedure is used to compute the L2 and L3 Vertical Families, as plotted in Figures

2.26 and 2.27, respectively.
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Fig. 2.25. L1 Verticals in Earth-Moon System

Fig. 2.26. L2 Verticals in Earth-Moon System
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Fig. 2.27. L3 Verticals in Earth-Moon System

DRO Family

The Distant Retrograde Orbit (DRO) Family are a set of planar periodic orbits

that originate from the smaller primary. In this investigation, two-body approxima-

tions for periodic motion around the Moon are utilized as initial guesses to target

perpendicular crossings along the x̂s − ẑs plane. The orbits are then continued using

a pseudo-arclength continuation method to obtain the remaining members of the fam-

ily as plotted in Figure 2.28. From an initial glance, it appears that Jacobi constant

decreases (and subsequently orbital period increases) as the perilune radius grows

for each member of the family. The DROs possess favorable stability properties and

a DRO with a periline of 72,000 km is selected to be one of the baseline orbits for

NASA’s proposed Artemis Missions.
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Fig. 2.28. DROs in Earth-Moon System

Northern L2 Butterfly Family

The L2 Butterfly Family is another example of a periodic orbit family that exists

in the CR3BP. These orbits are characterized by their unique wrapping shape around

the second primary. Similar to the NRHOs in the Earth-Moon system, the Butterfly

Family exhibit nearly-stable behavior and approach close to the lunar surface. They

are examined as potential orbits to provide low lunar orbit and surface access in Davis

et al. [30]. The Butterfly Family bifurcates off a L2 NRHO with a perilune radius of

approximately 1830 km. Since the type of bifurcation is classified as period doubling,

their periods are almost double that of the L2 NRHO where most of the time is spent

in the L2 lobe instead of the L1 lobe.
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Fig. 2.29. Northern L2 Butterfly Family in Earth-Moon System

2.5 Selection of Reference Orbits

In this investigation, three periodic orbits in the CR3BP for the Earth-Moon sys-

tem are selected as reference trajectories for analysis in the relative motion problem.

The first reference orbit is the 9:2 L2 NRHO. The 9:2 NRHO is lunar synodic resonant

such that for every two lunar synodic revolutions around the system barycenter, the

orbit correspondingly undergoes nine revolutions. The NRHO is very nearly stable in

a linear sense and thus it is identified as favorable for stationkeeping applications. The

period of the 9:2 NRHO is approximately 6.5 days with a perilune distance of about

3,250 km and an apolune radius of 71,000 km. Moreover, the orbit is selected as the

baseline trajectory for the Gateway platform. Figure 2.30 plots the L2 Southern Halo

Family and identifies the 9:2 NRHO within the family. The second reference orbit

is a small DRO with a close proximity to the Moon. The small DRO is intended to

represent orbits that possess a larger gravitational influence from the Moon and thus

appear more Keplerian in geometry. The corresponding small DRO considered in this

investigation has a period of about 21.5 hours with a perilune radius of about 8,860

km and an apolune distance of approximately 9,725 km. Figure 2.31 plots the DRO
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family in the Earth-Moon system and identifies the small DRO within the members

of the family. The third and final reference orbit incorporated in this investigation is

a large DRO with a period of about 14.2 days. The perilune distance for the large

DRO is about 71,690 km and the apolune radius is approximately 98,480 km. The

large DRO is intended to be flown during the Artemis I mission. Figure 2.32 plots

the DRO family and identifies the large DRO. The orbits used in this investigation

are selected to simulate possible flight trajectories for NASA’s Artemis and Gateway

missions.

Fig. 2.30. L2 Southern Halo Family with NRHOs in purple (left) and
9:2 NRHO (right)

Fig. 2.31. DRO Family (left) and a small DRO (right)
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Fig. 2.32. DRO Family (left) and a large DRO (right)

2.5.1 Transitioning Solutions from CR3BP to ER3BP

The reference orbits used in this investigation are selected from the CR3BP. In

mission design applications, it is beneficial to start with solutions from a simpler

model and transition the solutions to more complicated dynamical systems. The

employment of the ER3BP accounts for the Moon’s nonzero eccentricity and therefore

stipulates a changing distance between the two primaries over time. As a result,

reference trajectories obtained in the CR3BP are inadequate for implementation in

the ER3BP and, thus, require a corrections scheme to transition the solutions. A

multiple shooting algorithm is utilized to correct for continuity in both position and

velocity using a stacked revolutions approach. The steps for transitioning between

solutions in the CR3BP and ER3BP are outlined as follows:

1. A periodic orbit is identified in the CR3BP and discretized into a series of

n patchpoints with n − 1 segments between them. The patchpoints are then

reproduced for a number of orbital periods in a method called stacking revolu-

tions. For the 9:2 NRHO and the small DRO, one patchpoint per revolution

for 9 orbital periods is found to be an effective approach. For orbits with larger
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periods, including the large DRO, multiple patchpoints are selected along one

revolution to preserve the orbit geometry.

2. The patchpoints are transitioned into the ER3BP and propagated for approxi-

mately the same time between them in the CR3BP. In the initial transition, the

patchpoints and their corresponding segments are discontinuous in the ER3BP

since the Earth-Moon distance changes at every time step. A multiple shooting

scheme is devised to correct for position and velocity continuity between the

end of each segment and the following patchpoint.

3. A differential corrections scheme is implemented to update the positions and

velocities of each of the patchpoints until state continuity is achieved within a

set numerical tolerance.

In this investigation, the three reference orbits selected in the CR3BP, namely the 9:2

NRHO, the small DRO, and the large DRO, are transitioned into the ER3BP. Figure

2.33 plots the 9:2 NRHO in the CR3BP along with nine revolutions of its ER3BP

equivalent based on the results of the employed multiple shooting algorithm. Unlike

the CR3BP periodic orbit, the trajectory obtained in the ER3BP is not periodic.

Nevertheless, the orbit geometry is preserved in the transition given by 9:2 NRHO’s

elongated shape and and perilune and apolune locations. Since the converged orbit in

the ER3BP is not periodic, its constantly varying period is given by the time between

perilunes for each revolution. The plot of the NRHO in the ER3BP also includes the

range of locations for the L1 and L2 libration points which oscillate with the changing

distance between the Earth and the Moon. Likewise, a similar procedure is employed

for the small DRO in the CR3BP and its ER3BP result as plotted in Figure 2.34.

Once again, the ER3BP orbit is not periodic, however, the resulting solution retains

the geometry of the initial CR3BP reference solution. Finally, the large DRO is

transitioned into the ER3BP and plotted in Figure 2.35. Due to the longer period

of the large DRO, multiple patchpoints are discretized along a single revolution to

ensure that the shape of the DRO is preserved in the transition process. Although it
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is important to note that ER3BP resulting solutions are not identical to their CR3BP

counterparts, the motion obtained still captures the dynamical characteristics of each

of the selected reference orbits and provides a good baseline trajectory for the relative

motion analysis in this investigation.

Fig. 2.33. 9:2 NRHO in the CR3BP with the selected patchpoint (left)
and its ER3BP equivalent (right)

Fig. 2.34. The small DRO in the CR3BP with the selected patchpoint
(left) and its ER3BP equivalent (right)
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Fig. 2.35. The large DRO in the CR3BP with the selected patchpoints
(left) and its ER3BP equivalent (right)
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3. RELATIVE MOTION MODELS

The first step involved with relative motion analysis in any dynamical system is

the formulation of a relative motion model involving the motion of two or more

spacecraft. Usually, two spacecraft denoted as a target (or chief) and chaser (or

deputy) are identified to formulate the relative equations of motion. These models

must provide an accurate prediction of the chaser’s relative state from the perspective

of the target over time. Conventionally, relative motion models are expressed using

a rotating frame attached to a target spacecraft. This local frame is denoted as the

Local-Vertical-Local-Horizontal (LVLH) frame. One of the earliest relative motion

models to employ an LVLH frame are the Hill-Clohessy-Wiltshire (HCW) equations

developed in the 20th century [2]. These equations assume that the target orbit is

circular and the chaser’s orbit is near circular given that the initial relative position

between the spacecraft is small. The HCW model is based on two-body dynamics

and has proven to be effective for rendezvous in Low Earth Orbit. Extensions to the

HCW model have accounted for target orbits of arbitrary eccentricity including the

Yamanaka-Ankersen STM [3]. Moreover, other proposed models have incorporated J2

and atmospheric drag perturbations including the formuation presented in Kechichian

[31]. Xu and Wang [32] incorporate lunar perturbations in their relative motion model

for near Earth orbits. A comprehensive survey of available relative motion models

with a description of perturbations incorporated in each set of equations is provided

by Sullivan et al. [12]. Though some of the proposed relative models offer closed-

form descriptions of the relative dynamics, a vast majority of them are formulated

with the two-body assumption. The inclusion of other forces in these models is

usually accomplished with special and general perturbation techniques and only a

specific set of perturbations are considered. Nevertheless, there is limited work on

the formulation of relative models developed in the restricted three-body problem.
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Casotto [33] initially proposed a general set of equations to model relative dynamics

subject to arbitrary perturbations, however, his analysis still retains a Keplerian

description of the motion as an initial assumption. To that end, his work outlines a

method to solve for the time history of the LVLH frame’s motion under a general set

of perturbations by exploiting only kinematic relationships between the local frame

and the inertial frame. Franzini et al. [1] adopted Casotto’s technique to formulate

the nonlinear equations of relative motion from both the two-body and the restricted

three-body problems. Their analysis provides a general set of equations to obtain an

exact description of the relative dynamics under arbitrary orbital perturbations. This

investigation employs the formulation presented in Franzini et al. [1] and extends the

validation of the equations of motion for other target orbits of interest.

3.1 LVLH Frame Definition

The formulation of the equations of relative motion begin with a description of

the LVLH frame L. There are a variety of ways to define the local frame, yet the

definition used in this investigation is portrayed in Figure 3.1. Consider the following

formulation comprised of vectors denoting the target state about the central body.

î = ĵ× k̂ (3.1)

ĵ = −h

h
(3.2)

k̂ = −r

r
(3.3)

In this LVLH frame definition, r denotes the target position vector from the central

body, and h is the target specific angular momentum vector computed as h = r× v,

where v is the target velocity relative to the central body. The directions defined

in Equations (3.1)-(3.3) are sometimes referred to as V-BAR, H-BAR, and R-BAR,

respectively.
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Fig. 3.1. The LVLH frame attached to a target spacecraft with its
associated directions

3.2 Keplerian-Based Relative Motion

Assume the target, a passive spacecraft, and the chaser, a maneuverable space-

craft, orbit about a central body. The equations governing the motion of both space-

craft follow as

[r̈]
I

=
d2r

dt2
= − µ

r3
r + ηt (3.4)

[r̈c]
I

=
d2rc
dt2

= − µ
r3
c

rc + ηc + u (3.5)

where the brackets [r̈]
I

or d2r/dt2 denote the acceleration of the corresponding position

vector observed in the inertial frame I. The vector r corresponds to the position vector

from the central body to the target and rc denotes the position from the central body

to the chaser, respectively. Moreover, µ is the central body’s gravitational parameter.
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The quantities summed to the right of the acceleration terms in Equations (3.4) and

(3.5) are defined such that

• ηi = ηi,xî + ηi,y ĵ + ηi,zk̂ denote the components of other orbital perturbations

in the LVLH frame for the target as ηt and the chaser as ηc, respectively.

• u = uxî + uy ĵ + uzk̂ expresses the chaser’s control vector.

It is advantageous to formulate the equations of motion in the LVLH frame L so

that the relative dynamics can be characterized from the perspective of the target.

To that end, analytical descriptions for the angular velocity and acceleration vectors

of L with respect to the inertial frame are derived, as presented in Casotto [33] and

Franzini [1].

Exploiting purely kinematic relationships, an analytical description of the LVLH

frame L angular velocity with respect to the inertial frame I is obtained. It is assumed

that all quantities represented by dr
dt

are inertially-based derivatives, whereas quantites

denoted as ṙ are derivatives taken in the local frame L. The derivatives of the LVLH

frame unit vectors are taken as

d̂i

dt
= ωI/L × î (3.6)

dĵ

dt
= ωI/L × ĵ (3.7)

dk̂

dt
= ωI/L × k̂ (3.8)

where ωI/L denotes the angular velocity vector of the LVLH frame L with respect to

the inertial frame I. The following cross products between each of the unit vectors

and their corresponding time derivatives yield

î× d̂i

dt
= î× (ωI/L × î) = ωI/L − (ωI/L · î)̂i (3.9)

ĵ× dĵ

dt
= ĵ× (ωI/L × ĵ) = ωI/L − (ωI/L · ĵ)̂j (3.10)

k̂× dk̂

dt
= k̂× (ωI/L × k̂) = ωI/L − (ωI/L · k̂)k̂ (3.11)
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Summing up Equations (3.9) - (3.11) yields

ωI/L =
1

2

(
î× d̂i

dt
+ ĵ× dĵ

dt
+ k̂× dk̂

dt

)
(3.12)

First, the time derivative of the k̂ unit vector is given as

dk̂

dt
= −1

r
(v + ṙk̂) (3.13)

where v = ṙ + IωL× r. Noting that the position and velocity vectors in Frame L are

written as r = −rk̂ and ṙ = −ṙk̂, the following equation can be written as

ṙ = −ṙ · k̂

= −v · k̂ + (ωI/L × r) · k̂

= −v · k̂ + ωI/L · (r× k̂)

= −v · k̂ (3.14)

Substituting Equation (3.14) into (3.13) yields

dk̂

dt
= −1

r
((v · î)̂i + (v · ĵ)̂j)

= −1

r
(v · î)̂i (3.15)

Since the definition of the LVLH frame stipulates that the target velocity vector is

perpendicular to the specific angular momentum vector ĥ, it follows that v · ĵ = 0.

Similarly, the time derivative of the ĵ unit vector is written as
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dĵ

dt
= −1

h

(
dh

dt
+ ḣĵ

)

= −1

h

((
dh

dt
· î

)
î +

(
dh

dt
· k̂

)
k̂

)

= −1

h

((
r× d2r

dt2

)
· î

)
î

= −1

h

(
d2r

dt2
· (̂i× r)

)
î

= − r
h

(
d2r

dt2
· ĵ

)
î (3.16)

where the following relationships are employed to simplify to Equation (3.16):

ḣ =
dh

dt
− ωI/L × h = −ḣĵ =

(
dh

dt
· ĵ

)
ĵ (3.17)

dh

dt
· k̂ =

(
r× d2r

dt2

)
· k̂ =

d2r

dt2
· (r× k̂) = 0 (3.18)

Finally the time derivative of vector î is expressed as

d̂i

dt
=
dĵ

dt
× k̂ + ĵ× dk̂

dt
=
r

h

(
d2r

dt2
· ĵ

)
ĵ +

1

r
(v · î)k̂ (3.19)

Substituting Equations (3.15) - ( (3.19) into Equation (3.12) yields

ωI/L = ωy ĵ + ωzk̂ = −1

r
(v · î)̂j +

r

h

(
d2r

dt2
· ĵ

)
k̂ (3.20)

Equation (3.20) demonstrates that there is no component of the LVLH Frame L

angular velocity in the direction of î or V-BAR. This is due to the definition of the

LVLH frame as stipulated by the construction of its axes. Therefore, ωy is denoted

as the orbital rate while ωz is the steering rate of the orbital plane, as introduced



76

by Franzini et al. [1]. Futhermore, Equation (3.20) obtains an anaytical description

of the LVLH angular velocity vector through the projections of the target inertially-

based velocity and acceleration vectors along the LVLH axes. To further simplify the

expression in Equation (3.20), the following quantities are evaluated as

v · î =
1

hr
v · (h× r) =

1

hr
h · (r× v) =

h

r
(3.21)

d2r

dt2
· ĵ = ηt · ĵ = ηt,y (3.22)

where Equation (3.4) is employed in Equation (3.22). Finally, the substitution of

Equations (3.21) and (3.22) into Equation (3.20) yields

ωy = − h
r2

(3.23)

ωz =
r

h
ηt,y (3.24)

Next, a general expression for the LVLH angular acceleration Iω̇L is obtained by

direct derivation of Equation (3.20). First, the derivative of ωy is expressed as

ω̇y = −1

r

(
d2r

dt2
· î + v · d̂i

dt
− ṙ

r
v · î

)

= −1

r

(
d2r

dt2
· î + v · d̂i

dt
+ ṙωy

)
(3.25)

The term v · d̂i
dt

can be simplified by evaluating

v · d̂i
dt

= (ṙ + ωI/L × r) ·

(
r

h

(
d2r

dt2
· ĵ

)
ĵ +

1

r
(v · î)k̂

)
= (−ṙk̂− rωy î) · (ωz ĵ− ωy ĵ)

= ṙωy (3.26)

Substituting the term in Equation (3.26) into Equation (3.25) yields
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ω̇y = −1

r

(
d2r

dt2
· î + 2ṙωy

)
(3.27)

Likewise, the angular acceleration component along the k̂ direction is expressed

ω̇z =
r

h

(
ṙ

r

d2r

dt2
· ĵ +

d3r

dt3
· ĵ +

d2r

dt2
· dĵ
dt
− ḣ

h

d2r

dt2
· ĵ

)
(3.28)

Simplifying Equation 3.28 is accomplished by evaluating

d2r

dt2
· dĵ
dt

=

((
d2r

dt2
· î

)
î +

(
d2r

dt2
· ĵ

)
ĵ +

(
d2r

dt2
· k̂

)
k̂

)
·

(
− r

h

(
d2r

dt2
· ĵ

)
î

)

= − r
h

(
d2r

dt2
· î

)(
d2r

dt2
· ĵ

)
(3.29)

Therefore, Equation 3.28 is simplified to

ω̇z =
r

h

(
ṙ

r

d2r

dt2
· ĵ +

d3r

dt3
· ĵ− r

h

(
d2r

dt2
· î +

ḣ

r

)
d2r

dt2
· ĵ

)
(3.30)

By defining h = −hĵ and noting that

h = r× v

= −rk̂× (v̇ + ωI/L × r)

= −rk̂× (−ṙk̂− rωy î)

= r2ωy ĵ (3.31)

Direct differentiation of Equation (3.31) yields

ḣ = −2rṙωy − r2ω̇y = r
d2r

dt2
· î (3.32)
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which denotes the derivative of the target specific angular momentum in the LVLH

frame. Equation (3.30) is further simplified by substituting Equation (3.32) such that

ω̇z =
r

h

(
ṙ

r

d2r

dt2
· ĵ +

d3r

dt3
· ĵ− 2

r

h

(
d2r

dt2
· î

)(
d2r

dt2
· ĵ

))
(3.33)

The third derivative of the target position is denoted as the target jerk defined as

d3r

dt3
=

∂

∂t

(
d2r

dt2

)
+

∂

∂r

(
d2r

dt2

)
v +

∂

∂v

(
d2r

dt2

)
d2r

dt2
(3.34)

where the term ∂(d2r/dt2)/∂t accounts for the time variation in the gravitational and

perturbation parameters. Franzini [1] and Casotto [33] equate this term to zero since

the assumptions of a constant mass distribution and a conservative force field are

employed. Therefore Equation (3.33) simplifies as

ω̇z =
r

h

(
ṙ

r

d2r

dt2
· ĵ + ĵT

∂

∂r

(
d2r

dt2

)
v − 2

r

h

(
d2r

dt2
· î

)(
d2r

dt2
· ĵ

))
(3.35)

In this investigation, the gravitational parameter is assumed constant, yet the ex-

pressions of the angular velocity and acceleration vectors in the LVLH frame can

incorporate other perturbations as extensions of the two-body model. Perturbations

including solar radiation pressure, atomospheric drag, and linearized lunar pertur-

bation effects written as series expansions can be defined and incorporated into the

relative dynamical model.

3.2.1 Nonlinear Equations of Relative Motion

Using the geometry outlined in Figure 3.1, the relative dynamics are formulated

by defining
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ρ = x̂i + yĵ + zk̂ (3.36)

ρ̇ = ẋ̂i + ẏĵ + żk̂ (3.37)

(3.38)

where ρ and ρ̇ denote the relative position and velocity vectors of the chaser with

respect to the target, defined in the LVLH frame L. To specify the chaser’s position

with respect to the central body, the following vector is defined as

rc = r + ρ = x̂i + yĵ + (z − r)k̂ (3.39)

rc = ||rc|| =
√
x2 + y2 + (z − r)2 (3.40)

Using the transport theorem, the inertially-based velocity of the chaser in LVLH

coordinates is given as

vc =
drc
dt

=
dr

dt
+
dρ

dt
=
dr

dt
+ ρ̇+ ωI/L × ρ (3.41)

where it is repeated that any quantities expressed in the form dr
dt

are inertially-based

quantities whereas those quantities expressed with dot notation ρ̇ are derivatives

taken in the LVLH frame L. Taking the derivative of Equation (3.41) yields

d2rc
dt2

=
d2r

dt2
+ ρ̈+ 2ωI/L × ρ̇+ ω̇I/L × ρ+ ωI/L × (ωI/L × ρ) (3.42)

Substituting Equations (3.4) and (3.5) into Equation (3.42) yields

ρ̈+ 2ωI/L × ρ̇+ ω̇I/L × ρ+ ωI/L × (ωI/L × ρ) =
µ

r3
r− µ

r3
c

(r + ρ) + ∆η + u

(3.43)
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where ∆η denotes the differences between the perturbing accelerations of the target

and chaser such that

∆η = ηc − ηt = ∆ηxî + ∆ηy ĵ + ∆ηzk̂ (3.44)

and u is the chaser control vector expressed in the LVLH frame. Evaluating Equa-

tion (3.43) for each component in the LVLH directions results in three second-order

differential equations written as

ẍ =

(
ω2
y + ω2

z −
µ

r3
c

)
x+ ω̇zy − ω̇yz + 2ωzẏ − 2ωyż + ∆ηx + ux (3.45)

ÿ = −ω̇zx+

(
ω2
z −

µ

r3
c

)
y − ωyωzz − 2ωzẋ+ ∆ηy + uy (3.46)

z̈ = ω̇yx− ωyωzy +

(
ω2
y −

µ

r3
c

)
z + 2ωyẋ− µ

(
1

r2
− r

r3
c

)
+ ∆ηz + uz (3.47)

which are termed the nonlinear equations of relative motion for the two-body prob-

lem or 2B-NLERM. To implement Equations (3.45) - (3.47), the target spacecraft’s

time history must be computed in the LVLH frame L. The target velocity vector is

expressed as

v =
dr

dt
= ṙ + ωI/L × r = −rωy î− ṙk̂ (3.48)

Taking the time derivative of Equation (3.48) yields

dv

dt
= v̇ + ωI/L × v

= −(rω̇y + 2ṙωy )̂i− rωyωz ĵ + (rω2
y − r̈)k̂

= ηt,xî + ηt,y ĵ + (rω2
y − r̈ + ηt,z)k̂ (3.49)

Evaluating for the scalar value r̈ by equating the components along the k̂ direction

yields
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r̈ = − µ
r2

+ rω2
y − ηt,z (3.50)

which is integrated twice to obtain a time history for the target distance r and speed

ṙ, respectively. The nonlinear equations of relative motion for the two-body problem

(2B-NLERM) are fully described using 9 first order differential equations with the

full state vector defined as

Xstate =
[
x, y, z, ẋ, ẏ, ż, r, ṙ, h

]T
with each of the state vector’s derivatives expressed in analytical form. Differential

perturbing forces are expressed in the LVLH frame L and added to the accelerations

for the relative position vector ρ. For the rest of the investigation, the additional

perturbing forces are omitted from the analysis since they are not incorporated for

the applications demonstrated in this work. Nevertheless, the formulation presented

(based on the work in Franzini et al. [1]) allows for the inclusion of other perturbations

since the angular velocity and accelerations of the LVLH frame are written in general

form.

3.2.2 Linear Equations of Relative Motion

Simplifications to the 2B-NLERM are obtained by linearizing the gravitational

accelerations due to the Moon and the Earth. Assuming that there are no additional

perturbations, Equation (3.43) simplifies to

ρ̈+ 2ωI/L × ρ̇+ ω̇I/L × ρ+ ωI/L × (ωI/L × ρ) =
µ

r3
r− µ

r3
c

(r + ρ) + u (3.51)

Moreover, the angular velocity and acceleration vectors of LVLH frame L with respect

to the inertial frame I are expressed as
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ωL/I = − h
r2

ĵ = ḟ ĵ (3.52)

ω̇L/I = −2
ṙḟ

r
ĵ (3.53)

where ḟ is the target true anomaly rate. A Taylor expansion to the first order is

applied around the target position such that

µ

r3
c

rc ≈
µ

r3
r +

∂

∂r

[
µ

r3
r

]
(rc − r)

≈ µ

r3
r +

µ

r3

(
I− 3

rrT

r2

)
ρ (3.54)

where rc denotes the position vector of the chaser and ρ is the relative vector from

the target to the chaser. Substituting Equation (3.54) into (3.51) yields

ρ̈+ 2ωI/L × ρ̇+ ω̇I/L × ρ+ ωI/L × (ωI/L × ρ) = − µ
r3

(
I− 3

rrT

r2

)
ρ+ u (3.55)

what are denoted as the linear equations of relative motion or 2B-LERM. The em-

ployment of the Taylor series expansion for the gravitation acceleration stipulates

that the chaser and target must be sufficiently close to one another to be considered

valid in the domain of linearization. Alfriend et al. [11] conclude that the 2B-LERM

provide an accurate depiction of the relative dynamics when ||ρ|| < 50 km. Further

simplifications to the linear equation are obtained by utilizing the angular momentum

expression from the Keplerian model written as

h =
√
µp (3.56)

where h and p denote the specific angular momentum and semilatus rectum of the

target around the central body, respectively. Using the relationship in Equation (3.56)

simplifies the following expression
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µ

r3
=

h2

pr3
= ḟ 2 r

p
(3.57)

Thus, the following term in Equation (3.55) is simplified to

I− 3
rrT

r2
=


1 0 0

0 1 0

0 0 2

 (3.58)

where r = −rk̂. Evaluating the 2B-LERM in component-wise form yields

ẍ = ḟ 2

(
1− r

p

)
x− 2ḟ

(
ṙ

r
z − ż

)
+ ux (3.59)

ÿ = −r
p
ḟ 2y + uy (3.60)

z̈ = 2ḟ

(
ṙ

r
x− ẋ

)
+ ḟ 2

(
1 + 2

r

p

)
z + uz (3.61)

It is apparent from Equations (3.59) - (3.61) that the 2B-LERM indicate a decoupling

between the in-plane motion along the î− k̂ plane and the out-of-plane motion along

the ĵ direction.

3.2.3 Euler-Hill (HCW) Equations

Equations (3.59) - (3.61) further simplify under additional assumptions when the

target orbit is circular. To that end, the angular velocity of the LVLH frame ωI/L

is constant and equivalent to the mean motion of the target orbit around the central

body, expressed as n = 2π/P , where P denotes the target period. Moreover the

target orbital radius r is equal to its semilatus rectum p. The equations of motion

are them simplified as
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ẍ = 2nż + ux (3.62)

ÿ = −n2y + uy (3.63)

z̈ = −2nẋ+ 3n2z + ux (3.64)

Equations (3.62)- (3.64) are referred to as Hill’s equations, first developed to char-

acterize the Moon’s motion around the Earth. In relative motion applications, these

equations are also called the Hill-Clohessy-Wiltshire (HCW) equations since they were

introduced by Clohessy and Wiltshire to facilitate the design of a terminal rendezvous

system [2].

3.3 Relative Motion in the Restricted Three-Body Problem

The two-body models for relative motion introduced in the preceding section have

been investigated and applied extensively for Keplerian-based dynamical systems.

Though these models have been largely successful at characterizing the relative mo-

tion between spacecraft in their respective regimes, they are inadequate for describing

the dynamics between spacecraft in orbits that exist in more complicated dynamical

systems. Such dynamical systems, like the restricted three-body problem, have to

be incorporated in the formulation of the relative equations of motion to accurately

analyze relative motion in the reference orbits for the Gateway and Artemis missions.

Relative motion in the restricted three-body problem is conventionally obtained by

differencing the equations of motion for two spacecraft, namely a target and a chaser,

under the influence of two primary bodies. The equations are subsequently developed

into a local frame to obtain a description of the relative dynamics with respect to the

target. The frame employed in the derivation of the equations is the Local-Vertical-

Local-Horizontal (LVLH) frame, identical to the one introduced in Figure 3.1. The

LVLH frame is useful for relative motion analysis since it incorporates relative infor-

mation between the spacecraft and can be utilized to design a relative guidance, nav-

igation, and control system to maneuver the chaser to a desired relative position with

respect to the target. In this investigation, the nonlinear relative equations of motion
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for the restricted three-body problem (3B-NLERM) are formulated with a procedure

identical to the one proposed by Franzini et al. [1]. The advantage of this formula-

tion lies in the fact that the equations of motion are developed in the LVLH frame

L using only kinematic relationships between the inertial frame I and the synodic

frame M , where M is based at the second primary. Moreover, the derivation employs

no assumptions for the Earth-Moon dynamics allowing the equations to incorporate

frameworks consistent with the CR3BP and ER3BP models. Simplifications to the

3B-NLERM are made by linearizing the gravitational accelerations due to the two

primaries by a Taylor series about the target position obtaining the linear relative

equations of motion for the restricted three-body problem (3B-LERM). Ultimately,

the 3B-LERM provide first-order linear variational equations governing the relative

dynamics which are used to construct a relative state transition matrix (RSTM). The

RSTM serves as a foundation for the development of shooting schemes that can be

applied to a variety of orbital rendezvous and spacecraft loitering scenarios.

3.3.1 Nonlinear Equations of Relative Motion

The nonlinear equations of relative motion are formulated to characterize the

relative dynamics between a chaser and target subject to the gravitational influences

of the Earth and the Moon. The equations governing the motion of both spacecraft

with respect to the Moon are written as

[
r̈
]
I

= −µ r

r3
− (1− µ)

(
r + rem
||r + rem||3

− rem
r3
em

)
(3.65)

[
r̈c
]

I

= −µrc
r3
c

− (1− µ)

(
rc + rem
||rc + rem||3

− rem
r3
em

)
(3.66)

where r and rc denote the position vector measured from the Moon to the target

and chaser, respectively. Moreover, rem is the position vector from the Earth to the

Moon with rem as its norm. In this investigation, the following parameters are used

to describe the Earth-Moon system:
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• nondimensional gravitational parameter µ = 0.012151

• semimajor axis of the Moon as a = 384400 km

• eccentricity of the Moon as e = 0 for the CR3BP and e = 0.0549 for the ER3BP

• mean motion of the moon as nMoon = 2.6814e− 6 rad/s

• All quantities are nondimensionalized using a and nMoon

Moreover, it is understood that any derivatives with surrounding brackets such as

[
ṙ
]
I

,
[
ṙ
]

M

,
[
ṙ
]

L

denote derivatives taken in the inertial frame I, Moon frame M , and LVLH frame

L, respectively. Using the geometry depicted in Figure 3.1, the chaser position with

respect to the Moon is expressed as

rc = r + ρ (3.67)

where ρ denotes the relative position vector from the target to the chaser. The time

derivative of Equation (3.67) in the inertial frame I follows as

[
ṙc
]

I

=
[
ṙ
]
I

+
[
ρ̇
]

I

(3.68)

=
[
ṙ
]
I

+
[
ρ̇
]

L

+ ωL/I × ρ (3.69)

where ωL/I denotes the angular velocity of the LVLH frame L with respect to the

inertial frame I. Differentiating Equation (3.69) obtains

[
r̈c
]

I

=
[
r̈
]
I

+
[
ρ̈
]

L

+ 2ωL/I ×
[
ρ̇
]

L

+
[
ω̇L/I

]
L

× ρ+ ωL/I × (ωL/I × ρ) (3.70)
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where

[
ω̇L/I

]
I

=
[
ω̇L/I

]
L

Substituting Equations (3.65) and (3.66) into (3.70) yields

[ρ̈]
L

= −2ωL/I×[ρ̇]
L

− [ω̇L/I ]
L

× ρ− ωL/I × (ωL/I × ρ)

+ µ

(
r

r3
− r + ρ

||r + ρ||3

)
+ (1− µ)

(
r + rem
||r + rem||3

− r + ρ+ rem
||r + ρ+ rem||3

)
(3.71)

which are referred to as the nonlinear equations of relative motion for the restricted

three-body problem (3B-NLERM). The angular velocity of the LVLH frame L with

respect to the inertial frame I is computed by adding the following angular velocity

vectors as

ωL/I = ωL/M + ωM/I (3.72)

where ωL/M and ωM/I denote the angular velocity vector of frame L with respect to

frame M and of frame M with respect to frame I, respectively. Likewise, the time

derivative of ωL/I is evaluated as

[ω̇L/I ]
L

= [ω̇L/M ]
L

+ [ω̇M/I ]
L

= [ω̇L/M ]
L

+ [ω̇M/I ]
M

− ωL/M × ωM/I (3.73)

Equations (3.71)-(3.73) constitute a set of time-varying nonlinear equations where

• The target’s motion around the Moon is characterized by r, ωL/M , and [ω̇L/M ]
L

• The Moon’s orbital motion is described by rem, ωM/I , and [ω̇M/I ]
L
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Similar to the process outlined in the previous section resulting in an analytical de-

scription of the motion of frame L with respect to frame I, expressions are derived

to describe the components of ωL/M and [ω̇L/M ]
L

. The terms of ωM/I , and [ω̇M/I ]
L

can

be evaluated by employing the CR3BP or the ER3BP. Thus, using Equation (3.20),

the angular velocity of Frame L is given as

ωL/M = ωyL/M ĵ + ωzL/M k̂ (3.74)

=

(
− 1

r
[ṙ]
M

· î

)
ĵ +

(
r

h
[r̈]
M

· ĵ

)
k̂ (3.75)

Evaluation of the dot products in Equation (3.75) yields

ωyL/M = −1

r
[ṙ]
M

· î

= − 1

hr2
[ṙ]
M

· (h× r)

= − 1

hr2
h · (r× [ṙ]

M

)

= − h
r2

(3.76)

which is identical to the two-body case. Similarly,

ωzL/M =
r

h
[r̈]
M

· ĵ

= − r

h2
h · [r̈]

M

(3.77)

where [r̈]
M

denotes the target acceleration in frame M and is expressed as

[r̈]
M

= −2ωM/I × [ṙ]
M

−[ω̇M/I ]
M

× r− ωM/I × (ωM/I × r)

− µ r

r3
− (1− µ)

(
r + rem
||r + rem||3

− rem
r3
em

)
(3.78)
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The angular acceleration components along the LVLH frame are computed by differ-

entiating Equations (3.76) and (3.77), respectively. Therefore,

ω̇yL/M = − ḣ
r2

+ 2
ṙh

r3
= −1

r

(
ḣ

r
+ 2ṙωyL/M

)
(3.79)

where it follows that the derivative of the norm of r is computed as

ṙ =
1

r
r · [ṙ]

M

(3.80)

The second angular acceleration component is evaluated as

ω̇zL/M = −

(
ṙ

h2
− 2

rḣ

h3

)
h · [r̈]

M

− r

h2
([ḣ]
M

· [r̈]
M

+ h · [...r ]
M

)

=

(
ṙ

r
− 2

ḣ

h

)
ωzL/M −

r

h2
h · [...r ]

M

(3.81)

where the following relationships are used:

h = r× [ṙ]
M

(3.82)

[ḣ]
M

· [r̈]
M

= (r× [r̈]
M

) · [r̈]
M

= 0 (3.83)

ḣ = −[ḣ]
M

· ĵ (3.84)

Differentiating Equation (3.78) obtains an expression for the target jerk as

[
...
r ]
M

= −2ωM/I × [r̈]
M

− 3[ω̇M/I ]
M

× [ṙ]
M

− [ω̈M/I ]
M

× r

− [ω̇M/I ]
M

× (ωM/I × r)− ωM/I × ([ω̇M/I ]
M

× r)

− ωM/I × (ωM/I × [ṙ]
M

)− µ ∂
∂r

[
r

r3

]
[ṙ]
M

− (1− µ)
∂

∂r

[
r + rem
||r + rem||3

]
([ṙ]
M

+ [ṙem]
M

)

+ (1− µ)
∂

∂rem

[
rem
r3
em

]
[ṙem]
M

(3.85)
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where

[ṙem]
M

= [ṙem]
I

− ωM/I × rem

and

∂

∂q

[
q

q3

]
=

1

q3

(
I− 3

qqT

q2

)

In conclusion, the angular components of the LVLH frame angular velocity and ac-

celerations are expressed in terms of kinematic relationships between the two frames

with quantities computed in frame M .

CR3BP Assumption

Simplifications to the 3B-NLERM are obtained by assuming that the two primaries,

namely the Earth and the Moon, are described using the CR3BP. As a result, a

number of the time-varying parameters are reduced to zero, such that

• The position vector from the Earth to the Moon is rem = −îm

• The velocity vector from the Earth to the Moon is [ṙem]
M

= 0

• The angular velocity of frame M with respect to frame I is ωM/I = k̂m

• The angular acceleration of frame M with respect to frame I is [ω̇M/I ]
M

= 0

• The derivative of the angular acceleration of frame M with respect to frame I

is [ω̈M/I ]
M

= 0

where the quantities rem and ωM/I have unitary norms due to the employment of

nondimensional quantities. Moreover, the angular velocity and acceleration vector of

frame L with respect to frame I are simplified as
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ωL/I = ωL/M + k̂m (3.86)

[ω̇L/I ]
L

= [ω̇L/M ]
L

− ωL/M × k̂m (3.87)

Moreover, the target acceleration and jerk vectors simplify to

[r̈]
M

= −2ωM/I × [ṙ]
M

− ωM/I × (ωM/I × r)− µ r

r3
− (1− µ)

(
r + rem
||r + rem||3

− rem

)
(3.88)

[
...
r ]
M

= −2ωM/I × [r̈]
M

− ωM/I × (ωM/I × [ṙ]
M

)− µ ∂
∂r

[
r

r3

]
[ṙ]
M

− (1− µ)
∂

∂r

[
r + rem
||r + rem||3

]
[ṙ]
M

(3.89)

The equations of relative motion in frame L are thus obtained by evaluating the angu-

lar velocity and acceleration components using the formulated analytical expressions.

To implement the equations, the following state vector is defined such that

Xstate =
[
fM, rx,M , ry,M , rz,M , vx,M , vy,M , vz,M , x, y, z, ẋ, ẏ, ż, ωy, ωz

]T
where fM is the Moon’s true anomaly, ri,M denote the target position in Frame M ,

vi,M denote the target velocity in Frame M , x, y, z define the relative position vector

in Frame L, ẋ, ẏ, ż pertain to the relative velocity vector in Frame L, and ωy, ωz are

the angular velocity components of frame L with respect to frame M .

3.3.2 Linearized Equations of Relative Motion

As proposed in Franzini et al. [1], the nonlinear relative equations of motion,

3B-NLERM, can be further simplified by linearizing the gravitational accelerations

around the target position. Consider the gravitational acceleration on the chaser due

to the two primaries written as
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gm(rc) = −µrc
r3
c

(3.90)

ge(rc + rem) = −(1− µ)
rc + rem
||rc + rem||3

(3.91)

where gm and ge denote the gravitational accelerations due to the Moon and the

Earth, respectively. Employing a Taylor series around the target position and retain-

ing to the first order yields the approximate expression for the chaser acceleration

due to the Moon as

gm(rc) ≈ gm(r) +
∂gm(q)

∂q

∣∣∣∣
q=r

(rc − r) = −µ r

r3
− µ

r3

(
I− 3

rrT

r2

)
ρ (3.92)

Likewise, the chaser acceleration due to the Earth is approximated as

ge(rc + rem) ≈ ge(r + rem) +
∂ge(q)

∂q

∣∣∣∣
q=r+rem

(rc − r)

= −(1− µ)
r + rem
||r + rem||3

− 1− µ
||r + rem||3

(
I− 3

(r + rem)(r + rem)T

||r + rem||2

)
ρ

(3.93)

The gravitational accelerations approximated with the Taylor series expansion in

Equations (3.92) and (3.93) can be substituted into Equation (3.71) to obtain the

linear equations of motion.

3.3.3 Summary of Relative Motion Sets

To summarize the relative motion sets, two skew symmetric matrices that contain

components of the angular velocity and acceleration vectors are introduced such that

ΩL/I =


0 −ωzL/I ωyL/I

ωzL/I 0 −ωxL/I
−ωyL/I ωxL/I 0

 Ω̇L/I =


0 −ω̇zL/I ω̇yL/I

ω̇zL/I 0 −ω̇xL/I
−ω̇yL/I ω̇xL/I 0
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where

ωL/I = ωxL/I î + ωyL/I ĵ + ωzL/I k̂ [ω̇L/I ]
L

= ω̇xL/I î + ω̇yL/I ĵ + ω̇zL/I k̂

The skew symmetric matrices allow the relative motion sets to be written more com-

pactly. The distinction between the relative motion sets used in the ER3BP and

CR3BP is made by the assumptions characterizing the Earth-Moon motion.

ER3BP Relative Motion Equations

Assuming that the ER3BP is employed to describe the Earth-Moon system, the

Moon’s motion is computed using Keplerian orbit theory, with the Earth as its cen-

tral body. The analytical solution available in the two-body problem provides the

quantities

• rem: the position vector from the Earth to the Moon

• ωM/I : the angular velocity of frame M with respect to frame I

• [ω̇M/I ]
M

: the angular acceleration of frame M with respect to frame I

As a result, the three-body elliptical nonlinear equations of motion or 3B-ENLERM

are implemented to describe the relative dynamics as

[ρ̈]
L

= −2ΩL/I [ρ̇]
L

− ([Ω̇L/I ]
L

+ Ω2
L/I)ρ

+ µ

(
r

r3
− r + ρ

||r + ρ||3

)
+ (1− µ)

(
r + rem
||r + rem||3

− r + ρ+ rem
||r + ρ+ rem||3

)
(3.94)

where

• ωL/I = ωL/M + ωM/I
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• [ω̇L/I ]
L

= [ω̇L/M ]
L

+ [ω̇M/I ]
M

− ωL/M × ωM/I

• ωL/M is a function of the target acceleration [r̈]
M

given in Equation (3.78)

• ω̇L/M is a function of the target jerk [
...
r ]
M

given in Equation (3.85)

The equations of motion can be further expressed as a nonlinear system, assuming

that the chaser is maneuverable by a control vector u(τ). Thus, Equation (3.94) is

written as

ẋ(τ) = f(τ,x(τ)) + Bu(τ) (3.95)

where

x(τ) =

 ρ(τ)

[ρ̇(τ)]
L

 and B =

03×3

I3×3


and x(τ) ∈ R6, f : [0,+∞) × R6 → R6, B ∈ R6×3. Moreover, the gravitational

acceleration terms are linearized around the target position to obtain the three body

elliptical relative equations of motion or 3B-ELERM as

[ρ̈]
L

= −2ΩL/I [ρ̇]
L

−

(
[Ω̇L/I ]

L

+ Ω2
L/I +

µ

r3

(
I− 3

rrT

r2

)
(3.96)

+
1− µ

||r + rem||3

(
I− 3

(r + rem)(r + rem)T

||r + rem||2

))
ρ (3.97)

Additionally, Equation (3.97) is written in state-space form such that

ẋ(τ) = A(τ)x(τ) + Bu(τ) (3.98)

where the system matrix A(τ) is defined as
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A(τ) =

 03×3 I3×3

Aρρ̇(τ) −2ΩL/I(τ)


and

Aρρ̇(τ) = −[Ω̇L/I(τ)]
L

−ΩL/I(τ)2 − µ

r(τ)3

(
I− 3

r(τ)r(τ)T

r(τ)2

)

+
1− µ

||r(τ) + rem(τ)||3

(
I− 3

(r(τ) + rem(τ))(r(τ) + rem(τ))T

||r(τ) + rem(τ)||2

)

The system matrix is used to construct the relative state transition matrix (RSTM)

to implement a shooting scheme to target relative states with respect to the target

spacecraft. The advantage of targeting states in the LVLH frame L stems from the

ability to obtain desired relative motion from the target’s perspective.

CR3BP Relative Motion Equations

Similar to the formulation of the 3B-ENLERM and 3B-LERM, the assumptions from

the employment of the CR3BP as the dynamical model for the Earth-Moon system

dynamics simplifies a number of parameters such that

• ωL/I = ωL/M + ωM/I

• [ω̇L/I ]
L

= [ω̇L/M ]
L

− ωL/M × k̂

• ωL/M is a function of the target acceleration [r̈]
M

given in Equation (3.88)

• ω̇L/M is a function of the target jerk [
...
r ]
M

given in Equation (3.89)

The resulting equations are denoted as the three-body circular nonlinear equations of

motion or 3B-CNLERM. If the linearization of the gravitational accelerations is taken

into consideration, the equations are denoted the three-body circular linear equations

of motion or 3B-CLERM.
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3.4 Verification and Validation

Both the two-body and three-body relative equation models are tested and com-

pared to characterize their accuracy in the 9:2 NRHO, the small DRO, and the large

DRO. The truth model is taken as the 3B-ENLERM or the 3B-CNLERM, depending

on the description of the Earth-Moon dynamics. The simulations are carried out in

MATLAB using the ode113 differential solver with a absolute and relative tolerance

of 10e − 12. Moreover, the propagation time is set to 12 hours. Franzini et al. vali-

dated the equations of relative motion in a similar fashion in [4], however the relative

position and velocity vectors were initiated independently and represent arbitrary

perturbed states along the directions of the LVLH frame. This investigation initiates

the relative state vector to characterize relative position and velocity combinations

that accurately reflect placements along each of the reference orbits. Consequently,

the obtained results are similar to Franzini et al [4], but they vary slightly due to

the fact that both relative position and velocity states are initialized simultaneously.

First, a definition for the mean anomaly is introduced to indicate the target along

the reference orbit as

MA = 2π
τ

P
(3.99)

where τ is the time since perilune and P is the period of the corresponding reference

orbit. Then, a series of chasers are placed behind and ahead of the target along the ref-

erence orbit and used to initialize a number of relative states for the simulation. Once

these initial states are obtained, they are propagated with the 2B-HCW, 2B-LERM,

and 3B-ELERM (or 3B-CLERM), respectively. Figure 3.2 presents a schematic of

the validation scheme along the 9:2 NRHO. In this example, the target is placed at

an initial mean anomaly along the NRHO and a number of fictitious chaser space-

craft are placed behind and ahead of the target’s position along the NRHO. The

relative states for each of the chaser spacecraft are computed and propagated with

the different relative dynamical models for a TOF of 12 hours.
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Fig. 3.2. Validation scheme along 9:2 NRHO

To compare the results obtained by the different models, a performance index is

defined such that

ep = max
τ∈[0 TOF]

||ρ(τ)− ρ∗(τ)|| , ev = max
τ∈[0 TOF]

||ρ̇(τ)− ρ̇∗(τ)|| (3.100)

where ep and ev denote the maximum distance and speed errors over the time interval.

Moreover, quantities with the star denote the true values whereas those without are

obtained from the propagation using the selected dynamical model. In this investi-

gation, the 9:2 NRHO and the Large DRO in both the CR3BP and ER3BP are used

to compare the relative equations. In Figure 3.3, the x-axis of the plots indicate the

target initial mean anomaly along the NRHO. The y-axis plots the initial relative dis-

tance of the chaser in km at the initial relative state. The plots convey configurations

of the chaser both behind and ahead of the target, although there is no significant

difference in results between the two cases. The color bar is intended to represent the

common logarithm of the position or velocity error. For example, a color indicating

a level of 3 indicates a position error of 1000 m. Similarly, a color indicating a level

of 0 indicates a velocity error of 1 m/s. Figures 3.3 and 3.4 contain the error results

in relative position and velocity for the 9:2 NRHO and Figures 3.5 and 3.6 for the

Large DRO in the CR3BP and ER3BP, respectively.
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CR3BP - 9:2 NRHO

Fig. 3.3. Position and velocity error results after 12 hrs. for 2B-HCW
(top), 2B-LERM (middle), and 3B-LERM (bottom) for the 9:2 NRHO
in the CR3BP
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ER3BP - 9:2 NRHO

Fig. 3.4. Position and velocity error results after 12 hrs. for 2B-HCW
(top), 2B-LERM (middle), and 3B-LERM (bottom) for the 9:2 NRHO
in the ER3BP
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CR3BP - Large DRO

Fig. 3.5. Position and velocity error results for 2B-HCW (top), 2B-
LERM (middle), and 3B-LERM (bottom) for the Large DRO in the
CR3BP
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ER3BP - Large DRO

Fig. 3.6. Position and velocity error results for 2B-HCW (top), 2B-
LERM (middle), and 3B-LERM (bottom) for the Large DRO in the
ER3BP
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A number of observations are in order. First, for both the 9:2 NRHO and the Large

DRO, in both the CR3BP and ER3BP, the 3B-LERM outperform the 2B-HCW and

2B-LERM in the estimation of relative position and velocity for a 12 hour simulation

time. For the 9:2 NRHO cases in Figures 3.3 and 3.4, the two body models generally

perform better near apolune (MA = 180◦) than anywhere else along the NRHO. This

is due to the fact that relative velocities between the target and chaser are minimized

at apolune. Since both the target and chaser reach their minimum velocity near

apolune, the effect of the relative velocity between the spacecraft is reduced in the

relative dynamics equations. Consequently, for a target initially near apolune, the

2B-HCW equations attain a 1-km position and 10 cm/s velocity error when the chaser

and target are about 30 km apart on the reference orbit. Likewise, the 2B-LERM

model performs slightly better where it attains a 1-km position and 10 cm/s velocity

error at 150 km relative separation between the spacecraft when the target is near

apolune. For the 3B-LERM, the results are more accurate at a larger distance yet

they perform their best slightly before apolune. This would indicate that rendezvous

maneuvers should take place near this region to obtain the best estimations of the

relative states. Near perilune however, the 3B-LERM incur a significant amount of

both position and velocity error. This is due to the fact that near perilune, the

rapid separation between the chaser and target exceeds the domain of validity for the

linearized assumption. Therefore, rendezvous maneuvers are not advised in regions

near perilune for the NRHO. In the large DRO cases in Figures 3.5 and 3.6, the

2B-HCW equations actually perform better than the 2B-LERM. This is a surprising

result since the 2B-LERM employ less assumptions in their formulation. Moreover,

the 2B-HCW equations perform best near a MA = 180◦, but the 2B-LERM are more

accurate near MA = 90◦ and MA = 270◦, respectively. Note that a MA = 180◦,

the target is actually at another perilune due to the large DRO’s shape. This is

illustrated in Figure 3.7. Since regions near perilune are characterized by greater

relative velocities between the spacecraft, two peaks are identified in the plot of the

2B-LERM for the large DRO indicating the target’s encounter at the apolunes. The
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same behavior is apparent in the 3B-LERM for the large DRO, yet they outperform

the other two-body based models and attain a 1-km error in position when the target

is at apolune and the initial relative distance between the spacecraft is about 550 km.

Likewise, an initial relative velocity between the spacecraft exceeding 1 m/s leads to

a velocity error of 1 cm/s for the 12 hour period near regions of apolune.

Fig. 3.7. Illustration of perilune and apolune points for the large DRO in CR3BP

Small DRO HCW Approximations

Similar analysis for the small DRO is performed characterizing a near circular

reference orbit close to the Moon. The small DRO represents orbits where a majority

of the gravitational influence is due to the second primary. Therefore, it is more

useful to validate the 2B-HCW equations for the small DRO to determine the range

of validity for the two-body assumption. Figure 3.8 plots the error profiles in relative

position and velocity for the 2B-HCW model. As expected, the results are more

uniform across the target mean anomaly where the model attains a 1 km position and
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10 cm/s velocity error at a relative initial distance of 20 km between the spacecraft.

Therefore, it can be concluded that the 2B-HCW equations may be used for the

reference trajectory to provide a good initial guess to compute in the 3B-LERM.

Nevertheless, it is important to consider that these results are only valid for within a

12-hour period.

Fig. 3.8. Position and velocity error from the 2B-HCW model for a
12 hr period in the small DRO

3.5 Shooting Algorithms

In order to address rendezvous and spacecraft loitering problems, shooting algo-

rithms are employed to target relative states in the LVLH frame L. Since the origin

of frame L is the target, a chaser trajectory that reaches the origin indicates an in-

terception with the target position. Similar to the construction of the single and

multiple shooting schemes for targeting solutions in the CR3BP, the 3B-LERM and

its associated system matrix is used to formulate the relative STM (ΦR) to assess

the variations in the initial relative state to those downstream. The 3B-LERM are

expressed in state-space form as
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ẋ(τ) = A(τ)x(τ) + Bu(τ) (3.101)

where

x(τ) =

 ρ(τ)

[ρ̇(τ)]
L

 and B =

03×3

I3×3


where the system matrix A(τ) is defined as

A(τ) =

 03×3 I3×3

Aρρ̇(τ) −2ΩL/I(τ)

 (3.102)

and

Aρρ̇(τ) = −[Ω̇L/I(τ)]
L

−ΩL/I(τ)2 − µ

r(τ)3

(
I− 3

r(τ)r(τ)T

r(τ)2

)

+
1− µ

||r(τ) + rem(τ)||3

(
I− 3

(r(τ) + rem(τ))(r(τ) + rem(τ))T

||r(τ) + rem(τ)||2

)
Since the state vector is comprised of relative states, the relative state transition

matrix ΦR is defined as

ΦR(τ, τ0) =
∂x(τ)

∂x(τ0)
=
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=



φR,11 φR,12 φR,13 φR,14 φR,15 φR,16

φR,21 φR,22 φR,23 φR,24 φR,25 φR,26

φR,31 φR,32 φR,33 φR,34 φR,35 φR,36

φR,41 φR,42 φR,43 φR,44 φR,45 φR,46

φR,51 φR,52 φR,53 φR,54 φR,55 φR,56

φR,61 φR,62 φR,63 φR,64 φR,65 φR,66


(3.103)

Moreover, the first-order matrix differential equation governing the relative STM

evolution in time is

Φ′R(τ, τ0) = A(τ)ΦR(τ, τ0) (3.104)
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where A(τ) is the relative system matrix defined in Equation (3.102). The advan-

tage of this formulation stems from the fact that the same computational techniques

formulated for obtaining solutions in the CR3BP and ER3BP are employed to find

solutions in the LVLH frame L. Since the 3B-LERM demonstrate better accuracy

in the reference orbits compared to the two-body relative models, the system ma-

trix for these equations will be used to obtain relative information and solutions for

rendezvous and spacecraft loitering problems.
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4. APPLICATIONS

A number of applications are considered using the three-body linear relative equa-

tions of motion or 3B-LERM. The first application is orbital rendezvous between

the target and chaser within a specified time interval. Initial relative positions of

the chaser with respect to the target are considered as close as 300 m and as far as

1000 km along the 9:2 NRHO, small DRO, and large DRO. Impulsive maneuvers are

assumed to obtain the changes in velocity (∆v) needed to first, insert along a ren-

dezvous trajectory and finally, eliminate any excess velocity at the interception point.

Configurations where the chaser is ahead and behind the target at some initial time

are considered. Reference orbits for both the CR3BP and ER3BP are considered and

they are compared regarding the overall ∆v required to achieve terminal rendezvous.

Although the reference orbits in both the CR3BP and ER3BP are slightly different

and don’t necessarily warrant a 1:1 comparison, the orbit geometry for both dynam-

ical regimes possess similar characteristics. The main objective of the comparison is

to understand the degree to which the Moon’s eccentricity affects the differences in

solutions between each dynamical regime. Summary tables detailing each rendezvous

configuration, the model employed, and the total ∆vs required are generated for each

reference orbit.

The spacecraft loitering problem is investigated along two avenues, the first being

natural loitering and the second described as forced loitering. As the name suggests,

natural loitering produces bounded relative motion in the LVLH frame L with re-

spect to the target without the execution of chaser maneuvers. On the contrary,

forced loitering involves the implementation of multiple maneuvers to obtain a speci-

fied relative geometry. Spacecraft loitering geometries as close as 300 m and as far as

1000 km between the spacecraft are examined. Finally, scenarios comprised of both

spacecraft loitering and orbital rendezvous are investigated.
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4.1 Orbital Rendezvous

In each rendezvous example, two plots will be provided. The first plot on the left

will indicate the target initial position along the NRHO represented by the value of

the mean anomaly MA. The blue and red circles denote the starting positions of

the chaser and target, respectively. The red star denotes the final position of the

target. The red line depicts the path of the target along the reference orbit and

the blue line is the rendezvous trajectory the chaser takes to intercept the target.

The plot on the right presents depicts the relative dynamics in LVLH frame L. The

origin of the LVLH frame is defined as the target and will be indicated by the red

star. The arrows depict the direction of motion. In each of the reference orbits, the

eccentricity of the system is included in the plots to indicate the employed dynamical

model with e = 0 representing the CR3BP and e = 0.0549 representing the ER3BP.

Since the analysis of the relative equations of motion indicate that the 3B-LERM are

most accurate in regions near apolune, the initial mean anomalies of the target are

set to include regions near apolune. Figures 4.2 - 4.7 plot rendezvous scenarios in

the CR3BP 9:2 NRHO and Figures 4.8 - 4.13 plot those in the ER3BP 9:2 NRHO.

Likewise, rendezvous scenarios are plotted for the CR3BP Small DRO and ER3BP

Small DRO in Figures 4.14 - 4.19 and 4.20- 4.25, respectively. Finally rendezvous

scenarios are plotted for the CR3BP Large DRO and ER3BP Large DRO in Figures

4.26 - 4.31 and 4.32- 4.33, respectively.
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Rendezvous in 9:2 NRHO - CR3BP

Fig. 4.2. 9:2 NRHO: target MA = 162◦, 300 m (behind target)

Fig. 4.3. 9:2 NRHO: target MA = 162◦, 300 m (ahead target)
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Fig. 4.4. 9:2 NRHO: target MA = 153◦, 25 km (behind target)

Fig. 4.5. 9:2 NRHO: target MA = 153◦, 25 km (ahead target)
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Fig. 4.6. 9:2 NRHO: target MA = 144◦, 1000 km (behind target)

Fig. 4.7. 9:2 NRHO: target MA = 144◦, 1000 km (ahead target)
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Rendezvous in 9:2 NRHO - ER3BP

Fig. 4.8. 9:2 NRHO: target MA = 162◦, 300 m (behind target)

Fig. 4.9. 9:2 NRHO: target MA = 162◦, 300 m (ahead target)
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Fig. 4.10. 9:2 NRHO: target MA = 153◦, 25 km (behind target)

Fig. 4.11. 9:2 NRHO: target MA = 153◦, 25 km (ahead target)
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Fig. 4.12. 9:2 NRHO: target MA = 144◦, 1000 km (behind target)

Fig. 4.13. 9:2 NRHO: target MA = 144◦, 1000 km (ahead target)
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Rendezvous in 9:2 NRHO -Results

Table 4.1.
9:2 NRHO Rendezvous Maneuver Results

Reference Orbit Model ∆v1 [m/s] ∆v2 [m/s] ∆vtot [m/s]

9:2 NRHO, Figures 4.2 & 4.8

300 m - Behind, TOF: 8 hrs.

CR3BP 0.01 0.01 0.02

ER3BP 0.01 0.01 0.02

9:2 NRHO, Figures 4.3 & 4.9

300 m - Ahead, TOF: 8 hrs.

CR3BP 0.01 0.01 0.02

ER3BP 0.01 0.01 0.02

9:2 NRHO, Figures 4.4 & 4.10

25 km - Behind, TOF: 12 hrs.

CR3BP 0.517 0.581 1.098

ER3BP 0.520 0.581 1.101

9:2 NRHO, Figures 4.5 & 4.11

25 km - Ahead, TOF: 12 hrs.

CR3BP 0.517 0.581 1.098

ER3BP 0.520 0.580 1.101

9:2 NRHO, Figures 4.6 & 4.12

1000 km - Behind, TOF: 16 hrs.

CR3BP 14.062 17.401 31.463

ER3BP 14.216 17.405 31.621

9:2 NRHO, Figures 4.7 & 4.13

1000 km - Ahead, TOF: 16 hrs.

CR3BP 14.769 17.429 32.198

ER3BP 14.885 17.432 32.316

From the results of the rendezvous scenarios in the 9:2 NRHO, it is observed that

the differences between the CR3BP and ER3BP models are more evident in scenarios

involving a larger initial distance between the target and chaser. This is due partly

to the fact that slight differences in the reference geometries between the CR3BP

and ER3BP are more apparent on scales involving larger distances, however, the

magnitude of the ∆v maneuvers only vary on the order of centimeters per second in

velocity. Moreover, configurations involving the chaser ahead of the target indicate

that there are slight increases in the ∆v required to achieve terminal rendezvous.

This difference, although slight, arises from the fact that the chaser thrusts in the

anti-velocity direction in order to the slow down to intercept the target.
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Rendezvous in Small DRO - CR3BP

Fig. 4.14. Small DRO: target MA = 162◦, 300 m (behind target)

Fig. 4.15. Small DRO: target MA = 162◦, 300 m (ahead target)
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Fig. 4.16. Small DRO: target MA = 153◦, 25 km (behind target)

Fig. 4.17. Small DRO: target MA = 153◦, 25 km (ahead target)
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Fig. 4.18. Small DRO: target MA = 144◦, 1000 km (behind target)

Fig. 4.19. Small DRO: target MA = 144◦, 1000 km (ahead target)
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Rendezvous in Small DRO - ER3BP

Fig. 4.20. Small DRO: target MA = 162◦, 300 m (behind target)

Fig. 4.21. Small DRO: target MA = 162◦, 300 m (ahead target)
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Fig. 4.22. Small DRO: target MA = 153◦, 25 km (behind target)

Fig. 4.23. Small DRO: target MA = 153◦, 25 km (ahead target)
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Fig. 4.24. Small DRO: target MA = 144◦, 1000 km (behind target)

Fig. 4.25. Small DRO: target MA = 144◦, 1000 km (ahead target)
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Rendezvous in Small DRO -Results

Table 4.2.
Small DRO Rendezvous Maneuver Results

Reference Orbit Model ∆v1 [m/s] ∆v2 [m/s] ∆vtot [m/s]

Small DRO, Figures 4.14 & 4.20

300 m - Behind, TOF: 3 hrs.

CR3BP 0.030 0.030 0.060

ER3BP 0.029 0.030 0.059

Small DRO, Figures 4.15 & 4.21

300 m - Ahead, TOF: 3 hrs.

CR3BP 0.030 0.030 0.060

ER3BP 0.029 0.030 0.059

Small DRO, Figures 4.16 & 4.22

25 km - Behind, TOF: 5 hrs.

CR3BP 1.217 1.22 2.437

ER3BP 1.489 1.494 2.982

Small DRO, Figures 4.17 & 4.23

25 km - Ahead, TOF: 5 hrs.

CR3BP 1.218 1.221 2.439

ER3BP 1.489 1.495 2.983

Small DRO, Figures 4.18 & 4.24

1000 km - Behind, TOF: 7 hrs.

CR3BP 39.407 39.539 78.946

ER3BP 39.672 39.857 79.529

Small DRO, Figures 4.19 & 4.25

1000 km - Ahead, TOF: 7 hrs.

CR3BP 41.074 41.239 82.313

ER3BP 41.335 41.523 82.857

From the resulting data of rendezvous scenarios in the small DRO, the same con-

clusions are reached regarding the slight differences in the ∆vs required between the

CR3BP and ER3BP reference orbits. Variations in the rendezvous solutions are more

apparent with greater initial relative distances between the target and chaser. Differ-

ences in the total ∆vs required to execute the rendezvous maneuvers vary on the order

of tens of centimeters per second. Nevertheless, targeting schemes utilizing relative

quantities stemming from the 3B-LERM converge to a chaser rendezvous trajectory

that successfully intercepts the target in the LVLH frame L and Moon frame M .
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Rendezvous in Large DRO - CR3BP

Fig. 4.26. Large DRO: target MA = 135◦, 300 m (behind target)

Fig. 4.27. Large DRO: target MA = 135◦, 300 m (ahead target)



125

Fig. 4.28. Large DRO: target MA = 126◦, 25 km (behind target)

Fig. 4.29. Large DRO: target MA = 126◦, 25 km (ahead target)
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Fig. 4.30. Small DRO: target MA = 117◦, 1000 km (behind target)

Fig. 4.31. Small DRO: target MA = 117◦, 1000 km (ahead target)
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Rendezvous in Large DRO - ER3BP

Fig. 4.32. Large DRO: target MA = 135◦, 300 m (behind target)

Fig. 4.33. Large DRO: target MA = 135◦, 300 m (ahead target)
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Fig. 4.34. Large DRO: target MA = 126◦, 25 km (behind target)

Fig. 4.35. Large DRO: target MA = 126◦, 25 km (ahead target)
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Fig. 4.36. Large DRO: target MA = 117◦, 1000 km (behind target)

Fig. 4.37. Large DRO: target MA = 117◦, 1000 km (ahead target)
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Rendezvous in Large DRO -Results

Table 4.3.
Large DRO Rendezvous Maneuver Results

Reference Orbit Model ∆v1 [m/s] ∆v2 [m/s] ∆vtot [m/s]

Large DRO, Figures 4.26 & 4.32

300 m - Behind, TOF: 8 hrs.

CR3BP 0.011 0.011 0.021

ER3BP 0.011 0.011 0.021

Large DRO, Figures 4.27 & 4.33

300 m - Ahead, TOF: 8 hrs.

CR3BP 0.011 0.011 0.021

ER3BP 0.011 0.011 0.021

Large DRO, Figures 4.28 & 4.34

25 km - Behind, TOF: 12 hrs.

CR3BP 0.621 0.580 1.201

ER3BP 0.614 0.581 1.195

Large DRO, Figures 4.29 & 4.35

25 km - Ahead, TOF: 12 hrs.

CR3BP 0.621 0.580 1.201

ER3BP 0.614 0.581 1.195

Large DRO, Figures 4.30 & 4.36

1000 km - Behind, TOF: 16 hrs.

CR3BP 19.148 17.403 36.551

ER3BP 18.972 17.454 36.426

Large DRO, Figures 4.31 & 4.37

1000 km - Ahead, TOF: 16 hrs.

CR3BP 19.146 17.404 36.550

ER3BP 18.959 17.455 36.415

Finally, rendezvous trajectories long the Large DRO are computed for both the

CR3BP and ER3BP reference orbits. The varying geometry between the reference

orbits in both dynamical models produce slightly different ∆v values, however, the

differences between the CR3BP and ER3BP rendezvous results are slight as they in-

crease with a greater initial relative distance between the target and the chaser. Each

rendezvous case successfully computes a chaser trajectory that intercepts the target

position in the LVLH frame L.
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4.2 Spacecraft Loitering

Another application of relative motion examined in this investigation is spacecraft

loitering. The aim of loitering is to produce bounded relative motion of the chaser in

the LVLH Frame L with respect to the target. One of the ways to accomplish this is by

examining natural loitering behaviors where the chaser trajectory is bounded in frame

L without the implementation of maneuvers. The principle behind natural loitering

stems from the fact that if the target and chaser are placed along the same reference

trajectory but at different mean anomalies, their relative motion will also be bounded.

Additionally, if a particular trajectory is periodic or near periodic in the synodic

frame M , then the relative positions between the spacecraft along that trajectory will

repeat in the LVLH frame L with the orbital period. In this investigation, spacecraft

loitering is examined in all three reference orbits, namely the 9:2 NRHO, small DRO,

and large DRO for the ER3BP. Results for these reference orbits in the CR3BP

are nearly identical for the cases involving the ER3BP reference orbits, however the

relative motion is repeated. As an example, consider the target and chaser along

the same reference trajectory (9:2 NRHO in the CR3BP) but at different initial

mean anomalies. Figure 4.38 plots the initial position of the target and chaser along

the NRHO denoted with the red and blue circles, respectively. The starred points

represent the target and chaser position after one full period of the NRHO, thus they

arrive at the initial point at the end of the propagation. Likewise, the right figure

plots the corresponding relative motion with the blue circle denoting the initial chaser

position. Since the 9:2 NRHO is perfectly periodic, the relative trajectory is repeated

with the target orbit period. For other cases examined in the investigation, the chaser

and target are placed much closer together and thus their trajectories will differ from

the schematic provided in Figure 4.38. Four loitering cases are examined in each

reference orbit with varying initial relative distances and configurations of the chaser

both behind and ahead of the target at the initial time. Using the same indicators

provided in the schematic, Figures 4.39 and 4.40 plot natural loitering trajectories for
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a chaser along the 9:2 NRHO in the ER3BP at an initial relative distance of 300 m

behind and ahead of the target, respectively. Likewise, Figure 4.41 and 4.42 examine

9:2 NRHO natural loitering trajectories for a greater initial relative distance of 1000

km. Each case is propagated for a full period of the reference orbit where the varying

period in the ER3BP is computed as the time between perilunes with each revolution.

Figures 4.43 - 4.46 examine natural spacecraft loitering trajectories for the small DRO

in the ER3BP at varying relative distances and different chaser configurations with

respect to the target. Finally, Figures 4.47- 4.50 plot the natural spacecraft loitering

trajectories for the large DRO in the ER3BP with initial relative distances ranging

from 300m to 1000 km between the target and chaser.

Fig. 4.38. 9:2 NRHO Loitering Description
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Natural Loitering in 9:2 NRHO - ER3BP

Fig. 4.39. 9:2 NRHO: target MA = 180◦, 300 m (behind target)

Fig. 4.40. 9:2 NRHO: target MA = 180◦, 300 m (ahead target)
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Fig. 4.41. 9:2 NRHO: target MA = 180◦, 1000 km (behind target)

Fig. 4.42. 9:2 NRHO: target MA = 180◦, 1000 km (ahead target)
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Natural Loitering in the Small DRO - ER3BP

Fig. 4.43. Small DRO: target MA = 180◦, 300 m (behind target)

Fig. 4.44. Small DRO: target MA = 180◦, 300 m (ahead target)
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Fig. 4.45. Small DRO: target MA = 180◦, 1000 km (behind target)

Fig. 4.46. Small DRO: target MA = 180◦, 1000 km (ahead target)



137

Natural Loitering in the Large DRO - ER3BP

Fig. 4.47. Large DRO: target MA = 0◦, 300 m (behind target)

Fig. 4.48. Large DRO: target MA = 0◦, 300 m (ahead target)
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Fig. 4.49. Large DRO: target MA = 0◦, 1000 km (behind target)

Fig. 4.50. Large DRO: target MA = 0◦, 1000 km (ahead target)
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In all the natural spacecraft loitering cases, the relative motion produced in the LVLH

frame L is near periodic due to the fact that the reference orbits do not repeat in the

synodic frame M . Nevertheless, the relative trajectories are bounded with respect

to the target which accomplishes the main objective for the loitering problem. In

practice, the chaser may not necessarily loiter for one full period of the reference orbit

so segments of the loitering trajectories may be selected depending on the mission

application. One of the advantages of natural loitering includes the absence of any

maneuvers during the loitering period to maintain a bounded result in the LVLH

frame. Nevertheless, the relative trajectories are not controllable along only appear

along on one side of the target. For example, for those scenarios involving the chaser

behind the target at initial time, the relative motion exists almost entirely in the −î

direction. Likewise, the scenarios where the chaser is initially placed ahead of the

target, the resulting relative motion is contained along the +î direction. Therefore,

spacecraft loitering needs to produce more variable relative geometries for applications

requiring more complex chaser movements around the target.

Forced Loitering

Spacecraft loitering involving the execution of multiple maneuvers is another way

to produce relative motion in the LVLH frame L. Unlike natural loitering, forced loi-

tering allows for more variation in the relative geometry since the chaser can perform

maneuvers in the vicinity of the target. The forced loitering approach is similar to

the multiple shooting formulation presented for obtaining solutions in the CR3BP,

however the state variables employed are quantities expressed in the local frame. A

relative trajectory is discretized into a number of trajectory segments and patch-

points. The patchpoints are selected positions in relative space about the target

and can be specified at some relative distance along the LVLH axes. The “relative”

multiple shooter is employed to correct for relative position continuity, yet it allows

the relative velocity at patchpoints to vary indicating the presence of a maneuver.
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Figure 4.51 depicts a schematic outlining the components of a forced loitering ap-

proach. The black points along the trajectory denote the relative patchpoints in the

LVLH Frame L. Assuming the trajectory is continuous in relative position, the ∆vs

at each patchpoint denote a velocity discontinuity which is interpreted as a chaser

maneuver. In this investigation, forced loitering approaches are examined for the 9:2

NRHO, small DRO, and large DRO in both the CR3BP and the ER3BP. Specifically,

certain relative geometries are determined apriori and the converged result provides

a continuous relative trajectory continuous in position. Each case provides a plot in

Frame M to indicate the starting location of the target and along the corresponding

reference orbit. The chaser is placed at an initial relative distance from the target

and both spacecraft are propagated for a specified time of flight. Since spacecraft

loitering is typically employed when the chaser and target are relatively close to one

another, the chaser may not be visible in Frame M due to the axes scaling in the plot.

Nevertheless, another plot is presented in Frame L depicting the resulting relative mo-

tion over the propagation time interval. In this view, a chaser initial relative state is

specified with respect to the target and converged along a trajectory continuous at

the predetermined patchpoints. The starred locations along the relative trajectory

indicate a maneuver to ensure that the chaser intercepts its next relative patchpoint.

As an example, Figure 4.52 plots a forced loitering scenario in the 9:2 NRHO for

the CR3BP. Initial positions of the chaser and target are specified along with the

locations of each maneuver corresponding to the selected relative patchpoints. In this

investigation, certain relative geometries like the “diamond” shape are produced as

a proof of concept for the forced loitering approach. In practice, any combination

of relative patchpoints can be used, however the “diamond” shape demonstrates the

capability of targeting positions both ahead and behind the target. Figures 4.53 and

4.54 plot forced loitering scenarios in the 9:2 NRHO at around 3 km about the tar-

get for the CR3BP and ER3BP, respectively. A loitering distance of up to 1000 km

along a different relative trajectory is plotted in Figures 4.55 and 4.56. Scenarios are

also considered in the small DRO for the CR3BP and ER3BP in Figures 4.57 - 4.60
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with varying loitering distances from 300 m to 25 km between the target and chaser.

Moreover, forced loitering in the large DRO is examined for both the CR3BP and

ER3BP in Figures 4.61 and 4.62, respectively. Finally, a combined forced loiter and

rendezvous example is examined in the large DRO in Figures 4.63 and 4.64.

Fig. 4.51. Forced loitering schematic with multiple relative patch-
points around the target

Fig. 4.52. Forced loitering example in the 9:2 NRHO
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Forced Loitering in the 9:2 NRHO

Fig. 4.53. 9:2 NRHO Loiter at 300 m in CR3BP

Fig. 4.54. 9:2 NRHO Loiter at 300 m in ER3BP
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Fig. 4.55. 9:2 NRHO Loiter at 1000 km in CR3BP

Fig. 4.56. 9:2 NRHO Loiter at 1000 km in ER3BP
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Forced Loitering in the Small DRO

Fig. 4.57. Small DRO Loiter Spiral at 300 m in CR3BP

Fig. 4.58. Small DRO Loiter Spiral at 300 m in ER3BP
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Fig. 4.59. Small DRO Loiter Spiral at 25 km in CR3BP

Fig. 4.60. Small DRO Loiter Spiral at 25 km in ER3BP
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Forced Loitering in the Large DRO

Fig. 4.61. Large DRO Loiter and Rendezvous at 25 km in CR3BP

Fig. 4.62. Large DRO Loiter and Rendezvous at 25 km in ER3BP
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Fig. 4.63. Large DRO Loiter and Rendezvous at 1000 km in CR3BP

Fig. 4.64. Large DRO Loiter and Rendezvous at 1000 km in ER3BP
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The results presented in Table 4.4 provide approximations of the ∆vs required to

produce the desired relative geometries in each of the reference orbits. There is no

significant difference between approximations in the CR3BP and ER3BP and they

produce nearly identical loitering geometries. The benefit of forced loitering includes

more variation in the loitering trajectory through the implementation of multiple

chaser maneuvers about the target. For each of the forced loitering scenarios, a dif-

ferent relative geometry is obtained to represent loitering at a fixed distance, spiral

close approaches, and coupled loitering and rendezvous mission profiles. Although

it does require a higher cost of propellant use, relative distances between the target

and chaser can be maintained for an extended interval of time. In application, forced

loitering can be useful to perform before a close approach between the spacecraft so

that the chaser may orbit the target for an initial inspection before proceeding to

achieve terminal rendezvous. Moreover, a forced loitering approach can be useful to

ensure collision avoidance by specifying a loitering geometry at a minimum relative

distance between the spacecraft. In either natural or forced loitering, relative geome-

tries are depicted from the perspective of the target which is useful for establishing a

baseline intuition regarding the relative behavior of the spacecraft along the different

reference orbits examined in this investigation.



150

5. SUMMARY AND RECOMMENDATIONS

5.1 Summary of the Present Work

NASA’s proposed Artemis missions for the mid-2020s outline a series of objec-

tives to establish a permanent crewed platform in the lunar vicinity. The missions

are characterized by a long duration in cislunar orbit, the assembly of a lunar orbit-

ing platform called Gateway, and meeting the operating requirements for the Orion

spacecraft. Relative motion plays an important role in fulfilling some of the Artemis

missions’ most immediate requirements by examining the behavior of spacecraft with

respect to one another. Rendezvous and spacecraft loitering between Orion and Gate-

way will be a fundamental step in the integration of mission components to achieve

a sustainable human presence around the Moon. In pursuit of this mission objective,

this investigation examines the selection of reference orbits of interest for the Artemis

program. Different reference solutions including the 9:2 L2 NRHO, a small DRO, and

a large DRO are obtained in different dynamical models describing the Earth-Moon

system. The most simplified model employed is the Circular Restricted Three-Body

Problem (CR3BP) where a formulation of the equations of motion, the identification

of equilibrium points, and tools to compute periodic orbits and their corresponding

families are examined. Reference orbits computed in the CR3BP are transitioned into

the Elliptical Restricted Three-Body Problem (ER3BP) to incorporate the Moon’s

nonzero eccentricity about the Earth. Strategies for transitioning solutions and ob-

taining the CR3BP equivalents in the ER3BP are formulated and applied to generate

a set of reference orbits available in the ER3BP. The inclusion of the ER3BP is by no

means a required step to transition solutions to a higher-fidelity ephemeris model, yet

it provides some indication of how solutions initially computed in the CR3BP evolve

under the assumption of a nonzero eccentricity of the second primary.
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Another component of this work includes the formulation, derivation, and valida-

tion of the equations of relative motion in each of reference orbits. A local-vertical-

local-horizontal (LVLH) frame is placed at a target spacecraft along a reference orbit

and the motion of a chaser spacecraft is characterized in this rotating frame. Relative

motion models employing both two-body and three-body assumptions are investigated

and expressions governing the dynamical evolution of the LVLH frame with respect

to an inertial frame are obtained. The result establishes the nonlinear equations of

relative motion for the restricted three-body problem (3B-NLERM). A number of

two-body relative motion models such as the Hill-Clohessy-Wiltshire (2B-HCW) and

the linear equations of relative motion (2B-LERM) are compared against the three-

body linearized relative equations of motion (3B-LERM) along each of the reference

orbits defined in the CR3BP and ER3BP. Moreover, the 3B-LERM are used to de-

velop shooting strategies in the LVLH frame to address a variety of rendezvous and

spacecraft loitering problems. A number of rendezvous applications in each of the

reference trajectories are examined with varying initial relative distances between the

spacecraft and different times of flight. Results obtained in both dynamical regimes,

the CR3BP and ER3BP, are compared and discussed to examine the effect of the

Moon’s eccentricity on solutions. Finally, spacecraft loitering is examined in the

LVLH frame to produce bounded relative motion with respect to a target spacecraft

along the different reference orbits. The spacecraft loitering problem is examined

along two tracks; namely natural loitering and forced loitering. Natural loitering ex-

amines the relative behavior produced when a target and chaser fly along the same

reference trajectory but are at different initial positions along the orbit. Results are

obtained for both dynamical regimes and a variety of ballistic relative geometries are

examined. The analysis is continued to incorporate a multiple maneuver scheme to

obtain bounded relative behavior using forced loitering. Several configurations in-

volving selected relative patchpoints are considered and different relative geometries

are examined along each of the reference orbits at varying loitering distances.
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5.2 Recommendations

In this investigation, a number of recommendations are given regarding the anal-

ysis of relative motion in the restricted three body problem. These recommendations

are examined in the context of the reference orbits planned for NASA’s Artemis

missions. Based on the results of this work, it can be concluded that:

• The reference orbits of the 9:2 NRHO, small DRO, and large DRO possess

slightly different geometries between the ER3BP and CR3BP. This is due to

the fact that some of the characteristics of the orbits in the CR3BP (like pe-

riodicity and apolune values) are compromised in the transition process to the

ER3BP. Nevertheless, the orbit geometry of the reference orbits is preserved

and still provide adequate representations of motion obtained in the CR3BP.

The inclusion of the ER3BP is by no means a necessary step to transition so-

lutions to a higher-fidelity ephemeris model, yet it does demonstrate the effect

of the lunar eccentricity on baseline solutions.

• The equations of relative motion are validated for the restricted three-body

problem in a LVLH frame. They outperform more conventional two-body rel-

ative motion models in the 9:2 NRHO, small DRO, and large DRO in their

depiction of the relative dynamics along these reference orbits. Although the

2B-HCW is certainly more accurate for the small DRO where the orbit’s close

proximity to the Moon characterize it as more ”Keplerian” in shape, it attains

unacceptable error in other orbits of interest. On the contrary, the 3B-LERM

perform vastly better than their two-body counterparts, yet regions near per-

ilune should be avoided since the rapid separation of the chaser and target

exceed the domain of validity for the linearization.

• The 3B-LERM provide a method to obtain numerical tools to target relative

states in the LVLH frame. One of these numerical tools termed the relative state

transition matrix ΦR effectively solves a number of rendezvous and spacecraft
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loitering problems. By either targeting the target position or positions around

the target, shooting schemes in the LVLH frame better characterize the relative

motion from the perspective of the target and ensure that relative constraints

on position and velocity are met. There are no significant differences between

solutions obtained in the CR3BP and ER3BP, yet it is demonstrated that the

equations of relative motion can compute solutions in both regimes.

In summary, the equations of relative motion in the restricted three-body problem are

a suitable model to characterize relative dynamics between spacecraft along reference

orbits available in three-body dynamical regimes. Their accuracy, numerical tools,

and effectiveness in obtaining solutions to a number of rendezvous and spacecraft

loitering scenarios serve as a good foundation for relative motion analysis for NASA’s

proposed Artemis missions.

5.3 Future Work

As mission requirements continue to grow in complexity, a number of avenues

for future work involving the rendezvous and spacecraft loitering results are pro-

posed. First, a transition of the solutions obtained in the CR3BP and ER3BP into

a higher-fidelity ephemeris model should be performed to demonstrate the validity

and persistence of the investigated scenarios under the presence of the other gravita-

tional bodies like the Sun. In addition, a number of other reference orbits should be

considered to validate and apply the nonlinear equations of relative motion including

other halo orbits of interest. Furthermore, an assessment of the numerical sensitiv-

ities of the relative state transition matrix ΦR should be performed for purposes of

station-keeping in the LVLH frame. The assessment will aid in the implementation

and formulation of relative GNC systems to address future navigation problems for

NASA’s Artemis missions. Finally, optimizing the results obtained for impulse ma-

neuvers should be examined to provide a better idea of where to execute rendezvous

and spacecraft loitering maneuvers. Additional incorporation of constraints specific
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to the Orion spacecraft should be considered before any baseline reference trajectory

is provided for the real-world missions.
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