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ABSTRACT 

This research focuses on developing strategies for the optimal control of large-scale 

Combined Cooling, Heating and Power (CCHP) systems to meet electricity, heating, and cooling 

demands, and evaluating the cost savings potential associated with it. Optimal control of CCHP 

systems involves the determination of the mode of operation and set points to satisfy the specific 

energy requirements for each time period. It is very complex to effectively design optimal control 

strategies because of the stochastic behavior of energy loads and fuel prices, varying component 

designs and operational limitations, startup and shutdown events and many more. Also, for large-

scale systems, the problem involves a large number of decision variables, both discrete and 

continuous, and numerous constraints along with the nonlinear performance characteristic curves 

of equipment. In general, the CCHP energy dispatch problem is intrinsically difficult to solve 

because of the non-convex, non-differentiable, multimodal and discontinuous nature of the 

optimization problem along with strong coupling to multiple energy components. 

This work presents a solution methodology for optimizing the operation of a campus CCHP 

system using a detailed network energy flow model solved by a hybrid approach combining mixed-

integer linear programming (MILP) and nonlinear programming (NLP) optimization techniques. 

In the first step, MILP optimization is applied to a plant model that includes linear models for all 

components and a penalty for turning on or off the boilers and steam chillers. The MILP step 

determines which components need to be turned on and their respective load needed to meet the 

campus energy demand for the chosen time period (short, medium or long term) with one-hour 

resolution. Based on the solution from MILP solver as a starting point, the NLP optimization 

determines the actual hourly state of operation of selected components based on their nonlinear 

performance characteristics. The optimal energy dispatch algorithm provides operational signals 

associated with resource allocation ensuring that the systems meet campus electricity, heating, and 

cooling demands. The chief benefits of this formulation are its ability to determine the optimal mix 

of equipment with on/off capabilities and penalties for startup and shutdown, consideration of cost 

from all auxiliary equipment and its applicability to large-scale energy systems with multiple 

heating, cooling and power generation units resulting in improved performance. 
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The case-study considered in this research work is the Wade Power Plant and the Northwest 

Chiller Plant (NWCP) located at the main campus of Purdue University in West Lafayette, Indiana, 

USA. The electricity, steam, and chilled water are produced through a CCHP system to meet the 

campus electricity, heating and cooling demands. The hybrid approach is validated with the plant 

measurements and then used with the assumption of perfect load forecasts to evaluate the 

economic benefits of optimal control subjected to different operational conditions and fuel prices. 

Example cost optimizations were performed for a 24-hour period with known cooling, heating, 

and electricity demand of Purdue’s main campus, and based on actual real-time prices (RTP) for 

purchasing electricity from utility. Three optimization cases were considered for analysis: MILP 

[no on/off switch penalty (SP)]; MILP [including on/off switch penalty (SP)] and NLP 

optimization. Around 3.5% cost savings is achievable with both MILP optimization cases while 

almost 10.7% cost savings is achieved using the hybrid MILP-NLP approach compared to the 

current plant operation. For the selected components from MILP optimization, NLP balances the 

equipment performance to operate at the state point where its efficiency is maximum while still 

meeting the demand. Using this hybrid approach, a high-quality global solution is determined 

when the linear model is feasible while still taking into account the nonlinear nature of the problem. 

Simulations were extended for different seasons to examine the sensitivity of the 

optimization results to differences in electric, heating and cooling demand. All the optimization 

results suggest there are opportunities for potential cost savings across all seasons compared to the 

current operation of the power plant. For a large CCHP plant, this could mean significant savings 

for a year. The impact of choosing different time range is studied for MILP optimization because 

any changes in MILP outputs impact the solutions of NLP optimization. Sensitivity analysis of the 

optimized results to the cost of purchased electricity and natural gas were performed to illustrate 

the operational switch between steam and electric driven components, generation and purchasing 

of electricity, and usage of coal and natural gas boilers that occurs for optimal operation. Finally, 

a modular, generalizable, easy-to-configure optimization framework for the cost-optimal control 

of large-scale combined cooling, heating and power systems is developed and evaluated.  
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1. INTRODUCTION 

1.1 Motivation 

With significant economic development and population growth throughout the world, the 

demand for energy is increasing rapidly and will continue to rise. The International Energy 

Outlook (IEO) 2019 projects nearly 50% growth in worldwide energy consumption expanding 

from 620 quad in 2018 to 911 quad in 2050, including both OECD nations (Organization for 

Economic Cooperation and Development) and developing non-OECD nations as shown in Figure 

1.1. The end-use fuel consumption is increasingly shifting towards electricity across all sectors 

and electricity generation is projected to increase around 79% between 2018 and 2050 (U.S. 

Energy Information Administration (EIA), IEO, 2019). Concurrently, energy production using 

fossil fuels along with renewable energy is also growing to meet this ever-increasing demand.  

 

Figure 1.1. World energy consumption, 2010-2050 (U.S. EIA, IEO, 2019). 

In the meantime, concerns about the future depletion of fossil fuel energy resources along 

with the realization of the impact of energy systems on global climate change and the growing 

concerns about energy security have led to initiatives to reduce our fossil fuel energy usage. 

Although switching to clean renewable energy generation technologies is on the rise, fossil fuels 

continue to dominate the world's primary energy consumption. In 2017, 81% of the energy the 

world consumed was oil, coal, and natural gas (International Energy Agency (IEA), 2018). A rapid 
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transition to alternative sources of energy and the practical challenges of abandoning traditional 

generation brings concerns about managing radical changes in energy production, supply, and 

consumption patterns. In this scenario, distributed energy systems (DES), also known as 

distributed generation (DG), on-site generation (OSG), district/decentralized energy, or distributed 

energy resource (DER) systems are a way forward to handle the ever-increasing energy demand 

while providing a pathway to a more sustainable future managing the reliance on fossil fuel energy. 

They play a critical role in increasing energy efficiency and energy independence, reducing costs 

and greenhouse gas emissions, and integrating increasing levels of variable renewables in the long 

term compared to centralized power generation. They can also support the central electric power 

grid in the event of a disaster. DES also enables consumers to design their energy supply to be 

more closely aligned with their physical needs both in terms of thermal and electrical demand. 

Through a combination of technological improvements, policy incentives, and consumer choices 

in technology and service, the role of DES is likely to become more important in the future. 

Properly planned and operated DES can provide consumers, as well as society, with a wide variety 

of benefits. With centralized generation in place for a century, proper and more DES penetration 

in combination with centralized generation could help in attaining continuous power production 

with reduced emissions and increased energy efficiency. Also, distributed generation can be 

optimized for buying/selling electricity from centralized power generation in the development of 

a future grid for resiliency, stability, and reliability in power production.  

1.1.1 Combined Cooling, Heating and Power Systems 

Though distributed energy systems include a variety of devices/technologies, one of the 

proven and most popular technologies is combined cooling, heating, and power (CCHP) systems, 

also known as trigeneration systems which is an extension of the combined heat and power (CHP) 

systems or cogeneration systems. Cogeneration generates power and makes use of the waste heat 

that is produced during the process for heating, while trigeneration takes a step further by also 

producing cooling as part of the process. In general, if the energy system delivers more than one 

form of energy, it is referred to as a polygeneration system. These systems have a great potential 

to minimize primary energy consumption in distributed energy generation systems due to their 

ability to recover low-grade thermal energy, resulting in higher energy efficiencies, reduced 

emission rates and thermal losses, and lower operating costs. Here, the by-product heat, which can 
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be as much as 60%-80% of the total primary energy to generate electricity, is recovered and 

recycled for diverse purposes. So, the overall fuel energy utilization is higher, requiring only 3/4ths 

of the primary energy compared to the conventional heat and power systems (U.S. Environmental 

Protection Agency (EPA), 2015). With a global average system efficiency of 62%, the 

cogeneration of heat and power is much more efficient than conventional thermal power plants 

(41%). In fact, state-of-the-art CHP units can reach overall energy efficiencies over 85% (IEA, 

2012). Wu and Wang (2006) showed that the CCHP system could improve the overall efficiency 

from 59% to 88% compared with the traditional energy supply mode owing to the cascade 

utilization of different energy carriers. Thus, the system-wide benefits of cogeneration and 

trigeneration increase further when coupled with district heating and cooling. Useful heating and 

cooling along with the simultaneous generation of electricity not only makes it more energy 

efficient but also reduces greenhouse gas (GHG) emissions. CHP could reduce CO2 emissions by 

10% (950 MT/year) by 2030 compared to savings of 4% (170 MT/year) in 2015 (Kerr, IEA, 2008). 

CHP and CCHP systems can therefore make a meaningful contribution towards low-cost GHG 

emissions reductions. Another benefit of these systems is that they offer a higher level of energy 

security, control, and reliability by removing or mitigating reliance on centralized power grids.  

CHP and CCHP plants are well established worldwide in residential, commercial, and 

industrial sectors for meeting desired thermal and electricity demands. Cogeneration comprises 

approximately 9% of the world’s electricity generating capacity, which is around 330 GW (Kerr, 

IEA, 2008). Several countries have adopted policies to support the use of CHP/CCHP due to its 

more prominent advantages over separate thermal and power production. According to the U.S. 

Department of Energy (U.S. DOE, 2016), ‘the United States has the potential for more than 240 

GW of efficient CHP in industrial facilities and commercial buildings,’ at over 291,000 sites, 

which is equivalent to about 100 large (2-3 GW) coal or nuclear power plants. That is about three 

times more CHP capacity than exists in the U.S. (82.7 GW for 2016). The U.S. federal government 

has adopted a goal of deploying 40 GW of new industrial CHP by the end of 2020 (U.S. White 

House, 2012), and many states offer incentives for CHP projects (U.S. EPA, 2015). Even though 

the situations are a little bit different around the globe, government supporting policies, favorable 

fiscal and tax incentives, solutions related to high capital cost, and further research and 

demonstration can overcome the obstacles in the worldwide implementation of CHP and CCHP 

technologies.  
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CCHP units include diverse components relating to energy conversion, recovery, and 

management to cater to multiple energy needs for commercial, institutional, residential, and 

industrial applications. Figure 1.2 shows a basic design of a CCHP system where the power 

generation unit (PGU) uses either fuel directly or steam from the boiler to produce electricity and 

waste heat is reclaimed by a heat recovery unit to provide heating/cooling to nearby buildings and 

facilities. 

 

Figure 1.2. Schematic of a typical CCHP system 

A typical CCHP system consists of five basic elements: prime mover, electricity generator, 

heat recovery system, thermally activated equipment, and the management and control system (Wu 

& Wang, 2006). The power generation unit (PGU) includes prime mover and electricity generator 

to generate electricity while the heat recovery and utilization components utilize the wasted 

thermal energy created as a by-product in the production of power to provide space heating, hot 

water, and cooling. These components are interconnected to heterogeneous subsystems with 

different configurations ranging from simple to complex depending on the diversity of available 

energy sources that meet necessary electrical and thermal demands.  

Energy sources for CCHP systems are typically fossil fuels but sometimes include renewable 

energy sources and fuel cells. The prime moving technologies include reciprocating internal 

combustion engines, combustion gas turbines, boiler/steam turbines, microturbines, Stirling 

engines, fuel cell systems, and other renewable energy sources (U.S. EPA, 2015). Heat exchangers, 

auxiliary boilers, absorption heating, heat pumps, heating, ventilation and air conditioning 
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(HVAC) components, such as electric chillers, steam turbine chillers, absorption and adsorption 

chillers, cooling towers, desiccant dehumidifiers, and air handling units (AHUs), and other 

thermally activated technologies can be incorporated in these systems to recover waste heat for 

providing heating/cooling (Liu et al., 2014). Energy storage technologies, such as thermal energy 

storage (Parameshwaran et al., 2012), advanced batteries, and super-capacitors are used to further 

improve the efficiency and meet fluctuating demand profiles. While some CCHP technologies, 

such as internal combustion engines, gas turbines, steam turbines, and absorption cooling are 

commercially mature with wide availability in the market, other promising technologies including 

organic Rankine systems, fuel cells, and liquid desiccant cooling, are still in the research and 

development phase with additional work needed to demonstrate their potential and reach 

commercialization (Jradi & Riffat, 2014). 

With a wide variety of existing trigeneration technologies and configurations, careful 

selection based on a good understanding of user demands and energy system conditions is required 

for a successful CCHP application. Upon designing a CCHP system, the components are selected 

based on type, efficiency, performance, and sufficient sizes, while the system configuration is 

characterized according to usage/demand, climate conditions, local resources, and current and 

future energy market scenarios (Al Moussawi et al., 2016). The two most common CCHP cycle 

configurations are topping cycles and bottoming cycles. The most common type is the topping 

cycle where fuel is first used by a prime mover to generate electricity and the waste heat from 

power generation is then recovered to provide useful thermal energy. The less common bottoming 

cycle type uses fuel to first produce useful thermal energy for an industrial process and recovers 

some portion of the exhausted waste heat to generate power.  

For a specific design and system configuration, operation strategy is a critical factor in 

governing the overall performance of trigeneration systems in response to disturbances such as 

variations in weather or energy loads that cannot be accounted for at the design stage (Fumo et al., 

2009). Conventional operational strategies include baseload operation to fulfill the constant 

amount of the electric and thermal load of the facility by operating the system at the maximum 

capacity for a predetermined period of time. Apart from this, there are two popular operation 

modes of CCHP systems: FEL (Following the Electric Load) and FTL (Following the Thermal 

Load) (Mago et al., 2009), which can also be referred to as electric demand management (EDM) 
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and thermal demand management (TDM). Either one of these modes can be chosen to completely 

satisfy thermal or electrical demand, or additional options can be used to compensate for the gap 

in demand. However, these different strategies may not guarantee the best performance of the 

system due to the inherent energy waste accompanied by the implementation of these strategies 

for irregular load profiles and variable fuel prices. In a general sense, it is critical to optimize the 

design and operation of these CCHP systems to achieve maximum benefits in terms of energy, 

cost, and emissions. Optimization during the design phase deals with identifying the components 

that need to be installed along with their optimal sizing/capacity as well as the optimal system 

configuration for the plant layout. Optimal operation strategies can determine the operating 

condition of each equipment for each timestep that optimally matches the output from a single 

system with the dynamic nature and non-coincidence of building energy demands. The design and 

operation optimization problem can be solved jointly or separately depending on the requirement. 

For the case study considered in this research work, the design and system configuration are 

already in place, so the optimization problem is reduced to determining the optimal operational 

strategy of the CCHP plant. 

1.1.2 Optimization and Control of CCHP Systems 

CCHP systems are composed of many different components and wide-ranging operational 

strategies are used to meet both electrical and thermal demands. It is very complex to effectively 

design optimal control strategies because of the stochastic behavior of energy loads and fuel prices, 

diverse dynamic response characteristics at various time-scales, startup, and shutdown events, 

operational limitations (minimum and maximum allowed loads, etc.), availability of resources, site 

operational changes, possibility of reselling electrical power back to the grid, fluctuation of 

renewable energy sources, lack of integration with existing conventional generation as well as the 

mutual dependency of energy components. The cooling, heating, and electrical demand often do 

not follow the same trends and are uncertain. However, a combination of different units must be 

used to satisfy demand due to the interdependency of variables for heating, cooling, and power 

production. The output from any unit is dependent on one or two independent decision variables 

or variables of other units to which they are connected. Optimal control of CCHP systems involves 

the determination of the mode of operation and set points to satisfy the specific energy 

requirements for each time period. This results in a high number of decision variables, both 
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continuous and discrete, especially for large-scale energy systems. While the energy flow (unit 

load) and setpoint decision variables are continuous, the availability (on/off staging) of the 

equipment are discrete variables. In general, the CCHP energy dispatch problem is intrinsically 

difficult to solve because of the non-convex, non-differentiable, multimodal (multiple local 

minima) and discontinuous nature of the optimization problem along with strong coupling to 

multiple energy components (electricity, heating, and cooling). Due to the nonlinear nature of 

equipment performance (typically nonlinear with respect to load and sometimes ambient 

conditions) along with continuous and discrete variables, the resulting problem is a mixed-integer 

nonlinear programming (MINLP) problem. Even though there are a lot of MINLP solution 

methodologies available, it is computationally expensive to solve these large-scale problems with 

high dimensionality and uncertainties. Also, the complexity of numerous constraints along with 

nonlinear models, makes the optimization problem hard to solve (Elsido et al., 2017). It is 

extremely challenging to implement optimization algorithms for the daily operation of a large-

scale CCHP plant when the models are computed for a reasonable time horizon on an hourly basis.  

To tackle this multi-period large-scale optimization problem, several optimization 

techniques have been studied over the past few decades. The optimization algorithms used in 

CCHP systems are generally divided into linear programming, nonlinear programming, mixed-

integer, and evolutionary search. Over the years, large efforts have been made in developing 

algorithms to reduce calculation time and improve robustness while considering stochastic 

behavior for energy loads and prices. Improvement in the operation of CCHP systems can be 

assessed and quantified with proper performance evaluation methods and criteria. Maximizing the 

benefits of CCHP systems involves several different aspects: 1) thermodynamics (maximum 

energy efficiency, minimum fuel consumption, minimum irreversibility), 2) economics (minimum 

operational cost, maximum cost savings), and 3) environmental (e.g., emissions reduction). To 

quantify the benefits achieved by CCHP systems, different optimization algorithms have been 

developed for a wide range of systems. Sometimes, the analysis takes place in a broader context 

where tradeoffs between energy and exergy performance, emissions, or other environmental 

impacts, and economics are addressed (Cho et al., 2014). In this case, the optimization problem 

can be formulated with a single objective or multi-objective cost function depending on the 

decision maker’s priorities. Once the problem is formulated, mathematical modeling of the 

equipment and system is developed. The mathematical models can be either correlation-based 
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(data-driven black-box approach) or physics-based (first-principle thermodynamic approach) 

(Bischi et al., 2014). In the correlation-based approach, the operating conditions of the equipment 

are defined by their performance curves which can be obtained by interpolating experimental data. 

This is suitable for systems with one degree of freedom. In the physics-based approach, a detailed 

system model is used along with equipment performance curves. The physics-based approach is 

mainly implemented during the design phase while the correlation-based approach is implemented 

during the operation phase focusing more on optimization techniques than sub-system 

characteristics.  

Very limited research has focused on MINLP problems for long-term optimization due to 

the difficulties of using a comprehensive thermodynamic system model coupled with nonlinear 

performance curves and on/off characteristics of the equipment. Safari et al. (2018) included a 

steady-state thermodynamic model of a micro gas turbine, auxiliary boiler, and absorption chiller 

in software IPSEpro and integrated it with the MATLAB genetic algorithm (GA) toolbox to 

conduct short-term (24-hour period) optimization. Powell et al. (2016) developed an approach to 

solve a dynamic problem for charging/discharging of thermal energy storage (TES) by 

decomposing it into multiple static sub-problems and using MINLP optimization. The CCHP 

system model included a physics-based model of the gas turbine and a correlation-based model for 

other equipment. However, the optimum solution from this method might deviate from the global 

solution due to the nonconvexity of the dynamic problem. Most of the MINLP research work using 

thermodynamic system models has involved low dimensionality and optimization during the 

design and synthesis phase (Fuentes-Cortés et al., 2015), rather than application to operational 

control. MINLP solvers combine the usage of MILP solvers like CPLEX, GUROBI, CBC which 

use branch and bound and branch and cut algorithms, and NLP solvers like CONOPT which 

utilizes a generalized reduced gradient (GRG) method, SNOPT which uses a sequential quadratic 

programming (SQP) method, and IPOPT which implements an interior point method (IPM) (Gao 

et al., 2019). However, it becomes really cumbersome to implement MINLP solvers directly for 

medium or long-term horizons with an hourly resolution, because there are typically thousands of 

discrete and continuous variables along with nonlinear constraints for large-scale CCHP systems.  

Sometimes, linear or piecewise linear approximations are utilized to model nonlinear 

characteristics of the system in order to reduce computational time. Assuming a constant value for 
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an efficiency function (e.g., constant efficiency for boilers or turbine generators, constant COP for 

chillers) makes the problem extremely simplified reducing the computational complexity and can 

be used for a medium or long-term time horizon (Rong et al., 2006). Adopting a piecewise linear 

approximation with an appropriate number of intervals to account for a nonlinear equipment model 

becomes complicated when the degrees of freedom increase by a factor of two or more. Binary 

variables should be considered if the components cannot operate continuously from 0% partial 

load, which requires a mixed-integer linear programming (MILP) formulation. MILP optimization 

is widely used for these types of problems to find a faster globally optimum solution, but it assumes 

simplistic equipment performance. On the other hand, a nonlinear programming (NLP) 

optimization technique takes into account the actual nonlinear characteristics of the equipment, 

but the optimization solution might get trapped in a poor local minimum when the problem has 

multiple local minima. Sometimes, there is no guarantee for the convergence of the solution. 

Heuristic optimization techniques like a genetic algorithm (GA), particle swarm optimization 

(PSO), etc. can be used for MINLP problems, but some control strategy or heuristic rules must be 

applied to reduce the number of variables when applied to large scale problems. Also, different 

solutions might be obtained in each trial since they are sensitive to parameter settings. Heuristic 

algorithms are most often employed when approximate solutions are sufficient and can be used as 

a starting point in determining a more exact solution through optimization. Compared to heuristics, 

deterministic optimization techniques can obtain robust solutions due to their strong mathematical 

foundations.  

Decomposition methods, rolling horizon methods, and clustering algorithms are mainly used 

to overcome the high dimensionality of large-scale MILP/MINLP problems when considering a 

long time horizon. Decoupling or decomposition methods involve dividing and solving the 

problem in two or multiple steps, either in parallel or sequentially. These methods can effectively 

deal with nonlinear behavior of the energy systems and are easy to implement for large-scale 

problems. Several heuristic techniques or deterministic approaches can be combined together 

using this hybrid approach. The selection of typical periods with significant demand characteristics 

is achieved by clustering algorithms (Gao et al., 2018). Rolling horizon techniques solve the 

problem for short periods and then implement a feedback correction solution for the first few 

timesteps. This method is similar to model predictive control (MPC) and is suitable for real-time 

control since it requires feedback information of actual system performance. Zhu and Chow (2019) 
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developed a two-stage MPC strategy with combined rolling optimization and real-time adjustment 

for a CCHP system. The equipment design was optimized using a genetic algorithm and MILP 

was to be applied in the operation strategy optimization. Significant economic benefits were 

achieved using this strategy under various load profiles; however, no benefits were gained when 

the forecasting errors were above 8.8%. A similar two-stage coordinated control approach, 

including an economic dispatching stage and a real-time adjusting stage, was used for CCHP 

microgrid energy management (Luo et al., 2017) to tackle power fluctuations. A piecewise linear 

model was used to approximate the thermal and electrical efficiency of a micro gas turbine.  

Sometimes a two-stage algorithm is used for design optimization and optimal planning where 

evolutionary algorithms are used for design and synthesis and operational planning is optimized 

using a MILP method (Guo et al., 2013 and Elsido et al., 2017). Rubio-Maya et al. (2011) 

implemented a sequential two-step economic optimization procedure of a polygeneration unit 

where the first step consisted of the synthesis and design of the polygeneration scheme based on 

monthly average requirements, and the second step included hourly operational analysis including 

energy storage systems. The optimization process for synthesis and design was based on an 

MINLP solved under the outer-approximation algorithm and a CONOPT module (by GAMS, 

2008) and the optimized configuration resulted in an internal combustion engine as a prime mover, 

a lithium-bromide single-effect absorption chiller to cool the resort and a multi-effect distillation 

unit to provide water demand, as well a plate exchanger to accommodate heating demand. The fuel 

consumed in the internal combustion engine was correlated to its nominal power rate by linear 

expressions for full load and bi-quadratic expressions for part-load conditions. For the second step 

of optimizing the operation of determined system configuration and capacity, a typical NLP solved 

with a GRG-based algorithm was implemented and the results showed a primary energy savings 

ratio of about 18% and more than 850 ton per year of avoided CO2 emissions compared to 

conventional practice for the tourist resort. Few studies have discussed the implementation of a 

two-stage algorithm only for optimal operation. Pan et al. (2018) presented a hybrid approach that 

combines mixed-integer linear programming and the interior point method (MILP-IPM) to solve 

a dynamic economic dispatch problem in power systems with complicated transmission losses. A 

global optimal solution from a MILP formulation without transmission losses was used as an initial 

point for the IPM formulation with transmission losses to improve the quality of the final dispatch 

results.  
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Detailed models for CCHP system components are complex and as such, they are typically 

not employed in plant-wide optimization activities due to large computation time and other 

associated challenges (Chandan et al., 2012). The earlier work on the CCHP optimization models 

may include a few but not all nonlinear characteristics of components, thermodynamic system 

model, mixed-integer variables to represent dispatch states (on/off) of the components, penalties 

for startup and shutdown, minimum technical limit of components and models for auxiliary 

equipment. Some assumptions and approximations are often made over these characteristics for 

easy implementation, but this does not accurately reflect the effect of change in operating 

conditions on important decision variables. Hence, the potential benefit of optimization is not 

completely achieved. Although previous studies have demonstrated the effectiveness of optimal 

control of CCHP systems in terms of energy, cost, and emissions, the results have not been widely 

implemented, especially for large-scale CCHP systems. The margins for improvements in the 

optimization of trigeneration systems still exist, which require an in-depth understanding of a 

plant’s energetic behavior. Robustness in the optimization of trigeneration systems has more to do 

with ‘correct and comprehensive’ than with efficient modeling, such that it is more important to 

involve energy specialists than to experts in efficient algorithms. 

Deterministic global optimization techniques such as linear, nonlinear, and mixed-integer 

programming can be coupled to determine more robust, best possible solutions when it is 

extremely difficult to find feasible solutions for large-scale CCHP problems with multiple energy 

networks. Even though hybrid approaches combining heuristics and deterministic techniques have 

been applied for optimal design, hybrid approaches combining MILP and NLP have not been 

implemented especially for economic optimization of large-scale distributed energy systems. 

Network flow models for energy systems are used to effectively illustrate the energy flow from 

supply to demand and across different components. A network energy flow model when combined 

with supervisory control improves constraint handling. The present work aims to cover the 

aforementioned gaps in large-scale multi-period CCHP optimization by applying a hybrid MILP-

NLP approach combined with a deterministic hierarchical network energy flow model. The 

significance of this hybrid approach is that a high-quality global solution is determined efficiently 

when the linear model is feasible while still taking into account the nonlinear nature of the 

equipment performance curves. This solution methodology has the ability to tightly control turning 

on/off the components and pick the optimal mix of equipment to meet energy demand. The 
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framework is easy to implement for any large-scale distributed energy system with multiple units 

and results in improved performance taking less computational time compared to heuristic 

scheduling rules or other formulations. 

1.2 Objectives 

The main objective of this research work is to develop a modular, generalizable, easy-to-

configure optimization framework for the cost-optimal control of large-scale combined cooling, 

heating and power systems to meet electricity, heating, and cooling demands subject to time-

varying fuel prices, loads, and environmental conditions. A hybrid approach combining mixed-

integer linear programming (MILP) and nonlinear programming (NLP) was chosen as the solution 

methodology. The optimal solution from the MILP program is used as a good initial point for 

solving the NLP program to reduce the total operational cost. The developed methodology must 

address the aforementioned issues related to the implementation of plant-wide activities, providing 

a more economic and easier-to-configure solution for optimal control of CCHP systems. The 

combined cooling, heating, and power (CCHP) plant that serves the Purdue campus was chosen 

as the case study with a fair amount of complexity to conduct an extensive computational 

simulation. The tool is validated with the plant measurements and then used with the assumption 

of perfect load forecasts to evaluate the economic benefits of optimal control subjected to different 

operational conditions and fuel prices. The effects of different (possibly future) utility rate 

incentives on control decisions and cost savings are investigated.  

The methodology incorporates the following elements: (1) a detailed thermodynamic model 

that considers the linear and nonlinear characteristics of all components integrated into a multi-

physical CCHP system; (2) a deterministic network energy flow model that relates the capacity 

and operation of the CCHP system to the building energy demands; (3) an optimization algorithm 

capable of handling non-convex, non-differentiable, multimodal (multiple local minima), and 

discontinuous functions with strong coupling between multiple energy components (electricity, 

heating, and cooling); (4) an energy dispatch algorithm that employs a hybrid MILP and NLP 

approach to provide control signals to the primary energy consuming and producing components 

(boilers, turbine generators, chillers, etc.) using an outer supervisory control loop based on the 

energy (thermal and electric) demand and to an inner layer of auxiliary components (pumps, fans, 
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cooling tower and other auxiliaries). The chief benefits of this formulation are its ability to handle 

the complexities of MINLP problem, determine the optimal mix of equipment with on/off 

capabilities and penalties for startup and shutdown, consideration of costs from all auxiliary 

equipment, and applicability to large-scale energy systems with multiple heating, cooling, and 

power generation units resulting in improved performance. 

1.3 Approach 

To achieve the objectives mentioned in section 1.2, the following tasks were executed.  

1. Literature review: A comprehensive literature review was conducted to determine the current 

state of the optimization of CCHP systems. Several optimization techniques used to determine 

optimal operational strategies for CHP and CCHP systems such as linear and nonlinear 

programming, mixed-integer and evolutionary search, and other decomposition methods were 

investigated. This material provided the framework for this research work.  

2. Combined cooling, heating, and power system modeling: The case study selected for 

optimization is the Wade Power Plant at the Purdue University-Main Campus. Each 

component of the plant is represented as a set of mathematical expressions with its parameters, 

input and output variables, and expressed in functional (input-output) form for both linear and 

nonlinear functions. The parameters of the components are tuned according to equipment 

performance data. Then, these components are interconnected according to their physical 

arrangement in the power plant. The developed component models and the system behavior is 

validated against the actual performance of the plant.  

3. Energy dispatch algorithm: Based on the energy flows across components, a deterministic 

network flow model is developed that connects the supply to the demand. Mass and energy 

conservation are applied to develop an energy dispatch algorithm using a network model. The 

demand drives the activation of individual components throughout the network. 

4. Hierarchical paradigm: The separate components for heating, cooling, and electricity 

production are constructed in a hierarchy that includes controllers for outer and inner layers of 

components. Depending on the demand, price signals, and other constraints, the outer 

supervisory control layer determines which components should be operating and their 

operational load. Depending on the results of this outer layer, the inner layer of component 
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controllers activates other auxiliary equipment associated with the major components in the 

CCHP system. 

5. Optimization: The objective function, constraints, and bounds are developed and an 

optimization method capable of handling non-convex / non-differentiable functions and 

discontinuous design spaces is incorporated. The optimization involves both discrete binary (0 

or 1) variables (on/off states for each component) and continuous variables (load level of each 

component). The optimization routine is applied on an hourly basis because both energy load 

and prices are time dependent. A hybrid approach combining mixed-integer linear 

programming (MILP) and nonlinear programming (NLP) is implemented with the energy 

dispatch algorithm to find the minimum operating cost of the CCHP plant. In the first step, 

MILP is applied to the optimization model which includes the linear model of all components 

and the penalty for turning on or off a few units. MILP determines which components need to 

be turned on and their respective load needed to meet the campus energy demand for the chosen 

time period. Based on the solution from MILP as a starting point, NLP determines the actual 

hourly state of operation of each component including the nonlinear performance 

characteristics of the components. The entire model is coded in MATLAB (R2019b) and 

optimized using MATLAB’s MILP and NLP optimization toolbox. The optimal results from 

the MILP and NLP approach are compared with the conventional operational strategy (plant 

data) on a daily basis for different seasons in order to understand the optimal control 

characteristics and its economic benefits.  

6. Sensitivity analysis: The sensitivity of the control responses and cost savings to variability in 

energy loads (seasonal), operational conditions, time period (short, medium, and long term), 

and fuel prices are studied through simulation. 

1.4 Main Contributions of the Work 

In relation to previous work, this research incorporates a more detailed optimization model 

for CCHP systems that uses a network energy flow model both with linear and nonlinear 

programming techniques. For this purpose, a hybrid approach combining MILP and NLP is 

implemented along with an energy dispatch algorithm employed in a hierarchical paradigm for the 

optimal control of components in the plant. This combination of tools has not been previously 

employed especially for this complex and large-scale application and is believed to be more 
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scalable as a general framework for optimizing the control of any CHP and CCHP systems. In 

addition, this work provides a much more extensive evaluation of the cost savings benefits and 

optimal control characteristics for CCHP systems than has been previously presented in the 

literature. Specific contributions of this work include the following: 

• Previous studies used models that do not accurately capture the thermodynamic behavior of 

the system and did not include auxiliary components modeling in the analysis. In this work, 

the optimization model includes a detailed thermodynamic model for all the components 

including the mass and energy balance constraints across various energy levels. The models 

for auxiliary components including fans, pumps, cooling tower, and other auxiliaries assisting 

the major components in operation is developed and implemented within a hierarchical 

paradigm. The cost contributions from auxiliary equipment also play a major part in the 

selection of equipment.  

• The network energy flow modeling approach was previously applied only for linear 

programming solutions to CHP and CCHP optimization problems. Here, an energy dispatch 

algorithm is formulated using the network energy flow model including the hierarchical class 

of all components with both linear and nonlinear programming solutions. This optimal control 

problem for CCHP systems deals with a non-convex cost function and discrete control 

variables for different modes of operation. This work explores the implementation of a hybrid 

approach combining MILP and NLP optimization techniques with the network energy flow 

model to address this difficult optimal control problem. The significance of this hybrid 

approach is that a high-quality global solution is determined efficiently when the linear model 

is feasible while still taking into account the nonlinear nature of the problem taking less 

computational time compared to other techniques. This solution methodology has the ability 

to tightly control turning on/off the components and pick the optimal mix of equipment to meet 

the energy demand. The framework is easy to implement for any large-scale distributed energy 

system with multiple units and results in improved performance over heuristic scheduling rules 

or other formulations. 

• An extensive simulation-evaluation of the proposed optimization framework is carried out for 

minimizing the operational cost of the daily operation of a large CCHP plant. Optimal 

performance results are compared with the plant operational strategy and the benefits are 
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evaluated. Also, the sensitivity of the results to fuel prices is examined to understand how to 

plan for the advanced purchases of base electricity and hedging of natural gas.  

• Finally, the optimization tool can be implemented for recommending the daily operation of the 

power plant, and the cost and energy savings can be directly estimated and provided as 

feedback to operators and plant managers. This tool is modular and generalizable to different 

types of systems so that it can be easily modified for different architectures or configurations 

and could be implemented for any CHP or CCHP system in the future. 

1.5 Organization of the Document 

The remainder of the document is organized as follows. Chapter 2 presents a review of 

research on various optimization techniques used for the control of CCHP systems. Chapter 3 

introduces the case study along with detailed mathematical models of each equipment at the Wade 

Power Plant and the Northwest Chiller Plant (NWCP) and their assembly in the power plant. 

Chapter 4 presents the formulation and implementation of the energy dispatch algorithm using the 

network energy flow model and solved by a hybrid optimization approach which uses the optimal 

solution from mixed-integer linear programming (MILP) as a starting point for solving the 

nonlinear programming (NLP) formulation to reduce the total operational cost. The objective 

function and constraints are included in this section. In Chapter 5, the optimization results for a 

24-hour period for different seasons are presented. Also, the sensitivity analysis of the control 

responses and cost savings to variability in time period, energy loads, operational conditions, and 

fuel prices are analyzed. Finally, a summary of research contributions and some recommendations 

are presented in Chapter 6. 
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2. LITERATURE REVIEW 

The benefits of cogeneration and trigeneration systems have been studied for decades, but 

optimized control systems can help in realizing the full potential of these systems in terms of 

energy and cost savings and emissions reduction, regardless of the application and technologies 

employed. Several papers have been published on optimizing the performance of CHP and CCHP 

systems based on energetic, economic, and environmental analysis. The performance of these 

systems is mainly dependent on the plant design and operational strategy used to improve energy 

efficiency and reduce overall cost and greenhouse gas emissions. Even though there are many 

optimization procedures for CCHP component design and system configuration, only optimization 

techniques considered for use as part of operational strategies for CCHP systems are discussed in 

the following literature review. The optimization algorithms used in CCHP systems are generally 

divided into linear programming, nonlinear programming, mixed-integer, and evolutionary search. 

Different operation strategies and optimization techniques are discussed according to the 

formulation of the optimization problem based on chosen performance metrics (primary energy 

consumption, operational cost, and CO2 emissions reduction), either separate or combined 

analysis. 

In order to optimize system performance, a mathematical model is constructed with an 

objective function, constraints, and boundary conditions. Operation strategies may differ 

depending on the different definitions of ‘optimal’ varying from simple economic interests to 

environmental criteria. Most of the optimization problems include economic dispatch (ED) that 

minimizes the cost of supplying energy demand subject to operational constraints. While 

scheduling is addressed as a mixed-integer programming problem, an economic dispatch problem 

is settled mainly as a linear or nonlinear problem. Incorporation of environmental considerations 

along with cost and energy savings poses a multi-objective optimization problem. Generally, 

optimization problems for CCHP systems can be stated as linear programming, nonlinear 

programming, mixed-integer programming or multi-objective programming problems. Classical 

solution methods for these optimization problems include the simplex method, dynamic 

programming, Lagrangian relaxation, interior point method (IPM), sequential quadratic 

programming (SQP), Newton’s method, and the reduced gradient method (Salgado and Pedrero, 
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2008). Some of the artificial intelligence methods to optimize CCHP system include branch-and-

bound algorithms, genetic algorithms (GA), evolutionary programming, and particle swarm 

optimization (PSO) algorithms (Wang et al., 2010). Optimization can be performed using many 

algorithms, some of which are mentioned below. The rest of this section presents an overview of 

the research on optimization of CCHP systems and some of its practical implications. 

2.1 Linear Programming 

Linear programming techniques have been extensively used and are easily employed for 

CCHP system optimization problems. In general, the cost-efficient operation of a CHP system can 

be formulated as a linear programming (LP) problem over a long-term optimization period by 

decomposition into thousands of hourly models and then solving the problem of minimizing the 

total operational costs (Lahdelma and Hakonen, 2003). For example, Gustafsson and Karlsson 

(1991) used a linear programming model for finding the best combination of electricity production, 

electricity purchase, and heat production in a district heating system in Malmo, Sweden. An 

optimal solution for this model was characterized by the lowest possible operating cost for one 

year depending on the high and low-price conditions in the electricity grid for several time 

segments. A basic linear cost model with the constraints on the total capacities and energy balance 

on meeting demand is solved using the simplex method and branch and bound algorithm. The 

results suggested that it is cheaper to buy the electricity than to produce it in the municipal CHP 

plant during low price conditions in the electricity grid. However, the model doesn’t include a 

clear description of the system configuration or the performance of components in the CHP system.  

Rong and Lahdelma (2005) used a tri-commodity simplex algorithm for optimizing the cost-

efficient operation of a trigeneration system. It includes a linear programming (LP) model with a 

joint characteristic for energy components to minimize simultaneously the production and 

purchase costs, as well as CO2 emissions costs. The power plant consists of one boiler which can 

operate with two fuels simultaneously and a backpressure turbine from which medium and low-

pressure steam can be extracted. The constraints in the model include energy balances for the three 

energy products and the extreme points of the operating region of the plant. The computational 

speed of the tri-commodity simplex algorithm was compared with an LP2 simplex code and the 
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former was 36-58 (average 45.6) times faster than the latter. The operational strategy and the 

results regarding minimum cost values are not elaborated.  

Rong et al. (2006) formulated an LP problem for long-term planning by decomposing it into 

thousands of hourly models and solved it using the extended power simplex algorithm. This 

includes an hourly multi-site CHP planning problem with multiple heat balances as an LP model 

while the sub-problem for each site is tied together by the global power balance constraint. This 

problem is an extension of (Lahdelma and Hakonen, 2003) and extended the power simplex 

algorithm proved to be 29 to 85 times faster than a simplex code for large multi-site CHP models.  

Lozano et al. (2008) incorporated thermo-economic analysis to determine and evaluate an 

optimal operational strategy as a function of the demand for energy services and the prices of the 

resources consumed, using a linear programming model. The trigeneration module consisted of a 

natural gas reciprocating engine, an auxiliary boiler, a single-effect absorption chiller, and an 

electric-driven chiller. A constant efficiency was assumed for all the components. The operating 

strategies include the possibilities of selling the electricity to market and wasting the cogenerated 

heat. Nine different operation modes were considered with the combinations of purchased 

electricity, sold electricity, auxiliary heat, and waste heat. The energy flows that correspond to the 

operation with minimum variable cost differed for every operating mode and the economic impact 

of the changes in demand or operational condition of the equipment are evaluated.  

Piacentino and Cardona (2008) developed a MATLAB optimization tool, EABOT (Energy 

Analysis-Based Optimization of Trigeneration plants), including an in-depth energetic analysis 

using a linear-programming interior point method (a variant of Mehrotra’s predictor-corrector 

method) for the synthesis, design, and operation of a CCHP system including thermal energy 

storage. They used the tool to perform multi-objective optimizations including economical and 

energo-environmental analyses for two large buildings in the civil sector and derived conclusions 

about the optimal number of days to be used for the optimization.  

Assumptions such as neglecting efficiency drops at part load operation (constant efficiency) 

and not introducing binary variables for the on/off states were made for modeling of the system 

component dynamics to make the problem linear in order to avoid large computational time and 

other associated challenges. The CCHP equipment are assumed to operate continually between 
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0% and 100% of their rated capacity. The linear programming approach solves many diverse 

combination problems because of its flexibility. However, the nonlinear characteristics of the 

equipment and system cannot be ignored completely.  

2.2 Nonlinear programming 

In nonlinear programming problems, either the objective function is nonlinear or the 

constraints or both considering the nonlinear characteristics of the equipment models. Chapa and 

Galaz (2004) formulated an economic dispatch problem for CHP systems and used a Sequential 

Quadratic Programming (SQP) algorithm with a Lagrangian relaxation technique to solve a 

nonlinear constrained optimization problem. Part-load relations between energy production and 

fuel consumption were included as convex quadratic input-output relations in the model to find 

the minimum operation cost. The system included a conventional power unit, co-generation units, 

and auxiliary boilers with the consideration for buying and selling power to the utility electric grid. 

The results showed that the proposed algorithm was more effective and gave a lower operating 

cost by 4% than the standard SQP inside the feasible region of CHP units.  

Dieu and Ongsakul (2009) presented an augmented Lagrange-Hopfield network for the CHP 

economic dispatch problem. In the augmented Lagrange-Hopfield network, the energy function 

was augmented by Hopfield terms from the Hopfield neural network and penalty factors from the 

augmented Lagrangian function to damp out oscillation of the Hopfield network during the 

convergence process, leading to faster convergence. They consider the same system as Chapa and 

Galaz (2004) with a conventional power unit, co-generation units, and heating units with a varied 

number of units for different cases considered. The performance of the augmented Lagrange–

Hopfield network was compared with other algorithms such as Lagrangian relaxation, a genetic 

algorithm, an ant colony search algorithm, evolutionary programming, an improved genetic 

algorithm with multiplier updating, and a harmony search algorithm. The augmented Lagrange–

Hopfield network resulted in lower total cost and faster computational time for all the cases 

considered, especially for large-scale combined heat and power economic dispatch problems.  

Hashemi (2009) developed a model for offline determination of nonlinear techno-economic 

optimal operation of cogeneration systems (TOOCS). The system includes a combined heating 

power (CHP) module, auxiliary boiler, absorption chiller, heat storage unit, and utility grid catering 
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to electrical, thermal, and cooling needs. The CHP module meets the electrical load of the buildings 

and the excess electricity produced is sold back to the grid. The total economic benefit of this 

system was maximized during total daily operation time with the effective use of a thermal storage 

tank and an absorption chiller. However, there was no benchmark for comparing the optimum 

results.  

Chandan et al. (2012) adopted reduced order thermo-economic models of CCHP 

components integrated with nonlinear programming for a CCHP plant at the University of 

California, Irvine, which includes thermal energy storage capabilities. The CCHP system includes 

seven electric chillers, a thermal energy storage tank, a gas turbine, a heat recovery steam 

generator, and purchase of electricity from the utility grid. The nonlinear model incorporates a 

supervisory control layer using a system engineering approach to determine the optimal plant 

operation parameters or set points for control of the CCHP system. The look-ahead optimization 

problem used forecasted electric and thermal demands and the results showed 8.5% improvement 

compared to rule-based strategy in terms of operating cost. The nonlinear model included the part-

load characteristics of the equipment but did not include on/off control of each component. Also, 

the determination of optimal solution was highly sensitive to the choice of initial conditions and 

could result in multiple local minima or the optimization solution might get trapped in a poor local 

minimum. NLP could be used with a multi-start option to find the global optimum; however, this 

involves huge computational time. Sometimes, there is no guarantee for the convergence of the 

solution for large scale problems. 

2.3 Mixed Integer Programming 

Due to the on-off characteristics of the components, mixed integer programming is widely 

used with linear or nonlinear programming. Both discrete and continuous variables can be included 

in these optimization techniques. While binary variables are used to represent the staging of 

equipment (i.e., on/off), continuous variables are used to represent the operational or capacity 

conditions (i.e., how much). If the objectives and constraints are linear, then the problem can be 

solved using Mixed Integer Linear Programming (MILP) optimization. Either the objectives or 

constraints or both are nonlinear, then the problem can be formulated and solved using Mixed 

Integer Nonlinear Programming (MINLP) optimization.  



 
 

39 

2.3.1 Mixed Integer Linear Programming (MILP)  

MILP optimization is widely used for CCHP problems to find a fast globally optimum 

solution. Branch and bound algorithms are the most effective techniques used for MILP 

optimization. There are a lot of commercially available solvers such as CPLEX, GUROBI, CBC, 

Xpress and MATLAB which use branch and bound and branch and cut algorithms to solve MILP 

problems. Thorin et al. (2005) developed a long time-horizon optimization tool for cogeneration 

systems based on mixed integer linear programming (MILP) and Lagrangian relaxation. The 

model takes into account the possibility to buy and sell electric power at a spot market and has 

been tested on a demonstration system based on an existing CHP system in Berlin, Germany which 

includes extraction condensing steam turbines, backpressure turbines, gas turbines, and boilers 

fueled with either coal, oil or gas. The fuel consumption of the turbines is approximated by linear 

functions of electric power and thermal power produced and a constant efficiency is assumed for 

boilers. The results showed that with a high heat demand, most of the turbines run at their 

maximum capacity to fulfill the heat demand while low heat demand affords many possible 

combinations to run the plant with generators of the same capacity.  

Lozano et al. (2010) developed an optimization model using MILP to determine the 

preliminary design of CCHP systems with thermal storage, thereby minimizing the total annual 

cost of the plant. The application of the model was demonstrated by a case study for a set of 

buildings with 5000 apartments located in Zaragoza (Spain). The system is made up of 

cogeneration modules, consisting of natural gas engines and heat recovery equipment, auxiliary 

boilers, vapor compression refrigerators, single-effect absorption refrigerators, cooling towers, and 

thermal storage. The trigeneration system economics with and without thermal storage were 

compared with the conventional energy supply system. Although there was a significant increase 

in invested capital for the trigeneration system without thermal storage (9,380,000 €) and with 

thermal storage (7,801,000 €), considerable annual profits in energetic turnover of 2,404,000 €/yr 

and 2,536,000 €/yr were estimated for the trigeneration systems without and with thermal storage, 

respectively.  

Even though MILP optimization is widely implemented for these types of problems, it 

assumes over optimistic equipment performance. Some drawbacks include the impossibility of 

taking into account nonlinear effects of subsystems; considering all the time periods at once; the 
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risk of high dimensionality of the problem (Urbanucci, 2018). Adopting a piecewise linear 

approximation with an appropriate number of intervals to account for nonlinear equipment models 

creates its own optimization problem and becomes complicated when the degrees of freedom 

increase to two or more. 

2.3.2 Mixed Integer Nonlinear Programming (MINLP) 

Very limited research has focused on MINLP problems for long time-horizon optimization 

due to the difficulties of using a comprehensive thermodynamic system model coupled with 

nonlinear performance curves and on/off characteristics of the equipment. High dimensionality 

and uncertainties make the problem even more complicated and computationally expensive to 

solve. Powell et al. (2016) developed an approach to solve the dynamic problem for 

charging/discharging of thermal energy storage (TES) by decomposition into multiple static sub-

problems and solutions using MINLP optimization. The CCHP system model included a physics-

based model of the gas turbine and a correlation-based model of other equipment. However, the 

optimum solution from this method might deviate from the global solution due to the nonconvexity 

of the dynamic problem.  

Li et al. (2008) carried out a sensitivity analysis of energy demands of a hotel and hospital 

to study its influence on the performance of a CCHP system using MINLP to reflect average, 

uncertainty bounds, and historical peaks in demand profiles. The system configuration includes a 

gas turbine, heat exchanger, absorption refrigerator, gas boiler, and electrical refrigerator. 

Electricity is purchased from the utility in case of high electrical demand. A constant efficiency is 

assumed for the turbine, boiler, and heat exchanger and a constant coefficient of performance is 

assumed for the chillers. The mixed-integer nonlinear model was solved with the barrier method 

combined with the branch and bound algorithm. The optimization results showed that the gas 

turbine’s capacity is not sensitive to uncertainty and historical peaks of energy demands while the 

heat exchanger and absorption refrigerator are sensitive. Also, uncertainty and historical peaks of 

energy demands have only a little influence on the annual cost savings and economic feasibility 

depends mainly on the average energy demands.  
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Most of the MINLP research work using thermodynamic system modeling involves low 

dimensionality and optimization during the design and synthesis phase (Fuentes-Cortés et al., 

2015), rather than operational control. MINLP solvers include CPLEX, GUROBI, CBC that use 

branch and bound and branch and cut algorithms, NLP solvers like CONOPT utilize the 

generalized reduced gradient method, SNOPT uses a sequential quadratic programming method 

and IPOPT implements the interior point method (Gao et al., 2019). Even though there are a lot of 

MINLP solution methodologies available, it is cumbersome to implement MINLP solvers directly 

for medium or long-term horizon dynamic problems with hourly resolution, because there are 

thousands of discrete and continuous variables. Also, the complexity of numerous constraints 

along with nonlinear characteristics in the thermodynamic model, makes the optimization model 

hard to converge (Elsido et al., 2017). It is extremely challenging to implement these algorithms 

for the daily operation of a power plant when the simulations are computed for a reasonable time 

horizon on an hourly basis.  

2.4 Evolutionary Algorithms 

Evolutionary algorithms (EA) are generic population-based metaheuristic optimization 

algorithms. They are most often employed when approximate solutions are sufficient and exact 

solutions are necessarily computationally expensive. Particle swarm optimization (PSO) and 

genetic algorithms (GA) are the most popular EAs and have been applied for both system design 

and control of CCHP systems. 

2.4.1 Particle Swarm Optimization 

For Particle Swarm Optimization (PSO), potential candidate solutions fly through the 

problem search-space by following their own current optimum position as well as guided by the 

entire swarm’s best-known position. Wang et al. (2010) employed a PSO algorithm to 

simultaneously measure the energetic, economic, and environmental benefits of a CCHP system 

in comparison to a conventional Separation Production (SP) system where heating is provided by 

boilers, cooling by electric chillers and electricity from the grid. The system includes a natural gas 

power generation unit, auxiliary boiler, hybrid cooling system with electrical chiller and absorption 

chiller, cold/heat storage, fans, and distribution pumps. The analysis in this paper is based on the 
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operation strategy following the electrical demand since the excess electricity from the CCHP 

system is not allowed to be sold back to the outside grid while the excess heat produced can be 

stored in the heat storage tank. The power generation unit thermal efficiency varies with the load 

factor nonlinearly for the estimation of fuel energy consumption. The capacity of the power 

generation unit (PGU), the capacity of heat storage tank, the on-off coefficient of the PGU, and 

the ratio of electric cooling to cooling load were optimized in considering both design and 

operation of the CCHP system. The optimal results show that the CCHP system saves 12.2% of 

energy and 11.2% of cost and reduces CO2 emissions by 25.9% compared to the conventional SP 

system. Also, the results from the PSO algorithm are compared with a genetic algorithm (GA) and 

PSO algorithm’s computation time (PSO - 24 min and GA - 35 min) and the optimum primary 

energy savings ratio (PSO - 16.43% and GA - 16.26%) are somewhat better than the GA.  

Tichi et al. (2010) examined the effects of current and future energy price policies on the 

optimal configuration of CHP and CCHP systems in Iran, under the conditions of selling and not-

selling electricity to the utility. A PSO algorithm was used for minimizing the cost function for 

owning and operating various CHP and CCHP systems in an industrial dairy unit. The CCHP 

system in this study consists of a prime mover, heat exchanger, supplementary boiler, absorption 

chiller, and electric chiller. Different prime movers were considered, and a reciprocating engine 

was determined as the best choice with the capital recovery periods for the best case for subsidized 

and unsubsidized energy prices are 4.9 and 1.3 years, respectively. Also, from an economic point 

of view, when it is allowed to sell electricity to the utility, it is better to choose a prime mover with 

higher capacity for both CHP and CCHP systems. It was concluded that promoting the policy of 

selling electricity to the utility as well as eliminating subsidies are prerequisites for widespread 

utilization of CHP and CCHP systems in Iran.   

Liu et al. (2012) presented an operation strategy, based on the variation in electric cooling 

to total cooling load ratio, for a CCHP system with hybrid chillers, consisting of a combined 

electric and absorption chiller, power generation unit with unlimited and limited capacity, heat 

recovery system and auxiliary boiler. An enumeration algorithm was adopted to determine the 

optimal value of PGU capacity which was found to be 96 kW considering the whole year’s thermal 

and electrical demand. Test results showed that, with the proposed operation strategy and 

corresponding optimal PGU capacity, the CCHP system performed much better than the 
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conventional SP system with primary energy savings of 8%, total cost savings of 37%, and carbon 

dioxide emission reduction of 25%. Also, the optimized results from the enumeration algorithm 

are better in terms of total cost savings than the results from following the thermal load by 7% and 

following the electric load strategies by 33%. 

2.4.2 Genetic Algorithms 

Genetic Algorithms (GA) are a particular class of evolutionary algorithms for determining 

exact or approximate solutions to optimization and search problems. The most noteworthy features 

of evolutionary algorithm are that they do not rely on derivatives of the objective function to be 

solved and simulate the mechanisms of biological evolution over a number of iterations to find the 

global optimum or near-optimal. An evolutionary GA was used to maximize primary energy 

savings (PES), annual total cost savings (ATCS), and carbon dioxide emission reductions (CDER) 

of a CCHP system for a hotel building in Beijing, China (Wang et al., 2010). The CCHP system 

includes a natural gas driven PGU, a waste recovery system, a back-up boiler, an electric chiller, 

and an absorption chiller. The CCHP system operates following thermal demand where excess 

electricity is purchased from the grid. The capacity and operation strategy of the CCHP system 

was optimized based on energy flow to evaluate the performance of CCHP system. With the 

optimal PGU capacity of 525 kW and the 53% of cooling load provided by electric chillers, the 

CCHP system outperforms the separation production (SP) system by 18.40% in integrated 

performance (PES, ATCS, and CDER). Also, based on the electricity price sensitivity analysis, 

the ratio of electric cooling to cool load was fitted into a curve as a function of cost of electricity 

to guide the operation strategy. The PES, ATCS, and CDER were weighted equally to evaluate the 

integrated performances of the CCHP system in comparison to a SP system and GA was used to 

provide optimization for sixteen hypothetical buildings with various energy demands (Wang et al., 

2014). The primary energy consumptions of the CCHP system following electric demand 

management (EDM) and thermal demand management (TDM) were analyzed. The average 

performances (PES, ATCS, CDER, and integrated performance of the CCHP systems) of the 

CCHP system for all of the scenario buildings in EDM mode are 5.4%, 4.3%, 25.3%, and 11.7% 

better while the corresponding performances in TDM mode are 6.2%, 1.8%, 20.8%, and 9.6% 

better than the SP system. It can be found that the performance in EDM mode is better than in 

TDM mode except for the PES. The CCHP systems produce excess electricity in TDM mode or 
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excess heat in EDM mode. The excess ratio (ratio of excess product to primary energy 

consumption) in EDM mode of scenarios having a lower ratio of heat to electricity are much larger 

than in TDM mode, which does not lead to primary energy savings.  

Almasi et al. (2011) used GA to optimally find the design parameters (same as Wang et 

al., 2010 for the same set of CCHP components) of the 120 MW Mashar gas turbine CHP plant in 

Iran using a thermo-economic approach (minimizing the total operating cost which is related to 

fuel expense, capital investment and maintenance expenses, and the corresponding cost for exergy 

destruction). The results of the thermodynamic simulation were compared with the actual 

properties of the power plant and temperature profiles agreed within 10%, on average.  Also, the 

variation of decision variables and exergy destruction were studied for different fuel costs. By 

increasing the fuel cost, the values of design parameters increased leading to high capital cost of 

components. Higher efficiency of components leads to less exergy destruction and saves fuel 

consumption. The total exergetic efficiency of the plant was 36.08% with the combustion chamber 

having the lowest value of all the components due to high irreversibility. 

Ebrahimi et al. (2012) optimized the overall efficiency of a CCHP cycle operated on a 

micro-steam turbine using a genetic algorithm. The heating and cooling systems include a steam 

and air heat exchanger and a steam ejector condenser. A constant efficiency was assumed for all 

components. The exergy analysis revealed that the biggest exergy destruction takes place in the 

steam generator for both summer and winter seasons. The optimization results show that the 

maximum of the overall efficiency is 25% for summer and 62% for winter and the corresponding 

fuel energy savings ratios are 69% and 25%, respectively.  

Compared to other methods, GA needs no initial information and searches the global 

optimization solution. GA operates in parallel from multi-points, searches heuristically in the 

solution area, overcomes the search blindness, and accelerates the search speed. If the initial values 

are selected appropriately, the search speed will be even faster. However, it is unlikely to obtain 

satisfactory answers from GA when the number of variables increases as the population size 

doubles with variables. A GA nonlinear constraint algorithm takes a large number of iterations for 

constraint satisfaction. Also, a GA has no guarantees regarding the quality of its solutions.  
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Heuristic optimization techniques like genetic algorithms (GA), particle swarm 

optimization (PSO), etc. can be used for MINLP problems, but some control strategy or heuristic 

rules must be applied to reduce the number of variables and constraints when applied to large scale 

problems. Also, different solutions might be obtained in each trial since they are sensitive to 

parameter settings. Heuristic algorithms are most often employed when approximate solutions are 

sufficient and can be used as a baseline to achieve exact solutions. 

2.5 Decomposition Methods 

Decoupling or decomposition methods involve dividing and solving the problem in two or 

multiple steps, either in parallel or sequentially. These methods can effectively deal with the 

nonlinear behavior of energy systems and are relatively easy to implement for large-scale 

problems. Several heuristic techniques or deterministic approaches can be combined together 

using this hybrid approach. Sometimes two-stage algorithms are used for design optimization and 

optimal planning where evolutionary algorithms are used for design and synthesis and operational 

planning is optimized with a MILP method that uses branch and bound or branch and cut 

algorithms.  

Guo et al. (2013) used a two-stage optimal planning and design method for a combined 

CCHP microgrid system in a hospital to minimize the total net present cost and carbon dioxide 

emissions. For the first stage, a multi-objective GA based on a non-dominated sorting genetic 

algorithm-II (NSGA-II) was applied to solve the optimal design problem including the 

optimization of equipment type and capacity. For the second stage, mixed-integer linear 

programming (MILP) algorithm was used to solve the optimal dispatch problem. The resulting 

CCHP microgrid system was comprised of a boiler, absorption chiller, electric chiller, photovoltaic 

(PV) array, ice storage air conditioning system, thermal storage to store excess heat energy and 

natural gas fired PGU. Electricity purchased from the grid was used to meet excess electrical 

demand. The optimal results show that the maximum capacity of the PV to be installed is 60 KW 

for the given size of the hospital. Also, as the number of PGU increases, the net present cost 

increases while the carbon dioxide emission reduces due to the lower emission of PGU compared 

to the grid.  
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Elsido et al. (2017) solved an upper level, synthesis and design MINLP problem by means 

of two different evolutionary algorithms and discrete variable relaxation, while, at the lower level, 

the multi-period operational problem was handled by a MILP method for the optimization of CHP 

units with heat storage.  

Rubio-Maya et al. (2011) implemented a sequential two-step economic optimization 

procedure for a polygeneration unit where the first step consisted of the synthesis and design of 

the polygeneration scheme based on monthly average requirements, and the second step included 

an hourly operational analysis that included the energy storage systems. The optimization process 

for synthesis and design was based on MINLP (Mixed Integer Non-Linear Programming) solved 

under the outer-approximation algorithm and a CONOPT module (by GAMS, 2008) was used to 

optimize the operation of the plant. For the first step, the optimized configuration was an internal 

combustion engine as prime mover, a lithium-bromide single-effect absorption chiller to cool the 

resort, and a multi-effect distillation unit to provide water demand, as well a plate exchanger to 

accommodate heating demand. The fuel consumed in the internal combustion engine was 

correlated to its nominal power rate by linear expressions for full load and by quadratic expressions 

for part load conditions. For the second step of optimizing the operation of the determined system 

configuration and capacity, a typical NLP solved with a GRG-based algorithm was implemented 

and the results showed that a primary energy savings ratio of about 18% and more than 850 ton 

per year of avoided CO2 emissions compared to conventional practice for a tourist resort. 

2.6 Multi-Objective Optimization 

Mostly, trigeneration optimization is based on economic criteria. However, in some cases, 

there is interest in trading off costs with energy savings and environmental benefits. Environmental 

economic dispatch could be treated as a single objective optimization problem by treating gas 

emissions as a constraint with a permissible limit or by expressing pollution damage costs due to 

the emissions (Ahmadi and Dincer, 2010), or by using weighted sum methods (Bracco et al. 2013). 

The use of a single-objective function with a weighted combination of several objectives does not 

provide a clear optimal solution because of the trade-offs in interrelated objectives of different 

quantities, thereby making the objective function lose its significance (Deb, 2001). However, 

multi-objective techniques provide a set of several non-dominated optimal solutions, also known 
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as a Pareto optimal set. For such solutions, there is a trade-off between the optimal solutions of 

different objective functions, depending on which the user can choose the solution he needs.  

Kavvadias and Maroulis (2010) used a multi-objective evolutionary algorithm (genetic 

algorithm) for economical, energetic, and environmental performance of a trigeneration system in 

a 300-bed hospital. The system includes a natural gas reciprocating engine, absorption chiller, 

auxiliary boiler, and electric chiller. The CHP efficiency is represented as a linear function of 

capacity factor, which is the ratio of the actual energy produced to its nominal power. Both 

construction (equipment sizes) and discrete operational (pricing tariff schemes and operational 

strategy) variables were optimized based on realistic conditions under fluctuating energy prices to 

maximize economic, energetic or environmental objective criteria (net present value of the 

investment, primary energy savings ratio, emission reduction ratio). The optimum pareto results 

show three clusters of solutions with a trade-off between economic, energetic, and environmental 

indices. Economic optimal solutions were preferred when a peak shaving strategy is used in 

summer and heat following strategies are used in winter. Energetic optimal solutions perform 

better when the system operates with a heat following strategy in summer and an electricity 

following strategy in the winter.  

Wu et al. (2012) determined optimal operation strategies for a micro-CCHP system using 

objective functions for energy savings ratio and cost savings ratio. Operation strategies under 

various load conditions were analyzed using a mixed-integer nonlinear programming model. The 

micro-CCHP system included a gas engine, adsorption chiller, gas boiler, heat pump, and electric 

chiller with an allowance to purchase electricity from the grid. For energy savings optimization, 

the optimal operation strategy changes with load conditions while for cost savings optimization, 

the optimal operation strategy not only changes with load conditions but also changes with energy 

prices. A Micro-CCHP system was found to be superior to a conventional separated system when 

the heating load was over 12 kW in CHP mode or over 21 kW in CCHP mode. Both in energy 

savings optimization and cost savings optimization, increasing the electric load improved system 

performance when the part load ratio of the gas engine was relatively low. Also, when the energy 

price ratio reached 0.45, it was economical to use the conventional separated system.  
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Shi et al. (2013) developed a multi-objective model for a CHP economic dispatch problem, 

where the competing fuel cost and environmental impact objectives were simultaneously 

optimized. The model includes a multi-objective line-up competition algorithm to handle nonlinear 

constraints, diversity-preserving mechanisms to produce well-distributed pareto-optimal solutions, 

and a fuzzy decision-making process to extract the best compromise for a non-dominated solution 

from the Pareto-optimal set. The system consists of conventional thermal generators (power-only 

units), CHP units, and heat-only units to serve the power and heat demand. The results obtained 

by the proposed approach were compared with different evolutionary algorithms (bee colony 

optimization; evolutionary programming; particle swarm optimization; real-coded genetic 

algorithm) and the proposed method resulted in the lowest fuel cost, 10,104.38 $/h, which is about 

212.62 $/h less than the best solution from evolutionary algorithms, (10,317 $/h) and about 2.1% 

energy savings. In the multi-objective techniques, pareto-optimal solutions were be obtained by 

varying the weights between different criteria. However, there is no rational basis for determining 

adequate weights and the objective function so formed may lose significance due to combining 

incommensurable objectives. In addition, the process is time consuming and sometimes, not all 

solutions are generated, and important solutions can be overlooked in this method. In general, a 

multi-objective problem usually does not have a unique solution, as compared with a single 

objective problem. 

2.7 Network Energy Flow Models 

Network flow models are commonly used to help in setting up linear programs. The 

advantage of using a network flow model for energy system problems is to effectively illustrate 

the energy flow from supply to demand. This facilitates setting up an objective function and 

constraints and provides for easy interpretation of the results. Cho et al. (2008) developed an 

energy dispatch algorithm using linear programming with network flow models to provide 

operational/control signals for the optimal operation of the CCHP equipment in order to minimize 

the energy costs. Also, the algorithm provided optimal solutions for decisions regarding generating 

power locally or buying power from the grid. The micro-CCHP facility included a 15-kW natural 

gas internal combustion (IC) engine, 10-ton absorption chiller, heat exchanger, and boiler. The 

optimal results show that the IC engine was not operated at low electrical demand due to lesser 



 
 

49 

efficiency. Also, the optimal energy cost was lower than the baseline case (importing electricity 

from grid and auxiliary boiler) for all demand scenarios throughout the day.  

Cho et al. (2009) extended this energy dispatch algorithm to minimize the operational cost, 

primary energy consumption (PEC), and carbon dioxide emissions (CDE) of CCHP systems for 

cities with different climate conditions: Columbus, Minneapolis, San Francisco, Boston, and 

Miami. Here the objective function to minimize the total operational cost of running the CCHP 

system was modified using conversion factors to minimize the amount of primary energy 

consumption and CO2 emissions satisfying the total energy demand. The CCHP system is 

connected to the electrical grid so that electricity can be purchased from the grid when the electrical 

demand is high and excess electricity from the CCHP system can be sold back. The results show 

that optimizing one objective reduces or increases the other two objectives. For the cities 

considered, the site energy consumption is higher when compared to the reference case of using a 

vapor compression cycle for cooling, natural gas for heating, and electricity from the grid. The 

reduction in emissions strongly depended on the site energy consumption and the mix of electricity 

from various fuel sources for different locations. The results suggest that the implementation of 

CCHP systems should be considered only when the energy savings and reduction of emissions are 

guaranteed.  

The algorithm from Cho et al. (2009) was used along with supervisory feed-forward control 

for real-time CHP operation with electric and thermal energy storages using short-term load 

prediction for a small office building model in Chicago (Cho et al., 2010). The results indicate that 

CCHP systems with an energy dispatch algorithm have the potential to realize savings in 

operational cost, primary energy consumption (PEC), and carbon dioxide emission (CDE) with 

respect to a conventional system. CCHP operation with electrical energy storage and thermal 

energy storage resulted in significant cost savings on a winter day of 11% and on a summer day 

of 4% compared with a conventional system. The single-year simulation results show that the 

CCHP system with energy storage could reduce PEC by up to 7.6% and CDE by up to 10.3% 

compared with those of the reference conventional system.  

Hu and Cho (2014) presented a stochastic multi-objective optimization model with an energy 

dispatch algorithm using linear programming to optimize the CCHP operation strategy for 
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different climate conditions based on operational cost, primary energy consumption, and CO2 

emissions. To assist the multi-objective decision analysis, an incentive model for PEC, and CDE 

reduction is used to evaluate the pareto operation decisions derived from the stochastic model. The 

analysis results showed that increasing the PEC incentive decreases PEC and increases operational 

cost and increasing the CDE incentive decreases CDE. 

2.8 Chapter Summary 

Previous research efforts on optimization of CHP and CCHP systems have demonstrated the 

superior performance of optimal control compared to conventional strategies or other rule-based 

techniques. However, the results have not been widely implemented. From the reviewed work, a 

few observations can be made. 

• The components of cogeneration and trigeneration systems are often represented as black 

boxes considering the type of energy delivered and modeled either by assuming constant 

efficiency in most cases to simplify the analysis and calculation or by characterizing their part 

load behavior using empirical relations in a few cases. Most equipment behavior is nonlinear 

and accurate prediction should consider variable efficiency as a function of load and/or ambient 

conditions. 

• The absence of variables involving the thermodynamic state of working fluids simplifies 

design optimization. However, these models do not accurately characterize the effect of change 

in operating conditions on the important decision variables. 

• The minimum technical limit of CCHP system operation has not been considered in previous 

work. The CCHP equipment can operate anywhere between 0% and 100% of its rated capacity, 

and the ramping rate for load adjustment has not been included.  

• In most of the work, auxiliary components such as pumps, fans, and other auxiliaries have not 

been considered or described. 

• There has been very limited sensitivity analysis of CCHP systems that have studied the 

influence of the change of parameters on optimization results. 
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Detailed models for CCHP system components are complex and as such, they are typically 

not employed in plant-wide optimization activities due to the large computation time, nonlinear 

characteristics of components, thermodynamic constraints, mixed-integer variables to represent 

dispatch states (on/off) of the components, and other associated challenges (Chandan et al., 2012). 

Although many approaches have been developed, extensive evaluations of the proposed control 

methodologies in terms of performance and computational requirements are still missing, 

especially for large scale implementation. A network flow model with a detailed thermodynamic 

behavior of all components can accurately characterize energy flows throughout the system. 

However, network flow algorithms have been applied mostly in combination with linear 

programming where component nonlinearities are not captured. To the author’s knowledge, a 

practical and hybrid approach combining mixed-integer linear programming (MILP) and nonlinear 

programming (NLP) has not been implemented for large-scale CCHP systems. Also including 

network energy flow models with this hybrid approach can be useful for handling linear and 

nonlinear constraints. A global optimal solution from a MILP formulation can be used as an initial 

point for a NILP formulation to improve the quality of the final results. This thesis is focused on 

the adaptation and application of a hybrid NILP-NLP approach for large-scale multi-period CCHP 

optimization. 
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3. DESCRIPTION AND MODELING OF THE CCHP PLANT 

3.1 Case Study Description 

The case-study considered in this research work is the Wade Power Plant and the Northwest 

Chiller Plant (NWCP) located at the main campus of Purdue University in West Lafayette, Indiana, 

USA. The Wade Utility Plant was designed and constructed from 1960 to 1962 and serves the 

electrical and thermal demands of more than 150 buildings at the Purdue campus. The Wade power 

plant produces electricity, steam, and chilled water through a Combined Cooling, Heating, and 

Power (CCHP) or trigeneration system to meet the campus electricity, heating, and cooling 

demands. The steam generated from the utility boilers along with the CHP facility is used for 

campus heating, power generation, chilled water production, and in-plant auxiliary component 

usage. The steam, which is distributed through a steam tunnel system, one set of two lines at 125 

psig (963.2 kPa) and another two lines at 15 psig (204.8 kPa), is the primary heating source for 

13.5 million gross square feet of Purdue campus buildings. The electricity generated using steam 

turbine generators provides 30-60% of the electricity required to meet campus needs, and in-plant 

usage; while the remainder of electricity is purchased from the local electric utility, which includes 

a real-time pricing (RTP) component. The power plant has one diesel engine driven generator for 

emergency purposes. Purdue generates the chilled water required for cooling using both electric 

and steam chillers from the Wade power plant and only electric chillers from the Northwest Chiller 

Plant (NWCP). Chilled water generated using these chillers is delivered through a closed water 

circulation loop to campus to meet the time-varying cooling demand. Apart from the major 

components, there are other auxiliary equipment such as boiler fans, feedwater pumps, chilled 

water pumps, cooling tower fans, condenser water pumps, and other auxiliaries that are activated 

depending on the major components to which they are linked to. Purdue's environmental footprint 

has significantly been reduced as a result of the increased efficiencies of trigeneration. Figure 3.1 

shows a simple schematic of the Wade power plant providing heating, cooling, and electricity to 

the Purdue campus. 
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Figure 3.1. Wade power plant operational schematic 

 

3.2 Energy Flow in the CCHP System 

The CCHP system contains separate components for heating, cooling, and electricity 

production. The thermal and electrical demand of the entire Purdue campus is met by the 

combination of all components in the plant. The CCHP system contains components that are 

operated using steam, electricity, or both as the input. Table 3.1 lists all the CCHP components 

both in Wade power plant and Northwest Chiller Plant (NWCP) that are included in the modeling. 

The description of each component is given in section 3.3. 
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Table 3.1. CCHP components 

Component Name Nos. Fuel or Driven by Location 

Boilers 4 Natural Gas / Coal Wade 

CHP facility 1 Natural Gas Wade 

Turbine Generators 2 Steam Wade 

Chillers 13 Steam / Electricity Wade / NWCP 

Cooling tower cells/fans 18 Electricity Wade / NWCP 

Condenser Water Pumps 12 Electricity Wade / NWCP 

Chilled Water Pumps  13 Steam / Electricity Wade / NWCP 

Boiler Feed Water Pumps  7 Steam / Electricity Wade 

Boiler Fans 7 Steam / Electricity Wade 

Pressure reducing valves 2 Steam Wade 

Feedwater Heater 1 Steam Wade 

Deaerator 1 Steam Wade 

Auxiliaries  Steam / Electricity Wade 

 

The following section describes energy flow in the CCHP system including steam, chilled 

water, and electricity. Figure 3.2 shows the steam flow across various components in the Wade 

CCHP system. Superheated steam is generated at 600 psig (4238.2 kPa) by four boilers (three 

water-tube natural gas boilers - B1, B2, B3 and one circulating fluidized bed coal boiler - B4) and 

a CHP facility (fired and unfired steam); and sent through a common 600 psig steam line. There 

are two steam-driven turbine generators (a 30 MW extraction/condensing turbine - TG1 and a 10 

MW extraction/backpressure turbine - TG2) that utilize the 600 psig steam to generate electricity. 

In the extraction/condensing turbine (TG1), some portion of the steam is extracted at 125 psig 

(963.2 kPa) to meet campus steam demand and to run steam chillers and other auxiliaries while 

the remaining steam is condensed. In the extraction/backpressure turbine (TG2), one portion of the 

steam is extracted at 125 psig (963.2 kPa) while the other is exhausted at 15 psig (204.8 kPa). 

There are four steam-driven feedwater pumps (4-FWPs), three steam-driven chilled water pumps 

(3-CWPs), a fan of coal boiler B4 (F-B4), and a fan of natural gas boiler B2 (F-B2) which are 

driven by 600 psig steam and they output steam at 125 psig except for the fan of natural gas boiler 

B2 (F-B2) that outputs steam at 15 psig. The extracted 125 psig steam is utilized by steam turbines 

that drive three centrifugal chillers (SC1, SC2, and SC3), fans of a natural gas boiler B1 (F-B1), 
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and coal boiler B4 (F-B4). The steam from the fans is extracted at 15 psig while the steam from 

the chiller turbines is condensed. Some portion of the steam is extracted from 125 psig and 15 psig 

steam lines and sent to Purdue campus through campus 125 psig (125#) and 15 psig (15#) steam 

tunnel lines respectively to meet the campus heating demand. There are pressure reducing valves 

in both the 600 psig steam line (PRV1) and the 125 psig steam line (PRV2) that bypass other 

components and are used to reduce steam pressure to meet the heating requirements when the 

demand is high. Also, there are some steam auxiliary equipment A1, A2, and A3 that utilize 600 

psig, 125 psig, and 15 psig steam respectively, and their output steam is condensed. The condensate 

from campus and the various plant components is collected in the condensate tank. The makeup 

water is added to compensate for any losses and some amount of 15 psig steam is mixed in the 

deaerator (DA) to bring the water to the required feedwater temperature. The water is then fed to 

the boilers and CHP facility using the seven feedwater pumps to repeat this cycle.  

 

B – Boiler; CHP – CHP facility; NG–Natural Gas; TG – Turbine Generator; 
4-FWPs – Four steam-driven Feed Water Pumps; 3-CWPs – Three steam-driven Chilled Water Pumps; 

F-B – Steam-driven Fan of the respective boiler; PRV – Pressure Reducing Valve; 
SC– Steam Chiller; A – Steam-driven Auxiliaries; Cond – Condenser; DA – Deaerator; 

125# – 125 psig campus steam line; 15# – 15 psig campus steam line. 

Figure 3.2. Wade power plant steam-driven components and steam flows 
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Purdue generates the chilled water required for cooling using both electric and steam chillers 

from two locations on campus: Wade power plant and Northwest Chiller Plant (NWCP). Wade 

power plant has three steam-driven centrifugal chillers and four electric chillers. NWCP plant has 

six two-stage electric compressor chillers. Figure 3.3 shows a simplified schematic of the chilled 

water flow across components in the loop. The chilled water is circulated through 37 km of 

underground piping using chilled water pumps to air handling unit coils of each building and then 

is returned to the chiller locations to be chilled again for redistribution using the chilled water loop. 

In the condenser water loop, chillers reject heat to the water that is circulated through the cooling 

towers and stored in the cold well. From there, the water is pumped again to the chillers by the 

condenser water pumps. 

 

 

Figure 3.3. Simplified schematic of chilled water flow 

The electricity generated using the two turbine generators and the remainder purchased from 

the local electric utility is used to meet the campus electricity demand and to operate the other 

components within the power plant, such as the four electric chillers at Wade power plant and six 

electric chillers at NWCP, boiler feedwater pumps, boiler fans, chilled water pumps, cooling tower 

fans, condenser water pumps, and other auxiliaries. The operation of pumps, fans, and other 

auxiliaries depends on the state of the primary equipment being equipped to meet campus energy 

demands. 
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3.3 Plant Component Modeling 

This section describes the mathematical models of plant equipment including major and 

auxiliary components used to achieve the production of steam, chilled water, and electricity. 

Boilers, chillers, and turbine generators are the major components that are used for producing 

steam, chilled water, and electricity. However, there are other auxiliary components such as pumps 

(boiler feedwater pumps, chilled water pumps, condenser water pumps, etc.), fans (boiler fans and 

cooling tower fans), and other equipment that are operated along with the major components to 

accomplish campus energy demands. Each plant component model has a set of parameters, inputs, 

and output variables. The models are mostly empirical or semi-empirical and linear or nonlinear 

with respect to inputs. In this study, the model parameters were mostly determined from plant 

performance data, but very few from equipment’s manufacturer data. The model equations are 

then interconnected according to their arrangement in the physical plant and incorporated into the 

optimization framework. The entire model is developed using MATLAB (R2019b). In the 

following sections, the variables will be represented as 𝑥 to indicate that they are the decision 

variables to be optimized. A detailed description of decision variables is explained in Chapter 4.  

 

3.3.1 Boilers 

Boilers are an essential part of the CCHP system for steam generation. The Wade plant has 

four boilers: three water-tube natural gas boilers (B1, B2, and B3) and one circulating fluidized 

bed coal boiler (B4). Feedwater from the condensate tank and deaerator is pumped into the boilers 

at 600 psig / 250 °F using feedwater pumps. Boiler #1 (B1) has a feedwater heater that uses 125 

psig steam, so its inlet feedwater temperature is approximately 350°F. Superheated steam is 

generated approximately at 600 psig / 800 °F to primarily serve the turbine generators, few pumps, 

fans, and sometimes the pressure reducing valves and other auxiliaries. Table 3.2 gives the 

specifications of each boiler.  
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Table 3.2. Boiler specifications 

Units Boiler #1 (B1) Boiler #2 (B2) Boiler #3 (B3) Boiler #4 (B4) 

Primary Fuel Natural Gas Natural Gas Natural Gas Coal 

Type Water-tube Water-tube Water-tube Circulating  
fluidized bed 

Rated Capacity,  
klb/h (kg/s) 

215  
(27.09) 

200 
(25.20) 

200 
(25.20) 

200 
(25.20) 

Operating Range,  
klb/h (kg/s)  

65-195 
(8.19-24.57) 

30-190 
(3.78-23.94) 

70-190 
(8.82-23.94) 

75-195 
(9.45-24.57) 

Steam pressure,   
psig (kPa) 

600  
(4238.21) 

600  
(4238.21) 

600  
(4238.21) 

600  
(4238.21) 

Steam temperature,  
°F (K) 

810 
(705.37) 

750 
(672.04) 

750 
(672.04) 

810 
(705.37) 

Feedwater temperature,  
°F (K) 

350 
(449.82) 

250 
(394.26) 

250 
(394.26) 

250 
(394.26) 

HHV of fuel  1010 (Btu/ft3) 1010 (Btu/ft3) 1010 (Btu/ft3) 26051 (kJ/kg) 

 

The steam pressure (𝑃",%), steam temperature (𝑇",%) and feedwater temperature (𝑇&#,%) are 

given as input to the boiler model from the plant operational specifications to determine the 

enthalpy of steam (ℎ",%) and feedwater (ℎ&#,%). The mass flow rate of steam through the boiler 

(𝑥",%) is determined by the campus heating demand and the demand from the equipment that is 

hooked to. The actual fuel consumption (𝑓) to produce steam is calculated using Eq.3.1 for the 

natural gas boiler and Eq.3.2 for the coal boiler. 

𝑓'( =
𝑥",% ∗ (ℎ",% − ℎ&#,%)

𝜂%
 (3.1) 

𝑓) =
𝑥",% ∗ (ℎ",% − ℎ&#,%)

𝜂% ∗ 𝐻𝐻𝑉
 (3.2) 

where, 

𝑓'(  - amount of natural gas consumed [kJ/s] 

𝑓)  - amount of coal consumed [kg/s] 

𝑥",% - mass flow rate of steam produced in boilers (decision variable) [kg/s] 

𝐻𝐻𝑉 - higher heating value of coal [kJ/kg] 

𝜂% - efficiency of boiler [-] 
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The boiler’s nominal thermal efficiency changes due to loading. So, a quadratic efficiency curve 

solely as a function of boiler load (𝑥",%) is used to accurately represent the performance of the 

boiler as shown in Eq.3.3.  

𝜂% = 𝐶1 ∗ 𝑥",%* + 𝐶2 ∗ 𝑥",% + 𝐶3 (3.3) 

The coefficients (𝐶1, 𝐶2, 𝐶3) of this equation are estimated for each boiler by regression of the 

boiler’s actual performance data and the R-squared values are listed in Table 3.3. Figure 3.4 shows 

the performance efficiency curve of the boilers as a function of the steam load. It can be observed 

that the correlation provides a close fit of the performance data and the R-squared values are greater 

than 95%. 

Table 3.3. Coefficients of boiler efficiency curve 

Boilers 𝐶1 𝐶2 𝐶3 Data points R-squared 

B1 -0.0531 2.2597 57.158 74 0.9524 
B2 -0.1184 4.0242 54.159 62 0.9502 
B3 -0.0544 2.0770 64.957 56 0.9524 
B4 -0.0994 3.6202 51.379 59 0.9504 
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(a) Boiler #1 (B1) (b) Boiler #2 (B2) 

  

(c) Boiler #3 (B3) (d) Boiler #4 (B4) 

Figure 3.4. Performance curves of the boilers 

These quadratic efficiency curves are used only for nonlinear models. However, for linear 

modeling of the CCHP plant, a constant efficiency is assumed for each of the boilers and given as 

an input to the boiler model in the place of Eq.3.3. This value depends on the average nominal 

boiler efficiency between 60% to 80% of the steam load for each boiler based on the boiler’s 

performance data as shown in Figure 3.4. The nominal boiler efficiencies used for the linear 

modeling of the boilers are listed in Table 3.4. 
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Table 3.4. Boiler nominal efficiency for linear models 

Boilers 𝐵1 𝐵2 𝐵3 𝐵4 

Efficiency [%] 81 85 84.5 83 

 

The set of mathematical expressions can be grouped and expressed in functional (input-

output) form for nonlinear models of natural gas (𝑁𝐺) and coal (𝐶) boiler using Eq.3.4 and Eq.3.5 

respectively:  

[𝑓'(] = 𝑁𝐺𝐵𝑜𝑖𝑙𝑒𝑟(𝑃",% , 𝑇",% , 𝑇&#,% , 𝑥",%)'(  (3.4) 

[𝑓)] = 𝐶𝑜𝑎𝑙𝐵𝑜𝑖𝑙𝑒𝑟(𝑃",% , 𝑇",% , 𝑇&#,% , 𝑥",% , 𝐻𝐻𝑉))  (3.5) 

Similarly, Eq.3.6 and Eq.3.7 are used for the linear model of natural gas (𝑁𝐺) and coal (𝐶) boiler 

respectively, including the boiler efficiency as input:  

[𝑓'(] = 𝑁𝐺𝐵𝑜𝑖𝑙𝑒𝑟(𝑃",% , 𝑇",% , 𝑇&#,% , 𝑥",% , 𝜂%)'(  (3.6) 

[𝑓)] = 𝐶𝑜𝑎𝑙𝐵𝑜𝑖𝑙𝑒𝑟(𝑃",% , 𝑇",% , 𝑇&#,% , 𝑥",% , 𝐻𝐻𝑉, 𝜂%))  (3.7) 

3.3.2 CHP Facility 

The Combined Heat and Power (CHP) facility includes a combustion turbine to generate 

electricity and the exhausted waste heat from power generation is reclaimed using a heat recovery 

steam generator (HRSG) to produce additional steam. The combustion turbine-based CHP system 

generates approximately 15.5 MW of power and is sent directly to the utility grid. This electricity 

is not used by the Wade plant. Only the steam generated using HRSG is used by the Wade plant. 

The CHP system delivers 150,000 lb/h (18.9 kg/s) steam at 600 psig / 775 °F which is combined 

with the steam from other boilers and sent through a common 600 psig steam line to serve the 

steam turbine generators and other auxiliaries. Feedwater from the condensate tank is pumped into 

the heat recovery steam generator (HRSG) at 600 psig / 250 °F using feedwater pumps. The 

exhaust gas from the combustion turbine is directly used to produce unfired steam while an 

additional duct burner is used to produce fired steam. The CHP facility will supply 49,000 lb/h 
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(6.17 kg/s) unfired steam throughout the year and an optional 101,000 lb/h (12.73 kg/s) fired steam 

depending on the steam demand.  

Enthalpy of unfired steam (ℎ",+,) is determined from the outlet steam pressure	(𝑃",+,) and 

steam temperature (𝑇",+,). The natural gas fuel consumed by the CHP facility (𝑓'(,+,) to produce 

49,000 lb/h unfired steam (𝑥",+,)  using the exhaust gas from combustion turbine includes a 

multiplier (𝑘) and is calculated as follows:  

𝑓'(,+, = 𝑘 ∗ 𝑥",+, (3.8) 

The duct burner is used to produce optional fired steam through HRSG depending on the 

steam demand. The steam pressure	(𝑃",,), steam temperature (𝑇",,) and feedwater temperature 

(𝑇&#,,)  are given as input to the HRSG model from the plant operational specifications to 

determine the enthalpy of fired steam (ℎ",,) and feedwater (ℎ&#,,). The mass flow rate of fired 

steam through the HRSG (𝑥",,) is determined by the campus heating demand and the demand 

from the equipment that is hooked to 600 psig steam line. The actual fuel consumption (𝑓'(,,) to 

produce fired steam is calculated as: 

𝑓'(,, =
𝑥",, ∗ (ℎ",, − ℎ&#,,)

𝜂-%
 (3.9) 

where, 

𝑓'(,, - amount of natural gas consumed [kJ/s] 

𝑥",, - amount of fired steam produced through HRSG (decision variable) [kg/s] 

𝜂-% - efficiency of duct burner [91% - from manufacturer’s data] 

The set of mathematical expressions can be grouped and expressed in functional (input-output) 

form for both linear and nonlinear model of unfired (𝑈𝐹) and fired (𝐹) steam from the CHP 

facility as:  

[𝑓'(,+,] = 𝑈𝑛𝑓𝑖𝑟𝑒𝑑(𝑃",+, , 𝑇",+, , 𝑘, 𝑥",+,)+, (3.10) 

[𝑓'(,,] = 𝐹𝑖𝑟𝑒𝑑(𝑃",, , 𝑇",, , 𝑇&#,, , 𝑥",, , 𝜂-%), (3.11) 
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The CHP facility is currently under construction and it is not employed in the plant operation. It 

will be used along with the boilers for steam generation in the future. The CHP facility is 

incorporated in the plant model, but the values were set to zero during optimization. The options 

can be turned on when under operation. 

3.3.3 Turbine Generators 

There are two steam-driven turbine generators (TG): TG1 is a 30 MW extraction/condensing 

turbine and TG2 is a 10 MW extraction/backpressure turbine. Both the turbines use 600 psig steam 

from boilers and the CHP facility to generate electricity. In the extraction/condensing turbine 

(TG1), some portion of the steam is extracted at 125 psig while the remaining steam is condensed 

at vacuum pressure. In the extraction/backpressure turbine (TG2), one portion of the steam is 

extracted at 125 psig while the rest is exhausted at 15 psig. The extracted steam at 125 psig and 15 

psig are used for campus heating and other in-plant auxiliaries. Table 3.5 gives the specifications 

of each turbine generator. 

Table 3.5. Steam turbine generator specifications 

Turbine Generator Units 
Turbine Generator #1  

(TG1) 
Turbine Generator #2  

(TG2) 

Type of turbine Extraction/condensing Extraction/backpressure 

Rated output (MW) 30 10 

Rated speed (RPM) 3600 3600 

Inlet steam pressure, psig (kPa) 600 (4238.21) 600 (4238.21) 

Inlet steam temperature, ⁰F (K) 810 (705.37) 825 (713.71) 

Inlet steam flow, klb/h (kg/s) 250 (31.5) 265 (33.4) 

1st Extraction steam pressure, psig (kPa) 125 (963.2) 125 (963.2) 

1st Extraction steam flow, klb/h (kg/s) 200 (25.2) 250 (31.5) 

2nd Extraction/Exhaust steam pressure, psig (kPa) -13.5 (8.48) 15 (204.77) 

2nd Extraction/Exhaust steam flow, klb/h (kg/s) 250 (31.5) 40 (5.04) 

Condenser water flow, gpm (lt/s) 24,660 (1555.8) - 

Condenser water entering temp., °F (K) 85 (302.59) - 

Condenser water leaving temp., °F (K) 105 (313.71) - 
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The 600 psig steam from all the four boilers and CHP facility is collected and mixed in the 

600 psig steam line and is sent to the turbine generators and other components connected to the 

600 psig steam line. The 600 psig inlet steam pressure (𝑃.//) and temperature (𝑇.//), 1st level 

125 psig extraction pressure (𝑃012,3() and exhaust or 2nd level extraction pressure (𝑃01*,3() are 

inputs to the turbine generator model from the plant operational specifications. The mass flow rate 

of steam across each stage of the turbine generator level 125 psig extraction pressure (𝑃012,3() and 

exhaust or 2nd level extraction pressure (𝑥",3() is determined by the campus heating demand, 

campus electricity demand and the steam demand from the equipment that it is connected to. Figure 

3.5 represents the flow of steam across two stages of turbine generator 1 (TG1) and 2 (TG2), 

respectively. 

 

 

 

(a) TG1 (b) TG2 

Figure 3.5. Operation and steam flow across stages of turbine generators 

The amount of electricity generated for each turbine generator (𝐸3( 	[𝑘𝑊])	is given by equations 

(3.12) and (3.13): 

𝐸3(2 = 𝜂3(2[𝑥",3(2 ∗ ∆ℎ012,4",3(2 + R𝑥",3(2	 − 𝑥",012,3(2S ∗ ∆ℎ01*,4",3(2] (3.12) 

𝐸3(* = 𝜂3(*[𝑥",3(* ∗ ∆ℎ012,4",3(* + R𝑥",3(*	 − 𝑥",012,3(*S ∗ ∆ℎ01*,4",3(*] (3.13) 
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where, 

𝑥",3(  – Input throttle steam to the turbine generator (decision variable) [kg/s] 

𝑥",012,3(  – Amount of steam extracted after the 1st stage (decision variable) [kg/s] 

∆ℎ01,4",3(  – Isentropic expansion work of turbine generator across each stage (1st or 2nd) [kJ/kg] 

𝜂3(  – Isentropic turbine generator efficiency [-] 

The turbine generator efficiency (𝜂3() changes due to loading and the amount of steam extracted 

across each stage. So, a quadratic efficiency curve solely as a function of inlet throttle steam 

(𝑥",3() and 1st level extraction steam (𝑥",012,3() is used to represent the performance of turbine 

generator.  

𝜂!" = 𝐶1 + 𝐶2 ∗ 𝑥#,!" + 𝐶3 ∗ 𝑥#,%&',!" + 𝐶4 ∗ 𝑥#,!"( + 𝐶5 ∗ 𝑥#,!" ∗ 𝑥#,%&',!" + 𝐶6 ∗ 𝑥#,%&',!"(  (3.14) 

The coefficients (𝐶1, . . , 𝐶6) of this equation are estimated for each turbine generator by regression 

of its actual performance data and the R-squared values are listed in Table 3.6. Figure 3.6 shows 

the isentropic efficiency curve of the turbine generators (TG1 and TG2) as a function of 600 psig 

inlet steam load and the amount of 125 psig steam extracted. The curves represent correlation fit 

and the points represent performance data. It can be observed that the correlation provides a close 

fit of the performance data. Also, it can be noted that the efficiency of TG2 is significantly lower 

than that of TG1. This could affect the amount of electricity and steam produced from the turbine 

generators to meet demand during optimization.  

Table 3.6. Coefficients of turbine generator efficiency curve 

Turbine  
Generator 

𝐶1 𝐶2 𝐶3 𝐶4 𝐶5 𝐶6 
Data  

points 
R-squared 

TG1 0.1711 0.04142 -0.02838 -0.0007353 0.001026 -0.0004814 62 0.9707 

TG2 -0.06704 0.0656 -0.02615 -0.001153 0.0004277 0.0001787 69 0.9573 
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(a) TG1 (b) TG2 

Figure 3.6. Isentropic efficiency curve of the turbine generators 

The isentropic efficiency curves of the turbine generators are used for nonlinear models. For 

linear modeling of the CCHP plant, a constant isentropic efficiency is assumed for each turbine 

generator and given as an input to the turbine generator model in the place of Eq.3.14. The 

isentropic efficiency assumed for the linear modeling of the TG1 is 65% and for the TG2 is 55%. 

These values depend on the average isentropic efficiency between 60% to 80% of the input throttle 

steam load for each turbine generator based on its performance data.  

In the extraction/condensing turbine (TG1), the steam exhausted at vacuum pressure is 

condensed to saturated liquid in the condenser using water from the cooling tower. The condenser 

heat rejection (�̇�56,3(2) is related to the heat transfer in the condensing exhaust steam (�̇�01*,3(2) 

and energy balances on the steam side and cooling water side are given by Eqs. 3.15-3.17. 

�̇�56,3(2 =	 �̇�01*,3(2 (3.15) 

�̇�01*,3(2 =	R𝑥",3(2	 − 𝑥",012,3(2S ∗ ∆ℎ01*,56,3(2 (3.16) 

�̇�56,3(2 = �̇�56𝐶!,56(𝑇56,6	–	𝑥3,56,4) (3.17) 

The steam flow R𝑥",3(2 − 𝑥",012,3(2S, pressure (𝑃01*,3(2) and calculated temperature (𝑇01*,3(2) 

from the exhaust of the turbine, and condenser water inlet temperature (𝑥3,56,4) are given as inputs 
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to the condenser model. The condenser water flow (�̇�56) is calculated as a function of condenser 

heat rejection (�̇�56,3(2)  from the plant operational data. From these inputs, condenser water 

leaving temperature (𝑇56,6)	is determined. The set of mathematical expressions can be grouped 

and expressed in functional (input-output) form for the nonlinear model of each turbine generator 

as:  

-𝐸!"', �̇�)*, 𝑇)*,*3!"' = 𝑇𝐺15𝑥#,!"', 𝑥#,%&',!"', 𝑃+,,, 𝑥!,+,,, 𝑃%&',!"', 𝑃%&(,!"', 𝑥!,)*,-7!"' (3.18) 

[𝐸3(*] = 𝑇𝐺2R𝑥",3(*, 𝑥",012,3(*, 𝑃.//, 𝑥3,.//, 𝑃012,3(*, 𝑃01*,3(*S3(* (3.19) 

and for the linear model as: 

-𝐸!"', �̇�)*, 𝑇)*,*3!"' = 𝑇𝐺15𝑥#,!"', 𝑥#,%&',!"', 𝑃+,,, 𝑇+,,, 𝑃%&',!"', 𝑃%&(,!"', 𝑥!,)*,- , 𝜂!"'7!"' (3.20) 

[𝐸3(*] = 𝑇𝐺2R𝑥",3(*, 𝑥",012,3(*, 𝑃.//, 𝑇.//, 𝑃012,3(*, 𝑃01*,3(*, 𝜂3(*S3(* (3.21) 

Generally, 30%-60% of Purdue’s electricity is produced from turbine generators while the rest of 

the electricity is purchased from the local electric utility, which includes a real-time pricing (RTP) 

component. The plant also has a diesel generator with a capacity of 1.8 MW that is used only for 

emergency purposes. The electricity generated from the CHP facility is sent directly to the grid 

and not used by the Wade plant to meet any electrical demand.  

3.3.4 Chillers 

The cooling demand of the Purdue campus is satisfied by steam and electric chillers at the 

Wade power plant and electric chillers at the Northwest Chiller Plant (NWCP). The Wade power 

plant has three steam-driven centrifugal chillers and four electric chillers. The NWCP plant 

provides additional cooling especially during summer with six dual compressor electric chillers. 

Both the plants deliver chilled water through 37 km of underground piping to meet the cooling 

requirements of more than 150 buildings on the campus (an average of 92.4 MMTon-hr per year). 

The chilled water supply temperature set-point is correlated with ambient dry-bulb temperature 

and varied between 40°F in the winter and 43°F in summer. Generally, a temperature differential 

of 15°F delta T is assumed between the chilled water supply temperature and return temperature 

from campus.  
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Electric Chillers 

The Wade power plant has four and NWCP has six dual compressor electric chillers whose 

specifications are listed in Table 3.7. A simplified schematic of the chiller is shown in Figure 3.7.  

Table 3.7. Dual centrifugal electric chillers specification at rated conditions 

Electric Chillers (E-C) 
Wade Chillers: 1&2 

NWCP Chillers: 1, 2 & 3 
Wade Chillers 

3&4 
NWCP Chillers 

4 & 5 
NWCP Chiller 

6 

Nominal capacity, Ton (kW) 2000 (7034) 3800 (13364) 2700 (9496) 2700 (9496) 

Evaporator flow, gpm (lt/s) 3185 (201) 4150 (262) 4298 (271) 4320 (272.5) 

Evaporator entering temp., °F (°C) 55 (12.78) 60.25 (15.69) 55 (12.78) 54.93 (12.74) 

Evaporator leaving temp., °F (°C) 40 (4.44) 38 (3.33) 40 (4.44) 40 (4.44) 

Condenser flow, gpm (lt/s) 6000 (379) 9300 (587) 7652 (483) 8101 (511) 

Condenser entering temp., °F (°C) 85 (29.44) 85 (29.44) 85 (29.44) 85 (29.44) 

Condenser leaving temp., °F (°C) 94.47 (34.71) 96.7 (35.94) 95 (35.00) 94.41 (34.67) 

Nominal power, kW 1205 2434 1633 1540 

 
 

 

Figure 3.7. Schematic of a dual compressor chiller 
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Both the electricity generated from the power plant and the purchased electricity are used to 

run these chillers. The power consumption of an electric chiller can be represented as a quadratic 

function of the load and the lift (Braun, 1987): 

𝑍 = 𝑎/ + 𝑎2𝑋 + 𝑎*𝑋* + 𝑎7𝑌 + 𝑎8𝑌* + 𝑎9𝑋𝑌 (3.22) 

where 𝑍 is the ratio of actual power consumption (𝑃) to the power consumed at design conditions 

(𝑃:0"):  

𝑍 = 	
𝑃
𝑃:0"

 (3.23) 

𝑋 is the part load ratio, which is the actual cooling effect produced by the chiller (�̇�0;) divided by 

the cooling effect at design conditions	(�̇�0;,:0"): 

𝑋 = 	
�̇�0;

�̇�0;,:0"
 (3.24) 

𝑌 is a dimensionless lift where lift is defined as the difference between the condenser water leaving 

temperature (𝑇56,6) and evaporator water leaving temperature (𝑇0;,6), such that, 

𝑌 = 	
𝑇56,6	 −	𝑇0;,6

R𝑇56,6	 −	𝑇0;,6S:0"
 (3.25) 

The coefficients of Eq.3.22 are estimated for each type of chiller by regression of its performance 

data. Figure 3.8 shows a comparison between the power ratio obtained from performance data and 

the power ratio calculated with the correlation for the three types of electric chillers. It can be 

observed that the correlation provides a close fit of the performance data. The root mean square 

error for all cases was less than 0.005. 
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Figure 3.8. Power ratio (𝑍) from fitting vs performance data for a) 2000 Ton Chillers b) 2700 
Ton Chillers and c) 3800 Ton Chillers 

The condenser heat rejection (�̇�56)  is related to the chiller load (�̇�0;)  and the power 

consumed by the compressor (𝑃) by Eq.3.26, where h= is the compressor’s motor efficiency. The 

energy balances on the chiller evaporator side and the condenser side results in Eq.3.27 and 

Eq.3.28, respectively. 

�̇�56 = �̇�0; 	+ 	h=𝑃 (3.26) 

�̇�0; = 𝑥0;𝐶!,0;(𝑇0;,4 	–	𝑇0;,6) (3.27) 

�̇�56 = 𝑥56𝐶!,56(𝑇56,6	–	𝑥3,56,4) (3.28) 

The evaporator water inlet temperature	(𝑇0;,4) and leaving temperature	(𝑇0;,6), condenser 

water inlet temperature (𝑥3,56,4) and condenser water flow (𝑥56) are given as inputs to the chiller 

model. The evaporator water flow (𝑥0;) of each chiller is dependent on the campus cooling 
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demand. From these inputs, the chiller power consumption (𝑃) , evaporator load (�̇�0;)  and 

condenser water leaving temperature (𝑇56,6)	are solved. The set of mathematical expressions can 

be grouped and expressed in functional (input-output) form for the nonlinear model of each electric 

chiller (𝐸– 𝐶) in the Wade plant (𝑊) and Northwest chiller plant (𝑁𝑊) as Eq.3.29 and Eq.3.30 

respectively. 

Y�̇�0; , 𝑃, 𝑇56,6Z>–),@ 	= 𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝐶ℎ𝑖𝑙𝑙𝑒𝑟,𝑊(𝑥0; , 𝑇0;,4 , 𝑇0;,6 , 𝑥56 , 𝑥3,56,4 ,h=)>–),@ (3.29) 

Y�̇�0; , 𝑃, 𝑇56,6Z>–),'@ 	= 𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝐶ℎ𝑖𝑙𝑙𝑒𝑟, 𝑁𝑊(𝑥0; , 𝑇0;,4 , 𝑇0;,6 , 𝑥56 , 𝑥3,56,4 ,h=)>–),'@ (3.30) 

For the linear model of chillers, a constant coefficient of performance (𝐶𝑂𝑃) is assumed for 

each electric chiller depending on its performance data and the values are shown in Table 3.8. The 

chiller load (�̇�0;) is calculated using Eq.3.27 and the power consumed by the compressor (𝑃) 

using Eq.3.31. 

𝑃 =
�̇�0;
𝐶𝑂𝑃 (3.31) 

The condenser water flow (𝑥56) is not considered as a decision variable for the linear model, but 

it (�̇�56) is represented as a linear function of the evaporator water flow (𝑥0;) or chiller load (�̇�0;) 

from the performance data of chillers.  

Table 3.8. COP values of electric chillers 

Chillers 
Wade Chillers: 1&2 

NWCP Chillers: 1, 2 & 3 
Wade Chillers 

3&4 
NWCP Chillers 

4 & 5 
NWCP Chiller 

6 

𝐶𝑂𝑃 5.84 5.5 5.82 6.17 

The functional (input-output) form for the linear models for each electric chiller in the Wade plant 

(𝑊) and Northwest chiller plant (𝑁𝑊) are represented as: 

-�̇�%. , 𝑃, �̇�)*, 𝑇)*,*3/–1,2 	= 𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝐶ℎ𝑖𝑙𝑙𝑒𝑟,𝑊(𝑥%. , 𝑇%.,- , 𝑇%.,*, 𝐶𝑂𝑃, 𝑥!,)*,- ,h3)/–1,2 (3.32) 

-�̇�%. , 𝑃, �̇�)*, 𝑇)*,*3/–1,42 	= 𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝐶ℎ𝑖𝑙𝑙𝑒𝑟, 𝑁𝑊(𝑥%. , 𝑇%.,- , 𝑇%.,*, 𝐶𝑂𝑃, 𝑥!,)*,- ,h3)/–1,42 (3.33) 



 
 

72 

Steam Chillers 

The Wade power plant has three steam turbine centrifugal chillers (S-C1, S-C2, and S-C3). 

These chillers utilize the 125 psig steam extracted from the 125 psig steam line to run the turbines 

of the centrifugal chillers and the exhaust steam is condensed. The specifications of the steam 

chillers are listed in Table 3.9 and a simplified schematic of the steam chiller is shown in Figure 

3.9.  

Table 3.9. Steam turbine centrifugal chillers specification at rated conditions 

Steam Chillers 
Chiller #1 

S-C1 
Chiller #2 

S-C2 
Chiller #3 

S-C3 

Nominal capacity, Ton (kW) 3000 (10550) 4500 (15826) 5000 (17584) 

Evaporator flow, gpm (lt/s) 4800 (303) 7191 (454) 8000 (505) 

Evaporator entering temp., °F (°C) 55 (12.8) 55 (12.8) 55 (12.8) 

Evaporator leaving temp., °F (°C) 40 (4.4) 40 (4.4) 40 (4.4) 

Condenser flow, gpm (lt/s) 9000 (568) 13500 (852) 15000 (947) 

Condenser entering temp., °F (°C) 85 (29.4) 85 (29.4) 85 (29.4) 

Condenser leaving temp., °F (°C) 94.4 (34.7) 94.4 (34.7) 94.4 (34.7) 

Compressor power, bhp (kW) 2513 (1874) 3531 (2633) 3928 (2929) 

Compressor speed (RPM) 5215 5799 3585 

Turbine steam inlet pressure, psig (kPa) 125 (962.2) 125 (962.2) 125 (962.2) 

Turbine steam inlet temperature, °F (K) 550 (561) 550 (561) 550 (561) 

Turbine steam flow, lb/h (kg/s) 25280 (3.19) 36687 (4.62) 40262 (5.07) 

Exhaust steam pressure, psia (kPa)  1.47 (10.14) 1.47 (10.14) 1.47 (10.14) 

Inline Condenser entering temp., °F (°C) 95 (35.0) 95 (35.0) 95 (35.0) 

Condenser leaving temp., °F (°C) 100.5 (38.1) 100.5 (38.1) 100.5 (38.1) 
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Figure 3.9. Schematic of a steam turbine centrifugal chiller 

For the nonlinear model of steam chillers, the condenser heat rejection	(�̇�56,AB)), the steam 

chiller load (�̇�0;,AB)) and the power consumed by the compressor (𝑃AB)) are calculated in a 

similar way as the electric chillers and given by Eqs.3.26-3.28. The power consumption of each 

chiller is represented as a quadratic function of the load and the lift as in Eq.3.22. The coefficients 

of the equation are estimated for each steam chiller by regression of its performance data and listed 

in Table 3.10. 

Table 3.10. Coefficients of power ratio curve for steam chillers 

Steam 
Chillers 𝑎/ 𝑎2 𝑎* 𝑎7 𝑎8 𝑎9 Data points RMSE 

𝑆 − 𝐶1 0.008208 0.7529 -0.3355 -0.294 0.5841 0.2528 28 0.0131 

𝑆 − 𝐶2 0.1089 0.08671 -0.208 -0.03662 0.7803 0.267 40 0.0122 

𝑆 − 𝐶3 -0.09849 -0.3048 0.5367 0.8988 -0.4401 0.4223 21 0.0133 

 

Figure 3.10 shows a comparison between the power ratio obtained from performance data and the 

power ratio calculated with the correlation for the three steam chillers. It can be observed that the 

correlation provides a close fit of the performance data.  
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Figure 3.10. Power ratio (𝑍) from fitting vs performance data for steam chillers a) S-C1 b) S-C2 
and c) S-C3 

The power generated by the steam turbine utilizing the 125 psig steam is given as input power to 

the compressor of each steam chiller and is given by Eq.3.34: 

𝑃AB) = 𝜂C,A–) ∗ �̇�",A–) ∗ ∆ℎ4",A–)  (3.34) 

where, 

�̇�",A–)  – Input steam to steam turbine of chillers [kg/s] 

∆ℎ4",A–)  – Isentropic expansion work of turbine generator [kJ/kg] 

𝜂C,A–)  – Isentropic turbine generator efficiency of steam chillers [-] 

The isentropic efficiency of the turbine changes due to steam load in the turbine and a quadratic 

efficiency curve in terms of inlet steam (�̇�",A–) 	) is used to represent the performance of the 

turbine. 
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𝜂C,A–) = 𝑏1 ∗ �̇�",A–)
* + 𝑏2 ∗ �̇�",A–) + 𝑏3 (3.35) 

The coefficients (𝑏1, 𝑏2, 𝑏3) of this equation are estimated for each turbine by regression of its 

actual performance data and R-squared values are listed in Table 3.11. 

Table 3.11. Coefficients of turbine efficiency curve 

Steam Chillers 𝑏1 𝑏2 𝑏3 Data points R-squared 

𝑆 − 𝐶1 -0.1071 0.5785 0.0015 4 0.9981 

𝑆 − 𝐶2 -0.0732 0.4971 0.0002 4 0.9981 

𝑆 − 𝐶3 -0.0370 0.3340 0.0013 4 0.9992 

 

The 125 psig inlet steam pressure (𝑃2*9) and calculated temperature (𝑇2*9), and exhaust pressure 

(𝑃01,A–)) are given as inputs to the turbine model to determine the isentropic expansion work of 

turbine (∆ℎ4",A–))  and the inlet steam to the turbine (�̇�",A–))  is calculated from the power 

consumed by chiller compressor (𝑃AB)) as shown in Eq.3.34. The steam is exhausted from the 

turbine at vacuum pressure and is condensed to saturated liquid in the inline condenser using the 

water coming out of chiller condenser. The inline condenser heat rejection (�̇�56*,AB)) is related to 

the heat transfer in the condensing exhaust steam (�̇�01,AB)) and the energy balances on steam side 

and cooling water side are calculated as described for the extraction/condensing turbine (TG1) and 

given by Eqs.3.15-3.17. The steam flow (�̇�",A–)), pressure (𝑃01,AB)) and temperature (𝑇01,AB)) 

from the exhaust of the turbine, and chiller condenser water leaving temperature (𝑇56,6,AB)) and 

condenser water flow (𝑥56,AB)) are given as inputs to the inline condenser model. From these 

inputs, condenser water leaving temperature (𝑇56,6*,AB))	from the inline condenser is determined. 

The functional (input-output) form for the nonlinear model of the steam chiller (𝑆– 𝐶)  is 

represented as: 

Y�̇�0; , �̇�", 𝑇56,6*ZA–) 	= 𝑆𝑡𝑒𝑎𝑚𝐶ℎ𝑖𝑙𝑙𝑒𝑟(𝑥0; , 𝑇0;,4 , 𝑇0;,6 , 𝑥56 , 𝑥3,56,4 , 𝑃2*9, 𝑇2*9, 𝑃01)A–)  (3.36) 
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For the linear model of steam chillers, a constant coefficient of performance (𝐶𝑂𝑃)  is 

assumed for each steam chiller depending on its performance data and the values are shown in 

Table 3.12. The steam chiller load (�̇�0;,AB)) and the power consumed by the chiller compressor 

(𝑃AB)) are calculated in the similar way as the linear model of electric chillers as given by Eq.3.27 

and Eq.3.31 respectively. Similarly, the condenser water flow (𝑥56,AB)) is not considered as a 

decision variable for the linear model, but it (�̇�56,AB)) is represented as a linear function of the 

evaporator water flow (𝑥0;,AB))  or chiller load (�̇�0;,AB))  based on the performance data of 

chillers. To determine the mass flow rate of inlet steam to the turbine (�̇�",A–)) , a constant 

isentropic efficiency is assumed for the turbines of each steam chiller in the place of Eq.3.35 and 

the values are listed in Table 3.12. 

Table 3.12. COP and isentropic efficiency values of steam chillers 

Steam Chillers Chiller #1 (S-C1) Chiller #2 (S-C2) Chiller #3 (S-C3) 

𝐶𝑂𝑃 [-] 5.63 6.01 6.00 

𝜂C,A–)[%] 75.0 72.0 73.0 

 

For the linear model of the steam chiller (𝑆– 𝐶), the functional (input-output) form is: 

-�̇�%. , �̇�)*, �̇�#, 𝑇)*,*(35–1 = 𝑆𝑡𝑒𝑎𝑚𝐶ℎ𝑖𝑙𝑙𝑒𝑟(𝑥%. , 𝑇%.,- , 𝑇%.,*, 𝐶𝑂𝑃, 𝑥!,)*,- , 𝑃'(6, 𝑇'(6, 𝑃%& ,h7)5–1  (3.37) 

3.3.5 Cooling Towers 

There are five induced draft design, evaporative cooling towers installed which include one 

counter-flow concrete tower at Wade plant and one at Northwest Chiller Plant (NWCP); and three 

metal cross-flow towers at NWCP. The characteristics of both types of towers are shown in Table 

3.13. A schematic of a cooling tower cell is shown in Figure 3.11. The Wade cooling tower has 

six cells while the NWCP cooling tower has three cells per tower each giving a total of 12 tower 

cells for one counter-flow concrete tower and three metal cross-flow towers. Each tower cell is 

operated using 2-speed and variable speed fans. 
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Table 3.13. Cooling towers specifications at rated conditions 

Description 
Wade Counter-Flow  

Concrete Tower 
NWCP Counter-Flow     

Concrete Tower 
NWCP Cross-Flow 

Metal Tower 

Installed units 1 1 3 

Number of cells per tower 6 3 3 

Water flow per cell, gpm (lt/s) 15000 (947) 6000 (379) 2567 (162) 

Hot water temperature, °F (°C) 101 (38.33) 95 (35.00) 95 (35.00) 

Cold water temperature, °F (°C) 85 (29.44) 85 (29.44) 85 (29.44) 

Wet bulb temperature, °F (°C) 76.8 (24.89) 78.2 (25.67) 79 (26.11) 

Air flow per cell, cfm (m3/s) 1,302,231 (615) 478,740 (225.94) 250,100 (118.03) 

Nominal fan power per cell, HP (kW) 200 (149) 75 (55.93) 60 (44.74) 

 
 

 
Figure 3.11. Schematic of an evaporative cooling tower cell 

The water flowing through the cooling tower is cooled due to both sensible heat transfer due 

to the temperature differences between water and air and mass transfer from water evaporation to 

the air. The cooling tower performance is modeled based on an effectiveness-NTU approach. The 

total energy transfer rate between the water and air for a tower cell is given by: 
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�̇�)3 = 𝜀D�̇�D(ℎD"#4 − ℎD,4) (3.38) 

where, 

�̇�D- mass flow rate of air through the cooling tower calculated from volumetric flowrate of air 

(𝑥D&) across the tower cell [kg/s] 

ℎD"#4 	-	specific enthalpy of saturated air at inlet water temperature [kJ/kg] 

ℎD,4 - specific enthalpy of inlet air [kJ/kg] 

𝜀D - effectiveness is defined as the ratio between the actual energy transfer rate and the 

theoretical maximum energy transfer rate attainable, which occurs when the air that exits the 

tower is saturated with moisture at a temperature equal to that of inlet water.  

Braun (1988) has shown that the effectiveness of a cooling tower can be determined using the 

relationships for sensible heat exchangers with modified definitions for 𝑁𝑇𝑈 and the capacitance 

rate ratios, as shown in Eq.3.39 and Eq.3.40, which give the effectiveness for counter-flow and 

cross-flow cooling towers, respectively.  

𝜀8 =	
1 − exp	(−𝑁𝑇𝑈(1 −𝑚∗))
1 − 𝑚∗exp	(−𝑁𝑇𝑈(1 −𝑚∗))

 (3.39) 

𝜀8 =	
1
𝑚∗ (1 − exp	(−𝑚

∗(1 − exp(−𝑁𝑇𝑈)))) (3.40) 

Here, 𝑚∗ is a modified capacitance ratio given by Eq. 3.41: 

𝑚∗ =	
�̇�D𝐶"

�̇�)3,4𝐶!#
 (3.41) 

where �̇�)3,4 is the cell inlet water mass flow rate calculated from the volumetric flow rate of water 

(𝑥#,)3,4), 𝐶!# 	is the specific heat of water, and 𝐶"	is the saturation specific heat defined as the ratio 

of the difference between the specific enthalpies of saturated air at inlet and leaving water 

temperatures to the difference between inlet (𝑥3,)3,4) and leaving water temperatures (𝑇)3,6) as 

shown in Eq. 3.42. 

𝐶" =	
ℎD"#4 	− 	ℎD"#/
𝑥3,)3,4 	− 	𝑇)3,6

 (3.42) 
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The previous expressions are incorporated into a mathematical model in conjunction with mass 

and energy balances. This model was fed with input data from performance curves of cooling 

towers covering the range of operating conditions to estimate 𝑁𝑇𝑈. Subsequently, the 𝑁𝑇𝑈 values 

are correlated with the ratio of water flow to air flow through regressions to obtain the coefficients 

𝑐 and 𝑛 of the expression, given by Eq.3.43.  

𝑁𝑇𝑈 = 	𝑐	 `
�̇�)3

�̇�D
a
F

 (3.43) 

To validate the model, tower heat transfer rates are calculated for each set of data using the 

corresponding 𝑁𝑇𝑈 correlation and compared with the corresponding manufacturer’s heat transfer 

rate (heat transfer rate calculated with the inlet and outlet temperatures from performance curves). 

The root mean square error obtained for each cooling tower was normalized by dividing it by the 

range (difference between the maximum and minimum value of heat transfer rate). The results are 

reported as NRMSE in Table 3.14.  

Table 3.14. Coefficients of NTU Correlation for Cooling Towers 

Cooling Tower Type 𝑐 𝑛 Data points NRMSE 

Counter-flow concrete tower 1.96412 0.231058 100 2.67% 

Cross-flow metal tower 4.78587 -1.0684 18 6.62% 

The power consumed by a variable-speed cooling tower fan can be calculated from the tower cell 

airflow (𝑥D&). The airflow rate can be conveniently expressed as relative fan speed (𝑓"!), or ratio 

of current fan speed to the fan speed at rated conditions. The relative fan speed is approximately 

equal to the relative tower cell airflow or ratio of the airflow through the cell to the nominal airflow. 

The power consumed by the tower variable-speed fan can be represented as a cubic polynomial of 

the relative fan speed, as shown in Eq.3.44.  

𝑃)3 = 𝑃)3,: ∗ 𝑓"!	7 (3.44) 

where 𝑃)3,: is the fan power consumption at a rating condition. Finally, the set of mathematical 

relations for the nonlinear model of a cooling tower cell (𝐶𝑇) can be grouped and expressed in 
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input-output form, which gives the power consumed by a variable-speed cooling tower fan (𝑃)3), 

the tower cell leaving water flow rate and temperature (�̇�)3,6 , 	𝑇)3,6) as a function of ambient air 

conditions (𝑃DC , 𝑇#G , 𝑇:G) , airflow rate ( 𝑥D&)  and the tower cell inlet water flow rate and 

temperature (𝑥#,)3,4 , 𝑥3,)3,4). The relations for the Wade cooling tower	(𝑊) and NWCP (𝑁𝑊) 

counter-flow concrete cooling tower (𝐶𝑜𝑛) and cross-flow metal cooling tower (𝑀𝑒𝑡) are given 

by Eq.3.45, Eq.3.46 and Eq.3.47 respectively.  

Y�̇�)3,6 , 	𝑇)3,6 , 𝑃)3Z@ 	= 𝑊𝐶𝑇(𝑃DC , 𝑇#G , 𝑇:G , 𝑥D& , 𝑥#,)3,4 , 𝑥3,)3,4)@ (3.45) 

Y�̇�)3,6 , 	𝑇)3,6 , 𝑃)3Z'@)6F)3
	= 𝑁𝑊𝐶𝑜𝑛𝐶𝑇(𝑃DC , 𝑇#G , 𝑇:G , 𝑥D& , 𝑥#,)3,4 , 𝑥3,)3,4)'@)6F)3 (3.46) 

Y�̇�)3,6 , 	𝑇)3,6 , 𝑃)3Z'@H0C)3
	= 𝑁𝑊𝑀𝑒𝑡𝐶𝑇(𝑃DC , 𝑇#G , 𝑇:G , 𝑥D& , 𝑥#,)3,4 , 𝑥3,)3,4)'@H0C)3 (3.47) 

For the linear model of a cooling tower cell, the airflow rate (𝑥D&) is not considered as a 

decision variable but is directly calculated as a linear function of tower cell inlet water flow rate 

(𝑥#,)3,4), and the power consumed by the cooling tower fan (𝑃)3) is calculated as a linear function 

of 𝑥D& using the plant performance data. The tower cell leaving water mass flow rate (�̇�)3,6) is 

assumed equal to the inlet water flowrate calculated from 𝑥#,)3,4. The tower cell leaving water 

temperature (𝑇)3,6) is assumed to maintain a setpoint temperature determined by: 

𝑇)3,6 = 𝑀𝑎𝑥(𝑇)3,=4F, (0.85𝑇#G + 14.06)) (3.48) 

where 𝑇#G is the ambient wet-bulb temperature and 𝑇)3,=4F is the minimum allowable temperature 

to avoid cooling tower freezing (40°F). For the linear model of cooling tower cell (𝐶𝑇), the 

functional (input-output) form is: 

Y�̇�)3,6 , 𝑇)3,6 , 𝑃)3Z@ 	= 𝑊𝐶𝑇(𝑇#G , 𝑥#,)3,4)@ (3.49) 

Y�̇�)3,6 , 	𝑇)3,6 , 𝑃)3Z'@)6F)3
	= 𝑁𝑊𝐶𝑜𝑛𝐶𝑇(𝑇#G , 𝑥#,)3,4)'@)6F)3 (3.50) 

Y�̇�)3,6 , 	𝑇)3,6 , 𝑃)3Z'@H0C)3
	= 𝑁𝑊𝑀𝑒𝑡𝐶𝑇(𝑇#G , 𝑥#,)3,4)'@H0C)3 (3.51) 
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3.3.6 Pumps 

The water pump is quite simply the component that drives the water flow in the power plant. 

The Wade power plant and NWCP have chilled water pumps (𝐶𝑊𝑃) on the campus chilled-water 

loop and condenser water pumps (𝐶𝑂𝑊𝑃) on the condenser-water loop. In the condenser water 

loop, the chillers reject heat to the water that is circulated through the cooling towers and stored in 

the cold well. From there, the water is pumped again to the chillers by the condenser pumps 

(𝐶𝑂𝑊𝑃), whose specifications are listed in Table 3.15 for both Wade and the NWCP. All the 

condenser water pumps are operated by electricity. In the chilled water loop, the water from the 

chillers is circulated to campus through chilled water pumps (𝐶𝑊𝑃), whose specifications are 

listed in Table 3.16. All the chilled water pumps in the NWCP are operated by electricity while 

four chilled water pumps in the Wade plant are operated by electricity and three are operated using 

600 psig steam. Feedwater to boilers is delivered through seven boiler feedwater pumps from the 

condensate tank. There are four feedwater pumps driven by 600 psig steam and the rest of the 

pumps are operated by electricity. The specifications of feedwater pumps (𝐹𝑊𝑃) are listed in 

Table 3.17.  

Table 3.15. Condenser Water Pumps	(𝐶𝑂𝑊𝑃) Specifications at Rated Conditions 

Description Wade 𝐶𝑂𝑊𝑃 NWCP 𝐶𝑂𝑊𝑃 NWCP 𝐶𝑂𝑊𝑃 

Installed units 6 3 3 

Flow rate, gpm (lt/s) 15000 (946) 6000 (379) 7900 (498.4) 

Total Head, ft (m) 95 (28.97) 83 (25.30) 107.5(32.77) 

Efficiency, % 87 83.3 81.7 

Power required, HP (kW) 400(298.3) 155 (115.6) 269 (200.6) 

NPSH Required, ft (m) 27.35(8.34) 29.18 (8.89) 22.22 (6.77) 

Nominal speed, rpm 1190 1785 1785 
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Table 3.16. Chilled Water Pumps (𝐶𝑊𝑃) Specifications at Rated Conditions 

Description Wade 
𝑆–𝐶𝑊𝑃 

Wade 
𝐸–𝐶𝑊𝑃 

NWCP 
𝐸–𝐶𝑊𝑃 

NWCP 
𝐸–𝐶𝑊𝑃 

Installed units 3 4 3 3 

Fuel type 600 psig steam Electricity Electricity Electricity 

Flow rate, gpm (lt/s) 4800 (302.8) 4800 (302.8) 3200 (201.9) 4300 (271.3) 

Total Head, ft (m) 310 (94.5) 240 (73.2) 185 (56.4) 185 (56.4) 

Efficiency, % 85 83 84.4 87 

Power required, HP (kW) 460 (343) 500 (372.9) 200 (149.1) 250 (186.4) 

NPSH Required, ft (m) 25.6 (7.8) 22.2 (6.8) 14.83 (4.5) 25.6 (7.8) 

Nominal speed, rpm 1775 1780 1785 1781 

Inlet steam flow, lb/h (kg/s) 30,000 (3.78) - - - 

Inlet steam pressure, psig (kPa) 600 (4238.2) - - - 

Extraction steam pressure, psig (kPa) 125 (962.2) - - - 

 

Table 3.17. Boiler Feedwater Pumps (𝐹𝑊𝑃) Specifications at Rated Conditions 

Description 𝑆–𝐹𝑊𝑃 𝑆–𝐹𝑊𝑃 𝑆–𝐹𝑊𝑃 𝐸–𝐹𝑊𝑃 𝐸–𝐹𝑊𝑃 

Installed units 1 1 2 2 1 

Fuel type 600 psig steam 600 psig steam 600 psig steam Electricity Electricity 

Flow rate, gpm (lt/s) 1300 (82)  595 (37.5) 530 (33.4) 685 (43.2) 895 (56.5) 

Total Head, ft (m) 2200 (670.5) 2070 (630.9) 2250 (685.8) 2300 (701.1) 2200 (670.6) 

Efficiency, %  78 70.7 74.4 75 78.2 

Power required, HP (kW) 868 (647.3)  420 (313.2) 382 (284.9) 398 (296.8) 596 (444.4) 

NPSH Required, ft (m) 15 (4.6) 17 (5.2) 12.1 (3.7) 15 (4.6) 16 (4.9) 

Nominal speed, rpm 3560 3560 3560 3560 3560 

Inlet steam flow, lb/h (kg/s) 24,874 (3.13) 10,945 (1.38) 11,193 (1.4) - - 

Inlet steam pressure, psig (kPa) 600 (4238.2) 600 (4238.2) 600 (4238.2) - - 
Extraction steam pressure, psig 
(kPa) 125 (962.2) 125 (962.2) 125 (962.2) - - 
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For the nonlinear model of pumps, the differential head (𝐻) and power consumption (𝑃) of 

each pump can be adequately represented as cubic polynomials of the flow	(𝑄), as shown in 

Eq.3.52 and Eq.3.53. The coefficients of these polynomials can be determined by fitting the pump 

performance data at the rotor nominal speed.  

𝐻 = 𝑎6 + 𝑎2𝑄 + 𝑎*𝑄* + 𝑎7𝑄7 (3.52) 

𝑃 = 𝑏6 + 𝑏2𝑄 + 𝑏*𝑄* + 𝑏7𝑄7 (3.53) 

The power plant has pumps that operate at single-speed as well as variable frequency drives to 

provide the required flow. The head and power consumption curves of a pump operating at a 

different rotor speed can be approximated using pump affinity laws as shown in Eq.3.54-Eq.3.56. 

𝑄*
𝑄2

=
𝜔*
𝜔2

 (3.54) 

𝐻*
𝐻2

= `
𝜔*
𝜔2
a
*
 (3.55) 

𝑃*
𝑃2
= `

𝜔*
𝜔2
a
7
 (3.56) 

The system head loss can be represented as a function of the square of the flow. This equation can 

be solved in conjunction with the correlation of head given by Eq.3.52 (where the coefficients have 

been recalculated for the new rotor speed) to find the pump’s operating point and the corresponding 

power consumption. For optimization purposes, the control variable is water flow (𝑥#). Then, for 

a certain pump flow (𝑥#), the equation of the system gives the head loss and the pump power 

consumption	(𝑃). The mass flow rate of water (�̇�#) is calculated from density and volumetric 

flow rate (𝑥#) of water through the pump. For the nonlinear model, the electric pump model 

(𝐸–𝑃) is expressed in the input-output form by Eq.3.57. 

[𝑃]>–I = 𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑃𝑢𝑚𝑝(𝑥#)>–I (3.57) 
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Four feedwater pumps and three chilled water pumps are driven by backpressure 

noncondensing steam turbines that utilize the 600 psig steam and they output steam at 125 psig. 

The power generated by each steam turbine utilizing the 600 psig steam is given as input power to 

a pump and is given by Eq.3.58: 

𝑃 = 𝜂C,A–I ∗ �̇�",A–I ∗ ∆ℎ4",A–I (3.58) 

where, 

�̇�",A–I – Input steam to turbine driven pump [kg/s] 

∆ℎ4",A–I – Isentropic expansion work of turbine [kJ/kg] 

𝜂C,A–I – Isentropic turbine efficiency of pump [-] 

The inlet steam pressure (𝑃.//) and temperature (𝑇.//) and outlet pressure (𝑃2*9) are given as 

inputs to the turbine model to determine ∆ℎ4",A–I and �̇�",A–I is dependent on the power required 

to run the pump	(𝑃). A constant isentropic efficiency (65%) is assumed for the steam-driven pump 

model depending on the plant data. The nonlinear model for the steam turbine-driven pump (𝑆– 𝑃) 

is expressed in input-output form by Eq.3.59. 

[	�̇�"]A–I = 𝑆𝑡𝑒𝑎𝑚𝑃𝑢𝑚𝑝(𝑥# , 𝑃.//, 𝑇.//, 𝑃2*9, 𝜂C)A–I (3.59) 

For the linear model of the pumps, a nominal pump efficiency (𝜂I) and head (𝐻) values as 

listed in the tables above are used and the pump power (𝑃) is calculated as: 

𝑃 =
𝑄 ∗ 𝐻 ∗ 𝑆𝐺

3960 ∗ 𝜂I ∗ 𝜂=
 (3.60) 

where, 

𝑃 – pump power [bhp] 

𝑄 – flowrate of water [gpm] 

𝐻 – differential head [ft] 

𝑆𝐺 – specific gravity of water [-] 

𝜂= – motor efficiency [-] 
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𝑄 is represented as the control variable for water flow (𝑥#). The linear model for the electric pump 

(𝐸–𝑃) is expressed in input-output form by Eq.3.61. 

[𝑃]>–I = 𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑃𝑢𝑚𝑝(𝑥# , 𝐻, 𝑆𝐺, 𝜂I , 𝜂=)>–I (3.61) 

For the steam turbine driven pumps, the power generated by the steam turbine utilizing the 600 

psig steam is given as input power to the pump as shown in Eq.3.58. The linear model for the 

steam turbine-driven pump (𝑆– 𝑃) is expressed in input-output form by Eq.3.62. 

[	�̇�"]A–I = 𝑆𝑡𝑒𝑎𝑚𝑃𝑢𝑚𝑝(𝑥# , 𝐻, 𝑆𝐺, 𝜂I , 𝜂=, 𝑃.//, 𝑇.//, 𝑃2*9, 𝜂C)A–I (3.62) 

 

3.3.7 Boiler Fans 

Boiler systems use several types of fans to maintain airflow, recirculate air and remove 

exhaust gases. Based on boiler type and airflow requirement, forced draft (𝐹𝐷), induced draft 

(𝐼𝐷), primary air	(𝑃𝐴) and secondary air (𝑆𝐴) fans are used with varied capabilities. A forced 

draft (𝐹𝐷) fan forces outside air into the heating system whereas an induced draft (𝐼𝐷) fan draws 

flue gases from the system into the atmosphere. Both primary air	(𝑃𝐴) and secondary air (𝑆𝐴) 

fans are used in coal boilers to ensure complete combustion of coal in the furnace. The 

specifications of the three natural gas boiler fans are listed in Table 3.18 and the coil boiler fans 

are listed in Table 3.19. The boiler #1 𝐹𝐷 and 𝐼𝐷 fans, boiler #2 𝐹𝐷 fan and boiler #4 𝐼𝐷 and 𝑃𝐴 

fans are driven by both steam turbines and electricity while the boiler #3 𝐹𝐷 and boiler #4 𝑆𝐴 fans 

are operated by electricity. 
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Table 3.18. Natural Gas Boiler Fans Specifications at Rated Conditions 

Description B1 𝐼𝐷 Fan B1 𝐹𝐷 Fan B2 𝐹𝐷 Fan B3 𝐹𝐷 Fan 

Fuel type 125 psig steam/ 
Electricity 

125 psig steam/ 
Electricity 

600 psig steam/ 
Electricity Electricity 

Air Volume, ft3/min (m3/s) 220,000 (103.8) 125,574 (59.3) 150,890 (71.2) 77,128 (36.4) 

Speed, rpm 878 1180 1768 1750 

Static Pressure, iwc (kPa) 29 (7.2) 29 (7.2) 50 (12.4) 46.6 (11.6)  

Power required, hp (kW) 1000 (745.7) 200 (149.1) 800 (596.6) 698(520.3) 

Inlet steam flow, lb/h (kg/s) 31,466 (4.0) 6,543 (0.8) 11,404 (1.4) - 

Inlet steam pressure, psig (kPa) 125 (962.2) 125 (962.2) 600 (4238.2) - 
Extraction steam pressure, psig 
(kPa) 15 (204.7) 15 (204.7) 15 (204.7) - 

Table 3.19. Coal Boiler Fans Specifications at Rated Conditions 

Description B4 𝐼𝐷 Fan B4 𝑃𝐴 Fan B4 𝑆𝐴 Fan 

Fuel type 600 psig steam/ 
Electricity 

125 psig steam/ 
Electricity Electricity 

Air Volume, ft3/min (m3/s) 145,900 (68.9) 65,612 (31.0) 23,923 (11.3) 

Speed, rpm 1193 1782 1784 

Static Pressure, iwc (kPa) 34.03 (8.5) 85.8 (21.4) 42.1 (10.5) 

Power required, HP (kW) 900 (671.1) 1000 (745.7) 200 (149.1) 

Inlet steam flow, lb/h (kg/s) 15,899 (2.0) 31,466 (4.0) - 

Inlet steam pressure, psig (kPa) 600 (4238.2) 125 (962.2) - 

Extraction steam pressure, psig (kPa) 125 (962.2) 15 (204.7) - 

For the nonlinear model of fans, the static pressure (𝑆𝑃) and power consumption (𝑃) are 

represented as a function of air flowrate	(𝑄D), as shown in Eq.3.63 and Eq.3.64. Each fan operates 

on a single system curve that uniquely maps airflow to static pressure. The coefficients of these 

polynomials can be determined from the fitting of fan performance data at the nominal speed. 

𝑆𝑃 = 𝑎6 + 𝑎2𝑄D + 𝑎*𝑄D* + 𝑎7𝑄D7 (3.63) 

𝑃 = 𝑏6 + 𝑏2𝑄D + 𝑏*𝑄D* + 𝑏7𝑄D7 (3.64) 
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The volumetric flow rate of air	(𝑄D) is calculated from density and mass flow rate of air through 

the fan. The mass flow rate of combustion air and flue gas is estimated by combustion calculations 

for the fuel being combusted	(𝑓) in the boiler. The amount of fuel consumed is calculated from 

the boiler steam production as in section 3.3.1. The electric fan (𝐸–𝐹) model of the boiler is 

expressed in input-output form by Eq.3.65. 

[𝑃]>–, = 𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝐹𝑎𝑛(𝑓)>–, (3.65) 

For the steam turbine-driven fans, the 125 psig steam is extracted at 15 psig by the B1 𝐼𝐷, B1	𝐹𝐷  

and B4	𝑃𝐴 fans while the 600 psig steam is extracted at 15 psig by the B2 𝐹𝐷 fan and at 125 psig 

by the B4 𝐼𝐷 fan. The power generated by each steam turbine is given as input power to run each 

boiler fan and is given by Eq.3.66: 

𝑃 = 𝜂C,A–, ∗ �̇�",A–, ∗ ∆ℎ4",A–,  (3.66) 

where, 

�̇�",A–, – Input steam to turbine driven fan [kg/s] 

∆ℎ4",A–, – Isentropic expansion work of turbine [kJ/kg] 

𝜂C,A–, – Isentropic turbine efficiency of fan [-] 

The inlet steam pressure (𝑃4F) and temperature (𝑇4F) and outlet pressure (𝑃6JC) are given as inputs 

to the turbine model to determine the isentropic expansion work of the turbine (∆ℎ4",A–,) and input 

steam to the turbine of fan (�̇�",A–,) is dependent on the power required to run the fan	(𝑃). A 

constant isentropic efficiency (65%) is given as an input to the steam-driven fan model depending 

on the plant data. The nonlinear model for the steam turbine driven fan (𝑆– 𝐹) is expressed in 

input-output form by Eq.3.67. 

[�̇�"]A–, = 𝑆𝑡𝑒𝑎𝑚𝐹𝑎𝑛(𝑓, 𝑃4F, 𝑇4F, 𝑃6JC , 𝜂C)A–, (3.67) 

For the linear model of the boiler fans, the power consumed by the boiler fan (𝑃) is calculated 

as a linear function of air flowrate (𝑄D) using the plant performance data. The boiler air flowrate 

is calculated from the mass flow rate of combustion air and flue gas estimated by combustion 
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calculations for the fuel being combusted	(𝑓) in the boiler. The linear model for the electric fan 

(𝐸–𝐹) model of the boiler is expressed in input-output form using Eq.3.65. For the steam turbine 

driven fans, the power generated by the steam turbine utilizing the 600 psig steam is given as input 

power to the pump as shown in Eq.3.66. A linear model is used to calculate the fan power. The 

linear model for the steam turbine-driven fan (𝑆– 𝐹) is expressed in the input-output form by 

Eq.3.67. 

3.3.8 Steam Lines to Campus 

Steam to campus is distributed through a steam tunnel system for campus heating through 

two lines: 125 psig steam line to buildings far away from the Wade plant and 15 psig steam line to 

buildings close to the plant. Heating load requirements provided by the 125 psig (𝐻2*9) and 15 

psig (𝐻29) steam lines are calculated as: 

𝐻2*9 = Δℎ2*9K ∗ �̇�",2*9K (3.68) 

𝐻29 = Δℎ29K ∗ �̇�",29K (3.69) 

where, 

Δℎ2*9K - specific enthalpy change for 125 psig campus steam line [kJ/kg] 

Δℎ29K -  specific enthalpy change for 15 psig campus steam line [kJ/kg] 

�̇�",2*9K	- 125 psig steam output to campus [kg/s] 

�̇�",29K -  15 psig steam output to campus [kg/s] 

The steam pressure (𝑃2*9) and temperature (𝑇2*9) for the 125 psig steam line, steam pressure 

(𝑃29) and temperature (𝑇29) for the 15 psig steam line and condensate return pressure (𝑃5L) and 

temperature (𝑇5L) are given as inputs to the campus steam model from the plant operational 

specifications. The mass flow rates of steam through the 125 psig steam line (�̇�",2*9K) and 15 psig 

steam line (�̇�",29K) are determined from the campus heating demand 𝐻2*9 and 𝐻29 respectively. 

The set of mathematical expressions can be grouped and expressed as: 

[�̇�",2*9K] = 125𝐶𝑎𝑚𝑝𝑢𝑠𝑆𝑡𝑒𝑎𝑚(𝐻2*9, 𝑃2*9, 𝑇2*9, 𝑃5L , 𝑇5L) (3.70) 

[�̇�",29K] = 15𝐶𝑎𝑚𝑝𝑢𝑠𝑆𝑡𝑒𝑎𝑚(𝐻29, 𝑃29, 𝑇29, 𝑃5L , 𝑇5L) (3.71) 
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3.3.9 Pressure Reducing Valves 

There are pressure reducing valves (𝑃𝑅𝑉) across the 600 to 125 psig steam line and 125 to 

15 psig steam line. These valves bypass other components and are used to reduce steam pressure 

to meet the heating requirements when the demand is high (especially during winter periods) and 

when not all of the high-pressure steam can be used for other productive purposes (e.g., power 

production or cooling). The outlet steam temperature (𝑇IMN) for the 𝑃𝑅𝑉 is controlled by spraying 

some feedwater (�̇�&#,IMN). Then, the specific enthalpy of the outlet stream (ℎ6JC,IMN) can be 

determined for a given outlet pressure. The mass flow rate of steam across the PRV (𝑥",IMN) is 

determined by the campus heating demand and then the amount of feedwater sprayed	(�̇�&#,IMN) 

is determined from the overall energy balance of Eq.3.72 that assumes that the valve is adiabatic 

and has negligible changes in kinetic and potential energy. 

R𝑥",IMN ∗ ℎ4FS + R�̇�&#,IMN ∗ ℎ&#S = R𝑥",IMN2 + �̇�&#,IMNS ∗ ℎ6JC,IMN (3.72) 

where, 

𝑥",IMN 	– inlet steam to PRV [kg/s] 

ℎ4F – specific enthalpy of inlet steam to PRV [kJ/kg] 

�̇�&#,IMN – amount of feedwater sprayed	[kg/s] 

ℎ&#–  specific enthalpy of feedwater sprayed to PRV [kJ/kg] 

ℎ6JC,IMN–  specific enthalpy of outlet steam from PRV [kJ/kg] 

�̇�",IMN – total outlet steam from PRV R𝑥",IMN2 + �̇�&#,IMNS	[kg/s]  

The 𝑃𝑅𝑉 model is expressed in input-output form by Eq.3.73 for 𝑃𝑅𝑉1 across the 600 to 125 psig 

steam lines and Eq.3.74 for 𝑃𝑅𝑉2 across the 125 to 15 psig steam lines. 

[�̇�",IMN2	] = 𝑃𝑅𝑉1R𝑥",IMN2, 𝑃.//, 𝑇.//, 𝑃2*9, 𝑇IMN2, 𝑇&#S (3.73) 

[�̇�",IMN*	] = 𝑃𝑅𝑉2R𝑥",IMN*, 𝑃2*9, 𝑇2*9, 𝑃29, 𝑇IMN*, 𝑇&#S (3.74) 
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3.3.10 Auxiliaries 

Feedwater Heater 

Feedwater from the condensate tank and deaerator is pumped into the boilers at 600 psig / 

250 °F using feedwater pumps. The natural gas boiler #1 (B1) has a closed feedwater heater 

(𝐹𝑊𝐻) that uses 125 psig steam to pre-heat water, so its inlet feedwater temperature to B1 is 

approximately 350°F. The mass flow rate of steam through the boiler (𝑥",%2) is given as the input 

for feedwater assuming no losses across the boiler. The 125 psig inlet steam is used to pre-heat the 

feedwater and the outlet steam is condensed to saturated liquid. The feedwater pressure (𝑃&#,%2), 

inlet (𝑇4,&#,%2)and outlet temperatures (𝑇6,&#,%2), 125 psig steam pressure (𝑃2*9) and temperature 

(𝑇2*9) are given as inputs to the 𝐹𝑊𝐻 to determine the inlet (ℎ4,&#) and outlet (ℎ6,&#) enthalpy of 

the feedwater, and inlet (ℎ4,2*9) and outlet (ℎ6,2*9) enthalpy of the 125 psig steam. The amount of 

125 psig steam (�̇�",,@O,2*9) used to preheat the feedwater R𝑥",%2S to boiler B1 is determined 

using Eq.3.75: 

�̇�",,@O,2*9Rℎ4,2*9 − ℎ6,2*9S = 𝑥",%2 ∗ Rℎ6,&# − ℎ4,&#S (3.75) 

The model of the 𝐹𝑊𝐻 is expressed in input-output form by Eq.3.76:  

[�̇�",,@O,2*9] = 𝐹𝑊𝐻𝑒𝑎𝑡𝑒𝑟R𝑥",%2, 𝑃&#,%2, 𝑇4,&#,%2, 𝑇6,&#,%2, 𝑃2*9, 𝑇2*9S,@O
 (3.76) 

Deaerator 

The condensate from campus and the various plant components is collected in the condensate 

tank and makeup water is added to compensate for any losses. Before feeding the water to boilers 

using feedwater pumps, the water is sent through a deaerator (DA) to remove oxygen and other 

dissolved gases. Some amount of 15 psig steam is mixed in the deaerator to bring the water to the 

required feedwater temperature. The total condensate mass flowrate (�̇�56F:) from all components 

and campus, condensate pressure (𝑃56F:), condensate temperature (𝑇56F:), and 15 psig steam 

pressure (𝑃29) and temperature (𝑇29) are given as inputs to the 𝐷𝐴 to determine the inlet enthalpy 
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of condensate (ℎ56F:) and inlet enthalpy of 15 psig steam (ℎ-P,29). The amount of 15 psig steam 

(�̇�",-P,29) required for the deaerator is determined using Eq.3.77: 

�̇�56F: ∗ ℎ56F: +	�̇�",-P,29 ∗ ℎ-P,29 = R�̇�56F: + �̇�-P,29S ∗ ℎ-P,6JC (3.77) 

The model of the 𝐷𝐴 is expressed in input-output form by Eq.3.78:  

[�̇�",-P,29] = 𝐷𝑒𝑎𝑒𝑟𝑎𝑡𝑜𝑟(�̇�56F: , 𝑃56F: , 𝑇56F: , 𝑃29, 𝑇29)-P (3.78) 

Other Auxiliaries 

Apart from all the equipment mentioned above, there are some minor auxiliary components 

that utilize 600 psig, 125 psig and 15 psig steam. There are also other auxiliaries that utilize some 

electricity. The amounts of steam used by auxiliaries at 600 psig (𝑆–𝐴1), 125 psig (𝑆–𝐴2)and 15 

psig (𝑆–𝐴3) steam lines are represented as �̇�",A–P2, �̇�",A–P*	and �̇�",A–P7	respectively. The power 

consumed by minor electric auxiliaries	(𝐸–𝐴) is represented as 𝑃>–P. These are given as constant 

input to both linear and nonlinear models to account for some steam and electricity consumption 

by these auxiliaries. 

3.3.11 Component Assembly 

To simulate the performance of the entire plant, the model components are integrated 

according to their physical configuration through stream variables (i.e., flows, pressures and 

temperatures). The main loops where mixing occurs include steam, condensate and feedwater 

loops, and condenser and cooling tower water loops. For the steam loop from Figure 3.2, it can be 

seen that the mixing of steam happens at the 600 psig, 125 psig and 15 psig steam lines. Across 

the 600 psig steam line, the outlet specific enthalpy (ℎ.//) and the corresponding temperature 

(𝑇.//) are determined from the energy balance of steam from all four boilers and the CHP facility. 

∑ 5𝑥#,:,; ∗ ℎ#,:,;7<
;=' + 5𝑥#,>? ∗ ℎ#,>?7 + 5𝑥#,? ∗ ℎ#,?7 = -∑ 𝑥#,:,;<

;=' + 𝑥#,>? + 𝑥#,?3 ∗ ℎ+,,  (3.79) 

The outlet steam pressure and calculated outlet temperature of each boiler and the CHP facility are 

given as inputs to find the enthalpy of the outlet steam (ℎ") from each equipment. The outlet 
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temperature (𝑇.//) is determined for the 600 psig steam line from the calculated specific enthalpy 

(ℎ.//) at pressure (𝑃.//). Similarly, the outlet temperature from the mixing of steam in the 125 

psig (𝑇2*9) and 15 psig steam lines (𝑇29) are given by Eqs.3.80 and 3.81 respectively. The 125 

psig steam extracted from turbine generator #1 (𝑇𝐺1), turbine generator #2 (𝑇𝐺2), four steam-

driven feedwater pumps (𝑆– 𝐹𝑊𝑃), three steam-driven chilled water pumps (𝑆– 𝐶𝑊𝑃), boiler #4 

steam-driven ID fan	(𝑆– 𝐹, 𝐵4Q-) and pressure reducing valve #1 (𝑃𝑅𝑉1) are mixed in the 125 

psig steam line. Likewise, the 15 psig steam extracted from boiler #2 FD fan	(𝑆– 𝐹, 𝐵2,-), boiler 

#1 FD fan	(𝑆– 𝐹, 𝐵1,-) and ID fan	(𝑆– 𝐹, 𝐵1Q-), boiler #4 PA fan	(𝑆– 𝐹, 𝐵4IP), pressure reducing 

valve #2 (𝑃𝑅𝑉2) and turbine generator #2 (𝑇𝐺2) are mixed in the 15 psig steam line. 

R𝑥",012,3(2 ∗ ℎ012,3(2S + R𝑥",012,3(* ∗ ℎ012,3(*S + ∑ R�̇�",A–,@I,R ∗ ℎA–,@I,RS +8
RS2

∑ R�̇�",A–)@I,R ∗ ℎA–)@I,RS7
RS2 + R�̇�",A–,,%8!" ∗ ℎA–,,%8!"S + R�̇�",IMN2 ∗ ℎIMN2S =

Y𝑥",012,3(2 +	𝑥",012,3(* +∑ �̇�",A–,@I,R + ∑ �̇�",A–)@I,R
7
RS2

8
RS2 + �̇�",A–,,%8!" +

�̇�",IMN2Z ∗ ℎ2*9  

(3.80) 

R�̇�",A–,,%*#" ∗ ℎA–,,%*#"S + R�̇�",A–,,%2!" ∗ ℎA–,,%2!"S + R�̇�",A–,,%2#" ∗ ℎA–,,%2#"S +

R�̇�",A–,,%8$% ∗ ℎA–,,%8$%S + R�̇�",IMN* ∗ ℎIMN*S + R𝑥",3(* − 𝑥",012,3(*S ∗ ℎ01*,3(* =

Y�̇�",A–,,%*#" + �̇�",A–,,%2!" + �̇�",A–,,%2#" + �̇�",A–,,%8$% + �̇�",IMN* + R𝑥",3(* −

𝑥",012,3(*SZ ∗ ℎ29  

(3.81) 

The condensate from campus and the various plant components is collected in the condensate tank. 

Across this condensate line, the specific enthalpy (ℎ56F:)  and temperature (𝑇56F:)  of the 

condensate are determined from the energy balance of total condensate mass flowrate (�̇�56F:) 

from all components and campus. 

R𝑥",3(2 − 𝑥",012,3(2S ∗ ℎ56F:,3(2 +∑ R�̇�",A–),R ∗ ℎ56F:,A–),RS7
RS2 + R�̇�",2*9K ∗ ℎ5LS +

R�̇�",29K ∗ ℎ5LS + R�̇�,@O,2*9 ∗ ℎ6,,@OS + ∑ R�̇�",A–P,R ∗ ℎ56F:,A–P,RS7
RS2 =

YR𝑥",3(2 − 𝑥",012,3(2S + ∑ �̇�",A–),R
7
RS2 + �̇�",2*9K + �̇�",29K + �̇�,@O,2*9 +

∑ �̇�",A–P,R
7
RS2 Z ∗ ℎ56F:  

(3.82) 
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From the condenser water loop as shown in Figure 3.3, it can be seen that water from all the 

chiller condensers is mixed and circulated through the cooling towers. After cooling, the water 

from all the cooling tower cells is mixed and stored in the cold well. From there, the water is 

pumped again to the chillers by the condenser water pumps. The stream variables of the cooling 

tower cells are related by an energy balance on the cold well (𝐶𝑊)  giving the variation of 

temperature of water in the cold well which is the condenser water inlet temperature (𝑇56,4), 

assuming that the water in the cold well is fully mixed and neglecting thermal losses. Eq.3.83 gives 

the cold well energy balance in the Wade plant while Eq.3.84 gives the cold well energy balance 

in the NWCP plant. 

Y∑ (𝑇)3,6,R ∗ �̇�)3,6,R).
RS2 + 𝑇=J ∑ R�̇�)3,4,R − �̇�)3,6,RS.

RS2 = 𝑇56,4 ∑ �̇�)3,4,R
.
RS2 Z

@
  (3.83) 

Y∑ (𝑇)3,6,R ∗ �̇�)3,6,R)2*
RS2 + 𝑇=J ∑ R�̇�)3,4,R − �̇�)3,6,RS2*

RS2 = 𝑇56,4 ∑ �̇�)3,4,R
2*
RS2 Z

'@
  (3.84) 

In the above expressions, 𝑇)3,6,R is the temperature of the water and �̇�)3,6,R is the mass flowrate 

of water leaving the 𝑗CT tower cell of the cooling tower. 𝑇=J	is the make-up water temperature and 

the mass flowrate of water entering the 𝑗CT tower cell R�̇�)3,4,RS  is calculated from its inlet 

volumetric flowrate R𝑥#,)3,4,RS. The outlet temperature of the water mixing in the cold well is the 

inlet water temperature (𝑇56,4)  to the condensers of each chiller calculated using the above 

equations. The outlet water from each condenser is mixed in the line and sent to each cell of the 

cooling tower. Eq.3.85 gives the energy balance for the outlet water from all the condensers 

(condensers of turbine generator, steam chillers, electric chillers) in the Wade plant while Eq.3.86 

gives the condenser water energy balance in the NWCP plant. 

pR𝑇56,6 ∗ �̇�56S3(2 + ∑ (𝑇56,6*,R ∗ �̇�56,R)AB)7
RS2 +∑ (𝑇56,6,R ∗ �̇�56,R)>B)8

RS2 =

𝑇)3,4R(�̇�56)3(2 + ∑ (�̇�56,R)AB)7
RS2 +∑ (�̇�56,R)>B)8

RS2 Sq
@

  
(3.85) 

Y∑ (𝑇56,6,R ∗ �̇�56,R)>B).
RS2 = 𝑇)3,4 ∑ (�̇�56,R)>B).

RS2 Z
'@

  (3.86) 
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From the above expressions, the inlet temperature of the water to the cooling tower cell (𝑇)3,4) is 

calculated. 𝑇56,6,R is the outlet temperature from each condenser and the mass flowrate of water 

leaving the 𝑗CT condenser R�̇�56,RS is calculated from its outlet volumetric flow rate (𝑥56,R). 

Thus, all the components in the CCHP plant are interconnected according to their physical 

arrangement. It can be observed that some of the inputs to the equipment model come from the 

plant operational specifications, some come from control heuristics, and some come from outputs 

of other components.  

3.4 Plant Validation 

The entire model was integrated into the MATLAB (R2019b) simulation environment. The 

model input data consists of heating (𝐷𝐻), campus cooling (𝐷𝐶) and electrical demand (𝐷𝐸), 

ambient wet-bulb (𝑇#G) and dry-bulb (𝑇:G) temperatures, chilled water supply set-point R𝑇0;,6S 

and return temperature R𝑇0;,4S from campus, pressure of 600 (𝑃.//), 125 (𝑃2*9), 15 (𝑃29) psig 

steam lines, feedwater R𝑃&#S , condensate line (𝑃56F:) , exhaust from equipment (𝑃01) , and 

condensate return from campus (𝑃5L) and temperatures of feedwater (𝑇&#) and condensate return 

from campus (𝑇5L). In addition, some inputs specific for the equipment are defined based on the 

plant performance data as described under each component model. The model output consists of 

power consumption and steam input along with the state variables associated with each piece of 

equipment. All the equipment model equations are interconnected according to their physical 

arrangement in the plant and the integrated model predictions are compared with measurements 

for both the linear and nonlinear model implementations. Historical data from the Wade and 

NWCP power plant sampled at one-hour interval including the campus thermal and electrical 

demand during a 24-hour period in four different seasons [spring (20th April 2016); fall (18th 

October 2017); summer (27th August 2018); winter (18th February 2015)] were used as inputs to 

simulate the performance of the CCHP plant and validate the linear and nonlinear model 

implementations. Figure 3.12 represents heating, cooling and electrical demand of the Purdue 

campus during spring (a), fall (b), summer (c) and winter (d) for a 24-hour period that were used 

as inputs to the model.  
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(a) Spring 

 
(b) Fall 

 
(c) Summer 

 
(d) Winter 

Figure 3.12. Energy demand of Purdue campus 

Figure 3.13 shows comparisons of measured steam produced from the plant data and the total 

steam produced estimated with the linear and nonlinear models during a period of 24 hours 

corresponding to spring, fall, summer and winter seasons. The total amount of steam produced 

from the boilers is used to satisfy all types of steam demand which includes the total steam 

consumption from all steam-driven equipment in the plant and campus heating demand. Similarly, 

Figure 3.14 shows comparisons of measured electricity generated and purchased from the plant 

data and the total power (generated and purchased) estimated with the linear and nonlinear models 

for the same 24-hour periods in spring, fall, summer and winter seasons. The combination of the 
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amount of electricity produced by the two turbine generators and the amount of electricity 

purchased is used to meet all electrical demands which includes the total power consumption from 

equipment electrical usage in the plant plus campus electrical demand. In both cases, both the 

linear and nonlinear model predictions agree well with the actual plant performance for all the 

seasons. However, the nonlinear model shows better agreement especially for the power 

predictions. In all the four different seasonal scenarios, the maximum deviation of steam produced 

from the actual plant measurements was below 5% for the linear model and below 4% for the 

nonlinear model. For the total amount of electricity generated and purchased, the deviations from 

plant data were below 5% for the linear model and below 4% for the nonlinear model. 

 
(a) Spring 

 
(b) Fall 

 
(c) Summer 

 
(d) Winter 

Figure 3.13. Total steam produced from the CCHP plant 
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(a) Spring 

 
(b) Fall 

 
(c) Summer 

 
(d) Winter 

Figure 3.14. Total electricity generated and purchased from the CCHP plant. 

3.5 Chapter Summary 

In this chapter, mathematical models for the equipment used in the Wade Power Plant and 

the Northwest Chiller Plant (NWCP) were described. Each plant component model is represented 

as a set of mathematical expressions in terms of parameter, input and output variables with both 

linear and nonlinear forms. Most of the model parameters were determined from plant performance 

data, but a few came from the equipment manufacturer’s data. The model components were 

integrated according to their physical configuration within MATLAB (R2019b). The integrated 
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linear and nonlinear model predictions were then compared with plant measurements for total 

steam and electricity consumption occurring within the Wade and Northwest plants and showed 

good agreement for 24-hour periods in different seasons. These linear and nonlinear mathematical 

models are used within the mixed integer linear programming (MILP) and nonlinear programming 

(NLP) optimization methods that are described in the next chapter for determining optimal 

operation.  
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4. OPTIMIZATION FRAMEWORK 

The following section describes the formulation of an energy dispatch algorithm using a 

network energy flow model. The objective function and constraints are based on the electric and 

thermal energy flows through the CCHP equipment that depend on the campus energy demand. 

Two different formulations of the optimal energy dispatch problem: mixed-integer linear 

programming (MILP) and nonlinear programming (NLP) are presented. 

4.1 Control of the CCHP System 

The CCHP system has major components such as boilers, chillers, and turbine generators 

that are used for producing steam, chilled water, and electricity and other auxiliary components 

such as pumps (boiler feedwater pumps, chilled water pumps, condenser water pumps, etc.), fans 

(boiler fans and cooling tower fans) and other equipment that run along with the major components 

to meet campus energy demands. The control of the CCHP system is realized through a 

hierarchical paradigm. The outer supervisory control layer determines which major components 

should be operating (on/off states) along with their loads. The solution depends primarily on 

electric, cooling, and heating energy demand, energy costs, and the component performance 

characteristics and constraints. Depending on the results of the outer layer, the inner layer of 

component controllers activates other auxiliary equipment associated with the major components 

in the CCHP system based on control heuristics. For example, the boiler feedwater pumps are 

activated depending on the total steam load on the boilers and CHP facility. The fan of the 

respective boiler is switched on when the corresponding boiler is running to meet the steam 

demand. Similarly, the chilled water pumps, condensate water pumps, and the cooling tower fans 

are activated based on the chiller load. The operation of auxiliary equipment is a function of the 

load on the major components. These details were included in the mathematical models of 

auxiliary equipment presented in the last chapter. In this hierarchical paradigm of CCHP system 

control, the outer layer is supervisory while the inner layer is basically a slave to the supervisory 

control. 
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4.2 Network Flow Model 

Based on the energy flows of steam, chilled water, and electricity described in section 3.2, a 

deterministic network flow model has been developed that connects the supply to the demand. The 

campus energy demand activates the operation of major components such as boilers, chillers, and 

turbine generators to produce steam, chilled water, and electricity. The other auxiliary components 

are run along with the major components to meet campus energy demands. The network flow 

model for the case study CCHP system is shown in Figure 4.1. The network flow model helps in 

visualizing the electric and thermal energy flows through the CCHP equipment. Elements in the 

network include nodes, hubs and connecting lines. The nodes in this network represent sources of 

energy and energy demand points, i.e., the nodes include components that provide as well as 

consume energy. The demand drives the activation of individual components throughout the 

network. The energy (fuel, steam, electricity, cooling, heating) flows across the components from 

supply to demand in order to meet the campus thermal and electrical demands. Every component 

has some operational limitations and energy paths have capacity constraints (e.g., energy flow 

through a node and path cannot exceed its capacity based on equipment performance constraints). 

The network flow model allows different energy paths to transfer the supply to the demand. The 

optimal path chosen to meet the energy demands depends on the objective. The orange lines 

represent steam flow within the plant, while the green lines represent electricity flow, blue lines 

represent cooling rates and red lines represent heating rates to campus.  
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Nodes Energy flow 
Node B: Boilers 𝑥&,(: Steam from boilers [kg/s] 
Node F, UF: Fired and Unfired steam of CHP 𝑥&,)/+): Steam from CHP facility (fired/unfired) [kg/s] 
Node 600, 125, 15: 600, 125, 15 psig steam lines 𝑥&,,-: Steam to turbine generators [kg/s] 
Node TG: Turbine generators 𝑥&,./0,,-: Steam extracted from turbine generators [kg/s] 
Node S-FWP: Steam-driven feed water pumps 𝑥&,123: Steam to PRV [kg/s] 
Node S-CWP: Steam-driven chilled water pumps �̇�&,123: Steam from PRV [kg/s] 
Node S-F,B: Steam-driven fan of the boiler �̇�&,4–6: Steam to steam chillers [kg/s] 
Node PRV: Pressure reducing valve �̇�&,7: 125 psig & 15 psig steam to campus [kg/s] 
Node S-C: Steam-driven chillers 𝑥8,9:;: Electricity purchased [kW] 
Node E-C,W: Wade Electric chillers 𝐸,-: Electricity generated from turbine generators [kW] 
Node E-C,NW: NWCP Electric chillers 𝑃8–6: Electricity to electric chillers [kW] 
Node 125#, 15#: Steam line to campus �̇�.<,8–6: Cooling capacity from electric chillers [kW] 
Node S-A: Steam Auxiliaries �̇�.<,4–6: Cooling capacity from steam chillers [kW] 
Node Epur: Electricity purchased from utility 𝐻: Heating capacity from 125/15 psig steam line [kW] 
Node CT: Cooling tower (Wade & NWCP) �̇�&,4–),(: Steam from/to steam driven boiler fans [kg/s] 
Node E-P: Electric pumps (FWP, COWP & CWP) �̇�&,4–)=1: Steam from/to steam driven FWP [kg/s] 
Node E-F: Electric fan of the boiler �̇�&,4–6=1: Steam from/to steam driven CWP [kg/s] 
Node: E-A: Electric Auxiliaries �̇�&,4–>: Steam to auxiliaries [kg/s] 
Node E: Electricity line 𝑃8–>: Electricity to electric auxiliaries [kW] 
Node DE, DC, DH: Electricity, Cooling, Heating 
demand of Purdue campus 

𝑃8–1: Electricity to electric pumps [kW] 
𝑃8–): Electricity to electric fans [kW] 

 𝑃6,: Electricity to cooling towers [kW] 
 𝐷𝐸: Electricity to meet campus electricity demand [kW] 

Figure 4.1. Network energy flow model of the CCHP system 
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4.3 Energy Dispatch Algorithm 

In general, the CCHP energy dispatch problem is intrinsically difficult to solve because of 

the non-convex, non-differentiable, multimodal (multiple local minima), and discontinuous nature 

of the optimization problem along with strong coupling to multiple energy components (electricity, 

heating, and cooling). Optimal control of CCHP systems involves the determination of the mode 

of operation and set points to satisfy the specific energy requirements. The problem is complicated 

because of a high number of decision variables, both continuous and discrete. While the energy 

flow (unit load) and setpoint decision variables are continuous, the availability (on/off staging) of 

the equipment represents discrete variables. Due to the nonlinear nature of equipment performance 

(typically nonlinear with respect to load and sometimes temperature, pressure, relative humidity) 

along with continuous and discrete variables, the resulting problem is a mixed-integer nonlinear 

programming (MINLP) problem. Even though there are many MINLP solution methodologies 

available, it is computationally expensive to solve these large-scale problems with a large number 

of discrete and continuous variables and numerous constraints along with the nonlinearities. Also, 

it is extremely challenging to implement these algorithms for the daily operation of a complex 

power plant. The mixed-integer linear programming (MILP) formulation is widely used for these 

types of problems to find a globally optimum solution, but it assumes linear approximate models 

for the equipment. Adopting a piecewise linear approximation with an appropriate number of 

intervals to account for nonlinear equipment models becomes complicated when the degrees of 

freedom increases to two or more. On the other hand, a nonlinear programming (NLP) 

optimization technique takes into account the actual nonlinear characteristics of the equipment, 

but the optimization solution might get trapped in a poor local minimum due to the multi modal 

nature of the problem without finding the global optimum solution. Sometimes, there is no 

guarantee for the convergence of the solution. Heuristic optimization techniques like genetic 

algorithms (GA), simulated annealing (SA), particle swarm optimization (PSO), etc. can be used 

for MINLP problems, but some control strategy or heuristic rules must be applied to reduce the 

number of variables when applied to large scale problems. Also, different solutions might be 

obtained in each trial since they are sensitive to parameter settings. Compared to heuristics, 

deterministic optimization techniques can obtain robust solutions due to their strong mathematical 

foundations. 
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For these reasons, a hybrid approach combining mixed-integer linear programming (MILP) 

and nonlinear programming (NLP) was chosen as the solution methodology for this work. In the 

first step, MILP is applied to a plant model that includes linear models for all components and a 

penalty for turning on or off the boilers and steam chillers. The on and off penalty cost is applied 

to only the boilers and steam-driven chillers since it requires significant time and cost to bring 

these components online or offline. The MILP step determines which components need to be 

turned on and their respective loading that is needed to meet the campus energy demand for the 

chosen time period (short, medium or long term). Based on the solution from the MILP solver as 

a starting point, the NLP solver determines the hourly state of operation of each component based 

on nonlinear performance characteristics of the components. A comparison of MILP solutions with 

and without the on/off penalty for boilers and steam chillers are examined in this study to analyze 

their effect on startup/shutdown behavior. The significance of the hybrid approach employed in 

this study is that a high-quality global solution is determined when the linear model is feasible 

while still taking into account the nonlinear nature of the problem.  

For most optimization algorithms, the approach used to handle constraints can have a 

significant impact on the quality of the solutions obtained. A deterministic hierarchical network 

energy flow model as described in section 4.2 along with supervisory control as described in 

section 0 helps in tackling the constraint problem when there are a large number of decision 

variables, and linear and nonlinear constraints. Mass and energy conservation were applied to 

nodes within the network model to develop the energy dispatch algorithm. To determine the 

optimal operational condition of each equipment in each time step, the MILP and NLP 

optimization techniques were integrated with the equipment models (including linear and 

nonlinear characteristics). Plant primary energy use and operational cost depend on decisions 

regarding generation and/or purchasing of electricity and usage of steam-driven and/or electric 

equipment in response to time varying factors while meeting the campus electricity, heating and 

cooling demands. Optimal control of the CCHP plant involves determining the values of the 

decision variables that minimize the objective function at any time in response to uncontrolled 

parameters while satisfying all constraints including the campus demands for heating, cooling, and 

electricity. Given the electrical and thermal (heating and cooling) load behavior of the Purdue 

campus, the tariff structure for grid-supplied electricity, the price of primary fuel (e.g., natural gas 

& coal), and the characteristics of the CCHP components and systems, the hybrid optimization 
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algorithms determine operation of the CCHP plant that minimizes the overall economic objective 

within the bounds of the constraints (e.g., installed capacities).  

4.4 Implementation of MILP-NLP Approach 

The solution for minimizing the operating cost while satisfying the heating, cooling, and 

electrical demand of the Purdue campus was implemented in two steps. In the first step, MILP is 

used to determine which components are on/off along with the operative variables (load) of each 

unit needed to meet the campus energy demand for the chosen time horizon (daily, weekly, 

monthly) with one-hour resolution. In the second step, the solution from MILP is used as a starting 

point for the NLP solver to determine the hourly state of operation of each component using their 

nonlinear performance characteristics. For the MILP implementation, two optimization cases are 

considered for analysis: MILP [no on/off switch penalty (SP)] and MILP [including on/off switch 

penalty (SP)]. A comparison of the MILP with and without the on/off penalty cost is included to 

understand the importance of the startup/shutdown operations. However, only the output from 

MILP that includes the on/off switch penalty (SP) was used in combination with the NLP 

optimization. The MILP on/off signals are provided as inputs to the NLP approach, since the NLP 

implementation does not include any switch penalty costs. The entire model was coded in 

MATLAB (R2019b) and the optimization was carried out using the MATLAB optimization 

toolbox: branch and bound mixed integer linear program algorithm for the MILP optimization and 

constrained nonlinear multivariable solver using the interior-point algorithm for the NLP 

optimization. Both algorithms can handle large-scale problems. 

4.4.1 Data required for the model  

Time range and resolution play an important role in the planning of CCHP control. The time 

range can be short, medium or long-term which is daily, weekly, monthly or yearly. The time range 

can be chosen depending on the planning strategy for the operation of the plant. As for resolution, 

hourly data is used to meet the demand in this study. Since there is no storage in the model, hourly 

static optimization is applied for all the cases. For the MILP step, 𝑇 represents the chosen time 

range for optimization and 𝑡 represents the 𝑡 -th hour of the sample range 𝑇	(𝑡 ∈ 𝑇). For the NLP 
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step, each 𝑡 -th hour is optimized individually based on the outputs from MILP for every 𝑡 -th 

hour.  

Data required for the CCHP cost optimization and performance evaluation were obtained 

from Purdue physical facilities for this study and were inputs to the model. Some of these inputs 

depend on time such as ambient conditions, demand, market or other factors and they have a 

different value for each hour (𝑡), such as:  

• Hourly energy demand data of Purdue campus for electricity (𝐷𝐸C), heating (𝐷𝐻C), and 

cooling (𝐷𝐶C)  

o End-use loads vary by application type, building size, location, season, work 

week, and hour of the day 

o The heating demand (𝐷𝐻C), includes both high temperature 125 psig steam and 

low temperature 15 psig steam 

• Cost of purchased electricity for every hour (𝑐>C ) 

o Real-time pricing (RTP) is obtained from the utility 24 hours ahead 

• Ambient conditions for every hour 

o Wet-bulb (𝑇#GC ) and dry-bulb (𝑇:GC ) temperatures, relative humidity(𝑅𝐻C)   

Other input data are constant over time during the analysis period: 

• Price of on-site fuel from the plant operational data 

o Cost of natural gas (𝑐'() 

o Cost of coal (𝑐)), which includes the cost of limestone, ash handling and so on 

• Switch penalty (SP) cost for turning on/off the equipment (𝑐AI)  

o Included only in MILP optimization 

• Range of “effective” operation of CCHP components for a given installed capacity 

o Minimum and maximum capacity of the equipment  

The system model input data consists of chilled water supply set-point R𝑇0;,6S and return 

temperature R𝑇0;,4S from campus, pressure of 600 (𝑃.//), 125 (𝑃2*9), 15 (𝑃29) psig steam lines, 

feedwater R𝑃&#S, condensate line (𝑃56F:), exhaust from equipment (𝑃01), condensate return from 

campus (𝑃5L), and atmosphere (𝑃DC=), and temperature of feedwater (𝑇&#) and condensate return 
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from campus (𝑇5L). In addition, some inputs that are specific for the equipment are defined based 

on the plant performance data as mentioned in the modeling of the equipment. All the equipment 

model equations were interconnected according to their physical arrangement in the plant.  

The model incorporates some heuristic rules for some of the variations associated with the 

operation of the power plant as listed below.  

• Chillers are controlled to provide identical chilled-water supply temperatures R𝑇0;,6S. The 

chilled water supply temperature set-point is 40°F during winter and 43°F during other times 

of the year.  

• A temperature differential of 15°F delta T is assumed between the chilled water supply 

temperature R𝑇0;,6S  and return temperature from campus R𝑇0;,4S.  

• Only boilers are operated for the generation of steam. The CHP facility is incorporated in the 

model for future use, but the values were set to zero because it is currently not in operation. 

• Similarly, the steam chiller #1 (S-C1) is currently not in operation. So, the values were set to 

zero. 

• Turbine generators are operated continuously unless they are taken offline for maintenance. 

So, on/off settings for the turbine generators were disabled in the optimization and they were 

always operated between their minimum and maximum capacity.  

For every hour (𝑡), 𝑥C represents the continuous decision variables and 𝓎C and 𝓏C represent binary 

variables. 𝓎C , 𝓏C ∈ {0,1} and is applied only in the MILP optimization. 

4.5 Mixed Integer Linear Programming (MILP) Formulation 

The general formulation of the MILP problem is: 

𝑚𝑖𝑛1,U𝑓(𝑥, 𝑦) (4.1) 

𝑔4(𝑥, 𝑦) ≤ 0;		∀		𝑖 = 1,2, … , 𝑛40V  

	ℎR(𝑥, 𝑦) = 0;		∀		𝑗 = 1,2, …	, 𝑛0V  

𝐿𝐵	 ≤ 	𝑥, 𝑦	 ≤ 𝑈𝐵 where 𝑥 ∈ ℝ, 𝑦 ∈ {0,1}  
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where, 

𝑥- vector of real continuous decision variables  

𝑦- vector of discrete integer decision variables  

𝑓(𝑥, 𝑦) - objective function to be minimized over vector 𝑥, 𝑦 

𝑔4(𝑥, 𝑦) - inequality constraints 

ℎR(𝑥, 𝑦) - equality constraints 

𝐿𝐵/𝑈𝐵 - lower bounds / upper bounds 

 

The main objective function is to minimize the operational cost of running the CCHP system for 

the total time period (𝑇), while satisfying the total energy demand for every hour (𝑡). 

Minimize            𝐶𝑜𝑠𝑡(𝑥𝑡,𝓎𝑡, 𝓏𝑡) =	∑ R∑ 𝑐𝑁𝐺	𝑓𝑁𝐺,𝐵,𝑖
𝑡 + 𝑐𝐶	𝑓𝐶,𝐵4

𝑡 + 𝑐𝑁𝐺 S𝑓𝑁𝐺,𝑈𝐹
𝑡 +3

𝑖=1
𝑇
𝑡=1

𝑓𝑁𝐺,𝐹
𝑡 T+ 𝑐𝐸𝑡 	𝑥𝐸,𝑝𝑢𝑟𝑡 + ∑ 𝑐𝑆𝑃,𝐵,𝑖	𝓎𝐵,𝑖

𝑡 + ∑ 𝑐𝑆𝑃,𝑆−𝐶,𝑖	𝓎𝑆−𝐶,𝑖
𝑡3

𝑖=1
4
𝑖=1 U  

(4.2) 

where, 

𝑐'(- fuel cost of natural gas [$/DTH] 

𝑐)- fuel cost of coal [$/ST] 

𝑐>C - RTP of electricity purchased from utility for time 𝑡 [$/kWh] 

𝑐AI- switch penalty (SP) cost for both turning on and switching off the boilers and steam 

chillers [$] 

𝑓'(C - amount of natural gas consumed by three NG boilers (𝐵), unfired (𝑈𝐹) and fired (𝐹) 

steam from the CHP facility for time 𝑡 (DT) 

𝑓),%8C - amount of coal consumed by coal boiler (𝐵4) for time 𝑡 (ST) 

𝑥>,!JLC - electricity purchased from utility for time 𝑡 [kW] 

𝓎4C ∈ {0,1} - binary variable to indicate the change of state from “on” at time (𝑡 − 1) to “off” 

at time 𝑡  or vice-versa for the 𝑖 -th boiler (𝐵)  and steam chiller (𝑆 − 𝐶) . The current 

state/availability of the equipment, whether it is on or off is given by binary variable 𝓏4C. 

For the economic objective, only the primary energy costs, purchased electricity cost from grid 

and penalty cost for turning on/off boilers and steam chillers are considered. Maintenance and life 

cycle costs of the equipment, labor costs and other auxiliary costs for operation are not considered 

in the operational cost. Penalties for the startup and shutdown operations are included only for 
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boilers and steam chillers since it is very difficult to ramp-up and down these units. It takes almost 

5 hours to bring a boiler online and 2 hours to shut it down while the steam chiller takes 3 hours 

for starting and 1 hour for shutting down. Electric chillers and other steam-driven or electric 

equipment do not take much time for startup and shutdown compared to boilers and steam chillers. 

No penalty is included for turbine generators since they are never turned on or off under regular 

operation. The total penalty cost for startup or shutdown was calculated based on the total time for 

startup or shutdown, total labor cost, total maintenance cost, life cycle cost and reliability cost of 

the equipment. The penalty costs for on/off operation were estimated to be $700 for natural gas 

boilers, $4000 for coal boilers and $500 for steam chillers. Even though the CHP facility is not 

currently operating, unfired and fired steam from the CHP facility is included in the optimization 

model in order to allow future analyses.  

Two types of constraints are considered in this problem, i.e., equality and inequality 

constraints. The former are mass and energy balance constraints while the latter constraints reflect 

the limits on heating, cooling and power capacities of each unit. The combinations of continuous 

control variables of equipment, 𝑥4C  along with discrete control variables, 𝓏4C  indicating the 

availability of equipment and 𝓎4C  indicating the change of state were implemented within 

inequality constraints as part of the MILP optimization. The binary variable 𝓏4C ∈ [0,1] is used to 

indicate the current state (on/off - availability) of the 𝑖-th equipment (major components like 

boilers, steam chillers and electric chillers) at time 𝑡 as they cannot operate continually from 0% 

partial load. Operating below a minimum capacity of these components might lead to a significant 

penalty and degradation of equipment performance over time. For these reasons, the availability 

of the equipment is set to 0 i.e., off when the decision variable goes below a minimum value. This 

constraint is implemented using disjunctive inequalities (on/off – availability) in the MILP 

optimization and the availability constraints for the boilers, steam chillers and electric chillers are 

given by Eq.4.3- Eq.4.5 respectively. 

𝓏%,4C 	𝑆%,4=4F ≤ 𝑥",%,4C ≤ 𝓏%,4C 	𝑆%,4=D1						∀		𝑖 = 1,… ,4   (4.3) 

𝓏AB),4C 	𝑊AB),4
=4F ≤ 𝑥0;,AB),4C ≤ 𝓏AB),4C 	𝑊AB),4

=D1     ∀		𝑖 = 1,… ,3 (4.4) 

𝓏>B),4C 	𝑊>B),4
=4F ≤ 𝑥0;,>B),4C ≤ 𝓏>B),4C 	𝑊>B),4

=D1 				∀		𝑖 = 1,… ,10 (4.5) 
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Here, 𝓏4C represents state of the 𝑖-th equipment at time 𝑡 (0 when off and 1 when on). Decision 

variable 𝑥",%,4C  is the mass flow rate of steam produced in the 𝑖 -th boiler at time 𝑡  and the 

availability of boiler is set to 1, i.e., on only when 𝑥",%,4C  is between the minimum R𝑆%,4=4FS	and 

maximum R𝑆%,4=D1S allowable amount of steam that can be produced in the respective boiler. The 

minimum R𝑆%,4=4FS	and maximum R𝑆%,4=D1S amount of steam for each boiler is listed as the operating 

range in Table 3.2. Similarly, 𝑥0;,),4C  is the volumetric flowrate of chilled water produced from the 

evaporator of the 𝑖-th each chiller (steam,	𝑆 − 𝐶 or electric, 𝐸 − 𝐶) to meet the cooling demand. 

𝑊),4
=4F  and 𝑊),4

=D1  represent the minimum and maximum limits on the water flow across each 

chiller, respectively. The maximum amount of evaporator water flow R𝑊),4
=D1S is listed in Table 

3.7 for electric chillers and in Table 3.9 for steam chillers. A 40% minimum flowrate is assumed 

for all chillers. The on/off availability variable is not added for turbine generators since they are 

considered to be operating under all circumstances. Even though other auxiliary components like 

pumps, fans, cooling tower and other equipment have minimum operating capacities, on/off 

characteristics depending on minimum load were not considered to avoid addition of more 

variables and constraints, and computational complexity. These components were assumed to 

operate from 0% to their maximum capacity within the MILP solution. However, the minimum 

operating range for these components were considered in the NLP optimization.  

To combine the binary variable 𝓎4C indicating the change of state along with 𝓏4C indicating 

the availability of equipment, XOR constraints representing the flip of the on/off state [0->1 | 1-

>0] were implemented for boilers (Eq.4.6- Eq.4.9) and steam chillers (Eq.4.10- Eq.4.13).  

−𝓏%,4CB2	 − 𝓏%,4C + 	𝓎%,4C ≤ 0						∀		𝑖 = 1,… ,4 (4.6) 

𝓏%,4CB2	 − 𝓏%,4C − 	𝓎%,4C ≤ 0						∀		𝑖 = 1,… ,4 (4.7) 

−𝓏%,4CB2 + 𝓏%,4C − 	𝓎%,4C ≤ 0						∀		𝑖 = 1,… ,4 (4.8) 

𝓏%,4CB2 + 𝓏%,4C + 	𝓎%,4C ≤ 2						∀		𝑖 = 1,… ,4 (4.9) 

−𝓏AB),4CB2 	 − 𝓏AB),4C + 	𝓎AB),4C ≤ 0						∀		𝑖 = 1,… ,3 (4.10) 

𝓏AB),4CB2 	 − 𝓏AB),4C − 	𝓎AB),4C ≤ 0						∀		𝑖 = 1,… ,3 (4.11) 

−𝓏AB),4CB2 + 𝓏AB),4C − 	𝓎AB),4C ≤ 0						∀		𝑖 = 1,… ,3 (4.12) 

𝓏AB),4CB2 + 𝓏AB),4C + 	𝓎AB),4C ≤ 2						∀		𝑖 = 1,… ,3 (4.13) 
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𝓎4C of 𝑖-th equipment (boiler, 𝐵 or steam chiller, 𝑆 − 𝐶) at time 𝑡 is set to 0 when 𝓏4CB2 and 𝓏4C have 

the same values indicating there is no change of state. If 𝓏4CB2 and 𝓏4C have different values [0->1 | 

1->0], the 𝓎4C is set to 1 indicating a flip of the on/off states. The constraints are applied only to 

boilers and steam chillers because of their penalty cost for startup and shutdown.  

Additional inequality constraints deal with peak capacity limitations of the components and 

are represented in Eq.4.14 for 10 electric chillers, Eq.4.15 for 3 steam chillers and Eq.4.16- Eq.4.17 

for 2 turbine generators. Even though the minimum capacity for chillers is set to 0, the constraints 

given by Eq.4.4 and Eq.4.5 takes into account the minimum capacity when the chillers are on. The 

minimum and maximum capacity of the components are listed in the plant component modeling 

section 3.3.  

0 ≤ �̇�0;,>B),4C ≤ �̇�0;,>B),4=D1 						∀		𝑖 = 1,… ,10 (4.14) 

0 ≤ �̇�0;,AB),4C ≤ �̇�0;,AB),4=D1 						∀		𝑖 = 1,… ,3 (4.15) 

𝐸3(2=4F ≤ 𝐸3(2C ≤ 𝐸3(2=D1 (4.16) 

𝐸3(*=4F ≤ 𝐸3(*C ≤ 𝐸3(*=D1 (4.17) 

Some additional constraints on the amount of steam extracted from turbine generators are included 

so that they don’t exceed the inlet throttle steam as shown in Eq.4.18. Also, the maximum amount 

of steam that can be exhausted from turbine generator #2 cannot exceed 55 klb/h (6.93 kg/s) as 

shown in Eq.4.19. 

𝑥",012,3(,4C ≤ 𝑥",3(,4C 						∀		𝑖 = 1,2 (4.18) 

𝑥",3(*C − 𝑥",012,3(*C ≤ 6.93 (4.19) 

The network energy flow model as shown in Figure 4.1, the steam flow described in Figure 

3.2 and chilled water flow as depicted in Figure 3.3 are useful in formulating the steady-state 

equality constraints. The constraints are computed for every hour (𝑡). Eqs.4.20-4.33 represent 

mass balances across each node in Figure 4.1, assuming no losses and the impacts of those 

decisions on the supply of energy to meet the campus energy demands. Mass balances for the 600 

psig, 125 psig and 15 psig steam line nodes in Figure 4.1 that were described in section 3.2 are 
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enforced by driving Eqs. 4.20, 4.21 and 4.22 respectively. Eq. 4.23 represent the closure of the 

steam cycle. 

∑ 𝑥",%,4C8
4S2 + 𝑥",+,C + 𝑥",,C − 𝑥",3(2C − 𝑥",3(*C − ∑ �̇�",AB,@I,4

C8
4S2 − ∑ �̇�",AB)@I,4

C7
4S2 −

�̇�",AB,,%*#"
C − �̇�",AB,,%8!"

C − 𝑥",IMN2C − �̇�",ABP2
C = 0  (4.20) 

𝑥",012,3(2C + 𝑥",012,3(*C +∑ �̇�",AB,@I,4
C8

4S2 + ∑ �̇�",AB)@I,4
C7

4S2 + �̇�",AB,,%8!"
C +

�̇�",IMN2
C − ∑ �̇�",AB),4

C7
4S2 − �̇�",AB,,%2!"

C − �̇�",AB,,%2#"
C − �̇�",AB,,%8$%

C − �̇�",2*9K
C −

𝑥",IMN*C − �̇�",,@O,2*9
C − �̇�",ABP*

C = 0  
(4.21) 

R𝑥",3(*C − 𝑥",012,3(*C S + �̇�",AB,,%*#"
C + �̇�",AB,,%2!"

C + �̇�",AB,,%2#"
C + �̇�",AB,,%8$%

C +
�̇�",IMN*
C − �̇�",29K

C − �̇�",-P,29
C − �̇�",ABP7

C = 0  (4.22) 

�̇�",-P?@A
C − R∑ 𝑥#,AB,@I,4

C8
4S2 + ∑ 𝑥#,>B,@I,4

C7
4S2 S𝜌# = 0  (4.23) 

In Eq.4.23, �̇�",-P?@A
C  is the mass flowrate of feedwater that goes into the steam cycle and is the 

sum of condensate (�̇�56F:) collected back from campus and various components in the plant, 

along with the amount of 15 psig steam mixed in the deaerator R�̇�-P,29S to bring the water to the 

required feedwater temperature and any makeup water added to compensate for any losses. This 

is equal to the mass flowrate of feedwater that goes into the steam cycle. Note that 𝜌# is the density 

of water to convert volumetric flow rate to mass flow rate.  

The amount of steam generated by the boiler and CHP facility is equal to the mass flowrate of 

feedwater pumped into them by feedwater pumps, assuming no losses. Some feedwater is sprayed 

to control the outlet steam temperature of PRV.  

R∑ 𝑥#,AB,@I,4
C8

4S2 + ∑ 𝑥#,>B,@I,4
C7

4S2 S𝜌# −∑ 𝑥",%,4C8
4S2 − 𝑥",+,C − 𝑥",,C −

∑ �̇�&#,IMN,4
C*

4S2 = 0  
(4.24) 

The total evaporator water flow from all the chillers is equal to the volumetric flow rate of chilled 

water sent to campus by chilled water pumps. Mass balances across the Wade plant and NWCP 

are considered separately.  

∑ 𝑥0;,AB),@,4
C7

4S2 + ∑ 𝑥0;,>B),@,4
C8

4S2 −∑ 𝑥#,AB)@I,@,4
C7

4S2 −∑ 𝑥#,>B)@I,@,4
C8

4S2 = 0  (4.25) 

∑ 𝑥0;,>B),'@,4
C.

4S2 − ∑ 𝑥#,>B)@I,'@,4
C.

4S2 = 0  (4.26) 
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The total volume flow rate of condenser water pumps is equal to the condenser water flow to all 

chillers and TG1 in the Wade plant as shown in Eq.4.27 and the chillers in the NWCP as shown in 

Eq.4.28. 

∑ 𝑥56,AB),@,4
C7

4S2 + ∑ 𝑥56,>B),@,4
C8

4S2 + R�̇�56,3(2
C /𝜌#S − ∑ 𝑥#,>B)k@I,@,4

C.
4S2 = 0  (4.27) 

∑ 𝑥56,>B),'@,4
C.

4S2 − ∑ 𝑥#,>B)k@I,'@,4
C.

4S2 = 0  (4.28) 

The water from all the condensers is equal to the sum of tower cell inlet water flow rates. 

∑ 𝑥56,AB),@,4
C7

4S2 + ∑ 𝑥56,>B),@,4
C8

4S2 + R�̇�56,3(2
C /𝜌#S − ∑ 𝑥#,)3,4,@,R

C.
RS2 = 0  (4.29) 

∑ 𝑥56,>B),'@,4
C.

4S2 −∑ 𝑥#,)3,4,'@)6F,R
C7

RS2 − ∑ 𝑥#,)3,4,'@H0C,R
Cl

RS2 = 0  (4.30) 

Energy balances on the heating, cooling and electricity demand nodes in Figure 4.1 are also treated 

as constraints so that the differences in supply and demand for campus heating (𝐷𝐻C), cooling 

(𝐷𝐶C) and electricity	(𝐷𝐸) are driven to zero using Eqs.4.31-4.33. 

𝐷𝐻C − 𝐻2*9C − 𝐻29C = 0  (4.31) 

𝐷𝐶C −∑ �̇�0;,A–),@,4
C7

4S2 − ∑ �̇�0;,>–),@,4
C8

4S2 − ∑ �̇�0;,>–),'@,4
C.

4S2 = 0  (4.32) 

𝐷𝐸C +∑ 𝑃>B),@,4
C8

4S2 + ∑ 𝑃>B),'@,4
C.

4S2 + ∑ 𝑃)3,@,4
C.

4S2 +∑ 𝑃)3,'@,4
C2*

4S2 +

∑ 𝑃>B,@I,4
C7

4S2 +∑ 𝑃>B)@I,@,4
C8

4S2 +∑ 𝑃>B)@I,'@,4
C.

4S2 +∑ 𝑃>B)k@I,@,4
C.

4S2 +

∑ 𝑃>B)k@I,'@,4
C.

4S2 + 𝑃>B,,%2!"
C + 𝑃>B,,%2#"

C + 𝑃>B,,%*#"
C + 𝑃>B,,%7#"

C + 𝑃>B,,%8!"
C +

𝑃>B,,%8$%
C + 𝑃>B,,%8B%

C + 𝑃>BPC − 𝑥>,!JLC − ∑ 𝐸3(,4C*
4S2 = 0  

(4.33) 

The heating demand (𝐷𝐻C) of the campus at every hour is satisfied by heating provided by steam 

from 125 psig and 15 psig steam lines. The cooling demand (𝐷𝐶C) of campus is met by Wade 

steam chillers and electric chillers at Wade and NWCP. The purchased electricity (𝑥>,!JLC ) and 

electricity generated by the two turbine generators provide electricity to meet campus electrical 

demand (𝐷𝐸C) and demand from all electric components in the plant.  

The main goal of the MILP optimization is to determine which components must be operated 

along with load to meet the campus energy demand. For the sake of simplicity, operating 

temperatures are given as constant inputs to the MILP optimization to avoid nonlinearities in the 
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model. The temperatures of the steam lines: 𝑇.//, 𝑇2*9, 𝑇29 and 𝑇56F: were specified from plant 

performance data. The condenser water inlet temperature R𝑇56,4S is the tower cell leaving water 

temperature and is determined using Eq.3.48. The inlet temperature of water to the cooling tower 

cell (𝑇)3,4 ) is the water outlet temperature from condensers and is determined by assuming a 

constant ∆𝑇 to inlet and outlet temperature to the condenser. 

The MILP framework of the CCHP model is complex and involves 100 design variables out 

of which 76 are continuous variables and 24 are binary variables. There are 14 equality constraints 

and 75 inequality constraints. The minimum and maximum limitations of decision variables are 

included as lower and upper bounds in the model. The minimum is set as 0 for all decision variables 

for the MILP model to indicate its availability. Realistic limitations on minimum capacity are 

included in the NILP step of the optimization. The objective function and equality and inequality 

constraints includes the linear mathematical model of each component in the plant along with the 

thermodynamic system model. The optimal energy dispatch algorithm provides operational signals 

associated with resource allocation and minimizes the total operational cost for time period (𝑇), 

while satisfying the total energy demand for every hour (𝑡 ). The results from the MILP 

optimization are given as a starting point for NLP optimization.  

4.6 Nonlinear Programming (NLP) Formulation 

The general formulation of the NLP problem is very similar to MILP problem as shown in 

Eq.4.1 except that it does not include any discrete integer decision variables	(𝑦). So, the objective 

function to minimize the operational cost of running the CCHP system is reduced to: 

Min       𝐶𝑜𝑠𝑡(𝑥𝑡) =	∑ 𝑐𝑁𝐺	𝑓𝑁𝐺,𝐵,𝑖
𝑡 + 𝑐𝐶	𝑓𝐶,𝐵4

𝑡 + 𝑐𝑁𝐺 S𝑓𝑁𝐺,𝑈𝐹
𝑡 + 𝑓𝑁𝐺,𝐹

𝑡 T+ 𝑐𝐸𝑡 	𝑥𝐸,𝑝𝑢𝑟𝑡3
𝑖=1   (4.34) 

The outputs from the MILP step for every 𝑡-th hour are given as inputs to NLP optimization and 

the economic dispatch is determined for that particular hour. From the MILP output, if the output 

values of decision variables are 0, the equipment is set to OFF for that hour by setting the lower 

and upper bounds of the decision variables to 0 in the NLP framework. If the output decision 

variables have values greater than 0 from the MILP optimization, then the equipment is considered 

ON in the NLP framework and the lower bounds are set to the minimum and maximum capacities 
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at which the equipment can be operated without any disruption. In this way, the equipment to meet 

the campus demand is selected from the MILP optimization and every equipment is operated under 

the best possible efficiency within its upper and lower limits using the NLP optimization. The 

constraints on disjunctive inequalities (on/off – availability) and XOR constraints representing flip 

of the on/off state are not included in the NLP optimization framework. All 14 equality constraints 

from Eq.4.20-Eq.4.33 are included in NLP framework similar to MILP problem.  

For the NLP optimization, inlet temperature of water to the cooling tower cell (𝑇)3,4) is 

determined using Eq.3.85-Eq.3.86 and condenser water inlet temperature R𝑇56,4S is determined 

using Eq.3.83-Eq.3.84 for Wade and NWCP. The constraints for calculating these temperatures 

are: 

𝑥3,56,4C − 𝑇56,4C = 0  (4.35) 

𝑥3,)3,4C − 𝑇)3,4C = 0  (4.36) 

𝑥3,56,4C ≤ 𝑥3,)3,4C  (4.37) 

The temperatures for the steam lines: 𝑇.// , 𝑇2*9 , 𝑇29  and 𝑇56F:  are calculated using Eq.3.79-

Eq.3.82. 

In the NLP formulation, additional variables and constraints are included beyond those 

considered for the MILP due to the nonlinearities of the components. Overall, there are 111 

decision variables, 30 nonlinear inequality constraints, 18 nonlinear equality constraints and 7 

linear inequality constraints. The minimum and maximum limitations of decision variables are 

included as lower and upper bounds in the model. The NLP optimization algorithm provides 

operational signals to each component to meet the total energy demand for every hour (𝑡).  

4.7 Chapter Summary 

This chapter described the implementation of the MILP-NLP approach along with the network 

energy flow model, objective function, and constraints. The models were coded in MATLAB 

(R2019b) and solved using the MATLAB optimization toolbox. There are some differences in the 

framework of MILP and NLP optimization based on how they are formulated.  
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5. RESULTS AND DISCUSSION 

This chapter presents results obtained using the proposed hybrid mixed-integer linear 

programming (MILP) and nonlinear programming (NLP) approach for cost optimal control of the 

Purdue CCHP system. Typical four-season weather data for 24-hour periods was chosen for 

analysis. Since there is no thermal storage in the plant model, hourly static optimization was 

applied for all the cases. As discussed in the previous sections, the objective function and 

constraints along with the mathematical model of the components in the CCHP plant are included 

within the hybrid MILP and NLP optimization framework. Figure 5.1 shows a schematic of the 

implementation of the hybrid MILP-NLP algorithm in a two-step process. In the first step, the 

MILP solver is applied to the plant model that includes linear models for all components, 

constraints, and cost penalties for turning on and off the boilers and steam chillers. The MILP step 

determines which components need to be turned on and their respective loading needed to meet 

the campus energy demand for the chosen time horizon with one-hour resolution. In the second 

step, the solution from the MILP solver is used as a starting point for NLP optimization to 

determine the hourly state of operation of components including their nonlinear performance 

characteristic curves. To validate the effectiveness of the hybrid network flow algorithm for large-

scale CCHP systems, different time ranges (daily, weekly, monthly) are simulated with hourly 

resolution.  

For the MILP step, 𝑇 represents the chosen time range for optimization and 𝑡 represents the 

𝑡  -th hour of the sample range 𝑇	(𝑡 ∈ 𝑇) . For the NLP step, each 𝑡  -th hour is optimized 

individually based on the outputs from MILP for every 𝑡 -th hour. For MILP implementation in 

the first step, two optimization cases are considered for analysis: MILP with no on/off switch 

penalties (SP) and MILP including on/off switch penalties (SP). A comparison of MILP with and 

without the on/off penalty costs for units is examined to analyze the effects of considering these 

penalties on the startup/shutdown operations and overall performance. Without the on/off penalty 

costs, the MILP solver allows boilers and steam-driven chillers to turn on or off frequently 

depending on the current energy demand, which is impossible for practical operation of any CCHP 

plant. The on/off states of these components from the MILP step are provided along with other 
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outputs as inputs to the NLP optimization model. The NLP step does not include on/off equipment 

determination in its control optimization.  

The optimal energy dispatch algorithm provides operational signals associated with resource 

allocation ensuring that the systems meet campus electricity, heating, and cooling demands. The 

entire model is coded in MATLAB (R2019b) and is optimized using the MATLAB optimization 

toolbox: branch and bound mixed integer linear program algorithm for MILP optimization and 

constrained nonlinear multivariable solver using the interior-point algorithm for NLP 

optimization. The optimal results from the MILP and NLP approach are compared with the 

conventional operational strategy (plant data) on a daily basis for different seasons in order to 

understand the optimal control characteristics and its economic benefits. 

  

 

Figure 5.1. Schematic of the two-step hybrid MILP-NLP approach 
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5.1 Integrated Hourly Model 

Example optimizations were performed for 24-hour (one day) periods with known cooling, 

heating, electricity demand, and real-time pricing (RTP) of electricity for the Purdue campus. The 

one-day simulations were performed with hourly intervals for each season to understand 

differences in control behavior with different campus load requirements. Variations in the energy 

loads are primarily due to seasonal variations which depend on ambient temperature and work 

schedules based on the day and school session type (e.g., weekends, weekdays, holidays, semester, 

semester break, summer school, Maymester, etc).  

The different seasonal case studies are described as Case (a): Spring and Case; (b): Fall 

(moderate heating and cooling demand); Case (c): Summer (high cooling demand); Case (d): 

Winter (high heating demand)] as shown in Table 5.1. Weekdays were considered for all four 

scenarios with the school fully in session. The same scenarios were used as representative days for 

plant validation in section 3.4. Figure 3.12 showed the hourly heating, cooling, and electrical 

demand of the Purdue campus for each 24-hour period given as input data to the optimization 

model for the four different scenarios. In all four cases, the average electrical demand of the Purdue 

campus did not differ much compared to the variations of heating and cooling demand for the 

different seasons. Figure 5.2 shows the corresponding real-time price (RTP) of purchased 

electricity from the utility, also given as input data for each 24-hour time period in the four different 

scenarios. The RTP of purchased electricity typically increases with demand during the day. In 

Figure 5.2(d), it can be observed that the RTP of purchased electricity is extremely high during 

that particular day in winter because of severely low outdoor air temperature (OAT). The price of 

natural gas and coal from the plant operational data are listed in Table 5.1 for different seasons. 

The cost of coal includes the cost of limestone, ash handling, and so on. The penalty costs for 

turning on and off the boilers and steam chillers are given as inputs to the MILP optimization with 

the following values used for this case study: $700 for natural gas boilers; $4000 for coal boilers; 

$500 for steam chillers. The hourly ambient conditions are also provided as inputs to the hybrid 

MILP-NLP model. 
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Table 5.1. Purdue campus energy demand scenarios for various seasons 

Season Date Avg. OAT 
°F (°C) 

Avg. 
Cooling 
Load, 

MW (Tons) 

Avg. Heating 
Load, 
MW 

(MMBtu/h) 

Avg. 
Electrical 

Load, 
MW 

Cost 
of coal 
($/ST) 

Cost of 
NG 

($/DTH) 

(a) Spring 04/20/2016 63 (17.2) 37.7 (10724) 22.9 (78.3) 28.2 70.8 3.0 

(b) Fall 10/18/2017 57 (13.9) 30.8 (8758) 35.4 (120.8) 28.2 72.0 3.5 

(c) Summer 08/27/2018 84 (28.9) 93 (26444) 24 (81.9) 30 72.0 3.5 

(d) Winter 02/18/2015 2.4 (-16.4) 15 (4265) 151(515) 29 87.0 4.6 

 

 
(a) Spring 

 
(b) Fall 

 
(c) Summer 

 
(d) Winter 

Figure 5.2. Real-time price (RTP) of purchased electricity from utility 
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Figure 5.3 shows both inputs to and outputs from the MILP [without on/off switch penalty 

(SP)]; MILP [including on/off switch penalty (SP)] and the NLP solvers for the 24-hour period in 

spring. The optimization results are also compared with plant model predictions associated with 

the control decisions that were actually implemented for the 24-hour period.  The input data in 

Figure 5.3(a) is the heating (DH), cooling (DC) and electrical demand (DE) of the Purdue campus 

and the outdoor air temperature (OAT) for April 20, 2016. It can be observed that the cooling 

demand tracks the variation in OAT. Figure 5.3(b) shows the hourly real-time pricing (RTP) of 

purchased electricity from utility. The input demand and RTP plots are repeated here for easy 

correlation with the output results.  

The end-use decisions from the actual plant data that are shown in Figure 5.3 (e.g., steam 

produced in each boiler, electricity produced, electricity purchased, chilled water from electric 

chiller, chilled water from steam chillers) were provided as inputs to the cost function to estimate 

total operational cost for the current control in the plant. This “actual” plant operational data is 

used as the baseline for comparison with optimization results. Three optimization cases were 

considered for analysis: MILP [no on/off switch penalty (SP)]; MILP [including on/off switch 

penalty (SP)] and NLP optimization.  

From Figure 5.3(c), it can be noticed that the total operational cost for cost optimized control 

is always less than the cost for current practice. Also, the NLP typically results in significantly 

lower hourly costs than the MILP except at low loads. Not surprisingly, the operational cost of the 

MILP without on/off switching penalties is lower than the MILP that includes on/off penalties. 

This is because the lack of a switching penalty allows the equipment to cycle on/off as needed to 

better optimize the use of the more efficient equipment. However, the differences between the 

costs are small.  It is interesting to note that the cost calculated for both MILP cases are 

comparatively less than the NLP optimization results at lower energy demand periods (hours 1-4). 

This is because the MILP doesn’t account for the reduction in efficiency at lower loads, whereas 

the NLP optimization accounts for the reduction of efficiency at lower loads leading to higher 

costs compared to MILP during these low-load time periods.  

Figure 5.3(d) shows the total amount of steam produced in the boilers for the actual plant 

data and optimization results. It can be observed that more steam would have been produced for 
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the cost optimized operation at higher electricity demand with the additional steam being primarily 

used for operation of turbine generators to generate more electricity and for steam chillers to meet 

the cooling demand with less loading on electrical chillers. In the actual operation of power plant, 

the amount of steam produced from the boilers did not vary much throughout the day. For the 

MILP and NLP results, the amount of steam generated by the boilers increases or decreases in 

response to changes in heating demand and RTP signals. 

Figure 5.3(e) and Figure 5.3(f) show comparisons of actual operation with the cost optimum 

results for the electricity produced from turbine generators and electricity purchased from utility 

respectively. The optimum results predict that more electricity should have been generated 

compared to the actual operation to meet the total electrical demand (campus electricity demand 

and demand from electric components) especially when the RTP goes above 5 ¢/kWh. However, 

the optimization still leads to purchasing of some electricity at higher RTP due to the constraint 

on the extraction steam from turbines for the campus heating demand. Apart from meeting campus 

electrical demand, the combination of produced and purchased electricity is used to meet the 

demand from all electric equipment in the plant. When the demand is high, it can be observed from 

the NLP optimization results that the turbine generators are operated at a higher load where its 

efficiency is maximum resulting in the increase in power generation. The mutual dependency of 

electricity production and steam requirements for the turbine generator limits the electricity 

generation due to requirement of meeting the campus heating demand. In this case, the rest of the 

electricity is purchased to meet additional electrical demand. 

Figure 5.3(g) and Figure 5.3(h) show comparisons of cooling provided by the steam and 

electric chillers. For the actual operation, all the campus cooling demand was satisfied using only 

the electric chillers. The cost optimum results suggest the usage of both electric and steam chillers, 

with a greater portion of the campus load allocated to the steam chillers. It can be observed that 

with the MILP having no switching penalties, the steam and electric chillers are turned off and 

then on for short periods of time, which would not occur in practice. On the other hand, the MILP 

with switching penalties does not allow this behavior and would only allow these chillers to turn 

off for longer periods of time when it is profitable to do so. For these results, the MILP with 

switching penalties maintains operation of the chillers even at low loads. For the NLP 

optimization, the chillers are operated at their optimum load maximizing their efficiency when the 
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cooling demand is high. From these plots, it can be noticed that at hour-6 when the RTP increases 

sharply, there is a dramatic in decrease in purchased electricity and electric chiller operation and 

an increase in electricity being generated at the plant and use of steam chillers. As a result, more 

steam is generated from the boilers to serve these steam-driven components. Similarly, a reverse 

trend is observed at hour-19. The NLP solutions have greater fluctuations in the results compared 

to the MILP solutions. The non-smooth nature of the NLP optimization curves is mainly due to 

the combination of nonlinearities of all the equipment included in the model. 

Since the on/off switch penalty cost is included only for boilers and steam chillers, the 

operation of these units is analyzed further. Figure 5.4 shows outputs of individual boilers and 

steam-driven chillers for the MILP (without on/off switch penalty); MILP (including on/off switch 

penalty) and NLP optimization compared with the baseline plant performance for the 24-hour 

period in spring. From these plots, it can be observed that the MILP with no switching penalties 

allows the components (both boilers and steam chillers) to turn off and on for relatively short 

periods depending on the changes in demand and RTP signals. However, MILP with switching 

penalties maintains the on or off status for all of the equipment throughout the 24-hour period since 

it is not profitable to turn off and bring the equipment online during such a short time horizon. A 

longer time period would be necessary for the system to recoup the costs of bringing any of this 

equipment offline or online. Instead, the components are operated at low load instead of turning 

off when the demand goes low. Since the output from MILP with the switching penalties is given 

as an input to NLP optimization for every hour, the trends for both solutions are very similar. When 

the equipment load increases with energy demand, the NLP optimization finds an optimum load 

at which the equipment can be operated at its maximum possible efficiency while still meeting the 

demand. For this 24-hour period in spring, the coal boiler does not operate due to high operational 

cost compared to that of the natural gas boilers, and all the demand was met using the natural gas 

boilers. For the actual plant operation, only two natural gas boilers were used, whereas the 

optimized results include the usage of an additional natural gas boiler due to a need for more steam 

production. The selection between coal and natural gas boilers depends on fuel cost, boiler 

efficiencies, their operating conditions, associated auxiliaries with the boilers and total steam 

demand which play a major role in assessing the economic benefits. Similar factors are important 

for selection between steam and electric chillers to meet the campus cooing demand. 



 
 

122 

 

(a) Energy demand of Purdue campus and 
outdoor air temperature 

 

(b) Real-time price of purchased 
electricity from utility  

 

(c) Total operational cost 

 

(d) Total steam produced from boilers 

Figure 5.3. Input to the optimization model and Output from MILP (without on/off switch 
penalty); MILP (including on/off switch penalty) and NLP optimization compared with the 

actual plant data for 24-hour period [Case (a): Spring]  
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Figure 5.3 continued 

 

(e) Amount of electricity generated 

 

(f) Amount of electricity purchased 

 

(g) Cooling capacity from steam chillers 

 

(h) Cooling capacity from electric chillers 
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(a) Steam from Boiler #1 (B1) 
 

(b) Steam from Boiler #2 (B2) 

 

(c) Steam from Boiler #3 (B3) 

 

(d) Steam from Boiler #4 (B4) 

Figure 5.4. Output of individual boilers and steam chillers for MILP (without on/off switch 
penalty); MILP (including on/off switch penalty) and NLP optimization compared with the 

actual plant data for 24-hour period [Case (a): Spring] 
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Figure 5.4 continued 

 

(e) Cooling capacity of steam chiller #2 
(S-C2) 

 

(f) Cooling capacity of steam chiller #3 
(SC3) 

 

Table 5.2 gives a summary of comparisons between baseline plant performance and 

optimized results for this integrated 24-hour period in spring. As shown previously, both the MILP 

and NLP optimizations result in production of more steam from boilers, more electricity generation 

from turbine generators, less purchasing of electricity especially when the RTP costs are high and 

more chilled water production from steam chillers. Natural gas boilers are preferred compared to 

coal boilers due to lower fuel cost of natural gas than coal. Cost optimization using the MILP with 

no switching penalties resulted in about 3.7% cost savings, MILP switching penalties gave about 

3.5% cost savings while the NLP optimization led to almost 10.7% cost savings compared to the 

baseline plant costs for the current control approach. The opportunities for cost savings through 

optimal control are very significant with over $6200 in savings for a single day in spring.  

Daily results for Case (b): Fall; Case (c): Summer; and Case (d): Winter are given in Table 

5.3, Table 5.4, and Table 5.5 respectively. The savings are significant for all four seasons but 
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generated and/or purchased, use of steam chillers or electric chillers depend on many time-varying 

factors such as energy demand, RTP costs, fuel prices, OAT, and equipment capacity constraints. 

For the fall day, even though the RTP costs and energy demand trend are similar to those for spring 

with moderate heating and cooling demand, the fuel costs for coal and natural gas are higher as 

shown in Table 5.1. It can be observed from Table 5.3 that more electricity was purchased 

compared to the baseline plant performance because of higher costs for coal and natural gas 

compared to spring. For the same reasons, the optimization results suggest purchasing more 

electricity and generating less steam compared to the baseline behavior for the summer day. From 

Table 5.5 for winter, it can be noted that there is not much savings from the optimization results 

compared to the baseline plant. For both baseline operation and optimization cases, PRVs were 

operated to meet the high heating demand. The opportunities for optimization are minimal since 

all the components are operated at their maximum capacity to meet the high demand.  

 

Table 5.2. Comparison between current operation and optimized results [Case (a): Spring]  

For 24 Hours Plant data 
MILP (w/o 

on/off 
penalty) 

MILP (w/ 
on/off 

penalty) 
NLP 

Steam produced [klb] 7544 8871 8746 9331 
Total electricity generated [MWh] 439 508 496 619 
Total electricity purchased [MWh] 510 392 400 276 

Total cooling capacity of steam 
chillers [MWh] 0 578 592 568 

Total cooling capacity of electric 
chillers [MWh] 943 365 350 375 

Total operational cost [$] 58,466 56,277 56,437 52,229 

Total cost savings [$]   2189  
[3.7%] 

2029 
[3.5%] 

6237 
[10.7%] 
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Table 5.3. Comparison between current operation and optimized results [Case (b): Fall]  

For 24 Hours Plant 
data 

MILP (w/o 
on/off 

penalty) 

MILP (w/ 
on/off 

penalty) 
NLP 

Steam produced [klb] 7994 5849 6177 6797 
Total electricity generated [MWh] 500 260 275 343 
Total electricity purchased [MWh] 443 605 588 518 
Total cooling capacity from steam 

chillers [MWh] 0 460 523 470 

Total cooling capacity from electric 
chillers [MWh] 771 310 247 300 

Total operational cost [$] 62,537 61,490 62,027 61,655 

Total cost savings [$]  1047 
1.7% 

510 
0.8% 

882 
1.4% 

 

Table 5.4. Comparison between current operation and optimized results [Case (c): Summer]  

For 24 Hours Plant 
data 

MILP (w/o 
on/off 

penalty) 

MILP (w/ 
on/off 

penalty) 
NLP 

Steam produced [klb] 10292 7484 7671 9142 
Total electricity generated [MWh] 589 409 405 523 
Total electricity purchased [MWh] 627 822 813 639 
Total cooling capacity from steam 

chillers [MWh] 760 548 665 703 

Total cooling capacity from electric 
chillers [MWh] 1558 1770 1653 1496 

Total operational cost [$] 85,066 80,493 80,846 78,898 

Total cost savings [$]  4573 
5.4% 

4220 
5.0% 

6168 
7.3% 
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Table 5.5. Comparison between current operation and optimized results [Case (d): Winter]  

For 24 Hours Plant 
data 

MILP (w/o 
on/off 

penalty) 

MILP (w/ 
on/off 

penalty) 
NLP 

Steam produced [klb] 12733 13983 14349 14526 
Total electricity generated [MWh] 455 476 485 497 
Total electricity purchased [MWh] 427 406 383 395 
Total cooling capacity from steam 

chillers [MWh] 0 239 337 346 

Total cooling capacity from electric 
chillers [MWh] 385 146 48 39 

Total operational cost [$] 125,004 123,664 124,372 122,857 

Total cost savings [$]  1340 
1.1% 

632.88 
0.5% 

2147 
1.7% 

From the above-mentioned simulation results, a few observations have been made from the 

baseline behavior and optimization results that could improve the performance of the plant and 

increase cost savings. 

• Limited use of steam chillers is observed from the actual plant data. Cost benefits can be 

achieved by utilizing the steam chillers to generate chilled water when the RTP costs are higher 

during the daytime.  

• More electricity can be purchased when the RTP costs are lower during the nighttime and early 

morning hours to meet the electrical demand. During these times, boilers, steam chillers and 

turbine generators can be operated at minimum loads to maximize the purchased electricity 

and electrically driven equipment. 

• When the energy demand is high, the equipment loads can be balanced to maximum efficiency.  

• Coal boilers should only be operated during winter months when the steam demand is really 

high. It is not profitable to run the coal boiler during other seasons when the cost of natural gas 

is below $3.3/DTH due to higher cost of coal and cost of running all the associated fans of the 

coal boiler.  

The advantage of using this hybrid algorithm is that it provides a more realistic and viable 

control of the operation of all equipment in the CCHP plant with lower operational cost compared 

to the actual plant data. The binary on/off capability of MILP optimization allows the selection of 
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necessary components from the pool of available components in the CCHP plant to meet the 

campus energy demand while minimizing the total operational cost for the chosen time horizon. 

By including the penalty cost for startup and shutdown, it ensures the component is not turned on 

or off immediately within a short time period which is similar to the practical operation of the 

power plant. Instead, the components are operated at low load when the demand decreases instead 

of turning off and turning on when the demand increases. Even though the decisions on the change 

of state of the equipment depends on the increase or decrease in demand, total operational cost 

play a major role in determining whether it is profitable to turn off and bring the equipment online 

during that time range. The approximate solutions for the operative variables (load) of each 

component for every hour from MILP [including on/off SP] optimization serves as a good initial 

point for optimizing the performance of selected components using NLP solver. The nonlinear 

characteristics curves of the components included in the NLP framework provides the actual state 

of operation of the selected components optimized for the lowest possible operational cost for the 

current hour while still meeting the demand and other operational constraints. The NLP 

optimization is very sensitive to the components selected and initial values provided by the MILP 

optimization.  

5.2 Simulations for Different Time Ranges 

The time period for the optimization plays a critical role in the optimization solution for a 

CCHP. It could be daily, weekly, monthly or longer depending on when short, medium or long-

term scheduling decisions are made. Depending on the penalties associated with turning equipment 

on or off, different optimization periods could lead to different choices of equipment or on/off 

timing for equipment. Weekly and monthly optimization periods were chosen to analyze the 

sensitivity of optimization results. In order to study this issue, the MILP with and without 

switching penalties was employed.  Three different time periods were considered for this study [1 

week, 1 month, 3 months] starting from September (early Fall), moving into October/November 

(Fall) and extending till December (into Winter). The input to the cost optimization model includes 

time-varying energy demand of the Purdue campus, OAT and RTP costs of purchased electricity. 

The price of natural gas was set as 3.00 $/DTH and the cost of coal as 70.80 $/ST from plant 

operational specifications. The time-varying inputs to the optimization model are shown in Figure 

5.5. 
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(a) Outdoor air temperature 

 
(b) Energy demand of Purdue campus 

 
(c) Real-time electricity price of purchased electricity from utility 

Figure 5.5. Time varying inputs to the MILP optimization framework 

A summary of results for the three optimization periods are given in Table 5.6, Table 5.7, and  

Table 5.8 respectively, comparing the baseline plant performance and the MILP optimized 

results (with and without on/off penalties). Cost saving opportunities are identified with MILP 

optimization for all three time periods. For the 3-month optimization periods, the cost optimization 

using MILP with no switching penalties resulted in about 9.4% cost savings whereas MILP 
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including penalties resulted in about 8.9% cost savings. The cost savings for a 1-week optimization 

were 2.7% and 2.1% for MILP without and with the penalties, respectively, and for the 1-month 

optimization period, the savings from MILP optimization without and with SP were 4.5 % and 

3.5%, respectively.  

Table 5.6. Comparison between plant data and MILP optimized results [Case (b): 1-Week]  

1 week [Oct-1 to Oct-7]  Plant 
data 

MILP (w/o 
on/off penalty) 

MILP (w/ 
on/off penalty) 

Steam produced [klb] 56,513 55,777 56,132 
Total electricity generated [MWh] 3,608 3,136 3,075 
Total electricity purchased [MWh] 2,660 2,809 2,767 
Total cooling capacity from steam 

chillers [MWh] 0 3,210 3,812 

Total cooling capacity from electric 
chillers [MWh] 5,809 2,577 1,975 

Total operational cost [$] 367,268 357,295 359,636 

Total cost savings [$]  9,974 
2.7% 

7,632 
2.1% 

 
 
 

Table 5.7. Comparison between plant data and MILP optimized results [Case (c): 1-Month]  

1 month (Sep-15 to Oct-15) 
Plant 
data 

MILP (w/o 
on/off penalty) 

MILP (w/ on/off 
penalty) 

Steam produced [klb] 227,890 252,488 251,311 

Total electricity generated [MWh] 13,427 14,550 14,281 

Total electricity purchased [MWh] 14,980 17,907 18,055 
Total cooling capacity from steam 

chillers [MWh] 3,564 15,000 16,141 

Total cooling capacity from electric 
chillers [MWh] 27,930 16,461 15,321 

Total operational cost [$] 1,720,001 1,643,150 1,659,241 

Total cost savings [$]  76,851 
4.5% 

60,760 
3.5% 
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Table 5.8. Comparison between plant data and MILP optimized results [3 months] 

3 months (Sep-15 to Dec-31) Plant 
data 

MILP (w/o 
on/off penalty) 

MILP (w/ 
on/off penalty) 

Steam produced [klb] 886,190 800,452 821,710 
Total electricity generated [MWh] 47,359 42,782 43,978 
Total electricity purchased [MWh] 43,291 44,023 42,490 
Total cooling capacity from steam 

chillers [MWh] 7,438 22,622 46,182 

Total cooling capacity from electric 
chillers [MWh] 68,073 52,480 28,920 

Total operational cost [$] 5,835,976 5,289,853 5,316,503 

Total cost savings [$]  546,124 
9.4% 

519,473 
8.9% 

 

The penalty factors are included for boilers and steam chillers to enforce the dependencies 

in the adjacent hours. Since the local hourly decision variables and entire plant optimization over 

the horizon are closely intertwined, influence of the local decisions on the global objective function 

for minimizing the total operating cost of the plant can be observed clearly in our results. Unlike 

in MILP [w/o on/off SP], the sudden change of states (on/off of components) are reduced in MILP 

[w on/off SP] and allows for an efficient resource allocation (equipment on/off depending on the 

demand) as we increase the time horizon.  

When on/off switching penalties are considered, the optimization period determines the 

influence of local hourly decision variables on the scheduling decisions for equipment. When the 

optimization period is too short (say a day or a week), turning on or off a boiler could significantly 

impact the short-term cost to the point where the operational savings cannot accumulate over a 

sufficient period of time to make up for the switching cost penalties. Employing a longer 

optimization period can allow for more appropriate consideration of the tradeoffs between 

switching penalties and operating cost savings. There is more information on the weather and 

demand with longer time horizon to look ahead and look back which influences the on/off 

characteristics of the equipment. However, longer time horizons for optimization lead to a larger 

optimization problem with more decision variables, which is computationally very expensive to 

solve.  
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As an example, the sensitivity of the operation of boilers over the three different optimization 

periods (1 week, 1 month, 3 months) is considered. Figure 5.6 shows the operation of the boilers 

for 3-month MILP optimization when including the penalties for startup and shutdown. It can be 

observed that the natural gas boiler 𝐵1'(  always operated to meet the heating demand of campus 

and the other steam-driven plant equipment. The two steam-driven fans (induced draft and forced 

draft) of 𝐵1'(  exhausts steam at 15 psig, which is used to meet the steam demand from 15 psig 

campus steam line. Boiler #2 𝐵2'(  was turned off after Dec-21 and never brought online during 

this time period. 𝐵2'(  has one FD fan that uses 600 psig steam and exhaust steam at 15 psig. 

These fans are operated using steam depending on the demand of steam. Otherwise, they operate 

using electricity. This decision depends on the cost of electricity and other factors. Boiler #3 𝐵3'(  

was turned on and off a couple of times during the optimization period when there was a significant 

change in steam demand. 𝐵3'(  has one electric FD fan which provides some flexibility in the 

operation of 𝐵3'(  since the fan is not tied to meeting steam demand. Coal boiler #4 𝐵4)  was 

turned on only when the heating demand was very high due to higher cost of coal and associated 

cost with operating its three steam/electric fans (ID, FD and PA). When the steam demand is really 

high, both the boilers along with the steam-driven fans help to meet steam demand. It was observed 

that there was no change of state (on/off) in the operation of the boilers before Nov-18. 

 

(a) Natural gas boiler #1 (B1NG) 

Figure 5.6. Operation of boilers using MILP [including on/off SP] optimization for 3-
months’ time range 
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Figure 5.6 continued 

 

(b) Natural gas boiler #2 (B2NG) 

 

(c) Natural gas boiler #3 (B3NG) 

 
 

(d) Coal boiler #4 (B4C) 
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Figure 5.7 and Figure 5.8 show the operation of the boilers for 1-week and 1-month 

optimizations period determined using the MILP with penalties for startup and shutdown. Similar 

to the 3-month optimization, it can be observed that the natural gas boilers 𝐵1'(  and 𝐵2'(  were 

always operated to meet steam demand and steam requirements of other components for both the 

1-week and 1-month time ranges. However, 𝐵3'(  was turned off and brought online between Oct-

02 and Oct-04 for the 1-week time horizon. This 1-week period was sufficient to recoup the costs 

of brining the boiler offline and online. During the 1-month time horizon, 𝐵3'(  was turned off 

and brought online a couple of times and 𝐵4)  was switched on and off between Oct-09 and Oct-

10 depending on the changes in demand. This behavior of the boilers was not observed during the 

MILP optimization for the 3-month horizon. Instead, the load between the three natural gas boilers 

were balanced depending on the demand and electricity price during that time period within the 3-

month horizon. The on/off switching becomes less as the time horizon for optimization increases 

allowing for more efficient resource allocation.  

 

Figure 5.7. Operation of boilers using MILP [including on/off SP] optimization for 1-week time 
range  
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Figure 5.8. Operation of boilers using MILP [including on/off SP] optimization for 1-month time 
range  

 

5.3 Sensitivity to Purchased Electricity and Natural Gas Price 

The primary energy usage of the CCHP plant depends on the decisions regarding generation 

and/or purchasing of electricity, usage of steam-driven and/or electric equipment and usage of coal 

or natural gas boilers in response to minimizing operational costs while meeting the time-varying 

campus electricity, heating and cooling demands.  

The cost of purchased electricity plays an important role in determining whether to generate 

and/or purchase electricity or operate steam-driven or electric equipment. Since the MILP 

algorithm provides operational signals associated with resource allocation ensuring that the 

systems meet campus electricity, heating, and cooling demands, only this algorithm was 

considered for the analysis in this section. The sensitivity of the predicted results to the cost of 

purchased electricity (𝑐>)  were studied and typical results are presented in this section. The 

campus energy demand for a particular hour of a summer day was used for the sensitivity analysis, 

where the heating demand (𝐷𝐻) was 95 MMBtu/h (27.7 MW), cooling demand (𝐷𝐶) was 25,046 

Tons (88 MW) and the electrical demand (𝐷𝐸) was 28 MW. The outdoor air temperature was 

76°F (24.4°C). This particular demand scenario was chosen because of the high cooling demand 
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cost of natural gas was set as 3.00 ($/DTH) for the analysis. For studying the effect of electricity 

purchased from the local electric utility which includes a real-time pricing component that varies 

with time, the cost of purchased electricity was varied from 0 to 10 ¢/kWh. 

Figure 5.9 shows individual hourly optimization results as a function of the cost of purchased 

electricity for these summer conditions. Figure 5.9(a) shows that the total hourly operational cost 

of the plant increases monotonically when the price of the purchased electricity increases. This is 

because some amount of electricity must be purchased apart in addition to being generated in order 

to meet the total electrical demand. From Figure 5.9(b), we can see that as the price of electricity 

increases, more steam is produced to meet a growing steam demand of the turbine generators, 

steam chillers and other steam-driven components in order to reduce the purchased electricity. At 

lower electricity prices, some amount of steam is still produced to meet the campus heating 

demand. In Figure 5.9(e), Boilers 1, 2 and 3 are natural gas boilers while boiler 4 is a coal boiler. 

The boilers are brought online depending upon the cost of coal and natural gas, their efficiency, 

operating conditions and fans to be operated along with the boiler. It can be noticed that the coal 

boiler was never turned on for this particular demand case due to its high operational cost compared 

to natural gas boilers. Figure 5.9(c) shows comparisons of electricity generated and purchased for 

the varying cost of electricity. It can be seen that a higher quantity of electricity is purchased at 

lower costs of electricity. As the price of electricity increases above 4.70¢/kWh, there is a reduction 

in the purchase of electricity and an increase in the generation of electricity from the turbine 

generators. However, some amount of electricity must be purchased during the day to satisfy the 

electrical demand of campus. All electricity cannot be generated because of the limited availability 

of steam from turbine generators due to a campus heating demand and the capacity limitations of 

the turbine generators. Figure 5.9(d) shows comparisons of cooling capacity produced by steam 

chillers and electric chillers over the range of electricity rates. The control switches from 

maximizing electric chiller operation at low rates, to using steam chillers when rates are above 

3.80 ¢/kWh in order to meet the campus cooling demand. However, the electric chillers are still 

operated at higher electricity prices on this summer day due to high cooling demand. It can be 

noticed that the switch between electric chillers to steam chillers happens at 3.80 ¢/kWh and at 

4.70 ¢/kWh because of the difference in efficiencies and minimum operating capacity between the 

chillers. As the cost of purchased electricity increases, the lower efficiency electric chillers are 

operated at reduced load and then turned off while the loads on steam chillers are increased and 
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then they are operated at full load. More specifically, at 3.80 ¢/kWh, one electric chiller at Wade 

plant (𝐸– 𝐶3)@ was turned off, steam chiller (𝑆– 𝐶3) was operated at full load and the load on 

(𝑆– 𝐶2) was increased. At 4.70 ¢/kWh, (𝑆– 𝐶2) was operated at full load and the load on electric 

chiller (𝐸– 𝐶4)@  was decreased while meeting the cooling demand. The switch from electric 

components to steam-driven components and purchased to generated electricity happens between 

3.80¢/kWh and 5.30¢/kWh depending on efficiencies and operational limitations of individual 

components operated to meet the demand. Also, the change in the load of the major components 

affects the auxiliary components connected to it and vice-versa. This trend is observed from the 

increase in the amount of steam produced and electricity generated in stages as the steam-driven 

components are increased in load or brought online when the cost of purchased electricity keeps 

increasing.  

 

  

(a) Total operational cost (b) Total steam produced in boilers 

Figure 5.9. MILP cost optimization results for varied electricity purchase cost (RTP) 
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Figure 5.9 continued 

  

(c) Amount of electricity generated & 
purchased 

(d) Cooling capacity of steam and electric 
chillers 

 
(e) Amount of steam produced in individual boilers 
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year, so no sensitivity analysis was done for coal. The cost of coal was set as 70.80($/ST) and the 

cost of purchased electricity was set as 5.50 (¢/kWh) for this analysis. The cost of natural gas was 

varied from 1$/DTH to 7 $/DTH. 
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Figure 5.10 shows MILP cost optimization results as a function of the cost of natural gas. 

Figure 5.10(a) shows that the total operational cost of the plant increases with the price of the 

natural gas depending upon the amount of steam produced in the natural gas boilers. From Figure 

5.10(b), it can be observed that more steam was generated from the boilers when the natural gas 

price was below 3.20 $/DTH. Above 3.20 $/DTH, some amount of steam is still produced from 

the boilers to meet campus steam demand and demand from other auxiliary steam-driven 

equipment. As the cost of natural gas increases, the coal boiler B4 is turned on at 3.50 $/DTH as 

shown in Figure 5.10(e). Some amount of steam is still generated from natural gas boiler B2 to 

meet the campus heating demand even when the natural gas price increases. The natural gas boilers 

are brought offline in stages depending on their efficiencies and minimum operational capacities. 

Figure 5.10(c) shows comparisons of electricity generated and purchased. It can be observed that 

a higher quantity of electricity is generated using the steam from natural gas boilers at lower costs 

of natural gas. As the price of natural gas increases above 3.20 $/DTH, there is an increase in the 

purchase of electricity even when the cost of purchased electricity is relatively higher. However, 

some amount of electricity is generated as a byproduct from meeting campus heating demand. 

From Figure 5.10(d), it can be noticed that there is no change in the operation of steam and electric 

chillers in this case where the cooling demand is high during summer. From Figure 5.9(d), it was 

found that the switch from electric to steam chillers happened when the RTP price was above 3.80 

¢/kWh. Since the cost of purchased electricity assumption for this analysis is 5.50 ¢/kWh, the 

steam chillers were always operated at full load and the rest of the cooling demand was satisfied 

using electric chillers. The switching from natural gas boilers to a coal boiler, electricity generated 

to purchasing electricity, and some steam-driven components to electric components happens in 

stages between 3.20 $/DTH and 3.80 $/DTH depending on efficiencies and operational limitations 

of different components operated to meet the demand.  
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(a) Total operational cost (b) Total steam produced in boilers 

  

(c) Amount of electricity generated & 
purchased 

(d) Cooling capacity of steam and electric 
chillers 

Figure 5.10. MILP cost optimization results for varied natural gas price 
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Figure 5.10 continued 

 

(e) Amount of steam produced in individual boilers 

From both the sensitivity studies, it can be observed that the cost of purchased electricity and 

cost of natural gas plays an important role in the decisions regarding the generation and/or 

purchasing of electricity, usage of steam-driven and/or electric equipment and usage of coal or 

natural gas boilers to minimize the operating cost. The transition from electric to steam-driven 

components and vice-versa happens in stages depending on efficiencies and operational limitations 

of different components operated to meet the demand. 

5.4 Chapter Summary 

A hybrid mixed-integer linear programming (MILP) and nonlinear programming (NLP) 

approach was applied for the cost optimal control of CCHP systems. In this two-step approach, 

MILP optimization was applied in the first step to the plant model with linear component models 

and the penalty for turning on and off the boilers and steam chillers. The MILP step determines 

which components need to be turned on and their respective loading needed to meet the campus 

energy demand for the chosen time horizon with one-hour resolution. The solution from MILP 

optimization was given as a starting point for NLP optimization in the second step to determine 

the hourly state of operation of selected components including their nonlinear performance 

characteristic curves. Additionally, two cases were considered for MILP optimization: MILP with 

no on/off switching penalties and MILP with switching penalties.  Optimal results from the MILP 
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and NLP approaches were compared with the baseline plant performance for current control on a 

daily basis for different seasons in order to understand the effectiveness of each algorithm. In all 

the four scenarios, there were cost savings using the MILP optimization and NLP optimization. 

The cost savings were generally higher for the hybrid MILP-NLP approach compared to only 

MILP optimization. The decisions on the amount of steam produced, electricity generated and/or 

purchased, using steam chillers or electric chillers, using natural gas or coal boilers depend on 

time-varying factors such as energy demand, RTP costs, fuel prices, OAT, and limitations on the 

equipment capacities. Since the output from MILP with switching penalties is provided as an input 

to the NLP hourly optimization, this approach was used to study the impact of optimization period 

on on/off operation of the boilers and steam chillers. Three different optimization time periods 

were considered: 1 week, 1 month and 3 months. The results showed that on/off cycling of the 

equipment was reduced with increasing length of the optimization period. In addition, the 

sensitivity of the operational decisions to the cost of purchased electricity and natural gas were 

studied and it was demonstrated that optimal operation of boilers, steam generators, and chillers 

depends strongly on these costs. 
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6. CONCLUSIONS AND FUTURE WORK 

6.1 Conclusions 

This dissertation presented a solution methodology for optimizing the operation of a large-

scale CCHP system using a detailed network energy flow model solved by a hybrid approach 

combining mixed-integer linear programming (MILP) and nonlinear programming (NLP) 

optimization. The tools were then used to evaluate the cost savings potential associated with 

applying optimal control for this case study. In the first step, MILP is applied to the optimization 

model which includes a linear model of all components and the penalty for turning on or off a few 

major units. The MILP determines which components need to be turned on and their respective 

load needed to meet the campus energy demand for the chosen time period (short, medium, or long 

term). Based on the solution from the MILP step as a starting point, NLP determines the hourly 

state of operation of components including their nonlinear performance characteristics curves. 

Plant primary energy use and costs depend on decisions regarding generation and/or purchase of 

electricity and usage of steam-driven and/or electric equipment in response to time-varying prices, 

loads, and environmental conditions. The optimal energy dispatch algorithm provides operational 

signals associated with resource allocation ensuring that the systems meet campus electricity, 

heating, and cooling demands.  

The methodology incorporates the following elements:  

• a detailed thermodynamic model that considers the linear and nonlinear characteristics of all 

components integrated into a multi-physical CCHP system 

• a deterministic network energy flow model that relates the capacity and operation of the CCHP 

system to the building energy demands 

• an optimization algorithm capable of handling non-convex, non-differentiable, multimodal 

(multiple local minima) and discontinuous functions which includes strong coupling to 

multiple energy components (electricity, heating, and cooling) 

• an energy dispatch algorithm that employs a hybrid MILP and NLP approach to provide 

control signals to the primary energy consuming and producing components (boilers, turbine 

generators, chillers, etc.) using an outer supervisory control loop based on the energy (thermal 
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and electric) demand and to an inner layer of auxiliary components (pumps, fans, cooling tower 

and other auxiliaries) 

The chief benefits of this formulation are its ability to determine the optimal mix of equipment 

with on/off capabilities and penalties for startup and shutdown, consideration of cost from all 

auxiliary equipment, and applicability to large-scale energy systems with multiple heating, 

cooling, and power generation units resulting in improved performance. 

The combined cooling, heating, and power (CCHP) plant that serves the Purdue campus was 

chosen as the case study to conduct an extensive computational simulation. The entire model was 

coded in MATLAB (R2019b) and optimized using MATLAB’s MILP and NLP optimization 

toolbox. The models were validated with plant measurements and then used with the assumption 

of perfect load forecasts to evaluate the economic benefits of optimal control subjected to different 

operational conditions and fuel prices. Example cost optimizations were performed for 24-hour 

periods in different seasons with known cooling, heating, and electricity demand for Purdue’s main 

campus, and based on actual real-time prices (RTP) for purchasing electricity. Three optimization 

cases were considered for analysis: MILP with no on/off switching penalties; MILP including 

switching penalties and NLP optimization. The outputs from the MILP with switching penalties 

are provided as inputs for the NLP optimization model. Almost 10% cost savings was achieved 

using the hybrid MILP-NLP approach compared to baseline performance associated with current 

controls at the plant. The optimization results suggest there are opportunities for cost savings 

across all seasons compared to the current operation of the power plant. For a large CCHP plant, 

this could mean huge savings for a year.  

The impact of choosing different time periods for the optimization was studied using MILP 

with on/off switching penalties. For a 3-month time horizon, the cost optimization resulted in about 

8.9% cost savings. Compared to shorter optimization periods, the 3-month period had fewer on/off 

cycles. The sensitivity of the optimized results to the cost of purchased electricity and natural gas 

was also performed to illustrate operational switches between steam and electric driven 

components, and coal and natural gas boilers that occur as costs of energy change.  

Ultimately, the optimization tool could be implemented for recommending the daily 

operation of the power plant and provide real-time estimates of cost and energy savings as 
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feedback to operators and plant managers for operational planning. This framework is modular 

and generalizable to different types of systems so that it can be easily modified for different 

architectures or configurations and could be implemented for any large-scale distributed energy 

systems in the future. 

6.2 Future Work 

The work presented in this dissertation can be extended in order to make this hybrid MILP-

NLP approach a general tool applicable to any centralized/distributed energy system.  In the future, 

the following specific work could be carried to further the development and application of this 

technology. 

• The proposed control strategy should be implemented for the real-time operation of the power 

plant to assess its effectiveness and limitations. 

• Few heuristics can be developed based on the results from extensive-simulation and sensitivity 

analysis using the hybrid MILP-NLP approach for different seasons, demand scenarios, 

operational conditions, and fuel prices. This could be easily implemented for the daily 

operation of the power plant instead of running the optimization tool.  

• Different MILP and NLP optimization solvers could be compared and evaluated with respect 

to finding global optimal solutions and minimizing computational time. 

• Attempts could be made to improve the computational time of the respective mathematical 

programming solvers with formulation-specific heuristics. 

• Storage options could be considered using dynamic optimization over a time horizon. 

• The optimal time horizon should be determined for planning and scheduling the operation of 

the power plant. 

• Accurate energy forecast models should be developed for integration with the optimization 

tool. 

• Carbon tax can be implemented along with the objective cost function as applicable. 
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APPENDIX A. INPUTS TO THE OPTIMIZATION FRAMEWORK 

The user inputs to the optimization framework mainly includes parameters that have a 

different value for each hour (𝑡), parameters that have a constant value over the chosen time range 

(𝑇), equipment specific inputs and bounds to the decision variables. MILP optimization does not 

require any initial point whereas NLP optimization requires initial point for every hour which is 

the output from MILP optimization. Data required for the CCHP cost optimization and 

performance evaluation are collected from Purdue physical facilities for this study and are given 

as an input to the model. Few parameters that have a different value for each hour (𝑡) are:  

• Hourly energy demand data of Purdue campus for electricity (𝐷𝐸C), heating (𝐷𝐻C), and 

cooling (𝐷𝐶C)  

• Cost of purchased electricity for every hour (𝑐>C ) including real-time pricing (RTP) 

• Ambient conditions for every hour: wet-bulb (𝑇#GC ) and dry-bulb (𝑇:GC ) temperatures, 

relative humidity (𝑅𝐻C)  

Apart from this, the other input data that are constant includes: 

• Price of on-site fuel: cost of natural gas (𝑐'() and cost of coal (𝑐)) 

• Switch penalty (SP) cost for turning on/off the equipment (𝑐AI) : Included only in MILP 

optimization 

• Range of effective operation of CCHP components for a given installed capacity: 

minimum and maximum capacity of the equipment  

Other than the input data mentioned above, the list of constant input parameters to the system 

model are listed in Table A.1. All the equipment specific inputs are defined based on the plant 

performance data and are included in section 3.3. Any other input values to the optimization 

framework are explained in section 0. 
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Table A.1. Input parameters to the system model 

Input 
parameters Values Description 

𝑃.// 600 psig (4238.2 kPa) Pressure across 600 psig steam line 

𝑃2*9 125 psig (963.2 kPa) Pressure across 125 psig steam line 

𝑃29 15 psig (204.77 kPa) Pressure across 15 psig steam line 

𝑃&# 925 psig (6479.0) Pressure of feedwater 

𝑃56F: 15 psig (204.77 kPa) Pressure across condensate line 

𝑃01 -13.2 psig (10.2 kPa) Exhaust pressure from equipment 

𝑃5L 0 psig (101.4 kPa) Pressure of condensate return from campus 

𝑃DC= 1 atm (101.3 kPa) Atmospheric pressure 

𝑇&# 250 °F (121.1 °C) Temperature of feedwater 

𝑇5L 140 °F (60 °C) Temperature of condensate return from campus 
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