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ABSTRACT

Ye, Lintao Ph.D., Purdue University, December 2020. Algorithmic and Graph-
Theoretic Approaches for Optimal Sensor Selection in Large-Scale Systems. Major
Professor: Shreyas Sundaram.

Using sensor measurements to estimate the states and parameters of a system

is a fundamental task in understanding the behavior of the system. Moreover, as

modern systems grow rapidly in scale and complexity, it is not always possible to

deploy sensors to measure all of the states and parameters of the system, due to cost

and physical constraints. Therefore, selecting an optimal subset of all the candidate

sensors to deploy and gather measurements of the system is an important and chal-

lenging problem. In addition, the systems may be targeted by external attackers who

attempt to remove or destroy the deployed sensors. This further motivates the for-

mulation of resilient sensor selection strategies. In this thesis, we address the sensor

selection problem under different settings as follows.

First, we consider the optimal sensor selection problem for linear dynamical sys-

tems with stochastic inputs, where the Kalman filter is applied based on the sensor

measurements to give an estimate of the system states. The goal is to select a subset

of sensors under certain budget constraints such that the trace of the steady-state

error covariance of the Kalman filter with the selected sensors is minimized. We char-

acterize the complexity of this problem by showing that the Kalman filtering sensor

selection problem is NP-hard and cannot be approximated within any constant factor

in polynomial time for general systems. We then consider the optimal sensor attack

problem for Kalman filtering. The Kalman filtering sensor attack problem is to attack

a subset of selected sensors under certain budget constraints in order to maximize

the trace of the steady-state error covariance of the Kalman filter with sensors after
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the attack. We show that the same results as the Kalman filtering sensor selection

problem also hold for the Kalman filtering sensor attack problem. Having shown

that the general sensor selection and sensor attack problems for Kalman filtering are

hard to solve, our next step is to consider special classes of the general problems.

Specifically, we consider the underlying directed network corresponding to a linear

dynamical system and investigate the case when there is a single node of the network

that is affected by a stochastic input. In this setting, we show that the correspond-

ing sensor selection and sensor attack problems for Kalman filtering can be solved in

polynomial time. We further study the resilient sensor selection problem for Kalman

filtering, where the problem is to find a sensor selection strategy under sensor selec-

tion budget constraints such that the trace of the steady-state error covariance of the

Kalman filter is minimized after an adversary removes some of the deployed sensors.

We show that the resilient sensor selection problem for Kalman filtering is NP-hard,

and provide a pseudo-polynomial-time algorithm to solve it optimally.

Next, we consider the sensor selection problem for binary hypothesis testing. The

problem is to select a subset of sensors under certain budget constraints such that a

certain metric of the Neyman-Pearson (resp., Bayesian) detector corresponding to the

selected sensors is optimized. We show that this problem is NP-hard if the objective

is to minimize the miss probability (resp., error probability) of the Neyman-Pearson

(resp., Bayesian) detector. We then consider three optimization objectives based on

the Kullback-Leibler distance, J-Divergence and Bhattacharyya distance, respectively,

in the hypothesis testing sensor selection problem, and provide performance bounds

on greedy algorithms when applied to the sensor selection problem associated with

these optimization objectives.

Moving beyond the binary hypothesis setting, we also consider the setting where

the true state of the world comes from a set that can have cardinality greater than

two. A Bayesian approach is then used to learn the true state of the world based on

the data streams provided by the data sources. We formulate the Bayesian learning

data source selection problem under this setting, where the goal is to minimize the
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cost spent on the data sources such that the learning error is within a certain range.

We show that the Bayesian learning data source selection is also NP-hard, and provide

greedy algorithms with performance guarantees.

Finally, in light of the COVID-19 pandemic, we study the parameter estimation

measurement selection problem for epidemics spreading in networks. Here, the mea-

surements (with certain costs) are collected by conducting virus and antibody tests

on the individuals in the epidemic spread network. The goal of the problem is then to

optimally estimate the parameters (i.e., the infection rate and the recovery rate of the

virus) in the epidemic spread network, while satisfying the budget constraint on col-

lecting the measurements. Again, we show that the measurement selection problem

is NP-hard, and provide approximation algorithms with performance guarantees.
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1. INTRODUCTION

A fundamental task in understanding the behavior of a system is to estimate the states

and parameters of the system using measurements (resp., data streams) from sensors

(resp., data sources). Moreover, as the size of the system increases, it not always

possible to measure all the states and parameters of the system, due to the fact that

collecting those measurements incurs certain costs. This motivates the problem of

selecting an optimal set of sensors in order to optimize certain metrics of the estimate

based on the measurements from the selected sensors. Equivalently, the problem can

be formulated as minimizing the cost spent on collecting the measurements such that

the estimation error is within a certain range. The sensor sensor selection problem has

attracted much attention from researchers from different fields, including the control

(e.g., [1,2]), signal processing (e.g., [3,4]) and computer science community (e.g., [5]).

Moreover, in the case of large-scale critical infrastructure systems, the sensors

that have been selected and deployed on the systems are also susceptible to a variety

of potential attacks, including false data injection attacks (e.g., [6]) and Denial-of-

Service (DoS) attacks (e.g., [7]). One class of DoS attacks corresponds to removing a

set of installed sensors from the system, i.e., the measurements of the attacked sensors

are rendered unusable (e.g., [8,9]). We also consider this type of attack in this work.

Specifically, we study the problem of attacking the installed sensors (by removing a

subset of them) under given attack budget constraints in order to maximally degrade

the estimation performance. This problem is referred to as the sensor attack problem.

Combining the sensor selection and attack problems together, we study the re-

silient sensor selection problem. Specifically, we consider the scenario where a strate-

gic attacker can attack a subset of the sensors selected by the designer. The goal (of

the designer) is then to find a resilient sensor selection (under budget constraints)
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in order to optimize the estimation performance corresponding to the sensors that

survive the attack.

In this thesis, we systematically address the sensor selection problem under differ-

ent settings: 1) Kalman filtering for linear dynamical systems with stochastic inputs;

2) hypothesis testing for signal detection; 3) Bayesian learning; 4) parameter estima-

tion in epidemic spread networks. For each of these problems, we first characterize

the computational complexity of the problem, thereby identifying fundamental lim-

itations for any algorithm for such problems. We then identify special classes of

the above problems that can be solved optimally using polynomial-time algorithms,

and provide polynomial-time approximation algorithms to solve general instances of

the problem with theoretical performance guarantees. In what follows, we provide

a brief overview of our results for each of these settings, and delve into our main

contributions.

1.1 Overview of Results

1.1.1 Sensor Selection and Attack for Kalman Filtering

One specific instance of the design-time sensor selection problem arises in the

context of linear Gauss-Markov systems, where the corresponding Kalman filter (with

the selected sensors) is used to estimate the states of the systems (e.g., [1,10–12]). In

Chapter 3, we study the problem of selecting a subset of sensors (under given selection

budget constraints) to minimize the trace of the steady-state error covariance (also

known as the mean square estimation error) of the corresponding Kalman filter. We

also investigate the problem of attacking the selected sensors (under given attack

budget constraints) to maximize the trace of the steady-state error covariance of the

Kalman filter associated with the sensors after the attack. We refer to these two

problems as the Kalman Filtering Sensor Selection (KFSS) problem and the Kalman

Filtering Sensor Attack (KFSA) problem, respectively.
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In Chapter 3, we show that the KFSS (resp., KFSA) problem is NP-hard, and

there are no polynomial-time constant-factor approximation algorithms for the KFSS

(resp., KFSA) problem in general. In other words, there are no polynomial-time

algorithms for any instances of the KFSS (resp., KFSA) problem that can find a

sensor selection (resp., sensor attack) that is always guaranteed to yield a mean

square estimation error (MSEE) that is within any constant finite factor of the MSEE

for the optimal selection (resp., attack) (if P 6= NP). The above result immediately

implies that there is no performance guarantee for greedy algorithms for the KFSS

(resp., KFSA) problem. We further show explicitly that greedy algorithms, which

are widely used to solve NP-hard optimization problems, can provide arbitrarily poor

performance for the KFSS (resp., KFSA) problem.

The above complexity results motivate us to consider special instances of the

KFSS (resp., KFSA) problem, in order to seek efficient algorithms to solve the prob-

lem. In Chapter 4, we consider the underlying directed network associated with a

linear dynamical system. Specifically, the states of the system represent nodes in

a directed network, and interact according to the topology of the network. The

nodes of the network are possibly affected by stochastic inputs. Such networked sys-

tems with stochastic inputs have received much attention from researchers recently

(e.g., [13–17]). Moreover, we focus on the case where there is a single node of the

network that is affected by a stochastic input. Our model encompasses diffusion

networks, which arise in many different areas, including information and influence

diffusion over social networks [18], spreading of diseases in populations [19] and dif-

fusion of chemicals in certain environments [20]. Thus, we study the sensor selection

problem and the sensor attack problem for Kalman filtering for networked systems

where there is a single node in the network that has a stochastic input. We refer

to these two problems as the Graph-based Kalman Filtering Sensor Selection (GK-

FSS) problem and Graph-based Kalman Filtering Sensor Attack (GKFSA) problem,

respectively. Having shown in Chapter 3 that there are no polynomial-time constant-

factor approximation algorithms for any instances of the sensor selection problem or
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the sensor attack problem (if P 6= NP), we show in Chapter 4 that the GKFSS prob-

lem and the GKFSA problem can be solved in polynomial time, leveraging the graph

structure in the GKFSS and GKFSA problems.

In Chapter 4, we also study the resilient sensor selection problem for Kalman

filtering in the same setting, which we refer to as the Resilient Graph-based Kalman

Filtering Sensor Selection (RGKFSS) problem. Specifically, the problem is to find a

resilient sensor selection strategy under the budget constraints in order to minimize

the trace of the steady-state error covariance of the Kalman filter corresponding to

the sensors that are remaining after the attack. Again, we show that the RGKFSS

problem is NP-hard, and propose a pseudo-polynomial-time algorithm to solve it

optimally, using the insights obtained from the GKFSS and GKFSA problems.

1.1.2 Sensor Selection for Hypothesis Testing

Another instance of the sensor selection problem arises in binary hypothesis test-

ing for signal detection (e.g., [3,21]). There are several detectors for signal detection,

including, for instance, the Neyman-Pearson detector and the Bayesian detector [22].

Specifically, the goal of the hypothesis testing sensor selection problem is to select a

subset of sensors (under a given budget constraint) such that a certain metric of the

detection performance of the detector is optimized. In Chapter 5, we first consider

the miss probability (resp., error probability) in the Neyman-Pearson detector (resp.,

Bayesian detector) corresponding to the selected sensors as the optimization metric

in the hypothesis testing sensor selection problem; the problems are referred to as

the Neyman-Pearson Hypothesis testing Sensor Selection (NPHSS) and the Bayesian

Hypothesis testing Sensor Selection (BHSS) problems. We show that the NPHSS

and BHSS problems are NP-hard. Since the miss probability of the Neyman-Pearson

detector and the error probability of the Bayesian detector do not yield closed form

expressions in general, we further consider three optimization metrics in the hypoth-

esis testing sensor selection problem, which are based on the Kullback-Leibler (KL)
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distance, J-Divergence and Bhattacharyya distance, respectively. We refer to the

resulting sensor selection problems as the KL Distance Sensor Selection (KLDSS)

problem, the J-Divergence Sensor Selection (JDSS) problem, and the Bhattacharyya

Distance Sensor Selection (BDSS) problem, respectively. While we show that the

KLDSS, JDSS and BDSS problems are still NP-hard, we leverage the closed form ex-

pressions of the objective functions in these problems, and provide a greedy algorithm

to solve the problems with provable performance guarantees.

1.1.3 Data Source Selection for Bayesian Learning

In Chapter 6, we generalize our analysis for the binary hypothesis testing setting

to a general setting where the true state of the world comes from a set that can have

cardinality greater than two. Under this setting, a central task in machine learning is

to learn the true state of the world based on data streams provided by data sources.

Here, we do not restrict ourselves to measurements (i.e., data streams) coming from

sensors, since in practice the data streams can come from a variety of sources, includ-

ing experiment outcomes [23], medical tests [24], and sensor measurements [5], etc.

We then consider tackling this task using the classic Bayesian learning rule, where we

start with a prior belief about the true state of the world and update our belief based

on the data streams from the data sources (e.g., [25]). The (steady-state) learning

performance is then captured by the difference between the belief obtained from the

Bayesian learning rule and the true state of the world. Following the arguments in

previous chapters, we formulate the Bayesian Learning Data Source Selection (BLDS)

problem, where the goal is to minimize the cost spent on the selected data sources

while ensuring that the error of the learning process is within a prescribed range.

Similarly, we show that the BLDS is NP-hard, and can be solved using a standard

greedy algorithm with performance guarantees. Moreover, we propose a fast greedy

algorithm to solve the BLDS problem that improves the running times of the stan-
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dard greedy algorithm, and achieves performance guarantees that are comparable to

those of the standard greedy algorithm.

1.1.4 Measurement Selection for Parameter Estimation in Epidemic Spread

Networks

In Chapter 7, we apply our analysis for the sensor selection problems in previous

chapters to models of epidemics spreading over networks which have been widely

studied by researchers from different fields (e.g., [18, 26–30]). There are two key

parameters that govern such models: the infection rate of a given node, and the

recovery rate of that node. In the case of a novel virus, these parameters may not be

known a priori, and must be identified or estimated from gathered data, including for

instance the number of infected and recovered individuals in the network at certain

points of time. For instance, in the COVID-19 pandemic, when collecting the data

on the number of infected individuals or the number of recovered individuals in the

network, one possibility is to perform virus or antibody tests on the individuals, with

each test incurring a cost. Therefore, in the problem of parameter estimation in

epidemic spread networks, it is important and of practical interest to take the costs

of collecting the data (i.e., measurements) into account in the problem formulation.

The above discussions motivate us to consider the measurement selection problem

for parameter estimation problem in epidemic spread networks, which shares natural

similarities to the sensor selection problems that we studied in the previous chapters.

Note that measurements are collected using sensors in the sensor selection problem,

while the measurements are gathered by performing virus or antibody tests on the

individuals in the measurement selection problem. Under the setting when exact

measurements of the infected and recovered proportions of the population at certain

nodes in the network can be obtained, we formulate the Parameter Identification Mea-

surement Selection (PIMS) problem as minimizing the cost spent on collecting the

measurements, while ensuing that the parameters can be uniquely identified (within
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a certain time interval in the epidemic dynamics). In settings where the measure-

ments are stochastic (thereby precluding exact identification of the parameters), we

formulate the Parameter Estimation Measurement Selection (PEMS) problem. The

goal is to optimize certain estimation performance metrics based on the collected

measurements, while satisfying the budget on collecting the measurements. We show

that the PIMS and PEMS problems are NP-hard. Leveraging the network structure

in the PIMS problem, we propose an approximation algorithm for the PIMS problem

with performance guarantees. Moreover, for the PEMS problem, we also provide a

greedy algorithm with performance guarantees.

1.1.5 General Contributions

Although the algorithms that we study in this thesis are proposed for specific

problems as we described above, our analysis of the algorithms can be extended to

more general problems. For example, our analysis of the greedy algorithm applied to

the KDLSS, JDSS and BDSS problems studied in Chapter 5 and the greedy algorithm

applied to the PEMS problem studied in Chapter 7 generalizes the analysis of the

greedy algorithms for submodular function maximization under budget constraints

(e.g., [31]) to nonsubmodular function maximization under a budget constraint. More-

over, our analysis of the fast greedy algorithm proposed for the BLDS problem studied

in Chapter 6 also works for the general submodular set covering problem (e.g., [32]).

1.2 Other Related Problems

There are other problems studied in the literature that share some common points

with the sensor selection problem. For instance, a dual problem to the design-time

sensor selection problem that has been studied by researchers from the control com-

munity is the design-time actuator selection problem (e.g., [33, 34]). If different sets

of sensors can be selected at different time steps, the problem is known as the sensor

scheduling problem (e.g., [35–37]). In computer science, researchers have studied the
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subset selection problem which is related to feature selection and dictionary selection

in machine learning (e.g., [38–40]), where the problem is to select a subset of random

variables from a large set in order to obtain the best linear prediction of another

random variable of interest. All these problems are about selecting elements (un-

der given constraints) from a candidate set in order to optimize a certain objective

corresponding to the selected elements.

1.3 Thesis Outline

In Chapter 3, we characterize fundamental limitations of any polynomial-time

algorithm for the Kalman filtering sensor selection (resp., attack) problem. In Chap-

ter 4, we first identify special instances of the Kalman filtering sensor selection (resp.,

attack) problem in a networked system setting, and provide polynomial-time algo-

rithms to solve these instances optimally. We then propose a pseudo-polynomial-time

algorithm to solve the resilient Kalman filtering sensor selection problem optimally

in the networked system setting. In Chapter 5, we show that the binary hypothesis

testing sensor selection problem is NP-hard, and provide greedy algorithms to solve

them with performance guarantees. In Chapter 6, we show that the Bayesian learn-

ing data source selection problem is NP-hard, and propose greedy algorithms to solve

it with performance guarantees. In Chapter 7, we show that parameter estimation

measurement selection problem in epidemic spread networks is NP-hard, and provide

approximation algorithms to solve it with theoretical guarantees using the network

structure in the problem.

This work was supported in part by NSF grant CMMI-1635014.
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2. BACKGROUND

2.1 Notation and Terminology

The sets of integers, real numbers and complex numbers are denoted as Z, R and

C, respectively. The set of integers that are greater than (resp., greater than or equal

to) a ∈ R is denoted as Z>a (resp., Z≥a). For x ∈ C, let |x| denote its magnitude.

The set of real numbers that are greater than (resp., greater than or equal to) b ∈ R

is denoted as R>b (resp., R≥b). For any x ∈ R, let dxe denote the least integer greater

than or equal to x, and let bxc denote the greatest integer that is less than or equal

to x. For any integer n ≥ 1, denote [n] , {1, . . . , n}. For a set A, let |A| be its

cardinality. A function ϕ1(n) is O(ϕ2(n)) if there exist positive constant c and N

such that |ϕ1(n)| ≤ c|ϕ2(n)| for all n ≥ N .

For a square matrix P ∈ Rn×n, let P T , rank(P ), rowspace(P ), det(P ) and trace(P )

(or tr(P )) be its transpose, rank, rowspace, determinant and trace, respectively. The

eigenvalues of P are ordered with nonincreasing magnitude (i.e., |λ1(P )| ≥ · · · ≥

|λn(P )|). The maximum (resp., minimum) value of the diagonal elements of P is

denoted as d1(P ) (resp., dn(P )). Let Pij (or (P )ij) denote the element in the ith

row and jth column of P , and let Pi (or (P )i) denote the ith row of P . Denote a

diagonal matrix P ∈ Rn×n as diag(P11, . . . , Pnn). The identity matrix with dimension

n × n is denoted as In. The zero matrix with dimension m × n is denoted as 0m×n;

the subscripts are dropped if the dimension is clear from the context. The set of

n by n positive definite (resp., positive semi-definite) matrices is denoted as Sn++

(resp., Sn+). A positive semi-definite matrix P is denoted by P � 0; P � Q if

P − Q � 0. In a matrix, ∗ denotes elements of the matrix that are of no interest.

For a vector v, let vi (or (v)i) denote the ith element of v; define the support of v

to be supp(v) = {i : vi 6= 0}. Denote the Euclidean norm of v by ‖v‖2. Define ei to



10

be a row vector where the ith element is 1 and all the other elements are zero; the

dimension of the vector can be inferred from the context. Define 1n to be a column

vector of dimension n with all the elements equal to 1. The set of 0 − 1 indicator

vectors of dimension n is denoted as {0, 1}n.

For a random vector X ∈ Rn, let E[X] ∈ Rn and Cov(X) = E[(X − E[X])(X −

E[X])T ] ∈ Rn×n denote its mean vector and covariance, respectively. For two random

vectors X ∈ Rn1 and Y ∈ Rn2 , let ΣXY = Cov(X, Y ) = E[(X −E[X])(Y −E[Y ])T ] ∈

Rn1×n2 denote the cross-covariance between them. The probability density function

of a Gaussian distribution with mean θ ∈ Rn and covariance Σ ∈ Sn+ is denoted as

N (θ,Σ).

2.2 Review of Complexity Theory

We review the following fundamental concepts from complexity theory [41].

Definition 2.2.1 A polynomial-time algorithm for a problem is an algorithm that

returns a solution to the problem in a polynomial (in the size of the problem) number

of computations.

Definition 2.2.2 A decision problem is a problem whose answer is “yes” or “no”.

The set P contains those decision problems that can be solved by a polynomial-time

algorithm. The set NP contains those decision problems whose “yes” answers can be

verified using a polynomial-time algorithm.

Definition 2.2.3 An optimization problem is a problem whose objective is to maxi-

mize or minimize a certain quantity, possibly subject to constraints.

Definition 2.2.4 A problem P1 is NP-complete if (a) P1 ∈ NP and (b) for any prob-

lem P2 in NP, there exists a polynomial-time algorithm that converts (or “reduces”)

any instance of P2 to an instance of P1 such that the answer to the constructed in-

stance of P1 provides the answer to the instance of P2. P1 is NP-hard if it satisfies

(b), but not necessarily (a).
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The above definition indicates that if one had a polynomial-time algorithm for

an NP-complete (or NP-hard) problem, then one could solve every problem in NP in

polynomial time. Specifically, suppose we had a polynomial-time algorithm to solve

an NP-hard problem P1. Then, given any problem P2 in NP, one could first reduce

any instance of P2 to an instance of P1 in polynomial time (such that the answer to

the constructed instance of P1 provides the answer to the given instance of P2), and

then use the polynomial-time algorithm for P1 to obtain the answer to P2.

The above discussion also reveals that to show that a given problem P1 is NP-hard,

one simply needs to show that any instance of some other NP-hard (or NP-complete)

problem P2 can be reduced to an instance of P1 in polynomial time (in such a way

that the answer to the constructed instance of P1 provides the answer to the given

instance of P2). For then, an algorithm for P1 can be used to solve P2, and hence, to

solve all problems in NP (by NP-hardness of P2).

The following is a fundamental result in computational complexity theory [41].

Lemma 2.2.1 If P 6= NP, there is no polynomial-time algorithm for any NP-complete

(or NP-hard) problem.

For optimization problems that are NP-hard, polynomial-time approximation al-

gorithms are of particular interest. The definition of a constant-factor approximation

algorithm is given as follows.

Definition 2.2.5 A constant-factor approximation algorithm for an optimization prob-

lem is an algorithm that always returns a solution within a certain constant factor of

the optimal solution.
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3. COMPLEXITY AND APPROXIMABILITY OF

OPTIMAL SENSOR SELECTION AND ATTACK FOR

KALMAN FILTERING

3.1 Introduction

In large-scale control system design, the number of sensors or actuators that can

be selected and installed is typically limited by a design budget constraint. Moreover,

system designers often need to select among a set of possible sensors and actuators,

with varying qualities and costs. Consequently, a key problem is to determine an

appropriate set of sensors or actuators in order to achieve certain objectives. This

problem has recently received much attention from researchers (e.g., [33, 34, 42–48]).

In the context of linear Gauss-Markov systems, where the corresponding Kalman filter

(with the selected sensors) is used to estimate the states of the systems (e.g., [1,12]).

The problem then becomes how to select sensors dynamically (at run-time) or select

sensors statically (at design-time) to minimize certain metrics of the corresponding

Kalman filter. The former scenario is known as the sensor scheduling problem, where

different sets of sensors can be chosen at different time steps (e.g., [35–37]). The latter

scenario is known as the design-time sensor selection problem, where the set of the

selected sensors is not allowed to change over time (e.g., [10, 11,49]).

Since these problems are NP-hard in general (e.g., [2]), approximation algorithms

that provide solutions within a certain factor of the optimal are then proposed to

tackle them. Among these approximation algorithms, greedy algorithms have been

widely used (e.g, [5,50]), since such algorithms have provable performance guarantees

if the cost function is submodular or supermodular (e.g., [40, 51]).

Additionally, in many applications, the sensors that have been selected and in-

stalled on the system are susceptible to a variety of potential attacks. For instance,
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an adversary (attacker) can inject false data to corrupt the state estimation, which is

known as the false data injection attack (e.g., [6,52,53]). Another type of attack is the

Denial-of-Service (DoS) attack, where an attacker tries to diminish or eliminate the

installed sensors’ capacity to achieve its expected objective [7], including, for example,

wireless jamming (e.g., [54,55]) and memory exhaustion through flooding (e.g., [56]).

One class of DoS attacks corresponds to removing a set of installed sensors from the

system, i.e., the measurements of the attacked sensors are not used. This was also

studied in [8] and [9], and will be the type of attack that we consider here.

Related Work

In [12] and [57], the authors studied the design-time sensor selection problem for

discrete-time linear time-varying systems over a finite time horizon. The objective

is to minimize the number of selected sensors while guaranteeing a certain level of

performance (or alternatively, to minimize the estimation error with a cardinality

constraint on the selected sensors). The authors then analyzed the performance of

greedy algorithms for this problem. However, their results cannot be directly applied

to the problems that we consider here, since we aim to optimize the steady-state

estimation error.

The papers [11] and [2] considered the same design-time sensor selection prob-

lem as the one we consider here. In [11], the authors expressed the problem as a

semidefinite program. However, they did not provide theoretical guarantees on the

performance of the proposed algorithm. The paper [2] showed that the problem is

NP-hard and gave examples showing that the cost function is not submodular (or su-

permodular) in general. The authors also provided upper bounds on the performance

of algorithms for the problem; these upper bounds were functions of the system ma-

trices. Although [2] showed via simulations that greedy algorithms performed well for

several randomly generated systems, the question of whether such algorithms (or other

polynomial-time algorithms) could provide constant-factor approximation ratios for
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the problem was left open. We resolve this question in this chapter by showing that

there does not exist any (polynomial-time) constant-factor approximation algorithm

for this problem.

In [8], the authors studied the problem of attacking a given observation selection in

Gaussian process regression [39] to maximize the posteriori variance of the predictor

variable. It was shown that this problem is NP-hard. Moreover, they also gave

an instance of this problem such that a greedy algorithm for finding an optimal

attack will perform arbitrarily poorly. In [58], the authors considered the scenario

where the attacker can target a different set of sensors at each time step to maximize

certain metrics of the error covariance of the Kalman filter at the final time step.

Some suboptimal algorithms were provided with simulation results. Different from

[8] and [58], we study the problem where the attacker removes a set of installed

sensors to maximize the trace of the steady-state error covariance of the Kalman

filter associated with the surviving sensors, and provide fundamental limitations on

achievable performance by any possible algorithm for this problem.

In this chapter, we consider both the sensor selection problem and the sensor at-

tack problem for Kalman filtering of discrete-time linear dynamical systems. First,

we study the problem of selecting sensors at design-time on the system (under given

selection budget constraints) to minimize the trace of either the steady-state a pri-

ori or a posteriori error covariance of the corresponding Kalman filter. We refer to

these problems as the priori and posteriori Kalman Filtering Sensor Selection (KFSS)

problems, respectively. Second, we investigate the problem of attacking the installed

sensors (by removing a subset of them, under given attack budget constraints) to

maximize the trace of either the steady-state a priori or a posteriori error covariance

of the Kalman filter associated with the surviving sensors. These problems are de-

noted as the priori and posteriori Kalman Filtering Sensor Attack (KFSA) problems,

respectively.
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Summary of Results

The results in this chapter are summarized as follows. First, we show that the

priori and posteriori KFSS problems are NP-hard and there are no polynomial-time

constant-factor approximation algorithms for these problems (unless P = NP). In other

words, there are no polynomial-time algorithms that can find a sensor selection that

is always guaranteed to yield a mean square estimation error (MSEE) that is within

any constant finite factor of the MSEE for the optimal selection. This stands in stark

contrast to other sensor selection problems studied in the literature, which leveraged

submodularity of their associated cost functions to provide greedy algorithms with

constant-factor approximation ratios [57]. Second, we show that the same results

hold for the priori and posteriori KFSA problems, i.e., these problems are NP-hard

and there are no polynomial-time constant-factor approximation algorithms for these

problems (unless P = NP). Our inapproximability results above immediately imply

that greedy algorithms cannot provide constant-factor guarantees for our problems.

We further show in this chapter how greedy algorithms can provide arbitrarily poor

performance even for very small instances (with three states) of the priori and poste-

riori KFSS (resp., KFSA) problems.

The results presented in this chapter were published in [59,60].

3.2 Problem Formulation

Consider the discrete-time linear system

x[k + 1] = Ax[k] + w[k], (3.1)

where x[k] ∈ Rn is the system state, w[k] ∈ Rn is a zero-mean white noise process with

E[w[k](w[k])T ] = W for all k ∈ Z≥0, and A ∈ Rn×n is the system dynamics matrix.

The initial condition x[0] is assumed to be a random vector with mean x̄0 ∈ Rn and

covariance Π0 ∈ Sn+. We also assume that the pair (A,W
1
2 ) is stabilizable.
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Consider a set Q that contains q sensors. Each sensor i ∈ Q provides a measure-

ment of the system of the form

yi[k] = Cix[k] + vi[k], (3.2)

where Ci ∈ Rsi×n is the state measurement matrix for sensor i, and vi[k] ∈ Rsi

is a zero-mean white noise process. Denote y[k] ,
[
(y1[k])T · · · (yq[k])T

]T
, C ,[

CT
1 · · · CT

q

]T
and v[k] ,

[
(v1[k])T · · · (vq[k])T

]T
. Thus, the output provided by all

sensors together is given by

y[k] = Cx[k] + v[k], (3.3)

where C ∈ Rs×n and s =
∑q

i=1 si. We denote E[v[k](v[k])T ] = V and assume that the

system noise and the measurement noise are uncorrelated, i.e., E[v[k](w[j])T ] = 0,

∀k, j ∈ Z≥0, and x[0] is independent of w[k] and v[k], ∀k ∈ Z≥0.

3.2.1 The Sensor Selection Problem

Consider the scenario where there are no sensors initially selected (i.e., deployed)

on the system. Instead, the system designer must select a subset of sensors from

Q on the system. Each sensor i ∈ Q has a cost hi ∈ R≥0; define the cost vector

h ,
[
h1 · · · hq

]T
. The designer has a budget H ∈ R≥0 that can be spent on

choosing sensors from Q.

After a set of sensors is selected and installed, the Kalman filter is applied to

provide an estimate of the states using the measurements from the installed sensors.

We define a vector µ ∈ {0, 1}q as the indicator vector of the selected sensors selected,

where µi = 1 if and only if sensor i ∈ Q is selected. Let C(µ) denote the measure-

ment matrix of the installed sensors indicated by µ, i.e., C(µ) ,
[
CT
i1
· · · CT

ip

]T
,

where supp(µ) = {i1, . . . , ip}. Similarly, let V (µ) denote the measurement noise co-

variance matrix of the installed sensors, i.e., V (µ) = E[ṽ[k](ṽ[k])T ], where ṽ[k] =[
(vi1 [k])T · · · (vip [k])T

]T
. Let Σk/k−1(µ) and Σk/k(µ) denote the a priori error covari-

ance matrix and the a posteriori error covariance matrix of the Kalman filter at time
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step k, respectively, when the sensors indicated by µ are installed. We will use the

following result [61].

Lemma 3.2.1 Suppose the pair (A,W
1
2 ) is stabilizable. For a given indicator vector

µ, both Σk/k−1(µ) and Σk/k(µ) will converge to finite limits Σ(µ) and Σ∗(µ), respec-

tively, as k →∞ if and only if the pair (A,C(µ)) is detectable.

The limit Σ(µ) satisfies the discrete algebraic Riccati equation (DARE) [61]:

Σ(µ) = AΣ(µ)AT+W−AΣ(µ)C(µ)T
(
C(µ)Σ(µ)C(µ)T+V (µ)

)−1
C(µ)Σ(µ)AT . (3.4)

The limits Σ(µ) and Σ∗(µ) are coupled as

Σ(µ) = AΣ∗(µ)AT +W. (3.5)

The limit Σ∗(µ) of the a posteriori error covariance matrix satisfies the following

equation [62]:

Σ∗(µ) = Σ(µ)− Σ(µ)C(µ)T (C(µ)Σ(µ)C(µ)T + V (µ))−1C(µ)Σ(µ). (3.6)

Note that we can either obtain Σ∗(µ) from Σ(µ) using Eq. (3.6) or by substituting

Eq. (3.5) into Eq. (3.6) and solving for Σ∗(µ). The inverses in Eq. (3.4) and Eq. (3.6)

are interpreted as pseudo-inverses if the arguments are not invertible.

For the case when the pair (A,C(µ)) is not detectable, we define the limits Σ(µ) =

+∞ and Σ∗(µ) = +∞. Moreover, for any sensor selection µ, we note from Lemma

3.2.1 that the limit Σ(µ) (resp., Σ∗(µ)), if it exists, does not depend on x̄0 or Π0. Thus,

we can assume without loss of generality that x̄0 = 0 and Π0 = In in the sequel. The

priori and posteriori Kalman Filtering Sensor Selection (KFSS) problems are defined

as follows.

Problem 3.2.2 (Priori and Posteriori KFSS Problems). Given a system dynamics

matrix A ∈ Rn×n, a measurement matrix C ∈ Rs×n containing all of the individual

sensor measurement matrices, a system noise covariance matrix W ∈ Sn+, a sensor

noise covariance matrix V ∈ Ss+, a cost vector h ∈ Rq
≥0 and a budget H ∈ R≥0,
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the priori Kalman Filtering Sensor Selection (KFSS) problem is to find the sensor

selection µ ∈ {0, 1}n, i.e., the indicator vector µ of the selected sensors, that solves

min
µ∈{0,1}q

trace(Σ(µ))

s.t. hTµ ≤ H

where Σ(µ) is given by Eq. (3.4) if the pair (A,C(µ)) is detectable, and Σ(µ) = +∞,

if otherwise. Similarly, the posteriori Kalman Filtering Sensor Selection (KFSS)

problem is to find the sensor selection µ ∈ {0, 1}n that solves

min
µ∈{0,1}q

trace(Σ∗(µ))

s.t. hTµ ≤ H

where Σ∗(µ) is given by Eq. (3.6) if the pair (A,C(µ)) is detectable, and Σ∗(µ) = +∞,

if otherwise.

3.2.2 The Sensor Attack Problem

Now consider the scenario where the set Q of sensors has already been selected

and installed on the system. An adversary desires to attack a subset of sensors

(i.e., remove a subset of sensors from the system), where each sensor i ∈ Q has an

attack cost $i ∈ R≥0; define the cost vector $ ,
[
$1 · · · $q

]T
. We assume that

the adversary has a budget Ω ∈ R≥0, which is the total cost that can be spent on

removing sensors from Q.

After a subset of sensors are attacked (i.e., removed), the Kalman filter is then

applied to estimate the states using the measurements from the surviving sensors

(in the sense of minimizing the mean square estimation error). We define a vector

ν ∈ {0, 1}q as the indicator vector of the attacked sensors, where νi = 1 if and only if

sensor i ∈ Q is attacked. Hence, the set of sensors that survive is Q\ supp(ν). Define

vc ∈ {0, 1}q to be the vector such that supp(νc) = Q\ supp(ν), i.e., νci = 1 if and only

if sensor i ∈ Q survives. Similarly to the sensor selection problem, we let C(νc) and

V (νc) denote the measurement matrix and the measurement noise covariance matrix,



19

respectively, corresponding to νc. Furthermore, let Σk/k−1(νc) and Σk/k(ν
c) denote

the a priori error covariance matrix and the a posteriori error covariance matrix of

the Kalman filter at time step k, respectively. Denote limk→∞Σk/k−1(νc) = Σ(νc)

and limk→∞Σk/k(ν
c) = Σ∗(νc) if the limits exist, according to Lemma 3.2.1. Note

that Eq. (3.4)-(3.6) also hold if we substitute µ with νc.

For the case when the pair (A,C(νc)) is not detectable, we define the limits

Σ(νc) = +∞ and Σ∗(νc) = +∞. The priori and posteriori Kalman Filtering Sensor

Attack (KFSA) problems are defined as follows.

Problem 3.2.3 (Priori and Posteriori KFSA Problems). Given a system dynamics

matrix A ∈ Rn×n, a measurement matrix C ∈ Rs×n, a system noise covariance matrix

W ∈ Sn+, a sensor noise covariance matrix V ∈ Ss+, a cost vector $ ∈ Rq
≥0 and a

budget Ω ∈ R≥0, the priori Kalman Filtering Sensor Attack (KFSA) problem is to

find the sensor attack ν ∈ {0, 1}n, i.e., the indicator vector ν of the attacked sensors,

that solves

max
ν∈{0,1}q

trace(Σ(νc))

s.t. $Tν ≤ Ω

where Σ(νc) is given by Eq. (3.4) if the pair (A,C(νc)) is detectable, and Σ(νc) =

+∞, if otherwise. Similarly, the posteriori Kalman Filtering Sensor Attack (KFSA)

problem is to find the sensor attack ν ∈ {0, 1}n that solves

max
ν∈{0,1}q

trace(Σ∗(νc))

s.t. $Tν ≤ Ω

where Σ∗(νc) is given by Eq. (3.6) if the pair (A,C(νc)) is detectable, and Σ∗(νc) =

+∞, if otherwise.

It is also useful to note that although we focus on the optimal sensor problem and

attack problems for Kalman filtering here, due to the duality between the Kalman

filter and the linear quadratic regulator (LQR) [63], all of the analysis in this chapter

will also apply if the priori KFSS and KFSA problems are rephrased as optimal
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actuator selection and attack problems for LQR, respectively. We omit the details of

the rephrasing in the interest of space.

Remark 3.2.4 Our goal in this chapter is to show that for the priori and posteriori

KFSS problems and the priori and posteriori KFSA problems, the optimal solutions

cannot be approximated within any constant factor in polynomial time. To do this,

it is sufficient for us to consider the special case when Ci ∈ R1×n, ∀i ∈ {1, . . . , q},

i.e., each sensor provides a scalar measurement. Moreover, the sensor selection cost

vector and the sensor attack cost vector are considered to be b =
[
1 · · · 1

]T
and

ω =
[
1 · · · 1

]T
, respectively, i.e., the selection cost and the attack cost of each

sensor are both equal to 1. By showing that the problems are inapproximable even

for these special subclasses, we obtain that the general versions of the problems are

inapproximable as well.

3.3 Inapproximability of the KFSS and KFSA problems

In this section, we analyze the approximability of the KFSS and KFSA problems.

We will start with a brief overview of some relevant concepts from the field of com-

putational complexity, and then provide some preliminary lemmas that we will use

in proving our results. That will lead into our characterizations of the complexity of

KFSS and KFSA.

It was shown in [33] that the problem of selecting a subset of sensors to make

the system detectable is NP-hard, which implies that KFSS is NP-hard using Lemma

3.2.1 as shown in [2]. In this chapter, we aim to show that the hardness of KFSS

(resp., KFSA) does not solely come from selecting (resp., attacking) sensors to make

the system detectable (resp., undetectable). To do this, we will show that there is no

polynomial-time constant-factor approximation algorithm for KFSS (resp., KFSA)

even when the corresponding system dynamics matrix A is stable, which guaran-

tees the detectability of the system. Specifically, we consider a known NP-complete

problem, and show how to reduce it to certain instances of KFSS (resp., KFSA)
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(with stable A matrices) in polynomial time such that hypothetical polynomial-time

constant-factor approximation algorithms for the latter problems can be used to solve

the known NP-complete problem. Since we know from Lemma 2.2.1 that if P 6= NP,

there does not exist a polynomial-time algorithm for any NP-complete problem, we

can conclude that if P 6= NP, there is no polynomial-time constant-factor approxima-

tion algorithm for KFSS (resp., KFSA). We emphasize that our results do not imply

that there is no polynomial-time constant-factor approximation algorithm for specific

instances of KFSS (resp., KFSA). Rather, the result is that we cannot have such an

algorithm for all instances of KFSS (resp., KFSA).

3.3.1 Preliminary Results

We will use the following results in our analysis (the proofs are provided in Sec-

tions 3.6.1 and 3.6.2, respectively).

Lemma 3.3.1 Consider a discrete-time linear system as defined in Eq. (3.1) and

Eq. (3.3). Suppose the system dynamics matrix is of the form A = diag(λ1, . . . , λn)

with 0 ≤ |λi| < 1, ∀i ∈ {1, . . . , n}, the system noise covariance matrix W is diagonal,

and the sensor noise covariance matrix V ∈ Sq+. Then, the following hold for all

sensor selections µ.

(a) For all i ∈ {1, . . . , n}, (Σ(µ))ii and (Σ∗(µ))ii satisfy

Wii ≤ (Σ(µ))ii ≤
Wii

1− λ2
i

, (3.7)

and

0 ≤ (Σ∗(µ))ii ≤
Wii

1− λ2
i

, (3.8)

respectively.

(b) If ∃i ∈ {1, . . . , n} such that Wii 6= 0 and the ith column of C is zero, then

(Σ(µ))ii = (Σ∗(µ))ii = Wii

1−λ2
i
.

(c) If V = 0q×q and there exists i ∈ {1, . . . , n} such that ei ∈ rowspace(C(µ)),

then (Σ(µ))ii = Wii and (Σ∗(µ))ii = 0.
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Lemma 3.3.2 Consider a discrete-time linear system as defined in Eq. (3.1) and

Eq. (3.3). Suppose the system dynamics matrix is of the form A = diag(λ1, 0, . . . , 0) ∈

Rn×n, where 0 < |λ1| < 1, and the system noise covariance matrix is W = In.

(a) Suppose the measurement matrix is of the form C =
[
1 γ

]
with sensor noise

variance V = σ2
v, where γ ∈ R1×(n−1) and σv ∈ R≥0. Then, the MSEE of state 1,

denoted as Σ11, satisfies

Σ11 =
1 + α2λ2

1 − α2 +
√

(α2 − α2λ2
1 − 1)2 + 4α2

2
, (3.9)

where α2 , ‖γ‖2
2 + σ2

v.

(b) Suppose the measurement matrix is of the form C =
[
1n−1 ρIn−1

]
with sensor

noise covariance V = 0(n−1)×(n−1), where ρ ∈ R. Then, the MSEE of state 1, denoted

as Σ′11, satisfies

Σ′11 =
λ2

1ρ
2 + n′ − ρ2 +

√
(ρ2 − λ2

1ρ
2 − n′)2 + 4n′ρ2

2n′
, (3.10)

where n′ = n− 1.

Moreover, if we view Σ11 and Σ′11 as functions of α2 and ρ2, denoted as Σ11(α2)

and Σ′11(ρ2), respectively, then Σ11(α2) and Σ′11(ρ2) are strictly increasing functions

of α2 ∈ R≥0 and ρ2 ∈ R≥0, with limα→∞Σ11(α2) = 1
1−λ2

1
and limρ→∞Σ′11(ρ2) = 1

1−λ2
1
,

respectively.

3.3.2 Inapproximability of the Priori and Posteriori KFSS Problems

In this section, we characterize the complexity of the priori and posteriori KFSS

problems by showing that there are no polynomial-time algorithms that can always

yield a solution that is within any constant factor of the optimal (unless P = NP).

Specifically, consider any given instance of KFSS. For any given algorithm A (resp.,

A′) of the priori (resp., posteriori) KFSS problem, we define the following ratios:

rA(Σ) ,
trace(ΣA)

trace(Σopt)
, (3.11)
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and

rA′(Σ
∗) ,

trace(Σ∗A′)

trace(Σ∗opt)
, (3.12)

where Σopt (resp., Σ∗opt) is the optimal solution to the priori (resp., posteriori) KFSS

problem and ΣA (resp., Σ∗A′) is the solution to the priori (resp., posteriori) KFSS

problem given by algorithm A (resp., A′).

In [2], the authors showed that there is an upper bound for rA(Σ) (resp., rA′(Σ
∗))

for any sensor selection algorithm A (resp., A′), in terms of the system matrices.

However, the question of whether it is possible to find a polynomial-time algorithm A

(resp., A′) that is guaranteed to provide an approximation ratio rA(Σ) (resp., rA′(Σ
∗))

that is independent of the system parameters has remained open up to this point. In

particular, it is desirable to find constant-factor approximation algorithms, where

the ratio rA(Σ) (resp., rA′(Σ
∗)) is upper-bounded by some (system-independent) con-

stant. Here, we provide a negative result showing that for the priori (resp., posteriori)

KFSS problem, there is no polynomial-time constant-factor approximation algorithm

in general, i.e., for all polynomial-time algorithms A (resp., A′) and ∀K ∈ R≥1, there

are instances of the priori (resp., posteriori) KFSS problem where rA(Σ) > K (resp.,

rA′(Σ
∗) > K).

Remark 3.3.3 Note that the “constant” in “constant-factor approximation algo-

rithm” refers to the fact that the cost of the solution provided by the algorithm is

upper-bounded by some (system-independent) constant times the cost of the optimal

solution. The algorithm can, however, use the system parameters when finding the

solution. For example, an optimal algorithm for the KFSS problem will be a 1-factor

approximation, and would use the system matrices, sensor costs, and budget to find

the optimal solution. Similarly, a polynomial-time K-factor approximation algorithm

for KFSS would use the system parameters to produce a solution whose cost is guar-

anteed to be no more than K times the cost of the optimal solution. As indicated

above, we will show that no such algorithm exists for any constant K (unless P =

NP).
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To show the inapproximability of the priori KFSS problem, we relate it to the

EXACT COVER BY 3-SETS (X3C) problem described below [41].

Definition 3.3.1 (X3C) Given a finite set D = {d1, . . . , d3m} and a collection C =

{c1, . . . , cτ} of 3-element subsets of D, an exact cover for D is a subcollection C ′ ⊆ C

such that every element of D occurs in exactly one member of C ′.

We will use the following result [41].

Lemma 3.3.4 Given a finite set D = {d1, . . . , d3m} and a collection C = {c1, . . . , cτ}

of 3-element subsets of D, the problem of determining whether C contains an exact

cover for D is NP-complete.

Remark 3.3.5 Note that if τ < m, there does not exist an exact cover for D. Hence,

we assume τ ≥ m. Since each member in C is a subset of D with exactly 3 elements,

if there exists an exact cover for D, then it must consist of exactly m members of C.

As argued in Remark 3.2.4, in order to show that the priori KFSS problem cannot

be approximated within any constant factor in polynomial time, it is sufficient for us

to show that certain special instances of this problem are inapproximable. Specifically,

consider any instance of the X3C problem. Using the results in Lemmas 3.3.1-3.3.2,

we will first construct an instance of the priori KFSS problem in polynomial time such

that the difference between the solution to KFSS when the answer to X3C is “yes”

and the solution to KFSS when the answer to X3C is “no” is large enough. Thus,

we can then apply any hypothetical polynomial-time constant-factor approximation

algorithm for the priori KFSS problem to the constructed priori KFSS instance and

obtain the answer to the X3C instance. Since we know from Lemma 3.3.4 that the

X3C problem is NP-complete, we obtain from Lemma 2.2.1 the following result.

Theorem 3.3.6 If P 6= NP, then there is no polynomial-time constant-factor ap-

proximation algorithm for the priori KFSS problem.
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Proof Assume that there exists such an approximation algorithm A, i.e., ∃K ∈ R≥1

such that rA(Σ) ≤ K for all instances of the priori KFSS problem, where rA(Σ) is

defined in Eq. (3.11). We will show that A can be used to solve the X3C problem,

which will lead to a contradiction.

Given an arbitrary instance of the X3C problem described in Definition 3.3.1 and

Lemma 3.3.4, for each element ci ∈ C, we define gi ∈ R3m to encode which elements

of D are contained in ci. Specifically, for i ∈ {1, 2, . . . , τ} and j ∈ {1, 2, . . . , 3m},

(gi)j = 1 if dj ∈ D is in ci, and (gi)j = 0 otherwise. Denote G ,
[
g1 · · · gτ

]T
.

Thus GTx = 13m has a solution x ∈ {0, 1}τ such that x has m nonzero entries if and

only if the answer to the X3C instance is “yes” [64].

Given the above instance of X3C, we then construct an instance of the priori

KFSS problem as follows. Denote Z = dKe(m + 1)(σ2
v + 3), where we set σv = 1.

Define the system dynamics matrix as A = diag(λ1, 0, . . . , 0) ∈ R(3m+1)×(3m+1), where

λ1 = Z−1/2
Z

. Note that Z ∈ Z>1 and 0 < λ1 < 1. The set Q is defined to contain

τ + 1 sensors with collective measurement matrix

C =

1 ε1T3m

0 G

 , (3.13)

where G is defined based on the given instance of X3C as above. The constant ε

is chosen as ε = 2Z
⌈√

Z − 1
⌉

+ 1. The system noise covariance matrix is set to be

W = I3m+1. The measurement noise covariance matrix is set as V = σ2
v

1 0

0 1
ε2
Iτ

.

The sensor selection cost vector is set as b = 1τ+1, and the sensor selection budget is

set as B = m + 1. Note that the sensor selection vector for this instance is denoted

by µ ∈ {0, 1}τ+1. For the above construction, since the only nonzero eigenvalue of A

is λ1, we know from Lemma 3.3.1(a) that
∑3m+1

i=2 (Σ(µ))ii =
∑3m+1

i=2 Wii = 3m for all

µ.

We claim that algorithm A will return a sensor selection vector µ such that

trace(Σ(µ)) ≤ K(m + 1)(σ2
v + 3) if and only if the answer to the X3C problem is

“yes”.
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We prove the above claim as follows. Suppose that the answer to the instance of

the X3C problem is “yes”. Then GTx = 13m has a solution such that x has m nonzero

entries. Denote the solution as x∗ and denote supp(x∗) = {i1, . . . , im}. Define µ̃ to

be the sensor selection vector that indicates selecting the first and the (i1 + 1)th to

the (im + 1)th sensors, i.e., sensors that correspond to rows C1, Ci1+1, . . . , Cim+1 from

(3.13). Since GTx∗ = 13m, we have [1 − εx∗T ]C = e1 for C defined in Eq. (3.13).

Noting that supp(x∗) = {i1, . . . , im}, it then follows that e1 ∈ rowspace(C(µ̃)). We

can then perform elementary row operations on C(µ̃) (which does not change the

steady-state a priori error covariance matrix of the corresponding Kalman filter) and

obtain ΓC(µ̃) , C̃(µ̃) =

1 0

0 ∗

 with the corresponding measurement noise covari-

ance ΓV (µ)ΓT , Ṽ (µ̃) =

σ2
v(m+ 1) ∗

∗ ∗

, where Γ =

1 −ε1Tm
0 Im

. Let Σ̃ denote

the error covariance obtained from sensing matrix (C̃(µ̃))1 = e1 with measurement

noise variance σ̃2
v , σ2

v(m + 1), which corresponds to the first sensor in C̃(µ̃). We

then know from Lemma 3.3.2(a) that

Σ̃11 =
1 + σ̃2

vλ
2
1 − σ̃2

v +
√

(σ̃2
v − σ̃2

vλ
2
1 − 1)2 + 4σ̃2

v

2
,

which further implies

Σ̃11 ≤
1 +

√
(σ̃2

v(1− λ2
1))2 − 2σ̃2

v(1− λ2
1) + 1 + 4σ̃2

v

2

≤ 1 +
√

(σ̃2
v(1− λ2

1))2 + 1 + 4σ̃2
v

2

≤
1 +

√
σ̃4
v + 4σ̃2

v + 4

2
≤ 1 + σ̃2

v + 2

2
. (3.14)

Using similar arguments to those above, we have
∑3m+1

i=2 Σ̃ii = 3m. We then obtain

from (3.14) that

trace(Σ̃) ≤ σ̃2
v + 3 + 3m = (m+ 1)(σ2

v + 3). (3.15)

Since adding more sensors does not increase the MSEE of the corresponding Kalman

filter, we have from (3.15) trace(Σ(µ̃)) ≤ (m + 1)(σ2
v + 3), which further implies
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trace(Σ(µ∗)) ≤ (m+ 1)(σ2
v + 3), where µ∗ is an optimal sensor selection of the priori

KFSS problem. Since A has approximation ratio K, it returns a sensor selection µ

such that trace(Σ(µ)) ≤ K(m+ 1)(σ2
v + 3).

Conversely, suppose that the answer to the X3C instance is “no”. Then, for

any union of l ≤ m (l ∈ Z≥0) subsets in C, denoted as Cl, there exist κ ≥ 1

(κ ∈ Z) elements in D that are not covered by Cl, i.e., for any l ≤ m and L ,

{i1, . . . , il} ⊆ {1, . . . , τ}, GL ,
[
gi1 · · · gil

]T
has κ ≥ 1 zero columns. We then show

that trace(Σ(µ)) > K(m + 1)(σ2
v + 3) for all sensor selections µ (that satisfy the

budget constraint). We divide our arguments into two cases.

First, for any sensor selection µ1 that does not select the first sensor, the first

column of C(µ1) is zero (from the form of C defined in Eq. (3.13)). We then know

from Lemma 3.3.1(b) that (Σ(µ1))11 = 1
1−λ2

1
. Hence, by our choice of λ1, we have

(Σ(µ1))11 =
Z2

Z − 1/4
> Z ≥ K(m+ 1)(σ2

v + 3)

⇒ trace(Σ(µ1)) > K(m+ 1)(σ2
v + 3), (3.16)

where (3.16) follows from
∑3m+1

i=2 (Σ(µ1))ii = 3m > 0 for all possible sensor selections.

Second, consider sensor selections µ2 that select the first sensor. To proceed,

we first assume that the measurement noise covariance is V = 0(τ+1)×(τ+1). Denote

supp(µ2) = {1, i1, . . . , il}, where l ≤ m and define G(µ2) =
[
gi1−1 · · · gil−1

]T
. We

then have

C(µ2) =

1 ε1T3m

0 G(µ2)

 ,
where G(µ2) has κ ≥ 1 zero columns. As argued in Lemma 3.6.1 in Section 3.6.3,

there exists an orthogonal matrix E ∈ R(3m+1)×(3m+1) of the form E = [ 1 0
0 N ] such

that

C̃(µ2) , C(µ2)E =

1 εγ εβ

0 0 G̃(µ2)

 .
In the above expression, G̃(µ2) ∈ Rl×r is of full column rank, where r = rank(G(µ2)).

Furthermore, γ ∈ R1×(3m−r) and at least κ of its elements are 1’s, and β ∈ R1×r. We
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then perform a similarity transformation on the system with E, which does not affect

the trace of the steady-state a priori error covariance matrix of the corresponding

Kalman filter,1 and does not change A, W and V . We further perform additional

elementary row operations to transform C̃(µ2) into the matrix

C̃ ′(µ2) =

1 εγ 0

0 0 G̃(µ2)

 .
Since A and W are both diagonal, and V = 0, we can obtain from Eq. (3.4) that

the steady-state a priori error covariance corresponding to the sensing matrix C̃ ′(µ2),

denoted as Σ̃′(µ2), is of the form

Σ̃′(µ2) =

Σ̃′1(µ2) 0

0 Σ̃′2(µ2)

 ,
where Σ̃′1(µ2) ∈ R(3m+1−r)×(3m+1−r) satisfies

Σ̃′1(µ2) = A1Σ̃′1(µ2)AT1 +W1 − A1Σ̃′1(µ2)C̃T
(
C̃Σ̃′1(µ2)C̃T

)−1
C̃Σ̃′1(µ2)AT1 ,

where A1 = diag(λ1, 0, . . . , 0) ∈ R(3m+1−r)×(3m+1−r), C̃ = [1 εγ] and W1 = I3m+1−r.

Denoting α2 = ε2‖γ‖2
2 ≥ κε2 ≥ ε2, we then obtain from Lemma 3.3.2(a) that

(Σ̃′(µ2))11 =
1 + α2λ2

1 − α2 +
√

(α2 − α2λ2
1 − 1)2 + 4α2

2

≥ 1 + ε2λ2
1 − ε2 +

√
(ε2 − ε2λ2

1 − 1)2 + 4ε2

2
. (3.17)

1This can be easily verified using Eq. (3.4) as E is an orthogonal matrix.
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By our choices of λ1 and ε, we have the following:

ε2 > 4Z2(Z − 1) ⇒ (1− Z − 1/4

Z
)ε2 > Z2 − Z

⇒ ε2 > Z2 + Zε2Z − 1/4

Z2
− Z

⇒ ε2 > Z2 + Z(ε2(1− λ2
1)− 1)

⇒ (ε2 − ε2λ2
1 − 1)2 + 4ε2 > (ε2 − ε2λ2

1 − 1)2 + 4Z2 + 4Z(ε2 − ε2λ2
1 − 1)

⇒ (ε2 − ε2λ2
1 − 1)2 + 4ε2 > (2Z + ε2 − ε2λ2

1 − 1)2

⇒
√

(ε2 − ε2λ2
1 − 1)2 + 4ε2 > 2Z + ε2 − ε2λ2

1 − 1

⇒ 1 + ε2λ2
1 − ε2 +

√
(ε2 − ε2λ2

1 − 1)2 + 4ε2

2
> Z. (3.18)

Since Z ≥ K(m+ 1)(σ2
v + 3), (3.17) and (3.18) imply (Σ̃′(µ2))11 > K(m+ 1)(σ2

v + 3),

which further implies trace(Σ̃′(µ2)) > K(m + 1)(σ2
v + 3). Since trace(Σ̃′(µ2)) =

trace(Σ(µ2)) as argued above, we obtain that trace(Σ(µ2)) > K(m+ 1)(σ2
v + 3). We

then note the fact that the MSEE of the Kalman filter with noiseless measurements

is no greater than that with any noisy measurements (for fixed A, W and C), when

the system noise and the measurement noise are uncorrelated. Therefore, for V =

σ2
v

1 0

0 1
ε2
Iτ

, we also have trace(Σ(µ2)) > K(m+ 1)(σ2
v + 3) for all µ2.

It then follows from the above arguments that trace(Σ(µ)) > K(m + 1)(σ2
v + 3)

for all sensor selections µ, which implies that algorithm A would also return a sensor

selection µ such that trace(Σ(µ)) > K(m + 1)(σ2
v + 3). This completes the proof of

the converse direction of the claim above.

Hence, it is clear that algorithm A can be used to solve the X3C problem by

applying it to the above instance of the priori KFSS problem. Since X3C is NP-

complete, there is no polynomial-time algorithm for it if P 6= NP, and we get a

contradiction. This completes the proof of the theorem.

The following result is a direct consequence of the above arguments; the proof is

provided in Section 3.6.4.
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Corollary 3.3.7 If P 6= NP, then there is no polynomial-time constant-factor ap-

proximation algorithm for the posteriori KFSS problem.

Remark 3.3.8 Note that Theorem 3.3.6 and Corollary 3.3.7 provide stronger results

than showing Problem 3.2.2 is NP-hard, as the NP-hardness of Problem 3.2.2 follows

from taking the (constant factor) K = 1 in the above analysis.

3.3.3 Inapproximability of the Priori and Posteriori KFSA Problems

In this section, we analyze the achievable performance of algorithms for the priori

and posteriori KFSA problems. Consider any given instance of the priori (resp.,

posteriori) KFSA problem. For any given algorithm A (resp., A′) for the priori

(resp., posteriori) KFSA problem, we define the following ratios:

rA(Σ̃) ,
trace(Σ̃opt)

trace(Σ̃A)
, (3.19)

and

rA′(Σ̃
∗) ,

trace(Σ̃∗opt)

trace(Σ̃∗A′)
, (3.20)

where Σ̃opt (resp., Σ̃∗opt) is the optimal solution to the priori (resp., posteriori) KFSA

problem and Σ̃A (resp., Σ̃∗A′) is the solution to the priori (resp., posteriori) KFSA

problem given by algorithm A (resp., A′). It is worth noting that using the arguments

in [2], the same upper bounds for rA(Σ̃) and rA′(Σ̃
∗) can be obtained as those for

rA(Σ) and rA′(Σ
∗) in [2], respectively, where these bounds depend on the system

matrices.

Nevertheless, we show that there is again no polynomial-time constant-factor al-

gorithm for the priori (resp., posteriori) KFSA problem (if P 6= NP), i.e., for all

K ∈ R≥1 and polynomial-time algorithms A (resp., A′), there are instances of the

priori (resp., posteriori) KFSA problem where rA(Σ̃) > K (resp., rA′(Σ̃
∗) > K). To

establish this result, we relate the KFSA problem to the X3C problem as described

in Definition 3.3.1 and Lemma 3.3.4.
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Theorem 3.3.9 If P 6= NP, then there is no polynomial-time constant-factor ap-

proximation algorithm for the priori KFSA problem.

Proof Assume that there exists such a polynomial-time constant-factor approxima-

tion algorithm A, i.e., ∃K ∈ R≥1 such that rA(Σ̃) ≤ K for all instances of the priori

KFSA problem, where rA(Σ̃) is defined in Eq. (3.19). We will show that A can be

used to solve the X3C problem, leading to a contradiction.

Consider any instance of the X3C problem to be a finite set D = {d1, · · · , d3m}

and a collection C = {c1, . . . , cτ} of 3-element subsets of D, where τ ≥ m. Recall in

the proof of Theorem 3.3.6 that we use a column vector gi ∈ R3m to encode which

elements of D are contained in ci, where (gi)j = 1 if dj ∈ D is in ci, and (gi)j = 0

otherwise, for i ∈ {1, 2, . . . , τ} and j ∈ {1, 2, . . . , 3m}. The matrix G ∈ Rτ×3m was

defined in the proof of Theorem 3.3.6 as G =
[
g1 · · · gτ

]T
. In this proof, we will

make use of the matrix F , GT ; note that each column of F contains exactly three

1’s.

Given the above instance of the X3C problem, we then construct an instance of

the priori KFSA as follows. Denote Z = dKe(τ + 2)(δ2
v + 1), where we set δv = 1.

Define the system dynamics matrix as A = diag(λ1, 0, . . . , 0) ∈ R(τ+1)×(τ+1), where

λ1 = Z−1/2
Z

. Note that Z ∈ Z>1 and 0 < λ1 < 1. The set Q consists of 3m+ τ sensors

with collective measurement matrix

C =

13m ρF

0 Iτ

 , (3.21)

where F is defined above and Iτ is used to encode the collection C, i.e., ej represents

cj ∈ C for all j ∈ {1, 2, . . . , τ}. The constant ρ is chosen as ρ = 2Z
⌈√

m(Z − 1)
⌉

+ 1.

The system noise covariance matrix is set to be W = Iτ+1. The measurement noise

covariance is set as V = δ2
v

I3m 0

0 1
ρ2 Iτ

. The sensor attack cost vector is set as

ω = 13m+τ , and the sensor attack budget is set as Ω = m. Note that the sensor

attack vector is given by ν ∈ {0, 1}3m+τ . For the above construction, since the only
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nonzero eigenvalue of A is λ1, we know from Lemma 3.3.1(a) that
∑τ+1

i=2 (Σ(νc))ii =∑τ+1
i=2 Wii = τ for all ν.

We claim that algorithm A will return a sensor attack ν such that trace(Σ(νc)) >

(τ + 2)(δ2
v + 1) if and only if the answer to the X3C problem is “yes”.

We prove the above claim as follows. Suppose that the answer to the X3C prob-

lem is “yes”. Similarly to the proof of Theorem 3.3.6, we first assume that V =

0(3m+τ)×(3m+τ). Denote an exact cover as C ′ = {cj1 , . . . , cjm}, where {j1, . . . , jm} ⊆

{1, 2, . . . , τ}. Define ν̃ to be the sensor attack such that supp(ν̃) = {3m+j1, . . . , 3m+

jm}. We then renumber the states of the system from state 2 to state τ such that for

all i ∈ {1, 2, . . . ,m}, the columns of the submatrix Iτ of C in Eq. (3.21) representing

cji in C ′, i.e., the columns of Iτ that correspond to supp(ν̃), come first. Note that

renumbering the states does not change the trace of the steady-state a priori error

covariance of the corresponding Kalman filter. We then have from Eq. (3.21) the

following:

C(ν̃c) =

13m ρF1 ρF2

0 0 Iτ−m

 , (3.22)

where F1 ∈ R3m×m and F2 ∈ R3m×(τ−m) satisfy F =
[
F1 F2

]
, and Iτ−m is the

submatrix of Iτ that corresponds to supp(ν̃c)∩{3m+1, . . . , 3m+τ}, i.e., the elements

of C that are not in C ′.2 Since the sensor attack ν̃ targets the rows of C that correspond

to the elements of the exact cover C ′ for D, we have F1, after some row permutations

of C(ν̃c), is given by F1 =
[
eT1 eT1 eT1 · · · eTm eTm eTm

]T
. We perform additional

elementary row operations and merge identical rows (which does not change the

steady-state a priori error covariance matrix of the corresponding Kalman filter) to

transform C(ν̃c) into the matrix

C̃(ν̃c) =

1m ρIm 0

0 0 Iτ−m

 . (3.23)

2Note that if the submatrix of Iτ corresponding to supp(ν̃c)∩{3m+1, . . . , 3m+τ} is not identity,

we can always permute the rows of C(ν̃c) to make it identity.
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Since A and W are both diagonal, and V = 0, we can obtain from Eq. (3.4) that the

steady-state a priori error covariance corresponding to C̃(ν̃c), denoted as Σ̃(ν̃c), is of

the form

Σ̃(ν̃c) =

Σ̃1(ν̃c) 0

0 Σ̃2(ν̃c)

 ,
where Σ̃1(ν̃c) ∈ R(m+1)×(m+1) satisfies

Σ̃1(ν̃c) = A1Σ̃1(ν̃c)AT1 +W1 − A1Σ̃1(ν̃c)C̃T
(
C̃Σ̃1(ν̃c)C̃T

)−1
C̃Σ̃1(ν̃c)AT1 ,

where A1 = diag(λ1, 0, . . . , 0) ∈ R(m+1)×(m+1), C̃ =
[
1m ρIm

]
and W1 = Im+1. We

then know from Lemma 3.3.2(b) that (Σ(ν̃c))11 = (Σ̃(ν̃c))11 satisfies

(Σ(ν̃c))11 =
λ2

1ρ
2 +m− ρ2 +

√
(ρ2 − λ2

1ρ
2 −m)2 + 4mρ2

2m
. (3.24)

By our choices of λ1 and ρ, we have

ρ2 > 4Z2m(Z − 1)⇒ (1− Z − 1/4

Z
)ρ2 > Z2m− Zm

⇒ ρ2 > mZ2 + Zρ2Z − 1/4

Z2
− Zm

⇒ 4mρ2 > 4m2Z2 + 4mZ(ρ2(1− λ2
1)−m)

⇒ (ρ2 − λ2
1ρ

2 −m)2 + 4mρ2 > 4m2Z2 + 4mZ(ρ2 − λ2
1ρ

2 −m) + (ρ2 − λ2
1ρ

2 −m)2

⇒ (ρ2 − λ2
1ρ

2 −m)2 + 4mρ2 > (2mZ + ρ2 − λ2
1ρ

2 −m)2

⇒
√

(ρ2 − λ2
1ρ

2 −m)2 + 4mρ2 > 2mZ + ρ2 − λ2
1ρ

2 −m

⇒ λ2
1ρ

2 +m− ρ2 +
√

(ρ2 − λ2
1ρ

2 −m)2 + 4mρ2

2m
> Z. (3.25)

Noting that Z ≥ K(τ + 2)(δ2
v + 1), we then know from (3.24) and (3.25) that

(Σ(ν̃c))11 > K(τ + 2)(δ2
v + 1), which further implies that trace(Σ(ν̃c)) > K(τ +

2)(δ2
v + 1). Following the same arguments as those in the proof of Theorem 3.3.6, we

see that for V = δ2
v

I3m 0

0 1
ρ2 Iτ

, trace(Σ(ν̃c)) > K(τ + 2)(δ2
v + 1) also holds, which

implies trace(Σ(ν∗c)) > K(τ + 2)(δ2
v + 1), where ν∗ is an optimal sensor attack for

the priori KFSA problem. Since algorithm A has approximation ratio K, it would

return a sensor attack ν such that trace(Σ(νc)) > (τ + 2)(δ2
v + 1).
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Conversely, suppose the answer to the X3C problem is “no”. For any union of

l ≤ m (l ∈ Z≥0) subsets in C, denoted as Cl, there exists at least one element in D

that is not covered by Cl. We then show that trace(Σ(νc)) ≤ (τ + 2)(δ2
v + 1) for all

sensor attacks ν (that satisfy the budget constraint). We split our discussion into

three cases.

First, consider any sensor attack ν1 that targets l sensors merely from C1 to C3m

in Eq. (3.21), i.e., |supp(ν1)| = l and supp(ν1) ⊆ {1, . . . , 3m}, where l ≤ m. We then

obtain

C(νc1) =

13m−l ρF (νc1)

0 Iτ

 ,
where F (νc1) ∈ R(3m−l)×τ is defined to be the submatrix of F that corresponds to

supp(νc1) ∩ {1, . . . , 3m}, i.e., the rows of F that are left over by ν1. We perform

elementary row operations to transform C(νc1) into

C̃(νc1) , ΨC(νc1) =

13m−l 0

0 Iτ

 (3.26)

with the corresponding measurement noise covariance

Ṽ (νc1) , ΨV (νc1)ΨT = δ2
v

I3m−l + F (νc1)(F (νc1))T −1
ρ
F (νc1)

−1
ρ
(F (νc1))T 1

ρ2 Iτ

 , (3.27)

where Ψ =

I3m−l −ρF (νc1)

0 Iτ

. Since there are at most τ nonzero elements (which

are all 1’s) in the first row of F (νc1), it follows that (F (νc1)(F (νc1))T )11 (i.e., the element

in the first row and first column of the matrix F (νc1)(F (νc1))T ) is at most τ . We then

see from Eq. (3.27) that (Ṽ (νc1))11, denoted as δ̃2
v(ν

c
1), satisfies

δ̃2
v(ν

c
1) ≤ (τ + 1)δ2

v . (3.28)

Second, consider any sensor attack ν2 that targets l sensors merely from C3m+1 to

C3m+τ in Eq. (3.21), i.e., |supp(ν2)| = l and supp(ν2) ⊆ {3m+ 1, . . . , 3m+ τ}, where
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l ≤ m. Via similar arguments to those for obtaining Eqs. (3.22), (3.26) and (3.27),

we can perform elementary row operations to transform

C(νc2) =

13m ρF ′1 ρF ′2

0 0 Iτ−l


into

C̃(νc2) =

13m ρF ′1 0

0 0 Iτ−l


with the corresponding measurement noise covariance Ṽ (νc2) =

δ̃2
v(ν

c
2) ∗

∗ ∗

, where

δ̃2
v(ν

c
2) ≤ (τ − l + 1)δ2

v . (3.29)

Note that F ′1 ∈ R3m×l and F ′2 ∈ R3m×(τ−l) satisfy F =
[
F ′1 F ′2

]
. Recall that for any

union of l ≤ m subsets in C, denoted as Cl, there exists at least one element in D that

is not covered by Cl. We can then assume without loss of generality that one such

element is d1, which implies that the first row of F ′1 is zero.

Third, consider any sensor attack ν3 that targets sensors from both C1 to C3m and

C3m+1 to C3m+τ in Eq. (3.21). Suppose the attack ν3 attacks l1 sensors from C1 to C3m

and l2 sensors from C3m+1 to C3m+τ , i.e., supp(ν3) = {j′1, . . . , j′l1 , 3m + j′′1 , . . . , 3m +

j′′l2} ⊆ {1, 2, . . . , 3m + τ}, where l1, l2 ∈ Z≥1, l1 + l2 = l ≤ m, {j′1, . . . , j′l1} ⊆

{1, . . . , 3m} and {j′′1 , . . . , j′′l2} ⊆ {1, . . . , τ}. By similar arguments to those above,

we can perform elementary row operations to transform

C(νc3) =

13m−l1 ρF1(νc3) ρF2(νc3)

0 0 Iτ−l2


into

C̃(νc3) =

13m−l1 ρF1(νc3) 0

0 0 Iτ−l2

 ,
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where F1(νc3) ∈ R(3m−l1)×l2 , F2(νc3) ∈ R(3m−l1)×(τ−l2) satisfy F (νc3) =
[
F1(νc3) F2(νc3)

]
with F (νc3) defined in the same way as F (νc1). Moreover, the measurement noise

covariance corresponding to C̃(νc3) is given by Ṽ (νc3) =

δ̃2
v(ν

c
3) ∗

∗ ∗

, where

δ̃2
v(ν

c
3) ≤ (τ − l2 + 1)δ2

v . (3.30)

Since any l2 subsets in C can cover at most 3l2 elements in D, there are at least

3m− 3l2 elements in D that are not covered by the l2 subsets in C. Also note that

3m− 3l2 − l1 = 3m− 2l2 − l = 2(m− l2) +m− l > 0,

where the last inequality follows from the facts that l1 + l2 = l ≤ m and l1, l2 ∈ Z≥1.

Hence, by attacking l1 sensors from C1 to C3m and l2 sensors from C3m+1 to C3m+τ ,

we have at least 3m − 3l2 − l1 > 0 row(s) of F1(νc3) that are zero. Again, we can

assume without loss of generality that the first row of F1(νc3) is zero.

In summary, for any sensor attack ν, we let Σ̂(νci ) denote the steady-state a priori

error covariance obtained from measurement matrix (C̃(νci ))1 = e1 with measurement

noise variance δ̃2
v(ν

c
i ) (which corresponds to the first sensor in C̃(νci )), ∀i ∈ {1, 2, 3},

where ν1, ν2 and ν3 are given as above. Following similar arguments to those for (3.14),

we have (Σ̂(νci ))11 ≤ δ̃2
v(ν

c
i ) + 2, ∀i ∈ {1, 2, 3}. Since

∑τ+1
i=2 (Σ̂(νci ))ii =

∑τ+1
i=2 Wii = τ

holds for all i ∈ {1, 2, 3} via similar arguments to those above, we obtain that

trace(Σ̂(νci )) ≤ δ̃2
v(ν

c
i ) + 2 + τ, ∀i ∈ {1, 2, 3}. (3.31)

Again note that adding more sensors does not increase the MSEE of the corresponding

Kalman filter, and the above operations performed on the sensing matrix C do not

change the trace of the steady-state a priori error covariance of the corresponding

Kalman filter as well. We then see from Eqs. (3.28)-(3.31) that trace(Σ(νc)) ≤ (τ +

1)δ2
v + 2 + τ ≤ (τ + 2)(δ2

v + 1) for all ν. It follows that algorithm A would also return

a sensor attack ν such that trace(Σ(νc)) ≤ (τ + 2)(δ2
v + 1). This proves the converse

direction of the claim above.
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Therefore, we know that A can be used to solve the X3C problem by applying

it to the above instance of the priori KFSA problem. Since X3C is NP-complete,

there is no polynomial-time algorithm for it if P 6= NP, yielding a contradiction. This

completes the proof of the theorem.

The arguments above also imply the following result whose proof is included in

Section 3.6.5.

Corollary 3.3.10 If P 6= NP, then there is no polynomial-time constant-factor ap-

proximation algorithm for the posteriori KFSA problem.

Remark 3.3.11 The NP-hardness of Problem 3.2.3 follows from taking the (constant

factor) K = 1 in the arguments above.

3.4 Failure of Greedy Algorithms

Our results in Theorem 3.3.6 and Theorem 3.3.9 indicate that no polynomial-time

algorithm can be guaranteed to yield a solution that is within any constant factor

of the optimal solution to the priori (resp., posteriori) KFSS and KFSA problems.

In particular, these results apply to the greedy algorithms that are often studied for

sensor selection in the literature [2, 8], where sensors are iteratively selected (resp.,

attacked) in order to produce the greatest decrease (resp., increase) in the error

covariance at each iteration. In this section we will focus on such greedy algorithms

for the priori (resp., posteriori) KFSS problem and the priori (resp., posteriori) KFSA

problem, and show explicitly how these greedy algorithms can fail to provide good

solutions; this provides additional insight into the factors that cause the KFSS and

KFSA problems to be challenging.
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3.4.1 Failure of Greedy Algorithms for the Priori and Posteriori KFSS

Problems

It was shown via simulations in [2] that greedy algorithms for KFSS work well in

practice (e.g., for randomly generated systems). In this section, we provide an explicit

example showing that greedy algorithms for the priori and posteriori KFSS problems

can perform arbitrarily poorly, even for small systems (containing only three states).

We consider the greedy algorithm for the priori (resp., posteriori) KFSS problem

given in Algorithm 3.4.1, for instances where all sensors have selection costs equal

to 1, and the sensor selection budget H ∈ {1, . . . , q} (i.e., up to H sensors can

be selected). For any such instance of the priori (resp., posteriori) KFSS problem,

define rgre(Σ) = trace(Σgre)

trace(Σopt)
(resp., rgre(Σ

∗) =
trace(Σ∗gre)

trace(Σ∗opt)
), where Σgre (resp., Σ∗gre) is

the solution of Eq. (3.4) (resp., Eq. (3.6)) corresponding to the sensors returned by

Algorithm 3.4.1.

Algorithm 3.4.1 Greedy Algorithm for Problem 3.2.2

Input: An instance of priori (resp., posteriori) KFSS

Output: A set S of selected sensors

1: k ← 1, S ← ∅

2: for k ≤ H do

3: j ∈ arg mini/∈S trace(Σ(S ∪ {i})) (resp., j ∈ arg mini/∈S trace(Σ∗(S ∪ {i})))

4: S ← S ∪ {j}, k ← k + 1

Example 3.4.1 Consider an instance of the priori (resp., posteriori) KFSS problem

with matrices W = I3 and V = 03×3, and A, C defined as

A =


λ1 0 0

0 0 0

0 0 0

 , C =


1 ε ε

1 0 ε

0 1 1

 ,
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where 0 < |λ1| < 1, λ1 ∈ R, and ε ∈ R>0. In addition, we have the selection budget

H = 2, the cost vector h = [1 1 1]T and the set of candidate sensors Q = {1, 2, 3},

where sensor i corresponds to the ith row of matrix C, for i ∈ {1, 2, 3}.

We then have the following result whose proof is provided in Section 3.6.6.

Theorem 3.4.2 For the instance of the priori (resp., posteriori) KFSS problem de-

fined in Example 3.4.1, the ratios rgre(Σ) = trace(Σgre)

trace(Σopt)
and rgre(Σ

∗) =
trace(Σ∗gre)

trace(Σ∗opt)
satisfy

lim
ε→∞

rgre(Σ) =
2

3
+

1

3(1− λ2
1)
, (3.32)

and

lim
ε→∞

rgre(Σ
∗) =

1

1− λ2
1

+ 1, (3.33)

respectively.

Examining Eq. (3.32) (resp., Eq. (3.33)), we see that for the given instance of the

priori (resp., posteriori) KFSS problem, we have rgre(Σ)→∞ (resp., rgre(Σ
∗)→∞)

as ε → ∞ and λ1 → 1. Thus, rgre(Σ) (resp., rgre(Σ
∗)) can be made arbitrarily large

by choosing the parameters in the instance appropriately.

To explain the result in Theorem 3.4.2, we first note that the only nonzero eigen-

value of the diagonal A defined in Example 3.4.1 is λ1, and so we know from Lemma

3.3.1(a) that state 2 and state 3 of the system as defined in Example 3.4.1 each con-

tribute at most 1 to trace(Σ(µ)) (resp., trace(Σ∗(µ))) for all µ. Hence, in order to

minimize trace(Σ(µ)) (resp., trace(Σ∗(µ))), we need to minimize the MSEE of state

1. Moreover, the measurements of state 2 and state 3 can be viewed as measurement

noise that corrupts the measurements of state 1. It is then easy to observe from

the form of matrix C defined in Example 3.4.1 that sensor 2 is the single best sensor

among the three sensors since it provides measurements of state 1 with less noise than

sensor 1 (and sensor 3 does not measure state 1 at all). Thus, the greedy algorithm for

the priori (resp., posteriori) KFSS problem defined as Algorithm 3.4.1 selects sensor 2

in its first iteration. Nonetheless, we notice from C defined in Example 3.4.1 that the

optimal set of two sensors that minimizes trace(Σ(µ)) (resp., trace(Σ∗(µ))) contains
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sensor 1 and sensor 3, which together give us exact measurements (without measure-

ment noise) on state 1 (after some elementary row operations). Since the greedy

algorithm selects sensor 2 in its first iteration, no matter which sensor it selects in its

second iteration, the two chosen sensors can only give a noisy measurement of state 1

(if we view the measurements of state 2 and state 3 as measurement noise), and the

variance of the measurement noise can be made arbitrary large if we take ε → ∞ in

C defined in Example 3.4.1. Hence, the greedy algorithm fails to perform well due to

its myopic choice in the first iteration.

It is also useful to note that the above behavior holds for any algorithm that

outputs a sensor selection that contains sensor 2 for the above example.

3.4.2 Failure of Greedy Algorithms for the Priori and Posteriori KFSA

Problems

Algorithm 3.4.2 Greedy Algorithm for Problem 3.2.3

Input: An instance of priori (resp., posteriori) KFSA

Output: A set S of targeted sensors

1: k ← 1, S ← ∅

2: for k ≤ Ω do

3: j ∈ arg maxi/∈S trace(Σ(Q\(S∪{i}))) (resp., j ∈ arg maxi/∈S trace(Σ∗(Q\(S∪

{i}))))

4: S ← S ∪ {j}, k ← k + 1

In [8], the authors showed that a simple greedy algorithm can perform arbitrarily

poorly for an instance of the observation attack problem in Gaussian process regres-

sion. Here, we consider a simple greedy algorithm for the priori (resp., posteriori)

KFSA problem given in Algorithm 3.4.2, for instances where all sensors have an at-

tack cost of 1, and the sensor attack budget Ω ∈ {1, . . . , q} (i.e., up to Ω sensors can

be attacked). For any such instance of the priori (resp., posteriori) KFSA problem,
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define rgre(Σ̃) = trace(Σ̃opt)

trace(Σ̃gre)
(resp., rgre(Σ̃

∗) =
trace(Σ̃∗opt)

trace(Σ̃∗gre)
), where Σ̃gre (resp., Σ̃∗gre) is the

solution to the priori (resp., posteriori) KFSA problem given by Algorithm 3.4.2. We

then show that Algorithm 3.4.2 can perform arbitrarily poorly for a simple instance

of the priori (resp., posteriori) KFSA problem as described below.

Example 3.4.3 Consider an instance of the priori (resp., posteriori) KFSA problem

with matrices W = I3, V = 04×4, and A, C defined as

A =


λ1 0 0

0 0 0

0 0 0

 , C =


1 ε ε

1 0 ε

0 1 0

0 0 1

 ,

where 0 < |λ1| < 1, λ1 ∈ R and h ∈ R>0. In addition, the attack budget Ω = 2, the

cost vector $ = [1 1 1 1]T , and the set of sensors Q = {1, 2, 3, 4} has already been

installed on the system, where sensor i corresponds to the ith row of matrix C, for

i ∈ {1, 2, 3, 4}.

We then have the following result; the proof is provided in Section 3.6.7.

Theorem 3.4.4 For the instance of the priori (resp., posteriori) KFSA problem de-

fined in Example 3.4.3, the ratios rgre(Σ̃) = trace(Σ̃opt)

trace(Σ̃gre)
and rgre(Σ̃

∗) =
trace(Σ̃∗opt)

trace(Σ̃∗gre)
satisfy

lim
ε→0

rgre(Σ̃) =
2

3
+

1

3(1− λ2
1)
, (3.34)

and

lim
ε→0

rgre(Σ̃
∗) =

1

1− λ2
1

, (3.35)

respectively.

Inspecting Eq. (3.34) (resp., Eq. (3.35)), we observe that for the given instance of

the priori (resp., posteriori) KFSA problem, we have rgre(Σ̃)→∞ (resp., rgre(Σ̃
∗)→

∞) as ε → 0 and λ1 → 1. Thus, rgre(Σ̃) (resp., rgre(Σ̃
∗)) can be made arbitrarily

large by choosing the parameters in the instance appropriately.
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Here, we explain the results in Theorem 3.4.4 as follows. Using similar arguments

as before, we know from the structure of matrix A defined in Example 3.4.3 that in

order to maximize trace(Σ(νc)) (resp., trace(Σ∗(νc))), we need to maximize the MSEE

of state 1, i.e., make the measurements of state 1 “worse”. Again, the measurements

of state 2 and state 3 can be viewed as measurement noise that corrupts the mea-

surements of state 1. No matter which of sensor 1, sensor 2, or sensor 3 is attacked,

the resulting measurement matrix C(νc) is full column rank, which yields an exact

measurement of state 1. We also observe that if sensor 4 is targeted, the surviving

sensors can only provide measurements of state 1 that are corrupted by measurements

of states 2 and state 3. Hence, the greedy algorithm for the priori (resp., posteriori)

KFSA problem defined as Algorithm 3.4.2 targets sensor 4 in its first iteration, since

it is the single best sensor to attack from the four sensors. Nevertheless, sensor 1

and sensor 2 form the optimal set of sensors to be attacked to maximize trace(Σ(νc))

(resp., trace(Σ∗(νc))), since the surviving sensors provide no measurement of state

1. Since the greedy algorithm targets sensor 4 in its first iteration, no matter which

sensor it targets in the second step, the surviving sensors can always provide some

measurements of state 1 with noise (if we view the measurements of state 2 and state

3 as measurement noise), and the variance of the noise will vanish if we take ε → 0

in matrix C defined in Example 3.4.3. Hence, the myopic behavior of the greedy

algorithm makes it perform poorly.

Furthermore, it is useful to note that the above result holds for any algorithm

that outputs a sensor attack that does not contain sensor 1 or sensor 2 for the above

example.

Remark 3.4.5 Note that in Example 3.4.1 (resp., Example 3.4.3), we set V = 03×3

(resp., V = 04×4). It is straightforward to show, using similar arguments to those in

the proof of Theorem 3.4.2 (resp., Theorem 3.4.4), that when we instead set V = δI3

(resp., V = δI4), where δ ∈ R>0, the results in Eq. (3.32)-(3.33) (resp., Eq. (3.34)-

(3.35)) hold if we let δ → 0.



43

3.5 Chapter Summary

In this chapter, we studied sensor selection and attack problems for (steady-state)

Kalman filtering of linear dynamical systems. We showed that these problems are NP-

hard and have no polynomial-time constant-factor approximation algorithms, even

under the assumption that the system is stable and each sensor has identical selec-

tion cost. To illustrate this point, we provided explicit examples showing how greedy

algorithms can perform arbitrarily poorly on these problems, even when the system

only has three states. Our results shed new insights into the problem of sensor selec-

tion and attack for Kalman filtering and show, in particular, that this problem is more

difficult than other variants of the sensor selection problem that have submodular (or

supermodular) cost functions.

3.6 Proofs of Key Results

3.6.1 Proof of Lemma 3.3.1

Since A and W are diagonal, the system represents a set of n scalar subsystems

of the form

xi[k + 1] = λixi[k] + wi[k],∀i ∈ {1, . . . , n},

where xi[k] is the ith state of x[k] and wi[k] is a zero-mean white noise process with

variance σ2
wi

= Wii. As A is stable, the pair (A,C(µ)) is detectable and the pair

(A,W
1
2 ) is stabilizable for all sensor selections µ. Thus, the limits lim

k→∞
(Σk/k−1(µ))ii

and lim
k→∞

(Σk/k(µ))ii exist for all i and µ (based on Lemma 3.2.1), and are denoted as

(Σ(µ))ii and (Σ∗(µ))ii, respectively.

Proof of (a). Since A and W are diagonal, we know from Eq. (3.5) that

(Σ(µ))ii = λ2
i (Σ

∗(µ))ii +Wii,
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which implies (Σ(µ))ii ≥ Wii, ∀i ∈ {1, . . . , n}. Moreover, it is easy to see that

(Σ(µ))ii ≤ (Σ(0))ii, ∀i ∈ {1, . . . , n}. Since C(0) = 0, we obtain from Eq. (3.4)

Σ(0) = AΣ(0)AT +W.

which implies that (Σ(0))ii = Wii

1−λ2
i

since A is diagonal. Hence, (Σ(µ))ii ≤ Wii

1−λ2
i
,

∀i ∈ {1, . . . , n}. Similarly, since we also have (Σ∗(µ))ii ≤ (Σ∗(0))ii, we obtain from

Eq. (3.6)

Σ∗(0) = AΣ∗(0)AT +W.

Hence, 0 ≤ (Σ∗(µ))ii ≤ Wii

1−λ2
i
, ∀i ∈ {1, . . . , n}.

Proof of (b). Assume without loss of generality that the first column of C(µ) is

zero, since we can simply renumber the states to make this the case without affecting

the trace of the error covariance matrix. Hence, we have C(µ) of the form

C(µ) =
[
0 C1(µ)

]
.

Moreover, since A and W are diagonal, it follows from Eq. (3.4) that Σ(µ) is of the

form

Σ(µ) =

Σ1(µ) 0

0 Σ2(µ)

 ,
where Σ1(µ) = (Σ(µ))11 and satisfies

(Σ(µ))11 = λ2
i (Σ(µ))11 +W11,

which implies (Σ(µ))11 = W11

1−λ2
1
. Furthermore, it follows from Eq. (3.6) that Σ∗(µ) is

of the form

Σ∗(µ) =

Σ∗1(µ) 0

0 Σ∗2(µ)

 ,
where Σ∗1(µ) = (Σ∗(µ))11 and satisfies

(Σ∗(µ))11 = λ2
1(Σ∗(µ))11 +W11,

which implies (Σ∗(µ))11 = W11

1−λ2
1
.
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Proof of (c). We assume without loss of generality that e1 ∈ rowspace(C(µ)). If

we further perform elementary row operations on C(µ), which does not change the

solution to Eq. (3.4) (resp., Eq. (3.6)), we obtain a matrix C̃(µ) of the form

C̃(µ) =

1 0

0 C̃1(µ)

 ,
and Ṽ (µ) = 0. Moreover, since A and W are diagonal, we see from Eq. (3.4) that

Σ(µ) is of the form

Σ(µ) =

Σ1(µ) 0

0 Σ2(µ)

 ,
where Σ1(µ) = (Σ(µ))11 and satisfies

(Σ(µ))11 = λ2
1(Σ(µ))11 +W11 − λ2

1(Σ(µ))11,

which implies (Σ(µ))11 = W11. Furthermore, it follows from Eq. (3.6) that Σ∗(µ) is

of the form

Σ∗(µ) =

Σ∗1(µ) 0

0 Σ∗2(µ)

 ,
where Σ∗1(µ) = (Σ∗(µ))11 and satisfies (Σ∗(µ))11 = (Σ(µ))11 − (Σ(µ))11 = 0. �

3.6.2 Proof of Lemma 3.3.2

Proof of (a): We first note from Lemma 3.2.1 that the limit Σ(µ) exists for all

µ (since A is stable). Since A = diag(λ1, 0, . . . , 0), we have xi[k + 1] = wi[k], ∀i ∈

{2, . . . , n} and ∀k ∈ Z≥0. Moreover, we have from Eq. (3.3) that

y[k] = [1 01×(n−1)]x[k] + v[k] + v′[k] = x1[k] + v̂[k], ∀k ∈ Z≥0,

where v′[k] =
n−1∑
i=1

γixi+1[k] and v̂[k] , v[k] + v′[k]. Recall that we have assumed with

out loss of generality that x̄0 = 0 and Π0 = In. Moreover, noting that W = In and

that x[0] is independent of w[k] and v[k] for all k ∈ Z≥0, where w[k] and v[k] are

uncorrelated zero-mean white noise processes (as assumed), we have that v̂[k] is a
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zero-mean white noise process with E[(v̂[k])2] = ‖γ‖2
2 + σ2

v . Thus, to compute the

MSEE of state 1 of the Kalman filter, i.e., Σ11, we can consider a scalar discrete-time

linear system with A = λ1, C = 1, W = 1 and V = α2, and obtain from Eq. (3.4) the

scalar DARE

Σ11 = λ2
1(1− Σ11

α2 + Σ11

)Σ11 + 1, (3.36)

where α2 = ‖γ‖2
2+σ2

v . Solving for Σ11 in Eq. (3.36) and omitting the negative solution

lead to Eq. (3.9).

To show that Σ11 is strictly increasing in α2 ∈ R≥0, we can use the result of Lemma

6 in [2]. For a discrete-time linear system as defined in Eq. (3.1) and Eq. (3.3), given

A = λ1 and W = 1, suppose we have two sensors with the measurement matrices as

C1 = C2 = 1 and the variances of the measurement noise as V1 = α2
1 and V2 = α2

2.

Define R , CTV −1C to be the sensor information matrix corresponding to a sensor

with measurement matrix C and measurement noise covariance matrix V . Denote the

sensor information matrix of these two sensors as R1 and R2. We then have R1 = 1
α2

1

and R2 = 1
α2

2
. If α2

1 > α2
2, we know from Lemma 6 in [2] that Σ11(α2

1) < Σ11(α2
2).

Hence, Σ11(α2) is a strictly increasing function of α2 ∈ R≥0. For α > 0, we can

rewrite Eq. (3.9) as

Σ11(α2) =
2√

(1− λ2
1 − 1

α2 )2 + 4
α2 + 1− λ2

1 − 1
α2

. (3.37)

By letting α→∞ in Eq. (3.37), we obtain lim
α→∞

Σ11(α2) =
1

1− λ2
1

.

Proof of (b). Using similar arguments as above, we obtain from Eq. (3.3)

y[k] = 1n−1x1[k] + v′[k],

where v′[k] = ρ
[
x2[k] · · ·xn[k]

]T
, which is a zero-mean white noise process with

E[v′[k](v′[k])T ] = ρ2In−1. Hence, to compute the MSEE of state 1 of the Kalman

filter, i.e., Σ′11, we can consider a system with A = λ1, C = 1n−1, W = 1 and

V = ρ2In−1. Solving Eq. (3.4) (using the matrix inverse lemma [65]) gives us the result

in Eq. (3.10). Using similar arguments as above, we obtain lim
ρ→∞

Σ′11(ρ2) =
1

1− λ2
1

.�
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3.6.3 A Lemma for X3C

Lemma 3.6.1 Consider an instance of X3C: a finite set D with |D| = 3m, and a

collection C = {c1, . . . , cτ} of τ 3-element subsets of D, where τ ≥ m. For each

element ci ∈ C, define a column vector gi ∈ R3m to encode which elements of D are

contained in ci, i.e., for i ∈ {1, 2, . . . , τ} and j ∈ {1, 2, . . . , 3m}, (gi)j = 1 if element

j of set D is in ci, and (gi)j = 0 otherwise. Denote G ,
[
g1 · · · gτ

]T
. For any

l ≤ m (l ∈ Z) and L , {i1, . . . , il} ⊆ {1, . . . , τ}, define GL ,
[
gi1 · · · gil

]T
and

denote rank(GL) = rL.3. If the answer to the X3C problem is “no”, then for all L

with |L| ≤ m, there exists an orthogonal matrix N ∈ R3m×3m such that1T3m

GL

N =

γ β

0 G̃L

 , (3.38)

where G̃L ∈ Rl×r is of full column rank, γ ∈ R1×(3m−r) and at least κ ≥ 1 (κ ∈ Z)

elements of γ are 1’s , and β ∈ R1×r. Further elementary row operations on
[
γ β

0 G̃L

]
transform it into the form

[
γ 0

0 G̃L

]
.

Proof Assume without loss of generality that there are no identical subsets in C.

Since rank(GL) = r, the dimension of the nullspace of GL is 3m − r. We choose an

orthonormal basis of the nullspace of GL and let it form the first 3m − r columns

of N , denoted as N1. Then, we choose an orthonormal basis of the columnspace

of GT
L and let it form the rest of the r columns of N , denoted as N2. Clearly,

N =
[
N1 N2

]
∈ R3m×3m is an orthogonal matrix. Furthermore, since the answer

to the X3C problem is “no”, for any union of l ≤ m (l ∈ Z) subsets in C, denoted

as Cl, there exist κ ≥ 1 (κ ∈ Z) elements in D that are not covered by Cl, i.e.,

GL has κ zero columns. Let these be the j1th, . . . , jκth columns of GL, where

{j1, . . . , jκ} ⊆ {1, . . . , 3m}. Hence, we can always choose ej1 , . . . , ejκ to be in the

orthonormal basis of the nullspace of GL, i.e., as columns of N1. Constructing N in

this way, we have GLN1 = 0 and GLN2 = G̃L, where G̃L ∈ Rl×r is of full column

3We drop the subscript L on r for notational simplicity.
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rank since the columns of N2 form an orthonormal basis of the columnspace of GT
L

and r ≤ l. Moreover, we have 1T3mN1 = γ and 1T3mN2 = β, where at least κ elements

of γ are 1’s (since 1T3meTjs = 1, ∀s ∈ {1, . . . , κ}). Combining these results, we obtain

Eq. (3.38). Since G̃L is of full column rank, we can perform elementary row operations

on
[
γ β

0 G̃L

]
and obtain

[
γ 0

0 G̃L

]
.

3.6.4 Proof of Corollary 3.3.7

We have shown in Theorem 3.3.6 that for any polynomial-time algorithm A for

the priori KFSS problem and any K ∈ R≥1, there exist instances of the priori KFSS

problem such that rA(Σ) > K (unless P=NP). Suppose that there exists a polynomial-

time constant-factor approximation algorithm A′ for the posteriori KFSS problem,

i.e., ∃K ′ ∈ R≥1 such that rA′(Σ
∗) ≤ K ′ for all instances of the posteriori KFSS

problem, where rA′(Σ
∗) is as defined in Eq. (3.12). We consider an instance of the

priori KFSS problem as constructed in the proof of Theorem 3.3.6. We then set the

instance of the posteriori KFSS problem to be the same as the constructed instance

of the priori KFSS problem. Since A = diag(λ1, 0, . . . , 0) ∈ R(3m+1)×(3m+1) and W =

I3m+1, where 0 < λ1 < 1, we have from Eq. (3.5)

(Σ(µ))11 = λ2
1(Σ∗(µ))11 + 1,∀µ. (3.39)

Since we know from Lemma 3.3.1(a) that (Σ(µ))ii = 1, ∀i ∈ {2, . . . , 3m+ 1} and ∀µ,

it then follows from Eq. (3.39) that

trace(Σ(µ)) = λ2
1(Σ∗(µ))11 + 3m+ 1, ∀µ. (3.40)

We also know from Lemma 3.3.1(a) that 0 ≤ (Σ∗(µ))ii ≤ 1, ∀i ∈ {2, . . . , 3m+ 1} and

∀µ, which implies that

trace(Σ∗(µ)) ≤ (Σ∗(µ))11 + 3m,∀µ. (3.41)

We then obtain from Eqs. (3.40)-(3.41) the following:

trace(Σ∗(µ)) ≤ 3mλ2
1 + trace(Σ(µ))− 3m− 1

λ2
1

≤ trace(Σ(µ))

λ2
1

,∀µ, (3.42)
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where the second inequality follows from the fact that 0 < λ1 < 1. Denote optimal

sensor selections of the priori and the posteriori KFSS problems as µ∗1 and µ∗2, re-

spectively. Denote the sensor selection returned by algorithm A′ as µ′. Note that

Σopt = Σ(µ∗1) and Σ∗opt = Σ∗(µ∗2) and Σ∗A′ = Σ∗(µ′). We then have the following:

trace(Σ∗A′) ≤ K ′trace(Σ∗opt)

⇒ (Σ∗(µ′))11 +
3m+1∑
i=2

(Σ∗(µ′))ii ≤ K ′trace(Σ∗(µ∗2))

⇒ (Σ(µ′))11 − 1

λ2
1

≤ K ′trace(Σ∗(µ∗2)) ≤ K ′trace(Σ∗(µ∗1)) (3.43)

⇒ (Σ(µ′))11 − 1 ≤ K ′trace(Σ(µ∗1)) (3.44)

⇒ trace(Σ(µ′)) ≤ K ′trace(Σ(µ∗1)) + 3m+ 1 (3.45)

⇒ trace(Σ(µ′))

trace(Σ(µ∗1))
≤ K ′ +

3m+ 1

trace(Σ(µ∗1))
≤ K ′ + 1, (3.46)

where the first inequality in (3.43) follows from Eq. (3.39) and (Σ∗(µ′))ii ≥ 0,∀i

(from Lemma 3.3.1(a)), the second inequality in (3.43) follows from the fact that µ∗2

is an optimal sensor selection for the posteriori KFSS problem, (3.44) follows from

(3.42), (3.45) follows from the fact that
∑3m+1

i=2 (Σ(µ′))ii = 3m (from Lemma 3.3.1(a)),

and the second inequality in (3.46) uses the fact that trace(Σ(µ∗1)) ≥ 3m + 1 (from

Lemma 3.3.1(a)). Thus, we see from (3.46) that rA′(Σ) ≤ K ′ + 1, which contradicts

the fact that the priori KFSS problem cannot have a polynomial-time constant-factor

approximation algorithm for instances of the given form, and completes the proof of

the corollary. �

3.6.5 Proof of Corollary 3.3.10

Note that the A and W matrices for the instance of KFSA that we constructed

in the proof of Theorem 3.3.9 are the same as those for the instance of KFSS that

we constructed in the proof of Theorem 3.3.6. We then follow the same arguments

as those in the proof of Corollary 3.3.7. Suppose that there exists a polynomial-time

constant-factor approximation algorithm A′ for the posteriori KFSA problem, i.e.,
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∃K ′ ∈ R≥1 such that rA′(Σ̃
∗) ≤ K ′ for all instances of the posteriori KFSA problem,

where rA′(Σ̃
∗) is as defined in Eq. (3.20). We consider an instance of the priori KFSA

problem as constructed in the proof of Theorem 3.3.9. We then set the instance of

the posteriori KFSA problem to be the same as the constructed instance of the priori

KFSA problem. Denote an optimal sensor attacks of the priori and the posteriori

KFSA problems as ν∗1 and ν∗2 , respectively. Denote the sensor attack returned by

algorithm A′ as ν ′. Note that Σ̃opt = Σ(ν∗c1 ), Σ̃∗opt = Σ∗(ν∗c2 ) and Σ̃∗A′ = Σ∗(ν ′c). Also

note that trace(Σ∗(ν∗c1 )) ≤ trace(Σ∗(ν∗c2 )), since ν∗2 is an optimal sensor attack for the

posteriori KFSA problem. We then have the following:

trace(Σ∗(ν∗c1 )) ≤ trace(Σ∗(ν∗c2 )) ≤ K ′trace(Σ̃∗A′)

⇒ (Σ∗(ν∗c1 ))11 +
3m+1∑
i=2

(Σ∗(ν∗c1 ))ii ≤ K ′trace(Σ∗(ν ′c))

⇒ (Σ(ν∗c1 ))11 − 1

λ2
1

≤ K ′trace(Σ∗(ν ′c))

⇒ (Σ(ν∗c1 ))11 − 1 ≤ K ′trace(Σ(ν ′c))

⇒ trace(Σ(ν∗c1 )) ≤ K ′trace(Σ(ν ′c)) + 3m+ 1

⇒ trace(Σ(ν∗c1 ))

trace(Σ(ν ′c))
≤ K ′ +

3m+ 1

trace(Σ(ν ′c))
≤ K ′ + 1,

which implies that rA′(Σ̃) ≤ K ′+ 1, and yields a contradiction with the fact that the

priori KFSA problem cannot have a polynomial-time constant-factor approximation

algorithm for the instances of the form given as above. This completes the proof of

the corollary. �

3.6.6 Proof of Theorem 3.4.2

We first prove that Algorithm 3.4.1 for the priori KFSS problem selects sen-

sor 2 and sensor 3 in its first and second iterations, respectively. Since the only

nonzero eigenvalue of A is λ1, we know from Lemma 3.3.1(a) that (Σ(µ))22 = 1 and

(Σ(µ))33 = 1, ∀µ, which implies that (Σgre)22 = 1 and (Σgre)33 = 1. Hence, we focus

on determining (Σgre)11.
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Denoting µ1 = [1 0 0]T and µ2 = [0 1 0]T , we have C(µ1) = [1 h h] and C(µ2) =

[1 0 h]. Using the result in Lemma 3.3.2(a), we see that σ1 , (Σ(µ1))11 and σ2 ,

(Σ(µ2))11 satisfy

σ1 =
2√

(1− λ2
1 − 1

2h2 )2 + 2
h2 + 1− λ2

1 − 1
2h2

,

and

σ2 =
2√

(1− λ2
1 − 1

h2 )2 + 4
h2 + 1− λ2

1 − 1
h2

,

respectively. Similarly, denoting µ3 = [0 0 1]T , we obtain C(µ3) = [0 1 1]. Since the

first column of C(µ3) is zero, we know from Lemma 3.3.1(b) that σ3 , (Σ(µ3))11 =

1
1−λ2

1
. If we view σ2 as a function of h2, denoted as σ(h2), we have σ1 = σ(2h2). Since

we know from Lemma 3.3.2(a) that σ(h2) is a strictly increasing function of h2 ∈ R>0

and upper bounded by 1
1−λ2

1
, we obtain σ2 < σ1 < σ3, which implies that the greedy

algorithm selects sensor 2 in its first iteration.

Denote µ12 = [1 1 0]T . We have C(µ12) = [ 1 h h
1 0 h ], on which we perform elementary

row operations and obtain C̃(µ12) = [ 0 h 0
1 0 h ]. By direct computation from Eq. (3.4),

we obtain (Σ(µ12))11 = σ2. Moreover, we denote µ23 = [0 1 1]T and obtain C(µ23) =

[ 1 0 h
0 1 1 ]. By direct computation from Eq. (3.4), we have (Σ(µ23))11, denoted as σ23, to

be

σ23 =
2√

(1− λ2
1 − 2

h2 )2 + 8
h2 + 1− λ2

1 − 2
h2

.

Similarly to the argument above, we have σ12 = σ(h2) and σ23 = σ(h
2

2
), where

σ(h
2

2
) < σ(h2), which implies that the greedy algorithm selects sensor 3 in its second

iteration. Hence, we have trace(Σgre) = σ23 + 2.

Furthermore, it is easy to see that the optimal sensor selection (for the priori KFSS

instance) is µ = [1 0 1]T , denoted as µ13. Since if µ = µ13, then e1 ∈ rowspace(C(µ))

and thus we know from Lemma 3.3.1(a) and (c) that trace(Σ(µ)) = 3 = trace(W ),

which is also the minimum value of trace(Σ(µ)) among all possible sensor selections

µ. Combining the results above and taking the limit as h→∞ lead to Eq. (3.32).
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We next prove that the greedy algorithm defined in Algorithm 3.4.1 for the pos-

teriori KFSS problem selects sensor 2 and sensor 3 in its first and second iterations,

respectively. Note that it is easy to see from Eq. (3.5) that Σ(µ) is of the form

Σ(µ) = diag((Σ(µ))11, 1, 1), ∀µ. Hence, we see from Eq. (3.6) that trace(Σ∗(µ1)) =

2+ h2

σ1
2

+h2 (σ1−1), trace(Σ∗(µ2)) = 2+ h2

σ2+h2 (σ2−1) and trace(Σ∗(µ3)) = 2+ 1
1−λ2

1
−1,

where σ1 = σ(2h2) and σ2 = σ(h2) are defined above. Since σ(h2) is a strictly in-

creasing function of h2 ∈ R>0 with σ(h2) ≥ 1 and upper bounded by 1
1−λ2

1
, and it is

easy to obtain σ1

2
< σ2, it then follows that Algorithm 3.4.1 for the posteriori KFSS

problem selects sensor 2 in its first iteration.

Similarly, Eq. (3.6) implies trace(Σ∗(µ12)) = 1 + h2

σ2+h2 (σ2 − 1), trace(Σ∗(µ23)) =

1 + h2

2σ23+h2 (σ23 − 1) and trace(Σ∗(µ13)) = 1, where σ23 = σ(h
2

2
) is defined above.

Since σ(h2) is strictly increasing in h2 ∈ R>0 with σ(h2) ≥ 1 and upper bounded

by 1
1−λ2

1
, and it is easy to check that σ2 < 2σ23, it follows that the greedy algorithm

selects sensor 3 in its second iteration, and µ = µ13 is the optimal sensor selection

(for the posteriori KFSS instance). Combining the results above and letting h→∞,

we obtain Eq. (3.33). �

3.6.7 Proof of Theorem 3.4.4

We first analyze Algorithm 3.4.2 for the priori KFSA problem. Since the only

nonzero eigenvalue of A is λ1, we know from Lemma 3.3.1(a) that (Σ(νc))22 = 1 and

(Σ(νc))33 = 1, ∀ν, which implies that (Σ̃gre)22 = 1 and (Σ̃gre)33 = 1. Hence, we only

need to determine (Σ̃gre)11.

First, denote ν1 = [1 0 0 0]T , ν2 = [0 1 0 0]T and ν3 = [0 0 1 0]T . Then, it is

easy to see that C(νc) is of full column rank for all ν ∈ {ν1, ν2, ν3}. This implies that

e1 ∈ rowspace(C(νc)) for all ν ∈ {ν1, ν2, ν3}. Thus, we know from Lemma 3.3.1(c)

that (Σ(νc))11 = 1, ∀ν ∈ {ν1, ν2, ν3}. Moreover, denoting ν4 = [0 0 0 1]T , we have

C(νc4) (after some elementary row operations and merging identical rows) is of the
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form C(νc4) = [ 1 0 h
0 1 0 ]. Using the results from the proof of Theorem 3.4.2, we obtain

that σ′4 , (Σ(νc4))11 satisfies

σ′4 =
1 + h2λ2

1 − h2 +
√

(h2 − h2λ2
1 − 1)2 + 4h2

2
.

If we view σ′4 as a function of h2, denoted as σ′(h2), we know from Lemma 3.3.2(a)

that σ′(h2) is a strictly increasing function of h2 ∈ R≥0 with σ′(0) = 1, which implies

σ′4 > 1. Thus, Algorithm 3.4.2 for priori KFSA targets sensor 4 in its first iteration.

Second, denote ν14 = [1 0 0 1]T , ν24 = [0 1 0 1]T and ν34 = [0 0 1 1]T . We obtain

that C(νc) (after some elementary row operations) is of the form C(νc) = [ 1 0 h
0 1 0 ], for

all ν ∈ {ν14, ν24, ν34}. It follows that (Σ(νc))11 = σ′4 for all ν ∈ {ν14, ν24, ν34}, which

implies that trace(Σ̃gre) = σ′4 + 2.

Furthermore, the optimal sensor attack (for the priori KFSA instance) is ν = ν12,

where ν12 = [1 1 0 0]T , since in this case we know from Lemma 3.3.1(a) and (b) that

Σ(νc)11 = 1
1−λ2

1
, which is also the maximum value of Σ(νc)11 that it can achieve, i.e.,

Σ̃opt = 1
1−λ2

1
+ 2. Combining the results above and taking the limit as h → 0, we

obtain Eq. (3.34).

We next analyze Algorithm 3.4.2 for the posteriori KFSA problem. Since we know

from previous arguments that C(νc) is of full column rank for all ν ∈ {ν1, ν2, ν3}, it

follows from Lemma 3.3.1(c) that trace(Σ∗(νc1)) = trace(Σ∗(νc2)) = trace(Σ∗(νc3)) = 0.

Moreover, it is easy to obtain from Eq. (3.5) that Σ(νc) is of the form Σ(νc) =

diag((Σ(νc))11, 1, 1), ∀ν. We then see from Eq. (3.6) that trace(Σ∗(νc4)) = 1 +

h2

σ′4+h2 (σ′4 − 1), where σ′4 = σ′(h2) is defined above. Since σ′(h2) is strictly in-

creasing in h2 ∈ R≥0 with σ′(0) = 1, it implies that Algorithm 3.4.2 for posteri-

ori KFSA targets sensor 4 in its first iteration. Similarly, we have from Eq. (3.6)

trace(Σ∗(νc14)) = trace(Σ∗(νc24)) = trace(Σ∗(νc34)) = 1 + h2

σ′4+h2 (σ′4 − 1), which implies

trace(Σ̃∗gre) = 1 + h2

σ′4+h2 (σ′4 − 1).

Furthermore, denote ν23 = [0 1 1 0]T and ν13 = [1 0 1 0]T . It is easy to show,

via similar arguments to those above, that trace(Σ∗(νc)) = 1 + h2

σ′4+h2 (σ′4 − 1) for all

ν ∈ {ν34, ν24, ν23, ν14}, trace(Σ∗(νc13)) = 1, and trace(Σ∗(νc12)) = 1 + 1
1−λ2

1
− 1. Since
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σ′4 = σ′(h2) is strictly increasing in h2 ∈ R≥0 with σ′(0) = 1, and upper bounded

by 1
1−λ2

1
, it follows that the optimal sensor attack (for the posteriori KFSA instance)

is ν = ν12. Combining the results above and taking the limit as h → 0, we obtain

Eq. (3.35). �
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4. RESILIENT SENSOR SELECTION FOR KALMAN

FILTERING IN NETWORKED SYSTEMS

4.1 Introduction

In Chapter 3, the sensor selection problem for Kalman filtering was shown to

be NP-hard and inapproximable within any constant factor (if P 6= NP) in gen-

eral. Therefore, we consider special classes of this problem in this chapter and seek

polynomial-time algorithms for the optimal sensor selection problem. Specifically,

we consider a discrete-time linear dynamical system whose states represent nodes

in a directed network, and interact according to the topology of the network. The

nodes of the network are possibly affected by stochastic inputs. Such networked sys-

tems with stochastic inputs have received much attention from researchers recently

(e.g., [13–17]). In this chapter, we focus on the case when there is a single node of

the network that is affected by a stochastic input. This model encompasses mod-

els of diffusion networks that arise in many different areas, including, for instance,

information and influence diffusion over social networks [18], spreading of diseases

in populations [19] and diffusion of chemicals in certain environments [20]. In such

applications, estimating the states of the entire network is an important objective.

Moreover, we consider the scenario where a sensor located at a certain node can

give measurements of the state corresponding to the node. A system designer can

then select a subset of sensors (at design-time) that correspond to all the nodes over

the network, in order to minimize the trace of the steady-state error covariance of the

Kalman filter associated with to the selected sensors. In addition, we assume that

selecting the sensor of a certain node in the network incurs a selection cost for the

designer. The sensor selection costs of different nodes can potentially vary, since they
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may, for instance, be located in different environment conditions. We refer to this

problem as the Graph-based Kalman Filtering Sensor Selection (GKFSS) problem.

Additionally, as we argued in the previous chapter, the systems that we are in-

terested in monitoring may be targeted by adversaries. Here, we again consider

adversaries that perform DoS attacks on sensors by simply removing them (or equiv-

alently, dropping all the measurement data). The goal of the adversary is to remove a

subset of selected sensors under a budget constraint in order to maximize the trace of

the steady-state error covariance of the Kalman filter corresponding to the surviving

sensors. We assume that attacking the sensor of a certain node incurs an attack cost

(which could also vary across the nodes). In contrast with existing work in the liter-

ature, we analyze the problem using the graph structure of the systems. We refer to

this problem as the Graph-based Kalman Filtering Sensor Attack (GKFSA) problem.

Finally, combining the two problems that we considered above, we formulate and

study the resilient sensor selection problem for networked systems where there is a

single node in the network that has the stochastic input. In our formulation, we

assume that the system designer is aware of the potential attack from an adversary

who chooses to optimally attack the sensors (subject to attack budget constraints)

deployed by the system designer. The system designer’s goal then becomes to select

sensors (under selection budget constraints) of a subset of nodes in order to minimize

the trace of the steady-state error covariance of the Kalman filter corresponding to

the surviving sensors after the attack. We refer to this problem as the Resilient

Graph-based Kalman Filtering Sensor Selection (RGKFSS) problem.

Related Work

The (design-time) selection problem has been widely studied in the literature.

For example, in [50,57], the authors considered the Kalman filtering sensor selection

problem over a finite number of time steps. Here, we study the problem of optimizing

steady-state error covariances of the corresponding Kalman filter. In Chapter 3, we
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considered the same sensor selection problem as the one considered here, but for gen-

eral system dynamics. In such cases, we showed that finding an optimal selection for

the general problem is NP-hard. Thus, in this chapter, we impose additional structure

on the problem (by considering the graph representation of the dynamics) in order to

seek optimal solutions. In [66, 67], the authors studied the sensor selection problem

for estimating a static variable (parameter) that does not change over time. Here, we

study the problem of selecting sensors to estimate the states of a linear dynamical sys-

tem affected by stochastic inputs. In contrast to the sensor selection problem where

the set of selected sensors cannot change over time, the sensor scheduling problem for

Kalman filtering has also received much attention (e.g., [35–37, 68]), where different

sets of sensors can be chosen at different time steps.

In networked system settings, the authors in [69] considered the sensor selection

problem for continuous-time diffusion dynamics, and applied the Wiener filter to

estimate the system states using sensor measurements. Here, we consider discrete-

time networked system dynamics and apply the Kalman filter to estimate the system

states. The authors in [14–16] studied the leader selection problem in consensus

networks with stochastic inputs. The problem is to select a subset of nodes whose

states are fixed over time in order to minimize the H2 norm of the system states at

steady state. In contrast, we consider the problem of selecting sensors among the

nodes of systems with more general dynamics in order to minimize the trace of the

steady-state error covariance of the Kalman filter.

Although both of the sensor selection and the sensor attack problems have re-

ceived much attention from researchers, the resilient sensor selection is less explored.

The authors in [9] considered the problem of resilient maximization of monotone sub-

modular set functions under a cardinality constraint on the sets. They proposed a

polynomial-time approximation algorithm for the problem with performance bounds

that depend on the curvature of the objective function. In [8], the authors consid-

ered a resilient observation selection problem. The problem is to resiliently select

observations of a scalar Gaussian process given that some of the selected observations
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could be removed by an adversary. The authors showed that this problem is NP-hard

and proposed a greedy algorithm with a provable performance guarantee. Here, we

consider the resilient sensor selection problem for Kalman filtering of (vector) linear

dynamical systems subject to general knapsack constraints. While we show this prob-

lem is NP-hard, we give an algorithm based on dynamic programming to solve the

problem optimally in pseudo-polynomial time [41].

Summary of Results

First, we provide an optimal sensor selection strategy, computed in polynomial

time, for the GKFSS problem using the graph structure of the system. Second,

leveraging the insights for the GKFSS problem, we give an optimal sensor attack

strategy, computed in polynomial time, for the GKFSA problem. Third, we show that

the RGKFSS problem is NP-hard; we then provide an algorithm based on dynamic

programming that can return an optimal solution to general instances of the RGKFSS

problem in pseudo-polynomial time. Although the results are derived under the

assumption that the sensors give perfect measurements, we show that how to apply

these results to analyze the case with sensor measurement noise and provide numerical

examples.

The results presented in this chapter were published as [49,70].

4.2 Problem Formulation

We begin with the following definitions from graph theory. Further details can be

found in, for example, [71] and [65].

Definition 4.2.1 For any given matrix A ∈ Rn×n, the directed graph of A, denoted

as G(A), is defined as the directed graph on n vertices (or nodes) x1, x2, . . . , xn such

that for all i, j ∈ {1, 2, . . . , n}, there is a directed edge in G(A) from xj to xi, denoted

as (xj, xi), if and only if Aij 6= 0. Denoting the set of vertices and the set of edges
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of G(A) as X (A) , {x1, x2, . . . , xn} and E(A), respectively, the graph G(A) is also

denoted as G(A) = {X (A), E(A)}.

Definition 4.2.2 Consider a directed graph G = {X , E} with X , {x1, x2, . . . , xn}.

A directed path from xi0 to xit is a sequence of directed edges (xi0 , xi1), (xi1 , xi2), . . . ,

(xit−1 , xit) in G. The ordered list of vertices in the directed path is xi0 , xi1 , . . . , xit.

The length of a directed path is the number of directed edges in the directed path. A

cycle is a directed path that begins and ends at the same vertex which occurs exactly

twice in the ordered list of vertices in the directed path, and no other vertices occur

more than once in the list. A cycle of length 1 is a self-loop at the corresponding

vertex.

Definition 4.2.3 Consider a directed graph G = {X , E}. For any pair of distinct

vertices xi, xj ∈ X such that there exists a directed path from xi to xj, the distance

from xi to xj, denoted as dij, is defined as the shortest length over all such paths.

Define dmm = 0 for all xm ∈ X .

Definition 4.2.4 A directed graph G = {X , E} is strongly connected if for all pairs

of distinct vertices xi, xj ∈ X , there is a directed path from xj to xi in G.

We start with a general system model. Consider a matrix A ∈ Rn×n with the

associated graph G(A) = {X (A), E(A)} (given in Definition 4.2.1). Suppose I ,

{xi0 , xi1 , . . . , xin1−1} ⊆ X (A) is the set of nodes that have stochastic inputs, where

n1 ∈ Z≥1. We then consider the following discrete-time linear system:

x[k + 1] = Ax[k] +Bw[k], (4.1)

where x[k] ∈ Rn is the system state at time step k, and B ,
[
eTi0 · · · eTin1−1

]
∈ Rn×n1

is the input matrix. The stochastic input w[k] ∈ Rn1 is a zero-mean white noise

process with E[w[k](w[k])T ] = W ∈ Sn1
+ . The initial state x[0] is a random vector

with mean x̄0 ∈ Rn and covariance Π0 ∈ Sn+, and is assumed to be independent of

w[k] for all k ∈ Z≥0. Each state of the system, denoted as xi[k], is associated with
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node xi in G(A). As we mentioned in the introduction, we showed in Chapter 3 that

the Kalman filtering sensor selection problem cannot be approximated within any

constant factor in polynomial time (if P 6= NP) for general system dynamics matrices

even when the measurement noise is zero. Moreover, under the networked system

setting, [49] showed that if there are multiple input nodes in the graph, the Kalman

filtering sensor selection problem becomes NP-hard even when the graph only contains

a set of disjoint paths of length three and each path has a single input node. Hence,

in order to bypass these inherent complexity issues, we focus on networked systems

with a single input node xi0 ∈ X (A) (i.e., B = eTi0 and E[(w[k])2] = σ2
w ∈ R≥0),

and seek efficient algorithms to optimally solve the corresponding sensor selection,

sensor attack, and resilient sensor selection problems. We assume throughout this

chapter that the pair (A,Bσw) is stabilizable. The generality of this assumption will

be justified later in this chapter.

4.2.1 The Sensor Selection Problem

First, suppose that there is a system designer who can select sensors of a subset of

the vertices of the graph G(A) under a budget constraint. Specifically, the sensor of

node xi ∈ X (A) has a selection cost hi ∈ Z≥0; define the sensor selection cost vector

as h ,
[
h1 · · · hn

]T
. The designer has a sensor selection budget H ∈ Z≥0 that

can be spent on selecting sensors of the nodes in G(A). Moreover, the sensor of node

xi ∈ X (A) gives a measurement of the form

yi[k] = Cix[k] + vi[k], (4.2)

where Ci = ei and vi[k] ∈ R is a zero-mean white noise process. We further define

y[k] ,
[
y1[k] · · · yn[k]

]T
, C ,

[
CT

1 · · · CT
n

]T
and v[k] ,

[
v1[k] · · · vn[k]

]T
. Thus,

the output provided by all sensors together is given by

y[k] = Cx[k] + v[k], (4.3)
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where C = In. We denote E[v[k](v[k])T ] = V ∈ Sn+ and consider E[v[k](w[j])T ] = 0,

∀k, j ∈ Z≥0. The initial state x[0] is also assumed to be independent of v[k] for all

k ∈ Z≥0.

After the sensors are selected, the Kalman filter is then applied to provide an

estimate of the states using the measurements from the installed sensors. We define

a vector µ ∈ {0, 1}n to be the indicator vector indicating the vertices where sensors

are selected. Specifically, µi = 1 if and only if a sensor is selected at node xi ∈ X (A).

Let C(µ) denote the measurement matrix of the installed sensors indicated by µ, i.e.,

C(µ) ,
[
CT
i1
· · · CT

ip

]T
, where supp(µ) = {i1, . . . , ip} ⊆ {1, . . . , n}. Similarly, let

V (µ) denote the measurement noise covariance matrix of the installed sensors, i.e.,

V (µ) = E[ṽ[k](ṽ[k])T ], where ṽ[k] ,
[
(v[k])i1 · · · (v[k])ip

]T
. The a priori and the

a posteriori error covariance matrices of the Kalman filter at time step k, when the

sensors indicated by µ are selected, are denoted as Σk/k−1(µ) and Σk/k(µ), respectively.

The initial a priori error covariance is set as Σ0/−1(µ) = Π0. The limit Σ(µ) ,

limk→∞Σk+1/k (also known as the steady-state a priori error covariance), if it exists,

satisfies the discrete algebraic Riccati equation (DARE) [61]:

Σ(µ) = AΣ(µ)AT + σ2
wBB

T −AΣ(µ)C(µ)T
(
C(µ)Σ(µ)C(µ)T + V (µ)

)−1
C(µ)Σ(µ)AT ,

(4.4)

where σ2
w ∈ R≥0 and B = eTi0 . The limit Σ∗(µ) , limk→∞Σk/k(µ) (also known

as the steady-state a posteriori error covariance), if it exists, satisfies the following

equations [62]:

Σ∗(µ) = Σ(µ)− Σ(µ)C(µ)T
(
C(µ)Σ(µ)C(µ)T + V (µ)

)−1
C(µ)Σ(µ), (4.5)

and

Σ(µ) = AΣ∗(µ)AT + σ2
wBB

T . (4.6)

The inverses in Eqs. (4.4) and (4.5) are interpreted as the Moore-Penrose pseudo-

inverses (which we denote using the notation “†”) if the arguments are not invertible

[61]. We will use the following result from [61].



62

Lemma 4.2.1 For a given indicator vector µ, Σk/k−1(µ) (resp., Σk/k(µ)) will con-

verge, as k →∞, to a finite limit Σ(µ) (resp., Σ∗(µ)), regardless of the initial covari-

ance Σ0/−1(µ), if and only if the pair (A,C(µ)) is detectable and the pair (A,Bσw)

is stabilizable. Furthermore, if the limit Σ(µ) (resp., Σ∗(µ)) exists, it is also the only

positive semi-definite solution to Eq. (4.4) (resp., Eq. (4.5)).

When the pair (A,C(µ)) is not detectable, we define the limits Σ(µ) = +∞

and Σ∗(µ) = +∞. The priori and posteriori Graph-based Kalman Filtering Sensor

Selection (GKFSS) problems are defined as follows.

Problem 4.2.2 (Priori and Posteriori GKFSS) Consider a system dynamics matrix

A ∈ Rn×n with the associated graph G(A) = {X (A), E(A)}, a single vertex xi0 ∈

X (A) that has a stochastic input with variance σ2
w ∈ R≥0, the measurement matrix

C = In (containing all of the individual sensor measurement matrices), a sensor

noise covariance matrix V ∈ Sn+, a sensor selection cost vector h ∈ Zn≥0 and a sensor

selection budget H ∈ Z≥0. The priori Graph-based Kalman Filtering Sensor Selection

(GKFSS) problem is to find the sensor selection µ, i.e., the indicator vector µ of the

vertices where sensors are selected, that solves

min
µ∈{0,1}n

trace(Σ(µ))

s.t. hTµ ≤ H,

where Σ(µ) is given by Eq. (4.4) if the pair (A,C(µ)) is detectable, and Σ(µ) = +∞

otherwise. The posteriori GKFSS Problem is to find the sensor selection µ that solves

min
µ∈{0,1}n

trace(Σ∗(µ))

s.t. hTµ ≤ H,

where Σ∗(µ) is given by Eq. (4.5) if the pair (A,C(µ)) is detectable, and Σ∗(µ) = +∞

otherwise.
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4.2.2 The Sensor Attack Problem

Suppose that the sensors indicated by the sensor selection µ ∈ {0, 1}n are selected

and installed by the system designer, and there is an adversary who aims to attack

(i.e., remove) a subset of the installed sensors. To attack a sensor selected at node

xi ∈ X (A), the adversary needs to pay a cost fi ∈ Z≥0. Define the sensor attack

cost vector as f ,
[
f1 · · · fn

]T
. The adversary has a total sensor attack budget

F ∈ Z≥0 for attacking the installed sensors. We define a vector ν ∈ {0, 1}n to be the

indicator vector indicating the subset of sensors that are attacked, where νi = 1 if and

only if the sensor at xi ∈ X (A) is attacked. Note that supp(ν) ⊆ supp(µ) is always

assumed implicitly in the sequel. Let C(µ \ ν) denote the measurement matrix of the

surviving sensors corresponding to µ and ν, i.e., C(µ \ ν) ,
[
CT
j1
· · · CT

jq

]T
, where

{j1, . . . , jq} = supp(µ) \ supp(ν). Denote supp(µ) \ supp(ν) , supp(µ \ ν). Similarly,

define V (µ \ ν) to be the measurement noise covariance of the surviving sensors. The

Kalman filter is then applied based on the measurements of the surviving sensors.

The resulting a priori and a posteriori error covariances of the Kalman filter at time

step k are denoted as Σk/k−1(µ \ ν) and Σk/k(µ \ ν), respectively, whose limits as

k →∞ are denoted as Σ(µ \ ν) and Σ∗(µ \ ν), respectively.

The priori and posteriori Graph-based Kalman Filtering Sensor Attack (GKFSA)

problems are then defined as follows.

Problem 4.2.3 (Priori and Posteriori GKFSA) Consider a system dynamics matrix

A ∈ Rn×n with the associated graph G(A) = {X (A), E(A)}, a single vertex xi0 ∈

X (A) that has a stochastic input with variance σ2
w ∈ R≥0, the measurement matrix

C = In (containing all of the individual sensor measurement matrices), a sensor

noise covariance matrix V ∈ Sn+, a sensor attack cost vector f ∈ Zn≥0, a sensor attack

budget F ∈ Z≥0, and a sensor selection vector µ ∈ {0, 1}n. The priori Graph-based

Kalman Filtering Sensor Attack (GKFSA) problem is to find the sensor attack ν, i.e.,
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the indicator vector ν of the vertices where the installed sensors (indicated by µ) are

attacked, that solves

max
ν∈{0,1}n

trace(Σ(µ \ ν))

s.t. fTν ≤ F,

where Σ(µ\ν) is given by Eq. (4.4) if the pair (A,C(µ\ν)) is detectable, and Σ(µ\ν) =

+∞ otherwise. The posteriori GKFSA problem is to find the sensor attack ν that

solves

max
ν∈{0,1}n

trace(Σ∗(µ \ ν))

s.t. fTν ≤ F,

where Σ∗(µ \ ν) is given by Eq. (4.5) if the pair (A,C(µ \ ν)) is detectable, and

Σ∗(µ \ ν) = +∞ otherwise.

4.2.3 The Resilient Sensor Selection Problem

We next consider the scenario where the system designer is aware of the potential

attack from a strategic adversary (who can perform optimal sensor attacks under

budget constraints), and aims to choose a resilient sensor selection. We first define

feasible sensor selections for the system designer as follows.

Definition 4.2.5 A sensor selection µ ∈ {0, 1}n is said to be feasible if hTµ ≤ H

(i.e., the sensor selection budget constraint is satisfied), and for all ν ∈ {0, 1}n such

that fTν ≤ F , supp(µ\ν) 6= ∅ (i.e., for all sensor attacks that satisfy the sensor attack

budget constraint, at least one sensor indicated by µ is left over by the adversary).

Remark 4.2.4 Note that if a sensor selection µ is not feasible, there is an attack

(satisfying the attacker’s budget constraint) such that that the pair (A,C(µ \ ν)) is

not detectable if the system dynamics matrix A is not stable.

The priori and posteriori Resilient Graph-based Kalman Filtering Sensor Selection

(RGKFSS) problems are then given by the following.



65

Problem 4.2.5 (Priori and Posteriori RGKFSS) Consider a system dynamics ma-

trix A ∈ Rn×n with the associated graph G(A) = {X (A), E(A)}, a single vertex

xi0 ∈ X (A) that has a stochastic input with variance σ2
w ∈ R≥0, the measurement

matrix C = In (containing all of the individual sensor measurement matrices), a sen-

sor noise covariance matrix V ∈ Sn+, a sensor selection cost vector h ∈ Zn≥0, a sensor

selection budget H ∈ Z≥0, a sensor attack cost vector f ∈ Zn≥0, and a sensor attack

budget F ∈ Z≥0. The priori Resilient Graph-based Kalman Filtering Sensor Selection

(RGKFSS) problem is to find the sensor selection µ that solves

min
µ∈{0,1}n

max
ν∈{0,1}n

trace(Σ(µ \ ν))

s.t. hTµ ≤ H, and fTν ≤ F,

where Σ(µ\ν) is given by Eq. (4.4) if the pair (A,C(µ\ν)) is detectable, and Σ(µ\ν) =

+∞ otherwise. The posteriori RGFKSP problem is to find the sensor selection µ that

solves

min
µ∈{0,1}n

max
ν∈{0,1}n

trace(Σ∗(µ \ ν))

s.t. hTµ ≤ H, and fTν ≤ F,

where Σ∗(µ \ ν) is given by Eq. (4.5) if the pair (A,C(µ \ ν)) is detectable, and

Σ∗(µ \ ν) = +∞ otherwise.

4.3 Solving the GKFSS and GKFSA problems

In this section, we provide algorithms to optimally solve the GKFSS and GKFSA

problems, respectively, when the sensor noise covariance is V = 0n×n. We will make

the following assumptions on the instances of the GKFSS and GKFSA problems in

the sequel.

Assumption 4.3.1 The pair (A,C(µ)) is assumed to be detectable for all sensor se-

lections µ ∈ {0, 1}n with supp(µ) 6= ∅. The pair (A,Bσw) is assumed to be stabilizable.
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Assumption 4.3.2 The graph G(A) = {X (A), E(A)} (associated with the system

dynamics matrix A ∈ Rn×n) is assumed to satisfy the property that for all xj ∈ X (A)

and xj 6= xi0, there exists a directed path from xi0 to xj. The system dynamics matrix

A is assumed to satisfy (Am)ji0 6= 0 if di0j = m, where di0j is the distance from xi0 to

xj.

Remark 4.3.3 Note that Assumptions 4.3.1-4.3.2 are satisfied by large classes of

systems. For example, it was shown in [72] that Assumption 4.3.1 holds if the sys-

tem dynamics matrix A is row-stochastic and irreducible.1 Assumption 4.3.2 holds if

the system dynamics matrix A is nonnegative and irreducible [65]. Since any row-

stochastic matrix is also nonnegative, Assumptions 4.3.1-4.3.2 hold for any system

dynamics matrix A that is row-stochastic and irreducible. Furthermore, using tech-

niques in control theory pertaining to linear structured systems (e.g., [73, 74]), one

can show that Assumption 4.3.1 holds for almost any system dynamics matrix A such

that the graph G(A) is strongly connected, using approaches from [75,76]. Specifically,

one can consider the system dynamics matrix A to be structured, i.e., each entry of

the system dynamics matrix A is either a fixed zero or an independent free parame-

ter (which can attain any real value including zero), where the graph G(A) is defined

according to the free parameters of the structured matrix A. One can then show that

the set of parameters for which Assumption 4.3.1 does not hold has Lebesgue measure

zero. Moreover, using similar techniques to those above and the result from [65] that

shows that Assumption 4.3.2 holds for all nonnegative irreducible matrices A, one

can show that Assumption 4.3.2 holds for almost any choice of free parameters in

the structured matrix A such that the graph G(A) is strongly connected. Note that

the systems where Assumptions 4.3.1-4.3.2 hold are not limited to the cases described

above.

Remark 4.3.4 We can generalize our analysis to system dynamics matrices A where

G(A) has multiple strongly connected components [71]. Suppose that the input node

1Note that the matrix A is irreducible if and only if the graph G(A) is strongly connected [65].
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can only reach (via directed paths in G(A)) nodes that are in the same strongly con-

nected component. Then, under Assumption 4.3.1, we only need to consider the

strongly connected component of G(A) that contains the input node, since one can

show that the mean square estimation error of the Kalman filter remains zero for

the states corresponding to nodes that are not in the strongly connected component

containing the input node.

The first main result of this section is as follows.

Theorem 4.3.5 Consider a system dynamics matrix A ∈ Rn×n with the associated

graph G(A) = {X (A), E(A)}, a single vertex xi0 ∈ X (A) that has a stochastic input

with variance σ2
w ∈ R≥0, the measurement matrix C = In (containing all of the

individual sensor measurement matrices), and the sensor noise covariance matrix

V = 0n×n. Suppose that Assumptions 4.3.1-4.3.2 hold. For any sensor selection

µ ∈ {0, 1}n such that supp(µ) 6= ∅, denote ζ = minj∈supp(µ) di0j ≥ 0, where di0j is the

distance from vertex xi0 to vertex xj. The following expressions hold:

Σ(µ) = σ2
w

ζ∑
m=0

AmBBT (AT )m, (4.7)

and

Σ∗(µ) =


σ2
w

ζ−1∑
m=0

AmBBT (AT )m if ζ ≥ 1,

0 if ζ = 0,

(4.8)

where Σ(µ) (resp., Σ∗(µ)) is the steady-state a priori (resp., a posteriori) error co-

variance of the corresponding Kalman filter, and B = eTi0.

Proof The existence of Σ(µ) and Σ∗(µ) follows directly from Lemma 4.2.1 and

Assumption 4.3.1. Considering any sensor selection µ such that ζ ≥ 1, i.e., sensors are

not selected at the input vertex xi0 , we first prove Eq. (4.7) by verifying that Eq. (4.7)

satisfies Eq. (4.4). Note that Ci = ei for all xi ∈ X (A). Let Xµ ⊆ X (A) denote the set

of vertices indicated by µ where sensors are selected, and let Xζ ⊆ X (A) denote the set

of vertices that have distance ζ from the input vertex xi0 . Since performing elementary
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row operations on C(µ) does not change Σ(µ), we assume without loss of generality

that µ =
[
µT1 µT2

]T
such that µ1 = 1|Xζ∩Xµ| and µ2 ∈ {0, 1}n−|Xζ∩Xµ|. In other words,

µ1 contains all sensors selected at vertices that have distance ζ from the input vertex

xi0 , and di0j > ζ for all j ∈ supp(µ2). The corresponding measurement matrix is

given by C(µ) =

C(µ1)

C(µ2)

, where C(µ1) ∈ R|supp(µ1)|×n and C(µ2) ∈ R|supp(µ2)|×n.

Substituting Eq. (4.7) into the right hand side (RHS) of Eq. (4.4), we obtain:

RHS of Eq. (4.4)

= σ2
w

ζ+1∑
m=1

AmBBT (AT )m + σ2
wBB

T − σ2
wA

ζ+1BBT (AT )ζ

× (C(µ))T (C(µ)AζBBT (AT )ζ(C(µ))T )† × C(µ)AζBBT (AT )ζ+1 (4.9)

= σ2
w

ζ+1∑
m=0

AmBBT (AT )m − σ2
wA

ζ+1BBT (AT )ζ
[
(C(µ1))T (C(µ2))T

]
×
(C(µ1)

C(µ2)

AζBBT (AT )ζ
[
(C(µ1))T (C(µ2))T

])† C(µ1)

C(µ2)

AζBBT (AT )ζ+1

= σ2
w

ζ+1∑
m=0

AmBBT (AT )m − σ2
wA

ζ+1B
[
BT (AT )ζ(C(µ1))T 01×|supp(µ2)|

]
×

(C(µ1)AζBBT (AT )ζ(C(µ1))T )† 0

0 0

C(µ1)AζB

0|supp(µ2)|×1

BT (AT )ζ+1 (4.10)

= σ2
w

ζ+1∑
m=0

AmBBT (AT )m − σ2
wA

ζ+1BBT (AT )ζ(C(µ1))T

× (C(µ1)AζBBT (AT )ζ(C(µ1))T )†C(µ1)AζBBT (AT )ζ+1, (4.11)

where Eq. (4.9) uses the fact that (Am)ji0 = 0 for all j ∈ supp(µ) whenever m ∈

{0, 1, . . . , ζ− 1}, which implies that C(µ)AmB = 0 for all m ∈ {0, 1, . . . , ζ− 1}. Sim-

ilarly, Eq. (4.10) follows from the fact that C(µ2)AmB = 0 for all m ∈ {0, 1, . . . , ζ}.
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Denoting ψ , C(µ1)AζB ∈ R|supp(µ1)| and noting that ψ 6= 0 from Assumption 4.3.2,

one can show that ψT (ψψT )†ψ = 1. We then have from Eq. (4.11):

RHS of Eq. (4.4) = σ2
w

ζ+1∑
m=0

AmBBT (AT )m − σ2
wA

ζ+1BBT (AT )ζ+1

= σ2
w

ζ∑
m=0

AmBBT (AT )m.

Since σ2
w

∑ζ
m=0A

mBBT (AT )m � 0, we know from Lemma 4.2.1 that the limit Σ(µ)

is given by Eq. (4.7). We then see from Eq. (4.6) that the limit Σ∗(µ) is given by

Eq. (4.8) (when ζ ≥ 1).

Next, we consider any sensor selection µ such that ζ = 0, i.e., a sensor is selected

at the input vertex xi0 . Using similar arguments to those above, we can also show

that Eqs. (4.7)-(4.8) hold when ζ = 0. This completes the proof of the theorem.

To verify the results in Theorem 4.3.5, let us consider the following example.

Example 4.3.6 Consider the graph in Fig. 4.1, where x2 is the input node (i.e.,

B = eT2 ) with variance σ2
w = 1. Suppose A =

[
0.5 2.1 0 0
0.3 0 1.5 0
0 0.6 0 0.5
0 0 −0.8 1

]
, C = I4 and V = 04×4.

Denote µ2 = [0 1 0 0]T and µ4 = [0 0 0 1]T . It can be verified that Σ(µ2) =

[
0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

]
=

BBT , Σ∗(µ2) = 04×4, Σ(µ4) =

[
5.5125 1.6065 1.26 −0.504
1.6065 3.3409 0 −0.7344
1.26 0 0.36 0
−0.504 −0.7344 0 0.2304

]
=
∑2

m=0A
mBBT (AT )m and

Σ∗(µ4) =

[
4.41 0 1.26 0

0 1 0 0
1.26 0 0.36 0

0 0 0 0

]
=
∑1

m=0 A
mBBT (AT )m, as provided by Theorem 4.3.5.

Fig. 4.1. Graph for Example 1.

4.3.1 An Optimal Solution to GKFSS

Using the above discussions, we give the following result that characterizes an

optimal solution to GKFSS (Problem 4.2.2).
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Theorem 4.3.7 Supposing that Assumptions 4.3.1-4.3.2 hold, an optimal solution,

denoted as µ∗, to the priori (resp., posteriori) GKFSS problem is to select a single

sensor at a vertex xj in order to minimize di0j, i.e., the distance from the input vertex

xi0 to xj, while satisfying the budget constraint.

Proof Under Assumptions 4.3.1-4.3.2, we first note from Eqs. (4.7)-(4.8) that the

a priori and the a posteriori error covariance matrices only depend on ζ, i.e., the

shortest distance from the input node to the sensor nodes. Hence, it is sufficient to

consider sensor selections µ ∈ {0, 1}n such that |supp(µ)| = 1 in terms of minimizing

the trace of the a priori (resp., a posteriori) steady-state error covariance of the

Kalman filter. Moreover, we know from Eq. (4.7) in Theorem 4.3.5 that Σ(µ) =

σ2
w

∑ζ
m=0 A

mBBT (AT )m, where ζ = minj∈supp(µ) di0j. Since the matrix AmBBT (AT )m

is positive semi-definite for all m ∈ Z≥0, we have trace(AmBBT (AT )m) ≥ 0 for all

m ∈ Z≥0. Hence, trace(Σ(µ)) is minimized by finding a sensor selection µ∗ with

|supp(µ∗)| = 1 such that ζ is minimized while satisfying the budget constraint. Using

similar arguments, we can show that µ∗ is also an optimal solution to the posteriori

GKFSS problem.

Based on Theorem 4.3.7, we can find an optimal solution µ∗ to the priori (resp.,

posteriori) GKFSS problem using polynomial-time algorithms such as the Breadth-

First Search (BFS) algorithm which runs in time O(n+ |E(A)|) [77].

4.3.2 An Optimal Solution to GKFSA

Given a sensor selection µ, we know from the insights obtained above for GKFSS

that the steady-state a priori and the a posteriori error covariances of the Kalman

filter (after an attack that removes some of those sensors) only depend on the surviving

sensors that have the shortest distance from the input vertex xi0 . We then have the

following result whose proof is similar to that of Theorem 4.3.7 and is thus omitted.

Theorem 4.3.8 Suppose that Assumptions 4.3.1-4.3.2 hold. Given a sensor selection

µ, an optimal solution, denoted as ν∗, to the priori (resp., posteriori) GKFSA problem
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can be found by maximizing the shortest distance from the input vertex xi0 to the

surviving sensors, i.e., solving the following optimization problem

max
ν∈{0,1}n

min
j∈supp(µ\ν)

di0j

s.t. fTν ≤ F,

(4.12)

where di0j is the distance from vertex xi0 to vertex xj, and di0j = +∞ if supp(µ\ν) =

∅.

An optimal solution ν∗ to the priori (resp., posteriori) GKFSA problem described

by Theorem 4.3.8 can be found as follows. Given a sensor selection µ, the adver-

sary starts by inspecting the selected sensors (indicated by µ) that have the shortest

distance from the input vertex xi0 . The adversary will remove all of these sensors

if the sum of the corresponding sensor attack costs is less than or equal to the bud-

get constraint F , and terminate the process if otherwise. The above process is then

repeated for the selected sensors that have the second shortest distance from the

input vertex xi0 , based on the remaining budget. This process continues with the

selected sensors that have the third shortest distance from the input vertex xi0 , etc.

Hence, polynomial-time algorithms such as the BFS algorithm can be used to find

the optimal sensor attack ν∗ for the adversary in time O(n+ |E(A)|).

4.4 Solving the RGKFSS problem

We now turn to the RGKFSS problem (Problem 4.2.5). Recall that Theorem 4.3.7

showed that it is enough to consider only sensor selections µ with |supp(µ)| = 1 for the

GKFSS problem (i.e., the system designer does not necessarily need to utilize all of the

sensor selection budget H). However, an optimal sensor selection µ∗ for the RGKFSS

problem does not necessarily satisfy |supp(µ∗)| = 1, since the adversary could have

enough budget to remove the single sensor selected by the system designer, which

causes the trace of the a priori (resp., a posteriori) error covariance of the Kalman

filter to be infinite (if the system dynamics matrix A is not stable). Note that the
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steady-state a priori and the a posteriori error covariance matrices of the Kalman

filter (after the attack) only depend on the surviving sensors that have the shortest

distance from the input vertex xi0 . Using similar arguments to those for Theorems

4.3.7-4.3.8, we see that an optimal solution to the RGKFSS problem can be found

by minimizing the shortest distance from the input vertex xi0 to the sensors after the

corresponding optimal sensor attack, and a sensor selection µ∗ is optimal for the priori

RGKFSS problem if and only if it is optimal for the posteriori RGKFSS problem.

We thus focus on the priori RGKFSS problem in this section. Although we pro-

vided polynomial-time algorithms to solve the GKFSS and GKFSA problems, we will

show that the RGKFSS problem is NP-hard, i.e., there exist classes of the RGKFSS

problem that cannot be solved by any polynomial-time algorithm if P 6= NP. To do

this, we first recall from Remark 4.3.3 that Assumptions 4.3.1-4.3.2 hold for any sys-

tem dynamics matrix A that is row-stochastic and irreducible. Therefore, Eq. (4.7)

and Eq. (4.8) in Theorem 4.3.5 also hold for such A matrices.

To show that the RGKFSS problem is NP-hard, we reduce the subset sum problem

[41] to RGKFSS.

Definition 4.4.1 An instance of the subset sum problem is given by a finite set U

and a positive integer K, where each s ∈ U has a size κ(s) ∈ Z>0.

We use the following result from [41].

Lemma 4.4.1 Given an instance of the subset sum problem as described in Defini-

tion 4.4.1, the problem of determining whether there is a subset U ′ ⊆ U such that∑
s∈U ′ κ(s) = K is NP-complete.

We are now in place to prove the following result.

Theorem 4.4.2 The RGKFSS problem is NP-hard even when both of the following

two conditions are satisfied: (1) the sensor selection cost and the sensor attack cost

satisfy hi = fi for all i ∈ {1, 2, . . . , n}; and (2) there is a feasible sensor selection for

the system designer.
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Proof We prove the result by giving a polynomial-time reduction from the subset

sum problem. Consider any instance of the subset sum problem defined in Defini-

tion 4.4.1. Denote U = {s1, s2, . . . , s|U |}. Denote the number of bits of the binary

representation of the positive integer K as b(K), i.e., b(K) , blog2(K)c + 1. We

then construct an instance of the priori RGKFSS problem as follows. The system

dynamics matrix A ∈ R(|U |+b(K))×(|U |+b(K)) is chosen such that the graph G(A) is an

undirected path of length |U |+ b(K)−1. Specifically, we set Aij = Aji = 1
3

for all i ∈

{1, 2, . . . , |U |+b(K)−1} and j = i+1, Amm = 1
3

for all m ∈ {2, 3, . . . , |U |+b(K)−1},

Amm = 2
3

for all m ∈ {1, |U | + b(K)}, and all the other entries in A are zero. The

vertex x1 is set as the only vertex that has the stochastic input with variance σ2
w = 1.

The sensor selection cost vector is set as hi = κ(si) for all i ∈ {1, 2, . . . , |U |}, and

hi = 2i−|U |−1 for all i ∈ {|U | + 1, |U | + 2, . . . , |U | + b(K)}. The sensor attack cost is

set as fi = hi for all i ∈ {1, 2, . . . , |U |+ b(K)}. Note that the sensor selection vector

and the sensor attack vector are given by µ ∈ {0, 1}|U |+b(K) and ν ∈ {0, 1}|U |+b(K),

respectively. The sensor selection budget of the system designer is set as H = K,

and the sensor attack budget of the adversary is set as F = K − 1. We also note

that the matrix A that we constructed is row-stochastic and irreducible. Therefore,

Eq. (4.7) in Theorem 4.3.5 holds for the A matrix that we constructed. We claim

that the answer to the given subset sum instance is “yes” if and only if an optimal

solution to the constructed instance of the priori RGKFSS problem, denoted as µ∗,

satisfies trace(Σ(µ∗ \ ν∗)) ≤ trace(
∑|U |−1

i=0 AiBBTAi), where ν∗ is an optimal sensor

attack given µ∗.

Suppose that the answer to the given subset sum instance is “yes”, i.e., there exists

U ′ ⊆ U such that
∑

s∈U ′ κ(s) = K. It follows that for the instance of the priori RGK-

FSS problem as constructed above, there exists a sensor selection vector µ̃ such that∑|U |
i=1 hiµ̃i = K ≤ H. Therefore, for any sensor attack ν̃ that satisfies the sensor attack

budget constraint, i.e.,
∑|U |

i=1 fiν̃i ≤ F = K−1, we have supp(µ̃\ ν̃)∩{1, . . . , |U |} 6= ∅,

which implies that there exists j ∈ {1, . . . , |U |} such that j ∈ supp(µ̃\ ν̃). Noting that

AmBBTAm � 0 for all m ∈ Z≥0 and d1j = j−1 ≤ d1|U | = |U |−1, it then follows from
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Eq. (4.7) that trace(Σ(µ̃\ν̃)) ≤ trace(
∑j−1

i=0 A
iBBTAi) ≤ trace(

∑|U |−1
i=0 AiBBTAi), for

any sensor attack ν̃ such that
∑|U |

i=1 fiν̃i ≤ F . Since trace(Σ(µ∗\ν∗)) ≤ trace(Σ(µ̃\ν̃)),

we have trace(Σ(µ∗ \ ν∗)) ≤ trace(
∑|U |−1

i=0 AiBBTAi).

Conversely, suppose that the answer to the subset sum instance is “no”, i.e.,

for any U ′ ⊆ U , we have
∑

s∈U ′ κ(s) 6= K. Considering the instance of the pri-

ori RGKFSS problem we constructed, for any sensor selection vector µ such that∑|U |+b(K)
i=1 hiµi ≤ H = K, we have

∑|U |
i=1 hiµi 6= K, which implies

∑|U |
i=1 hiµi ≤

K − 1. Denote
∑|U |

i=1 hiµi , K|U |. Therefore, for any sensor selection vector µ with∑|U |+b(K)
i=1 hiµi ≤ H, there exists an attack ν̂ such that

∑|U |
i=1 fiν̂i = K|U | ≤ K − 1,

which implies supp(µ \ ν̂) ∩ {1, 2, . . . , |U |} = ∅. Moreover, note that K = H ≥

H−K|U | > F−K|U |. Since we set the sensor selection cost vector and the sensor attack

cost vector to satisfy hi = fi = 2i−|U |−1 for all i ∈ {|U | + 1, |U | + 2, . . . , |U | + b(K)},

where b(K) is the number of bits for the binary representation of K, we see that

for any U ′ ⊆ U , there exists Ū ′ ⊆ {|U | + 1, |U | + 2, . . . , |U | + b(K)} such that∑
s∈U ′ κ(s) +

∑
i∈Ū ′ hi = H. Therefore, the system designer can always use all the

sensor selection budget by selecting sensors at an appropriate subset of the vertices

in the vertex set {x|U |+1, x|U |+2, . . . , x|U |+b(K)} and guarantee to have at least one

sensor left after any attack that satisfies the sensor attack budget constraint. For-

mally, we see that for any sensor selection µ with
∑|U |+b(K)

i=1 hiµi = H, there exists

j′ ∈ {|U |+ 1, . . . , |U |+ b(K)} such that j′ ∈ supp(µ\ ν), where ν is any sensor attack

satisfying the sensor attack budget constraint. Meanwhile, any sensor selection µ such

that
∑|U |+b(K)

i=1 hiµi < H is not a feasible sensor selection. Therefore, there is always a

feasible sensor selection for the system designer under the constructed instance of the

priori RGKFSS problem when the answer to the subset sum instance is “no”. Note

that the matrix AmBBTAm � 0 for all m ∈ Z≥0 and d1j′ = j′ − 1 ≥ d1|U | + 1 = |U |.

Combining the arguments above together, it then follows from Eq. (4.7) that for any

µ such that
∑|U |+b(K)

i=1 hiµi = H, we have trace(Σ(µ \ ν)) ≥ trace(
∑j′−1

i=0 AiBBTAi) ≥

trace(
∑|U |

i=0A
iBBTAi), where ν is any sensor attack satisfying the sensor attack bud-

get constraint. Since (Am)11 > 0 for all m ∈ Z≥0, we have trace(A|U |BBTA|U |) > 0
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and thus trace(Σ(µ \ ν)) > trace(
∑|U |−1

i=0 AiBBTAi). Since the above arguments hold

for any µ with
∑|U |+b(K)

i=1 hiµi = H, they also hold for an optimal solution µ∗ to the

constructed priori RGKFSS instance, i.e., (Σ(µ∗ \ ν∗)) > trace(
∑|U |−1

i=0 AiBBTAi),

where ν∗ is an optimal sensor attack given µ∗. This completes the proof of the claim

above.

Since the subset sum problem is NP-complete and RGKFSS /∈ NP, we conclude

that RGKFSS is NP-hard even under the additional conditions as stated.

4.4.1 An Algorithm for RGKFSS

Algorithm 4.4.1 Algorithm for RGKFSS

Input: An instance of the RGKFSS problem.

Output: A sensor selection µ ∈ {0, 1}n.

1: Find the distance di0j for all xj ∈ X (A) \ {xi0} via BFS and denote dmax ,

maxxj∈X (A) di0j.

2: Relabel the vertices of G(A) such that x1 is the input vertex and d1j ≤ d1t for all

xj, xt ∈ X (A) \ {x1} with j ≤ t.

3: µ = 0n×1

4: for m = 0 to dmax do

5: Find jm , max{j : d1j = m,xj ∈ X (A)}.

6: Find π∗
(
(f1, . . . , fjm), (h1, . . . , hjm), H

)
7: if z

(
(f1, . . . , fjm), (h1, . . . , hjm), H

)
> F then

8: [µ1 · · · µjm ]T = π∗
(
(f1, . . . , fjm), (h1, . . . , hjm), H

)
9: return µ

It follows directly from Theorem 4.4.2 that there is no polynomial-time algorithm

that would solve all instances of RGKFSS if P 6= NP. However, we now provide a
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pseudo-polynomial-time algorithm2 (Algorithm 4.4.1) for RGKFSS by relating it to

the knapsack problem defined as follows.

Definition 4.4.2 Given a finite set U , {s1, s2, . . . , s|U |}, a size κ(si) ∈ Z>0 and a

value φ(si) ∈ Z>0 for each i ∈ {1, 2, . . . , |U |}, and a positive integer K, the knapsack

problem is to find an indicator vector π ∈ {0, 1}|U | that solves

max
π∈{0,1}|U|

|U |∑
i=1

φ(si)πi

s.t.

|U |∑
i=1

κ(si)πi ≤ K.

(4.13)

Denote an instance of knapsack as a tuple {φ, κ,K} with φ , (φ(s1), φ(s2), . . . , φ(s|U |))

and κ , (κ(s1), κ(s2), . . . , κ(s|U |)).3 The corresponding optimal indicator vector for

(4.13) is denoted as π∗(φ, κ,K), and the corresponding optimal value of the objective

function in (4.13) is denoted as z(φ, κ,K).

The steps of Algorithm 4.4.1 for RGKFSS are as follows. Algorithm 4.4.1 starts

by relabeling the input vertex as vertex x1 and relabeling the other vertices in terms

of a non-decreasing order of the distances from the vertex x1 (Lines 1-2). Denoting

dmax , maxxj∈X (A) di0j, Algorithm 4.4.1 then finds the smallest m ∈ {0, 1, . . . , dmax}

such that by selecting sensors (under the budget constraint) solely at nodes that have

distances less than or equal to m from x1 (after the relabeling), the sum of the sensor

attack costs of the selected sensors is greater than the sensor attack budget, i.e., there

is at least one sensor that survives the corresponding optimal sensor attack. This is

done by iteratively solving a knapsack problem at increasingly longer distances from

the input node, where at each distance, the goal is to find a set of sensor locations

that fits within the sensor selection budget constraint H but maximizes the sum of

2A pseudo-polynomial-time algorithm is an algorithm that runs in time that is bounded by a

polynomial in the largest integer in its input [41].
3Note that the elements in φ and κ are ordered, and the ith element of φ (resp., κ) corresponds

to the value (resp., weight) of si ∈ U for all i ∈ {1, . . . , |U |}. The dependency of {φ, κ,K} on U is

dropped since each element of φ (resp., κ) represents an element of U .
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the sensor attack costs. Algorithm 4.4.1 returns µ = 0n×1 if there is no feasible

sensor selection. We now prove that Algorithm 4.4.1 returns an optimal solution to

RGKFSS.

Theorem 4.4.3 Under Assumptions 4.3.1-4.3.2, Algorithm 4.4.1 returns an optimal

solution to the RGKFSS problem.

Proof Denote an optimal solution to the RGKFSS problem as µ∗ and denote the so-

lution returned by Algorithm 4.4.1 as µ′. Suppose that µ′ is a feasible sensor selection.

Suppose that the vertices in G(A) are relabeled as indicated by Lines 1-2 in Algorithm

4.4.1, i.e., vertex x1 is labeled as the input vertex and the other vertices are labeled in

terms of a non-decreasing order of the distances from vertex x1 (note that the relabel-

ing of the vertices does not change any optimal solution to the RGKFSS problem other

than permuting it). Assume for the sake of contradiction that trace(Σ(µ∗ \ ν∗)) <

trace(Σ(µ′ \ ν ′)), where ν∗ and ν ′ are optimal sensor attacks given µ∗ and µ′, respec-

tively. Denote j∗ , max J and j′ , max J ′, where J , arg minm∈supp(µ∗\ν∗)d1m and

J ′ , arg minm∈supp(µ′\ν′)d1m. In other words, among those sensors that are closest to

the input vertex in supp(µ∗\ν∗) (resp., supp(µ′\ν ′)), j∗ (resp., j′) is the largest index.

Noting that
∑j∗

m=1 fmµ
∗
m > F (otherwise an optimal sensor attack ν∗ given µ∗ would

remove the sensor selected at vertex xj∗ as argued previously in Section 4.3.2), it

follows from Definition 4.4.2 that z
(
(f1, . . . , fj∗), (h1, . . . , hj∗), H

)
> F , which implies

that z
(
(f1, . . . , fjm), (h1, . . . , hjm), H

)
> F , where jm is defined in Line 5 of Algorithm

4.4.1 with m = d1j∗ . We then know from the definition of Algorithm 4.4.1 that the

sensor selection µ′ returned by Algorithm 4.4.1 would satisfy j′ ≤ jm, which implies

that d1j′ ≤ d1j∗ (by the way that Algorithm 4.4.1 relabels the vertices). Moreover,

we have from Theorem 4.3.5 the following:

Σ(µ∗ \ ν∗) = σ2
w

d1j∗∑
m=0

AmBBT (AT )m, (4.14)

and

Σ(µ′ \ ν ′) = σ2
w

d1j′∑
m=0

AmBBT (AT )m, (4.15)
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hold under Assumptions 4.3.1-4.3.2. Since the matrix AmBBT (AT )m � 0 for all

m ∈ Z≥0, it follows from the assumption trace(Σ(µ∗ \ ν∗)) < trace(Σ(µ′ \ ν ′)) and

Eqs. (4.14)-(4.15) that d1j∗ < d1j′ . Thus, we get a contradiction.

Then, suppose that the solution µ′ returned by Algorithm 4.4.1 is not feasible,

i.e., supp(µ′ \ ν ′) = ∅. Again, we assume that trace(Σ(µ∗ \ ν∗)) < trace(Σ(µ′ \ ν ′)),

i.e., supp(µ∗ \ ν∗) 6= ∅. Via similar arguments to those above, we see that there exists

j∗′ ∈ {1, . . . , n} such that z
(
(f1, . . . , fj∗′), (h1, . . . , hj∗′), H

)
> F , which implies that

z
(
(f1, . . . , fjm), (h1, . . . , hjm), H

)
> F , where jm is defined in Line 5 of Algorithm 4.4.1

with m = d1j∗′ . Therefore, Algorithm 4.4.1 would also return a solution µ′ such that

supp(µ′ \ν ′) 6= ∅, which is a contradiction. We then conclude that trace(Σ(µ∗ \ν∗)) =

trace(Σ(µ′ \ ν ′)), i.e., Algorithm 4.4.1 returns an optimal solution to the RGKFSS

problem.

Since the knapsack problem is NP-hard, there is no polynomial-time algorithm

to solve it optimally (if P 6= NP) [41]. Various algorithms exist to approximate or

optimally solve it, including greedy algorithms, linear programming relaxation and

dynamic programming [78]. When implementing Algorithm 4.4.1, we can use ex-

isting algorithms for knapsack to find π∗
(
(f1, . . . , fjm), (h1, . . . , hjm), H

)
in Line 6

and z
(
(f1, . . . , fjm), (h1, . . . , hjm), H

)
in Line 7 when we range m from 0 to dmax.

Specifically, we call a pseudo-polynomial-time algorithm for knapsack (that solves

it optimally) at most dmax + 1 times to achieve this. For example, a typical dy-

namic programming approach for knapsack finds π∗
(
(f1, . . . , fjm), (h1, . . . , hjm), H

)
and z

(
(f1, . . . , fjm), (h1, . . . , hjm), H

)
in time O(jmH) for each m ∈ {0, . . . , dmax} [78].

Since BFS runs in time O(n+ |E(A)|), Algorithm 4.4.1 runs in time O(dmaxnH +n+

|E(A)|).

4.5 Noisy Sensor Measurement Case

The results we obtained so far hold under the assumption that V = 0n×n. In this

section, we provide a bound on the suboptimality of the proposed strategies when
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there is sensor measurement noise. We will use the following result whose proof can

be found in Section 4.7.1.

Lemma 4.5.1 Consider a system dynamics matrix A ∈ Rn×n, an input matrix

B ∈ Rn×n1, a sensor measurement matrix C ∈ Rn2×n, an input covariance matrix

W ∈ Sn1
+ , and a sensor measurement noise covariance matrix Ṽ ∈ Sn2

+ . Suppose that

the pair (A,BW 1/2) is stabilizable and the pair (A,C) is detectable. Let Σ̃ (resp., Σ̃∗)

denote the steady-state a priori (resp., a posteriori) error covariance of the Kalman

filter corresponding to the measurement noise covariance Ṽ , and let Σ (resp., Σ∗) de-

note the steady-state a priori (resp., a posteriori) error covariance of the correspond-

ing Kalman filter when V = 0n2×n2. Then, Σ̃ � Σ + E and Σ̃∗ � Σ∗ + (In − LC)E,

where E is given by

E ,
∞∑
m=0

(A−KC)mKṼ KT ((A−KC)T )m, (4.16)

with K , AΣCT (CΣCT )−1 and L , ΣCT (CΣCT )−1.4

Note that E exists and is finite since the matrix A−KC is stable. See the proof in

Section 4.7.1 for more details. We have the following result for the GKFSS problem.

Theorem 4.5.2 Suppose that Assumptions 4.3.1-4.3.2 hold. Let Σ̃(µ) (resp., Σ̃∗(µ))

be the steady-state a priori (resp., a posteriori) error covariance matrix of the Kalman

filter associated with µ when V = Ṽ ∈ Sn+. Let µ̃∗1 (resp., µ̃∗2) denote an optimal

solution to the priori (resp., posteriori) GKFSS problem when V = Ṽ , and let µ∗

denote an optimal solution to the priori (resp., posteriori) GKFSS problem when

V = 0n×n. Then, trace(Σ̃(µ∗)) ≤ trace(Σ̃(µ̃∗1)) + trace(E(µ∗)) and trace(Σ̃∗(µ∗)) ≤

trace(Σ̃∗(µ̃∗2)) + trace((E∗(µ∗)), where E(µ∗) and L(µ∗) are defined in Lemma 4.5.1

with C = C(µ∗), and E∗(µ∗) , (In − L(µ∗)C(µ∗))E(µ∗).

Proof First, we know from Lemma 4.5.1 that Σ̃(µ∗) � Σ(µ∗) +E(µ∗), where Σ(µ∗)

is the steady-state a priori error covariance of the Kalman filter corresponding to µ∗

4The inverses are interpreted as the Moore-Penrose pseudo-inverses if the arguments are not

invertible [61].
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when V = 0. This implies trace(Σ̃(µ∗)) ≤ trace(Σ(µ∗))+trace(E(µ∗)). Since µ∗ is an

optimal solution to the priori GKFSS problem when V = 0, we have trace(Σ(µ∗)) ≤

trace(Σ(µ̃∗1)). Moreover, one can show that the error covariance of the Kalman filter

is always lower bounded (in the positive semi-definite sense) by the error covariance

of the Kalman filter with zero measurement noise covariance (with the other system

matrices fixed). We obtain trace(Σ(µ̃∗1)) ≤ trace(Σ̃(µ̃∗1)). It then follows from the

above arguments that trace(Σ̃(µ∗)) ≤ trace(Σ̃(µ̃∗1)) + trace(E(µ∗)). Similarly, we can

show that trace(Σ̃∗(µ∗)) ≤ trace(Σ̃∗(µ̃∗2)) + trace(E∗(µ∗)).

The above result has the following interpretation. Consider an instance of the

priori (resp., posteriori) GKFSS problem with V = Ṽ ∈ Sn+. If we simply take V = 0

and apply the algorithm described in Section 4.3.1, we will obtain an optimal solution,

denoted as µ∗, to the corresponding instance of the priori (resp., posteriori) GKFSS

problem (with V = 0). Theorem 4.5.2 shows that the performance (i.e., suboptimal-

ity) of this sensor selection (i.e., µ∗) for the original priori (resp., posteriori) GKFSS

instance with V = Ṽ can be bounded by trace(Σ̃(µ∗)) ≤ trace(Σ̃(µ̃∗1)) + trace(E(µ∗))

(resp., trace(Σ̃∗(µ∗)) ≤ trace(Σ̃∗(µ̃∗2)) + trace(E∗(µ∗))), where µ̃∗1 (resp., µ̃∗2) is an op-

timal solution to the instance of the priori (resp., posteriori) GKFSS problem when

V = Ṽ . Moreover, we see from Eq. (4.16) that as Ṽ goes to zero, trace(E(µ∗)) (resp.,

trace(E∗(µ∗))) will go to zero, which implies that trace(Σ̃(µ∗)) (resp., trace(Σ̃∗(µ∗)))

will go to trace(Σ̃(µ̃∗1)) (resp., trace(Σ̃∗(µ̃∗2))). Similar performance bounds can be

obtained for the GKFSA and RGKFSS problems, respectively.

We provide simulations to show the performance of the algorithms in Section 4.3.1,

Section 4.3.2, and Section 4.4, when applied to solve the GKFSS, GKFSA, and RGK-

FSS problems with measurement noise, respectively. Specifically, consider a strongly

connected graph G(A) with X (A) = {x1, . . . , x10} and |E(A)| = 15, where node x1 has

the stochastic input with variance σ2
w = 0.1. Set the measurement matrix C = I10

and the sensor noise covariance V = σ2
vI10, where σ2

v ∈ R≥0. Under a fixed cost

hi ∈ Z≥0 to select sensor at xi, a budget H ∈ Z≥0, a fixed cost fi ∈ Z≥0 to attack

sensor at xi, and an attack budget F ∈ Z≥0, we randomly generate the corresponding
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(a) GKFSS: True difference vs. Bound (b) GKFSS: Suboptimality

(c) GKFSA: True difference vs. Bound (d) GKFSA: Suboptimality

(e) RGKFSS: True difference vs. Bound (f) RGKFSS: Suboptimality

Fig. 4.2. Performance of the algorithms.
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system dynamics matrix A ∈ R10×10 by selecting each nonzero element of A from a

standard normal distribution. Fig. 4.2(a) and Fig. 4.2(b) show the performance of the

algorithm described in Section 4.3.1, when applied to solve the (priori) GKFSS in-

stances with V = σ2
vI10. Specifically, Fig. 4.2(a) is obtained for a single realization of

A, which compares the gap (i.e., difference) between the optimal solution to the GK-

FSS problem (found by brute force and denoted as OPT ) and the solution returned

by the algorithm (denoted as ALG), with the bound (on the difference) provided in

Theorem 4.5.2, when σ2
v ranges from 0.01 to 0.5. Fig. 4.2(b) shows a histogram of the

suboptimality of the algorithm, computed as ALG−OPT
OPT

, over 1000 realizations of A,

when σ2
v = 5. Similarly, Fig. 4.2(c)-(d) and Fig. 4.2(e)-(f) show the performance of

the algorithm described in Section 4.3.2 for GKFSA and Algorithm 4.4.1 for RGK-

FSS, respectively. Note that we fix a sensor selection µ when solving the GKFSA

instances. Moreover, the objective function of RGKFSS associated with the solution

returned by Algorithm 4.4.1 is computed against the corresponding optimal sensor

attack when V = σ2
vI10. The simulations show that the bounds in Theorem 4.5.2 are

conservative and that the algorithms (for zero sensor noise) give solutions that are

close to optimal for the noisy measurement instances, particularly for RGKSS, even

when σ2
w/σ

2
v becomes small.

4.6 Chapter Summary

In this chapter, we considered networked dynamical systems affected by a stochas-

tic input. Under this setting, we first studied the problem for a system designer to

optimally select the sensors of the nodes over a network subject to a budget constraint

in order to minimize the trace of the steady-state error covariance of the correspond-

ing Kalman filter. We then studied the optimal sensor attack problem where an

adversary can attack the selected sensors under an attack budget constraint in or-

der to maximize the trace of the steady-state error covariance of the Kalman filter

corresponding to the surviving sensors. Using the graph structure of the networked
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system, we provided polynomial-time algorithms to solve these two problems. Fur-

thermore, we studied the resilient sensor selection for the system designer when faced

with an adversary. We showed that this problem is NP-hard, and provided a pseudo-

polynomial-time algorithm to solve it. Although these results are obtained when

there is no sensor noise, we provided bounds on the suboptimality of the proposed

strategies in the presence of sensor measurement noise.

4.7 Proofs of Key Results

4.7.1 Proof of Lemma 4.5.1

Let Σk/k−1 (resp., Σk/k) denote the a priori (resp., a posteriori) error covariance

of the Kalman filter at time step k when V = 0, and let Σ̃k/k−1 (resp., Σ̃k/k) denote

the a priori (resp., a posteriori) error covariance of the Kalman filter at time step k

when V = Ṽ . Denoting W̄ , BWBT , we have (from [61]):

Σ̃k+1/k = (A− K̃kC)Σ̃k/k−1(A− K̃kC)T + W̄ + K̃kṼ K̃
T
k ,

where k ≥ 0 and K̃k , AΣ̃k/k−1C
T (CΣ̃k/k−1C

T + Ṽ )−1 is the corresponding Kalman

gain at time step k. For any time step k, the Kalman gain K̃k satisfies

K̃k = arg min
J

{
(A− JC)Σ̃k/k−1(A− JC)T + W̄ + JṼ JT

}
, (4.17)

where the minimization is in the positive semi-definite sense [61]. Since the pair

(A,BW 1/2) (resp., (A,C)) is stabilizable (resp., detectable), we know from a more

general version of Lemma 4.2.1 for general system matrices in [61] that the limit

Σ̃ = limk→∞ Σ̃k+1/k exists, and satisfies

Σ̃ = (A− K̃C)Σ̃(A− K̃C)T + W̄ + K̃Ṽ K̃T ,

where K̃ , AΣ̃CT (CΣ̃CT + Ṽ )−1 is the corresponding (steady-state) Kalman gain.

Similarly, we have

Σ = (A−KC)Σ(A−KC)T + W̄ , (4.18)
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where K , AΣCT (CΣCT )−1. Noting the optimality of the Kalman gains from

Eq. (4.17), there exists, as argued in [61], a suboptimal filter (when V = Ṽ ) with

a (time-invariant) suboptimal gain given by K such that the corresponding a priori

error covariance at time step k + 1, denoted as Σ̂k+1/k, satisfies

Σ̂k+1/k = (A−KC)Σ̂k/k−1(A−KC)T + W̄ +KṼ KT . (4.19)

Furthermore, the limit Σ̂ , limk→∞ Σ̂k+1/k exists and satisfies Σ̂ � Σ̃ [61]. We then

obtain from Eq. (4.18) and (the steady-state version of) Eq. (4.19) the following:

E = (A−KC)E(A−KC)T +KṼ KT , (4.20)

where E = Σ̂−Σ. Since the matrix A−KC is stable [61], it follows that there exists

a unique finite positive semi-definite matrix E that satisfies Eq. (4.20) and can be

written as E =
∑∞

m=0(A − KC)mKṼ KT ((A − KC)T )m (e.g., [61]). It then follows

from the arguments above that Σ̂ = E + Σ � Σ̃.

Similarly, we see from [61] that Σ̃k/k satisfies Σ̃k/k = (In − L̃kC)Σ̃k/k−1, where

L̃k , Σ̃k/k−1C
T (CΣ̃k/k−1C

T +Ṽ )−1. Moreover, the limits Σ̃∗ , limk→∞ Σ̃k/k and Σ∗ ,

limk→∞Σk/k exist and satisfy Σ̃∗ = (In − L̃C)Σ̃ and Σ∗ = (In − LC)Σ, respectively,

where L̃ , Σ̃CT (CΣ̃CT + Ṽ )−1 and L , ΣCT (CΣCT )−1. Similarly, the a posteriori

error covariance at time step k of the suboptimal filter (when V = Ṽ ) as described

above, denoted as Σ̂k/k, is given by

Σ̂k/k = (In − LC)Σ̂k/k−1. (4.21)

Since the limit Σ̂ = limk→∞ Σ̂k+1/k exists, we know from Eq. (4.21) that the limit

Σ̂∗ , limk→∞ Σ̂k/k also exists. Using similar arguments to those in [61], one can show

that Σ̂∗ � Σ̃∗. Thus, we have Σ̂∗ − Σ∗ = (In − LC)(Σ̂ − Σ) = (In − LC)E, which

implies Σ̃∗ � Σ∗ + (In − LC)E. �
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5. SENSOR SELECTION FOR HYPOTHESIS TESTING

UNDER BUDGET CONSTRAINTS

5.1 Introduction

In the previous chapters, we studied the Kalman filtering sensor selection prob-

lem in linear dynamical systems. In this chapter, we consider the (binary) hypothesis

testing sensor selection problem in the Neyman-Pearson setting and the Bayesian set-

ting. Each candidate sensor is assumed to be associated with a selection cost, which

may vary across the sensors, and we are given a total budget that can be spent on

selecting the sensors. The selected sensors first gather measurements in a distributed

manner, and then transmit the measurements to a fusion center, where the fusion

center can perform the hypothesis testing task (e.g., determining whether a signal

exists or not) based on the measurements from the selected sensors. This scenario

arises in a variety of applications, such as radar and sonar systems [79] and spectrum

sensing for cognitive radio [80]. In this chapter, we first consider the Neyman-Pearson

Hypothesis testing Sensor Selection (NPHSS) problem and the Bayesian Hypothesis

testing Sensor Selection (BHSS) problem. The NPHSS problem is to minimize the

miss probability of the Neyman-Pearson detector based on measurements from the

selected sensors, while satisfying the budget constraint. The BHSS problem mini-

mizes the error probability of the Bayesian detector based on measurements of the

selected sensors, under the budget constraint. Under Gaussian measurement set-

tings, we consider surrogate sensor selection problems based on distance measures

between the conditional distributions corresponding to the measurements from the

selected sensors. Specifically, the distance based sensor selection problem (under the

Gaussian measurement setting) is to maximize the distance measures between the
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conditional distributions corresponding to the measurements of the selected sensors,

while satisfying the budget constraints.

Related Work

There is a large literature on sensor selection problems in control system design

(e.g., [1, 2, 11, 33, 49, 57]), and have provided complexity characterizations and algo-

rithms. In this chapter, we consider the hypothesis testing sensor selection problem

under the Neyman-Pearson and the Bayesian settings.

The hypothesis testing sensor selection problem has also been widely studied

(e.g., [3, 4, 21, 81, 82]). In particular, [3, 4, 21] studied the same problem (i.e., the

distance based sensor selection problem) as we consider in this chapter, but they only

considered the special instances where all the candidate sensors have the same selec-

tion cost, i.e., they considered the cardinality constraint on the set of the selected

sensors.

In [3], the authors first showed that the objective function of the distance based

sensor selection problem (under the Gaussian measurement setting) is not submodular

in general. Then, they provided an algorithm based on Stiefel relaxation to solve the

distance based sensor selection problem. However, they did not provide any theoreti-

cal guarantees on the performance of the proposed algorithm. The authors in [4] also

considered the distance based sensor selection problem, and showed that the problem

can be approximately solved using a semi-definite programming approach based on

convex relaxation. Again, no theoretical performance guarantee was provided for the

proposed heuristic.

The authors in [21] applied greedy algorithms to solve the distance based sensor

selection problem. When the measurements under the two hypotheses have a common

covariance, the authors provided a performance guarantee on the greedy algorithm by

leveraging the notion of approximately submodular set functions introduced in [83].

However the performance guarantee becomes loose for arbitrary covariance matrices.
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The authors in [83] then considered submodular surrogate objective function for the

distance based sensor selection problem. Although the greedy algorithm yields the

(1 − 1
e
) approximation guarantee (e.g., [51]) for the surrogate problem, the solution

returned by the greedy algorithm for this surrogate problem does not have any prov-

able performance guarantees in terms of the original distance based sensor selection

problem. For more general instances of the distance based sensor selection problem

(i.e., when the measurements have different covariances under the two hypotheses),

the authors in [21] first decomposed the objective function of the problem into a dif-

ference of two (surrogate) submodular functions, and then applied a heuristic to solve

the problem. However, they did not provide performance guarantees on the proposed

heuristic.

Summary of Results

When considering the NPHSS problem and the BHSS problem, our contribution

is to show that both of these two problems are NP-hard even when the measurement

vector is Gaussian distributed. This complements the complexity result in [3], where

only the distance based sensor selection problem was shown to be NP-hard.

For the distance based sensor selection problem (with varying selection costs across

the sensors), we apply greedy algorithms to solve the problem, and provide theoretical

performance guarantees by leveraging the notion of submodularity ratio introduced

in, e.g., [84]. To achieve this, we first extend the analysis in [85] for greedy algorithms

for submodular function maximization under budget constraints to nonsubmodular

settings. This extended analysis works for the general problem of maximizing non-

submodular functions under budget constraints. We then provide lower bounds on

the submodularity ratio of the objective function in the distance based sensor selec-

tion problem, which in turn give performance bounds for the greedy algorithm. Our

analysis provides reasonably tight performance guarantees for the greedy algorithm

for general classes of instances of the problem (including the case with common co-
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variance and the case with uncommon covariances). We supplement our theoretical

analysis using illustrative examples and numerical simulations.

Parts of the results presented in this chapter were published in [86].

5.2 Problem Formulation

We consider the classical binary hypothesis testing problem with two possible

hypotheses, denoted as H0 and H1, respectively. Let V , {1, 2, . . . , n} denote the set

of all candidate sensors; each sensor is capable of providing a single measurement.

Let X ,
[
X1 X2 · · · Xn

]T
∈ Rn be the vector that collects measurements (of the

signals) from all the sensors in V , where Xk ∈ R is the measurement from the kth

sensor in V for all k ∈ V . The measurement vector X satisfies

H0 : X ∼ p(x|H0),

H1 : X ∼ p(x|H1),
(5.1)

where p(x|Hi) denotes the probability density function (pdf) of X conditioned on the

state Hi for i = 0, 1.

We consider the scenario where we can only select a subset of sensors from V to

deploy, due to a budget constraint. Specifically, sensor k ∈ V has a certain selection

cost, denoted as ωk ∈ R≥0, for all k ∈ V . Define ω =
[
ω1 ω2 · · · ωn

]T
to be the

sensor cost vector. We are given a total budget, denoted as Ω ∈ R>0, that can be

spent on selecting the sensors.

After a set of sensors is selected, we use their measurements to solve the hypothesis

testing problem corresponding to (5.1). We define an indicator vector µ ∈ {0, 1}n

indicating which sensors are selected, where µk = 1 if sensor k ∈ V is selected, and

µk = 0 if otherwise. Given an indicator vector µ with supp(µ) = {j1, . . . , jp} ⊆

{1, . . . , n}, we define X(µ) =
[
Xj1 · · · Xjp

]T
to be the vector that contains the

measurements from the selected sensors indicated by µ. Denote the pdf of X(µ)
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conditioned on Hi as p(x(µ)|Hi) for i = 0, 1. The log-likelihood ratio between the

conditional pdfs p(x(µ)|H1) and p(x(µ)|H0) is defined as

logL(x(µ)) = log
p(x(µ)|H1)

p(x(µ)|H0)
. (5.2)

We first consider the Neyman-Pearson detector for hypothesis testing which minimizes

the miss probability (also known as Type II error) Pm = P0(H1) such that the false-

alarm probability (also known as Type I error) Pf = P1(H0) is within a prescribed

range, where P0(H1) (resp., P1(H0)) is the conditional probability of deciding H1

(resp., H0) given that H0 (resp., H1) is true. Given an indicator vector µ ∈ {0, 1}n,

we use Pm(µ) and Pf (µ) to denote the miss probability, and the false-alarm probability

obtained from the measurements of the sensors indicated by µ, respectively. For a

given false-alarm rate α ∈ R≥0 and a given indicator vector µ, the decision rule of

the Neyman-Pearson detector has the following form:

logL(x(µ))
H1

≷
H0

γ(µ), (5.3)

where logL(x(µ)) is defined in Eq. (5.2) and γ(µ) is the threshold chosen such that

Pf (µ) = α. Denoting the prior probabilities of the two hypotheses as π0 and π1 = 1−

π0, we next consider the Bayesian hypothesis testing. The Bayes detector minimizes

the Bayesian error probability given by Pe = π0P1(H0) + π1P0(H1). Similarly, we use

Pe(µ) to denote the Bayesian error probability corresponding to the sensors indicated

by a sensor selection vector µ ∈ {0, 1}n. For a given sensor selection vector µ, the

Bayes detector makes a decision using the following decision rule:

logL(x(µ))
H1

≷
H0

log
π0

π1

, (5.4)

where logL(x(µ)) is defined in Eq. (5.2).

We now define the following sensor selection problems.

Problem 5.2.1 (NPHSS and BHSS) Consider two possible states H0 and H1, a sen-

sor measurement vector X ∈ Rn that satisfies (5.1), a cost vector ω ∈ Rn
≥0, and a
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budget Ω ∈ R≥0. The Neyman-Pearson Hypothesis testing Sensor Selection (NPHSS)

problem is to find a sensor selection vector µ that solves

min
µ∈{0,1}n

Pm(µ)

s.t. ωTµ ≤ Ω, Pf (µ) ≤ α,

where Pm(µ) and Pf (µ) are the miss probability and the false-alarm probability cor-

responding to µ, respectively, and α ∈ R≥0 a prescribed false-alarm rate. Similarly,

the Bayesian Hypothesis testing Sensor Selection (BHSS) problem is to find a sensor

selection vector µ that solves

min
µ∈{0,1}n

Pe(µ)

s.t. ωTµ ≤ Ω,

where Pe(µ) is the Bayesian error probability corresponding to µ.

In the remaining of this chapter, we will focus on cases when the measurement

vector X ∈ Rn is Gaussian distributed, i.e.,

H0 : X ∼ N (θ0,Σ0),

H1 : X ∼ N (θ1,Σ1),
(5.5)

where θ0, θ1 ∈ Rn and Σ0,Σ1 ∈ Sn++. The Gaussian distributed case already captures

many models in signal detection (e.g., [87]), which is also the main focus of prior work

on sensor selection for hypothesis testing (e.g., [3], [21]). Given a sensor selection

µ ∈ {0, 1}n with its support denoted by supp(µ) = {j1, . . . , jp} ⊆ {1, . . . , n}, we

define θi(µ) =
[
(θi)j1 · · · (θi)jp

]T
, and define Σi(µ) to be the submatrix of Σi that

contains the rows and columns corresponding to supp(µ), for i = 0, 1. In other words,

the conditional pdfs of X(µ) on H0 and H1 satisfy

H0 : X(µ) ∼ N (θ0(µ),Σ0(µ)),

H1 : X(µ) ∼ N (θ1(µ),Σ1(µ)).

The following result characterizes the complexity of the NPHSS and BHSS problems;

the proof is included in Section 5.7.1.
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Theorem 5.2.2 The NPHSS and BHSS problems are NP-hard even when the mea-

surement vector X ∈ Rn satisfies (5.5).

In fact, Pm, Pf and Pe do not always yield closed-form expressions even under the

Gaussian distributed setting. Thus, we are further motivated to consider alternate

optimization criteria, which have closed-form expressions for the NPHSS and BHSS

problems, in order to seek efficient algorithms to solve the hypothesis testing sensor

selection problems. Fortunately, several metrics pertaining to the distance (or diver-

gence) between two probability distributions have been shown to serve as reasonable

surrogates to the error probabilities as the optimization metrics in the NPHSS prob-

lem and the BHSS problem, such as the Kullback-Leibler (KL) distance K(H1‖H0),

the J-Divergence D(H1‖H0), and the Bhattacharyya distance B(H1‖H0). The prob-

lems then become maximizing the corresponding distances between the two probabil-

ity distributions (under the budget constraints). The interested readers are referred

to [3, 4, 87–89] and the references therein for detailed explanations about using these

surrogates as the optimization metrics in the NPHSS and BHSS problems. Note that

the KL distance, J-Divergence and Bhattacharyya distance between two Gaussian

distributions yield closed-form expressions. Denote the KL distance, J-Divergence

and Bhattacharyya distance corresponding to µ, i.e., between N (θ0(µ),Σ0(µ)) and

N (θ1(µ),Σ1(µ)), as fKL(µ), fJD(µ) and fBD(µ), respectively, which are given by

(e.g., [21]):

fKL(µ) =
1

2

(
tr(Σ̃−1

0 Σ̃1) + (θ̃1 − θ̃0)T Σ̃−1
0 (θ̃1 − θ̃0) + log

det(Σ̃0)

det(Σ̃1)
− |supp(µ)|

)
, (5.6)

fJD(µ) =
1

2

(
tr(Σ̃−1

0 Σ̃1) + tr(Σ̃−1
1 Σ̃0) + (θ̃1 − θ̃0)T Σ̃−1

0 (θ̃1 − θ̃0)

+ (θ̃1 − θ̃0)T Σ̃−1
1 (θ̃1 − θ̃0)

)
− |supp(µ)|, (5.7)

fBD(µ) =
1

8
(θ̃1 − θ̃0)T Σ̃−1(θ̃1 − θ̃0) +

1

2
log

det(Σ̃)√
det(Σ̃1) det(Σ̃0)

, (5.8)

where θ̃i , θi(µ) and Σ̃i , Σi(µ) for i = 0, 1, and Σ̃ , 1
2
(Σ̃0 + Σ̃1).
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Remark 5.2.3 Noting from Eqs. (5.6)-(5.8) that fKL(µ), fJD(µ) and fBD(µ) depend

on θ0(µ) and θ1(µ) only through
(
θ1(µ)− θ0(µ)

)
, we assume without loss of generality

that θ0 = 0n in the sequel. Moreover, it is well-known that these distance measures are

always nonnegative (e.g., [89]), i.e., fKL(µ), fJD(µ), fBD(µ) ∈ R≥0 for all µ ∈ {0, 1}n.

Following the arguments in [3,4,21], we now formally define the following distance

based sensor selection problems.

Problem 5.2.4 (KLDSS, JDSS and BDSS) Consider two possible states H0 and

H1, a sensor measurement vector X ∈ Rn that satisfies (5.5), a cost vector ω ∈ Rn
≥0,

and a budget Ω ∈ R≥0. The KL Distance Sensor Selection (KLDSS) problem, the J-

Divergence Sensor Selection (JDSS) problem, and the Bhattacharyya Distance Sensor

Selection (BDSS) problem are to find sensor selection vectors µ that solve

max
µ∈{0,1}n

fOBJ(µ)

s.t. ωTµ ≤ Ω,

(5.9)

where fOBJ(·) is taken to be fKL(·), fJD(·) and fBD(·), given by Eq. (5.6), Eq. (5.7),

and Eq. (5.8), respectively.

It was shown in [3] that the KLDSS problem and the BDSS problem are NP-hard

even when Σ0 = Σ1. In fact, supposing Σ0 = Σ1 in the KLDSS, JDSS and BDSS

problems, we see that the expressions in Eqs. (5.6)-(5.8) reduce to

fKL(µ) =
1

2
θ̃T1 Σ̃−1

0 θ̃1, (5.10)

fJD(µ) = θ̃T1 Σ̃−1θ̃1, (5.11)

fBD(µ) =
1

8
θ̃T1 Σ̃−1θ̃1, (5.12)

respectively. Note that the form of the expressions in Eqs. (5.10)-(5.12) coincide

with the objective function in the subset selection problem (up to constant multi-

plicative factors) considered in [39], which is known to be NP-hard [38]. Hence, we

can conclude that the KLDSS, JDSS and BDSS problems are all NP-hard even when
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the two hypotheses have a common covariance, i.e., Σ0 = Σ1. Due to the fact that

these alternate problem formulations to the original hypothesis testing sensor prob-

lem (Problem 5.2.1) are NP-hard, there are still no algorithms that can solve these

alternate problems optimally in polynomial time (unless P=NP). Nevertheless, the

closed-form expressions given in Eqs. (5.6)-(5.8) give us chances to prove theoretical

performance guarantees for (approximation) algorithms when applied to the KLDSS,

JDSS and BDSS problems. We will pursue this direction in the sequel and focus

particularly on greedy algorithms with their applications to the KLDSS, JDSS and

BDSS problems.

5.3 Greedy Algorithm

Algorithm 5.3.1 Greedy Algorithm for Problem (P)

Input: V , f : 2V → R≥0, Q, c(v),∀v ∈ V

Output: Sg

1: Sg ← ∅

2: while c(Sg) ≤ Q do

3: v∗ = arg maxv∈V\Sg
f(Sg∪{v})−f(Sg)

c(v)

4: if c(Sg) + c(v∗) ≤ Q then

5: Sg ← Sg ∪ {v∗}

6: else

7: return Sg

To begin our analysis, let us consider the following problem:

max
A⊆V

f(A)

s.t.c(A) ≤ Q,

(P)

where f : 2V → R≥0 is a set function that is assumed, without loss of generality,

to be normalized, i.e., f(∅) = 0. The constraint c(A) ≤ Q represents a budget
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constraint on the sum of costs of elements in A. Specifically, each element v ∈ V is

associated with a cost denoted by c(v) ∈ R≥0, and the sum of the costs of elements

in A needs to satisfy c(A) ,
∑

v∈A c(v) ≤ Q, where Q ∈ R≥0 and c(∅) , 0. Noting

the one-to-one correspondence between a sensor selection µ ∈ {0, 1}n and a subset of

selected sensors indicated by µ,1 the KLDSS, JDSS and BDSS problems defined in

Problem 5.2.4 fall into the class of problems defined by (P). For the case when f(·)

is monotone nondecreasing and submodular, [85] provides performance guarantees

for the greedy algorithm, defined in Algorithm 5.3.1, when applied to solve Problem

(P). Note that the set function f(·) is said to be monotone nondecreasing if for all

A ⊆ V and for all v ∈ V , f(A ∪ {v})− f(A) ≥ 0. The set function f(·) is said to be

submodular if and only if f(A ∪ {v})− f(A) ≥ f(B ∪ {v})− f(B) for all A,B such

that A ⊆ B ⊆ V and for all v ∈ V \ B. However, one can come up with instances

where the objective functions fKL(·), fJD(·) and fBD(·) (in the KLDSS, JDSS and

BDSS problems, respectively) are not submodular (e.g., [3]). In order to also provide

approximation guarantees of the greedy algorithm when applied to solve the KLDSS,

JDSS and BDSS problems, we will leverage the notion of submodularity ratio defined

as follows (see, e.g., [40,84]), which characterizes how close a set function is to being

submodular.

Definition 5.3.1 The submodularity ratio of a nonnegative set function f : 2V →

R≥0 is the largest γ ∈ R that satisfies∑
v∈A\B

(
f({v} ∪B)− f(B)

)
≥ γ

(
f(A ∪B)− f(B)

)
, (5.13)

for all A,B ⊆ V.

Remark 5.3.1 We note from [84] that for a monotone nondecreasing f(·), γ ∈ [0, 1]

by Definition 5.3.1; and f(·) is submodular if and only if γ = 1.

1We will also write fOBJ(µ) as fOBJ(A) in the sequel, where A = supp(µ) ⊆ V, and fOBJ(·) is

specified in Problem 5.2.4. Similarly, we will write θi(A) and Σi(A) for i = 0, 1.
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Based on Definition 5.3.1, we extend the analysis of the greedy algorithm for max-

imizing submodular functions under budget constraints to nonsubmodular settings.

We have the following result; the proof technique is inspired by [85].

Theorem 5.3.2 Consider an instance of Problem (P), where the set function f :

2V → R≥0 is monotone nondecreasing with submodularity ratio γ ∈ R≥0. The greedy

algorithm (Algorithm 5.3.1) has the following approximation guarantee when solving

Problem (P):

f(Sg) ≥ (1− e−γ
c(Sg)

Q )f(S∗), (5.14)

where Sg is the output of the greedy algorithm, and S∗ is the optimal solution to

Problem (P).

Proof Since (5.14) always holds when γ = 0, we will assume γ > 0 in the proof

as follows. Denote Sg = {s1, s2, . . . , sτ}, where τ = |Sg|. For all j ∈ {0, . . . , τ},

let Sj = {s1, . . . , sj}, where S0 = ∅. Note that the greedy choice satisfies sj =

arg maxv∈V\Sj−1

f(Sj−1∪{v})−f(Sj−1)

c(v)
for all j ∈ {1, . . . , τ}. We will first prove the follow-

ing claim.

Claim 5.3.3 For all A ⊆ V and for all j ∈ {0, . . . , τ − 1}, we have

f(S∗) ≤ f(Sj) +
Q

γ
· f(Sj+1)− f(Sj)

c(sj+1)
. (5.15)

To prove the above claim, we note from (5.13) that

f(S∗ ∪ Sj)−f(Sj) ≤
1

γ

∑
s∈S∗\Sj

c(s) · f({s} ∪ Sj)− f(Sj)

c(s)
,

≤ 1

γ

∑
s∈S∗\Sj

c(s) · f(Sj+1)− f(Sj)

c(sj+1)
, (5.16)

≤ Q

γ
· f(Sj+1)− f(Sj)

c(sj+1)
, (5.17)

where (5.16) follows from the greedy choice, and (5.17) follows from c(S∗ \ Sj) ≤

c(S∗) ≤ Q. Noting that f(S∗) ≤ f(S∗ ∪ Sj), we complete the proof of Claim 5.3.3.
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We are now in place to prove (5.14). Let Dj = f(S∗) − f(Sj) for all j ∈ {0, . . . , τ}.

We have from Claim 5.3.3 the following:

Dj−1 ≤
Q

γ
· f(Sj)− f(Sj−1)

c(sj)
=
Q

γ
· Dj−1 −Dj

c(sj)
,

=⇒ Dj ≤ Dj−1(1− c(sj)γ

Q
). (5.18)

Rolling up (5.18), we obtain

Dτ ≤ D0

τ∏
j=1

(1− c(sj)γ

Q
). (5.19)

Moreover, noting that
∑τ

j=1 c(sj) = c(Sg), one can show that
∏τ

j=1(1 − c(sj)γ

Q
) ≤∏τ

j=1(1− c(Sg)γ

τQ
) (e.g., [31]). It then follows from (5.19) that

f(S∗)− f(Sg) ≤ f(S∗)(1− c(Sg)γ

τQ
)τ < f(S∗)e−γ

c(Sg)

Q ,

which completes the proof of the theorem.

Clearly, the approximation guarantee of the greedy algorithm for solving Problem

(P) provided in (5.14) depends on the submodularity ratio γ ∈ R≥0 of f(·), the

budget constraint Q ∈ R≥0, and the sum of the costs of the elements in Sg, i.e.,

c(Sg). Supposing c1 , maxv∈V c(v) ≤ Q, one can show that c(Sg) ≥ Q − c1, which

implies that f(Sg) ≥ (1 − e−γ
Q−c1
Q )f(S∗). Moreover, suppose it is allowed to violate

the budget constraint such that c(Sg) ≤ Q′, where Q′ = c1 + l with l ∈ R≥0. One can

then show that c(Sg) ≥ l, which implies that f(Sg) ≥ (1− e−γ
l
Q )f(S∗). Note that if

c(v) = 1 for all v ∈ V , then c(Sg) = Q and the approximation guarantee reduces to

f(Sg) ≥ (1− e−γ)f(S∗) as obtained in, e.g., [40].

Recall that our goal is to provide performance guarantees for the greedy algorithms

when applied to the KLDSS, JDSS and BDSS problems. In the following section, we

will show that the objective functions of the three problems, i.e., fKL(·), fJD(·) and

fBD(·), are all monotone nondecreasing. More importantly, we will characterize the

submodularity ratios of fKL(·), fJD(·) and fBD(·). Since obtaining the exact value

of the submodularity ratio of a set function from Definition 5.3.1 would require an
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exhaust search over all A,B ⊆ V , we are interested in obtaining (strictly-positive)

lower bounds on the submodularity ratio that can be computed in polynomial time.

Substituting the lower bounds in (5.14) also leads to performance bounds of the

greedy algorithm.

5.4 Bounding the Submodularity Ratios

5.4.1 Common Covariance

As we mentioned in Section 5.2, in the special case when the two hypotheses have

the same covariance, i.e., Σ0 = Σ1 = Σc, where Σc ∈ Sn++, the objective functions

fKL(·), fJD(·) and fBD(·) are given by Eqs. (5.10), (5.11) and (5.12), respectively,

which are equivalent to the objective function in the subset selection problem (up to

multiplicative constant factors) [39]. In this case, the measurement vector is given by

H0 : X ∼ N (0,Σc),

H1 : X ∼ N (θ1,Σc),
(5.20)

where θ1 ∈ Rn, Σc ∈ Sn++, and we recall from Remark 5.2.3 that we have assumed

without loss of generality that θ0 = 0. Using similar arguments to those in [40],

we have the following result which characterizes lower bounds on the submodularity

ratios of fKL(·), fJD(·) and fBD(·); the proof is included in Section 5.7.2.

Proposition 5.4.1 Suppose the measurement vector X ∈ Rn satisfies (5.20). Then,

fKL(·), fJD(·) and fBD(·) are monotone nondecreasing, and the submodularity ratios

of fKL(·), fJD(·) and fBD(·), denoted by γKL ∈ R≥0, γJD ∈ R≥0 and γBD ∈ R≥0,

respectively, satisfy γKL ≥ λn(Σc)
d1(Σc)

, γJD ≥ λn(Σc)
d1(Σc)

and γBD ≥ λn(Σc)
d1(Σc)

.

5.4.2 Uncommon Means and Uncommon Covariances

Moving forward to more general problem instances, our next goal is to give lower

bounds on the submodularity ratios of fKL(·), fJD(·) and fBD(·), when the two hy-
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potheses can have uncommon means and uncommon covariances. That is, the mea-

surement vector X ∈ Rn satisfies

H0 : X ∼ N (0,Σ0),

H1 : X ∼ N (θ1,Σ1),
(5.21)

where θ1 ∈ Rn and Σ0,Σ1 ∈ Sn++. We make the following assumption on the instances

of the KLDSS, JDSS and BDSS problems that we will consider in this section.

Assumption 5.4.1 Let Σ0 = diag(σ2
1, . . . , σ

2
n), where σi ∈ R>0 for all i ∈ {1, . . . , n}.

Remark 5.4.2 Assumption 5.4.1 holds in the problem of detecting a Gaussian signal

in Gaussian noise, where the noise terms from different sensors are uncorrelated [87].

Here, the measurement vector X ∈ Rn satisfies

H0 : X = N,

H1 : X = S +N,
(5.22)

where N ∼ N (0,ΣN) and S ∼ N (θS,ΣS), where θS ∈ Rn, ΣN ,ΣS ∈ Sn++, and ΣN is

diagonal. The measurement noise N ∈ Rn and the signal S ∈ Rn are assumed to be

uncorrelated.

Since the two hypotheses can have different covariances, the objective functions

fKL(·), fJD(·) and fBD(·) no longer have similar expressions. Thus, we treat fKL(·),

fJD(·) and fBD(·) separately as follows. Proofs of the following results can be found

in Sections 5.7.3, 5.7.4 and 5.7.5, respectively.

Proposition 5.4.2 Suppose the measurement vector X ∈ Rn satisfies (5.21). Then,

the objective function fKL(·) of the KLDSS problem under Assumption 5.4.1 is mono-

tone nondecreasing, and the submodularity ratio of fKL(·), denoted as γKL ∈ R≥0,

satisfies

γKL ≥
minv∈V CKL(v)

log d1(Σ1)
λn(Σ1)

+ minv∈V CKL(v)
, (5.23)

where

CKL(v) ,
(θ1(v))2

Σ0(v)
+

Σ1(v)

Σ0(v)
− log

Σ1(v)

Σ0(v)
− 1,∀v ∈ V . (5.24)
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Proposition 5.4.3 Suppose the measurement vector X ∈ Rn satisfies (5.21). Then,

the objective function fJD(·) of the JDSS problem under Assumption 5.4.1 is monotone

nondecreasing, and the submodularity ratio of fJD(·), denoted as γJD ∈ R≥0, satisfies

γJD ≥ min
{
CJD,

λn(Σ1)

d1(Σ1)

}
, (5.25)

where

CJD , min
v∈V

(θ1(v))2

Σ0(v)
+ Σ1(v)

Σ0(v)
+ Σ0(v)

Σ1(v)
− 2

(θ1(v))2

Σ0(v)
+ Σ1(v)

Σ0(v)
+ Σ0(v)

λn(Σ1)
− 2

. (5.26)

Proposition 5.4.4 Suppose the measurement vector X ∈ Rn satisfies (5.21) and

that Assumption 5.4.1 holds. (a) The objective function fBD(·) of the BDSS problem

is monotone nondecreasing, and the submodularity ratio of fBD(·), denoted by γBD ∈

R≥0, satisfies

γBD ≥ min
{ CBD

log d1(Σ1)
λn(Σ1)

+ CBD
,
λn(Σ1)

d1(Σ1)

}
, (5.27)

where CBD , min{C0
BD, C

1
BD} with

C0
BD , log

(
1 +

1

4
min
v∈V

(Σ0(v)− Σ1(v))2

Σ0(v)Σ1(v)

)
, (5.28)

and

C1
BD , log

(
1 +

α2 λn(Σ0)
λn(Σ0)+λ1(Σ1)

λ1(Σ1) maxv∈V Σ1(v)− α2

)
, (5.29)

where α = mini.j∈V,i 6=j,(Σ1)ij 6=0(Σ1)ij. (b) Further suppose Σ1 = Σ0 + ΣS, where ΣS ∈

Sn++. Then,

γBD ≥ min
{ C̄BD

log d1(Σ1)
λn(Σ1)

+ C̄BD
,
λn(Σ1)

d1(Σ1)

}
, (5.30)

where C̄BD , min{C̄0
BD, C̄

1
BD} with

C̄0
BD , log

(
1 +

1

4
min
v∈V

(Σ0(v) + Σ1(v))2

Σ0(v)Σ1(v)

)
, (5.31)

and

C̄1
BD , log

(
1 +

ᾱ2 λn(Σ0)
λn(Σ1)+λ1(Σ0)

λ1(Σ1) maxv∈V Σ1(v)− ᾱ2

+
(λn(ΣS))2

4 maxv∈V
(
Σ0(v)(Σ1(v)− ᾱ2

λ1(Σ1)
)
)), (5.32)

where ᾱ , mini,j∈V,i 6=j(Σ1)ij.
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Given the problem parameters, the lower bounds on the submodularity ratios pro-

vided in Propositions 5.4.1-5.4.4 can be computed in O(n3) time, since finding λ1(Σ1)

and λn(Σ1) requires O(n3) in the worst case (e.g., [90]). Also note that the lower

bounds are all nonnegative. In order to further illustrate how the bounds (particu-

larly in Propositions 5.4.2-5.4.4) depend on the parameters of the KLDSS, JDSS and

BDSS problems, we consider the following example corresponding to Remark 5.4.2.

Example 5.4.3 Consider the problem of detecting the signal S ∼ N (θS,ΣS) in the

noise N ∼ N (0,ΣN), where S ∈ Rn and N ∈ Rn are assumed to be uncorrelated.

Suppose θS = β1n, ΣS ∈ Sn++ and ΣN = σ2In, where β ∈ R≥0 and σ ∈ R>0.

Note that the sensor measurement vector X ∈ Rn corresponding to the instances

given by Example 5.4.3 satisfies (5.22), which gives θ1 = θS, Σ0 = σ2In and Σ1 =

ΣN + ΣS. One can show that the bound on γKL given in (5.23) simplifies into

γKL ≥
β2

σ2 + dn(ΣS)
σ2 − log σ2+dn(ΣS)

σ2

log d1(ΣS)+σ2

λn(ΣS)+σ2 + β2

σ2 + dn(ΣS)
σ2 − log σ2+dn(ΣS)

σ2

. (5.33)

Supposing β, σ, λn(ΣS) and d1(ΣS) are fixed, one can show that the bound in (5.33)

will increase as dn(ΣS) increases. Similarly, supposing σ and ΣS are fixed, one can

show that the bound in (5.33) will increase as β increases.

We then turn to the bound on γJD given in (5.25). First, one can show that CJD

in the bound corresponding to the instances given by Example 5.4.3 has the form:

CJD =

β2

σ2 + d1(ΣS)+σ2

σ2 + σ2

d1(ΣS)+σ2 − 2

β2

σ2 + d1(ΣS)+σ2

σ2 + σ2

λn(ΣS)+σ2 − 2
. (5.34)

Supposing β, σ and λn(ΣS) are fixed, one can show that CJD given by Eq. (5.34)

will increase as d1(ΣS) decreases. Noting that λn(Σ1)
d1(Σ1)

= λn(ΣS)+σ2

d1(ΣS)+σ2 will also increase

as d1(Σ1) decreases, we see that the lower bound in (5.25) will increase as d1(ΣS)

decreases. Similarly, supposing σ and ΣS are fixed, one can show that CJD given in

Eq. (5.34) will increase as β increases. However, the increment of CJD would only

lead to a potential increment of the bound in (5.25), since λn(Σ1)
d1(Σ1)

does not depend on

β.
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Finally, let us consider the bound on γBD given in (5.30) under the instances of

Example 5.4.3. Specifically, one can first obtain from Eqs. (5.31)-(5.32) that

C̄0
BD = log

(
1 +

(2σ2 + dn(ΣS))2

4σ2(σ2 + dn(ΣS))

)
, (5.35)

and

C̄1
BD = log

(
1 +

ᾱ2 σ2

2σ2+λn(ΣS)

(σ2 + λ1(ΣS))(d1(ΣS) + σ2)− ᾱ2
+

(λn(ΣS))2

4σ2
(
σ2 + d1(ΣS)− ᾱ2

λ1(ΣS)+σ2

) .
(5.36)

Supposing σ, λn(ΣS), dn(ΣS), and ᾱ are fixed, we see that C̄0
BD is fixed, and C̄1

BD will

increase if d1(ΣS) (or λ1(ΣS)) decreases. It follows that C̄BD = min{C̄0
BD, C̄

1
BD} will

increase if d1(ΣS) (or λ1(ΣS)) decreases. Moreover, one can show that C̄BD

log
d1(ΣS)+σ2

λn(ΣS)+σ2 +C̄BD

will increase as C̄BD increases (supposing d1(ΣS)+σ2

λn(ΣS)+σ2 is fixed). Also note that d1(ΣS)+σ2

λn(ΣS)+σ2

will decrease as d1(ΣS) decreases. Combining the above arguments yields that the

bound in (5.30) will increase if d1(ΣS) decreases.

In summary, for the instances in Example 5.4.3, the bounds in Propositions 5.4.2-

5.4.4 depend on the difference between d1(ΣS) and dn(ΣS) (or the difference between

λ1(ΣS) and λn(ΣS)). Note that d1(ΣS) and dn(ΣS) correspond to the largest (resp.,

smallest) variance of the signals detected by different sensors. Thus, smaller differ-

ences among the signal variances of different sensors potentially lead to larger values

of the bounds on the submodularity ratios.

Remark 5.4.4 We note from Theorem 5.3.2 that tighter lower bounds on the sub-

modularity ratio yield tighter performance bounds of the greedy algorithm, which po-

tentially imply better performances of the greedy algorithm.

5.5 Numerical Examples

We further illustrate the lower bounds on the submodularity ratios given by Propo-

sitions 5.4.2-5.4.4 using synthetic examples, which allow us to show how those lower

bounds behave according to different parameters of the KLDSS, JDSS and BDSS
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problems (Problem 5.2.4), which in turn influence the performance of the greedy al-

gorithm. Following Example 5.4.3, we consider instances of Problem 5.2.4 with the

form Σ1 = Σ0 + ΣS, where Σ0,ΣS ∈ Sn++, and Σ0 is diagonal. We then generate the

instances of Problem 5.2.4 using the following procedure. Considering a system of

15 sensors, we set the budget Ω = 20, and generate a random cost vector ω ∈ Z15
>0,

which results in maxv∈V ωv = 8. Ω and ω are then kept fixed in the sequel. We set

Σ0 = σ2I15, where σ ∈ R≥0. As argued in Section 5.4, the lower bounds on the sub-

modularity ratios depend on the difference between λ1(ΣS) and λn(ΣS). Therefore,

in order to generate ΣS ∈ Sn++ in a controlled fashion while observing the behavior of

the bounds under different problem parameters, we keep λn(ΣS) = 1 and vary λ1(ΣS)

within certain ranges. For each value of λ1(ΣS), we obtain 500 instances of Problem

5.2.4 via random generations of ΣS ∈ S15
++ and θ1 ∈ R15.

(a) OPT vs. Greedy (b) Submodularity ratio

(c) λ1(ΣS)
λn(ΣS) = 2 (d) λ1(ΣS)

λn(ΣS) = 20

Fig. 5.1. Results for KLDSS when σ = 1.
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The results for the KLDSS problem are reported in Fig. 5.1, where we set σ = 1.

Here, Fig. 5.1(a) plots the optimal solutions and the greedy solutions for different

values of λn(ΣS)
λ1(ΣS)

, where for each value of λn(ΣS)
λ1(ΣS)

, the optimal solution and the greedy

solution are averaged over the 500 instances of the KLDSS problem. Fig. 5.1(b) plots

the averaged lower bound on γKL (provided in Proposition 5.4.2). Fig. 5.1(c)-(d) plot

the histograms of the ratio fKL(µ∗)
fKL(µg)

for λ1(ΣS)
λn(ΣS)

= 2 and λ1(ΣS)
λn(ΣS)

= 20, respectively, where

µ∗ is the optimal sensor selection and µg is the greedy sensor selection.

(a) OPT vs. Greedy (b) Submodularity ratio

(c) λ1(ΣS)
λn(ΣS) = 2 (d) λ1(ΣS)

λn(ΣS) = 20

Fig. 5.2. Results for JDSS when σ = 1.

Specifically, Fig. 5.1(a) shows that the greedy algorithm performs near optimally

for the instances of the KLDSS problem generated using the above procedure. As

λ1(ΣS)
λn(ΣS)

increases, we see from Fig. 5.1(b) that the lower bound on γKL tends to de-

crease, which is aligned with our analysis in Section 5.4. Note that since the cost vec-

tor satisfies maxv∈V ωv = 8, it follows from Theorem 5.3.2 (as argued in Section 5.3)

that the greedy sensor selection µg satisfies fKLf(µg) ≥ (1 − e−0.6γKL)fKL(µ∗). For
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instance, γKL = 0.6 yields fKLf(µg) ≥ 0.30fKL(µ∗), i.e., fKL(µ∗)
fKL(µg)

≤ 3.31. Finally,

Fig. 5.1(c)-(d) showcase the performances of the greedy algorithm when applied to

the 500 instances of KLDSS, for two different values of λn(ΣS)
λ1(ΣS)

. We observe that al-

though the greedy algorithm tends to perform near optimally for λn(ΣS)
λ1(ΣS)

= 2 and

λn(ΣS)
λ1(ΣS)

= 20, the overall performance of the greedy algorithm slightly worsens when

λn(ΣS)
λ1(ΣS)

becomes large. This observation reveals that the lower bound on γKL in Propo-

sition 5.4.2 also provides guidance on how the performance of the greedy algorithm

changes according to different problem parameters, as we discussed in Remark 5.4.4.

(a) OPT vs. Greedy (b) Submodularity ratio

(c) λ1(ΣS)
λn(ΣS) = 2 (d) λ1(ΣS)

λn(ΣS) = 10

Fig. 5.3. Results for BDSS when σ = 0.5.

Similarly, we obtain Fig. 5.2 and Fig. 5.3 for the JDSS problem and the BDSS

problem, respectively, where we set σ = 0.5 when generating the instances of BDSS.

Similar analysis to that above for the KLDSS problem can be applied to the JDSS and

BDSS problems. Putting Figs. 5.1-5.3 together, we observe that the lower bounds on

γKL and γJD yield higher values for a wider range of λn(ΣS)
λ1(ΣS)

and for a larger value of σ,
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compared to the lower bound on γBD. In fact, as we can see from Fig. 5.3(c)-(d), the

overall performance of the greedy algorithm gets worse when applied to the instances

of the BDSS problem, compared to the performances of the greedy algorithm when

applied to the KLDSS and JDSS instances.

5.6 Chapter Summary

In this chapter, we studied the hypothesis testing problem sensor selection problem

under the Neyman-Pearson setting and the Bayesian setting. We first showed that

the Neyman-Pearson hypothesis testing sensor selection problem and the Bayesian

hypothesis testing sensor selection problem are NP-hard even when the measurement

vector is Gaussian. Next, we studied the distance based sensor selection problem, and

provided theoretical performance guarantees for the greedy algorithm by leveraging

the notion of the submodularity ratio. Our analysis also extended the existing result

on the performance guarantees for the greedy algorithm for maximizing submodular

functions under budgeted constraints to nonsubmodular settings.

5.7 Proofs of Key Results

5.7.1 Proof of Theorem 5.2.2

We will show the NP-hardness of NPHSS and BHSS via reductions from the

Subset Selection (SS) problem (e.g., [39]), which is known to be NP-hard (e.g., [38]).

Problem 5.7.1 (SS) Consider a vector b ∈ Rn, where bi 6= 0 for all i ∈ {1, . . . , n},

a matrix C ∈ Sn++, and s ∈ Z≥0. The Subset Selection (SS) problem is to find an

indicator vector µ ∈ {0, 1}n that solves

max
µ∈{0,1}m

(
b(µ)

)T (
C(µ)

)−1
b(µ)

s.t. |supp(µ)| ≤ s,
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where C(µ) is the submatrix of C that contains the rows and columns corresponding

to supp(µ) and b(µ) ,
[
bj1 · · · bjp

]T
, where supp(µ) = {j1, . . . , jp} ⊆ {1, . . . , n}.

We first show that NPHSS is NP-hard via a reduction from SS. Considering any

instance of SS with b ∈ Rn, C ∈ Sn++, and s ∈ Z≥0, where bi 6= 0 for all i ∈ {1, . . . , n},

we construct an instance of NPHSS as follows. The measurement vectorX is Gaussian

distributed conditioned on Hi for i = 0, 1, i.e.,

H0 : X ∼ N (θ0, C),

H1 : X ∼ N (θ1, C),

where we set θ0 = 0n and θ1 = b. The cost vector is set as ω = 1n and the budget is

set as Ω = s. The required false-alarm rate for the Neyman-Pearson detector is set

as α = 1
2
.

Considering any sensor selection µ ∈ {0, 1}m, we obtain from Eq. (5.2):

logL(x(µ)) =
(
θ1(µ)

)T (
C(µ)

)−1
x(µ)− 1

2

(
θ1(µ)

)T (
C(µ)

)−1
θ1(µ). (5.37)

Let T (µ) ,
(
θ1(µ)

)T (
C(µ)

)−1
x(µ) ∈ R, where the pdf of T (µ) conditioned on Hi for

i = 0, 1, is given as

H0 : T (µ) ∼ N (0, σ(µ)),

H1 : T (µ) ∼ N (σ(µ), σ(µ)),

where σ(µ) ,
(
θ1(µ)

)T (
C(µ)

)−1
θ1(µ) > 0 for all µ 6= 0, since

(
C(ν)

)−1
is positive

definite and (θ1)i 6= 0,∀i. We see from (5.3) and (5.37) that the Neyman-Pearson

detector is of the form

T (µ)
H1

≷
H0

γ′(µ), (5.38)

where γ′(µ) , γ(µ) + 1
2
σ(µ). We then know from [87] Case III.B.2 that γ′(µ) satisfies

γ′(µ) =
√
σ(µ)Φ−1(1− α) =

√
σ(µ)Φ−1(

1

2
) = 0,
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where Φ(·) is the cumulative distribution function (cdf) of the standard normal dis-

tribution, and Φ−1(·) is the inverse of Φ(·). The corresponding detection probability

is given by

PD(µ) = P (T (µ) > γ′(µ)|H1)

= 1− Φ
(γ′(µ)− σ(µ)√

σ(µ)

)
= 1− Φ

(
−
√
σ(µ)

)
= Φ

(√(
θ1(µ)

)T (
C(µ)

)−1
θ1(µ)

)
, (5.39)

where P (T (µ) > γ′(µ)|H1) is the conditional probability of T (µ) > γ′(µ) given that

H1 is true. Noting that Φ(x) is monotonically nondecreasing on x ∈ R, Eq. (5.39)

then yields that in order to maximize PD(µ) over sensor selections µ that satisfy the

budget constraint, we have to maximize
(
θ1(µ)

)T (
C(µ)

)−1
θ1(µ). By our construction

of the NPHSS instance, it follows that an indicator vector µ for SS is optimal if and

only if µ is optimal for the corresponding NPHSS instance that we construct. Since

SS is NP-hard, the NPHSS problem is also NP-hard. Using similar arguments, we

can show that the BHSS problem is also NP-hard, which completes the proof of the

theorem. �

5.7.2 Proof of Proposition 5.4.1

We will use the following result.

Lemma 5.7.2 Consider a random vector X =
[
X1 . . . Xn

]T
∈ Rn with covariance

Σ ∈ Sn++. For all p < n (p ∈ Z>0), consider an indicator vector µ ∈ {0, 1}n with

supp(µ) = {1, . . . , p}. Let X(µ) =
[
X1 · · · Xp

]T
and X(µc) ,

[
Xp+1 · · · Xn

]T
,

where the covariances of X(µ) and X(µc) are denoted by Σ(µ) and Σ(µc), respectively.

Partitioning Σ as

Σ =

 Σ(µ) ΣX(µ)X(µc)

ΣT
X(µ)X(µc) Σ(µc)

 ,
where ΣX(µ)X(µc) , Cov(X(µ), X(µc)), the following holds:

λn(Σ) ≤ λn
(
Σ(µ)− ΣX(µ)X(µc)(Σ(µc))−1ΣT

X(µ)X(µc)

)
.



108

Proof We first note that since Σ ∈ Sn++, Σ(µ) and Σ(µc) are positive definite for

all µ ∈ {0, 1}n with supp(µ) = {1, . . . , p}, where p < n (p ∈ Z>0). Denoting Σ′(µ) =

Σ(µ)− ΣX(µ)X(µc)(Σ(µc))−1ΣT
X(µ)X(µc), we have the following [91]:

Σ =

Ip ΣX(µ)X(µc)(Σ(µc))−1

0 In−p

Σ′(µ) 0

0 Σ(µc)

 Ip 0

(Σ(µc))−1ΣT
X(µ)X(µc) In−p

 .
(5.40)

Let e1 be an eigenvector of the eigenvalue λn(Σ′(µ)) > 0, i.e., Σ′(µ)e1 = λn(Σ′(µ))e1,

and define e0 =

 e1

−(Σ(µc))−1ΣT
X(µ)X(µc)e1

. We have from Eq. (5.40) the following:

Σe0 =

Σ′(µ) ΣX(µ)X(µc)

0 Σ(µc)

 Ip 0

(Σ(µc))−1ΣT
X(µ)X(µc) In−p

 e1

−(Σ(µc))−1ΣT
X(µ)X(µc)e1


=

Σ′(µ) ΣX(µ)X(µc)

0 Σ(µc)

e1

0

 =

Σ′(µ)e1

0

 . (5.41)

Using (5.41), we have

eT0 λn(Σ)e0 ≤ eT0 Σe0 =
[
eT1 −eT1 ΣX(µ)X(µc)(Σ(µc))−1

]Σ′(µ)e1

0


= eT1 Σ′(µ)e1 = eT1 λn(Σ′(µ))e1, (5.42)

where the first inequality follows from Σ � λn(Σ)In [91]. Noting the definition of

e0, we have eT0 e0 ≥ eT1 e1 > 0. It then follows from (5.42) that λn(Σ) ≤ λn
(
Σ(µ) −

ΣX(µ)X(µc)(Σ(µ))−1ΣT
X(µ)X(µc)

)
.

Proof of Proposition 5.4.1: Following Definition 5.3.1, let us consider any subsets

A,B ⊆ V and any v ∈ A \ B, where A \ B 6= ∅. First, suppose B 6= ∅. Denote

Ã , A \ B and let Ã = {v1, . . . , v|Ã|}. For all i ∈ {1, . . . , |Ã|}, let yi ,
(
Σc(vi) −

ΣT
Bvi
ZΣBvi

)−1 ∈ R>0, where ΣBvi , Cov(X(B), X(vi)) ∈ R|B|, and Z , (Σc(B))−1.
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Note that the measurement vector X ∈ Rn satisfies (5.20). Partitioning Σc({vi}∪B)

as Σc({vi} ∪B) =
[

Σc(vi) ΣTBvi
ΣBvi Σc(B)

]
, we have from Eq. (5.10) the following:

2fKL({vi} ∪B)

=
[
θ1(vi) (θ1(B))T

](
Σc({vi} ∪B)

)−1

θ1(vi)

θ1(B)


=
[
θ1(vi) (θ1(B))T

]  yi −yiΣT
Bvi
Z

−ZΣBviyi Z + ZΣBviyiΣ
T
Bvi
Z

θ1(vi)

θ1(B)

 (5.43)

=(θ1(B))TZθ1(B) + (θ1(B))TZΣBviyiΣ
T
Bvi
Zθ1(B)

− 2θ1(vi)yiΣ
T
Bvi
Zθ1(B) + (θ1(vi))

2yi

=(θ1(B))TZθ1(B) +
(
(θ1(B))TZΣBvi − θ1(vi)

)2
yi, (5.44)

where (5.43) uses the inverse formula for block matrices [91]. (5.44) implies that

fKL({v} ∪B)− fKL(B) ≥ 0 for all B ⊆ V (B 6= ∅ and B 6= V) and for all v ∈ V \B.

Since fKL(B) ≥ fKL(∅) = 0 for all B ⊆ V , it follows that fKL(·) is monotone

nondecreasing. Moreover, we have from (5.44) the following:

2
∑
v∈Ã

(
fKL({v} ∪B)− fKL(B)

)
=
[
m1 · · · m|Ã|

]
diag(y1, . . . , y|Ã|)


m1

...

m|Ã|

 , (5.45)

where mi , (θ1(B))TZΣBvi−θ1(vi) for all i ∈ {1, . . . , |Ã|}. Noting that yi =
(
Σc(vi)−

ΣT
Bvi
ZΣBvi

)−1 ≥ (Σc(vi))
−1 ≥ 1

d1(Σc)
for all i ∈ {1, . . . , |Ã|}, we then see from (5.45)

that

2
∑
v∈Ã

(
fKL({v} ∪B)− fKL(B)

)
≥ 1

d1(Σc)

[
m1 · · · m|Ã|

]
m1

...

m|Ã|

 . (5.46)
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Using similar arguments to those above, we can partition Σc(A ∪B) as Σc(A ∪B) =[
Σc(Ã) ΣT

BÃ

ΣBÃ Σc(B)

]
, where ΣBÃ , Cov(X(B), X(Ã)) ∈ R|B|×|Ã|, and obtain from Eq. (5.10)

the following:

2
(
fKL(A ∪B)− fKL(B)

)
=
(
(θ1(B))TZΣBÃ − (θ1(Ã))T

)
Y (ΣT

BÃ
Zθ1(B)− θ1(Ã)),

(5.47)

where Y ,
(
Σc(Ã) − ΣT

BÃ
ZΣBÃ

)−1 ∈ R|Ã|×|Ã|. Noting that
[
m1 · · · m|Ã|

]
=

(θ1(B))TZΣBÃ−(θ1(Ã))T , and using the fact that Y � λ1(Y )I|Ã| [91], where λ1(Y ) =

1/λn
(
Σc(Ã)− ΣT

BÃ
ZΣBÃ

)
, we see from Eq. (5.47) that

2
(
fKL(A ∪B)− fKL(B)

)
≤ 1

λn(Σc)

[
m1 · · · m|Ã|

]
m1

...

m|Ã|

 . (5.48)

To obtain (5.48), we use the following chain of inequalities:

λn
(
Σc(Ã)− ΣT

BÃ
ZΣBÃ

)
≥ λn(Σc(A ∪B)) ≥ λn(Σc), (5.49)

where the first inequality follows from Lemma 5.7.2, and the second inequality follows

from the Cauchy interlacing theorem for positive definite matrices [91]. Combining

(5.46) and (5.48) yields γKL ≥ λn(Σc)
d1(Σc)

.2 Next, supposing B = ∅, one can show using

similar arguments to those above that γKL ≥ λn(Σc)
d1(Σc)

. Moreover, using the same

arguments as above, we see that fJD(·) and fBD(·) are monotone nondecreasing, and

γJD ≥ λn(Σc)
d1(Σc)

and γBD ≥ λn(Σc)
d1(Σc)

hold. �

5.7.3 Proof of Proposition 5.4.2

Note that fKL(B) ≥ fKL(∅) = 0, ∀B ⊆ V . To prove that fKL(·) is monotone

nondecreasing, it is then sufficient to show that for all B ⊆ V (B 6= ∅ and B 6= V)

and for all v ∈ V \ B, fKL({v} ∪ B)− fKL(B) ≥ 0 holds. Denote B̄ , {v} ∪ B, and

2Note that if
[
m1 · · · m|Ã|

] [
m1 · · · m|Ã|

]T
= 0, (5.13) in Definition 5.3.1 naturally holds

for such A,B ⊆ V.
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let ΣBv , Cov(X(B), X(v)) ∈ R|B| be the cross-covariance of X(B) and X(v) under

hypothesis H1. Noting that the measurement vector X ∈ Rn satisfies (5.21) and that

Σ0 ∈ Sn++ is diagonal from Assumption 5.4.1, we have from Eq. (5.6) the following:

2
(
fKL(B̄)− fKL(B)

)
=

Σ1(v)

Σ0(v)
+

(θ1(v))2

Σ0(v)
+ log

det(Σ1(B))

det(Σ1(B̄))
+ log Σ0(v)− 1

=
(θ1(v))2

Σ0(v)
+

Σ1(v)

Σ0(v)
+ log Σ0(v)− log

(
Σ1(v)− ΣT

Bv(Σ1(B))−1ΣBv

)
− 1 (5.50)

≥ (θ1(v))2

Σ0(v)
+

Σ1(v)

Σ0(v)
+ log Σ0(v)− log Σ1(v)− 1 (5.51)

=
(θ1(v))2

Σ0(v)
+

Σ1(v)

Σ0(v)
− log

Σ1(v)

Σ0(v)
− 1 ≥ 0, (5.52)

To obtain (5.50) we use the following identity [91]:

det(Σ1(B̄)) = det

Σ1(v) ΣT
Bv

ΣBv Σ1(B)


= det(Σ1(B)) det(Σ1(v)− ΣT

Bv(Σ1(B))−1ΣBv

)
. (5.53)

where
(
Σ1(v)−ΣT

Bv(Σ1(B))−1ΣBv

)
∈ R>0. To obtain (5.51), we use the fact Σ1(v)−

ΣT
Bv(Σ1(B))−1ΣT

Bv ≤ Σ1(v). Noting that the function h(x) , x − log x achieves its

unique minimum on x > 0 at x = 1 with h(1) = 1, i.e., Σ1(v)
Σ0(v)

− log Σ1(v)
Σ0(v)

≥ 1, the

inequality in (5.52) then follows, which proves that fKL(·) is monotone nondecreasing.

We now bound the submodularity ratio γKL. Let us consider any A,B ⊆ V ,

where A \ B 6= ∅. First, suppose B 6= ∅. We begin by providing a lower bound on∑
v∈A\B

(
fKL({v} ∪B)− fKL(B)

)
. Following (5.51), we obtain:

2
∑
v∈A\B

(
fKL({v} ∪B)− fKL(B)

)
≥
∑
v∈A\B

((θ1(v))2

Σ0(v)
+

Σ1(v)

Σ0(v)
− log

Σ1(v)

Σ0(v)
− 1
)
.

(5.54)
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We then give an upper bound on
(
fKL(A ∪ B) − fKL(B)

)
. Denote B̃ , A ∪ B and

Ã , A \B. Let ΣBÃ , Cov(X(B), X(Ã)) ∈ R|B|×|Ã| be the cross-covariance of X(B)

and X(Ã) under hypothesis H1. Similarly, we have from Eq. (5.6) the following:

2
(
fKL(B̃)− fKL(B)

)
=
{∑
v∈Ã

((θ1(v))2

Σ0(v)
+

Σ1(v)

Σ0(v)
− 1
)}

+ log

(∏
v∈Ã Σ0(v)

)
det(Σ1(B))

det(Σ1(B̃))

=
{∑
v∈Ã

((θ1(v))2

Σ0(v)
+

Σ1(v)

Σ0(v)
− 1
)}

+ log

∏
v∈Ã Σ0(v)

det
(
Σ1(Ã)− ΣT

BÃ
(Σ1(B))−1ΣBÃ

) (5.55)

≤
{∑
v∈Ã

((θ1(v))2

Σ0(v)
+

Σ1(v)

Σ0(v)
− 1
)}

+ log

∏
v∈Ã Σ0(v)

(λn(Σ1))|Ã|
(5.56)

=
{∑
v∈Ã

((θ1(v))2

Σ0(v)
+

Σ1(v)

Σ0(v)
− log

Σ1(v)

Σ0(v)
− 1
)}

+ log

∏
v∈Ã Σ1(v)

(λn(Σ1))|Ã|
,

≤
{∑
v∈Ã

((θ1(v))2

Σ0(v)
+

Σ1(v)

Σ0(v)
− log

Σ1(v)

Σ0(v)
− 1
)}

+ |Ã| log
d1(Σ1)

λn(Σ1)
, (5.57)

where (5.55) uses the following identity [91]:

det(Σ1(B̃)) = det

Σ1(Ã) ΣT
BÃ

ΣBÃ Σ1(B)


= det(Σ1(B)) det(Σ1(Ã)− ΣT

BÃ
(Σ1(B))−1ΣBÃ

)
. (5.58)

For (5.56), we use the following chain of inequalities:

λn
(
Σ1(Ã)− ΣT

BÃ
(Σ1(B))−1ΣBÃ

)
≥ λn(Σ1(B̃)) ≥ λn(Σ1), (5.59)

where the first inequality follows from Lemma 5.7.2, and the second inequality follows

from the Cauchy interlacing theorem for positive definite matrices [91].

Combining (5.54) and (5.57), we obtain from Definition 5.3.1

γKL ≥
∑

v∈ÃCKL(v)

|Ã| log d1(Σ1)
λn(Σ1)

+
∑

v∈ÃCKL(v)
, (5.60)

where CKL(v) is defined in Eq. (5.24). Noting that Σ1(v)
Σ0(v)

− log Σ1(v)
Σ0(v)

≥ 1 for all v ∈ V

as argued above, we have CKL(v) ≥ 0 for all v ∈ V . Given any A,B ⊆ V , one
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can view the lower bound obtained in (5.60) as a function of
∑

v∈ÃCKL(v), where

|Ã|minv∈V CKL(v) ≤
∑

v∈ÃCKL(v) ≤ |Ã|maxv∈V CKL(v). Moreover, noting that

log d1(Σ1)
λn(Σ1)

≥ 0 (since Σ1 − λn(Σ1)In � 0 [91]), one can then show that the lower

bound in (5.60) (as a function of
∑

v∈ÃCKL(v)) is monotone nondecreasing, which

implies

γKL ≥
|Ã|minv∈V CKL(v)

|Ã| log d1(Σ1)
λn(Σ1)

+ |Ã|minv∈V CKL(v)

≥ minv∈V CKL(v)

log d1(Σ1)
λn(Σ1)

+ minv∈V CKL(v)
. (5.61)

Next, supposing B = ∅, one can show, using similar arguments to those above,

that (5.61) holds. This completes the proof of the proposition. �

5.7.4 Proof of Proposition 5.4.3

Noting that the measurement vector X ∈ Rn satisfies (5.21), we see from Eq. (5.7)

that for all µ ∈ {0, 1}n, fJD(·) can be split into two terms:

fJD(µ) = f 0
JD(µ) + f 1

JD(µ), (5.62)

where

f 0
JD(µ) ,

1

2
(θ1(µ))T (Σ1(µ))−1θ1(µ), (5.63)

and

f 1
JD(µ) ,

1

2
tr
(
(Σ0(µ))−1Σ1(µ)

)
+

1

2
tr
(
(Σ1(µ))−1Σ0(µ)

)
+

1

2
(θ1(µ))T (Σ0(µ))−1θ1(µ)− |supp(µ)|. (5.64)

Denote the submodularity ratios of f 0
JD(·) and f 1

JD(·) as γ0
JD ∈ R≥0 and γ1

JD ∈ R≥0,

respectively. Noting the form of f 0
JD(·) given in Eq. (5.63), we see from Proposition

5.4.1 that f 0
JD(·) is monotone nondecreasing with r0

JD ≥
λn(Σ1)
d1(Σ1)

. Moreover, one can

show that the sum of monotone nondecreasing functions is monotone nondecreasing,

and the submodularity ratio of fJD(·) satisfies γJD = min{γ0
JD, γ

1
JD}. Thus, we aim

to show that f 1
JD(·) is also monotone nondecreasing and lower bound r1

JD.
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Similarly to the proof of Proposition 5.4.2, we first show that f 1
JD(·) is monotone

nondecreasing, i.e., for all B ⊆ V (B 6= ∅ and B 6= V) and for all v ∈ V \B, f 1
JD({v}∪

B)−f 1
JD(B) ≥ 0 holds. Denote B̄ , {v}∪B, and let ΣBv , Cov(X(B), X(v)) ∈ R|B|

be the cross-covariance ofX(B) andX(v) under hypothesisH1. Noting that Σ0 ∈ Sn++

is diagonal from Assumption 5.4.1, we have from Eq. (5.64) the following:

2
(
f 1
JD(B̄)− f 1

JD(B)
)

=
(θ1(v))2

Σ0(v)
+

Σ1(v)

Σ0(v)
− 2 + tr

(
(Σ1(B̄))−1Σ0(B̄)

)
− tr

(
(Σ1(B))−1Σ0(B)

)
. (5.65)

Note that Σ1(B̄) and Σ0(B̄) can be partitioned as Σ1(B̄) =
[

Σ1(v) ΣTBv
ΣBv Σ1(B)

]
and Σ0(B̄) =[

Σ0(v) 0
0 Σ0(B)

]
, respectively, which implies via the inverse formula for block matrices [91]

that

(Σ1(B̄))−1Σ0(B̄) =
[

(M1(B,v))−1Σ0(v) ∗
∗ ((Σ1(B))−1Σ0(B)+(Σ1(B̄))−1

B Σ0(B)

]
, (5.66)

where

((Σ1(B̄))−1
B , (Σ1(B))−1ΣBv(M1(B, v))−1ΣT

Bv(Σ1(B))−1,

and M1(B, v) , Σ1(v) − ΣT
Bv(Σ1(B))−1ΣBv. It then follows from Eqs. (5.65)-(5.66)

that

2
(
f 1
JD(B̄)− f 1

JD(B)
)

=
(θ1(v))2

Σ0(v)
+

Σ1(v)

Σ0(v)
− 2 + (M1(B, v))−1Σ0(v)

+ tr
(
(Σ1(B))−1ΣBv(M1(B, v))−1ΣT

Bv(Σ1(B))−1Σ0(B)
)

≥ (θ1(v))2

Σ0(v)
+

Σ1(v)

Σ0(v)
− 2 +

Σ0(v)

Σ1(v)

+ tr
(
ΣT
Bv(Σ1(B))−1Σ0(B)(Σ1(B))−1ΣBv(M1(B, v))−1

)
, (5.67)

where (5.67) uses M1(B, v) ≤ Σ1(v) and the cyclic property of trace. Since the

function g(x) , x+ 1
x

achieves its unique minimum on x > 0 at x = 1 with g(1) = 2,

we have Σ1(v)
Σ0(v)

+ Σ0(v)
Σ1(v)

≥ 2, which implies via (5.67) that f 1
JD({v} ∪B)− f 1

JD(B) ≥ 0.

Hence, we conclude that f 1
JD(·) is monotone nondecreasing.

We now give a lower bound on γ1
JD. Let us consider any A,B ⊆ V , where A\B 6= ∅.

First, suppose B 6= ∅. We begin with lower bounding
∑

v∈A\B
(
f 1
JD({v} ∪ B) −
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f 1
JD(B)

)
. Denote Ã , A\B, and let ΣBÃ , Cov(X(B), X(Ã)) ∈ R|B|×|Ã| be the cross-

covariance of X(B) and X(Ã) under hypothesis H1. Continuing with the arguments

leading to (5.67), we have the following:

2
∑
v∈Ã

(
f 1
JD({v} ∪B)− f 1

JD(B)
)

≥
∑
v∈Ã

((θ1(v))2

Σ0(v)
+

Σ1(v)

Σ0(v)
+

Σ0(v)

Σ1(v)
− 2

+
1

d1(Σ1)
tr
(
ΣT
Bv(Σ1(B))−1Σ0(B)(Σ1(B))−1ΣBv

))
(5.68)

=
{∑
v∈Ã

((θ1(v))2

Σ0(v)
+

Σ1(v)

Σ0(v)
+

Σ0(v)

Σ1(v)
− 2
)}

+
1

d1(Σ1)
tr
(
ΣT
BÃ

(Σ1(B))−1Σ0(B)(Σ1(B))−1ΣBÃ

)
, (5.69)

where (5.68) follows from M1(B, v) ≤ Σ1(v) ≤ d1(Σ1) for all v ∈ V . To obtain

(5.69), we note that ΣBÃ =
[

ΣBv1 ··· ΣBv|Ã|

]
, where ΣBvi = Cov(X(B), X(vi)) under

hypothesis H1 for all vi ∈ Ã = {v1, . . . , v|Ã|}. Next, we upper bound
(
f 1
JD(A ∪ B)−

f 1
JD(B)

)
. Denote B̃ , A ∪ B, and let M1(B, Ã) , Σ1(Ã) − ΣT

BÃ
(Σ1(B))−1ΣBÃ.

Similarly, we obtain from Eq. (5.64) the following:

2
(
f 1
JD(B̃)− f 1

JD(B)
)

=
∑
v∈Ã

((θ1(v))2

Σ0(v)
+

Σ1(v)

Σ0(v)
− 2
)

+ tr
(
(Σ1(B̃))−1Σ0(B̃)

)
− tr

(
(Σ1(B))−1Σ0(B)

)
=
∑
v∈Ã

((θ1(v))2

Σ0(v)
+

Σ1(v)

Σ0(v)
− 2
)

+ tr
(
(M1(B, Ã))−1Σ0(Ã)

)
+ tr

(
(Σ1(B))−1ΣBÃ(M1(B, Ã))−1ΣT

BÃ
(Σ1(B))−1Σ0(B)

)
(5.70)

=
∑
v∈Ã

((θ1(v))2

Σ0(v)
+

Σ1(v)

Σ0(v)
− 2
)

+ tr
(
Σ0(Ã)(M1(B, Ã))−1

)
+ tr

(
ΣT
BÃ

(Σ0(B))−1Σ0(B)(Σ1(B))−1ΣBÃ(M1(B, Ã))−1
)

(5.71)

≤
∑
v∈Ã

((θ1(v))2

Σ0(v)
+

Σ1(v)

Σ0(v)
− 2
)

+
1

λn(Σ1)
tr(Σ0(B))

+
1

λn(Σ1)
tr
(
ΣT
BÃ

(Σ0(B))−1Σ0(B)(Σ1(B))−1ΣBÃ

)
, (5.72)
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To obtain (5.70), we note from similar arguments to those for (5.66) that

(Σ1(B̃)−1Σ0(B̃) =
[

(M1(B,Ã))−1Σ0(Ã) ∗
∗ ((Σ1(B))−1Σ0(B)+(Σ1(B̃))−1

B Σ0(B)

]
,

where

((Σ1(B̃))−1
B , (Σ1(B))−1ΣBÃ(M1(B, Ã))−1ΣT

BÃ
(Σ1(B))−1.

We obtain (5.71) from the cyclic property of trace. For (5.72), we first obtain

λn(M1(B, Ã)) ≥ λn(Σ1) from a similar chain of inequalities to that in (5.59), which

implies λ1((M1(B, Ã))−1) ≤ 1
λn(Σ1)

. Then, we use the trace inequality tr(P1P2) ≤

λ1(P2)tr(P1), ∀P1, P2 ∈ Sn+ [92], which implies (5.72).

Combining (5.69) and (5.72), we have from Definition 5.3.1 the following:

γ1
JD ≥

D1
JD(A,B)

d1(Σ1)
+
∑

v∈Ã
( (θ1(v))2

Σ0(v)
+ Σ1(v)

Σ0(v)
+ Σ0(v)

Σ1(v)
− 2
)

D1
JD(A,B)

λn(Σ1)
+
∑

v∈Ã
( (θ1(v))2

Σ0(v)
+ Σ1(v)

Σ0(v)
+ Σ0(v)

λn(Σ1)
− 2
) , (5.73)

where D1
JD(A,B) ∈ R≥0 is defined as

D1
JD(A,B) , tr

(
ΣT
BÃ

(Σ1(B))−1Σ0(B)(Σ1(B))−1ΣBÃ

)
,

for all A,B ∈ V . Since Σ1(v)
Σ0(v)

+ Σ0(v)
Σ1(v)

≥ 2 as argued above, it implies Σ1(v)
Σ0(v)

+ Σ0(v)
λn(Σ1)

≥
Σ1(v)
Σ0(v)

+ Σ0(v)
Σ1(v)

≥ 2, where the first inequality follows from Σ1 − λn(Σ1)In � 0 [91].

Similarly, we have λn(Σ1)
d1(Σ1)

≤ 1. Supposing D1
JD(A,B) > 0, one can then obtain from

(5.73)

γ1
JD ≥ min

{λn(Σ1)

d1(Σ1)
,

∑
v∈Ã
( (θ1(v))2

Σ0(v)
+ Σ1(v)

Σ0(v)
+ Σ0(v)

Σ1(v)
− 2
)∑

v∈Ã
( (θ1(v))2

Σ0(v)
+ Σ1(v)

Σ0(v)
+ Σ0(v)

λn(Σ1)
− 2
)}. (5.74)

Note that if D1
JD(A,B) = 0, we have γ1

J ≥
∑
v∈Ã

(
(θ1(v))2

Σ0(v)
+

Σ1(v)
Σ0(v)

+
Σ0(v)
Σ1(v)

−2
)

∑
v∈Ã

(
(θ1(v))2

Σ0(v)
+

Σ1(v)
Σ0(v)

+
Σ0(v)
λn(Σ1)

−2
) , which also

implies (5.74). Moreover, using similar arguments to those for (5.74), one can show

that∑
v∈Ã
( (θ1(v))2

Σ0(v)
+ Σ1(v)

Σ0(v)
+ Σ0(v)

Σ1(v)
− 2
)∑

v∈Ã
( (θ1(v))2

Σ0(v)
+ Σ1(v)

Σ0(v)
+ Σ0(v)

λn(Σ1)
− 2
) ≥ min

v∈Ã

(θ1(v))2

Σ0(v)
+ Σ1(v)

Σ0(v)
+ Σ0(v)

Σ1(v)
− 2

(θ1(v))2

Σ0(v)
+ Σ1(v)

Σ0(v)
+ Σ0(v)

λn(Σ1)
− 2
≥ CJD,

(5.75)

where CJD is defined by Eq. (5.26). Combining (5.74)-(5.75), we obtain

γ1
JD ≥ min{CJD,

λn(Σ1)

d1(Σ1)
}. (5.76)
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Next, suppose B = ∅. Using similar arguments to those above, one can show

that γ1
JD ≥

∑
v∈Ã

(
(θ1(v))2

Σ0(v)
+

Σ1(v)
Σ0(v)

+
Σ0(v)
Σ1(v)

−2
)

∑
v∈Ã

(
(θ1(v))2

Σ0(v)
+

Σ1(v)
Σ0(v)

+
Σ0(v)
λn(Σ1)

−2
) ≥ CJD, which also leads to (5.76). Recalling

γ0
JD ≥

λn(Σ1)
d1(Σ1)

, (5.25) follows from γJD = min{γ0
JD, γ

1
JD}, completing the proof of the

proposition. �

5.7.5 Proof of Proposition 5.4.4

Proof of (a): Noting that the measurement vector X ∈ Rn satisfies (5.21), we see

from Eq. (5.8) that for all µ ∈ {0, 1}n, fBD(µ) can be written as

fBD(µ) = f 0
BD(µ) + f 1

BD(µ), (5.77)

where

f 0
BD(µ) ,

1

4
(θ1(µ))T (Σ0(µ) + Σ1(µ))−1θ1(µ), (5.78)

and

f 1
BD(µ) ,

1

2
log

det(1
2
Σ0(µ) + 1

2
Σ1(µ))√

det(Σ0(µ)) det(Σ1(µ))
. (5.79)

Denote the submodularity ratios of f 0
BD(·) and f 1

BD(·) as γ0
BD ∈ R≥0 and γ1

BD ∈ R≥0,

respectively. Similarly to the arguments in the proof of Proposition 5.4.3, we note

from Proposition 5.4.1 that f 0
BD(·) is monotone nondecreasing with γ0

BD ≥
λn(Σ1)
d1(Σ1)

.

Moreover, the submodularity ratio of fBD(·) satisfies γBD = min{γ0
BD, γ

1
BD}. We

thus focus on proving f 1
BD(·) is monotone nondecreasing and lower bounding γ1

BD.

We first show that f 1
BD(·) is monotone nondecreasing, i.e., for all B ⊆ V (B 6= ∅

and B 6= V) and for all v ∈ V \ B, f 1
BD({v} ∪ B) − f 1

BD(B) ≥ 0 holds. Let ΣBv ,

Cov(X(B), X(v)) ∈ R|B| be the cross-covariance of X(B) and X(v) under hypothesis

H1, and let Σ(B) , 1
2
(Σ0(B)+Σ1(B)), where we note that Σ({v}∪B) =

[
Σ(v) 1

2
ΣTBv

1
2

ΣBv Σ(B)

]
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since Σ0 ∈ Sn++ is diagonal from Assumption 5.4.1. Denoting B̄ , {v} ∪ B, we then

have from Eq. (5.79) the following:

4
(
f 1
BD(B̄)− f 1

BD(B)
)

= 2 log
det(Σ(B̄))

det(Σ(B))
+ log

det(Σ0(B)) det(Σ1(B))

det(Σ0(B̄)) det(Σ1(B̄))

= 2 log
(
Σ(v)− 1

4
ΣT
Bv(Σ(B))−1ΣBv

)
− log

(
Σ0(v)(Σ1(v)− ΣT

Bv(Σ1(B))−1ΣBv)
)

(5.80)

= log
1
4

(
Σ0(v) + Σ1(v)− ΣT

Bv(2Σ(B))−1ΣBv

)2

Σ0(v)
(
Σ1(v)− ΣT

Bv(Σ1(B))−1ΣBv

) , (5.81)

where (5.80) follows from the identity in (5.53). Noting that Σ0(B)+Σ1(B) � Σ1(B)

implies (Σ0(B) + Σ1(B))−1 � (Σ1(B))−1 [91], we have ΣT
Bv(Σ0(B) + Σ1(B))−1ΣBv ≤

ΣT
Bv(Σ1(B))−1ΣBv. Hence, we see from (5.81) that

4
(
f 1
BD(B̄)− f 1

BD(B)
)
≥ log

1
4

(
Σ0(v) + Σ1(v)− ΣT

Bv(Σ1(B))−1ΣBv

)2

Σ0(v)
(
Σ1(v)− ΣT

Bv(Σ1(B))−1ΣBv

) ≥ 0,

where the second inequality follows from the inequality (x+y)2

xy
≥ 4 for all x, y ∈ R>0.

Thus, we conclude that f 1
BD(·) is monotone nondecreasing.

We now lower bound γ1
BD. Let us consider any A,B ⊆ V , where A \B 6= ∅. First,

supposing B 6= ∅, we have from (5.81)

4
∑
v∈Ã

(
f 1
BD({v} ∪B)− f 1

BD(B)
)

=
∑
v∈Ã

D1
BD(B, v), (5.82)

where

D1
BD(B, v) , log

1
4

(
Σ0(v) + Σ1(v)− ΣT

Bv(2Σ(B))−1ΣBv

)2

Σ0(v)
(
Σ1(v)− ΣT

Bv(Σ1(B))−1ΣBv

) ≥ 0, (5.83)

for all B ⊆ V and for all v ∈ V \B. We then upper bound
(
f 1
BD(A ∪B)− f 1

BD(B)
)
.

Denote B̃ , A ∪ B and Ã , A \ B. Let ΣBÃ , Cov(X(B), X(Ã)) ∈ R|B|×|Ã| be the
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cross-covariance of X(B) and X(Ã) under hypothesis H1. Similarly, we have from

Eq. (5.79) the following:

4
(
f 1
BD(B̃)− f 1

BD(B)
)

= 2 log
det(Σ(B̃))

det(Σ(B))
+ log

det(Σ0(B)) det(Σ1(B))

det(Σ0(B̃)) det(Σ1(B̃))

= 2 log det
(
Σ(Ã)− ΣT

BÃ
(Σ(B))−1ΣBÃ

)
− log det

(
Σ0(Ã)(Σ1(Ã)− ΣT

BÃ
(Σ1(B))−1ΣBÃ)

)
(5.84)

≤ 2 log
∏
v∈Ã

(
Σ(v)− ΣT

Bv(Σ(B))−1ΣBv

)
− log det

(
Σ0(Ã)(Σ1(Ã)− ΣT

BÃ
(Σ1(B))−1ΣBÃ)

)
(5.85)

= log

∏
v∈Ã
(
Σ(v)− ΣT

Bv(Σ(B))−1ΣBv

)2∏
v∈Ã
(
Σ0(v)(Σ1(v)− ΣT

Bv(Σ1(B))−1ΣBv)
)

+ log

∏
v∈Ã
(
Σ0(v)(Σ1(v)− ΣT

Bv(Σ1(B))−1ΣBv)
)

det
(
Σ0(Ã)(Σ1(Ã)− ΣT

BÃ
(Σ1(B))−1ΣBÃ)

)
=
∑
v∈Ã

log
1
4

(
Σ0(v) + Σ1(v)− ΣT

Bv(2Σ(B))−1ΣBv

)2

Σ0(v)
(
Σ1(v)− ΣT

Bv(Σ1(B))−1ΣBv

)
+ log

∏
v∈Ã
(
Σ1(v)− ΣT

Bv(Σ1(B))−1ΣBv

)
det
(
Σ1(Ã)− ΣT

BÃ
(Σ1(B))−1ΣBÃ)

) (5.86)

≤
∑
v∈Ã

log
1
4

(
Σ0(v) + Σ1(v)− ΣT

Bv(2Σ(B))−1ΣBv

)2

Σ0(v)
(
Σ1(v)− ΣT

Bv(Σ1(B))−1ΣBv

) + |Ã| log
d1(Σ1)

λn(Σ1)
, (5.87)

where (5.84) follows from the identity in (5.58). To obtain (5.85), we first use the

Hadamard’s inequality det(P ) ≤ P11 · · ·Pnn for any P ∈ Sn++ [91], and then note

that the ith diagonal element of the matrix
(
Σ(Ã) − ΣT

BÃ
(Σ(B))−1ΣBÃ

)
is given by(

Σ(vi) − ΣT
Bvi

(Σ(B))−1ΣBvi

)
, where ΣBvi = Cov(X(B), X(vi)) under hypothesis H1

for all vi ∈ Ã = {v1, . . . , v|Ã|}. To obtain (5.86), we note that Σ0 ∈ Sn++ is diagonal

from Assumption 5.4.1, which implies det(Σ0(Ã)) =
∏

v∈Ã Σ0(v). To obtain (5.87),

we first note that Σ1(v) − ΣT
Bv(Σ1(B))−1ΣBv ≤ Σ1(v) ≤ d1(Σ1) for all v ∈ Ã. We

then use a similar chain of inequalities to that in (5.59), and obtain λn
(
Σ1(Ã) −

ΣT
BÃ

(Σ1(B))−1ΣBÃ

)
≥ λn(Σ1), which implies det

(
Σ1(Ã) − ΣT

BÃ
(Σ1(B))−1ΣBÃ)

)
≥

(λn(Σ1))|Ã|. (5.87) now follows.
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Combining (5.82) and (5.87), we obtain from Definition 5.3.1

γ1
BD ≥

∑
v∈ÃD

1
BD(B, v)

|Ã| log d1(Σ1)
λn(Σ1)

+
∑

v∈ÃD
1
BD(B, v)

. (5.88)

In the following, we will show that D1
BD(B, v) ≥ min{C0

BD, C
1
BD} for all B ⊆ V

(B 6= ∅ and B 6= V) and for all v ∈ V \ B, where C0
BD and C1

BD are given by

Eq. (5.28) and Eq. (5.29), respectively. This lower bound on D1
BD(B, v) together

with similar arguments to those for (5.61) will imply via (5.88) the following:

γ1
BD ≥

CBD

log d1(Σ1)
λn(Σ1)

+ CBD
, (5.89)

where CBD = min{C0
BD, C

1
BD}.

We now lower bound D1
BD(B, v). We first note from (5.83) that we can also write

D1
BD(B, v) as

D1
BD(B, v) = log

(Σ1(v)− ΣT
Bv(2Σ(B))−1ΣBv

Σ1(v)− ΣT
Bv(Σ1(B))−1ΣBv

+

(
Σ0(v)− Σ1(v) + ΣT

Bv(2Σ(B))−1ΣBv

)2

4Σ0(v)
(
Σ1(v)− ΣT

Bv(Σ1(B))−1ΣBv

) ). (5.90)

Supposing ΣBv = 0, we see from Eq. (5.90) that

D1
BD(B, v) = log

(
1 +

(Σ0(v)− Σ1(v))2

4Σ0(v)Σ1(v)

)
≥ C0

BD. (5.91)

Moreover, we see that the following holds for all B ⊆ V and for all v ∈ V \B:

Σ1(v)− ΣT
Bv(2Σ(B))−1ΣBv

Σ1(v)− ΣT
Bv(Σ1(B))−1ΣBv

= 1 +
ΣT
Bv

(
(Σ1(B))−1 − (2Σ(B))−1

)
ΣBv

Σ1(v)− ΣT
Bv(Σ1(B))−1ΣBv

= 1 +
ΣT
Bv

(
Σ1(B) + Σ1(B)(Σ0(B))−1Σ1(B)

)−1
ΣBv

Σ1(v)− ΣT
Bv(Σ1(B))−1ΣBv

(5.92)

≥ 1 +

1

λ1(Σ1)+
(λ1(Σ1))2

λn(Σ0)

ΣT
BvΣBv

Σ1(v)− ΣT
Bv(Σ1(B))−1ΣBv

(5.93)

≥ 1 +

λn(Σ0)
λ1(Σ1)(λn(Σ0)+λ1(Σ1))

ΣT
BvΣBv

Σ1(v)− 1
λ1(Σ1)

ΣT
BvΣBv

, (5.94)
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where (5.92) uses the matrix inversion lemma [91]:

(Σ0(B) + Σ1(B))−1 = (Σ1(B))−1 −
(
Σ1(B) + Σ1(B)(Σ0(B))−1Σ1(B)

)−1
.

To obtain (5.93), we first note Σ0(B) � λn(Σ0(B))I|B| [91], which implies (Σ0(B))−1 �
1

λn(Σ0(B))
I|B|, which further implies, via the Cauchy interlacing theorem for positive

definite matrices [91], that (Σ0(B))−1 � 1
λn(Σ0)

I|B|. Hence, Σ1(B)(Σ0(B))−1Σ1(B) �
1

λn(Σ0)
(Σ1(B))2. Similarly, Σ1(B) � λ1(Σ1)I|B| and (Σ1(B))2 � λ1((Σ1(B))2)I|B| =

(λ1(Σ1(B)))2I|B| � (λ1(Σ1))2I|B|. Combining the above arguments yields Σ1(B) +

Σ1(B)(Σ0(B))−1Σ1(B) �
(
λ1(Σ1) + (λ1(Σ1))2

λn(Σ0)

)
I|B|, which leads to (5.93). Similarly,

(5.94) follows from (Σ1(B))−1 � 1
λ1(Σ1)

I|B|. Supposing ΣBv 6= 0, it then follows from

Eq. (5.90) and (5.94) that

D1
BD(B, v) ≥ 1 +

λn(Σ0)
λn(Σ0)+λ1(Σ1)

ΣT
BvΣBv

λ1(Σ1)Σ1(v)− ΣT
BvΣBv

≥ C1
BD, (5.95)

Noting that Σ1(v)−ΣT
Bv(Σ1(B))−1ΣBv > 0 for all v ∈ V \B, we have C1

BD ≥ 1 by its

definition in Eq. (5.29). Since (5.91) (resp., (5.95)) holds for all B ⊆ V and v ∈ V \B

such that ΣBv = 0 (resp., ΣBv 6= 0), we conclude that D1
BD(B, v) ≥ min{C0

BD, C
1
BD}

for all B ⊆ V (B 6= ∅ and B 6= V) and for all v ∈ V \B.

Next, suppose B = ∅. Using similar arguments to those above, one can show that

γ1
BD ≥

C̄0
BD

log d1(Σ1)
λn(Σ1)

+ C̄0
BD

, (5.96)

where C̄0
BD is defined by Eq. (5.31). Noting that C̄0

BD ≥ CBD, it then follows from

(5.89) and (5.96) that

γ1
BD ≥

CBD

log d1(Σ1)
λn(Σ1)

+ CBD
,

for all A,B ⊆ V , which completes the proof of part (a).

Proof of (b): Following similar arguments to those for part (a), we will show

that D1
BD ≥ min{C̄0

BD, C̄
1
BD}, where C̄0

BD and C̄1
BD are defined in Eq. (5.31) and

Eq. (5.32), respectively. Consider any A,B ⊆ V , where A \ B 6= ∅. First, suppose
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B 6= ∅. Given that Σ1 = Σ0 + ΣS (ΣS ∈ Sn++), we will show that D1
BD(B, v) ≥ C̄1

BD

for all B ⊆ V (B 6= ∅ and B 6= V) and for all v ∈ V \B. We begin with the following:(
Σ0(v)− Σ1(v) + ΣT

Bv(2Σ(B))−1ΣBv

)2

4Σ0(v)
(
Σ1(v)− ΣT

Bv(Σ1(B))−1ΣBv

)
≥
(
ΣS(v)− ΣT

Bv(2Σ0(B) + ΣS(B))−1ΣBv

)2

4Σ0(v)
(
Σ1(v)− 1

λ1(Σ1)
ΣT
BvΣBv

) (5.97)

≥
(
ΣS(v)− ΣT

Bv(ΣS(B))−1ΣBv

)2

4Σ0(v)
(
Σ1(v)− 1

λ1(Σ1)
ΣT
BvΣBv

) (5.98)

≥ (λn(ΣS))2

4Σ0(v)
(
Σ1(v)− 1

λ1(Σ1)
ΣT
BvΣBv

) , (5.99)

where (5.97) follows from similar arguments to those for (5.94). To obtain (5.98), we

note that ΣS(B) � 2Σ0(B)+ΣS(B), which implies (ΣS(B))−1 � (2Σ0(B)+ΣS(B))−1

[91]. For (5.99), we first note that Σ0 ∈ Sn++ is diagonal from Assumption 5.4.1,

which implies ΣS({v} ∪ B) =
[

ΣS(v) ΣTBv
ΣBv ΣS(B)

]
, where ΣBv = Cov(X(B), X(v)) under

hypothesis H1. We then use a similar chain of inequalities to that in (5.59), and

obtain λn
(
ΣS(v)−ΣT

Bv(ΣS(B))−1ΣBv

)
≥ λn(ΣS). Moreover, using similar arguments

to those leading to (5.94), we have

Σ1(v)− ΣT
Bv(2Σ(B))−1ΣBv

Σ1(v)− ΣT
Bv(Σ1(B))−1ΣBv

≥ 1 +

λn(Σ0)
λ1(Σ1)(λn(Σ0)+λ1(Σ1))

ΣT
BvΣBv

Σ1(v)− 1
λ1(Σ1)

ΣT
BvΣBv

. (5.100)

Noting that (5.99) and (5.100) hold for all B ⊆ V and for all v ∈ V \B, it then follows

from Eq. (5.90) that D1
BD(B, v) ≥ C̄1

BD for all B ⊆ V and for all v ∈ V \ B. Hence,

we conclude that D1
BD(B, v) ≥ C̄1

BD for all B ⊆ V (B 6= ∅ and B 6= V), which implies

γ1
BD ≥

C̄1
BD

log d1(Σ1)
λn(Σ1)

+ C̄1
BD

. (5.101)

Next, suppose B = ∅. Using similar arguments to those above, one can obtain

γ1
BD ≥

C̄0
BD

log d1(Σ1)
λn(Σ1)

+ C̄0
BD

. (5.102)

It then follows from (5.101) and (5.102) that

γ1
BD ≥

C̄BD

log d1(Σ1)
λn(Σ1)

+ C̄BD
,
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where C̄BD = min{C̄0
BD, C̄

1
BD}, for all A,B ⊆ V . This completes the proof of part

(b). �
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6. NEAR-OPTIMAL DATA SOURCE SELECTION FOR

BAYESIAN LEARNING

6.1 Introduction

In this chapter, we extend our analysis for the binary hypothesis testing in Chap-

ter 5 to a general setting where the true state of the world comes from a set that can

have cardinality greater two. Under this setting, a central task in machine learning is

to learn the true state of the world based on data streams provided by data sources.

Here, we do not restrict ourselves to measurements (i.e., data streams) coming from

sensors, since in practice the data streams can come from a variety of sources, in-

cluding experiment outcomes [23], medical tests [24], and sensor measurements [5],

etc.

A classical method to tackle this task is Bayesian learning, where we start with a

prior belief about the true state of the world and update our belief based on the data

streams from the data sources (e.g., [25]). In practice, we need to pay a cost in order

to obtain the data streams from the data sources; for example, conducting certain

experiments or installing a particular sensor incurs some cost that depends on the

nature of the corresponding data source. Thus, a fundamental problem that arises

in Bayesian learning is to select a subset of data sources with the smallest total cost,

while ensuring a certain level of the learning performance based on the data streams

provided by the selected data sources.

In this chapter, we focus on a standard Bayesian learning rule that updates the

belief on the true state of the world recursively based on the data streams. The

learning performance is then characterized by an error given by the difference between

the steady-state belief obtained from the learning rule and the true state of the world.

Moreover, we consider the scenario where the data sources are selected a priori before
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running the Bayesian learning rule, and the set of selected data sources is fixed over

time. We then formulate and study the Bayesian Learning Data Source Selection

(BLDS) problem, where the goal is to minimize the cost spent on the selected data

sources while ensuring that the error of the learning process is within a prescribed

range.

Related Work

In [93] and [94], the authors studied the data source selection problem for Bayesian

active learning. They considered the scenario where the data sources are selected

in a sequential manner with a single data source selected at each time step in the

learning process. The goal is then to find a policy on sequentially selecting the data

sources with minimum cost, while the true state of the world can be identified based

on the selected data sources. In contrast, we consider the scenario where a subset

of data sources are selected a priori. Moreover, the selected data sources may not

necessarily lead to the learning of the true state of the world. Thus, we characterize

the performance of the learning process via its steady-state error.

The problem studied in this chapter is also related but different from the problem

of ensuring sparsity in learning, where the goal is to identify the fewest number of

features in order to explain the phenomena in a given set of data [83,95].

Finally, as we mentioned above, our problem formulation also falls into the class of

the sensor selection problems that have been studied in previous chapters. In general,

the goal of these problems is either to optimize certain (problem-specific) performance

metrics of the estimate associated with the measurements of the selected sensors while

satisfying the sensor selection budget constraint, or minimize the cost spent on the

selected sensors while the estimation performance is within a certain range.
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Summary of Results

In this chapter, we first formulate the Bayesian Learning Data Source Selection

(BLDS) problem, and show that the BLDS problem is NP-hard. Next, we show that

the BLDS problem can be transformed into an instance of the submodular set covering

problem studied in [32]. The BLDS problem can then be solved using a standard

greedy algorithm with approximation guarantees, where the query complexity of the

greedy algorithm is O(n2), with n to be the number of all candidate data sources.

In order to improve the running times of the greedy algorithm, we further propose

a fast greedy algorithm with query complexity O(n
ε

ln n
ε
), where ε ∈ (0, 1). The fast

greedy algorithm also achieves comparable performance guarantees to those of the

standard greedy algorithm. Finally, we provide illustrative examples to interpret the

performance bounds obtained for the greedy algorithms applied to the BLDS problem,

and give simulation results.

The results presented in this chapter are available in a preprint [96].

6.2 The Bayesian Learning Data Source Selection Problem

In this section, we formulate the data source selection problem for Bayesian learn-

ing that we will study in this chapter. Let Θ , {θ1, θ2, . . . , θm} be a finite set of possi-

ble states of the world, where m , |Θ|. We consider a set [n] of data sources that can

provide data streams of the state of the world. At each discrete time step k ∈ Z≥1, the

signal (or observation) provided by source i ∈ [n] is denoted as ωi,k ∈ Si, where Si is

the signal space of source i. Conditional on the state of the world θ ∈ Θ, an observa-

tion profile of the n sources at time k, denoted as ωk , (ω1,k, . . . , ωn,k) ∈ S1×· · ·×Sn,

is generated by the likelihood function `(·|θ). Let `i(·|θ) denote the i-th marginal of

`(·|θ), which is the signal structure of data source i ∈ [n]. We make the following

assumption on the observation model (e.g., see [97–100]).

Assumption 6.2.1 For each source i ∈ [n], the signal space Si is finite, and the like-

lihood function `i(·|θ) satisfies li(si|θ) > 0 for all si ∈ Si and for all θ ∈ Θ. Further-
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more, for all θ ∈ Θ, the observations are independent over time, i.e., {ωi,1, ωi,2, . . . }

is a sequence of independent identically distributed (i.i.d.) random variables. The

likelihood function is assumed to satisfy `(·|θ) =
∏n

i=1 `i(·|θ) for all θ ∈ Θ, where

`i(·|θ) is the i-th marginal of `(·|θ).

Consider the scenario where there is a (central) designer who needs to select a

subset of data sources in order to learn the true state of the world based on the ob-

servations from the selected sources. Specifically, each data source i ∈ [n] is assumed

to have an associated selection cost hi ∈ R>0. Considering any I , {n1, n2, . . . , nτ}

with τ = |I|, we let h(I) denote the sum of the costs of the selected sources in I, i.e.,

h(I) ,
∑

ni∈I hni . Let ωI,k , (ωn1,k, . . . , ωnτ ,k) ∈ Sn1 × · · · × Snτ be the observation

profile (conditioned on θ ∈ Θ) generated by the likelihood function `I(·|θ), where

`I(·|θ) =
∏τ

i=1 `ni(·|θ). We assume that the designer knows `i(·|θ) for all θ ∈ Θ and

for all i ∈ [n], and thus knows `I(·|θ) for all I ⊆ [n] and for all θ ∈ Θ. After the

sources are selected, the designer updates its belief of the state of the world using the

following standard Bayes’ rule:

µIk+1(θ) =
µ0(θ)

∏k
j=0 `I(ωI,j+1|θ)∑

θp∈Θ µ0(θp)
∏k

j=0 `I(ωI,j+1|θp)
∀θ ∈ Θ, (6.1)

where uIk+1(θ) is the belief of the designer that θ is the true state at time step k + 1,

and µ0(θ) is the initial (or prior) belief of the designer that θ is the true state. We

take
∑

θ∈Θ µ0(θ) = 1 and µ0(θ) ∈ R≥0 for all θ ∈ Θ. Note that
∑

θ∈Θ µ
I
k(θ) = 1 for

all I ⊆ [n] and for all k ∈ Z≥1, where 0 ≤ µIk(θ) ≤ 1 for all θ ∈ Θ. In other words,

µIk(·) is a probability distribution over Θ for all k ∈ Z≥1 and for all I ⊆ [n]. Rule

(6.1) is also equivalent to the following recursive rule:

µIk+1(θ) =
µIk(θ)`I(ωI,k+1|θ)∑

θp∈Θ µ
I
k(θp)`I(ωI,k+1|θp)

∀θ ∈ Θ, (6.2)

with µI0 (θ) , µ0(θ) for all I ⊆ [n]. For a given state θ ∈ Θ, we define the set of

observationally equivalent states to θ as

Fθ(I) , arg min
θp∈Θ

DKL(`I(·|θp)‖`I(·|θ)),
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where DKL(`I(·|θp)‖`I(·|θ)) is the Kullback-Leibler (KL) divergence between the like-

lihood functions `I(·|θp) and `I(·|θ). Noting that DKL(`I(·|θ)‖`I(·|θ)) = 0 and that

the KL divergence is always nonnegative, we have θ ∈ Fθ(I) for all θ ∈ Θ and for all

I ⊆ [n]. Equivalently, we can write Fθ(I) as

Fθ(I) = {θp ∈ Θ : `I(sI |θp) = `I(sI |θ),∀sI ∈ SI}, (6.3)

where SI , Sn1 × · · · × Snτ . Note that Fθ(I) is the set of states that cannot be

distinguished from θ based on the data streams provided by the data sources indicated

by I. Moreover, we define Fθ(∅) , Θ. Noting that `I(·|θ) =
∏τ

i=1 `ni(·|θ) under

Assumption 6.2.1, we can further obtain from Eq. (6.3) the following:

Fθ(I) =
⋂
ni∈I

Fθ(ni), (6.4)

for all I ⊆ [n] and for all θ ∈ Θ. Using similar arguments to those for Lemma 1

in [101], one can show the following result.

Lemma 6.2.2 Suppose the true state of the world is θ∗, and µ0(θ) > 0 for all θ ∈ Θ.

For all I ⊆ [n], the rule given in (6.1) ensures: (a) limk→∞ µ
I
k(θp) = 0 almost

surely (a.s.) for all θp /∈ Fθ∗(I); and (b) limk→∞ µ
I
k(θq) = µ0(θq)∑

θ∈Fθ∗ (I) µ0(θ)
a.s. for all

θq ∈ Fθ∗(I), where Fθ∗(I) is given by Eq. (6.4).

Consider a true state θ∗ ∈ Θ and a set I ⊆ [n] of selected sources. In order

to characterize the (steady-state) learning performance of rule (6.1), we will use the

following error metric (e.g., [102]):

eθ∗(I) ,
1

2
lim
k→∞
‖µIk − 1θ∗‖1, (6.5)

where µIk ,
[
µIk(θ1) · · · µIk(θm)

]′
, and 1θ∗ ∈ Rm is a (column) vector where the

element that corresponds to θ∗ is 1 and all the other elements are zero. Note that

1
2
‖µIk−1θ∗‖1 is also known as the total variation distance between the two distributions

µIk and 1θ∗ (e.g., [103]). Also note that eθ∗(I) exists (a.s.) due to Lemma 6.2.2. We
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then see from Lemma 6.2.2 that eθ∗(I) = 1− µ0(θ∗)∑
θ∈Fθ∗ (I) µ0(θ)

holds almost surely. Now,

let us define

esθp(I) , 1− µ0(θp)∑
θ∈Fθp (I) µ0(θ)

∀θp ∈ Θ, (6.6)

which represents the (steady-state) total variation distance between the designer’s

belief µIk and 1θp when θp is the true state of the world, for all θp ∈ Θ. We then define

the Bayesian Learning Data Source Selection (BLDS) problem as follows.

Problem 6.2.3 (BLDS) Consider a set Θ = {θ1, . . . , θm} of possible states of the

world; a set [n] of data sources providing data streams, where the signal space of

source i ∈ [n] is Si and the observation from source i ∈ [n] under state θ ∈ Θ

is generated by `i(·|θ); a selection cost hi ∈ R>0 of each source i ∈ [n]; an initial

belief µ0(θ) ∈ R>0 for all θ ∈ Θ with
∑

θ∈Θ µ0(θ) = 1; and prescribed error bounds

0 ≤ Rθp ≤ 1 (Rθp ∈ R) for all θp ∈ Θ. The BLDS problem is to find a set of selected

data sources I ⊆ [n] that solves

min
I⊆[n]

h(I)

s.t. esθp(I) ≤ Rθp ∀θp ∈ Θ,

(6.7)

where esθp(I) is defined in (6.6).

Note that the constraints in (6.7) capture the fact that the true state of the world

is unknown to the designer in general. In other words, for any set I ⊆ [n] and for any

θp ∈ Θ, the constraint esθp(I) ≤ Rθp requires the (steady-state) learning error esθp(I)

to be upper bounded by Rθp when the true state of the world is assumed to be θp.

Moreover, the interpretation of Rθp for θp ∈ Θ is as follows. When Rθp = 0, we see

from (6.6) and the constraint esθp(I) ≤ Rθp that Fθp(I) = {θp}. In other words, the

constraint esθp(I) ≤ 0 requires that any θq ∈ Θ\{θp} is not observationally equivalent

to θp, based on the observations from the data sources indicated by I ⊆ [n]. Next,

when Rθp = 1, we know from (6.6) that the constraint esθp(I) ≤ 1 is satisfied for all

I ⊆ [n]. Finally, when 0 < Rθp < 1 and µ0(θ) = 1
m

for all θ ∈ Θ, where m = |Θ|, we

see from (6.6) that the constraint esθp(I) ≤ Rθp is equivalent to |Fθp(I)| ≤ 1
1−Rθp

, i.e.,
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the number of states that are observationally equivalent to θp should be less than or

equal to 1
1−Rθp

, based on the observations from the data source indicated by I ⊆ [n].

In summary, the value of Rθp in the constraints represents the requirements of the

designer on distinguishing state θp from other states in Θ, where a smaller value of

Rθp would imply that the designer wants to distinguish θp from more states in Θ and

vice versa. Supposing Rθp = R for all θp ∈ Θ, where 0 ≤ R ≤ 1 and R ∈ R, we see

that the constraints in (6.7) can be equivalently written as maxθp∈Θ e
s
I(θp) ≤ R.

Remark 6.2.4 The problem formulation that we described above can be extended to

the scenario where the data sources are distributed among a set of agents, and the

agents collaboratively learn the true state of the world using their own observations

and communications with other agents. This scenario is known as distributed non-

Bayesian learning (e.g., [100]). The goal of the (central) designer is then to select a

subset of all the agents whose data sources will be used to collect observations such

that the learning error of all the agents is within a prescribed range. More details

about this extension can be found in Section 6.4.

Next, we show that the BLDS problem is NP-hard via a reduction from the set

cover problem defined in Problem 6.2.5, which is known to be NP-hard (e.g., [41],

[104]).

Problem 6.2.5 (Set Cover) Consider a set U = {u1, . . . , ud} and a collection of

subsets of U , denoted as C = {C1, . . . , Ck}. The set cover problem is to select as few

as possible subsets from C such that every element in U is contained in at least one

of the selected subsets.

Theorem 6.2.6 The BLDS problem is NP-hard even when all the data sources have

the same cost, i.e., hi = 1 for all i ∈ [n].

Proof We give a polynomial-time reduction from the set cover problem to the BLDS

problem. Consider an arbitrary instance of the set cover problem as described in

Problem 6.2.5, with the set U = {u1, . . . , ud} and the collection C = {C1, . . . , Ck},
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where Ci’s are subsets of U . Denote Ci = {ui1 , . . . , uiβi} for all i ∈ [k], where βi = |Ci|.

We then construct an instance of the BLDS problem as follows. The set of possible

states of the world is set to be Θ = {θ1, . . . , θd+1}. The number of data sources is set

as n = k, where the signal space of source i is set to be Si = {0, 1} for all i ∈ [k]. For

any source i ∈ [k], the likelihood function `i(·|θ) corresponding to source i ∈ [k] is set

to satisfy that `i(0|θ1) = `i(1|θ1) = 1
2
, `i(0|θq+1) = `i(1|θq+1) = 1

2
for all uq ∈ U \ Ci,

and `i(0|θij+1) = 1
3

and `i(1|θij+1) = 2
3

for all uij ∈ Ci. The selection cost is set as

hi = 1 for all i ∈ [k]. The initial belief is set to be µ0(θp) = 1
d+1

for all p ∈ [d + 1].

The prescribed error bounds are set as Rθ1 = 0 and Rθp = 1 for all p ∈ {2, . . . , d+ 1}.

Note that the set of selected sources is denoted as I = {n1, . . . , nτ} ⊆ [k].

Since Rθp = 1 for all p ∈ {2, . . . , d + 1}, the constraint esθp(I) ≤ Rθp is satisfied

for all I ⊆ [n] and for all p ∈ {2, . . . , d + 1}. We then focus on the constraint

corresponding to θ1. Letting Rθ1 = 0 and µ0(θp) = 1
d+1

for all p ∈ [d + 1], the

constraint esθ1(I) ≤ Rθ1 is equivalent to |Fθ1(I)| ≤ 1, where Fθ1(I) =
⋂
ni∈I Fθ1(ni)

with Fθ1(ni) given by Eq. (6.3). Denote F c
θ1

(i) , Θ \ Fθ1(i) for all i ∈ [k]. From

the way we set the likelihood function `i(·|θ) for source i ∈ [k] in the constructed

instance of the BLDS problem, we see that F c
θ1

(i) = {θi1+1, . . . , θiβi+1} for all i ∈ [k],

i.e., Ci ∈ C corresponds to F c
θ1

(i) for all i ∈ [k]. Moreover, using De Morgan’s laws,

we have

Fθ1(I) =
⋂
ni∈I

Fθ1(ni) = Θ \
( ⋃
ni∈I

F c
θ1

(ni)
)
. (6.8)

Considering any I = {n1, . . . , nτ} ⊆ [k] with τ = |I|, we let CI , {Cn1 , . . . , Cnτ}.

We will show that I is a feasible solution to the given set cover instance (i.e., for any

uj ∈ U , there exists Ci ∈ CI such that uj ∈ Ci) if and only if I is a feasible solution

to the constructed BLDS instance (i.e., the constraint esθ1(I) ≤ Rθ1 is satisfied).

Suppose I is a feasible solution to the given set cover instance. Since Ci ∈ C

corresponds to F c
θ1

(i) for all i ∈ [k], we see that for any θp ∈ {θ2, . . . , θd+1}, there

exists ni ∈ I such that θp ∈ F c
θ1

(ni) in the constructed BLDS instance, which implies⋃
ni∈I F

c
θ1

(ni) = {θ2, . . . , θd+1}. It follows from (6.8) that Fθ1(I) = Θ\{θ2, . . . , θd+1} =

{θ1}, which implies that the constraint |Fθ1(I)| ≤ 1 is satisfied, i.e., the constraint
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esθ1(I) ≤ Rθ1 is satisfied. Conversely, suppose I is a feasible solution to the con-

structed BLDS instance, i.e., the constraint esθ1(I) ≤ Rθ1 is satisfied, which implies

|Fθ1(I)| ≤ 1. Noting that θ1 ∈ Fθ1(I) for all I ⊆ [k], we have Fθ1(I) = {θ1}. We

then see from (6.8) that
⋃
ni∈I F

c
θ1

(ni) = {θ2, . . . , θd+1}, i.e., for all θp ∈ {θ2, . . . , θd+1},

there exists ni ∈ I such that θp ∈ F c
θ1

(ni). It then follows from the one-to-one cor-

respondence between Ci and F c
θ1

(i) that for any uj ∈ U , there exists Cni ∈ CI such

that uj ∈ Cni in the set cover instance.

Since the selection cost is set as hi = 1 for all i ∈ [k], we see from the above

arguments that I∗ is an optimal solution to the set cover instance if and only if it is

an optimal solution to the BLDS instance. Since the set cover problem is NP-hard,

we conclude that the BLDS problem is NP-hard.

6.3 Greedy Algorithms for the BLDS Problem

In this section, we consider a greedy algorithm for the BLDS problem and study

its performance guarantees. We first introduce the following definition.

Definition 6.3.1 ( [51]) A set function f : 2[n] → R is submodular if for all X ⊆

Y ⊆ [n] and for all j ∈ [n] \ Y ,

f(X ∪ {j})− f(X) ≥ f(Y ∪ {j})− f(Y ). (6.9)

Equivalently, f : 2[n] → R is submodular if for all X, Y ⊆ [n],∑
j∈Y \X

(f(X ∪ {j})− f(X)) ≥ f(Y ∪X)− f(X). (6.10)

To proceed, note that the constraint corresponding to θp in Problem 6.2.3 (i.e.,

(6.7)) is satisfied for all I ⊆ [n] if Rθp = 1. Since µ0(θp) > 0 for all θp ∈ Θ, we can

then equivalently write the constraints as∑
θ∈Fθp (I)

µ0(θ) ≤ µ0(θp)

1−Rθp

, ∀θp ∈ Θ with Rθp < 1. (6.11)
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Define F c
θ (I) , Θ \ Fθp(I) for all θ ∈ Θ and for all I ⊆ [n], where Fθ(I) is given

by Eq. (6.4). Note that F c
θ (I) is the set of states that can be distinguished from θ,

given the data sources indicated by I. Using the fact
∑

θ∈Θ µ0(θ) = 1, (6.11) can be

equivalently written as∑
θ∈F cθp (I)

µ0(θ) ≥ 1− µ0(θp)

1−Rθp

, ∀θp ∈ Θ with Rθp < 1. (6.12)

Moreover, we note that the constraint corresponding to θp in (6.12) is satisfied for all

I ⊆ [n] if 1 − µ0(θp)

1−Rθp
≤ 0, i.e., Rθp ≥ 1 − µ0(θp). Hence, we can equivalently write

(6.12) as ∑
θ∈F cθp (I)

µ0(θ) ≥ 1− µ0(θp)

1−Rθp

, ∀θp ∈ Θ̄,

where Θ̄ , {θp ∈ Θ : 0 ≤ Rθp < 1− µ0(θp)}. For any I ⊆ [n], let us define

fθp(I) ,
∑

θ∈F cθp (I)

µ0(θ), ∀θp ∈ Θ̄. (6.13)

Noting that Fθp(∅) = Θ, i.e., F c
θp

(∅) = ∅, we let fθp(∅) = 0. It then follows directly

from (6.13) that fθp : 2[n] → R≥0 is a monotone nondecreasing set function.1

Remark 6.3.1 Note that in order to ensure that there exists I ⊆ [n] that satisfies

the constraints in (6.12), we assume that fθp([n]) ≥ 1 − µ0(θp)

1−Rθp
for all θp ∈ Θ̄, since

fθp(·) is nondecreasing for all θp ∈ Θ̄.

Lemma 6.3.2 The set function fθp : 2[n] → R≥0 defined in (6.13) is submodular for

all θp ∈ Θ̄.

1A set function f : 2[n] → R is monotone nondecreasing if f(X) ≤ f(Y ) for all X ⊆ Y ⊆ [n].
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Proof Consider any I1 ⊆ I2 ⊆ [n] and any j ∈ [n] \ I2. For all I ⊆ [n], we will

drop the dependency of Fθp(I) (resp., F c
θp

(I)) on θp, and write F (I) (resp., F c(I))

for notational simplicity in this proof. We then have the following:

fθp(I1 ∪ {j})− fθp(I1)

=
∑

θ∈F c(I1∪{j})

µ0(θ)−
∑

θ∈F c(I1)

µ0(θ)

=
∑

θ∈F c(I1)∪F c(j)

µ0(θ)−
∑

θ∈F c(I1)

µ0(θ) (6.14)

=
∑

θ∈(F c(I1)∪F c(j))\F c(I1)

µ0(θ) =
∑

θ∈F c(j)\F c(I1)

µ0(θ). (6.15)

To obtain (6.14), we note F c(I1∪{j}) = Θ\F (I1∪{j}) = Θ\ (F (I1)∩F (j)), which

implies (via De Morgan’s laws) F c(I1∪{j}) = F c(I1)∪F c(j). Similarly, we also have

fθp(I2 ∪ {j})− fθp(I2) =
∑

θ∈F c(j)\F c(I2)

µ0(θ). (6.16)

Since I1 ⊆ I2, we have F c(j)\F c(I2) ⊆ F c(j)\F c(I1), which implies via (6.15)-(6.16)

fθp(I1 ∪ {j})− fθp(I1) ≥ fθp(I2 ∪ {j})− fθp(I2).

Since the above arguments hold for all θp ∈ Θ̄, we know from (6.9) in Definition 6.3.1

that fθp(·) is submodular for all θp ∈ Θ̄.

Moreover, considering any I ⊆ [n], we define

f ′θp(I) , min{fθp(I), 1− µ0(θp)

1−Rθp

} ∀θp ∈ Θ̄, (6.17)

where fθp(I) is defined in (6.13). Since fθp(·) is submodular and nondecreasing with

fθp(∅) = 0 and fθp([n]) ≥ 1 − µ0(θp)

1−Rθp
, one can show that f ′θp(·) is also submodular

and nondecreasing with f ′θp(∅) = 0 and f ′θp([n]) = 1− µ0(θp)

1−Rθp
. Noting that the sum of

submodular functions remains submodular, we see that
∑

θp∈Θ̄ f
′
θp

(·) is submodular

and nondecreasing. We also have the following result.

Lemma 6.3.3 Consider any I ⊆ [n]. The constraint
∑

θ∈F cθp (I) µ0(θ) ≥ 1 − µ0(θp)

1−Rθp

holds for all θp ∈ Θ̄ if and only if
∑

θp∈Θ̄ f
′
θp

(I) =
∑

θp∈Θ̄ f
′
θp

([n]), where f ′θp(·) is

defined in (6.17).
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Proof Suppose the constraints
∑

θ∈F cθp (I) µ0(θ) ≥ 1 − µ0(θp)

1−Rθp
hold for all θp ∈ Θ̄. It

follows from (6.17) that f ′θp(I) = 1 − µ0(θp)

1−Rθp
for all θp ∈ Θ̄. Noting that fθp([n]) ≥

1 − µ0(θp)

1−Rθp
as argued in Remark 6.3.1, we have f ′θp([n]) = 1 − µ0(θp)

1−Rθp
for all θp ∈ Θ̄,

which implies
∑

θp∈Θ̄ f
′
θp

(I) =
∑

θp∈Θ̄ f
′
θp

([n]). Conversely, suppose
∑

θp∈Θ̄ f
′
θp

(I) =∑
θp∈Θ̄ f

′
θp

([n]), i.e.,
∑

θp∈Θ̄

(
f ′θp(I) −

(
1 − µ0(θp)

1−Rθp

))
= 0. Noting from (6.17) that

f ′θp(I) ≤ 1 − µ0(θp)

1−Rθp
for all I ⊆ [n], we have f ′θp(I) = 1 − µ0(θp)

1−Rθp
for all θp ∈ Θ̄, i.e.,

fθp(I) ≥ 1− µ0(θp)

1−Rθp
for all θp ∈ Θ̄. This completes the proof of the lemma.

Based on the above arguments, for any I ⊆ [n], we further define

z(I) ,
∑
θp∈Θ̄

f ′θp(I) =
∑
θp∈Θ̄

min{fθp(I), 1− µ0(θp)

1−Rθp

}, (6.18)

where fθp(I) is defined in (6.13). We then see from Lemma 6.3.3 that (6.7) in Prob-

lem 6.2.3 can be equivalently written as

min
I⊆[n]

h(I)

s.t. z(I) = z([n]),

(6.19)

where one can see that z(·) defined in Eq. (6.18) is a nondecreasing and submodular

set function with z(∅) = 0. Considering an instance of the BLDS problem, for any

I ⊆ [n] and for any θ ∈ Θ, one can obtain FI(θ) (and F c
I(θ)) in O(S|I||Θ|) time,

where S , maxni∈I |Si| with Si to be the signal space of source ni ∈ I. Therefore, we

see from (6.13) and (6.18) that for any I ⊆ [n], one can compute the value of z(I) in

O(Sn|Θ|2) time.

Problem (6.19) can now be viewed as the submodular set covering problem studied

in [32], where the submodular set covering problem is solved using a greedy algorithm

with performance guarantees. Specifically, we consider the greedy algorithm defined

in Algorithm 6.3.1 for the BLDS problem. The algorithm maintains a sequence of

sets I0
g , I1

g , . . . , ITg containing the selected elements from [n], where T ∈ Z≥1. Note

that Algorithm 6.3.1 requires O(n2) evaluations of function z(·), where z(I) can be

computed in O(Sn|Θ|2) time for any I ⊆ [n] as argued above. In other words, the

query complexity of Algorithm 6.3.1 is O(n2). We then have the following result
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from the arguments above (i.e., Lemmas 6.3.2-6.3.3) and Theorem 1 in [32], which

characterizes the performance guarantees for the greedy algorithm (Algorithm 6.3.1)

when applied to the BLDS problem.

Algorithm 6.3.1 Greedy Algorithm for BLDS

Input: [n], z : 2[n] → R≥0, hi ∀i ∈ [n]

Output: Ig

1: t← 0, I0
g ← ∅

2: while z(Itg) < z([n]) do

3: jt ∈ arg maxi∈[n]\Itg
z(Itg∪{i})−z(Itg)

hi

4: It+1
g ← Itg ∪ {jt}, t← t+ 1

5: T ← t, Ig ← ITg
6: return Ig

Theorem 6.3.4 Let I∗ be an optimal solution to the BLDS problem. Algorithm 6.3.1

returns a solution Ig to the BLDS problem (i.e., (6.19)) that satisfies the following,

where I1
g , . . . , IT−1

g are specified in Algorithm 6.3.1.

(a) h(Ig) ≤
(
1 + ln max

i∈[n],ζ∈[T−1]
{ z(i)− z(∅)
z(Iζg ∪ {i})− z(Iζg )

: z(Iζg ∪ {i})− z(Iζg ) > 0}
)
h(I∗),

(b) h(Ig) ≤
(
1 + ln

hjT (z(j1)−z(∅))
hj1 (z(IT−1

g ∪{jT })−z(IT−1
g ))

)
h(I∗),

(c) h(Ig) ≤
(
1 + ln z([n])−z(∅)

z([n])−z(IT−1
g )

)
h(I∗),

(d) if z(I) ∈ Z≥0 for all I ⊆ [n], h(Ig) ≤ (
∑M

i=i
1
i
)h(I∗) ≤ (1 + lnM)h(I∗), where

M , maxj∈[n] z(j).

Note that the bounds in Theorem 6.3.4(a)-(c) depend on Itg from the greedy

algorithm. We can compute the bounds in Theorem 6.3.4(a)-(c) in parallel with

the greedy algorithm, in order to provide a performance guarantee on the output of

the algorithm. The bound in Theorem 6.3.4(d) does not depend on Itg, and can be

computed using O(n) evaluations of function z(·).
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6.3.1 Fast greedy algorithm

Algorithm 6.3.2 Fast Greedy Algorithm for BLDS

Input: [n], z : 2[n] → R≥0, hi ∀i ∈ [n], ε ∈ (0, 1)

Output: If

1: t← 0, I0
f ← ∅

2: d← maxi∈[n]
z(i)−z(∅)

hi

3: for (τ = d; τ ≥ εhmin

nhmax
d; τ ← τ(1− ε)) do

4: for j ∈ [n] do

5: if
z(Itf∪{j})−z(I

t
f )

hj
≥ τ then

6: It+1
f ← Itf ∪ {j}, t← t+ 1

7: if z(Itf ) = z([n]) then

8: T ← t, If ← ITf
9: return If

10: T ← t, If ← ITf
11: return If

We now give an algorithm (Algorithm 6.3.2) for BLDS that achieves O(n
ε

ln n
ε
)

query complexity for any ε ∈ (0, 1), which is significantly smaller than O(n2) as n

scales large. In line 3 of Algorithm 6.3.2, hmax , maxj∈[n] hj and hmin , minj∈[n] hj.

While achieving faster running times, we will show that the solution returned by

Algorithm 6.3.2 has slightly worse performance bounds compared to those of Algo-

rithm 6.3.1 provided in Theorem 6.3.4, and potentially slightly violates the constraint

of the BLDS problem given in (6.19). Specifically, a larger value of ε in Algorithm 6.3.2

leads to faster running times of Algorithm 6.3.2, but yields worse performance guaran-

tees. Moreover, note that Algorithm 6.3.1 adds a single element to Ig in each iteration

of the while loop in lines 2-4. In contrast, Algorithm 6.3.2 considers multiple candi-

date elements in each iteration of the for loop in lines 3-9, and adds elements that
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satisfy the threshold condition given in line 5, which leads to faster running times.

Formally, we have the following result; the proof is included in Section 6.6.1.

Theorem 6.3.5 Suppose hmax

hmin
≤ nH holds in the BLDS instances, where hmax =

maxj∈[n] hj, hmin = minj∈[n] hj, and H ∈ R≥1 is a fixed constant. Let I∗ be an optimal

solution to the BLDS problem. For any ε ∈ (0, 1), Algorithm 6.3.2 returns a solution

If to the BLDS problem (i.e., (6.19)) in query complexity O(n
ε

ln n
ε
) that satisfies

z(If ) ≥ (1− ε)z([n]), and has the following performance bounds, where IT−1
f is given

in Algorithm 6.3.2.

(a) h(If ) ≤ 1
1−ε

(
1 + ln z([n])

z([n])−z(IT−1
f )

)
h(I∗),

(b) if z(I) ∈ Z≥0 for all I ⊆ [n], h(If ) ≤ 1
1−ε

(
1 + ln z([n])

)
h(I∗).

Remark 6.3.6 The threshold-based greedy algorithm has also been proposed for the

problem of maximizing a monotone nondecreasing submodular function subject to a

cardinality constraint (e.g., [105]). The threshold-based greedy algorithm proposed

in [105] improves the running times of the standard greedy algorithm proposed in [51],

and achieves a comparable performance guarantee to that of the standard greedy algo-

rithm in [51]. Here, we propose a threshold-based greedy algorithm (Algorithm 6.3.2)

to solve the submodular set covering problem, which improves the running times

of the standard greedy algorithm for the submodular set covering problem proposed

in [32] (i.e., Algorithm 6.3.2), and achieves comparable performances guarantees as

we showed in Theorem 6.3.5.

6.3.2 Interpretation of Performance Bounds

Here, we give an illustrative example to interpret the performance bounds of

Algorithm 6.3.1 and Algorithm 6.3.2 given in Theorem 6.3.4 and Theorem 6.3.5,

respectively. In particular, we focus on the bounds given in Theorem 6.3.4(d) and

Theorem 6.3.5(b). Consider an instance of the BLDS problem, where we set µ0(θp) =

1
m

for all θp ∈ Θ with m = |Θ|. In other words, there is a uniform prior belief

on each state in Θ = {θ1, . . . , θm}. Moreover, we set the error bounds Rθp = R
m
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for all θp ∈ Θ, where R ∈ Z≥0 and R < m − 1. We then have Θ̄ = Θ, where

Θ̄ = {θp ∈ Θ : 0 ≤ Rθp < 1 − µ0(θp)}. Recalling the definition of z(·) in Eq. (6.18),

for any I ⊆ [n], we define

z′(I) , m(m−R)z(I) = m(m−R)
∑
θp∈Θ

f ′θp(I). (6.20)

One can check that z′(I) ∈ Z≥0 for all I ⊆ [n]. Moreover, one can show that (6.19)

can be equivalently written as

min
I⊆[n]

h(I)

s.t. z′(I) = z′([n]).

(6.21)

Noting that M ′ , maxj∈[n] z
′(j) ≤ m2(m − R) from (6.20), we then see from Theo-

rem 6.3.4(d) that applying Algorithm 6.3.1 to (6.21) yields the following performance

bound:

h(Ig) ≤ (
M ′∑
i=i

1

i
)h(I∗) ≤

(
1 + lnM ′)h(I∗) ≤ (1 + 2 lnm+ ln(m−R)

)
h(I∗). (6.22)

Similarly, since z′([n]) ≤ m2(m−R) also holds, Theorem 6.3.5(b) implies the following

performance bound for Algorithm 6.3.2 when applied to (6.21):

h(If ) ≤
1

1− ε
(
1 + ln z′([n])

)
h(I∗) ≤ 1

1− ε
(1 + 2 lnm+ ln(m−R)

)
h(I∗), (6.23)

where ε ∈ (0, 1). Again, we note from Theorem 6.3.5 that a smaller value of ε yields

a tighter performance bound for Algorithm 6.3.2 (according to (6.23)) at the cost of

slower running times. Thus, supposing m and ε are fixed, we see from (6.22) and

(6.23) that the performance bounds of Algorithm 6.3.1 and Algorithm 6.3.2 become

tighter as R increases, i.e., as the error bound Rθp increases. On the other hand,

supposing R and ε are fixed, we see from (6.22) and (6.23) that the performance

bounds of Algorithm 6.3.1 and Algorithm 6.3.2 become tighter as m decreases.

Finally, we note that the performance bounds given in Theorem 6.3.4 are worst-

case performance bounds for Algorithm 6.3.1. Thus, in practice the ratio between a

solution returned by the algorithm and an optimal solution can be smaller than the
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ratio predicted by Theorem 6.3.4. Nevertheless, there may also exist instances of the

BLDS problem that let Algorithm 6.3.1 return a solution that meets the worst-case

performance bound. Moreover, instances with tighter performance bounds (given by

Theorem 6.3.4) potentially imply better performance of the algorithm when applied to

those instances, as we can see from the above discussions and the numerical examples

that will be provided in the next section. Therefore, the performance bounds given in

Theorem 6.3.4 also provide insights into how different problem parameters of BLDS

influence the actual performance of Algorithm 6.3.1. Similar arguments also hold for

Algorithm 6.3.2 and the corresponding performance bounds given in Theorem 6.3.5.

6.3.3 Numerical examples

In this section, we focus on validating Algorithm 6.3.1 and the performance bounds

provided in Theorem 6.3.4 using numerical examples. First, the total number of data

sources is set to be 10, and the selection cost hi is drawn uniformly from [10] for all

i ∈ [n]. The cost structure is then fixed in the sequel. Similarly to Section 6.3.2, we

consider BLDS instances where µ0(θp) = 1
m

for all θp ∈ Θ with m = |Θ|, and Rθp = R
m

for all θp ∈ Θ with R ∈ Z>0 and R < m − 1. Specifically, we set m = 15 and range

R from 0 to 13. For each R ∈ {0, 1, . . . , 13}, we further consider 500 corresponding

randomly generated instances of the BLDS problem, where for each BLDS instance

we randomly generate the set F c
θp

(i) (i.e., the set of states that can be distinguished

from θp given data source i) for all i ∈ [n] and for all θp ∈ Θ.2 In Fig. 6.1, we plot

histograms of the ratio h(Ig)/h(I∗) for R = 1, R = 5 and R = 10, where Ig is the

solution returned by Algorithm 6.3.1 and I∗ is an optimal solution to BLDS. We

2Note that in the BLDS problem (Problem 6.2.3), the signal structure of each data source i ∈ [n]

is specified by the likelihood functions `i(·|θp) for all θp ∈ Θ. As we discussed in previous sections,

(6.7) in Problem 6.2.3 can be equivalently written as (6.19), where one can further note that the

function z(·) does not depend on any likelihood function `i(·|θp), and can be (fully) specified given

F cθp(i) for all i ∈ [n] and for all θp ∈ Θ. Thus, when constructing the BLDS instances in this section,

we directly construct F cθp(i) for all i ∈ [n] and for all θp ∈ Θ in a random manner.
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see from Fig. 6.1 that Algorithm 6.3.1 works well on the randomly generated BLDS

instances. Moreover, we see from Fig. 6.1 that as R increases, Algorithm 6.3.1 yields

better overall performance for the 500 randomly generated BLDS instances.

(a) R = 1. (b) R = 5. (c) R = 10.

Fig. 6.1. Histograms of the ratio h(Ig)/h(I∗).

Fig. 6.2. Performance bound for Algorithm 6.3.1 given by Theorem 6.3.4(d).

Now, from the way we set µ0(θp) and Rθp in the BLDS instances constructed

above, we see from the arguments in Section 6.3.2 that the performance bound for

Algorithm 6.3.1 given by Theorem 6.3.4(d) can be written as h(Ig) ≤
(
1+lnM ′)h(I∗),

where M ′ = maxj∈[n] z
′(j) and z′(·) is defined in (6.20). Thus, in Fig. 6.2, we plot

the performance bound of Algorithm 6.3.1, i.e., 1 + lnM ′, for R ranging from 0

to 13. Also note that for each R ∈ {0, 1, . . . , 13}, we obtain the averaged value of

1+lnM ′ over 500 random BLDS instances as we constructed above. We then see from

Fig. 6.2 that the value of the performance bound of Algorithm 6.3.1 decreases, i.e.,

the performance bound becomes tighter, as R increases from 0 to 13. The behavior of

the performance bound aligns with the actual performance of Algorithm 6.3.1 as we
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presented in Fig. 6.1, i.e., a tighter performance bound potentially implies a better

overall performance of the algorithm on the 500 random BLDS instances.

6.4 Extension to Non-Bayesian Learning

Let us consider a scenario where there is a set of agents, denoted as [n], who wish

to collaboratively learn the true state of the world. The agents interact over a directed

graph G = ([n], E), where each vertex in [n] corresponds to an agent and a directed

edge (j, i) ∈ E indicates that agent i can (directly) receive information from agent j.

Denote Ni , {j : (j, i) ∈ E , j 6= i} as the set of neighbors of agent i. Suppose each

agent has an associated data source with the same observation model as described in

Section 6.2. Specifically, the observation (conditioned on the state θ ∈ Θ) provided

by the data source at agent i at time step k ∈ Z≥1 is denoted as ωi,k ∈ Si, which is

generated by the likelihood function `i(·|θ). Each agent i ∈ [n] is assumed to know

`i(·|θ) for all θ ∈ Θ. Similarly, we consider the scenario where using the data source of

agent i ∈ [n] incurs a cost denoted as hi ∈ R>0 for all i ∈ [n], and there is a (central)

designer who can select a subset I ⊆ [n] of agents whose data sources will be used

to collect observations. We assume that the designer knows `i(·|θ) for all i ∈ [n] and

for all θ ∈ Θ. After set I ⊆ [n] is selected, each agent i ∈ [n] updates its belief of the

state of the world, denoted as µIi,k(·), using the following distributed non-Bayesian

learning rule as described in [100]:

µIi,k+1(θ) =

∏n
j=1(µIj,k(θ))

aij`i(ωi,k+1|θ)∑
θp∈Θ

∏n
j=1(µIj,k(θp))

aij`i(ωi,k+1|θp)
, (6.24)

for all θ ∈ Θ, where µIi,k(θ) is the belief of agent i that θ is the true state at time

step k when the set of sources given by I ⊆ [n] is selected, and aij is the weight that

agent i ∈ [n] assigns to an agent j ∈ Ni∪{i}. Specifically, for any two distinct agents

i, j ∈ [n], aij > 0 if agent i receives information from agent j and aij = 0 otherwise,

where
∑

j∈Ni∪{i} aij = 1. Note that if agent i /∈ I, i.e., the data source of agent i is

not selected to collect observations, we set `i(si|θp) = `i(si|θq) for all θp, θq ∈ Θ and

for all si ∈ Si. Similarly, for any i ∈ [n], the initial belief is set to be µIi,0(θ) = µi,0(θ)
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for all I ⊆ [n] and for all θ ∈ Θ, where
∑

θ∈Θ µi,0(θ) = 1 and µi,0(θ) ∈ R≥0 for all

θ ∈ Θ. We then have from (6.24) that
∑

θ∈Θ µ
I
i,k(θ) = 1 and 0 ≤ µIi,k(θ) ≤ 1 for all

k ∈ Z≥0, for all θ ∈ Θ and for all I ⊆ [n]. Moreover, for a given true state θ ∈ Θ,

we define Fθ(i) = {θp ∈ Θ : `i(si|θp) = `i(si|θ),∀si ∈ Si} for all i ∈ [n], and similarly

denote Fθ(I) =
⋂
ni∈I Fθ(ni), where we note that Fθ(∅) = Θ, and θ ∈ Fθ(I) for all

θ ∈ Θ and for all I ⊆ [n]. We have the following result.

Lemma 6.4.1 Consider a set [n] of agents interacting over a strongly connected

graph G = ([n], E).3 Suppose the true state of the world is θ∗, µi,0(θ) > 0 for all

i ∈ [n] and for all θ ∈ Θ, and aii > 0 for all i ∈ [n] in the rule given in (6.24). For

any I ∈ [n], the rule given in (6.24) ensures that (a) limk→∞ µ
I
i,k(θp) = 0 a.s. for all

θp /∈ FI(θ
∗) and for all i ∈ [n], and (b) limk→∞ µ

I
i,k(θq) =

∏n
j=1 µj,0(θq)

πj∑
θ∈FI(θ∗)

∏n
j=1 µj,0(θ)πj

a.s.

for all i ∈ [n] and θq ∈ FI(θ
∗), where π ,

[
π1 · · · πn

]T
satisfies πTA = πT and

‖π‖1 = 1, and A ∈ Rn×n is defined such that Aij = aij for all i, j ∈ [n].

Proof We begin by defining the following quantities for all I ⊆ [n], for all i ∈ [n]

and for all k ∈ Z≥0:

δIi,k(θ) , ln
µIi,k(θ)

µIi,k(θ
∗)

and σi,k+1(θ) , ln
`i(ωi,k+1|θ)
`i(ωi,k+1|θ∗)

, (6.25)

where δIi,0(θ) = δi,0(θ) , ln
µi,0(θ)

µi,0(θ∗)
for all I ⊆ [n]. For any I ⊆ [n], we consider an

agent i ∈ [n] and θp /∈ Fθ∗(I). Following similar arguments to those for Theorem

1 in [100], we can obtain that limk→∞ δ
I
i,k(θp) = −∞ a.s., i.e., limk→∞

µIi,k(θp)

µIi,k(θ∗)
=

0 a.s. Since 0 ≤ µIi,k(θ) ≤ 1 for all θ ∈ Θ and for all k ∈ Z≥0, it follows that

limk→∞
µIi,k(θp)

µIi,k(θ∗)
≥ limk→∞ µ

I
i,k(θp) ≥ 0, which implies 0 ≤ limk→∞ µ

I
i,k(θp) ≤ 0 a.s., i.e.,

limk→∞ µ
I
i,k(θp) = 0 a.s. This proves Part (a).

We then prove Part (b). For any I ⊆ [n], we now consider an agent i ∈ [n] and

θq ∈ Fθ∗(I). Based on the definition of Fθ∗(I), we note that σi,k+1(θq) = 0,∀k ∈ Z≥0.

We then obtain from (6.24) the following:

δIk+1(θq) = AδIk (θq),

3A directed graph G = ([n], E) is said to be strongly connected if for each pair of distinct vertices

i, j ∈ [n], there exists a directed path (i.e., a sequence of directed edges) from j to i.
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where δIk (θq) ,
[
δI1,k(θq) · · · δIn,k(θq)

]T
. Moreover, we have

lim
k→∞

δIk (θq) = ( lim
k→∞

Ak)δ0(θq) = 1nπ
T δ0(θq), (6.26)

where the last equality follows from the fact that A is an irreducible and aperiodic

stochastic matrix based on the hypotheses of the lemma. Simplifying (6.26), we

obtain

lim
k→∞

µIi,k(θq)

µIi,k(θ
∗)

=

∏n
j=1 µj,0(θq)

πj∏n
j=1 µj,0(θ∗)πj

> 0. (6.27)

Summing up Eq. (6.27) for all θq ∈ Fθ∗(I), we have

lim
k→∞

∑
θq∈Fθ∗ (I) µ

I
i,k(θq)

µIi,k(θ
∗)

=
∑

θq∈Fθ∗ (I)

∏n
j=1 µj,0(θq)

πj∏n
j=1 µj,0(θ∗)πj

> 0. (6.28)

Noting from Part (a) that limk→∞
∑

θq∈ Fθ∗ (I) µ
I
i,k(θ1) = 1 a.s., we see from (6.28)

that limk→∞ µ
I
i,k(θ

∗) exists and is positive, a.s., which further implies via (6.27) that

limk→∞ µ
I
i,k(θq) exists and is positive, a.s. In other words, we have from (6.28) the

following:
µIi,∞(θq)

µIi,∞(θ∗)
=

∏n
j=1 µj,0(θq)

πj∏n
j=1 µj,0(θ∗)πj

, (6.29)

where µIi,∞(θq) , limk→∞ µ
I
i,k(θq) for all θq ∈ Fθ∗(I). Since lim

k→∞

∑
θ∈ Fθ∗ (I)

µIi,k(θ) = 1

a.s. for all i ∈ [n], part (b) then follows from Eq. (6.29).

Proceeding with the problem formulation described in Section 6.2, we define the

following error metric for the designer:

ēI(θ
∗) =

n∑
i=1

eI,i(θ
∗), (6.30)

where θ∗ is the true state of the world, eI,i(θ
∗) , 1

2
limk→∞ ‖µIi,k − 1θ∗‖1 and µIi,k ,[

µIi,k(θ1) · · · µIi,k(θm)
]T

. In other words, ēI(θ
∗) is the sum of the steady-state learn-

ing errors of all the agents in [n], when the true state of the world is assumed to be θ∗.

It then follows from Lemma 6.4.1 that ēI(θ
∗) = n

(
1−

∏n
j=1(µj,0(θ∗))πj∑

θ∈Fθ∗ (I)

∏n
j=1(µj,0(θ))πj

)
almost

surely. Denoting

ēsI(θp) , n
(
1−

∏n
j=1(µj,0(θp))

πj∑
θ∈Fθp (I)

∏n
j=1(µi,0(θ))πj

)
∀θp ∈ Θ, (6.31)
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we consider the following problem for the designer:

min
I⊆[n]

hI

s.t. ēsI(θp) ≤ R̄θp ,∀θp ∈ Θ,

(6.32)

where 0 ≤ R̄θp ≤ n and R̄θp ∈ R. Denoting µ̄0(θ) ,
∏n

i=1 µi,0(θ)πi for all θ ∈ Θ, we

have from (6.31) that

ēsI(θp) = n(1− µ̄0(θp)∑
θ∈Fθp (I) µ̄0(θ)

),∀θp ∈ Θ. (6.33)

Under Assumption 6.2.1, i.e., Fθ(I) =
⋂
ni∈I Fθ(ni) for all I ⊆ [n] and θ ∈ Θ, we

see from (6.6) and (6.33) that the optimization problem (6.32) can be viewed as an

instance of Problem 6.2.3.

6.5 Chapter Summary

In this chapter, we considered the problem of data source selection for Bayesian

learning. We showed that the data source selection problem for Bayesian learning

is NP-hard in general. Next, we showed that the data source selection problem

can be transformed into an instance of the submodular set covering problem, and

can then be solved using a standard greedy algorithm with provable performance

guarantees. We also proposed a fast greedy algorithm that improves the running

times of the standard greedy algorithm, while achieving performance guarantees that

are comparable to those of the standard greedy algorithm. Finally, we illustrated the

obtained performance bounds for the greedy algorithms using examples, and showed

that the performance bounds provide insights into the actual performances of the

algorithms under different instances of the data source selection problem.
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6.6 Proofs of Key Results

6.6.1 Proof of Theorem 6.3.5

Consider any ε ∈ (0, 1). We first show that the query complexity of Algo-

rithm 6.3.2 is O(n
ε

ln n
ε
). Note that the for loop in lines 3-9 runs for at most Kmax ,

d 1
− ln(1−ε) · (ln

n
ε

+ ln hmax

hmin
)e iterations, where each iteration requires O(n) evaluations

of z(·). One can also show that − ln(1 − ε) − ε > 0 for ε ∈ (0, 1), which implies

Kmax ≤ 1
ε
· (ln n

ε
+ H lnn) + 1 ≤ 1

ε
((H + 1) ln n

ε
+ 1), where H ∈ R≥1 is a fixed

constant. It then follows from the above arguments that the query complexity of

Algorithm 6.3.2 is O(n
ε

ln n
ε
).

Next, we show that If satisfies z(If ) ≥ (1− ε)z([n]). Note that if Algorithm 6.3.2

ends with line 9, then z(If ) = z([n]) and thus z(If ) ≥ (1 − ε)z([n]) hold. Hence,

we assume that Algorithm 6.3.2 ends with τ = εhmin

nhmax
d in the for loop in lines 3-9.

Also note that z(∅) = 0. Denoting j∗ ∈ arg maxi∈[n]
z(i)−z(∅)

hi
and considering any

j ∈ [n] \ If , we have from the definition of Algorithm 6.3.2 the following:

z(If ∪ {j})− z(If )
hj

<
εhminz(j∗)

nhmaxhj∗
,

=⇒ z(If ∪ {j})− z(If ) <
ε

n
z(j∗) ≤ ε

n
z([n]), (6.34)

where we use the facts hj ≤ hmax and hj∗ ≥ hmin to obtain the first inequality in

(6.34), and use the fact that z(·) is monotone nondecreasing to obtain the second

inequality in (6.34). Since (6.34) holds for all j ∈ [n] \ If , it follows that∑
j∈[n]\If

z(If ∪ {j})− z(If ) < εz([n]) =⇒ z([n])− z(If ) < εz([n]),

where we use the submodularity of z(·) (i.e., (6.10) in Definition 6.3.1).

We now prove part (a). Denote Itf = {j1, . . . , jt} ⊆ [n] for all t ∈ [T ] with I0
f = ∅

in Algorithm 6.3.2. First, suppose T ≥ 2. Considering any t ∈ [T − 1], we have from

line 5 in Algorithm 6.3.2:

z(Itf ∪ {jt+1})− z(Itf )
hjt+1

≥ τ. (6.35)
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Moreover, consider any j ∈ [n] \ Itf . Since j has not been added to Itf while the

current threshold is τ , one can see that j does not satisfy the threshold condition in

line 5 when the threshold was τ
1−ε , i.e.,

z(It′f ∪ {j})− z(It′f )

hj
≤ τ

1− ε
=⇒

z(Itf ∪ {j})− z(Itf )
hj

≤ τ

1− ε
, (6.36)

where t′ ∈ {0, . . . , T − 1} with t′ < t is a corresponding time step in Algorithm 6.3.2

when the threshold was τ
1−ε . Note that we obtain the second inequality in (6.36) using

again the submodularity of z([n]) (i.e., (6.9) in Definition 6.3.1). Combining (6.35)

and (6.36), we have

z(Itf ∪ {jt+1})− z(Itf )
hjt+1

≥
(1− ε)(z(Itf ∪ {j})− z(Itf ))

hj
. (6.37)

Noting that (6.37) holds for all j ∈ I∗ \ Itf , one can show that

z(Itf ∪ {jt+1})− z(Itf )
hjt+1

≥
(1− ε)

∑
j∈I∗\Itf

(z(Itf ∪ {j})− z(Itf ))∑
j∈I∗\Itf

hj
, (6.38)

which further implies, via the fact that z(·) is submodular and monotone nondecreas-

ing, the following:

z(Itf ∪ {jt+1})− z(Itf )
hjt+1

≥
(1− ε)(z(I∗ ∪ Itf )− z(Itf ))

h(I∗ \ Itf )
≥

(1− ε)(z(I∗)− z(Itf ))
h(I∗)

.

(6.39)

Rearranging the terms in (6.39), we have

z(I∗)− z(Itf ) ≤
h(I∗)
1− ε

·
z(I∗)− z(Itf )− (z(I∗)− z(It+1

f ))

hjt+1

,

=⇒ z(I∗)− z(It+1
f ) ≤ (1− (1− ε)hjt+1

h(I∗)
)(z(I∗)− z(Itf )). (6.40)

Moreover, we see from the above arguments that (6.40) holds for all t ∈ [T −1]. Now,

considering t = 0 and using similar arguments to those above, we can show that (6.37)

and thus (6.40) also hold. Therefore, viewing (6.40) as a recursion of z(I∗) − z(Itf )

for t ∈ {0, . . . , T − 1}, we obtain the following:

z(I∗)− z(IT−1
f ) ≤ (z(I∗)− z(I0

f ))
T−1∏
t=1

(1− hjt(1− ε)
h(I∗)

). (6.41)
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One can also show that
∏T−1

t=1 (1 − hjt (1−ε)
h(I∗) ) ≤ (1 − h(IT−1

f )(1−ε)
(T−1)h(I∗) )T−1 ≤ e−(1−ε)

h(IT−1
f

)

h(I∗)

(e.g., [31]). Since z(I0
f ) = z(∅) = 0 and z(I∗) = z([n]), it then follows from (6.41)

that

z(I∗)− z(IT−1
f ) ≤ z(I∗)e−(1−ε)

h(IT−1
f

)

h(I∗) ,

=⇒ ln(z([n]− z(IT−1
f ))) ≤ −(1− ε)

h(IT−1
f )

h(I∗)
+ ln z([n]),

=⇒ h(IT−1
f ) ≤ 1

1− ε
ln

z([n])

z([n])− z(IT−1
f )

h(I∗), (6.42)

where we note that z([n]) − z(IT−1
f ) > 0, since z(·) is monotone nondecreasing and

z(IT−1
f ) 6= z([n]). In order to prove part (a) (for T ≥ 2), it remains to show that

hjT ≤ 1
1−εh(I∗), which together with (6.42) yield the bound in part (a). We can now

use (6.38) with t = T − 1 to obtain

hjT ≤
h(I∗ \ IT−1

f )

1− ε
·

z(ITf )− z(IT−1
f )∑

j∈I∗\IT−1
f

z(IT−1
f ∪ {j})− z(IT−1

f )

≤ h(I∗)
1− ε

·
z(ITf )− z(IT−1

f )

z(IT−1
f ∪ I∗)− z(IT−1

f )
, (6.43)

where (6.43) follows from the submodularity of z(·). Since z(ITf ) ≤ z(IT−1
f ∪I∗) from

the facts that z(I∗) = z([n]) and z(·) is monotone nondecreasing, we see from (6.43)

that hjT ≤ 1
1−εh(I∗).

Next, suppose T = 1, i.e., If = j1. We will show that h(I∗) = h(Ig). Noting from

the definition of Algorithm 6.3.2 that j1 ∈ arg maxi∈[n]
z(i)−z(∅)

hi
, we have

z(j1)

hj1
≥ z(j)

hj
, ∀j ∈ I∗.

It then follows from similar arguments to those for (6.38) and (6.39) that

z(j1)

hj1
≥
∑

j∈I∗ z(j)∑
j∈I∗ hj

≥ z(I∗)
h(I∗)

,

which implies
h(If )
h(I∗)

≤ z(If )
z(I∗)

≤ 1,
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where we use the fact z(If ) ≤ z(I∗), since z(·) is monotone nondecreasing with

z(I∗) = z([n]). Thus, we have h(If ) ≤ h(I∗). Noting that h(I∗) ≤ h(Ig) always

holds due to the fact that I∗ is an optimal solution, we conclude that h(I∗) = h(Ig).

This completes the proof of part (a).

Part (b) now follows directly from part (a) by noting that z([n]) − z(IT−1
f ) ≥ 1,

since z([n])− z(IT−1
f ) > 0 and z(I) ∈ Z≥1 for all I ⊆ [n]. �
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7. PARAMETER ESTIMATION IN EPIDEMIC SPREAD

NETWORKS USING LIMITED MEASUREMENTS

7.1 Introduction

Following our discussions in the previous chapters, we extend our analysis to

models of spreading processes over networks in this chapter. Such models have been

widely studied by researchers from different fields (e.g., [18, 26–30]). The case of

epidemics spreading through networked populations has received a particularly sig-

nificant amount of attention, especially in light of the ongoing COVID-19 pandemic

(e.g., [30, 106]). A canonical example is the networked SIR model, where each node

in the network represents a subpopulation or an individual, and can be in one of

three states: susceptible (S), infected (I), or recovered (R) [107]. There are two key

parameters that govern such models: the infection rate of a given node, and the re-

covery rate of that node. In the case of a novel virus, these parameters may not be

known a priori, and must be identified or estimated from gathered data, including for

instance the number of infected and recovered individuals in the network at certain

points of time. For instance, in the COVID-19 pandemic, when collecting the data

on the number of infected individuals or the number of recovered individuals in the

network, one possibility is to perform virus or antibody tests on the individuals, with

each test incurring a cost. Therefore, in the problem of parameter estimation in epi-

demic spread networks, it is important and of practical interest to take the costs of

collecting the data (i.e., measurements) into account in the problem formulation.

The above discussions motivate us to consider the measurement selection problem

for parameter estimation problem in epidemic spread networks, which shares natural

similarities to the sensor selection problems that we studied in Chapters 3-5. Note that

measurements are collected using sensors in the sensor selection problem, while the
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measurements are gathered by performing virus or antibody tests on the individuals in

the measurement selection problem that we will consider in this chapter. Specifically,

in the parameter estimation measurement selection problem, the goal is to exactly

identify (when possible) or estimate the parameters in the networked SIR model

using a limited number of measurements. We divide our analysis into two scenarios:

1) when the measurements (e.g., the number of infected individuals) can be collected

exactly without error; and 2) when only a stochastic measurement can be obtained.

Under the setting when exact measurements of the infected and recovered propor-

tions of the population at certain nodes in the network can be obtained, we formulate

the Parameter Identification Measurement Selection (PIMS) problem as minimizing

the cost spent on collecting the measurements, while ensuring that the parameters

of the SIR model can be uniquely identified (within a certain time interval in the

epidemic dynamics). In settings where the measurements are stochastic (thereby

precluding exact identification of the parameters), we formulate the Parameter Es-

timation Measurement Selection (PEMS) problem. The goal is to optimize certain

estimation performance metrics based on the collected measurements, while satisfy-

ing the budget on collecting the measurements. We summarize some related work as

follows.

Related Work

The authors in [108, 109] studied the parameter estimation problem in epidemic

spread networks using a “Susceptible-Infected-Susceptible (SIS)” model of epidemics.

When exact measurements of the infected proportion of the population at each node

of the network can be obtained, the authors proposed a sufficient and necessary

condition on the set of the collected measurements such that the parameters of the

SIS model (i.e., the infection rate and the recovery rate) can be uniquely identified.

However, this condition does not pose any constraint on the number of measurements

that can be collected.
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In [110], the authors considered a measurement selection problem in the SIR

model. Their problem is to perform a limited number of virus tests among the

population such that the probability of undetected asymptotic cases is minimized.

The transmission of the disease in the SIR model considered in [110] is characterized

by a Bernoulli random variable which leads to a Hidden Markov Model for the SIR

dynamics.

Finally, our work is also closely related to the sensor selection problem that has

been studied for control systems and signal processing (e.g., Chapters 3-5), and ma-

chine learning (e.g., [5]). The goal of these problems is to optimize certain (problem-

specific) performance metrics of the estimate based on the measurements of the se-

lected sensors, while satisfying the sensor selection budget constraints.

Summary of Results

In this chapter, we first show that the PIMS problem is NP-hard, and provide an

approximation algorithm that returns a solution that is within a certain approxima-

tion ratio of the optimal. The approximation factor depends on the cost structure of

the measurements and on the graph structure of the epidemic spread network. Next,

we show that the PEMS problem is also NP-hard, but it is possible to transform the

problem into an instance of the problem of maximizing a set function subject to a

knapsack constraint. We then apply a greedy algorithm to the PEMS problem, and

provide performance guarantees for the greedy algorithm. Finally, we use numerical

examples to validate the obtained performance bounds of the greedy algorithm, and

show that the greedy algorithm performs well in practice.

The results presented in this chapter are based on a work submitted to SIAM

Journal on Control and Optimization for review.
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7.2 Model of Epidemic Spread Network

Suppose a disease (or virus) is spreading over a directed graph G = {V , E}, where

V , [n] is the set of n nodes, and E is the set of directed edges (and self loops) that

captures the interactions among the nodes in V . Here, each node i ∈ V is considered

to be a group (or population) of individuals (e.g., a city or a country). A directed

edge from node i to node j, where i 6= j, is denoted by (i, j). For all i ∈ V , denote

Ni , {j : (j, i) ∈ E} and N̄i , {j : (j, i) ∈ E} ∪ {i}. For all i ∈ V and for all

k ∈ Z≥0, we let si[k], xi[k] and ri[k] represent the proportion of population of node

i ∈ V that is susceptible, infected and recovered at time k, respectively. To describe

the dynamics of the spread of the disease in G, we will use the following discrete-time

SIR model (e.g., [111]), which is a straightforward extension of the discrete-time SIS

model studied in, e.g., [108]:

si[k + 1] = si[k]− hsi[k]β
∑
j∈N̄i

aijxj[k], (7.1a)

xi[k + 1] = (1− hδ)xi[k] + hsi[k]β
∑
j∈N̄i

aijxj[k], (7.1b)

ri[k + 1] = ri[k] + hδxi[k], (7.1c)

where β ∈ R≥0 is the infection rate of the disease, δ ∈ R≥0 is the recovery rate of the

disease, h ∈ R≥0 is the sampling parameter, and aij ∈ R≥0 is the weight associated

with edge (j, i). Letting A ∈ Rn×n be a weight matrix, where Aij = aij for all i, j ∈ V

such that j ∈ N̄i, and Aij = 0 otherwise, one can write Eq. (7.1) as

s[k + 1] = s[k]− hS[k]βAx[k], (7.2a)

x[k + 1] = (1− hδ)x[k] + hS[k]βAx[k], (7.2b)

r[k + 1] = r[k] + hδx[k], (7.2c)

where s[k] ,
[
s1[k] · · · sn[k]

]T
∈ Rn, x[k] ,

[
x1[k] · · · xn[k]

]T
∈ Rn, r[k] ,[

r1[k] · · · rn[k]
]T
∈ Rn, and S[k] , diag(s1[k], . . . , sn[k]) ∈ Rn×n. Suppose the

weight matrix A and the sampling parameter h are known. Given parameters β and
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δ, and initial conditions s[0], x[0] and r[0], one can obtain states si[k], xi[k] and ri[k]

using Eq. (7.1) for all i ∈ V and for all k ∈ Z≥1.

7.3 Preliminaries

In this section, we provide some preliminaries that will be useful for later analysis.

Recall that for all i ∈ V and for all k ∈ Z≥0, si[k], xi[k] and ri[k] represent the

proportion of the population of node i that is susceptible, infected and recovered

at time k, respectively. Hence, we make the following assumptions on the initial

conditions s[0], x[0] and r[0].

Assumption 7.3.1 For all i ∈ V, we assume that si[0] ∈ (0, 1], xi[0] ∈ [0, 1), ri[0] =

0, and si[0] + xi[0] = 1.

Similarly to [108, 111], we make the following assumption on the parameters of

the SIR model in Eq. (7.1).

Assumption 7.3.2 We assume that h, β, δ ∈ R>0 and hδ < 1. For all i, j ∈ V with

(j, i) ∈ E and i 6= j, we assume that aij ∈ R>0. For all i ∈ V, we assume that

hβ
∑

j∈N̄i aij < 1.

Next, we recall the following definition from graph theory (e.g, [71]).

Definition 7.3.1 Consider a directed graph G = {V , E} with V = {1, . . . , n}. A

directed path of length t from node i0 to node it in G is a sequence of t directed edges

(i0, i1), . . . , (it−1, it). For any distinct pair of nodes i, j ∈ V such that there exists a

directed path from i to j, the distance from node i to node j, denoted as dij, is defined

as the shortest length over all such paths.

Based on Definition 7.3.1, we give the following definition.

Definition 7.3.2 Define SI , {i : xi[0] > 0, i ∈ V} and SH , {i : xi[0] = 0, i ∈ V}.

For all i ∈ SH , define di , minj∈SI dji, where di ≥ 1 and di , +∞ if there is no path

from j to i for any j ∈ SI . For all i ∈ SI , define di , 0.
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In other words, for any i ∈ SH , di is the shortest distance among all the distances

from the nodes in SI to i. Using similar arguments to those in, e.g., [111], one can

show that si[k], xi[k], ri[k] ∈ [0, 1] with si[k] + xi[k] + ri[k] = 1 for all i ∈ V and for

all k ∈ Z≥0 under Assumptions 7.3.1-7.3.2. Therefore, given xi[k] and ri[k], we can

obtain si[k] = 1−xi[k]−ri[k] for all i ∈ V and for all k ∈ Z≥0. Leveraging the structure

of the graph G, we further obtain the following result that characterizes properties of

the dynamics of xi[k] and ri[k] in the SIR model over G given by Eq. (7.1). The proof

of the following result is included in Section 7.8.1.

Lemma 7.3.3 Consider a directed graph G = {V , E} with V = {1, . . . , n} and the

SIR dynamics given by Eq. (7.1). Suppose Assumptions 7.3.1-7.3.2 hold. Then, the

following results hold for all i ∈ V, where k ∈ Z≥0, and SH and di are defined in

Definition 7.3.2.

(a) si[k] > 0 for all k ≥ 0.

(b) If di 6= +∞, then xi[k] = 0 for all k < di, and xi[k] ∈ (0, 1) for all k ≥ di.
1

(c) If di 6= +∞, then ri[k] = 0 for all k ≤ di, and ri[k] ∈ (0, 1) for all k > di.

(d) If i ∈ SH with di = +∞, then xi[k] = 0 and ri[k] = 0 for all k ≥ 0.

7.4 Measurement Model

Suppose for any node i ∈ V and for any time step k ∈ Z≥1, we can obtain a

measurement of state xi[k], i.e., the proportion of the population of node i ∈ V that

is infected at time k ∈ Z≥1. Denote the obtained measurement of xi[k] as x̂i[k] for

all i ∈ V . Noting that xi[k] ∈ [0, 1] for all i ∈ V and for all k ∈ Z≥0 as argued in

Section 7.3, we assume that x̂i[k] ∈ [0, 1] also holds for all i ∈ V and for all k ∈ Z≥0.

Moreover, given the true state xi[k], we assume that measurement x̂i[k] is a (discrete)

random variable whose probability mass function (pmf) is given by p(x̂i[k]|xi[k]) for

all i ∈ V and for all k ∈ Z≥0.2 Similarly, let r̂i[k] denote the measurement of ri[k],

1Note that for the case when di = 0, i.e., i ∈ SI , part (b) implies xi[k] > 0 for all k ≥ 0.
2Note that one can also model x̂i[k] as a continuous random variable whose probability density

function is denoted as p(x̂i[k]|xi[k]) for all i ∈ V and for all k ∈ Z≥0.
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i.e., the proportion of population of node i ∈ V that is recovered at time k, for all

i ∈ V and for all k ∈ Z≥0. We assume that r̂i[k] ∈ [0, 1] is given by pmf p(r̂i[k]|ri[k]).

In general, the above measurement models for xi[k] and ri[k] are proposed to

capture the potential randomness of the obtained measurements x̂i[k] and r̂i[k]. For

instance, consider the scenario (e.g., the ongoing COVID-19 pandemic) where mea-

surement x̂i[k] is obtained by conducting viral tests on individuals in the population

corresponding to node i ∈ V at time k ∈ Z≥1, where a positive testing result indi-

cates that the tested individual is infected at time k and a negative testing result

indicates that the tested individual is not infected at time k (e.g., [112]). In practice,

it is not always practical to test all the individuals of node i ∈ V at time k ∈ Z≥1,

due to, for instance, the lack of testing kits and the fact that performing such tests

incur certain costs. Rather, the tests are given to a group of randomly sampled in-

dividuals of the population at node i ∈ V at time k ∈ Z≥1 (e.g., [113]). Moreover,

the testing results are not always accurate, e.g., a test on an infected individual can

yield a negative result (e.g., [114]). Therefore, it is reasonable to model measurement

x̂i[k] as a random variable with pmf p(x̂i[k]|xi[k]). Similarly, one way to obtain mea-

surement r̂i[k] is to perform antibody tests on randomly sampled individuals in the

population of node i ∈ V (e.g., [115]), where the testing results can potentially be

inaccurate (e.g., [116]). Thus, we model measurement r̂i[k] as a random variable with

pmf p(r̂i[k]|θ). Note that the proposed measurement models also capture the special

case when one can obtain exact measurements of xi[k] and ri[k]. In such a case, we

can view p(x̂i[k] = xi[k]|xi[k]) = 1 and p(r̂i[k] = ri[k]|ri[k]) = 1. In the following sec-

tions, we will divide our discussions into the special case when exact measurements

of xi[k] and ri[k] can be obtained, and the general case when measurements x̂i[k] and

r̂i[k] are given by p(x̂i[k]|xi[k]) and p(r̂i[k]|ri[k]), respectively.
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7.5 Measurement Selection Problem in Exact Measurement Setting

In this section, we consider the scenario where exact measurements of xi[k] and

ri[k] (for a subset of nodes in the network) can be obtained. Throughout this section,

we will assume that SI ,SH ⊆ V defined in Definition 7.3.2 is known. In other words,

we assume that we know the set of nodes in V that have infected individuals at time

step t = 0.

7.5.1 Problem Formulation

Given exact measurements of xi[k] and ri[k] for a subset of nodes, our goal is

to estimate (or uniquely identify, if possible) the unknown parameters β and δ, i.e.,

the infection rate and the recover rate of the disease in the SIR dynamics (given by

Eq. (7.1)) over the network G = {V , E}. As we will see in the following, when exact

measurements of xi[k] and ri[k] can be obtained, one can uniquely identify β and

δ based on the measurements. Here, we consider the scenario where collecting the

measurement of xi[k] (resp., ri[k]) at any node i ∈ V and at any time step k ∈ Z≥0

incurs a cost, denoted as ck,i ∈ R≥0 (resp., bk,i ∈ R≥0). Moreover, we can only collect

the measurements of xi[k] and ri[k] for k ∈ {t1, t1 + 1, . . . , t2}, where t1, t2 ∈ Z≥0 are

given with t2 > t1. Noting that Lemma 7.3.3 provides a (sufficient and necessary)

condition under which xi[k] = 0 (resp., ri[k] = 0) holds, we see that one does not

need to collect measurement of xi[k] (resp., ri[k]) if xi[k] = 0 (resp., ri[k] = 0) from

Lemma 7.3.3. Given time steps t1, t2 ∈ Z≥0 with t2 > t1, we now define a set

It1:t2 , {xi[k] : k ∈ {t1, . . . , t2}, i ∈ V , xi[k] > 0}

∪ {ri[k] : k ∈ {t1, . . . , t2}, i ∈ V , ri[k] > 0}, (7.3)
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which represents the set of all candidate measurements from time step t1 to time step

t2. To proceed, we first use Eq. (7.1b)-(7.1c) to obtain

x[t1 + 1]− x[t1]
...

x[t2]− x[t2 − 1]

r[t1 + 1]− r[t1]
...

r[t2]− r[t2 − 1]


= h

Φx
t1:t2

Φr
t1:t2

β
δ

 , (7.4)

where Φx
t1:t2−1 ,

[
(Φx

t1
)T · · · (Φx

t2−1)T
]T

with

Φx
k ,


s1[k]

∑
j∈N̄1

a1jxj[k] −x1[k]
...

...

sn[k]
∑

j∈N̄n anjxj[k] −xn[k]

 ∀k ∈ {t1, . . . , t2 − 1}, (7.5)

and Φr
t1:t2−1 ,

[
(Φr

t1
)T · · · (Φr

t2−1)T
]T

with

Φr
k ,


0 x1[k]
...

...

0 xn[k]

 ∀k ∈ {t1, . . . , t2 − 1}. (7.6)

Supposing the weight matrix A and the sampling parameter h are known, we can

then view Eq. (7.4) as a set of 2(t2 − t1)n equations in β and δ. Noting that si[k]

for all i ∈ V can be obtained from si[k] = 1 − xi[k] − ri[k] as argued in Section 7.3,

we see that the coefficients in the set of equations in β and δ given by Eq. (7.4),

i.e., the terms in Eq. (7.4) other than β and δ, can be determined given that x[k]

and r[k] are known for all k ∈ {t1, . . . , t2}. Also note that given x[k] and r[k] for

all k ∈ {t1, . . . , t2}, we can uniquely identify β and δ using Eq. (7.4) if and only if

rank(
[
(Φx

t1:t2−1)T (Φr
t1:t2−1)T

]
) = 2.

Next, let I ⊆ It1:t2 denote a measurement selection strategy, where It1:t2 is given

by Eq. (7.3). We will then consider identifying β and δ using measurements contained
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in I ⊆ It1:t2 . To illustrate our analysis, given any i ∈ V and any k ∈ {t1, . . . , t2 − 1},

we first consider the following equation from Eq. (7.4):

xi[k + 1]− xi[k] = h
[
si[k]

∑
w∈N̄i aiwxw[k] −xi[k]

]β
δ

 , (7.7)

where si[k] = 1− xi[k]− ri[k], and we index the equation in Eq. (7.4) corresponding

to Eq. (7.7) as (k, i, x). Note that in order to use Eq. (7.7) in identifying β and

δ, one needs to determine the coefficients (i.e., the terms other than β and δ) in the

equation. Also note that in order to determine the coefficients in equation (k, i, x), one

can use the measurements contained in I ⊆ It1:t2 , and use Lemma 7.3.3 to determine

if xi[k] = 0 (resp., ri[k] = 0) holds. Supposing xi[k+1] = 0, we see from Lemma 7.3.3

and Eq. (7.2b) that xi[k] = 0 and si[k]
∑

w∈N̄i aiwxw[k] = 0, which makes equation

(k, i, x) useless in identifying β and δ. Thus, in order to use equation (k, i, x) in

identifying β and δ, we need to have xi[k + 1] ∈ I with xi[k + 1] > 0. Next, we will

show that equation (k, i, x) can still be used in identifying β and δ even if there exist

coefficients in equation (k, i, x) that cannot be determined using measurements from

I ⊆ It1:t2 or using Lemma 7.3.3. To see this, given any i, j ∈ V with i 6= j and any

k ∈ {t1, . . . , t2 − 1}, we consider the following two equations from Eq. (7.4):

xi[k + 1]− xi[k] = h
[
si[k]

∑
w∈N̄i aiwxw[k] −xi[k]

]β
δ

 , (7.8a)

xj[k + 1]− xj[k] = h
[
sj[k]

∑
w∈N̄j ajwxw[k] −xj[k]

]β
δ

 , (7.8b)

where we index the equation in Eq. (7.4) corresponding to Eq. (7.8a) (resp., Eq. (7.8b))

as (k, i, x) (resp., (k, j, x)). Suppose xw[k] > 0 and xw[k] /∈ I for all w ∈ Ni, i.e., the

coefficient si[k]
∑

w∈N̄i aiwxw[k] in equation (k, i, x) cannot be determined using the

measurements from I ⊆ It1:t2 and using Lemma 7.3.3. Moreover, suppose Ni = Nj
and aiw = ajw for all w ∈ Ni. Noting that si[k] > 0 for all i ∈ V and for all k ∈ Z≥0
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from Lemma 7.3.3(a), one can then subtract Eq. (7.8b) multiplied by 1/sj[k] from

Eq. (7.8a) multiplied by 1/si[k], and obtain the following equation in β and δ:

1

si[k]
(xi[k + 1]− xi[k])− 1

sj[k]
(xj[k + 1]− xj[k])

= h
[
aiixi[k]− ajjxj[k] −xi[k]

si[k]
+

xj [k]

sj [k]

]β
δ

 . (7.9)

where si[k] = 1−xi[k]−ri[k] and sj[k] = 1−xj[k]−rj[k]. Now, suppose {xi[k+1], xj[k+

1]} ⊆ I, and xi[k], ri[k], xj[k] and rj[k] can be determined using the measurements

from I or using Lemma 7.3.3. We see that Eq. (7.9) can now be used in identifying

β and δ. Similarly, given any i ∈ V and any k ∈ {t1, . . . , t2 − 1}, we consider the

following equation from Eq. (7.4):

ri[k + 1]− ri[k] = h
[
0 xi[k]

]β
δ

 , (7.10)

where we index the above equation as (k, i, r). Supposing ri[k + 1] = 0, we see from

Lemma 7.3.3 and Eq. (7.2c) that ri[k] = xi[k] = 0, which makes equation (k, i, r)

useless in identifying β and δ. Hence, in order to use equation (k, i, r) in identifying

β and δ, we need to have {xi[k], ri[k+ 1]} ⊆ I with xi[k] > 0 and ri[k+ 1] > 0. More

precisely, we observe that equation (k, i, r) can be used in identifying β and δ if and

only if {xi[k], ri[k + 1]} ⊆ I, and ri[k] ∈ I or ri[k] = 0 (from Lemma 7.3.3).

In general, let us denote the following two coefficient matrices corresponding to

equations (k, i, x) and (k, i, r) in Eq. (7.4), respectively:

Φx
k,i ,

[
si[k]

∑
j∈N̄i aijxj[k] −xi[k]

]
, (7.11a)

Φr
k,i ,

[
0 xi[k]

]
, (7.11b)

for all k ∈ {t1, . . . , t2 − 1} and for all i ∈ V . Moreover, given any measurement

selection strategy I ⊆ It1:t2 , we let

Ī , {(k, i, x) : xi[k + 1] ∈ I, xi[k] = 0} ∪ {(k, i, x) : {xi[k + 1], xi[k]} ⊆ I}

∪{(k, i, r) : {ri[k+ 1], xi[k]} ⊆ I, ri[k] = 0}∪{(k, i, r) : {ri[k+ 1], ri[k], xi[k]} ⊆ I}

(7.12)
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be the set that contains indices of the equations from Eq. (7.4) that can be potentially

used in identifying β and δ, based on the measurements contained in I. In other

words, the coefficients on the left-hand side of equation (k, i, x) (resp., (k, i, r)) can be

determined using the measurements from I and using Lemma 7.3.3, for all (k, i, x) ∈ Ī

(resp., (k, i, r) ∈ Ī). Let us now consider the coefficient matrix Φx
k,i (resp., Φr

k,i)

corresponding to (k, i, x) ∈ Ī (resp., (k, i, r) ∈ Ī). As we discussed above, it is possible

that there exist equations in Ī whose coefficients cannot be (directly) determined

using the measurements contained in I or using Lemma 7.3.3, where the undetermined

coefficients come from the first element in Φx
k,i given by Eq. (7.11a). Nevertheless,

it is also possible that one can perform algebraic operations among the equations in

Ī such that the undetermined coefficients get cancelled. Formally, we introduce the

following definition.

Definition 7.5.1 Consider a measurement selection strategy I ⊆ It1:t2, where It1:t2

is given by Eq. (7.3). Stack coefficient matrices Φx
k,i ∈ R1×2 for all (k, i, x) ∈ Ī and

Φr
k,i ∈ R1×2 for all (k, i, r) ∈ Ī into a single matrix, where Φx

k,i and Φr
k, are given by

(7.11) and Ī is given by Eq. (7.12). The resulting matrix is denoted as Φ(I) ∈ R|Ī|×2.

Moreover, define Φ̃(I) to be the set that contains all the matrices Φ ∈ R2×2 such that

(Φ)1 and (Φ)2 can be obtained via algebraic operations among the rows in Φ(I), and

the elements in (Φ)1 and (Φ)2 can be fully determined using the measurements from

I ⊆ It1:t2 and using Lemma 7.3.3.

In other words, Φ ∈ Φ̃(I) corresponds to two equations (in β and δ) obtained from

Eq. (7.4) such that the coefficients in the equations can be determined using the mea-

surements contained in I and using Lemma 7.3.3 (if the coefficients contain xi[k] = 0

or ri[k] = 0). Moreover, using similar arguments to those for obtaining Eq. (7.9),

one can show that the coefficients on the left-hand side of the two equations obtained

from Eq. (7.4) corresponding to Φ can also be determined using measurements from

I and using Lemma 7.3.3. Putting the above arguments together, we see that given
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a measurement selection strategy I ⊆ It1:t2 , β and δ can be uniquely identified if and

only if there exists Φ ∈ Φ̃(I) such that rank(Φ) = 2. Equivalently, denoting

rmax(I) , max
Φ∈Φ̃(I)

rank(Φ), (7.13)

where rmax(I) , 0 if Φ̃(I) = ∅, we have β and δ can be uniquely identified using the

measurements from I ⊆ It1:t2 if and only if rmax(I) = 2.

Remark 7.5.1 Note that if a measurement selection strategy I ⊆ It1:t2 satisfies

rmax(I) = 2, it follows from the above arguments that |Ī| ≥ 2, i.e., Φ(I) ∈ R|Ī|×2 has

at least two rows.

Recall that collecting the measurement of xi[k] (resp., ri[k]) at any node i ∈ V

and at any time step k ∈ Z≥1 incurs cost ck,i ∈ R≥0 (resp., bk,i ∈ R≥0). Given any

measurement selection strategy I ⊆ It1:t2 , we denote the cost associated with I as

c(I) ,
∑
xi[k]∈I

ck,i +
∑
ri[k]∈I

bk,i. (7.14)

The above arguments then lead to the problem of minimizing the cost spent on

collecting measurements such that parameters β and δ can be uniquely identified

(within a given time interval [t1 : t2]). Formally, we define the Parameter Identification

Measurement Selection (PIMS) problem in the perfect measurement setting as follows,

where we assume that Assumptions 7.3.1-7.3.2 hold for the PIMS instances

Problem 7.5.2 Consider a discrete-time SIR model given by Eq. (7.1) with a directed

graph G = {V , E}, a weight matrix A ∈ Rn×n, a sampling parameter h ∈ R≥0, and sets

SI ,SH ⊆ V defined in Definition 7.3.2. Moreover, consider time steps t1, t2 ∈ Z≥1

with t1 < t2, and a cost ck,i ∈ R≥0 of measuring xi[k] and a cost bk,i ∈ R≥0 of

measuring ri[k] for all i ∈ V and for all k ∈ {t1, . . . , t2}. The Parameter Identification

Measurement Selection (PIMS) problem is to find I ⊆ It1:t2 that solves

min
I⊆It1:t2

c(I)

s.t. rmax(I) = 2,

(7.15)

where It1:t2 is defined in Eq. (7.3), c(I) is defined in Eq. (7.14), and rmax(I) is defined

in Eq. (7.13).
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7.5.2 Complexity of the PIMS problem

In this section, we will show that the PIMS problem is NP-hard. To do it, we will

relate the PIMS problem to the exact cover by 3-sets (X3C) problem, which is known

to be NP-complete [41].

Definition 7.5.2 An X3C instance is given by a set X = {1, 2, . . . , 3m} and a col-

lection Z = {z1, z2, . . . , zτ} of 3-element subsets of X , where τ ≥ m. An exact cover

for X is a subcollection Z ′ ⊆ Z such that every element of X occurs in exactly one

member of Z ′.

Lemma 7.5.3 Consider a set X = {1, . . . , 3m} and a collection Z = {z1, . . . , zτ}

of 3-element subsets of X . The problem of determining whether Z contains an exact

cover for X is NP-complete.

Fig. 7.1. Graph G = {V , E} constructed in the proof of Theorem 7.5.4.

Theorem 7.5.4 The PIMS problem is NP-hard.

Proof We will give a polynomial-time reduction from the X3C problem to the PIMS

problem. Consider an instance of the X3C problem given by a set X = {1, . . . , 3m}

and a collection Z = {z1, . . . , zτ} of 3-element subsets of X , where τ ≥ m. We

then construct an instance of the PIMS problem as follows. The node set of the
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graph G = {V , E} is set to be V = {i0, i1, . . . , iτ} ∪ {j1, j2, . . . , j3m}. The edge set of

G = {V , E} is set to satisfy that (jq, il) ∈ E if q ∈ X is contained in zl ∈ Z, (jq, i0) ∈ E

for all q ∈ X , and (i0, i0) ∈ E . A plot of the graph is given in Fig. 7.1. Note that based

on the construction of G = {V , E}, each node i ∈ {i1, . . . , iτ} represents a subset from

Z in the X3C instance, and each node j ∈ {j1, . . . , j3m} represents an element from X

in the X3C instance, where the edges between {i1, . . . , iτ} and {j1, . . . , j3m} indicate

how the elements in X are included in the subsets in Z. Accordingly, the weight

matrix A ∈ R(3m+τ+1)×(3m+τ+1) is set to satisfy that ailjq = 1 if q ∈ X is contained

in zl ∈ Z, ai0jq = 1 for all q ∈ X , and ai0i0 = 1. We set the sampling parameter to

be h = 1/(3m + 1). The set SI ⊆ V is set to be SI = V , i.e., xi[0] > 0 for all i ∈ V .

We set time steps t1 = 2 and t2 = 3. Finally, we set b2,i = b3,i = 0 for all i ∈ V ,

c2,il = 1 and c3,il = 0 for all l ∈ {1, . . . , τ}, c2,jq = c3,jq = m + 1 for all q ∈ X , and

c2,i0 = c3,i0 = 0. Since we set b2,i = b3,i = 0 for all i ∈ V and c2,i0 = 0, the following

equation can always be used in identifying β and δ with zero cost on collecting the

corresponding measurements:

ri0 [3]− ri0 [2] = h
[
0 xi0 [2]

]β
δ

 , (7.16)

where we also note xi0 [2] > 0 from Lemma 7.3.3, since xi0 [0] = 0.5. Moreover, since

xi[0] > 0 for all i ∈ V , we see from Lemma 7.3.3 that xi[k] > 0 and ri[k] > 0 for all

i ∈ V and for all k ∈ {2, 3}. Therefore, Lemma 7.3.3 is no longer useful in determining

the coefficients in the equations from Eq. (7.4).

We claim that an optimal solution, denoted as I?, to the constructed PIMS in-

stance satisfies c(I?) ≤ m if and only if the solution to the X3C instance is “yes”.

First, suppose the solution to the X3C instance is “yes”. Denote an exact cover

as Z ′ = {zq1 , . . . , zqm} ⊆ Z, where {q1, . . . , qm} ⊆ {1, . . . , τ}. Let us consider a

measurement selection strategy I0 ⊆ It1:t2 given by

I0 =
( ⋃
l∈{1,...,m}

{xiql [2], xiql [3], riql [2]}
)
∪ {xi0 [2], xi0 [3], ri0 [2], ri0 [3]}.
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We then have from Eq. (7.12) Ī0 = {(2, i0, r), (2, i0, x)}∪{(2, iql , x) : l ∈ {1, . . . ,m}}.

Noting that si[k] > 0 for all i ∈ V and for all k ∈ Z≥0 from Lemma 7.3.3(a), we

consider the following equations from Eq. (7.4) whose indices are contained in Ī0:

1

si0 [2]
(xi0 [3]− xi0 [2]) = h

[
xi0 [2] +

∑
w∈Ni0

xw[2] −xi0 [2]

si0 [1]

]β
δ

 , (7.17)

and

1

siq1 [2]
(xiq1 [3]− xiq1 [2]) = h

[∑
w∈Niq1

xw[2] −xiq1
[2]

siq1
[2]

]β
δ


... (7.18)

1

siqm [2]
(xiqm [3]− xiqm [2]) = h

[∑
w∈Niqm

xw[2] −xiqm [2]

siqm [2]

]β
δ

 ,
where we note Ni0 = {j1, . . . , j3m} from the way we constructed G = {V , E}. Since

Z ′ = {zq1 , . . . , zqm} is an exact cover for X , we see from the construction of G =

{V , E} that
⋃
l∈{1,...,m}Niql is a union of mutually disjoint (3-element) sets such that⋃

l∈{1,...,m}Niql = {j1, . . . , j3m}. Therefore, subtracting the equations in (7.18) from

Eq. (7.17), we obtain

1

si0 [2]
(xi0 [3]− xi0 [2])−

∑
l∈{1,...,m}

1

siql [2]
(xiql [3]− xiql [2])

= h
[
xi0 [2] −xi0 [2]

si0 [2]
+
∑

l∈{1,...,m}
xiql

[2]

siql
[2]

]β
δ

 , (7.19)

where we note xi0 [2] > 0 as argued above. Following Definition 7.5.1, we stack

coefficient matrices Φr
2,i0
∈ R1×2, Φx

2,i0
∈ R1×2 and Φx

2,iql
∈ R1×2 for all l ∈ {1, . . . ,m}

into a matrix Φ(I0) ∈ R(m+2)×2, where Φr
k,i and Φx

k,i are defined in (7.11). Now,

considering the matrix

Φ0 =

xi0 [2] −xi0 [2]

si0 [2]
+
∑

l∈{1,...,m}
xiql

[2]

siql
[2]

0 xi0 [2]

 , (7.20)
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we see from the above arguments that (Φ0)1 and (Φ0)2 can be be obtained via algebraic

operations among the rows in Φ(I0), and the elements in (Φ0)1 and (Φ0)2 can be

determined using the measurements from I0. Therefore, we have Φ0 ∈ Φ̃(I0), where

recall from Definition 7.5.1 that Φ̃(I0) contains all the matrices Φ ∈ R2×2 such that

(Φ)1 and (Φ)2 can be obtained via algebraic operations among the rows in Φ(I0) and

the elements in (Φ)1 and (Φ)2 can be determined using the measurements from I0.

Noting that xi0 [2] > 0, we have rank(Φ0) = 2, which implies rmax(I0) = 2, where

rmax(I0) is given by Eq. (7.13). Thus, I0 ⊆ It1:t2 satisfies the constraint in (7.15).

Since c(I0) = m from the way we set the costs of collecting measurements in the

PIMS instance, we have c(I?) ≤ m.

Conversely, suppose the solution to the X3C instance is “no”, i.e., for any subcol-

lection Z ′ ⊆ Z that contains m subsets, there exists at least one element in X that is

not contained in any subset in Z ′. We will show that for any measurement selection

strategy I ⊆ It1:t2 that satisfies rmax(I) = 2, c(I) > m holds. Equivalently, we will

show that for any I ⊆ It1:t2 with c(I) ≤ m, rmax(I) = 2 does not hold. Consider

any I ⊆ It1:t2 such that c(I) ≤ m. Noting that c2,jq = c3,jq = m + 1 for all q ∈ X

in the constructed PIMS instance, we have xjq [2] /∈ I and xjq [3] /∈ I for all q ∈ X .

Moreover, we see that I contains at most m measurements from {xi1 [2], . . . , xiτ [2]}.

To proceed, let us consider any I1 ⊆ It1:t2 such that

I1 = {xi0 [2], xiv1 [2], . . . , xivm [2]} ∪
( ⋃
l∈{0,...,τ}

{xil [3]}
)
∪
(⋃
i∈V

{ri[2], ri[3]}
)
, (7.21)

where {v1, . . . , vm} ⊆ {1, . . . , τ}. In other words, I1 ⊆ It1:t2 contains m mea-

surements from {xi1 [2], . . . , xiτ [2]} and all the other measurements from It1:t2 that

have zero costs. It follows that c(I1) = m. Also note that for all I ⊆ It1:t2 with

{xiv1 [2], . . . , xivm [2]} ⊆ I and c(I) ≤ m, we have I ⊆ I1. Similarly to (7.17) and

(7.18), we have the following equations from Eq. (7.4) whose indices are contained in

Ī1 (given by Eq. (7.12)):

1

si0 [2]
(xi0 [3]− xi0 [2]) = h

[
xi0 [2] +

∑
w∈Ni0

xw[2] −xi0 [2]

si0 [1]

]β
δ

 , (7.22)
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and

1

siv1 [2]
(xiv1 [3]− xiv1 [2]) = h

[∑
w∈Niv1

xw[2] −xiv1
[2]

siv1
[2]

]β
δ


... (7.23)

1

sivm [2]
(xivm [3]− xivm [2]) = h

[∑
w∈Nivm

xw[2] −xivm [2]

sivm [2]

]β
δ

 .
Noting that for any subcollection Z ′ ⊆ Z that contains m subsets, there exists at

least one element in X that is not contained in any subset in Z ′ as we argued above,

we see that there exists at least one element in X that is not contained in any subset

in {zv1 , . . . , zvm}. It then follows from the way we constructed G = {V , E} that there

exists w′ ∈ Ni0 such that w′ /∈ Nivl for all l ∈ {1, . . . ,m}. Thus, by subtracting the

equations in (7.23) (multiplied by any constants) from Eq. (7.22), xw′ [2] will remain

on the right-hand side of the equation in (7.22). Similarly, consider any equation from

(7.23) indexed by (2, ivl , x) ∈ Ī1, where l ∈ {1, . . . ,m}. First, suppose we subtract

Eq. (7.22) multiplied by some positive constant and any equations in (7.23) other

than equation (2, ivl , x) (multiplied by any constants) from equation (2, ivl , x). Since

there exists w′ ∈ Ni0 such that w′ /∈ Nivl for all l ∈ {1, . . . ,m} as argued above, we

see that xw′ [2] will appear on the right-hand side of equation (2, ivl , x). Next, suppose

we subtract any equations in (7.23) other than equation (2, ivl , x) (multiplied by any

constants) from equation (2, ivl , x). One can check that either of the following two

facts hold for the resulting equation (2, ivl , x): (a) the coefficients on the right-hand

side of equation (2, ivl , x) contain xjq [2] /∈ I1, where q ∈ X ; or (b) the coefficient

matrix on the right-hand side of equation (2, ivl , x) is of the form
[
0 ?

]
. Again, we

stack Φr
k,i ∈ R1×2 for all (k, i, r) ∈ Ī1 and Φx

k,i ∈ R1×2 for all (k, i, x) ∈ Ī1 into a

matrix Φ(I1), where we note that Φr
k,i is of the form

[
0 ?

]
for all (k, i, r) ∈ Ī1. One

can then see from the above arguments that for all Φ ∈ R2×2 (if they exist) such that

(Φ)1 and (Φ)2 can be obtained from algebraic operations among the rows in Φ(I1),

and the elements in (Φ)1 and (Φ)2 can be determined using the measurements from

I1, rank(Φ) ≤ 1 holds. It follows that rmax(I1) < 2, i.e., constraint rmax(I1) = 2
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in (7.15) does not hold. Using similar arguments to those above, one can further

show that rmax(I) < 2 holds for all c(I) ≤ m, completing the proof of the converse

direction of the above claim.

Hence, it follows directly from the above arguments that an algorithm for the

PIMS problem can also be used to solve the X3C problem. Since X3C is NP-complete,

we conclude that the PIMS problem is NP-hard.

Theorem 7.5.4 indicates that there is no polynomial-time algorithm that solves

all instances of the PIMS problem optimally (if P 6= NP). Moreover, we note from

the formulation of the PIMS problem given by Problem 7.5.2 that the PIMS problem

asks us to find a measurement selection strategy I ⊆ It1:t2 with minimum cost such

that rmax(I) = 2. In other words, for a measurement selection strategy I ⊆ It1:t2 , one

needs to check if maxΦ∈Φ̃(I) rank(Φ) = 2 holds, before the corresponding measurements

are collected. However, in general, it is not possible to calculate rank(Φ) when no

measurements are collected. In order to bypass these issues, we will explore additional

properties of the PIMS problem in the following.

7.5.3 Solving the PIMS Problem

In this section, we will leverage properties of the PIMS problem and propose an

approximation algorithm for the PIMS problem with performance guarantees. In par-

ticular, we will focus on measurement selection strategies that contain measurements

corresponding to two equations in Eq. (7.4). Let us start with the following result

whose proof can be found in Section 7.8.2.

Lemma 7.5.5 Consider a discrete time SIR model given by Eq. (7.1). Suppose As-

sumptions 7.3.1-7.3.2 hold. Then, the following results hold, where Φx
k1,i1
∈ R1×2 and

Φr
k2,i2
∈ R1×2 are defined in (7.11), S ′I , {i ∈ SI : aii > 0}, S ′ , {i ∈ V \ S ′I : Ni 6=

∅,min{dj : j ∈ Ni} 6=∞}, and SI and di are defined in Definition 7.3.2 for all i ∈ V.

(a) For any i1 ∈ S ′I and for any i2 ∈ V with di2 6=∞, rank
( [

(Φx
k1,i1

)T (Φr
k2,i2

)T
] )

= 2

for all k1 ≥ 0 and for all k2 ≥ di2, where k1, k2 ∈ Z≥0.
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(b) For any i1 ∈ S ′ and for any i2 ∈ V with di2 6=∞, rank
( [

(Φx
k1,i1

)T (Φr
k2,i2

)T
] )

= 2

for all k1 ≥ min{dj : j ∈ Ni1}, and for all k2 ≥ di2, where k1, k2 ∈ Z≥0.

Thus, Lemma 7.5.5 leads to a sufficient condition on the measurements contained

in a measurement selection strategy I ⊆ It1:t2 such that the rank condition rmax(I) =

2 in (7.15) holds. This sufficient condition indicates collecting the measurements

corresponding to the coefficients in two equations from (7.4). Moreover, given a

measurement selection strategy I ⊆ It1:t2 , we can check if the sufficient condition

given in Lemma 7.5.5 holds before the corresponding measurements contained in I

is collected. Therefore, we aim to find a measurement selection strategy I ⊆ It1:t2

that satisfies the sufficient condition given in Lemma 7.5.5, which will ensure that the

rank condition rmax(I) = 2 holds. We formalize the analysis as follows.

Recalling the way we index the equations in Eq. (7.4) (see (7.7) and (7.10) for

examples), we define the set that contains all the indices of the equations in Eq. (7.4)

as

Q , {(k, i, λ) : k ∈ {t1, . . . , t2 − 1}, i ∈ V , λ ∈ {x, r}}. (7.24)

Following the arguments in Lemma 7.5.5, we denote

Q1 , {(k, i, x) ∈ Q : k ≥ 0, i ∈ S ′I}

∪ {(k, i, x) ∈ Q : k ≥ min{dj : j ∈ Ni}, i ∈ S ′}, (7.25)

and

Q2 , {(k, i, r) ∈ Q : k ≥ di, i ∈ V , di 6=∞}, (7.26)

where S ′I and S ′ are defined in Lemma 7.5.5, and di is defined in Definition 7.3.2.

Next, for all (k, i, x) ∈ Q, we define the set of measurements that are needed to

determine the coefficients in equation (k, i, x) (when no other equations are used) to

be

I(k, i, x) ,
(
{xi[k + 1], ri[k]} ∪ {xj[k] : j ∈ N̄i}

)
∩ It1:t2 , (7.27)

where It1:t2 is defined in Eq. (7.3). Similarly, for all (k, i, r) ∈ Q, we define

I(k, i, r) ,
(
{ri[k + 1], ri[k], xi[k]}

)
∩ It1:t2 . (7.28)
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Moreover, let us denote

I((k1, i1, λ1), (k2, i2, λ2)) , I(k1, i1, λ1) ∪ I(k2, i2, λ2) (7.29)

for all (k1, i1, λ1), (k2, i2, λ2) ∈ Q. Recall from Eq. (7.14) that we have

c(I((k1, i1, λ1), (k2, i2, λ2)))

=
∑

xi[k]∈I((k1,i1,λ1),(k2,i2,λ2))

ck,i +
∑

ri[k]∈I((k1,i1,λ1),(k2,i2,λ2))

bk,i. (7.30)

Algorithm 7.5.1 Algorithm for PIMS

1: Input: An instance of PIMS

2: Find (k1, i1, x) ∈ Q1, (k2, i2, r) ∈ Q2 s.t. c(I((k1, i1, x), (k2, i2, r))) is minimized

return I((k1, i1, x), (k2, i2, r))

Based on the above arguments, we propose an algorithm defined in Algorithm 7.5.1

for the PIMS problem. Note that Algorithm 7.5.1 finds an equation from Q1 and an

equation from Q2 such that the sum of the costs of the two equations is minimized,

where Q1 and Q2 are defined in Eq. (7.25) and Eq. (7.26), respectively. We have the

following result for Algorithm 7.5.1

Proposition 7.5.1 Consider an instance of the PIMS problem under Assumptions

7.3.1-7.3.2. Algorithm 7.5.1 returns a solution I((k1, i1, x), (k2, i2, r)) to the PIMS

problem that satisfies the constraint in (7.15). The solution returned by Algorithm 7.5.1

satisfies

c(I((k1, i1, x), (k2, i2, r)))

c(I?)
≤

min(k,i,x)∈Q1(bk+1,i + bk,i + ck+1,i +
∑

j∈N̄i ck,j)

3cmin

, (7.31)

where I? is an optimal solution to the PIMS problem, Q1 is defined in Eq. (7.25), and

cmin , min{minxi[k]∈It1:t2
ck,i,minri[k]∈It1:t2

bk,i} > 0 with It1:t2 is given by Eq. (7.3).
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Proof The feasibility of I((k1, i1, x), (k2, i2, r)) follows directly from the definition

of Algorithm 7.5.1 and Lemma 7.5.5. We now prove (7.31). Consider any equations

(k, i, x) ∈ Q1 and (k, i, r) ∈ Q2. We have from Eq. (7.29) the following:

I((k, i, x), (k, i, r))

=
(
{xi[k + 1], ri[k]} ∪ {xj[k] : j ∈ N̄i} ∪ {ri[k + 1], ri[k], xi[k]}

)
∩ It1:t2 ,

which implies

c(I((k1, i1, x), (k2, i2, r))) ≤ min
(k,i,x)∈Q1

(bk+1,i + bk,i + ck+1,i +
∑
j∈N̄i

ck,j).

Next, since I? satisfies rmax(I?) = 2, we recall from Remark 7.5.1 |Ī?| ≥ 2, where

Ī? = {(k, i, x) : xi[k + 1] ∈ I?, xi[k] = 0} ∪ {(k, i, x) : {xi[k + 1], xi[k]} ⊆ I?}

∪{(k, i, r) : {ri[k+1], xi[k]} ⊆ I?, ri[k] = 0}∪{(k, i, r) : {ri[k+1], ri[k], xi[k]} ⊆ I?}

which implies |I?| ≥ 2. In fact, suppose I? = {xi[k + 1], xj[k + 1]}, where i ∈ V

and k ∈ {t1 − 1, . . . , t2 − 1}. Since the elements in Φx
k,i and Φx

k,j (defined in (7.11))

do not contain xi[0], ri[0] or si[0] for any i ∈ V , and cannot all be zero, we see that

there exists xw[k] ∈ I? (with xw[k] > 0), where w ∈ V . This further implies |I?| ≥ 3.

Using similar arguments, one can show that |I?| ≥ 3 holds in general, which implies

c(I?) ≥ 3cmin. Combining the above arguments leads to (7.31).

7.6 Measurement Selection Problem in Random Measurement Setting

In this section, we assume that the initial condition l = [(s[0])T (s[0])T (r[0])T ]

is known. Nevertheless, our analysis can potentially be extended to cases where the

initial condition l = [(s[0])T (s[0])T (r[0])T ] is given by a probability distribution.

7.6.1 Problem Formulation

Recall from Section 7.4 that we consider the scenario where the measurement of

xi[k] (resp., ri[k]), denoted as x̂i[k] (resp., r̂i[k]), is given by the pmf p(x̂i[k]|xi[k])
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(resp., p(r̂i[k]|ri[k])). Note that given the initial conditions s[0], x[0] and r[0], and the

parameters β, δ and h, one can express xi[k] in terms of l = [(s[0])T (x[0])T (r[0])T ]T

and θ , [β δ]T . Hence, given l = [(s[0])T (x[0])T (r[0])T ]T and θ = [β δ]T , we can

alternatively write p(x̂i[k]|xi[k]) as p(x̂i[k]|l, θ) for all i ∈ V and for all k ∈ Z≥1. Since

the initial conditions are assumed to be known, we drop the dependency of p(x̂i[k]|l, θ)

on l, and denote the pmf of x̂i[k] as p(x̂i[k]|θ) for all i ∈ V and for all k ∈ Z≥1.

Similarly, given l and θ, we denote the pmf of r̂i[k] as p(r̂i[k]|θ) for all i ∈ V and

for all k ∈ Z≥1. As we mentioned in Section 7.4, when collecting measurement x̂i[k]

(resp., r̂i[k]) under a limited budget, one possibility is to give virus (resp., antibody)

tests to a group of randomly and uniformly sampled individuals of the population

at node i ∈ V and at time k ∈ Z≥1. In other words, the obtained measurements

x̂i[k] and r̂i[k], i.e., the corresponding pmfs p(x̂i[k]|θ) and p(r̂i[k]|θ), depend on the

total number of conducted virus tests and antibody tests at node i and at time k,

respectively.

Following the arguments in Section 7.5, we assume that collecting measurements

x̂i[k] and r̂i[k] incurs certain costs. Specifically, consider any node i ∈ V and any time

step k ∈ Z≥1, where the number of total population of i is denoted by Ni ∈ Z≥1 and

is assumed to be fixed over time. Suppose we are also allowed to choose the number

of virus (resp., antibody) tests that will be performed on the (randomly sampled)

individuals at node i ∈ V and at time k ∈ Z≥1. Moreover, we assume that the cost

of performing the virus (resp., antibody) tests is proportional to the number of the

tests. For any i ∈ V and for any k ∈ {t1, . . . , t2}, we let

Ck,i , {ζck,i : ζ ∈ ({0} ∪ [ζi])} (7.32)

be the set of all possible costs that we can spend on collecting measurement x̂i[k],

where ck,i ∈ R≥0 and ζi ∈ Z≥1. Similarly, for any i ∈ V and for any k ∈ {t1, . . . , t2},

we let

Bk,i , {ηbk,i : η ∈ ({0} ∪ [ηi])} (7.33)
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be the set of all possible costs that we can spend on collecting measurement r̂i[k],

where bk,i ∈ R≥0 and ηi ∈ Z≥1. Therefore, spending a cost of ζck,i (with ζ ∈ ({0} ∪

[ζi])) on collecting measurement x̂i[k] can represent testing 10ζ percentage of the

population at node i and at time k, i.e., testing ζ
10
Ni individuals at node i and at

time k. Alternatively, ζck,i can also be viewed as the cost of performing virus tests

on ζNx
i (randomly sampled) individuals in the population at node i, where Nx

i ∈ Z≥1

and ζiN
x
i ≤ Ni. To reflect the dependency of the pmf p(x̂i[k]|θ) (resp., p(r̂i[k]|θ)) of

measurement x̂i[k] (resp., r̂i[k]) on the cost spent on collecting the measurement of

xi[k] (resp., ri[k]), we further denote the pmf of x̂i[k] (resp., r̂i[k]) as p(x̂i[k]|θ, ϕk,i)

(resp., p(r̂i[k]|θ, ωk,i)), where ϕk,i ∈ Ck,i (resp., ωk,i ∈ Bk,i) with Ck.i (resp., Bk,i) given

by Eq. (7.32) (resp., Eq. (7.33)). Note that ϕk,i (resp., ωk,i) is the cost that we spend

on collecting measurement x̂i[k] (resp., r̂i[k]), and ϕk,i = 0 (resp., ωk,i = 0) indicates

that measurement x̂i[k] (resp., r̂i[k]) is not collected.

Recall in the measurement selection problem, the goal is to estimate the unknown

parameters β and δ, i.e., the infection rate and the recovery rate of the disease in

the SIR dynamics (given by Eq. (7.1)), using a limited number of measurements. In

contrast with the exact measurement case studied in Section 7.5, it is not possible to

uniquely identify β and δ using measurements x̂i[k] and r̂i[k] which are now random

variables. Thus, we will consider estimators of β and δ based on the (random) mea-

surements indicated by a measurement selection strategy. Similarly to Section 7.5,

given time steps t1, t2 ∈ Z≥1 with t2 ≥ t1, we first define the set of all candidate

measurements as

Ut1:t2 , {x̂i[k] : i ∈ V , k ∈ {t1, . . . , t2}} ∪ {r̂i[k] : i ∈ V , k ∈ {t1, . . . , t2}}. (7.34)

Recalling Ck,i and Bk,i defined in Eq. (7.32) and Eq. (7.33), respectively, we let

µ ∈ ZUt1:t2
≥0 be a measurement selection that specifies the costs spent on collecting

measurements x̂i[k] and r̂i[k] for all i ∈ V and for all k ∈ {t1, . . . , t2}. Moreover, we

define the set of all candidate measurement selections as

M , {µ ∈ ZUt1:t2
≥0 : µ(x̂i[k]) ∈ ({0} ∪ [ζi]), µ(r̂i[k]) ∈ ({0} ∪ [ηi])}, (7.35)
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where ζi, ηi ∈ Z≥1 for all i ∈ V . In other words, a measurement selection µ is

defined over the integer lattice ZUt1:t2
≥0 so that µ is a vector of dimension |Ut1:t2|, where

each element of µ corresponds to an element in Ut1:t2 , and is denoted as µ(x̂i[k])

(or µ(r̂i[k])). The set M contains all µ ∈ ZUt1:t2
≥0 such that µ(x̂i[k]) ∈ ({0} ∪ [ζi])

and µ(r̂i[k]) ∈ ({0} ∪ [ηi]) for all i ∈ V and for all k ∈ {t1, . . . , t2}. Thus, for any

ϕk,i ∈ Ck,i and ωk,i ∈ Bk,i, there exists µ ∈ MUt1:t2
≥0 such that µ(x̂i[k])ck,i = ϕk,i

and µ(r̂i[k])bk,i = ωk,i. In other words, µ(x̂i[k])ck,i (resp., µ(r̂i[k])bk,i) indicates the

cost spent on collecting the measurement of xi[k] (resp., ri[k]). Given a measurement

selection µ ∈ Zt1:t2
≥0 , we can also denote the pmfs of x̂i[k] and r̂i[k] as p(x̂i[k]|θ, µ(x̂i[k]))

and p(r̂i[k]|θ, µ(r̂i[k])), respectively, where we drop the dependencies of the pmfs on

ck,i and bk,i for notational simplicity.

To proceed, we consider the scenario where measurements can only be collected

under a budget constraint given by B ∈ R≥0. Using the above notations, the budget

constraint can be expressed as∑
x̂i[k]∈Ut1:t2

ck,iµ(x̂i[k]) +
∑

r̂i[k]∈Ut1:t2

bk,iµ(r̂i[k]) ≤ B. (7.36)

We then consider estimators of θ = [β δ]T based on any given measurement selection

µ ∈M. Considering any µ ∈M, we denote

Uλi , {k : µ(λ̂i[k]) > 0, k ∈ {t1, . . . , t2}}, (7.37)

for all i ∈ V and for all λ ∈ {x, r}. For all i ∈ V and for all λ ∈ {x, r} with Uλi 6= ∅,

denote y(Uλi ) ,
[
λ̂i[k1] · · · λ̂i[k|Uλi |]

]T
, where Uλi = {k1, . . . , k|Uλi |}. Letting

Uλ , {i : Uλi 6= ∅, i ∈ V}, ∀λ ∈ {x, r}, (7.38)

we denote the measurement vector indicated by µ ∈M as

y(µ) ,
[
(y(Uxi1))T · · · (y(Uxi|Ux|))

T (y(U rj1))T · · · (y(U rj|Ur |))
T

]T
, (7.39)

where Ux = {i1, . . . , i|Ux|} and Ur = {j1, . . . , j|Ur|}. Note that x̂i[k] and r̂i[k] are

(discrete) random variables with pmfs p(x̂i[k]|θ, µ(x̂i[k])) and p(r̂i[k]|θ, µ(r̂i[k])), re-

spectively. We then see from Eq. (7.39) that y(µ) is a random vector whose pmf
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is denoted as p(y(µ)|θ, µ). Similarly, the pmf of y(Uxi ) (resp., y(U ri )) is denoted as

p(y(Uxi )|θ, µ) (resp., p(y(U ri )|θ, µ)). Given t1, t2 ∈ Z≥1 with t2 ≥ t1, we make the

following assumption on measurements x̂i[k] and r̂i[k].

Assumption 7.6.1 For any i ∈ V and for any k1, k2 ∈ {t1, . . . , t2} (k1 6= k2), x̂i[k1],

x̂i[k2], r̂i[k1] and r̂i[k2] are independent of each other. Moreover, for any i, j ∈ V

(i 6= j) and for any k1, k2 ∈ {t1, . . . , t2}, x̂i[k1] and x̂j[k2] are independent, and x̂i[k1]

and r̂j[k2] are independent.

The above assumption ensures that measurements from different nodes or from

different time steps are independent, and the measurements of xi[k] and ri[k] are also

independent. It then follows from Eq. (7.39) that the pmf of y(µ) can be written as

p(y(µ)|θ, µ) =
∏
i∈Ux

p(y(Uxi )|θ, µ) ·
∏
j∈Ur

p(y(U rj )|θ, µ), (7.40)

where we can further write p(y(Uxi )|θ, µ) =
∏

k∈Uxi
p(x̂i[k]|θ, µ(x̂i[k])) for all i ∈ Ux,

and p(y(U rj )|θ, µ) =
∏

k∈Urj
p(r̂j[k]|θ, µ(r̂j[k])) for all j ∈ Ur.

In order to quantify the performance (e.g., precision) of estimators of θ based on

µ, we use the Cramer-Rao Lower Bound (CRLB) (e.g., [79]) associated with µ. In the

following, we introduce the CRLB, and explain why we choose it as a performance

metric for the problem considered in this section. First, given any measurement

µ ∈M, the corresponding CRLB, denoted as Cθ(µ), is given by (e.g., [79])

Cθ(µ) ,
(
Fθ(µ)

)−1
, (7.41)

where Fθ(µ) is the corresponding Fisher information matrix defined as

Fθ(µ) , −E

∂2 ln p(y(µ)|θ,µ)
∂β2

∂2 ln p(y(µ)|θ,µ)
∂β∂δ

∂2 ln p(y(µ)|θ,µ)
∂δ∂β

∂2 ln p(y(µ)|θ,µ)
∂δ2

 (7.42)

with the expectation E[·] taken with respect to p(y(µ)|θ, µ). Under Assumption 7.6.1,

one can use Eq. (7.40) to rewrite Eq. (7.42) as

Fθ(µ) = −
∑

λ∈{x,r}

∑
i∈Uλ

∑
k∈Uλi

E

∂2 ln p(λ̂i[k]|θ,µ(λ̂i[k]))
∂β2

∂2 ln p(λ̂i[k]|θ,µ(λ̂i[k]))
∂β∂δ

∂2 ln p(λ̂i[k]|θ,µ(λ̂i[k]))
∂δ∂β

∂2 ln p(λ̂i[k]|θ,µ(λ̂i[k]))
∂δ2

 , (7.43)
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where Uλ is given in Eq. (7.38), Uλi is defined in Eq. (7.37) for all i ∈ V , and each

expectation E[·] in the summation is taken with respect to p(λ̂i[k]|θ, µ(λ̂i[k])). Under

some regularity conditions on the pmfs of x̂i[k] and r̂i[k], Eq. (7.43) can be written

as the following (e.g., [79]):

Fθ(µ) =
∑

λ∈{x,r}

∑
i∈Uλ

∑
k∈Uλi

E
[∂ ln p(λ̂i[k]|θ, µ(λ̂i[k]))

∂θ

(∂ ln p(λ̂i[k]|θ, µ(λ̂i[k]))

∂θ

)T]
. (7.44)

Denoting an (unbiased) estimator of θ = [β δ]T corresponding to a measurement

selection µ as θ̂(µ) ∈ R2, it is well-known that the following inequality holds under

some regularity conditions on the pmfs of x̂i[k] and r̂i[k] (e.g., [79]):

Rθ̂(µ) = E[(θ̂(µ)− θ)(θ̂(µ)− θ)T ] � Cθ(µ), (7.45)

where Rθ̂(µ) ∈ R2×2 is the covariance of the estimator θ̂(µ), the expectation E[·] is

taken with respect to p(y(µ)|θ, µ), and Cθ(µ) is given by Eq. (7.41). In fact, there may

exist estimators whose covariances achieve the lower bound in (7.45) (e.g., [79]). For

instance, the covariance of the maximum likelihood estimator asymptotically achieves

the bound in (7.45), as the number of measurement samples (corresponding to a single

node i ∈ V) indicated by µ tends to infinity (e.g., [79]).

Moreover, noting that when ln(p(y(µ)|θ, µ)) is a nonlinear function (i.e., a polyno-

mial) in β and δ, it follows from Eq. (7.42) that Fθ(µ), and thus Cθ(µ), will potentially

depend on the value of the unknown parameter θ. In other words, the bound in (7.45)

is a local bound given any value of θ. However, our goal is to find a measurement

selection µ ∈M such that certain performance metrics of a corresponding estimator

of θ = [β δ]T is optimized, regardless of the true values of β and δ, while satisfying

the budget constraint. Therefore, we desire to optimize a performance metric that

does not depend on β and δ, which motivates us to further consider the Bayesian

Cramer-Rao Lower Bound (BCRLB) (e.g., [117]) described as follows, which lever-

ages prior knowledge about θ to yield a bound that does not depend on the true

value of θ. Specifically, consider any estimator θ̂(µ) of θ based on a measurement se-
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lection µ ∈M, and consider a prior pdf of θ, denoted as p(θ). Under some regularity

conditions on the pmfs of x̂i[k] and r̂i[k], and p(θ), we have (e.g., [117,118]):

Rθ̂(µ) = E[(θ̂(µ)− θ)(θ̂(µ)− θ)T ] � C̄(µ), (7.46)

where Rθ̂(µ) ∈ R2×2 is the error covariance of the estimator θ̂(µ), the expectation E[·]

is taken with respect to p(y(µ)|θ, µ)p(θ), and C̄(µ) ∈ R2×2 is the BCRLB associated

with the measurement selection µ. The BCRLB is defined as (e.g., [117,118])

C̄(µ) , (Eθ[Fθ(µ)] + Fp)
−1, (7.47)

where Eθ[·] denotes the expectation taken with respect to p(θ), Fθ(µ) is given by

Eq. (7.42), and Fp ∈ R2×2 encodes the prior knowledge of θ as

Fp = −Eθ

∂2 ln p(θ)
∂β2

∂2 ln p(θ)
∂β∂δ

∂2 ln p(θ)
∂δ∂β

∂2 ln p(θ)
∂δ2

 = Eθ
[∂ ln p(θ)

∂θ

(∂ ln p(θ)

∂θ

)T] � 0, (7.48)

where the second equality holds under some regularity conditions on p(θ) [118].

Similar asymptotic analysis to that for the CRLB may be applied to the BCRLB

(e.g., [118]).

Thus, the above arguments motivate us to consider (functions of) C̄(·) as opti-

mization metrics in the measurement selection problem studied in this section, in

order to characterize the estimation performance corresponding to a measurement

selection µ ∈ M. In particular, we will consider tr(C̄(·)) and ln det(C̄(·)), which

are widely used criteria in parameter estimation (e.g., [67]), and are also known as

the Bayesian A-optimality and D-optimality criteria respectively in the context of

experimental design (e.g., [119]). First, considering the optimization metric tr(C̄(·)),

we see from the above arguments that (7.46) directly implies tr(Rθ̂(µ)) ≥ tr(C̄(µ)) for

all estimators θ̂(µ) of θ and for all µ ∈ M [91]. Therefore, a measurement selection

µ? that minimizes tr(C̄(µ)) potentially yields a lower value of tr(Rθ̂(µ)) for an esti-

mator θ̂(µ) of θ. Furthermore, there may exist an estimator θ̂(µ) that achieves the

BCRLB (asymptotically), i.e., tr(C̄(µ)) provides the minimum value of tr(Rθ̂(µ)) that

can be possibly achieved by any estimator θ̂(µ) of θ, given a measurement selection



178

µ. Similar arguments hold for the optimization metric ln det(C̄(·)). Hence, the above

arguments further justify using C̄(·) as the optimization metric in the measurement

selection problem considered in this section. Denoting

fa(µ) , tr(C̄(µ)) and fd(µ) , ln det(C̄(µ)) ∀µ ∈M, (7.49)

we now define the Parameter Estimation Measurement Selection (PEMS) problem.

Problem 7.6.2 Consider a discrete-time SIR model given by Eq. (7.1) with a directed

graph G = {V , E}, a weight matrix A ∈ Rn×n, a sampling parameter h ∈ R≥0, and an

initial condition l = [((s[0])T (x[0])T (r[0])T ]T . Moreover, consider time steps t1, t2 ∈

Z≥1 with t2 ≥ t1; a set Ck,i = {ζck,i : ζ ∈ ({0}∪ [ζi])} with ck,i ∈ R≥0 and ζi ∈ Z≥1, for

all i ∈ V and for all k ∈ {t1, . . . , t2}; a set Bk,i = {ηbk,i : η ∈ ({0} ∪ [ηi])} with bk,i ∈

R≥0 and ηi ∈ Z≥1, for all i ∈ V and for all k ∈ {t1, . . . , t2}; a budget B ∈ R≥0; and

a prior pdf p(θ). Suppose x̂i[k] (resp., r̂i[k]) is given by a pmf p(x̂i[k]|θ, ϕk,i) (resp.,

p(r̂i[k]|θ, ωk,i)), where ϕk,i ∈ Ck,i (resp., ωk,i ∈ Bk,i). The Parameter Estimation

Measurement Selection (PEMS) problem is to find a measurement selection µ that

solves

min
µ∈M

f(µ)

s.t.
∑

x̂i[k]∈Ut1:t2

ck,iµ(x̂i[k]) +
∑

r̂i[k]∈Ut1:t2

bk,iµ(r̂i[k]) ≤ B,
(7.50)

where M is defined in Eq. (7.35), f(·) ∈ {fa(·), fd(·)} with fa(·) and fd(·) defined in

Eq. (7.49), Ut1:t2 is defined in Eq. (7.34), and C̄(µ) is given by Eq. (7.47).

Note that Fp � 0 from (7.48), and fa(0) = tr(C̄(0)) = tr((Fp)
−1) and fd(0) =

ln det(C̄(0)) = ln det((Fp)
−1) from Eq. (7.47). We further assume that Fp � 0 in the

sequel, which implies f(µ) > 0 for all µ ∈M.

7.6.2 Solving the PEMS Problem

In this section, we restrict ourselves to a specific measurement model. Simi-

lar measurement models have also been considered in [116] and [111] for instance.

Nonetheless, our analysis can potentially be extended to other measurement models.
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Pmfs of Measurements x̂i[k] and r̂i[k]

As mentioned in Section 7.4 and Section 7.6.1, measurement x̂i[k] (resp., r̂i[k])

is obtained by performing virus (resp., antibody) tests in the population at node

i ∈ V and at time k ∈ {t1, . . . , t2}. Specifically, consider any node i ∈ V and any

time k ∈ {t1, . . . , t2}, where the total population of node i is assumed to be fixed

over time and is denoted as Ni ∈ Z≥1. Given any measurement selection µ ∈ M

whereM is defined in Eq. (7.35), we recall from Section 7.6.1 that µ(x̂i[k])ck,i can be

viewed as the cost of performing virus tests on µ(x̂i[k])Nx
i randomly and uniformly

sampled individuals in the population of node i ∈ V , where µ(x̂i[k]) ∈ ({0} ∪ [ζi])

(with ζi ∈ Z≥1), ck,i ∈ R≥0 and Nx
i ∈ Z≥1 with ζiN

x
i ≤ Ni. Note that xi[k] is the

proportion of population at node i and at time k that is infected, and xi[k] ∈ [0, 1)

under Assumptions 7.3.1-7.3.2 as shown by Lemma 7.3.3. Thus, a randomly and

uniformly sampled individual in the population at node i and at time k will be an

infected individual (at time k) with probability xi[k], and will be a non-infected

(i.e., susceptible or recovered) individual with probability 1 − xi[k]. Supposing the

tests are accurate,3 we see from the above arguments that the obtained number of

individuals that are tested positive, i.e., Nix̂i[k], is a binomial random variable with

parameters Nx
i µ(x̂i[k]) ∈ Z≥1 and xi[k] ∈ [0, 1). Therefore, for any i ∈ V and for any

k ∈ {t1, . . . , t2}, the pmf of x̂i[k] is given by

p(x̂i[k] = x|θ, µ(x̂i[k])) =

(
Nx
i µ(x̂i[k])

Nix

)
(xi[k])Nix(1− xi[k])N

x
i µ(x̂i[k])−Nix, (7.51)

where x ∈ {0, 1
Ni
, 2
Ni
, . . . ,

Nx
i µ(x̂i[k])

Ni
} with x ∈ [0, 1] since Nx

i ζi ≤ Ni. Note that

we do not define the pmf of measurement x̂i[k] when Nx
i µ(x̂i[k]) = 0, i.e., when

µ(x̂i[k]) = 0, since µ(x̂i[k]) = 0 indicates no measurement is collected for state xi[k].

Also note that when xi[k] = 0, the pmf of x̂i[k] given in Eq. (7.51) reduces to p(x̂i[k] =

0|θ, µ(x̂i[k])) = 1. Moreover, since the weight matrix A ∈ Rn×n and the sampling

parameter h ∈ R≥0 are assume to be given, we see that given θ = [β δ]T and initial

3Here, “accurate” means that an infected individual will be tested positive with probability one,

and an individual that is not infected will be tested negative with probability one.
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condition l = [(s[0])T (x[0])T (r[0])T ]T , xi[k] can be obtained using Eq. (7.1b) for

all i ∈ V and for all k ∈ {t1, . . . , t2}, where we can view xi[k] as a function in the

unknown parameter θ. In other words, given l, θ, µ(x̂i[k]), Nx
i and Ni, one can obtain

the right-hand side of Eq. (7.51). Again, we only explicitly express the dependency

of the pmf of x̂i[k] on θ and µ(x̂i[k]) in Eq. (7.51). Following similar arguments to

those above, we assume that for any i ∈ V and for any k ∈ {t1, . . . , t2}, measurement

r̂i[k] has the following pmf:

p(r̂i[k] = r|θ, µ(r̂i[k])) =

(
N r
i µ(r̂i[k])

Nir

)
(ri[k])Nir(1− ri[k])N

r
i µ(r̂i[k])−Nir, (7.52)

where r ∈ {0, 1
Ni
, 2
Ni
, . . . ,

Nr
i µ(r̂i[k])

Ni
} with r ∈ [0, 1], µ(r̂i[k]) ∈ {0, . . . , ηi}, N r

i ∈ Z≥1

and N r
i µ(r̂i[k]) ≤ Ni. Similarly, we note that the pmf of r̂i[k] given in Eq. (7.52)

reduces to p(r̂i[k] = 0|θ, µ(r̂i[k])) = 1 when ri[k] = 0. The following standard result

for binomial random variables will be useful.

Lemma 7.6.3 For a binomial random q with parameters m ∈ Z≥1 and ps ∈ (0, 1), the

CRLB is given by Cps , (Fps)
−1, where Fps , −E

[
∂2 ln p(q)
∂p2
s

]
= E

[(∂ ln p(q)
∂ps

)2
]

= m
ps(1−ps)

with the expectation E[·] taken with respect to the pmf p(q).

Considering any measurement selection µ ∈ M and any measurement λ̂i[k] ∈

Ut1:t2 , where λ ∈ {x, r} and Ut1:t2 is defined in Eq. (7.34), we have the following:

E
[∂ ln p(λ̂i[k]|θ, µ(λ̂i[k]))

∂θ

(∂ ln p(λ̂i[k]|θ, µ(λi[k]))

∂θ

)T]
=E
[(∂ ln p(λ̂i[k]|θ, µ(λ̂i[k]))

∂λi[k]

)2 · ∂λi[k]

∂θ

(∂λi[k]

∂θ

)T]
(7.53)

=
Nλ
i µ(λ̂i[k])

λi[k](1− λi[k])
· ∂λi[k]

∂θ

(∂λi[k]

∂θ

)T
, (7.54)

where the expectation E[·] is taken with respect to p(λ̂i[k]|θ, µ(λ̂i[k])), and λi[k] ∈

[0, 1). To obtain (7.53), we note the form of ln p(λ̂i[k]|θ, µ(λ̂i[k])) in Eq. (7.51), and

use the chain rule. Moreover, we obtain (7.54) from Lemma 7.6.3. Noting that the

pmf of λ̂i[k] reduces to p(λ̂i[k] = 0|θ, µ(λ̂i[k])) = 1 if λi[k] = 0 as argued above, we

let the right-hand side of (7.54) be zero if λi[k] = 0.
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Complexity of the PEMS Problem

Here, we will show that the PEMS problem is NP-hard, i.e., there exist instances of

the PEMS problem that cannot be solved optimally by any polynomial-time algorithm

(if P 6= NP).

Theorem 7.6.4 The PEMS problem is NP-hard.

Proof We prove the NP-hardness of the PEMS problem via a (polynomial-time)

reduction from the knapsack problem which is known to be NP-hard (e.g., [41]). An

instance of the knapsack problem is given by a finite setD = {d1, . . . , dτ}, a size s(d) ∈

Z>0 and a value v(d) ∈ Z>0 for each d ∈ D, and K ∈ Z>0. The knapsack problem is

to find D′ ⊆ D such that
∑

d∈D′ v(d) is maximized while satisfying
∑

d∈D′ s(d) ≤ K.

Given any knapsack instance, we construct an instance of the PEMS problem as

follows. Let G = {V , E} be a graph that contains a set of n isolated nodes with

n = τ and V = [n]. Set the weight matrix to be A = 0n×n, and set the sampling

parameter as h = 1. The time steps t1 and t2 are set to be t1 = t2 = 1, i.e., only the

measurements of xi[1] and ri[1] for all i ∈ V will be considered. The initial condition is

set to satisfy si[0] = 0.5, xi[0] = 0.5 and ri[0] = 0 for all i ∈ V . The budget constraint

is set as B = K. Let C1,i = {0, B + 1} and B1,i = {0, s(di)} for all i ∈ V . The

pmfs of measurements x̂i[1] and r̂i[1] are given by Eqs. (7.51) and (7.52), respectively,

with Nx
i = N r

i = v(di) and Ni = maxi∈V v(di) for all i ∈ V , where Assumption 7.6.1

is assumed to hold. Finally, let the prior pdf of β ∈ (0, 1) be a Beta distribution

with parameters α1 = 3 and α2 = 3, and let the prior pdf of δ ∈ (0, 1) also be a

Beta distribution with parameters α1 = 3 and α2 = 3,4 where we take β and δ to

be independent. Noting that C1,i = {0, B + 1} in the PEMS instance constructed

above, i.e., x̂i[k] incurs a cost of B + 1 > B, we only need to consider measurements

r̂i[1] for all i ∈ V . Moreover, since B1,i = {0, s(di)}, a corresponding measurement

selection is then given by µ ∈ {0, 1}V . In other words, µ(i) = 1 if measurement r̂i[1]

4The pdf of a Beta distribution with parameters α1 ∈ R>0 and α2 ∈ R>0 is given by p(x|α1, α2) =

xα1−1(1−x)α2−1

B(α1,α2) , where x ∈ (0, 1) and B(α1, α2) =
∫ 1

0
yα1−1(1− y)α2−1dy. See [120] for more details.
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is collected (with cost s(di)), and µ(i) = 0 if measurement r̂i[1] is not collected. We

will see that there is a one to one correspondence between a measurement r̂i[1] in the

PEMS instance and an element di ∈ D in the knapsack instance.

Given a measurement selection µ ∈ {0, 1}V , we have from Eq. (7.44) the following:

Fθ(µ) =
∑

i∈supp(µ)

E
[∂ ln p(r̂i[1]|θ, µ(i))

∂θ

(∂ ln p(r̂i[1]|θ, µ(i))

∂θ

)T]
, (7.55)

where each expectation E[·] in the summation is taken with respect to p(r̂i[1]|θ, µ(i)),

supp(µ) , {i : µ(i) 6= 0} and θ = [β δ]T . Moreover, we see from Eq. (7.54) that

E
[∂ ln p(r̂i[1]|θ, µ(i))

∂θ

(∂ ln p(r̂i[1]|θ, µ(i))

∂θ

)T]
=

N r
i µ(i)

ri[1](1− ri[1])
· ∂ri[1]

∂θ

(∂ri[1]

∂θ

)T ∀i ∈ V . (7.56)

Since ri[0] = 0 and xi[0] = 0.5 for all i ∈ V , Eq. (7.1c) implies ri[1] = 0.5hδ for all

i ∈ V , where h = 1. We then have from Eqs. (7.55) and (7.56) the following:

Fθ(µ) =
1

0.5δ(1− 0.5δ)

0 0

0 0.25

 ∑
i∈supp(µ)

N r
i µ(i). (7.57)

Next, noting that β and δ are independent, one can show via Eq. (7.48) that

Fp = −Eθ

∂2 ln p(β)
∂β2 0

0 ∂2 ln p(δ)
∂δ2

 , (7.58)

where one can further show that (Fp)11 = (Fp)22 > 0 using the fact that the pdfs of β

and δ are Beta distributions with parameters α1 = 3 and α2 = 3. Similarly, one can

obtain Eθ[1/0.5δ(1− 0.5δ)] > 0. It now follows from Eqs. (7.57) and (7.58) that

Eθ[Fθ(µ)] + Fp =

z1 0

0 z1 + z2

∑
i∈supp(µ)N

r
i µ(i)

 , (7.59)

where z1, z2 ∈ R>0 are some constants (independent of µ). Note that the objective

in the PEMS instance is given by minµ∈{0,1}V f(µ), where f(·) ∈ {fa(·), fd(·)}. First,

considering the objective function fa(µ) = tr(C̄(µ)), where C̄(µ) = (Eθ[Fθ(µ)]+Fp)
−1,

we see from Eq. (7.59) that tr(C̄(µ)) is minimized (over µ ∈ {0, 1}V) if and only if
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∑
i∈supp(µ) N

r
i µ(i) is maximized. Similarly, considering the objective function fd(µ) =

ln det(C̄(µ)), we see from Eq. (7.59) that ln det(C̄(µ)) is minimized (over µ ∈ {0, 1}V)

if and only if
∑

i∈supp(µ) N
r
i µ(i) is maximized.

By the way we constructed the PEMS instance from the given knapsack instance, it

follows directly from the above arguments that a measurement selection µ? ∈ {0, 1}V

is an optimal solution to the PEMS instance if and only if D? , {di : i ∈ supp(µ?)} is

an optimal solution to the knapsack instance. Since the knapsack problem is NP-hard,

we conclude that the PEMS problem is NP-hard.

Remark 7.6.5 Theorem 7.6.4 shows that the PEMS problem is NP-hard even when

only the measurements at time step k = 1 can be collected, and each measurement

can either be collected with a certain cost or not collected.

Algorithm for the PEMS Problem

Theorem 7.6.4 motivates us to consider approximation algorithms for solving the

PEMS problem. To begin with, we note that the objective function in the PEMS

problem can be viewed as a function defined over an integer lattice. We then have

fa : M → R≥0 and fd : M → R≥0, where M is defined in Eq. (7.35). First,

considering fa :M→ R≥0, we will define a set function fPa : 2M̄ → R≥0, where M̄

is a set constructed as

M̄ , {(x̂i[k], l1) : i ∈ V , k ∈ {t1, . . . , t2}, l1 ∈ [ζi]}

∪ {(r̂i[k], l2) : i ∈ V , k ∈ {t1, . . . , t2}, l2 ∈ [ηi]}. (7.60)

In other words, for any i ∈ V and for any k ∈ {t1, . . . , t2}, we associate elements

(x̂i[k], 1), . . . , (x̂i[k], l1) (resp., (r̂i[k], 1), . . . , (r̂i[k], l2)) in set M̄ to measurement x̂i[k]

(resp., r̂i[k]). The set function fPa(·) is then defined as

fPa(Y) , fa(0)− fa(µY) = tr(C̄(0))− tr(C̄(µY)) ∀Y ⊆ M̄, (7.61)

where for any Y ⊆ M̄, we define µY ∈ M such that µY(x̂i[k]) = |{(x̂i[k], l1) :

(x̂i[k], l1) ∈ Y}| and µY(r̂i[k]) = |{(r̂i[k], l2) : (r̂i[k], l2) ∈ Y}| for all i ∈ V and for all
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k ∈ {t1, . . . , t2}. In other words, µY(x̂i[k]) (resp., µY(r̂i[k])) is set to be the number

of elements in Y that correspond to the measurement x̂i[k] (resp., r̂i[k]). Also note

that fPa(∅) = 0. Following the arguments leading to (7.54), we define

Hy ,

 Eθ
[ Nx

i

xi[k](1−xi[k])
∂xi[k]
∂θ

(∂xi[k]
∂θ

)T ]
if y = (x̂i[k], l1)

Eθ
[ Nr

i

ri[k](1−ri[k])
∂ri[k]
∂θ

(∂ri[k]
∂θ

)T ]
if y = (r̂i[k], l2)

∀y ∈ M̄, (7.62)

where xi[k], ri[k] ∈ [0, 1), i ∈ V , k ∈ {t1, . . . .t2}, l1 ∈ [ζi], l2 ∈ [ηi], and the ex-

pectation Eθ[·] is taken with respect to the prior pdf p(θ). Given any θ = [β δ]T ,

we see from the arguments for (7.54) that
Nx
i

xi[k](1−xi[k])
∂xi[k]
∂θ

(∂xi[k]
∂θ

)T � 0. More-

over, one can show that Eθ
[ Nx

i

xi[k](1−xi[k])
∂xi[k]
∂θ

(∂xi[k]
∂θ

)T ] � 0. Similarly, one can obtain

Eθ
[ Nr

i

ri[k](1−ri[k])
∂ri[k]
∂θ

(∂ri[k]
∂θ

)T ] � 0, which implies Hy � 0 for all y ∈ M̄. Now, suppose

the pmfs of x̂i[k] and r̂i[k] are given by Eq. (7.51) and Eq. (7.52), respectively. Recall

from Eq. (7.47) that tr(C̄(µ)) = tr((Eθ[Fθ(µ)] + Fp)
−1) for all µ ∈ M, where Fp and

Fθ(µ) are given by (7.48) and (7.44), respectively. Supposing Assumption 7.6.1 holds,

for all Y ⊆ M̄, one can first express Fθ(µY) using (7.54), and then use Eq. (7.62)

to obtain Eθ[Fθ(µY)] =
∑

y∈Y Hy , H(Y), where µY is defined above given Y ⊆ M̄.

Putting the above arguments together, we have from Eq. (7.61) the following:

fPa(Y) = tr
(
(Fp)

−1
)
− tr

(
(Fp +H(Y))−1

)
∀Y ⊆ M̄. (7.63)

We now associate costs to the elements in M̄. Specifically, let the cost of (x̂i[k], l1)

be ck,i, denoted as c(x̂i[k], l1), for all (x̂i[k], l1) ∈ M̄, and let the cost of (r̂i[k], l2) be

bk,i, denoted as c(r̂i[k], l2), for all (r̂i[k], l2) ∈ M̄, where ck,i ∈ R>0 and bk,i ∈ R>0

are given in the instance of the PEMS problem. Setting the cost structure of the

elements in M̄ in this way, we establish an equivalence between the cost of a subset

Y ⊆ M̄ and the cost of µY ∈M, where µY is defined above, i.e.,∑
λ∈{x,r}

∑
(λ̂i[k],l)∈Y

c(λ̂i[k], l) =
∑

x̂i[k]∈Ut1:t2

ck,iµY (x̂i[k]) +
∑

r̂i[k]∈Ut1:t2

bk,iµY(r̂i[k]).

Similarly, considering the objective function fd : M → R≥0 in the PEMS problem,

we define a set function fPd : 2M̄ → R≥0 as

fPd(Y) , fd(0)− fd(µY) = ln det(Fp +H(Y))− ln det(Fp) ∀Y ⊆ M̄, (7.64)
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where we define µY ∈ M such that µY(x̂i[k]) = |{(x̂i[k], l1) : (x̂i[k], l1) ∈ Y}| and

µY(r̂i[k]) = |{(r̂i[k], l2) : (r̂i[k], l2) ∈ Y}| for all i ∈ V and for all k ∈ {t1, . . . , t2}.

Note that given an instance of the PEMS problem in Problem 7.6.2, we can

construct the set M̄ with the associated costs of the elements in M̄ in O(n(ζ + η))

time, where n is the number of nodes in graph G = {V , E}, and ζ, η ∈ Z≥1 with

ζi ≤ ζ and ηi ≤ η for all i ∈ V . Assuming that ζ and η are constants (i.e., they are

fixed), we can construct the set M̄ with the associated costs in O(n) time which is a

polynomial in the size of the given PEMS instance. Based on the above arguments,

we further consider the following problem:

max
Y⊆M̄

fP (Y)

s.t. c(Y) ≤ B,

(P)

where fP (·) ∈ {fPa(·), fPd(·)} with fPa(·) and fPd(·) given by in (7.63) and (7.64),

respectively, and c(Y) ,
∑

y∈Y c(y) for all Y ⊆ M̄. By the manner in which we

construct fP (·) and the costs of elements in M̄, one can verify that Y?a ⊆ M̄ (resp.,

Y?d ⊆ M̄) is an optimal solution to Problem (P) with fP (·) = fPa(·) (resp., fP (·) =

fPd(·)) if and only if µY?a (resp., µY?d ) defined above is an optimal solution to (7.50)

in Problem 7.6.2 with f(·) = fa(·) (resp., f(·) = fd(·)). Therefore, given a PEMS

instance, we can first construct set M̄ with the associated cost for each element in

M̄, and then solve Problem (P). Note that Problem (P) can be viewed as a problem

of maximizing a set function subject to a knapsack constraint. In particular, a greedy

algorithm (Algorithm 7.6.1) has been proposed to solve this problem with performance

guarantees when the objective function is monotone nondecreasing and submodular5

(e.g., [121] and [85]). Here, we note from the definition of Algorithm 7.6.1 that

the number of evaluations of function fP (·) required in the algorithm is O(|M̄|2).

One can also observe that the objective function fPd(Y) = ln det(Fp + H(Y)) −

ln det(Fp) in Problem (P) shares a similar form with that in [46]. Thus, using similar

5A set function g : 2V → R, where V = [n] is the ground set, is said to be monotone nondecreasing

if g(A) ≤ g(B) for all A ⊆ B ⊆ V. g(·) is called submodular if g({y}∪A)−g(A) ≥ g({y}∪B)−g(B)

for all A ⊆ B ⊆ V and for all y ∈ V \ B.
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arguments to those in [46], one can show that fPd(·) is monotone nondecreasing and

submodular. Combining the above arguments together and noting that fPd(∅) = 0,

we then have the following result for the performance of the greedy algorithm defined

in Algorithm 7.6.1 when applied to solving Problem (P) with fP (·) = fPd(·).

Algorithm 7.6.1 Greedy algorithm for PEMS

1: Input: An instance of PEMS transformed into the form in (P)

2: Output: Yg
3: Find Y1 , arg max{fP (y) : y ∈ M̄}

4: Initialize Y2 = ∅ and C = M̄

5: while C 6= ∅ do

6: Find y? ∈ arg maxy∈C
fP ({y}∪Y2)−fP (Y2)

c(y)

7: if c(y?) + c(Y2) ≤ B then

8: Y2 = {y?} ∪ Y2

9: C = C \ {y?}

10: Yg = arg max{fP (Y1), fP (Y2)}

Theorem 7.6.6 Consider Problem (P) with the objective function fPd : 2M̄ → R≥0

given by (7.64). Then Algorithm 7.6.1 yields a solution, denoted as Ygd , to Problem

(P) that satisfies

fPd(Ygd ) ≥ 1

2
(1− e−1)fPd(Y?d), (7.65)

where Y?d ⊆ M̄ is an optimal solution to Problem (P).

However, the objective function corresponding to the A-optimality criterion (i.e.,

fPa(·)) is not submodular in general (e.g., [5]). In fact, one can construct examples

where the objective function fPa(Y) = tr((Fp)
−1
)
− tr

(
(Fp +H(Y))−1) in the PEMS

problem is not submodular. Hence, in order to provide performance guarantees of the

greedy algorithm when applied to Problem (P) with f(·) = fPa(·), we will extend the

analysis in [121] to nonsubmodular settings. To proceed, note that for all A ⊆ B ⊆
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M̄, we have Fp +H(A) � Fp +H(B), which implies (Fp +H(A))−1 � (Fp +H(B))−1

and tr(Fp + H(A))−1) ≥ tr(Fp + H(B))−1) [91]. Therefore, the objective function

fPa(·) is also monotone nondecreasing with fPa(∅) = 0. We then characterize how

close fPa(·) is to being submodular by introducing the following definition.

Definition 7.6.1 Consider Problem (P) with fP (·) = fPa(·), where fPa : 2M̄ → R≥0

is defined in (7.61). Suppose Algorithm 7.6.1 is applied to solve Problem (P). For all

j ∈ {1, . . . , |Y2|}, let Yj2 = {y1, . . . , yj} denote the set that contains the first j elements

added to set Y2 in Algorithm 7.6.1, and let Y0
2 = ∅. The type-1 greedy submodularity

ratio of fPa(·) is defined to be the largest γ1 ∈ R that satisfies∑
y∈A\Yj2

(
fPa({y} ∪ Yj2)− fPa(Yj2)

)
≥ γ1

(
fPa(A ∪ Yj2)− fPa(Yj2)

)
, (7.66)

for all A ⊆ M̄ and for all j ∈ {0, . . . , |Y2|}. The type-2 greedy submodularity ratio

of fPa(·) is defined to be the largest γ2 ∈ R that satisfies

fPa(Y1)− fPa(∅) ≥ γ2

(
fPa({y} ∪ Yj2)− fPa(Yj2)

)
, (7.67)

for all j ∈ {0, . . . , |Y2|} and for all y ∈ M̄ \ Yj2 such that c(y) + c(Yj2) > B, where

Y1 = arg max{fPa(y) : y ∈ M̄}.

Remark 7.6.7 Note that fPa(·) is monotone nondecreasing as argued above. From

the definition of γ1 in (7.66), one can then show that γ1 ∈ [0, 1]; if fPa(·) is submod-

ular, γ1 = 1. Similarly, one can show that γ2 ≥ 0; if fPa(·) is submodular, γ2 ≥ 1.

Based on Definition 7.6.1, the following result extends the analysis in [85,121], and

characterizes the performance guarantees of the greedy algorithm (Algorithm 7.6.1)

for solving Problem (P) with fP (·) = fPa(·).

Theorem 7.6.8 Consider Problem (P) with the objective function fPa : 2M̄ → R≥0

given by (7.61). Then Algorithm 7.6.1 yields a solution, denoted as Yga , to Problem

(P) that satisfies

fPa(Yga) ≥ min{γ2, 1}
2

(1− e−γ1)fPa(Y?a), (7.68)
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where Y?a ⊆ M̄ is an optimal solution to Problem (P), and γ1 ∈ R≥0 and γ2 ∈ R≥0

are defined in Definition 7.6.1.

Proof Noting that (7.68) follows trivially if γ1 = 0 or γ2 = 0, we assume that

γ1 > 0 and γ2 > 0. In this proof, we drop the subscript of fPa(·) and denote f(·)

for notational simplicity. First, recall that for all j ∈ {1, . . . , |Y2|}, we let Yj2 =

{y1, . . . , yj} denote the set that contains the first j elements added to set Y2 in

Algorithm 7.6.1, and let Y0
2 = ∅. Now, let jl be the first index in {1, . . . , |Y2|} such

that a candidate element y? ∈ arg maxy∈C
f({y}∪Yjl2 )−f(Yjl2 )

c(y)
for Y2 (given in line 6 of

Algorithm 7.6.1) cannot be added to Y2 due to c(y?) + c(Yjl2 ) > B. In other words,

for all j ∈ {0, . . . , jl−1}, any candidate element y? ∈ arg maxy∈C
f({y}∪Yj2)−f(Yj2)

c(y)
for Y2

satisfies c(y?)+c(Yj2) ≤ B and can be added to Y2. Considering any j ∈ {0, . . . , jl−1},

we then have

f(Y?a ∪ Y
j
2)− f(Yj2) ≤ 1

γ1

∑
y∈Y?a\Y

j
2

c(y) · f({y} ∪ Yj2)− f(Yj2)

c(y)
(7.69)

≤ 1

γ1

∑
y∈Y?a\Y

j
2

c(y) · f(Yj+1
2 )− f(Yj2)

c(yj+1)
≤ B

γ1

· f(Yj+1
2 )− f(Yj2)

c(yj+1)
, (7.70)

where (7.69) follows from the definition of γ1 in (7.66), and the first inequality in

(7.70) follows from
f({y}∪Yj2)−f(Yj2)

c(y)
≤ f({yj+1}∪Yj2)−f(Yj2)

c(yj+1)
∀y ∈ Y?a \ Y

j
2 by the greedy

choice of Algorithm 7.6.1. To obtain the second inequality in (7.70), we use the fact

c(Y?a) ≤ B. Since f(·) is monotone nondecreasing, it then follows from (7.70) that

f(Y?a) ≤ f(Yj2) +
B

γ1

· f(Yj+1
2 )− f(Yj2)

c(yj+1)
. (7.71)

Moreover, let y′ ∈ arg maxy∈C
f({y}∪Yjl2 )−f(Yjl2 )

c(y)
be the (first) candidate element for Y2

that cannot be added to Y2 due to c(y′) + c(Yjl2 ) > B, as we argued above. One can

see that
f({y′}∪Yjl2 )−f(Yjl2 )

c(y′)
≥ f({y}∪Yjl2 )−f(Yjl2 )

c(y)
also holds for for all y ∈ Y?a \ Y

jl
2 . Letting

Ȳjl+1
2 , {y′} ∪ Yjl2 and following similar arguments leading to (7.71), we have

f(Y?a) ≤ f(Yjl2 ) +
B

γ1

· f(Ȳjl+1
2 )− f(Yjl2 )

c(y′)
. (7.72)
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Letting ∆j , f(Y?a)− f(Yj2) for all j ∈ {0, . . . , jl} and ∆jl+1 , f(Y?a)− f(Ȳjl+1
2 ), we

obtain from (7.71) the following:

∆j ≤ ∆j−1(1− c(yj)γ1

B
) ∀j ∈ {0, . . . , jl + 1},

=⇒ ∆jl+1 ≤ ∆0

( jl∏
j=1

(1− c(yj)γ1

B
)
)
(1− c(y′)γ1

B
). (7.73)

Moreover, one can show that
(∏jl

j=1(1 − c(yj)γ1

B
)
)
(1 − c(y′)γ1

B
) ≤

∏jl+1
j=1 (1 − c(Ȳjl+1

2 )γ1

(jl+1)B
)

(e.g., [31]). We then have from (7.73) and (7.72) the following:

f(Y?a)− f(Ȳjl+1
2 ) ≤ f(Y?a)(1− c(Ȳjl+1

2 )γ1

(jl + 1)B
)jl+1 ≤ f(Y?a)e−γ1

c(Ȳ
jl+1
2 )

B

=⇒ f(Ȳjl+1
2 ) ≥ (1− e−γ1

c(Ȳ
jl+1
2 )

B )f(Y?a) ≥ (1− e−γ1)f(Y?a), (7.74)

where the second inequality in (7.74) follows from c(Ȳjl+1
2 ) > B.

To proceed with the proof of the theorem, we note from the definition of γ2 in

Definition 7.6.1 that f({y′} ∪ Yjl2 ) − f(Yjl2 ) ≤ 1
γ2
f(Y1) with γ2 > 0, which together

with (7.74) imply that f(Yjl2 ) + 1
γ2
f(Y1) ≥ f(Ȳjl+1

2 ) ≥ (1 − eγ1)f(Y?a). Thus, we see

that at least one of f(Yjl2 ) ≥ 1
2
(1− e−γ1)f(Y?a) and f(Y1) ≥ γ2

2
(1− e−γ1)f(Y?a) holds.

Since f(Y2) ≥ f(Yjl2 ) by the monotonicity of f(·) and f(Yga) ≥ max{f(Y1), f(Y2)}

by the definition of Algorithm 7.6.1, we obtain (7.68).

Remark 7.6.9 Note that (7.68) becomes fPa(Yga) ≥ 1
2
(1 − e−γ1)fPa(Y?a) if γ2 ≥ 1.

Also note that γ2 ≥ 1 can hold when the objective function fPa(·) is not submodular,

as we will see later in our numerical examples.

Remark 7.6.10 In [122], the authors also extended the analysis of Algorithm 7.6.1

to nonsubmodular settings, and obtained a performance guarantee for Algorithm 7.6.1

that depends on a submodularity ratio defined in a different manner. One can show

that the submodularity ratios defined in Definition 7.6.1 are lower bounded by the one

defined in [122], which further implies that the performance bound for Algorithm 7.6.1

given in Theorem 7.6.8 is tighter than that provided in [122].
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We see from Definition 7.6.1 that given Yj2 for all j ∈ {0, . . . , |Y2|} from Algo-

rithm 7.6.1, γ2 can be obtained via O(|M̄|2) evaluations of fPa(·). However, finding

γ1 may require exponentially many evaluations of fPa(·). Thus, we provide a lower

bound on γ1 that can be computed in polynomial time (given Hy for all y ∈ M̄ defined

in (7.62)). The lower bound on γ1 and the value of γ2 together with Theorem 7.6.8

will also provide performance guarantees for the greedy algorithm. We will use the

following result.

Lemma 7.6.11 ( [91]) For any positive semidefinite matrices P,Q ∈ Rn×n, λ1(P ) ≤

λ1(P +Q) ≤ λ1(P ) + λ1(Q), and λn(P +Q) ≥ λn(P ) + λn(Q).

We then have the following result; the proof is included in Section 7.8.3.

Lemma 7.6.12 Consider the set function fPa : 2M̄ → R≥0 defined in (7.61). The

type-1 greedy submodularity ratio of fPa(·) given by Definition 7.6.1 satisfies

γ1 ≥ min
j∈{0,...,|Y2|}

λ2(Fp +H(Yj2))λ2(Fp +H({zj} ∪ Yj2))

λ1(Fp +H(Yj2))λ1(Fp +H({zj} ∪ Yj2))
(7.75)

where Yj2 contains the first j elements added to Y2 in Algorithm 7.6.1 ∀j ∈ {1, . . . , |Y2|}

with Y0
2 = ∅, Fp is given by (7.48), H(Y) =

∑
y∈Y Hy ∀Y ⊆ M̄ with Hy � 0 defined

in (7.62), and zj ∈ arg miny∈M̄\Yj2
λ2(Fp+H({y}∪Yj2))

λ1(Fp+H({y}∪Yj2))
∀j ∈ {1, . . . , |Y2|}.

Illustrations

Using Lemma 7.6.11, one can further obtain from (7.75) the following:

γ1 ≥ min
j∈{0,...,|Y2|}

λ2(Fp) + λ2(H(Yj2))

λ1(Fp) + λ1(H(Yj2))
· λ2(Fp) + λ2(H(zj)) + λ2(H(Yj2))

λ1(Fp) + λ1(H(zj)) + λ1(H(Yj2))
, (7.76)

where zj ∈ arg miny∈M̄\Yj2
λ2(Fp+H({y}∪Yj2))

λ1(Fp+H({y}∪Yj2))
. Supposing Fp is fixed, we see from (7.76)

that the lower bound on γ1 would potentially increase if λ2(H(zj))/λ1(H(zj)) and

λ2(H(Yj2))/λ1(H(Yj2)) increase. Recall that Fp given by (7.48) encodes the prior

knowledge that we have about θ = [β δ]T . Moreover, recall from (7.62) that H(y)

depends on the prior pdf p(θ) and the dynamics of the SIR model in (7.1). Therefore,
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the lower bound given by Lemma 7.6.12 and thus the corresponding performance

bound of Algorithm 7.6.1 given in Theorem 7.6.8 depend on the prior knowledge

that we have on θ = [β δ]T and the dynamics of the SIR model. Also note that

the performance bounds given in Theorem 7.6.8 are worst-case performance bounds

for Algorithm 7.6.1. Thus, in practice the ratio between a solution returned by

the algorithm and an optimal solution can be smaller than the ratio predicted by

Theorem 7.6.8, as we will see in our simulations in next section. However, there may

exist instances of the PEMS problem that let Algorithm 7.6.1 return a solution that

meet the worst-case performance bound. Therefore, the performance bound provided

in Theorem 7.6.8 indicates the worst performance bounds that Algorithm 7.6.1 can

ever have when applied to any instance of the PEMS problem with objective function

fPa(·). Moreover, instances with tighter performance bounds potentially imply better

performance of the algorithm when applied to those instances. Similar arguments also

hold for the performance bounds provided in Theorem 7.6.6.

Simulations

To further investigate the performance of Algorithm 7.6.1 in practice and validate

the theoretical results in Theorems 7.6.6 and 7.6.8, and Lemma 7.6.12, we consider

concrete PEMS instances. The directed network G = {V , E} is given by Fig. 7.2(a).

According to the existing literature about the estimated infection and recovery rates

for the COVID-19 pandemic (e.g., [123]), we assume that the infection rate β and the

recovery rate δ lie in the intervals [3, 7] and [1, 4], respectively. Moreover, we let the

prior pdf of β (resp., δ) be a (linearly transformed) Beta distribution with parameters

α1 = 6 and α2 = 3 (resp., α1 = 3 and α2 = 4), where β and δ are also assumed to be

independent. The prior pdfs of β and δ are then plotted in Fig. 7.2(b) and Fig. 7.2(c),

respectively. The sampling parameter is set to be h = 0.1. We then randomly generate

the weight matrix A ∈ R5×5 such that Assumptions 7.3.1-7.3.2 are satisfied, where

each entry of A is drawn (independently) from certain uniform distributions. The
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initial condition is set to be s1[0] = 0.95, x1[0] = 0.05 and r1[0] = 0, and si[0] = 0.99,

xi[0] = 0.01 and ri[0] = 0 for all i ∈ {2, . . . , 5}. In the pmfs of measurements x̂i[k]

and r̂i[k] given in Eq. (7.51) and Eq. (7.52), respectively, we set Nx
i = N r

i = 100 and

Ni = 1000 for all i ∈ V .

(a) Network (b) Prior pdf of β (c) Prior pdf of δ

Fig. 7.2. Network structure and prior pdfs of β and δ.

First, let us consider PEMS instances with a relatively smaller size. In such

instances, we set the time steps t1 = t2 = 5, i.e., we only consider collection mea-

surements at time step t = 5. In the sets C5,i = {ζc5,i : ζ ∈ ({0} ∪ [ζi])} and

B5,i = {ηb5,i : η ∈ ({0} ∪ [ηi])}, we let c5,i = b5,i and ζi = ηi = 2 for all i ∈ V , and

draw c5,i and b5,i uniformly randomly from {1, 2, 3}. Here, we can choose to perform

0, 100, or 200 virus (or antibody) tests at a node i ∈ V and at k = 5. Since the set

M̄ defined in Eq. (7.60) has size 20, it allows us to compare the performance of the

greedy algorithm (Algorithm 7.6.1) to the optimal solution. In Fig. 7.3(a), we consider

the objective function fPd(·), given by Eq. (7.64), in the PEMS instances constructed

above, and plot the greedy solutions and the optimal solutions to the PEMS instances

under different values of budget B. Note that for all the simulation results in this

section, we obtain the averaged results from 50 randomly generated A matrices as de-

scribed above, for each value of B. As shown in Theorem 7.6.6, the greedy algorithm

yields a 1
2
(1−e−1) ≈ 0.31 approximation for fPd(·) (in the worst case), and the results

in Fig. 7.3(a) show that the greedy algorithm performs near optimally for the PEMS

instances generated above. Similarly, in Fig. 7.3(b), we plot the greedy solutions and

the optimal solutions to the PEMS instances constructed above under different values

of B, when the objective function is fPa(·) given in Eq. (7.61). Again, the results in



193

Fig. 7.3(b) show that the greedy algorithm performs well for the constructed PEMS

instances. Moreover, according to Lemma 7.6.12, we plot the lower bound on the

submodularity ratio γ1 of fPa(·) in Fig. 7.3(c). Here, we note that the submodularity

ratio γ2 of fPa(·) is always greater than one in the PEMS instances constructed above.

Hence, Theorem 7.6.8 yields a 1
2
(1−e−γ1) worst-case approximation guarantee for the

greedy algorithm, where we note that 1
2
(1− e−0.3) ≈ 0.13.

(a) OPT vs. Greedy for fPd(·) (b) OPT vs. Greedy for fPa(·) (c) Bound on γ1

Fig. 7.3. Results for PEMS instances of medium size.

Fig. 7.4. Bound on γ1 for PEMS instances of large size.

We then investigate the performance of the greedy algorithm for PEMS instances

of a larger size. Since the optimal solution to the PEMS instances cannot be efficiently

obtained when the sizes of the instances become large, we only obtain the lower

bound on the submodularity ratio γ1 of fPa(·) provided in Lemma 7.6.12, which can

be computed in polynomial time. Different from the smaller instances constructed

above, we set t1 = 1 and t2 = 5. We let ζi = ηi = 10 for all i ∈ V in Ck,i = {ζck,i :

ζ ∈ ({0} ∪ [ζi])} and Bk,i = {ηbk,i : η ∈ ({0} ∪ [ηi])}, where we also set ck,i = bk,i

and draw ck,i and bk,i uniformly randomly from {1, 2, 3}, for all k ∈ [5] and for all
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i ∈ V . Note that the size of the set M̄ defined in Eq. (7.60) is equal to 500 in

these instances of the PEMS problem. Moreover, we modify the parameter of the

Beta distribution corresponding to the pdf of β to be α1 = 8 and α2 = 3. The other

constructions remain the same as the smaller PEMS instances described above. Here,

we can choose to perform 0, 100, 200, ..., or 1000 virus (or antibody) tests at node

i ∈ V and at k ∈ [5]. In Fig. 7.4, we plot the lower bound on γ1 obtained from

the PEMS instances constructed above. We note that the submodularity ratio γ2 of

fPa(·) is also always greater than one.

Overall, we see that the greedy algorithm for the PEMS problem performs well

on the randomly generated instances. Moreover, the lower bounds on γ1 plotted in

Fig. 7.3(c) and Fig. 7.4 show that Lemma 7.6.12 together with Theorem 7.6.8 yield

reasonably tight worst-case performance guarantees for the greedy algorithm when

applied to PEMS instances with the objective function fPa(·).

7.7 Chapter Summary

In this chapter, we first considered the PIMS problem under the exact measure-

ment setting, and showed that the problem is NP-hard. We then proposed an ap-

proximation algorithm that returns a solution to the PIMS problem that is within

a certain factor of the optimal one. Next, we studied the PEMS problem under the

noisy measurement setting. Again, we showed that the problem is NP-hard. We

applied a greedy algorithm to solve the PEMS problem, and provided performance

guarantees on the greedy algorithm. We presented numerical examples to validate the

obtained performance bounds of the greedy algorithm, and showed that the greedy

algorithm performs well in practice.
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7.8 Proofs of Key Results

7.8.1 Proof of Lemma 7.3.3

We first prove part (a). Considering any i ∈ V and any k ∈ Z≥0, we note from

Eq. (7.1a) that

si[k + 1] = si[k](1− hβ
∑
j∈N̄i

aijxj[k]). (7.77)

Under Assumptions 7.3.1-7.3.2, we have xi[k] ∈ [0, 1] for all i ∈ V as argued above,

and hβ
∑

j∈N̄i aij < 1 for all i ∈ V , which implies 1 − hβ
∑

j∈N̄i aijxj[k] ≥ 1 −

hβ
∑

j∈N̄i aij > 0. Supposing si[k] > 0, we have from Eq. (7.77) si[k + 1] > 0.

Combining the above arguments with the fact si[0] ∈ (0, 1] from Assumption 7.3.1,

we see that si[k] > 0 for all k ∈ Z≥0. Noting that si[k], xi[k], ri[k] ∈ [0, 1] with

si[k] + xi[k] + ri[k] = 1 for all i ∈ V and for all k ∈ Z≥0 as argued above and

that xi[0] ∈ [0, 1) and ri[0] = 0 for all i ∈ V , the result in part (a) also implies

xi[k], ri[k] ∈ [0, 1) for all i ∈ V and for all k ∈ Z≥0.

One can then observe that in order to prove parts (b)-(d), it is sufficient to prove

the following facts.

Fact 7.8.1 Consider any i ∈ V and any k1 ∈ Z≥0. If xi[k1] > 0, then xi[k2] > 0 for

all k2 ∈ Z≥0 with k2 ≥ k1.

Fact 7.8.2 Consider any i ∈ V and any k ∈ Z≥0 such that xi[k] = 0. If there exists

j ∈ Ni such that xj[k] > 0, then xi[k + 1] > 0. If xj[k] = 0 for all j ∈ Ni, then

xi[k + 1] = 0.

Fact 7.8.3 Consider any i ∈ V and any k1 ∈ Z≥0. If xi[k1] > 0, then ri[k1 + 1] > 0.

If xi[k1] = 0, then ri[k1 + 1] = 0.

Let us first prove Fact 7.8.1. Consider any i ∈ V and any k ∈ Z≥0. Supposing

xi[k] > 0, we have from Eq. (7.1)

xi[k + 1] = (1− hδ)xi[k] + hsi[k]β
∑
j∈N̄i

aijxj[k], (7.78)
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where the first term on the right-hand side of the above equation is positive, since

1 − hδ > 0 from Assumption 7.3.2, and the second term on the right-hand side of

the above equation is nonnegative. It then follows that xi[k + 1] > 0. Repeating the

above argument proves Fact 7.8.1.

We next prove Fact 7.8.2. Considering any i ∈ V and any k ∈ Z≥0 such that

xi[k] = 0, we note from Eq. (7.1) that

xi[k + 1] = hsi[k]β
∑
j∈Ni

aijxj[k], (7.79)

where si[k] > 0 as shown in part (a). Suppose there exists j ∈ Ni such that xj[k] > 0.

Since h, β ∈ R>0 and aij > 0 for all j ∈ Ni from Assumption 7.3.2, we have from

Eq. (7.79) xi[k + 1] > 0. Next, supposing xj[k] = 0 for all j ∈ Ni, we obtain from

Eq. (7.79) xi[k + 1] = 0. This proves Fact 7.8.2.

Finally, we prove Fact 7.8.3. Let us consider any i ∈ V and any k1 ∈ Z≥0.

Suppose xi[k1] > 0. Since h, δ ∈ R>0 from Assumption 7.3.2, we have from Eq. (7.1c)

ri[k1 + 1] = ri[k] + hδxi[k1] > 0. Next, supposing xi[k1] = 0, we note from Fact 7.8.1

that xi[k
′
1] = 0 for all k′1 ≤ k1. It then follows from Eq. (7.1c) and Assumption 7.3.1

that ri[k1 + 1] = ri[k1] = · · · = ri[0] = 0, completing the proof of Fact 7.8.3. �

7.8.2 Proof of Lemma 7.5.5

Noting from (7.11), we haveΦx
k1,i1

Φr
k2,i2

 =

si1 [k1]
∑

j∈N̄i1
ai1jxj[k1] −xi1 [k1]

0 xi2 [k2]

 . (7.80)

To prove part (a), consider any i1 ∈ S ′I and any i2 ∈ V with di2 6=∞, where we note

xi1 [0] > 0 and ai1i1 > 0 from the definition of S ′I . We then see from Lemma 7.3.3(a)-(b)

that si1 [k1] > 0 and xi1 [k1] > 0 for all k1 ≥ 0. It follows that si1 [k1]
∑

j∈N̄i1
ai1jxj[k1] >

0 for all k1 ≥ 0. Also, we obtain from Lemma 7.3.3(b) xi2 [k2] > 0 for all k2 ≥ di2 .

This proves part (a).

We then prove part (b). Considering any i1 ∈ S ′ and any i2 ∈ V with d2 6= ∞,

we see from the definition of S ′ that Ni1 6= ∅ and there exists j ∈ Ni1 such that
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dj 6=∞. Letting j1 be a node in Ni1 such that dj1 = min{dj : j ∈ Ni1} 6=∞, we note

from Lemma 7.3.3(a) that xj1 [k1] > 0 for all k1 ≥ min{dj : j ∈ Ni1}. Also note that

ai1j1 > 0 from Assumption 7.3.2. The rest of the proof of part (b) is then identical to

that of part (a). �

7.8.3 Proof of Lemma 7.6.12

Noting the definition of γ1 in Definition 7.6.1, we will provide lower bound on∑
y∈A\Yj2

(fPa({y}∪Yj2)−fPa(Yj2))

fPa(A∪Yj2)−fPa(Yj2)
for all A ⊆ M̄ and for all Yj2 , where we will assume that

A \ Yj2 6= ∅, otherwise (7.66) would be satisfied for all γ1 ∈ R. We begin by lower

bounding
∑

y∈A\Yj2

(
fPa({y} ∪ Yj2)− fPa(Yj2)

)
in the following:∑

y∈A\Yj2

(fPa({y} ∪ Yj2)− fPa(Yj2))

=
∑

y∈A\Yj2

(
tr
(
(Fp +H(Yj2))−1

)
− tr

(
(Fp +H({y} ∪ Yj2))−1

))
=
∑

y∈A\Yj2

2∑
i=1

( 1

λi(Fp +H(Yj2))
− 1

λi(Fp +H({y} ∪ Yj2))

)
=
∑

y∈A\Yj2

2∑
i=1

λi(Fp +H({y} ∪ Yj2))− λi(Fp +H(Yj2))

λi(Fp +H(Yj2))λi(Fp +H({y} ∪ Yj2))

≥
∑

y∈A\Yj2

∑2
i=1(λi(Fp +H({y} ∪ Yj2))− λi(Fp +H(Yj2)))

λ1(Fp +H(Yj2))λ1(Fp +H({z′} ∪ Yj2))
(7.81)

=

∑
y∈A\Yj2

tr(Hy)

λ1(Fp +H(Yj2))λ1(Fp +H({z′} ∪ Yj2))
. (7.82)
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To obtain (7.81), we let z′ ∈ arg maxy∈A\Yj2
λ1(Fp + H({y} ∪ Yj2)) and note that

λ1(Fp+H({z′}∪Yj2)) ≥ λi(Fp+H({y}∪Yj2)) for all i ∈ {1, 2} and for all y ∈ A\Yj2 .

Next, we upper bound fPa(A ∪ Yj2)− fPa(Yj2) in the following:

fPa(A ∪ Yj2)− fPa(Yj2) = tr
(
(Fp +H(Yj2))−1

)
− tr

(
(Fp +H(A ∪ Yj2))−1

)
=

2∑
i=1

( 1

λi(Fp +H(Yj2))
− 1

λi(Fp +H(A ∪ Yj2))

)
=

2∑
i=1

λi(Fp +H(A ∪ Yj2))− λi(Fp +H(Yj2))

λi(Fp +H(Yj2))λi(Fp +H(A ∪ Yj2))

≤
∑2

i=1

(
λi(Fp +H(A ∪ Yj2))− λi(Fp +H(Yj2)

)
λ2(Fp +H(Yj2))λ2(Fp +H({z′} ∪ Yj2))

(7.83)

=

∑
y∈A\Yj2

tr(Hy)

λ2(Fp +H(Yj2))λ2(Fp +H({z′} ∪ Yj2))
. (7.84)

To obtain (7.83), we note that λi(Fp +H(A∪Yj2)) ≥ λ2(Fp +H(A∪Yj2)) ≥ λ2(Fp +

{z′} ∪ Yj2) for all i ∈ {1, 2}, where the second inequality follows from Lemma 7.6.11

with the fact H(A ∪ Yj2) − H({z′} ∪ Yj2) � 0, and z′ is defined above. Combining

(7.82) and (7.84), we have∑
y∈A\Yj2

(fPa({y} ∪ Yj2)− fPa(Yj2))

fPa(A ∪ Yj2)− fPa(Yj2)
≥ λ2(Fp +H(Yj2))λ2(Fp +H({z′} ∪ Yj2))

λ1(Fp +H(Yj2))λ1(Fp +H({z′} ∪ Yj2))

≥ λ2(Fp +H(Yj2))λ2(Fp +H({zj} ∪ Yj2))

λ1(Fp +H(Yj2))λ1(Fp +H({zj} ∪ Yj2))
,

(7.85)

where zj ∈ arg miny∈M̄\Yj2
λ2(Fp+H({y}∪Yj2))

λ1(Fp+H({y}∪Yj2))
. Since (7.85) holds for all Yj2 with j ∈

{0, . . . , |Y2|} and for all A ⊆ M̄, we obtain (7.75). �
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8. SUMMARY AND FUTURE WORK

8.1 Summary

In this thesis, we studied the sensor selection problem in large-scale systems using

algorithmic and graph-theoretic approaches, under a variety of settings. We summa-

rize our main results below.

1. In Chapter 3, we considered the sensor selection and attack problems for Kalman

filtering. We showed that the sensor selection and attack problems for Kalman

filtering are NP-hard and cannot be approximated within any constant factor

in polynomial time for general systems.

2. In Chapter 4, we studied a class of the sensor selection and attack problems for

Kalman filtering for networked systems where there is a single node in the net-

work that has a stochastic input. We showed that polynomial-time algorithms

exist for this class of the sensor selection and attack problems for Kalman filter-

ing, respectively. We further showed that the resilient sensor selection problem

for Kalman filtering under the networked system setting is NP-hard, but admits

a pseudo-polynomial-time algorithm.

3. In Chapter 5, we considered sensor selection problems for hypothesis testing in

signal detection based on the Neyman-Pearson detector and Bayesian detector.

We showed that the sensor selection problem for the Neyman-Pearson (resp.,

Bayesian) detector is NP-hard when we considered the miss probability of the

Neyman-Pearson detector (resp., error probability of the Bayesian detector) as

the optimization objective (in the hypothesis testing sensor selection problem).

While considering optimization metrics based on the Kullback-Leibler distance,
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J-Divergence, and Bhattacharyya distance, respectively, we provided theoretical

performance guarantees on greedy algorithms when applied to this problem.

4. In Chapter 6, we considered the data source selection problem for Bayesian

learning. We showed that the data source selection problem is NP-hard, and

provided a standard greedy algorithm to solve it with performance guarantees.

We further proposed a fast greedy algorithm to solve the problem that improves

the running times of the standard greedy algorithm, and achieves performance

guarantees that are comparable to those of the standard greedy algorithm.

5. In Chapter 7, we studied the measurement selection problem for parameter

estimation in epidemic spread networks. We considered settings with exact

measurements and settings with stochastic measurements. We showed that

the measurement selection problems under these two settings are NP-hard. We

then provided approximation algorithms to solve the problems with performance

guarantees.

8.2 Future Work

Let us now outline some ongoing and future work related to the problems consid-

ered in this thesis.

1. Similarly to the sensor attack and resilient sensor selection problems for Kalman

filtering that we studied in Chapter 3 and Chapter 4, one can extend our analysis

in Chapter 6, and formulate the data source attack problem and the resilient

data source selection problem for Bayesian learning.

2. The discussions in this work only consider solving the sensor selection problem

in a centralized manner, where a single system designer is involved in the sensor

selection task. This requires the system designer to have complete knowledge

of the system and communicate with each (selected) sensor directly, which is

unrealistic in large-scale systems or hostile environments. Therefore, one can



201

aim to extend our analysis to the case when there are multiple designers who

can select sensors on a targeted system simultaneously. This corresponds to

a scenario where multiple agents want to build a sensor network together to

monitor (or estimate) states of a system of common interest. Moreover, each

designer has her own utility function in terms of estimation performance and

a sensor selection budget. Due to the nature of this setting where multiple

designers are making decisions in a potentially selfish and conflict manner, one

can apply techniques from game theory to analyze this scenario, e.g., character-

izing the existence of a Nash equilibrium and the efficiency of it. This scenario

is related to a sensor coverage game as described in [124] and [125], where the

goal of each system designer is to allocate sensors across a given mission space

such that the probability of detecting a particular event is maximized.

3. In the problem formulations in this thesis, we did not consider the communi-

cation issue in gathering the measurements from the sensors. In practice, the

sensors may be distributed in the environment, and gathering the sensor mea-

surements may require communications between the sensors and a fusion center

using communication channels. Under this scenario, communication losses (i.e.,

drops) need to be taken into consideration. For instance, the Kalman filter with

intermittent measurements has been studied in literature (e.g., [126]). There-

fore, when considering the sensor selection problem, it would be of practical

interest to consider communication losses when gathering the measurements

from remote sensors. Along with this direction, one can also consider communi-

cation constraints when collecting the measurements from the selected sensors,

which serve as additional constraints in the sensor selection problem formula-

tion. For instance, one can have a constraint on the number of bits that can

be used when the remote sensors send their measurements to the fusion center

(e.g., [127]).
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