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ABSTRACT

Ye, Lintao Ph.D.; Purdue University, December 2020. Algorithmic and Graph-
Theoretic Approaches for Optimal Sensor Selection in Large-Scale Systems. Major
Professor: Shreyas Sundaram.

Using sensor measurements to estimate the states and parameters of a system
is a fundamental task in understanding the behavior of the system. Moreover, as
modern systems grow rapidly in scale and complexity, it is not always possible to
deploy sensors to measure all of the states and parameters of the system, due to cost
and physical constraints. Therefore, selecting an optimal subset of all the candidate
sensors to deploy and gather measurements of the system is an important and chal-
lenging problem. In addition, the systems may be targeted by external attackers who
attempt to remove or destroy the deployed sensors. This further motivates the for-
mulation of resilient sensor selection strategies. In this thesis, we address the sensor
selection problem under different settings as follows.

First, we consider the optimal sensor selection problem for linear dynamical sys-
tems with stochastic inputs, where the Kalman filter is applied based on the sensor
measurements to give an estimate of the system states. The goal is to select a subset
of sensors under certain budget constraints such that the trace of the steady-state
error covariance of the Kalman filter with the selected sensors is minimized. We char-
acterize the complexity of this problem by showing that the Kalman filtering sensor
selection problem is NP-hard and cannot be approximated within any constant factor
in polynomial time for general systems. We then consider the optimal sensor attack
problem for Kalman filtering. The Kalman filtering sensor attack problem is to attack
a subset of selected sensors under certain budget constraints in order to maximize

the trace of the steady-state error covariance of the Kalman filter with sensors after
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the attack. We show that the same results as the Kalman filtering sensor selection
problem also hold for the Kalman filtering sensor attack problem. Having shown
that the general sensor selection and sensor attack problems for Kalman filtering are
hard to solve, our next step is to consider special classes of the general problems.
Specifically, we consider the underlying directed network corresponding to a linear
dynamical system and investigate the case when there is a single node of the network
that is affected by a stochastic input. In this setting, we show that the correspond-
ing sensor selection and sensor attack problems for Kalman filtering can be solved in
polynomial time. We further study the resilient sensor selection problem for Kalman
filtering, where the problem is to find a sensor selection strategy under sensor selec-
tion budget constraints such that the trace of the steady-state error covariance of the
Kalman filter is minimized after an adversary removes some of the deployed sensors.
We show that the resilient sensor selection problem for Kalman filtering is NP-hard,
and provide a pseudo-polynomial-time algorithm to solve it optimally.

Next, we consider the sensor selection problem for binary hypothesis testing. The
problem is to select a subset of sensors under certain budget constraints such that a
certain metric of the Neyman-Pearson (resp., Bayesian) detector corresponding to the
selected sensors is optimized. We show that this problem is NP-hard if the objective
is to minimize the miss probability (resp., error probability) of the Neyman-Pearson
(resp., Bayesian) detector. We then consider three optimization objectives based on
the Kullback-Leibler distance, J-Divergence and Bhattacharyya distance, respectively,
in the hypothesis testing sensor selection problem, and provide performance bounds
on greedy algorithms when applied to the sensor selection problem associated with
these optimization objectives.

Moving beyond the binary hypothesis setting, we also consider the setting where
the true state of the world comes from a set that can have cardinality greater than
two. A Bayesian approach is then used to learn the true state of the world based on
the data streams provided by the data sources. We formulate the Bayesian learning

data source selection problem under this setting, where the goal is to minimize the
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cost spent on the data sources such that the learning error is within a certain range.
We show that the Bayesian learning data source selection is also NP-hard, and provide
greedy algorithms with performance guarantees.

Finally, in light of the COVID-19 pandemic, we study the parameter estimation
measurement selection problem for epidemics spreading in networks. Here, the mea-
surements (with certain costs) are collected by conducting virus and antibody tests
on the individuals in the epidemic spread network. The goal of the problem is then to
optimally estimate the parameters (i.e., the infection rate and the recovery rate of the
virus) in the epidemic spread network, while satisfying the budget constraint on col-
lecting the measurements. Again, we show that the measurement selection problem

is NP-hard, and provide approximation algorithms with performance guarantees.



1. INTRODUCTION

A fundamental task in understanding the behavior of a system is to estimate the states
and parameters of the system using measurements (resp., data streams) from sensors
(resp., data sources). Moreover, as the size of the system increases, it not always
possible to measure all the states and parameters of the system, due to the fact that
collecting those measurements incurs certain costs. This motivates the problem of
selecting an optimal set of sensors in order to optimize certain metrics of the estimate
based on the measurements from the selected sensors. Equivalently, the problem can
be formulated as minimizing the cost spent on collecting the measurements such that
the estimation error is within a certain range. The sensor sensor selection problem has
attracted much attention from researchers from different fields, including the control
(e.g., [1,2]), signal processing (e.g., [3,4]) and computer science community (e.g., [5]).

Moreover, in the case of large-scale critical infrastructure systems, the sensors
that have been selected and deployed on the systems are also susceptible to a variety
of potential attacks, including false data injection attacks (e.g., [6]) and Denial-of-
Service (DoS) attacks (e.g., [7]). One class of DoS attacks corresponds to removing a
set of installed sensors from the system, i.e., the measurements of the attacked sensors
are rendered unusable (e.g., [8,9]). We also consider this type of attack in this work.
Specifically, we study the problem of attacking the installed sensors (by removing a
subset of them) under given attack budget constraints in order to maximally degrade
the estimation performance. This problem is referred to as the sensor attack problem.

Combining the sensor selection and attack problems together, we study the re-
silient sensor selection problem. Specifically, we consider the scenario where a strate-
gic attacker can attack a subset of the sensors selected by the designer. The goal (of

the designer) is then to find a resilient sensor selection (under budget constraints)



in order to optimize the estimation performance corresponding to the sensors that
survive the attack.

In this thesis, we systematically address the sensor selection problem under differ-
ent settings: 1) Kalman filtering for linear dynamical systems with stochastic inputs;
2) hypothesis testing for signal detection; 3) Bayesian learning; 4) parameter estima-
tion in epidemic spread networks. For each of these problems, we first characterize
the computational complexity of the problem, thereby identifying fundamental lim-
itations for any algorithm for such problems. We then identify special classes of
the above problems that can be solved optimally using polynomial-time algorithms,
and provide polynomial-time approximation algorithms to solve general instances of
the problem with theoretical performance guarantees. In what follows, we provide
a brief overview of our results for each of these settings, and delve into our main

contributions.

1.1 Overview of Results
1.1.1 Sensor Selection and Attack for Kalman Filtering

One specific instance of the design-time sensor selection problem arises in the
context of linear Gauss-Markov systems, where the corresponding Kalman filter (with
the selected sensors) is used to estimate the states of the systems (e.g., [1,10-12]). In
Chapter 3, we study the problem of selecting a subset of sensors (under given selection
budget constraints) to minimize the trace of the steady-state error covariance (also
known as the mean square estimation error) of the corresponding Kalman filter. We
also investigate the problem of attacking the selected sensors (under given attack
budget constraints) to maximize the trace of the steady-state error covariance of the
Kalman filter associated with the sensors after the attack. We refer to these two
problems as the Kalman Filtering Sensor Selection (KFSS) problem and the Kalman
Filtering Sensor Attack (KFSA) problem, respectively.



In Chapter 3, we show that the KFSS (resp., KFSA) problem is NP-hard, and
there are no polynomial-time constant-factor approximation algorithms for the KFSS
(resp., KFSA) problem in general. In other words, there are no polynomial-time
algorithms for any instances of the KFSS (resp., KFSA) problem that can find a
sensor selection (resp., sensor attack) that is always guaranteed to yield a mean
square estimation error (MSEE) that is within any constant finite factor of the MSEE
for the optimal selection (resp., attack) (if P # NP). The above result immediately
implies that there is no performance guarantee for greedy algorithms for the KFSS
(resp., KFSA) problem. We further show explicitly that greedy algorithms, which
are widely used to solve NP-hard optimization problems, can provide arbitrarily poor
performance for the KFSS (resp., KFSA) problem.

The above complexity results motivate us to consider special instances of the
KFSS (resp., KFSA) problem, in order to seek efficient algorithms to solve the prob-
lem. In Chapter 4, we consider the underlying directed network associated with a
linear dynamical system. Specifically, the states of the system represent nodes in
a directed network, and interact according to the topology of the network. The
nodes of the network are possibly affected by stochastic inputs. Such networked sys-
tems with stochastic inputs have received much attention from researchers recently
(e.g., [13-17]). Moreover, we focus on the case where there is a single node of the
network that is affected by a stochastic input. Our model encompasses diffusion
networks, which arise in many different areas, including information and influence
diffusion over social networks [18], spreading of diseases in populations [19] and dif-
fusion of chemicals in certain environments [20]. Thus, we study the sensor selection
problem and the sensor attack problem for Kalman filtering for networked systems
where there is a single node in the network that has a stochastic input. We refer
to these two problems as the Graph-based Kalman Filtering Sensor Selection (GK-
F'SS) problem and Graph-based Kalman Filtering Sensor Attack (GKFSA) problem,
respectively. Having shown in Chapter 3 that there are no polynomial-time constant-

factor approximation algorithms for any instances of the sensor selection problem or



the sensor attack problem (if P # NP), we show in Chapter 4 that the GKFSS prob-
lem and the GKFSA problem can be solved in polynomial time, leveraging the graph
structure in the GKFSS and GKFSA problems.

In Chapter 4, we also study the resilient sensor selection problem for Kalman
filtering in the same setting, which we refer to as the Resilient Graph-based Kalman
Filtering Sensor Selection (RGKFSS) problem. Specifically, the problem is to find a
resilient sensor selection strategy under the budget constraints in order to minimize
the trace of the steady-state error covariance of the Kalman filter corresponding to
the sensors that are remaining after the attack. Again, we show that the RGKFSS
problem is NP-hard, and propose a pseudo-polynomial-time algorithm to solve it

optimally, using the insights obtained from the GKFSS and GKFSA problems.

1.1.2 Sensor Selection for Hypothesis Testing

Another instance of the sensor selection problem arises in binary hypothesis test-
ing for signal detection (e.g., [3,21]). There are several detectors for signal detection,
including, for instance, the Neyman-Pearson detector and the Bayesian detector [22].
Specifically, the goal of the hypothesis testing sensor selection problem is to select a
subset of sensors (under a given budget constraint) such that a certain metric of the
detection performance of the detector is optimized. In Chapter 5, we first consider
the miss probability (resp., error probability) in the Neyman-Pearson detector (resp.,
Bayesian detector) corresponding to the selected sensors as the optimization metric
in the hypothesis testing sensor selection problem; the problems are referred to as
the Neyman-Pearson Hypothesis testing Sensor Selection (NPHSS) and the Bayesian
Hypothesis testing Sensor Selection (BHSS) problems. We show that the NPHSS
and BHSS problems are NP-hard. Since the miss probability of the Neyman-Pearson
detector and the error probability of the Bayesian detector do not yield closed form
expressions in general, we further consider three optimization metrics in the hypoth-

esis testing sensor selection problem, which are based on the Kullback-Leibler (KL)



distance, J-Divergence and Bhattacharyya distance, respectively. We refer to the
resulting sensor selection problems as the KL Distance Sensor Selection (KLDSS)
problem, the J-Divergence Sensor Selection (JDSS) problem, and the Bhattacharyya
Distance Sensor Selection (BDSS) problem, respectively. While we show that the
KLDSS, JDSS and BDSS problems are still NP-hard, we leverage the closed form ex-
pressions of the objective functions in these problems, and provide a greedy algorithm

to solve the problems with provable performance guarantees.

1.1.3 Data Source Selection for Bayesian Learning

In Chapter 6, we generalize our analysis for the binary hypothesis testing setting
to a general setting where the true state of the world comes from a set that can have
cardinality greater than two. Under this setting, a central task in machine learning is
to learn the true state of the world based on data streams provided by data sources.
Here, we do not restrict ourselves to measurements (i.e., data streams) coming from
sensors, since in practice the data streams can come from a variety of sources, includ-
ing experiment outcomes [23], medical tests [24], and sensor measurements [5], etc.
We then consider tackling this task using the classic Bayesian learning rule, where we
start with a prior belief about the true state of the world and update our belief based
on the data streams from the data sources (e.g., [25]). The (steady-state) learning
performance is then captured by the difference between the belief obtained from the
Bayesian learning rule and the true state of the world. Following the arguments in
previous chapters, we formulate the Bayesian Learning Data Source Selection (BLDS)
problem, where the goal is to minimize the cost spent on the selected data sources
while ensuring that the error of the learning process is within a prescribed range.
Similarly, we show that the BLDS is NP-hard, and can be solved using a standard
greedy algorithm with performance guarantees. Moreover, we propose a fast greedy

algorithm to solve the BLDS problem that improves the running times of the stan-



dard greedy algorithm, and achieves performance guarantees that are comparable to

those of the standard greedy algorithm.

1.1.4 Measurement Selection for Parameter Estimation in Epidemic Spread

Networks

In Chapter 7, we apply our analysis for the sensor selection problems in previous
chapters to models of epidemics spreading over networks which have been widely
studied by researchers from different fields (e.g., [18,26-30]). There are two key
parameters that govern such models: the infection rate of a given node, and the
recovery rate of that node. In the case of a novel virus, these parameters may not be
known a priori, and must be identified or estimated from gathered data, including for
instance the number of infected and recovered individuals in the network at certain
points of time. For instance, in the COVID-19 pandemic, when collecting the data
on the number of infected individuals or the number of recovered individuals in the
network, one possibility is to perform virus or antibody tests on the individuals, with
each test incurring a cost. Therefore, in the problem of parameter estimation in
epidemic spread networks, it is important and of practical interest to take the costs
of collecting the data (i.e., measurements) into account in the problem formulation.

The above discussions motivate us to consider the measurement selection problem
for parameter estimation problem in epidemic spread networks, which shares natural
similarities to the sensor selection problems that we studied in the previous chapters.
Note that measurements are collected using sensors in the sensor selection problem,
while the measurements are gathered by performing virus or antibody tests on the
individuals in the measurement selection problem. Under the setting when exact
measurements of the infected and recovered proportions of the population at certain
nodes in the network can be obtained, we formulate the Parameter Identification Mea-
surement Selection (PIMS) problem as minimizing the cost spent on collecting the

measurements, while ensuing that the parameters can be uniquely identified (within



a certain time interval in the epidemic dynamics). In settings where the measure-
ments are stochastic (thereby precluding exact identification of the parameters), we
formulate the Parameter Estimation Measurement Selection (PEMS) problem. The
goal is to optimize certain estimation performance metrics based on the collected
measurements, while satisfying the budget on collecting the measurements. We show
that the PIMS and PEMS problems are NP-hard. Leveraging the network structure
in the PIMS problem, we propose an approximation algorithm for the PIMS problem
with performance guarantees. Moreover, for the PEMS problem, we also provide a

greedy algorithm with performance guarantees.

1.1.5 General Contributions

Although the algorithms that we study in this thesis are proposed for specific
problems as we described above, our analysis of the algorithms can be extended to
more general problems. For example, our analysis of the greedy algorithm applied to
the KDLSS, JDSS and BDSS problems studied in Chapter 5 and the greedy algorithm
applied to the PEMS problem studied in Chapter 7 generalizes the analysis of the
greedy algorithms for submodular function maximization under budget constraints
(e.g., [31]) to nonsubmodular function maximization under a budget constraint. More-
over, our analysis of the fast greedy algorithm proposed for the BLDS problem studied

in Chapter 6 also works for the general submodular set covering problem (e.g., [32]).

1.2 Other Related Problems

There are other problems studied in the literature that share some common points
with the sensor selection problem. For instance, a dual problem to the design-time
sensor selection problem that has been studied by researchers from the control com-
munity is the design-time actuator selection problem (e.g., [33,34]). If different sets
of sensors can be selected at different time steps, the problem is known as the sensor

scheduling problem (e.g., [35-37]). In computer science, researchers have studied the



subset selection problem which is related to feature selection and dictionary selection
in machine learning (e.g., [38-40]), where the problem is to select a subset of random
variables from a large set in order to obtain the best linear prediction of another
random variable of interest. All these problems are about selecting elements (un-
der given constraints) from a candidate set in order to optimize a certain objective

corresponding to the selected elements.

1.3 Thesis Outline

In Chapter 3, we characterize fundamental limitations of any polynomial-time
algorithm for the Kalman filtering sensor selection (resp., attack) problem. In Chap-
ter 4, we first identify special instances of the Kalman filtering sensor selection (resp.,
attack) problem in a networked system setting, and provide polynomial-time algo-
rithms to solve these instances optimally. We then propose a pseudo-polynomial-time
algorithm to solve the resilient Kalman filtering sensor selection problem optimally
in the networked system setting. In Chapter 5, we show that the binary hypothesis
testing sensor selection problem is NP-hard, and provide greedy algorithms to solve
them with performance guarantees. In Chapter 6, we show that the Bayesian learn-
ing data source selection problem is NP-hard, and propose greedy algorithms to solve
it with performance guarantees. In Chapter 7, we show that parameter estimation
measurement selection problem in epidemic spread networks is NP-hard, and provide
approximation algorithms to solve it with theoretical guarantees using the network
structure in the problem.

This work was supported in part by NSF grant CMMI-1635014.



2. BACKGROUND
2.1 Notation and Terminology

The sets of integers, real numbers and complex numbers are denoted as Z, R and
C, respectively. The set of integers that are greater than (resp., greater than or equal
to) a € R is denoted as Z, (resp., Z>,). For z € C, let |z| denote its magnitude.
The set of real numbers that are greater than (resp., greater than or equal to) b € R
is denoted as R-,, (resp., Rsp). For any x € R, let [z] denote the least integer greater
than or equal to z, and let |z] denote the greatest integer that is less than or equal
to . For any integer n > 1, denote [n] £ {1,...,n}. For a set A, let |4| be its
cardinality. A function ¢;(n) is O(ps(n)) if there exist positive constant ¢ and N
such that |p1(n)] < c|pa(n)| for all n > N.

For a square matrix P € R™" let PT, rank(P), rowspace(P), det(P) and trace(P)
(or tr(P)) be its transpose, rank, rowspace, determinant and trace, respectively. The
eigenvalues of P are ordered with nonincreasing magnitude (i.e., |\{(P)| > -+ >
|IAn(P)]). The maximum (resp., minimum) value of the diagonal elements of P is
denoted as dy(P) (resp., d,(P)). Let P (or (P);;) denote the element in the ith
row and jth column of P, and let P; (or (P);) denote the ith row of P. Denote a
diagonal matrix P € R™*" as diag(Py1, . . ., Pyn). The identity matrix with dimension
n X n is denoted as I,,. The zero matrix with dimension m X n is denoted as 0,,xn;
the subscripts are dropped if the dimension is clear from the context. The set of
n by n positive definite (resp., positive semi-definite) matrices is denoted as S7 |
(resp., S%). A positive semi-definite matrix P is denoted by P = 0; P > Q if
P — @ > 0. In a matrix, * denotes elements of the matrix that are of no interest.
For a vector v, let v; (or (v);) denote the ith element of v; define the support of v

to be supp(v) = {i : v; # 0}. Denote the Euclidean norm of v by ||v||2. Define e; to
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be a row vector where the ith element is 1 and all the other elements are zero; the
dimension of the vector can be inferred from the context. Define 1,, to be a column
vector of dimension n with all the elements equal to 1. The set of 0 — 1 indicator
vectors of dimension n is denoted as {0, 1}".

For a random vector X € R", let E[X] € R" and Cov(X) = E[(X — E[X])(X —
E[X])T] € R™" denote its mean vector and covariance, respectively. For two random
vectors X € R™ and Y € R™, let Sxy = Cov(X,Y) = E[(X — E[X])(Y —E[Y])"] €
R™*"2 denote the cross-covariance between them. The probability density function

of a Gaussian distribution with mean ¢ € R" and covariance ¥ € S% is denoted as

N6, 5).

2.2 Review of Complexity Theory

We review the following fundamental concepts from complexity theory [41].

Definition 2.2.1 A polynomial-time algorithm for a problem is an algorithm that
returns a solution to the problem in a polynomial (in the size of the problem) number

of computations.

Definition 2.2.2 A decision problem is a problem whose answer is “yes” or “no”.
The set P contains those decision problems that can be solved by a polynomial-time
algorithm. The set NP contains those decision problems whose “yes” answers can be

verified using a polynomial-time algorithm.

Definition 2.2.3 An optimization problem is a problem whose objective is to maxi-

mize or minimize a certain quantity, possibly subject to constraints.

Definition 2.2.4 A problem Py is NP-complete if (a) Py € NP and (b) for any prob-
lem Py in NP, there exists a polynomial-time algorithm that converts (or “reduces”)
any instance of Py to an instance of Py such that the answer to the constructed in-
stance of Py provides the answer to the instance of Py. Py is NP-hard if it satisfies
(b), but not necessarily (a).
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The above definition indicates that if one had a polynomial-time algorithm for
an NP-complete (or NP-hard) problem, then one could solve every problem in NP in
polynomial time. Specifically, suppose we had a polynomial-time algorithm to solve
an NP-hard problem P;. Then, given any problem P, in NP, one could first reduce
any instance of P, to an instance of P; in polynomial time (such that the answer to
the constructed instance of P; provides the answer to the given instance of P5), and
then use the polynomial-time algorithm for P; to obtain the answer to Ps.

The above discussion also reveals that to show that a given problem P, is NP-hard,
one simply needs to show that any instance of some other NP-hard (or NP-complete)
problem P, can be reduced to an instance of P; in polynomial time (in such a way
that the answer to the constructed instance of P; provides the answer to the given
instance of Py). For then, an algorithm for P; can be used to solve Py, and hence, to
solve all problems in NP (by NP-hardness of Ps).

The following is a fundamental result in computational complexity theory [41].

Lemma 2.2.1 If P# NP, there is no polynomial-time algorithm for any NP-complete
(or NP-hard) problem.

For optimization problems that are NP-hard, polynomial-time approximation al-
gorithms are of particular interest. The definition of a constant-factor approximation

algorithm is given as follows.

Definition 2.2.5 A constant-factor approximation algorithm for an optimization prob-
lem is an algorithm that always returns a solution within a certain constant factor of

the optimal solution.
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3. COMPLEXITY AND APPROXIMABILITY OF
OPTIMAL SENSOR SELECTION AND ATTACK FOR
KALMAN FILTERING

3.1 Introduction

In large-scale control system design, the number of sensors or actuators that can
be selected and installed is typically limited by a design budget constraint. Moreover,
system designers often need to select among a set of possible sensors and actuators,
with varying qualities and costs. Consequently, a key problem is to determine an
appropriate set of sensors or actuators in order to achieve certain objectives. This
problem has recently received much attention from researchers (e.g., [33,34,42-48]).
In the context of linear Gauss-Markov systems, where the corresponding Kalman filter
(with the selected sensors) is used to estimate the states of the systems (e.g., [1,12]).
The problem then becomes how to select sensors dynamically (at run-time) or select
sensors statically (at design-time) to minimize certain metrics of the corresponding
Kalman filter. The former scenario is known as the sensor scheduling problem, where
different sets of sensors can be chosen at different time steps (e.g., [35-37]). The latter
scenario is known as the design-time sensor selection problem, where the set of the
selected sensors is not allowed to change over time (e.g., [10,11,49]).

Since these problems are NP-hard in general (e.g., [2]), approximation algorithms
that provide solutions within a certain factor of the optimal are then proposed to
tackle them. Among these approximation algorithms, greedy algorithms have been
widely used (e.g, [5,50]), since such algorithms have provable performance guarantees
if the cost function is submodular or supermodular (e.g., [40,51]).

Additionally, in many applications, the sensors that have been selected and in-

stalled on the system are susceptible to a variety of potential attacks. For instance,
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an adversary (attacker) can inject false data to corrupt the state estimation, which is
known as the false data injection attack (e.g., [6,52,53]). Another type of attack is the
Denial-of-Service (DoS) attack, where an attacker tries to diminish or eliminate the
installed sensors’ capacity to achieve its expected objective [7], including, for example,
wireless jamming (e.g., [54,55]) and memory exhaustion through flooding (e.g., [56]).
One class of DoS attacks corresponds to removing a set of installed sensors from the
system, i.e., the measurements of the attacked sensors are not used. This was also

studied in [8] and [9], and will be the type of attack that we consider here.

Related Work

In [12] and [57], the authors studied the design-time sensor selection problem for
discrete-time linear time-varying systems over a finite time horizon. The objective
is to minimize the number of selected sensors while guaranteeing a certain level of
performance (or alternatively, to minimize the estimation error with a cardinality
constraint on the selected sensors). The authors then analyzed the performance of
greedy algorithms for this problem. However, their results cannot be directly applied
to the problems that we consider here, since we aim to optimize the steady-state
estimation error.

The papers [11] and [2] considered the same design-time sensor selection prob-
lem as the one we consider here. In [11], the authors expressed the problem as a
semidefinite program. However, they did not provide theoretical guarantees on the
performance of the proposed algorithm. The paper [2] showed that the problem is
NP-hard and gave examples showing that the cost function is not submodular (or su-
permodular) in general. The authors also provided upper bounds on the performance
of algorithms for the problem; these upper bounds were functions of the system ma-
trices. Although [2] showed via simulations that greedy algorithms performed well for
several randomly generated systems, the question of whether such algorithms (or other

polynomial-time algorithms) could provide constant-factor approximation ratios for
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the problem was left open. We resolve this question in this chapter by showing that
there does not exist any (polynomial-time) constant-factor approximation algorithm
for this problem.

In [8], the authors studied the problem of attacking a given observation selection in
Gaussian process regression [39] to maximize the posteriori variance of the predictor
variable. It was shown that this problem is NP-hard. Moreover, they also gave
an instance of this problem such that a greedy algorithm for finding an optimal
attack will perform arbitrarily poorly. In [58], the authors considered the scenario
where the attacker can target a different set of sensors at each time step to maximize
certain metrics of the error covariance of the Kalman filter at the final time step.
Some suboptimal algorithms were provided with simulation results. Different from
[8] and [58], we study the problem where the attacker removes a set of installed
sensors to maximize the trace of the steady-state error covariance of the Kalman
filter associated with the surviving sensors, and provide fundamental limitations on
achievable performance by any possible algorithm for this problem.

In this chapter, we consider both the sensor selection problem and the sensor at-
tack problem for Kalman filtering of discrete-time linear dynamical systems. First,
we study the problem of selecting sensors at design-time on the system (under given
selection budget constraints) to minimize the trace of either the steady-state a pri-
ort or a posteriori error covariance of the corresponding Kalman filter. We refer to
these problems as the priori and posteriori Kalman Filtering Sensor Selection (KFSS)
problems, respectively. Second, we investigate the problem of attacking the installed
sensors (by removing a subset of them, under given attack budget constraints) to
maximize the trace of either the steady-state a priori or a posteriori error covariance
of the Kalman filter associated with the surviving sensors. These problems are de-
noted as the priori and posteriori Kalman Filtering Sensor Attack (KFSA) problems,

respectively.
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Summary of Results

The results in this chapter are summarized as follows. First, we show that the
priori and posteriori KFSS problems are NP-hard and there are no polynomial-time
constant-factor approximation algorithms for these problems (unless P = NP). In other
words, there are no polynomial-time algorithms that can find a sensor selection that
is always guaranteed to yield a mean square estimation error (MSEE) that is within
any constant finite factor of the MSEE for the optimal selection. This stands in stark
contrast to other sensor selection problems studied in the literature, which leveraged
submodularity of their associated cost functions to provide greedy algorithms with
constant-factor approximation ratios [57]. Second, we show that the same results
hold for the priori and posteriori KFSA problems, i.e., these problems are NP-hard
and there are no polynomial-time constant-factor approrimation algorithms for these
problems (unless P = NP). Our inapproximability results above immediately imply
that greedy algorithms cannot provide constant-factor guarantees for our problems.
We further show in this chapter how greedy algorithms can provide arbitrarily poor
performance even for very small instances (with three states) of the priori and poste-
riori KF'SS (resp., KFSA) problems.

The results presented in this chapter were published in [59,60].

3.2 Problem Formulation
Consider the discrete-time linear system

zlk + 1] = Az[k] + w[k], (3.1)

where z[k] € R” is the system state, w[k] € R™ is a zero-mean white noise process with
Ew[k](w[k])T] = W for all k € Z>q, and A € R™ " is the system dynamics matrix.
The initial condition z[0] is assumed to be a random vector with mean z, € R™ and

covariance Il, € S7. We also assume that the pair (A, W%) is stabilizable.
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Consider a set Q that contains ¢ sensors. Each sensor i € Q provides a measure-

ment of the system of the form
yilk] = Ci (k]| + vs[k], (3.2)

where C; € R**" is the state measurement matrix for sensor 4, and v;[k] € R*
is a zero-mean white noise process. Denote y[k] £ [(yi[k])T --- (yq[k])T}T, o=
ct - C'qT]T and v[k] £ [(v1[k])T - (Uq[k;])T}T. Thus, the output provided by all
sensors together is given by

ylk| = Cxlk] + v[k], (3.3)

where C' € R¥*" and s = >.7 | s;. We denote E[v[k](v[k])"] = V and assume that the
system noise and the measurement noise are uncorrelated, i.e., E[v[k](w[j])T] = 0,

Vk,j € Z>o, and z[0] is independent of w[k| and v[k], Yk € Z>y.

3.2.1 The Sensor Selection Problem

Consider the scenario where there are no sensors initially selected (i.e., deployed)
on the system. Instead, the system designer must select a subset of sensors from
Q on the system. Each sensor ¢« € Q has a cost h; € Rx>q; define the cost vector
h & [h1 hq]T. The designer has a budget H € R, that can be spent on
choosing sensors from Q.

After a set of sensors is selected and installed, the Kalman filter is applied to
provide an estimate of the states using the measurements from the installed sensors.
We define a vector o € {0,1}9 as the indicator vector of the selected sensors selected,
where p; = 1 if and only if sensor ¢ € Q is selected. Let C'(u) denote the measure-
ment matrix of the installed sensors indicated by p, i.e., C(u) = cr ... CiZQ]T,
where supp(p) = {i1,...,4,}. Similarly, let V(1) denote the measurement noise co-
variance matrix of the installed sensors, i.e., V(u) = E[o[k](0[k])*], where 0[k] =

[(vi, [KDT -+ (v, [l{:})T]T Let 2y,/5—1(p) and Xy /x (1) denote the a priori error covari-

ance matrix and the a posteriori error covariance matrix of the Kalman filter at time
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step k, respectively, when the sensors indicated by p are installed. We will use the

following result [61].

Lemma 3.2.1 Suppose the pair (A, W%) 18 stabilizable. For a given indicator vector
, both Xy e—1(p) and Sy/e(pe) will converge to finite limits X(p) and X*(u), respec-
tively, as k — oo if and only if the pair (A, C(u)) is detectable.

The limit ¥(u) satisfies the discrete algebraic Riccati equation (DARE) [61]:

1

B(p) = AR(p) AT+ W = AS (1) C (1) (C() E() C ()" +V (1) C(p)E(n) AT, (3.4)

The limits ¥(u) and ¥*(u) are coupled as
Y(p) = AX*(u) AT + W, (3.5)

The limit X*(u) of the a posteriori error covariance matrix satisfies the following

equation [62]:

2 (1) = E(p) = () C() (C(w)Z()C ()" + V(1) " O (1) 2 (). (3.6)

Note that we can either obtain 3*(u) from (i) using Eq. (3.6) or by substituting
Eq. (3.5) into Eq. (3.6) and solving for 3*(u). The inverses in Eq. (3.4) and Eq. (3.6)
are interpreted as pseudo-inverses if the arguments are not invertible.

For the case when the pair (A, C(1)) is not detectable, we define the limits ¥(u) =
+oo and ¥*(u) = +oo. Moreover, for any sensor selection p, we note from Lemma
3.2.1 that the limit X(p) (resp., 3*(u)), if it exists, does not depend on zq or Ily. Thus,
we can assume without loss of generality that £o = 0 and Ily = [, in the sequel. The
priori and posteriori Kalman Filtering Sensor Selection (KFSS) problems are defined

as follows.

Problem 3.2.2 (Priori and Posteriori KFSS Problems). Given a system dynamics

matriz A € R"™ ", a measurement matrix C' € R**™ containing all of the individual

n

sensor measurement matrices, a system noise covariance matric W € ST,

a Sensor

noise covariance matriz V€ S, a cost vector h € quo and a budget H € R,
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the priori Kalman Filtering Sensor Selection (KFSS) problem is to find the sensor

selection p € {0,1}", i.e., the indicator vector u of the selected sensors, that solves

in  trace(S
“ggwfwd(w)

st. W'y < H

where () is given by Eq. (3.4) if the pair (A, C(u)) is detectable, and (pu) = +o0,
if otherwise. Similarly, the posteriori Kalman Filtering Sensor Selection (KFSS)

problem is to find the sensor selection u € {0,1}" that solves

in  trace(X*
”g%QMM (1))

st.h'pu < H

where X* (1) is given by Eq. (3.6) if the pair (A, C(p)) is detectable, and ¥*(pu) = +o0,

if otherwise.

3.2.2 The Sensor Attack Problem

Now consider the scenario where the set Q of sensors has already been selected
and installed on the system. An adversary desires to attack a subset of sensors
(i.e., remove a subset of sensors from the system), where each sensor i € Q has an
attack cost @; € Rs; define the cost vector w = [w1 wq}T. We assume that
the adversary has a budget €2 € Rs(, which is the total cost that can be spent on
removing sensors from Q.

After a subset of sensors are attacked (i.e., removed), the Kalman filter is then
applied to estimate the states using the measurements from the surviving sensors
(in the sense of minimizing the mean square estimation error). We define a vector
v € {0,1}7 as the indicator vector of the attacked sensors, where v; = 1 if and only if
sensor i € Q is attacked. Hence, the set of sensors that survive is Q \ supp(v). Define
v € {0,1}7 to be the vector such that supp(v©) = Q\ supp(v), i.e., vf = 1 if and only
if sensor i € Q survives. Similarly to the sensor selection problem, we let C'(v¢) and

V(v°) denote the measurement matrix and the measurement noise covariance matrix,
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respectively, corresponding to v°. Furthermore, let ¥/, (v¢) and X/t (v¢) denote
the a prior: error covariance matrix and the a posteriori error covariance matrix of
the Kalman filter at time step k, respectively. Denote limy_,oo 3p/k—1(v°) = X(v°)
and limy_,oo Xp/e(v©) = 3*(v°) if the limits exist, according to Lemma 3.2.1. Note
that Eq. (3.4)-(3.6) also hold if we substitute p with v°.

For the case when the pair (A,C(v°)) is not detectable, we define the limits
Y (v¢) = 400 and 3¥*(v°) = +00. The priori and posteriori Kalman Filtering Sensor

Attack (KFSA) problems are defined as follows.

Problem 3.2.3 (Priori and Posteriori KFSA Problems). Given a system dynamics
matriz A € R™™", a measurement matriz C' € R**™ a system noise covariance matrix
W € S, a sensor noise covariance matriz V € S%, a cost vector w € Rgo and a
budget Q@ € Rsq, the priori Kalman Filtering Sensor Attack (KFSA) problem is to
find the sensor attack v € {0,1}", i.e., the indicator vector v of the attacked sensors,

that solves

15 M(v°
Vg{l(%i(}q race(3(v°))

st.wlv<Q

where X(v°) is given by Eq. (3.4) if the pair (A, C(v°)) is detectable, and (v°) =
+00, if otherwise. Similarly, the posteriori Kalman Filtering Sensor Attack (KFSA)

problem is to find the sensor attack v € {0,1}" that solves

t E* (&
Vg{l[%i(}q race(X*(v°))

st.wly<Q

where 3*(v°) is given by Eq. (3.6) if the pair (A, C(v°)) is detectable, and ¥*(v°) =

+00, if otherwise.

It is also useful to note that although we focus on the optimal sensor problem and
attack problems for Kalman filtering here, due to the duality between the Kalman
filter and the linear quadratic regulator (LQR) [63], all of the analysis in this chapter
will also apply if the priori KFSS and KFSA problems are rephrased as optimal
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actuator selection and attack problems for LQR, respectively. We omit the details of

the rephrasing in the interest of space.

Remark 3.2.4 Our goal in this chapter is to show that for the priori and posteriori
KFESS problems and the priori and posteriori KFSA problems, the optimal solutions
cannot be approximated within any constant factor in polynomial time. To do this,
it is sufficient for us to consider the special case when C; € RV Vi € {1,...,q},
1.e., each sensor provides a scalar measurement. Moreover, the sensor selection cost

T
vector and the sensor attack cost vector are considered to be b = [1 1] and

T
w = [1 1} , respectively, i.e., the selection cost and the attack cost of each
sensor are both equal to 1. By showing that the problems are inapproximable even
for these special subclasses, we obtain that the general versions of the problems are

mapprozimable as well.

3.3 Inapproximability of the KFSS and KFSA problems

In this section, we analyze the approximability of the KFSS and KFSA problems.
We will start with a brief overview of some relevant concepts from the field of com-
putational complexity, and then provide some preliminary lemmas that we will use
in proving our results. That will lead into our characterizations of the complexity of
KFSS and KFSA.

It was shown in [33] that the problem of selecting a subset of sensors to make
the system detectable is NP-hard, which implies that KFSS is NP-hard using Lemma
3.2.1 as shown in [2]. In this chapter, we aim to show that the hardness of KFSS
(resp., KFSA) does not solely come from selecting (resp., attacking) sensors to make
the system detectable (resp., undetectable). To do this, we will show that there is no
polynomial-time constant-factor approximation algorithm for KFSS (resp., KFSA)
even when the corresponding system dynamics matrix A is stable, which guaran-
tees the detectability of the system. Specifically, we consider a known NP-complete

problem, and show how to reduce it to certain instances of KFSS (resp., KFSA)



21

(with stable A matrices) in polynomial time such that hypothetical polynomial-time
constant-factor approximation algorithms for the latter problems can be used to solve
the known NP-complete problem. Since we know from Lemma 2.2.1 that if P # NP,
there does not exist a polynomial-time algorithm for any NP-complete problem, we
can conclude that if P £ NP, there is no polynomial-time constant-factor approxima-
tion algorithm for KFSS (resp., KFSA). We emphasize that our results do not imply
that there is no polynomial-time constant-factor approximation algorithm for specific
instances of KFSS (resp., KFSA). Rather, the result is that we cannot have such an
algorithm for all instances of KFSS (resp., KFSA).

3.3.1 Preliminary Results

We will use the following results in our analysis (the proofs are provided in Sec-

tions 3.6.1 and 3.6.2, respectively).

Lemma 3.3.1 Consider a discrete-time linear system as defined in Eq. (3.1) and
Eq. (3.3). Suppose the system dynamics matriz is of the form A = diag(A1, ..., \n)
with 0 < |N| < 1, Vi € {1,...,n}, the system noise covariance matriz W is diagonal,
and the sensor noise covariance matriz V. € S%&. Then, the following hold for all

sensor selections .

(a) For alli € {1,...,n}, (X(n))u and (3*(u))u satisfy

Wii
Wi < (B())is < vl (3.7)
and
W,
< (2F < 1 ‘
0 < (2 () < = 339
respectively.

(b) If 3i € {1,...,n} such that W;; # 0 and the ith column of C is zero, then
(B(m)i = (2 ()i = 1532
(c) If V.= 04xq and there exists i € {1,...,n} such that e; € rowspace(C(1)),
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Lemma 3.3.2 Consider a discrete-time linear system as defined in Eq. (3.1) and
Eq. (3.3). Suppose the system dynamics matriz is of the form A = diag(A\1,0,...,0) €
R™ ™ where 0 < |A\i| < 1, and the system noise covariance matriz is W = I,,.

(a) Suppose the measurement matriz is of the form C = [1 ﬂy} with sensor notse
variance V = o2, where v € R and ¢, € Rs¢. Then, the MSEE of state 1,

denoted as Y11, satisfies

14+ a?)\? —a? +\/(oz2 —a?)\? —1)2 + 4a?

211 = 2 ’

(3.9)

where a? = ||v||% + o2.
(b) Suppose the measurement matriz is of the form C = [1n_1 an—1] with sensor
noise covariance V. = 0,_1)x(n—1), where p € R. Then, the MSEE of state 1, denoted

p ‘
as Y, satisfies

NP 0P 4 V(0P = M ') A+ Anp?
S = o : (3.10)

where n' =n — 1.
Moreover, if we view Y11 and XY, as functions of a® and p?, denoted as ¥11(a?)

and X, (p?), respectively, then ¥11(a?) and X4,(p*) are strictly increasing functions

1
1-X2

1
1-727

of a? € Rsg and p* € Rxg, with lim,_,o311(a?) = and lim, 0,31, (p%) =

respectively.

3.3.2 Inapproximability of the Priori and Posteriori KFSS Problems

In this section, we characterize the complexity of the priori and posteriori KFSS
problems by showing that there are no polynomial-time algorithms that can always
yield a solution that is within any constant factor of the optimal (unless P = NP).
Specifically, consider any given instance of KFSS. For any given algorithm A (resp.,
A’) of the priori (resp., posteriori) KFSS problem, we define the following ratios:

» trace(Xy)

2 3.11
trace(Xop:)’ (3.11)

ra(
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and
trace(X%,)

(D) & ——— A
ra(®) trace(X} )’

(3.12)

k
opt

where X, (resp., ¥} ,) is the optimal solution to the priori (resp., posteriori) KFSS
problem and ¥4 (resp., ¥%,) is the solution to the priori (resp., posteriori) KFSS
problem given by algorithm A (resp., A’).

In [2], the authors showed that there is an upper bound for r4(3) (resp., r4(3*))
for any sensor selection algorithm A (resp., A’), in terms of the system matrices.
However, the question of whether it is possible to find a polynomial-time algorithm A
(resp., A’) that is guaranteed to provide an approximation ratio r4(X) (resp., ra (X))
that is independent of the system parameters has remained open up to this point. In
particular, it is desirable to find constant-factor approximation algorithms, where
the ratio r4(2) (resp., r4(X*)) is upper-bounded by some (system-independent) con-
stant. Here, we provide a negative result showing that for the priori (resp., posteriori)
KFSS problem, there is no polynomial-time constant-factor approximation algorithm
in general, i.e., for all polynomial-time algorithms A (resp., A’) and VK &€ Rs, there

are instances of the priori (resp., posteriori) KFSS problem where r4(3) > K (resp.,
T’A/(E*) > K)

Remark 3.3.3 Note that the “constant” in “constant-factor approximation algo-
rithm” refers to the fact that the cost of the solution provided by the algorithm is
upper-bounded by some (system-independent) constant times the cost of the optimal
solution. The algorithm can, however, use the system parameters when finding the
solution. For example, an optimal algorithm for the KFSS problem will be a 1-factor
approximation, and would use the system matrices, sensor costs, and budget to find
the optimal solution. Similarly, a polynomial-time K -factor approximation algorithm
for KFSS would use the system parameters to produce a solution whose cost is guar-
anteed to be no more than K times the cost of the optimal solution. As indicated

above, we will show that no such algorithm exists for any constant K (unless P =

NP).
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To show the inapproximability of the priori KF'SS problem, we relate it to the
EXACT COVER BY 3-SETS (X3C) problem described below [41].

Definition 3.3.1 (X3C) Given a finite set D = {dy, ... ,dsy} and a collection C =
{c1,...,¢;} of 3-element subsets of D, an exact cover for D is a subcollection C' C C

such that every element of D occurs in exactly one member of C'.
We will use the following result [41].

Lemma 3.3.4 Given a finite set D = {dy, ...,dsy} and a collection C = {cy, ..., ¢}
of 3-element subsets of D, the problem of determining whether C contains an exact

cover for D is NP-complete.

Remark 3.3.5 Note that if T < m, there does not exist an exact cover for D. Hence,
we assume T > m. Since each member in C is a subset of D with exactly 3 elements,

if there exists an exact cover for D, then it must consist of exactly m members of C.

As argued in Remark 3.2.4, in order to show that the priori KFSS problem cannot
be approximated within any constant factor in polynomial time, it is sufficient for us
to show that certain special instances of this problem are inapproximable. Specifically,
consider any instance of the X3C problem. Using the results in Lemmas 3.3.1-3.3.2,
we will first construct an instance of the priori KF'SS problem in polynomial time such
that the difference between the solution to KFSS when the answer to X3C is “yes”
and the solution to KFSS when the answer to X3C is “no” is large enough. Thus,
we can then apply any hypothetical polynomial-time constant-factor approximation
algorithm for the priori KFSS problem to the constructed priori KFSS instance and
obtain the answer to the X3C instance. Since we know from Lemma 3.3.4 that the

X3C problem is NP-complete, we obtain from Lemma 2.2.1 the following result.

Theorem 3.3.6 If P # NP, then there is no polynomial-time constant-factor ap-
prozimation algorithm for the priori KFSS problem.
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Proof Assume that there exists such an approximation algorithm A, i.e., 3K € R>,
such that r4(X) < K for all instances of the priori KFSS problem, where r4(X) is
defined in Eq. (3.11). We will show that A can be used to solve the X3C problem,
which will lead to a contradiction.

Given an arbitrary instance of the X3C problem described in Definition 3.3.1 and
Lemma 3.3.4, for each element ¢; € C, we define g; € R3 to encode which elements
of D are contained in ¢;. Specifically, for ¢ € {1,2,...,7} and j € {1,2,...,3m},
(9)); = 1if d; € D is in ¢;, and (g;); = 0 otherwise. Denote G £ [91 gT]T.
Thus G2 = 13, has a solution = € {0,1}" such that x has m nonzero entries if and
only if the answer to the X3C instance is “yes” [64].

Given the above instance of X3C, we then construct an instance of the priori
KFSS problem as follows. Denote Z = [K|(m + 1)(c2 + 3), where we set o, = 1.
Define the system dynamics matrix as A = diag(\1,0,...,0) € RGmFIxGm+1) where

AN = Zle/2. Note that Z € Z-; and 0 < \; < 1. The set Q is defined to contain

7 4+ 1 sensors with collective measurement matrix

1 e1l )
C= , (3.13)
0 G

where G is defined based on the given instance of X3C as above. The constant &

is chosen as ¢ = 27 [ Z — 1—‘ + 1. The system noise covariance matrix is set to be

1 0
0 E%IT
The sensor selection cost vector is set as b = 1,1, and the sensor selection budget is

2

W = I5p,4+1. The measurement noise covariance matrix is set as V' = o

set as B = m + 1. Note that the sensor selection vector for this instance is denoted
by u € {0,1}7"1. For the above construction, since the only nonzero eigenvalue of A
is A, we know from Lemma 3.3.1(a) that 27 (S (u))u = 20757 Wi = 3m for all
L.

We claim that algorithm A will return a sensor selection vector u such that
trace(X(u)) < K(m + 1)(02 + 3) if and only if the answer to the X3C problem is

« 7

yes”.
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We prove the above claim as follows. Suppose that the answer to the instance of
the X3C problem is “yes”. Then GTz = 13, has a solution such that  has m nonzero
entries. Denote the solution as x* and denote supp(z*) = {i1,...,4,}. Define fi to
be the sensor selection vector that indicates selecting the first and the (i; + 1)th to
the (i,, + 1)th sensors, i.e., sensors that correspond to rows Cy, Cy, 41, ...,C; 41 from
(3.13). Since GTx* = 13,,, we have [1 — ez*T|C = e, for C defined in Eq. (3.13).
Noting that supp(z*) = {i1,...,4m}, it then follows that e; € rowspace(C(f)). We
can then perform elementary row operations on C'(f1) (which does not change the

steady-state a priori error covariance matrix of the corresponding Kalman filter) and

~ 0
obtain T'C(ft) £ C(ft) = with the corresponding measurement noise covari-
0 =x*
n o o2(m+1) x* 1 —ell .
ance TV ()T = V(1) = , where I' = . Let ¥ denote
* * 0o I,

the error covariance obtained from sensing matrix (C'(ft)); = e; with measurement
noise variance 62 £ ¢2(m 4 1), which corresponds to the first sensor in C(f1). We

then know from Lemma 3.3.2(a) that

s _ 1+ G202 — 52 4 /(62 — 5202 — 1)2 + 452
11 = )
2

which further implies

- 14+ /(62(1 = A3))2 — 262(1 — A\}) + 1 + 452
Y < 5

1+ /(62(1 = \2))2 + 1 + 462

2
1+ /ot +462+4 52
< + O’U;- o5+ §1+UU+2. (3.14)

2

Using similar arguments to those above, we have Zf;'?l 3 = 3m. We then obtain

from (3.14) that
trace(X) < 62434 3m = (m +1)(02 + 3). (3.15)

Since adding more sensors does not increase the MSEE of the corresponding Kalman

filter, we have from (3.15) trace(X(i)) < (m + 1)(c2 + 3), which further implies
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trace(X(u*)) < (m + 1)(02 4 3), where u* is an optimal sensor selection of the priori
KFSS problem. Since A has approximation ratio K, it returns a sensor selection p
such that trace(X(u)) < K(m + 1)(c2 + 3).

Conversely, suppose that the answer to the X3C instance is “no”. Then, for
any union of [ < m (I € Zsq) subsets in C, denoted as C;, there exist 1 > 1
(k € 7Z) elements in D that are not covered by Cj, i.e., for any [ < m and £ £
{ir,..., 4} C{1,...,7}, G & [91'1 gil]T has k > 1 zero columns. We then show
that trace(X(u)) > K(m + 1)(02 4+ 3) for all sensor selections p (that satisfy the
budget constraint). We divide our arguments into two cases.

First, for any sensor selection p; that does not select the first sensor, the first
column of C(uy) is zero (from the form of C' defined in Eq. (3.13)). We then know

from Lemma 3.3.1(b) that (3X(u1))11 = %Xf, Hence, by our choice of A\;, we have

1

(S = 527 > £ > Klm+ 1(of +3
= trace(X(u1)) > K(m + 1)(0? + 3), (3.16)

where (3.16) follows from S22 (X (py))s = 3m > 0 for all possible sensor selections.
Second, consider sensor selections puo that select the first sensor. To proceed,

we first assume that the measurement noise covariance is V' = 0(;41)x(r4+1). Denote
T

supp(p2) = {1,41,...,4}, where [ < m and define G(uz) = [gi1_1 oo gi1| - We
then have
1 ell
Clp2) =
0 G(pe)
where G(puz2) has k > 1 zero columns. As argued in Lemma 3.6.1 in Section 3.6.3,
there exists an orthogonal matrix £ € RE™HDXEm+D) of the form E = [} §] such
that
. 1 ev €p
Clp2) 2 Clp2) E = N
0 0 G(p)

In the above expression, G(u2) € R is of full column rank, where r = rank(G(u,)).

Furthermore, v € R ®™=7) and at least x of its elements are 1’s, and § € R™>". We
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then perform a similarity transformation on the system with £, which does not affect
the trace of the steady-state a priori error covariance matrix of the corresponding
Kalman filter,! and does not change A, W and V. We further perform additional

elementary row operations to transform C(u,) into the matrix

- 1 ey 0
C'(p2) = -
0 0 G(p)

Since A and W are both diagonal, and V = 0, we can obtain from Eq. (3.4) that
the steady-state a priori error covariance corresponding to the sensing matrix C’ (12),

denoted as Y'(u), is of the form

Sy < |20

where Y (j15) € ROMH1=mx@m+1-r) gatisfies

S (112) = Ar S} (1) AT + Wi — Ay 5 (12) CT (O (2) €)™ O (i2) AT

where A; = diag(\y,0,...,0) € ROmHI=x@Emt1=r) ¢ — [1 eq] and Wy = Tspmy1r.

Denoting o? = £2||||3 > ke > €2, we then obtain from Lemma 3.3.2(a) that

(' (n2))n =
- 142202 — &2 + /(€2 — 202 — 1)2 + 4e?
5 :

14 a?M? — o +4/(a? — a?\? — 1)? + 4a?
2

(3.17)

!This can be easily verified using Eq. (3.4) as E is an orthogonal matrix.
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By our choices of A\; and ¢, we have the following:

Z—1/4

e2>472(Z-1) = (1— = e > 7% -7
7 —1/4
:>€2>ZZ+262T/_Z

= 2> 722+ 721 -2)-1)
= (2 =N = 1) +4e? > (2 — N — 12+ 427+ 4Z(* — 2N - 1)

= (2 =N - 1) +4e? > (22 + 2 -2\ —1)?

= \/(52—52)\%—1)24—4&‘2>QZ+€2—52)\3—1
N 1402 — 22 +1/(e2 — 2202 — 1)2 + 4e2
2

> 7. (3.18)

Since Z > K(m+1)(02+3), (3.17) and (3.18) imply (X(u2))11 > K(m+1)(0? +3),
which further implies trace(X'(u2)) > K(m + 1)(0? 4+ 3). Since trace(X'(up)) =
trace(X(puz)) as argued above, we obtain that trace(X(u2)) > K(m + 1)(02 + 3). We
then note the fact that the MSEE of the Kalman filter with noiseless measurements
is no greater than that with any noisy measurements (for fixed A, W and C'), when

the system noise and the measurement noise are uncorrelated. Therefore, for V' =
1 0

o2 || we also have trace(X(uz)) > K(m + 1)(0? + 3) for all us.
0 I;

It then follows from the above arguments that trace(X(u)) > K(m + 1)(c? + 3)
for all sensor selections p, which implies that algorithm A would also return a sensor
selection y such that trace(X(u)) > K(m + 1)(0? + 3). This completes the proof of
the converse direction of the claim above.

Hence, it is clear that algorithm A can be used to solve the X3C problem by
applying it to the above instance of the priori KFSS problem. Since X3C is NP-

complete, there is no polynomial-time algorithm for it if P ¢ NP, and we get a

contradiction. This completes the proof of the theorem. [ |

The following result is a direct consequence of the above arguments; the proof is

provided in Section 3.6.4.
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Corollary 3.3.7 If P # NP, then there is no polynomial-time constant-factor ap-

prozimation algorithm for the posteriori KFSS problem.

Remark 3.3.8 Note that Theorem 3.3.6 and Corollary 3.3.7 provide stronger results
than showing Problem 3.2.2 is NP-hard, as the NP-hardness of Problem 3.2.2 follows

from taking the (constant factor) K =1 in the above analysis.

3.3.3 Inapproximability of the Priori and Posteriori KFSA Problems

In this section, we analyze the achievable performance of algorithms for the priori
and posteriori KFSA problems. Consider any given instance of the priori (resp.,
posteriori) KFSA problem. For any given algorithm A (resp., A’) for the priori
(resp., posteriori) KFSA problem, we define the following ratios:

- a trace(X
ra(X) = M, (3.19)
trace(X.4)

and

. trace(2
ra(2F) & M (3.20)
trace(X%,)

*

spt) 18 the optimal solution to the priori (resp., posteriori) KFSA

where f]opt (resp., »
problem and Y4 (resp., ij\,) is the solution to the priori (resp., posteriori) KFSA
problem given by algorithm A (resp., A’). It is worth noting that using the arguments
in [2], the same upper bounds for r4(2) and 74 (3*) can be obtained as those for
r4(X) and ra(X*) in [2], respectively, where these bounds depend on the system
matrices.

Nevertheless, we show that there is again no polynomial-time constant-factor al-
gorithm for the priori (resp., posteriori) KFSA problem (if P # NP), i.e., for all
K € Ry and polynomial-time algorithms A (resp., A’), there are instances of the
priori (resp., posteriori) KFSA problem where r4(X) > K (resp., ra(X*) > K). To
establish this result, we relate the KFSA problem to the X3C problem as described

in Definition 3.3.1 and Lemma 3.3.4.
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Theorem 3.3.9 If P # NP, then there is no polynomial-time constant-factor ap-
prozimation algorithm for the priori KFSA problem.

Proof Assume that there exists such a polynomial-time constant-factor approxima-

tion algorithm A, i.e., 3K € Rs; such that r4(X) < K for all instances of the priori
KFSA problem, where 7 4(X) is defined in Eq. (3.19). We will show that A can be
used to solve the X3C problem, leading to a contradiction.

Consider any instance of the X3C problem to be a finite set D = {dy,--- ,d3}
and a collection C = {¢q,..., ¢, } of 3-element subsets of D, where 7 > m. Recall in
the proof of Theorem 3.3.6 that we use a column vector g; € R®" to encode which
elements of D are contained in ¢;, where (g;); = 1 if d; € D is in ¢;, and (g;); = 0
otherwise, for i € {1,2,...,7} and j € {1,2,...,3m}. The matrix G € R™*3™ was
defined in the proof of Theorem 3.3.6 as G = [91 gT]T. In this proof, we will
make use of the matrix F' £ GT; note that each column of F contains exactly three
1’s.

Given the above instance of the X3C problem, we then construct an instance of
the priori KFSA as follows. Denote Z = [K|(7 + 2)(62 + 1), where we set §, = 1.
Define the system dynamics matrix as A = diag(A;,0,...,0) € ROFDXT+) where

A= 2721/2. Note that Z € Z~;, and 0 < A\; < 1. The set Q consists of 3m + 7 sensors

with collective measurement matrix

1y, pF
o= |7 (3.21)
0o I

where F'is defined above and I, is used to encode the collection C, i.e., e; represents
c;eCforall j €{1,2,...,7}. The constant p is chosen as p = QZ{ m(Z — 1)} +1.

The system noise covariance matrix is set to be W = I.,;. The measurement noise

I 0

covariance is set as V = 42 " . The sensor attack cost vector is set as
0 p%IT

w = lg,tr, and the sensor attack budget is set as 2 = m. Note that the sensor

attack vector is given by v € {0,1}3"*7. For the above construction, since the only
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nonzero eigenvalue of A is A;, we know from Lemma 3.3.1(a) that > 7 (2(v))s =
Z:;l Wi = 7 for all v.

We claim that algorithm A will return a sensor attack v such that trace(X(v¢)) >
(1 +2)(62 + 1) if and only if the answer to the X3C problem is “yes”.

We prove the above claim as follows. Suppose that the answer to the X3C prob-
lem is “yes”. Similarly to the proof of Theorem 3.3.6, we first assume that V =
O(3m+r)x(3m+r)- Denote an exact cover as C' = {¢;,,...,¢;, }, where {ji,...,jm} C
{1,2,...,7}. Define U to be the sensor attack such that supp(v) = {3m-+ji,...,3m+
Jm}- We then renumber the states of the system from state 2 to state 7 such that for
all i € {1,2,...,m}, the columns of the submatrix I. of C'in Eq. (3.21) representing
¢j, in C', i.e., the columns of I, that correspond to supp(#), come first. Note that
renumbering the states does not change the trace of the steady-state a priori error
covariance of the corresponding Kalman filter. We then have from Eq. (3.21) the

following:
15, pF F:
o N e (3.22)
o o I,
where Fy € R¥™ and F, € R¥*(~m) gatisfy F = [F1 FQ], and I._,, is the
submatrix of I that corresponds to supp(7)N{3m+1,...,3m+7}, i.e., the elements
of C that are not in C’.? Since the sensor attack © targets the rows of C that correspond
to the elements of the exact cover C’ for D, we have Fj, after some row permutations
T

of C(v°), is given by F| = el el ef'... el el el'| . We perform additional
elementary row operations and merge identical rows (which does not change the

steady-state a priori error covariance matrix of the corresponding Kalman filter) to
transform C(2°) into the matrix
1,, pl,, O

C(v°) = : (3.23)
0 0 I,

ZNote that if the submatrix of I, corresponding to supp(#¢)N{3m+1,...,3m+7} is not identity,

we can always permute the rows of C'(7°) to make it identity.
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Since A and W are both diagonal, and V' = 0, we can obtain from Eq. (3.4) that the
steady-state a priori error covariance corresponding to C'(7¢), denoted as % (7°), is of

the form

S(5°) = B 0

where ¥, (7¢) € RO (m+1) gatisfies

S1(5°) = A5y (59) AT + Wy — A5, (59)CT (O, (5°)CT) T O (59) AT,

where 4; = diag(\y,0,...,0) € Rom+Dx(mt1) ¢ — [1m p[m] and Wy = I,,.1. We
then know from Lemma 3.3.2(b) that (2(7¢))11 = (2(7°))11 satisfies

NP m =0+ V(0 = M2 — m)? + dmp?

(3.24)

By our choices of Ay and p, we have

Z—1/4
p?>47*m(Z —1) = (1 — /

Z—1/4
72
= dmp® > 4m>Z* + 4mZ(p*(1 — \3) — m)

)p? > Z%m — Zm

= p> > mZ? + Zp? —Zm

= (p* = ANip* —m)? +4mp® > 4m>Z* + 4mZ(p* — Nip* —m) + (p* — A2p* —m)?

= (p° = X}p* —m)? +4mp® > 2mZ + p* — X}p* —m)?

= \/(p2 — X2p2 —m)2+4mp? > 2mZ + p* — \ipP —m

_ MNP Em =P V(N —m? +Amp? (3.25)
2m

Noting that Z > K(7 + 2)(62 + 1), we then know from (3.24) and (3.25) that
(3(7)11 > K(7 + 2)(62 + 1), which further implies that trace(X(r¢)) > K(r +
2)(62 +1). Following the same arguments as those in the proof of Theorem 3.3.6, we

3m

0 LI
p

implies trace(X(v*¢)) > K(7 + 2)(62 + 1), where v* is an optimal sensor attack for

see that for V' = §2 , trace(X(7°)) > K(7 + 2)(62 + 1) also holds, which

the priori KFSA problem. Since algorithm A has approximation ratio K, it would
return a sensor attack v such that trace(X(v°)) > (7 +2)(62 + 1).
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Conversely, suppose the answer to the X3C problem is “no”. For any union of
I <m (I € Zsp) subsets in C, denoted as Cj, there exists at least one element in D
that is not covered by C;. We then show that trace(X(v¢)) < (7 + 2)(62 + 1) for all
sensor attacks v (that satisfy the budget constraint). We split our discussion into
three cases.

First, consider any sensor attack 4 that targets [ sensors merely from C; to Cs,,
in Eq. (3.21), i.e., |[supp(ry)| =l and supp(r1) C {1,...,3m}, where [ < m. We then
obtain

Lym—t pF(vi)
0 I,
where F(1f) € R®™=DXT i5 defined to be the submatrix of F that corresponds to
supp(v§) N {1,...,3m}, ie., the rows of F that are left over by v;. We perform

elementary row operations to transform C(vf) into

B 13, O
C) 2 VO W) = 30l . (3.26)

with the corresponding measurement noise covariance

- Ly + F(0O)(F(vNT —LF(ve
V() 2wV peT =2 |7 LOERD) B Lo (3.27)
—(F(v)” ik
[3m—l _pF(Vf) . .
where ¥ = . Since there are at most 7 nonzero elements (which

0 I
are all 1’s) in the first row of F'(vf), it follows that (F(v§)(F (v5))")11 (i-e., the element

in the first row and first column of the matrix F(v{)(F(§))T) is at most 7. We then

see from Eq. (3.27) that (V (v))11, denoted as 62(1¢), satisfies
op(vf) < (1 + 1)dz. (3.28)

Second, consider any sensor attack v, that targets [ sensors merely from C',,,11 to

Csm+r in Eq. (3.21), i.e., [supp(r2)| = [ and supp(r2) C {3m +1,...,3m+ 7}, where
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[ <'m. Via similar arguments to those for obtaining Eqgs. (3.22), (3.26) and (3.27),

we can perform elementary row operations to transform

c 13m PF{ pF2/
Cv3) =
0o 0 I
into - -
= e 13m pFll 0
Clvg) =
0o 0 I,
| | | —— 57 (v5)
with the corresponding measurement noise covariance V (v§) = , where
* *
O2(v5) < (1 —1+1)82 (3.29)

Note that F] € R3*™*! and F) e R3mx(7=1) satisfy F' = [Fl’ FQ’] Recall that for any
union of [ < m subsets in C, denoted as C;, there exists at least one element in D that
is not covered by C;. We can then assume without loss of generality that one such
element is dy, which implies that the first row of F] is zero.

Third, consider any sensor attack v5 that targets sensors from both C4 to Cs,,, and
C3m1 t0 C3per in Eq. (3.21). Suppose the attack v5 attacks [; sensors from C; to Cs,,
and Iy sensors from Cy,p1 to Cspyr, i€, supp(vs) = {j1,...,j;,,3m +j{,...,3m +
Jny € AL 2,...,3m + 7}, where Iy, ls € Zxy, L +1 = 1 < m, {j1,...,j,} C
{1,...,3m} and {j7,..., 5.} € {1,...,7}. By similar arguments to those above,
we can perform elementary row operations to transform

. Lym—t, pF1(v5) pFo(v5)
Clvs) = 0 0 I
T—l2

into
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where F(v§) € REm=lxk By (pg) € ROBm-L)x(T=l) gatisfy F(v§) = Fy(v5) Fg(yg)]
with F'(v5) defined in the same way as F(v{). Moreover, the measurement noise
| e g o7 (v5)
covariance corresponding to C'(v5) is given by V(v5) = , where
%

O (1g) < (1 — 1y +1)82. (3.30)

Since any [y subsets in C can cover at most 3l elements in D, there are at least

3m — 3ly elements in D that are not covered by the [, subsets in C. Also note that
3m—3l2—l1:3m—212—l:2(m—l2)—|—m—l>0,

where the last inequality follows from the facts that [} + 1y =1 <m and [y,ly € Z>;.
Hence, by attacking [; sensors from C; to Cl3,, and [y sensors from Cj5,,41 to Cspr,
we have at least 3m — 3l — 1 > 0 row(s) of Fj(v§) that are zero. Again, we can
assume without loss of generality that the first row of Fj(v5) is zero.

In summary, for any sensor attack v, we let i](yf) denote the steady-state a priori
error covariance obtained from measurement matrix (C(¢)); = e, with measurement
noise variance 02(v¢) (which corresponds to the first sensor in C'(v¢)), Vi € {1,2,3},
where v, 15 and v5 are given as above. Following similar arguments to those for (3.14),
we have (B(v9))11 < 62(vF) + 2, Vi € {1,2,3}. Since S5 () = Sty Wi =7

holds for all ¢ € {1,2,3} via similar arguments to those above, we obtain that
trace(S(v)) < 02(vF) + 24 7, Vi € {1,2,3}. (3.31)

Again note that adding more sensors does not increase the MSEE of the corresponding
Kalman filter, and the above operations performed on the sensing matrix C' do not
change the trace of the steady-state a prior: error covariance of the corresponding
Kalman filter as well. We then see from Egs. (3.28)-(3.31) that trace(X(v°)) < (7 +
1)02+2+7 < (1+2)(62+1) for all v. Tt follows that algorithm A would also return
a sensor attack v such that trace(X(v¢)) < (7 +2)(62 + 1). This proves the converse

direction of the claim above.
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Therefore, we know that A can be used to solve the X3C problem by applying
it to the above instance of the priori KFSA problem. Since X3C is NP-complete,
there is no polynomial-time algorithm for it if P # NP, yielding a contradiction. This

completes the proof of the theorem. [ |

The arguments above also imply the following result whose proof is included in

Section 3.6.5.

Corollary 3.3.10 If P # NP, then there is no polynomial-time constant-factor ap-

proximation algorithm for the posteriori KFSA problem.

Remark 3.3.11 The NP-hardness of Problem 3.2.3 follows from taking the (constant

factor) K =1 in the arguments above.

3.4 Failure of Greedy Algorithms

Our results in Theorem 3.3.6 and Theorem 3.3.9 indicate that no polynomial-time
algorithm can be guaranteed to yield a solution that is within any constant factor
of the optimal solution to the priori (resp., posteriori) KFSS and KFSA problems.
In particular, these results apply to the greedy algorithms that are often studied for
sensor selection in the literature [2, 8], where sensors are iteratively selected (resp.,
attacked) in order to produce the greatest decrease (resp., increase) in the error
covariance at each iteration. In this section we will focus on such greedy algorithms
for the priori (resp., posteriori) KFSS problem and the priori (resp., posteriori) KFSA
problem, and show explicitly how these greedy algorithms can fail to provide good
solutions; this provides additional insight into the factors that cause the KFSS and
KFSA problems to be challenging.
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3.4.1 Failure of Greedy Algorithms for the Priori and Posteriori KFSS

Problems

It was shown via simulations in [2] that greedy algorithms for KFSS work well in
practice (e.g., for randomly generated systems). In this section, we provide an explicit
example showing that greedy algorithms for the priori and posteriori KF'SS problems
can perform arbitrarily poorly, even for small systems (containing only three states).
We consider the greedy algorithm for the priori (resp., posteriori) KFSS problem
given in Algorithm 3.4.1, for instances where all sensors have selection costs equal
to 1, and the sensor selection budget H € {1,...,q} (i.e., up to H sensors can
be selected). For any such instance of the priori (resp., posteriori) KFSS problem,
define 7g,..(X) = % (resp., Tgre(X*) = %), where ¥y, (vesp., X7,..) is
the solution of Eq. (3.4) (resp., Eq. (3.6)) corresponding to the sensors returned by
Algorithm 3.4.1.

Algorithm 3.4.1 Greedy Algorithm for Problem 3.2.2
Input: An instance of priori (resp., posteriori) KFSS

Output: A set S of selected sensors
Lk+1,8«0
2: for k < H do
3: J € argmingg trace(3(S U {i})) (resp., j € argmingg trace(X*(S U {i})))
4: S+ SU{jhk+k+1

Example 3.4.1 Consider an instance of the priori (resp., posteriori) KFSS problem
with matrices W = I3 and V = 0343, and A, C' defined as

A 0O 1 € ¢
A=10 0 0|,C=11 0 €,
0 00 01 1
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where 0 < |[\] <1, Ay € R, and € € Ryy. In addition, we have the selection budget
H = 2, the cost vector h = [1 1 1]T and the set of candidate sensors Q = {1,2,3},

where sensor i corresponds to the ith row of matriz C, for i € {1,2,3}.

We then have the following result whose proof is provided in Section 3.6.6.

Theorem 3.4.2 For the instance of the priori (resp., posteriori) KFSS problem de-

fined in Example 3.4.1, the ratios ry..(X) = m—gzg and rg..(X*) = %;%:; satisfy
lim 7y, (X) = 2 + ;2, (3.32)
% 37 3(1— )
and
lim 7o (X7) = 1—;& +1, (3.33)
respectively.

Examining Eq. (3.32) (resp., Eq. (3.33)), we see that for the given instance of the
priori (resp., posteriori) KFSS problem, we have 7g,..(X) — 0o (resp., rge(X*) = 00)
as € — oo and Ay — 1. Thus, ry..(X) (resp., 74(X*)) can be made arbitrarily large
by choosing the parameters in the instance appropriately.

To explain the result in Theorem 3.4.2, we first note that the only nonzero eigen-
value of the diagonal A defined in Example 3.4.1 is A\;, and so we know from Lemma
3.3.1(a) that state 2 and state 3 of the system as defined in Example 3.4.1 each con-
tribute at most 1 to trace(X(u)) (resp., trace(3X*(u))) for all u. Hence, in order to
minimize trace(X(u)) (resp., trace(X*(u))), we need to minimize the MSEE of state
1. Moreover, the measurements of state 2 and state 3 can be viewed as measurement
noise that corrupts the measurements of state 1. It is then easy to observe from
the form of matrix C' defined in Example 3.4.1 that sensor 2 is the single best sensor
among the three sensors since it provides measurements of state 1 with less noise than
sensor 1 (and sensor 3 does not measure state 1 at all). Thus, the greedy algorithm for
the priori (resp., posteriori) KFSS problem defined as Algorithm 3.4.1 selects sensor 2
in its first iteration. Nonetheless, we notice from C defined in Example 3.4.1 that the

optimal set of two sensors that minimizes trace(X(u)) (resp., trace(X*(u))) contains
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sensor 1 and sensor 3, which together give us exact measurements (without measure-
ment noise) on state 1 (after some elementary row operations). Since the greedy
algorithm selects sensor 2 in its first iteration, no matter which sensor it selects in its
second iteration, the two chosen sensors can only give a noisy measurement of state 1
(if we view the measurements of state 2 and state 3 as measurement noise), and the
variance of the measurement noise can be made arbitrary large if we take ¢ — oo in
C defined in Example 3.4.1. Hence, the greedy algorithm fails to perform well due to
its myopic choice in the first iteration.

It is also useful to note that the above behavior holds for any algorithm that

outputs a sensor selection that contains sensor 2 for the above example.

3.4.2 Failure of Greedy Algorithms for the Priori and Posteriori KFSA

Problems

Algorithm 3.4.2 Greedy Algorithm for Problem 3.2.3
Input: An instance of priori (resp., posteriori) KFSA

Output: A set S of targeted sensors
Lk+—1, 8«10
2: for £ < Q) do
3 J € argmax;gg trace(X(Q\ (SU{i}))) (resp., j € argmax;4g trace(X*(Q\ (SU

{i})))
S+ SuU{jhk«<k+1

e

In [8], the authors showed that a simple greedy algorithm can perform arbitrarily
poorly for an instance of the observation attack problem in Gaussian process regres-
sion. Here, we consider a simple greedy algorithm for the priori (resp., posteriori)
KFSA problem given in Algorithm 3.4.2, for instances where all sensors have an at-
tack cost of 1, and the sensor attack budget 2 € {1,...,¢} (i.e., up to € sensors can
be attacked). For any such instance of the priori (resp., posteriori) KFSA problem,
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define 7y, (3) = % (resp., Tgre(X*) = %), where 3, (resp., i;re) is the

solution to the priori (resp., posteriori) KFSA problem given by Algorithm 3.4.2. We
then show that Algorithm 3.4.2 can perform arbitrarily poorly for a simple instance

of the priori (resp., posteriori) KFSA problem as described below.

Example 3.4.3 Consider an instance of the priori (resp., posteriori) KFSA problem
with matrices W = I3, V = Q4y4, and A, C' defined as

1 € ¢
A 0O
1 0 ¢
A=10 0 0|, C= )
010
0O 0 O
0 0 1

where 0 < |A\1] < 1, Ay € R and h € Rsg. In addition, the attack budget Q = 2, the
cost vector @ = [1 1 1 1|7, and the set of sensors Q = {1,2,3,4} has already been

installed on the system, where sensor v corresponds to the ith row of matriz C, for

i€ {1,2,3,4}.
We then have the following result; the proof is provided in Section 3.6.7.

Theorem 3.4.4 For the instance of the priori (resp., posteriori) KFSA problem de-

trace(7 ;)

fined in Example 3.4.3, the ratios ry..(X) = %;th; and g (X*) = taceEr) satisfy
lim 74,0 (%) = 2. ;, (3.34)
=0 3 3(1-X\3)
and
lm e (5) = % (3.35)
respectively.

Inspecting Eq. (3.34) (resp., Eq. (3.35)), we observe that for the given instance of

the priori (resp., posteriori) KFSA problem, we have rgre(i) — oo (resp., rgre(f]*) —

00) as € — 0 and A\; — 1. Thus, 74,..(X) (resp., 74(X*)) can be made arbitrarily

large by choosing the parameters in the instance appropriately.
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Here, we explain the results in Theorem 3.4.4 as follows. Using similar arguments
as before, we know from the structure of matrix A defined in Example 3.4.3 that in
order to maximize trace(X(v°)) (resp., trace(X*(v°))), we need to maximize the MSEE
of state 1, i.e., make the measurements of state 1 “worse”. Again, the measurements
of state 2 and state 3 can be viewed as measurement noise that corrupts the mea-
surements of state 1. No matter which of sensor 1, sensor 2, or sensor 3 is attacked,
the resulting measurement matrix C'(v¢) is full column rank, which yields an exact
measurement of state 1. We also observe that if sensor 4 is targeted, the surviving
sensors can only provide measurements of state 1 that are corrupted by measurements
of states 2 and state 3. Hence, the greedy algorithm for the priori (resp., posteriori)
KFSA problem defined as Algorithm 3.4.2 targets sensor 4 in its first iteration, since
it is the single best sensor to attack from the four sensors. Nevertheless, sensor 1
and sensor 2 form the optimal set of sensors to be attacked to maximize trace(X(v°))
(resp., trace(X*(v°))), since the surviving sensors provide no measurement of state
1. Since the greedy algorithm targets sensor 4 in its first iteration, no matter which
sensor it targets in the second step, the surviving sensors can always provide some
measurements of state 1 with noise (if we view the measurements of state 2 and state
3 as measurement noise), and the variance of the noise will vanish if we take ¢ — 0
in matrix C' defined in Example 3.4.3. Hence, the myopic behavior of the greedy
algorithm makes it perform poorly.

Furthermore, it is useful to note that the above result holds for any algorithm
that outputs a sensor attack that does not contain sensor 1 or sensor 2 for the above

example.

Remark 3.4.5 Note that in Example 3.4.1 (resp., Example 3.4.3), we set V = 033
(resp., V.= 04x4). It is straightforward to show, using similar arqguments to those in
the proof of Theorem 3.4.2 (resp., Theorem 3.4.4), that when we instead set V = §13
(resp., V- = 01,), where § € R.q, the results in Eq. (3.32)-(3.33) (resp., Eq. (3.34)-
(3.35)) hold if we let 6 — 0.
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3.5 Chapter Summary

In this chapter, we studied sensor selection and attack problems for (steady-state)
Kalman filtering of linear dynamical systems. We showed that these problems are NP-
hard and have no polynomial-time constant-factor approximation algorithms, even
under the assumption that the system is stable and each sensor has identical selec-
tion cost. To illustrate this point, we provided explicit examples showing how greedy
algorithms can perform arbitrarily poorly on these problems, even when the system
only has three states. Our results shed new insights into the problem of sensor selec-
tion and attack for Kalman filtering and show, in particular, that this problem is more
difficult than other variants of the sensor selection problem that have submodular (or

supermodular) cost functions.

3.6 Proofs of Key Results
3.6.1 Proof of Lemma 3.3.1

Since A and W are diagonal, the system represents a set of n scalar subsystems
of the form

where z;[k| is the ith state of x[k] and w;[k] is a zero-mean white noise process with
variance o, = W;;. As A is stable, the pair (A,C(u)) is detectable and the pair
(A, Wz) is stabilizable for all sensor selections . Thus, the limits kh—>I£lo (Zre/r—1(pt) )i
and ]}g&(Ek/k(u))n exist for all ¢ and p (based on Lemma 3.2.1), and are denoted as
(X(u))ii and (57(p) )i, respectively.

Proof of (a). Since A and W are diagonal, we know from Eq. (3.5) that

(B(1))i = N2 (S (1))is + W,
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which implies (X(u))i; > Wiy, Vi € {1,...,n}. Moreover, it is easy to see that
(3(1))i < (2(0))4, Vi € {1,...,n}. Since C(0) = 0, we obtain from Eq. (3.4)

¥(0) = AL(0)AT + W.

which implies that (3(0)); = %% since A is diagonal. Hence, (3(u))y < 1oy,
Vi € {1,...,n}. Similarly, since we also have (X*(u)); < (3*(0));;, we obtain from
Eq. (3.6)

¥*(0) = AX*(0)AT + W.

Hence, 0 < (5%(p))s < 1935, Vi € {1,...,n}.

1-A2”

Proof of (b). Assume without loss of generality that the first column of C'(u) is
zero, since we can simply renumber the states to make this the case without affecting

the trace of the error covariance matrix. Hence, we have C'(u) of the form

) =Jo ciw)-

Moreover, since A and W are diagonal, it follows from Eq. (3.4) that 3(u) is of the

form

where () = (3X(p))11 and satisfies

(S()) 11 = A (5 ()11 + W,

which implies (3(p))11 = 12%. Furthermore, it follows from Eq. (3.6) that ¥*(u) is
1

of the form

where 3% (1) = (X*(u))11 and satisfies

(X ()11 = AT(E* ()11 + Wi,

which implies (3*(u))11 = 1.
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Proof of (c). We assume without loss of generality that e; € rowspace(C'(u)). If
we further perform elementary row operations on C'(u), which does not change the

solution to Eq. (3.4) (resp., Eq. (3.6)), we obtain a matrix C'(12) of the form

and V() = 0. Moreover, since A and W are diagonal, we see from Eq. (3.4) that
Y (p) is of the form

where 31 (1) = (2(u))11 and satisfies

(S()11 = AF(E ()11 + Wiy = AT(S (1)1,

which implies (X(p))11 = Wiy Furthermore, it follows from Eq. (3.6) that X*(u) is

of the form
S () = Xi(w) 0 |
0 35(w)
where 37 () = (5%(p))11 and satisfies (X% (u))11 = (5(1))1 — (E(p))11 = 0. u

3.6.2 Proof of Lemma 3.3.2

Proof of (a): We first note from Lemma 3.2.1 that the limit ¥(u) exists for all
w (since A is stable). Since A = diag(A,0,...,0), we have z;[k + 1] = w;[k], Vi €
{2,...,n} and Vk € Z>o. Moreover, we have from Eq. (3.3) that

y[k] = []_ le(n_l)]l'[k?] + U[k] + U/[k] = xl[k:] + @[k], vk € 2207

n—1

where v'[k] = Z YiTis1]k] and 9[k] £ v[k] + v'[k]. Recall that we have assumed with
i=1

out loss of generality that zo = 0 and IIy = I,,. Moreover, noting that W = I, and

that x[0] is independent of w[k] and v[k] for all k € Zso, where w[k] and v[k] are

uncorrelated zero-mean white noise processes (as assumed), we have that 9[k| is a
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zero-mean white noise process with E[(4[k])?] = ||7||3 + 0. Thus, to compute the
MSEE of state 1 of the Kalman filter, i.e., 311, we can consider a scalar discrete-time
linear system with A =Xy, C =1, W =1 and V = a?, and obtain from Eq. (3.4) the
scalar DARE

Z:].1
Y= )\%(1 — m)zu + 1, (3.36)

where a? = ||v||3+02. Solving for 31; in Eq. (3.36) and omitting the negative solution
lead to Eq. (3.9).

To show that ;5 is strictly increasing in o € R, we can use the result of Lemma
6 in [2]. For a discrete-time linear system as defined in Eq. (3.1) and Eq. (3.3), given
A=) and W =1, suppose we have two sensors with the measurement matrices as
C; = Oy = 1 and the variances of the measurement noise as V; = o2 and Vo = a3.
Define R £ CTV~'C to be the sensor information matrix corresponding to a sensor
with measurement matrix C' and measurement noise covariance matrix V. Denote the
sensor information matrix of these two sensors as R; and Ry. We then have R; = i%
and Ry = ai% If af > a2, we know from Lemma 6 in [2] that Xj;(a?) < 311(a3).

Hence, Y11(a?) is a strictly increasing function of o? € R>o. For @ > 0, we can

)
rewrite Eq. (3.9) as

2
211<052) = . (337)
\/(1—/\§—$)Q+$+1—/\§—$
. ) . 9 1
By letting o — oo in Eq. (3.37), we obtain lim () = v
a—00 — A7
Proof of (b). Using similar arguments as above, we obtain from Eq. (3.3)
y[k‘] = 1n_1$1[l€] + Ul[k’],
T

where V'[k] = p [332 K] - g;n[k]] , which is a zero-mean white noise process with

E[v'[k](v'[k])T] = p*I,_1. Hence, to compute the MSEE of state 1 of the Kalman
filter, i.e., ¥,, we can consider a system with A = A\, C = 1,4, W = 1 and

V = p?I,_1. Solving Eq. (3.4) (using the matrix inverse lemma [65]) gives us the result
|

in Eq. (3.10). Using similar arguments as above, we obtain lim ¥,(p%) = v
p—r00 — A7
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3.6.3 A Lemma for X3C

Lemma 3.6.1 Consider an instance of X3C: a finite set D with |D| = 3m, and a
collection C = {c1,...,¢.} of T 3-element subsets of D, where 7 > m. For each
element ¢; € C, define a column vector g; € R to encode which elements of D are
contained in ¢;, i.e., fori € {1,2,...,7} and j € {1,2,...,3m}, (¢;); = 1 if element
j of set D is in ¢;, and (g;); = 0 otherwise. Denote G = [91 gT]T. For any
I<m (1 €Z)and L = {iy,...,5;} C{1,...,7}, define Gy = [91‘1 gil]T and
denote rank(G) = rp.3. If the answer to the X3C problem is “no”, then for all L

with |L| < m, there exists an orthogonal matriz N € R3™3™ sych that

1T
sml = |77 (3.38)
Gy 0 Gr

where Gy € R is of full column rank, v € R™G™") and at least k > 1 (k € 7)
elements of v are 1’s , and 8 € RY™". Further elementary row operations on [g gﬁ]

., v 0
transform it into the form [0 Gg]‘

Proof Assume without loss of generality that there are no identical subsets in C.
Since rank(G,) = r, the dimension of the nullspace of G, is 3m — r. We choose an
orthonormal basis of the nullspace of G, and let it form the first 3m — r columns
of N, denoted as N;. Then, we choose an orthonormal basis of the columnspace
of G and let it form the rest of the r columns of N, denoted as N,. Clearly,
N = [N1 NQ] € R3¥3™ ig an orthogonal matrix. Furthermore, since the answer
to the X3C problem is “no”, for any union of [ < m (I € 7Z) subsets in C, denoted
as C, there exist kK > 1 (k € Z) elements in D that are not covered by C, i.e.,
G, has k zero columns. Let these be the jith, ..., j.th columns of GG;, where
{71,---, 7} € {1,...,3m}. Hence, we can always choose €;,...,e; to be in the
orthonormal basis of the nullspace of G, i.e., as columns of N;. Constructing N in

this way, we have G,N; = 0 and GoN, = ég, where é[) € R is of full column

3We drop the subscript £ on r for notational simplicity.
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rank since the columns of Ny form an orthonormal basis of the columnspace of G%
and 7 < [. Moreover, we have 17 Ny = v and 1 N, = 3, where at least s elements
of v are 1’s (since 13Tme]TS =1,Vs € {l,...,k}). Combining these results, we obtain

Eq. (3.38). Since G is of full column rank, we can perform elementary row operations

v B . v 0
on |:Oé£:| and obtain [OGJ. [ ]

3.6.4 Proof of Corollary 3.3.7

We have shown in Theorem 3.3.6 that for any polynomial-time algorithm A for
the priori KF'SS problem and any K € R, there exist instances of the priori KFSS
problem such that r 4(X) > K (unless P=NP). Suppose that there exists a polynomial-
time constant-factor approximation algorithm A’ for the posteriori KFSS problem,
i.e., K’ € Ry such that r(X*) < K’ for all instances of the posteriori KFSS
problem, where r4(X*) is as defined in Eq. (3.12). We consider an instance of the
priori KFSS problem as constructed in the proof of Theorem 3.3.6. We then set the
instance of the posteriori KFSS problem to be the same as the constructed instance
of the priori KFSS problem. Since A = diag(A,0,...,0) € REmFUXEm+1) and 1 =

I3m41, where 0 < Ay < 1, we have from Eq. (3.5)

(B(p)1r = A (Z* ()11 + 1, Yp. (3.39)

Since we know from Lemma 3.3.1(a) that (X(u))i =1, Vi € {2,...,3m+ 1} and Vg,
it then follows from Eq. (3.39) that

trace(3(u)) = AT (X" ()11 + 3m + 1, Yp. (3.40)

We also know from Lemma 3.3.1(a) that 0 < (X*(u)); < 1, Vi€ {2,...,3m+ 1} and

V., which implies that
trace(X*(p)) < (X*(p))11 + 3m, Vpu. (3.41)

We then obtain from Egs. (3.40)-(3.41) the following:

< 3mA? + trace(X(p)) —3m — 1 < trace(3(u))
N A - A

trace(X"(u)) .V, (3.42)
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where the second inequality follows from the fact that 0 < A\; < 1. Denote optimal
sensor selections of the priori and the posteriori KF'SS problems as pj and p3, re-
spectively. Denote the sensor selection returned by algorithm A" as y/. Note that

Yopt = X(p7) and X7, = ¥*(u3) and X%, = ¥* (). We then have the following:

trace(¥y ) < K'trace(X; )

= (5" (1) + 321(2*(//))% < K'trace(X7(u3))

= % ; K'trace(S*(13)) < K'trace(S*(u})) (3.43)

= (B()n — 1 < K'trace(3(p7)) (3.44)

= trace(X () < K'trace(X(p3)) +3m + 1 (3.45)
%g ! mizﬁgl(%l, (3.46)

where the first inequality in (3.43) follows from Eq. (3.39) and (3*(u/)); > 0,Vi
(from Lemma 3.3.1(a)), the second inequality in (3.43) follows from the fact that p}
is an optimal sensor selection for the posteriori KFSS problem, (3.44) follows from
(3.42), (3.45) follows from the fact that 322" (3(1))i = 3m (from Lemma 3.3.1(a)),
and the second inequality in (3.46) uses the fact that trace(X(u})) > 3m + 1 (from
Lemma 3.3.1(a)). Thus, we see from (3.46) that 4 (¥X) < K’ + 1, which contradicts
the fact that the priori KF'SS problem cannot have a polynomial-time constant-factor

approximation algorithm for instances of the given form, and completes the proof of

the corollary. |

3.6.5 Proof of Corollary 3.3.10

Note that the A and W matrices for the instance of KFSA that we constructed
in the proof of Theorem 3.3.9 are the same as those for the instance of KFSS that
we constructed in the proof of Theorem 3.3.6. We then follow the same arguments
as those in the proof of Corollary 3.3.7. Suppose that there exists a polynomial-time

constant-factor approximation algorithm A’ for the posteriori KFSA problem, i.e.,
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JK’ € Ry such that r A/(f]*) < K’ for all instances of the posteriori KFSA problem,
where 7.4/(X*) is as defined in Eq. (3.20). We consider an instance of the priori KFSA
problem as constructed in the proof of Theorem 3.3.9. We then set the instance of
the posteriori KFSA problem to be the same as the constructed instance of the priori
KFSA problem. Denote an optimal sensor attacks of the priori and the posteriori
KFSA problems as vj and vj, respectively. Denote the sensor attack returned by
algorithm A’ as v/. Note that ¥, = S(v;¢), X¥ o = 2 (15°) and 3%, = 2*(v). Also
note that trace(X*(v;¢)) < trace(X*(v3¢)), since v3 is an optimal sensor attack for the

posteriori KFSA problem. We then have the following:

trace(X*(1}¢)) < trace(X*(13%)) < K'trace(X%,)
3m+1

= (S (V)11 + Z (S (1)) < K'trace(S* (/%))

(X

ll_
=

;% < K'trace(X* (V)

= (1)1 — 1 < K'trace(X(V))
= trace(X(1;¢)) < K'trace(X(V€)) +3m + 1

N trace(X(v;¢)) < K4 3m+1 <K i1,
trace(X(v¢)) trace(X(v¢))

which implies that 74 () < K’ + 1, and yields a contradiction with the fact that the

priori KFSA problem cannot have a polynomial-time constant-factor approximation

algorithm for the instances of the form given as above. This completes the proof of

the corollary. |

3.6.6 Proof of Theorem 3.4.2

We first prove that Algorithm 3.4.1 for the priori KFSS problem selects sen-
sor 2 and sensor 3 in its first and second iterations, respectively. Since the only
nonzero eigenvalue of A is A;, we know from Lemma 3.3.1(a) that (3(u))22 = 1 and
(X(p))ss = 1, Y, which implies that (X,.c)22 = 1 and (2,,¢)33 = 1. Hence, we focus

on determining (X,,¢)11.



Denoting gy = [1 0 0] and py = [0 1 0]7, we have C(uy) = [1 h h] and C(pug) =
[1 0 h]. Using the result in Lemma 3.3.2(a), we see that o1 £ (X(p1))11 and oy 2
(E<,U2))11 Satisfy

2
g1 = )
\/(1—/\§—#)Q+%+1—/\§—#
and
2
09 = )

\/(1—A%—h%)2+%+1—)\§—h—12
respectively. Similarly, denoting uz = [0 0 1]7, we obtain C'(u3) = [0 1 1]. Since the
first column of C(us) is zero, we know from Lemma 3.3.1(b) that o3 = (2(u3))11 =

1
1-A2°

If we view 0y as a function of h%, denoted as o(h?), we have o1 = o(2h?). Since
we know from Lemma 3.3.2(a) that o(h?) is a strictly increasing function of h? € R+
and upper bounded by ﬁ, we obtain oy < 07 < 03, which implies that the greedy
algorithm selects sensor 2 in its first iteration.

Denote g2 = [110]7. We have C(p12) = [} 2 %], on which we perform elementary
row operations and obtain C(j9) = [0 9]. By direct computation from Eq. (3.4),
we obtain (X(12))11 = 02. Moreover, we denote 93 = [0 1 1]7 and obtain C'(u93) =
[§94]. By direct computation from Eq. (3.4), we have (X(23))11, denoted as 093, to

be
2

0923 = .
JO=X -2+ 5+1-X-3

Similarly to the argument above, we have o1y = o(h?) and 093 = (%), where

2

O’(%Q) < o(h?), which implies that the greedy algorithm selects sensor 3 in its second
iteration. Hence, we have trace(Xy..) = 093 + 2.

Furthermore, it is easy to see that the optimal sensor selection (for the priori KFSS

instance) is = [1 0 1]7, denoted as py3. Since if u = 13, then e; € rowspace(C'(u))

and thus we know from Lemma 3.3.1(a) and (c) that trace(X(p)) = 3 = trace(W),

which is also the minimum value of trace(X(u)) among all possible sensor selections

i Combining the results above and taking the limit as h — oo lead to Eq. (3.32).
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We next prove that the greedy algorithm defined in Algorithm 3.4.1 for the pos-
teriori KFSS problem selects sensor 2 and sensor 3 in its first and second iterations,
respectively. Note that it is easy to see from Eq. (3.5) that X(u) is of the form
Y(p) = diag((X(p))11,1,1), Vu. Hence, we see from Eq. (3.6) that trace(X*(uy1)) =
2+ %h—jm(al —1), trace(X*(u2)) = 2+ U;‘TZhQ(JQ —1) and trace(X*(u3)) = 2+ ﬁ -1,
where o; = 0(2h?) and oy = o(h?) are defined above. Since o(h?) is a strictly in-
creasing function of h? € R with o(h?) > 1 and upper bounded by 1_—&%, and it is
easy to obtain % < oy, it then follows that Algorithm 3.4.1 for the posteriori KIF'SS
problem selects sensor 2 in its first iteration.

Similarly, Eq. (3.6) implies trace(3X*(u12)) = 1 + UQhTzhg(og — 1), trace(X*(p23)) =

1+ —ZUZZihQ (093 — 1) and trace(X*(u13)) = 1, where o953 = 0‘<h

5-) is defined above.

Since o(h?) is strictly increasing in h* € R.q with ¢(h?) > 1 and upper bounded
by 1_—1A%, and it is easy to check that gy < 2093, it follows that the greedy algorithm
selects sensor 3 in its second iteration, and p = ;3 is the optimal sensor selection
(for the posteriori KFSS instance). Combining the results above and letting h — oo,

we obtain Eq. (3.33). [

3.6.7 Proof of Theorem 3.4.4

We first analyze Algorithm 3.4.2 for the priori KFSA problem. Since the only
nonzero eigenvalue of A is A;, we know from Lemma 3.3.1(a) that (X(r))2 = 1 and
(Z(v°))ss = 1, Vv, which implies that (X,.c)22 = 1 and (X,)33 = 1. Hence, we only
need to determine (g.¢)11.

First, denote v; = [1 0 0 0]7, v, = [0 1 0 0]7 and v3 = [0 0 1 0]7. Then, it is
easy to see that C'(v°) is of full column rank for all v € {1y, vy, v3}. This implies that
e; € rowspace(C(v9)) for all v € {vy,1,v3}. Thus, we know from Lemma 3.3.1(c)
that (X(v¢))11 = 1, Vv € {vy, 1,15}, Moreover, denoting v4 = [0 0 0 1]7, we have

C(vg) (after some elementary row operations and merging identical rows) is of the
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form C(v§) = [§ 9 2]. Using the results from the proof of Theorem 3.4.2, we obtain

1
that o, £ (X(v§))11 satisfies

1+ h2A2 — h% +/(h2 — h2)? — 1)2 + 4h2
5 .

/
0-4:

If we view o/, as a function of h?, denoted as ¢’(h?), we know from Lemma 3.3.2(a)
that o’(h?) is a strictly increasing function of h* € Rso with ¢’(0) = 1, which implies
oy > 1. Thus, Algorithm 3.4.2 for priori KFSA targets sensor 4 in its first iteration.

Second, denote v14 = [1 00 1]7, vo4 = [0 1 0 1]7 and v34 = [0 0 1 1]T. We obtain
that C'(v°) (after some elementary row operations) is of the form C(v¢) = [§ { %], for
all v € {v14, Vo4, 34} It follows that (X(v°))11 = o} for all v € {114, 24, 34}, which
implies that trace(X,,.) = o} + 2.

Furthermore, the optimal sensor attack (for the priori KFSA instance) is v = v,

where v = [1 1 0 0]7, since in this case we know from Lemma 3.3.1(a) and (b) that

%(v°)11 = 175z, which is also the maximum value of ¥(v°);; that it can achieve, i.e.,
1

iopt = ﬁ + 2. Combining the results above and taking the limit as h — 0, we
obtain Eq. (3.34).

We next analyze Algorithm 3.4.2 for the posteriori KFSA problem. Since we know
from previous arguments that C'(v°) is of full column rank for all v € {v, 19,13}, it
follows from Lemma 3.3.1(c) that trace(X*(vf)) = trace(X*(v5)) = trace(X*(v5)) = 0.
Moreover, it is easy to obtain from Eq. (3.5) that X(v¢) is of the form ¥ (v¢) =
diag((2(v°))11,1,1), Vv. We then see from Eq. (3.6) that trace(X*(v§)) = 1+
UZ”TQ}LQ(UQ — 1), where o), = o/(h?) is defined above. Since o’(h?) is strictly in-
creasing in h? € Ryo with ¢/(0) = 1, it implies that Algorithm 3.4.2 for posteri-
ori KFSA targets sensor 4 in its first iteration. Similarly, we have from Eq. (3.6)

trace(X*(15,)) = trace(X*(15,)) = trace(S*(v%,)) = 1+ =2~ (o4 — 1), which implies

oy+h?
- )
trace(¥;,.) = 1+ #(aﬁl —1).
Furthermore, denote 153 = [0 1 1 0]7 and v13 = [1 0 1 0]7. Tt is easy to show,

via similar arguments to those above, that trace(X*(v¢)) = 1+ lehTizz(afl — 1) for all

v € {vs4, vou, Va3, v1a}, trace(S*(vfy)) = 1, and trace($*(vf,)) = 1+ =5z — 1. Since
1
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o), = o'(h?) is strictly increasing in h? € Rsy with ¢/(0) = 1, and upper bounded

by ﬁ, it follows that the optimal sensor attack (for the posteriori KFSA instance)
1

is v = v15. Combining the results above and taking the limit as h — 0, we obtain

Eq. (3.35). ]
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4. RESILIENT SENSOR SELECTION FOR KALMAN
FILTERING IN NETWORKED SYSTEMS

4.1 Introduction

In Chapter 3, the sensor selection problem for Kalman filtering was shown to
be NP-hard and inapproximable within any constant factor (if P # NP) in gen-
eral. Therefore, we consider special classes of this problem in this chapter and seek
polynomial-time algorithms for the optimal sensor selection problem. Specifically,
we consider a discrete-time linear dynamical system whose states represent nodes
in a directed network, and interact according to the topology of the network. The
nodes of the network are possibly affected by stochastic inputs. Such networked sys-
tems with stochastic inputs have received much attention from researchers recently
(e.g., [13-17]). In this chapter, we focus on the case when there is a single node of
the network that is affected by a stochastic input. This model encompasses mod-
els of diffusion networks that arise in many different areas, including, for instance,
information and influence diffusion over social networks [18], spreading of diseases
in populations [19] and diffusion of chemicals in certain environments [20]. In such
applications, estimating the states of the entire network is an important objective.

Moreover, we consider the scenario where a sensor located at a certain node can
give measurements of the state corresponding to the node. A system designer can
then select a subset of sensors (at design-time) that correspond to all the nodes over
the network, in order to minimize the trace of the steady-state error covariance of the
Kalman filter associated with to the selected sensors. In addition, we assume that
selecting the sensor of a certain node in the network incurs a selection cost for the

designer. The sensor selection costs of different nodes can potentially vary, since they
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may, for instance, be located in different environment conditions. We refer to this
problem as the Graph-based Kalman Filtering Sensor Selection (GKFSS) problem.
Additionally, as we argued in the previous chapter, the systems that we are in-
terested in monitoring may be targeted by adversaries. Here, we again consider
adversaries that perform DoS attacks on sensors by simply removing them (or equiv-
alently, dropping all the measurement data). The goal of the adversary is to remove a
subset of selected sensors under a budget constraint in order to maximize the trace of
the steady-state error covariance of the Kalman filter corresponding to the surviving
sensors. We assume that attacking the sensor of a certain node incurs an attack cost
(which could also vary across the nodes). In contrast with existing work in the liter-
ature, we analyze the problem using the graph structure of the systems. We refer to
this problem as the Graph-based Kalman Filtering Sensor Attack (GKFSA) problem.
Finally, combining the two problems that we considered above, we formulate and
study the resilient sensor selection problem for networked systems where there is a
single node in the network that has the stochastic input. In our formulation, we
assume that the system designer is aware of the potential attack from an adversary
who chooses to optimally attack the sensors (subject to attack budget constraints)
deployed by the system designer. The system designer’s goal then becomes to select
sensors (under selection budget constraints) of a subset of nodes in order to minimize
the trace of the steady-state error covariance of the Kalman filter corresponding to
the surviving sensors after the attack. We refer to this problem as the Resilient

Graph-based Kalman Filtering Sensor Selection (RGKFSS) problem.

Related Work

The (design-time) selection problem has been widely studied in the literature.
For example, in [50,57], the authors considered the Kalman filtering sensor selection
problem over a finite number of time steps. Here, we study the problem of optimizing

steady-state error covariances of the corresponding Kalman filter. In Chapter 3, we
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considered the same sensor selection problem as the one considered here, but for gen-
eral system dynamics. In such cases, we showed that finding an optimal selection for
the general problem is NP-hard. Thus, in this chapter, we impose additional structure
on the problem (by considering the graph representation of the dynamics) in order to
seek optimal solutions. In [66,67], the authors studied the sensor selection problem
for estimating a static variable (parameter) that does not change over time. Here, we
study the problem of selecting sensors to estimate the states of a linear dynamical sys-
tem affected by stochastic inputs. In contrast to the sensor selection problem where
the set of selected sensors cannot change over time, the sensor scheduling problem for
Kalman filtering has also received much attention (e.g., [35-37,68]), where different
sets of sensors can be chosen at different time steps.

In networked system settings, the authors in [69] considered the sensor selection
problem for continuous-time diffusion dynamics, and applied the Wiener filter to
estimate the system states using sensor measurements. Here, we consider discrete-
time networked system dynamics and apply the Kalman filter to estimate the system
states. The authors in [14-16] studied the leader selection problem in consensus
networks with stochastic inputs. The problem is to select a subset of nodes whose
states are fixed over time in order to minimize the Hy norm of the system states at
steady state. In contrast, we consider the problem of selecting sensors among the
nodes of systems with more general dynamics in order to minimize the trace of the
steady-state error covariance of the Kalman filter.

Although both of the sensor selection and the sensor attack problems have re-
ceived much attention from researchers, the resilient sensor selection is less explored.
The authors in [9] considered the problem of resilient maximization of monotone sub-
modular set functions under a cardinality constraint on the sets. They proposed a
polynomial-time approximation algorithm for the problem with performance bounds
that depend on the curvature of the objective function. In [8], the authors consid-
ered a resilient observation selection problem. The problem is to resiliently select

observations of a scalar Gaussian process given that some of the selected observations
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could be removed by an adversary. The authors showed that this problem is NP-hard
and proposed a greedy algorithm with a provable performance guarantee. Here, we
consider the resilient sensor selection problem for Kalman filtering of (vector) linear
dynamical systems subject to general knapsack constraints. While we show this prob-
lem is NP-hard, we give an algorithm based on dynamic programming to solve the

problem optimally in pseudo-polynomial time [41].

Summary of Results

First, we provide an optimal sensor selection strategy, computed in polynomial
time, for the GKFSS problem using the graph structure of the system. Second,
leveraging the insights for the GKFSS problem, we give an optimal sensor attack
strategy, computed in polynomial time, for the GKFSA problem. Third, we show that
the RGKFSS problem is NP-hard; we then provide an algorithm based on dynamic
programming that can return an optimal solution to general instances of the RGKFSS
problem in pseudo-polynomial time. Although the results are derived under the
assumption that the sensors give perfect measurements, we show that how to apply
these results to analyze the case with sensor measurement noise and provide numerical
examples.

The results presented in this chapter were published as [49, 70].

4.2 Problem Formulation

We begin with the following definitions from graph theory. Further details can be
found in, for example, [71] and [65].

Definition 4.2.1 For any given matriz A € R™*", the directed graph of A, denoted
as G(A), is defined as the directed graph on n vertices (or nodes) xi, s, ..., x, such
that for alli,j € {1,2,...,n}, there is a directed edge in G(A) from x; to x;, denoted

as (xj,x;), if and only if A;; # 0. Denoting the set of vertices and the set of edges
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of G(A) as X(A) £ {x1,29,...,2,} and E(A), respectively, the graph G(A) is also
denoted as G(A) = {X(A),E(A)}.

Definition 4.2.2 Consider a directed graph G = {X,E} with X = {x1,29,...,7,}.
A directed path from x;, to x;, is a sequence of directed edges (x;y, xi,), (Tiy, Tin), - - -,
(s,_,,x;,) in G. The ordered list of vertices in the directed path is x;,, x;, ..., x;,.
The length of a directed path is the number of directed edges in the directed path. A
cycle is a directed path that begins and ends at the same vertex which occurs exactly
twice in the ordered list of vertices in the directed path, and no other vertices occur

more than once in the list. A cycle of length 1 is a self-loop at the corresponding

vertex.

Definition 4.2.3 Consider a directed graph G = {X,E}. For any pair of distinct
vertices x;,x; € X such that there exists a directed path from x; to x;, the distance

from z; to x;, denoted as d;j, is defined as the shortest length over all such paths.

Define d,, =0 for all x,, € X.

Definition 4.2.4 A directed graph G = {X,E} is strongly connected if for all pairs

of distinct vertices x;,x; € X, there is a directed path from x; to x; in G.

We start with a general system model. Consider a matrix A € R™*" with the
associated graph G(A) = {X(A),E(A)} (given in Definition 4.2.1). Suppose Z =
{%ig, @iy, -, w3, ) © X(A) is the set of nodes that have stochastic inputs, where

ny € Z>1. We then consider the following discrete-time linear system:
zlk + 1] = Az[k] + Bw[k], (4.1)

where z[k] € R™ is the system state at time step k, and B £ [eg e e;ﬂrl € Rmm
is the input matrix. The stochastic input w[k] € R™ is a zero-mean white noise
process with E[w[k](w[k])T] = W € S}'. The initial state z[0] is a random vector
with mean z, € R" and covariance Il € S7, and is assumed to be independent of

wlk] for all k € Zsy. Each state of the system, denoted as z;[k], is associated with
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node z; in G(A). As we mentioned in the introduction, we showed in Chapter 3 that
the Kalman filtering sensor selection problem cannot be approximated within any
constant factor in polynomial time (if P # NP) for general system dynamics matrices
even when the measurement noise is zero. Moreover, under the networked system
setting, [49] showed that if there are multiple input nodes in the graph, the Kalman
filtering sensor selection problem becomes NP-hard even when the graph only contains
a set of disjoint paths of length three and each path has a single input node. Hence,
in order to bypass these inherent complexity issues, we focus on networked systems
with a single input node z;, € X(A) (i.e., B = e} and E[(w[k])?] = 02, € Rxo),
and seek efficient algorithms to optimally solve the corresponding sensor selection,
sensor attack, and resilient sensor selection problems. We assume throughout this
chapter that the pair (A, Bo,) is stabilizable. The generality of this assumption will
be justified later in this chapter.

4.2.1 The Sensor Selection Problem

First, suppose that there is a system designer who can select sensors of a subset of
the vertices of the graph G(A) under a budget constraint. Specifically, the sensor of
node z; € X(A) has a selection cost h; € Z>; define the sensor selection cost vector
as h = [hl hn}T. The designer has a sensor selection budget H € Zx( that
can be spent on selecting sensors of the nodes in G(A). Moreover, the sensor of node

x; € X(A) gives a measurement of the form
yilk] = Cizlk] + vi[k], (4.2)

where C; = e; and v;[k] € R is a zero-mean white noise process. We further define
ylk] 2 [n[k] -~ valk]]", ¢ 2 [CT -~ CT]" and v[k] 2 [i[K] --- va[k]]". Thus,
the output provided by all sensors together is given by

y[k] = Cxlk] + v[k], (4.3)
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where C' = I,. We denote E[v[k](v[k])T] =V € S" and consider E[v[k](w[;j])T] = O,
Vk,j € Z>o. The initial state z[0] is also assumed to be independent of v[k] for all
k € Zso.

After the sensors are selected, the Kalman filter is then applied to provide an
estimate of the states using the measurements from the installed sensors. We define
a vector u € {0,1}" to be the indicator vector indicating the vertices where sensors
are selected. Specifically, u; = 1 if and only if a sensor is selected at node z; € X'(A).
Let C'(u) denote the measurement matrix of the installed sensors indicated by g, i.e.,
C(pn) = [CZ - o T, where supp(p) = {i1,...,4,} C {1,...,n}. Similarly, let
V(@) denote the measurement noise covariance matrix of the installed sensors, i.e.,
V(p) = E[o[k](0[k])T], where 0[k] £ [(v[k]);, --- (U[l{i])ip]T. The a priori and the
a posteriori error covariance matrices of the Kalman filter at time step k, when the
sensors indicated by j are selected, are denoted as Xy, /5—1 (1) and Xy /5 (1), respectively.
The initial a priori error covariance is set as $g,_1(p) = Ilp. The limit X(u) £
limy o Xgt1/k (also known as the steady-state a priori error covariance), if it exists,

satisfies the discrete algebraic Riccati equation (DARE) [61]:

1

S(pu) = AS(p)A" + 05, BB — AS (1) C (1) (C () (1) C ()" +V (1)~ Cp)S(p) AT,

(4.4)

where 02 € Rsg and B = e].

The limit S*() £ limyeo Zp/x(p) (also known
as the steady-state a posteriori error covariance), if it exists, satisfies the following

equations [62]:

and

Y(p) = A (u) AT + 02 BBY . (4.6)

The inverses in Eqgs. (4.4) and (4.5) are interpreted as the Moore-Penrose pseudo-
inverses (which we denote using the notation “{”) if the arguments are not invertible

[61]. We will use the following result from [61].
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Lemma 4.2.1 For a given indicator vector p, Yp/p—1(p) (resp., Spm(p)) will con-
verge, as k — 00, to a finite limit X(u) (resp., X*(u) ), regardless of the initial covari-
ance Xo/—1(p), if and only if the pair (A,C(u)) is detectable and the pair (A, Bo,)
is stabilizable. Furthermore, if the limit X(p) (resp., X*(n)) exists, it is also the only
positive semi-definite solution to Eq. (4.4) (resp., Eq. (4.5)).

When the pair (A,C(p)) is not detectable, we define the limits ¥(u) = 400
and X*(u) = +oo. The priori and posteriori Graph-based Kalman Filtering Sensor
Selection (GKFSS) problems are defined as follows.

Problem 4.2.2 (Priori and Posteriori GKFSS) Consider a system dynamics matriz
A € R™™ with the associated graph G(A) = {X(A),E(A)}, a single vertexr x;, €
X (A) that has a stochastic input with variance o2 € Rsq, the measurement matriz
C = I, (containing all of the individual sensor measurement matrices), a sensor
noise covariance matriv V- € S}, a sensor selection cost vector h € Z%, and a sensor
selection budget H € Z>o. The priori Graph-based Kalman Filtering Sensor Selection
(GKFSS) problem is to find the sensor selection p, i.e., the indicator vector p of the

vertices where sensors are selected, that solves

in trace(S
oin race(X (1))

sit. hTu < H,

where X(p) is given by Eq. (4.4) if the pair (A, C(u)) is detectable, and 3(u) = +oo
otherwise. The posteriori GKFSS Problem is to find the sensor selection u that solves

in trace(S”
i race(3" (1))

sit. h'p < H,

where X*(u) is given by Eq. (4.5) if the pair (A, C(n)) is detectable, and ¥*(u) = +o0

otherwise.



63
4.2.2 The Sensor Attack Problem

Suppose that the sensors indicated by the sensor selection p € {0, 1}" are selected
and installed by the system designer, and there is an adversary who aims to attack
(i.e., remove) a subset of the installed sensors. To attack a sensor selected at node
x; € X(A), the adversary needs to pay a cost f; € Zso. Define the sensor attack
cost vector as f = [ fi - fn}T The adversary has a total sensor attack budget
F € Z for attacking the installed sensors. We define a vector v € {0,1}" to be the
indicator vector indicating the subset of sensors that are attacked, where v; = 1 if and
only if the sensor at z; € X'(A) is attacked. Note that supp(v) C supp(u) is always
assumed implicitly in the sequel. Let C'(u\ v) denote the measurement matrix of the
surviving sensors corresponding to p and v, i.e., C(u\ v) £ cr ... CJ?; T, where
{41, -+, Jq+ = supp(u) \ supp(v). Denote supp () \ supp(v) = supp(p \ v). Similarly,
define V' (u\ v) to be the measurement noise covariance of the surviving sensors. The
Kalman filter is then applied based on the measurements of the surviving sensors.
The resulting a priori and a posteriori error covariances of the Kalman filter at time
step k are denoted as Xy p—1(p \ v) and Xy /(p \ v), respectively, whose limits as
k — oo are denoted as X(u \ v) and X*(u \ v), respectively.

The priori and posteriori Graph-based Kalman Filtering Sensor Attack (GKFSA)

problems are then defined as follows.

Problem 4.2.3 (Priori and Posteriori GKFSA) Consider a system dynamics matric
A € R™" with the associated graph G(A) = {X(A),E(A)}, a single vertex x;, €
X (A) that has a stochastic input with variance o2, € Rsq, the measurement matriz
C = I, (containing all of the individual sensor measurement matrices), a sensor
noise covariance matriz V € S, a sensor attack cost vector [ € 2%, a sensor attack
budget F' € Z>o, and a sensor selection vector y € {0,1}". The priori Graph-based
Kalman Filtering Sensor Attack (GKFSA) problem is to find the sensor attack v, i.e.,
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the indicator vector v of the vertices where the installed sensors (indicated by 1) are

attacked, that solves

t )y
maxtrace(S s\ v)

s.t. fTV <F,
where X(p\v) is given by Eq. (4.4) if the pair (A, C(p\v)) is detectable, and X(p\v) =
+oo otherwise. The posteriori GKFSA problem is to find the sensor attack v that

solves

t ¥
maxfrace(S 1\ 1))

st. flu < F,
where X*(p \ v) is given by FEq. (4.5) if the pair (A,C(p \ v)) is detectable, and
Y*(p \ v) = +00 otherwise.

4.2.3 The Resilient Sensor Selection Problem

We next consider the scenario where the system designer is aware of the potential
attack from a strategic adversary (who can perform optimal sensor attacks under
budget constraints), and aims to choose a resilient sensor selection. We first define

feasible sensor selections for the system designer as follows.

Definition 4.2.5 A sensor selection p € {0,1}" is said to be feasible if h'y < H
(i.e., the sensor selection budget constraint is satisfied), and for all v € {0,1}"™ such
that fTv < F, supp(u\v) # 0 (i.e., for all sensor attacks that satisfy the sensor attack

budget constraint, at least one sensor indicated by p is left over by the adversary).

Remark 4.2.4 Note that if a sensor selection p is not feasible, there is an attack
(satisfying the attacker’s budget constraint) such that that the pair (A,C(u\ v)) is

not detectable if the system dynamics matriz A is not stable.

The priori and posteriori Resilient Graph-based Kalman Filtering Sensor Selection

(RGKFSS) problems are then given by the following.
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Problem 4.2.5 (Priori and Posteriori RGKFSS) Consider a system dynamics ma-
tric A € R™™ with the associated graph G(A) = {X(A),E(A)}, a single vertex
z;, € X(A) that has a stochastic input with variance o2 € Rsq, the measurement
matriz C' = I,, (containing all of the individual sensor measurement matrices), a sen-
sor noise covariance matriz V € S, a sensor selection cost vector h € 7%, a sensor
selection budget H € Zxo, a sensor attack cost vector f € Z%,, and a sensor attack
budget F' € Z>o. The priori Resilient Graph-based Kalman Filtering Sensor Selection
(RGKFESS) problem is to find the sensor selection p that solves

min max trace(X v
Join max (E(u\v))

s.t. hTu < H, and fTV <F,

where X(p\v) is given by Eq. (4.4) if the pair (A, C(u\v)) is detectable, and X(p\v) =
+o00 otherwise. The posteriori RGFKSP problem is to find the sensor selection p that

solves

min max trace(X* v
nef{0,1}m ve{0,1}n (" (p\v))

st. W'y < H, and fTv < F,

where ¥*(pu \ v) is given by Eq. (4.5) if the pair (A,C(u \ v)) is detectable, and
¥*(pu\ v) = +o0o otherwise.

4.3 Solving the GKFSS and GKFSA problems

In this section, we provide algorithms to optimally solve the GKFSS and GKFSA
problems, respectively, when the sensor noise covariance is V = 0,,x,. We will make
the following assumptions on the instances of the GKFSS and GKFSA problems in
the sequel.

Assumption 4.3.1 The pair (A, C(p)) is assumed to be detectable for all sensor se-
lections pn € {0, 1}™ with supp(p) # 0. The pair (A, Bo,,) is assumed to be stabilizable.
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Assumption 4.3.2 The graph G(A) = {X(A),E(A)} (associated with the system
dynamics matriz A € R"*") is assumed to satisfy the property that for all x; € X(A)
and x; # x,,, there exists a directed path from x;, to x;. The system dynamics matrix
A is assumed to satisfy (A™);i, # 0 if di,; = m, where d;; is the distance from x;, to

l’j.

Remark 4.3.3 Note that Assumptions 4.3.1-4.3.2 are satisfied by large classes of
systems. For example, it was shown in [72] that Assumption 4.3.1 holds if the sys-
tem dynamics matriz A is row-stochastic and irreducible.t Assumption 4.3.2 holds if
the system dynamics matriz A is nonnegative and irreducible [65]. Since any row-
stochastic matriz is also nonnegative, Assumptions 4.3.1-4.3.2 hold for any system
dynamics matriz A that is row-stochastic and irreducible. Furthermore, using tech-
niques in control theory pertaining to linear structured systems (e.g., [73,74]), one
can show that Assumption 4.3.1 holds for almost any system dynamics matriz A such
that the graph G(A) is strongly connected, using approaches from [75,76]. Specifically,
one can consider the system dynamics matriz A to be structured, i.e., each entry of
the system dynamics matriz A is either a fized zero or an independent free parame-
ter (which can attain any real value including zero), where the graph G(A) is defined
according to the free parameters of the structured matriz A. One can then show that
the set of parameters for which Assumption 4.3.1 does not hold has Lebesgue measure
zero. Moreover, using similar techniques to those above and the result from [65] that
shows that Assumption 4.3.2 holds for all nonnegative irreducible matrices A, one
can show that Assumption 4.3.2 holds for almost any choice of free parameters in
the structured matriz A such that the graph G(A) is strongly connected. Note that
the systems where Assumptions 4.3.1-4.3.2 hold are not limited to the cases described

above.

Remark 4.3.4 We can generalize our analysis to system dynamics matrices A where

G(A) has multiple strongly connected components [71]. Suppose that the input node

!Note that the matrix A is irreducible if and only if the graph G(A) is strongly connected [65].
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can only reach (via directed paths in G(A)) nodes that are in the same strongly con-
nected component. Then, under Assumption 4.3.1, we only need to consider the
strongly connected component of G(A) that contains the input node, since one can
show that the mean square estimation error of the Kalman filter remains zero for
the states corresponding to nodes that are not in the strongly connected component

containing the input node.

The first main result of this section is as follows.

Theorem 4.3.5 Consider a system dynamics matriz A € R™ ™ with the associated
graph G(A) = {X(A),E(A)}, a single vertex x;, € X(A) that has a stochastic input
with variance o2 € Rsq, the measurement matriv C = I, (containing all of the
individual sensor measurement matrices), and the sensor noise covariance matric
V = 0,xn. Suppose that Assumptions 4.3.1-4.3.2 hold. For any sensor selection
p € {0,1}" such that supp(p) # 0, denote ¢ = minjegupp(u) diy; > 0, where d;y; is the
distance from vertex x;, to vertex x;. The following expressions hold:

¢
S(u) =0 Y A"BBT(AT)™, (4.7)

m=0
and

¢-1
02y CA"BBT(AT)™ if ¢ > 1,
RS m=0 (4.8)
0 if (=0,
where X(p) (resp., X*(u)) is the steady-state a priori (resp., a posteriori) error co-

variance of the corresponding Kalman filter, and B = ez;.

Proof The existence of ¥(u) and ¥*(u) follows directly from Lemma 4.2.1 and
Assumption 4.3.1. Considering any sensor selection p such that ¢ > 1, i.e., sensors are
not selected at the input vertex z;,, we first prove Eq. (4.7) by verifying that Eq. (4.7)
satisfies Eq. (4.4). Note that C; = e, for all z; € X'(A). Let &, C X'(A) denote the set
of vertices indicated by p where sensors are selected, and let X; C X'(A) denote the set

of vertices that have distance ¢ from the input vertex z;,. Since performing elementary
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row operations on C(u) does not change > (u), we assume without loss of generality
T

that p = [,uf /jzp] such that 1y = 1)x,nx,| and ps € {0, 1}~ 10Xl In other words,

11 contains all sensors selected at vertices that have distance ¢ from the input vertex

Ty, and d;y; > ¢ for all j € supp(pe). The corresponding measurement matrix is

i Cln) [supp(ju1) [supp(a2)
given by C(u) = , where C'(u;) € Riswppia and C(ug) € RiswpPl2)ixn,

Cp2)
Substituting Eq. (4.7) into the right hand side (RHS) of Eq. (4.4), we obtain:

RHS of Eq. (4.4)

¢+1
=02,y A"BB"(A")" + 02 BB" — 02 AT BB (AT
X (C(u) " (Cu)A*BBT(AT)(C(w)")! x C()A'BBT (AT} (4.9)
¢+1
= 0%, > A"BBT(AT)" — ol AT BB (AT [(Cm))" (Cl2)"]
1 Cm
([CU aspprans T ) O | apprane
C(p2) C(p2)
¢+1
=0l ) A"BBT(AT)" — gL AT B[BT(AT)(C(1))" Ovssuppn ]
(COn)ABBT (AT (Cu))")! 0 c<m>A<B] BT (410
0 O | Ojsupp(pez)|x1
¢+1
=05 > A"BBT(AT)" — gL AT BB (AT (Cn))"

X (C(u) ASBBT(AT)(C )1 C(u) AXBBT(AT)H, (4.11)

where Eq. (4.9) uses the fact that (A™);;,, = 0 for all j € supp(x) whenever m €
{0,1,...,¢ —1}, which implies that C(u)A™B = 0 for all m € {0,1,...,{—1}. Sim-
ilarly, Eq. (4.10) follows from the fact that C'(u2)A™B = 0 for all m € {0,1,...,(}.
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Denoting ¢ 2 C(u;)ASB € RFwP)l and noting that 1 # 0 from Assumption 4.3.2,
one can show that ¢ (7)) = 1. We then have from Eq. (4.11):

Jr

RHS of Eq. ( Z AmBBT(AT)™ — g2 At BBT(AT)¢H!
C
Z mBBT AT

Since 02 ¢ _  A"BBT(AT)™ = 0, we know from Lemma 4.2.1 that the limit ¥(u)
is given by Eq. (4.7). We then see from Eq. (4.6) that the limit *(u) is given by
Eq. (4.8) (when ¢ > 1).

Next, we consider any sensor selection p such that ( = 0, i.e., a sensor is selected
at the input vertex z;,. Using similar arguments to those above, we can also show

that Eqgs. (4.7)-(4.8) hold when ¢ = 0. This completes the proof of the theorem. ®

To verify the results in Theorem 4.3.5, let us consider the following example.

Example 4.3.6 Consider the graph in Fig. 4.1, where x4 is the input node (i.e.,

0521 0 0
B = el') with variance 02 = 1. Suppose A = {083 026 1858 0(_’5} , C =1 and V = 04x4.
0.8 1

Denote ps = [01 0 0|7 and p1g = [0 00 1]7. It can be verified that ¥(p2) = {

[e]elel]
oOoO—O
[e]elele]
[e]elalw]

5.5125 1.6065 1.26 —0.504 )
T s _ _ | 16065 3.3109 0 -0.7344 | _ m T( AT\m
BB, ¥*(u9) = Ouxa, X(pa) = 1.26 0 036 0 _Zm:OA BB (A")™ and
—0504 —0.7344 0 0.2304
4.4
0
E
0

101.26 0
1% é 0%6 §} =1 _ A™BBT(AT)™ as provided by Theorem 4.3.5.

gomOmmoOmmepP

Fig. 4.1. Graph for Example 1.

E*(IM) =

4.3.1 An Optimal Solution to GKFSS

Using the above discussions, we give the following result that characterizes an

optimal solution to GKFSS (Problem 4.2.2).
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Theorem 4.3.7 Supposing that Assumptions 4.3.1-4.3.2 hold, an optimal solution,
denoted as p*, to the priori (resp., posteriori) GKFSS problem is to select a single
sensor at a vertex x; in order to minimize d;y;, i.e., the distance from the input vertex

x;, to xj, while satisfying the budget constraint.

Proof Under Assumptions 4.3.1-4.3.2, we first note from Eqs. (4.7)-(4.8) that the
a priori and the a posteriori error covariance matrices only depend on (, i.e., the
shortest distance from the input node to the sensor nodes. Hence, it is sufficient to
consider sensor selections p € {0, 1}" such that |supp(p)| = 1 in terms of minimizing
the trace of the a priori (resp., a posteriori) steady-state error covariance of the
Kalman filter. Moreover, we know from Eq. (4.7) in Theorem 4.3.5 that »(u) =
02 3¢  AMBBT(AT)™, where ¢ = minjcqupp(u dio;- Since the matrix A™ BBT(AT)™
is positive semi-definite for all m € Zsg, we have trace(A™BBT(AT)™) > 0 for all
m € Zso. Hence, trace(X(p)) is minimized by finding a sensor selection u* with
|supp(*)| = 1 such that ¢ is minimized while satisfying the budget constraint. Using
similar arguments, we can show that u* is also an optimal solution to the posteriori

GKFSS problem. ]

Based on Theorem 4.3.7, we can find an optimal solution p* to the priori (resp.,
posteriori) GKFSS problem using polynomial-time algorithms such as the Breadth-
First Search (BFS) algorithm which runs in time O(n + |E(A)]) [77].

4.3.2 An Optimal Solution to GKFSA

Given a sensor selection u, we know from the insights obtained above for GKFSS
that the steady-state a priori and the a posteriori error covariances of the Kalman
filter (after an attack that removes some of those sensors) only depend on the surviving
sensors that have the shortest distance from the input vertex x;,. We then have the

following result whose proof is similar to that of Theorem 4.3.7 and is thus omitted.

Theorem 4.3.8 Suppose that Assumptions 4.3.1-4.3.2 hold. Given a sensor selection
i, an optimal solution, denoted as v*, to the priori (resp., posteriori) GKFSA problem
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can be found by mazimizing the shortest distance from the input verter x;, to the

surviving sensors, i.e., solving the following optimization problem

max min  d;,;
ve{0,1} j€supp(p\v) (4.12)

st. fTlu < F,

where d;; is the distance from vertex x;, to vertex x;, and d;; = +oo if supp(p\v) =

0.

An optimal solution v* to the priori (resp., posteriori) GKFSA problem described
by Theorem 4.3.8 can be found as follows. Given a sensor selection u, the adver-
sary starts by inspecting the selected sensors (indicated by u) that have the shortest
distance from the input vertex x;,. The adversary will remove all of these sensors
if the sum of the corresponding sensor attack costs is less than or equal to the bud-
get constraint F', and terminate the process if otherwise. The above process is then
repeated for the selected sensors that have the second shortest distance from the
input vertex z;,, based on the remaining budget. This process continues with the
selected sensors that have the third shortest distance from the input vertex z;,, etc.
Hence, polynomial-time algorithms such as the BFS algorithm can be used to find

the optimal sensor attack v* for the adversary in time O(n + |E(A)]).

4.4 Solving the RGKFSS problem

We now turn to the RGKFSS problem (Problem 4.2.5). Recall that Theorem 4.3.7
showed that it is enough to consider only sensor selections p with [supp(u)| = 1 for the
GKFSS problem (i.e., the system designer does not necessarily need to utilize all of the
sensor selection budget H). However, an optimal sensor selection p* for the RGKFSS
problem does not necessarily satisfy [supp(u*)| = 1, since the adversary could have
enough budget to remove the single sensor selected by the system designer, which
causes the trace of the a priori (resp., a posteriori) error covariance of the Kalman

filter to be infinite (if the system dynamics matrix A is not stable). Note that the
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steady-state a priori and the a posterior: error covariance matrices of the Kalman
filter (after the attack) only depend on the surviving sensors that have the shortest
distance from the input vertex z;,. Using similar arguments to those for Theorems
4.3.7-4.3.8, we see that an optimal solution to the RGKFSS problem can be found
by minimizing the shortest distance from the input vertex z;, to the sensors after the
corresponding optimal sensor attack, and a sensor selection p* is optimal for the priori
RGKFSS problem if and only if it is optimal for the posteriori RGKFSS problem.

We thus focus on the priori RGKFSS problem in this section. Although we pro-
vided polynomial-time algorithms to solve the GKFSS and GKFSA problems, we will
show that the RGKFSS problem is NP-hard, i.e., there exist classes of the RGKFSS
problem that cannot be solved by any polynomial-time algorithm if P # NP. To do
this, we first recall from Remark 4.3.3 that Assumptions 4.3.1-4.3.2 hold for any sys-
tem dynamics matrix A that is row-stochastic and irreducible. Therefore, Eq. (4.7)
and Eq. (4.8) in Theorem 4.3.5 also hold for such A matrices.

To show that the RGKFSS problem is NP-hard, we reduce the subset sum problem
[41] to RGKFSS.

Definition 4.4.1 An instance of the subset sum problem is given by a finite set U

and a positive integer K, where each s € U has a size k(s) € Zg.
We use the following result from [41].

Lemma 4.4.1 Given an instance of the subset sum problem as described in Defini-
tion 4.4.1, the problem of determining whether there is a subset U' C U such that
Y scu K(s) = K is NP-complete.

We are now in place to prove the following result.

Theorem 4.4.2 The RGKFSS problem is NP-hard even when both of the following
two conditions are satisfied: (1) the sensor selection cost and the sensor attack cost
satisfy h; = f; for alli € {1,2,...,n}; and (2) there is a feasible sensor selection for

the system designer.
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Proof We prove the result by giving a polynomial-time reduction from the subset
sum problem. Consider any instance of the subset sum problem defined in Defini-
tion 4.4.1. Denote U = {s1,52,...,5y}. Denote the number of bits of the binary
representation of the positive integer K as b(K), i.e., b(K) = |logy(K)| + 1. We
then construct an instance of the priori RGKFSS problem as follows. The system

(UKD (UI+B(K)) ig chosen such that the graph G(A) is an

dynamics matrix A € R
undirected path of length |U|+b(K)— 1. Specifically, we set A;; = Aj; = 5 for all i €
{1,2,...,|U[+b(K)—1} and j = i+1, Ay = 5 forallm € {2,3,..., |U[+b(K)—1},
Apm = 2 for all m € {1,|U] + b(K)}, and all the other entries in A are zero. The
vertex x is set as the only vertex that has the stochastic input with variance o2 = 1.
The sensor selection cost vector is set as h; = k(s;) for all i € {1,2,...,|U|}, and
hi = 271UI= for all i € {|U| + 1,|U| +2,...,|U| + b(K)}. The sensor attack cost is
set as f; = h; for all i € {1,2,...,|U| + b(K)}. Note that the sensor selection vector
and the sensor attack vector are given by p € {0, 1}JUH) and v € {0, 1}VIFb(K),
respectively. The sensor selection budget of the system designer is set as H = K,
and the sensor attack budget of the adversary is set as ¥ = K — 1. We also note
that the matrix A that we constructed is row-stochastic and irreducible. Therefore,
Eq. (4.7) in Theorem 4.3.5 holds for the A matrix that we constructed. We claim
that the answer to the given subset sum instance is “yes” if and only if an optimal
solution to the constructed instance of the priori RGKFSS problem, denoted as u*,
satisfies trace(S(u* \ v*)) < trace(3 10" ABBT A), where v* is an optimal sensor
attack given p*.

Suppose that the answer to the given subset sum instance is “yes”, i.e., there exists
U' C U such that ) ., x(s) = K. It follows that for the instance of the priori RGK-
F'SS problem as constructed above, there exists a sensor selection vector fi such that
Z‘Zzll h;i; = K < H. Therefore, for any sensor attack  that satisfies the sensor attack
budget constraint, i.e., Zlfi‘l fivi < F = K—1, we have supp(a\2)N{1,...,|U|} # 0,
which implies that there exists j € {1,...,|U|} such that j € supp(i\7). Noting that
AmBBTA™ = 0 for all m € Zsq and di; = j—1 < dyy) = |U| -1, it then follows from
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Eq. (4.7) that trace(Z(i\7)) < trace(Y2_) AIBBT A?) < trace(3IV"" A" BBT A?), for
any sensor attack 7 such that ZLZ‘l fivi < F. Since trace(X(p*\v*)) < trace(X(g\7)),
we have trace(S(u* \ v)) < trace(Y IV AIBBT AY).

Conversely, suppose that the answer to the subset sum instance is “no”, i.e.,
for any U" C U, we have ) ., r(s) # K. Considering the instance of the pri-
ori RGKFSS problem we constructed, for any sensor selection vector p such that
Z‘UIH’(K hip; < H = K, we have Z‘fi'l hip; # K, which implies Zl | hip; <
K — 1. Denote Z‘fi'l hipi & K jv|- Therefore, for any sensor selection vector y with
Z‘U‘H’(K hip; < H, there exists an attack © such that Z‘Zﬂ fivi = Ky < K — 1,
which implies supp(p \ 7) N {1,2,...,|U|} = (. Moreover, note that K = H >
H—Ky| > F—Ky|. Since we set the sensor selection cost vector and the sensor attack
cost vector to satisfy h; = f; = 2771VI= for all i € {|U| + 1,|U|+2,...,|U| + b(K)},
where b(K) is the number of bits for the binary representation of K, we see that
for any U’ C U, there exists U’ C {|U| + 1,|U| + 2,...,|U| + b(K)} such that
Y oecr K(8) + X icpn hi = H. Therefore, the system designer can always use all the
sensor selection budget by selecting sensors at an appropriate subset of the vertices
in the vertex set {x|yj+1, Zw|+2,- .-, Tju+sk)} and guarantee to have at least one
sensor left after any attack that satisfies the sensor attack budget constraint. For-
mally, we see that for any sensor selection p with Z'UW’ ) hip; = H, there exists
J e {|lUl+1,...,|U|+b(K)} such that j* € supp(u \ v), where v is any sensor attack
satisfying the sensor attack budget constraint. Meanwhile, any sensor selection pu such
that ZLZ‘IH’(K) h;p; < H is not a feasible sensor selection. Therefore, there is always a
feasible sensor selection for the system designer under the constructed instance of the
priori RGKFSS problem when the answer to the subset sum instance is “no”. Note
that the matrix A"BBTA™ = 0 for all m € Zx¢ and dij = j' — 1 > dyyy + 1 = |U].
Combining the arguments above together, it then follows from Eq. (4.7) that for any
o such that Zglfrb(m hip; = H, we have trace(S(p\ v)) > trace(3°1, e A'BBTAY) >
trace(ZLZ'o A'BBT A"), where v is any sensor attack satisfying the sensor attack bud-

get constraint. Since (A™);; > 0 for all m € Zsg, we have trace(AVI BBTAIUl) > 0
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and thus trace(S(u \ v)) > trace(3IV0 " A’BBT A%). Since the above arguments hold

UI+b(K hi,ui = H, they also hold for an optimal solution p* to the

for any p with >, _}
constructed priori RGKFSS instance, ie., (X(p*\ v*)) > trace(Z'Ul ' AIBBT AY),
where v* is an optimal sensor attack given p*. This completes the proof of the claim
above.

Since the subset sum problem is NP-complete and RGKFSS ¢ NP, we conclude
that RGKFSS is NP-hard even under the additional conditions as stated. [ |

4.4.1 An Algorithm for RGKFSS

Algorithm 4.4.1 Algorithm for RGKFSS
Input: An instance of the RGKFSS problem.

Output: A sensor selection p € {0,1}".

1: Find the distance d;,; for all z; € X(A) \ {z;,} via BFS and denote dy., =
maXy. cx(A) digj-

2: Relabel the vertices of G(A) such that x; is the input vertex and dy; < dy; for all
zj,xe € X(A)\ {x1} with j <.

30 = 0px1

4: for m =0 to dy.x do

5: Find j,, £ max{j : di; = m,z; € X(A)}.

6:  Find 7 ((fi,--, fin) (Bu,. .., hy,), H)

. if 2((fi,--- fiw) (Ba,. .. k), H) > F then

8: [n - g =7 (s fi) (P Ry, H)

9: return p

It follows directly from Theorem 4.4.2 that there is no polynomial-time algorithm

that would solve all instances of RGKFSS if P # NP. However, we now provide a
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pseudo-polynomial-time algorithm? (Algorithm 4.4.1) for RGKFSS by relating it to
the knapsack problem defined as follows.

Definition 4.4.2 Given a finite set U = {s1, s2,..., 8y}, a size r(s;) € Zso and a
value ¢(s;) € Z~q for each i € {1,2,...,|U|}, and a positive integer K, the knapsack
problem is to find an indicator vector m € {0, 1} that solves
U]
max ¢(si)mi

we{0,1}IUI i1

(4.13)

Denote an instance of knapsack as a tuple {¢, k, K} with ¢ = (¢(s1), ¢(s2), ..., d(sj7)))

3 The corresponding optimal indicator vector for

and k = (k(s1),K(82), ..., K(s)u))-
(4.13) is denoted as (¢, k, K), and the corresponding optimal value of the objective

function in (4.13) is denoted as z(¢, k, K).

The steps of Algorithm 4.4.1 for RGKFSS are as follows. Algorithm 4.4.1 starts
by relabeling the input vertex as vertex x; and relabeling the other vertices in terms
of a non-decreasing order of the distances from the vertex x; (Lines 1-2). Denoting
A max, cx(4) dipj, Algorithm 4.4.1 then finds the smallest m € {0,1,..., dnax}
such that by selecting sensors (under the budget constraint) solely at nodes that have
distances less than or equal to m from z; (after the relabeling), the sum of the sensor
attack costs of the selected sensors is greater than the sensor attack budget, i.e., there
is at least one sensor that survives the corresponding optimal sensor attack. This is
done by iteratively solving a knapsack problem at increasingly longer distances from
the input node, where at each distance, the goal is to find a set of sensor locations

that fits within the sensor selection budget constraint H but maximizes the sum of

2A pseudo-polynomial-time algorithm is an algorithm that runs in time that is bounded by a

polynomial in the largest integer in its input [41].
3Note that the elements in ¢ and & are ordered, and the ith element of ¢ (resp., k) corresponds

to the value (resp., weight) of s; € U for all i € {1,...,|U|}. The dependency of {¢,x, K} on U is

dropped since each element of ¢ (resp., k) represents an element of U.
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the sensor attack costs. Algorithm 4.4.1 returns u = 0,47 if there is no feasible

sensor selection. We now prove that Algorithm 4.4.1 returns an optimal solution to

RGKFSS.

Theorem 4.4.3 Under Assumptions 4.3.1-4.3.2, Algorithm 4.4.1 returns an optimal
solution to the RGKFSS problem.

Proof Denote an optimal solution to the RGKFSS problem as p* and denote the so-
lution returned by Algorithm 4.4.1 as p/. Suppose that ' is a feasible sensor selection.
Suppose that the vertices in G(A) are relabeled as indicated by Lines 1-2 in Algorithm
4.4.1, i.e., vertex x7 is labeled as the input vertex and the other vertices are labeled in
terms of a non-decreasing order of the distances from vertex z; (note that the relabel-
ing of the vertices does not change any optimal solution to the RGKFSS problem other
than permuting it). Assume for the sake of contradiction that trace(X(u* \ v*)) <
trace(X(p \ V")), where v* and v/ are optimal sensor attacks given p* and p/, respec-
tively. Denote j* £ max.J and j/ £ maxJ', where J £ arg MmN, esupp(ue\vs) dim and
J & arg MiN,y,esupp(p/\v/)d1m- In other words, among those sensors that are closest to
the input vertex in supp(u*\v*) (resp., supp(p’'\v')), 7* (resp., j') is the largest index.
Noting that Zf;:l fmpl, > F (otherwise an optimal sensor attack v* given p* would
remove the sensor selected at vertex z;« as argued previously in Section 4.3.2), it
follows from Definition 4.4.2 that z((fl, cos fi)s (R oo Ry, H) > F', which implies
that z((fl, coos fim)s (Ra, oo Ry, H) > F, where j,, is defined in Line 5 of Algorithm
4.4.1 with m = dy;~. We then know from the definition of Algorithm 4.4.1 that the
sensor selection ' returned by Algorithm 4.4.1 would satisfy j' < j,,, which implies
that dy; < dy;+ (by the way that Algorithm 4.4.1 relabels the vertices). Moreover,

we have from Theorem 4.3.5 the following:

dlj*

S(pr\v*) =0y, Y A"BBT(A")", (4.14)
m=0
and
dyjr
S\ ) =05> A"BBT(AT)™, (4.15)

m=0
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hold under Assumptions 4.3.1-4.3.2. Since the matrix AmBBT(AT)™ = 0 for all
m € Zso, it follows from the assumption trace(X(u* \ v*)) < trace(X(x' \ v/)) and
Eqs. (4.14)-(4.15) that dy;+ < dy;~. Thus, we get a contradiction.

Then, suppose that the solution p' returned by Algorithm 4.4.1 is not feasible,
i.e., supp(/ \ V') = 0. Again, we assume that trace(X(u* \ v*)) < trace(X(u' \ V'),
i.e., supp(u* \ v*) # 0. Via similar arguments to those above, we see that there exists
77 € {1,...,n} such that z((fi,..., fj), (h1,..., hj), H) > F, which implies that
z((fl, oo fin)s (1, oo Ry, ), H) > F, where j,, is defined in Line 5 of Algorithm 4.4.1
with m = dy«~. Therefore, Algorithm 4.4.1 would also return a solution p’ such that
supp(p'\ V') # 0, which is a contradiction. We then conclude that trace(X(p* \v*)) =
trace(X(u' \ v')), i.e., Algorithm 4.4.1 returns an optimal solution to the RGKFSS

problem. [ |

Since the knapsack problem is NP-hard, there is no polynomial-time algorithm
to solve it optimally (if P # NP) [41]. Various algorithms exist to approximate or
optimally solve it, including greedy algorithms, linear programming relaxation and
dynamic programming [78]. When implementing Algorithm 4.4.1, we can use ex-
isting algorithms for knapsack to find W*((fl, s fim)s (e, oo by ), H) in Line 6
and z((fl,...,fjm),(hl,...,hjm),H) in Line 7 when we range m from 0 to dpax.
Specifically, we call a pseudo-polynomial-time algorithm for knapsack (that solves
it optimally) at most dpax + 1 times to achieve this. For example, a typical dy-
namic programming approach for knapsack finds 7* ((fl, oo fim)s (e, oo by, ), H)
and z((f1,-.., fjn), (h1,..., hj,), H) in time O(j,, H) for each m € {0, ..., dmax} [78].
Since BF'S runs in time O(n + |E(A)|), Algorithm 4.4.1 runs in time O(dyaxnH +n +

E(A)])-
4.5 Noisy Sensor Measurement Case

The results we obtained so far hold under the assumption that V = 0,,5,,. In this

section, we provide a bound on the suboptimality of the proposed strategies when
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there is sensor measurement noise. We will use the following result whose proof can

be found in Section 4.7.1.

Lemma 4.5.1 Consider a system dynamics matric A € R™ "™, an input matrix
B € R™™  q sensor measurement matrix C' € R™*™  an input covariance matric
W e S, and a sensor measurement noise covariance matric Ve St?. Suppose that
the pair (A, BW'/2) is stabilizable and the pair (A, C) is detectable. Let X (resp., ¥*)
denote the steady-state a priori (resp., a posteriori) error covariance of the Kalman
filter corresponding to the measurement noise covariance V, and let © (resp., %) de-
note the steady-state a priori (resp., a posteriori) error covariance of the correspond-
ing Kalman filter when V = 0,,xn,. Then, N=Y+E and XF < 2F + (I, — LC)E,
where E 1s given by

E 2 i(A —~ KCO"KVKT((A- KC)")™, (4.16)

m=0

with K = ASCT(CXOT)™ and L £ ©CT(CLOT)~14

Note that F exists and is finite since the matrix A — K C' is stable. See the proof in
Section 4.7.1 for more details. We have the following result for the GKFSS problem.

Theorem 4.5.2 Suppose that Assumptions 4.3.1-4.3.2 hold. Let %(p) (resp., ¥*(p))
be the steady-state a priori (resp., a posteriori) error covariance matriz of the Kalman
filter associated with p when V =V € St. Let fi; (resp., fi5) denote an optimal
solution to the priori (resp., posteriori) GKFSS problem when V = V, and let wr
denote an optimal solution to the priori (resp., posteriori) GKFSS problem when
V = Opun. Then, trace(S(u*)) < trace(S(it)) + trace(E(u*)) and trace(S*(p*)) <

trace(S*(ji3)) + trace((E* (1)), where E(u*) and L(p*) are defined in Lemma 4.5.1
with C = C(u), and B*(u*) £ (I, — L(u*)C (")) E ().

Proof First, we know from Lemma 4.5.1 that ¥(p*) < X(p*) + E(u*), where X (u*)

is the steady-state a priori error covariance of the Kalman filter corresponding to p*

4The inverses are interpreted as the Moore-Penrose pseudo-inverses if the arguments are not

invertible [61].
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when V' = 0. This implies trace(X(u*)) < trace(X(p*))+ trace(E(p*)). Since p* is an
optimal solution to the priori GKFSS problem when V' = 0, we have trace(X(u*)) <
trace(X(f2})). Moreover, one can show that the error covariance of the Kalman filter
is always lower bounded (in the positive semi-definite sense) by the error covariance
of the Kalman filter with zero measurement noise covariance (with the other system

matrices fixed). We obtain trace(X(fi})) < trace(X(f})). It then follows from the

above arguments that trace(X(u*)) < trace(X(f})) + trace(E(p*)). Similarly, we can
show that trace(X*(u*)) < trace(X*(fi3)) + trace(E*(u*)). [

The above result has the following interpretation. Consider an instance of the
priori (resp., posteriori) GKFSS problem with V =V ¢ S% . If we simply take V =0
and apply the algorithm described in Section 4.3.1, we will obtain an optimal solution,
denoted as p*, to the corresponding instance of the priori (resp., posteriori) GKFSS
problem (with V' = 0). Theorem 4.5.2 shows that the performance (i.e., suboptimal-
ity) of this sensor selection (i.e., u*) for the original priori (resp., posteriori) GKFSS
instance with V' =V can be bounded by trace(X(u*)) < trace(X(jit)) + trace(E(u*))
(resp., trace(X* (1)) < trace(X*(ji)) + trace(E*(;1*))), where it (vesp., fi}) is an op-
timal solution to the instance of the priori (resp., posteriori) GKFSS problem when
V = V. Moreover, we see from Eq. (4.16) that as V goes to zero, trace(E(u*)) (resp.,
trace(E*(1*))) will go to zero, which implies that trace(X(u*)) (resp., trace(S*(u*)))
will go to trace(X(jit)) (resp., trace(X*(fi3))). Similar performance bounds can be
obtained for the GKFSA and RGKFSS problems, respectively.

We provide simulations to show the performance of the algorithms in Section 4.3.1,
Section 4.3.2, and Section 4.4, when applied to solve the GKFSS, GKFSA, and RGK-
F'SS problems with measurement noise, respectively. Specifically, consider a strongly
connected graph G(A) with X(A) = {x1,..., 210} and |E(A)| = 15, where node z; has
the stochastic input with variance o2 = 0.1. Set the measurement matrix C' = I}
and the sensor noise covariance V = 02I;y, where 02 € Rs. Under a fixed cost
hi € Z>o to select sensor at x;, a budget H € Zx, a fixed cost f; € Z>( to attack

sensor at x;, and an attack budget F' € Z>(, we randomly generate the corresponding
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system dynamics matrix A € R0 by selecting each nonzero element of A from a
standard normal distribution. Fig. 4.2(a) and Fig. 4.2(b) show the performance of the
algorithm described in Section 4.3.1, when applied to solve the (priori) GKFSS in-
stances with V' = 0211y. Specifically, Fig. 4.2(a) is obtained for a single realization of
A, which compares the gap (i.e., difference) between the optimal solution to the GK-
F'SS problem (found by brute force and denoted as OPT') and the solution returned
by the algorithm (denoted as ALG), with the bound (on the difference) provided in
Theorem 4.5.2, when o2 ranges from 0.01 to 0.5. Fig. 4.2(b) shows a histogram of the
suboptimality of the algorithm, computed as %

when o2 = 5. Similarly, Fig. 4.2(c)-(d) and Fig. 4.2(e)-(f) show the performance of
the algorithm described in Section 4.3.2 for GKFSA and Algorithm 4.4.1 for RGK-

, over 1000 realizations of A,

FSS, respectively. Note that we fix a sensor selection p when solving the GKFSA
instances. Moreover, the objective function of RGKFSS associated with the solution
returned by Algorithm 4.4.1 is computed against the corresponding optimal sensor
attack when V' = 0211y. The simulations show that the bounds in Theorem 4.5.2 are
conservative and that the algorithms (for zero sensor noise) give solutions that are
close to optimal for the noisy measurement instances, particularly for RGKSS, even

when o2 /02 becomes small.

4.6 Chapter Summary

In this chapter, we considered networked dynamical systems affected by a stochas-
tic input. Under this setting, we first studied the problem for a system designer to
optimally select the sensors of the nodes over a network subject to a budget constraint
in order to minimize the trace of the steady-state error covariance of the correspond-
ing Kalman filter. We then studied the optimal sensor attack problem where an
adversary can attack the selected sensors under an attack budget constraint in or-
der to maximize the trace of the steady-state error covariance of the Kalman filter

corresponding to the surviving sensors. Using the graph structure of the networked
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system, we provided polynomial-time algorithms to solve these two problems. Fur-
thermore, we studied the resilient sensor selection for the system designer when faced
with an adversary. We showed that this problem is NP-hard, and provided a pseudo-
polynomial-time algorithm to solve it. Although these results are obtained when
there is no sensor noise, we provided bounds on the suboptimality of the proposed

strategies in the presence of sensor measurement noise.

4.7 Proofs of Key Results
4.7.1 Proof of Lemma 4.5.1

Let Xi/k—1 (resp., Xy/i) denote the a priori (resp., a posteriori) error covariance
of the Kalman filter at time step k when V = 0, and let ik/k_l (resp., ik/k) denote
the a priori (resp., a posteriori) error covariance of the Kalman filter at time step k

when V = V. Denoting W £ BWB”, we have (from [61]):
Shok = (A — K,.C) S 1 (A — KOV + W + KW VK]

where k > 0 and K £ Aik/k_lCT(Cik/k_lCT + V)~ is the corresponding Kalman

gain at time step k. For any time step k, the Kalman gain K satisfies
f(k = arg min {(A - JC)ik/k_l(A - JC)T + W + JVJT}, (417)
J

where the minimization is in the positive semi-definite sense [61]. Since the pair
(A, BW'2) (resp., (A,C)) is stabilizable (resp., detectable), we know from a more
general version of Lemma 4.2.1 for general system matrices in [61] that the limit

Y= limy o0 f]kﬂ/k exists, and satisfies
Y=(A-KO)S(A—- KO +W 4+ KVKT,

where K £ AXCT(CXCT + V)~ is the corresponding (steady-state) Kalman gain.
Similarly, we have

Y=(A-KO)X(A-KC)"+W, (4.18)
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where K = AXCT(CXCT)~'. Noting the optimality of the Kalman gains from
Eq. (4.17), there exists, as argued in [61], a suboptimal filter (when V = V) with
a (time-invariant) suboptimal gain given by K such that the corresponding a priori

error covariance at time step k£ + 1, denoted as ik+1 Jk» satisfies
Sipi = (A= KC)Spp1(A— KO + W + KVKT. (4.19)

Furthermore, the limit 3 £ limy_o ik+1 /k exists and satisfies DY [61]. We then

obtain from Eq. (4.18) and (the steady-state version of) Eq. (4.19) the following:
E=(A-KC)E(A- KO+ KVKT, (4.20)

where E = ¥ —%. Since the matrix A — KC is stable [61], it follows that there exists
a unique finite positive semi-definite matrix E that satisfies Eq. (4.20) and can be
written as £ = 3.2 (A — KC)"KVKT((A— KC)')™ (e.g., [61]). Tt then follows
from the arguments above that S=FE+X=3.

Similarly, we see from [61] that ik/k satisfies ik/k = (I, — EkC)f]k/k_l, where
L 2 f]k/k_lCT(C’flk/k_lCT—Ff/)_l. Moreover, the limits ©* £ limy_, oo f]k/k and 2* £
limy, o 2g/p exist and satisfy Y = (1, — EC’)i and X* = (I, — LC)X, respectively,
where L 2 2CT(CLCT +V)~' and L £ £CT(CLCT)~1. Similarly, the a posteriori
error covariance at time step k of the suboptimal filter (when V = V) as described

above, denoted as 3 /k, 18 given by
Sk = (In — LC) Sk 1. (4.21)

Since the limit 3 = limy_,o ikﬂ/k exists, we know from Eq. (4.21) that the limit
S 2 limy o S /i also exists. Using similar arguments to those in [61], one can show
that ¥* = ¥*. Thus, we have ¥* — ¥* = (I, — LC)(X — %) = (I, — LC)E, which
implies ¥* < ¥* + (I, — LC)E. |
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5. SENSOR SELECTION FOR HYPOTHESIS TESTING
UNDER BUDGET CONSTRAINTS

5.1 Introduction

In the previous chapters, we studied the Kalman filtering sensor selection prob-
lem in linear dynamical systems. In this chapter, we consider the (binary) hypothesis
testing sensor selection problem in the Neyman-Pearson setting and the Bayesian set-
ting. Each candidate sensor is assumed to be associated with a selection cost, which
may vary across the sensors, and we are given a total budget that can be spent on
selecting the sensors. The selected sensors first gather measurements in a distributed
manner, and then transmit the measurements to a fusion center, where the fusion
center can perform the hypothesis testing task (e.g., determining whether a signal
exists or not) based on the measurements from the selected sensors. This scenario
arises in a variety of applications, such as radar and sonar systems [79] and spectrum
sensing for cognitive radio [80]. In this chapter, we first consider the Neyman-Pearson
Hypothesis testing Sensor Selection (NPHSS) problem and the Bayesian Hypothesis
testing Sensor Selection (BHSS) problem. The NPHSS problem is to minimize the
miss probability of the Neyman-Pearson detector based on measurements from the
selected sensors, while satisfying the budget constraint. The BHSS problem mini-
mizes the error probability of the Bayesian detector based on measurements of the
selected sensors, under the budget constraint. Under Gaussian measurement set-
tings, we consider surrogate sensor selection problems based on distance measures
between the conditional distributions corresponding to the measurements from the
selected sensors. Specifically, the distance based sensor selection problem (under the

Gaussian measurement setting) is to maximize the distance measures between the
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conditional distributions corresponding to the measurements of the selected sensors,

while satisfying the budget constraints.

Related Work

There is a large literature on sensor selection problems in control system design
(e.g., [1,2,11,33,49,57]), and have provided complexity characterizations and algo-
rithms. In this chapter, we consider the hypothesis testing sensor selection problem
under the Neyman-Pearson and the Bayesian settings.

The hypothesis testing sensor selection problem has also been widely studied
(e.g., [3,4,21,81,82]). In particular, [3,4,21] studied the same problem (i.e., the
distance based sensor selection problem) as we consider in this chapter, but they only
considered the special instances where all the candidate sensors have the same selec-
tion cost, i.e., they considered the cardinality constraint on the set of the selected
Sensors.

In [3], the authors first showed that the objective function of the distance based
sensor selection problem (under the Gaussian measurement setting) is not submodular
in general. Then, they provided an algorithm based on Stiefel relaxation to solve the
distance based sensor selection problem. However, they did not provide any theoreti-
cal guarantees on the performance of the proposed algorithm. The authors in [4] also
considered the distance based sensor selection problem, and showed that the problem
can be approximately solved using a semi-definite programming approach based on
convex relaxation. Again, no theoretical performance guarantee was provided for the
proposed heuristic.

The authors in [21] applied greedy algorithms to solve the distance based sensor
selection problem. When the measurements under the two hypotheses have a common
covariance, the authors provided a performance guarantee on the greedy algorithm by
leveraging the notion of approximately submodular set functions introduced in [83].

However the performance guarantee becomes loose for arbitrary covariance matrices.
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The authors in [83] then considered submodular surrogate objective function for the
distance based sensor selection problem. Although the greedy algorithm yields the
(1 — 1) approximation guarantee (e.g., [51]) for the surrogate problem, the solution
returned by the greedy algorithm for this surrogate problem does not have any prov-
able performance guarantees in terms of the original distance based sensor selection
problem. For more general instances of the distance based sensor selection problem
(i.e., when the measurements have different covariances under the two hypotheses),
the authors in [21] first decomposed the objective function of the problem into a dif-
ference of two (surrogate) submodular functions, and then applied a heuristic to solve
the problem. However, they did not provide performance guarantees on the proposed

heuristic.

Summary of Results

When considering the NPHSS problem and the BHSS problem, our contribution
is to show that both of these two problems are NP-hard even when the measurement
vector is Gaussian distributed. This complements the complexity result in [3], where
only the distance based sensor selection problem was shown to be NP-hard.

For the distance based sensor selection problem (with varying selection costs across
the sensors), we apply greedy algorithms to solve the problem, and provide theoretical
performance guarantees by leveraging the notion of submodularity ratio introduced
in, e.g., [84]. To achieve this, we first extend the analysis in [85] for greedy algorithms
for submodular function maximization under budget constraints to nonsubmodular
settings. This extended analysis works for the general problem of maximizing non-
submodular functions under budget constraints. We then provide lower bounds on
the submodularity ratio of the objective function in the distance based sensor selec-
tion problem, which in turn give performance bounds for the greedy algorithm. Our
analysis provides reasonably tight performance guarantees for the greedy algorithm

for general classes of instances of the problem (including the case with common co-
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variance and the case with uncommon covariances). We supplement our theoretical
analysis using illustrative examples and numerical simulations.

Parts of the results presented in this chapter were published in [86].

5.2 Problem Formulation

We consider the classical binary hypothesis testing problem with two possible
hypotheses, denoted as Hy and Hi, respectively. Let V £ {1,2,...,n} denote the set
of all candidate sensors; each sensor is capable of providing a single measurement.
Let X £ [Xl Xy - X, ! € R™ be the vector that collects measurements (of the
signals) from all the sensors in V, where X € R is the measurement from the kth

sensor in VY for all £ € V. The measurement vector X satisfies

Ho: X ~ p(z|Hy), (5.1)
Hy: X ~ p(z|Hy),
where p(z|H;) denotes the probability density function (pdf) of X conditioned on the
state H; for i =0, 1.

We consider the scenario where we can only select a subset of sensors from V to
deploy, due to a budget constraint. Specifically, sensor k € V has a certain selection
cost, denoted as wy € Rxq, for all £ € V. Define w = [uh Wy -+ Wy ' to be the
sensor cost vector. We are given a total budget, denoted as €2 € R.q, that can be
spent on selecting the sensors.

After a set of sensors is selected, we use their measurements to solve the hypothesis
testing problem corresponding to (5.1). We define an indicator vector u € {0,1}"
indicating which sensors are selected, where u; = 1 if sensor k£ € V is selected, and
e = 0 if otherwise. Given an indicator vector p with supp(p) = {j1,...,Jp} C

T
{1,...,n}, we define X(u) = |X;, ... X.| to be the vector that contains the

J Jp

measurements from the selected sensors indicated by p. Denote the pdf of X (u)
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conditioned on H; as p(z(u)|H;) for i = 0,1. The log-likelihood ratio between the
conditional pdfs p(x(u)|Hy) and p(z(p)|Hy) is defined as

()| H)
tog Lix(p)) = log Ty

We first consider the Neyman-Pearson detector for hypothesis testing which minimizes

(5.2)

the miss probability (also known as Type II error) P,, = Py(H;) such that the false-
alarm probability (also known as Type I error) Py = P;(Hy) is within a prescribed
range, where Py(H;) (resp., Pi(Hy)) is the conditional probability of deciding H;
(resp., Hy) given that Hy (resp., Hy) is true. Given an indicator vector pu € {0,1}",
we use P, (1) and Py(1) to denote the miss probability, and the false-alarm probability
obtained from the measurements of the sensors indicated by pu, respectively. For a
given false-alarm rate o € R and a given indicator vector p, the decision rule of

the Neyman-Pearson detector has the following form:

log L(x(1)) % (1), (5.3)

where log L(x(p)) is defined in Eq. (5.2) and ~(u) is the threshold chosen such that
P¢(p) = a. Denoting the prior probabilities of the two hypotheses as mp and m = 1—
Ty, we next consider the Bayesian hypothesis testing. The Bayes detector minimizes
the Bayesian error probability given by P, = woP;(Hy) + m1 Po(H1). Similarly, we use
P.(1) to denote the Bayesian error probability corresponding to the sensors indicated
by a sensor selection vector p € {0,1}". For a given sensor selection vector p, the

Bayes detector makes a decision using the following decision rule:

Hi
log L(z(1)) 2 log -2, (5.4)
Hy T

where log L(z(u)) is defined in Eq. (5.2).

We now define the following sensor selection problems.

Problem 5.2.1 (NPHSS and BHSS) Consider two possible states Hy and Hy, a sen-

sor measurement vector X € R"™ that satisfies (5.1), a cost vector w € R%, and a
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budget Q2 € Rso. The Neyman-Pearson Hypothesis testing Sensor Selection (NPHSS)

problem is to find a sensor selection vector i that solves

-
e T

st.owlp <Q, Pr(p) < a,
where Py, (1) and Pr(p) are the miss probability and the false-alarm probability cor-
responding to p, respectively, and o € Rxq a prescribed false-alarm rate. Similarly,

the Bayesian Hypothesis testing Sensor Selection (BHSS) problem is to find a sensor

selection vector u that solves

min P,
oin (w)

sitowlp <Q,

where P.(u) is the Bayesian error probability corresponding to .

In the remaining of this chapter, we will focus on cases when the measurement

vector X € R” is Gaussian distributed, i.e.,

HO IXNN(90720)7 (5 5)
H1 . X NN(Ql,El),

where 0y, 0; € R" and Xy, ¥X; € S, . The Gaussian distributed case already captures
many models in signal detection (e.g., [87]), which is also the main focus of prior work
on sensor selection for hypothesis testing (e.g., [3], [21]). Given a sensor selection
p € {0,1}" with its support denoted by supp(p) = {j1,..-,Jp} C {1,...,n}, we
define 0;(p) = [(92)

contains the rows and columns corresponding to supp(u), for ¢ = 0, 1. In other words,

T
(Qi)jp] , and define ¥;(p) to be the submatrix of ¥; that

J

the conditional pdfs of X (u) on Hy and H; satisfy
Ho = X () ~ N(o(p1), Zo(pr),
Hy: X (p) ~ N(61(p), 21 ()

The following result characterizes the complexity of the NPHSS and BHSS problems;
the proof is included in Section 5.7.1.
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Theorem 5.2.2 The NPHSS and BHSS problems are NP-hard even when the mea-

surement vector X € R™ satisfies (5.5).

In fact, P, Py and P, do not always yield closed-form expressions even under the
Gaussian distributed setting. Thus, we are further motivated to consider alternate
optimization criteria, which have closed-form expressions for the NPHSS and BHSS
problems, in order to seek efficient algorithms to solve the hypothesis testing sensor
selection problems. Fortunately, several metrics pertaining to the distance (or diver-
gence) between two probability distributions have been shown to serve as reasonable
surrogates to the error probabilities as the optimization metrics in the NPHSS prob-
lem and the BHSS problem, such as the Kullback-Leibler (KL) distance K(H:||Hy),
the J-Divergence D(H,||Hy), and the Bhattacharyya distance B(H;| Hp). The prob-
lems then become maximizing the corresponding distances between the two probabil-
ity distributions (under the budget constraints). The interested readers are referred
to [3,4,87-89] and the references therein for detailed explanations about using these
surrogates as the optimization metrics in the NPHSS and BHSS problems. Note that
the KL distance, J-Divergence and Bhattacharyya distance between two Gaussian
distributions yield closed-form expressions. Denote the KL distance, J-Divergence
and Bhattacharyya distance corresponding to pu, i.e., between N (6o(p), Xo(p)) and
N (01(1), E1(1)), as fxr(p), fin(p) and fpp(p), respectively, which are given by
(e.g., [21]):
det ()

(tr(Z5"E1) + (61 — 60) "S5 (61 — ) + log det(sy) [supp(p)]), (5.6)

N | —

fro(p) =

(tr(Sg " S1) + tr(S7180) + (61 — 00)"S5 (61 — 6o)

+ (61— 00) "7 (01 — o)) — [supp(p)], (5.7)

fip(p) =

DN | —

det(X)
Vet (1) det(S0)
where 6; 2 6;(1) and X; £ () for i = 0,1, and ¥ £ %(Eo +3).

fBD(M) = 1 51 - éo)TE (91 - 90 5 log ) (5-8)

A
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Remark 5.2.3 Noting from Eqgs. (5.6)-(5.8) that fxr(1), frp(r) and fep(p) depend
on Oy(p) and 61 (p) only through (61(1) — 0o(1)), we assume without loss of generality

that 0y = 0,, in the sequel. Moreover, it is well-known that these distance measures are

always nonnegative (e.g., [89]), i.e., fxr(), fro(p), fep(1) € Rsg for all € {0,1}".

Following the arguments in [3,4,21], we now formally define the following distance

based sensor selection problems.

Problem 5.2.4 (KLDSS, JDSS and BDSS) Consider two possible states Hy and
Hi, a sensor measurement vector X € R™ that satisfies (5.5), a cost vector w € R%,,
and a budget Q0 € R>y. The KL Distance Sensor Selection (KLDSS) problem, the J-
Divergence Sensor Selection (JDSS) problem, and the Bhattacharyya Distance Sensor
Selection (BDSS) problem are to find sensor selection vectors p that solve

max
puef0,1}n fOBJ(N) (5.9)

s.t. wT,u <Q,

where fops(-) is taken to be frxr(:), fip(-) and fep(-), given by Eq. (5.6), Eq. (5.7),
and Eq. (5.8), respectively.

It was shown in [3] that the KLDSS problem and the BDSS problem are NP-hard
even when Yy = ;. In fact, supposing ¥y = ¥; in the KLDSS, JDSS and BDSS

problems, we see that the expressions in Egs. (5.6)-(5.8) reduce to

1one o~
frr(p) = 59{261917 (5.10)
frp(p) = 075710y, (5.11)
1o~ o~
fp(p) = 59{2—191’ (5.12)

respectively. Note that the form of the expressions in Egs. (5.10)-(5.12) coincide
with the objective function in the subset selection problem (up to constant multi-
plicative factors) considered in [39], which is known to be NP-hard [38]. Hence, we
can conclude that the KLDSS, JDSS and BDSS problems are all NP-hard even when
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the two hypotheses have a common covariance, i.e., 3y = ;. Due to the fact that
these alternate problem formulations to the original hypothesis testing sensor prob-
lem (Problem 5.2.1) are NP-hard, there are still no algorithms that can solve these
alternate problems optimally in polynomial time (unless P=NP). Nevertheless, the
closed-form expressions given in Egs. (5.6)-(5.8) give us chances to prove theoretical
performance guarantees for (approximation) algorithms when applied to the KLDSS,
JDSS and BDSS problems. We will pursue this direction in the sequel and focus
particularly on greedy algorithms with their applications to the KLDSS, JDSS and
BDSS problems.

5.3 Greedy Algorithm

Algorithm 5.3.1 Greedy Algorithm for Problem (P)
Input: V, f:2Y — Ry, Q, c(v),Vv € V

Output: 5,

1: Sg +— 0
2: while ¢(S,) < @ do

3: v* = arg maXyey\s, —f(sgu{:(};,))_f(sg)
4: if ¢(Sy) + c¢(v*) < Q then

5: Sy Sy U {v*}

6: else

7: return S,

To begin our analysis, let us consider the following problem:

mas F(4)
- (P)
s.t.c(A) < Q,

where f : 2V — Ry is a set function that is assumed, without loss of generality,

to be normalized, i.e., f(#) = 0. The constraint ¢(A) < @ represents a budget
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constraint on the sum of costs of elements in A. Specifically, each element v € V is
associated with a cost denoted by c¢(v) € R>g, and the sum of the costs of elements
in A needs to satisfy c(A) £ 3, _,c(v) < @, where @ € R and ¢(f)) = 0. Noting
the one-to-one correspondence between a sensor selection p € {0,1}" and a subset of
selected sensors indicated by u,! the KLDSS, JDSS and BDSS problems defined in
Problem 5.2.4 fall into the class of problems defined by (P). For the case when f(-)
is monotone nondecreasing and submodular, [85] provides performance guarantees
for the greedy algorithm, defined in Algorithm 5.3.1, when applied to solve Problem
(P). Note that the set function f(-) is said to be monotone nondecreasing if for all
ACVand forallv eV, f(LAU{v}) — f(A) > 0. The set function f(-) is said to be
submodular if and only if f(AU {v}) — f(A4) > f(BU{v}) — f(B) for all A, B such
that A C B C V and for all v € V' \ B. However, one can come up with instances
where the objective functions fxr(-), fsp(-) and fgp(:) (in the KLDSS, JDSS and
BDSS problems, respectively) are not submodular (e.g., [3]). In order to also provide
approximation guarantees of the greedy algorithm when applied to solve the KLDSS,
JDSS and BDSS problems, we will leverage the notion of submodularity ratio defined
as follows (see, e.g., [40,84]), which characterizes how close a set function is to being

submodular.

Definition 5.3.1 The submodularity ratio of a nonnegative set function f : 2¥ —

R s the largest v € R that satisfies

> (f{v}UB) - £(B)) = 7(f(AUB) - f(B)), (5.13)

veA\B

for all A,B C V.

Remark 5.3.1 We note from [84] that for a monotone nondecreasing f(-), v € [0, 1]
by Definition 5.3.1; and f(-) is submodular if and only if v = 1.

'We will also write fops(i) as fops(A) in the sequel, where A = supp(u) C V, and fops(-) is
specified in Problem 5.2.4. Similarly, we will write 6;(A) and ;(A) for ¢ =0, 1.
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Based on Definition 5.3.1, we extend the analysis of the greedy algorithm for max-
imizing submodular functions under budget constraints to nonsubmodular settings.

We have the following result; the proof technique is inspired by [85].

Theorem 5.3.2 Consider an instance of Problem (P), where the set function f :
2Y — Rsq is monotone nondecreasing with submodularity ratio v € Rsq. The greedy
algorithm (Algorithm 5.3.1) has the following approximation guarantee when solving
Problem (P):

c(Sg)

f(Sg) 2 (L —e" e ) f(57), (5.14)

where Sy is the output of the greedy algorithm, and S* is the optimal solution to

Problem (P).

Proof Since (5.14) always holds when v = 0, we will assume ~ > 0 in the proof
as follows. Denote S, = {s1,52,...,5.}, where 7 = |S,|. For all j € {0,...,7},
let S; = {s1,...,s;}, where Sy = (. Note that the greedy choice satisfies s; =

arg maxyey\s,_, f(sj’lu{:(?)_f(sj’l) for all j € {1,...,7}. We will first prove the follow-

ing claim.

Claim 5.3.3 For all ACV and for all j € {0,...,7 — 1}, we have

Q . f(SjH) — f(Sj)
R P (5.15)

f(57) < f(S)) +

To prove the above claim, we note from (5.13) that

f(S*USj)—f<S])§1 Z C(g)_f<{S}USj)_f(Sj>,
v s€S*\S; C(S>
U FS)  £(5)
Q f(Six1) — f(S))
S5 o) o1

where (5.16) follows from the greedy choice, and (5.17) follows from ¢(S* \ 5;) <
c(S*) < Q. Noting that f(S*) < f(S* U S;), we complete the proof of Claim 5.3.3.
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We are now in place to prove (5.14). Let D; = f(5*) — f(S;) for all j € {0,...,7}.
We have from Claim 5.3.3 the following:

p, <@ S8 =I5 @ Din= Dy
v c(s;) Y c(s;)
= Dj < Dja(1- C<Z)7)- (5.18)
Rolling up (5.18), we obtain
T sy
agmgu Q). (5.19)

Moreover, noting that ) °_, c(s;) = ¢(S,), one can show that [[7_ (1 — C(Sj”) <

Q
[T}_, (1 — <527) (e.g., [31]). It then follows from (5.19) that

187 = £(5,) < 1591 = L2y < sy,

which completes the proof of the theorem. [ |

(Clearly, the approximation guarantee of the greedy algorithm for solving Problem
(P) provided in (5.14) depends on the submodularity ratio v € Rso of f(-), the
budget constraint ) € R, and the sum of the costs of the elements in Sy, i.e.,
c(S,). Supposing ¢; £ max,cy c(v) < Q, one can show that ¢(S,) > @Q — ¢, which
implies that f(S,) > (1 — 677%) f(S*). Moreover, suppose it is allowed to violate
the budget constraint such that ¢(S;) < @', where Q' = ¢; + 1 with [ € R>g. One can
then show that ¢(S,) > [, which implies that f(S,) > (1 — e_vé)f(S*). Note that if
c(v) =1 for all v € V, then ¢(S5,) = @ and the approximation guarantee reduces to
f(Sy) > (1 —e™7)f(S*) as obtained in, e.g., [40].

Recall that our goal is to provide performance guarantees for the greedy algorithms
when applied to the KLDSS, JDSS and BDSS problems. In the following section, we
will show that the objective functions of the three problems, i.e., fxr(:), fsp(:) and
fBp(+), are all monotone nondecreasing. More importantly, we will characterize the
submodularity ratios of fx.(-), fyp(-) and fpp(:). Since obtaining the exact value

of the submodularity ratio of a set function from Definition 5.3.1 would require an
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exhaust search over all A, B C V, we are interested in obtaining (strictly-positive)
lower bounds on the submodularity ratio that can be computed in polynomial time.
Substituting the lower bounds in (5.14) also leads to performance bounds of the

greedy algorithm.

5.4 Bounding the Submodularity Ratios
5.4.1 Common Covariance

As we mentioned in Section 5.2, in the special case when the two hypotheses have
the same covariance, i.e., ¥y = X; = X, where X, € S, the objective functions
fxr (), fip(-) and fgp(-) are given by Egs. (5.10), (5.11) and (5.12), respectively,
which are equivalent to the objective function in the subset selection problem (up to
multiplicative constant factors) [39]. In this case, the measurement vector is given by

Hy: X ~N(0,%,),
(5.20)

Hy : X ~N(61,%,),
where 0; € R", X, € S}, and we recall from Remark 5.2.3 that we have assumed
without loss of generality that 6, = 0. Using similar arguments to those in [40],
we have the following result which characterizes lower bounds on the submodularity

ratios of frr(+), fyp(:) and fgp(-); the proof is included in Section 5.7.2.

Proposition 5.4.1 Suppose the measurement vector X € R™ satisfies (5.20). Then,

fxr(), fip(+) and fpp(-) are monotone nondecreasing, and the submodularity ratios

of fxr(-), fip(:) and fep(-), denoted by vk, € Rxo, vyp € Rsp and vgp € Rxo,

) . A (Se An (e An(Be
respectively, satisfy Vi > —dl((zc))’ Yip = dl((Zc)) dl((Ec))‘

and Ypp >

5.4.2 Uncommon Means and Uncommon Covariances

Moving forward to more general problem instances, our next goal is to give lower

bounds on the submodularity ratios of fxr(-), fsp(-) and fpp(-), when the two hy-
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potheses can have uncommon means and uncommon covariances. That is, the mea-

surement vector X € R" satisfies

HO X ~ N(O, Zo), (5 21)
H1 . X NN(Ql,El),

where 6 € R" and Xy, X; € S . We make the following assumption on the instances

of the KLDSS, JDSS and BDSS problems that we will consider in this section.
Assumption 5.4.1 Let X = diag(o?,...,02%), where 0; € Rog foralli € {1,...,n}.

Remark 5.4.2 Assumption 5.4.1 holds in the problem of detecting a Gaussian signal
in Gaussian noise, where the noise terms from different sensors are uncorrelated [87].

Here, the measurement vector X € R" satisfies

Hy: X =N,
(5.22)
H :X=S+N,

where N ~ N(0,Xy) and S ~ N (0s,Xs), where s € R", Xy, X5 € ST, and Xy is
diagonal. The measurement noise N € R™ and the signal S € R™ are assumed to be

uncorrelated.

Since the two hypotheses can have different covariances, the objective functions
fxr(), fip(-) and fpp(-) no longer have similar expressions. Thus, we treat fx(-),
fip(+) and fpp(-) separately as follows. Proofs of the following results can be found

in Sections 5.7.3, 5.7.4 and 5.7.5, respectively.

Proposition 5.4.2 Suppose the measurement vector X € R™ satisfies (5.21). Then,
the objective function fxr(-) of the KLDSS problem under Assumption 5.4.1 is mono-

tone nondecreasing, and the submodularity ratio of frxr(-), denoted as vk € Rso,

satisfies
min,ecy Crr(v
YKL 2 di(Z1) S .KL( ) ) (523)
log $-5y + minyey Ckr(v)
where
0 DY Dy
Ckr(v) o))" | Zu(0) ), Balv) 1,Yv e V. (5.24)

Sov) | So(v) 8 To(v)
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Proposition 5.4.3 Suppose the measurement vector X € R™ satisfies (5.21). Then,
the objective function f;p(-) of the JDSS problem under Assumption 5.4.1 is monotone

nondecreasing, and the submodularity ratio of fip(-), denoted as v;p € Rxq, satisfies

)‘n<21)

> min { C 5.25

YJp =2 mln{ JD; () }> ( )
where (01(v))* | Zi(v) | Zo(v)
1(v 1(v olv

Cop & mig 20 50 T 5w ~ 2 (5.26)

N 02 | i), Solw) o
& S T e T ey 2

Proposition 5.4.4 Suppose the measurement vector X € R"™ satisfies (5.21) and
that Assumption 5.4.1 holds. (a) The objective function fgp(-) of the BDSS problem
is monotone nondecreasing, and the submodularity ratio of fpp(-), denoted by ypp €

R, satisfies

. CBD )\n(zl)
Ypp > min : , (5.27)
{log f\li(éll)) + Cgp di (%) }

where Cpp £ min{C%,, CLp} with

1 (o) = %1(v))?
0% 2 1og (1+ - 5.28
pp = log (1 -+ min So(0) %1 (v) ) (5.28)
d
" O‘ZA (Z?\R)(E;)(E )
CL. 2 1og (1 niZo)TALSL 5.29
BD ©8 ( * )\1(21) maXyey Zl(v) - 052)7 ( )

where o = Min jey iz (s, 20(X1)ij- (0) Further suppose ¥y = Yo + Xg, where Yg €
St .. Then,

. Csp An(21)
YBp > min —, , (5.30)
{log f\l;(éll)) +Cpp di(X1) }
where Cpp = min{C%,,, CLp} with
- 1o (Zo(v) +¥1(v))?
Chp =log (14 = 5.31
zp = log (1 -+ min S0(0)S1 (v) ) (5:31)
and
aPmEnEETEn
oL 2 1 An(E1)+A1 (20
oo = log (15 A1(21) maxyep X (v) — a2
+ (/\n(zs))Q ) (5 32)
a2 9 .
Amaxyey (Zo(v)(Z1(v) — 5555))

—_ A .
where & = mlni,jey7i¢j<21)ij.
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Given the problem parameters, the lower bounds on the submodularity ratios pro-
vided in Propositions 5.4.1-5.4.4 can be computed in O(n?) time, since finding A;(3;)
and \,(21) requires O(n?®) in the worst case (e.g., [90]). Also note that the lower
bounds are all nonnegative. In order to further illustrate how the bounds (particu-
larly in Propositions 5.4.2-5.4.4) depend on the parameters of the KLDSS, JDSS and

BDSS problems, we consider the following example corresponding to Remark 5.4.2.

Example 5.4.3 Consider the problem of detecting the signal S ~ N(0s,Xs) in the
noise N ~ N(0,Xy), where S € R™ and N € R" are assumed to be uncorrelated.

Suppose 0s = B1,,, ¥g € ST, and Xy = 0?1, where 8 € Rsq and o € Rsy.

Note that the sensor measurement vector X € R" corresponding to the instances
given by Example 5.4.3 satisfies (5.22), which gives §; = g, ¥y = 0%I, and ¥; =
YN + Xg. One can show that the bound on 7, given in (5.23) simplifies into
02+in2(23)

2
5+ 282 _log

YKL 2 p
10g il((gss'))-i- + + dn(ES)

(5.33)

02+dn(Eg) °
B —

— log
Supposing 3, o, A\,(2g) and d;(Xg) are fixed, one can show that the bound in (5.33)
will increase as d,(Xg) increases. Similarly, supposing o and Y5 are fixed, one can
show that the bound in (5.33) will increase as  increases.

We then turn to the bound on ~y,;p given in (5.25). First, one can show that Cp

in the bound corresponding to the instances given by Example 5.4.3 has the form:

(E )+U o?
C 0_2 + S + dl(ES)“rO'Q - 2 4
JD = 32 d1(25)+g o2 2 (53 )
o2 + 02 + An(Zs)+o2

Supposing 3, ¢ and \,(Xg) are fixed, one can show that C;p given by Eq. (5.34)

Mn(Z) _ nlEs)to?
A=) — di(Ds)to?

as di(X1) decreases, we see that the lower bound in (5.25) will increase as d;(Xg)

will also increase

will increase as d;(Xg) decreases. Noting that

decreases. Similarly, supposing ¢ and g are fixed, one can show that C;p given in
Eq. (5.34) will increase as [ increases. However, the increment of C;p would only

lead to a potential increment of the bound in (5.25), since 3’;((;1))
B.

does not depend on
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Finally, let us consider the bound on vgp given in (5.30) under the instances of

Example 5.4.3. Specifically, one can first obtain from Egs. (5.31)-(5.32) that

(202 + d,(3s))? ) (5.35)

Chp =log (1

and

~2 o2

Wi N (A (s))?
(02 + Mi(E9))(di(Es) + 02) —a®  40%(0? + di(Zs) —

Chpp =log (1 + — .

)\1(25)—1-0'2)
(5.36)

Supposing o, A\, (Xs), d.(Xs), and & are fixed, we see that C%, is fixed, and C%, will

increase if d;(Xg) (or A\1(Xs)) decreases. It follows that Czp = min{C%,, Chp} will

increase if d1(Xg) (or A;(Xg)) decreases. Moreover, one can show that dl(zsc)ifz

%8 X (Sg)+o2

will increase as C'zp increases (supposing ;ll(és% is fixed). Also note that %
will decrease as d;(Xg) decreases. Combining the above arguments yields that the
bound in (5.30) will increase if d;(Xg) decreases.

In summary, for the instances in Example 5.4.3, the bounds in Propositions 5.4.2-
5.4.4 depend on the difference between d;(Xg) and d,,(Xg) (or the difference between
A1 (Zg) and A\, (Xs)). Note that di(Xg) and d,(Xg) correspond to the largest (resp.,
smallest) variance of the signals detected by different sensors. Thus, smaller differ-

ences among the signal variances of different sensors potentially lead to larger values

of the bounds on the submodularity ratios.

Remark 5.4.4 We note from Theorem 5.3.2 that tighter lower bounds on the sub-
modularity ratio yield tighter performance bounds of the greedy algorithm, which po-
tentially imply better performances of the greedy algorithm.

5.5 Numerical Examples

We further illustrate the lower bounds on the submodularity ratios given by Propo-
sitions 5.4.2-5.4.4 using synthetic examples, which allow us to show how those lower

bounds behave according to different parameters of the KLDSS, JDSS and BDSS
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problems (Problem 5.2.4), which in turn influence the performance of the greedy al-
gorithm. Following Example 5.4.3, we consider instances of Problem 5.2.4 with the
form ¥; = ¥y + Xg, where ¥y, Xg € ST, and ¥ is diagonal. We then generate the
instances of Problem 5.2.4 using the following procedure. Considering a system of
15 sensors, we set the budget Q = 20, and generate a random cost vector w € Z%%,
which results in max,cyw, = 8. € and w are then kept fixed in the sequel. We set
Yo = 0%I5, where 0 € R>q. As argued in Section 5.4, the lower bounds on the sub-
modularity ratios depend on the difference between \;(Xg) and \,(Xg). Therefore,
in order to generate X5 € S}, in a controlled fashion while observing the behavior of
the bounds under different problem parameters, we keep \,,(Xg) = 1 and vary A\;(Xg)

within certain ranges. For each value of A\;(Xg), we obtain 500 instances of Problem

5.2.4 via random generations of ¥g € S1°, and 6, € R".

—e— OPT
—+— Greedy

I o o
~ ® ©
% S «

Lower bound on yk,

o
~
=)

o
o
a

5 10 15 20 5 10 15 20
A1(Z5)/An(Zs) A(Zs)/An(Zs)

(a) OPT vs. Greedy (b) Submodularity ratio

250 i I

200 I
150

150 2 I
3
o

100 © 100

50 I 50 L.
01 0700

.00 1.05 110 115 1 1.05 110 115

Count

OPT/Greedy OPT/Greedy
M(Es) M(Es)
() A (Ts) = 2 () Rn(ze) = 20

Fig. 5.1. Results for KLDSS when o = 1.
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The results for the KLDSS problem are reported in Fig. 5.1, where we set o = 1.
Here, Fig. 5.1(a) plots the optimal solutions and the greedy solutions for different
izg;)) :\\’1‘((?;)), the optimal solution and the greedy
solution are averaged over the 500 instances of the KLDSS problem. Fig. 5.1(b) plots

values of , where for each value of

the averaged lower bound on 7, (provided in Proposition 5.4.2). Fig. 5.1(c)-(d) plot
the histograms of the ratio L) fop M8s) — 9 gpd 2Es) — 9 respectively, where

fKL(Mg) An(zs) An(zs)

p* is the optimal sensor selection and p, is the greedy sensor selection.
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() An(Bs) T 2 () An(Bs) T 20

Fig. 5.2. Results for JDSS when o = 1.

Specifically, Fig. 5.1(a) shows that the greedy algorithm performs near optimally
for the instances of the KLDSS problem generated using the above procedure. As

% increases, we see from Fig. 5.1(b) that the lower bound on 7k tends to de-

crease, which is aligned with our analysis in Section 5.4. Note that since the cost vec-

tor satisfies max,ey w, = 8, it follows from Theorem 5.3.2 (as argued in Section 5.3)

that the greedy sensor selection p, satisfies frrf(py) > (1 — e O07%L) frep (u*). For
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instance, vx, = 0.6 yields fxrf(ig) > 0.30fxp(1*), ie., f;i—gﬁg < 3.31. Finally,

Fig. 5.1(c)-(d) showcase the performances of the greedy algorithm when applied to
the 500 instances of KLDSS, for two different values of 2n(Z5) - We observe that al-

M(Xs)”
though the greedy algorithm tends to perform near optimally for :\\ng)) = 2 and
’/\\:‘gg = 20, the overall performance of the greedy algorithm slightly worsens when
An(ES)

(5 becomes large. This observation reveals that the lower bound on v, in Propo-
sition 5.4.2 also provides guidance on how the performance of the greedy algorithm

changes according to different problem parameters, as we discussed in Remark 5.4.4.
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Fig. 5.3. Results for BDSS when o = 0.5.

Similarly, we obtain Fig. 5.2 and Fig. 5.3 for the JDSS problem and the BDSS
problem, respectively, where we set 0 = 0.5 when generating the instances of BDSS.
Similar analysis to that above for the KLDSS problem can be applied to the JDSS and
BDSS problems. Putting Figs. 5.1-5.3 together, we observe that the lower bounds on

An(s)

vk and ~v;p yield higher values for a wider range of )\’IEZS) and for a larger value of o,
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compared to the lower bound on ygp. In fact, as we can see from Fig. 5.3(c)-(d), the
overall performance of the greedy algorithm gets worse when applied to the instances
of the BDSS problem, compared to the performances of the greedy algorithm when
applied to the KLDSS and JDSS instances.

5.6 Chapter Summary

In this chapter, we studied the hypothesis testing problem sensor selection problem
under the Neyman-Pearson setting and the Bayesian setting. We first showed that
the Neyman-Pearson hypothesis testing sensor selection problem and the Bayesian
hypothesis testing sensor selection problem are NP-hard even when the measurement
vector is Gaussian. Next, we studied the distance based sensor selection problem, and
provided theoretical performance guarantees for the greedy algorithm by leveraging
the notion of the submodularity ratio. Our analysis also extended the existing result
on the performance guarantees for the greedy algorithm for maximizing submodular

functions under budgeted constraints to nonsubmodular settings.

5.7 Proofs of Key Results
5.7.1 Proof of Theorem 5.2.2

We will show the NP-hardness of NPHSS and BHSS via reductions from the
Subset Selection (SS) problem (e.g., [39]), which is known to be NP-hard (e.g., [38]).

Problem 5.7.1 (SS) Consider a vector b € R™, where b; # 0 for all i € {1,...,n},
a matriv C € ST, and s € Z>o. The Subset Selection (SS) problem is to find an

indicator vector pn € {0,1}" that solves

max (b())" (C(n)~"b(p)

pef0,13m

s.t. |supp(p)| < s,
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where C'(u) is the submatriz of C' that contains the rows and columns corresponding

L

T
to supp(p) and b(p) = [bj bjp] , where supp(p) = {j1,-..,Jp} € {1,...,n}.

We first show that NPHSS is NP-hard via a reduction from SS. Considering any
instance of SS with b € R, C' € S}, and s € Z>g, where b; # 0 for all i € {1,...,n},
we construct an instance of NPHSS as follows. The measurement vector X is Gaussian

distributed conditioned on H; for i = 0,1, i.e.,
H(] ¢ NN(HO,C),
H1 .4 NN(el,C),

where we set 6y = 0,, and #; = b. The cost vector is set as w = 1,, and the budget is

set as 2 = s. The required false-alarm rate for the Neyman-Pearson detector is set

—

asazi.

Considering any sensor selection u € {0,1}™, we obtain from Eq. (5.2):

-1

logL(z(n)) = (61(1))" (C(u)) x(u)—g(emm)T(c(m)191<u>. (5.37)

Let T'(p) £ (Ql(y))T(C’(,u))flx(,u) € R, where the pdf of T'(1) conditioned on H; for
1 =20,1, is given as

Hy  T(s) ~ N0, ().

Hy = T(p) ~ N(o(p),a(p)),
where o(p) £ (91(u))T(C’(,u))_101(M) > 0 for all u # 0, since (C(l/))_l is positive

definite and (01); # 0,Vi. We see from (5.3) and (5.37) that the Neyman-Pearson

detector is of the form
Hy
T(p) 2 Y (1), (5.38)
0

where 7/ (1) £ v(p) + 3o (1t). We then know from [87] Case IILB.2 that 7/(u) satisfies

V) = Volme (1 - a) = Value ' (5) =0,
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where ®(-) is the cumulative distribution function (cdf) of the standard normal dis-
tribution, and ®~!(-) is the inverse of ®(-). The corresponding detection probability
is given by

Pp(u) = P(T () >~ ()| Hy)

:1-@(%):1-@(— )

= o (\/(6: ()" (C(w) () (5.39)

where P(T(u) > 7/(u)|H;) is the conditional probability of T'(u) > ~'(u) given that

H is true. Noting that ®(z) is monotonically nondecreasing on z € R, Eq. (5.39)
then yields that in order to maximize Pp(u) over sensor selections p that satisfy the
budget constraint, we have to maximize (Ql(u))T(C(,u))_lﬁl (u). By our construction
of the NPHSS instance, it follows that an indicator vector p for SS is optimal if and
only if y is optimal for the corresponding NPHSS instance that we construct. Since
SS is NP-hard, the NPHSS problem is also NP-hard. Using similar arguments, we
can show that the BHSS problem is also NP-hard, which completes the proof of the

theorem. ]

5.7.2 Proof of Proposition 5.4.1

We will use the following result.

T
Lemma 5.7.2 Consider a random vector X = [Xl . Xn} € R"™ with covariance

X eSt,. Forallp <n (p € Zs), consider an indicator vector p € {0,1}" with
T

supp(p) = {1,...,p}. Let X(u) = [Xl Xp]T and X () £ [Xp+1 X
where the covariances of X (u) and X (u¢) are denoted by ¥(u) and X(uc), respectively.
Partitioning 3 as

2() Exxe)
Xx)  ZH)
where Sxux(ue) = Cov(X (1), X (1€)), the following holds:

Y —

A(B) <A, (E(M) - ZX(M)X(MC)(E(Nc))_lsz(u)X(uC))‘
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Proof We first note that since ¥ € S, ¥(u) and 3(u) are positive definite for
all p € {0,1}™ with supp(p) ={1,...,p}, where p < n (p € Z~). Denoting ¥'(u) =
B(1) = Bxyxue) (B(1) T X x (uey» We have the following [91]:

1 Sewxen 0] [Ee o I, 0
0 Inp 0 ()| [(E() "5 oxqey In-s
(5.40)
Let e; be an eigenvector of the eigenvalue A\, (X/'(1)) > 0, i.e., ¥'(n)er = A (X' (1))e,
e
and define eg = ! . We have from Eq. (5.40) the following:

—(3(1) "Xy x (e €1

s — |2 ) Bxexe) I 0 €1
0=
i 0 E(pe) ] _(E(Mc))_lzgf(u)ch) Inp —(E(Mc))_lzgf(u)xmc)el
_|F W Exexee | e _ |EWea (5.41)
0 3 | |0 0
Using (5.41), we have
(e
eo An(E)eo < €g Yo = el —ef Ux(ux ) (B(p) ™! 0
=el Y (p)er = el M\ (X' (1))e, (5.42)

where the first inequality follows from ¥ > \,(X)I, [91]. Noting the definition of
eo, we have el eq > ele; > 0. It then follows from (5.42) that \,(X) < A, (X(p) —

EX(;L)X(,uC)(Z<M))_12§(H)X(pﬁ))' "

Proof of Proposition 5.4.1: Following Definition 5.3.1, let us consider any subsets
A,B CVand any v € A\ B, where A\ B # (. First, suppose B # (). Denote
A% A\ Bandlet A= {vr,...,y 4} Foralli e {1,.. . |A]}, let y; & (Ze(v;) —
EgviZZBvi)_l € R.g, where Xp,, = Cov(X(B), X(v;)) € RIBl and Z £ (X.(B))™..
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Note that the measurement vector X € R satisfies (5.20). Partitioning ¥.({v;} U B)

as X.({v;} UB) = [EC(W) Zby, ], we have from Eq. (5.10) the following:

SBv; Te(B)
2fKL({U'L'} U B)
_ T 1 | Oi(wi)
=[01(v:) (0:(B))"] (Zc({vi} U B))
6.(B)
i - ZEEUZ 0 (vs
:[91(%‘) (91(B>)T} [ ! Y ' ] ( >] (5.43)
—Z ot Z+ Z5puuiSh, Z| |0u(B)

=(0:(B))"Z60,(B) + (61(B))" Z3 v, yiX 5, 2601 (B)
— 2601 (0))yi X g, 261 (B) + (61(v:))*y;

—(01(B))" Z6,(B) + ((6,(B))" ZZ s, — 01(v:)) s, (5.44)

where (5.43) uses the inverse formula for block matrices [91]. (5.44) implies that
Jkr({v}UB) — frr(B) >0forall BCV (B# 0 and B# V) and for allv € V \ B.
Since frxr(B) > fxr(0) = 0 for all B C V, it follows that fx(-) is monotone

nondecreasing. Moreover, we have from (5.44) the following:

my

23" (fxe({v} UB) — fii(B)) = [ml mw] diag(yr, - ya) | 1 |, (5.45)

vEA
M)A

where m; £ (01(B))T ZX gy, —61(v;) for alli € {1,...,|A|}. Noting that y; = (Ze(vi)—
-1

ZITgviZEBm) > (Ze(v;))™t > ﬁzc) for all i € {1,...,]A|}, we then see from (5.45)
that
my
1 .
QZA (fra@e} U B) = fea(B)) 2 s e omp| | ] (549)
ve
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Using similar arguments to those above, we can partition ¥.(AU B) as ¥.(AUB) =

[ch(i}) ;%é)}, where ¥, ; 2 Cov(X(B), X(A)) € RIBXI4 and obtain from Eq. (5.10)
BA ¢

the following:

2(fxL(AUB) — fxr(B)) = ((61(B)) 28541 — (0:1(A)")Y (ST 1261(B) — 61(A)),
(5.47)

where Y 2 (S.(A) - T . Z8,5) "

(01(B))" Z% 55— (01(A))", and using the fact that Y < Ay (V)] 5 [91], where A, (V) =
1/ A (Se(A) = XL .25 55), we see from Eq. (5.47) that

c RIAIXIAL Noting that [m1 T My

my
1 .
2(fxL(AUB) = fxr(B)) < ) [ml —omyg Sl (5.48)
A
To obtain (5.48), we use the following chain of inequalities:
M (Be(A) = 21725 53) > A(S(AU B)) > A (Se), (5.49)

where the first inequality follows from Lemma 5.7.2, and the second inequality follows
from the Cauchy interlacing theorem for positive definite matrices [91]. Combining

(5.46) and (5.48) yields vk > w? Next, supposing B = (), one can show using

I(ZC)
similar arguments to those above that ~g;, > %. Moreover, using the same

arguments as above, we see that f;p(-) and fgp(-) are monotone nondecreasing, and

An(Ee) A (Ze)
YJiD > d1(Se) and YBD > d1(Se) hold. u

5.7.3 Proof of Proposition 5.4.2

Note that frr(B) > fixr(0) = 0, VB C V. To prove that fr(-) is monotone
nondecreasing, it is then sufficient to show that for all B CV (B # () and B # V)
and for all v € V\ B, fxr({v} U B) — fx(B) > 0 holds. Denote B £ {v} U B, and

T
ZNote that if [m1 m\AJ [ml m\fi\] =0, (5.13) in Definition 5.3.1 naturally holds
for such A, B C V.
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let Y5, = Cov(X(B), X (v)) € R'Bl be the cross-covariance of X (B) and X (v) under
hypothesis H;. Noting that the measurement vector X € R™ satisfies (5.21) and that

Yo € ST is diagonal from Assumption 5.4.1, we have from Eq. (5.6) the following:

2(fxr(B) — fxL(B))

_Ei(v) | (6i(v)? det(%1(B))
= S + Zo(v) 0g det((B)) +log Xg(v) — 1
B:0)?  Safw) o
=) + S0 (0) +log $o(v) — log (£1(v) — £5,(E1(B)) 'Spy) =1 (5.50)
(61(v))* | Zi(v)
> Eo('l}) + Eo(?)) + log ZQ(U) IOg El(v) —1 (551)
(01(v))*  Xi(v) o ¥y (v B
So0) T So) 8T L= (5.52)
To obtain (5.50) we use the following identity [91]:
>, 21(?)) Egv
det(X1(B)) = det
Spe Si(B)
= det(X1(B)) det (21 (v) — X5, (Z1(B)) ' g (5.53)

where (3;(v) — X%, (21(B))'Ep,) € Rso. To obtain (5.51), we use the fact 3 (v) —
YE.(21(B)'YL < ¥i(v). Noting that the function h(z) £ z — log = achieves its
unique minimum on x > 0 at x = 1 with h(1) = 1, i.e., glgv) — log Elg”g > 1, the
inequality in (5.52) then follows, which proves that fx () is monotone nondecreasing.

We now bound the submodularity ratio yx7. Let us consider any A, B C V,

where A\ B # (). First, suppose B # (). We begin by providing a lower bound on
D veA\B (fxkr({v} U B) — fx1(B)). Following (5.51), we obtain:

2 Y (fel{}UB) ~ frn) > 3 (U @22” e 28 1

veA\B vEA\B Zo(v)

(5.54)
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We then give an upper bound on (fx.(AU B) — fx1(B)). Denote B2 AUB and
A2 A\ B. Let £, 2 Cov(X(B), X (A)) € RIBXI4l he the cross-covariance of X (B)
and X (A) under hypothesis H,. Similarly, we have from Eq. (5.6) the following:

2(fxL(B) - fx(B))
_ (61(v))°  Ea(v) (IToei Xo(v)) det(34(B))
R {Ueg( m T T )
ISV =N N Mes So(v)
B {UGA( o(v) | So(v) 1)} ! ® det (S1(A) = T (21(B)) ' 85,4) (5:55)
(01(v)* | Eu(v) [loei®o(v)
AL GG me MGG 0
_ (61(v))* | Ei(v) Yi(v) o Hoea Z1(0)
- {UGA( S0 S S )
(61(v)? | Ei(v) ¥ (v) 100 D5
< {UEA( S R S 1)+ 14 l0g L (5.57)
where (5.55) uses the following identity [91]:
det(S1(B)) = det M)
Ypi 2X1(B)
= det(31(B)) det(X1(A) — ST 1 (21(B)) ' S54)- (5.58)
For (5.56), we use the following chain of inequalities:
A (E1(A) = S L(C1(B) 1 T00) 2 M(S(B) 2 MlE1), (5:59)

where the first inequality follows from Lemma 5.7.2, and the second inequality follows
from the Cauchy interlacing theorem for positive definite matrices [91].

Combining (5.54) and (5.57), we obtain from Definition 5.3.1

> ei Crr(v)

’YKL - di(Z1
|A“ g)\ (2) +ZU€ACKL( )

(5.60)

where Cr(v) is defined in Eq. (5.24). Noting that log >1foralveV

( )
as argued above, we have Ckr(v) > 0 for all v € V. Given any A, B C V, one
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can view the lower bound obtained in (5.60) as a function of ) _; Cxr(v), where
|A| minyey Crep(v) < Y weiCOrr(v) < |A| max,ey Cr(v). Moreover, noting that

log i\h(él)) > 0 (since X1 — A\ (31)1, = 0 [91]), one can then show that the lower

bound in (5.60) (as a function of ) _; Ckr(v)) is monotone nondecreasing, which
implies
|A| min,ey Ciep(v)

VKL 2
|Allog {54 + | A minyey Crep (v)

mlnvev CKL( )

log/\ )) + mingey Cxp (v )

(5.61)

Next, supposing B = (), one can show, using similar arguments to those above,

that (5.61) holds. This completes the proof of the proposition. |

5.7.4 Proof of Proposition 5.4.3

Noting that the measurement vector X € R" satisfies (5.21), we see from Eq. (5.7)
that for all p € {0,1}", f;p(-) can be split into two terms:

fio(w) = fp(w) + fip(w), (5.62)

where
Fip() & S (01()" (21(w) " 01(p), (5.63)

and

1

Fhp() 2 Str((So(n) ™ S1(m) + 5tr((Za() " Sol1)

(2
%w )7 (o)) 01 (1) — lsupp()]. (5.64)

Denote the submodularity ratios of f9,(-) and f},() as 79, € Rso and v}, € Ry,

respectively. Noting the form of f9,,() given in Eq. (5.63), we see from Proposition

An(21)
dl(zl) :

5.4.1 that f9,(-) is monotone nondecreasing with r4, > Moreover, one can
show that the sum of monotone nondecreasing functions is monotone nondecreasing,
and the submodularity ratio of f;p(-) satisfies y;p = min{~9,,v},}. Thus, we aim

to show that f},(-) is also monotone nondecreasing and lower bound r} .
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Similarly to the proof of Proposition 5.4.2, we first show that f},(-) is monotone
nondecreasing, i.e., forall B CV (B # () and B # V) and for all v € V\ B, f},({v}U
B)— fi5(B) > 0 holds. Denote B £ {v}UB, and let ¥, = Cov(X(B), X (v)) € RIZI
be the cross-covariance of X (B) and X (v) under hypothesis H;. Noting that ¥, € ST} |

is diagonal from Assumption 5.4.1, we have from Eq. (5.64) the following:

2(f3p(B) = fip(B))
BP0 L
S S (BB S(B) — (S (B) Ba(B). (5:)

Note that ¥;(B) and Xo(B) can be partitioned as ¥, (B) = [Ezljiv) Zzl(g” ] and Xo(B) =

[EOO(”) 20(()3) } , respectively, which implies via the inverse formula for block matrices [91]

that

(El(B))_IZO(B) = (M1(B,)) 120 (v) .

* ((21(B))_IEO(B)+(21(B))glEO(B)} ) (5.66)

where

(Z1(B)5 = (21(B) ™ Za(Mi(B,v)) ™' 25, (Z:(B))

and M,(B,v) £ %i(v) — X%, (31(B))"'Sp,. It then follows from Egs. (5.65)-(5.66)

that

2(30(8) — £3o(B) = G 2o 4 (41(5,0) (o)
+tr((Z1(B)) ' Spu(Mi(B, 0)) 'S5, (31(B)) ' 50 (B))
4P 38

+ tr(S5, (51(B) " So(B) (B1(B)) " S (Mi (B,v) ™), (5.67)

where (5.67) uses M;(B,v) < ¥;(v) and the cyclic property of trace. Since the
function g(z) £ x + < L achieves its unique minimum on z > 0 at x = 1 with g(1) = 2,
?E”; + gg’gz; > 2, which implies via (5.67) that fi,({v}UB) — f1,(B) >0

Hence, we conclude that f},(-) is monotone nondecreasing.

we have

We now give a lower bound on 7} ,. Let us consider any A, B C V, where A\ B # ().
First, suppose B # (. We begin with lower bounding 3, 4\ 5 (fip{v} U B) —
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fin(B)). Denote A £ A\B, andlet ¥, ; 2 Cov(X(B), X(A)) € RIBXI4l be the cross-

covariance of X (B) and X (A) under hypothesis H;. Continuing with the arguments
leading to (5.67), we have the following:

2> (fip({v} UB) = fin(B))

(0:1(v)? | Si(v) | So(v)
i veA < 20(7}) ! EQ(’U) N El<v) :
* dl(lzl)tr(zgv(zl(B))120(B>(21(B))123v)) (5.68)
(01(v))* | Ei(v) | Bo(v)
{Z( RO 2)}
! ﬁtr(%@l@ )" Zo(B)(Z1(B)) " p4), (5.69)

where (5.68) follows from M;(B,v) < 3i(v) < di(¥;) for all v € V. To obtain
(5.69), we note that X5 = [0 ¥y |, where Xp,, = Cov(X(B), X (v;)) under
hypothesis Hy for all v; € A = {vy, ..., le‘}. Next, we upper bound (f}D(A UB)—
fip(B)). Denote B £ AU B, and let My(B,A) £ %1(A) — £T (51(B)) 'Sy,
Similarly, we obtain from Eq. (5.64) the following:

2 ((921522)) * ;;83 =2) +tr((51(B)) 1 %0(B)) — tr((B1(B)) ' 5(B))
- (wz(()) +;gg;—2)+tr((MA&A>>-120<A>)

+tr((20(B)) ' Spa(Mi(B, A) ST (1(B)) ' E0(B)) (5.70)

Fr(S 4 (Sa(B) S B) B S (B, A) ) (6T
< 30 (4 S ) 4 ()

+ tr(X7 1 (S0(B) ' So(B)(Z1(B) ' Sh4),  (5.72)

1
)‘n(zl)
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To obtain (5.70), we note from similar arguments to those for (5.66) that

(M1 (B,A)~150(A4) *

e
(Z2:(B)"(B) = (£1(B) "' So(B)+(S1(B)) 5 So(B) |

where

(B1(B))5" 2 (B1(B)) ' Spa(Mi(B, A))'SL;(Z0(B)

We obtain (5.71) from the cyclic property of trace. For (5.72), we first obtain
An(My(B, A)) > \,(21) from a similar chain of inequalities to that in (5.59), which
implies A\;((My(B,A))™!) < m
A (Po)tr(Py), VP, Py, € ST [92], which implies (5.72).

Combining (5.69) and (5.72), we have from Definition 5.3.1 the following:

Then, we use the trace inequality tr(PFP) <

(61 (v))? 31 (v) Yo (v)
1 dl(El) + ZUGA ( Eo(v) + Z(1)(11) T O( 2) (5.73)
Yip = pr- ) O10)? | %) | o) _ o\’ ‘
,\n 21 ZUEA ( o (v) + Yo (v) + A(Z1) )
where DY (A, B) € Ry is defined as
Dip(A,B) £ tr(SL :(31(B))"Se(B)(Z1(B))'Sg4),
for all A, B € V. Since Elg”; + gogzg > 2 as argued above, it implies §1§v; + /\n((zl)) >

g;—gvg + g?—g; > 2, where the first inequality follows from %; — A, (31)1, = 0 [91].
An (1)

Similarly, we have AON)

(5.73)

< 1. Supposing D} (A, B) > 0, one can then obtain from

()2 | Si() | So(v)
)\n(zl) ZvEA( Elo(v) + Z(lJ(U) + ¥1(v) 2>
7 G ()? | S | So()
Q) ex (Spy + 5o + ey — 2)
Tt (YB35 -2)
S1(v) | o)

(01 ()2
ZvéA( 6210(1,) T T aEn T 2)
implies (5.74). Moreover, using similar arguments to those for (5.74), one can show

}. (5.74)

Note that if DY, (A, B) = 0, we have v} > , which also

that
_((01(0)? | Ea(v) (v) (01()* | Z1(v) (v)
> vei o) T Sot0) T Sato) 2) S0t T 5ot T 5i00)
O B0 - S0 o) 2 MR B - S 5 = OO
>vei ( o) T S0 T o) ) e o) T S0 T o)
(5.75)
where Cp is defined by Eq. (5.26). Combining (5.74)-(5.75), we obtain
An (2
vyp = min{Cyp, ( 1)} (5.76)

dy(3)
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Next, suppose B = (). Using similar arguments to those above, one can show
(G1)? | B1(v) | Sg(v)

EUEA( S (v) +Eo(v)+21(v) 2)
(01)? | =1(v) | Zev)

veA( So() T So(0) T An(E1) 2)

that 71, > > Cyp, which also leads to (5.76). Recalling

Yoy > ;\&(;1)), (5.25) follows from ~;p = min{~9,,v},}, completing the proof of the

proposition. |

5.7.5 Proof of Proposition 5.4.4

Proof of (a): Noting that the measurement vector X € R" satisfies (5.21), we see
from Eq. (5.8) that for all € {0,1}", fgp(i) can be written as

fep(r) = fap() + fp (1), (5.77)

where
P () 2 10,00 (Sol) + Ea(n)) (1), (578)

and
P 2 L 1og 9etGZ000 5% ()
BD 27 /det(So(p)) det (3 ()

Denote the submodularity ratios of f$,(-) and f55(+) as v%, € Rso and v5p € R,

(5.79)

respectively. Similarly to the arguments in the proof of Proposition 5.4.3, we note

An(Z1)
di(Z1) °

Moreover, the submodularity ratio of fpp(-) satisfies ygp = min{v%,,v5p} We

from Proposition 5.4.1 that f%,(-) is monotone nondecreasing with %, >

thus focus on proving f55(+) is monotone nondecreasing and lower bounding 75 .
We first show that f5,(-) is monotone nondecreasing, i.e., for all B CV (B # ()

and B # V) and for all v € V\ B, fsp,({v} UB) — f5,(B) > 0 holds. Let Y5, =

Cov(X(B), X(v)) € RIBI be the cross-covariance of X (B) and X (v) under hypothesis

Hy, and let $(B) £ %(ZO(B)+21(B)), where we note that X({v}UB) = [122(7;) %;B%]
2 v
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since Xy € ", is diagonal from Assumption 5.4.1. Denoting B = {v} U B, we then
have from Eq. (5.79) the following:

4(f5p(B) — f5p(B))
. det(%(B)) det(S(B)) det(S(B))
= 2108 155 (B)) T det(33(B)) det (51 (B))

= 2log (2(v) — EEEU(E(B))TBQ))

— log (30(v)(Z1(v) — X5, (51(B) "' Zv)) (5.80)

£(Zo(v) + 1(v) — 5, (25(B)) '5p,)”

So(v)(E1(v) — X5, (51(B)) ' 8py)

where (5.80) follows from the identity in (5.53). Noting that Xo(B)+ X1(B) = ¥1(B)

implies (3o(B) + X1(B))™" = (X4(B))! [91], we have XL (3o(B) + X1(B)) " '2p, <
Y% (31(B))"'¥p,. Hence, we see from (5.81) that

(5.81)

= log

i(zo(v) + %1 (v) - EEU(EI(B))AZBUY >0

HbnB) = TinlB)) 2108 55 1) 5, 00) = S (Su(B) 2m)

where the second inequality follows from the inequality % >4 for all x,y € Ry,.
Thus, we conclude that f4,(+) is monotone nondecreasing.
We now lower bound 5. Let us consider any A, B C V, where A\ B # (). First,

supposing B # (), we have from (5.81)

4 (fhp({} UB) = fp(B)) = Y Dip(B,v). (5.82)

veA veEA

where

L(S0(0) + S (v) — £5,25(B) ' Sp,)°
So(v)(Z1(v) — XL, (21(B)1Sp,) >0, (5.83)

for all B C V and for all v € V' \ B. We then upper bound (f3,(AU B) — f5(B)).
Denote B2 AUB and A2 A\ B. Let £, ; £ Cov(X(B), X(A)) € RBX4l be the

DIBD(B7 U) é IOg
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cross-covariance of X (B) and X (A) under hypothesis H;. Similarly, we have from

Eq. (5.79) the following:

4(f5p(B) — fp(B))
B det(3(B)) det(Zo(B)) det(Z1(B))
=280 =B) T det(So(B)) det(% (B)
= 2logdet (X(A) — I (2(B))'Z55)
—log det (Zo(4)(31(A) = L 1(Z1(B) ' S5,4)) (5.84)
< 2log H (Z(v) = Z5.,(3(B) "' E50)
—log det (Zo(4)(1(A) = L ;(%1(B) ' Sp,4)) (5.85)
[Tei (S(0) = ¥5,(2(B)'S5.)°

[Toei (Bo(0)(Z1(v) = X, (51(B) ' Zpv))

+ 1o iea (o) (1(0) - zgv@ (B) 'S5.))
og =
det (So(A)(Z1(A) — XL (51(B)) ' Zp2))
I i(Zo(v) + 21 (v) — E£v<22( )) )2
_%1 S s ()~ 55, (51 (B) 155
HUEA <Z (v) - £5, (2 lzBU>
T G (5 () ST (z ) (5.86)
 1(B0(0) + 31(v) — 25, (25(B)) ' 8p.)” dl(z)
<2 et ) g, B, A Ey O

where (5.84) follows from the identity in (5.58). To obtain (5.85), we first use the
Hadamard’s inequality det(P) < Piy--- P, for any P € S, [91], and then note
that the ith diagonal element of the matrix (E(fl) - EEA(E(B))AEBA) is given by
(B(v;) — X3, (5(B)) ' Spy, ), where X, = Cov(X(B), X (v;)) under hypothesis H,
for all v; € A = {vy,... , 04} To obtain (5.86), we note that X, € S, is diagonal
from Assumption 5.4.1, which implies det(%y(A)) = [, Zo(v). To obtain (5.87),
we first note that %(v) — X% (31(B)) 'Ep, < 1(v) < di(5) for all v € A. We
then use a similar chain of inequalities to that in (5.59), and obtain A, (X;(A) —
ST (S1(B)'S54) > Au(E1), which implies det (S1(A) — X7 (S1(B)) "' S,5)) >
()AL (5.87) now follows.
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Combining (5.82) and (5.87), we obtain from Definition 5.3.1

V> dZEveA Dgp(B,v)
[Allog &5 + e s Dhp(B,v)
In the following, we will show that DIBD(B,U) > min{C%,,Cyp} for all B C V
(B # 0 and B # V) and for all v € V \ B, where C%,, and C},, are given by
Eq. (5.28) and Eq. (5.29), respectively. This lower bound on Dk, (B,v) together

(5.88)

with similar arguments to those for (5.61) will imply via (5.88) the following:

CB D

(5.89)
IOg An (El) + CvBD

VBD

where Cpp = min{C%,, C5p}.
We now lower bound D}, (B, v). We first note from (5.83) that we can also write
DL, (B,v) as
S1(v) = X5, (25(B)) "' sy
T1(0) = S5, (54 (B)) S,
(So(v) = Ba(v) + X5, (22(B) 'S5,

DlBD<va) = log (

o)~ T (n(B) 5 ) O
Supposing ¥ g, = 0, we see from Eq. (5.90) that
DL (B, v) =log (1+ (Zo(v) — 21(7)))2) >0, (5.91)

420 (U)El (’U)
Moreover, we see that the following holds for all B C V and for all v € V' \ B:

Y1(v) — XL (25(B)) ' Sp,
El<'l}) — Egv(z}l(B))_lZBv
Y5, ((B1(B))™ = (2%(B)) ") Zp
%1 (v) = X5, (21(B)) 2B,
S5, (51(B) + Sa(B)(So(B) "1(B) 'S,

=1 Si0) ~ Sh 5 (B)) TS (5.92)

=1+

T
+<A1<21>>2 2 By 2By

1y EO+ 5w (5.93)
T Ei(v) = Z5,(54(B) 1Sk,
An(30) ET )
> 14 >\1(21)(>\n(20)+>\1(21))T Bv—B ’ (594)
21(0) = e YRS Be
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where (5.92) uses the matrix inversion lemma [91]:

(So(B) +S1(B) ™ = (51(B)™" = (S1(B) + S (B)(So(B) ' 5i(B))

To obtain (5.93), we first note ¥o(B) = A, (X0(B))I|5 [91], which implies (X¢(B))~! <
m[ 15|, which further implies, via the Cauchy interlacing theorem for positive
definite matrices [91], that (Xo(B))™" < 1 3= - Hence, (B)(Xo(B))™'%1(B) =
oy (B1(B))% Similarly, ¥,(B) = /\1(21>IIBI and (21(B))* = M((Z:(B))*) 5 =
(M (Z1(B)))* 15 = (M(X41))* 5. Combining the above arguments yields X;(B) +
S1(B)(Zo(B)IE1(B) = (Ar(h) + QDY o which leads to (5.93). Similarly,

An(Zo)
(5.94) follows from (X1(B))™" = 1 (2 71| Supposing X, # 0, it then follows from
Eq. (5.90) and (5.94) that

)\n(EO) T E
X (Z0) A1 (Zr) ' Bv—Bv

)\1 (21)21(1}> — ngsz

Dyp(B,v) > 1+ > COgp, (5.95)

Noting that ¥, (v) —¥% (31(B))'¥p, > 0 for all v € V\ B, we have CL,, > 1 by its

definition in Eq. (5.29). Since (5.91) (resp., (5.95)) holds for all B C V andv € V\ B

such that Xp, = 0 (resp., Xp, # 0), we conclude that D}, (B,v) > min{C%,,Csp}
forall BCV (B # 0 and B # V) and for all v € V \ B.

Next, suppose B = (). Using similar arguments to those above, one can show that

| Chp

TBD = di (2 ~
log )\711((211)) + CJOBD

, (5.96)

where C%, is defined by Eq. (5.31). Noting that C%,, > Cpp, it then follows from

(5.89) and (5.96) that
Csp

1
¥ >
BD log fl él) + CBD

for all A, B CV, which completes the proof of part (a).

Proof of (b): Following similar arguments to those for part (a), we will show
that DL, > min{C%,,Csp}, where C%,, and C%;, are defined in Eq. (5.31) and
Eq. (5.32), respectively. Consider any A, B C V, where A\ B # (. First, suppose
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B # 0. Given that ¥ = ¥ + Xg (Xg € S7), we will show that D, (B,v) > Ckp
forall BCV (B # () and B # V) and for all v € V\ B. We begin with the following;:
(Zo(v) — T4 (v) + 25, (25(B)) ' Ep,)”
4% (v) (Z1(v) = ZE,(Z1(B)) ' Zp0)
(S5(v) ~ £, (250(B) + B5(B)) "' Spu)”

=% (0)(51(0) — 5 S5 S) (5.97)
(Zs(v) - Zgu(zs(B)) g’

= 15000) (510) — 1y Sh S (598)

(An(E )) (5.99)

>
~A45(v) (Z1(v) — m

355 0)
where (5.97) follows from similar arguments to those for (5.94). To obtain (5.98), we
note that Yg(B) = 2%¢(B)+Xs(B), which implies (3g(B))™! = (2X0(B)+Xs(B))™*
91]. For (5.99), we first note that ¥, € S, is diagonal from Assumption 5.4.1,
which implies Yg({v} U B) = [EES;:) ;;%vg)], where ¥p, = Cov(X(B), X (v)) under
hypothesis H;. We then use a similar chain of inequalities to that in (5.59), and
obtain A, (Xs(v) — X%, (2s(B)) ' Spy) > A(Ss). Moreover, using similar arguments

to those leading to (5.94), we have

_ )\n(z ) T
%1 (v) — X5,(25(B)) ' Ep, S T O 5 T (5rT) 2 BBy

1+
EEUEBU

51(0) ~ 55,(5i(B) Tpy ~ | Bulv) - (5.100)

1
(1)
Noting that (5.99) and (5.100) hold for all B C V and for all v € V\ B, it then follows

from Eq. (5.90) that D5, (B,v) > CLp, for all B C V and for all v € V' \ B. Hence,
we conclude that D5, (B,v) > CL, for all BCV (B # () and B # V), which implies
1 Chp

YBD = .
log & /\ (211) +Chp

(5.101)

Next, suppose B = (). Using similar arguments to those above, one can obtain

VLo > . (5.102)
Bb log f\h(él) +C%,

It then follows from (5.101) and (5.102) that
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where Cpp = min{C%,,CL,}, for all A, B C V. This completes the proof of part
(b). |
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6. NEAR-OPTIMAL DATA SOURCE SELECTION FOR
BAYESIAN LEARNING

6.1 Introduction

In this chapter, we extend our analysis for the binary hypothesis testing in Chap-
ter 5 to a general setting where the true state of the world comes from a set that can
have cardinality greater two. Under this setting, a central task in machine learning is
to learn the true state of the world based on data streams provided by data sources.
Here, we do not restrict ourselves to measurements (i.e., data streams) coming from
sensors, since in practice the data streams can come from a variety of sources, in-
cluding experiment outcomes [23], medical tests [24], and sensor measurements [5],
etc.

A classical method to tackle this task is Bayesian learning, where we start with a
prior belief about the true state of the world and update our belief based on the data
streams from the data sources (e.g., [25]). In practice, we need to pay a cost in order
to obtain the data streams from the data sources; for example, conducting certain
experiments or installing a particular sensor incurs some cost that depends on the
nature of the corresponding data source. Thus, a fundamental problem that arises
in Bayesian learning is to select a subset of data sources with the smallest total cost,
while ensuring a certain level of the learning performance based on the data streams
provided by the selected data sources.

In this chapter, we focus on a standard Bayesian learning rule that updates the
belief on the true state of the world recursively based on the data streams. The
learning performance is then characterized by an error given by the difference between
the steady-state belief obtained from the learning rule and the true state of the world.

Moreover, we consider the scenario where the data sources are selected a priori before
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running the Bayesian learning rule, and the set of selected data sources is fixed over
time. We then formulate and study the Bayesian Learning Data Source Selection
(BLDS) problem, where the goal is to minimize the cost spent on the selected data
sources while ensuring that the error of the learning process is within a prescribed

range.

Related Work

In [93] and [94], the authors studied the data source selection problem for Bayesian
active learning. They considered the scenario where the data sources are selected
in a sequential manner with a single data source selected at each time step in the
learning process. The goal is then to find a policy on sequentially selecting the data
sources with minimum cost, while the true state of the world can be identified based
on the selected data sources. In contrast, we consider the scenario where a subset
of data sources are selected a priori. Moreover, the selected data sources may not
necessarily lead to the learning of the true state of the world. Thus, we characterize
the performance of the learning process via its steady-state error.

The problem studied in this chapter is also related but different from the problem
of ensuring sparsity in learning, where the goal is to identify the fewest number of
features in order to explain the phenomena in a given set of data [83,95].

Finally, as we mentioned above, our problem formulation also falls into the class of
the sensor selection problems that have been studied in previous chapters. In general,
the goal of these problems is either to optimize certain (problem-specific) performance
metrics of the estimate associated with the measurements of the selected sensors while
satisfying the sensor selection budget constraint, or minimize the cost spent on the

selected sensors while the estimation performance is within a certain range.
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Summary of Results

In this chapter, we first formulate the Bayesian Learning Data Source Selection
(BLDS) problem, and show that the BLDS problem is NP-hard. Next, we show that
the BLDS problem can be transformed into an instance of the submodular set covering
problem studied in [32]. The BLDS problem can then be solved using a standard
greedy algorithm with approximation guarantees, where the query complexity of the
greedy algorithm is O(n?), with n to be the number of all candidate data sources.
In order to improve the running times of the greedy algorithm, we further propose
a fast greedy algorithm with query complexity O(%In %), where e € (0,1). The fast
greedy algorithm also achieves comparable performance guarantees to those of the
standard greedy algorithm. Finally, we provide illustrative examples to interpret the
performance bounds obtained for the greedy algorithms applied to the BLDS problem,
and give simulation results.

The results presented in this chapter are available in a preprint [96].

6.2 The Bayesian Learning Data Source Selection Problem

In this section, we formulate the data source selection problem for Bayesian learn-
ing that we will study in this chapter. Let © = {6;,6,,...,0,,} be a finite set of possi-
ble states of the world, where m = |©|. We consider a set [n] of data sources that can
provide data streams of the state of the world. At each discrete time step k € Z>1, the
signal (or observation) provided by source i € [n] is denoted as w;;, € S;, where S; is
the signal space of source 7. Conditional on the state of the world § € ©, an observa-
tion profile of the n sources at time k, denoted as wy, = (Wi - vy Wng) € S1X XSy,
is generated by the likelihood function ¢(-|@). Let ¢;(-|#) denote the i-th marginal of
0(-|0), which is the signal structure of data source i € [n]. We make the following

assumption on the observation model (e.g., see [97-100]).

Assumption 6.2.1 For each source i € [n|, the signal space S; is finite, and the like-

lihood function (;(-|0) satisfies l;(s;|0) > 0 for all s; € S; and for all 0 € ©. Further-
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more, for all § € ©, the observations are independent over time, i.e., {w;1,wiza, ...}
is a sequence of independent identically distributed (i.i.d.) random wvariables. The
likelihood function is assumed to satisfy €(-|0) = [[;_, t:(:|0) for all @ € ©, where
0;(+|0) is the i-th marginal of ¢(-]0).

Consider the scenario where there is a (central) designer who needs to select a
subset of data sources in order to learn the true state of the world based on the ob-
servations from the selected sources. Specifically, each data source i € [n] is assumed
to have an associated selection cost h; € Rsg. Considering any Z £ {ni,ny,...,n,}
with 7 = |Z|, we let h(Z) denote the sum of the costs of the selected sources in Z, i.e.,
h(T) & Emez B, Let wrp £ (Wny s -+ s Wno k) € Sny X +++ X S, be the observation
profile (conditioned on # € O) generated by the likelihood function ¢z(:|6), where
07(-10) = 11—, ln;(-|0). We assume that the designer knows ¢;(:|0) for all # € © and
for all i € [n], and thus knows ¢7(-|f) for all Z C [n| and for all # € ©. After the
sources are selected, the designer updates its belief of the state of the world using the
following standard Bayes’ rule:

o p0(0) T fr(wrj4110)
* oye0 #0(0p) TTio tr(worsal6y)

where uf,,(0) is the belief of the designer that 6 is the true state at time step k + 1,

WE (6) Vo € o, (6.1)

and po(0) is the initial (or prior) belief of the designer that 6 is the true state. We
take >y o p0(0) = 1 and p9(0) € Ry for all § € ©. Note that Y, o pt(0) = 1 for
all Z C [n] and for all k € Zs,, where 0 < pZ(6) < 1 for all § € ©. In other words,
pr(-) is a probability distribution over © for all k € Zs; and for all Z C [n]. Rule

(6.1) is also equivalent to the following recursive rule:

_ mp(0)lr(wrpea]0)
Zepee N%(QP)EI(WI,/%H |0,)

with 2 (0) 2 ue(6) for all Z C [n]. For a given state § € O, we define the set of

WE (6) ) (6.2)

observationally equivalent states to 6 as

Fy(I) & arg Hé)iﬂ Drcr,(02(:10,)|1€2(-10)),
€



128

where Dk, (¢2(+10,)[/¢z(:|0)) is the Kullback-Leibler (KL) divergence between the like-
lihood functions ¢z(-|6,) and ¢z(-|#). Noting that Dy (¢z(-|0)||¢z(:|¢)) = 0 and that
the KL divergence is always nonnegative, we have 6 € Fy(Z) for all # € © and for all

Z C [n]. Equivalently, we can write Fy(Z) as
F@(I) = {9;) €cO: £I<SZ|€p) = £I<Sz|0>,VSI € Sz}, (63)

where Sz = S,, x --- x S,_. Note that Fy(Z) is the set of states that cannot be
distinguished from # based on the data streams provided by the data sources indicated
by Z. Moreover, we define Fp()) = ©. Noting that ¢7(:|0) = []i_, ¢s,(-|0) under
Assumption 6.2.1, we can further obtain from Eq. (6.3) the following:
Fy(T) = () Folna), (6.4)
n€T
for all Z C [n] and for all § € O©. Using similar arguments to those for Lemma 1

in [101], one can show the following result.

Lemma 6.2.2 Suppose the true state of the world is 0*, and po(6) > 0 for all 6 € O.

For all T C [n], the rule given in (6.1) ensures: (a) limy_,o pz(6,) = 0 almost
surely (a.s.) for all 0, ¢ Fp(Z); and (b) limy_,o pt(0,) = % a.s. for all
0*

0, € Fp<(T), where Fy-(T) is given by Eq. (6.4).

Consider a true state 8* € © and a set Z C [n] of selected sources. In order
to characterize the (steady-state) learning performance of rule (6.1), we will use the

following error metric (e.g., [102]):

L.
eo-(T) = 5 lim [l = To-l, (6.5)

/
where i £ |1 Z(0;) -+ pE(6)|, and 1o € R™ is a (column) vector where the

element that corresponds to #* is 1 and all the other elements are zero. Note that

2|l iE =1+ |1 is also known as the total variation distance between the two distributions

pE and 1g- (e.g., [103]). Also note that eg-(Z) exists (a.s.) due to Lemma 6.2.2. We
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then see from Lemma 6.2.2 that e« (Z) = 1 — % holds almost surely. Now,
EFgx
let us define
11o(6;)
es (I) 21— Vo, € O, (6.6)
o Zengp(z) TG

which represents the (steady-state) total variation distance between the designer’s
belief 4} and 15, when 6, is the true state of the world, for all 6, € ©. We then define

the Bayesian Learning Data Source Selection (BLDS) problem as follows.

Problem 6.2.3 (BLDS) Consider a set © = {6y,...,0,,} of possible states of the
world; a set [n] of data sources providing data streams, where the signal space of
source i € [n] is S; and the observation from source i € [n] under state § € ©
is generated by 0;(-|0); a selection cost h; € Rso of each source i € [n]; an initial
belief 110(0) € Rxq for all 0 € © with ), g 110(0) = 1; and prescribed error bounds
0< Ry, <1 (Rgp € R) for all 6, € ©. The BLDS problem is to find a set of selected

data sources T C [n] that solves
el (6.7)

where e; (I) is defined in (6.6).

Note that the constraints in (6.7) capture the fact that the true state of the world
is unknown to the designer in general. In other words, for any set Z C [n] and for any
0, € ©, the constraint ej (Z) < Ry, requires the (steady-state) learning error e (Z)
to be upper bounded by Ry, when the true state of the world is assumed to be 0,.
Moreover, the interpretation of Ry, for 6, € © is as follows. When Ry, = 0, we see
from (6.6) and the constraint e (Z) < Ry, that Fy,(Z) = {0,}. In other words, the
constraint e (Z) < 0 requires that any 6, € ©\ {6,} is not observationally equivalent
to 6,, based on the observations from the data sources indicated by Z C [n]. Next,
when Ry, = 1, we know from (6.6) that the constraint ej (Z) < 1 is satisfied for all
7 C [n]. Finally, when 0 < Ry, < 1 and po() = = for all § € ©, where m = |6}, we

see from (6.6) that the constraint e; (Z) < Ry, is equivalent to |Fy,(Z)| < @, ie.,
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the number of states that are observationally equivalent to 6, should be less than or
equal to ﬁ, based on the observations from the data source indicated by Z C [n].
In summary, the value of Ry, in the constraints represents the requirements of the
designer on distinguishing state 6, from other states in ©, where a smaller value of
Ry, would imply that the designer wants to distinguish 6, from more states in © and
vice versa. Supposing Ry, = R for all §, € ©, where 0 < R <1 and R € R, we see

that the constraints in (6.7) can be equivalently written as maxy, ce €7(0,) < R.

Remark 6.2.4 The problem formulation that we described above can be extended to
the scenario where the data sources are distributed among a set of agents, and the
agents collaboratively learn the true state of the world using their own observations
and communications with other agents. This scenario is known as distributed non-
Bayesian learning (e.g., [100]). The goal of the (central) designer is then to select a
subset of all the agents whose data sources will be used to collect observations such
that the learning error of all the agents is within a prescribed range. More details

about this extension can be found in Section 6.4.

Next, we show that the BLDS problem is NP-hard via a reduction from the set
cover problem defined in Problem 6.2.5, which is known to be NP-hard (e.g., [41],
[104]).

Problem 6.2.5 (Set Cover) Consider a set U = {uy,...,uq} and a collection of
subsets of U, denoted as C = {C4,...,Cx}. The set cover problem is to select as few
as possible subsets from C such that every element in U is contained in at least one

of the selected subsets.

Theorem 6.2.6 The BLDS problem is NP-hard even when all the data sources have

the same cost, i.e., h; =1 for all i € |n].

Proof We give a polynomial-time reduction from the set cover problem to the BLDS

problem. Consider an arbitrary instance of the set cover problem as described in

Problem 6.2.5, with the set U = {uy,...,uq} and the collection C = {C4,...,Cy},
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where C;’s are subsets of U. Denote C; = {u,, ..., u;, } foralli € [k], where §; = |Cj|.
We then construct an instance of the BLDS problem as follows. The set of possible
states of the world is set to be © = {6y, ...,04.1}. The number of data sources is set
as n = k, where the signal space of source i is set to be S; = {0, 1} for all i € [k]. For
any source ¢ € [k], the likelihood function ¢;(-|0) corresponding to source i € [k] is set
to satisfy that ¢;(0]0;) = ¢;(1|6,) = %, 0i(010441) = 4:(10441) = % for all u, € U\ C},
and £;(0|0;,41) = % and £;(1|0;,41) = % for all u;, € Cj. The selection cost is set as
hi = 1 for all i € [k]. The initial belief is set to be p(6,) = 25 for all p € [d + 1].
The prescribed error bounds are set as Ry, = 0 and Ry, = 1 forallp € {2,...,d+1}.
Note that the set of selected sources is denoted as Z = {ny,...,n,} C [k].

Since Ry, = 1 for all p € {2,...,d + 1}, the constraint ej (T) < Ry, is satisfied
for all Z C [n] and for all p € {2,...,d + 1}. We then focus on the constraint
corresponding to ;. Letting Ry, = 0 and po(6,) = # for all p € [d + 1], the
constraint ej (Z) < Ry, is equivalent to [Fp, (Z)| < 1, where Fy, (Z) = (0, .7 Fo, (1)
with Fp, (n;) given by Eq. (6.3). Denote Fy (i) £ © \ Fp, (i) for all i € [k]. From
the way we set the likelihood function ¢;(-|¢) for source i € [k] in the constructed
instance of the BLDS problem, we see that Fy, (i) = {0;,+1,...,0i, 11} for all i € [k],
i.e., C; € C corresponds to Iy (i) for all i € [k]. Moreover, using De Morgan’s laws,

we have

Fi(Z) = (] Fo(m) =0\ (|J F, (). (6.8)

ni€T ni€T
Considering any Z = {ny,...,n,} C [k] with 7 = |Z|, we let Cz = {C,,,,...,Cy.}.
We will show that Z is a feasible solution to the given set cover instance (i.e., for any
u; € U, there exists C; € Cz such that u; € C;) if and only if Z is a feasible solution
to the constructed BLDS instance (i.e., the constraint ej (Z) < Ry, is satisfied).
Suppose 7 is a feasible solution to the given set cover instance. Since C; € C
corresponds to Fy (i) for all i € [k], we see that for any ¢, € {02,...,0441}, there
exists n; € 7 such that 0, € Iy (n;) in the constructed BLDS instance, which implies
U,z Fi, (ni) = {02, ..., 0as1}. Tt follows from (6.8) that Fy, () = ©O\{0s, ..., 0441} =
{61}, which implies that the constraint |Fp, (Z)| < 1 is satisfied, i.e., the constraint
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5, (Z) < Ry, is satisfied. Conversely, suppose Z is a feasible solution to the con-
structed BLDS instance, i.e., the constraint ej (Z) < Ry, is satisfied, which implies
|Fy,(Z)| < 1. Noting that 0, € Fy (Z) for all Z C [k]|, we have Fy,(Z) = {0,}. We
then see from (6.8) that (U, o7 Fy, (i) = {02,..., 0411}, ie., forall 0, € {0,..., 0411},
there exists n; € T such that 6, € Fg (n;). It then follows from the one-to-one cor-
respondence between C; and Fy (i) that for any u; € U, there exists C,, € Cz such
that u; € C,, in the set cover instance.

Since the selection cost is set as h; = 1 for all i € [k], we see from the above
arguments that Z* is an optimal solution to the set cover instance if and only if it is
an optimal solution to the BLDS instance. Since the set cover problem is NP-hard,

we conclude that the BLDS problem is NP-hard. [ |

6.3 Greedy Algorithms for the BLDS Problem

In this section, we consider a greedy algorithm for the BLDS problem and study

its performance guarantees. We first introduce the following definition.

Definition 6.3.1 ( [51]) A set function f : 2" — R is submodular if for all X C
Y C [n] and for all j € [n]\ Y,

SXU{H = f(X) 2 fFY U{i}) = f(Y). (6.9)

Equivalently, f : 2"l — R is submodular if for all X,Y C [n],
> (FX U} - f(X) 2 f(Y UX) = f(X). (6.10)
JEY\X

To proceed, note that the constraint corresponding to 6, in Problem 6.2.3 (i.e.,
(6.7)) is satisfied for all Z C [n] if Ry, = 1. Since py(,) > 0 for all 6, € ©, we can

then equivalently write the constraints as

Z po(0) < 1,@(%) , V0, € © with Ry, < 1. (6.11)
"Ry

Gngp (I) P
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Define F§(Z) £ © \ Fy,(Z) for all # € © and for all Z C [n], where Fy(Z) is given
by Eq. (6.4). Note that Fj§(Z) is the set of states that can be distinguished from 6,
given the data sources indicated by Z. Using the fact Y, ¢ po(f) = 1, (6.11) can be
equivalently written as

0
Z po(6) >1— %, Vo, € © with Ry, < 1. (6.12)
beks (T) T

Moreover, we note that the constraint corresponding to 6, in (6.12) is satisfied for all

ZCn]if1— L}Z’J <0, ie., Ry, > 1 — po(#,). Hence, we can equivalently write

I-Ry, =
(6.12) as

> pe®) =1- Ho(6p) v, € O,

6<Fy (1) a 1 — R,
where © £ {0, € © : 0 < Ry, <1— yi9(6,)}. For any Z C [n], let us define

fo, (D)2 D" po(6), V6, € 6. (6.13)

0cFg (1)

Noting that Fp,(0) = ©, i.e., Fg (0) = 0, we let fy,(0) = 0. It then follows directly

from (6.13) that fy, : 2"/ — R>g is a monotone nondecreasing set function.!

Remark 6.3.1 Note that in order to ensure that there exists T C [n] that satisfies
the constraints in (6.12), we assume that fy,([n]) > 1 — % for all 6, € ©, since

fo,(+) is nondecreasing for all 0, € ©.

Lemma 6.3.2 The set function fy, : 2"l — Ry defined in (6.13) is submodular for
all 0, € ©.

1A set function f : 2[" — R is monotone nondecreasing if f(X) < f(Y) for all X C Y C [n].




134

Proof Consider any Z; C Z, C [n] and any j € [n] \ Zo. For all Z C [n], we will
drop the dependency of Fy,(Z) (resp., Iy (Z)) on 6, and write F/(Z) (resp., F'°(Z))
for notational simplicity in this proof. We then have the following:

Jo,(Z1U{5}) = fo,(Z1)

= Z 1o(0) — Z f10(0)

vere(T1u{j}) 0eFe(T1)

= Z po(6) — Z 110(6) (6.14)
EF(Z1)UF<(5) 0cFe(Ty)

= > mo@ = > ml0). (6.15)
O(Fe(Z1)UFe(i)\F(Z1) geFe(j)\Fe(T1)

To obtain (6.14), we note F¢(Z U{j}) = O\ F(Z,U{j}) = ©\ (F(Z1)NF(j)), which
implies (via De Morgan’s laws) F¢(Z,U{j}) = F°(Z,)UF°(j). Similarly, we also have

fo,(L2U{j}) — fo,(Z2) = Z 110(0). (6.16)

0Fe(j)\F*(I2)

Since Z; C Iy, we have F°(j)\ F'°(Zy) C F°(j)\ F°(Z,), which implies via (6.15)-(6.16)

Jo, (T U{g}) = fo,(Th) = fo,(ZoU{j}) — fo,(T2).

Since the above arguments hold for all 6, € ©, we know from (6.9) in Definition 6.3.1
that fy, (-) is submodular for all 6, € ©. n

Moreover, considering any Z C [n], we define

MO(QP)
1 — Ry,

fo,(T) 2 min{fy,(Z),1 - } Vo, € 6, (6.17)

where fj, (Z) is defined in (6.13). Since fy, (-) is submodular and nondecreasing with

fo,(@) = 0 and fp,([n]) > 1 — %, one can show that fj (-) is also submodular

and nondecreasing with f; (0) = 0 and fy ([n]) =1 — %. Noting that the sum of

submodular functions remains submodular, we see that >, g fy (-) is submodular

and nondecreasing. We also have the following result.

Lemma 6.3.3 Consider any Z C [n]. The constraint Zeng () Ho(0) = 1 — %
P P

holds for all 6, € © if and only if > 6,0 16,(L) = g co fo,([n]), where fj (-) is
defined in (6.17).
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Proof Suppose the constraints Z@ngp(I) po(0) > 1 — ff(—gzz hold for all 6, € ©. Tt
follows from (6.17) that fy (Z) =1 — % for all 6, € ©. Noting that fy,([n]) >
1— % as argued in Remark 6.3.1, we have fép([n]) =1- % for all 6, € O,
which implies 3-y g fo,(Z) = >_ ca f5,([n]). Conversely, suppose >, o fy () =
> 6,c0f6,([n]), e, D2y co (fép(I) - (1- %)) = 0. Noting from (6.17) that
fo,(T) <1-— % for all Z C [n], we have f; () =1 — % for all 6, € O, i.e.,

fo,(Z) >1— % for all 6, € ©. This completes the proof of the lemma. u

Based on the above arguments, for any Z C [n], we further define

D)2 Y (0 = Y ming (@)1 - 2%y (6.18)
0,0 0,0 P
where fj (Z) is defined in (6.13). We then see from Lemma 6.3.3 that (6.7) in Prob-
lem 6.2.3 can be equivalently written as
min h(Z)
el (6.19)
s.t. 2(Z) = z([n]),
where one can see that z(-) defined in Eq. (6.18) is a nondecreasing and submodular
set function with z(()) = 0. Considering an instance of the BLDS problem, for any
Z C [n] and for any 0 € O, one can obtain Fz(f) (and F§()) in O(S|Z||O]) time,
where S £ max,,c7 |9;| with .S; to be the signal space of source n; € Z. Therefore, we
see from (6.13) and (6.18) that for any Z C [n], one can compute the value of z(Z) in
O(Sn|©]?) time.

Problem (6.19) can now be viewed as the submodular set covering problem studied
in [32], where the submodular set covering problem is solved using a greedy algorithm
with performance guarantees. Specifically, we consider the greedy algorithm defined
in Algorithm 6.3.1 for the BLDS problem. The algorithm maintains a sequence of
sets Z),Z,,...,Z] containing the selected elements from [n], where T € Z>;. Note
that Algorithm 6.3.1 requires O(n?) evaluations of function z(-), where z(Z) can be

computed in O(Sn|©|?) time for any Z C [n] as argued above. In other words, the

query complexity of Algorithm 6.3.1 is O(n?). We then have the following result
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from the arguments above (i.e., Lemmas 6.3.2-6.3.3) and Theorem 1 in [32], which
characterizes the performance guarantees for the greedy algorithm (Algorithm 6.3.1)

when applied to the BLDS problem.

Algorithm 6.3.1 Greedy Algorithm for BLDS
Input: [n], z : 2" — R, h; Vi € [n]

Output: 7,
1t 0,70 0
2 while 2(Z;) < z([n]) do
3 i € argmaxc,\ g w
4 LT e LUttt
5 T« t, I, Ig“

6: return 7,

Theorem 6.3.4 Let Z* be an optimal solution to the BLDS problem. Algorithm 6.3.1
returns a solution I, to the BLDS problem (i.e., (6.19)) that satisfies the following,
where I;, e ,Igﬂfl are specified in Algorithm 6.3.1.

20 =20 e — s !
() HE) < (1410 e (s o ST U () — 2(5) > 0T,

hjp (2(31)—2(0)) %
(b) h(Z,) < (1+1n hn(z(IgT‘lu{jTD—z(IgT‘l)))h(I )
(c) W(Zy) < (1+In 20020 (7,
(d) if 2(T) € Zso for all T C [n], K(Z,) < (M HA(Z*) < (1 + In M)A(Z*), where

2([n])—=(Zg )
M £ max;cy 2(4).

Note that the bounds in Theorem 6.3.4(a)-(c) depend on Z! from the greedy
algorithm. We can compute the bounds in Theorem 6.3.4(a)-(c) in parallel with
the greedy algorithm, in order to provide a performance guarantee on the output of
the algorithm. The bound in Theorem 6.3.4(d) does not depend on Z, and can be

computed using O(n) evaluations of function z(-).
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6.3.1 Fast greedy algorithm

Algorithm 6.3.2 Fast Greedy Algorithm for BLDS
Input: [n], z : 20" — Rog, h; Vi € [n], € € (0, 1)

Output: Z;
Lt 0,77 < 0)
2: d < maXe[) M
3. for (1=d; 7> %d; T4+ 7(l—¢)) do

4: for j € [n] do

5 s > 7 then

6: I ThU{j} t et +1
T: if 2(Z}) = 2([n]) then

8: Tt Iy I}

9: return 7,

10: T<—t, Ty < I

11: return Z;

We now give an algorithm (Algorithm 6.3.2) for BLDS that achieves O(%In2)
query complexity for any ¢ € (0, 1), which is significantly smaller than O(n?) as n
scales large. In line 3 of Algorithm 6.3.2, hyax =S maxe(n j and Amyin =S minep h;.
While achieving faster running times, we will show that the solution returned by
Algorithm 6.3.2 has slightly worse performance bounds compared to those of Algo-
rithm 6.3.1 provided in Theorem 6.3.4, and potentially slightly violates the constraint
of the BLDS problem given in (6.19). Specifically, a larger value of € in Algorithm 6.3.2
leads to faster running times of Algorithm 6.3.2, but yields worse performance guaran-
tees. Moreover, note that Algorithm 6.3.1 adds a single element to Z, in each iteration
of the while loop in lines 2-4. In contrast, Algorithm 6.3.2 considers multiple candi-

date elements in each iteration of the for loop in lines 3-9, and adds elements that
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satisfy the threshold condition given in line 5, which leads to faster running times.

Formally, we have the following result; the proof is included in Section 6.6.1.

Theorem 6.3.5 Suppose Z‘:‘: < nf holds in the BLDS instances, where hmax =
maxXe(n] lj, Amin = Minjep) by, and H € R is a fized constant. Let T* be an optimal
solution to the BLDS problem. For any e € (0,1), Algorithm 6.3.2 returns a solution
Ty to the BLDS problem (i.e., (6.19)) in query complexity O(*In?) that satisfies

2(Zy) > (1 —e€)z([n]), and has the following performance bounds, where Ifﬁl is given
in Algorithm 6.3.2.

(a) h(Zy) < 7 (14 In S (T

"),
)
(b) if 2(T )ez>0 for all T C [n], h(Zy) < 7= (1 4 In2([n])) h(Z*).

Remark 6.3.6 The threshold-based greedy algorithm has also been proposed for the
problem of maximizing a monotone nondecreasing submodular function subject to a
cardinality constraint (e.g., [105]). The threshold-based greedy algorithm proposed
in [105] improves the running times of the standard greedy algorithm proposed in [51],
and achieves a comparable performance guarantee to that of the standard greedy algo-
rithm in [51]. Here, we propose a threshold-based greedy algorithm (Algorithm 6.3.2)
to solve the submodular set covering problem, which improves the running times
of the standard greedy algorithm for the submodular set covering problem proposed
in [32] (i.e., Algorithm 6.3.2), and achieves comparable performances guarantees as

we showed in Theorem 6.3.5.

6.3.2 Interpretation of Performance Bounds

Here, we give an illustrative example to interpret the performance bounds of
Algorithm 6.3.1 and Algorithm 6.3.2 given in Theorem 6.3.4 and Theorem 6.3.5,
respectively. In particular, we focus on the bounds given in Theorem 6.3.4(d) and

Theorem 6.3.5(b). Consider an instance of the BLDS problem, where we set po(6,) =

L for all §, € © with m = [B]. In other words, there is a uniform prior belief
on each state in © = {6,...,0,,}. Moreover, we set the error bounds Ry, = %
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for all 0, € ©, where R € Z>o and R < m — 1. We then have © = O, where
©={0,€0:0< Ry <1—po(d,)} Recalling the definition of z(-) in Eq. (6.18),

for any 7 C [n], we define

Z(Z) £ m(m - R)2(Z) =m(m—R) Y _ f; (I). (6.20)

One can check that 2/(Z) € Zs for all Z C [n]. Moreover, one can show that (6.19)
can be equivalently written as
min h(Z)
e (6.21)
s.t. 2/(T) = Z'([n]).
Noting that M’ £ max;ep, 2'(j) < m*(m — R) from (6.20), we then see from Theo-
rem 6.3.4(d) that applying Algorithm 6.3.1 to (6.21) yields the following performance
bound:

nz,) < (3 %)h(I*) < (1+ W MYA(T?) < (1 + 2lnm + In(m — R)A(T?). (6.22)

Similarly, since 2’([n]) < m?(m— R) also holds, Theorem 6.3.5(b) implies the following
performance bound for Algorithm 6.3.2 when applied to (6.21):

1
1—c¢

h(Z;) < %_6(1 +In2'([n]))h(Z*) < (1+2Inm+In(m — R))h(Z*), (6.23)

where € € (0,1). Again, we note from Theorem 6.3.5 that a smaller value of € yields
a tighter performance bound for Algorithm 6.3.2 (according to (6.23)) at the cost of
slower running times. Thus, supposing m and e are fixed, we see from (6.22) and
(6.23) that the performance bounds of Algorithm 6.3.1 and Algorithm 6.3.2 become
tighter as R increases, i.e., as the error bound Ry, increases. On the other hand,
supposing R and € are fixed, we see from (6.22) and (6.23) that the performance
bounds of Algorithm 6.3.1 and Algorithm 6.3.2 become tighter as m decreases.
Finally, we note that the performance bounds given in Theorem 6.3.4 are worst-
case performance bounds for Algorithm 6.3.1. Thus, in practice the ratio between a

solution returned by the algorithm and an optimal solution can be smaller than the
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ratio predicted by Theorem 6.3.4. Nevertheless, there may also exist instances of the
BLDS problem that let Algorithm 6.3.1 return a solution that meets the worst-case
performance bound. Moreover, instances with tighter performance bounds (given by
Theorem 6.3.4) potentially imply better performance of the algorithm when applied to
those instances, as we can see from the above discussions and the numerical examples
that will be provided in the next section. Therefore, the performance bounds given in
Theorem 6.3.4 also provide insights into how different problem parameters of BLDS
influence the actual performance of Algorithm 6.3.1. Similar arguments also hold for

Algorithm 6.3.2 and the corresponding performance bounds given in Theorem 6.3.5.

6.3.3 Numerical examples

In this section, we focus on validating Algorithm 6.3.1 and the performance bounds
provided in Theorem 6.3.4 using numerical examples. First, the total number of data
sources is set to be 10, and the selection cost h; is drawn uniformly from [10] for all
i € [n]. The cost structure is then fixed in the sequel. Similarly to Section 6.3.2, we
consider BLDS instances where 119(6,) = = for all 6, € © with m =[], and Ry, = £
for all 0, € © with R € Z-, and R < m — 1. Specifically, we set m = 15 and range
R from 0 to 13. For each R € {0,1,...,13}, we further consider 500 corresponding
randomly generated instances of the BLDS problem, where for each BLDS instance
we randomly generate the set Fy (i) (i.e., the set of states that can be distinguished
from 6, given data source i) for all ¢ € [n] and for all 6, € ©.2 In Fig. 6.1, we plot
histograms of the ratio h(Z,)/h(Z*) for R = 1, R = 5 and R = 10, where Z, is the
solution returned by Algorithm 6.3.1 and Z* is an optimal solution to BLDS. We

2Note that in the BLDS problem (Problem 6.2.3), the signal structure of each data source i € [n]
is specified by the likelihood functions ¢;(-|6,) for all 8, € ©. As we discussed in previous sections,
(6.7) in Problem 6.2.3 can be equivalently written as (6.19), where one can further note that the
function z(-) does not depend on any likelihood function ¢;(:|6,), and can be (fully) specified given
Fyg (i) for all i € [n] and for all 6, € ©. Thus, when constructing the BLDS instances in this section,

we directly construct Fy (i) for all ¢ € [n] and for all §, € © in a random manner.
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see from Fig. 6.1 that Algorithm 6.3.1 works well on the randomly generated BLDS
instances. Moreover, we see from Fig. 6.1 that as R increases, Algorithm 6.3.1 yields

better overall performance for the 500 randomly generated BLDS instances.

Count
oo
S

Count

10 11 12 13 14 15 16 RN 1.2 1.4 ; 70 11 12 13 14 15 16
h(Zg)/h(L") h(Zg)/h(L") h(Zg)/h(L")

(a) R=1. (b) R=5. (¢) R = 10.

Fig. 6.1. Histograms of the ratio h(Z,)/h(Z*).
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Fig. 6.2. Performance bound for Algorithm 6.3.1 given by Theorem 6.3.4(d).

Now, from the way we set po(6,) and Ry, in the BLDS instances constructed
above, we see from the arguments in Section 6.3.2 that the performance bound for
Algorithm 6.3.1 given by Theorem 6.3.4(d) can be written as h(Z,) < (1+In M")h(Z*),
where M’ = max;cp, 2'(j) and 2'(-) is defined in (6.20). Thus, in Fig. 6.2, we plot
the performance bound of Algorithm 6.3.1, i.e., 1 + In M’, for R ranging from 0
to 13. Also note that for each R € {0,1,...,13}, we obtain the averaged value of
1+41In M’ over 500 random BLDS instances as we constructed above. We then see from
Fig. 6.2 that the value of the performance bound of Algorithm 6.3.1 decreases, i.e.,
the performance bound becomes tighter, as R increases from 0 to 13. The behavior of

the performance bound aligns with the actual performance of Algorithm 6.3.1 as we
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presented in Fig. 6.1, i.e., a tighter performance bound potentially implies a better

overall performance of the algorithm on the 500 random BLDS instances.

6.4 Extension to Non-Bayesian Learning

Let us consider a scenario where there is a set of agents, denoted as [n], who wish
to collaboratively learn the true state of the world. The agents interact over a directed
graph G = ([n],€), where each vertex in [n] corresponds to an agent and a directed
edge (j,7) € € indicates that agent ¢ can (directly) receive information from agent j.
Denote N; 2 {j : (j,i) € £,j # i} as the set of neighbors of agent i. Suppose each
agent has an associated data source with the same observation model as described in
Section 6.2. Specifically, the observation (conditioned on the state § € ©) provided
by the data source at agent ¢ at time step k € Z>; is denoted as w;;, € 5;, which is
generated by the likelihood function ¢;(:|0). Each agent i € [n] is assumed to know
?;(-|0) for all € ©. Similarly, we consider the scenario where using the data source of
agent i € [n] incurs a cost denoted as h; € Ry for all ¢ € [n], and there is a (central)
designer who can select a subset Z C [n| of agents whose data sources will be used
to collect observations. We assume that the designer knows ¢;(+|¢) for all i € [n] and
for all 0 € ©. After set Z C [n] is selected, each agent i € [n] updates its belief of the
state of the world, denoted as ulIk(), using the following distributed non-Bayesian

learning rule as described in [100]:

— H?zl(:uik(m)aijéi(wi,k-&-l|Q)
2g,c0 T (154 (0p)) 59 i (wi g1 0)

for all § € ©, where yif, () is the belief of agent ¢ that 6 is the true state at time

ﬂiI,kJrl(‘g)

(6.24)

step k when the set of sources given by Z C [n] is selected, and a;; is the weight that
agent i € [n] assigns to an agent j € N;U{i}. Specifically, for any two distinct agents
i, € [n], a;; > 0 if agent ¢ receives information from agent j and a;; = 0 otherwise,
where ZjeMu{i} a;; = 1. Note that if agent ¢ ¢ Z, i.e., the data source of agent 7 is
not selected to collect observations, we set ¢;(s;|6,) = ¢;(s;|6,) for all 6,,6, € © and

for all s; € S;. Similarly, for any i € [n], the initial belief is set to be pf((6) = i 0(0)
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for all Z C [n] and for all § € ©, where ), g ti0(0) = 1 and p;0(f) € R for all
0 € ©. We then have from (6.24) that Y, g 7 (0) = 1 and 0 < pf,(6) < 1 for all
k € Zsg, for all # € © and for all Z C [n]. Moreover, for a given true state 0 € ©,
we define Fy(i) = {6, € © : (;(s:]0,) = li(s;]0),Vs; € S;} for all i € [n], and similarly
denote Fp(Z) = (), ez Fo(ni), where we note that Fy(0) = ©, and 0 € Fp(Z) for all
0 € © and for all Z C [n]. We have the following result.

Lemma 6.4.1 Consider a set [n] of agents interacting over a strongly connected
graph G = ([n],€).2 Suppose the true state of the world is 6%, p;o(9) > 0 for all
i € [n] and for all 6 € ©, and a; > 0 for all i € [n] in the rule given in (6.24). For

any T € [n], the rule given in (6.24) ensures that (a) limy_o 1171, (0,) = 0 a.s. for all

* - : [T5—1 15,0(09)™
Op & Fr(0%) and for all i € [n], and (b) limy_,o0 117 1(0y) = 296p1(9*>%§:1uj,o<0>”j a.s.
T
for all'i € [n] and 0, € Fz(0*), where 7 = [Wl 7777} satisfies 7T A = 7 and

7|1 =1, and A € R™" is defined such that A;; = a;; for alli,j € [n].

Proof We begin by defining the following quantities for all Z C [n], for all i € [n]
and for all k € Z>:

pi(0) li(wik+1]0)

pi s (67) Ci(wi j+1107)°
where 67(0) = 6;0(0) = In : f;)(’((ei)) for all Z C [n]|. For any Z C [n], we consider an
agent i € [n] and 60, ¢ Fy-(Z). Following similar arguments to those for Theorem
#fk(ep) o
TGO
0 as. Since 0 < pf(0) < 1 for all @ € © and for all k € Zxo, it follows that
HZ'I,k(ep)
11, (0%)
limy, o0 471 (0p) = 0 a.s. This proves Part (a).

=

67,(6) £ 1n and 0, 41(0) =1 (6.25)

1 in [100], we can obtain that limy_,. 5fk(9p) = —00 a.s., i.e., limg_,o

limg_ o0 > limy o0 17 4(6) > 0, which implies 0 < limy o0 17, (6,) < 0 ass., ice.,

We then prove Part (b). For any Z C [n|, we now consider an agent ¢ € [n] and
6, € Fy-(Z). Based on the definition of Fy(Z), we note that o; 41(0,) = 0,Vk € Z>y.
We then obtain from (6.24) the following:

O 11(0g) = Adg (6,).

3A directed graph G = ([n], £) is said to be strongly connected if for each pair of distinct vertices

1,7 € [n], there exists a directed path (i.e., a sequence of directed edges) from j to i.
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T

where 67 (6,) = [511k(9q) .o 6L,(6,)| - Moreover, we have
]}g{}o 07, (0,) = (kh—>Holo AF)80(8,) = 17" G (8y), (6.26)

where the last equality follows from the fact that A is an irreducible and aperiodic
stochastic matrix based on the hypotheses of the lemma. Simplifying (6.26), we

obtain
lim ufk(eq) B H?:l 145,0(04)™
k—o0 Mzk(e*) H?:l fj0(6*)™
Summing up Eq. (6.27) for all 6, € Fp- (I), we have

> 0. (6.27)

1 6 ﬂ—]
lim D 0yerys (z) i (0 Z HJ 1 #5.0(0g) > 0. (6.28)

ko0 I,( 0, Fpe j= L Hg0(0%)™

Noting from Part (a) that limyee Y g c f,. (1) u%k(ﬁl) = 1 a.s., we see from (6.28)
that limy_,o0 1174 (6*) exists and is positive, a.s., which further implies via (6.27) that
limy, o0 74 (0,) exists and is positive, a.s. In other words, we have from (6.28) the

following;: .
,UiI,oo(eq) _ szl 145.0(6g)™ (6.29)
100 (0%)  TIj—y pjo(09)™

where 4if o (6,) £ limeso pif(6,) for all 9, € Fy-(T). Since lim > 0 =1
k) b _)w k)

a.s. for all ¢ € [n], part (b) then follows from Eq. (6.29). u

Proceeding with the problem formulation described in Section 6.2, we define the

following error metric for the designer:

n

ex(07) = eza(07), (6.30)

i=1

where 6* is the true state of the world, ez ;(6") = %limk_,oo ||,ulIk — 1¢-]|; and ,uiz’k =
T

[N%k(el) -+ p(6n)] - Inother words, ez(6) is the sum of the steady-state learn-

ing errors of all the agents in [n], when the true state of the world is assumed to be 0*.

= ey o [T (pj,0(6%))7
It then follows from Lemma 6.4.1 that ez(6*) = n(1 Socr o H;}:1(W,O(G))ﬁj) almost
surely. Denoting
™ (s 0(6.))
&5(0,) 2 n(1 - 1L {r50(%) ) V6, € ©, (6.31)

Zengp () H?:l(:ui,o(G»WJ
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we consider the following problem for the designer:

min hz
el (6.32)
s.t. e(0,) < Ry,, V0, € O,
where 0 < Ry, < n and Ry, € R. Denoting fig(0) = []/, pio(f)™ for all 6 € O, we
have from (6.31) that

55(0.) — n(1 — o (0p)
5(6,) = n(1 Sen o ﬂo(e)),vep € 0. (6.33)

Under Assumption 6.2.1, i.e., Fp(Z) = (), o7 Fo(n;) for all Z C [n] and 6 € ©, we

n;, €L
see from (6.6) and (6.33) that the optimization problem (6.32) can be viewed as an

instance of Problem 6.2.3.

6.5 Chapter Summary

In this chapter, we considered the problem of data source selection for Bayesian
learning. We showed that the data source selection problem for Bayesian learning
is NP-hard in general. Next, we showed that the data source selection problem
can be transformed into an instance of the submodular set covering problem, and
can then be solved using a standard greedy algorithm with provable performance
guarantees. We also proposed a fast greedy algorithm that improves the running
times of the standard greedy algorithm, while achieving performance guarantees that
are comparable to those of the standard greedy algorithm. Finally, we illustrated the
obtained performance bounds for the greedy algorithms using examples, and showed
that the performance bounds provide insights into the actual performances of the

algorithms under different instances of the data source selection problem.



146

6.6 Proofs of Key Results
6.6.1 Proof of Theorem 6.3.5

Consider any ¢ € (0,1). We first show that the query complexity of Algo-

A

rithm 6.3.2 is O(2In2). Note that the for loop in lines 3-9 runs for at most Kpax =

(ﬁ “(In2 +1In %ﬂ iterations, where each iteration requires O(n) evaluations

of z(-). One can also show that —In(1 —¢€) — e > 0 for € € (0,1), which implies
Kpax <2 (In2+ Hlnn) +1 < L((H +1)In2 + 1), where H € Ry, is a fixed

€

constant. It then follows from the above arguments that the query complexity of
Algorithm 6.3.2 is O(%In 2).

Next, we show that Zy satisfies z(Zy) > (1 —€)z([n]). Note that if Algorithm 6.3.2
ends with line 9, then 2(Zy) = 2([n]) and thus z(Zy) > (1 — €)z(|n]) hold. Hence,

we assume that Algorithm 6.3.2 ends with 7 = %d in the for loop in lines 3-9.

2(i)—==(0)

Also note that z(()) = 0. Denoting j* € argmax;ep) =4

and considering any

J € [n] \ Zy, we have from the definition of Algorithm 6.3.2 the following:

2Ly Uii}) = 2(Zy) _ ehuinz(S")
hj nhmaxhj* ’

— 2Ly U {5} - 2(Zp) < ~2(") < ~=([n)), (6.34)

where we use the facts h; < hpax and hj« > hpin to obtain the first inequality in
(6.34), and use the fact that z(-) is monotone nondecreasing to obtain the second
inequality in (6.34). Since (6.34) holds for all j € [n] \ Zy, it follows that
Y AT u{ih) —2(Zy) < ex(ln]) = 2(n]) - 2(Z) < ex([n)),
jemN\Iy

where we use the submodularity of z(-) (i.e., (6.10) in Definition 6.3.1).

We now prove part (a). Denote Zp = {j1,...,j:} C [n] for all t € [T] with Z} = ()
in Algorithm 6.3.2. First, suppose T' > 2. Considering any ¢ € [T' — 1], we have from
line 5 in Algorithm 6.3.2:

ATy L)) = A(T)
- >

(6.35)

Jt+1
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Moreover, consider any j € [n] \ Z;. Since j has not been added to Z} while the
current threshold is 7, one can see that j does not satisfy the threshold condition in
line 5 when the threshold was =, i.e.,

ATp Vi) —2(T7) _ 7 L AL O - 7

6.36
h,j —1—c¢ hj _1—67 ( )

where ¢’ € {0,...,T — 1} with ¢ <t is a corresponding time step in Algorithm 6.3.2
when the threshold was ;. Note that we obtain the second inequality in (6.36) using
again the submodularity of z([n]) (i.e., (6.9) in Definition 6.3.1). Combining (6.35)
and (6.36), we have

2@ U lien}) — 2(Zy) (- I UG — (7).

hjt+1 - hj (6.37>
Noting that (6.37) holds for all j € Z* \ Z%, one can show that
ATV {en}) — 2(T)) (1 =) 2 ez (2(Z; U {5}) — 2(Z})) 6.38)

hjz+1 - Zjez*\z; hj 7
which further implies, via the fact that z(-) is submodular and monotone nondecreas-

ing, the following:
dZp U lien}) —2(Ty) (1= g(@ VI)) —«(Ty) (1 - g(I) - =(Ty)

P - h(Z*\ I}) - h(Z¥)
(6.39)
Rearranging the terms in (6.39), we have
. WI*) 2(T7) = 2(T}) — (2(T7) — 2(Z7))
Z(Z)_ZCZ;)S 1—6. : hjt+1 : 7
= 2(T") — () < (1 - %)(z(l’*) — 2(T4)). (6.40)

Moreover, we see from the above arguments that (6.40) holds for all ¢ € [T'—1]. Now,
considering ¢ = 0 and using similar arguments to those above, we can show that (6.37)
and thus (6.40) also hold. Therefore, viewing (6.40) as a recursion of z(Z*) — 2(Z})
fort € {0,...,T — 1}, we obtain the following:

2(Z%) — z(Zf”) < (2(T%) — 2(Z})) 1:[(1 — %). (6.41)

t=1



148

naT-1
)T—l < e*(lff)ﬁ

T-1 hj, (1—€) R(IZT1Y(1—e)
One can also show that [[,_, (1 — i) ) < (1-— W

(e.g., [31]). Since 2(Z}) = 2(0) = 0 and 2(Z*) = 2([n]), it then follows from (6.41)
that

nzT—1

* — * —1—e)f7

AT) = 2(Z]7Y) < 2(T)e O
h(Z; ™)

= In(z([n] — z(IfT_l))) <—(1-%¢) h(Z%)

+In 2([n)),

— h(Z{ ) < 5 i ~In z([n])zi[z]()zf—l)h(z*)’ (6.42)

where we note that z([n]) — z(If_l) > 0, since z(-) is monotone nondecreasing and
Z(IJT_I) # z([n]). In order to prove part (a) (for 7" > 2), it remains to show that
hjr < 7=h(Z*), which together with (6.42) yield the bound in part (a). We can now
use (6.38) with ¢ =T — 1 to obtain

T ) — (27
Jr = 1—ce€ Zjez*\lfﬂ z(I}F—l u{i}) - Z(IJ:”F_I)
_ )T -
T l-e 2(ZjNUTY) - 2(Z7Y)

(6.43)

!
the facts that z(Z*) = z([n]) and z(-) is monotone nondecreasing, we see from (6.43)

that hj, < $=h(Z*).

—€

where (6.43) follows from the submodularity of z(-). Since z(ZF) < Z(Z?’l UZ*) from

Next, suppose T' = 1, i.e., Z; = j;. We will show that h(Z*) = h(Z,). Noting from

2(1)—2(0)
hi

the definition of Algorithm 6.3.2 that j; € arg max;cy , we have

It then follows from similar arguments to those for (6.38) and (6.39) that

Z(jl) Zjef* Z(]) Z<I*)
hyj, - Zjez* h; Zh(z*)’

which implies
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where we use the fact z(Zy) < z(Z*), since z(-) is monotone nondecreasing with
2(Z*) = z([n]). Thus, we have h(Zy) < h(Z*). Noting that h(Z*) < h(Z,) always
holds due to the fact that Z* is an optimal solution, we conclude that h(Z*) = h(Z,).
This completes the proof of part (a).

Part (b) now follows directly from part (a) by noting that z([n]) — Z(I;:.F_l) > 1,
since z([n]) — z(I}F_l) > 0 and 2(Z) € Z>, for all Z C [n]. |
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7. PARAMETER ESTIMATION IN EPIDEMIC SPREAD
NETWORKS USING LIMITED MEASUREMENTS

7.1 Introduction

Following our discussions in the previous chapters, we extend our analysis to
models of spreading processes over networks in this chapter. Such models have been
widely studied by researchers from different fields (e.g., [18,26-30]). The case of
epidemics spreading through networked populations has received a particularly sig-
nificant amount of attention, especially in light of the ongoing COVID-19 pandemic
(e.g., [30,106]). A canonical example is the networked SIR model, where each node
in the network represents a subpopulation or an individual, and can be in one of
three states: susceptible (S), infected (I), or recovered (R) [107]. There are two key
parameters that govern such models: the infection rate of a given node, and the re-
covery rate of that node. In the case of a novel virus, these parameters may not be
known a priori, and must be identified or estimated from gathered data, including for
instance the number of infected and recovered individuals in the network at certain
points of time. For instance, in the COVID-19 pandemic, when collecting the data
on the number of infected individuals or the number of recovered individuals in the
network, one possibility is to perform virus or antibody tests on the individuals, with
each test incurring a cost. Therefore, in the problem of parameter estimation in epi-
demic spread networks, it is important and of practical interest to take the costs of
collecting the data (i.e., measurements) into account in the problem formulation.

The above discussions motivate us to consider the measurement selection problem
for parameter estimation problem in epidemic spread networks, which shares natural
similarities to the sensor selection problems that we studied in Chapters 3-5. Note that

measurements are collected using sensors in the sensor selection problem, while the
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measurements are gathered by performing virus or antibody tests on the individuals in
the measurement selection problem that we will consider in this chapter. Specifically,
in the parameter estimation measurement selection problem, the goal is to exactly
identify (when possible) or estimate the parameters in the networked SIR model
using a limited number of measurements. We divide our analysis into two scenarios:
1) when the measurements (e.g., the number of infected individuals) can be collected
exactly without error; and 2) when only a stochastic measurement can be obtained.

Under the setting when exact measurements of the infected and recovered propor-
tions of the population at certain nodes in the network can be obtained, we formulate
the Parameter Identification Measurement Selection (PIMS) problem as minimizing
the cost spent on collecting the measurements, while ensuring that the parameters
of the SIR model can be uniquely identified (within a certain time interval in the
epidemic dynamics). In settings where the measurements are stochastic (thereby
precluding exact identification of the parameters), we formulate the Parameter Es-
timation Measurement Selection (PEMS) problem. The goal is to optimize certain
estimation performance metrics based on the collected measurements, while satisfy-
ing the budget on collecting the measurements. We summarize some related work as

follows.

Related Work

The authors in [108,109] studied the parameter estimation problem in epidemic
spread networks using a “Susceptible-Infected-Susceptible (SIS)” model of epidemics.
When exact measurements of the infected proportion of the population at each node
of the network can be obtained, the authors proposed a sufficient and necessary
condition on the set of the collected measurements such that the parameters of the
SIS model (i.e., the infection rate and the recovery rate) can be uniquely identified.
However, this condition does not pose any constraint on the number of measurements

that can be collected.
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In [110], the authors considered a measurement selection problem in the SIR
model. Their problem is to perform a limited number of virus tests among the
population such that the probability of undetected asymptotic cases is minimized.
The transmission of the disease in the SIR model considered in [110] is characterized
by a Bernoulli random variable which leads to a Hidden Markov Model for the SIR
dynamics.

Finally, our work is also closely related to the sensor selection problem that has
been studied for control systems and signal processing (e.g., Chapters 3-5), and ma-
chine learning (e.g., [5]). The goal of these problems is to optimize certain (problem-
specific) performance metrics of the estimate based on the measurements of the se-

lected sensors, while satisfying the sensor selection budget constraints.

Summary of Results

In this chapter, we first show that the PIMS problem is NP-hard, and provide an
approximation algorithm that returns a solution that is within a certain approxima-
tion ratio of the optimal. The approximation factor depends on the cost structure of
the measurements and on the graph structure of the epidemic spread network. Next,
we show that the PEMS problem is also NP-hard, but it is possible to transform the
problem into an instance of the problem of maximizing a set function subject to a
knapsack constraint. We then apply a greedy algorithm to the PEMS problem, and
provide performance guarantees for the greedy algorithm. Finally, we use numerical
examples to validate the obtained performance bounds of the greedy algorithm, and
show that the greedy algorithm performs well in practice.

The results presented in this chapter are based on a work submitted to STAM

Journal on Control and Optimization for review.
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7.2 Model of Epidemic Spread Network

Suppose a disease (or virus) is spreading over a directed graph G = {V, £}, where
V £ [n] is the set of n nodes, and & is the set of directed edges (and self loops) that
captures the interactions among the nodes in V. Here, each node 7 € V is considered
to be a group (or population) of individuals (e.g., a city or a country). A directed
edge from node i to node j, where i # j, is denoted by (7, 7). For all i € V, denote
Ni &2 {j: (i) € EFand N; & {j: (j,i) € E}U{i}. Foralli € V and for all
k € Zso, we let s;[k|, x;[k] and r;[k] represent the proportion of population of node
1 € V that is susceptible, infected and recovered at time k, respectively. To describe
the dynamics of the spread of the disease in G, we will use the following discrete-time
SIR model (e.g., [111]), which is a straightforward extension of the discrete-time SIS
model studied in, e.g., [108]:

silk + 1] = si[k] — hsi[K]B Y aya;[k], (7.1a)
JEN;
wilk 4+ 1) = (1 = ho)x;[k] + hsi[k]B > aga;(k], (7.1Db)
JjeN;
rilk + 1] = ri[k] + hox;[k], (7.1c)

where 5 € R>q is the infection rate of the disease, § € R is the recovery rate of the
disease, h € R>( is the sampling parameter, and a;; € R>( is the weight associated
with edge (j,7). Letting A € R"*" be a weight matrix, where A;; = a;; for all 4,5 € V

such that j € NV;, and A;; = 0 otherwise, one can write Eq. (7.1) as

slk + 1] = slk] — hS[k]BAzx[k], (7.2a)
2k + 1] = (1 — hé)a[k] + hS[k]BAz[K], (7.2b)
rlk + 1] = r[k] + hoz k], (7.2¢)
where sk 2[5y < suftl] € B alk] 2 [mafb] - )] € B ofk] 2
[k - rn[kﬂT € R", and S[k] £ diag(si[k],...,sn[k]) € R™". Suppose the

weight matrix A and the sampling parameter h are known. Given parameters [ and
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J, and initial conditions s[0], [0] and 7[0], one can obtain states s;[k], z;[k] and r;[k]

using Eq. (7.1) for all ¢ € V and for all k € Z>,.

7.3 Preliminaries

In this section, we provide some preliminaries that will be useful for later analysis.
Recall that for all i € V and for all k& € Zs, s;[k], z;[k] and r;[k] represent the
proportion of the population of node 7 that is susceptible, infected and recovered
at time k, respectively. Hence, we make the following assumptions on the initial

conditions s[0], [0] and r[0].

Assumption 7.3.1 For alli € V, we assume that s;[0] € (0,1], x;[0] € [0,1), r;[0] =
0, and s;[0] + z;[0] = 1.

Similarly to [108, 111}, we make the following assumption on the parameters of

the SIR model in Eq. (7.1).

Assumption 7.3.2 We assume that h, 3,6 € R<g and hd < 1. For all i,5 € V with

(7,7) € € and i # j, we assume that a;; € Rog. For all i € V, we assume that
hﬁZjGN} aij < 1.
Next, we recall the following definition from graph theory (e.g, [71]).

Definition 7.3.1 Consider a directed graph G = {V,E} with ¥V = {1,...,n}. A
directed path of length t from node iy to node iy in G is a sequence of t directed edges
(10,%1), .-, (i4_1,1¢). For any distinct pair of nodes i,j € V such that there exists a
directed path from ¢ to j, the distance from node i to node j, denoted as d;;, is defined

as the shortest length over all such paths.
Based on Definition 7.3.1, we give the following definition.

Definition 7.3.2 Define S; = {i : ;0] > 0,i € V} and Sy = {i : 2;[0] = 0,i € V}.
For alli € Sy, define d; = minjes, d;;, where d; > 1 and d; £ t oo if there is no path

from j toi for any j € S;. For alli € Sy, define d; 2 0.
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In other words, for any ¢ € Sy, d; is the shortest distance among all the distances
from the nodes in S; to ¢. Using similar arguments to those in, e.g., [111], one can
show that s;[k], z;[k], r;[k] € [0, 1] with s;[k] + x;[k] + r;[k] = 1 for all i € V and for
all k € Z>o under Assumptions 7.3.1-7.3.2. Therefore, given x;[k] and r;[k], we can
obtain s;[k] = 1—x;[k]—r;[k] for all i € V and for all k € Zs(. Leveraging the structure
of the graph G, we further obtain the following result that characterizes properties of
the dynamics of z;[k] and r;[k] in the SIR model over G given by Eq. (7.1). The proof

of the following result is included in Section 7.8.1.

Lemma 7.3.3 Consider a directed graph G = {V,E} with V = {1,...,n} and the
SIR dynamics given by Eq. (7.1). Suppose Assumptions 7.3.1-7.3.2 hold. Then, the
following results hold for all i € V, where k € Z>y, and Sy and d; are defined in
Definition 7.3.2.

(a) silk] >0 for all k > 0.

(b) If d; # +oo, then x;[k] = 0 for all k < d;, and z;[k] € (0,1) for all k > d;.!

(¢) If d; # 400, then ri[k] =0 for all k < d;, and r;[k] € (0,1) for all k > d;.

(d) If i € Sg with d; = +o0, then x;[k] =0 and r;[k] =0 for all k > 0.

)
)

7.4 Measurement Model

Suppose for any node ¢ € V and for any time step £k € Z>;, we can obtain a
measurement of state x;[k], i.e., the proportion of the population of node i € V that
is infected at time k € Zs;. Denote the obtained measurement of z;[k| as z;[k| for
all i € V. Noting that x;[k] € [0,1] for all i € V and for all k € Zs( as argued in
Section 7.3, we assume that ;[k] € [0, 1] also holds for all i € V and for all k € Z>,.
Moreover, given the true state x;[k|, we assume that measurement z;[k] is a (discrete)
random variable whose probability mass function (pmf) is given by p(Z;[k]|x;[k]) for

all i € V and for all k € Zs(.? Similarly, let 7;[k] denote the measurement of r;[k],

Note that for the case when d; = 0, i.e., i € S, part (b) implies z;[k] > 0 for all k& > 0.
ZNote that one can also model Z;[k] as a continuous random variable whose probability density

function is denoted as p(&;[k]|x;[k]) for all i € V and for all k € Z>.
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i.e., the proportion of population of node ¢ € V that is recovered at time k, for all
i €V and for all k € Z>o. We assume that 7;[k] € [0, 1] is given by pmf p(7;[k]|r;[k]).

In general, the above measurement models for z;[k] and r;[k] are proposed to
capture the potential randomness of the obtained measurements #;[k| and 7;[k]. For
instance, consider the scenario (e.g., the ongoing COVID-19 pandemic) where mea-
surement Z;[k| is obtained by conducting viral tests on individuals in the population
corresponding to node ¢ € V at time k € Z>;, where a positive testing result indi-
cates that the tested individual is infected at time k£ and a negative testing result
indicates that the tested individual is not infected at time & (e.g., [112]). In practice,
it is not always practical to test all the individuals of node 7 € V at time k € Z>4,
due to, for instance, the lack of testing kits and the fact that performing such tests
incur certain costs. Rather, the tests are given to a group of randomly sampled in-
dividuals of the population at node ¢ € V at time k € Z>; (e.g., [113]). Moreover,
the testing results are not always accurate, e.g., a test on an infected individual can
yield a negative result (e.g., [114]). Therefore, it is reasonable to model measurement
Z;[k] as a random variable with pmf p(z;[k]|z;[k]). Similarly, one way to obtain mea-
surement 7;[k] is to perform antibody tests on randomly sampled individuals in the
population of node i € V (e.g., [115]), where the testing results can potentially be
inaccurate (e.g., [116]). Thus, we model measurement 7;[k] as a random variable with
pmf p(7;[k]|@). Note that the proposed measurement models also capture the special
case when one can obtain exact measurements of z;[k] and r;[k]. In such a case, we
can view p(Z;[k] = x;[k]|z;[k]) = 1 and p(7;[k] = r;[k]|ri[k]) = 1. In the following sec-
tions, we will divide our discussions into the special case when exact measurements
of x;[k] and r;[k] can be obtained, and the general case when measurements z;[k] and

7;|k] are given by p(Z;[k]|x;[k]) and p(7;[k]|r;[k]), respectively.
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7.5 Measurement Selection Problem in Exact Measurement Setting

In this section, we consider the scenario where exact measurements of x;[k| and
r;|k] (for a subset of nodes in the network) can be obtained. Throughout this section,
we will assume that S;, Sy C V defined in Definition 7.3.2 is known. In other words,
we assume that we know the set of nodes in V that have infected individuals at time

step t = 0.

7.5.1 Problem Formulation

Given exact measurements of x;[k] and r;[k] for a subset of nodes, our goal is
to estimate (or uniquely identify, if possible) the unknown parameters 5 and ¢, i.e.,
the infection rate and the recover rate of the disease in the SIR dynamics (given by
Eq. (7.1)) over the network G = {V,E€}. As we will see in the following, when exact
measurements of z;[k] and r;[k] can be obtained, one can uniquely identify g and
0 based on the measurements. Here, we consider the scenario where collecting the
measurement of x;[k] (resp., r;[k]) at any node ¢ € V and at any time step k € Zx
incurs a cost, denoted as ¢;; € Rsq (resp., by; € R>g). Moreover, we can only collect
the measurements of x;[k] and r;[k| for k € {t1,t; + 1,...,ta}, where t1,ty € Z>( are
given with ¢, > t;. Noting that Lemma 7.3.3 provides a (sufficient and necessary)
condition under which x;[k] = 0 (resp., r;[k] = 0) holds, we see that one does not
need to collect measurement of x;[k| (resp., r;[k]) if z;[k] = 0 (resp., r;[k] = 0) from

Lemma 7.3.3. Given time steps t1,ts € Z>o with ¢ > t;, we now define a set

Too 2 {milk] k€ [ty ta)bi €V, k] > 0}
U {T’z[l{?] ke {tl, e ,tz},i S V,T’Z[l{?] > O}, (73)
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which represents the set of all candidate measurements from time step t; to time step

to. To proceed, we first use Eq. (7.1b)-(7.1c) to obtain

xlty + 1] — x[t4]
Tlta] — xlty — 1 [OF
[ta] — x[ty — 1] _ o | Pt B | (7.4)
rlty + 1] — r[t1] A )
_’f’[tg] — T‘[tg — 1]_
A T .
where @7, = |(®7)T .- (PF_)T| with

s1lk] D sen, arjzik] —xa K]
oy £ : : Vk € {ty,... ty — 1}, (7.5)

snlk] ZjeNn anjxj[k]  —n[k]

T
and @7, , = (®7)" -+ (D)7 with
0 Il[l{?]
A E Vk € {ty,... ty—1}. (7.6)
0 x,[k|

Supposing the weight matrix A and the sampling parameter h are known, we can
then view Eq. (7.4) as a set of 2(ty — t;)n equations in § and §. Noting that s;[k]
for all i € V can be obtained from s;[k] = 1 — x;[k] — r;[k] as argued in Section 7.3,
we see that the coefficients in the set of equations in § and § given by Eq. (7.4),
i.e., the terms in Eq. (7.4) other than g and J, can be determined given that x[k]
and r[k] are known for all k € {t1,...,t3}. Also note that given z[k] and r[k| for
all k € {t1,...,t2}, we can uniquely identify 5 and § using Eq. (7.4) if and only if
vank(| (@7, )" (@,,_)7]) =2

Next, let Z C 7;, 4+, denote a measurement selection strategy, where Z;, ., is given

by Eq. (7.3). We will then consider identifying £ and ¢ using measurements contained



159

in Z C 7y, 4,. To illustrate our analysis, given any i € V and any k € {t1,...,ts — 1},

we first consider the following equation from Eq. (7.4):

wlk + 1 = ik = b |5i[k] S e Giutolh] —xi[k;]] ? , (7.7)

where s;[k] = 1 — x;[k] — r;[k], and we index the equation in Eq. (7.4) corresponding
to Eq. (7.7) as (k,i,z). Note that in order to use Eq. (7.7) in identifying S and
J, one needs to determine the coefficients (i.e., the terms other than g and J) in the
equation. Also note that in order to determine the coefficients in equation (k, 7, x), one
can use the measurements contained in Z C 7,,,;,, and use Lemma 7.3.3 to determine
if z;[k] = 0 (resp., r;[k] = 0) holds. Supposing z;[k+ 1] = 0, we see from Lemma 7.3.3
and Eq. (7.2b) that z;[k] = 0 and s;[k] >, c 5. @iwTw[k] = 0, which makes equation
(k,i,x) useless in identifying § and §. Thus, in order to use equation (k,i,z) in
identifying 5 and 0, we need to have x;[k + 1] € Z with z;[k + 1] > 0. Next, we will
show that equation (k,,x) can still be used in identifying S and § even if there exist
coefficients in equation (k, %, x) that cannot be determined using measurements from
7 C 14,4, or using Lemma 7.3.3. To see this, given any 7,7 € V with ¢ # j and any
k€ {t1,...,ts — 1}, we consider the following two equations from Eq. (7.4):

zilk + 1] — z[k] = h [s,- K] > e, GiwTw!F] —xz[k]] ? , (7.8a)
::
k41 =) = ] S e el i) | s (780)

where we index the equation in Eq. (7.4) corresponding to Eq. (7.8a) (resp., Eq. (7.8b))
as (k,i,x) (vesp., (k,J,x)). Suppose x,[k] > 0 and z,[k] ¢ Z for all w € N, i.e., the
coefficient s;[k] > . @iwTw[k] in equation (k,i,x) cannot be determined using the
measurements from Z C Z;, 4, and using Lemma 7.3.3. Moreover, suppose N; = J\/'J

and a;, = aj, for all w € N;. Noting that s;[k] > 0 for all i € V and for all k € Z>,



160

from Lemma 7.3.3(a), one can then subtract Eq. (7.8b) multiplied by 1/s;[k] from
Eq. (7.8a) multiplied by 1/s;[k], and obtain the following equation in £ and §:
1

1
m(fﬂi[/f + 1] — a[k]) — m(%[k + 1] — a;[k])

(7.9)

B
. T; k ;5 k
=h aiixi[k] — AT [k] _si[[k]] + Sj[[k]] 5

where s;[k] = 1—x;[k]—r;[k] and s;[k] = 1—x;[k]—r;[k]. Now, suppose {x;[k+1], z;[k+
1]} € 7, and x;[k], r;[k], x;[k] and 7;[k] can be determined using the measurements
from Z or using Lemma 7.3.3. We see that Eq. (7.9) can now be used in identifying
f and §. Similarly, given any i € V and any k € {t1,...,ts — 1}, we consider the

following equation from Eq. (7.4):

rilk +1] —ri[k] = h [0 xi[k]] ? : (7.10)
where we index the above equation as (k,i,7). Supposing r;[k + 1] = 0, we see from
Lemma 7.3.3 and Eq. (7.2c) that r;[k] = x;[k] = 0, which makes equation (k,i,r)
useless in identifying 5 and §. Hence, in order to use equation (k,7,r) in identifying
$ and 6, we need to have {z;[k], [k + 1]} C Z with x;[k] > 0 and r;[k + 1] > 0. More
precisely, we observe that equation (k,7,r) can be used in identifying # and ¢ if and
only if {z;[k], ri[k + 1]} C Z, and r;[k] € Z or r;[k] = 0 (from Lemma 7.3.3).

In general, let us denote the following two coefficient matrices corresponding to

equations (k,7,x) and (k,4,7) in Eq. (7.4), respectively:

¥ 2 [l T en agslk] —ailk] (7.11a)
o = [0 xi[kﬂ, (7.11b)
for all k € {t1,...,t5 — 1} and for all ¢ € V. Moreover, given any measurement

selection strategy Z C Z;,.,, we let

T2 {(kyi,x):zlk+1] € Z,z5lk] =0} U{(k,i,2) : {xi[k + 1], 2;[k]} C T}
U{(k,i,r) : {ri[k+ 1], 2;[k]} CZ,ri[k] =0} U{(k,i,r) : {ri[k+1],r;[k], z;[k]} C I}
(7.12)
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be the set that contains indices of the equations from Eq. (7.4) that can be potentially
used in identifying 5 and ¢, based on the measurements contained in Z. In other
words, the coefficients on the left-hand side of equation (k, 1, z) (resp., (k,i,7)) can be
determined using the measurements from Z and using Lemma 7.3.3, for all (k,4,z) € Z
(vesp., (k,i,7) € Z). Let us now consider the coefficient matrix ®f; (resp., @} ;)
corresponding to (k,4,r) € T (resp., (k,i,r) € Z). As we discussed above, it is possible
that there exist equations in Z whose coefficients cannot be (directly) determined
using the measurements contained in Z or using Lemma 7.3.3, where the undetermined
coefficients come from the first element in ®f ; given by Eq. (7.11a). Nevertheless,
it is also possible that one can perform algebraic operations among the equations in
7 such that the undetermined coefficients get cancelled. Formally, we introduce the

following definition.

Definition 7.5.1 Consider a measurement selection strateqgy L C 1y, .,, where Iy, .4,
is given by Eq. (7.3). Stack coefficient matrices ®f ; € RY™2 for all (k,i,z) € T and
P, € RY™2 for all (k,i,r) € T into a single matriz, where 5, and . are given by
(7.11) and I is given by Eq. (7.12). The resulting matriz is denoted as ®(I) € RIT*<2.
Moreover, define ®(I) to be the set that contains all the matrices ® € R**2 such that
(®); and (P)2 can be obtained via algebraic operations among the rows in ®(Z), and
the elements in (®)y and (P)y can be fully determined using the measurements from

7 C 144, and using Lemma 7.3.3.

In other words, ® € ®(Z) corresponds to two equations (in 8 and §) obtained from
Eq. (7.4) such that the coefficients in the equations can be determined using the mea-
surements contained in Z and using Lemma 7.3.3 (if the coefficients contain z;[k] = 0
or r;[k] = 0). Moreover, using similar arguments to those for obtaining Eq. (7.9),
one can show that the coefficients on the left-hand side of the two equations obtained
from Eq. (7.4) corresponding to ® can also be determined using measurements from

7 and using Lemma 7.3.3. Putting the above arguments together, we see that given
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a measurement selection strategy Z C Z;, +,, # and ¢ can be uniquely identified if and

only if there exists ® € ®(Z) such that rank(®) = 2. Equivalently, denoting

Tmax (L) 2 @Iélg(};) rank(®), (7.13)

where 7., (Z) 2 0 if CTJ(I) = (), we have 3 and ¢ can be uniquely identified using the

measurements from Z C 7, 4, if and only if r,.«(Z) = 2.

Remark 7.5.1 Note that if a measurement selection strateqy T C Z; .+, satisfies
Tmax(Z) = 2, it follows from the above arguments that |Z| > 2, i.e., ®(T) € RIZI¥2 pas

at least two rows.

Recall that collecting the measurement of x;[k] (resp., r;[k]) at any node i € V
and at any time step k € Zs; incurs cost ¢; € Rsg (resp., by; € Rsg). Given any
measurement selection strategy Z C Z;,.,,, we denote the cost associated with Z as

o(I) £ Z Cri T Z bri- (7.14)

ai[k]eT k)€

The above arguments then lead to the problem of minimizing the cost spent on
collecting measurements such that parameters § and ¢ can be uniquely identified
(within a given time interval [t; : ¢5]). Formally, we define the Parameter Identification
Measurement Selection (PIMS) problem in the perfect measurement setting as follows,

where we assume that Assumptions 7.3.1-7.3.2 hold for the PIMS instances

Problem 7.5.2 Consider a discrete-time SIR model given by Eq. (7.1) with a directed
graph G = {V,E}, a weight matrizr A € R™*", a sampling parameter h € Rs, and sets
81,8y C V defined in Definition 7.3.2. Moreover, consider time steps ti,ty € Z>,
with t; < ta, and a cost c¢; € Rso of measuring x;[k] and a cost by; € Ry of
measuring r;[k] for alli € V and for allk € {t1,...,t2}. The Parameter Identification
Measurement Selection (PIMS) problem is to find T C Iy, 4, that solves

min ¢(7)
ICTty:ty

(7.15)
s.t. rmax(Z) = 2,

where Iy, .1, is defined in Eq. (7.3), ¢(Z) is defined in Eq. (7.14), and ry.<(Z) is defined

in Eq. (7.13).
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7.5.2 Complexity of the PIMS problem

In this section, we will show that the PIMS problem is NP-hard. To do it, we will
relate the PIMS problem to the exact cover by 3-sets (X3C) problem, which is known
to be NP-complete [41].

Definition 7.5.2 An X3C instance is given by a set X = {1,2,...,3m} and a col-
lection Z = {z1,29,...,2:} of 3-element subsets of X, where T > m. An ezact cover
for X is a subcollection Z' C Z such that every element of X occurs in exactly one

member of Z'.

Lemma 7.5.3 Consider a set X = {1,...,3m} and a collection Z = {z,...,2.}
of 3-element subsets of X. The problem of determining whether Z contains an exact

cover for X is NP-complete.

Fig. 7.1. Graph G = {V, £} constructed in the proof of Theorem 7.5.4.

Theorem 7.5.4 The PIMS problem is NP-hard.

Proof We will give a polynomial-time reduction from the X3C problem to the PIMS
problem. Consider an instance of the X3C problem given by a set X = {1,...,3m}
and a collection Z = {z1,..., 2.} of 3-element subsets of X, where 7 > m. We

then construct an instance of the PIMS problem as follows. The node set of the
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graph G = {V, £} is set to be V = {ig,i1,...,i-} U{J1,J2,---,J3m}- The edge set of
G ={V, &} is set to satisty that (j,,4;) € £ if ¢ € X is contained in 2z € Z, (jg,00) € €
forall g € X, and (ip, i) € £. A plot of the graph is given in Fig. 7.1. Note that based
on the construction of G = {V, £}, each node i € {iy,...,i,} represents a subset from
Z in the X3C instance, and each node j € {j1,...,j3m} represents an element from &
in the X3C instance, where the edges between {i1,...,i,} and {ji,...,J3m} indicate
how the elements in X are included in the subsets in Z. Accordingly, the weight
matrix A € REmATHIxEBmEr+1) ig get to satisfy that a;;, = 1 if ¢ € X is contained
in 2 € Z, a;y;, = 1 for all ¢ € X, and a,,,, = 1. We set the sampling parameter to
be h =1/(3m + 1). The set S C V is set to be S =V, i.e., x;[0] > 0 for all i € V.
We set time steps ¢; = 2 and ¢y = 3. Finally, we set by; = b3; = 0 for all ¢ € V,
Coq, = land ¢35, =0 foralll € {1,...,7}, ¢, = ¢35, = m+1forall ¢ € X, and
C24p = C3,i, = 0. Since we set by; = bs; = 0 for all i € V and ¢y, = 0, the following
equation can always be used in identifying § and ¢ with zero cost on collecting the

corresponding measurements:

Tigl3] = 1ig[2] = R [0 Ti, [2]} ? ; (7.16)

where we also note x;,[2] > 0 from Lemma 7.3.3, since z;,[0] = 0.5. Moreover, since
x;]0] > 0 for all i € V, we see from Lemma 7.3.3 that z;[k] > 0 and r;[k] > 0 for all
i € Vand for all k € {2,3}. Therefore, Lemma 7.3.3 is no longer useful in determining
the coefficients in the equations from Eq. (7.4).

We claim that an optimal solution, denoted as Z*, to the constructed PIMS in-
stance satisfies ¢(Z*) < m if and only if the solution to the X3C instance is “yes”.

First, suppose the solution to the X3C instance is “yes”. Denote an exact cover
as Z' = {24, %24, } € Z, where {q1,...,¢n} € {1,...,7}. Let us consider a

measurement selection strategy Z, C 7, ., given by

Iy = ( U {qul [2]7 Lig, [3]7 Tig, [2]}) U {xio [2]7 iy [3]7 Tig [2]7 Tig [3]}
m}
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We then have from Eq. (7.12) Zy = {(2, 40, 7), (2,40, 2) } U{(2,ig,7) : L € {1,...,m}}.
Noting that s;[k] > 0 for all ¢ € V and for all k& € Z>( from Lemma 7.3.3(a), we

consider the following equations from Eq. (7.4) whose indices are contained in Zy:

— ] |8
i l2 (23 [3] — 24[2]) = h |:l’z’o 2]+ 2 wen;, w2l — ssﬁ” | (7.17)
and

—1 Tig, 2] 5

Siql [2] ('Tiql [3] a a:iql [2]) =h [ZWENiql Lw [2] - Sigy [2]i| 6
(7.18)

1 = Tig,, [2] ﬁ
Siam [2] (xiqm [3] ~ Lig, [2]) =h |:Zw€./\/'iqm L [2] - Sigm [2]i| 5 s

where we note N, = {J1,...,J3m} from the way we constructed G = {V,E}. Since

2" = {z,,...,2,,} 1s an exact cover for X, we see from the construction of G =

.....

.....

Eq. (7.17), we obtain

1 1
W(%B]—%[Q])— > S,—[Q](ﬂfiql 3] = =i, [2])

Sio

. (7.19)

_ T [2] vig, 2 &
=h [a:io [2] _sz-;][?} + Zle{l ,,,,, m} Siqll [2]] 5

where we note x;,[2] > 0 as argued above. Following Definition 7.5.1, we stack
coefficient matrices @3 ;, € R?, @F; € R™? and ®3; € R™? for all [ € {1,...,m}
into a matrix ®(Z,) € R"2*2 where ®}; and @}, are defined in (7.11). Now,

considering the matrix

:Diql [2]

d, = BETICRE L S mhsig B (7.20)
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we see from the above arguments that (®g); and (®g), can be be obtained via algebraic
operations among the rows in ®(Zy), and the elements in (®g); and (Pg)s can be
determined using the measurements from Z,. Therefore, we have &, € é(IO), where
recall from Definition 7.5.1 that ®(Z) contains all the matrices ® € R?*? such that
(®); and (P), can be obtained via algebraic operations among the rows in ®(Z;) and
the elements in (®); and (®); can be determined using the measurements from Z,.
Noting that xz;,[2] > 0, we have rank(®y) = 2, which implies ry.x(Zy) = 2, where
Tmax(Zo) is given by Eq. (7.13). Thus, Zy C Z;,., satisfies the constraint in (7.15).
Since ¢(Zy) = m from the way we set the costs of collecting measurements in the
PIMS instance, we have ¢(Z*) < m.

4

Conversely, suppose the solution to the X3C instance is “no”, i.e., for any subcol-
lection 2’ C Z that contains m subsets, there exists at least one element in X' that is
not contained in any subset in Z’. We will show that for any measurement selection
strategy Z C 7,4, that satisfies rnax(Z) = 2, ¢(Z) > m holds. Equivalently, we will
show that for any Z C Z;,.+, with ¢(Z) < m, rmax(Z) = 2 does not hold. Consider
any T C 7y, such that ¢(Z) < m. Noting that cy;, = ¢35, = m+1forall g € X
in the constructed PIMS instance, we have z;,[2] ¢ Z and z;, [3] ¢ T for all ¢ € X.

Moreover, we see that Z contains at most m measurements from {z;,[2], ..., z; [2]}.

To proceed, let us consider any Z; C Z;, .4, such that

Ty = {2, 20, 2]y, 2HU (O 2B U (U218, (7:20)
7}

lefo,..., Y
where {vy,...,v,} € {1,...,7}. In other words, Zy C Z; ., contains m mea-
surements from {x;[2],...,2; [2]} and all the other measurements from Z; ,, that

have zero costs. It follows that ¢(Z;) = m. Also note that for all Z C Z; ., with
{zi, (2], 24, 2]} € Z and ¢(Z) < m, we have Z C 7;. Similarly to (7.17) and
(7.18), we have the following equations from Eq. (7.4) whose indices are contained in
T, (given by Eq. (7.12)):

1 2] | P

m(xm[zﬂ—xmm):h Zio[2] + Lowens, Twl2] =30 5| (7.22)
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and
B~ 1,2 = [T, mel2) ~722] |
Siy, [2] 1 toy weN;,, Tw ] |
(7.23)
! _ w2 |8
e = ) = [Sae,, el S]]

Noting that for any subcollection Z’ C Z that contains m subsets, there exists at
least one element in X’ that is not contained in any subset in Z’ as we argued above,
we see that there exists at least one element in X’ that is not contained in any subset
in {zy,..., 2y, }. It then follows from the way we constructed G = {V, £} that there
exists w' € Nj, such that w' ¢ N;, for all [ € {1,...,m}. Thus, by subtracting the
equations in (7.23) (multiplied by any constants) from Eq. (7.22), x,/[2] will remain
on the right-hand side of the equation in (7.22). Similarly, consider any equation from
(7.23) indexed by (2,i,,2) € Z;, where [ € {1,...,m}. First, suppose we subtract
Eq. (7.22) multiplied by some positive constant and any equations in (7.23) other
than equation (2,14,,,x) (multiplied by any constants) from equation (2,4,,,z). Since
there exists w' € N, such that w’ ¢ N, for all I € {1,...,m} as argued above, we
see that x,,[2] will appear on the right-hand side of equation (2, 4,,, z). Next, suppose
we subtract any equations in (7.23) other than equation (2, 4,,, ) (multiplied by any
constants) from equation (2,4,,,x). One can check that either of the following two
facts hold for the resulting equation (2,4,,,z): (a) the coefficients on the right-hand
side of equation (2,4,,,x) contain z; [2] ¢ T, where ¢ € X; or (b) the coefficient
matrix on the right-hand side of equation (2,4,,, x) is of the form [0 *} Again, we
stack @, € R for all (k,i,7) € 7, and ®f, € RV for all (k,i,x) € T into a
matrix ®(Z;), where we note that ®;, ; is of the form [() *] for all (k,4,7) € Z;. One
can then see from the above arguments that for all ® € R?*? (if they exist) such that
(®); and (®), can be obtained from algebraic operations among the rows in ®(Z;),
and the elements in (®); and (), can be determined using the measurements from

7y, rank(®) < 1 holds. It follows that ry.x(Z1) < 2, i.e., constraint ry..(Z;) = 2
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in (7.15) does not hold. Using similar arguments to those above, one can further
show that rp.x(Z) < 2 holds for all ¢(Z) < m, completing the proof of the converse
direction of the above claim.

Hence, it follows directly from the above arguments that an algorithm for the
PIMS problem can also be used to solve the X3C problem. Since X3C is NP-complete,
we conclude that the PIMS problem is NP-hard. [ |

Theorem 7.5.4 indicates that there is no polynomial-time algorithm that solves
all instances of the PIMS problem optimally (if P # NP). Moreover, we note from
the formulation of the PIMS problem given by Problem 7.5.2 that the PIMS problem
asks us to find a measurement selection strategy Z C 7, ., with minimum cost such
that rpax(Z) = 2. In other words, for a measurement selection strategy Z C 7y, 4,, one
needs to check if maxgc g7 rank(®) = 2 holds, before the corresponding measurements
are collected. However, in general, it is not possible to calculate rank(®) when no
measurements are collected. In order to bypass these issues, we will explore additional

properties of the PIMS problem in the following.

7.5.3 Solving the PIMS Problem

In this section, we will leverage properties of the PIMS problem and propose an
approximation algorithm for the PIMS problem with performance guarantees. In par-
ticular, we will focus on measurement selection strategies that contain measurements
corresponding to two equations in Eq. (7.4). Let us start with the following result

whose proof can be found in Section 7.8.2.

Lemma 7.5.5 Consider a discrete time SIR model given by Eq. (7.1). Suppose As-
sumptions 7.3.1-7.3.2 hold. Then, the following results hold, where ® ; € RY™2 and
®; € RY2 are defined in (7.11), S; 2 {i € Sy a; > 0}, S £ {i € V\ S : N; #
0, min{d; : j € N;} # oo}, and S; and d; are defined in Definition 7.3.2 for alli € V.
(a) For any iy € S} and for any iy € V with d;, # oo, rank( [(CDI )z (CIDZM.Q)T] ) =2

k1,11
for all ky > 0 and for all ky > d;,, where ky, ko € Z>.
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(b) For any iy € 8" and for any iy € V with d;, # oo, rank( [((bim.l)T (@22’2,2)T] ) =2
for all ky > min{d; : j € N, }, and for all ky > d;,, where ky, ky € Z>y.

Thus, Lemma 7.5.5 leads to a sufficient condition on the measurements contained
in a measurement selection strategy Z C 7Z,, 4, such that the rank condition 7., (Z) =
2 in (7.15) holds. This sufficient condition indicates collecting the measurements
corresponding to the coefficients in two equations from (7.4). Moreover, given a
measurement selection strategy Z C 7., we can check if the sufficient condition
given in Lemma 7.5.5 holds before the corresponding measurements contained in Z
is collected. Therefore, we aim to find a measurement selection strategy Z C Z; .4,
that satisfies the sufficient condition given in Lemma 7.5.5, which will ensure that the
rank condition 7y, (Z) = 2 holds. We formalize the analysis as follows.

Recalling the way we index the equations in Eq. (7.4) (see (7.7) and (7.10) for
examples), we define the set that contains all the indices of the equations in Eq. (7.4)

as

Q2 {(kyi,\ :ke{ty,.. .. ty—1}ieV, e {x,r}}. (7.24)

Following the arguments in Lemma 7.5.5, we denote

Q1 £ {(k,i,z) € Q:k>0,i €S}
U{(k,i,z) € Q:k>min{d; : j e N;},i € S}, (7.25)
and

where §; and &' are defined in Lemma 7.5.5, and d; is defined in Definition 7.3.2.
Next, for all (k,i,z) € Q, we define the set of measurements that are needed to
determine the coefficients in equation (k,7,z) (when no other equations are used) to
be

(ki z) = ({zilk + 1), ri[k]} U {z;[k] : § € Ni}) N Ty, (7.27)

where Z; .+, is defined in Eq. (7.3). Similarly, for all (k,7,7) € Q, we define

I(k,i,r) = ({rz[k + 1],r,~[k],a:z~[k]}) NZLy, 4, (7.28)



170
Moreover, let us denote
I<<k17 ilu )\1)7 (k27 7:2a )\2)) S I(k17 /L.17 A1) U I(k27 Z.Qu )\2) (729)

for all (k1,i1, A1), (ko,72, A2) € Q. Recall from Eq. (7.14) that we have

c(Z((ky,i1, M), (Kay iz, Aa)))

— 3 Cri + > bi. (7.30)

Ii[k’]GI((’ﬂ ,’il,)\l),(k‘g,’ig,/\g)) T4 [k]GZ((k‘1,’i1,)\1),(k2,i2,/\2))

Algorithm 7.5.1 Algorithm for PIMS
1: Input: An instance of PIMS

2: Find (kl,il,x) S Ql, (kg,iz,?”) S Q2 s.t. C(I((k‘l,il,ﬂf),(kg,’ig,?”))) is minimized
return Z((ki, i1, z), (k. i2,7))

Based on the above arguments, we propose an algorithm defined in Algorithm 7.5.1
for the PIMS problem. Note that Algorithm 7.5.1 finds an equation from Q; and an
equation from Qs such that the sum of the costs of the two equations is minimized,
where Q; and Qs are defined in Eq. (7.25) and Eq. (7.26), respectively. We have the
following result for Algorithm 7.5.1

Proposition 7.5.1 Consider an instance of the PIMS problem under Assumptions
7.3.1-7.3.2. Algorithm 7.5.1 returns a solution Z((ki,i1,x), (ke iz,7)) to the PIMS
problem that satisfies the constraint in (7.15). The solution returned by Algorithm 7.5.1
satisfies

(Z((ky, iy, x), (ko i2,7))) _ min i oy (k1,0 + b + Crvri + D i, Chg)
c(Z%) - 3Comin ’

(7.31)

where I* is an optimal solution to the PIMS problem, Q; is defined in Eq. (7.25), and

Conin = min{ming, ez, , .., Ck,i> My, (klez,, ., Oki} > 0 with Ly, 4, is given by Eq. (7.3).
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Proof The feasibility of Z((ky,i1,x), (ks,i2,7)) follows directly from the definition
of Algorithm 7.5.1 and Lemma 7.5.5. We now prove (7.31). Consider any equations
(k,i,x2) € Qp and (k,i,7) € Qo. We have from Eq. (7.29) the following:

I((k,i, ), (k,i,7))
= ({wilk + 1, milk]} U {a[k] - j € N} U{rilke + 1], rilk), 2ilk]}) N T,

which implies

c(Z((k1,i1,2), (Ko, i2,7))) < " m%TEIQ (bkt1,i + b + g1 + g Chj)-
2, 1 _
JEN;

Next, since Z* satisfies rya(Z*) = 2, we recall from Remark 7.5.1 [Z*| > 2, where

Tr = {(k,i,x) : x;[k + 1] € T, z[k] = 0} U {(k, i, 2) : {x;[k + 1], 2;[k]} € T*}
U{(k,i,7) : {ri[k+1], z;[k]} C I, ri[k] = 0YU{(k,i,7) : {ri[k+1],m;[k], x:[k]} CZ*}
which implies |Z*| > 2. In fact, suppose Z* = {x;[k + 1],z;[k + 1]}, where i € V
and k € {t; —1,...,t5 — 1}. Since the elements in ®7; and @7 ; (defined in (7.11))
do not contain x;[0], ;[0] or s;[0] for any ¢ € V, and cannot all be zero, we see that
there exists x,,[k] € Z* (with x,[k] > 0), where w € V. This further implies |Z*| > 3.

Using similar arguments, one can show that |Z*| > 3 holds in general, which implies

¢(Z*) > 3cpin. Combining the above arguments leads to (7.31). n

7.6 Measurement Selection Problem in Random Measurement Setting

In this section, we assume that the initial condition [ = [(s[0])T (s[0])T (r[0])7]
is known. Nevertheless, our analysis can potentially be extended to cases where the

initial condition I = [(s[0])T (s[0])T (r[0])7] is given by a probability distribution.

7.6.1 Problem Formulation

Recall from Section 7.4 that we consider the scenario where the measurement of

x;[k] (resp., r;[k]), denoted as Z;[k] (resp., 7;[k]), is given by the pmf p(z;[k]|z;[k])
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(resp., p(7;[k]|ri[k])). Note that given the initial conditions s[0], z[0] and r[0], and the
parameters 3, § and h, one can express x;[k] in terms of I = [(s[0])? (z[0])T (r[0])T]T
and 6 2 [3 §]T. Hence, given I = [(s[0])” («[0})T (r[0])T]" and 6 = [3 §]", we can
alternatively write p(z;[k]|x;[k]) as p(;[k]|l,8) for all i € V and for all k € Z>,. Since
the initial conditions are assumed to be known, we drop the dependency of p(;[k]|l, 0)
on [, and denote the pmf of #;[k] as p(z;[k]|0) for all i € V and for all k € Z>;.
Similarly, given [ and 6, we denote the pmf of #;[k] as p(7;[k]|f) for all i € V and
for all k € Z>;. As we mentioned in Section 7.4, when collecting measurement Z;[k]
(resp., 7;[k]) under a limited budget, one possibility is to give virus (resp., antibody)
tests to a group of randomly and uniformly sampled individuals of the population
at node ¢ € V and at time & € Z>;. In other words, the obtained measurements
2;[k] and 7;[k], i.e., the corresponding pmfs p(z;[k]|#) and p(7;[k]|6), depend on the
total number of conducted virus tests and antibody tests at node ¢ and at time k,
respectively.

Following the arguments in Section 7.5, we assume that collecting measurements
Z;[k] and 7;[k] incurs certain costs. Specifically, consider any node ¢ € V and any time
step k € Z>1, where the number of total population of ¢ is denoted by NN; € Z>; and
is assumed to be fixed over time. Suppose we are also allowed to choose the number
of virus (resp., antibody) tests that will be performed on the (randomly sampled)
individuals at node ¢ € V and at time k£ € Z>;. Moreover, we assume that the cost
of performing the virus (resp., antibody) tests is proportional to the number of the

tests. For any i € V and for any k € {t1,...,t2}, we let

C,Iw' = {CC}M : C S ({0} U [CZ])} (732)

be the set of all possible costs that we can spend on collecting measurement z;[k],
where ¢;; € Rsg and (; € Z>;. Similarly, for any ¢ € V and for any k € {t1,...,t2},
we let

Bri = {nbr; :n € ({0} U n])} (7.33)
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be the set of all possible costs that we can spend on collecting measurement 7;[k],
where by ; € R>g and 7; € Z>,. Therefore, spending a cost of (¢i; (with ¢ € ({0} U
[¢;])) on collecting measurement ;[k] can represent testing 10¢ percentage of the
population at node ¢ and at time k, i.e., testing f—ONi individuals at node ¢ and at
time k. Alternatively, (c,; can also be viewed as the cost of performing virus tests
on (N7 (randomly sampled) individuals in the population at node i, where N € Z>,
and (;NF < N;. To reflect the dependency of the pmf p(;[k]|0) (resp., p(7;[k]|6)) of
measurement ;[k] (resp., 7;[k]) on the cost spent on collecting the measurement of
x;k] (resp., r;[k]), we further denote the pmf of z;[k] (resp., 7;[k]) as p(Z:[k]|0, pk.i)
(resp., p(7:]k]|0, wk:)), where @i ; € Cr; (vesp., wi; € Bi;) with Ci; (resp., By;) given
by Eq. (7.32) (resp., Eq. (7.33)). Note that ¢y ; (resp., wg;) is the cost that we spend
on collecting measurement z;[k] (resp., 7[k]), and ¢x; = 0 (resp., wy,; = 0) indicates
that measurement z;[k| (resp., 7;[k]) is not collected.

Recall in the measurement selection problem, the goal is to estimate the unknown
parameters [ and ¢, i.e., the infection rate and the recovery rate of the disease in
the SIR dynamics (given by Eq. (7.1)), using a limited number of measurements. In
contrast with the exact measurement case studied in Section 7.5, it is not possible to
uniquely identify 5 and § using measurements ;[k] and 7;[k] which are now random
variables. Thus, we will consider estimators of § and ¢ based on the (random) mea-
surements indicated by a measurement selection strategy. Similarly to Section 7.5,
given time steps ti,ty € Z>y with t5 > t;, we first define the set of all candidate

measurements as
L[tl:tg £ {JAZZ[I{?] 11 € V, ke {tl, e ,tg}} U {fz[k] 11 E V, ke {tl, ce 7t2}}. (734)

Recalling C;; and By, defined in Eq. (7.32) and Eq. (7.33), respectively, we let
JURS tho”? be a measurement selection that specifies the costs spent on collecting
measurements Z;[k] and 7;[k] for all i € V and for all k € {t,...,t2}. Moreover, we

define the set of all candidate measurement selections as

ME{p e 3"« pu(@ilk]) € ({0} U [G]), p(7ilk]) € ({0} U )}, (7.35)
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where (;,m;, € Z>; for all ¢ € V. In other words, a measurement selection g is
defined over the integer lattice th(}:tz so that p is a vector of dimension |Uy, ., |, where
each element of p corresponds to an element in U, .,, and is denoted as pu(z;[k])
(or p(7i[k])). The set M contains all pu € ZZ;%” such that u(z;[k]) € ({0} U [&G])
and p(r;[k]) € ({0} U [n;]) for all ¢ € V and for all k € {ty,...,t3}. Thus, for any
ki € Cr; and wy; € By, there exists pu € /\/lgto”2 such that p(Z;[k])cr; = @rs
and p(7;[k])br; = wi,. In other words, u(z;[k])ck, (resp., u(7i[k])bx,) indicates the
cost spent on collecting the measurement of x;[k] (resp., r;[k]). Given a measurement
selection p € Zg(}”, we can also denote the pmfs of z;[k| and 7;[k] as p(Z;[k]|0, u(z;[k]))
and p(7;[k]|0, u(7;[k])), respectively, where we drop the dependencies of the pmfs on
cx,i and by ,; for notational simplicity.

To proceed, we consider the scenario where measurements can only be collected
under a budget constraint given by B € R>(. Using the above notations, the budget
constraint can be expressed as

> @)+ > bean(Fi[k]) < B. (7.36)
& [k]€Us, ity #i[K] €U, -t
We then consider estimators of § = [3 §]7 based on any given measurement selection

w € M. Considering any p € M, we denote
Up &k p(Milk]) > 0,k € {ty,... . 12}}, (7.37)

for all i € V and for all A € {z,r}. For all i € V and for all A\ € {x,r} with U} # 0,
T

~

denote y(U}) £ | \[ky] - 'Ai[k\um]] , where U} = {ky,. .., kot Letting
Uy 2 (i U} #0,i €V}, YA€ {x,r}, (7.38)

we denote the measurement vector indicated by y € M as
T
v 2 (@)™ - ek, DT e’ - W, )] (739)
where U, = {i1,... 4y, } and U, = {j1,...,Ju,}- Note that Z;[k] and 7;[k] are
(discrete) random variables with pmfs p(Z;[k]|0, u(Z;[k])) and p(7;[k]|0, u(7:[k])), re-

spectively. We then see from Eq. (7.39) that y(u) is a random vector whose pmf
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is denoted as p(y(p)|6, p). Similarly, the pmf of y(U*) (resp., y(U])) is denoted as
p(y(UF)|0, 1) (resp., p(y(U)|0,1)). Given ty,ts € Z>y with to > t;, we make the

following assumption on measurements z;[k] and 7;[k].

Assumption 7.6.1 For anyi € V and for any ki, ks € {t1,...,ta} (k1 # ko), T[k1],
Zilko], 7i[k1] and 7;lks] are independent of each other. Moreover, for any i,j € V
(i # j) and for any ki, ko € {t1,...,t2}, T;[k1] and Z;[ks] are independent, and &;[k:]

and 7;[ks] are independent.

The above assumption ensures that measurements from different nodes or from
different time steps are independent, and the measurements of x;[k] and r;[k] are also
independent. It then follows from Eq. (7.39) that the pmf of y(u) can be written as

w6, 1) = 1T py@He, w) - T py@)16, w), (7.40)

€Uy JEUr
where we can further write p(y(UF)|0, n) = H’fGUZ‘ p(z4[k]|0, p(z;[k])) for all i € U,,
and p(y(U))|0. 1) = TTesyr o075 K0, p(7 K1) for all j € U,
In order to quantify the performance (e.g., precision) of estimators of 6 based on
i, we use the Cramer-Rao Lower Bound (CRLB) (e.g., [79]) associated with p. In the
following, we introduce the CRLB, and explain why we choose it as a performance
metric for the problem considered in this section. First, given any measurement

1 € M, the corresponding CRLB, denoted as Cy(u), is given by (e.g., [79])

1

Co(p) = (Fy(n)) (7.41)

where Fy(p) is the corresponding Fisher information matrix defined as

*Inp(y(p)|0,) 8% Inp(y(w)|6,u)

Fy(n) 2 —F oB* 0506 7.42
o(1) 02 Inp(y(u)|0) 0% Inp(y(p)|6.10) (7.42)
0608 062

with the expectation E[-] taken with respect to p(y(u)|6, 1). Under Assumption 7.6.1,
one can use Eq. (7.40) to rewrite Eq. (7.42) as

0 Inp(AilK]|0.p(hilk)) 9% Inp(As[k]|0,u(NiK]))

DD D31 I (743
3 Inp(Ai[K]|0.u(As[K]) 9% Inp(A; E?]\GM(A k) |

Ae{z,r} i€Ux keu) 86083
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where U, is given in Eq. (7.38), U} is defined in Eq. (7.37) for all i € V, and each
expectation E[-] in the summation is taken with respect to p(A;[k]|0, n(A:[k])). Under
some regularity conditions on the pmfs of z;[k] and 7;[k], Eq. (7.43) can be written

as the following (e.g., [79]):

d1n I dln 0, u(NIED) 7
- Y Y Y& [ p(\ Ieu( []))< p(As [39'9”( [])))]_(7.44)

Ae{z,r} i€Uy keL{A

Denoting an (unbiased) estimator of § = [3 6]7 corresponding to a measurement
selection p as é(u) € R?, it is well-known that the following inequality holds under

some regularity conditions on the pmfs of z;[k| and 7;[k] (e.g., [79]):

Ry, = El(0(1) — 0)(0(n) — 6)"] = Col(n), (7.45)

where R;, € R**? is the covariance of the estimator 0(1), the expectation E[] is
taken with respect to p(y(u)|0, 1), and Cy(u) is given by Eq. (7.41). In fact, there may
exist estimators whose covariances achieve the lower bound in (7.45) (e.g., [79]). For
instance, the covariance of the maximum likelihood estimator asymptotically achieves
the bound in (7.45), as the number of measurement samples (corresponding to a single
node i € V) indicated by p tends to infinity (e.g., [79]).

Moreover, noting that when In(p(y(u)|€, 1)) is a nonlinear function (i.e., a polyno-
mial) in § and §, it follows from Eq. (7.42) that Fy(u), and thus Cy(u), will potentially
depend on the value of the unknown parameter §. In other words, the bound in (7.45)
is a local bound given any value of §. However, our goal is to find a measurement
selection u € M such that certain performance metrics of a corresponding estimator
of = [ 6]T is optimized, regardless of the true values of 3 and 4, while satisfying
the budget constraint. Therefore, we desire to optimize a performance metric that
does not depend on £ and ¢, which motivates us to further consider the Bayesian
Cramer-Rao Lower Bound (BCRLB) (e.g., [117]) described as follows, which lever-
ages prior knowledge about 6 to yield a bound that does not depend on the true

value of #. Specifically, consider any estimator é(u) of 6 based on a measurement se-
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lection p € M, and consider a prior pdf of §, denoted as p(f). Under some regularity
conditions on the pmfs of z;[k] and 7;[k], and p(@), we have (e.g., [117,118]):

Ry, = El(0(1) — 0)(B() — 6)"] = C(n), (7.46)

where Ry, € R?*? is the error covariance of the estimator 0(1), the expectation E[]
is taken with respect to p(y(u)|0, u)p(0), and C(u) € R?*? is the BCRLB associated
with the measurement selection p. The BCRLB is defined as (e.g., [117,118])

Clp) & (Eo[Fp(p)] + F,) ", (7.47)

where Ey[-] denotes the expectation taken with respect to p(#), Fp(u) is given by
Eq. (7.42), and F, € R**? encodes the prior knowledge of 6 as

9%2Inp(d) 92Inp(H)

: dlnp(6) Olnp(d)  r
- _ op B0 -
9608 052

where the second equality holds under some regularity conditions on p(6) [118].

Similar asymptotic analysis to that for the CRLB may be applied to the BCRLB
(e.g., [118]).

Thus, the above arguments motivate us to consider (functions of) C(-) as opti-
mization metrics in the measurement selection problem studied in this section, in

order to characterize the estimation performance corresponding to a measurement

selection 1 € M. In particular, we will consider tr(C(-)) and Indet(C(-)), which
are widely used criteria in parameter estimation (e.g., [67]), and are also known as

the Bayesian A-optimality and D-optimality criteria respectively in the context of

experimental design (e.g., [119]). First, considering the optimization metric tr(C(+)),

we see from the above arguments that (7.46) directly implies tr(Ry,)) > tr(C(u)) for

all estimators A() of 6 and for all € M [91]. Therefore, a measurement selection

p* that minimizes tr(C'(u)) potentially yields a lower value of tr(Rj,) for an esti-
mator O(y) of §. Furthermore, there may exist an estimator () that achieves the

BCRLB (asymptotically), i.e., tr(C(p)) provides the minimum value of tr(R;,) that

can be possibly achieved by any estimator é(,u) of §, given a measurement selection
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. Similar arguments hold for the optimization metric Indet(C/(+)). Hence, the above
arguments further justify using C'(-) as the optimization metric in the measurement

selection problem considered in this section. Denoting

fa(n) £ tr(C(n)) and fa(p) £ Indet(C(p)) Y € M, (7.49)

we now define the Parameter Estimation Measurement Selection (PEMS) problem.

Problem 7.6.2 Consider a discrete-time SIR model given by Eq. (7.1) with a directed
graph G = {V, €}, a weight matriz A € R™", a sampling parameter h € R>q, and an
initial condition I = [((s[O)T (x[0])T (r[0])T]". Moreover, consider time steps ty,ty €
Ly withty > t1; a set C; = {Ccrsi = ¢ € ({0}U[G]) } with cx; € Rso and (; € Zsy, for
alli €V and for all k € {t1,...,ta}; a set By, = {nb; : n € ({0} U [m])} with by, €
Rsq and n; € Zsq, for alli € V and for all k € {t1,...,t2}; a budget B € R>; and
a prior pdf p(8). Suppose &;[k] (resp., 7i[k]) is given by a pmf p(Z;[k]|0, vx.i) (resp.,
p(7:[k]|0,wk:)), where @r; € Cr; (resp., wri € By;). The Parameter Estimation

Measurement Selection (PEMS) problem is to find a measurement selection p that

solves
;rel%f(u) 750,
7.50
st > oK)+ D beapliik]) < B,
ii[k}EZ/[tl;Q fi[k]eutlih

where M is defined in Eq. (7.35), f(-) € {fa(*), fa(-)} with f.(-) and fa(-) defined in
Eq. (7.49), Uy, is defined in Eq. (7.34), and C(u) is given by Eq. (7.47).

Note that F, > 0 from (7.48), and f,(0) = tr(C(0)) = tr((F,)') and f4(0) =
Indet(C(0)) = Indet((F,)~!) from Eq. (7.47). We further assume that F, = 0 in the
sequel, which implies f(u) > 0 for all 4 € M.

7.6.2 Solving the PEMS Problem

In this section, we restrict ourselves to a specific measurement model. Simi-
lar measurement models have also been considered in [116] and [111] for instance.

Nonetheless, our analysis can potentially be extended to other measurement models.
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Pmfs of Measurements 7;[k] and 7;[k]

As mentioned in Section 7.4 and Section 7.6.1, measurement z;[k] (resp., 7;[k])
is obtained by performing virus (resp., antibody) tests in the population at node
i € V and at time k € {t1,...,t2}. Specifically, consider any node i € V and any
time k € {t1,...,t2}, where the total population of node i is assumed to be fixed
over time and is denoted as N; € Z>;. Given any measurement selection p € M
where M is defined in Eq. (7.35), we recall from Section 7.6.1 that u(z;[k])ck,; can be
viewed as the cost of performing virus tests on u(%;[k]) N7 randomly and uniformly
sampled individuals in the population of node i € V, where u(z;[k]) € ({0} U [¢])
(with ; € Z>1), ck; € Rsp and NF € Zsy with ;NP < N,. Note that z;[k] is the
proportion of population at node ¢ and at time k that is infected, and x;[k] € [0, 1)
under Assumptions 7.3.1-7.3.2 as shown by Lemma 7.3.3. Thus, a randomly and
uniformly sampled individual in the population at node ¢ and at time k will be an
infected individual (at time k) with probability z;[k], and will be a non-infected
(i.e., susceptible or recovered) individual with probability 1 — x;[k]. Supposing the
tests are accurate,® we see from the above arguments that the obtained number of
individuals that are tested positive, i.e., N;z;[k], is a binomial random variable with
parameters NFu(z;[k]) € Z>y and x;[k] € [0,1). Therefore, for any ¢ € V and for any
k € {t1,...,ta}, the pmf of z;[k| is given by

NE (s [K])

p(z[k] = x|0, u(z;[k))) = ( N )(ayz[k])le(l — xi[lg])Né”u(ii[k})—Nix’ (7.51)

where = € {O,NL,%,,W} with z € [0,1] since NP(; < N;. Note that
we do not define the pmf of measurement z;[k] when NPu(z;[k]) = 0, i.e., when
w(z;[k]) = 0, since p(z;[k]) = 0 indicates no measurement is collected for state z;[k].
Also note that when z;[k] = 0, the pmf of Z;[k] given in Eq. (7.51) reduces to p(z;[k] =
016, u(z;[k])) = 1. Moreover, since the weight matrix A € R"*" and the sampling

parameter h € Rs( are assume to be given, we see that given § = [3 §]7 and initial

3Here, “accurate” means that an infected individual will be tested positive with probability one,

and an individual that is not infected will be tested negative with probability one.
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condition I = [(s[0))T (z[0])T (r[0])T]", z;[k] can be obtained using Eq. (7.1b) for
all i € V and for all k € {t1,...,t2}, where we can view x;[k] as a function in the
unknown parameter 6. In other words, given [, 0, u(z;[k]), NF and NN;, one can obtain
the right-hand side of Eq. (7.51). Again, we only explicitly express the dependency
of the pmf of #;[k] on 6 and u(Z;[k]) in Eq. (7.51). Following similar arguments to
those above, we assume that for any ¢ € V and for any k € {¢;,...,t2}, measurement
7;|k] has the following pmf:

p(ii[k] = 710, pu(i:[K])) = (N%TTW)) (ra[K]) YT (L — iR MEREED =N (7.52)

where 7 € {0, & NN ,,%ﬁlm)} with r € [0,1], u(ri[k]) € {0,...,m}, NJ € Z>,

and N7 pu(7;[k]) < N;. Similarly, we note that the pmf of 7;[k] given in Eq. (7.52)
reduces to p(7;[k] = 0]0, u(7;[k])) = 1 when r;[k] = 0. The following standard result

for binomial random variables will be useful.

Lemma 7.6.3 For a binomial random q with parameters m € Zs, and ps € (0,1), the

CRLB is given by C,, = (F,.)~', where F,, & —E [—8 ple )] = ]E[(mnp(q))2] = 00

Op? Ops pS(l_pS)

with the expectation E[-] taken with respect to the pmf p(q).

Considering any measurement selection ;1 € M and any measurement Ni k] €

Uy, 1,, where A € {z, 7} and Uy, .4, is defined in Eq. (7.34), we have the following:

A p(Ni[K]|0, u(Ni[K])) 0 1n p(Ni[K]]6, p(Ni[K])) 7
E| 00 ( 00 ']

J0ln K]0, 2 ON[k] ON[E]\T

e e e i

NG MK ALK 7
Nilk](L = N [k]) 06 a0 7

(7.54)

where the expectation E[] is taken with respect to p(A[k]]6, w(Ai[k])), and \;[k] €
0,1). To obtain (7.53), we note the form of Inp(\;[k]|0, £(Ai[k])) in Eq. (7.51), and
use the chain rule. Moreover, we obtain (7.54) from Lemma 7.6.3. Noting that the
pmf of \;[k] reduces to p(A\i[k] = 0], u(\;[k])) = 1 if A\;[k] = 0 as argued above, we
let the right-hand side of (7.54) be zero if \;[k] = 0.
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Complexity of the PEMS Problem

Here, we will show that the PEMS problem is NP-hard, i.e., there exist instances of

the PEMS problem that cannot be solved optimally by any polynomial-time algorithm
(if P # NP).

Theorem 7.6.4 The PEMS problem is NP-hard.

Proof We prove the NP-hardness of the PEMS problem via a (polynomial-time)
reduction from the knapsack problem which is known to be NP-hard (e.g., [41]). An
instance of the knapsack problem is given by a finite set D = {dy, ..., d,}, asize s(d) €
Z~o and a value v(d) € Z~ for each d € D, and K € Z~(. The knapsack problem is
to find D" C D such that ), ., v(d) is maximized while satisfying >, ., s(d) < K.

Given any knapsack instance, we construct an instance of the PEMS problem as
follows. Let G = {V,&} be a graph that contains a set of n isolated nodes with
n =7 and V = [n]. Set the weight matrix to be A = 0,4,, and set the sampling
parameter as h = 1. The time steps t; and t, are set to be t; = t; = 1, i.e., only the
measurements of x;[1] and r;[1] for all ¢ € V will be considered. The initial condition is
set to satisfy s;[0] = 0.5, z;[0] = 0.5 and r;[0] = 0 for all i € V. The budget constraint
is set as B = K. Let C;; = {0,B + 1} and By; = {0,s(d;)} for all i € V. The
pmfs of measurements #;[1] and 7;[1] are given by Eqgs. (7.51) and (7.52), respectively,
with NP = N/ = v(d;) and N; = max;eyp v(d;) for all ¢ € V, where Assumption 7.6.1
is assumed to hold. Finally, let the prior pdf of § € (0,1) be a Beta distribution
with parameters ay = 3 and ay = 3, and let the prior pdf of § € (0,1) also be a
Beta distribution with parameters a; = 3 and ay = 3,* where we take 8 and ¢ to
be independent. Noting that C,; = {0, B + 1} in the PEMS instance constructed
above, i.e., Z;[k] incurs a cost of B+ 1 > B, we only need to consider measurements
7i[1] for all ¢ € V. Moreover, since By; = {0,s(d;)}, a corresponding measurement

selection is then given by p € {0,1}Y. In other words, u(i) = 1 if measurement 7;[1]

4The pdf of a Beta distribution with parameters a; € R~ and ap € R+ is given by p(z|ay, az) =

%, where z € (0,1) and B(ag, ag) = fol y“171(1 — y)*2~1dy. See [120] for more details.
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is collected (with cost s(d;)), and u(i) = 0 if measurement 7;[1] is not collected. We
will see that there is a one to one correspondence between a measurement 7;[1] in the
PEMS instance and an element d; € D in the knapsack instance.

Given a measurement selection p € {0, 1}V, we have from Eq. (7.44) the following:

i€supp(u)

where each expectation E[-] in the summation is taken with respect to p(7;[1]|6, (7)),

supp(p) = {i : u(i) # 0} and 6 = [3 6]*. Moreover, we see from Eq. (7.54) that

EéﬂnM@DH&u@D<8mpﬁdm&uU»yJ
90 00

_ Np@) o orl] (37“1'[1]
R0 —r1]) 00 \ o9

) VieVv. (7.56)

Since 7;[0] = 0 and z;[0] = 0.5 for all i € V, Eq. (7.1c) implies 7;[1] = 0.5h0 for all
i €V, where h = 1. We then have from Eqgs. (7.55) and (7.56) the following:

| 0 0 L
Fe(M)Zm 0 095 > Nuli). (7.57)

i€supp(p)

Next, noting that 5 and § are independent, one can show via Eq. (7.48) that

02 glﬂg(ﬁ) 0
Fp = -y 0 52 In p(o) (7.58)
062

where one can further show that (F},)11 = (F},)22 > 0 using the fact that the pdfs of 8
and J are Beta distributions with parameters a; = 3 and «y = 3. Similarly, one can

obtain E4[1/0.50(1 — 0.56)] > 0. It now follows from Eqs. (7.57) and (7.58) that

B[R] + Fy = | ’ , (759

0 21+ 2 ZzEsupp(u) NY (i)
where z1, 20 € Ry are some constants (independent of 1). Note that the objective
in the PEMS instance is given by min,c13v f(1), where f(-) € {fa(-), fa(-)}. First,
considering the objective function f,(u) = tr(C(1)), where C(u) = (Eg[Fy(1)]+F,)~?,
we see from Eq. (7.59) that tr(C(u)) is minimized (over p € {0,1}Y) if and only if
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> icsupp(u) Vi #(#) is maximized. Similarly, considering the objective function f(u) =

Indet(C (1)), we see from Eq. (7.59) that In det(C'(12)) is minimized (over p € {0, 1}Y)

if and only if ) N (i) is maximized.

i€supp(u)

By the way we constructed the PEMS instance from the given knapsack instance, it
follows directly from the above arguments that a measurement selection p* € {0, 1}
is an optimal solution to the PEMS instance if and only if D* £ {d; : i € supp(p*)} is

an optimal solution to the knapsack instance. Since the knapsack problem is NP-hard,

we conclude that the PEMS problem is NP-hard. [ |

Remark 7.6.5 Theorem 7.6.4 shows that the PEMS problem is NP-hard even when
only the measurements at time step k = 1 can be collected, and each measurement

can either be collected with a certain cost or not collected.

Algorithm for the PEMS Problem

Theorem 7.6.4 motivates us to consider approximation algorithms for solving the
PEMS problem. To begin with, we note that the objective function in the PEMS
problem can be viewed as a function defined over an integer lattice. We then have
fo : M — Ry and f; : M — Rsg, where M is defined in Eq. (7.35). First,
considering f, : M — R5(, we will define a set function fp, : oM _, R>¢, where M

is a set constructed as
./\;l £ {({i‘z[/{?],ll) 11 € V,k‘ - {tl, A ,tg},ll - [CZ]}
U {(TAZ[]{?],ZQ) 11 E V, ke {tl, R, ,tg},lg € [T]z]} (760)
In other words, for any ¢ € V and for any k € {t1,...,t2}, we associate elements
(25[K], 1), ..., (25]k], 1) (vesp., (73[K], 1), ..., (7:[k],l2)) in set M to measurement &;[k]
(resp., 7;|k]). The set function fp,(-) is then defined as
fra(Y) £ fa(0) = faluy) = tr(C(0)) — tr(C(uy)) VY S M, (7.61)

where for any J C M, we define py € M such that py(2;[k]) = |{(Z:[k], 1) :
(2;[k], ) € Y} and py(7[k]) = [{(7:]k], I2) = (7;]k],12) € Y} for all i € V and for all
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k€ {ti,...,ta}. In other words, puy(Z;[k]) (resp., uy(7;[k])) is set to be the number
of elements in ) that correspond to the measurement Z;[k] (resp., 7;[k]). Also note

that fp,(0) = 0. Following the arguments leading to (7.54), we define

Eo | ol (228 if y = (23[K], 1) -
Hyé [Iz[k}(l z;k]) 00 ( 00 ) ] 1 VyEM, (762)

Eg [n[k}(]lvirn[k}) ayge[k} (8g(£k]) | if y = (7i[k], 12)

where x;[k],m;[k] € [0,1), i € V, k € {t1,....ta}, L1 € [(i], la € [n], and the ex-
pectation Ey[-] is taken with respect to the prior pdf p(f). Given any 0 = [3 4|7,

we see from the arguments for (7.54) that xi[k}(zlvza:i[k]) 896619%] (639[ })T = 0. More-
over, one can show that Ey [I,[k] (lefx,[k]) 8‘?9[]“} (ayge[k])T} = 0. Similarly, one can obtain

Ee[ " }(lelrr ) 67;6[’@ (aggk])T} = 0, which implies H, = 0 for all y € M. Now, suppose
the pmfs of Z;[k| and 7;[k| are given by Eq. (7.51) and Eq. (7.52), respectively. Recall

from Eq. (7.47) that tr(C(pn)) = tr((Ee[Fy(p)] + F,)71) for all 4 € M, where F, and

Fy(u) are given by (7.48) and (7.44), respectively. Supposing Assumption 7.6.1 holds,
for all ¥ C M, one can first express Fy(uy) using (7.54), and then use Eq. (7.62)
to obtain Eg[Fy(py)] = >_,cy Hy 2 H(Y), where iy is defined above given ) C M.
Putting the above arguments together, we have from Eq. (7.61) the following;:

fra(Y) =tr ((F,)™") —tr (F, + HY))™") VY C M. (7.63)

We now associate costs to the elements in M. Specifically, let the cost of (#;[k], ;)
be ¢, denoted as c(#;[k], 1), for all (2;[k], 1) € M, and let the cost of (7;[k],ls) be
bri, denoted as c(f;[k], o), for all (7[k],ls) € M, where c; € Rsg and by,; € Ry
are given in the instance of the PEMS problem. Setting the cost structure of the
elements in M in this way, we establish an equivalence between the cost of a subset
Y C M and the cost of uy € M, where py is defined above, i.e.,

> Z Sy @R) + ) brapy(Rilk)).
Ae{ar} (3l i[k] €Uy, 1, #ilk] €U, ity
Similarly, con81der1ng the objective function f; : M — R in the PEMS problem,

we define a set function fpg : oM _y R as

fra(¥) £ fa(0) = fa(ny) = Indet(F, + H(Y)) — Indet(F,) VY S M, (7.64)
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where we define py € M such that py(2;k]) = [{(i[k], 1) : (Z:]k],11) € V}| and
uy(7:[k]) = |{(7:lk], l2) : (75]k], o) € YV} for all i € V and for all k € {t,...,t2}.
Note that given an instance of the PEMS problem in Problem 7.6.2, we can
construct the set M with the associated costs of the elements in M in O(n(¢ + 7))
time, where n is the number of nodes in graph G = {V,€}, and (,n € Z>; with
(; < (and n; <nforall i €)V. Assuming that ¢ and 7 are constants (i.e., they are
fixed), we can construct the set M with the associated costs in O(n) time which is a
polynomial in the size of the given PEMS instance. Based on the above arguments,

we further consider the following problem:

max fp(Y
YM ( ) (P)

s.t. ¢(Y) < B,
where fp(-) € {fpa(), fra(-)} with fpa(-) and fpa(-) given by in (7.63) and (7.64),
respectively, and ¢()) £ Y yeycly) for all Y C M. By the manner in which we
construct fp(+) and the costs of elements in M, one can verify that Y* C M (resp.,
Vi C M) is an optimal solution to Problem (P) with fp(-) = fpa(+) (resp., fp(:) =
fra(+)) if and only if iy, (resp., p1y;) defined above is an optimal solution to (7.50)
in Problem 7.6.2 with f(-) = fa(-) (vesp., f(:) = fa(-)). Therefore, given a PEMS
instance, we can first construct set M with the associated cost for each element in
M, and then solve Problem (P). Note that Problem (P) can be viewed as a problem
of maximizing a set function subject to a knapsack constraint. In particular, a greedy
algorithm (Algorithm 7.6.1) has been proposed to solve this problem with performance
guarantees when the objective function is monotone nondecreasing and submodular®
(e.g., [121] and [85]). Here, we note from the definition of Algorithm 7.6.1 that
the number of evaluations of function fp(-) required in the algorithm is O(|M|?).
One can also observe that the objective function fpq(Y) = Indet(F, + H(Y)) —

Indet(F),) in Problem (P) shares a similar form with that in [46]. Thus, using similar

%A set function g : 2¥ — R, where V = [n] is the ground set, is said to be monotone nondecreasing
if g(A) < g(B) for all A C B C V. g(:) is called submodular if g({y} U.A) —g(A) > g({y}UB) —g(B)
foral ACBCV and forallyeV\B.
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arguments to those in [46], one can show that fpy(-) is monotone nondecreasing and
submodular. Combining the above arguments together and noting that fpy(0) = 0,
we then have the following result for the performance of the greedy algorithm defined

in Algorithm 7.6.1 when applied to solving Problem (P) with fp(-) = fpa(:).

Algorithm 7.6.1 Greedy algorithm for PEMS
1: Input: An instance of PEMS transformed into the form in (P)

2: Output: ),
3: Find V) £ argmax{fp(y) : y € M}
4: Initialize Y, = 0 and C = M

5. while C # () do
Fr({y}ude)—fp(Y2)

6: Find y* € argmax,ec o)
7 if c(y*) 4+ ¢()2) < B then
8: Vo ={y* U Ys

9: c=C \ {y*}
10: Y, = argmax{ fp(M1), fp(J2)}

Theorem 7.6.6 Consider Problem (P) with the objective function fpg : 2 — Rsg
gwen by (7.64). Then Algorithm 7.6.1 yields a solution, denoted as ), to Problem
(P) that satisfies

Fra¥9) 2 50— ™) fra), (7.65)

where Y5 C M is an optimal solution to Problem (P).

However, the objective function corresponding to the A-optimality criterion (i.e.,
fpa(+)) is not submodular in general (e.g., [5]). In fact, one can construct examples
where the objective function fp,(Y) = tr((F,)™") — tr ((F, + H(Y))™') in the PEMS
problem is not submodular. Hence, in order to provide performance guarantees of the
greedy algorithm when applied to Problem (P) with f(-) = fp.(-), we will extend the

analysis in [121] to nonsubmodular settings. To proceed, note that for all A C B C
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M, we have F,+ H(A) < F,+ H(B), which implies (F, + H(A))™! = (F,+ H(B))™!
and tr(F, + H(A))™) > tr(F, + H(B))™') [91]. Therefore, the objective function
fpa(+) is also monotone nondecreasing with fp,(0)) = 0. We then characterize how

close fp,(+) is to being submodular by introducing the following definition.

Definition 7.6.1 Consider Problem (P) with fp(-) = fpa(-), where fpq : 27 — R
is defined in (7.61). Suppose Algorithm 7.6.1 is applied to solve Problem (P). For all
GJe{l,.. |2}, let V) = {y,...,y;} denote the set that contains the first j elements
added to set Yy in Algorithm 7.6.1, and let Y = 0. The type-1 greedy submodularity
ratio of fpa(-) is defined to be the largest v; € R that satisfies

> (fra{yy UNE) = fra(13)) = 1 (fra(AU YY) — fra(D3)), (7.66)

yeA\V)

for all A C M and for all j € {0,...,|Va|}. The type-2 greedy submodularity ratio
of fpa(+) is defined to be the largest 5 € R that satisfies

fPa(yl) - fPa(w) > V2 (fPa({y} U yg) - fPa(yg))v (767)

for all j € {0,..., ||} and for all y € M\ V) such that c(y) + c(V]) > B, where
Vi = argmax{ fr.(y) : y € M}.

Remark 7.6.7 Note that fp,(-) is monotone nondecreasing as argued above. From
the definition of v, in (7.66), one can then show that v, € [0, 1]; if fpa(-) is submod-

ular, v1 = 1. Similarly, one can show that vo > 0; if fpu(-) is submodular, vo > 1.

Based on Definition 7.6.1, the following result extends the analysis in [85,121], and
characterizes the performance guarantees of the greedy algorithm (Algorithm 7.6.1)

for solving Problem (P) with fp(-) = fpa(:).

Theorem 7.6.8 Consider Problem (P) with the objective function fp, : oM R>g
given by (7.61). Then Algorithm 7.6.1 yields a solution, denoted as Y9, to Problem
(P) that satisfies

fPa(yg) 2 %(1 - e_vl)fPa(y;)a (768)
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where Y* C M is an optimal solution to Problem (P), and y1 € Rxg and v, € R
are defined in Definition 7.6.1.

Proof Noting that (7.68) follows trivially if 71 = 0 or 72 = 0, we assume that
v > 0 and 75 > 0. In this proof, we drop the subscript of fp,(-) and denote f(-)
for notational simplicity. First, recall that for all j € {1,...,|ds|}, we let VI =
{v1,...,y;} denote the set that contains the first j elements added to set )s in

Algorithm 7.6.1, and let Y9 = (). Now, let j; be the first index in {1,...,|)s|} such

FUmIuVIhH - (V3
c(y)

Algorithm 7.6.1) cannot be added to Y, due to c¢(y*) + ¢(Y3') > B. In other words,

that a candidate element y* € argmax,cc for ), (given in line 6 of

AWDDIOD oy 3y,

satisfies c(y*)+c())) < B and can be added to ). Considering any j € {0,...,j—1},

for all j € {0,...,7;—1}, any candidate element y* € argmax,ec

we then have

CARIRCEE S SR ({y}uﬁi))‘f %) (7.69
' ey ¢
e oy SN —FOD) B fO8T) — )
- n ye%yj v c(yj+1) = M c(Yj+1) - (770)

where (7.69) follows from the definition of 7, in (7.66), and the first inequality in

(7.70) follows from £ ({y}uié))_f ) < f ({y“li;{%))_f (%) Yy € Y*\ V) by the greedy

choice of Algorithm 7.6.1. To obtain the second inequality in (7.70), we use the fact

c(Y¥) < B. Since f(-) is monotone nondecreasing, it then follows from (7.70) that

fF - f(yg)
c(Yj+1)

FO) < FO) + § - (7.71)

J J
Moreover, let y' € argmaxycc fv) U)i%;))_f %) e the (first) candidate element for )

that cannot be added to ), due to ¢(y) 4+ ¢(V3') > B, as we argued above. One can
see that ({y/}ugél/))_f 02) > LUBVDIOR) 4160 holds for for all y € V*\ V. Letting

- c(y)

VIt A Ly} U YY) and following similar arguments leading to (7.71), we have

B fOI) -5

FOI) < FOR) + T

(7.72)
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Letting A; 2 f(Vr) — f())) for all j € {0,..., 5} and Aj 41 2 F(VF) — F(VIT), we
obtain from (7.71) the following:

Ay <A (1 - C(yj)%) Vje{0,...,5+1},

B
N i c(yj)m c(y')m
Moreover, one can show that (H” (1-— yg%))(l ) < H”H( 3;11)39 )

(e.g., [31]). We then have from (7.73) and (7.72) the followmg.

x\ _ VJit1 x . C( _§l+1)71 atl <« *) =71 yjﬁ—l
PO = FOET) < SO0 - S < foe
e FOI) 2 (= e ) 2 (L= ) O, (7.74)

where the second inequality in (7.74) follows from ¢(YJ'*") > B.

To proceed with the proof of the theorem, we note from the definition of ~, in
Definition 7.6.1 that f({y'} UYJ) — f(VI) < %f(yl) with 75 > 0, which together
with (7.74) imply that f(V3) + if(yl) > F(VITY) > (1 —em) f(V*). Thus, we see
that at least one of f()J') > $(1—e ) f(Vr) and f(Q1) > Z(1—e™)f(Vr) holds.

)

Since f(V5) > f(V4') by the monotonicity of f(-) and f(3¢) > max{f(M), f(V5)}
by the definition of Algorithm 7.6.1, we obtain (7.68). u

Remark 7.6.9 Note that (7.68) becomes fpa(V?) > 3(1 — e ) fpa(V7) if 72 > 1.
Also note that vo > 1 can hold when the objective function fpy(-) is not submodular,

as we will see later in our numerical examples.

Remark 7.6.10 In [122], the authors also extended the analysis of Algorithm 7.6.1
to nonsubmodular settings, and obtained a performance guarantee for Algorithm 7.6.1
that depends on a submodularity ratio defined in a different manner. One can show
that the submodularity ratios defined in Definition 7.6.1 are lower bounded by the one
defined in [122], which further implies that the performance bound for Algorithm 7.6.1
giwen in Theorem 7.6.8 is tighter than that provided in [122].
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We see from Definition 7.6.1 that given YJ for all j € {0,...,|)s|} from Algo-
rithm 7.6.1, 75 can be obtained via O(|M|?) evaluations of fp,(-). However, finding
71 may require exponentially many evaluations of fp,(-). Thus, we provide a lower
bound on 7; that can be computed in polynomial time (given H, for all y € M defined
in (7.62)). The lower bound on v; and the value of v, together with Theorem 7.6.8
will also provide performance guarantees for the greedy algorithm. We will use the

following result.

Lemma 7.6.11 ([91]) For any positive semidefinite matrices P,Q € R™*" A\ (P) <
M(P+Q) < M(P)+M(Q), and Ay(P + Q) > Mn(P) + An(Q)-

We then have the following result; the proof is included in Section 7.8.3.

Lemma 7.6.12 Consider the set function fpq : 2M — R defined in (7.61). The

type-1 greedy submodularity ratio of fp.(-) given by Definition 7.6.1 satisfies

o i elB e HODM(E, + H({5}UY)

DT jet0me A (Fy + HO)M(E, + H({z;} UYVY))

(7.75)

where Y3 contains the first j elements added to Yy in Algorithm 7.6.1¥j € {1,..., M|}
with Y3 = 0, F, is given by (7.48), H(Y) =3 oy, H, VY C M with H, = 0 defined

, : Do (Fp H{yh03)) v
in (7.62), and z; € argmin, _ v, 3 /\1(F:+H({y}uyz)) Vie{l,..., |}

Illustrations

Using Lemma 7.6.11, one can further obtain from (7.75) the following:

> i Ao (Fp) + AQ(H(J@) Aa(Fp) + Aa(H(2))) + Aa(H(Y3)) (7.76)
T E(0, 2 A (FY) + M(H (D)) M(F,) + M (H(2) + M (H())) '

=

C e(RytH({yhuys
YEM\VS A, (Fp+H ({y}UY]

that the lower bound on v; would potentially increase if Ao(H(z;))/A(H(2;)) and
Xo(H(Y)))/M(H(Y])) increase. Recall that F, given by (7.48) encodes the prior
knowledge that we have about 6 = [ §]7. Moreover, recall from (7.62) that H(y)

where z; € argmin i; Supposing F, is fixed, we see from (7.76)

depends on the prior pdf p(#) and the dynamics of the SIR model in (7.1). Therefore,
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the lower bound given by Lemma 7.6.12 and thus the corresponding performance
bound of Algorithm 7.6.1 given in Theorem 7.6.8 depend on the prior knowledge
that we have on # = [3 §]T and the dynamics of the SIR model. Also note that
the performance bounds given in Theorem 7.6.8 are worst-case performance bounds
for Algorithm 7.6.1. Thus, in practice the ratio between a solution returned by
the algorithm and an optimal solution can be smaller than the ratio predicted by
Theorem 7.6.8, as we will see in our simulations in next section. However, there may
exist instances of the PEMS problem that let Algorithm 7.6.1 return a solution that
meet the worst-case performance bound. Therefore, the performance bound provided
in Theorem 7.6.8 indicates the worst performance bounds that Algorithm 7.6.1 can
ever have when applied to any instance of the PEMS problem with objective function
fpra(+). Moreover, instances with tighter performance bounds potentially imply better
performance of the algorithm when applied to those instances. Similar arguments also

hold for the performance bounds provided in Theorem 7.6.6.

Simulations

To further investigate the performance of Algorithm 7.6.1 in practice and validate
the theoretical results in Theorems 7.6.6 and 7.6.8, and Lemma 7.6.12, we consider
concrete PEMS instances. The directed network G = {V, €} is given by Fig. 7.2(a).
According to the existing literature about the estimated infection and recovery rates
for the COVID-19 pandemic (e.g., [123]), we assume that the infection rate g and the
recovery rate J lie in the intervals [3,7] and [1,4], respectively. Moreover, we let the
prior pdf of 5 (resp., ) be a (linearly transformed) Beta distribution with parameters
a; = 6 and ay = 3 (resp., ag = 3 and ay = 4), where § and 0 are also assumed to be
independent. The prior pdfs of § and § are then plotted in Fig. 7.2(b) and Fig. 7.2(c),
respectively. The sampling parameter is set to be h = 0.1. We then randomly generate
the weight matrix A € R®*5 such that Assumptions 7.3.1-7.3.2 are satisfied, where

each entry of A is drawn (independently) from certain uniform distributions. The
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initial condition is set to be s;[0] = 0.95, z1[0] = 0.05 and 7, [0] = 0, and s;[0] = 0.99,
x;[0] = 0.01 and r;[0] = 0 for all ¢ € {2,...,5}. In the pmfs of measurements z;[k]
and 7;[k] given in Eq. (7.51) and Eq. (7.52), respectively, we set N = N] = 100 and
N; = 1000 for all 7 € V.

T3 4 5 6 7 710 15 20 25 30 35 40
B 6

(b) Prior pdf of 8 (c) Prior pdf of 6
Fig. 7.2. Network structure and prior pdfs of 8 and §.

First, let us consider PEMS instances with a relatively smaller size. In such
instances, we set the time steps t; = to = 5, i.e., we only consider collection mea-
surements at time step ¢ = 5. In the sets Cs; = {(cs; : ¢ € ({0} U[¢])} and
Bs; = {nbs; : m € ({0} U[n])}, welet ¢5;, = bs,; and §; = n; = 2 for all i € V, and
draw ¢;; and bs,; uniformly randomly from {1,2,3}. Here, we can choose to perform
0, 100, or 200 virus (or antibody) tests at a node i € V and at k = 5. Since the set
M defined in Eq. (7.60) has size 20, it allows us to compare the performance of the
greedy algorithm (Algorithm 7.6.1) to the optimal solution. In Fig. 7.3(a), we consider
the objective function fpy(-), given by Eq. (7.64), in the PEMS instances constructed
above, and plot the greedy solutions and the optimal solutions to the PEMS instances
under different values of budget B. Note that for all the simulation results in this
section, we obtain the averaged results from 50 randomly generated A matrices as de-
scribed above, for each value of B. As shown in Theorem 7.6.6, the greedy algorithm
yields a 3(1—e™!) ~ 0.31 approximation for fp4(-) (in the worst case), and the results
in Fig. 7.3(a) show that the greedy algorithm performs near optimally for the PEMS
instances generated above. Similarly, in Fig. 7.3(b), we plot the greedy solutions and
the optimal solutions to the PEMS instances constructed above under different values

of B, when the objective function is fp,(:) given in Eq. (7.61). Again, the results in
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Fig. 7.3(b) show that the greedy algorithm performs well for the constructed PEMS
instances. Moreover, according to Lemma 7.6.12, we plot the lower bound on the
submodularity ratio v, of fp,(-) in Fig. 7.3(c). Here, we note that the submodularity
ratio v of fp,(+) is always greater than one in the PEMS instances constructed above.
Hence, Theorem 7.6.8 yields a %(1 — e~ ") worst-case approximation guarantee for the

greedy algorithm, where we note that £(1 — e %) ~ 0.13.

x10-*

048] —— OPT —— OPT
—— Greedy —— Greedy
0.70 < 0.36
__ 046 _ c
\'Z & 0.65 'g
o W& <€ 0.34
0.44 3
0.60 @
0.42 0.32
0.55
10 12 14 16 18 20 10 12 14 16 18 20 10 12 14 16 18 20
B B B
(a) OPT vs. Greedy for fpq(-) (b) OPT vs. Greedy for fp,(-) (¢) Bound on v,

Fig. 7.3. Results for PEMS instances of medium size.

Bound on y1
<)
N

10 15 20 25 30

Fig. 7.4. Bound on 7, for PEMS instances of large size.

We then investigate the performance of the greedy algorithm for PEMS instances
of a larger size. Since the optimal solution to the PEMS instances cannot be efficiently
obtained when the sizes of the instances become large, we only obtain the lower
bound on the submodularity ratio 71 of fp,(:) provided in Lemma 7.6.12, which can
be computed in polynomial time. Different from the smaller instances constructed
above, we set t; = 1 and to = 5. Welet ; =n, =10 for all i € V in Cy; = {Ccxs :
¢ € ({0} U[¢])} and By, = {nbr; : n € ({0} U [n:])}, where we also set cx; = by,
and draw ¢;; and by,; uniformly randomly from {1,2,3}, for all £ € [5] and for all
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i € V. Note that the size of the set M defined in Eq. (7.60) is equal to 500 in
these instances of the PEMS problem. Moreover, we modify the parameter of the
Beta distribution corresponding to the pdf of 5 to be a; = 8 and oy = 3. The other
constructions remain the same as the smaller PEMS instances described above. Here,
we can choose to perform 0, 100, 200, ..., or 1000 virus (or antibody) tests at node
i €V and at k € [5]. In Fig. 7.4, we plot the lower bound on v; obtained from
the PEMS instances constructed above. We note that the submodularity ratio v, of
fpra(+) is also always greater than one.

Overall, we see that the greedy algorithm for the PEMS problem performs well
on the randomly generated instances. Moreover, the lower bounds on 7, plotted in
Fig. 7.3(c) and Fig. 7.4 show that Lemma 7.6.12 together with Theorem 7.6.8 yield
reasonably tight worst-case performance guarantees for the greedy algorithm when

applied to PEMS instances with the objective function fp,(-).

7.7 Chapter Summary

In this chapter, we first considered the PIMS problem under the exact measure-
ment setting, and showed that the problem is NP-hard. We then proposed an ap-
proximation algorithm that returns a solution to the PIMS problem that is within
a certain factor of the optimal one. Next, we studied the PEMS problem under the
noisy measurement setting. Again, we showed that the problem is NP-hard. We
applied a greedy algorithm to solve the PEMS problem, and provided performance
guarantees on the greedy algorithm. We presented numerical examples to validate the
obtained performance bounds of the greedy algorithm, and showed that the greedy

algorithm performs well in practice.
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7.8 Proofs of Key Results
7.8.1 Proof of Lemma 7.3.3

We first prove part (a). Considering any i € V and any k € Zs(, we note from
Eq. (7.1a) that
silk + 1] = si[k](1 = hB > aga;[k)). (7.77)
JEN;
Under Assumptions 7.3.1-7.3.2, we have z;[k] € [0, 1] for all i € V as argued above,
and hB) ;5. aij < 1 for all i € V, which implies 1 — h33 ", ¢ aja;[k] > 1 —
hB3 iex, @iy > 0. Supposing s;[k] > 0, we have from Eq. (7.77) s;[k + 1] > 0.
Combining the above arguments with the fact s;[0] € (0, 1] from Assumption 7.3.1,
we see that s;[k] > 0 for all & € Zso. Noting that s;[k],x;[k],r:[k] € [0,1] with
si[k] + x;[k] + ri[k] = 1 for all ¢ € V and for all k € Zs, as argued above and
that 2;[0] € [0,1) and r;[0] = 0 for all ¢ € V, the result in part (a) also implies
x;[k],ri[k] € [0,1) for all i € V and for all k € Z>o.
One can then observe that in order to prove parts (b)-(d), it is sufficient to prove
the following facts.
Fact 7.8.1 Consider any i € V and any k1 € Zxo. If x;lk1] > 0, then x;[ks] > 0 for
all ky € Zso with ky > k.

Fact 7.8.2 Consider any i € V and any k € Z>q such that x;[k] = 0. If there exists
Jj € N; such that x;[k] > 0, then x;[k + 1] > 0. If x;[k] = 0 for all j € N, then

Fact 7.8.3 Consider any i € V and any ky € Z>o. If x;[k1] > 0, then r;[ky + 1] > 0.
If x;[ki] = 0, then ri[k; + 1] = 0.

Let us first prove Fact 7.8.1. Consider any « € V and any k € Z>(. Supposing
x;[k] > 0, we have from Eq. (7.1)

wilk + 1) = (1 = ho)x;[k] + hsi[k]B > aga;(k], (7.78)
JjEN;
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where the first term on the right-hand side of the above equation is positive, since
1 —hd > 0 from Assumption 7.3.2, and the second term on the right-hand side of
the above equation is nonnegative. It then follows that z;[k + 1] > 0. Repeating the
above argument proves Fact 7.8.1.

We next prove Fact 7.8.2. Considering any ¢« € V and any k& € Zs( such that

x;[k] = 0, we note from Eq. (7.1) that
ik + 1) = hsi[k]B > aya;[k], (7.79)
JEN;
where s;[k] > 0 as shown in part (a). Suppose there exists j € N such that z;[k] > 0.
Since h, 3 € Ry and a;; > 0 for all j € N; from Assumption 7.3.2, we have from
Eq. (7.79) x;[k + 1] > 0. Next, supposing z;[k] = 0 for all j € N, we obtain from
Eq. (7.79) x;[k + 1] = 0. This proves Fact 7.8.2.

Finally, we prove Fact 7.8.3. Let us consider any ¢ € V and any k; € Zxo.
Suppose x;[k1] > 0. Since h,d € Ry from Assumption 7.3.2, we have from Eq. (7.1c)
rilk1 + 1] = ri[k] + hox;[k1] > 0. Next, supposing z;[ki] = 0, we note from Fact 7.8.1
that x;[k]] = 0 for all k] < ky. It then follows from Eq. (7.1¢) and Assumption 7.3.1
that r;[k; + 1] = r;[k1] = - - - = r;[0] = 0, completing the proof of Fact 7.8.3. |

7.8.2 Proof of Lemma 7.5.5

Noting from (7.11), we have

Ohin | _ [salk] Xjex;, angzilk] —zilki] (7.80)
Pl i 0 iy ko]

To prove part (a), consider any i; € S; and any iy € V with d;, # oo, where we note
x;,[0] > 0 and a;,;, > 0 from the definition of S;. We then see from Lemma 7.3.3(a)-(b)
that s;, [k1] > 0 and x;, [k1] > 0 for all k; > 0. It follows that s;, [k1] Zje/ffil ai,jxilk1] >
0 for all k&, > 0. Also, we obtain from Lemma 7.3.3(b) x;,[ks] > 0 for all ky > d;,.
This proves part (a).

We then prove part (b). Considering any ¢; € &’ and any i, € V with dy # o0,
we see from the definition of &' that N, # () and there exists j € N, such that
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dj # co. Letting j; be a node in N;, such that dj, = min{d; : j € N}, } # oo, we note
from Lemma 7.3.3(a) that z; [k1] > 0 for all £y > min{d; : j € N;,;}. Also note that
a;,j, > 0 from Assumption 7.3.2. The rest of the proof of part (b) is then identical to

that of part (a). |

7.8.3 Proof of Lemma 7.6.12

Noting the definition of «; in Definition 7.6.1, we will provide lower bound on
%, ayg Fre 0HO¥)=Fra(¥0))

FPa(AUY3)~fra(¥3)
AN\ V) # 0, otherwise (7.66) would be satisfied for all 43 € R. We begin by lower

bounding ZyeA\y% (fra({y} U Vi) — fpa(yg)) in the following:

for all A C M and for all yg’, where we will assume that

Z (fPa({y} U yg) - fPa(yg))

yEA\y%
= 3 (e ((F,+HY)) ™) — e (B + H{yy v V) ™)
yEA\yg
1
yg\:y]; \(F, +H(y2)) - Ai(Fp+H({y}Uy§)))

(F,+ H({y} UYI)) — \(F, + HQY))
=2 Z GRS <FP+H<{y}uy5>>

yeA\y] =1
yEA\y2 ! z 2
ZyeA\yg tr(Hy)

(7.82)

“M(E,+ HOD)M(E, + H{ZYU YD)
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To obtain (7.81), we let 2/ € arg maxyeA\yg)\l(Fp + H({y} U Y})) and note that
M(F,+H({ZYUY)) > N(E, + H({y}ud))) for all i € {1,2} and for all y € A\ V3.
Next, we upper bound fp,(AU V) — fpa(V]) in the following:

fra(AUYY) = fra(V)) =

,_g

tr ((Fp+ HQ3) ™) —tr ((F, + HAUY))™)
G ETROD SRR

N(F,+H(3)  N(F,+ HAUY))

N(Fy + H(AU YY) — Ni(F, + H(Y3))
‘ N(Ey + H(V))Ni(F, + H(AU YY)
1 (M
Ao

HMM

7

Mw

z (Fp + H(AUY3)) — N(F, + H()3))
Fy+ H(Y3)) M (F, + H({z'} U Y))
2 yenyyy r(Hy)

_ : . (7.84)
Ao (Fy + H(V3)) Ao (F, + H({2'} U DY)

(7.83)

To obtain (7.83), we note that \;(F, + H(AUY])) > Xo(E, + H(AUY))) > \o(F, +
{2/} U] for all i € {1,2}, where the second inequality follows from Lemma 7.6.11
with the fact H(AU Y]) — H({z'} U Y}) = 0, and 2’ is defined above. Combining
(7.82) and (7.84), we have

Eyeany(Fraly} UI3) = fral0D) | No(F, + HOE) Mo, + H({2'} U W)
fra(AUYE) = fra(V3) T M(E, A+ H)M(F, + H({2'} U Y))
_ DalFy+ HOD ey + H({z} UY)
T M(F, + HOD(F, + H({z}ud))’
(7.85)
where z; € argmin _ 2 H W) g e (7.85) holds for all V! with j €

VEM\Y; i (Fp+H({y}UV]))
{0,...,]Y2|} and for all A C M, we obtain (7.75). u
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8. SUMMARY AND FUTURE WORK
8.1 Summary

In this thesis, we studied the sensor selection problem in large-scale systems using
algorithmic and graph-theoretic approaches, under a variety of settings. We summa-

rize our main results below.

1. In Chapter 3, we considered the sensor selection and attack problems for Kalman
filtering. We showed that the sensor selection and attack problems for Kalman
filtering are NP-hard and cannot be approximated within any constant factor

in polynomial time for general systems.

2. In Chapter 4, we studied a class of the sensor selection and attack problems for
Kalman filtering for networked systems where there is a single node in the net-
work that has a stochastic input. We showed that polynomial-time algorithms
exist for this class of the sensor selection and attack problems for Kalman filter-
ing, respectively. We further showed that the resilient sensor selection problem
for Kalman filtering under the networked system setting is NP-hard, but admits

a pseudo-polynomial-time algorithm.

3. In Chapter 5, we considered sensor selection problems for hypothesis testing in
signal detection based on the Neyman-Pearson detector and Bayesian detector.
We showed that the sensor selection problem for the Neyman-Pearson (resp.,
Bayesian) detector is NP-hard when we considered the miss probability of the
Neyman-Pearson detector (resp., error probability of the Bayesian detector) as
the optimization objective (in the hypothesis testing sensor selection problem).

While considering optimization metrics based on the Kullback-Leibler distance,
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J-Divergence, and Bhattacharyya distance, respectively, we provided theoretical

performance guarantees on greedy algorithms when applied to this problem.

In Chapter 6, we considered the data source selection problem for Bayesian
learning. We showed that the data source selection problem is NP-hard, and
provided a standard greedy algorithm to solve it with performance guarantees.
We further proposed a fast greedy algorithm to solve the problem that improves
the running times of the standard greedy algorithm, and achieves performance

guarantees that are comparable to those of the standard greedy algorithm.

. In Chapter 7, we studied the measurement selection problem for parameter

estimation in epidemic spread networks. We considered settings with exact
measurements and settings with stochastic measurements. We showed that
the measurement selection problems under these two settings are NP-hard. We
then provided approximation algorithms to solve the problems with performance

guarantees.

Future Work

Let us now outline some ongoing and future work related to the problems consid-

ered in this thesis.

1. Similarly to the sensor attack and resilient sensor selection problems for Kalman

filtering that we studied in Chapter 3 and Chapter 4, one can extend our analysis
in Chapter 6, and formulate the data source attack problem and the resilient

data source selection problem for Bayesian learning.

The discussions in this work only consider solving the sensor selection problem
in a centralized manner, where a single system designer is involved in the sensor
selection task. This requires the system designer to have complete knowledge
of the system and communicate with each (selected) sensor directly, which is

unrealistic in large-scale systems or hostile environments. Therefore, one can
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aim to extend our analysis to the case when there are multiple designers who
can select sensors on a targeted system simultaneously. This corresponds to
a scenario where multiple agents want to build a sensor network together to
monitor (or estimate) states of a system of common interest. Moreover, each
designer has her own utility function in terms of estimation performance and
a sensor selection budget. Due to the nature of this setting where multiple
designers are making decisions in a potentially selfish and conflict manner, one
can apply techniques from game theory to analyze this scenario, e.g., character-
izing the existence of a Nash equilibrium and the efficiency of it. This scenario
is related to a sensor coverage game as described in [124] and [125], where the
goal of each system designer is to allocate sensors across a given mission space

such that the probability of detecting a particular event is maximized.

. In the problem formulations in this thesis, we did not consider the communi-
cation issue in gathering the measurements from the sensors. In practice, the
sensors may be distributed in the environment, and gathering the sensor mea-
surements may require communications between the sensors and a fusion center
using communication channels. Under this scenario, communication losses (i.e.,
drops) need to be taken into consideration. For instance, the Kalman filter with
intermittent measurements has been studied in literature (e.g., [126]). There-
fore, when considering the sensor selection problem, it would be of practical
interest to consider communication losses when gathering the measurements
from remote sensors. Along with this direction, one can also consider communi-
cation constraints when collecting the measurements from the selected sensors,
which serve as additional constraints in the sensor selection problem formula-
tion. For instance, one can have a constraint on the number of bits that can

be used when the remote sensors send their measurements to the fusion center

(e.g., [127]).
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