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ABSTRACT 

Some individuals with alcohol use disorder (AUD) continue to drink because they have 

developed a habit in which they are not considering the consequences of their actions. Habitual 

actions persist despite changes in reward and are often studied using devaluation procedures. 

Stress hormones, such as corticotropin releasing factor (CRF), have been linked to AUD when 

examining binge-like drinking and withdrawal in rodents. Stress has been examined in the switch 

from goal-directed to habitual behavior, and CRF has often mimicked the effects of stress 

exposure. This study looked at the possible direct effects of CRF on habit expression in rats 

using an operant paradigm. Finding possible novel mechanisms of habit could create an avenue 

for future novel treatment options. Female and male Long Evans rats were trained on a variable 

interval schedule using sucrose as a reward. Rats then underwent devaluation procedures 

including both sensory-specific satiety and conditioned taste aversion (CTA) to test for habitual 

behaviors. Prior to an extinction session post-CTA, animals were treated with either 20 mg/kg 

R121919, a CRF1 receptor antagonist, or vehicle. A second extinction session was conducted 

where animals received the alternative treatment. Lever presses were recorded as a measure of 

goal-directed or habitual behavior. Sensory-specific satiety devaluation tests revealed that 

animals were not sensitive to devaluation. This was further supported by both post-CTA 

extinction sessions. R121919 had no effect on lever pressing in either devalued or valued groups. 

Further research is needed to explore how a CRF receptor antagonist may affect habit formation 

or the transition from goal-directed to habit behaviors. Future studies should also examine any 

possible interaction effects CRF may have with alcohol or stress on habitual behaviors. 
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INTRODUCTION 

General Introduction 

Alcohol use disorder (AUD) is characterized by persistent excessive alcohol use despite 

negative consequences (American Psychiatric Association, 2013). AUD affects over 76 million 

people worldwide (Labots et al., 2018) and over 16 million people in the United States (NIAAA, 

2018). An individual who initially sought alcohol for its rewarding properties can begin to 

demonstrate inflexible behaviors (Everitt & Robbins, 2016). Inflexible behaviors can also be 

classified as stimulus-response associations (habits) and are often demonstrated by the reward 

being devalued and the response remaining the same (Barker et al., 2015; Everitt & Robbins, 

2005). This study specifically examined a possible novel mechanism of action involved in 

habitual behavior.  

  Corticotropin releasing factor (CRF) is a 41 amino acid peptide synthesized in the 

paraventricular nucleus of the hypothalamus that plays a role in stress response (Bale & Vale, 

2004; Vale, Spiess, Rivier, & Rivier, 1981). In the hypothalamus, CRF stimulates the release of 

adrenocorticotropin hormone (ACTH) which regulates the release of glucocorticoids and 

mineralocorticoids via the hypothalamus-pituitary-adrenal (HPA) axis (Bruijnzeel & Gold, 

2005). Extrahypothalamic CRF has been implicated in drug-seeking reinstatement (Schwabe, 

Dickinson, & Wolf, 2011) and is often discussed in the context of alleviating the negative effects 

of drug withdrawal (Koob & Volkow, 2010). For example, CRF receptor antagonists have been 

able to decrease stress-induced reinstatement of alcohol seeking in a footshock paradigm (Le et 

al., 2000) and CRF is associated with increased stress responsiveness (Koob & Zorrilla, 2010). It 

is known that stress can be linked to increased habit memory (Goodman, Leong, & Packard, 

2015) and that stress may increase habitual responding due to a disruption in reward processing 

(Bogdan, Santesso, Fagerness, Perlis, & Pizzagalli, 2011). However, few studies have linked the 

possible effects of CRF on habit in animal models, and none have examined the effects of CRF 

antagonists on habit expression. 
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Corticotropin Releasing Factor 

Extrahypothalamic CRF has often been studied in relation to alcohol withdrawal. Koob 

and Volkow (2016) explain that during withdrawal, CRF increases can be seen in the extended 

amygdala and that common anxiety and stress behaviors can be decreased with CRF receptor 

antagonists. The two types of CRF receptors, CRF1 and CRF2, are G-protein coupled receptors 

(Bruijnzeel & Gold, 2005). Generally, CRF1 receptors are thought to be linked to stress 

responsiveness and CRF2 receptors are associated with decreases in feeding behavior (Koob & 

Zorrilla, 2010). There is evidence that CRF2 receptors do a play a role in stress response and that 

it is opposite in nature compared to CRF1 receptors (Robinson, Perez-Heydrich, & Thiele, 

2019). Although CRF has a tenfold higher binding affinity for CRF1 receptors, where it 

stimulates stress response, urocortin II (UcnII) and UcnIII have a higher affinity for CRF2 

receptors (Bale & Vale, 2004). UcnI, UcnII, and UcnIII, are ligands part of the broader CRF 

family system and may contribute to some of the effects seen in CRF studies. CRF1 receptor 

antagonists have decreased alcohol self-administration in compulsively seeking and dependent 

animals (George, Le Moal, & Koob, 2012; Gilpin, Richardson, & Koob, 2008), reduced cocaine 

self-administration (Corominas, Roncero, & Casas, 2010), and mediated alcohol psychomotor 

sensitization (Pastor et al., 2008). Some studies have shown a reduction in drinking in non-

dependent, non-alcohol preferring rodents (Cippitelli et al., 2012; Simms, Nielsen, Li, & Bartlett, 

2014). These results are in direct contrast with data in alcohol-preferring rodent lines that found 

no differences in alcohol consumption in non-dependent animals (Gilpin et al., 2008; Sabino, 

Kwak, Rice, & Cottone, 2013). Treatment with R121919, a CRF1 receptor antagonist, either 

directly into the amygdala or systemically, reduces operant self-administration and avoidant 

behavior after predator odor exposure (Weera, Schreiber, Avegno, & Gilpin, 2020). The 

mechanisms between CRF and self-administration have not been completely revealed. In 

addition, there is some discrepancy in the literature regarding if animals have to be alcohol 

dependent or not before CRF receptor antagonists become effective at reducing self-

administration.  

Brain regions such as the medial prefrontal cortex (mPFC) have been implicated in drug-

seeking which is an important aspect of AUD. Hupalo, Bryce, et al. (2019) found that CRF in the 

mPFC impaired working memory and also may impact frontostriatal circuits in male rats. In 

mice, it was found that an injection of a CRF1 receptor antagonist into the mPFC reduced 
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ethanol and sucrose consumption in a drinking-in-the-dark (DID) paradigm while a CRF2 

receptor antagonist reduced only ethanol consumption (Robinson et al., 2019). CRF and CRF 

receptors influence multiple brain regions associated with AUD. As stated previously, a bulk of 

the literature studying alcohol and CRF has focused on withdrawal; however, there is evidence 

that CRF may be impacting multiple behaviors in rodents in regard to alcohol seeking and 

consumption. The use of CRF receptor antagonists, particularly CRF1, help explain roles the 

CRF system plays in integrating stress, anxiety, and addiction and are a useful tool to help 

discover other implications for CRF and behaviors associated with addiction, such as habit.  

Habit Formation: Alcohol Use Disorder 

Alcohol seeking behavior may become habitual for those who continue to drink even when 

they no longer desire it (Barker & Taylor, 2014) and these habits persist despite changes in 

reward (Hopf & Lesscher, 2014). This transition signals a shift from goal-directed behavior 

(response-outcome) in which an action depends on a reward to habitual behavior (stimulus-

response) in which an action is unaffected by changes in reward (Dickinson, 1985; Houck & 

Grahame, 2018). In rodents, devaluation of a reward can be done by giving free access to the 

reward prior to testing or using lithium chloride to produce a conditioned taste aversion (CTA) 

(Corbit & Janak, 2016; Dickinson, Wood, & Smith, 2002). In humans, there can be reduced 

behavioral flexibility with AUD, supporting the idea that habitual behavior is associated with 

addiction (McKim, Shnitko, Robinson, & Boettiger, 2016). The shift from reward-seeking in the 

early stages of addiction to habitual actions is due to mechanisms in the dorsal striatum (Koob & 

Volkow, 2010) and the corticostriatal circuit is involved in habit formation and instrumental 

leaning (Barker et al., 2015; Gremel & Costa, 2013). Rats with lesions to this area remain goal-

directed and sensitive to devaluation while sham lesioned rats did not (Balleine & O'Doherty, 

2010). Yin, Knowlton, and Balleine (2004) also found that rats given dorsolateral striatal lesions 

reduced their performance for a devalued reward while sham lesioned rats performed the same 

for both valued and devalued rewards. This gives further evidence that dorsolateral striatal 

lesions obstruct stimulus-response habit leaning, but goal-directed behavior remains the same.  

Animal models of habit formation that use alcohol as a reinforcer are a useful tool in 

studying behavior and possible causes of behavior of individuals with AUD in addition to 

possible treatments (O'Tousa & Grahame, 2014). Animals trained in an operant paradigm for a 
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short period of time will become sensitive to changes in outcome, however, following extended 

training, animals are no longer sensitive to these changes (Corbit, Nie, & Janak, 2012). Operant 

responding has also been shown to persist longer under extinction trials if a variable interval (VI) 

schedule is used during training (McKim et al., 2016). Therefore, longer consistent training, or 

over-training, using a VI schedule is more likely to form habits in rodents. Tricomi, Balleine, and 

O'Doherty (2009) found that similar to rodents, over-training humans can also create habitual 

actions as participants responded similarly for a devalued snack as a non-devalued snack.  

Habit Formation: Sex Differences 

Operant training paradigms are useful in studying habitual behavior that relies on 

dopamine pathways in the dorsal striatum. Estrogen has been shown to moderate dopamine 

function (Korol, 2004) and release in the striatum (Becker, 1999) and sex differences have been 

seen in striatal organization (Becker, 1999). Some evidence has also suggested that when given 

sucrose pellets as a reward, female rats develop habitual operant responding behavior more 

rapidly than males (Schoenberg, Sola, Seyller, Kelberman, & Toufexis, 2019). In mice, 

conflicting sex differences have been found in the rate of habit formation, possibly due to food 

versus alcohol being used as a reinforcer (Barker, Torregrossa, Arnold, & Taylor, 2010; Quinn, 

Hitchcott, Umeda, Arnold, & Taylor, 2007). Considering the import role of dopamine function 

and release in drug use and habit formation (Schwabe, Dickinson, et al., 2011), and general sex 

differences seen in other phases of addiction (Becker & Hu, 2008), it is important to study 

possible differences in habitual responding between female and male rodents because striatal 

function may differ. 

CRF, Stress, and Habit 

  Alcohol and stress can lead to prefrontal cortex dysfunction which can then cause an 

automatic habitual response to replace goal-directed behavior (Blaine & Sinha, 2017). Stress, 

and hormones within the stress system, could affect multiple memory systems. For example, 

CRF has been shown to alter dendritic spines in the hippocampus possibly leading to a disruption 

of spatial memory (Chen et al., 2010). CRF1 receptors could also impact reinforcing effects of 

alcohol as the CRF1 receptor antagonist MPZP dose dependently reduced operant responding in 
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dependent alcohol preferring (P) rats (Gilpin et al., 2008). There may be sex differences in rodent 

models of stress and CRF as female rodents exhibit greater stress response compared to males 

(Becker & Koob, 2016). Female CRF1 receptor knockout mice in a conditioned place aversion 

following morphine withdrawal showed a higher decrease in ACTH compared to males and there 

is a potential sex difference in the learning and recall of aversive stimuli (Garcia-Carmona, 

Baroja-Mazo, Milanes, & Laorden, 2015).  

Research has demonstrated that acute stress after devaluation makes humans more likely 

to show habitual over goal-directed behaviors possibly due to noradrenergic activity or other 

stress-related hormones (Schwabe, Dickinson, et al., 2011; Schwabe, Hoffken, Tegenthoff, & 

Wolf, 2011; Schwabe & Wolf, 2010). Rats showed better retention of procedural training after 

glucocorticoid administration into the dorsal striatum (Quirarte et al., 2009). Although not CRF 

specific, this provides evidence of stress systems having an effect on habit formation and 

procedural learning and memory. Lemos, Shin, and Alvarez (2019) found that a bath application 

of CRF increased firing of cholinergic interneurons in the striatum which express CRF1 

receptors. The authors hypothesized that CRF could affect dopamine transmission through 

activation of muscarinic acetylcholine receptors or by direct activation of CRF receptors on 

dopamine terminals. There is already evidence for a role of the CRF system on habitual 

behaviors when examining nicotine sensitization and altered CRF expression in the dorsal 

striatum, hippocampus, and prefrontal cortex (Carboni, Romoli, Bate, Romualdi, & Zoli, 2018). 

CRF could have a broad role in stimulus-response associations and procedural learning and 

memory which may have larger implications for exploring possible causes and treatments of 

addiction.  

Hypotheses 

CRF has not been directly studied in relation to habit and alcohol. CRF antagonists have 

attenuated rodent intake of palatable foods in home cages and after yohimbine-induced 

reinstatement (Cottone et al., 2009; Ghitza, Gray, Epstein, Rice, & Shaham, 2006). These 

findings suggest that CRF may play a role in responding for natural rewards, such as sucrose, 

when given intermittent access. This study examined CRF and the effect it may have on habit 

expression in rats by using systemic injections of the CRF1 receptor antagonist R121919. I 

hypothesized that R121919 would attenuate habit expression. Based on conflicting results of 
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females and males’ performance in habitual paradigms and also sex differences within stress 

systems, I hypothesized that there is a strong possibility of a sex difference and that the effects of 

R121919 would be greater in females.   



 

16 

METHODS 

Subjects 

24 female and 24 male adult Long Evans rats were used. Animals were on a 12hr 

light/dark cycle (lights on 07:00-19:00) and had ad libitum access to food. Long Evans were 

chosen based on previous studies that found successful habitual behavior (e.g. Corbit et al., 2012; 

Nie & Janak, 2003; Vandaele, Pribut, & Janak, 2017). All animals were single-housed and 

handled for three days prior to any procedures. One female rat failed to train and was dropped 

from the study leaving a total of 47 animals included.  

Equipment 

The operant chambers used are 30 x 30 x 24.5 cm from Med-Associates, East Fairfield, VT 

and are equipped with two retractable levers, an illuminated house light, and a retractable sipper 

tube with a stainless-steel double ball barring spout. Chambers are individually kept in sound-

attenuating cabinets. Data from the operant chambers was collected using MED-PC software 

(Med-Associates). 

Drugs 

Sucrose was used as a reinforcer in the chambers and mixed in water at concentrations of 

1.5, 2, or 3%. Maltodextrin was used as a control reinforcer and mixed in water at concentrations 

of 1 or 2%. Lithium Chloride (LiCl) for CTA procedure was dissolved in sterile water and 

injected intraperitoneally (i.p.) at 95.25 mg/kg at a volume of 10 mg/ml. R121919 was dissolved 

in 20% 2-hydroxypropyl-beta-cyclodextrin (HPbCD; w/v in DI water) and injected 

subcutaneously (s.c.) at 20 mg/kg at a volume of 2 ml/kg 45 minutes prior to extinction trials 

(Sabino et al., 2013). Dosing was chosen based on previous work by Funk, Zorrilla, Lee, Rice, 

and Koob (2007) in which 20 mg/kg was used as the highest dose and reduced ethanol self-

administration in dependent animals compared to vehicle treated animals. Vehicle injections 

were 20% HPbCD using the same volume, route, and time schedule as R121919 injections. 
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Procedure 

Training 

Animals were shaped with only the active lever present using sucrose as a reinforcer on a 

fixed ratio (FR)1 schedule in one 45 minute-session per day. Animals were given free access to 

the sipper tube for approximately 200 licks on the first day of training before beginning to be 

shaped on an FR1 schedule. 1.5% sucrose was used for the first 7 days of FR1 training, 2% 

sucrose was used for 3 additional days, until a final concentration of 3% was used as a reinforcer 

for the duration of the study. The inactive lever was introduced one week after training began. 

For the first five days of training animals were water-deprived and given access to home cage 

water for 60 minutes per day following operant-training sessions. They were then given normal 

access to home cage water for 12 days. Following normal water access, animals were water-

restricted throughout the rest of the study where water was pulled between 09:00-10:00 and 

returned after operant sessions before the start of the dark cycle (19:00). Animals were given a 

total of 20 FR1 sessions before being moved to an increasing variable interval schedule (VI) 

consisting of one VI7, one VI15, and two VI30 sessions before moving to a VI60 schedule. 

Sensory-specific satiety devaluation was tested after 7 and 11 VI60 sessions. Conditioned taste 

aversion and additional extinction trials were tested after 15 VI60 sessions. A visual timeline for 

general procedures can be seen in Figure 1. 

Sensory-Specific Satiety Devaluation 

On day 13 of training rats were given access to maltodextrin in their home cages to avoid 

neophobia. Animals were divided into devalued and valued groups based on operant responding 

on day 7 of VI60 sessions. Devalued animals received 45 minutes of free access to 3% sucrose 

(training reward) in their home cages and valued animals were given free access to maltodextrin 

(control reward). The first satiety devaluation procedure (after 7 VI60 days) used 2% 

maltodextrin and the second test (after 11 VI60 days) used 1% maltodextrin. Immediately 

following pre-feeding animals were placed in operant chambers for a 15-minute extinction trial 

in which no reward was delivered. On the second day of testing, animals were given free access 

to the alternate reward. Testing days one and two were separated by one day of normal VI60 

training. This procedure was chosen based on previous satiety-induced devaluation procedures 
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that used sucrose as a training reinforcer (Corbit et al., 2012; Hay, Jennings, Zitzman, Hodge, & 

Robinson, 2013; Shillinglaw, Everitt, & Robinson, 2014; Vandaele, Pribut, & Janak, 2017) 

although some methodological changes were made (e.g. only using sucrose as a reinforcer). Prior 

to pre-feeding in the home cage animals received a s.c. injection of saline to acclimate animals to 

injections prior to drug delivery. 

Conditioned Taste Aversion 

Animals were divided into devalued and valued groups based on day 15 of VI60 operant 

responding. Devalued animals received 30 minutes free access to 3% sucrose (training reward) in 

their home cages immediately followed by an i.p. injection of LiCl. Valued animals received 30 

minutes free access to 1% maltodextrin (control reward) followed by an i.p. injection of LiCl. All 

rats received at least three days of reward and LiCl pairings but could receive up to seven days. 

All animals met CTA criteria of a 75% decreased intake from baseline. After all CTA procedures 

animals were given one rest day before undergoing 15-minute extinction trial. 45-minutes prior 

to extinction animals received either an injection of R121919 or vehicle. A second extinction day 

was given in which animals were injected with the drug they had not received on day one. 

Analyses 

Active lever presses were the main measure of habitual responding in extinction trials 

after sensory-specific satiety devaluation and conditioned taste aversion. For sensory-specific 

satiety devaluations a 2 (order: devalued first vs. valued first) x 2 (sex: female vs. male) x 2 (day: 

devalued vs. valued) mixed methods ANOVA was used. Post CTA extinction trials were 

analyzed with a 2 (group: devalued vs. valued) x 2 (sex: female vs. male) x 2 (drug: R121919 vs. 

vehicle) between-subjects ANOVA. The two post-CTA extinction trials were compared using a 

mixed methods ANOVA comparing R121919 and vehicle as a within-subjects variable. Data 

were collapsed across variables where appropriate and follow-up simple effects tests were 

conducted on any significant interaction effects. 
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RESULTS 

Operant Training 

Active lever presses during training days are shown in Figure 2. Only the last 10 days of 

FR1 schedule are shown because access to the sipper tube after a lever response started at 30 

seconds and then was progressively moved to 5 seconds based on individual animal’s 

performance. It is important to note that on VI60-5 10 female rats’ lever presses and intake were 

not recorded due to mechanical failure and so data points on that day represent the averages of 

fewer animals (n = 37; 13 females, 24 males). For active lever presses, a mixed-effects model 

found a main effect of day, F(2.06,91.75) = 28.91, p < .001. Due to nearly non-existent 

responding, inactive lever data are not shown. Intake data was also recorded across training days 

(see Figure 3). A mixed-effects model found a main effect of day, F(5.80,259.1) = 11.37, p 

< .001, and sex, F(1,45) = 7.68, p = .008 where females consumed more sucrose than males. 

Sensory-Specific Satiety Devaluation One 

A mixed methods ANOVA found no significant main effect of day, F(1,43) = 0.09, p 

= .891. There were also no main effects of sex, F(1,43) = 0.53, p = .472, or order F(1,43) = 0.27, 

p = .607. There was an interaction of day and order, F(1,43) = 10.01, p = .003, hp2 = .189. A split 

file comparison, collapsed across sex, found that animals who were devalued on day one had 

significantly more lever presses on devalued day (M = 33.48, SD = 26.98) compared to valued 

(M = 27.26, SD = 17.83), t(22) = 2.28, p = .033, d = .68 (see Figure 4A). Animals who were 

valued on day one did not have a significant difference in lever presses between devalued (M = 

30.63, SD = 24.55) and valued (M = 36.38, SD = 25.35) days, t(23) = 2.06, p = .051. Normality 

tests revealed that assumptions were violated, and four outliers were identified. A similar pattern 

of results was found when outliers were removed (n = 43), no main effects of day, sex, or order 

but a significant interaction of day and order. However, a split file follow-up t-test opposed 

earlier findings in which animals valued on day one had significantly more lever presses on 

valued day (M = 31.77, SD = 20.53) compared to devalued (M = 25.64, SD = 18.00), t(21) = 

2.56, p = .018, d = 2.42 (see Figure 4B). No significant difference was found between valued (M 

= 23.29, SD = 12.60) and devalued (M = 26.95, SD = 16.84) days in animals that were devalued 
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on day one, t(20) = 1.63, p = .119. In an attempt to clear up the discrepancy a Wilcoxon Signed 

Ranks Test was ran comparing devalued and valued, with all animals included, still split based 

on order. The non-parametric test revealed an overall pattern that animals pressed more on day 

one of testing compared to day two. This test found that both groups were significantly different 

such that those that were devalued first had significantly more lever presses on devalued 

compared to valued, Z = 1.98, p = .048, and those that were valued on day one had significantly 

more lever presses on valued day compared to devalued, Z = 2.36, p = .018. 

Sensory-Specific Satiety Devaluation Two 

Active lever presses were analyzed using a mixed methods ANOVA found no significant 

main effect of day, F(1,43) = 2.28, p = .138, devalued (M = 24.15, SD = 19.97) and valued (M = 

27.13, SD = 17.83) days did not differ (see Figure 5A). There were also no main effects of sex, 

F(1,43) = 0.14, p = .709, or order, F(1,43) = 0.10, p = .749 and no significant interactions were 

found. Normality tests revealed that assumptions were violated, and one outlier was identified. A 

second ANOVA run with the outlier removed (n = 46) revealed a significant main effect of day, 

F(1,42) = 5.88, p = .020, hp2 = .123 (see Figure 5B), such that animals pressed more times on 

valued day (M = 26.63, SD = 17.70) compared to devalued day (M = 22.50, SD = 16.65). A 

Wilcoxon Signed Ranks Test, that included all animals collapsed across sex and order, also 

found a significant difference between valued and devalued days. 

Post-CTA Extinction 

All animals met CTA criteria, with four animals (8.5%) needing all seven days of LiCl 

injections. The first post-CTA extinction trial active lever presses were analyzed using a 

between-subjects ANOVA comparing group, sex, and drug. See Table 1 for group sizes. There 

were no main effects of group, F(1,39) = 0.74, p = .396, sex, F(1,39) = 2.24, p = .142, or drug 

F(1,39) = 0.21, p = .647 (see Figure 6, Table 2). There were no significant interaction effects. 

Normality tests revealed that assumptions were violated with one outlier; however, removal of 

the outlier did not affect the results and so all data were included. 

The second post-CTA extinction trial was analyzed in the same manner as the first 

extinction trial. No main effects of group, F(1,39) = 0.06, p = .811, sex, F(1,39) = 0.05, p = .818, 
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or drug, F(1,39) = 0.12, p = .731 (see Figure 7, Table 3). No significant interactions were found. 

Normality tests revealed assumptions were violated with one outlier, but removal of the outlier 

did not change the results and so all data were included.  

A mixed-methods ANOVA was conducted on active lever presses to compare R121919 

and vehicle treatments across both extinction trials. Four animals were excluded from analyses 

because they received vehicle treatment on both days (n = 43, 21 Devalued, 22 Valued). No 

interaction was found across day and treatment order, F(1, 35) = 4.00, p = .053, so data were 

collapsed across order. There were no main effects of group, F(1, 39) = 0.47, p = .496, sex, 

F(1,39) = 0.95, p = .337, or day, F(1, 39) = 0.48, p = .494 (Figure 8). There were also no 

significant interactions between day and group or day and sex. 
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DISCUSSION 

General Discussion 

This study looked at the effects of the CRF1 receptor antagonist R121919 on habit 

expression by measuring lever presses in an operant paradigm using sucrose as a reinforcer. Rats 

did not demonstrate meaningful devaluation in sensory-specific satiety extinction tests with no 

drug present and so were tested in a CTA paradigm. No group or drug differences were present 

during CTA extinction trials suggesting that while animals were not sensitive to devaluation, 

R121919 had no effect on lever pressing. 

The major limitation is this study was the inability to demonstrate a successful 

devaluation. One possible reason for this is that rats may not have reach satiety in pre-feeding. If 

rats were not satiated during pre-feeding the value of sucrose as a reinforcer would have 

remained unchanged and lever pressing would not have been affected. Another possible reason 

for a failed devaluation is that rats might have already been exhibiting habitual behavior due to 

overtraining. Schoenberg et al. (2019) found that female Long Evans rats demonstrate habitual 

behavior after six VI30 sessions. Other studies have demonstrated habitual behavior using 

variable interval schedules in male Long Evans rats after 4 and 12 sessions (Lingawi & Balleine, 

2012; Yin et al., 2004). During training, animals did not reach consistent responding and had 

variable response rates which led to an increase in the number of training session prior to 

devaluation testing. Animals were initially trained on 1.5% sucrose in operant chambers without 

prior exposure. Possible solutions would be to give animals access to sucrose in home cages 

prior to the start of training or start training with a higher concentration of sucrose which is then 

faded out to a lower final concentration in order to encourage responding (e.g. Windisch & 

Czachowski, 2018).  

Stress and Habit 

Stress has been shown to shift animals from goal-directed responses to habitual behaviors 

(Dias-Ferreira et al., 2009). A disruption of top-down processes and an increase of activity in the 

dorsolateral striatum (DLS) most likely contribute to the shift to habit. In a reversal learning task, 

stressed animals switched to a DLS-dependent strategy (Snyder, Hill-Smith, Lucki, & Valentino, 
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2015) and this same pattern was shown in animals with intracerebroventricular injections of CRF 

(Hupalo, Bryce, et al., 2019). CRF could contribute to the disruption of higher order executive 

functions seen in stressed animals. For example, CRF in the nucleus accumbens made rats less 

sensitive to effort cost (Bryce & Floresco, 2019) and CRF activation in the mPFC impairs 

working memory (Hupalo, Martin, Green, Devilbiss, & Berridge, 2019). It is also known that 

high levels of CRF in the locus coeruleus switch animals to habit behavior (Hupalo, Bryce, et al., 

2019). Stress might be influencing behaviors by decreasing executive function, and CRF appears 

to be acting in a similar manner. While there is a clear link between stress and CRF, and stress 

and habit, there is a lack on studies looking directly at the effects of CRF on habitual behaviors. 

It was hypothesized in this study that a CRF1 receptor antagonist would encourage goal-directed 

behavior in habitual animals because CRF and stress appear to promote habits. This could have 

uncovered a new possible mechanism for habit and an integration of stress, habit, and CRF 

literature.  

The CRF1 receptor antagonist R121919 in this study had no effect on lever pressing in 

animals who were not sensitive to devaluation. The lack of a significant effect might have been 

because while excess CRF appears to bias animals towards habitual behavior, it may not 

influence habit in normal training paradigms. CRF can mimic the effects of stress (Bogdan et al., 

2011). The effects of stress on CRF levels has been conflicting. While restraint stress appears to 

increase CRF levels in the amygdala (Kalin, Takahashi, & Chen, 1994), a footshock history 

alters CRF neurotransmission, but not density, in the locus coeruleus (Curtis, Pavcovich, 

Grigoriadis, & Valentino, 1995). Although CRF receptors have been reported in the DLS (De 

Souza et al., 1985) the effects of CRF in this brain region have been understudied. CRF may 

serve as a modulator between stress and habitual behaviors. Future studies should explore the 

relationship between stress and CRF in the DLS. In addition, it would be interesting to examine 

if stressed animals demonstrating habitual responding would revert to goal-directed behaviors 

after being given a CRF receptor antagonist. The effects of CRF on habit should be explored in 

the context of stress as CRF may serve as a mechanism of action for habit but only in stressed 

animals. 
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Sex Differences 

There are sex differences found in habitual behaviors, response to stress, and within the 

CRF system. Despite these known differences, the comparison of female and male animals 

remains an understudied field. In the current study there were no sex differences in active lever 

presses during training or any devaluation testing. Female rats did consume more sucrose in the 

chambers during training. Females rodents have been shown to be more prone to consume high-

sugar palatable diets than males (Klump, Racine, Hildebrandt, & Sisk, 2013) and have a higher 

preference for glucose and saccharin (Valenstein, Kakolewski, & Cox, 1967). Compared to 

males, female rodents also generally consume more ethanol and a saccharine solution (Oberlin, 

Best, Matson, Henderson, & Grahame, 2011). There is evidence that sex differences may exist in 

habitual behaviors and could impact the effects of drugs of abuse. Differences in dopamine 

activity in the striatum may be linked to gonadal hormones (Barker & Taylor, 2019). Indeed, in 

female rodents estradiol and progesterone influence dopamine activity but have limited impact in 

males (Yoest, Quigley, & Becker, 2018). It has been shown that age of ethanol exposure and sex 

interact and shift females exposed in adolescence to habitual strategies in adulthood, but not 

males, and the same exposure in adulthood only has the opposite effect (Barker, Bryant, 

Osborne, & Chandler, 2017). In order to develop novel treatment options for AUD and substance 

use disorder it is important to know how drugs of abuse impact females and males differently.  

I hypothesized that there would be sex differences in response to R121919 based on 

known differences in stress and CRF systems. Response to stress is different in females and 

males and this extends to CRF (Hodes & Epperson, 2019). For example, CRF that has been 

increased due to stress impairs attention in men but not women (Hodes & Epperson, 2019). CRF 

differences between females and males have been found in several brain regions including the 

dorsal raphe (Howerton et al., 2014), hippocampus (McAlinn et al., 2018), medial septum 

(Wiersielis et al., 2019), and locus coeruleus (Bangasser et al., 2010; Bangasser, Wiersielis, & 

Khantsis, 2016; Bangasser, Zhang, Garachh, Hanhauser, & Valentino, 2011). It has also been 

found that stress circuits activated by CRF differ between females and males (Salvatore et al., 

2018). It is necessary to further explore possible sex differences in the CRF system in general, 

but also specifically as they relate to drugs of abuse and inflexible behaviors. Stress, CRF, and 

ethanol may all interact to help make the switch to habit, but there may be key differences in 

these mechanisms between females and males. 
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Drugs of Abuse and Habit 

CRF may have specific effects on habit only when ethanol is consumed or may perhaps 

rely on animals being dependent on alcohol. As previously discussed, in AUD the habit system is 

used more often than the goal-directed system (Vandaele & Janak, 2018) and alcohol and stress 

can increase glucocorticoids, stress hormones, which can lead to increased striatal activity 

(Blaine & Sinha, 2017). Ethanol is known to reduce orbitofrontal control, a structure that 

contributes to shifts in behavior, leading to an increase in habitual behaviors (Gremel & Costa, 

2013; Renteria, Baltz, & Gremel, 2018). Drugs of abuse, including alcohol, disrupt dopamine in 

the striatum and lead to neuroadaptations that encourage habitual behavior (Schwabe, Dickinson, 

et al., 2011).  Similar to the possible context of stress, CRF may have alcohol-specific effects in 

habit expression. Drugs of abuse can shape habitual behavior rapidly in what are sometimes 

referred to as pathological habits (Corbit, 2018). Future research should study the effects CRF 

might have on habits formed using drugs of abuse as a reinforcer. In a DID paradigm, a CRF1 

antagonist decreased ethanol consumption and overall food intake and had no effect to a slight 

increase in sucrose consumption (Giardino & Ryabinin, 2013) suggesting that CRF could have 

reinforcer-specific effects. The effects of R121919 on habit expression should be further 

explored in animals responding for ethanol, dependent animals, or animals with a drinking 

history to find possible new mechanisms.  

Limitations and Future Directions  

One limitation of the present study was that the rats took longer to train on an FR1 

schedule than originally expected. Variability in lever pressing for sucrose and rats not achieving 

ordinary levels of responding led to unanticipated methodological changes. These changes 

included increasing of sucrose concentration, changing access to home cage drinking water, and 

increasing the amount of training days prior to a devaluation test all in an effort to have animals 

responding at a stable rate with minimal variability.   

In order to draw meaningful conclusions from a sensory-specific satiety devaluation, 

animals must have at least one successful devaluation. This study found inconclusive results 

during the first and second extinction tests. When an outlier was removed on the second 

extinction test day a statistically significant difference in lever pressing was found between 
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valued and devalued days; however, with large variability across both days this effect may be 

minimal. It could be that the devaluation procedure was not successful or that rats may have been 

over-trained in the operant boxes prior to devaluation testing and therefore could have developed 

habitual behavior which would be insensitive to devaluation procedures.  

Another limitation in the current study were small group sizes in the separate CTA 

extinction trials. Measuring across two time points within-subjects helped in increasing group 

size, particularly when collapsed across sex, but no effect of R121919 was seen in any of the 

groups. CRF1 receptor antagonists may not have an impact on habit expression but may 

influence habit formation. Future studies should examine the influence CRF may have on earlier 

stages of habit.  

Future directions should also consider possible impacts of CRF2 receptors. A CRF2 

receptor agonist have reduced binge-like ethanol drinking in both female and male mice and 

CRF2 receptor availability may impact CRF1 receptor antagonist effectiveness (Robinson et al., 

2019). It is also known that other species such as prairie voles have increased CRF2 receptors, 

and that prairie voles share a similar monogamous nature and other hormone systems with 

humans (Potretzke, Robins, & Ryabinin, 2020). There is currently no CRF receptor radiotracer to 

detect CRF receptor levels or locations in the human brain. Using additional animal models such 

as prairie voles and focusing on CRF2 receptors could help with translational research to 

humans. CRF binding protein and the urocortins should also be included in future research as 

they may be impacting drinking behavior and have been understudied and may offer alternative 

explanations for mechanisms of action. CRF also interacts with many other neurotransmitters 

and hormones, such as orexin, which may be additional targets for understanding habitual 

behaviors (Kim & Martin-Fardon, 2020). Orexin is known to play a role in positive reward-

seeking behaviors (Borgland et al., 2009; Harris, Wimmer, & Aston-Jones, 2005; Lawrence, 

Cowen, Yang, Chen, & Oldfield, 2006) in other areas of the corticostriatal system and may 

impact habit formation or expression.  

Comparing differences in CRF receptors in the DLS, dorsomedial striatum (DMS), and the 

nucleus accumbens would also provide further insight into when CRF may be affecting habit. It 

has been shown that CRF influences dopamine release in the nucleus accumbens and increases 

cholinergic interneuron firing in both the nucleus accumbens and the dorsal striatum (Lemos et 

al., 2019). Examining CRF in the nucleus accumbens could provide insight into how CRF may 
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be acting on the DLS. Activity in the DLS and DMS during the switch from goal-directed to 

habitual behavior in early versus extended training is still not clear in how the two brain regions 

interact (Vandaele et al., 2019). Future research attempting to see how CRF might impact the 

switch between goal-directed and habitual behavior should investigate the interaction between 

these brain regions. CRF in alcohol use has often been studied in the context of withdrawal with 

a focus on the amygdala (Robinson et al., 2019; Valdez et al., 2002; Zorrilla, Logrip, & Koob, 

2014). In habit, it is known that the basal lateral amygdala is first recruited but after extended 

training the central nucleus of the amygdala (CeA) maintains cocaine drug-seeking habits 

mediated by the DLS (Lipton, Gonzales, & Citri, 2019; Murray et al., 2015). The effects of CRF 

on the connection between the CeA and the DLS should be studied further. 

Conclusions 

This study examined the CRF1 receptor antagonist R121919’s effect on habit expression. 

R121919 had no effect on active lever presses in an extinction trial in animals that were not 

sensitive to devaluation after a CTA procedure. CRF could mediate the early stages of habit 

formation or may play a role in habit expression only when additional factors such as stress or 

alcohol are included. There were no sex differences in lever presses during operant training or in 

any of the extinction conditions; however, females did drink more sucrose in the chambers 

during training sessions than males. Future research should attempt to continue to examine the 

connection between CRF and habit possibly as it relates to the switch from goal-directed 

behaviors. New mechanisms of action could lead to new possible treatment options in conditions 

where an overactive habit system is present such as in AUD. 
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Table 1. Group Sizes in First and Second Post-CTA Extinction Trials. 

  

Group Extinction One (n) Extinction Two (n) 

R121919 Devalued 12 9 

R21919 Valued 12 10 

Vehicle Devalued 11 14 

Vehicle Valued 12 14 

Total 47 47 
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Table 2. Average Active Lever Presses During Post-CTA Extinction Test 

Note: N = 47    

Drug Female Male Total 

 Devalued Valued Devalued Valued Devalued Valued 

R121919       

M 30.17 40.83 52.50 62.83 41.33 51.83 

SD 19.36 30.63 45.57 44.24 35.36 38.05 

Vehicle       

M 43.20 46.50 50.67 68.83 47.27 57.67 

SD 29.35 37.84 32.22 74.10 29.64 57.30 
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Table 3. Average Active Lever Presses During Second Post-CTA Extinction Test 

Note: N = 47  

Drug Female Male Total 

 Devalued Valued Devalued Valued Devalued Valued 

R121919       

M 29.25 29.20 32.40 46.20 31.00 37.70 

SD 13.25 16.12 21.84 35.84 17.52 27.69 

Vehicle       

M 53.57 27.43 34.14 36.43 43.86 31.93 

SD 72.97 17.84 22.48 20.82 52.84 19.21 
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FIGURES 

 

 

 

 

 

 

 

Figure 1. Timeline of Methodology 
Flowchart of general timeline of operant training schedules and devaluation testing. Animals 
received an injection of either R121919 or vehicle prior to post-CTA extinction one and received 
the alternative treatment prior to post-CTA extinction two. 
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Figure 2. Average Active Lever Presses Across Training Days 
Females and males increased active lever responding across training days. There are no sex 
differences. Mean and SEM for each sex shown across training days. 
  



 

33 

 

 

 

 

 

 

Figure 3. Average Sucrose Intake Across Training Days 
Females consumed more sucrose than males across most days. Mean and SEM reported for each 
sex across training days. (*p < .05).  
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Figure 4. Average Lever Presses During Extinction Trials in First Devaluation Test 
A significant effect of order was found so data were not collapsed across order. Animals who 
were devalued on day one (devalued first) pressed more on devalued day compared to valued 
(A). After outliers were removed it was revealed that animals that were valued on day one 
(valued first) pressed more on valued day than devalued (B). Mean and SEM reported for all 
groups.  
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Figure 5. Average Lever Presses During Extinction Trials in Second Devaluation Test 
Data were collapsed across order due to no significant effect. There was no difference in lever 
presses between devalued and valued days (A). After one outlier was removed a significant 
difference was found between devalued and valued days (B). Mean and SEM are shown.  
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Figure 6. Active Lever Presses During Post-CTA Extinction One 
No sex differences were present and so data were collapsed across sex. There were no 
differences in active lever presses between devalued or valued groups and no difference between 
R121919 and vehicle in either group. Mean and SEM are shown.  
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Figure 7. Active Lever Presses During Post-CTA Extinction Two 
No sex differences were present and so data were collapsed across sex. There were no 
differences in active lever presses between devalued or valued groups and no difference between 
R121919 and vehicle in either group. Mean and SEM are shown.  
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Figure 8. Active Lever Presses Collapsed Across Both Post-CTA Extinction Trials 
Treatment was compared within-subjects across both extinction trials. There were no significant 
sex differences or order effects and so data shown are collapsed across both variables. There 
were no differences in active lever presses between R121919 and vehicle treatment days in either 
devalued or valued groups. Mean and SEM are shown for all groups.  
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