
ENRICHED ISOGEOMETRIC ANALYSIS FOR

PARAMETRIC DOMAIN DECOMPOSITION AND FRACTURE ANALYSIS

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Chun-Pei Chen

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

December 2020

Purdue University

West Lafayette, Indiana



ii

THE PURDUE UNIVERSITY GRADUATE SCHOOL

STATEMENT OF DISSERTATION APPROVAL

Dr. Ganesh Subbarayan, Chair

School of Mechanical Engineering

Dr. Marcial Gonzalez

School of Mechanical Engineering

Dr. Thomas Siegmund

School of Mechanical Engineering

Dr. Rodrigo Salgado

School of Civil Engineering

Approved by:

Dr. Nicole Key

Head of the School Graduate Program



iii

To my family, fiancée and mother

for their unconditional support and love



iv

ACKNOWLEDGMENTS

When reviewing my life during the past few years at Purdue University, I found

myself begin to cherish the journey more than the destination. What is even more

precious is the friendship and relationship built during the course of this endless

journey of learning. It is the teachers, mentors, colleagues, friends and family that

turn a plain period of time into a meaningful life.

I feel extremely privileged to have the chance to work with my advisor, Professor

Ganesh Subbarayan. I can still bring back my memory to the first time discussing

Green’s function in front of the office desk. I still remember the times when I doubting

myself after working around the clock for indentation experiments and writing scripts

for the simulations. It is his unwaivering patience, insightful thoughts and profound

knowledge that inspire me to become a better individual. I owe my deep gratitude

to his enlightened guidance in all respects.

I want to sincerely thank my esteemed committee members: Prof. Marcial Gon-

zalez, Prof. Rodrigo Salgado and Prof. Thomas Siegmund for their constructive

suggestions and advice. I also owe my gratitude to Dr. Kamal Sikka from IBM for

being my project mentor, and Dr. Siva Gurrum from Texas Instruments for being

my internship supervisor. I am also grateful to the financial support from Cool-

ing Technology Research Center, Semiconductor Research Corporation and Purdue

University.

I want to extend the acknowledgments to the alumni and members of the HiDAC

lab. I would like to thank Hung-Yun for being the first person remotely introducing

the lab to me and for being my mentor during the internships. I am thankful to

Aniruth for helpful discussion, Tao for our effective collaboration, Yuvraj for our

friendship and Yaxiong for our productive cooperation. I also want to thank Chetan,

Chung-Shuo, Colin, David, Huanyu, Pavan, Sanjit, Sukshitha, Sudarshan and Travis



v

for their assistance and company in ME 3139, in the Railway building and in the

underground.

Many thanks must go to my friends for their encouragement during my doctoral

study. Their constant company, either locally or remotely, have made my life more

delightful at West Lafayette. I would like to thank my fiancée for sharing my thoughts,

emotions and dreams at every moment. Lastly, my deepest gratitude goes toward my

siblings, and most importantly, my mother. As a single parent having five children,

her unconditional supports and love throughout my life are beyond words that can

be fitted in any form of document.



vi

TABLE OF CONTENTS

Page

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.1 Multi-Patch Coupling Isogeometric Analysis . . . . . . . . . . . 4
1.1.2 Modeling of Crack Tip Singularities and Crack Face Discontinuity 7

1.2 Gaps in Existing Literature . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3 Research Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2. BACKGROUND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1 Non-Uniform Rational B-Spline Approximation Space . . . . . . . . . . 12
2.2 Enriched Isogeometric Analysis . . . . . . . . . . . . . . . . . . . . . . 14
2.3 Choice of Weight Function in EIGA . . . . . . . . . . . . . . . . . . . . 19
2.4 The Need for Distance and Projection . . . . . . . . . . . . . . . . . . 22

3. CONFIGURATIONAL DERIVATIVES, CONFIGURATIONAL FORCES
AND CONFIGURATIONAL OPTIMIZATION . . . . . . . . . . . . . . . . 26
3.1 Configurational Optimization Problem and Configurational Tensor for

Insertion of Arbitrary Heterogeneity . . . . . . . . . . . . . . . . . . . . 27
3.1.1 The Configurational Optimization Problem and Configurational

Derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.1.2 Configurational Derivative Corresponding to Translation, Ro-

tation, and Scaling of Heterogeneity: Deriving Configurational
Forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2.1 Optimal Location of an Elliptical Hole in a Plate . . . . . . . . 37
3.2.2 Optimal Orientation of an Elliptical Hole . . . . . . . . . . . . . 39

4. IMPLEMENTATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.1 HiDAC: Hierarchical Design and Analysis Code . . . . . . . . . . . . . 41
4.2 HiDAC Key Modules and Their Features . . . . . . . . . . . . . . . . . 43
4.3 NURBS Geometry Modeler . . . . . . . . . . . . . . . . . . . . . . . . 45
4.4 Analysis Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50



vii

Page

4.4.2 Scripting Interface . . . . . . . . . . . . . . . . . . . . . . . . . 51

5. PARAMETRIC STITCHING FOR SMOOTH COUPLING OF SUBDO-
MAINS WITH NON-MATCHING DISCRETIZATIONS . . . . . . . . . . . 54
5.1 Construction of Enriched Field Approximations . . . . . . . . . . . . . 54
5.2 P-Stitching Formulation for Elasto-Static Problems . . . . . . . . . . . 57

5.2.1 Discretization for Blending of Two Patches . . . . . . . . . . . . 59
5.3 Patch Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.3.1 Matching and Hierarchical Discretizations . . . . . . . . . . . . 62
5.3.2 Non-matching Discretizations . . . . . . . . . . . . . . . . . . . 65

5.4 Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.4.1 Timoshenko Beam . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.4.2 Thick-Walled Cylinder Subjected to Internal Pressure . . . . . . 70
5.4.3 Heat Conduction in Coupled Non-planar Surfaces . . . . . . . . 72
5.4.4 Three-dimensional Hook . . . . . . . . . . . . . . . . . . . . . . 74

6. ISOGEOMETRIC ENRICHMENT FOR STRESS SINGULARITIES IN MULTI-
MATERIAL WEDGES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.1 Asymptotic Analysis of Stress Singularities . . . . . . . . . . . . . . . . 78
6.2 Isogeometric Enrichment for Multi-material Wedges and Cracks . . . . 83
6.3 Discretized Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.4 Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.4.1 Bi-material Wedge with Bonded Interface . . . . . . . . . . . . . 90
6.4.2 Inclined Crack in a Homogeneous Plate . . . . . . . . . . . . . . 93
6.4.3 Quasi-Static Crack Propagation . . . . . . . . . . . . . . . . . . 95

7. CONFIGURATIONAL FORCE IN ENRICHED ISOGEOMETRIC ANALYSIS98
7.1 Configurational Force: A Brief Introduction . . . . . . . . . . . . . . . 98
7.2 Configurational Force as Crack Propagation Criterion . . . . . . . . . 100
7.3 Numerical Evaluation of Configurational Force . . . . . . . . . . . . . 100
7.4 Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

7.4.1 Homogeneous Plate . . . . . . . . . . . . . . . . . . . . . . . . 103
7.4.2 Plate with Hole/Inclusion . . . . . . . . . . . . . . . . . . . . 105
7.4.3 Bi-material Wedge with Bonded Interfaces . . . . . . . . . . . 107
7.4.4 Crack in a Homogeneous Plate . . . . . . . . . . . . . . . . . . 108

8. APPLICATION: RATCHETING-INDUCED FRACTURE OF BEOL STRUC-
TURES OF MICROELECTRONICS . . . . . . . . . . . . . . . . . . . . . 110
8.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
8.2 Modeling Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . 111
8.3 Global Model and Ratcheting-induced Stress Evolution . . . . . . . . 112

8.3.1 Global Deformation . . . . . . . . . . . . . . . . . . . . . . . . 115
8.3.2 Evolution of Stress in BEOL films . . . . . . . . . . . . . . . . 118

8.4 Load Decomposition and Critical Loading Mode Identification . . . . 121



viii

Page
8.5 EIGA of Stress Singularities in BEOL Structures . . . . . . . . . . . 124
8.6 Configurational Force Based Crack Propagation in BEOL Structure . 129
8.7 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

9. CLOSURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
9.1 Summary and Novel Contributions . . . . . . . . . . . . . . . . . . . 132
9.2 Recommendation for Future Research . . . . . . . . . . . . . . . . . . 134

9.2.1 Mixed-Type Isogeometric Enriched Field Approximation . . . 134
9.2.2 Three-dimensional P-Stitching with Extraordinary Points . . . 135

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

A. TENSOR TRANSFORMATION . . . . . . . . . . . . . . . . . . . . . . . 149
A.1 Transformation of Symmetric Tensor in Voigt Form . . . . . . . . . . 150

B. MATERIAL PROPERTIES . . . . . . . . . . . . . . . . . . . . . . . . . . 153

C. ESTIMATING THE MODULUS AND YIELD STRENGTH OF THE TOP-
LAYER FILM ON MULTILAYER BEOL STACKS . . . . . . . . . . . . . 154
C.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
C.2 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

C.2.1 Classical Indentation Models for Homogeneous Materials . . . 158
C.2.2 Effective Modulus of Multilayer Stacks . . . . . . . . . . . . . 160
C.2.3 Dominant Regime Theory . . . . . . . . . . . . . . . . . . . . 163

C.3 Experimental Data and its Analysis . . . . . . . . . . . . . . . . . . . 165
C.3.1 Two-Layer Stack . . . . . . . . . . . . . . . . . . . . . . . . . 166
C.3.2 Multilayer Stack . . . . . . . . . . . . . . . . . . . . . . . . . 168

C.4 Inverse Finite Element Analysis Procedure . . . . . . . . . . . . . . . 170
C.4.1 Finite Element Model . . . . . . . . . . . . . . . . . . . . . . 171
C.4.2 Posing of Property Estimation as an Optimization Problem . . 174

C.5 Inverse Finite Element Analysis Results . . . . . . . . . . . . . . . . . 176
C.5.1 Two-layer Stack . . . . . . . . . . . . . . . . . . . . . . . . . . 176
C.5.2 Multilayer Stack . . . . . . . . . . . . . . . . . . . . . . . . . 179

C.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
C.7 Proof of the Monotonicity of the Weight Function . . . . . . . . . . . 183
C.8 Linearization of the Weight Function . . . . . . . . . . . . . . . . . . 184
C.9 Properties of the Modulus Participation Functions . . . . . . . . . . . 185

D. TOPOLOGY OPTIMIZATION FOR EFFICIENT HEAT REMOVAL IN
THREE DIMENSIONAL PACKAGES . . . . . . . . . . . . . . . . . . . . 186
D.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
D.2 Thermal Conduction Analysis . . . . . . . . . . . . . . . . . . . . . . 187

D.2.1 Finite Element Method . . . . . . . . . . . . . . . . . . . . . . 188
D.2.2 Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

D.3 Topology Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . 190



ix

Page
D.3.1 Updating Thermal Conductivities . . . . . . . . . . . . . . . . 192
D.3.2 Sensitivity Analysis . . . . . . . . . . . . . . . . . . . . . . . . 192

D.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 193
D.4.1 Two Dimensional Heat Spreader Design . . . . . . . . . . . . 193
D.4.2 Heat Spreader Design Validation . . . . . . . . . . . . . . . . 195
D.4.3 Thermal Design of TSVs . . . . . . . . . . . . . . . . . . . . . 199

D.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202



x

LIST OF TABLES

Table Page

1.1 Comparison of weak coupling techniques for mult-patch analysis. . . . . . . 6

4.1 NURBS definition of the circular arc shown in Figure 4.2c. . . . . . . . . . 46

6.1 Coefficients of angular function corresponding to symmetric and anti-
symmetric loading modes at a crack tip when the strengths of singularity
are λ=0.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.2 Coefficients of angular function associated with the first two modes of the
bi-material wedge with bonded interface obtained by asymptotic analysis. . 91

8.1 Dimensions of the aluminum line structure for the global model. . . . . . 113

8.2 Microelectronics pacakge material properties at room temperature. . . . 114

8.3 Parameteric values of line width, line spacing and passivation thickness
(SiN). The value with asterisk sign indicates the nominal parameters. . . 125

8.4 The strength of singularities calculated from asymptotic analysis at six
corners of BEOL structure. . . . . . . . . . . . . . . . . . . . . . . . . . 127

B.1 Temperature-dependent elastic properties of die attach. . . . . . . . . . . 153

B.2 Temperature-dependent elastic properties of mold compound. . . . . . . 153

C.1 TEOS modulus extracted from the TEOS-Si two-layer specimen. . . . . . 168

C.2 TEOS modulus extracted from the TEOS-Al-Si3N4-Si multilayer specimen. 169

C.3 Nominal mechanical properties used in the model and their literature sources.172

C.4 Initial parameter values for the optimization problem. . . . . . . . . . . . 175

C.5 Estimated Young’s modulus and yield strength of TEOS film on two-layer
stack by IFEA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

C.6 Estimated Young’s modulus and yield strength of TEOS film on multi-
layer stack obtained through IFEA . . . . . . . . . . . . . . . . . . . . . 180

D.1 Model thermal conductivities and thicknesses. . . . . . . . . . . . . . . . 199



xi

LIST OF FIGURES

Figure Page

1.1 (a) cracked polyimide film surrounding a metal line in a back end of line
structure [1], and (b) cracked copper/low-κ dual damascene integrated
structures [2, 3]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Volumetrically partitioned torus solids represented by (a) piecewise poly-
nomial finite elements, and (b) NURBS. . . . . . . . . . . . . . . . . . . . 3

2.1 (a) (d) Knot vectors in parametric space. (b) (e) Basis functions in para-
metric space. (c) (f) NURBS curve and surface approximation in physical
space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Composition of primitive design states to form the complex design state [85].16

2.3 Enriched Isogeometric approximation is constructed by blending an ap-
proximation built on the enriching entity as a function of normal distances
with the approximation on the underlying domain. . . . . . . . . . . . . . 18

2.4 Illustration of strategies to track internal boundary as well as construct
enriched approximations by (a) classical FEM (b) GFEM, and (c) EIGA . 19

2.5 Cubic, quartic and exponential weight function values. . . . . . . . . . . . 21

2.6 Cubic, quartic and exponential weight function derivatives with respect to
normalized, signed distance. . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.7 Illustration of steps in constructing the algebraic level sets on Bezier curves
[91]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.8 Illustration of steps in constructing the algebraic level sets on NURBS
curves [91]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.9 Comparison of the projected foot points obtained using Parametric Iter-
ations, Newton-Raphson Iterations and Algebraic Level Sets. For points
close to the curve, all three methods yield an identical solution. . . . . . . 25

3.1 Definition of the configurational optimization problem: (a) Arbitrary sub-
domain within the solid (b) Elasticity problem associated with the homo-
geneous subdomain (c) Elasticity problem associated with heterogeneous
subdomain created by introducing an arbitrary heterogeneity. . . . . . . . 30

3.2 Specific design velocities imposed on the heterogeneity: (a) Translation
(b) Rotation about an axis passing through xp (c) Scaling with respect to xp.35



xii

Figure Page

3.3 (a) Configurational optimization problem to determine the optimal loca-
tion of a elliptical hole. (b) Numerical estimation of structural compliance
as a function of location of the elliptical hole. . . . . . . . . . . . . . . . . 37

3.4 Von Mises stress contour during configurational optimization at (a) the
initial step, (b) intermediate step 1, (c) intermediate step 2, and (d) the
end of optimization determining the optimal location of the elliptical hole. 38

3.5 (a) Configurational optimization problem to determine the optimal ori-
entation of an elliptical hole. (b) Calculated structural compliance as a
function of orientation of the elliptical hole. . . . . . . . . . . . . . . . . . 39

3.6 Von Mises stress contour during configurational optimization at (a) the
initial step, (b) intermediate step 1, (c) intermediate step 2, and (d) the
end of optimization determining the optimal orientation of an elliptical hole.40

4.1 Code architecture of matlab HiDAC. . . . . . . . . . . . . . . . . . . . . . 43

4.2 NURBS curve representation of (a) a straight spline, (b) rectangular lines,
(c) a circular arc, and (d) an arbitrary curve. . . . . . . . . . . . . . . . . 47

4.3 NURBS surface representation of (a) a rectangular patch, (b) a cylindrical
surface, (c) a ruled surface, and (d) a coons patch. . . . . . . . . . . . . . . 48

4.4 Extrusion operation of NURBS representation (a) from a curve to a sur-
face, and (b) from a surface to a volume. . . . . . . . . . . . . . . . . . . . 49

4.5 Revolution operation of NURBS representation (a) from a curve to a sur-
face, and (b) from a surface to a volume. . . . . . . . . . . . . . . . . . . . 49

4.6 Typical flow of control using matlab HiDAC for an enriched isogeometric
analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.7 Program (a) initialization script, (b) typical user inputs, and (c) the gen-
erated NURBS representation of a volume. . . . . . . . . . . . . . . . . . . 51

4.8 HiDAC environment for (a) analysis, and (b) post-processing. . . . . . . . 52

4.9 (a) Temperature solution contour over the outer boundary, and (b) heat
flux vectors within the domain. . . . . . . . . . . . . . . . . . . . . . . . . 53

5.1 Illustration of non-matching parametric domains. The interfaces are shown
separated for clarity, but Γe ≡ Γi. . . . . . . . . . . . . . . . . . . . . . . . 55

5.2 Problem domain consisting two subdomains that need to be smoothly coupled.57

5.3 Support region of the weight field w(di) in parametric space and in Eu-
clidean space. The support region is chosen to coincide with the first
non-zero knot span in the parametric space of the underlying domain. . . . 59



xiii

Figure Page

5.4 (a) Patch test setup and (b) expanded view of the individual subdomains
and the coupling interface. . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.5 Example of discretization schemes for two- and three-dimensional patch
tests (NURBS degree=1). (a) and (d) matching scheme. (b) and (e)
hierarchical scheme. (c) and (c) non-matching scheme. The red dots are
control points while blue squares and black lines indicate edges of the
spline elements (non-zero knot spans). . . . . . . . . . . . . . . . . . . . . 63

5.6 Relative L2 norm of error in displacement with (a) homogeneous and (b)
bi-material interface coupled using cubic weight function. (c) Matching
and hierarchical discretization were used for refinement. . . . . . . . . . . 64

5.7 (a) Relative L2 norm of error in displacement and (b) in strain energy for
homogeneous interface coupled using exponential weight function. (c) The
least refined mesh of the two-dimensional matching discretization that was
analyzed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.8 (a) Displacement uz and (b) normal strain εzz contours for homogeneous
patch test. (c) Displacement uz and (d) normal strain εzz contours for
bi-material patch test. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.9 Displacement and strain along the paths for (a) homogeneous and (b)
bi-material patch test with non-matching discretization. (c) Path along
the two- and three-dimensional patches with non-matching discretization
along which the solutions are plotted. . . . . . . . . . . . . . . . . . . . . 67

5.10 (a) The relative L2 norm of error in displacement for homogeneous cou-
pling and (b) bi-material coupling. (c) The coarsest mesh of the assumed
two-dimensional non-matching discretization. . . . . . . . . . . . . . . . . 67

5.11 (a) Dimensions, boundary conditions, and (a) NURBS discretization of
Timoshenko beam. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.12 (a) Vertical displacements uy and (b) its relative error uy/|umax| in the
Timoshenko beam. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.13 Displacement and stress components along the indicated path in the Tim-
oshenko beam. The dotted line shows the location of coupling interface
Γe along the length of the beam. . . . . . . . . . . . . . . . . . . . . . . . 70

5.14 (a) Boundary condition on the cylinder wall subjected to internal pressure,
and (b) (c) (d) hierarchical discretizations with the number of subdomains
nΩ = 2, 3, 4, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.15 Plots of contours of (a) ur and (b) σθθ. Contours of relative error in (c)
ur and (d) von Mises stress σeq. . . . . . . . . . . . . . . . . . . . . . . . . 73



xiv

Figure Page

5.16 (a) Problem definition and discretization of the two coupled non-planar
NURBS surfaces, (b) solution temperature contours and (c) temperature
value along the path z ∈ [−a, a] with r = R, θ = π/4. . . . . . . . . . . . 74

5.17 The hook model’s (a) coupling structure, (b) dimensions and boundary
conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.18 Magnitude of displacement ‖u‖ obtained by (a) the present method and
(b) the finite element method. . . . . . . . . . . . . . . . . . . . . . . . . 76

5.19 Von Mises stress obtained by (a) the present method and (b) the finite
element method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.1 (a) Bi-material wedge with two bonded interfaces and (b) Bi-material
wedge with one bonded interface and a second debonded interface. . . . . 81

6.2 Configuration of boundary value problem with (a) singular stress enrich-
ment and (b) hierarchically constructed crack enrichment. . . . . . . . . . 84

6.3 Composition of domain, material interfaces and multi-material junction
represented by NURBS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.4 (a) x-component and (b) y-component of enriching function Ψs subjected
to Mode I loading. (c) x-component and (d) y-component of enriching
function Ψs subjected to Mode II loading. . . . . . . . . . . . . . . . . . . 86

6.5 Weight field (a) wt, (b) we − wt, and (c) we associated with a single edge
notch cracked plate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.6 (a) Boundary conditions on a bi-material wedge with bonded interfaces.
The • in the figure indicates the location of singular enrichment. (b)
Contour of weight function wt used in the enriched filed approximation. . . 91

6.7 Convergence of generalized stress intensity factors for bi-material wedge
with bonded interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.8 The von Mises stress obtained using the finite element method with (a) 50,
(b) 722, and (c) 2,450 number of DOF. (d) The von Mises stress contour
obtained through enriched isogeometric analysis. . . . . . . . . . . . . . . . 93

6.9 (a) Schematic of boundary conditions of a plate containing center inclined
crack under tensile traction. (b) The weight field we associated with the
inclined crack assuming pseudo sharp deflections at both tips. . . . . . . . 94

6.10 Comparison of reference and numerically calculated stress intensity factors
(KI and KII) as a function of inclination angle. . . . . . . . . . . . . . . . 95

6.11 The von Mises stress contours in the domain for a crack at an inclination
angle of β = 45◦. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96



xv

Figure Page

6.12 The vertical displacement uy contours at (a) Step 1, (b) Step 4, (c) Step
7, and (d) Step 10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

7.1 Geometry and boundary conditions of the homogeneous square plate with
(a) tractions, and (b) with displacement boundary conditions. . . . . . . 103

7.2 Configurational force in a homogeneous plate with (a) traction boundary
conditions, and (b) with displacement boundary conditions. . . . . . . . 105

7.3 Geometry and boundary conditions of a plate with a heterogeneity. . . . 106

7.4 Configurational force on (a) a plate with circular hole and (b) a plate with
stiff inclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

7.5 Configurational force calculated on the bi-material wedge with singular
stress enrichment. The contours of the first principal stress are shown in
the figure along with the configurational force. . . . . . . . . . . . . . . . 107

7.6 Schematic of boundary conditions of a plate containing center inclined
crack under tensile traction as illustrated in Figure 6.9a. . . . . . . . . . 108

7.7 (a) Calculated configurational force over the domain and (b) detailed view
of the configurational force near the crack in a plate with the horizontal
crack. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

7.8 Comparison of crack deflection angle based on the maximum tensile stress
criterion of LEFM and configurational force. . . . . . . . . . . . . . . . . 109

8.1 (a) Domains, boundaries, and reference coordinate systems in the multi-
level models. (b) Modeling procedures to simulate ratcheting induced
fracture in metal lines. . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

8.2 (a) The geometry of the test die and package. (b) Metal line patterns on
the test die. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

8.3 Cross section of the three-dimensional model (structure B). Inset figure
shows the region enclosing the BEOL structure Ωl that was analyzed in
the local model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

8.4 Discretization of microelectronic package cross-section at (a) the package
level, and (b) at the BEOL level. The inset red box indicates where the
BEOL-level submodel is located. . . . . . . . . . . . . . . . . . . . . . . 115

8.5 Demonstration of polynomial fit to the package outline. . . . . . . . . . . 116

8.6 Curvature of the microelectronic package during a thermal cycle between
150◦C and -65◦C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117



xvi

Figure Page

8.7 Die edge evolution of the first principal stress (unaveraged) (a) in the
TEOS films, and (b) in the silicon nitride films of structure B. . . . . . . 118

8.8 Evolution of the first principal stress’ local maxima (unaveraged) (a) in
the TEOS films, and (b) in the silicon nitride films throughout the BEOL
structure B. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

8.9 Local maxima of the first principal stress (unaveraged) at the end of the
thermal cycle (a) in TEOS film, and (b) in silicon nitride film within the
line structure listed in Table 8.1. . . . . . . . . . . . . . . . . . . . . . . 120

8.10 Load decomposition of boundary condition for local model into (a) tension,
(b) shear, and (c) flexure. . . . . . . . . . . . . . . . . . . . . . . . . . . 122

8.11 The first principal stress contour (averaged) in silicon nitride and TEOS
films at the corner of BEOL structure subjected to (a) shear, (b) tension,
and (c) flexure loading at 150◦C of the 500-th cycle. . . . . . . . . . . . . 123

8.12 The maximum first principal stress (averaged) in silicon nitride film at
-65◦C, 100◦C and 150◦C under tensile, shear and flexural loadings. . . . . 124

8.13 A schematic illustration of the BEOL structure showing multi-material
wedges. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

8.14 The materials and their included angles forming six distinctive corners
identified in the BEOL structure. . . . . . . . . . . . . . . . . . . . . . . 126

8.15 Contour of the first principal stress obtained through enrich field analysis
in the BEOL structure (unit: Pa). . . . . . . . . . . . . . . . . . . . . . . 127

8.16 Comparison of opening-mode generalized stress intensity factors at Corner
H and Corner I in the six parametric designs. . . . . . . . . . . . . . . . 128

8.17 Displacement in x-direction and crack path within the BEOL structure
predicted by configurational force. . . . . . . . . . . . . . . . . . . . . . . 130

8.18 Comparison of crack path predicted by LEFM max tensile stress criterion
(Green) and by configurational force (Magenta). . . . . . . . . . . . . . . 130

C.1 (a) Schematic of indentation using spherical indenter. The thick dashed
line indicates the specimen surface under maximum load whereas the thick
solid line is the residual impression after unloading. (b) Typical load-
displacement response with three regimes. . . . . . . . . . . . . . . . . . 159

C.2 Schematic of a rigid Berkovich indenter penetrating a multilayer stack
consisting of a n-layer film and a substrate. Lk, k = 1, 2, · · · , n represents
the kth layer of the stack. . . . . . . . . . . . . . . . . . . . . . . . . . . 160

C.3 The weight function Φ0 with different Poisson’s ratios. . . . . . . . . . . 162



xvii

Figure Page

C.4 Modulus participation functions of a TEOS-Al-Si3N4-Si multilayer stack. 164

C.5 Two test structures with the same top-layer dielectric film: (a) a TEOS-Si
two-layer stack and (b) a TEOS-Al-Si3N4-Si multilayer stack. . . . . . . . 165

C.6 Load-displacement response of the TEOS-Si two-layer stack at 300 nm and
600 nm penetration depths. Nine tests were carried-out at each depth. . 166

C.7 Modulus participation functions of the TEOS-Si two-layer stack. . . . . . 167

C.8 Multi-depth indentation data for the TEOS-Si two-layer stack. . . . . . . 167

C.9 Three repetitions of load-displacement response of the TEOS-Al-Si3N4-Si
multilayer stack at 700 nm penetration depth. The stiffness drop and
the low elastic recovery are likely a result of the dielectric cracking and
material yielding. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

C.10 Multi-depth indentation data for the TEOS-Al-Si3N4-Si multilayer stack.
Linear regression over data from all depths leads to a poor fit. . . . . . . 169

C.11 Multi-depth indentation data for the TEOS-Al-Si3N4-Si multilayer stack.
Linear regression over the TEOS dominant regime yields a good fit. . . . 170

C.12 (a) Mesh and boundary conditions of the TEOS-Si two-layer finite element
model. (b) Enlarged 30◦ sweep section of the axi-symmetric model near
the indented region (indicated by the red box in (a)). . . . . . . . . . . . 173

C.13 Load-displacement response curves from experiment and from FEA. The
impact of the value of the yield strength of TEOS film on the simulated
response is illustrated. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

C.14 Objective function response surface contours as well as optimized param-
eter values on the two-layer stack corresponding to indentation depths of:
(a) 200 nm (a) 400 nm (c) 600 nm using Eq. (C.14) and (d) from 200 nm
to 700 nm using Eq. (C.15). . . . . . . . . . . . . . . . . . . . . . . . . . 178

C.15 Load-displacement response on the two-layer stack using the optimized
properties compared against the experimental response for 700 nm inden-
tation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

C.16 Objective function response surface contours as well as optimized parame-
ter values on the multilayer stack corresponding to indentation depths of:
(a) 300 nm (b) 500 nm (c) 700 nm using Eq. (C.14) and (d) from 200 nm
to 700 nm using Eq. (C.15). . . . . . . . . . . . . . . . . . . . . . . . . . 181

C.17 Load-displacement response on the multilayer stack using the optimized
properties compared against the experimental response for 700 nm inden-
tation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182



xviii

Figure Page

D.1 Representative 3D package. . . . . . . . . . . . . . . . . . . . . . . . . . 186

D.2 Isoparametric 8-noded serendipity element. . . . . . . . . . . . . . . . . . 189

D.3 Representative structure in a 3D package to perform topology optimization
for efficient heat removal. . . . . . . . . . . . . . . . . . . . . . . . . . . 190

D.4 Topology optimization flow of control. . . . . . . . . . . . . . . . . . . . 191

D.5 Boundary conditions and power map on a plate 10 by 10 m in size. . . . 194

D.6 Heat spreader design using (a)-(d) minimizing peak temperature and (e)-
(h) minimizing stored energy objectives with metallization ratio of 10, 20,
25 and 45%, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

D.7 Peak temperature with different metallization ratio using both objective
functions and homogeneous distribution of heat spreading material. . . . 195

D.8 Thermal gradient with different metallization ratio using both objective
functions and homogeneous distribution of heat spreading material. . . . 196

D.9 Mean temperature with different metallization ratio using both objective
functions and homogeneous distribution of heat spreading material. . . . 196

D.10 Boundary conditions and power map on a plate 11 by 11 m in size. . . . 197

D.11 Topology optimization flow of control in Isight. . . . . . . . . . . . . . . 197

D.12 Temperature profile (a) before and (b) after the topology optimization by
Simulia Isight. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

D.13 Temperature profile (a) before and (b) after the topology optimization by
the developed tool. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

D.14 Schematic of the 3D package which is integrated with a silicon interposer. 199

D.15 Power map for active layer 1 and active layer 2. . . . . . . . . . . . . . . 200

D.16 Thermal TSV optimal distribution determined by topology optimization. 200

D.17 Temperature profile of the 3D package (a) before and (b) after thermal
TSV placement by topology optimization. . . . . . . . . . . . . . . . . . 201



xix

ABSTRACT

Chen, Chun-Pei Ph.D., Purdue University, December 2020. Enriched Isogeometric
Analysis for Parametric Domain Decomposition and Fracture Analysis. Major Pro-
fessor: Ganesh Subbarayan, School of Mechanical Engineering.

As physical testing does not always yield insight into the mechanistic cause of

failures, computational modeling is often used to develop an understanding of the

goodness of a design and to shorten the product development time. One common, and

widely used analysis technique is the Finite Element Method. A significant difficulty

with the finite element method is the effort required to generate an analysis-suitable

mesh due to the difference in the mathematical representation of geometry CAD

and CAE systems. CAD systems commonly use Non-Uniform Rational B-Splines

(NURBS) while the CAE tools rely on the finite element mesh. Efforts to unify CAD

and CAE by carrying out analysis directly using NURBS models termed Isogeomet-

ric Analysis reduces the gap between CAD and CAE phases of product development.

However, several challenges still remain in the field of isogeometric analysis. A criti-

cal challenge relates to the output of commercial CAD systems. B-rep CAD models

generated by commercial CAD systems contain uncoupled NURBS patches and are

therefore not suitable for analysis directly. Existing literature is largely missing meth-

ods to smoothly couple NURBS patches. This is the first topic of research in this

thesis. Fracture-caused failures are a critical concern for the reliability of engineered

structures in general and semiconductor chips in particular. The back-end of the line

structures in modern semiconductor chips contain multi-material junctions that are

sites of singular stress, and locations where cracks originate during fabrication or test-

ing. Techniques to accurately model the singular stress fields at interfacial corners are

relatively limited. This is the second topic addressed in this thesis. Thus, the overall

objective of this dissertation is to develop an isogeometric framework for parametric
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domain decomposition and analysis of singular stresses using enriched isogeometric

analysis.

Geometrically speaking, multi-material junctions, sub-domain interfaces and crack

surfaces are lower-dimensional features relative to the two- or three-dimensional do-

main. The enriched isogeometric analysis described in this research builds enriching

approximations directly on the lower-dimensional geometric features that then couple

sub-domains or describe cracks. Since the interface or crack geometry is explicitly

represented, it is easy to apply boundary conditions in a strong sense and to di-

rectly calculate geometric quantities such as normals or curvatures at any point on

the geometry. These advantages contrast against those of implicit geometry meth-

ods including level set or phase-field methods. In the enriched isogeometric analysis,

the base approximations in the domain/subdomains are enriched by the interfacial

fields constructed as a function of distance from the interfaces. To circumvent the

challenges of measuring distance and point of influence from the interface using iter-

ative operations, algebraic level sets and algebraic point projection are utilized. The

developed techniques are implemented as a program in the MATLAB environment

named as Hierarchical Design and Analysis Code. The code is carefully designed to

ensure simplicity and maintainability, to facilitate geometry creation, pre-processing,

analysis and post-processing with optimal efficiency.

To couple NURBS patches, a parametric stitching strategy that assures arbi-

trary smoothness across subdomains with non-matching discretization is developed.

The key concept used to accomplish the coupling is the insertion of a parametric

stitching or p-stitching interface between the incompatible patches. In the present

work, NURBS is chosen for discretizing the parametric subdomains. The developed

procedure though is valid for other representations of subdomains whose basis func-

tions obey partition of unity. The proposed method is validated through patch tests

from which near-optimal rate of convergence is demonstrated. Several two- and three-

dimensional elastostatic as well as heat conduction numerical examples are presented.
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An enriched field approximation is then developed for characterizing stress sin-

gularities at junctions of general multi-material corners including crack tips. Using

enriched isogeometric analysis, the developed method explicitly tracks the singular

points and interfaces embedded in a non-conforming mesh. Solution convergence to

those of linear elastic fracture mechanics is verified through several examples. More

importantly, the proposed method enables direct extraction of generalized stress in-

tensity factors upon solution of the problems without the need to use a posteriori

path-independent integral such as the J-integral. Next, the analysis of crack initia-

tion and propagation is carried out using the alternative concept of configurational

force. The configurational force is first shown to result from a configurational opti-

mization problem, which yields a configurational derivative as a necessary condition.

For specific velocities imposed on the heterogeneities corresponding to translation, ro-

tation or scaling, the configurational derivative is shown to yield the configurational

force. The use of configurational force to analyze crack propagation is demonstrated

through examples.

The developed methods are lastly applied to investigate the risk of ratcheting-

induced fracture in the back end of line structure during thermal cycle test of a

epoxy molded microelectronic package. The first principal stress and the opening

mode stress intensity factor are proposed as the failure descriptors. A finite element

analysis sub-modeling and load decomposition procedure is proposed to study the ac-

cumulation of plastic deformation in the metal line and to identify the critical loading

mode. Enriched isogeometric analysis with singular stress enrichment is carried out

to identify the interfacial corners most vulnerable to stress concentration and crack

initiation. Correlation is made between the failure descriptors and the design param-

eters of the structure. Crack path from the identified critical corner is predicted using

both linear elastic fracture mechanics criterion and configurational force criterion.
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1. INTRODUCTION

Cracks are a critical concern for the reliability of engineered structures. As structures

subject to excessive or repeated loadings, microscopic cracks may initiate, coalesce

and propagate from where the stress concentrates. Features such as notches, multi-

material junctions as well as other heterogeneities such as inclusions or voids, cause

most vulnerability to cracking. Eventually, cracks degrade the mechanical integrity

of the structure and may lead to catastrophic failure.

(a)

(b)

Figure 1.1. (a) cracked polyimide film surrounding a metal line in a back
end of line structure [1], and (b) cracked copper/low-κ dual damascene
integrated structures [2, 3].

The back end of line (BEOL) of microelectronic devices, as shown in Figure 1.1,

is one of those structures susceptible to cracking. The architecture of BEOL consists
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of a three-dimensional geometry formed by layering materials including dielectrics,

metals and passivation overcoat. It is the electrical network used to route the power

and signals between functional circuits and the enclosing package. Therefore, its

structural integrity is of crucial importance to the reliability of microelectronic de-

vices. Under physical loading, stress migration and fracture of thin films are both the

common causes of mechanical failures in the BEOL structures [4]. Stress concentra-

tion resulting from external loads could easily develop in the presence of geometric

discontinuities or material heterogeneity. In linear elastic solids, stress fields at the

interfacial corner is known to be proportional to r−λ where r is the distance to the

corner and λ represents the strength of singularity [5–7]. Due to the induced stress

singularities, BEOL structures containing brittle dielectrics and passivation films are

susceptible to higher risk of failures including delamination as well as cracking.

To better understand the mechanism of failures with the aim of developing a more

reliable design, it is important to accurately determine the state of stress. While

the finite element method (FEM) is the most common tool used to determine the

global state of stress in microelectronic packages, it is often insufficient and inefficient

to be used for analyzing the local state of stress for the following reasons. First,

the solid element approximates the behavioral field as piecewise polynomial, which

poorly describes the singular stress. Therefore, numerical accuracy in the state of

stress is achieved only in the limit of mesh refinement. Second, traditional FEM

can only track the discontinuity explicitly through the separation of elemental faces.

Combining both of the above critical drawbacks, traditional FEM is often not used

for complex structures such as those on microelectronic device BEOL to accurately

predict the local state of stress.

Ideally, a fixed underlying mesh with embedded interfaces capturing stress singu-

larities as well as moving boundaries will be effective in addressing the gap between

specific engineering needs and the commonly used computational tools. In the context

of FEM, formulations such as Partition of Unity FEM (PUFEM) [8,9] and eXtended

FEM (XFEM) [10,11] are well capable of resolving the challenges. However, genera-



3

tion of the fixed underlying finite element mesh itself is a non-trivial task in general.

It has been observed in industrial practice and documented by Ted Blacker at the

Sandia National Laboratories that almost 80% of the the overall analysis time is at-

tributed to generating an analysis-suitable mesh while only 20% of the overall time

is actually attributed to the computational solution time. The main bottleneck is

the need for converting the models between that used in computer-aided engineering

(CAE) and that in computer-aided design (CAD). While CAD systems predomi-

nantly adopt Non-Uniform Rational B-Spline (NURBS) as the basis for representing

the geometries, FEM approximates the CAD geometry through a finite number of

piece-wise polynomial elements. A comparison of volumetric representations of a par-

titioned torus between FEM and NURBS is illustrated in Figure 1.2. Since the use

of piecewise-polynomial element is inevitable and is fundamental to finite element

method, alternative analysis methods that use identical basis functions as CAD will

efficiently bridge the CAD&E integration challenges.

(a) (b)

Figure 1.2. Volumetrically partitioned torus solids represented by (a)
piecewise polynomial finite elements, and (b) NURBS.

Renken and Subbarayan [12] are among the earliest researchers who carried out

analysis directly using NURBS basis functions. Natekar, Zhang and Subbrayan

[13] later demonstrated a procedure to achieve integrated design and analysis us-

ing NURBS geometry termed as Constructive Solid Analysis (CSA) analogous to the

Constructive Solid Geometry (CSG) procedure of CAD. The idea of utilizing the iden-

tical basis was later termed as isogeometric analysis (IGA) [14, 15] to contrast with
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the traditional finite element analysis (FEA). Despite the fact that the method of

isogeometric analysis has been successfully developed in many other areas [16], state

of the art IGA framework capable of modeling complex structures, such as the one

shown in Figure 1.1, does not exist yet. Given the extensive geometric complexity and

material heterogeneity in a cracked engineering body, the following two capabilities

are believed to be critical in the context of IGA.

1. Multi-patch coupling for the purpose of domain decomposition or local refine-

ment, and

2. Modeling methodology for multi-material junction stress singularities and crack

interface discontinuity

Relevant literature on both topics are surveyed, reviewed and summarized in the next

section.

1.1 Literature Review

1.1.1 Multi-Patch Coupling Isogeometric Analysis

Decomposed and incompatible parametric subdomains are common to both CAD

and CAE. For instance, boundary representation (B-rep) using trimmed NURBS sur-

faces to model the geometry of solid objects is the most commonly adopted strategy

in commercial CAD systems. Commonly, B-rep models contain multiple NURBS

patches due to the rectangular tensor product topology of the representation cou-

pled with the need for local refinement to capture complex free-form shapes. At the

present time, in multi-patch models resulting from intersections of parametric sur-

faces, gaps and overlaps at the intersections is seemingly unavoidable [17]. As a result,

trimmed surfaces resulting from commercial CAD systems are rarely compatible and

watertight.

A common CAD solution approach to overcome incompatible parametric patches

is based on new spline technologies that enable local refinement. These approaches
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are similar in philosophy to the subdivision surfaces that enable the modeling of

complex free-form surfaces [18–21]. HB-splines [22], T-splines [23, 24], PHT-splines

[25], THB-splines [26], LR B-splines [27] and the recently developed U-splines [28] are

examples of spline representations that allow local refinement. The ability to perform

local refinement allows one to use a single, hierarchically refined, patch to represent

a geometry that would otherwise be described by multiple incompatible NURBS

patches. Due to the elimination of the need to use multiple patches, geometries

represented by these new spline methods naturally achieve watertightness without

gaps and overlaps.

The CAD approaches that use alternative spline methods provide an upstream

solution that allow seamless integration with downstream CAE operations (see for

instance, [29–31]). Their utility lies in enabling a single bi-variate or tri-variate spline

patch to describe the geometry, which in turn may be used directly for isogeometric

analysis. However, such geometries need to be analysis aware [32, 33] or analysis-

suitable [34–36]. Arguably, new spline technologies would have greater impact if

they are compatible with NURBS based B-rep paradigm that is widely prevalent

in commercial CAD software at the present time. While direct generation of tri-

variate spline subdomains from B-rep CAD models has been recently demonstrated

[37] and may hold a potential solution for the future, the coupling of volumetric spline

subdomains remains a critical unsolved need at the present time.

Interfacial conditions are critical to physical problems involving interactions be-

tween separated subdomains, such as those occurring during contact between solid

bodies or during fluid structure interaction (FSI). Since discretizations of subdomains

are either created independently or partitioned upon creation as a whole (as in do-

main decomposition methods or DDM), treatment of interfacial interaction between

incompatible domains is an important topic in these fields. A number of strategies

to couple subdomain discretizations also exist in the analysis realm. Penalty for-

mulations, Lagrange multiplier methods [38–40] as well as Nitsche’s method [41] are

among the most common approaches. These methods enforce weak coupling of be-
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havioral field values such that compatibility and consistency conditions are satisfied

in an average sense along the interface as summarized in Table 1.1. In the context

of isogeometric analysis, the first treatment of interfacial compatibility constraints

on subdomains discretized using NURBS was demonstrated by Natekar et al. [13].

In the IGA literature, treatment of interfacial interaction have been demonstrated

including but not limited to shell problems [42–44], contact problems [45–49], FSI

problems [50,51], and domain decomposition of solids [52–55].

Table 1.1.
Comparison of weak coupling techniques for mult-patch analysis.

Penalty Lagrange Nitsche’s
Method Multiplier Method

Method
3 Easy to implement 3 No choice of penalty 3 No additional DOFs
3 No additional DOFs 3 Improved Dirichlet 3 P.D. system
3 P.D. system compatibility

7 Choice of penalty
7 Add additional
DOFs

7 Need to determine

• Incompatibility
(Small penalty value)

7 Ill-conditioned stabilization parameter

• Ill-conditioned
(Large penalty value)

7 Need inf-sup cond.
7 Choice of Nitsche’s
parameter

In general, in domains assembled using multiple patches, C0 smoothness across

the interface between adjacent patches is easily achieved. However, C1 or higher

smoothness across a shared edge of patches is desirable during design as well as

analysis, but is challenging to achieve. Towards this end, recently, constructing C1

continuous smooth approximation spaces over geometrically complex multi-patch do-

mains has been an important focus in the isogeometric analysis community. An early

comparison of such approaches was provided by Nguyen et al. [56]. The approaches

are broadly aimed at assuring C1 continuity over the complex domain by utilizing

G1 continuity across the patches [57–60]. These methods are argued as providing

“full approximation power” even at extraordinary vertices, where subdivision meth-
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ods’ convergence rate is reduced. Their relative merits are often discussed in terms

of their ability to generate approximations that possess desirable properties such as

non-negativity, smoothness, partition of unity as well as local support that NURBS

basis functions are known to provide, and therefore are argued as being useful for

isogeometric analysis [13, 59].

1.1.2 Modeling of Crack Tip Singularities and Crack Face Discontinuity

In the finite element method, the representation of singularities with singular

isoparametric element is well established [61, 62]. The technique allows modeling of

stress singularity ahead of the crack tip and represent the crack face explicitly. How-

ever, significant effort is needed to generate proper mesh, and it is a non-trivial task

to model crack propagation as the mesh deletion and generation needs to be auto-

mated [63, 64]. The Partition of Unity Finite Element Method (PUFEM) proposed

by Malenk and Babuška guarantees convergence of specialized (enriched) behavioral

fields under partition of unity condition [8, 9]. Since then, modeling of features with

a priori known behaviors became possible due to the introduction of corresponding

enriching function and therefore resulting in an expanded approximation space. Con-

vergence of solution hence can be achieved rapidly without the need for extensive

mesh refinement. Based on the theory of PUFEM, Dolbow and Moës et al. proposed

the well known eXtended FEM (XFEM) [10,11] to model the discontinuity across the

crack face and crack tip singularities with minimal re-meshing. The solution space is

enriched through the introduction of Heaviside step function H and the tip function

F (r, θ) deriving from the leading terms of linear fracture mechanics (LEFM) solution.

Stress singularity due to geometric features such as reentrant corner or holes was also

possible to model through generalized FEM (GFEM) [65–67].

In the context of isogeometric analysis, Benson et al. and De Luycker et al.

[68,69] proposed a similar formulation with respect to GFEM and XFEM, respectively.

Ghorashi et al. focused on modeling of fracture and termed the technique as eXtended
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IGA (XIGA) [70]. While XIGA has successfully demonstrated modeling of fracture

with a fixed underlying mesh, the crack face is modeled as the zero level-set in an

implicit sense to track the evolution of crack faces. One of the drawback of using level

set is that the actual location as well as geometric descriptors such as the geometric

normal of the crack face cannot be parametrically traced. Additionally, level sets

are described by a first-order hyperbolic equation (Hamilton-Jacobi), which is hard

to solve, and the solution to which requires stabilization as well as minimization of

oscillation [71].

Strategies using phase field method to model fracture have also been proposed

[72–74]. While the phase field method has been used to model difficult problems

such as branching of cracks, there are some challenges associated with this method.

First, similar to the level set descriptions of the crack mentioned earlier, the phase

field method also uses an implicit representation of cracks with the description of

phase-field variable β. To converge to the physical solution, a very thin region of

discretization generated by adaptive refinement is required to capture the crack face

as a numerically diffuse approximation to the sharp interface. Furthermore, phase

field methods involve developing diffuse forms of the governing equations which are

often non-linear and non-convex. The resulting partial differential equations may be

fourth-order [75] and therefore more complicated to solve. They may also not provide

the intuitive simplicity provided by the sharp interface representation.

As an alternative to implicit approximations of crack geometry, Tambat proposed

a non-conforming mesh, explicit interface method to model fracture [76, 77]. In this

method, the crack face is represented by a NURBS curve in a true isogeometric

sense. The enriching functions and their corresponding degrees of freedom are nat-

urally associated with the control points of the interfaces themselves rather than

the control points of underlying domain (as in the sense of XIGA or phase field

method). Therefore, it is possible to strongly impose boundary conditions on the

enriching interface. Since the chosen tip enriching functions are the same as in the

XFEM method, F (r, θ) = {
√
r sin( θ

2
),
√
r cos( θ

2
),
√
r sin( θ

2
) sin(θ),

√
r cos( θ

2
) sin(θ)},
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estimation of the stress intensity factor requires an additional post-processing step.

Song [78] extends the formulation of Liu et al. [79] such that the stress intensity fac-

tors at the crack tip could be directly evaluated. Direct evaluation of stress intensity

factors at multi-material wedges in the context of IGA does not appear to exist in

the existing literature.

1.2 Gaps in Existing Literature

As indicated in the above survey, existing techniques for coupling multiple patches

either rely on creating new spline forms needing alternative CAD systems or an

analysis-oriented solution to coupling interfaces through penalty or Nitsche meth-

ods. The CAD approaches provide a top down solution that allow seamless CAD&E

integration. As NURBS is the ubiquitous spline form used internally in commercial

CAD systems, coupling of NURBS patch is a critical need. The alternative spline

choices will require a fundamental paradigm shift for adoption in the CAD industry.

Also, analysis-oriented multi-patch coupling solutions have mostly enabled weakly

enforcing the interface conditions. C1 or higher smoothness across a shared edge of

patches is desirable during design as well as analysis, but is challenging to achieve.

Clearly, there is a need for a novel technique to couple multiple patches that has

the following characteristics. First, the technique should allow the geometry to be

represented in NURBS or any other splines that possess the properties of backward

compatibility with existing CAD systems as well as analysis suitability. Second, the

technique should attain C1 or higher smoothness across a shared edge of patches.

Another challenge is the modeling of stress singularity near features with geometric

discontinuity or material heterogeneity. To evaluate the risk of fracture of a structure,

it is desirable to characterize not only the stress ahead of crack tip but also the singular

stress in the absence of any pre-existing crack as in multi-material corners. To date,

methodologies to model crack tips and the discontinuity across the crack face have

been extensively developed. However, an isogeometric strategy to characterize corners
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as well as crack tips that both possess r−λ singularities does not seem to exist. A

unified formulation capable of correlating with commonly seen failures is very much

in need.

1.3 Research Objectives

Motivated by the above-identified gaps in the existing literature, the goals of this

work are to:

1. Develop a novel methodology for coupling parametrically defined domains (in-

cluding but not limited to NURBS) with C1 or higher smoothness across a

shared edge of patches.

2. Formulate a general purpose isogeometric enrichment applicable for both multi-

material wedges and crack tips that possess r−λ stress singularities.

3. Demonstrate the developed procedures on heterogeneous structures such as the

device BEOL structures.

Overall, the methodologies presented in this thesis aim to better analyze and under-

stand the fracture failure in practical engineering applications.

1.4 Outline

The rest of the thesis is organized as follows. Chapter 2 provides a review of the

methods that form the foundation of the present work. The mathematical form of

Enriched Isogeometric Analysis (EIGA) is first reviewed, being the common basis for

the majority of this thesis. New weight fields of polynomial form are proposed to have

local support and improve numerical solution accuracy. Chapter 3 briefly introduces

the configurational optimization problem as well as the derivation of the configuration

derivative, which is later shown to be related to the configurational force theory. The

implementation, features and architecture of the code is described in Chapter 4. In
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Chapter 5 a novel methodology to smoothly couple parametric spline patches is de-

veloped. The technique provides an isogeometric formulation to couple incompatible

patches for both homogeneous as well as bi-material interfaces. Isogeometric enrich-

ment for corner singular stress is formulated in Chapter 6. The formulation is later

extended to crack enrichment by introducing crack face discontinuity. To address

the challenge of predicting crack initiation and propagation in a non-linear mate-

rial, configurational force-based calculation using isogeometric analysis is proposed

in Chapter 7. In Chapter 8, the focus is turned to applications of developed tech-

niques to specific problem related to reliability of microelectronic package. Finally,

the research is summarized in Chapter 9 with a summary of novel contributions and

recommendations for future research.
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2. BACKGROUND

This chapter provides a brief background on the methods that form the foundation

of the present thesis.

2.1 Non-Uniform Rational B-Spline Approximation Space

In the present work, NURBS is chosen as the representation for the parametric

domains as well as for the interface. NURBS are defined on knot vectors in parametric

space. A typical non-uniform knot vector is written as [80]:

Ξ = {ξ1, ξ2, . . . , ξni+p+1}. (2.1)

where, ξi ∈ R is the ith knot with ξi ≤ ξi+1 for i = 1, . . . , n + p; n is the number of

basis functions, and p is the polynomial degree of the basis functions. In general, the

knots are not uniformly spaced in the parametric space. An open knot vector has

p+ 1 repeated knots at each end of the knot vector.

The isoparametric NURBS approximations of geometry and behavioral field are

written as

x(ξ, η, ζ) =

ni∑
i=1

nj∑
j=1

nk∑
k=1

Rijk(ξ, η, ζ)x̄ijk (2.2a)

f(ξ, η, ζ) =

ni∑
i=1

nj∑
j=1

nk∑
k=1

Rijk(ξ, η, ζ)f̄ijk (2.2b)

where, x̄ijk is the ijkth control point and f̄ijk is the control point value of the field

associated with x̄ijk. ni, nj and nk are the number of control points in the ith, jth
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and kth parametric dimension, respectively. Rijk is the rational basis function defined

as the tensor product:

Rijk(ξ, η, ζ) =
Ni,p(ξ)Nj,q(η)Nk,r(ζ)wijk∑ni

i=1

∑nj
j=1

∑nk
k=1 Ni,p(ξ)Nj,q(η)Nk,r(ζ)wijk

(2.3)

where, Ni,p refers to the ith B-spline basis function of degree p. The basis functions

are usually evaluated through the recurrence formula [81–83]:

Ni,0 (ξ) =

 1 if ξi ≤ ξ < ξi+1

0 otherwise
(2.4a)

Ni,p (ξ) =
ξ − ξi
ξi+p − ξi

Ni,p−1 (ξ) +
ξi+p+1 − ξ
ξi+p+1 − ξi+1

Ni+1,p−1 (ξ) . (2.4b)

The NURBS basis functions possess several important properties including par-

tition of unity, compact support, non-negativity and Cp−m continuity with m being

the knot multiplicity.

1. Partition of unity:

n∑
i=1

Ni,p(ξ) = 1. (2.5)

2. Compact support:

Ni,p(ξ) is non-zero only in the half-open interval [ξi, ξi+p+1).

3. Non-negativity:

Ni,p(ξ) ≥ 0 ∀ ξ (2.6)

4. Smoothness: Ni,p(ξ) is Cp−m continuous, where m is the multiplicity of knot.

Property 1, 2 and 4 are the most critical ones for NURBS to be analysis suitable.

Partition of unity property ensures the convergence of the NURBS approximation to

a known solution. Compact support ensures that any change to the approximation
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locally remains local in its influence. Smoothness is necessary for many physics prob-

lems requiring higher degree of continuity. Note that non-negativity is not required

for the purpose of analysis, but is important for intuitive geometric modeling and

shape control. A demonstration of NURBS approximation is shown in Figure 2.1.
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Figure 2.1. (a) (d) Knot vectors in parametric space. (b) (e) Basis func-
tions in parametric space. (c) (f) NURBS curve and surface approximation
in physical space.

2.2 Enriched Isogeometric Analysis

Based on the Partition of Unity Finite Element Method (PUFEM) [8], Subbarayan

and co-workers developed a procedure to construct field approximations over the do-

main in which the fields corresponding to a higher level are composed hierarchically us-

ing approximations on lower levels. The hierarchical composition is described through
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a binary tree in which the leaves form the local approximations and the nodes form

the Boolean composition operation on the leaves (∩,∪,−). This procedural descrip-

tion of analysis was analogous to the Constructive Solid Geometry (CSG) procedure

of CAD and was therefore named constructive solid analysis (CSA, [13,84]); the hier-

archical composition of subdomain fields to construct approximations on the overall

domain was termed Hierarchical Partition of Unity Field Compositions (HPFC, [85]).

In the hierarchical partition of unity field construction, a domain is composed as

Ω = Ω1 ∗ Ω2 ∗ · · · ∗ ΩnΩ
, where ∗ represents one of the three regularized Boolean

operations (∗ ∈ {∩,∪,−}). The intersection operation for any two fields fΩi and fΩj

is defined as,

fΩi∩Ωj = wij(x)fΩi + wji(x)fΩj in Ωi ∩ Ωj (2.7)

where wij and wji are two additional fields with the first subscript i or j denoting

the underlying domains on which they are defined and the second subscript denoting

the primitive with which the intersection region is shared. The fields wij and wji are

unrestricted as long as they formed a non-negative partition of unity. That is,

wij(x) + wji(x) = 1 in Ωi ∩ Ωj (2.8a)

0 ≤ wij, wji ≤ 1 (2.8b)

The intersection operation was then used to define union and subtraction oper-

ations. Thus, a hierarchical composition of fields is possible in terms of the fields

defined over the subdomains (as illustrated in Figure 2.2), and at any given point x

in the domain, the composed field f(x) is described follows:

f(x) =

nΩ∑
i

wΩi(x)fΩi(x) (2.9)
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where, wΩi was the weight field associated with subdomain Ωi. Specifically, the weight

fields were constructed to be non-negative partitions of unity.

nΩ∑
i

wΩi(x) = 1 (2.10a)

0 ≤ wΩi(x) ≤ 1 (2.10b)

Figure 2.2. Composition of primitive design states to form the complex
design state [85].

While, the above-described compositional procedure is for fields defined on the

primitive subdomains, Tambat and Subbarayan [76] developed an alternative hierar-

chical compositional strategy beginning with lower dimensional geometrical entities

that formed the boundaries of the subdomains as described below.
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Consider a region Ω containing several enriching boundaries Γi, the behavioral field

can now be constructed to form a partition of unity through a convex combination

as follows:

f(x) = (1− w (d(x))) fΩ(x) + w (d(x)) fΓe(P(x)). (2.11)

where, fΩ is the continuous approximation associated with the underlying domain

Ω, fΓe is the enriching approximation defined iso-parametrically on the external or

internal boundary Γe, and P(x) is the projection mapping from a spatial point x

in domain Ω to the parameter (ξ, η) of boundary Γe, i.e. P : x 7→ (ξ, η). Thus,

xf (ξ, η) denotes the foot point of the projection in the physical space that lies on the

boundary, and fΓe(ξ, η) its field value corresponding to the spatial location x. The

methodology where the base approximation fΩ is enriched with lower-dimensional

approximations fΓe , as illustrated in Figure 2.3, was termed as Enriched Isogeometric

Analysis (EIGA).

A comparison of treatment of internal boundary between traditional finite element

method (FEM), generalized finite element method (GFEM), and EIGA is illustrated

in Figure 2.4. Crack modeling using piece-wise polynomial approximation of FEM

requires the edges or faces of the finite element to align with the crack face. In GFEM,

the degrees of freedom corresponding to enriching function are associated with nodes

of the underlying mesh. Due to the fact that the interface itself is not associated with

any degree of freedom, imposition of boundary condition onto the internal boundary

can only be done in a weak sense. EIGA also expands the approximation space by

adding enriching function implicitly. However, the boundary is explicitly represented

while the DOFs corresponding to enriching basis is associated with the interface

itself. Therefore, it is possible to apply the boundary conditions in a strong sense. In

addition to the minimal re-meshing needed for moving boundary problems, a critical

advantage of EIGA is the ability to exactly evaluate geometric quantities such as



18

∪

𝒙
𝑑

Ω

Underlying	domain

Γ3

Geometric	explicit
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Figure 2.3. Enriched Isogeometric approximation is constructed by blend-
ing an approximation built on the enriching entity as a function of normal
distances with the approximation on the underlying domain.

normals and curvature. The method often requires fewer number of degrees of freedom

in comparison to an implicit geometry scheme such as phase field or level set method.

EIGA has been demonstrated on many applications including fracture problems

[76] as well as on Stefan problem modeling evolution of solidification fronts [86]. Fur-

thermore, it has also been used to strongly impose Dirichlet and Neumann boundary

conditions through function value enrichment and derivative enrichment [76, 87], re-

spectively. In general, EIGA allows explicitly represented external/internal boundary

geometries while implicitly capturing the decaying influence of the local behavior with

distance. The above described enriched field approximation serves as the foundation

for the present work.
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Figure 2.4. Illustration of strategies to track internal boundary as well as
construct enriched approximations by (a) classical FEM (b) GFEM, and
(c) EIGA

2.3 Choice of Weight Function in EIGA

The weight function plays an important role in the formulation of EIGA by blend-

ing fields while ensuring the partition of unity property. In general, the weight field is

a function of distance from any spatial point x to the enrichment boundary Γe, with

a monotonic decrease in the weight value away from the boundary. While there is no

restriction on the form of the weight function w (d(x)), the following are the minimal

requirements on the weight field:

1. w(0) = 1 and w′(0) = 0

2. w(dmax) = 0 and w′(dmax) = 0

3. Monotonicity : 1 ≥ w(d) > w(d+ h) ≥ 0 for 0 ≤ |d| < |d+ h| ≤ dmax

4. Local support : w(d) = 0 for |d| ≥ dmax
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5. w(d) is of the required smoothness as dictated by the governing equations.

Here, dmax is the size of the domain influenced by the enrichment. Properties 1

through 3 ensure that the enriched field approximation is a convex blending with the

underlying field. Property 4 confines the influence domain to the local region within

the neighborhood of enrichment to improve the computational efficiency. Property

5 ensures that the approximation is valid. The above properties also imply non-

negativity of the weight field.

Let d̄ = d/dmax be the normalized distance from the enriching boundary within

the influence domain. A few possible choices of the functional form of w(d̄) are listed

below:

1. Cubic:

w(d̄) =

1− 3d̄2 + 2d̄3 for d̄ ≤ 1

0 for d̄ > 1

(2.12a)

2. Quartic:

w(d̄) =

1− 6d̄2 + 8d̄3 − 3d̄4 for d̄ ≤ 1

0 for d̄ > 1

(2.12b)

3. Exponential:

w(d̄) =

1− 1−e−(d̄/α)p

1−e−|1/α|p for d̄ ≤ 1

0 for d̄ > 1

(2.12c)

where, α is an arbitrary positive constant, and p is any number greater than 1. All

of the above weight functions except for the exponential form satisfy the required

properties. The exponential form, proposed by Belytschko et al. [88], only weakly

satisfies Property 2 since w(1) = 0, but w′(1) 6= 0. However, when a proper α and p
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are chosen, the derivative of exponential weight function asymptotically vanishes near

the boundary of influence domain. That is, w′(d̄)→ 0 when d̄→ 1. For instance, for

α = 0.2 and p = 2, w′(1) ≈ −6.9 × 10−10. The functional forms of weight functions

listed in Eq. (2.12) are compared in Figures 2.5 and 2.6. It must be noted that the

distance used in this work is the signed distance, which may be calculated efficiently

using algebraic level sets described in the following subsection.
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Figure 2.5. Cubic, quartic and exponential weight function values.
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Figure 2.6. Cubic, quartic and exponential weight function derivatives
with respect to normalized, signed distance.
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2.4 The Need for Distance and Projection

The need for distance measure and point projection requires more elaboration.

Consider again the boundary Γe, represented by a parametric curve C(u), embedded

in the domain Ω as shown in Figure 2.3. For an arbitrary spatial point x, a measure of

distance is needed to determine the extent of influence of the enriching approximation

on the domain field as measured by the weight field in Eq. (2.11). Furthermore,

since the enriching field is described isoparametrically on the enriching surface, the

foot point xf (ξ, η) on the parametric surface that is nearest to the spatial location x

needs to be determined. That is, the projection of the current spatial point x onto the

enriching prametric surface Γe, P : x 7→ (ξ, η), is needed. Such distance estimations

as well as projectsions need to be robust, accurate and efficient.

A relatively simple and inefficient approach to finding distance to a parametric

curve is to carryout one-dimensional search on the parameter ξ of the curve that

yields a point xf (ξ) that is nearest to the domain point x. Parameter updates

may be determined by bisecting the interval, for instance. However, the most com-

mon technique for estimating the distance to a parametric curve or surface is us-

ing Newton-Raphson iterations [80]. In both one-dimensional search as well as the

Newton-Raphson method, the numerical iterations may become expensive since they

need to be carried out at every quadrature point on the domain when constructing

the stiffness matrix. Additionally, the numerical iterations may lead to non-unique

solutions since more than one point on the boundary may be equidistant from current

spatial point. The numerical iterations may also not converge to a solution. These

concerns make Newton-Raphson iterations less robust, while the numerical itera-

tions makes the method less efficient. An alternative idea is to construct a polytope

approximation to the boundary to estimate distance [89,90]. However, a polytope ap-

proximation does not retain the parametric description of the boundary that enables

one to directly compute normals and curvatures that are critical to the evolution of

the boundary under physical forces.



23

An alternative approach to the Newton-Raphson iterations was recently devel-

oped by Subbarayan and co-workers [91, 92]. The method is termed signed algebraic

level sets and provides both a distance measure as well as point (sign) classification.

The algebraic level sets preserve the exact geometry of low-degree (2 or 3) NURBS

curves/surfaces while avoiding numerical iterations. Specifically, the algebraic level

sets provide an approximate measure of distance to a domain point. This approximate

measure is sufficient to construct the weight fields in Eqs. (2.11) and (2.12).

The main idea behind constructing the algebraic level sets is to implicitize the

parametric entity and to use the level sets of the implicitized function as a measure of

distance. The implicitization of parametric entities is based on the resultant theory,

which is described in the seminal research of Sederberg [17]. The resultant of a

parametric entity is the determinant of a matrix of the form det(M(x)) = 0, which

gives the implicit representation of the parametric entity. Furthermore, for any point

x that is not on the curve, Γ = det(M(x)) is a measure of distance from the curve.

Generally, algebraic level sets need to be complemented by algebraic point projection

[86,93] that enables one to find the projected parametric point on the curves/surfaces

from a domain point.

To provide a high-level overview, the procedure to construct the unsigned algebraic

level sets is pictorially illustrated in Figures 2.7 and 2.8. The readers are referred

to [92] for a detailed description of the procedure on using the resultant to construct

signed algebraic level sets.

Close to the parametric curve, parametric iteration, Newton-Raphson iterations

as well as algebraic point projection all yield the same foot point on the curve as

illustrated in Figure 2.9. Since constructing the algebraic level sets is a non-iterative

process, the algebraic distance measure is cheaper to obtain compared to Newton-

Raphson or one-dimensional iterations on the parameter value. While the algebraic

point projection is non-iterative for points close to the boundary, it does require

iterations when points are farther away from the enriching curve or surface. Still,
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Figure 2.7. Illustration of steps in constructing the algebraic level sets
on Bezier curves [91].

Figure 2.8. Illustration of steps in constructing the algebraic level sets
on NURBS curves [91].

the procedure is significantly more robust and efficient compared to Newton-Raphson

iterations as demonstrated in [93].
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Figure 2.9. Comparison of the projected foot points obtained using Para-
metric Iterations, Newton-Raphson Iterations and Algebraic Level Sets.
For points close to the curve, all three methods yield an identical solution.
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3. CONFIGURATIONAL DERIVATIVES, CONFIGURATIONAL FORCES AND

CONFIGURATIONAL OPTIMIZATION

The compositional idea of HPFC theory [13, 84, 85] is particularly advantageous for

structural optimization problems. While the isogeometric framework avoids the need

for constructing behavioral approximations distinct from the geometrical model, its

compositional nature brings additional benefit for solving structural optimization

problems. As the analysis procedure mirrors the geometry construction procedure,

local modifications of the geometry correspond to changes in the contribution of the

participating fields in HPFC.

Structural optimization can be classified in terms of representation of boundary

shape. Structural optimal design using implicit boundary representation includes

solid isotropic material with penalization (SIMP) method [94], level set method [95]

and phase field method [96]. As demonstrated in Appendix D, SIMP method itera-

tively updates the (finite) element material density in accordance with the objective

to achieve an optimal material distribution. In the level set method, the optimal

structure is achieved by dynamically evolving the level set function, which is used to

define the topology and shape of the structure. In the phase field method, topology

optimization problem is re-cast into a phase transition problem dependent on the

total free energy associated with the system.

Structural optimization using explicit boundary representation such as the bubble

method [97] is one of relatively few studies in the literature. In the bubble method,

topology change started by identifying the location for introducing holes followed by

parametrically describing the holes using a NURBS representation. The domain with

holes are then re-meshed and the associated behavior is analyzed by finite element

method. Shapes of hole are subsequently and iteratively modified as dictated by the

behavior. The notion of topological derivative generalizes the condition used in the
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bubble method for determining the locations for introducing infinitesimal holes in the

structure. In spirit, this method resembles shape optimal design.

As opposed to redistributing material in the domain or dynamically evolving the

boundary into the desired shape, optimal topological design by inserting and opti-

mizing finite-sized inclusions or holes into homogeneous domains is computationally

advantageous since relatively few design variables are needed to describe the configu-

ration of such heterogeneities. To this end, Lin proposed configurational optimization

problem for determining the optimal location, orientation and shape of a finite-sized

heterogeneity inserted into a homogeneous solid domain [98]. The material derivative

of an arbitrary objective with respect to arbitrary design modifications of the inter-

nal/external boundaries of the domain, termed as the configurational derivative, was

derived.

This chapter gives a brief background of the configurational optimization problem

and the derivation of configurational derivative. The configurational derivative will

later shown to be related to configurational force theory for fracture in Chapter 7.

3.1 Configurational Optimization Problem and Configurational Tensor

for Insertion of Arbitrary Heterogeneity

First, the concept of configurational optimization problem [99] for arbitrary ob-

jectives defined in a solid subdomain and its boundary surface is generalized. The

material time derivative of the objective with respect to arbitrary design modifica-

tions of the internal/external boundaries is derived and termed as the configurational

derivative. The configurational derivative is further simplified by introducing the no-

tion of configurational tensor. Then, the configurational derivative are specialized

for design transformations corresponding to translation, rotation, and scaling of the

heterogeneity. These transformations in turn yield the configurational forces comple-

menting the motions.
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3.1.1 The Configurational Optimization Problem and Configurational Deriva-

tive

Given a homogeneous solid Ω as shown in Figure 3.1a, the linear elastic response

of the domain is governed by the principle of virtual work statement:

∫
Ω

ε0 : C0 : εa0 dΩ−
∫
Γ

t0 · ua0 dΓ = 0 (3.1)

where, ε0 represents the infinitesimal strain tensor; εa0 and ua0 are compatible virtual

strains and displacement, respectively; t0 denotes the surface tractions prescribed on

the domain boundary; C0 is the fourth-order isotropic tensor defining the linear

elastic constitutive relation σ0 = C0 : ε0 between the stress σ0 and strain ε0 in

the homogeneous domain. Implicit in the above statement is the requirement that

ua0 = 0 on the portion of the boundary Γu where displacement boundary conditions

are applied. Also, Γt is the portion of boundary where tractions are prescribed, and

the boundary of the domain is decomposed such that Γ = Γu ∪ Γt and Γu ∩ Γt = ∅.

For convenience, the body forces are ignored in the current study.

Now, an arbitrary subdomain Ωs bounded by Γs can be defined for design purpose

(see Figure 3.1b). Here, the traction (defined using the outward normal indicated in

Figure 3.1b) as well as displacement boundary conditions (which arise on account of

Eq. (3.1)) are appropriately prescribed on Γst and Γsu, respectively, to ensure that

the subdomain remains in static equilibrium. Thus,

∫
Ωs

ε0 : C0 : εa0 dΩ−
∫
Γs

ts0 · ua0 dΓ = 0. (3.2)

The choice of Γs = Γsu ∪ Γst and the choice of the specific subregion Γsu (where

displacement boundary conditions are prescribed) are completely arbitrary and de-

pendent on design intent. The only exception is the special case where Ωs = Ω and
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Γs = Γ. Under such a choice, Γsu = Γu and Γst = Γt in order to recover the original

displacement and traction boundary conditions applied on Γ.

Now, within the homogeneous subdomain that is of interest, a “design transfor-

mation” that is continuous with a pseudo “design time” t within the domain can be

defined as:

x0 = x0
(
X0, t

)
(3.3)

where, X0 is initial position in the domain independent of time. Then, Ωs and Γs will

represent the configuration of the subdomain and its boundary at any time instant

t. Also, Ωt0
s is defined as the initial configuration. As with X0, Ωt0

s is assumed to be

independent of time. Associated with this design transformation, a “design velocity”

may now be defined as:

v0
(
x0, t

)
=
∂x0

∂t
. (3.4)

Therefore, the total derivative of any spatial function (scalar or tensorial) z0(x0, t)

defined in the homogeneous domain can be obtained using the material (time) deriva-

tive:
Dz0(x0, t)

Dt
= ż0 =

∂z0

∂t
+ v0 · ∇z0. (3.5)

Next, the above homogeneous subdomain is modified by introducing a heterogene-

ity that is defined over Ωp bounded by Γp (see Figure 3.1c) and located at position xp

inside Ωs. In general, the traction and displacement boundary conditions on Γst and

Γsu will differ between those on the homogeneous domain and on the heterogeneous

domain. Thus, the virtual work statement on the heterogeneous subdomain is given

by: ∫
Ωs

ε : C : εa dΩ−
∫
Γs

ts · ua dΓ = 0 (3.6)

where, the notations ε (strain), εa (virtual strain), ua (virtual displacement), and

ts without the superscript 0 are used to contrast with those defined in Eq. (3.2) for
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Figure 3.1. Definition of the configurational optimization problem: (a)
Arbitrary subdomain within the solid (b) Elasticity problem associated
with the homogeneous subdomain (c) Elasticity problem associated with
heterogeneous subdomain created by introducing an arbitrary heterogene-
ity.



31

the homogeneous subdomain. Further, C = C(x) denotes the fourth-order isotropic

elasticity tensor explicitly expressed by:

C(x)ijkl =

λ
0δijδkl + µ0(δikδjl + δilδjk) in Ωs − Ωp

λδijδkl + µ(δikδjl + δilδjk) in Ωp

(3.7)

where, λ0/λ, µ0/µ are the Lamé constants corresponding to the matrix/heterogeneity.

The design transformation x, design velocity v, and material derivative ż of an

arbitrary function z for the heterogeneous solid are defined in a manner analogous to

their homogeneous counterparts in Eqs. (3.3) to (3.5), but without the superscript 0.

The following general deformation and load related (performance) objectives are

proposed on the heterogeneous and homogeneous subdomains, respectively:

f(t) =

∫
Ωs

ψ(t, ε)dΩ +

∫
Γs

φ(t,n,x,u, t)dΓ (3.8)

where, ψ and φ are arbitrary design criteria evaluated at instant t in the heterogeneous

subdomains and their boundaries, respectively. Also, n is the unit outward normal

vector on Γs and thus identical in the two subdomains. For ease of reading, the

arguments of ψ, and φ will be suppressed in the derivations that follow.

In addition to the above deformation related objectives, the amount of total mass

of the heterogeneous subdomain is given by:

m(t) =

∫
Ωs

ρ(t,x)dΩ (3.9)

where, ρ(t,x) is the density field in the heterogeneous domains. Although the space

and time variations of density is allowed here for generality, in the usual design

scenarios, it is expected that these quantities do not vary within their domains or
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with design time. Similar to the elasticity tensor C(x), the density field ρ(x) in the

heterogeneous subdomain is defined as:

ρ(x) =

ρ
0 in Ωs − Ωp

ρ in Ωp

. (3.10)

In general, the heterogeneity can be either “stiff” or “soft”. The goal of the

configurational optimization problem is to optimally determine the reference location

xp of the heterogeneity, the orientation np of a reference axis passing through xp, and

a rotation θ about the reference axis as well as the heterogeneity shape to achieve

the greatest/least “effect” in the performance objective for the least/greatest change

in the mass of a stiff/soft heterogeneity. Thus, this configurational optimization

problem is mathematically posed as the following Pareto-Optimal (multi-objective)

formulation:

Find xp,np, θ and the optimized shape of heterogeneity to:

minimize g(t) = (1− w)f(t) + wm(t), 0 ≤ w ≤ 1

subject to c(t) =

∫
Ωs

ε : C : εa dΩ−
∫
Γs

ts · ua dΓ = 0. (3.11)

By imposing the virtual work statements c(t) = 0 as the constraints, the adjoint

boundary value problems naturally emerge. Also, w is the weight chosen by the

designer to reflect the relative emphasis on the performance and mass terms. In gen-

eral, the weight value has a one-to-one correspondence with the maximum allowable

mass change [85]. In other words, this multi-objective optimization yields a family of

solutions (the Pareto-Optimal family) corresponding to the various values of w.

In general, the design transformations x and x0 and the corresponding velocities v

and v0 in the heterogeneous and homogeneous subdomains, respectively, are arbitrary

and dictated by the design intent to move the boundaries of the body. Therefore, the

conditions x = x0 and v = v0 will be imposed in the statement of Problem (3.11).
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Also, without loss of generality (since the choice of Γst and Γsu are arbitrary), it will

be assumed that ts = ts0 on Γst. This choice is natural when the boundary Γst is the

same as Γt.

The Lagrangian corresponding to Problem (3.11) is formed as:

G(t) = g(t)− (1− w)c(t)

= (1− w) [f(t)− c(t)] + wm(t). (3.12)

The material time derivative ofG(t), termed as the Configurational Derivative,

is derived following the standard adjoint method for shape design sensitivity analysis

[100,101]. Readers are referred to [98] for detailed derivation procedure. The resulting

expression is written in terms of surface integrals as:

Ġ(t) = (1− w)

[ ∫
Γp

[[n · Σ]] · v dΓ +

∫
Γs

n · Σ · v dΓ

+

∫
Γs

[(φ+ t · ua) (∇ · v − n · ∇v · n) +∇φ · v + φ,n · ṅ] dΓ

+

∫
Γst

ṫs · (φ,t + ua) dΓ +

∫
Γsu

(φ,u · u̇s + t · u̇as) dΓ

]

+ w

∫
Γp

[[ρ(v · n)]] dΓ (3.13)

where, Σ is the configurational tensor of the heterogeneous domain and has the

following form:

Σ = (ψ − σ : εa) I + σa · ∇uT + σ · ∇uaT (3.14)
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In Eqs. (3.13) and (3.14), σa, εa, and ua denote the adjoint stress, strain, and

displacement to be solved from the following adjoint boundary value problem defined

in the heterogeneous subdomain:

∫
Ωs

σa : ξ dΩ−
∫

Γst

tas · u̇ dΓ = 0 (3.15)

where, ξ = 1
2
(∇u̇ +∇u̇T ). The constitutive law:

σa = C : εa − ψ,ε in Ωs (3.16)

defines the adjoin stress σa satisfying the equilibrium condition:

∇ · σa = 0 in Ωs. (3.17)

Also, the following displacement and traction boundary conditions are prescribed on

Γsu and Γst, respectively:

uas = −φ,t on Γsu (3.18)

tas = n · σa = φ,u on Γst. (3.19)

The configurational derivative is identical to the material derivative of the

objective g(t) if the virtual work constraint c(t) = 0 is satisfied at every instant. It

is noted that v is required to be continuous but otherwise arbitrary in Ωs−Ωp when

deriving Eq. (3.13). Also, given the design criteria and the density commonly do not

possess explicit dependence on design time t, it is assumed that ψ,t = φ,t = ρ,t = 0.



35

3.1.2 Configurational Derivative Corresponding to Translation, Rotation,

and Scaling of Heterogeneity: Deriving Configurational Forces

Next, as illlustrated in Figure 3.2, consider three specific design velocities corre-

sponding to translation, rotation and uniform scaling of the heterogeneity boundary

Γp described by:

v = v̂ on Γp (3.20)

v = ω̂ × rp on Γp (3.21)

v = α(t)rp on Γp (3.22)

with respect to a fixed subdomain boundary (no change in geometry and traction or

displacement boundary conditions), i.e.,

v = 0 on Γs (3.23)

ṫs = ṫs0 on Γst (3.24)

u̇s = u̇as on Γsu (3.25)

Here, v̂ is a constant velocity, ω̂ is a constant angular velocity about an arbitrary axis

�	
  
x p

Γ p

Ωp

v̂

(a)

x p
Γ p

Ωp

�	
  
!̂

(b)

�	
  
x p

Γ p

Ωp

↵(t)

(c)

Figure 3.2. Specific design velocities imposed on the heterogeneity: (a)
Translation (b) Rotation about an axis passing through xp (c) Scaling
with respect to xp.
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oriented along np passing through an arbitrary point xp with rp = x−xp, and α(t) is

a parameter, independent of spatial location, defining the scaling of the heterogeneity

relative to an arbitrary point xp.

Then, under the above three conditions, the configurational derivative Ġ(t) by

Eq. (3.13) takes the following respective forms:

ĠT (t) = (1− w)

∫
Γp

[[n · Σ]] dΓ

 · v̂
= (1− w)ITp (t) · v̂ (3.26)

ĠR(t) = (1− w)

∫
Γp

[[n · (−Σ× rp)]] dΓ

 · ω̂
= (1− w)IRp (t) · ω̂ (3.27)

ĠS(t) =

(1− w)

∫
Γp

[[n · Σ · rp]] dΓ

+ w

∫
Γp

[[ρ (n · rp)]] dΓ


α

=

(1− w)ISp (t) + w

∫
Γp

[[ρ (n · rp)]] dΓ

α (3.28)

which are written in terms of integrals ITp (t), IRp (t), and ISp (t) that are functions of

the configurational tensor. The coefficients of the velocities v̂, ω̂, and α(t) in the

above expressions yield the configurational forces associated with the motion of

the boundary Γp.

We note that under the translation, rotation, and scaling transformations of the

heterogeneity, the corresponding sensitivities are independent of the solutions to the

original and adjoint boundary value problems defined in the homogeneous subdomain.
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3.2 Numerical Examples

Numerical examples of design through configurational optimization are demon-

strated in this section. Optimal location and orientation of holes are determined

through the previously described configurational derivative.

3.2.1 Optimal Location of an Elliptical Hole in a Plate

Consider a square plate with an elliptical hole subjected to a quadratic load as

illustrated in Figure 3.3a. The elliptical hole was inserted at a random initial location

and its optimal location was determined through a steepest descent search using

Eq. (3.26) as the gradient. The optimal solution was then confirmed by calculating

the structural compliance of the square plate as a function of the position of elliptical

hole as shown in Figure 3.3b.

(a) (b)

Figure 3.3. (a) Configurational optimization problem to determine the
optimal location of a elliptical hole. (b) Numerical estimation of structural
compliance as a function of location of the elliptical hole.
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The square plate as well as the inserted hole are approximated by quadratic

NURBS entities. Results of von Mises stress over the plate during the process of

configurational optimization are demonstrated in Figure 3.4. Stress concentration

along the boundary of the elliptical hole gradually decreases as the hole moves to-

ward the top center portion of the plate. The calculated optimal location of the

elliptical hole agrees well with the optimal location identified earlier in Figure 3.3b

through exhaustive search.

(a) (b)

(c) (d)

Figure 3.4. Von Mises stress contour during configurational optimization
at (a) the initial step, (b) intermediate step 1, (c) intermediate step 2,
and (d) the end of optimization determining the optimal location of the
elliptical hole.
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3.2.2 Optimal Orientation of an Elliptical Hole

Next, consider a similar square plate with an elliptical hole, but subjected to a

uniform load as illustrated in Figure 3.3a. The elliptical hole was inserted at the

center of the plate and its optimal orientation is obtained by the steepest descent

method using Eq. (3.27) as the gradient. The structural compliance of the square

plate as a function of the orientation of elliptical hole is numerically evaluated and

shown in Figure 3.3b.

(a) (b)

Figure 3.5. (a) Configurational optimization problem to determine the
optimal orientation of an elliptical hole. (b) Calculated structural com-
pliance as a function of orientation of the elliptical hole.

The calculated von Mises stress in the plate during the process of configurational

optimization is shown in Figure 3.6. Initially, a strong stress concentration can be

observed at both ends of the elliptical hole. As the optimization progresses, the

orientation of the elliptical hole is gradually turned in the direction of tensile loading.

The optimal orientation was eventually determined to be aligned with the vertical axis

as the stress concentration is least in this orientation as shown in Figure 3.6d. The

calculated optimal orientation matches well with the calculation shown in Figure 3.5b.
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(a) (b)

(c) (d)

Figure 3.6. Von Mises stress contour during configurational optimization
at (a) the initial step, (b) intermediate step 1, (c) intermediate step 2,
and (d) the end of optimization determining the optimal orientation of an
elliptical hole.
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4. IMPLEMENTATION

The techniques and algorithms described in the present thesis are implemented in

an object-oriented Hierarchical Design and Analysis Code (HiDAC). The code is

developed to emphasize ease of use and sharing over the previously developed Object

Oriented Fortran (OOF) version of HiDAC [78]. In addition, the code is also intended

to enable quick concept validation during early research exploration. The features of

the code as well as the typical flow of control during use of the code are described in

detail in the following sections.

4.1 HiDAC: Hierarchical Design and Analysis Code

The code is based on the Matlab programming language (2019) [102]. Matlab is a

very popular high-level interpreted language for numerical computation, visualization

and object-oriented programming application development. Although the efficiency

of Matlab language is generally poorer than compiled languages such as C/C++

and Fortran, it has a number of outstanding advantages that override its weakness.

Specifically, in the context of academic research, the ease with which Matlab allows

development and validation of new algorithms is of great convenience. First, Mat-

lab provides a vast library of mathematical functions ranging from linear algebra

to optimization and many more. The users can hence focus on their specific algo-

rithm without the need to maintain compatible libraries regardless of the operating

system in use. Second, the Matlab application environment provides a responsive

and interactive interface. These features allow quick tests of algorithmic ideas and

thereby accelerate the algorithm development process. Moreover, access to libraries

in C++ and Python as well as subroutines written in Fortran are permitted, which

gives further flexibility during algorithm development. The adoption of Matlab lan-
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guage over the other compiled programming languages is a trade-off for its exceptional

maintainability and portability, which may represent acceptable compromises over its

inefficiency or problem size limitation.

The HiDAC Matlab code is composed of 34,000 lines and can be used to solve

elastostatic or thermal conduction boundary value problems with or without enriched

field approximation. Specifically, the enriched approximation enables the coupling of

multiple patches through parametric stitching techniques and modeling of singular

stress in multi-material wedges or cracks described in the later chapters of this thesis.

Implementation was carefully done to ensure optimized performance while maintain-

ing reusability and extensibility of the developed scripts. Highlighted features of the

code are briefly summarized as follows.

1. Problem dimension independence. The code is developed with problem dimen-

sion independence in mind. Functions generally work for one-dimensional, two-

dimensional and three-dimensional problems unless exhaustive recursive callings

are needed for the particular functions that impact the performance of code.

2. Prototype-based Object-oriented Programming. The object-oriented program-

ming (OOP) is implemented in a prototype-based approach instead of class-

based syntax commonly seen in C++ or modern Fortran. With the prototype-

based OOP, new objects are allowed to be created from scratch or cloned from

existing prototypal objects without needing a predefined, explicit definition of

a class for instantiation. Although the absence of class declaration degrades the

efficiency overall, prototypal objects feature offers the flexibility of arbitrarily

changing the created object by adding new fields or type-bound methods during

the course of development.

3. Vectorization. The implementation throughout the code is highly vectorized

that minimizes typical loop-based operations. Vectorization allows the Matlab

Just-In-Time compilation to optimize object-oriented function calls, bit-wise

calculation and element-wise arithmetic operations. The code is thus capable
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of handling moderate sized three-dimensional problems despite the limitations

of an interpreted language.

4.2 HiDAC Key Modules and Their Features

HiDAC consists of several key modules in conjunction with external packages as

illustrated in Figure 4.1. The attributes of the respective modules are briefly discussed

below.

Geometry creation
Boundary Value Prob.
Analytical problems
…

Main

Bezier
NURBS
…

Approximation

General
Math
Mechanics
Quadrature
Visualization

Utility

Octave NURBS Toolbox
Qhull
…

External Pkg

Heat conduction
Elastostatics
Sub-modules:

P-stitching
Singular stress

Analysis

Thermal
Elastic
…

Material

Figure 4.1. Code architecture of matlab HiDAC.

1. Approximation: The Approximation module contains two basic paramet-

ric splines including Bezier spline and NURBS. In HiDAC, parametric splines

are used to provide approximation space for geometry representation, mate-

rial distribution as well as behavioral fields. Subroutines for querying basis

functions, approximated values, and their derivatives as well as Jacobian are

defined.

• getBasis(), getBasisDeriv()

• getVal(), getDeriv()
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• getJac()

To facilitate application of boundary conditions, the following functions allow

users to extract global indices of relevant vertices, edges or faces with string-

based descriptions.

• getNameSelectCtrlPt()

• getNameSelectElem()

Furthermore, two methods are implemented to visualize arbitrary scalar and

vector fields over the geometric representation of domains or boundaries.

• plotScalarField()

• plotVectorField()

2. Material: Material types, properties and the associated methods are handled

by the Material module. New or extended material models may be simply

implemented by adding the collection of attributes and methods as submodules.

All material types are implemented with the getDm() method to obtain the

associated discretized material matrix.

3. Analysis: Methods relevant to particular analysis systems are all implemented

in the Analysis module. The currently available analysis systems include

heat conduction and elastostatics as the base modules. Additional submod-

ules add enriched field approximation upon the base modules that in turn en-

able multi-patch analysis through parametric stitching enrichment, displace-

ment jump across crack face through Heaviside enrichment, and singular stress

description through multi-material wedge enrichment.

Functions at different stages of analysis including pre-processing, assembly and

post-processing are implemented while operations and algorithms during the

solution phase leverage the optimized linear algebra library of Matlab. Each

individual base modules and submodules possess a getDofIdx() method to



45

query the associated local or global indices of degrees of freedom for a given

point in the space. Similarly, each module is implemented with getField()

and getGradField() type of functions to obtain quantities appropriate for

an analysis type. For instance, elastostatics analysis modules with or without

multi-patch parametric stitching define the following functions to evaluate the

approximated fields at any given point.

• getDisplacement()

• getStrain()

• getStress()

4. Utility: The Utility module contains independent subroutines that could

be used for any type of approximation, material or analysis. These functions

are organized into sub-modules including General, Math, Mechanics, Quadra-

ture and Visualization. Examples of functions include getting rotation matrix

between coordinate systems for tensors, querying Gaussian quadrature points

of arbitrary order, or obtaining invariants associated with specific physics such

as principal stresses or energy density, etc.

5. ExternalPkg: All external packages not readily available in the Matlab built-

in libraries are treated as sub-modules of the ExternalPkg module. Many

of the lower-level Bezier and NURBS approximation methods for basic geom-

etry creation, basis function evaluation and visualization are based on Octave

NURBS Package [103,104].

4.3 NURBS Geometry Modeler

A key and powerful element of the matlab HiDAC is the NURBS geometry modeler

that facilitates generation of analysis-suitable geometric representation. It is devel-

oped to enable simple and intuitive geometry generation process over the previously

developed OOF-HiDAC.
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In OOF-HiDAC, creation of NURBS curves, surfaces and volumes generally re-

quires a good understanding of spline as well as the custom data structures. It relies

on Visualization Toolkit (VTK) to visualize geometry or the associated field distri-

bution. However, open source VTK application programming interface (API) for

Fortran does not fully support the entire VTK standard. Additional effort must be

invested in order to visualize sophisticated drawings that can be easily made by either

Matlab or Python. Although the VTK allows scalable distributed-memory parallel

processing under Message Passing Interface (MPI), there is very little need for it in

the present research, where the main purpose of the numerical implementation is to

validate the approximation forms proposed in this study.

The NURBS geometry modeler is part of the Matlab HiDAC’s approximation

module and it is built upon the Octave NURBS toolbox package [103,104]. It supports

direct input of knots and control points, but also provides a number of handy auxiliary

functions for ease of use. Figure 4.2 demonstrates some representative NURBS curves

that can be effortlessly generated. With the help of auxiliary functions, users can

intuitively define the geometry by parameters such as the coordinates of end points

or the dimensions of the rectangle without difficulty. For instance, while the circular

arc shown in Figure 4.2c is explicitly defined in terms of polynomial degree, knots

and control points as listed in Table 4.1, the control points are much more intuitively

defined using coordinate system location (0, 0), radius r = 10, starting angle θ1 = 48◦

and ending angle θ2 = 312◦.

Table 4.1.
NURBS definition of the circular arc shown in Figure 4.2c.

Polynomial degree (p) 2
Knots (ξ) 0, 0, 0, 1/3, 1/3, 2/3, 2/3, 1, 1, 1

Control points x 6.6913,−0.3490,−7.1934, ,−10,−7.1934,−0.3490, 6.6913
Control points y 7.4314, 9.9939, 6.9466, 0,−6.9466,−9.9939,−7.4314

Control points w 1, 1/
√

(2), 1, 1/
√

2, 1, 1/
√

2, 1



47

(a) (b)

(c) (d)

Figure 4.2. NURBS curve representation of (a) a straight spline, (b)
rectangular lines, (c) a circular arc, and (d) an arbitrary curve.

The advantage of the Matlab HiDAC geometry modeler is even more obvious es-

pecially for geometries of higher dimension. Figure 4.3 shows a number of NURBS

representations including a square patch, a cylindrical surface, a ruled surface and

a coons patch without the need to define knots and control points in a point-wise

manner. Users simply define the geometric parameters to model the square patch as

well as the cylindrical surface. The NURBS representation of the ruled surface or
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the coons patch are constructed from two curves or four curves, respectively. The

highlighted red curves in Figures 4.3c and 4.3d indicate the curves used for the con-

struction of the surfaces.

(a) (b)

(c) (d)

Figure 4.3. NURBS surface representation of (a) a rectangular patch, (b)
a cylindrical surface, (c) a ruled surface, and (d) a coons patch.

In addition to methods used for construction of curves and surfaces, basic CAD

operations including extrusion and revolution are also available to aid generation of

NURBS representations. Curve or surface can easily been extruded or revolved into

a surface or a volume from a lower dimensional geometry. As shown in Figure 4.4

and Figure 4.5, these two operations further alleviate the difficulties in defining the
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NURBS representations of two or three dimensional geometries. In the figures, the red

curves and discretized surfaces indicate the source entities used for the construction

of the higher dimensional geometry.

(a) (b)

Figure 4.4. Extrusion operation of NURBS representation (a) from a
curve to a surface, and (b) from a surface to a volume.

(a) (b)

Figure 4.5. Revolution operation of NURBS representation (a) from a
curve to a surface, and (b) from a surface to a volume.
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4.4 Analysis Flow

4.4.1 Overview

Figure 4.6 illustrates a typical analysis flow for elastostatic problems with the

enriched field approximation technique. The geometric representation of the problem

domain is first defined by parametric domains. Then, material properties are defined

and associated with each part of the problem domain. Next, enriching interfaces are

defined and introduced into the problem. In general, the enriching interfaces could

be embedded into the domain, inserted along the edges of the patches being coupled,

or placed on the external boundaries of the overall problem domain. The specified

boundary conditions are then assigned onto the external boundaries of the problem

domain. Before the assembly process, the augmented composed domain is formed

by joining each individual patch with the enriching interfaces. Once the problem

definition is complete with the above pre-processing procedure, the linear system of

the problem is then assembled and solved in parallel. The solution is post-processed,

output and visualized in the desired format.

Figure 4.6. Typical flow of control using matlab HiDAC for an enriched
isogeometric analysis.
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4.4.2 Scripting Interface

The implemented scripting interface is demonstrated through a three-dimensional

heat conduction example. An initialization block is usually called upfront as shown

in Figure 4.7a. The function initializeHiDAC frees up the memory and loads the

basic parameters for the analysis. Next, relevant modules are loaded into the program

by calling addModule function. Subsequently, the geometry, materials, boundary

conditions and analysis parameters are further defined by the user as illustrated in

Figure 4.7b. The generated NURBS representation of the volume using the geometry

modeler is shown in Figure 4.7c.

(a)

(b) (c)

Figure 4.7. Program (a) initialization script, (b) typical user inputs, and
(c) the generated NURBS representation of a volume.
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Once the problem is fully defined, the analysis and post processing are subse-

quently performed as illustrated in Figure 4.8. The functions for assembly and bound-

ary condition imposition are implemented in other analysis systems also. Figure 4.9

illustrates the temperature field as well as the flux field on the example heat conduc-

tion problem. The function getNrbKntOnBound and getNrbKntInDomain are

used to generate uniformly distributed query points on the boundaries and within the

domain, respectively. Then, getTempAtKnot and getFluxAtKnot are called to

evaluate the fields at the query points. Similar functions are also available for elastic

analysis and other types of enriched isogeometric analysis. To plot the evaluated field

on the boundaries or in the domain, plotScalarField and plotVectorField

are called with the desired plotting attributes.

(a)

(b)

Figure 4.8. HiDAC environment for (a) analysis, and (b) post-processing.
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(a)

(b)

Figure 4.9. (a) Temperature solution contour over the outer boundary,
and (b) heat flux vectors within the domain.
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5. PARAMETRIC STITCHING FOR SMOOTH COUPLING OF SUBDOMAINS

WITH NON-MATCHING DISCRETIZATIONS

In this chapter, a unified formulation to smoothly couple non-matching parametric

domains for both geometric modeling and analysis of behavior is presented. The key

concept used to accomplish the coupling is a “parametric stitching” or p-stitching

interface between the incompatible patches. Specifically, p-stitching permits inde-

pendently varying fields with assured, arbitrary smoothness at the interface between

the coupled subdomains. The developed procedure enables modular construction of

coupling problems with compatible interfaces as well as the ability to characterize

sharp changes in gradient, as at dissimilar material interfaces. Fundamental to the

developed methodology is enriched field approximations. The base approximations

in the subdomains are enriched by the interfacial fields constructed as a function

of distance from the coupling interfaces. The proposed method is argued to be the

smooth extension of the dual-primal method such as the localized version of the La-

grange multiplier method. Non-uniform rational B-splines (NURBS) are chosen for

discretizing the parametric subdomains. The developed procedure though is valid for

other representations of subdomains whose basis functions obey partition of unity.

The proposed method was validated through patch tests and demonstrate the ap-

proach on several two- and three-dimensional elastostatic as well as heat conduction

numerical examples.

5.1 Construction of Enriched Field Approximations

Considering Figure 5.1, we begin with the coupling interface Γi of each patch that

are part of the boundary of the associated patch ∂Ωi. We will assume that the two

patches share a compatible interface geometry denoted by Γe, i.e., Γe ≡ Γi.
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We construct an enriching approximation from the coupling interface Γe over the

subdomain Ωi. We observe that we can construct an enriched field approximation

(Eq. (2.11)) as a function of the normal distance from the boundary Γe. Thus, at a

parametric location (ξ, η) on the enriching boundary, in the direction normal to the

boundary, we can express the enriching approximation through a generalized Taylor’s

series expansion of the form:

fΓe(ξ, η, d) = f 0(ξ, η) +
∞∑
m=1

1

m!
f ′
m

(ξ, η) dm (5.1)

where, f 0 is the constant term and f ′m = ∂mf
∂nm

is the mth directional derivative of the

field in the normal direction at the parametric location (ξ, η) of the boundary, and d is

the distance in the normal direction at the point on the boundary. When constructing

the approximation, the term f 0 and the derivatives f ′m are in turn isoparametrically

approximated as described in Eq. (2.2). Thus,

f 0(ξ, η) =

nk∑
k=1

nl∑
l=1

Rkl(ξ, η)f̄ 0
kl (5.2)

f ′
m

(ξ, η) =

nk∑
k=1

nl∑
l=1

Rkl(ξ, η)f̄ ′
m
kl (5.3)

with f̄ 0
kl, f̄

′m
kl being the unknowns that are obtained during the solution process.

Figure 5.1. Illustration of non-matching parametric domains. The inter-
faces are shown separated for clarity, but Γe ≡ Γi.
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Now, the coupling of the two subdomains at the interface is achieved by defining

the function fΓe in Eq. (2.11) as corresponding to the interface geometry Γe. Thus,

the approximate blended field within each subdomain Ωi is

fi(x) = [1− w(di(x))] fΩi(x) + w(di(x))fΓe(ξ, η, di(x)) (5.4)

where, di(x) and w(di(x)) denote the distance from the boundary Γe to a point in the

domain Ωi, and the weight value that provides the influence of the field approximation

on the boundary Γe as a function distance, respectively. fΩi(x) is the underlying field

approximation in the domain Ωi, fΓe is the enrichment intended for subdomain Ωi,

and fi(x) is the resulting blended approximation in Ωi. In general, using identical

values of f̄ 0
kl and f̄ ′

m
kl in Eqs. (5.2) and (5.3) in both domains ensures the continuity

of the field across the interface. However, one may choose to keep the value of f̄ 0
kl

the same between the two subdomains but keep two distinct values of f̄ ′kl to allow

derivative discontinuity as at a material interface. The advantage of this formulation

is that it may be expanded to arbitrary order to achieve the desired smoothness

across the boundary. The constructed approximation allows arbitrary smoothness,

but additional unknowns are introduced at the control points of the enriching interface

Γe as defined in Eqs. (5.2) and (5.3).

While the NURBS approximation for fΓe(x) in Eq. (5.1) is arbitrary, it may be

convenient to use the approximation corresponding to the underlying approximation

on Γi, that is, fΓe is the value of fΩi along the patch boundary Γi. In this study,

we chose fΓe as corresponding to the boundary with the coarser discretization (for

example, Γ1 in the illustration of Figure 5.1).

This choice along with enforcement of derivative continuity leads to the value

of the field at the interface being captured by a set of unknowns representing the

interface, namely, f̄ 0
kl and f̄ ′

m
kl.

Since the normal derivatives are defined independent of the underlying subdomain

approximations, the interacting physical forces are fully described by the unknowns
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f̄ 0
kl and f̄ ′

m
kl in each subdomain. Therefore, no interaction between the subdomains

needs to be considered when constructing the system stiffness matrix – the interfa-

cial unknowns fully describe the coupling. Thus, the proposed methodology enables

parallel assembly as well as a modular procedure to construct the coupling problem.

5.2 P-Stitching Formulation for Elasto-Static Problems

The proposed general formulation for coupling fields is specialized for elasto-static

problems in this section. Consider an elastic object with subdomains as illustrated

in Figure 5.2. The body is subjected to Dirichlet boundary conditions ū on Γu

and traction t̄ is enforced on Γt with Γu ∩ Γt = ∅. While the developed procedure is

generally valid for stitching overlapping domains, for simplicity, the domain illustrated

here is composed of two non-overlapping subdomains Ω1 and Ω2 such that
⋃2
α=1 Ωα =

Ω, and
⋂2
α=1 Ωα = Γe where Γe is the coupling interface.

Ω"

Ω#

Γ%

𝑥

𝑦

Γ(

Γ)

𝒕̅	

𝒖.	

Figure 5.2. Problem domain consisting two subdomains that need to be
smoothly coupled.
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With displacement compatibility and traction reciprocity conditions enforced along

the coupling interface, the elasticity problem is written as follows:

∇ · σ + b = 0 in Ω (5.5a)

u = ū on Γu (5.5b)

t = t̄ on Γt (5.5c)

u(1) − u(2) = 0 on Γe (5.5d)

t(1) + t(2) = 0 on Γe (5.5e)

In this work, we consider the expansion of the coupling field to the first order in

Eq. (5.1). The displacement field u(x) is the unknown that is required to be compat-

ible along the coupling interface. The gradients of the displacements may or may not

be compatible depending on the nature of the materials in the two subdomains. Thus,

a first-order reduction of Eq. (5.4), specialized for the current elasticity problem is:

ui(x) = (1− w(di))uΩi(x) + w(di)(u
0
Γe(P(x)) + u′Γe(P(x)) d) (5.6)

where, the subscript i denotes the subdomain, uΩi is the displacement approximation

on Ωi, u
0
Γe

is the displacement approximation on the coupling boundary Γe, and u′Γe

is the approximation of the displacement gradient normal to the coupling interface,

that is, u′Γe = ∂u/∂n.

Over the support region of the associated weight field w(di), the composed dis-

placement is a blending of the displacement associated with neighboring domains

and the first-order approximated displacement associated with the coupling bound-

ary. For points outside of the support region, the displacement field is fully resolved

by the approximation on the associated parametric domains.

Since the size of the blending region (that is, the support region of w(di)) is

arbitrary, one choice is to make the support edge coincide with the Euclidean locations

corresponding to the knots of the underlying domain. However, this leads to a non-
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uniform dmax in Eq. (2.12) over the blending region. Therefore, in the present study,

dmax is held fixed while the integration is carried out over the first non-zero knot span

of the domain, as illustrated in Figure 5.3.

Figure 5.3. Support region of the weight field w(di) in parametric space
and in Euclidean space. The support region is chosen to coincide with the
first non-zero knot span in the parametric space of the underlying domain.

5.2.1 Discretization for Blending of Two Patches

The discretized form of the coupling approximation Eq. (5.6) is:

u(x) =
[
(1− w(di))RΩi(x) w(di)RΓe(P(x)) w(di)diRΓe(P(x))

]
ūΩi

ū0
Γi

ū′Γi

 (5.7a)

= [RΩi R0
Γe R

′

Γe ]{ū} (5.7b)

= [R]{ū} (5.7c)

where, RΩi and RΓe are the basis function matrices associated with the subdomains

and the coupling interface, respectively. ūΩi , ū
0
Γi
, ū′Γi are the degrees of freedom

corresponding to the nodal unknowns of the fields uΩ, u0
Γi

and u′Γi , respectively.

The strain field approximation is now obtained in the standard manner as:

ε = ∇su = [B]{ū} (5.8)
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where, ∇s is the symmetric gradient operator and for three-dimensional problem it

is defined as

∇s =



∂/∂x 0 0

0 ∂/∂y 0

0 0 ∂/∂z

0 ∂/∂z ∂/∂y

∂/∂z ∂/∂x 0

∂/∂y ∂/∂x 0


The strain-displacement matrix [B] takes the following form:

[B] = [BΩi B0
Γe B

′

Γe ] (5.9a)

=


−[RΩi ]

T [∇w]T + (1− w)[∇RΩi ]
T

[RΓe ]
T [∇w]T + w[∇RΓe ]

T

di[RΓe ]
T [∇w]T + w[RΓe ]

T [∇di]T + wdi[∇RΓe ]
T


T

(5.9b)

The discretized weak form of Eq. (5.5) may be expressed as [K]{ū} = {f}, which

could be further expanded into block matrices as follows.



KΩ1Ω1 0 KΩ1Γ0
e

KΩ1Γ
′
e1

0

0 KΩ2Ω2 KΩ2Γ0
e

0 KΩ2Γ0
e

KT
Ω1Γ0

e
KT

Ω2Γ0
e

KΓ0
eΓ

0
e

KΓ0
eΓ
′
e1

KΓ0
eΓ
′
e2

KT
Ω1Γ

′
e1

0 KT
Γ0
eΓ
′
e1

KΓ
′
e1Γ
′
e1

0

0 KT
Ω2Γ

′
e2

KT
Γ0
eΓ
′
e2

0 KΓ
′
e2Γ
′
e2





ūΩ1

ūΩ2

ū0
Γe

ū
′
Γe1

ū
′
Γe2


=



fΩ1

fΩ2

0

0

0


(5.10)

where, KIJ =
∫

Ω
[BI ]

T [D][BJ ]dΩ with I, J = Ωi,Γ
0
e,Γ

′
ei for i = 1, 2 and [D] is the

constitutive matrix. The discrete force vector fΩi
associated with the subdomains is

{fΩi
} =

∫
Ω

[R]T{b̄}dΩ +

∫
Γt

[R]T{t̄}dΓ (5.11a)
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where , b̄ is the prescribed body force per unit volume, and t̄ is the prescribed traction

over the Neumann boundary Γt.

5.3 Patch Test

The developed methodology was first validated through two-dimensional and three-

dimensional patch tests in which unit traction was applied as illustrated in Figure 5.4.

The non-overlapping subdomains, Ω1 and Ω2, were coupled through a stitching inter-

face Γe along the shared boundary using the above-described methodology. Subdo-

mains with identical as well as dissimilar materials were considered to test the ability

to reproduce discontinuities in the displacement derivatives across the stitching in-

terface. Elastic modulus of E = 1 and Poisson’s ratio of ν = 0.3 were assumed when

modeling homogeneous domains. For bi-material domains, we chose subdomain Ω1

to have E = 1 and ν = 0.1, while subdomain Ω2 had E = 2 and ν = 0.2 to ensure

compatible lateral contraction. The degrees of the NURBS basis functions used to

approximate the subdomains, either linear or quadratic, were kept identical for both

subdomains as well as the coupling interface in all the tests. Standard Legendre-

Gauss numerical integration was used and the order of quadrature depended on the

chosen weight function form. Quadrature that ensured exact numerical integration

was chosen when the weight functions were of polynomial form. Six and eight point

quadrature were used when the weight function was of exponential form.

Three types of discretization schemes including matching, hierarchical and non-

matching were considered. The matching scheme assumes a conforming discretization

for both subdomains with the size of h1 = h2 = 1/3i with i taking on sequential values

that produced refined meshes. The hierarchical scheme had a periodically matching

discretization for Ω1 and Ω2 with h1 = 1/3i and h2 = 1/6i, respectively. In the

non-matching refinement, the two subdomains had a non-conforming discretization

of h1 = 1/(4i − 1) and h2 = 1/(8i − 1). The value of i ranged from 1 to 25 and the

discretization of stitching interface always conformed to Ω1. Illustrations of the three
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discretization schemes represented by NURBSs in their coarsest refinement density

(i = 1) are shown in Figure 5.5.

Ω"

Ω#

𝑥
𝑦

Γ'

𝜎	

𝑎

𝑎

𝑎

(a)

Ω"

Ω#

𝑥
𝑦

Γ'

𝜎	

(b)

Figure 5.4. (a) Patch test setup and (b) expanded view of the individual
subdomains and the coupling interface.

To judge convergence rate, we used the relative L2 norm of the error in displace-

ment and strain energy as defined below:

ēL2 =
‖uex − uh‖L2

‖uex‖L2

=

{∫
(uh − uex)T (uh − uex)dΩ

}1/2

{∫
(uex)T (uex)dΩ

}1/2
(5.12a)

ēen =
‖uex − uh‖en
‖uex‖en

=

{
1
2

∫
(εh − εex)TD(εh − εex)dΩ

}1/2

{
1
2

∫
(εex)TD(εex)dΩ

}1/2
(5.12b)

5.3.1 Matching and Hierarchical Discretizations

We begin with matching and hierarchical discretizations using a polynomial weight

function for blending. Figure 5.6 shows the two-dimensional patch test’s relative error

in L2 norm of displacement with homogeneous and bi-material interfaces coupled

using a cubic weight function. The results demonstrate immediate convergence to the
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(a) (b) (c)

(d) (e) (f)

Figure 5.5. Example of discretization schemes for two- and three-
dimensional patch tests (NURBS degree=1). (a) and (d) matching
scheme. (b) and (e) hierarchical scheme. (c) and (c) non-matching
scheme. The red dots are control points while blue squares and black
lines indicate edges of the spline elements (non-zero knot spans).

solution with errors that fluctuate in the range of 10−13 to 10−10. Both h-refinement

and p-refinement do not further improve the accuracy of the solution. Our observation

suggests that the solution accuracy is on the same level as the accuracy with which

distance as well as the gradients of distance may be numerically evaluated (that is,

to function precision). Results of three-dimensional patch tests are not shown here

for reasons of brevity, but they too exhibited an accuracy that approached function

precision.
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Figure 5.6. Relative L2 norm of error in displacement with (a) homoge-
neous and (b) bi-material interface coupled using cubic weight function.
(c) Matching and hierarchical discretization were used for refinement.

Next, the patch test was conducted on the refined meshes with the exponential

weight function (Eq. (2.12c)). Figure 5.7 demonstrates the convergence of solution for

homogeneous interface coupling when using an exponential weight function. It is seen

that the solution accuracy is poorer in comparison to the error that was demonstrated

with the cubic weight function, which was at the level of function precision. The

solution accuracy improved only when the order of Gaussian quadrature was raised, or

when the discretization was refined. Since exponential function can be characterized

by an infinite power series
∑∞

k=0 x
k/k!, numerical integration is inexact for standard

finite-order Gaussian quadrature. Since the coupling support only extends to the edge

of the first non-zero knot span, refining the mesh helps improve the solution accuracy

by confining the quadrature error to a smaller region. Given the above observations

and the fact that evaluation of exponential function is generally computationally more

expensive than for polynomials, we chose to use cubic polynomial weight functions in

the rest of the present work.
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Figure 5.7. (a) Relative L2 norm of error in displacement and (b) in
strain energy for homogeneous interface coupled using exponential weight
function. (c) The least refined mesh of the two-dimensional matching
discretization that was analyzed.

5.3.2 Non-matching Discretizations

Next, we conducted patch tests with non-matching discretizations for two- and

three-dimensional test geometries. Figure 5.8 shows the contours of displacement

uz and normal strain εzz for three-dimensional patch tests with the coarsest non-

matching discretization. While coupling subdomains of identical materials provides

the expected smooth solution across the interface, the bi-material coupling interface

successfully captured the jump in normal strain. Overall, the solution near the cou-

pling interface was smooth and without any variations from its expected value.

The values of displacement and strain plotted in Figure 5.8 were further examined

along a chosen path through the geometry. The solution along {y ∈ [0, 2a]|x = 0.5a}

in the planar geometry and along {z ∈ [0, 2a]|x = 0.5a, y = 0} in the three-

dimensional geometry are plotted in Figure 5.9. These plots confirm that displace-

ment compatibility is achieved across the coupling interface. In addition, the normal

strain across the bi-material interface exhibits the expected jump.
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(a) (b)

(c) (d)

Figure 5.8. (a) Displacement uz and (b) normal strain εzz contours for
homogeneous patch test. (c) Displacement uz and (d) normal strain εzz
contours for bi-material patch test.

In Figure 5.10, the solution convergence on a two-dimensional patch with non-

matching discretization is plotted. The observed convergence rate was nearly opti-

mal with h-refinement, while an exponential convergence rate was observed with p-

refinement. The three-dimensional patch tests on non-matching discretization showed

a similar trend.
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Figure 5.9. Displacement and strain along the paths for (a) homoge-
neous and (b) bi-material patch test with non-matching discretization.
(c) Path along the two- and three-dimensional patches with non-matching
discretization along which the solutions are plotted.

(a) (b) (c)

Figure 5.10. (a) The relative L2 norm of error in displacement for homo-
geneous coupling and (b) bi-material coupling. (c) The coarsest mesh of
the assumed two-dimensional non-matching discretization.

5.4 Numerical Examples

Several two-dimensional and three-dimensional examples are solved using the de-

veloped p-stitching procedure in the following.
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5.4.1 Timoshenko Beam

Consider a beam with dimensions L by D, and of unit thickness, subjected to

parabolically distributed shear traction ty along the free end given by:

ty =
−P
2I

(
D2

4
− y2) (5.13)

where, P is the resultant load and I = D3/12 is the cross-sectional moment of inertia.

Along the boundary, Γu = {x = 0,−D/2 ≤ y ≤ D/2}, the x-displacements were set

to zero. The y-displacement was also restrained at x = 0, y = 0. The beam was

decomposed into two equal sized halves represented by two bi-cubic NURBS patches.

A coupling interface defined by Γe = {x = L/2,−D/2 ≤ y ≤ D/2} was introduced

between the two patches. The two subdomains were discretized into 10 × 10 and

21 × 21 uniform “elements” (non-zero knot spans), respectively. Figure 5.11 shows

the geometric dimensions, boundary conditions, decomposed subdomains as well as

their discretizations.

Ω" Ω#

Γ%

Γ& Γ' 𝑡)𝐷

𝐿

𝑥

𝑦

(a)

(b)

Figure 5.11. (a) Dimensions, boundary conditions, and (a) NURBS dis-
cretization of Timoshenko beam.
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The analytical solution to this problem is [105]:

ux =
Py

6EI
[(6L− 3x)x+ (2 + ν)(y2 − D2

4
)] (5.14a)

uy =
−P
6EI

[3νy2(L− x) + (4 + 5ν)
D2

4
x+ (3L− x)x2] (5.14b)

σxx =
P (L− x)y

I
(5.14c)

σyy = 0 (5.14d)

σxy =
−P
2I

(
D2

4
− y2) (5.14e)

For the purposes of numerical computation, the elastic properties of the two subdo-

mains were chosen to be identical and equal to E = 1000 and ν = 0.25. The specific

value of dimensions were L = 100 and D = 20, and the tip load value was P = 8.

(a)

(b)

Figure 5.12. (a) Vertical displacements uy and (b) its relative error
uy/|umax| in the Timoshenko beam.

Figure 5.12 shows the vertical displacement and its relative error with respect

to absolute values of the maximum deflection umax = max|uy|. Overall, the error
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Figure 5.13. Displacement and stress components along the indicated
path in the Timoshenko beam. The dotted line shows the location of
coupling interface Γe along the length of the beam.

introduced by the enforcement of non-homogeneous essential boundary conditions

was larger than the error near the coupling field. Only smooth variations about the

expected value of the field were observed near the coupling interface.

Displacements and stresses along the path y = 0 are plotted in Figure 5.13 and

compared against the analytical solution. The displacement results show good agree-

ment without any visible deviation from the analytical solution near the coupling

interface. Stresses near the coupling boundary were also smooth.

5.4.2 Thick-Walled Cylinder Subjected to Internal Pressure

A thick-walled cylinder subjected to internal pressure p was modeled using NURBS

with the number of subdomains nΩ = 2, 3, and 4. Figure 5.14a shows the problem

definition and boundary conditions. The specific dimensions of the cylinder were

a = 0.3 m and b = 0.5 m. A plane stress condition was assumed with elastic modulus

of E = 30 GPa and Poisson’s ratio of ν = 0.3. Uniform internal pressure of p = 30

MPa was applied.
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Figure 5.14. (a) Boundary condition on the cylinder wall subjected to
internal pressure, and (b) (c) (d) hierarchical discretizations with the num-
ber of subdomains nΩ = 2, 3, 4, respectively.

The cylindrical wall was modeled with 2, 3 and 4 bi-quadratic NURBS patches

with hierarchical discretization as illustrated in Figures 5.14b to 5.14d. Each NURBS

patch Ωi was hierarchically discretized into 10 by 4 × 2(i+1) (for i from 1 to nΩ)

uniformly distributed knot spans in the radial and hoop directions, respectively.
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The analytical solution to this problem is given below [105]. The displacement

components expressed in polar coordinates are:

ur =
pra2

E(b2 − a2)
[(1− ν) +

b2

r2
(1 + ν)] (5.15a)

uθ = 0 (5.15b)

The solution to stress components are as follows:

σrr =
pa2

b2 − a2
(1− b2

r2
) (5.16a)

σθθ =
pa2

b2 − a2
(1 +

b2

r2
) (5.16b)

σrθ = 0 (5.16c)

Contours of the displacements and stresses, as well as the relative error on the

analytical solution are plotted in Figure 5.15. Generally, the errors were confined

to the coupling region on both sides of the interfaces. This is due to the fact that

only first order normal derivative continuity was imposed on the solution along the

coupling interface. Still, the solution is of good accuracy with the error on the order

of 0.0001% in displacement and 0.1% in stress.

5.4.3 Heat Conduction in Coupled Non-planar Surfaces

The proposed formulation is also applicable to non-planar surface-surface coupling

in three-dimensional space in addition to typical planar surface-surface or volume-

volume coupling. In this example, a simple heat conduction problem on two quarter-

circular patches revolving about the z-axis is considered. Both subdomains are mod-

eled with bi-quadratic NURBS surfaces with non-matching discretization as shown in

Figure 5.16a. The value of R was 2 and that of a was 2.5, and the thermal conductivity

k for both subdomains was set to unity.
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(a) (b)

(c) (d)

Figure 5.15. Plots of contours of (a) ur and (b) σθθ. Contours of relative
error in (c) ur and (d) von Mises stress σeq.

The resulting temperature contour and its value along the path z ∈ [−a, a] are

shown in Figures 5.16b and 5.16c. The solution contour shows smooth transition

with no non-smooth variations that could be visually observed near the coupling

interface. Since the temperature field varies linearly with respect to the z coordinate,

the solution is as accurate as those observed in the patch tests earlier.
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Figure 5.16. (a) Problem definition and discretization of the two coupled
non-planar NURBS surfaces, (b) solution temperature contours and (c)
temperature value along the path z ∈ [−a, a] with r = R, θ = π/4.

5.4.4 Three-dimensional Hook

In the last example, we consider a three-dimensional hook to demonstrate the

ability of the developed methodology to analyze complex volumetric domains decom-
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posed into constituent elements as in the volumetric modeling procedure described

in [37].

The hook model consists of three tri-quadratic NURBS subdomains with both

hierarchical and non-matching coupling interfaces in three-dimensional space. The

geometric dimensions, material properties, boundary conditions and coupling struc-

ture are described in Figure 5.17. The fixed boundary is fully clamped on the top

surface (z = 0), while the hook is subjected to a uniform traction p pointing in the

−z direction. In total, the model contained 548 NURBS “elements” (non-zero knot

spans) that resulted in 8,781 degrees of freedom.

(a) (b)

Figure 5.17. The hook model’s (a) coupling structure, (b) dimensions
and boundary conditions.

Figures 5.18 and 5.19 show the magnitude of the displacement and the von Mises

stress in comparison to the solution contours obtained from the commercial finite ele-

ment code ABAQUS. The finite element model was meshed with an average element
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size of 0.05 and contained 6,720 quadratic elements, resulting in 100,155 degrees of

freedom. The finite element model did not have decomposed subdomains or a cou-

pling interface. Since p-stitching naturally assures compatibility at the interface,

displacements are continuous across the coupling interfaces as expected. Jumps in

displacement across the interface, which are often observed when compatibility is

weakly enforced, do not arise with the developed approach. Overall, the displace-

ment contours show consistency with the finite element solution. Some non-smooth

variation in von Mises stress can be observed near the coupling interfaces. This is

mainly due to the fact that only the constant term and first order normal derivatives

were used in building the interfacial approximation. Otherwise, stress contours (in-

cluding the variation in the through-thickness direction due to bending) also agree

well with the finite element solution.

(a) (b)

Figure 5.18. Magnitude of displacement ‖u‖ obtained by (a) the present
method and (b) the finite element method.
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(a) (b)

Figure 5.19. Von Mises stress obtained by (a) the present method and
(b) the finite element method.
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6. ISOGEOMETRIC ENRICHMENT FOR STRESS SINGULARITIES IN

MULTI-MATERIAL WEDGES

The isogeometric enrichment of multi-material wedges with bonded or de-bonded in-

terfaces is proposed in this chapter with the ultimate goal of characterizing failures in

engineering structures induced by stress singularities. In accordance with formulation

of EIGA, material junctions, crack tips and the debonded interfaces are explicitly rep-

resented by parametrically defined geometries. The enriched field approximations are

isoparametrically and hierarchically constructed in an increasing order of parametric

dimensionality.

The formulation developed in this chapter enables explicit representation of inter-

faces within the body while allowing direct extraction of generalized stress intensity

factors upon solution of planar elastic boundary value problems, without additional

calculation of a posteriori path-independent integral. Numerical implementation is

demonstrated through examples of a bi-material wedge and fracture in a homogeneous

solid.

6.1 Asymptotic Analysis of Stress Singularities

Asymptotic analysis of stress singularities is first described prior to formulating the

enriched field approximation. The assumptions and derivations generally follow those

given by Seweryn and Molski [106] for homogeneous solids as well as the extension

made by Luo and Subbarayan [107] for multi-material wedges.

Consider a multi-material wedge in a polar coordinate system (r, θ). The two

independent components of displacement are ur and uθ. The three strain components

in polar coordinates are as follows:
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εrri =
∂uri
∂ri

, (6.1a)

εθθi =
uri
ri

+
1

ri

∂uθi
∂θi

, (6.1b)

γrθi =
1

ri

∂uri
∂θi

+
∂uθi
∂ri
− uθi

ri
(6.1c)

where, the subscript i refers to the ith material joined at the wedge. Assuming plane

strain conditions, the components of stress are given by

σrri = Λi(εrri + εθθi) + 2µiεrri , (6.2a)

σθθi = Λi(εrri + εθθi) + 2µiεθθi , (6.2b)

τrθi = µiγrθi (6.2c)

where, Λi and µi are the Lamé’s constants of material i. The equations of equilibrium

in polar system are

∂σrri
∂ri

+
1

ri

∂τrθi
∂θi

+
σrri − σθθi

ri
= 0, (6.3a)

∂τrθi
∂ri

+
1

ri

∂σθθi
∂θi

+ 2
τrθi
ri

= 0 (6.3b)

Following Seweryn and Molski [106], the displacements are assumed to have the form

of uri(r, θ) = rλf(θ), uθi(r, θ) = rλg(θ). Substituting Eqs. (6.1) and (6.2) into Eq. (6.3)

we get

(κi − 1)f ′′(θi) + (κi + 1)(λ2 − 1)f(θi) + 2(λ− κi)g′(θi) = 0, (6.4a)

(κi − 1)g′′(θi) + (κi − 1)(λ2 − 1)g(θi) + 2(λ+ κi)f
′(θi) = 0 (6.4b)

where, κi is the Kolosov constant that has the value of (3− νi)/(1 + νi) under plane

stress condition and 3− 4νi under plane strain condition.



80

The two unknown angular functions have the following general form [106]:

fi(θ) = Ai cos(1 + λ)θi +Bi sin(1 + λ)θi + Ci cos(1− λ)θi +Di sin(1− λ)θi,

gi(θ) = Bi cos(1 + λ)θi − Ai sin(1 + λ)θi

+
κi + λ

κi − λ
Di cos(1− λ)θi −

κi + λ

κi − λ
Ci sin(1− λ)θi

(6.5)

With the above explicit form of angular functions, the general solution for the

displacements can then be expressed as

uri = rλ[Ai cos(1 + λ)θi +Bi sin(1 + λ)θi + Ci cos(1− λ)θi +Di sin(1− λ)θi],

uθi = rλ[Bi cos(1 + λ)θi − Ai sin(1 + λ)θi

+
κi + λ

κi − λ
Di cos(1− λ)θi −

κi + λ

κi − λ
Ci sin(1− λ)θi

(6.6)

The order of singularity λ and its associated constants (A,B,C,D) are solvable

by forming a system of transcendental equations based on the specific set of load-

ing conditions. For instance, in the bi-material wedge symmetric about the x-axis

with bonded interface as shown in Figure 6.1a, the wedge could either be applied a

symmetric (open) mode, or an anti-symmetric (shear) mode conditions:

1. Symmetric (opening) mode

Continuity conditions:

ur1 = ur2 , uθ1 = uθ2 ,

σθθ1 = σθθ2 , τrθ1 = τrθ2 at θ = ±α

Loading conditions:

uθ1 = 0, τrθ1 = 0 at θ = 0,

uθ2 = 0, τrθ2 = 0 at θ = π
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2. Anti-symmetric (shear) mode

Continuity conditions:

ur1 = ur2 , uθ1 = uθ2 ,

σθθ1 = σθθ2 , τrθ1 = τrθ2 at θ = ±α

Loading conditions:

ur1 = 0, σθ1 = 0 at θ = 0,

ur2 = 0, σθ2 = 0 at θ = π

𝛼
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𝜃
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Material 1

Material 2

(a)
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𝜃

𝑟

Material 2

Material 1

𝛽

(b)

Figure 6.1. (a) Bi-material wedge with two bonded interfaces and (b)
Bi-material wedge with one bonded interface and a second debonded in-
terface.

Each of the above modes (symmetric or anti-symmetric) results in a set of eight

equations in the constants (Ai, Bi, Ci, Di), i = 1, 2 as well as λ upon application of

the continuity and load conditions. To ensure a non-trivial solution to the constants

(Ai, Bi, Ci, Di), the determinant of the eigenvalue problem must be zero, which leads
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to a set of transcendental equations in λ. Values of the strength of singularity λ are

the eigenvalues that are then numerically determined by solving the transcendental

equations. Correspondingly, the constants (Ai, Bi, Ci, Di) are the components of the

associated eigenvector. For bonded interfacial corner with more than two materials

(N > 2), the above description is easily extended - the continuity conditions at all

the interfaces result in 4N equations, and the eigenvalue-eigenvector problem needs

to be similarly solved.

In the case of a bi-material wedge with one interface debonded as illustrated in

Figure 6.1b, the continuity conditions are:

ur1 = ur2 , uθ1 = uθ2 ,

σθθ1 = σθθ2 , τrθ1 = τrθ2 at θ = 0

The loading conditions ensure that the debonded interface is traction-free, that is

σθθ1 = 0, σrθ1 = 0 at θ = α,

σθθ2 = 0, σrθ2 = 0 at θ = −β

The above conditions for the wedge with debonded interface also results in an eigen-

value problem in which λ and (Ai, Bi, Ci, Di), i = 1, 2 are the eigenvalues and eigen-

vectors as before.

Now, the general solution for displacements in multi-material wedges can be ex-

pressed in matrix-vector notation asuruθ
 = [Ψ′s][KI, KII, · · · , Knλ ]T (6.7)
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where,

[Ψ′s(r, θ)] =
[
Ψ′sI ,Ψ

′
sII
, · · · ,Ψ′snλ

]
=

rλIf(θ), rλIIf(θ), · · · , rλnλf(θ)

rλIg(θ), rλIIg(θ), · · · , rλnλg(θ)

 (6.8)

Here, Ki represents the generalized stress intensity factors (SIF) associated with the

i -th mode of stress singularity, and nλ is the number of non-trivial singularities. In the

above equations, the prime symbol is intended to signify the local displacement field

Ψs expressed in the polar system. The values of the generalized SIFs are obtained

by solving the boundary value problem with appropriate far-field loading.

6.2 Isogeometric Enrichment for Multi-material Wedges and Cracks

An enriched field isogeometric approximation for an elastic body containing a

multi-material wedge is developed in this section.

Consider a singular stress enrichment embedded in the domain Ω as shown in

Figure 6.2a. The domain is composed of N materials with bonded or debonded

interfaces Γei . The multi-material junction enrichment and its associated degrees of

freedom are iso-parametrically represented by the control point at O′. The enriched

domain is represented by NURBS and the associated EIGA composition is illustrated

in Figure 6.3. The enriched field approximation of the displacement field within the

domain Ω takes the following form

u = (1− wt(d))uc(x) + wt(d)[ut + Ψs(r, θ)us] (6.9)

where, uc is the continuous elastic displacement field associated with the underlying

domain, ut is the displacement of the multi-material junction, and Ψs(r, θ)us is the

enriching displacement associated with the stress singularities. Specifically, the term

us is a vector of generalized stress intensity factors, which are computed during the

solution process, and which depend on the far field loading on the system. The
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Figure 6.2. Configuration of boundary value problem with (a) singular
stress enrichment and (b) hierarchically constructed crack enrichment.

enriching function transform as vectors from the local polar coordinate system to the

global coordinate system using transformation matrices similar to those described

in Appendix A: Ψsi = T−1
u (θ)Ψ′si for i = 1, · · · , nλ. The function wt is the weight

field associated with the multi-material junction vertex. In general, this formulation

is valid for re-entrant corners in homogeneous solids, as well as for bi-material or

multi-material wedges with bonded interfaces.

The above enriched field approximation may also be extended to model behavioral

field of crack tips by making the singular stress enrichment as corresponding to that of

the debonded interface. The asymptotic analysis described earlier leads to a value of

λI = λII = 0.5 for the strength of the singularity for a plane strain linear elastic solid.

The corresponding constants for the angular function of respective modes are listed

in Table 6.1. When the constant m attains a value of 1/
√

8πµ2, the absolute values

of the generalized SIFs reduce to those of linear elastic fracture mechanics [108].

With the specialized form of singular stress enrichment defined, the enriched field

approximation in Eq. (6.9) is next extended to modeling cracks.
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𝒙
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Figure 6.3. Composition of domain, material interfaces and multi-
material junction represented by NURBS.

Table 6.1.
Coefficients of angular function corresponding to symmetric and anti-
symmetric loading modes at a crack tip when the strengths of singularity
are λ=0.5.

Mode A B C D
I (Symmetric) -m/2 0 (κ-1/2)m 0

II (Anti-symmetric) 0 3m/2 0 (-κ+1/2)m

Consider a crack face Γe with the crack tip at ∂Γe that is iso-parametrically defined

in the domain Ω as illustrated in Figure 6.2b. The enriched field approximation of

the displacement field within such domain Ω takes the following form

u = (1−we)uc(x)+(we−wt)[ue(P(x))+H(x)uH(P(x))]+wt[ut+Ψs(r, θ)us] (6.10)

where, ue is the displacement of the explicitly represented crack face, HuH is the

discontinuous displacement of crack openings, and we is the weight field associated
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with the crack face Γe. Specifically, the enriching function H is a modified Heaviside

function given by

H(x) =

+1 if n(P(x)) · (x− xf ) ≥ 0

−1 if n(P(x)) · (x− xf ) < 0

(6.11)

where, xf is the foot point on Γe projected from spatial point x, and n is the normal

vector of the explicitly represented crack face at the foot point xf . The components

of the crack tip enriching functions Ψs are pictorially illustrated in Figure 6.4 for the

asymptotic analysis result listed in Table 6.1.

(a) (b)

(c) (d)

Figure 6.4. (a) x-component and (b) y-component of enriching function
Ψs subjected to Mode I loading. (c) x-component and (d) y-component
of enriching function Ψs subjected to Mode II loading.

The weight fields in Eq. (6.10) are pictorially illustrated in Figure 6.5. The field

we denotes the weight associated with the crack face Γe and attains a value of unity on

the interface. The influence of the asymptotic crack tip displacement on the domain

is described by the weight field wt while the continuous field associated with the

underlying domain is 1− we. The region behind the crack tip, where singular stress
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weakens and crack opening grows, is described by we−wt. It can be clearly seen that

Eq. (6.10) satisfies partition of unity property everywhere in the domain. In general,

it is required that the associated weight fields do not overlap with each other so that

the convergence of solution is assured through the partition of unity principle.

(a) (b) (c)

Figure 6.5. Weight field (a) wt, (b) we − wt, and (c) we associated with
a single edge notch cracked plate.

The proposed enriched field approximation adequately describes the displacement

in an arbitrary elastic body containing simple cracks. Specifically, the H(x)uH term

of Eq. (6.10) naturally ensures the traction-free condition since it lacks the gradient

in the direction normal to the crack in the enriched approximation of Eq. (5.1). Since

the gradient with respect to the normal direction of the crack face are not included,

the tractions normal to the crack interfaces Γ+
e and Γ−e automatically vanish.
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6.3 Discretized Equations

In this section, the discretized equations of the enriched approximation and the

resulting weak form governing equations are developed. Development is focused on

the system containing cracks with the enriched field described by Eq. (6.10). The

discretized forms for a body with a multi-material wedge is easily obtained by simply

ignoring the terms associated with the crack face Γe.

The discretization of continuous displacement field approximation uc,ue,ut have

the following form:

uc =
nc∑
i

Rciqci = [Rc]{qc}, (6.12a)

ue =
ne∑
i

Reiqei = [Re]{qe}, (6.12b)

ut =
nt∑
i

Rtiqti = [Rt]{qt} (6.12c)

where, Rci , Rei and Rti are the NURBS basis functions of the underlying domain,

crack faces and crack tips, respectively. qci , qei and qti are the displacement degrees of

freedom associated with the control points x̄i of the parametrically defined geometry

of the crack face. The enriching parts of the displacement field approximation are

discretized as:

HuH = H(x)
ne∑
i

ReiqHi = H(x)[Re]{qH}, (6.13a)

Ψsus =
nt∑
i

RtiΨsi(r, θ)qsi = [Rt][Ψs(r, θ)]{qs} (6.13b)

where, qH and qs are generalized coordinates associated with discontinuous displace-

ment and crack tip (or multi-material wedge vertex) displacement, respectively. Com-
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bining the above equations, the displacement can be expressed in matrix form as

u = Nq in which N and q are

N =
[
(1− we)Rc, (we − wt)Re, (we − wt)HRe, wtRt, wtRtΨs

]
, (6.14a)

q = [qc, qe, qH , qt, qs]
T (6.14b)

The corresponding strain field is given by

ε = Bq (6.15)

The strain-displacement matrix B takes the following form:

B =



(1− we)[∇Rc]
T − [Rc]

T [∇we]T

(we − wt)[∇Re]
T + [Re]

T [∇(we − wt)]T

(we − wt)H[∇Re]
T +H[Re]

T [∇(we − wt)]T

wt[∇Rt]
T + [Rt]

T [∇wt]T

wt[Ψs]
T [∇Rt]

T + wt[∇Ψs]
T [Rt]

T + [Ψs]
T [Rt]

T [∇wt]T



T

(6.16)

Note that the derived strain from the asymptotic displacement is transformed from

strain expressed in polar system by ∇Ψsi = T−1
ε ∇Ψ′si using the transformation ma-

trix Tε derived in Appendix A.

The discretized version of the governing equation is of the form

Kq = f (6.17)

where,

K =

∫
Ω

[B]T [D][B]dΩ,

f =

∫
Ω

[N]T{b̄}dΩ +

∫
Γt

[N]T{t̄}dΓ
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The resulting system and its implementation has two major advantages. First,

classification of control points (or nodes) in the underlying domain as being in the re-

gion influenced by crack is not needed to construct the enriched field approximation.

This is since the enriching strategy isoparametrically associates generalized displace-

ment degrees of freedom directly on the parametrically defined crack geometry. The

need to classify enriching control points is eliminated through the algebraically con-

structed distance field from the crack geometry. The second (and the most important)

advantage is that the generalized stress intensity factors qs, included in the general-

ized displacement vector q, directly provide the solution to Eq. (6.17) without needing

a-posteriori calculation of path-independent integrals to determine the SIFs.

6.4 Numerical Examples

To validate the proposed formulation, numerical examples were solved of a bi-

material wedge with bonded interfaces as well as of a body with a fracture.

6.4.1 Bi-material Wedge with Bonded Interface

Consider a square patch of size l = 1 in which a square heterogeneity is included

as illustrated in Figure 6.6a. Thus the configuration is an example of a bi-material

wedge with bonded interfaces and a sharp corner at which singular stress is expected.

The two materials are elastic with the properties E1 = 100, ν1 = 0.3 and E2 = 1,

ν2 = 0.3, respectively. Assuming the plane strain condition, a uniform traction ty = 1

is applied along the top edge of the body.

A bi-cubic NURBS patch is used to approximate the underlying patch with an

isogeometric singular stress enrichment vertex inserted at the junction. The weight

field wt, associated with the junction enrichment, is confined in the domain by setting

dmax = l/4 as shown in Figure 6.6b. Two non-trivial stress singularities λ with their

corresponding eigenvectors were obtained by solving the transcendental equations

described earlier in Section 6.1. Mode I (symmetric) condition yields the dominant
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Figure 6.6. (a) Boundary conditions on a bi-material wedge with bonded
interfaces. The • in the figure indicates the location of singular enrich-
ment. (b) Contour of weight function wt used in the enriched filed ap-
proximation.

Table 6.2.
Coefficients of angular function associated with the first two modes of the
bi-material wedge with bonded interface obtained by asymptotic analysis.

Material Mode A B C D
1 I -0.025995 0.140303 0.037942 0.204783

II 0.075719 0.265855 0.163379 -0.573638
2 I -0.806594 0 0.534479 0

II 0 0.437278 0 -0.613696

singularity with λI = 0.4416 while (anti-symmetric) Mode II yields a weaker singular-

ity with λII = 0.08832. The coefficient values in each material that together determine

the eigenvectors of each individual mode are summarized in Table 6.2.

The boundary value problem was solved with uniformly refined discretization

having 342, 726, 1,926, 6,054 and 21,222 degrees of freedom. The generalized stress

intensity factors associated with the singular stress enriching function directly result

during the solution process as the degrees of freedom qs. As shown in Figure 6.7, the
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Figure 6.7. Convergence of generalized stress intensity factors for bi-
material wedge with bonded interface.

generalized stress intensity factors rapidly converged to KI = 0.0566 and KII = 0.0147

from which the dominance of the symmetric mode is clear. As can be seen from the

figure, the convergence to the solution is very rapid and achieved even under coarse

discretizations.

In Figure 6.8, the von Mises stress solution in the body obtained through finite

element analysis is compared against that obtained through enriched isogeometric

approximation. It is clear that the approximation to the singular stress requires

significant mesh refinement when using the finite element method. The C0 finite

element leads to stress fields that are less smooth than that obtained using enriched

isogeometric analysis even when a very coarse discretization is used for the enriched

analysis.
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(a) (b)

(c) (d)

Figure 6.8. The von Mises stress obtained using the finite element method
with (a) 50, (b) 722, and (c) 2,450 number of DOF. (d) The von Mises
stress contour obtained through enriched isogeometric analysis.

6.4.2 Inclined Crack in a Homogeneous Plate

Next, an inclined crack in a homogeneous plate is modeled using enriched isogeo-

metric analysis. A square plate of l = 20 with a center inclined crack of length 2a = 3

under uniaxial tensile load ty = 1 as illustrated in Figure 6.9a is analyzed. Linear

elastic behavior and plane strain condition is assumed with property values for elastic
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modulus and Poisson ratio of E = 103 and ν = 0.3 respectively. If the inclined crack

were to be in an infinite sized plate under uniaxial loading, the stress intensity factors

have the following analytical form [108]:

KI = σ
√
πa sin2 β, (6.18a)

KII = σ
√
πa sin β cos β (6.18b)

where, β is the angle of inclination with respect to the vertical axis.
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(a) (b)

Figure 6.9. (a) Schematic of boundary conditions of a plate containing
center inclined crack under tensile traction. (b) The weight field we asso-
ciated with the inclined crack assuming pseudo sharp deflections at both
tips.

A bi-cubic NURBS patch was used to represent the underlying domain along with

an isogeometric enrichment of crack face and crack tips. The end points of the crack

face and crack tips were given the same physical coordinates initially, but were not

otherwise numerically constrained to be tied to each other. The displacement solution

determined the positions of the crack tip and crack face. Figure 6.9b demonstrates
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the weight field we associated with the crack face obtained using the smooth algebraic

level sets.

First, the variation of the stress intensity factors with the angle of inclination

is studied. Figure 6.10 demonstrates the calculated stress intensity factors as the

inclination angle β varied from 0 to 90 degrees in increments of ten degrees. Overall,

the solution agrees well with the reference values given in Eq. (6.18). Figure 6.11

shows the calculated von Mises stress contour for the crack at an inclination of β =

45◦. The traction-free condition naturally achieved through the enrichment can be

clearly observed on the crack face. Furthermore, both crack tips remained attached

to the end of the crack face ∂Γe without a need to apply additional tie constraints.

0 30 60 90
0

0.5

1

1.5

2

2.5

Figure 6.10. Comparison of reference and numerically calculated stress
intensity factors (KI and KII) as a function of inclination angle.

6.4.3 Quasi-Static Crack Propagation

Next, the quasi-static propagation of crack at an angle β = 45◦ is modeled. The

configuration of the plate, including dimensions, material properties and loading were

as in the earlier example. Ten steps of crack propagation simulation were carried out
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Figure 6.11. The von Mises stress contours in the domain for a crack at
an inclination angle of β = 45◦.

with a fixed step size of ∆h = 0.6. The crack deflection angle at each step was

determined using the maximum tensile stress criterion [108]:

∆θ = 2 tan−1 1±
√

1 + 8(KII/KI)

4KII/KI

(6.19)

where, the stress intensity factors results directly from the enriched solution as ex-

plained earlier.

At each step of quasi-static propagation of crack, new knots are inserted and addi-

tional control points were added at both ends of the NURBS curve (representing the

crack face) at the angle of deflection calculated through Eq. (6.19). The discretization

of the bi-cubic NURBS patch was not changed as the crack was propagated on the

underlying domain. Figure 6.12 summarizes the sequential crack propagation path
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with the contours of vertical displacement uy. It can be seen that the predicted crack

path immediately deflected in the horizontal direction under the tensile load.

(a) (b)

(c) (d)

Figure 6.12. The vertical displacement uy contours at (a) Step 1, (b)
Step 4, (c) Step 7, and (d) Step 10.
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7. CONFIGURATIONAL FORCE IN ENRICHED ISOGEOMETRIC ANALYSIS

In Chapter 6, stress singularities at multi-material junctions were described by en-

riching a continuous field with the linear elastic general solution proposed by Seweryn

and Molski [106]. In addition to utilizing stress intensity factor as the measure to

characterize the propensity for failure as already demonstrated, it is also possible to

measure the risk of failure using configurational force or material force. The configu-

rational force associated with a moving interface, as derived in Eqs. (3.26) to (3.28)

is closely related to the energy release rate associated with a progressing crack. Al-

though the earlier derivation is based on an assumed elastic behavior, in general, the

configurational force is a statement of entropic inequality [109–111] and is therefore

independent of material constitutive behavior. Configuration force can be used to

characterize systems with inelastic behavior. Applications of configurational force

calculation using the finite element method exists in the literature [112–118], how-

ever, in the context of isogeometric analysis, computation of configurational force is

relatively limited [119]. This chapter provides a brief overview of configurational force

and demonstrate its use for singular tip enrichment through EIGA.

7.1 Configurational Force: A Brief Introduction

The theory of configurational force can be traced back to the fundamental theories

proposed by Eshelby [120, 121]. It has been used to characterize the rate of energy

change due to change in configuration of material inhomogeneities or defects [109,122]

such as interstitial points, dislocations lines, cracks surfaces, voids or inclusions. The

theory is briefly reviewed below.
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The equilibrium of stress in the reference configuration requires the satisfaction of

∇ ·P + f 0 = 0 (7.1)

where, P is the first Piola-Kirchhoff stress, and f 0 is the body force in reference

configuration. By rearranging the material gradient of the strain energy of the system,

it can be shown that the equation for the configurational force g is given by [113]

∇ ·Σ + g = 0 (7.2)

The quantity Σ is the Eshelby energy-momentum tensor, defined as

Σ = ψI − σ · (∇u)T (7.3)

with ψ being the free energy density, which for an elastic structure is ψ = 1
2
ε : C : ε.

The configurational force g is introduced into the equation such that the forms of

Eq. (7.2) and Eq. (7.1) are similar. If the body is homogeneous and no body forces

are applied, it can be shown from Eq. (7.2) that the divergence of the Eshelby stress

tensor vanishes everywhere except the boundaries, i.e. ∇ · Σ = 0 is satisfied in the

domain. This is one of the important properties that can be applied to measure

material inhomogeneity or singularity as shown below.

The weak form of Eq. (7.2) may be constructed as,

∫
Ω0

(∇ ·Σ + g) ·wdΩ = 0 (7.4)

where, w is the test function. Integration by part yields

∫
∂Ω0

(Σ ·N ) ·wdΓ−
∫

Ω0

Σ : ∇wdΩ +

∫
Ω0

g ·wdΩ = 0 (7.5)

where, the first integral becomes zero by choosing a test function that vanishes on

the boundary ∂Ω0 in the reference configuration. Comparing Eqs. (3.26) and (7.4),
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configurational force essentially measures the configurational derivative with respect

to the translation of material point. The direction of the configurational force indi-

cates the direction of the material point translation which leads to a decreasing strain

energy of the overall structure.

7.2 Configurational Force as Crack Propagation Criterion

Miehe et al. [123,124] outlined a consistent thermodynamics framework for crack

propagation in elastic solids using the configurational force. From the second axiom

of thermodynamics, they related the rate of energy dissipation to the configurational

force by the reduced global dissipation inequality

δ̇ =

∫
∂Γ

−g · vdΓ ≥ 0 (7.6)

where, v was the rate of extension at the crack tip. At the point of the crack tip x ∈

∂Γ, the crack front was extended based on the maximum local dissipation principle,

namely

|g · h| ≥ |g∗ · h| for all g∗ (7.7)

where, h =
∫
vdt was the vector of extension at the crack tip. Considering a Griffith-

type crack criterion, the crack extends when |g| = gc in the direction of −g/|g| where

gc is a material parameter. This method provides an alternative, unified approach to

determining both crack extension and the direction of crack propagation. As stated

earlier, the configurational force criterion is valid for nonlinear elastic or inelastic

materials as well.

7.3 Numerical Evaluation of Configurational Force

Evaluation of configurational force, in general, does not need solution of additional

governing equations. Instead, it only requires post processing of the solution that
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was obtained for the original boundary value problem. Choosing a test function that

vanishes on the boundary, the discretized form of Eq. (7.5) is

ncell∑
c=1

wT
[
−
∫

Ωe

∇R ·ΣdΩ +

∫
Ωe

R · gdΩ
]

= 0 (7.8)

where, R is the basis function associated with the underlying domain represented by

a NURBS patch. Since the Eshelby energy-momentum tensor is not symmetric in

general, the gradient operator ∇ will have the following form [113]

∇ =


∂
∂x

0

0 ∂
∂y

∂
∂y

0

0 ∂
∂x

 (7.9)

We enforce Eq. (7.8) locally by writing the local configurational force in each

element Ωe (here, an element signifies the non-zero knot span of the NURBS patch)

as

gc =

∫
Ωe

RI · gIdΩ =

∫
Ωe

∇RI ·ΣIdΩ (7.10)

The discrete configurational forces are then assembled to form the global configura-

tional force vector associated with the control points of the underlying domain

g =

ncell∑
c=1

gel (7.11)

The evaluation of configurational force requires assembly of the global vector g,

but it does not require solution to a new boundary value problem since the Eshelby

stress only depends on quantities such as ∇u,σ and ψ that are available upon dis-

placement solution. Due to the fact that enriched isogeometric analysis explicitly

describes behavior at the crack faces as well as crack tips, the subsequent approxima-

tion of configurational force at the crack tips can be accurately determined. Unlike

the complex node doubling and mesh update required for the finite element method
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described in [123, 124], the enriched isogeometric analysis simplifies the algorithm

for crack propagation. Algorithm 1 summarizes the evaluation of the configurational

force as well as the determination of crack extension based on the previously discussed

Griffith-type criterion.

Algorithm 1 Crack propagation using configurational-forces through Enriched Iso-
geometric Analysis

Input Crack propagation step α, field solutions u,∇u,σ, ψ, critical value gc
Output Boolean value isPropagate, Crack propagation vector h

1: function Configurational Force CrackPropagation(α,u,∇u,σ, ψ,gc)
2: g ← 0 (Initialize global discrete configurational force vector)
3: for c← 1, ncell do
4: x, w ← Initialize quadrature points and weights
5: gcell ← 0 (Initialize discrete configurational force vector in the cell)
6: for qp← 1, nqp do
7: R ← Evaluate basis function matrix at (xqp)
8: B ← Evaluate strain-displacement matrix at (xqp)
9: Σij(xqp) ← ψ(xqp)δij − σkj(xqp)uk,i(xqp)
10: gcell ← gcell +

∑
wqp B(xqp)

T Σij(xqp) |J |
11: end for
12: g ← g +

∑
c gcell

13: end for
14: if g(xtip) < gc then
15: isPropagate ← False
16: h ← 0
17: else
18: isPropagate ← True

19: h ← −‖α‖ g(xtip)

|g(xtip)|
20: end if
21: end function

7.4 Numerical Examples

The configurational force calculation and its use for crack propagation, numerical

examples of a homogeneous plate, a plate with heterogeneity, a bi-material wedge and

a homogeneous plate containing horizontal crack are solved.
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Figure 7.1. Geometry and boundary conditions of the homogeneous
square plate with (a) tractions, and (b) with displacement boundary con-
ditions.

7.4.1 Homogeneous Plate

The homogeneous square plate illustrated in Figure 7.1 is considered first. Two

types of boundary conditions were considered. In the first case, a uniform traction

σ = 1 is imposed on the top, while the bottom is fixed in the vertical direction. The

second boundary condition set constrains the displacement at both top and bottom,

and the top surface is displaced by ū = 0.2 relative to the bottom face. The square

plate has a width (W ) of unity and is approximated by a bi-linear NURBS patch.

The plate is assumed to behave elastically with Lamé’s constants of λ = 1000 and

µ = 400.

Figure 7.2 shows the configurational force as vectors on the NURBS patch. The

first set of boundary condition leads to a configurational force value of zero (|g| ∈

[10−20, 10−14]) in the interior of the domain. This verifies that the configurational

force vanishes in a homogeneous body in the absence of a body force. Since the

second set of boundary conditions was also applied on a homogeneous plate without

body force as shown in Figure 7.1b, one may expect the configurational force to
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vanish as well. However, the configurational force within the domain is non-zero at

some interior locations as indicated by the small vectors visible in the plot. This is

due to the fact that the discretization is not optimal leading to spurious, numerically

calculated configurational forces [125]. In general, components of the configurational

force are related to the potential energy of the system through [114]

gi = −Πh

∂xi
(7.12)

where, Πh is the approximated potential energy. Hence, when the discretization is

sub-optimal, the numerically computed potential energy may be further reduced by

changing the discretization – a non-zero configuration force will be observed even in

a homogeneous structure free of body force.

It is known that FEM or IGA obtain solution based on the principle of minimum

potential energy of approximation theory. Hence, the discrete configurational results

demonstrated in Figure 7.1b indicates that the approximation solution close to the

edge of plate is less accurate than the approximation in the middle of plate. Based on

Eq. (7.12), it means the potential energy of the system may be further reduced and the

approximated solution may be further improved by optimizing the position of control

points associated with the underlying domain. Specifically, the interior control point

may be updated in the direction of configurational force, e.g. x̄ijk → x̄ijk + cgijk

where c is a small number to avoid excess distortion and negative Jacobian.

Studies have proposed methodologies to create problem specific optimal finite

element meshes by updating nodal positions using the spurious configurational force

that was calculated [113–115,126]. Control points of the NURBS patch can similarly

be updated based on the configurational force, but such an adaptive meshing strategy

is outside the scope of this study.
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(a) (b)

Figure 7.2. Configurational force in a homogeneous plate with (a) traction
boundary conditions, and (b) with displacement boundary conditions.

7.4.2 Plate with Hole/Inclusion

Next, a square plate with either a circular hole or an inclusion at the center is

considered. The heterogeneity has a radius of R such that R/W = 0.25 as illustrated

in Figure 7.3. Holding the Poisson’s ratio fixed at ν = 0.3, the elastic modulus of the

heterogeneity was chosen to be either E = 10−9 (hole) or as E = 109 (stiff inclusion).

The configurational force in the plate with the two types of heterogeneities is plot-

ted in Figure 7.4. In both cases, nearly vanishing, but spurious configurational forces

are observed within the domain due to suboptimal discretizations. In general, the

configurational force provides sensitivity to the movement of the material point and

its vector points in the direction of potential energy decrease. Thus, the configura-

tional forces around the heterogeneity’s interface with the surrounding material point

in the direction that agrees with Eq. (7.12) [112]. Overall, the configurational force

point toward the hole along the horizontal axis and point away from the stiff inclusion

along the vertical axis. For the circular hole, the shrinkage of the circle into an ellipse

decreases the potential energy when its major axis is aligned with the vertical axis.
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Figure 7.3. Geometry and boundary conditions of a plate with a hetero-
geneity.

(a) (b)

Figure 7.4. Configurational force on (a) a plate with circular hole and
(b) a plate with stiff inclusion.

For the stiff inclusion, the growth of inclusion leads to decrease in potential energy

of the system.
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7.4.3 Bi-material Wedge with Bonded Interfaces

In this example, the configurational force at interfacial corners is evaluated. The

bi-material wedge considered is identical to the one shown in Figure 6.6a. All of the

geometric dimension, material properties and loading conditions remained unchanged.

The singular stress enrichment described earlier was used at the vertex of the bi-

material wedge to capture the stress variation in the vicinity of the vertex accurately.

Figure 7.5 shows the configurational force within the structure. The pattern of

configurational force bears resemblance to what has been reported in the literature

for a plate with a hole [115]. Similar to the plate with a hole, the configurational

force points toward the softer material along the interface. Also, it is clear that a

significantly large configurational force occurs at the junction vertex where stress

singularity exists.

Figure 7.5. Configurational force calculated on the bi-material wedge
with singular stress enrichment. The contours of the first principal stress
are shown in the figure along with the configurational force.
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7.4.4 Crack in a Homogeneous Plate

Configurational force in an elastic plate with crack is next calculated. The plate

with the inclined crack that was used earlier as shown in Figure 7.6a is considered

again, but with a β = 90◦.
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(a)

Figure 7.6. Schematic of boundary conditions of a plate containing center
inclined crack under tensile traction as illustrated in Figure 6.9a.

In Figure 7.7 the configurational force is plotted on the problem domain. In ad-

dition to the non-zero value along the boundaries, configurational forces ahead of the

crack tips are large and aligned with the crack due to pure mode I configuration.

Since the horizontal line crack is the limiting case of an elliptical hole, the pattern of

the configurational force in Figure 7.4a and Figure 7.7 exhibit similarity in the loca-

tions where the configurational force reaches its largest value. The crack propagation

direction is governed by the maximum dissipation principle or related to the direction

in which the configurational force is maximum. Thus, the angle of crack deflection is

analyzed for various crack orientation angles from β = 10◦ to β = 90◦. The results are

then compared against the theoretical reference value and the previously determined

numerical values shown in Figure 6.10 based on the maximum tensile stress criterion

of LEFM. From Figure 7.8, it is clear that the maximum dissipation criterion yields
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the same crack deflection angle as LEFM. It should be noted that the maximum dis-

sipation criterion unifies crack extension decision as well the angle of crack extension,

i.e., it does not require the maximum tensile stress criterion for crack extension angle

determination

(a) (b)

Figure 7.7. (a) Calculated configurational force over the domain and (b)
detailed view of the configurational force near the crack in a plate with
the horizontal crack.
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Figure 7.8. Comparison of crack deflection angle based on the maximum
tensile stress criterion of LEFM and configurational force.
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8. APPLICATION: RATCHETING-INDUCED FRACTURE OF BEOL

STRUCTURES OF MICROELECTRONICS

8.1 Overview

Metal line ratcheting and passivation cracking in Back End of Line structures

are significant reliability concerns for microelectronic packages. These failures often

occur when metal line undergoes plastic deformation under cyclic thermal loading.

When metal lines plastically deform due to ratcheting, tensile stress builds up in the

passivation overcoat with thermal cycling. Eventually, susceptible interfacial corners

in the film fracture due to stress concentration.

Studying ratcheting-induced fracture in BEOL structures is challenged by two

facts: (1) the problem is inherently multi-scale in dimension from package level (mm)

to BEOL level (µm), and (2) experimental approach yields very few insight into the

local state of stress. Therefore, a modeling procedure to study the mechanistic cause

of fracture is necessary to analyze the failure.

To address the above challenges, a modeling procedure is developed based on

Finite Element Analysis and Enriched Isogeometric Analysis. The global deformation

of the microelectronic package was simulated by FEA. Local stress concentration and

crack propagation were modeled by EIGA. Several techniques were developed to study

the cause of failure and to accurately determine the state of stress in the localized

region. Specifically, this chapter demonstrates

1. A decomposition of the applied load to provide insight into the loading mode

that is most responsible for passivation cracks.

2. A novel numerical implementation that enables embedding analytical asymp-

totic solutions to accurately capture the singular stress at BEOL material cor-

ners.
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3. Numerical simulations of crack propagation in BEOL structures based on con-

figurational forces.

The developed procedure provides a comprehensive and efficient strategy for modeling

stress concentration and fracture in BEOL structures.

8.2 Modeling Methodology

The modeling procedure begins with a finite element analysis to simulate the

global deformation of the microelectronic package. We denote the domain occupied

by the microelectronic package as Ωg and the domain enclosing the BEOL structure

as Ωl such that Ωl ⊂ Ωg as shown in Figure 8.1a. Following the simulation, the dis-

placements on the boundaries of the local region ∂Ωl were extracted for two purposes.

First, it was used to identify the most critical loading mode with the potential to cause

fracture in passivation layer. Specifically, the displacements were decomposed into

tensile, shear and flexural loading. Second, the extracted displacements were imposed

as the boundary condition for further analysis in local model using EIGA.
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Global model (FEA)

Local model (EIGA)

Package level

BEOL level

Extract 𝑢" on 𝜕Ω% as BC

Load
decomposition

(b)

Figure 8.1. (a) Domains, boundaries, and reference coordinate systems
in the multi-level models. (b) Modeling procedures to simulate ratcheting
induced fracture in metal lines.
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At package level, the deformation is driven by the mismatch in coefficient of

thermal expansion (CTE) and the differences in rigidities between the leadframe,

silicon substrate as well as the epoxy mold compound, as presented below. While the

global deformation drives the local state of stress, the modeling procedures assume

that changes in local state of stress are unlikely to influence the global deformation

significantly. A summary of the procedure is illustrated in Figure 8.1b and details of

each step are described in the following sections.

8.3 Global Model and Ratcheting-induced Stress Evolution

A 8 mm× 8 mm× 0.9 mm test package was modeled in the present work. This

package geometry formed the global domain. The overall structure and the aluminum

line structures are shown in Figure 8.2. The test die of size 3.9 mm× 1.7 mm

contained four different sets of metal line structures, each with different combinations

of line widths and pitches as listed in Table 8.1. Each line structure consisted of pairs

of wide lines and narrow lines with widths denoted as w1 and w2, respectively.

(a) (b)

Figure 8.2. (a) The geometry of the test die and package. (b) Metal line
patterns on the test die.

The BEOL structure in the package contained TEOS, silicon nitride, aluminum,

and epoxy mold compound materials. In the present study, all materials except the

aluminum metal lines were treated as elastic, but with temperature dependent ma-
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Table 8.1.
Dimensions of the aluminum line structure for the global model.

Structure w1(µm) w2(µm) Pitch (µm) Number of Line Pairs
A 25 10 6 5
B 25 10 4 5
C 20 15 4 6
D 8 6 3 16

terial behavior. The Al metal line’s temperature-dependent yield strength, elastic

modulus and CTE are based on reported values from literature [4,127]. The temper-

ature coefficients were assumed -0.069 and 1.65×10−8 for elastic modulus and CTE,

respectively. For aluminum, kinematic hardening model was assumed upon yield-

ing. The mold compound and die attach were considered temperature-dependent,

but rate-independent to capture the change due to glass transition under a quasi-

static loading. The temperature dependent behavior of mold compound was felt to

be critical to the observed behavior, but the material’s time-dependent response was

perceived to be not as important owing to the slower time-dependent response relative

to the cycling time. The mechanical properties at the room temperature that were

used in the model may be found in Table 8.2. Specifically, mechanical properties of

TEOS are estimated by indentation and inversed finite element analysis as described

in Appendix C and literature [128]. Additional temperature-dependent mechanical

properties are tabulated in Appendix B.

The test structure was assumed stress-free at 175◦C, at which temperature the

last step of fabrication occurred. Complete thermal cycles of the package from -

65◦C to 150◦C up to five hundred cycles were simulated. Such elaborate simulations

were necessary to accurately account for the accumulation of plastic strains in the

metal lines due to ratcheting. To reduce the computational cost of three-dimensional

modeling, symmetries of the global deformation with respect to xz-plane and yz-plane

were assumed so that only one fourth of the entire structure was modeled. The cross-
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section of the local model for line structure B, along the red dashed line indicated in

Figure 8.2b is shown in Figure 8.3.

Table 8.2.
Microelectronics pacakge material properties at room temperature.

Mateiral E (GPa) ν α (ppm/◦C) σY (MPa)
Aluminum 70 0.33 23 100
Die attach 10 0.35 50 -
Leadframe 120 0.30 17.6 -

Mold compound 30 0.35 10 -
Silicon 131 0.28 2.61 -

Silicon nitride 160 0.25 1.8 -
TEOS 75 0.18 1.6 -

Figure 8.3. Cross section of the three-dimensional model (structure B).
Inset figure shows the region enclosing the BEOL structure Ωl that was
analyzed in the local model.

The global finite element model used to identify the most critical loading mode

and to extract displacement was based on commercial tool ABAQUS/Standard&CAE

[129]. Due to out-of-plane constraint enforced by the geometry, the model was dis-

cretized by plane strain elements. Figure 8.4 demonstrate the discretizations of the
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overall package model as well as the submodel at the BEOL level to more accurately

characterize the local state of stress. The densities of mesh were carefully calculated

such that simulation of five hundred thermal cycles is within computational and tem-

poral limits using available resources. Overall, the global model used 11,783 nodes

and the submodel used 10,744 nodes. Minimum size of the mesh is assumed 1 µm

and 0.3 µm for global model and submodel, respectively.

(a)

(b)

Figure 8.4. Discretization of microelectronic package cross-section at (a)
the package level, and (b) at the BEOL level. The inset red box indicates
where the BEOL-level submodel is located.

8.3.1 Global Deformation

To understand the overall deformation of the structure driven CTE mismatch,

attempts were made to extract the curvature of the package at different temperatures.

First, analytical methods to estimate curvature was sought. It is known that the

curvature induced by temperature change from T0 to T of a bi-material strip is given

by Timoshenko’s equation [105]

1

κ
=

6(α2 − α1)(T − T0)(1 +m)2

h(3(1 +m)2 + (1 +mn)(m2 + 1/(mn)))
(8.1)
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where, m is the ratio of thickness t1/t2, n is the ratio of elastic modulus E1/E2,

and h is the total thickness of the strip. However, this equation is valid only when

interaction involves two materials and when both materials possess constant mechan-

ical properties. Further generalization of curvature solution for multi-layer structures

does not seem to appear in the existing literature.

Since microelectronic package contains multiple layers of materials with temperature-

dependent properties, estimation of curvature was turned to numerical approach.

Figure 8.5 illustrates an intermediate step to extract curvature from the finite ele-

ment solution. Once the model is solved, quadratic polynomials were fitted to the

deformed outline along the top side of the package at various temperature steps. The

resulted coefficient of determination R2 at the minimum of 99.9% is observed for all

read points. Next, the curvature is calculated based on the following equation using

the quadratic polynomials
1

κ
= |(1 + y′2)2/3

y′′
| (8.2)

where, y′ and y′′ denote the first and second derivative of the polynomial, respectively.

Figure 8.5. Demonstration of polynomial fit to the package outline.
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The simulated curvature of the microelectronic package during a thermal cycle is

shown in Figure 8.6. It is found that the variation of curvature can be broken down

into two parts driven by the interaction between mold compound and leadframe.

Figure 8.6. Curvature of the microelectronic package during a thermal
cycle between 150◦C and -65◦C.

Overall, similar trend is shared by the cooling ramp as well as the hearing ramp.

Cooling from 150◦C to the glass transition temperature, the mold possesses the high-

est value of CTE (40 ppm). As the temperature progressively decreases, shrinkage of

the mold dominated in the package such that the curvature continuously increased

and caused the package to bend concave up. At the glass transition temperature,

transitions of the mold compound’s CTE occurred and curvature reached the highest

value. During the second part of cooling ramp from glass transition temperature

to -65◦C, the CTE of mold compound dropped to only 10 ppm. As the CTE of

lead frame (17.6 ppm) became larger than the counterpart of mold compound in this

regime, the shrinkage of the package is no longer dominated by the mold compound

alone. The curvature remained to be concave up, but the magnitude decreased with

the temperature. The heating ramp reversed the entire process and returned to the
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original curvature. Since the global model only accounted the elasticity of materials,

the changes in curvature overall did not show the effect of plasticity.

8.3.2 Evolution of Stress in BEOL films

A detailed analysis on the evolution of stress in the passivation films was per-

formed. Since one of the main failure modes observed in the test package is fracture,

the first principal stress was chosen as one of the failure sensitivity parameter to be

observed in the rest of this chapter.

To begin with, the analysis of the stress was started from structure B. Figure 8.7

demonstrates the evolution of the first principal stress for line structure B throughout

the thermal cycles. Specifically, only the lines close to the edge of the die, i.e. the last

large-width line (the second from the right side) and the die seal line (the first from

the right side), are compared against each other. It is clear that the accumulation of

stress started as soon as the repeated thermal loading begins. Furthermore, the rate

of ratcheting-induced stress exhibit a linear rate of increase. Although the rates of

increase are indistinguishable between the two lines, the large-width line appears to

be suffered from a higher tensile stress.

(a) (b)

Figure 8.7. Die edge evolution of the first principal stress (unaveraged)
(a) in the TEOS films, and (b) in the silicon nitride films of structure B.
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(a) (b)

Figure 8.8. Evolution of the first principal stress’ local maxima (unaver-
aged) (a) in the TEOS films, and (b) in the silicon nitride films throughout
the BEOL structure B.

To further study the spatial trend of stress, the first principal stress in the passi-

vation films of the entire BEOL structure B was analyzed. Figure 8.8 traced the first

principal stress’ local maxima in the TEOS film as well as in the silicon nitride film.

In addition to the demonstrated results close to the die edge shown in Figure 8.7, a

clear trend of steady increase of the stress across the BEOL sturcutre can be observed

for every 50 cycles. Furthermore, it appears that stress increases with the distance

to the center of the silicon die.

Comparing Figures 8.7 and 8.8, it is observed that the line closest to the die edge

is not necessary the one that possesses the highest stress. As the die seal line locates

closest to the edge of the die, based on the trend of Figure 8.8, one would expect

the first principal stress in the TEOS film and silicon nitride film is supposed to be

the highest in the BEOL structure. However, Figure 8.7 indicates that the die seal

line is not the line that suffer the most from the tensile stress. Instead, it is the last

large-width line (the second from the right) that exhibit the largest first principal

stress.
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(a) (b)

Figure 8.9. Local maxima of the first principal stress (unaveraged) at the
end of the thermal cycle (a) in TEOS film, and (b) in silicon nitride film
within the line structure listed in Table 8.1.

Similar simulations were performed for structure A, C and D. Their results demon-

strate consistent trend. As summarized in Figure 8.9 at the end of the thermal cycles,

structure B resulted in the highest stress at the die edge whereas structure D exhibited

the lowest stress. Reviewing Table 8.1 reveals that structure B possesses the largest

width while structure D has the narrowest width. Both structures share similar pitch

of 3 and 4 µm.

Comparing structure B, C and structure D, smaller line width help reduce the

first principal stress in the passivation films. The width of the metal lines is hence

identified as one of the most critical design parameters which may explain why the

die seal line exhibit lower stress. Comparing structure B and structure A, larger pitch

seems to mitigate the magnitude of the tensile stress. Overall, the stress accumulation

within structure A and structure C is insignificantly different. No further conclusion

can be drawn from these two cases alone.
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8.4 Load Decomposition and Critical Loading Mode Identification

In the last section, global deformation of the package and the evolution of stress

in the BEOL structure were extensively analyzed through multiple finite element

analysis. However, the mechanistic causes of the accumulated stress still remains

to be unknown. To better understand the critical loading mode that leads to the

failures, a load decomposition strategy is proposed below.

In general, the effect of the displacements applied on the local model may be

understood better if they were to be decomposed into well understood loading modes

such as tension, shear or flexure. Thus, the displacements from the global model

are separated into the above mentioned three modes and applied independently on

the local model to infer their individual effects. Specifically, for a given Dirichlet

boundary condition u = u0, v = v0, and w = w0 on ∂Ωl, we may decompose it into

in-plane tension(Eq. (8.3)), shear (Eq. (8.4)) and flexure (Eq. (8.5)) in the reference

coordinate system of the model (see Figure 8.1a).

Tension:

u = v = w = 0 at O′

u|x=x1 = v|y=y1 = 0

u|x=x2 = u0|x=x2 − u0|x=x1

v|y=y2 = v0|y=y2 − v0|y=y1 (8.3)

Shear:

w = 0 at O′

u = u0 at z = z1 and z = z2

v = v0 at z = z1 and z = z2 (8.4)
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Flexure:

u|x=x1 = v|y=y1 = 0

w = w0 at z = z1 and z = z2 (8.5)

For a two-dimensional model, one may simplify Eqs. (8.3) to (8.5) by taking any

plane that is parallel to the xz-plane or the yz-plane. An example of two-dimensional

load decomposition analysis and in the xz-plane is shown in Figure 8.10.

(a)

(b)

(c)

Figure 8.10. Load decomposition of boundary condition for local model
into (a) tension, (b) shear, and (c) flexure.
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Figure 8.11 demonstrates the contour of the first principal stress in the silicon

nitride film and in the TEOS film at 150◦ of the 500-th cycle based on the described

load decomposition scheme. The stress contour indicates that shear mode leads to

stress concentration at the interfacial corners. While the tensile loading leads to

tensile stress state in the horizontal part of the passivation film, it did not cause

significant stress concentration to the material corners. Interestingly, the flexural

loading resulted in a relative uniform stress which is at least an order of magnitude

smaller than the stress induced by shear or tensile loadings.

(a)

(b)

(c)

Figure 8.11. The first principal stress contour (averaged) in silicon nitride
and TEOS films at the corner of BEOL structure subjected to (a) shear,
(b) tension, and (c) flexure loading at 150◦C of the 500-th cycle.

Figure 8.12 further summarizes the maximum first principal stress in silicon nitride

at -65◦C, 100◦C and 150◦C under tensile, shear and flexural loadings. It is shown

that the first principal stress attributed most to the shear loading and second to the

tensile loading. The flexural loading indeed contributes the least while the variation
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of the flexure-induced stress matches the variation of package curvature observed in

Figure 8.6.

Figure 8.12. The maximum first principal stress (averaged) in silicon
nitride film at -65◦C, 100◦C and 150◦C under tensile, shear and flexural
loadings.

8.5 EIGA of Stress Singularities in BEOL Structures

Analysis of the BEOL structure presented thus far in this chapter was using the

finite element method. In general, extensive care needs to be taken to properly

partition the geometry and efficiently refine the mesh during FEA. Such efforts are

critical to accurately characterize stress singularities at material corners. Moreover,

refinement needs to remain consistent so that the results are comparable across dif-

ferent designs. To address these challenges, BEOL structure is further analyzed here

using Enriched Isogeometric Analysis with singular stress enrichments developed in

Chapter 6. Without the loss of generality, a simplified BEOL structure similar to
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Figure 8.13. A schematic illustration of the BEOL structure showing
multi-material wedges.

Table 8.3.
Parameteric values of line width, line spacing and passivation thickness
(SiN). The value with asterisk sign indicates the nominal parameters.

Parameter Dimension (µm)
Line width 10∗, 15

Line spacing 0.5, 2∗

Passivation thickness (SiN) 2∗, 3

the one shown in Figure 8.3 was considered. Figure 8.13 illustrates the equivalent

two-dimensional structure analyzed by EIGA. Specifically, the impact of width and

spacing of metal lines as well as the thickness of silicon nitride passivation listed in

table 8.3 are studied in the models.

The domain shown in Figure 8.13 is representative of the local region containing

the key metal line features near the edge of a silicon die on the back side. Overall,

the length of the domain is 100 µm and the height is 25 µm. A 1-µm blanket film

of silicon nitride caps the underlying structure, which is treated as the homogenized

silicon substrate. Metal lines are assumed to be 3 µm in thickness covered by a 1-µm

TEOS layer. The same set of the elastic properties of materials listed in Table 8.2

was assumed.

Six distinct bi- or multi-material wedges are observed within the representative

back end of line structure. As illustrated in Figure 8.14, each type of corner is formed
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Figure 8.14. The materials and their included angles forming six distinc-
tive corners identified in the BEOL structure.

by material wedges at which the included angle of the various materials varies. Corner

G, H, I, J, K and L are in mirror symmetry with Corner A, B, C, D, E and F,

respectively. Consequently, they possess the exact same strength of singularity and

associated angular function coefficients.

Asymptotic analysis was first carried out to analyze the strength of singularity as-

sociated with each corner. The dominant and the secondary strengths of singularities

associated with each corner illustrated in Figure 8.14 are summarized in Table 8.4.

For Corners A through E, modes 1 and 2 correspond to the symmetric and anti-

symmetric loading, respectively. Based on the results of asymptotic analysis, Corners

A and B (or G and H) are identified as the most susceptible wedges based on their

strenghts of singularities. Corner E and F, on the other hand, are of lower risk as

the elastic properties of TEOS and metal line (aluminum) are well matched, which

nullifies the risk of singular stress.

To study the stress concentration at susceptible corners, the generalized stress

intensity factors are calculated using the enriched field analysis developed in this

thesis. In total, six designs were explored with the nominal design corresponding to

metal line width of 10 µm, metal line spacing of 2 µm and silicon nitride passivation

thickness of 2 µm. The rest of the geometric parameters can be found in Table 8.3.
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Table 8.4.
The strength of singularities calculated from asymptotic analysis at six
corners of BEOL structure.

Corner A/G B/H C/I D/J E/K F/L
Singularity (I) 1.376E-1 2.181E-1 9.732E-2 8.447E-2 0 0
Singularity (II) 1.037E-1 3.996E-2 7.736E-3 1.056E-2 4.007E-5 0

Figure 8.15. Contour of the first principal stress obtained through enrich
field analysis in the BEOL structure (unit: Pa).

A separate package-level finite element analysis, which imposed a temperature drop

from 150◦C to -65◦C, was carried out and the boundary conditions from this global

model was extracted and applied to the local region during analysis of the local

singular stresses.

Figure 8.15 shows the contours of the first principal stress in the nominal design

of the BEOL structure. It is clear that Corners H and I are subject to larger tensile

stresses than Corner A for both lines. Furthermore, the magnitudes of stress at these

corners are higher in Line 2 than in Line 1, with Line 2 being closer to the edge of

the silicon die. These trends are consistent across all six designs as well with the

observations made earlier using the finite element models.

In addition to using the first principal stress as a failure descriptor, the general-

ized stress intensity factor associated with the symmetric (opening) loading was also

characterized. The impact of varying the design parameters are further studied at

Corners H and I. Using the stress intensity factor K∗I = 133× 106 of Corner I in Line
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Figure 8.16. Comparison of opening-mode generalized stress intensity
factors at Corner H and Corner I in the six parametric designs.

1 as a reference value, in Figure 8.16, the normalized stress intensity factors of open-

ing mode is summarized for all six designs. The generalized stress intensity factors

of all corners were directly extracted from the EIGA solution, which improves the

efficiency of analyzing complex structures with multiple junctions. The introduction

of the singular stress enrichment also eliminates the need to maintain consistent mesh

refinement in order to compare the failure descriptors across all designs.

Overall, the width of metal lines and the thickness of silicon nitride passivation

film demonstrate a positive correlation with the generalized stress intensity factors.

Comparing designes 1 through 3 with desigs 4 through 6, a 50 percent increase in

the width of metal lines leads to an increase in generalized stress intensity factor

of 40 to 50 percent. The comparison between designs 1 and 2 as well as designs 4

and 5 demonstrate the impact of passivation thickness on the stress intensity factor.

Reduction in thickness of silicon nitride passivation weakens the SIF by 18 percent and

5 percent for Corners I and H, respectively. Both of the above trends are qualitatively

consistent with the relation proposed by Huang et al. [130] for thin film structures.

Observing designs 2 and 3 for 10-µm lines or designs 5 and 6 for 15-µm lines, the

impact of line spacing has an opposite effect for both corners. A smaller line gap
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leads to 6 percent higher mode 1 SIF for Corner I whereas an almost 10 percent drop

of SIF is observed for Corner H.

8.6 Configurational Force Based Crack Propagation in BEOL Structure

To understand the ensuing crack path following the ratcheting loads, a fracture

analysis is further performed using Enriched Isogeometric Analysis. As previously

shown, the introduction of singular stress enrichment into isogeometric formulation

naturally yielded non-zero configurational forces near the interfacial corners and crack

tips. Configurational force criterion introduced in Chapter 6 and the crack propaga-

tion algorithm outlined in Algorithm 1 were further used to determine crack propa-

gation within the passivation film of the BEOL structure. Since modeling of crack

within the passivation film requires implementation of adaptive local refinement, the

analysis was performed in previously developed object-oriented Fortran HiDAC in-

stead of in the Matlab implementation.

Assuming an unit cell of the metal line subjected to shear loading, Figure 8.17

shows the crack path along with the contours of horizontal displacement. The crack

initiated from the material corner between aluminum line and TEOS then propa-

gated into the corner formed by TEOS and silicon nitride films. Figure 8.18 further

compares the crack path predicted by LEFM max tensile stress criterion and by

configurational force criterion.

8.7 Concluding Remarks

In this chapter, an analysis methodology is developed to characterize the stress

singularities in the BEOL structure and correlate to the reported failures. Following

the finite element analysis to model the global deformation and the critical loading

mode through load decomposition, Enriched Isogeometric Analysis was used to fur-

ther analyzed the failure sensitive parameters with improved resolution and predict

the crack propagation path. The methodology demonstrates a simpler and less labo-
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Figure 8.17. Displacement in x-direction and crack path within the BEOL
structure predicted by configurational force.

Figure 8.18. Comparison of crack path predicted by LEFM max tensile
stress criterion (Green) and by configurational force (Magenta).

rious procedure, but it was able to provide meaningful results that correlating to the

reported failures. The analysis indicates the width of the metal line and the thickness

of the passivation film are positively correlated to the failure sensitive parameters in-

cluding the first principal stress and the stress intensity factor associated with opening

mode. Furthermore, the line pitch was demonstrated to have an opposite effect on

the two most critical material corners. The developed techniques demonstrate a com-
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prehensive and efficient workflow that can be used to facilitate the design of BEOL

structures.
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9. CLOSURE

9.1 Summary and Novel Contributions

The main focus of this thesis was to develop enriched isogeometric formulations

with applications to parametric domain decomposition and fracture analysis. First, a

literature survey of the existing multi-patch analysis methods was presented. These

methods are either inspired by CAD needs to ensure water-tightness of the geometric

model or by CAE needs to tie behaviors of two subdomains. The CAD approaches

use alternative spline methods to provide an upstream solution that allow seamless

integration with downstream CAE operations. The main challenges are their back-

ward compatibility with the existing spline technology in modern CAD systems that

are largely based on NURBS and the analysis-suitability of the approximation space.

The CAE inspired approaches enforce weak coupling of behavioral field values such

that compatibility and consistency conditions are satisfied in an average sense along

the interfaces. Methods that weakly couple behavior has been demonstrated on prob-

lems with interfaces governed by a variety of physics. However, due to weak coupling,

behavioral field across the interface is discontinuous or non-smooth in general. Sec-

ond, the literature relating to isogeometric fracture analysis was reviewed. While the

common approach of using implicit crack representation on a non-conforming mesh

(e.g., XFEM) alleviates the need for remeshing, these methods often lead to addi-

tional unknowns and auxiliary evolution equations that are difficult to solve. The

present thesis described enriched isogeometric formulations that provided solutions

to smooth coupling of subdomains with non-matching discretizations and to problems

with singular stress.

The techniques developed in the present study are implemented in a 34,000 line

of Hierarchical Design and Analysis Code (HiDAC) written in Matlab. Overall, im-
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provements were made in terms of simplicity and maintainability over the previously

developed Fortran code for isogeometric analysis. Despite being implemented using an

interpreted language, the code is highly vectorized and is capable of solving moderate

sized two- and three-dimensional problems. Most critical functions support problem

dimension independent calling without needing extensive change by users. Modu-

lar architecture of the code allows access to the existing modules when developing

new algorithms. The implementation sticks to prototype-based object-oriented pro-

gramming style to provide flexibility during the concept validation phase in research

settings.

A smooth coupling method based on enriched isogeometric analysis, termed as

parametric stitching, was proposed that satisfies the compatibility condition at every

point along the interface while allowing non-matching NURBS discretizations on the

subdomains that are coupled. The key concept used to accomplish the coupling is

the parametric stitching interface between the incompatible patches. Behavioral fields

between the sub-domains are blended through a weighted composition of approxima-

tion associated with the adjacent patches and the stitching interface. The developed

technique enables modular construction of coupling problems with arbitrary smooth-

ness across the interface including sharp changes in gradient, as at dissimilar material

interfaces. The solution convergence rate on the coupled domains was demonstrated

to be near-optimal through patch tests. Numerical examples of elastostatic and heat

conduction problems with multiple two- or three-dimensional subdomains were also

demonstrated.

An enriched field approximation was developed for characterizing stress singulari-

ties at junctions of general multi-material wedges including crack tips. Using enriched

isogeometric analysis, the developed method explicitly tracks the singular points and

interfaces embedded in a non-conforming mesh. The recently developed algebraic

level sets of parametric surfaces was used as a robust and smooth measure of distance

to construct the weight field using which the enriching behavioral field was blended

with the underlying approximation. The proposed method enables direct extraction
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of generalized stress intensity factors upon solution of the problems without the need

to use a posteriori path-independent integral such as the J-integral. The present

work also described the calculation of configurational force using enriched isogeomet-

ric analysis. Configurational force was demonstrated to be an alternative criterion

for crack initiation and propagation. Several examples were solved to estimate the

configurational force including a bi-material wedge, a plate with heterogeneity, and

crack in a homogeneous plate.

The developed techniques were applied to analyze ratcheting failure in semicon-

ductor device back end of line structures. A package-level finite element analysis

was performed to study the evolution of the local state of stress and the mechanistic

causes of failures. In order to study the risk of ratcheting-induced fracture with dif-

ferent combinations of design parameters, the generalized stress intensity factors at

critical material junctions were analyzed and compared between cases. Overall, the

systematic study of back end of line structure reveals that the opening-mode stress

intensity factors could be used to facilitate the development of design rules.

9.2 Recommendation for Future Research

9.2.1 Mixed-Type Isogeometric Enriched Field Approximation

The method of isogeometric enriched field approximation [76] has demonstrated its

capability and advantages in a variety of applications including domain decomposition

in this work. Prior to the development of this methodology, the problem domain

used to be restricted to a single patch, which posed a significant challenge to model

parts with complex geometry. With the proposed parametric stitching technique

developed in this study, potential research on mixed-type isogeometric enriched field

approximation becomes possible. Specifically, the formulation of parametric stitching

can be mixed with subdomains meshed using finite elements. Also, the evolution of

solidification front or crack faces across partitioned domains is now possible.
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9.2.2 Three-dimensional P-Stitching with Extraordinary Points

A natural extension of the present work is three-dimensional parametric stitching

on domains with extraordinary vertices. Two-dimensional parametric stitching on

domains with extraordinary vertices was recently demonstrated in a fellow researcher

and collaborator’s research [131]. The developed hierarchical stitching procedure

blends the behavioral field beginning with the vertex all the way to volumetric regions.

Given a point surrounding the extraordinary vertex in the domain, the behavioral

field is first constructed as a weighted composition of the field associated with the

subdomain and the field associated with the stitching interface at the projected point.

Similarly, the field at the projected point on the stitching interface is a weighted

composition of the field associated with the interface and the field at the extraordinary

point.

Recently, a volumetric spline generation starting with B-rep CAD models named

v-rep was proposed [37]. The resulting trivariate splines is decomposed but covers

the original B-rep domain. However, the decomposed domains remain uncoupled.

The three-dimensional parametric stitching technique will allow smooth coupling of

the v-rep partitioned domains. A challenge that needs a solution for this effort is an

efficient and robust three-dimensional point projection algorithm for the purpose of

constructing blended behavioral field.
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[46] İ. Temizer, P. Wriggers, and T. J. R. Hughes. Contact treatment in isogeo-
metric analysis with NURBS. Computer Methods in Applied Mechanics and
Engineering, 200(9):1100–1112, February 2011.
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[55] M. Ruess, D. Schillinger, A. I. Özcan, and E. Rank. Weak coupling for isogeo-
metric analysis of non-matching and trimmed multi-patch geometries. Com-
puter Methods in Applied Mechanics and Engineering, 269:46–71, February
2014.
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A. TENSOR TRANSFORMATION

Assume two coordinate systems spanned by the unit vectors ê′i and êj. Cartesian

tensors transform from one coordinate system to another based on the following

relation:

arbitrary order tensor: g′ijk···m = tiatjbtkc · · · tmegabc···e

where, tij = ê′i · êj is the direction cosine between the primed and the unprimed

systems. In mechanical systems, tensors are used to represent various of physical

quantities. Displacements, stresses, and stiffness are examples of first, second and

fourth order tensors, respectively. Their transformation follows the above general

form given by

1st order tensor: v′i = timvm

2nd order tensor: s′ij = timtjnsmn

4th order tensor: c′ijkl = timtjntkptlqcmnpq

The transformation of tensors may also be expressed as matrix-vector or matrix-

matrix multiplications. In general, vector notation can be used to represent first order

tensors while matrix notation is convenient for representing second order tensors. The

transformed components of a first order tensor v and a second order tensor S may be

expressed in matrix-vector notation as:

{v′} = [T ]{v}

[S ′] = [T ][S][T ]T

where, [T ] is the transformation matrix formed by direction cosines tij. In the present

study, a needed transformation is between rectangular cartesian coordinates and polar
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coordinates. The transformation matrix is orthogonal in nature with [T ]T = [T ]−1 as

shown below. 
êr

êθ

êz

 =


cosθ sinθ 0

−sinθ cosθ 0

0 0 1



êx

êy

êz



êx

êy

êz

 =


cosθ −sinθ 0

sinθ cosθ 0

0 0 1



êr

êθ

êz


A.1 Transformation of Symmetric Tensor in Voigt Form

Transformation of symmetric tensors can be re-written in a more compact manner

as described below. Symmetric tensors such as Cauchy stress and strain are typically

represented in Voigt notation for the purpose of computational efficiency. Given a

Cauchy stress tensor with elements σij, its Voigt form σV is obtained by condensing

the unique stress components into a vector.

σV = [σ11, σ22, σ33, σ12, σ23, σ13]T

Typically, Cauchy stress in matrix form is transformed as [σ′] = [T ][σ][T ]T by

serial matrix-matrix multiplications. With the same stress re-written in Voigt form as

defined above, the transformation can be reduced into a matrix-vector multiplication

of the form:

σ′V = TσσV
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where Tσ is the reduced transformation matrix whose elements are obtained by com-

paring the coefficients. The reduced transformation matrix expressed using the di-

rection cosines between two coordinate systems tij is

Tσ =



t11t11 t12t12 t13t13 2t11t12 2t12t13 2t13t11

t21t21 t22t22 t23t23 2t21t22 2t22t23 2t23t21

t31t31 t32t32 t33t33 2t31t32 2t32t33 2t33t31

t11t21 t12t22 t13t23 (t11t22 + t12t21) (t12t23 + t13t22) (t13t21 + t11t23)

t21t31 t22t32 t23t33 (t21t32 + t22t31) (t22t33 + t23t32) (t23t31 + t21t33)

t31t11 t32t12 t33t13 (t31t12 + t32t11) (t32t13 + t33t12) (t33t11 + t31t13)


The above stress transformation leading to the reduced transformation matrix can

be applied analogously for the strain tensor. Given a strain tensor with elements εij,

the strain can be represented in Voigt form as

εV = [ε11, ε22, ε33, γ12, γ23, γ13]T

where γij = 2εij is the engineering shear strain component. The transformed strain

is ε′V = TεεV with the associated reduced transformation matrix given by

Tε =



t11t11 t12t12 t13t13 t11t12 t12t13 t13t11

t21t21 t22t22 t23t23 t21t22 t22t23 t23t21

t31t31 t32t32 t33t33 t31t32 t32t33 t33t31

2t11t21 2t12t22 2t13t23 (t11t22 + t12t21) (t12t23 + t13t22) (t13t21 + t11t23)

2t21t31 2t22t32 2t23t33 (t21t32 + t22t31) (t22t33 + t23t32) (t23t31 + t21t33)

2t31t11 2t32t12 2t33t13 (t31t12 + t32t11) (t32t13 + t33t12) (t33t11 + t31t13)


The use of reduced transformation matrix results in computationally efficiency

by converting the matrix-matrix multiplications into a matrix-vector multiplication.

The benefit is significant when transformation is needed at each quadrature point

during stiffness matrix assembly. Note the difference between Tσ and Tε due to the
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use of engineering shear strain in the Voigt notation for shear strain. For the inverse

transformation from the primed system to the unprimed system, one simply needs to

invert the reduced transformation matrix using the Gaussian elimination.
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B. MATERIAL PROPERTIES

The temperature-dependent material properties of the die attach and mold compound

are shown in Tables B.1 and B.2, respectively. Note these properties are described in

a piece-wise linear form and do not consider viscoelasticity.

Table B.1.
Temperature-dependent elastic properties of die attach.

Temperature(◦C) E (GPa) ν α (ppm/◦C)
-65 10 0.35 50
75 10 0.35 50
125 0.5 0.35 100
260 0.5 0.35 100

Table B.2.
Temperature-dependent elastic properties of mold compound.

Temperature(◦C) E (GPa) ν α (ppm/◦C)
-65 30 0.35 10
85 30 0.35 10
115 1 0.35 40
260 1 0.35 40
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C. ESTIMATING THE MODULUS AND YIELD STRENGTH OF THE

TOP-LAYER FILM ON MULTILAYER BEOL STACKS

The manufacturing process-caused variation in the modulus and the yield strength of

individual layers in passivated metal stacks critically impacts the reliability of Back-

End-of-Line (BEOL) structures. However, experimentally characterizing the elastic

modulus and yield strength of thin films as fabricated, with sufficient sensitivity to

distinguish process-induced property variations, remains a significant challenge. To-

wards this end, we utilize nanoindentation experiments to estimate the elastic modu-

lus and yield strength of top-layer films in multilayer stacks. To address the challenge

of extracting individual layer modulus from the composite modulus, in the present

paper, we propose a depth-dependent mathematical model (dominant regime theory)

by which the modulus of the top-layer can be estimated accurately. Additionally,

we employ optimization-based inverse finite element analysis (IFEA) to numerically

estimate the modulus and the yield strength of the top-layer film. The uniqueness of

the properties estimated by IFEA is investigated through a full-factorial statistically

designed numerical experiment. The developed techniques are demonstrated by esti-

mating the modulus as well as the yield strength of tetraethylorthosilicate (TEOS)

film on a two-layer stack (TEOS, Silicon) and the same film deposited on a multilayer

stack (TEOS, Aluminum, Silicon Nitride, Silicon).

C.1 Introduction

As the microelectronics industry transitions to the fabless business model where

device-level fabrication is carried out by outside vendors, and as integrators opt to

fabricate the same device through multiple vendors, there is a critical need to assess

the mechanical property of structures on the fabricated device, and to assess the
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variation in the property from vendor to vendor. The Back-End-of-Line (BEOL)

metal stack and its associated dielectric layer, often subject to large thermal stresses

due to mismatch in the coefficient of thermal expansion (CTE) of the various layers, is

an important structure that needs such an assessment. Among the key properties that

influence the integrity of the BEOL stack in general, and thermal stresses in particular,

are the moduli and yield strengths of the metal and the dielectric materials. The

determination of the multilayer stack modulus as well as the extraction of modulus

and yield strength of individual film, accurate enough to detect variation caused by

manufacturing process, remains a significant challenge.

The micro- or nano-indentation technique has been widely used to characterize

thin films. The technique has the advantage of not needing free-standing test spec-

imen as well as advanced microscopy equipment. The quick and inexpensive test

procedure is an additional advantage of this technique [132].

Traditional analysis of indentation load-displacement response is mostly focused

on estimating the mechanical properties of a single homogeneous material. The elastic

modulus of homogeneous materials has been well characterized using single low-depth

indentation tests [133, 134]. However, a multi-depth indentation becomes necessary

when there is a need to extract the modulus of thin films on composite stacks. In

a multi-depth indentation procedure, the film modulus is determined by evaluating

the effective modulus at various penetration depths and then by extrapolating the

modulus to zero penetration. There exist many analytical models to describe the rela-

tionship between effective modulus and penetration depth or contact radius [135–138]

for a two-layer stack (nlayer = 2, i.e., a film coating on a substrate), but models for

multilayer stacks (nlayer ≥ 3) are largely missing in the literature due to the complex

interaction between different layers. Gao [137] is among the few to model the re-

sponse of a multilayer stack. His model was of indentation of a stack by a cylindrical

punch. However, the developed model depends nonlinearly on the contact radius and

therefore can not be transformed into a univariate linear form for straight-forward

regression analysis. Recently, the authors [139] proposed two regression strategies
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(direct regression on the elastic modulus and regression on the reciprocal of the mod-

ulus) to estimate the elastic modulus of the top-most film in a stack. The study

showed that regression on depth-dependent response yields more accurate property

values than a single low-depth indentation; the fit was also less sensitive to errors in

estimated values due to material pile-up.

The estimate of the film modulus is also influenced by the thickness of each layer,

in addition to the number of layers. Due to the fact that under low penetration depths,

the stack modulus is strongly dependent on the top-most film behavior, many studies

[135, 138, 140] have estimated the top-most film modulus using shallow indentation.

Antunes et al. [138] suggested an empirical, film thickness dependent penetration

range for this purpose. But, analytical, easy-to-use models to estimate the optimal

penetration depth as well as to quantitatively model the contributions of different

layers to the effective modulus is largely missing in the literature.

In this paper, we propose a mathematical model (dominant regime theory) to

describe the influence of the number and thickness of the films on the effective mod-

ulus, as a function of the indentation depth. Employing the dominant regime theory,

we estimate the optimal range of indentation depth so that the elastic modulus of

the top-most film is characterized accurately. The technique is first demonstrated by

estimating the film modulus in a two-layer stack. Next, we utilize the technique to

estimate the modulus of the same film deposited on a multilayer stack. It is demon-

strated that indentation in the dominant regime is critical to the accuracy of the

estimated parameter value.

Methods for estimating the yield strength of bulk metal through indentation is

well established at the present time, for instance, the empirical relationship between

yield strength and hardness of ductile materials proposed by Tabor [141]. Unlike

the elastic behavior, closed-form elastic-plastic analytical model for multilayer struc-

tures does not currently exist due to the complex elastic-plastic load sharing between

multiple layers during indentation. Hence, semi-analytical or numerical methods are

necessary to characterize yield strengths of films. To avoid detailed elastic-plastic fi-
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nite element simulations, dimensional analysis of sharp indentation was used in prior

studies [142, 143] to extract dimensionless functions that enable estimation of me-

chanical properties given the indentation data. However, such functions are generally

not valid for multilayer stacks.

Numerical studies using the finite element method (FEM), on the other hand,

possess the flexibility to be applied to arbitrary multilayer stacks. A series of studies

by Knapp et al. [144–149], Myres et al. [150, 151] and Friedmann et al. [152] used

FEM to extract modulus, yield strength and intrinsic hardness for various types of

thin films deposited on substrates. In their studies, the properties were estimated by

finding the best-fit simulation to the experiment through incremental interpolation of

properties. Recently Du et al. [153] also estimated the elastic properties of ultra low-k

(ULK) dielectric films through indentation of a tri-layer specimen as well as inverse

property estimation using FEM. In [153] the numerical fit using the finite element

model was to the load-displacement response during the loading stage of indentation.

In the present study, we develop two novel procedures that enable one to esti-

mate the mechanical properties of top-layer films in multilayer stacks. The first is

the development of the “dominant regime” theory that enables one to identify the

indentation depths over which a particular layer’s influence dominates. The second

contribution is a numerical fitting procedure based on a rigorous application of non-

linear optimization algorithms using inverse finite element analyses (IFEA) to both

the loading and unloading response during indentation. Arguably, the elastic-plastic

response of films cannot be accurately estimated without fits to both the loading

and the unloading responses. Using the developed procedure, we estimate the elastic

modulus and yield strength of the top layer TEOS film in a stack. The technique is

first applied to a two-layer stack with the same top layer film as in a multilayer stack

to estimate the elastic modulus of the top layer without considering the buried metal

film. Then, the yield strength of the top film in a multilayer stack is estimated.

In general, the existence of a unique relationship between the material’s elastic-

plastic properties and macroscopic load-displacement response is often the biggest
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concern when fitting data to indentation tests [154–156]. Therefore, to verify the

uniqueness of fitted parameters, first, the optimization is carried out from multiple

initial points in the parameter space. In addition, full-factorial statistically designed

experiments are performed over the parameter space spanned by elastic modulus and

yield strength to further validate the uniqueness of the estimated properties.

The rest of this paper is organized as follows. Section C.2 describes the classical

indentation models and the newly proposed dominant regime theory. Section C.3

deals with the application of the developed analytical model to the experimental

data on two-layer samples. The optimization-based inverse finite element analysis

technique and the details of the corresponding finite element models are described in

Section C.4. In Section C.5, the IFEA is applied to a multilayer stack to estimate

the yield strength of the top layer of the stack. Finally, conclusions are drawn in

Section C.6.

C.2 Theory

A typical indentation of a flat specimen surface is illustrated in Figure C.1 [132].

The loading process leads to an initial elastic response at low loads followed by elastic-

plastic deformation at higher loads. After full elastic unloading through a distance,

there remains an impression of depth due to plastic deformation.

C.2.1 Classical Indentation Models for Homogeneous Materials

Hertz [157] derived the load-displacement relationship of non-adhesive elastic con-

tact given by the equation

P =
4

3
E∗R0.5h1.5

e (C.1)
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Figure C.1. (a) Schematic of indentation using spherical indenter. The
thick dashed line indicates the specimen surface under maximum load
whereas the thick solid line is the residual impression after unloading. (b)
Typical load-displacement response with three regimes.

where, P is the applied load, he is the elastic displacement and R is the relative

radius between spherical indenter Ri and residual impression Rr. E
∗ is often referred

as reduced Young’s modulus defined by

1

E∗
=

1− ν2

E
+

1− ν2
i

Ei
(C.2)

where, E, Ei, ν and νi are the Young’s modulus and Poisson’s ratio of the specimen

and indenter tip, respectively.

Oliver and Pharr [133] proposed a multiple-point unload method to determine the

reduced elastic modulus using the initial slope of the unloading curve as follows:

E∗ =
dP

dh

1

2a
=

1

2

dP

dh

√
π√
A

(C.3)

where, a is the contact radius as shown in Figure C.1a and A = πa2. Note that the

Eq. (C.3) can be generalized to non-spherical indenters, in which case the A is the
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Figure C.2. Schematic of a rigid Berkovich indenter penetrating a multi-
layer stack consisting of a n-layer film and a substrate. Lk, k = 1, 2, · · · , n
represents the kth layer of the stack.

projected contact area depending on the indenter tip geometry, and a is the effective

contact radius given by

a =

√
A

π
(C.4)

C.2.2 Effective Modulus of Multilayer Stacks

In the case of multilayer stacks, the elastic modulus computed by Eqs. (C.2)

and (C.3) is an effective modulus of the composite (i.e., of the indenter, films, and

the substrate), and is therefore a function of the total indentation depth hmax or

effective contact radius a. For the elastic contact of a rigid indenter with a semi-

infinite multilayer stack (Figure C.2), Gao el al. [137] developed a closed-form solution

to the effective modulus as follows:

E =Φ0

(
a

h1

)
E1 +

n∑
k=2

[
Φ0

(
a

hk

)
− Φ0

(
a

hk−1

)]
Ek

+

[
1− Φ0

(
a

hn

)]
Es (C.5)
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where, Es and Ek are the Young’s modulus of substrate and the kth-layer film, re-

spectively. The weight function Φ0 is of the form:

Φ0(x) =
2

π
arctan

1

x
+

1

2π(1− ν)

×
[

1− 2ν

x
ln
(
1 + x2

)
− x

1 + x2

]
(C.6)

As illustrated in Figure C.3 and rigorously shown in Appendix C.7, the weight func-

tion is a monotonically decreasing function starting from a value of unity. Since

lima→0+ E = E1, the top-layer modulus can be extracted by extrapolating the effective

modulus to zero penetration. However, the original form of Eq. (C.5) is inconvenient

to use for this purpose due to two reasons:

1. When only the substrate and a single film layer are present, Eq. (C.5) reduces to

the simpler form E = Φ0

(
a
h1

)
E1 +

(
1− Φ0

(
a
h1

))
E2 = E2 + (E1−E2)Φ0

(
a
h1

)
.

However, this form is nonlinearly dependent on contact radius. The form is

significantly more complex if the stack has more than two layers (i.e., substrate

and more than one film). The effective modulus is then a complex nonlinear

function of unknown film moduli and contact radius.

2. The weight function Φ0(x) also depends on the Possion’s ratio (Figure C.3),

which is often time unknown.

To circumvent these problems, we linearize Eq. (C.6) as follows:

Φ0(x) = 1− 2− ν
π(1− ν)

x+O(x3) ≈ 1− kx for x < 1 (C.7)

The linearization procedure is shown in Appendix C.8. Interestingly, the quadratic

term vanishes in the Maclaurin series. This suggests that Φ0(x) possesses a good
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Figure C.3. The weight function Φ0 with different Poisson’s ratios.

linearity when x < 1, which can be also observed in Figure C.3. Substituting Eq. (C.7)

into Eq. (C.5), we obtain

E ≈E1 +

[
−E1

h1

+
n∑
k=2

(
Ek
hk−1

− Ek
hk

)
+
Es
hn

]
ka

=c1 + c2a (C.8)

The linearized form suggests that the top-layer modulus E1 of a multilayer stack can

be thus determined by fitting Eq. (C.8) to the effective modulus measured from mul-

tiple penetration depths. The regression using Eq. (C.8) possesses another advantage

in that the Possion’s ratio is not needed a priori. To obtain better fits, we had also

earlier considered [139] the following heuristic reciprocal form for the elastic modulus

of the top layer in multilayer stacks:

1

E
= c1 + c2a (C.9)

The higher order term O(x3) in Eq. (C.7) is not negligible when x > 1, i.e.,

when a
hk

> 1. Therefore, if the indentation depth is large leading to a > h1, the
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effective modulus will manifest a non-linear behavior, which necessitates a non-linear

regression. Several heuristic regression functions of such kind are reported in the

literature [135,136,138,140] to estimate the film modulus of two-layer stacks.

C.2.3 Dominant Regime Theory

The mathematical model derived by Gao (Eq. (C.5)) reveals that all films con-

tribute to the effective modulus. In order to estimate the elastic modulus of a specific

film accurately, there is a critical need to quantitatively identify the contribution of

each layer and to increasing the contribution of the layer of interest by identifying

the appropriate indentation depth. To this end, we rewrite Eq. (C.5) as

E =
n+1∑
k=1

Nk(a)Ek (C.10)

where, Ek, k = 1, 2, · · · , n is the elastic modulus of the kth-layer film and En+1 = Es

is the substrate modulus. The new function Nk(a) is given by

Nk(a) =


Φ0

(
a
h1

)
k = 1

Φ0

(
a
hk

)
− Φ0

(
a

hk−1

)
k = 2, 3, · · · , n

1− Φ0

(
a
hn

)
k = n+ 1

(C.11)

The function space {Nk} satisfies the following properties:

1. Non-negativity, i.e., Nk ≥ 0, k = 1, 2, · · · , n+ 1

2. Partition of unity, i.e,
∑n+1

k=1 Nk = 1

3. Linear independence

The first property indicates that each film has a non-negative contribution to the

composite modulus whereas the second property implies that the effective modulus

would always fall in the range [mink{Ek},maxk{Ek}]. The first two properties of Nk

are relatively straightforward to prove (see Appendix C.9). The function Nk is thus
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Figure C.4. Modulus participation functions of a TEOS-Al-Si3N4-Si mul-
tilayer stack.

termed here as the Modulus Participation Function. An example of modulus partici-

pation functions for a TEOS-Al-Si3N4-Si multilayer stack is illustrated in Figure C.4.

The dominant regime of a film/substrate is defined as a region where the associated

modulus participation function is the largest among all functions. It can be observed

in Figure C.4 that the dominant regime transitions from TEOS to Al to Si as the

contact radius increases. There is no dominant regime for Si3N4 due to its small

thickness (0.5 µm). We can extract the modulus of a film/substrate using the data

within its dominant regime to minimize the influence of the other layers.

The top-layer dominant regime length of a two-layer stack can be estimated by

equating the modulus participation functions of the film and the substrate:

Φ0

(
a

h1

)
= 1− Φ0

(
a

h1

)
(C.12)
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Figure C.5. Two test structures with the same top-layer dielectric film: (a)
a TEOS-Si two-layer stack and (b) a TEOS-Al-Si3N4-Si multilayer stack.

If the Possion’s ratio ν ∈ [0.2, 0.4], then, a
h1

= Φ−1
0 (0.5) ∈ [0.74, 0.94]. That is, the

film dominant regime of two-layer stacks is well within the linear range of Eq. (C.7).

For multilayer layer stacks, the equation becomes

Φ0

(
a

h1

)
= Φ0

(
a

h2

)
− Φ0

(
a

h1

)
(C.13)

i.e., a
h1

= Φ−1
0

(
1
2
Φ0

(
a
h2

))
> Φ−1

0 (0.5). Therefore, the top-layer dominant regime of

the multilayer stacks is greater than that of the two-layer stacks. Nevertheless, the

increment in the dominant regime length is not significant and the effective modulus

still varies approximately linearly in this dominant regime.

C.3 Experimental Data and its Analysis

A two-layer stack and a multilayer stack with the same top layer film material

(Figure C.5) were characterized using the above developed theory. The indented

depth of each specimen increased in increments of 100 nm over the range (hmax ∈

[100, 700]nm), with mutitlple repetitions at each depth. Berkovich indenter tip was

used to minimize the contact radius and therefore maximize the contribution from

the top-most film.
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Figure C.6. Load-displacement response of the TEOS-Si two-layer stack
at 300 nm and 600 nm penetration depths. Nine tests were carried-out at
each depth.

C.3.1 Two-Layer Stack

A representative, experimentally obtained, load-displacement response of the TEOS-

Si two-layer stack (Figure C.5a) corresponding to indentation depths of 300 nm and

600 nm is shown in Figure C.6. The large elastic recovery in the curves implies a

high yield strength of TEOS. In addition, no macroscale cracking event was observed

during indentation visually or in the load-displacement response.

The modulus participation functions for the two-layer stack are plotted in Fig-

ure C.7. Since the experimental indentation range is contained well within the TEOS

dominant regime, we can use the data from all the test depths to estimate the TEOS

modulus. The multi-depth indentation data is plotted in Figure C.8, where we can

observe that the effective modulus varies linearly versus the contact radius consistent

with the approximation of Eq. (C.7). Thus, the elastic modulus ETEOS was estimated

using the linear function (Eq. (C.8)) and the empirical reciprocal form (Eq. (C.9)).

The estimated modulus values are summarized and compared against a reference

value in Table C.1. The first column in the table corresponds to a single shallow
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Figure C.8. Multi-depth indentation data for the TEOS-Si two-layer stack.

indent at 100 nm (as is commonly the practice) to contrast to values obtained from

regression on multiple indents carried out at various depths. Both the linear as well

as the reciprocal regression functions fit well to the experimental data and produce a

result of approximately 66 GPa for the elastic modulus of TEOS.
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Table C.1.
TEOS modulus extracted from the TEOS-Si two-layer specimen.

100 nm
Regression Analysis

Ref. [158]
Linear Reciprocal

ETEOS 68.8 66.0 66.7 59
(GPa)
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Figure C.9. Three repetitions of load-displacement response of the TEOS-
Al-Si3N4-Si multilayer stack at 700 nm penetration depth. The stiffness
drop and the low elastic recovery are likely a result of the dielectric cracking
and material yielding.

C.3.2 Multilayer Stack

We next carried out indentation tests on the TEOS-Al-Si3N4-Si multilayer stack

(Figure C.5b). The corresponding load-displacement response at 700 nm penetration

depth is shown in Figure C.9. Compared with the TEOS-Si two-layer stack, the

multilayer stack is more prone to cracking and yielding (see Figure C.9) due to the

lower thickness of the TEOS layer and/or the low yield strength of the Al layer. This

in turn results in a larger error in the calculated effective modulus at a given depth.
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Figure C.10. Multi-depth indentation data for the TEOS-Al-Si3N4-Si mul-
tilayer stack. Linear regression over data from all depths leads to a poor
fit.

Table C.2.
TEOS modulus extracted from the TEOS-Al-Si3N4-Si multilayer specimen.

100nm
Regression Analysis

Ref. [158]
Linear Reciprocal

ETEOS

60.9
55.3 54.2

59
(GPa, all data points)

ETEOS 65.0 68.6
(GPa, TEOS regime)

The four material participation functions (NTEOS, NAl, NSi3N4 and NSi) are plotted

in Figure C.4, which indicates that the TEOS layer is dominant in the modulus

composition when the effective contact area does not exceed 1.25 µm. This limiting

contact area in turn limits the depth of indentation that should be used for estimating

the ETEOS. Figures C.10 and C.11 illustrate the multi-depth indentation data along

with the regression analysis using all data points and the data within the TEOS

dominant regime, respectively. The extrapolated ETEOS are summarized in Table C.2.
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Figure C.11. Multi-depth indentation data for the TEOS-Al-Si3N4-Si mul-
tilayer stack. Linear regression over the TEOS dominant regime yields a
good fit.

It is clear from the data that the effective modulus of the multilayer stack varies

non-linearly as the indenter reaches the dominant regime of the second-layer (Al).

Therefore, including the data beyond the TEOS dominant regime leads to a very poor

fit. The linear regression in the TEOS dominant regime not only provides a better

fit, but also yields an elastic modulus value that is consistent with that obtained from

tests on the two-layer stacks (ETEOS ≈ 66 GPa).

C.4 Inverse Finite Element Analysis Procedure

In this section, the inverse finite element analysis (IFEA) technique is described.

Compared with the methods proposed in Section C.2, the numerical approach in-

troduced in this section provides an alternative way to estimate the modulus of the

top-layer film and to further estimate the yield strength through optimization-based

inverse analysis. It is worth noting that the reduced modulus in Eq. (C.3) only relies

on the initial elastic unloading part of the load-displacement response whereas the

loading portion is completely ignored. Inverse finite element analysis, on the other
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hand, attempts to fit to both the loading and the unloading part of the indentation

response.

The IFEA technique includes two major components: a finite element analysis

solver that numerically determines the load-displacement response based on the con-

structed model, and an optimization subroutine that iterates on the modulus and

yield strength of the top-layer film in the finite element model to match the simu-

lated load-displacement response to the experimental response. The approach used

here differs from those in the literature [149] in using the optimization algorithm to

estimate the elastic modulus and yield strength of the top layer film. The details of

IFEA techniques are described in the following subsections.

C.4.1 Finite Element Model

The finite element model consists of a Berkovich indenter and the specimen to be

indented. To reduce the finite element model computational cost, an axi-symmetric

model is utilized in this paper. Therefore, the Berkovich indenter is modeled as an

effective conical indenter with an half apex angle of θ = 70.3◦ such that the projected

contact area of the conical indenter, Aconical = πh2tan2θ, is identical to that of the

Berkovich indenter, ABerkovich = 24.56h2, throughout the indentation process. Both

the two-layer and the multilayer stacks are assumed to be 25 µm in thickness and 25

µm in width so that the far-field boundary effect around the indented region and its

neighborhood is minimized. The thickness of each of the films in the model was per

the nominal dimension indicated in Figure C.5a and Figure C.5b for TEOS-Si stack

and TEOS-Al-Si3N4-Si stack, respectively.

The indenter and the test specimen were both discretized using 4-node bilinear

axi-symmetric solid elements. The average element size of indenter was 0.15 µm

whereas the global element size of specimen was 0.5 µm. To accurately evaluate the

load-displacement response during indentation, a 5× 5 µm2 rectangular region near

the contact surface of specimen was discretized by elements of size 80 nm. Due to the
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large degree of mesh distortion caused by deformation during indentation, arbitrary

Lagrangian-Eulerian (ALE) adaptive mesh technique was applied to the elements

of indented films to control the quality of mesh at every time step. Elements were

neither generated nor eliminated during the simulation. A total of 7, 366 nodes and

7, 205 elements were used to represent the TEOS-Si two-layer stack model, and a

total of 9, 307 nodes and 9, 136 elements were used to discretize the TEOS-Al-Si3N4-

Si multilayer stack model.

The diamond indenter and Si (100) substrate were assumed to be purely elastic

while the other materials in the model were considered to be elastic-plastic as sum-

marized in Table C.3. All materials were assumed to be isotropic unless explicitly

stated. Specifically, the Si (100) substrate was considered to be orthotropically elas-

tic as suggested by Hopcroft et al. [159]. Kinematic hardening plastic behavior was

assumed for the aluminum film in the multilayer stack. Elastic modulus and yield

strength of TEOS were both set as parameters to be updated by the optimization

subroutines whereas its Poisson’s ratio was set to the constant nominal value listed

in the table.

Table C.3.
Nominal mechanical properties used in the model and their literature
sources.

Material E (GPa) ν σY (GPa) References
Diamond 1140 0.07 - [160]

Aluminum 70 0.33 0.116 [161]
Silicon Nitride 222 0.28 5.69 [162]

TEOS 59 0.24 unknown [158]

The indentation process was driven in the model through the displacement bound-

ary condition applied on the top surface of the indenter. Details of other boundary

conditions such as axisymmetry along the center line and the support from the bottom

surface to the Si (100) substrate are illustrated in Figure C.12. Frictionless contact

between the indenter and the top layer film was assumed since the influence of the
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(a) (b)

Figure C.12. (a) Mesh and boundary conditions of the TEOS-Si two-layer
finite element model. (b) Enlarged 30◦ sweep section of the axi-symmetric
model near the indented region (indicated by the red box in (a)).

friction coefficient on the indentation response was not significant for the indenter

geometry, penetration depths and solids considered in this paper as suggested by

previous studies [143, 163, 164]. The finite element model was constructed and an-

alyzed using the commercial software, ABAQUS (Dassault Systèmes Simulia Corp.,

RI, USA).

The limitations of the finite element model used in this study include the following.

First, the model does not allow any crack initiation or propagation within each layer

or along the interface between adjacent films. Hence, the dissipated energy due to

debonding of material during indentation experiment would be indirectly captured

as a lower effective yield strength. Second, there are uncertainties in the elastic-

plastic constitutive behavior and hardening behavior of the films. Third, there are

uncertainties in the structure of the specimen such as the thickness or the homogeneity

of each film.
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C.4.2 Posing of Property Estimation as an Optimization Problem

The estimation of modulus and yield strength of top-layer film was formulated as

a nonlinear optimization problem:

minimize
E,σY

f(E, σY , hmax)

subject to Elb ≤ E ≤ Eub

σYlb ≤ σY ≤ σYub

where, f is the objective function, E is the elastic modulus, σY is the yield strength of

the top-layer film and hmax is the penetration depth. The subscripts lb and ub denote

the lower and upper bounds of the parameter to be optimized. We considered two

objective functions to match the simulated response to the experimental response.

The first objective function, f1(E, σY , hmax), was defined as:

f1 =
m∑
i

{[PEXP
load (hi)− P FEA

load (E, σY , hi)]
2

+ [PEXP
unload(hi)− P FEA

unload(E, σ
Y , hi)]

2}

(C.14)

where, m is the number of sampling points, P is the applied load, h is the indentation

depth such that hi ∈ [0, hmax]. The subscripts load and unload indicate the portion

of the load-displacement response while the superscripts EXP and FEA indicate the

response obtained from experiment or finite element analysis. The second objective

function was defined as:

f2 =
n∑
j

f1(E, σY , hj) (C.15)

where, n is the number of indentation tests, each one corresponding to a specific

penetration depth with hj ∈ [200, 700] nm. The 100-nm indentation was not modeled

due to the need for extensively refined mesh discretization near the indented region
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to reproduce the load-displacement response. The first objective function enables

property estimation based on fit to the experimental response at a specific penetration

depth while the second objective function yields a fit over indentations at multiple

penetration depths in an average sense.

Each optimization run was started from two sets of initial parameter values,

i.e., ETEOS and σYTEOS, such that the experimental load-displacement response was

bounded by the simulated responses. The starting parameters were also set as the

lower and upper bounds of the optimized parameters as shown in Table C.4. Based on

the nominal value reported in the literature [158], 50 and 80 GPa were chosen as the

bounds for the elastic modulus of TEOS. Since very few studies have estimated the

yield strength of TEOS in the literature, reasonable bounding values were estimated

to be 1 and 8 GPa as shown in Figure C.13.

Table C.4.
Initial parameter values for the optimization problem.

Parameter Set E (GPa) σY (GPa)
1 (Lower bound) 50.0 1.00
2 (Upper bound) 80.0 8.00

Finite element solver and optimization subroutines are integrated and controlled

by Simulia Isight (Dassault Systèmes Simulia Corp., Johnston, RI, USA). After exten-

sive numerical trials, Pointer control algorithm was chosen since it provided robust

solutions against numerical noise resulting from finite element solution. The algo-

rithm uses a complementary set of optimization methods including downhill simplex,

linear simplex, sequential quadratic programming, and genetic algorithms. An ad-

ditional advantage of this algorithm is its ability to solve optimization problem in a

fully automatic manner without user’s intervention [165].

In addition to the optimized solution, exhaustive sweep of the parameter space

was carried out to investigate the uniqueness of the properties estimated through op-

timization since the search algorithms in general guarantee only a local minimum. We
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Figure C.13. Load-displacement response curves from experiment and from
FEA. The impact of the value of the yield strength of TEOS film on the
simulated response is illustrated.

performed full-factorial statistically designed experiments over the two-dimensional

parameter space spanned by the arithmetic sequence (12×12) of TEOS modulus and

yield strength values. Objective function values Eqs. (C.14) and (C.15) were then

calculated over the parameter space. Response surface using triangulation-based cu-

bic interpolation was subsequently constructed so that the uniqueness of the IFEA

solution could be verified by examining the topology of the response surface.

C.5 Inverse Finite Element Analysis Results

The modulus and yield strength of TEOS film were estimated by applying IFEA

using Eq. (C.14) for each penetration depth and later averaging the behavior using

Eq. (C.15) over depths from 200 nm to 700 nm.

C.5.1 Two-layer Stack

The estimated elastic modulus and yield strength of TEOS film on TEOS-Si two-

layer stack are tabulated in Table C.5. The predicted optimal response and the un-
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Table C.5.
Estimated Young’s modulus and yield strength of TEOS film on two-layer
stack by IFEA

Depth (nm)

Estimated Properties

Starting Parameter Set
E (GPa) σY (GPa)

200
75.1 6.40 1
75.1 6.40 2

300
72.6 5.62 1
72.6 5.62 2

400
70.5 5.51 1
70.5 5.50 2

500
68.3 5.53 1
68.3 5.53 2

600
66.2 5.49 1
66.2 5.50 2

700
65.6 5.01 1
65.6 5.01 2

200-700
69.7 5.32 1
69.7 5.32 2

derlying optimized property values converged to identical solutions regardless of the

starting guess, that is, regardless of whether one started from the lower or the upper

bound values of the parameters. In Figure C.14, the response surface contours from

full-factorial statistically designed finite element simulation is shown. The topology

of the response surface verifies the uniqueness of the estimated properties within the

parameter space. Also, the objective function is more sensitive to the yield strength

than the modulus of TEOS since the contours are elongated and nearly aligned in ori-

entation along the modulus axis. The optimal properties obtained through IFEA are

nearly identical to the solution obtained through interpolation of data from exhaustive

parametric variation. As shown in Figure C.15, the finite element load-displacement

responses using optimized modulus and yield strength values of TEOS fit to the

experimental response very well.
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Figure C.14. Objective function response surface contours as well as opti-
mized parameter values on the two-layer stack corresponding to indentation
depths of: (a) 200 nm (a) 400 nm (c) 600 nm using Eq. (C.14) and (d) from
200 nm to 700 nm using Eq. (C.15).

From Table C.5, the high yield strength of TEOS previously suggested by the ex-

perimental response in Section C.3 appears confirmed. The estimated yield strength

of TEOS decreases with increasing depth which may possibly be attributed to energy-
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Figure C.15. Load-displacement response on the two-layer stack using the
optimized properties compared against the experimental response for 700
nm indentation.

dissipating events such as micro-cracking in TEOS that do not manifest as signifi-

cant discontinuity in overall load-displacement response. Hence, the estimated yield

strength at the smallest depth may be considered to be the most accurate value.

Elastic modulus, on the other hand, has no physical reason to vary during the inden-

tation test. A reasonable estimation of the modulus is the value that fit to all the

experimental response from 200 nm to 700 nm in an average sense. Therefore, the

modulus and yield strength of TEOS based on the two-layer stack experiments were

estimated as 69.7 GPa and 6.40 GPa, respectively.

C.5.2 Multilayer Stack

The estimated moduli and yield strengths of TEOS film on the multilayer TEOS-

Al-Si3N4-Si multilayer stack are listed in Table C.6.

As with the two layer stack, the estimated properties converge to a unique value

at each depth regardless of the initial guess. Figure C.16 shows the response surface

contours characterized by full-factorial statistically designed finite element simulations

for the multilayer stack. As before, the topology of the response surfaces indicates

that the estimated properties within the parameter space is unique. But, the objective
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Table C.6.
Estimated Young’s modulus and yield strength of TEOS film on multi-layer
stack obtained through IFEA

Depth (nm)

Estimated Properties

Starting Parameter Set
E (GPa) σY (GPa)

200
66.7 4.42 1
66.7 4.41 2

300
55.0 3.02 1
55.0 3.02 2

400
52.7 3.22 1
52.7 3.22 2

500
55.7 3.28 1
55.7 3.28 2

600
60.0 3.10 1
60.0 3.10 2

700
62.1 3.18 1
62.3 3.19 2

200-700
59.3 3.19 1
59.1 3.19 2

function is even less sensitive to the modulus of TEOS in comparison to the two-layer

stack result of Figure C.14. The estimated modulus and yield strength of TEOS film

on multilayer stack is 59.2 GPa and 4.42 GPa, respectively. Unlike the results obtained

from the two-layer stack, the estimated values from the multilayer stack are much

lower. A comparison between the finite element load-displacement response using the

estimated modulus and yield strength of TEOS compared against the experimental

response is shown in Figure C.17.

On the multilayer stack, the simulated response shown in Figure C.17, while pro-

viding a reasonable overall fit and accurate fit to the loading portion of the experi-

mental data, is less accurate beyond the initial unloading portion of the data. One

possible cause for this inaccuracy is the uncertainty in the assumed mechanical prop-

erties of the underlying films, which are less of a concern in a two-layer stack. The
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Figure C.16. Objective function response surface contours as well as op-
timized parameter values on the multilayer stack corresponding to inden-
tation depths of: (a) 300 nm (b) 500 nm (c) 700 nm using Eq. (C.14) and
(d) from 200 nm to 700 nm using Eq. (C.15).

yield strength of the aluminum film may be significantly different from its nominal

value depending on the fabrication process but the elastic behavior of Si (100) is ex-

pected to show less uncertainty. In addition, the thickness of the TEOS film on the
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Figure C.17. Load-displacement response on the multilayer stack using
the optimized properties compared against the experimental response for
700 nm indentation.

multilayer stack is one third of the thickness of the TEOS film on the two-layer stack.

Hence, the overall response is influenced by the contribution from the underlying

aluminum film in the multilayer stack. In order to estimate the modulus and yield

strength of the top-layer film on a multilayer stack through IFEA more accurately,

it is preferable to have the underlying film with greater certainty in constitutive be-

havior and a relatively thick top-layer film. Therefore, the estimates of properties

obtained on the two-layer stack are more accurate.

C.6 Conclusion

The elastic modulus of top-layer film on multilayer stacks can be estimated by

carrying-out multi-depth indentation tests and extrapolating the effective modulus

to zero penetration. In the present study, two well-established functions (Gao’s and

reciprocal of Gao’s) and two recently proposed functions (linear and reciprocal of

linear) have been used in the regression analysis of two-layer and multilayer stacks,

respectively.
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A new dominant regime theory has been proposed to determine the layer which

has the maximum contribution to the effective modulus as the indentation depth

increases. Based on the theory, we can improve the accuracy of the modulus estima-

tion by indenting the specimen only in the dominant regime of the layer of interest.

The technique is demonstrated through extraction of the modulus of TEOS film

on both two-layer and multilayer BEOL specimens. A consistent TEOS modulus

(ETEOS ≈ 66 GPa) is obtained with the technique.

An optimization-based inverse finite element analysis technique is proposed to

estimate both the modulus and the yield strength of the top-layer film in a stack.

IFEA is applied to both two-layer and multilayer stack and uniquely converged results

are obtained. While both two-layer and multilayer stacks were used to estimate

TEOS modulus and yield strength, the values from the two-layer stack (ETEOS ≈

69.7 GPa, σYTEOS ≈ 6.40 GPa) is likely to be more accurate than the estimated values

for the multilayer stack (ETEOS ≈ 59.2 GPa, σYTEOS ≈ 4.42 GPa).

C.7 Proof of the Monotonicity of the Weight Function

Theorem C.7.1 The weight function Φ0(x) is monotonically decreasing from one to

zero in the domain x ∈ (0,∞).

Proof

Φ′0(x) =− 2

π

1

1 + x2
+

1− 2ν

2π(1− ν)

[
2

1 + x2
− ln(1 + x2)

x2

]
+

1

2π(1− ν)

−1 + x2

(1 + x2)2

=
1

π(1− ν)(1 + x2)

[
−2(1− ν) + 1− 2ν +

1

2

]
− 1

2π(1− ν)

[
1− 2ν

x2
ln(1 + x2) +

2

(1 + x2)2

]
=− 1

2π(1− ν)

[
1− 2ν

x2
ln(1 + x2) +

3 + x2

(1 + x2)2

]
<0 (C.16)
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i.e., Φ0(x) is monotonically decreasing. Next we consider the limits of the function

as follows:

lim
x→0+

Φ0(x) = 1 +
1− 2ν

2π(1− ν)
lim
x→0+

ln(1 + x2)

x
= 1 (C.17a)

lim
x→+∞

Φ0(x) =
1− 2ν

2π(1− ν)
lim

x→+∞

ln(1 + x2)

x
= 0 (C.17b)

Thus, Φ0(x) ∈ (0, 1]

C.8 Linearization of the Weight Function

The Maclaurin series for the weight function Φ0(x) is given by

Φ0(x) = Φ0(0) + Φ′0(0)x+
Φ′′0(0)

2
x2 +O(x3) (C.18)

where, for the simplicity of notation, the right-hand limits as x→ 0+ are represented

by the function value and the derivatives at x = 0. Based on the derivation in

Theorem C.7.1, we can obtain Φ0(0) = 1 and Φ′0(0) = − 2−ν
π(1−ν)

. The second derivative

of Φ0(x) is derived as follows:

Φ′′0(x) =− 1

π(1− ν)

[
(1− 2ν)

x2 − (1 + x2) ln(1 + x2)

x3(1 + x2)

−x(5 + x2)

(1 + x2)3

]
(C.19)

Thus,

lim
x→0+

Φ′′0(x) = lim
x→0+

− 1− 2ν

π(1− ν)

x2 − ln(1 + x2)

x3

= lim
x→0+

− 1− 2ν

π(1− ν)

O(x4)

x3

=0 (C.20)
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The Eq. (C.18) can be rewritten as:

Φ0(x) = 1− 2− ν
π(1− ν)

x+O(x3) (C.21)

C.9 Properties of the Modulus Participation Functions

Theorem C.9.1 (Non-negativity) The material participation function Nk satisfies

Nk ≥ 0, k = 1, 2, · · · , n+ 1.

Proof The Nk is discussed as follows:

If k = 1, Nk = N1 = Φ0

(
a
h1

)
> 0.

If k = n+ 1, Nk = Nn+1 = 1− Φ0

(
a
hn

)
≥ 0

If 2 ≤ k ≤ n, Nk = Φ0

(
a
hk

)
− Φ0

(
a

hk−1

)
≥ 0, since a

hk
≤ a

hk−1
and Φ0(x) is

monotonically decreasing.

Theorem C.9.2 (Partition of Unity) The sum of all material participation functions

for a given stack is equal to unity, i.e.,
∑n+1

k=1 Nk = 1.

Proof

n+1∑
k=1

Nk =N1 +
n∑
k=2

Nk +Nn+1

=Φ0

(
a

h1

)
+

n∑
k=2

[
Φ0

(
a

hk

)
− Φ0

(
a

hk−1

)]
+

[
1− Φ0

(
a

hn

)]
=1 (C.22)
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D. TOPOLOGY OPTIMIZATION FOR EFFICIENT HEAT REMOVAL IN

THREE DIMENSIONAL PACKAGES

D.1 Introduction

Three-dimensional packages are currently considered important for economically

enabling heterogeneous integration, improving the device performance and to reduc-

ing package size. A high level representation of three dimensional (3D) IC consisting

of a stacked/multilayer structure is shown in Figure D.1. While 3D integration can

improve device performance and allow heterogeneous integration, due to the increased

thermal energy per unit area along with limited dissipation pathways, thermal issues

are critical to 3D IC performance and reliability [166]. Specifically, one of the major

reasons for the thermal issues in 3D integration is the rise in thermal resistance with

the increasing number of layers within a package.

Figure D.1. Representative 3D package.

Compared to traditional 2D packages, current research on thermal management

strategies for 3D packages is very limited. Common techniques to overcoming thermal

challenges in 3D ICs include low power design, rearranging heat sources, improving

heat sink or improving thermal conduits [167]. Passive cooling elements such as heat

spreaders and thermal TSVs are commonly used to eliminate hotspots by increasing

the systems effective thermal conductivity. Since the routing space in a 3D package is
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limited, optimal configuration (location, size and number of heat spreading elements)

needs to be determined to make the best use of space under non-uniform power dis-

tribution to achieve the desired thermal objectives. Therefore, many recent studies

have focused on thermal TSV insertion algorithm or optimizing the parameters of

TSVs to improve thermal pathways [168–174]. However, an efficient, systematic and

automated thermal design tool that facilitates the combined thermal design includ-

ing TSV, heat spreader and thermal interface material of 3D packages is currently

unavailable.

In this study, a steady state heat conduction finite element analysis code is cou-

pled with SQP algorithm to determine the optimal thermal design of heat spreader

and thermal TSVs under specified metallization ratio constraint through topology

optimization.

This paper will begin with a discussion on thermal modeling and numerical solu-

tion using the finite element method. Next, topology optimization using the SIMP

method and sensitivity analysis to update the material distribution will be described.

In the results and discussion section, a 2D example is used to validate and com-

pare with the design solution from commercial software. The tool is then used to

tradeoff the relative advantage of using heat spreaders directly on hotspot locations

versus placing them homogeneously. Finally, a TSV insertion example is shown to

demonstrate the ability to carryout TSV thermal design.

D.2 Thermal Conduction Analysis

For an arbitrary multilayer structure, the steady state heat conduction is described

by the following governing equations:

−∇ · q + g(r) = 0 (D.1)

q = −k∇T (D.2)
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where q is heat flux, g is heat generation per unit volume, r is position vector, T

is temperature, and k is the isotropic thermal conductivity. Appropriate boundary

conditions for Eq. (D.1) depend on the nature of package, and may be either Dirichlet,

Neumann or convection. In this study, the temperature field is solved using an efficient

finite element code developed by the authors in the MATLAB environment. The code

uses a mesh generated by a commercial finite element software (ABAQUS or ANSYS).

The details are presented in the following subsections.

D.2.1 Finite Element Method

The well-established discretized governing equations of finite element analysis are

of the form:

KT = f (D.3)

where K is the global thermal conductivity matrix, T is the nodal temperature vector

and f is the consistent nodal flux vector. Specifically, the global conductivity matrix

is:

K =

∫
Ω

BTDBdΩ (D.4)

where D = kelδij is isotropic conductivity matrix, and B is the thermal gradient-

temperature matrix. In practice, efficiency of topology optimization largely depends

on the efficiency of the solution to Eq. (D.3) [175]. Thus, the above finite element

analysis (FEA) was implemented using sparse matrices, and the global conductivity

matrix was integrated element-wise in parallel. Due to the sparsity and symmetric

positive definite nature of global thermal conductivity matrix, a high performance

library called SuiteSparse was used to manipulate and factorize sparse matrices [176].

D.2.2 Discretization

To solve the nodal temperature using finite element method, one needs to dis-

cretize the domain into elements. For general 3D packages, the simple 8-noded
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serendipity element is sufficient to model the high level features of a 3D package

in cross section. An example of isoparametric serendipity element that was used in

the tool is shown in Figure D.2. The mesh, material properties and boundary condi-

tions can be generated using commercial finite element software such as ABAQUS or

ANSYS. Then, the mesh information along with material properties and boundary

conditions are written into an ASCII input file, imported and parsed in MATLAB

environment for further operation.

Figure D.2. Isoparametric 8-noded serendipity element.

Some of inter-device layers such as the interposer are potential regions designated

for thermal TSV placement. The elements within these regions have variable thermal

conductivities and are initially assigned homogeneous properties.

Note that the dependence on commercial software is only for obtaining a mesh that

has minimal bandwidth in global conductivity matrix. The availability of graphical

user interface to lay out the structure, material properties and boundary conditions

in the commercial software is exploited in the developed tool. The sparse matrix FE

solution as well as the iterative topology optimization are carried out in a standalone

manner in the MATLAB environment.
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D.3 Topology Optimization

Optimal thermal pathways of 3D packages were identified through topology op-

timization. A representative structure is shown in Figure D.3. Designated design

regions such as the interposers or the top of the die are modified to enable the heat

removal by thermal TSVs or heat spreader design, respectively. Thermal conductivity

of TIM can also be optimized to achieve desirable thermal objectivities.

Figure D.3. Representative structure in a 3D package to perform topology
optimization for efficient heat removal.

In this study, two objective functions were considered:

1. Minimizing peak temperature:

min
ρi

Tmax
Tmax,0

(D.5)

2. Minimizing stored energy:

min
ρi

f · T
f · T0

(D.6)

with the constraints 0 ≤ ρo ≤ 1 such that
∑
ρi/nel ≤ cj in each Ωj for each designated

design region and satisfies equilibrium condition. ρi is the pseudo design density of

the ith element used as design variable in topology optimization and cj represents

the allowable metallization ratio in the designated design regions. The second kind of
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objective can be regarded as a thermal analogy to minimizing structural compliance

which is commonly used in structural topology optimization problems.

The design procedure required the use of the constraint quantity shown below to

ensure that no two TSVs were placed immediately adjacent to each other:

M−1∑
i=1

ρiρi+1 +
N−1∑
j=1

ρjρj+1 (D.7)

This constraint was enforced by multiplying a large value and adding it to the objec-

tive as a penalty function. Here, M and N are the number of elements in the cross

section of the layer containing the TSVs.

The topology optimization used in the present tool follows the typical iterative

procedure shown in Figure D.4. Stopping criteria includes maximum number of it-

erations, maximum number of finite element analyses, minimum change in objective

function value and design densities. The details of updating elemental thermal con-

ductivity and sensitivity analysis are presented in the following sections.

Figure D.4. Topology optimization flow of control.
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D.3.1 Updating Thermal Conductivities

The solid isotropic material with penalization (SIMP) method was used to itera-

tively update the elemental thermal conductivities of designated regions:

ki = ρpi ki1 + (1− ρpi )ki0 (D.8)

where p (> 1) is the penalty factor, and ki is the thermal conductivity of i-th element

with the subscript 1 and 0 representing the choice of new or original material respec-

tively. The penalty factor p is chosen to be 3 so as to force the solution to either k1

or k0 at any point [177].

D.3.2 Sensitivity Analysis

Besides the efficient sparse matrix implementation of FEA, the use of sensitivity

analysis also plays an important role in determining the efficiency of topology op-

timization. Assuming the derivative of consistent force vector with respect to the

variation of conductivity is zero, that is

∂f

∂ki
= 0 (D.9)

The variation of nodal temperature with respect to the perturbation of conductivity

can be obtained by taking the derivative of Eq. (D.3).

T

ki
= −K−1 K

ki
T (D.10)

Specifically, the second term on the right hand side can be computed directly from

the elemental conductivity matrix. By applying chain rule to Eq. (D.9), sensitivity

with respect to design density can be obtained:

T

ρi
= −pρp−1

i (ki1 − ki0)K−1 K

ki
T (D.11)
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Similarly, sensitivity analysis for thermal compliance can be found using adjoint

method [12],
f · T
ρi

= −pρp−1
i (ki1 − ki0)T T K

ki
T (D.12)

The combined sensitivity of a number of elements is simply the summation of the

sensitivity of the perturbation of individual design density.

D.4 Results and Discussion

The program was written in MATLAB and run on a Linux machine with AMD

Opteron 2.3 GHz Processors. The optimization using the two objectives for a 2D

example with a single concentrated heat source is studied and compared with homo-

geneous distribution of heat spreading material. Next, a multiple heat source example

will be presented and compared against optimal solution obtained using a commer-

cial software. Lastly, thermal design of a 3D package is demonstrated to determine

optimal thermal TSV distribution.

D.4.1 Two Dimensional Heat Spreader Design

The optimal heat spreader design using the two objectives was carried out and

compared on a problem with a concentrated heat source as shown in Figure D.5 to

understand the difference between objectives, as well as against using a homogeneous

layer with variable thermal conductivity. The simple plate was discretized into 21 by

21 8-noded serendipity elements. The initial thermal conductivity was set to k0 = 1

W/(m · K) and heat spreading materials thermal conductivity was set to k1 = 4

W/(m ·K).

Peak temperature, mean temperature and max thermal gradient were investigated

while the maximum metallization ratio constraint was incremented by 1%. Repre-

sentative heat spreader design of 10, 20, 25 and 45% of metallization ratio using the

two objectives are shown in Figure D.6. It was found that topology optimization
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Figure D.5. Boundary conditions and power map on a plate 10 by 10 m
in size.

using both objective functions reduced the peak temperature and thermal gradient

in a similar (and efficient) manner as shown in Figures D.7 and D.8 but the run

times of optimization with 441 design variables were 16.8 seconds and 317.8 seconds,

respectively. Although the mean temperatures were different when using two objec-

tive functions as shown in Figure D.9, the importance of mean temperature is not

as critical as peak temperature as well as peak thermal gradient in microelectronic

devices. On the other hand, homogeneously distributed heat spreading material was

not able to remove the heat as efficiently as achieved with optimal placement of heat

spreading elements.

While homogeneously distributed design performed relatively poorly in reducing

peak temperature and peak thermal gradient, it is a viable design alternative for

the following reason. Since the cost of fabricating heterogeneous features is usually

significant, homogeneous distributed heat spreading material might still be a cost

effective option.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure D.6. Heat spreader design using (a)-(d) minimizing peak temper-
ature and (e)-(h) minimizing stored energy objectives with metallization
ratio of 10, 20, 25 and 45%, respectively.

Figure D.7. Peak temperature with different metallization ratio using
both objective functions and homogeneous distribution of heat spreading
material.

D.4.2 Heat Spreader Design Validation

To validate the developed tool, topology optimization results was compared against

the results obtained using Simulia Isight on a two dimensional multiple heat source
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Figure D.8. Thermal gradient with different metallization ratio using both
objective functions and homogeneous distribution of heat spreading mate-
rial.

Figure D.9. Mean temperature with different metallization ratio using
both objective functions and homogeneous distribution of heat spreading
material.

problem shown in Figure D.10. In this problem, the plate was discretized into 11 by

11 8-noded quadrilateral serendipity elements. The initial thermal conductivity was

set to k0 = 1 W/(m ·K) and heat spreading materials thermal conductivity was set
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to k1 = 4 W/(m ·K). The objective was to minimize the peak temperature with a

constraint on the metallization ratio of a maximum of 35%.

Figure D.10. Boundary conditions and power map on a plate 11 by 11 m
in size.

A procedure similar to that shown in Figure D.4 was created in Simulia Isight

using an SQP algorithm shown in Figure D.11. The temperature profile of initial

and final iteration using Isight and the developed tool are shown in Figures D.12

and D.13, respectively.

Figure D.11. Topology optimization flow of control in Isight.

The original peak temperature in the plate was 60.98◦C. After topology optimiza-

tion, the peak temperature was reduced to 54.90◦C and 53.68◦C using Isight and the

developed tool, respectively. Although the heat spreader placement was different due
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(a) (b)

Figure D.12. Temperature profile (a) before and (b) after the topology
optimization by Simulia Isight.

(a) (b)

Figure D.13. Temperature profile (a) before and (b) after the topology
optimization by the developed tool.

to the non-uniqueness of local optima, objective value was quantitatively very similar.

One of the common concerns in topology optimization with a large number of design

variables is efficiency. With the help of sensitivity analysis and the efficient sparse

matrix implementation in FEA, the optimization run time of the present tool was

only 22 seconds as compared to 2 hours and 39 minutes using Simulia Isight!
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D.4.3 Thermal Design of TSVs

To demonstrate thermal design of stacked structures, a multilayer 3D package is

considered. The structure of the model is shown in Figure D.14 which consists of 2

dies that are connected by a silicon interposer. The thickness of the stack is 5 mm

in total and 5 mm in width. The dimension and bulk thermal conductivities of each

layer are listed in Table 1. The boundary condition at the bottom was set to be

isothermal at 50◦C and the top surface had a weak Neumann boundary condition.

Table D.1.
Model thermal conductivities and thicknesses.

Component Thickness (mm) Thermal Conductivity (W/(m ·K))
Die 1 2.6 116.5

Interposer 1.0 117.5
Die 2 1.4 117.5

Thermal TSV 1.0 385

Figure D.14. Schematic of the 3D package which is integrated with a silicon
interposer.

Given the power map shown in Figure D.15, the placement of thermal TSV and

heat spreader were determined to reduce the peak temperature of the package. Fur-

thermore, a non-stick constraint was exclusively applied to thermal TSV to preserve
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sufficient routing space. With 20% of metallization ratio for thermal TSV, the opti-

mal placement is shown in Figure D.16. The results shown in Figure D.17 indicate

that the peak temperature dropped from 85.5◦C to 79.1◦C. In comparing the thermal

profile and the distribution of thermal TSVs, it was observed that most of the thermal

TSVs were placed around the hot zones instead of right on top of the heat source.

The design solution that emerged was to spread the heat in the lateral direction first

before conducting to higher levels using TSVs.

Figure D.15. Power map for active layer 1 and active layer 2.

Figure D.16. Thermal TSV optimal distribution determined by topology
optimization.
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(a) (b)

Figure D.17. Temperature profile of the 3D package (a) before and (b)
after thermal TSV placement by topology optimization.

D.5 Conclusion

A topology optimization tool was developed for efficient heat removal in 3D pack-

ages by thermal TSV and heat spreader design. The developed tool required two

orders of magnitude lower time for design as compared to a commercial tool. The

tool will be useful for heat removal path optimization and decision during early design

stages.
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