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ABSTRACT 

In addition to the canonical full-length p53 (FLp53), the TP53 gene produces twelve protein 

isoforms through alternative RNA splicing or initiation of transcription and translation. Two of 

these isoforms, D133p53a and p53b, have been identified as endogenous regulators of cellular 

senescence. Cellular senescence is a durable cell cycle arrest that inhibits the continued replication 

of aged and DNA-damaged cells. This process is a critical mechanism of tumor suppression that 

prevents initiation and malignant progression and has been leveraged to treat cancers including 

glioblastoma. However, removal of senescent cells by macrophages is needed to restore tissue 

homeostasis. This process is impacted by a variety of factors. For example, senescent cells 

accumulate in aged individuals and can promote chronic inflammation and disease through the 

senescence-associated secretory phenotype (SASP).  

As the global population ages, it will become more critical to understand the function of 

cellular senescence in disease. Targeting senescent cells, either through elimination (senolysis) or 

reprogramming, may have potential therapeutic value in individuals with a high senescent cell 

burden. Aged or DNA-damaged cells adopt a senescence-associated p53 isoform profile 

characterized by reduced expression of D133p53a and increased expression of p53b. Critically, 

restoration of D133p53a rescues cells from senescence and enhances DNA repair. Targeting p53 

isoforms may represent a mechanism by which cells can be reprogrammed. A thorough 

understanding of the contexts in which senescent cells maintain beneficial or harmful roles is 

critical to developing senescence therapeutics in cancer and aging. 
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 CELLULAR SENESCENCE IN AGING AND CANCER: 
ROLE OF P53 ISOFORMS 

Portions of this chapter are published in: Beck J, Turnquist C, Horikawa I, Harris C, Targeting 
cellular senescence in cancer and aging: roles of p53 and its isoforms, Carcinogenesis 
2020;41(8):1017–1029. 

1.1 Introduction 

In the 1960s, Hayflick found that normal human cells replicate for a finite number of cell 

doublings in culture with longer replicative lifespans observed in fetal, compared to adult, cells.1,2 

After repeated rounds of replication, critically shortened telomeres fail to interact with sufficient 

amounts of the telomere-binding protein complex ‘shelterin’ leading to destabilization of the 

protective t-loop configuration and exposure of telomeric DNA ends.3-5 With deficiency in the 

‘shelterin’ subunits, such as POT1 and TRF2, these telomere-associated DNA damage foci activate 

the DNA damage response leading to p53 activation, growth arrest, and induction of replicative 

senescence.3,5-7 These initial experiments describe replicative senescence, a permanent or 

sustained cell cycle arrest in aged cells.1-3 In addition to replicative senescence, stress-induced 

senescence is the premature induction of cellular senescence following the accumulation of non-

telomeric DNA damage.8-10 This mechanism also activates the DNA damage response to trigger 

cell cycle arrest and can be induced by a variety of physiologic and pathologic stressors including 

age-associated oxidative stress, genotoxic radiation, and aberrant activation of oncogenes such as 

Ras.8-11  

By inhibiting the replication of aged and DNA-damaged cells, cellular senescence inhibits 

tumor initiation.12-14 Cell cycle arrest is promoted by repression of proliferation-promoting genes, 

such as cyclin A and other E2F target genes, in senescence-associated heterochromatin foci 

(SAHF).15-17 The formation of SAHF is considered an important step in the development of stable 
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cell cycle arrest in senescent cells.17 In benign or premalignant tumors such as colon adenoma and 

melanocytic nevi, the induction of cellular senescence serves as a barrier to malignant 

progression.14,18,19 Because of the intrinsic anti-tumor functions of cellular senescence, it has been 

used as an indicator of cancer therapy response.20,21 In addition, senescence-inducing therapies 

have been developed that specifically leverage this anti-tumor mechanism to treat cancer 

patients.20 However, senescent cells are resistant to apoptosis, have deficient DNA repair, and 

develop increased susceptibility to mutations suggesting that cellular senescence may be inferior 

to apoptosis as a mechanism of tumor suppression.22-24 

In addition to undergoing cell cycle arrest, senescent cells produce an array of effects in 

neighboring cells.25 These non-cell-autonomous functions are primarily mediated by the secretory 

factors produced as part of the senescence-associated secretory phenotype (SASP).25-27 The SASP 

can vary by cell type and stressor and is characterized by increased secretion of proteins including 

inflammatory cytokines, chemokines, and matrix metalloproteinases (Figure 1.1).25-41 The primary 

functions of SASP proteins are to promote the repair of damaged tissue and to recruit macrophages 

and lymphocytes, which remove senescent cells leading to restoration of normal tissue 

functions.35,42-44 Unfortunately, inadequate removal of senescent cells over time may contribute to 

the physiology of aging or so-called organismal senescence.45 Persistent senescent cells secrete 

SASP proteins to induce chronic inflammation, stimulate tissue fibrosis, and reduce viability of 

neighboring cells.25,28,46,47 Because senescent cell burden is highest in aged individuals, these 

features are particularly relevant in age-related pathologies and underlie a variety of chronic 

diseases including renal disease, immune dysfunction, neurodegeneration, and pulmonary 

fibrosis.48-53  Because the functions of cellular senescence vary by context, this review will focus 

on the roles of cellular senescence and SASP in development, cancer, and aging and will present 
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the potential therapeutic value of targeting senescent cells, such as through the modulation of p53 

isoforms, to prevent, delay and treat senescence-associated disease.   

1.2 Cellular senescence is critical for normal development and tissue repair 

If the secretion of SASP proteins was always deleterious, why would the SASP phenotype 

persist through selection and evolution? Although many studies have identified the harmful effects 

of sustained cellular senescence and SASP, these mechanisms have critical and appropriate roles 

in normal physiologic functions such as embryogenesis and wound healing.35,42,45 For example, 

cellular senescence is observed in the multinucleated syncytiotrophoblast layer of the human 

placenta but is reduced in pregnancies with intrauterine growth restriction suggesting that cellular 

senescence is important in promoting placental-dependent fetal growth and development.54 The 

induction of cellular senescence in the placenta and fetal membranes may also be associated with 

the onset of parturition suggesting that the timing of cellular senescence is critical in 

pregnancy.55,56 

During embryogenesis, cellular senescence is tightly regulated, initiated at specific times 

and locations, and has roles in morphogenesis, tissue remodeling, and cell population balance.35  

For example, induction of cellular senescence along the interdigital webs leads to the formation of 

individual fingers.35 In the endolymphatic sac, cellular senescence is observed in specific cell types 

and is proposed to balance cell populations and ensure appropriate tissue morphology.35 In both of 

these examples, senescent cells must be efficiently removed by macrophages to support 

appropriate tissue modeling and maturation.35 Importantly, inhibition of cellular senescence in 

mice results in developmental defects underscoring the essential role of cellular senescence in 

normal embryogenesis.35  
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Later in life, induction of cellular senescence is observed in the initial stages of tissue repair, 

suggesting that wound healing and tissue regeneration rely on a similar mechanism of cellular 

senescence as observed during embryonic development.35,42,57 Following injury, senescent 

fibroblasts and endothelial cells secrete a variety of proteins, including PDGF-AA.42  PDGF-AA 

promotes myofibroblast differentiation and production of granulation tissue to initiate wound 

repair.42 In addition, SASP-associated proteases help to control excess fibrosis.42 Further, 

pharmacologic inhibition of cellular senescence in vivo inhibits wound healing.58 This requirement 

for senescent cells and SASP during the initiation of tissue remodeling underscores the important 

albeit transient role of cellular senescence in development and repair.35,42,45 

Interestingly, cellular senescence has been shown to have both beneficial and detrimental 

roles in the progression of tissue fibrosis.45 In the lung, it is thought to promote pulmonary 

fibrosis.28 However, it has also been suggested to attenuate fibrosis through the secretion of 

proteases during wound healing.42 Additionally, inhibition of p53-mediated cellular senescence in 

hepatic stellate cells promotes fibrosis and tumorigenesis.59 This is thought to be due to the loss of 

critical functions mediated by senescent stellate cells such as promotion of anti-tumor 

macrophages and inhibition of hepatocyte transformation.59 This suggests that cellular senescence 

and SASP may limit fibrosis in specific contexts.59,60 These findings in the liver also demonstrate 

the potential anti-tumor functions of cellular senescence.59  

1.3 Cellular senescence is a critical barrier to carcinogenesis 

Genomic instability increases during aging and is considered to be one of the major 

hallmarks of cancer cells.61,62 By preventing the proliferation of aged and DNA-damaged cells, 

cellular senescence provides a critical tumor-suppressor function.12-14 Similar to non-tumor cells, 

senescent cancer cells adopt SASP and develop modified receptor expression which alters their 
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signaling pathways.63,64 SASP proteins produced by senescent cancer cells have both paracrine 

and autocrine functions. For example, secreted IL-8 recruits leukocytes and reinforces cancer cell 

senescence through their upregulated CXCR2 receptors, underscoring a tumor-suppressive role of 

SASP.40,63,64  

Promoter hypermethylation or genetic mutation of senescence genes facilitates tumor 

initiation and underscores the role of cellular senescence in preventing tumorigenesis.18,65-67 

Cellular senescence is also a critical barrier to transformation implicated in the malignant 

progression of benign tumors including colonic adenoma to carcinoma and melanocytic nevi to 

melanoma.14,18,19 In colonic carcinomas, dysregulation of p53 isoforms (discussed below) and p53 

mutations are thought to inhibit the induction of p53-dependent cellular senescence and facilitate 

senescence escape.18 This may suggest that adenoma cells are not completely committed to 

senescence programming, allowing their reversion to a pre-senescent proliferative state and 

transition to malignancy.68 Based on these findings, the induction of cellular senescence has been 

identified as a critical barrier to carcinogenesis and may represent a therapeutic avenue to inhibit 

tumor initiation and malignant progression. 

In contrast, similar DNA methylation patterns during senescence induction and 

tumorigenesis have led to another hypothesis that, rather than representing a barrier to 

carcinogenesis, senescence itself may contribute to tumorigenesis by priming cells for malignant 

transformation.69-71 For instance, Milanovic and colleagues71 found that chemotherapy-induced 

senescent lymphoma cells, upon escape from senescence, acquired stem cell-related properties and 

elevated tumor-initiating capacity in vitro and in animal models, indicating that senescence itself 

may prime cells to more malignant and aggressive phenotypes. In this way, escape from therapy-

induced senescence has been proposed as a potential mechanism underlying cancer recurrence.72 
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However, others have identified distinct methylation of differentiation and metabolic genes in 

transformation and senescence, respectively, and shown that senescent cells actually resist 

malignant transformation.73 Thus, the anti-tumor effect of cancer cell senescence remains 

controversial and contextual, depending primarily on whether cancer cell senescence is considered 

permanent or reversible. 

1.4 SASP can mediate the pro-tumorigenic effects of cellular senescence 

Senescent cells promote tumor growth, recurrence and metastasis and contribute to the 

development of cancer therapy-associated side effects through SASP.11,25,47 Induction of cellular 

senescence within the tumor microenvironment may occur through several mechanisms including 

cancer therapy-induced senescence of tumor and non-tumor cells8,11,47, via the SASP-associated 

spread of cellular senescence programming29,38, or following successive rounds of replication in 

non-tumor cells responding to the tumor or tumor-associated tissue injury.8,25,52 The outcomes of 

cellular senescence depend on the senescent cell type. For example, senescent resident brain cells 

and their secreted factors have been suggested to mediate an array of effects in the contexts of 

cancer and neurodegenerative disease (Figure 1.2).8,11,25,46,51,74-82 The disruption of tissue 

homeostasis that occurs following the induction of cellular senescence in tumor and non-tumor 

cells brings into question whether inducing senescence remains the best method for cancer 

treatment. 

In addition to tumor cell-specific effects, anti-cancer therapies can induce senescence in 

non-tumor cells, such as stromal cells, which may contribute to poor anti-tumor immune 

responses.83 For example, in the skin, senescent cells facilitate recruitment of immunosuppressive 

myeloid cells which inhibit anti-tumor T cell responses.84 In the tumor microenvironment, cancer 

cells and regulatory T cells (T-reg) have also been shown to induce cellular senescence of 
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responder T cells and represent important barriers to efficient cancer immunotherapy.78,85,86 This 

is further exacerbated by aging which is associated with CD8+ T cell senescence and increased 

susceptibility to disease.52,87,88 Critically, removal of senescent cells in aging mice delays 

tumorigenesis further underscoring the tumor-promoting functions of persistent cellular 

senescence and SASP.58 However, it remains to be investigated whether clearance of persistent 

senescent cells also delays or inhibits tumor progression and recurrence in humans.  

In addition, the development of senescent non-tumor cells may promote the long-term side-

effects of cancer therapies.8,47,53,89 This is particularly well-characterized in patients receiving 

radiotherapy.90,91 For example, radiation-induced pneumocyte senescence activates fibroblasts to 

promote pulmonary fibrosis, a late effect of radiation treatment.28 Radiation therapy also has been 

shown to induce endothelial cell senescence, which may contribute to cardiovascular disease in 

cancer survivors.75,91 In pediatric leukemia patients, increased expression of p16 in non-tumor cells 

has been suggested as a potential biomarker for radiation-induced cellular senescence that may be 

associated with the late effects of cancer therapy.92 These findings leave open the possibility that 

persistent senescent cells and SASP-associated inflammation are treatment-induced and can 

exacerbate chronic disease in cancer survivors.  

1.5 Increased senescent cell burden contributes to disease in physiologic 
and premature aging 

Pathologic changes induced by the persistence of senescent cells may not be limited to 

cancer- and cancer treatment-associated effects, but may also be promoted in tissues during 

physiological or accelerated aging.45,58,93 This may be exacerbated by mechanisms that enhance 

accumulation or inhibit the resolution of cellular senescence. For example, the application of 

cellular stress, such as that induced by radiotherapy or traumatic brain injury, may induce DNA 
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damage, oxidative stress and inflammation, dramatically increase a tissue’s senescent cell burden, 

and overwhelm the tissue’s ability to target and remove senescent cells.8,45,90,94,95 In tissues 

containing senescent cells, high levels of SASP-associated matrix metalloproteinases (MMPs) 

have been shown to induce autocrine ligand shedding, which renders senescent cells less 

vulnerable to immunosurveillance and clearance.96 In aged individuals, increased HLA-E 

expression on senescent cell surfaces may inhibit NK and T cell responses allowing the persistence 

of senescent cells.97 Moreover, cellular senescence has been described as contagious and is shown 

to mediate a ‘bystander effect’ by which senescence programming can spread from cell to cell 

through the paracrine effects of SASP secretory factors.28,29,38 These mechanisms of rapid 

accumulation, persistence, and amplification may underlie the ability of senescent cells to impact 

organ function and lead to pathologic changes in aging. 

During aging, replicative senescence is accompanied by alternative RNA splicing of 

multiple genes including lamin A (LMNA).98,99 Alternative splicing of LMNA mRNA induces 

production of progerin (C-terminally truncated version of lamin A protein), initiates accumulation 

of progerin-induced DNA damage, and contributes to the induction of cellular senescence.98-102 

Senescent cells are also thought to play a role in premature aging syndromes such as Hutchinson-

Gilford Progeria Syndrome (HGPS).101,102 In children with HGPS, mutations in the LMNA gene 

result in progerin-producing alternative splicing, accelerated accumulations of progerin compared 

to normally aged individuals, and early onset of premature aging symptoms.100,103 In contrast to 

fibroblasts from healthy donors, HGPS-derived fibroblasts have a shortened replicative lifespan, 

adopt an inflammatory SASP phenotype, and undergo premature cellular senescence.101  Targeting 

senescent cells in both wild-type and progeroid mouse models delays age-related deterioration58,93, 
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suggesting that the age-related accumulation of senescent cells contributes to cellular dysfunction 

in physiologic and premature aging.  

1.6 Cellular senescence promotes age-related diseases including neurodegeneration 

Cellular senescence and SASP contribute to organ dysfunction and tissue pathology in a 

variety of age-related diseases including pulmonary fibrosis28,50, osteoarthritis104,105, 

atherosclerosis106-108, and Alzheimer’s disease.46,51,109 Studies of cellular senescence have 

identified increased numbers of senescent cells in aged human tissues, including the brain.46,51,94,110 

This elevated senescent cell burden in older patients has been suggested to contribute to disease. 

For example, increased numbers of senescent microglial cells are thought to contribute to poorer 

outcomes following traumatic brain injury in aged individuals due to an exaggerated microglial 

response and subsequent neuroinflammation.51,94,95 Cellular senescence has also been observed in 

several neurodegenerative diseases.51 The specific effects of cellular senescence vary based on the 

senescent brain cell type (Figure 1.2). For example, senescence of neural progenitor cells, as can 

occur in multiple sclerosis, may inhibit oligodendrocyte-mediated remyelination.74 Increased 

numbers of senescent endothelial cells are thought to promote atherosclerosis and disrupt the 

blood-brain interface.106-108,111 In patients with Parkinson’s disease, increased numbers of 

senescent astrocytes may contribute to neurodegeneration.112,113 Patients with Alzheimer’s disease 

(AD) also have increased numbers of senescent astrocytes as well as aggregates of senescent 

oligodendrocyte precursor cells along amyloid plaques.46,51,80 Consistent with the hypothesis that 

cellular senescence promotes neurodegeneration, senescent astrocytes induce neurotoxicity in co-

culture8,46,79, while targeting cellular senescence in AD model mice improves neurocognitive 

function.80  
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Recently, the p16-3MR and INK-ATTAC transgenic mouse models have facilitated the in 

vivo study of cellular senescence in disease progression.42,93 In the p16-3MR mouse, the p16 

promoter drives 3MR (trimodality reporter) expression containing monomeric red fluorescent 

protein and truncated herpes simplex virus 1 thymidine kinase (HSV-TK).42 Intraperitoneal 

administration of ganciclovir selectively targets HSV-TK leading to apoptosis of senescent cells.42 

In contrast, the INK-ATTAC model takes advantage of the previously developed FAT-ATTAC 

model (fat apoptosis through targeted activation of caspase) by replacing the previously-developed 

promoter with that of p16 and adding the coding sequence for enhanced green fluorescent protein; 

this model uses AP20187 injection to induce apoptosis in senescent cells.93 The identification and 

subsequent elimination of fluorescently-labeled, p16-positive senescent cells in these models has 

helped to characterize the functional roles of cellular senescence in disease.42,93 For example, 

targeting senescent cells in a model of tau-dependent neurotoxicity reduces gliosis, inhibits 

neurodegeneration, and improves short-term memory.109 Similarly, cognitive performance is 

improved following elimination of senescent cells in a mouse model of radiation-induced brain 

injury.114 Although we have focused on senescence-associated neurodegeneration, cellular 

senescence has been implicated in a variety of age-related diseases.45 For example, in vivo 

elimination of senescent cells reduces bone resorption and increases bone formation in age-

associated osteoporosis, reduces glomerulosclerosis in the aged kidney, attenuates senile 

lipodystrophy, and improves cardiac stress response in aged mice58,115 These mouse models 

demonstrate the potential value of therapeutic targeting of senescent cells in cancer- and age-

related diseases.  
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1.7 Cellular senescence is regulated by p53 and its physiological isoforms 

This review marks a significant milestone of 40 years of Carcinogenesis publication 

history and p53 research116-118 and 15 years of p53 isoform research.119 TP53 has been shown to 

regulate a variety of cellular functions including the induction of cellular senescence.18,120 

Senescent cells develop persistent p53-positive nuclear foci thought to maintain cellular 

senescence and referred to as “DNA segments with chromatin alterations reinforcing senescence” 

or DNA-SCARS.121 Inhibition of p53 allows arrested cells with low expression of p16 to re-enter 

the cell cycle suggesting that cellular senescence is reversible at least in some contexts and is 

maintained by p53.68,71,122 In addition to the canonical full-length p53 (FLp53 or p53a), the TP53 

gene produces at least 12 truncated isoforms which can positively or negatively modulate FLp53 

activity.119,123 Of these p53 isoforms, D133p53a and p53b (Figure 1.3) are best characterized as 

endogenous regulators of cellular senescence.18,124  

The production of p53b is increased in aged and DNA-damaged cells through alternative 

splicing regulated by serine- and arginine-rich splicing factors, namely decreased SRSF3 and 

increased SRSF7 activity, respectively.125,126 Proteasomal degradation of FLp53 and p53b is 

mediated by the mouse double minute 2 homolog (MDM2) through direct binding to the trans-

activating domain (TAD), a domain conserved in the alternatively spliced p53b isoform.119,127,128 

In contrast, D133p53a is initiated transcriptionally from an alternate promoter in intron 4 and 

translationally at a methionine codon in exon 5 (corresponding to the codon 133 in FLp53), leading 

to production of an N-terminus truncated protein lacking the TADs and proline-rich domain 

(PRD).119 Thus, D133p53a has been shown to be only minimally affected by MDM2 

overexpression and is instead regulated at the protein level through chaperone-assisted selective 

autophagy.127,129 This process is inhibited by the E3 ubiquitin ligase STUB1 (also known as CHIP), 
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whose age-associated downregulation leads to increased autophagic degradation of D133p53a and 

induction of replicative senescence.129  

Functionally, p53b cooperates with FLp53 to increase its transcriptional activity and 

induce cellular senescence.18 In contrast, D133p53a functions as a physiological, senescence-

selective, dominant-negative inhibitor of FLp53 that protects cells from cellular senescence and is 

diminished following accumulation of DNA damage or in senescent cells with reduced 

STUB1.8,101,129,130 Consistent with these functions, senescent cells adopt a p53 isoform expression 

profile characterized by decreased D133p53a and increased p53b.18 This senescence isoform 

profile is accompanied by diminished replicative lifespan, reduced homeostatic cellular functions, 

and increased secretion of SASP-associated proteins including inflammatory cytokines and 

chemokines.18,46,87 Critically, modulation of this isoform profile, particularly through the 

restoration of the dominant-negative D133p53a, has been shown to rescue normal human cells 

from cellular senescence, restore homeostatic cellular functions, and inhibit the production and 

secretion of SASP proteins.8,18,46,87,101 

1.8 p53 isoforms modulate cellular functions and SASP in normal human cells 

After cellular senescence is induced, the primary cell-autonomous effect is the induction 

of cell cycle arrest. This reduction in replicative lifespan has been observed in a variety of normal 

human cells18,87,101 and contributes to age-related disease and conditions.45 For example, 

accumulation of senescent progenitor cells in the brain may predispose or worsen 

neurodegenerative diseases such as Alzheimer’s disease or multiple sclerosis.51,74,80 Modulation of 

the p53 isoform profile by reconstitution of D133p53a expression extends the replicative lifespan 

of normal human cells otherwise approaching senescence.18 Importantly, this extension is not 
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indefinite and thus not analogous to the immortalization and unbridled proliferation observed in 

tumor cells.87  

In addition to restoring replicative potential, p53 isoforms regulate normal cellular 

functions.8,46 For example, senescent astrocytes disrupt normal tissue homeostasis and mediate 

neurotoxicity through reduced production of nerve growth factor.46 Critically, homeostatic 

functions can be restored or enhanced through overexpression of D133p53a.8,46  Following 

restoration of D133p53a, the neuroprotective functions in senescent astrocytes are restored leading 

to increased neuronal survival in co-culture.8,46 Part of this neurotoxicity has been shown to be 

mediated by SASP-associated IL-6 secretion which can be ameliorated by IL-6 neutralizing 

antibodies.46 These findings support a critical role for p53 isoforms in restoring or enhancing 

normal cellular functions in senescence-associated disease. 

Another cell type that experiences dramatic loss of function is the CD8+ T cell.52 During 

aging, senescent CD8+ T cells are associated with increased susceptibility to infectious disease 

and reduced anti-tumor functions underscoring an important barrier to cancer immunotherapy in 

aged patients.52,87,88 Other inducers of T cell senescence include secreted proteins within the tumor 

microenvironment, cancer therapy, T-regs, and chronic infection.52,78,84-88,131  Critically, 

reconstitution of D133p53a in senescent CD8+ T lymphocytes restores expression of the co-

stimulating receptor CD28 and central memory markers (CD27 and CD62L) and decreases the 

expression of late-differentiated markers and immune checkpoint proteins LAG-3 and PD-1 

(Figure 1.4).87 Based on this research, the p53 isoforms have been identified as a potential 

mechanism to enhance T cell-based immunity via reprogramming or dedifferentiating senescent 

CD8+ T cells.87  
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Senescent CD8+ T cells are primarily defined by loss of CD28 expression.52 In contrast, 

exhausted CD8+ T cells are defined by increased expression of immune checkpoint proteins, such 

as PD-1, TIM-3, CTLA-4 and LAG-3.132 While T cell senescence and exhaustion are described as 

separate entities, these T cell states are not mutually exclusive and can coexist within the same 

tumor microenvironment.78 Because D133p53a inhibits cellular senescence and downregulates 

immune checkpoint proteins associated with T cell exhaustion87, it rescues both the senescent and 

exhausted states of CD8+ T cells back to their proliferative and functional state (Figure 1.4A). 

D133p53a thus has significant implications in cancer immunotherapy, including chimeric antigen 

receptor (CAR) T cell therapy (Figure 1.4B), where T cell senescence and exhaustion are major 

obstacles for improving therapy efficacy.78,133,134 

The p53 isoforms also regulate DNA repair.8,101,135 For example, although D133p53a 

overexpression does not protect normal human astrocytes from acute accumulation of DNA 

damage following radiation (i.e., g-H2AX foci indicative of DNA double-strand breaks, DSB), the 

cells have fewer DNA damage foci by 24 hours post-radiation, suggesting that D133p53a 

facilitates DSB repair.8 This is thought to be primarily regulated by RAD51, an essential factor for 

homologous recombination repair.101,135 Although a mechanism has yet to be described, 

accelerated resolution of 53BP1 foci in D133p53a-overexpressing cells 24 hours post-radiation 

may also indicate a role for D133p53a in promoting non-homologous end joining repair.8 In human 

pluripotent stem cells, remarkably high levels of D133p53a inhibit cellular senescence and 

promote DNA repair (Figure 1.5).130,135,136 In this context, these functions are thought to support 

the self-renewing potential and genomic stability of stem cells.130 Critically, while D133p53a 

inhibits the FLp53-inducible genes for cellular senescence, it does not inhibit those for DNA repair 

and apoptosis.130,135,136 This further supports the role of D133p53a in stem cell function and 



 
 

31 

integrity through ensuring genome stability and apoptotic elimination of severely damaged cells 

thereby suppressing malignant transformation. These characteristics of D133p53a are in marked 

contrast to loss or mutation of TP53, which leads to genomic instability, cell immortalization, and 

cancer (Figure 1.5).130 The selective nature of FLp53 inhibition by D133p53a facilitates the 

development of therapeutic applications of this non-mutagenic and non-oncogenic p53 isoform in 

senescence-associated diseases.   

1.9 Eliminating and reprogramming of senescent cells as therapeutic strategies 

With unprecedented population aging, it is critical to develop therapeutic strategies to 

improve and treat cancer- and age-associated disease.48 Interventions to target senescent cells and 

increase healthspan are of great interest and are under investigation in human trials.137-140 These 

anti-senescence therapies target specific features of cellular senescence, such as SASP-associated 

inflammation, or aim to eliminate or reprogram senescent cells to reduce senescent cell burden in 

aged individuals (Figure 1.6).   

The non-cell-autonomous effects of cellular senescence are mediated through the 

inflammatory SASP.25 Therapeutics that specifically target the morphology and functions of 

senescent cells, such as SASP, are referred to as senomorphics.139 These treatments may prevent a 

number of SASP-associated effects on the microenvironment including tumor promotion.25,30 

Because NF-kB regulates SASP, inhibitors of NF-kB represent a method to modulate SASP and 

improve aging phenotypes.139,141 For example, IKK/NF-kB inhibition by metformin prevents the 

pro-tumorigenic effects of SASP in vitro and improves healthspan in an aging mouse model.142,143 

Additional SASP inhibiting therapeutics include glucocorticoids, HMGCR-inhibiting statins, and 

JAK1/2 inhibitors.144-147 
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In addition, characterizing the mechanisms by which persistent senescent cells resist 

apoptosis may provide effective treatment.139 For example, upregulation of anti-apoptotic proteins 

such as BCL-2 aids in the persistence of senescent cells.22 BCL inhibitors have been used to inhibit 

anti-apoptotic proteins and induce apoptosis in senescent cells.148,149 Senolytic compounds 

dasatinib and quercetin are also effective and have been shown to reduce senescent cell burden in 

research models and in human clinical trials.138,140,150 Additional methods of inducing apoptosis in 

senescent cell populations are also under investigation such as the FOXO4 interfering peptide 

which localizes to DNA-SCARS and disrupts FOXO4-p53 signaling to induce p53-dependent 

apoptosis and improve age-related renal dysfunction.151  

Compared to their non-senescent counterparts, senescent cells are reported to have multiple 

metabolic pathway alterations including increased glycolysis and mTOR activity.152 Leveraging 

these metabolic differences may provide additional opportunities to target senescent cells. For 

example, rapamycin, an mTOR inhibitor, reduces secretion of SASP proteins and prevents tumor 

promotion by senescent fibroblasts in a mouse model of prostate cancer.153 In a lymphoma model, 

therapeutic induction of cancer cell senescence identified increased glycolysis and a reliance on 

autophagy as potential therapeutic targets in cancer.154 The high metabolic activity reported in 

senescent cells has been suggested to be related to SASP factor production and secretion.152,154 As 

such, the targeting of these senescence-associated metabolic pathways may provide relief from the 

non-cell-autonomous effects of SASP. 

Because p53 and p53 isoforms have been shown to have critical roles in maintaining and 

inhibiting cellular senescence, current research also aims to identify compounds which modulate 

these proteins. The importance of p53 in maintaining cellular senescence is also supported by work 

with senescent human cells with low p16 expression, which have been shown to re-enter the cell 
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cycle upon inactivation of p53.122 Experimental reversal of the senescence-associated p53 isoform 

profile in non-disease and progeroid primary human cells restores replicative lifespan, improves 

homeostatic cellular functions, and reduces secretion of SASP-associated proteins including 

inflammatory cytokines and chemokines.18,46,87,101 In particular, as mentioned above, the 

senescence-selective, dominant-negative effect of D133p53a over FLp53 suggests that targeting 

FLp53-dependent senescence may hold promise in reprogramming senescent cells for therapeutic 

purposes.130,136  

In addition to their use in cancer immunotherapy, CAR T cells can also be engineered to 

target a disease-specific antigen on non-tumor cells. Molecularly engineered CD8+ T cells 

expressing a CAR against such antigen may hold promise in targeting senescent cells or treating 

age-related disease.155,156 For example, senescent cells have been shown to induce fibrosis through 

the activation of fibroblasts.28,157,158 In the heart, activated cardiac fibroblasts were successfully 

targeted by CAR T cells resulting in reduced cardiac fibrosis and improved cardiac function.155 

Other immune-mediated strategies that are of interest in future studies include enhancing the 

immunogenicity or immune cell clearance of senescent cells such as through the identification of 

senescence-specific cell surface proteins or enhancement of T cell cytotoxicity, respectively. For 

example, CAR T cell-mediated senolysis may be accomplished through targeting of the 

senescence-specific urokinase-type plasminogen activator receptor (uPAR) and leads to improved 

function and reduced fibrosis in a hepatic injury model and prolonged survival in a lung tumor 

model of treatment-induced senescence.156 In this scenario, the D133p53a-mediated functional 

reprogramming of senescent CD8+ T cells, as described above, may also represent an approach 

for enhancing senescence-eliminating strategies in aged individuals and patients with age-

associated diseases.87  
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Finally, the identification of senolytics or senescence reprogramming therapeutics requires 

a thorough understanding of the contexts in which senescent cells maintain beneficial or harmful 

roles. For example, cellular senescence is critical for placental development, embryogenesis, and 

wound healing suggesting that senolytics could be detrimental in these processes.35,42,54 In addition 

to biologic context, the treatment goal would be an important consideration for the use of senolytics 

in disease. For example, senescent cells promote tumor-associated angiogenesis suggesting that 

targeting senescent cells may limit tumor progression.25,32 However, increased angiogenesis and 

endothelial activation may also improve vascular access to tumors for immunotherapy. This could 

be particularly important in tumors with abundant desmoplastic stroma and poor immune 

infiltration such as pancreatic carcinomas.77 These examples underscore the importance of 

considering both the specific physiologic context and therapeutic goal when investigating the 

utility of senolytics in disease progression. 

1.10 Future directions 

 With a growing body of evidence identifying the functional roles of cellular senescence 

and SASP in aging, cancer, and cancer treatment-associated diseases, it is now time to translate 

accumulated knowledge into therapeutic approaches such as elimination or reprogramming of 

senescent cells. Cell-based studies suggest that the p53 isoforms are a promising target to be 

modulated for reprogramming senescent cells.8,18,46,87,101 Extending these studies into animal 

models and accumulating in vivo functional data will be critical to the development of translational 

applications. However, the transcriptional and translational mechanism for generating D133p53a 

only exists in humans and primates46; therefore, these studies necessitate the development of 

transgenic mice humanized for this p53 isoform. Future studies using D133p53a-humanized mice 

will seek to recapitulate cancer- and age-associated human diseases such as neurocognitive 
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dysfunction in radiotherapy-induced brain injury or Alzheimer’s disease and cardiovascular 

disease in HGPS models.   

To support the therapeutic applications of p53 isoforms, repurposed drugs and small 

molecule compounds that modulate their expression and activity need to be identified via high-

throughput screening. Previous data on the p53 isoform regulatory mechanisms can help to direct 

the screening strategies, for example, through the modulation of autophagy, STUB1 or chaperone 

functions (Figure 1.3C).129 In addition, development of methods to inhibit the alternative RNA 

splicing generating p53b may be pursued based on the analysis of the regulatory splicing factors 

SRSF3 and SRSF7 and their binding cis-elements (Figure 1.3B).125,126 Once potential compounds 

are identified, these screens may benefit from findings in previous studies including which cell 

types (e.g., astrocytes and CD8+ T cells) and phenotypes (e.g., senescence bypass and SASP 

expression/secretion) might be used to validate candidate compounds.8,46,87 

To explore a wider range of therapeutic applications of the p53 isoforms, it is important to 

examine their in vivo expression profiles in various human tissues and organs of different ages, as 

well as different cancer types. A simultaneous in situ detection of multiple isoforms is also needed 

to dissect a whole picture of the complex and concerted regulations and functions of different p53 

isoforms. Recently, a multiplex long amplicon digital PCR was developed to specifically and 

simultaneously quantify individual p53 transcripts.159 In addition, RNAscope or BaseScope allows 

in situ detection of multiple isoform mRNA species on human tissue section slides.160,161 These 

new assays should overcome the current difficulty of detecting low-abundance isoforms from large 

database repositories such as the Cancer Genome Atlas (TCGA).162 Furthermore, the development 

of an efficient and high-resolution method for in situ detection of senescent human cells from 

donors of different ages and in various tissues types, including tumors and the tumor 
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microenvironment, will systemically identify cell types undergoing cellular senescence in human 

tissues. This type of application has the opportunity to further dissect critical hypotheses, such as 

the role of cellular senescence in dysfunction of tumor-associated T cells78 or in the decline of 

adult tissue stem cell populations in the elderly163, representing major advances in the field of 

cancer and aging research.  

 Finally, as discussed, one of the major remaining questions in cellular senescence research 

is whether cellular senescence is truly reversible or irreversible. Cellular senescence is primarily 

described as a permanent cell cycle arrest. However, we have described several studies where at 

least a population of apparently senescent cells regain pre-senescence functions.18,68,71,122 

Proponents of the reversibility of cellular senescence would suggest that these studies identify 

potential mechanisms by which senescent cells might be reprogrammed back to their pre-senescent, 

functional state. It is important to note that several studies that demonstrate reversibility of 

senescence use specific experimental interventions that may not commonly occur in the context of 

spontaneous senescence escape and may be more relevant to anti-senescence therapeutic 

applications. In addition, since a population of cells undergoing senescence is likely to be 

heterogeneous, it is possible that a small population of near-senescent or incompletely senescent 

cells are subject to reprogramming while those cells that have already committed to cellular 

senescence remain permanently senescent. It has also been suggested that not all pre-senescence 

features can be rescued but that there is a subset of functions, such as cellular proliferation, which 

can be restored in senescent cells underscoring the complexity surrounding the reversibility of 

cellular senescence. Further studies are necessary to clarify the identity of the cells that regain pre-

senescent cell functions and compare the functional profile of these rescued cells to their fully 

senescent counterparts. Although it is not clear whether reprogramming of fully senescent cells is 
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achievable, it is likely that this type of intervention will reduce the spread of cellular senescence 

within a population by inhibiting the induction of cellular senescence in pre-senescent cells. 

Critically, this suggests a benefit for combining anti-senescence strategies, such as reprogramming 

therapies and senolytics, to enhance the overall therapeutic effect by inhibiting both the 

accumulation and persistence of senescent cells, respectively. These and other efforts to identify 

mechanisms to target, eliminate, or reprogram senescent cells and SASP in disease have wide-

reaching implications for the treatment of cancer and aging. 
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Figure 1.1. SASP mediates the Non-Cell-Autonomous Effects of Cellular Senescence. The 
factors secreted as part of SASP (senescence-associated secretory phenotype) mediate a variety 
of effects including epithelial hyperplasia, tumor growth, and extracellular matrix remodeling. 

These factors also serve to reinforce cellular senescence by inducing senescence programming in 
adjacent cells. Abbreviations: GROa, growth-regulated oncogene-alpha; HGF, hepatocyte 

growth factor; IGFBP7, insulin-like growth factor-binding protein 7; IL, interleukin; MCP-1, 
monocyte chemoattractant protein-1; MMP, matrix metalloproteinase; PAI1, plasminogen 

activator inhibitor-1; TFPI, tissue factor pathway inhibitor; THBS1, thrombospondin-1; VEGF, 
vascular endothelial growth factor. 
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Figure 1.2. Effects of Cellular Senescence in the Brain Tumor Microenvironment. Cellular 
senescence represents a critical barrier to tumor initiation; however, SASP may induce tumor 

progression and recurrence underscoring the complex nature of cellular senescence and SASP. 
Further complicating the potential impact of cellular senescence in the brain tumor 

microenvironment, induction of replicative or stress-induced senescence in resident brain cells 
promotes the development of age-associated neurodegeneration and is suggested to mediate an 

array of effects including reduced proliferation of neural progenitor cells, poor anti-tumor 
immune response, and reduced myelination by oligodendrocytes. The non-cell-autonomous 
effects of cellular senescence are mediated by the altered homeostatic functions of senescent 

cells. For example, perturbed glutamate metabolism and SASP in senescent astrocytes is 
suggested to promote neuronal toxicity. Additional effects caused by exposure of non-senescent 
cells to senescent cell-derived SASP factors include induction of cancer cell proliferation, tumor 

recurrence, and angiogenesis. 
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Figure 1.3. Regulation of FLp53 and its Senescence-modulating Isoforms, p53b and 
D133p53a.   (A) The TP53 gene produces at least 12 isoforms including full-length p53 (FLp53; 
p53a), p53b, and D133p53a. (B) The expression of p53b is increased in aged and damaged cells 
due to an age-associated reduction in SRSF3 and DNA damage-induced enhancement of SRSF7 
activity, respectively. Both FLp53 and p53b are subject to proteasomal degradation regulated by 

MDM2 binding to the trans-activating domain (TAD). (C) In contrast, D133p53a lacks this 
MDM2 binding domain and is instead regulated by STUB1-mediated, chaperone-assisted 

selective autophagy. Downregulation of STUB1 reduces D133p53a protein during replicative 
senescence. 
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Figure 1.4. CD8+ T Cell Senescence is Rescued by D133p53a. (A) CD8+ T cells undergo 
cellular senescence and exhaustion during physiologic aging or when exposed to a variety of 
stressors including chronic infection or cancer. Differentiation of naïve T cells into effector T 
cells occurs after exposure to antigens and is accompanied by increased expression of immune 

checkpoint proteins, loss of the central memory phenotype, and reduced self-renewal. 
Restoration of D133p53a expression leads to reprogramming of T cells through enhanced 
expression of co-stimulatory receptor CD28, inhibition of cellular senescence, increased 

expression of central memory markers (CD62L, CD27), and downregulation of exhaustion-
associated checkpoint proteins (e.g., PD-1, LAG-3). These findings suggest that D133p53a has 
critical functional implications for restoring immune function in the elderly and in individuals 

with chronic diseases. (B) D133p53a-regulated factors may also contribute to the improvement 
of cancer immunotherapies such as CAR T cell therapy. 



 
 

42 

 

Figure 1.5.  Functional Contrast Between p53 Deficiency and Increased D133p53a 
Expression in Human Induced Pluripotent Stem Cells. Loss or mutation of TP53 leads to 
inhibition of cellular senescence, apoptosis, and DNA repair which promotes self-renewal but 
inhibits the elimination of damaged cells and impairs genome stability. In contrast, increased 
D133p53a, either through overexpression or endogenous upregulation, inhibits cellular 

senescence but not apoptosis or DNA repair. This selective inhibition of FLp53 activity by 
D133p53a promotes self-renewal of stem cells while allowing elimination of damaged cells and 
promoting genomic stability. Although mutation or deletion of FLp53, with Yamanaka factors, 
leads to enhanced production of human induced pluripotent stems cells, disruption of all FLp53 

activities is associated with tumorigenesis. In contrast, increased expression of D133p53a in 
pluripotent stem cells is neither mutagenic nor oncogenic. 
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Figure 1.6.  Anti-Senescence Therapies: Methods to Target Senescent Cells in Disease. Anti-
senescence therapies have been developed to target senescent cells in age-associated diseases and 

have been shown to hold promise in cell culture studies, in mouse model experiments, and in 
human clinical trials. Methods that are being investigated include inducing apoptosis in 

senescent cells, enhancing immune-mediated senescent cell clearance, targeting of functional or 
morphologic senescence phenotypes such as SASP (senomorphics), and cellular reprogramming 

to inhibit cellular senescence and restore homeostatic cellular functions. 
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 RADIATION-INDUCED ASTROCYTE SENESCENCE IS 
RESCUED BY D133P53 

Portions of this chapter are published in: Turnquist C, Beck JA, Horikawa I, Obiorah IE, Von 
Muhlinen N, Vojtesek B, Lane DP, Grunseich C, Chahine JJ, Ames HM, Smart DD, Harris BT, 
Harris CC. Radiation-induced astrocyte senescence is rescued by Δ133p53. Neuro Oncology 
2019;21(4):474-485.  

2.1 Introduction 

Cranial radiation therapy is used to effectively treat brain cancer in adult and pediatric 

patients.1,2 Since its development, protocols have evolved to incorporate methods to reduce side 

effects such as shielding the hippocampus and fractioning the total radiation dose.3-5 However, 

even with improvements over 40% of patients surviving greater than 6 months experience late side 

effects. In up to 5% of these patients, neurocognitive impairment progresses from decreased 

attention and problem-solving ability to memory loss, ataxia, and dementia.6,7 Late effects may 

also develop in pediatric patients for whom radiation may be prescribed to treat the two most 

common cancer types: leukemia and glioma.8-10 Side effects in these patients include deficits in 

social functioning, vocational difficulty, and poor performance in Intelligence Quotient (IQ) 

testing and are most severe in the youngest patients receiving the highest radiation doses.4,9-13 As 

the number of cancer survivors increases, it becomes increasingly critical to understand the causes 

of these late effects and to develop strategies to prevent them. 

Side effects of cancer therapy may be associated with injury to non-tumor cells.14 

Following radiation exposure and accumulation of DNA damage, cells may adopt one of several 

cell type-specific responses, including induction of cellular senescence.5,15 Importantly, although 

senescent cells do not replicate, they may avoid clearance and persist in tissues while continuing 

to produce inflammatory factors that contribute to tissue injury.16,17 In this way, radiation-induced 
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cellular senescence is being recognized as an important mediator of tissue dysfunction promoting 

chronic inflammation and contributing to radiation-induced side effects including pulmonary 

fibrosis and cerebrovascular dysfunction.18,19  

To investigate the role of cellular senescence in cranial radiotherapy, this study examines 

brain tissue from patients who have undergone brain radiation treatment and identifies several 

senescent cell types including astrocytes. Astrocytes perform many neuroprotective functions 

including production of neurotrophic factors. However, astrocytes may also promote 

neurodegeneration in some diseases, including Alzheimer’s disease, which is thought to be related 

to induction of a senescence-associated secretory phenotype, or SASP.17,20 The role of astrocytes 

and astrocyte senescence in radiation-induced brain injury has not been previously characterized.6  

After identifying senescent astrocytes in irradiated tissues, this study investigates the 

potential functions of astrocyte senescence and SASP in promoting brain injury. Based on previous 

studies20 identifying regulation of replicative senescence by one of the p53 isoforms, ∆133p53, 

this study examines the role of ∆133p53 in regulating radiation-induced astrocyte senescence. 

These findings identify restoration of ∆133p53 as a potential therapeutic approach to inhibiting 

radiation-induced astrocyte senescence, promoting DNA repair in irradiated astrocytes, and 

preventing astrocyte-mediated neuroinflammation.  

2.2 Methods 

2.2.1 Human Patient Tissues 

Case tissues were acquired with full IRB approval from the Georgetown Brain Bank, 

Histopathology Tissue Shared Resource at Georgetown University, and Johns Hopkins Brain Bank 

and included non-tumor brain tissue from cancer patients with a history of cranial radiation 
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treatment, with no history of treatment, or from non-disease, age-matched controls collected at 

autopsy (Table 2.1). Patients receiving chemotherapy or immunotherapy were excluded14.  Tissues 

were anonymized, labeled with senescence-associated proteins (p16, Hp1g; Appendix), and 

examined by three pathologists (J.B., B.H., I.O.).  Each control and radiation-treated tissue was 

assigned an immunoreactivity score in a blinded manner based on the intensity of 

immunohistochemical labeling (Table 2.1, Figure 2.1). Quantification of p16INK4A-positive 

astrocytes was completed in 20 microscopic fields (0.5 mm2) from untreated cancer patients (n = 

4) and cancer patients receiving cranial radiation treatment (n = 4). In addition, three patients 

received stereotactic radiotherapy allowing for comparison of irradiated and untreated regions 

within the same patient (Figure 2.1A, C-D); these case-matched tissues were further reviewed to 

identify Hp1g-positive cell types (Figure 2.1H).  

2.2.2 Cell Culture and Treatments 

Primary human astrocytes were obtained from Sciencell (Carlsbad, CA, USA) and 

maintained in Astrocyte Medium supplemented with 2% fetal bovine serum,1% astrocyte growth 

supplement from Sciencell (Carlsbad, CA, USA), and 1% penicillin/streptomycin solution. 

Astrocytes expressed astrocyte-lineage marker (GFAP), were split at a ratio of 1:3 and continued 

to proliferate through passage 20. All experiments used proliferative, low passage astrocytes. SA-

β-gal staining was performed with the Senescence Associated (SA)-b-Galactosidase Staining Kit 

(Cell Signaling Technology, Danvers, MA, USA). Quantification of IL-6 in the cell culture media 

was performed with the Human IL-6 ELISA Kit (Sigma-Aldrich). Where indicated, human cells 

were exposed to ionizing radiation in an X-Rad 320 biologic irradiator (Precision X-ray, Inc.).  
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2.2.3 Lentiviral Vector Transduction 

As described previously20, D133p53 was cloned into the lentiviral vector pLOC-GFP-

Blasticidin (Open Biosystem). Lentiviral constructs, together with the Trans-Lentiviral GIPZ 

packaging system (Open Biosystem), were transfected into 293T/17 Cells (ATCC, American Type 

Culture Collection) using Lipofectamine-2000 (Invitrogen), and the viral particles were collected 

after 48 hours.  

2.2.4 Statistical analysis 

Data are presented as mean and standard deviation of at least three independent 

experiments. Comparisons were made using two-sided, unpaired Student’s t test. Differences were 

considered significant at a value of * p ≤ 0.05, ** p ≤ 0.01, and *** p ≤ 0.001 or NS (not significant). 

2.2.5 Western Blotting 

Cells were lysed in radioimmunoprecipitation assay buffer (RIPA). Lysates were kept on ice 

for 30 minutes prior to sonication. Protein concentration was measured using the Bradford assay 

method. NuPAGE 4X loading buffer was added to all lysates and then boiled for 5 minutes. Then, 

40 μg of protein was loaded onto a Tris-glycine gel (Novex) for electrophoresis. Proteins were 

then transferred onto a polyvinylidene difluoride (PVDF) membrane. Membranes were blocked in 

1:1 mixture of Superblock and Tris Buffered Saline (TBS, 125 mM Tris and 200 mM NaCl), 

containing 0.1% Tween-20. Membranes were incubated in the primary antibodies (Appendix) 

overnight at 4°C and washed 3 times in TBS-Tween-20. Membranes were then incubated in a 

mouse or rabbit HRP- conjugated secondary antibody (Pierce) 1 hour at RT and the signal 

visualized SuperSignal developing reagent and visualized using the Biorad imager. ImageJ 

software was used to quantify gel bands from immunoblots using densitometry. 
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2.2.6 Tissue Immunohistochemistry (IHC) and Immunofluorescence (IF) 

Frozen and formalin-fixed paraffin embedded human tissue sections were washed in 

phosphate-buffered saline (PBS) before blocking for 1 hour in PBS containing 0.1% Triton X and 

10% donkey serum (Sigma-Aldrich). Donkey serum is used to block non-specific binding sites 

before incubation with primary antibody (Appendix) overnight at 4°C. After overnight incubation 

they were washed in PBS 3 times for 10 minutes, before incubation with the appropriate conjugated 

secondary antibodies for 1 hour at room temperature (RT). The secondary antibody was conjugated 

to fluorophores: Alexa-488, -568 and -647 (Invitrogen, 1:400). After washing in PBS 3 times for 

10 minutes, sections were incubated for 10 minutes in 4’,6-diamidino-2-phenylindole (DAPI, 

10ug/mL, Sigma- Aldrich) to counterstain the cell nuclei, and rinsed 3 times for 10 minutes in 0.1 

M phosphate buffer (PB). Sections were mounted and slides coverslipped with FluorSave 

mounting medium (Chemicon). For IHC on paraffin sections, slides were heated to 65°C before 

immersion in histoclear and rehydration with graded alcohols. Sections were blocked in 1% H2O2 

in PBS-Tween 20 (PBS-T) and then in 5% normal goat serum in PBS-T prior to application of 

primary antibodies (Appendix). Binding of the primary antibody was detected using a mouse or 

rabbit biotinylated secondary antibody (Pierce) with an ABC standard kit (Vector Laboratories). 

Visualization was enabled using a 0.05% diaminobenzene hydrochloride solution (DAB; Sigma-

Aldrich).  

2.2.7 Immunocytochemistry 

Cells were washed with PBS and fixed for 10 minutes with 4% paraformaldehyde. Cells 

were permeabilized with 0.01% Triton-X for 4 minutes, washed with PBS and then blocked in 5% 

fetal bovine serum (FBS) for 1 hour at RT. Primary antibodies (Appendix) were applied overnight 

at 4◦C. Cells were washed with PBS before incubation with a secondary antibody conjugated to 
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fluorophores: Alexa-488, 568 and 647 at a dilution of 1:400 (Life Technologies) and DAPI for 1 

hour. Coverslips were mounted on to slides with FluorSave mounting medium (Chemicon).  

2.2.8 Quantitative Real-Time Polymerase Chain reaction (qRT-PCR) 

Extraction of mRNA was performed using the RNeasy Mini Kit (Qiagen) according to the 

manufacturer’s instructions. Cells were homogenized and lysate mixed 1:1 with 70% ethanol and 

centrifuged through the RNeasy Mini Spin column. RNA was eluted with RNase-free water. The 

abundance and quality of the resulting RNA was assessed using a Nanodrop ND-1000 

spectrophotometer (Nanodrop Technologies). RNA samples were diluted so that 200 ng total RNA 

could be used for a 25 μl- reverse- transcription reaction. cDNA was synthesized using SuperScript 

II Reverse Transcriptase (Invitrogen). 

For the quantitative analysis of mRNA expression, the Tecan Sunrise 7500 real time PCR 

system (Applied Biosystem) was employed with the DNA binding dye SYBR Green (Qiagen) or 

Taqman (Life Technologies) primers for detection of PCR products. Each reaction was performed 

in triplicate using 2 μL cDNA in a final volume of 20 μL. The following thermal cycle was used: 

10 minutes-95°C; 40 cycles of 30 seconds-95°C, 40 seconds-primer specific annealing 

temperatures, 40 seconds-72°C. The expression level of each gene was analyzed using the ΔΔCt 

method and reported as relative expression normalized to the housekeeping gene. Taqman primers 

were purchased from Life Technologies (sequences available from Life Technologies). 

2.2.9 Antibodies 

Antibodies used in immunohistochemistry (IHC), Western blot (WB), and 

immunofluorescence (IF) are listed in Appendix.   
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2.3 Results 

2.3.1 Astrocyte senescence is increased in irradiated patient tissues. 

Radiation-induced cellular senescence is a stress-induced cell cycle arrest that may 

contribute to the development of radiotherapy side effects.18,19 To characterize cellular senescence 

in the brain, tissue samples from patients with or without a history of radiation treatment were 

examined. Immunohistochemistry was performed using antibodies against senescence-associated 

proteins p16INK4A and Hp1g21-23 (Figure 2.1A) and scored based on the intensity of cellular labeling 

(Figure 2.1B).  Tissue immunoexpression of senescence proteins was lowest in brain tissue from 

non-disease (ND), age-matched controls, was increased in untreated cancer patients, and was 

highest in irradiated tissues (Figure 2.1B). Similar results were observed in a subset of patients 

receiving stereotactic radiotherapy (Figure 2.1C-D) which in contrast to non-targeted whole brain 

radiotherapy, allows for comparison of irradiated to untreated brain regions within the same patient 

as an internal control.  

 We next aimed to characterize senescent cell types in irradiated patient tissues. HP1g- and 

p16INK4A-positive cells were identified by three independent pathologists (J.B., B.H., I. O.). The 

majority of senescence-associated markers co-localized with GFAP-positive astrocytes (Figure 

2.1E) underscoring the potential importance of astrocyte senescence in the brain’s response to 

radiation. The mild increase in cellular senescence in untreated cancer patient tissues compared to 

non-disease controls (Figure 2.1B) may indicate a role for the tumor microenvironment in 

promoting reactive astrocytosis and astrocyte senescence, which may be a general response of 

human astrocytes to injury. However, the number of p16INK4A-positive astrocytes was higher in 

patients receiving radiation treatment compared to untreated cancer patients (Figure 2.1F-G), 

suggesting that radiotherapy may exacerbate this response. Astrocyte senescence is also increased 
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in Alzheimer’s disease (Case 7, Figure 2.1C-D) and may promote neurotoxicity, highlighting the 

potential importance of astrocyte senescence in neurodegenerative diseases.16,17,20 Finally, focal 

Hp1g immunoreactivity was identified in several additional cell types, including microglia, which 

are important mediators of neuroinflammation24; however, this effect was less prominent than the 

described astrocyte senescence (Figure 2.1H). 

2.3.2 Radiation induces cellular senescence in human astrocytes 

Radiation can induce DNA damage either directly through ionization or indirectly through 

the production of free radicals.5,14 Adult and pediatric patients with brain cancer may receive 30 

to 60 Gy of radiation, which is administered in small doses or fractions of approximately 2 Gy per 

treatment until the total dose is achieved.1-3 After a single 2 Gy fraction, primary human astrocytes 

irradiated in vitro have significant increases in DNA double-strand breaks indicated by γH2AX (p 

= 0.013) and 53BP1 (p = 0.035) (Figure 2.2A-B).25  

Following accumulation of DNA damage, one of several cell-type specific responses may 

occur including induction of apoptosis, mitotic catastrophe, or cellular senescence.5,15 Our study 

has identified astrocytes as the major senescent cell type in irradiated brain tissues. To further 

characterize this, we next investigated astrocytes irradiated in vitro for the induction of cellular 

senescence, a response that may promote side effects of cancer treatment.18,19 Irradiated astrocytes 

experienced a significant increase in senescence-associated (SA)-β-gal staining beginning 2 days 

after irradiation (p = 0.010, 1.5-fold) and persisting for up to 1 week (p = 0.03, 2.3-fold) (Figure 

2.2C-D). SASP-associated cytokines, including IL-1β and IL-6, are known to be upregulated in 

patients and animal models following radiation treatment.20,26,27 To determine whether astrocytes 

may contribute to radiation-induced inflammation, we examined several cytokines implicated in 

neurodegeneration20,28 and found a significant increase in IL-1b (p = 0.016), IL-6 (p = 0.0005), 
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and IL-8 (p = 0.006) (Figure 2.2E). The significant induction of SASP cytokines in irradiated 

astrocytes underscores their potential role in promoting neuroinflammation in radiation-induced 

brain injury. In addition, radiation-induced astrocyte senescence was accompanied by a significant 

loss of IGF-1 (p = 0.015, Figure 2.2F), a growth factor reported to promote astrocyte-mediated 

neuroprotection and improve neurocognitive function in mouse models of brain injury.29,30 

Irradiated astrocytes also demonstrated increased expression of senescence-associated p16INK4A (p 

< 0.0001) and p21 (p = 0.009) (Figure 2.2G-I). Finally, radiation-induced astrocyte senescence 

was found to be dose-dependent with high SA-b-gal activity and secretion of IL-6 in human 

astrocytes irradiated with radiosurgical doses (10 Gy, Figure 2.3). Taken together, these in vitro 

results indicate that irradiated astrocytes undergo senescence, which is consistent with our findings 

in patient tissues, and with animal models of radiation-induced brain injury.27,28  

2.3.3 ∆133p53 is decreased in irradiated astrocytes and its overexpression protects 
astrocytes from radiation-induced cellular senescence 

Senescent astrocytes are observed in patients with neurodegenerative diseases including 

Alzheimer’s disease and amyotrophic lateral sclerosis and have been shown to have reduced 

expression of p53 isoform, ∆133p53.20 To identify brain cells expressing ∆133p53 in human brain 

tissue, immunofluorescence was performed using a ∆133p53-specific antibody MAP420,31 and 

cell-type specific antibodies for astrocytes (GFAP-positive20) or neurons (NeuN-positive32). The 

majority of ∆133p53 expression co-localizes with GFAP-positive astrocytes (Figure 2.4A) 

indicating that astrocytes are the predominant source of ∆133p53. Following radiation exposure, 

primary human astrocytes have decreased ∆133p53 (Figure 2.4B), which is further diminished 

after exposure to a second 2 Gy fraction (4 Gy total dose) (Figure 2.4C), suggesting that loss of 

D133p53 may be associated with the induction of radiation-induced astrocyte senescence.  
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As ∆133p53 is diminished in irradiated senescent astrocytes, we investigated whether 

reconstitution of ∆133p53 expression would protect astrocytes from radiation-induced senescence. 

First, a lentiviral vector expressing ∆133p53 or pLOC control vector was transduced in primary 

human astrocytes three days after radiation exposure (Figure 2.4D). Irradiated astrocytes with 

reconstituted ∆133p53 had reduced SA-β-gal activity compared to control astrocytes (p = 0.0006) 

(Figure 2.4E-F), indicating that ∆133p53 can rescue astrocytes from radiation-induced senescence. 

Finally, we examined the impact of transducing astrocytes with lentiviral vectors expressing 

∆133p53 or pLOC control prior to radiation exposure and found that astrocytes with ∆133p53 had 

no increase in SA-β-gal staining (p = 0.483) compared to an increase of approximately 55% in 

irradiated pLOC control astrocytes (p < 0.0001) (Figure 2.4G-H) demonstrating that increasing 

∆133p53 protects astrocytes from radiation-induced senescence when induced either prior to or 

after radiation exposure.  

2.3.4 ∆133p53 promotes DNA repair in irradiated astrocytes 

Recently, ∆133p53 has been shown to promote DNA repair in fibroblasts from patients 

with Hutchinson-Gilford Progeria Syndrome through the promotion of homologous recombination 

(HR) DNA repair protein RAD51.33 Following irradiation, RAD51 is significantly increased in 

astrocytes transduced with ∆133p53 (p = 0.016, Figure 2.5A). Although this increase may be due 

to accelerated cell proliferation34, confluent human astrocytes transduced with ∆133p53 

maintained a 2-to 3- fold increase in RAD51 (Figure 2.5B-C). The sustained increase in RAD51 

at confluency, which is associated with G1 arrest35, suggests that the effect of ∆133p53 on HR 

may be at least in part due to an increased baseline expression of RAD51, although this finding 

does not rule out a S/G2 phase-specific regulation of HR machinery. To further examine the role 

of ∆133p53 in HR, DNA double-stranded breaks were labeled with gH2AX. Six days after 
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irradiation, the percent of gH2AX-positive astrocytes was significantly reduced by ∆133p53 

transduction after radiation exposure (p < 0.0001, Figure 2.5D-E). To examine DNA repair kinetics 

at earlier time points, astrocytes were transduced prior to irradiation and labeled at 4 and 24 hours 

post-irradiation with RAD51, gH2AX and 53BP1 (Figure 2.5F-H). After four hours, the number 

of DNA damage foci labeled by gH2AX and 53BP1 was not significantly different (Figure 3.5G-

H), suggesting that both control and ∆133p53 transduced cells develop similar levels of radiation-

induced DNA damage; however, after 24 hours, ∆133p53-transduced astrocytes had fewer gH2AX 

(p = 0.00002) and 53BP1 foci (p = 0.0006), suggesting that ∆133p53 promotes DNA repair in 

irradiated astrocytes.  

2.3.5 ∆133p53 inhibits astrocyte-mediated neuroinflammation 

Because radiation-induced brain injury is associated with neurocognitive dysfunction, 

many studies focus on the effects of radiation on neurons and NPCs6,36,37. Secretory factors derived 

from senescent astrocytes are known to impair astrocyte-mediated neuroprotection in animal 

models38 and may promote the late effects of radiation injury by contributing to chronic 

neuroinflammation. Of the SASP cytokines, IL-6, is most frequently upregulated in 

neurodegeneration.39 Following radiation exposure, human astrocytes produce significantly more 

IL-6 (Figure 2.2), similar to replicatively senescent astrocytes, which are neurotoxic via IL-6 in 

neuron-astrocyte co-culture experiments.20 This was further examined through direct exposure of 

neural stem cells (NSCs) and mature neurons to IL-6 (5 ng/mL). After 24 hours, there was an 

approximately 10% increase in the percent of mature neurons expressing apoptotic marker, cleaved 

caspase-3 (p = 0.013; Figure 2.6A-B), and the viability of NSCs was reduced to less than 50% (p 
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= 0.0001; Figure 2.6C), suggesting that IL-6 plays a causative role in neuronal death mediated by 

radiation-induced senescent astrocytes. 

Because ∆133p53 was found to rescue irradiated astrocytes from senescence (Figure 2.4), 

we next investigated whether ∆133p53 rescues astrocytes from radiation-induced production of 

neurotoxic IL-6. Irradiated control astrocytes experienced a significant 5-fold increase in IL-6 

mRNA measured by qRT-PCR (p = 0.0005). In contrast, IL-6 mRNA was not significantly 

upregulated in irradiated astrocytes with restored ∆133p53 (p = 0.389, Figure 2.6D), indicating 

that astrocyte-mediated neuroinflammation is repressed by reconstitution of ∆133p53 after 

radiation treatment. Similar findings were also observed in astrocytes transduced prior to radiation 

including a significant reduction in secreted IL-6 (p = 0.017, Figure 2.6E). In addition, astrocytes 

transduced with ∆133p53 demonstrated a partial rescue of neurotrophic IGF-1 mRNA expression 

(p = 0.015, Figure 2.6F). Taken together, these findings suggest that radiation induces astrocyte 

senescence thereby promoting astrocyte-mediated neurotoxicity through the production of 

neurotoxic secretory factors. Critically, ∆133p53 has been identified as a potential therapeutic 

target for inhibiting radiation-induced astrocyte-mediated neurotoxicity (Figure 2.7). 

2.4 Discussion 

Radiation-induced brain injury may cause progressive cognitive deterioration, including 

dementia-like symptoms6. It shares pathological features with aging-associated neurodegeneration, 

including chronic oxidative stress, inflammation, and reduced neurogenesis.6,40,41 Current 

understanding of the pathogenesis of radiation-induced brain injury focuses on the acute loss of 

NSCs and its effect on hippocampus-dependent functions such as learning and memory.37,42 

However, few studies have addressed the role of astrocytes. Our finding that astrocytes 
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preferentially undergo senescence, while NPCs undergo cell death, indicates that astrocyte SASP 

may underlie the chronic nature of radiation-induced brain injury.  

Animal models of radiation-induced brain injury have identified hypertrophied astrocytes 

that persist for at least 12 months following radiation treatment.43,44 Based on our findings in 

irradiated human tissues and our previous findings in Alzheimer’s disease and ALS20, many of 

these hypertrophied astrocytes are senescent, an important pathologic characterization that likely 

extends to other disease processes in the brain. 

Following brain injury, astrocytes proliferate as part of reactive astrogliosis, which may 

lead to replicative senescence.20,45,46 In addition, direct injury including DNA injury or oxidative 

damage may induce premature cellular senescence.17,18,46 Both mechanisms of cellular senescence 

are controlled by p53 and its isoforms through p53-inducible cell cycle regulators, such as p21.20,31 

In humans, TP53 has at least 12 isoforms formed through alternative promoters or splicing that 

may promote or inhibit full-length p53 activities or have independent functions. Of these isoforms, 

D133p53 is the best characterized as an endogenous inhibitor of cellular senescence.20,31,33 Based 

on this and previous studies33, ∆133p53 enhances DNA repair in senescent cells by promoting HR; 

however, our study has also demonstrated that expression of ∆133p53 enhanced repair of foci 

positive for 53BP1, a component of non-homologous end-joining (NHEJ)47, suggesting that 

D133p53 may also regulate NHEJ in radiation injury by a currently unknown mechanism.  

In addition to accumulating DNA damage, senescent cells may promote inflammation 

through induction of SASP.16,17 Increased release of SASP cytokines IL-648,49 and IL-1b49 is 

reported in animal models of radiation-induced brain injury and may inhibit neurogenesis 

contributing to cognitive impairment.26,50,51 Using anti-inflammatory drugs to target and reduce 

neuroinflammation in radiation injury improves neurogenesis26 while IL-6 has been shown to 
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reinforce radiation-induced senescence in animal models52, underscoring the role of chronic 

neuroinflammation in promoting radiation-induced brain injury. Based on the findings outlined in 

this study, astrocyte senescence and astrocyte-derived neuroinflammation have been identified as 

potential contributors to radiation-induced brain injury.  

This and previous studies have demonstrated that ∆133p53, through the inhibition of full-

length p53, regulates p2131,33, RAD5133, and IL-620,33, each of which has been shown to be 

important in radiation-induced injury and neurotoxicity. Although the regulatory interactions 

between these factors have yet to be elucidated, our findings suggest that induction of the p53 

isoform, ∆133p53 may have potential therapeutic value by preventing astrocyte senescence and 

inhibiting astrocyte-mediated neuroinflammation (Figure 2.7). Critically, this endogenous isoform 

is produced in human cells and has not been shown to be mutagenic or oncogenic.20,31,53 To study 

the role of ∆133p53 in other cell types and the tumor microenvironment in vivo, ongoing studies 

seek to establish an animal model and identify compounds which modulate ∆133p53. Future 

studies aim to reverse the senescence phenotype in diseases, such as radiation-induced brain injury, 

in which cellular senescence may initiate or worsen disease progression.20,31,33   
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Figure 2.1. Astrocyte Senescence is Increased in irradiated Patient Tissues. (A) Expression 
of senescence-associated proteins, Hp1g and p16INK4, in irradiated and untreated non-tumor brain 

tissues using immunohistochemistry. (B) Tissues were examined in a blinded-fashion by three 
pathologists and scored from 0 (none) to 3 (high) based on intensity of cell labeling. (C) Hp1g 

and (D) p16INK4A immunohistochemical labeling in three patients receiving stereotactic radiation 
with comparison of irradiated to untreated tissue in the same patient as an internal control. *Case 
7 is from a patient previously diagnosed with Alzheimer’s disease in which astrocyte senescence 

is prominent and thought to promote neurodegeneration1.  (E) Immunocytochemistry of 
irradiated brain tissue demonstrating co-localization of p16INK4A and GFAP in astrocytes. (F) 

p16INK4A-positive astrocytes in irradiated human brain tissues using immunohistochemistry. (G) 
Quantification of p16INK4A-positive astrocytes in twenty microscopic fields (0.5 mm2) in non-

tumor brain tissue from untreated cancer patients (n = 4) and cancer patients receiving radiation 
treatment (n = 4). (H) Representative images of cell types expressing senescence-associated 
Hp1g in irradiated (stereotactic) and untreated brain tissue from the same patient, including 

endothelia, astrocytes, neurons, meninges, and microglia. Scale = 50µm.  
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Figure 2.2.  Radiation Induces Astrocyte Senescence and SASP. (A) Representative image 
and (B) quantification of radiation-induced DNA damage identified by immunolabeling of 

double-stranded DNA breaks by 53BP1 and γH2AX in primary human astrocytes 3 days after 
radiation exposure (2 Gy).  (C) Representative images of SA-b-gal staining in human astrocytes 

on day 3 after exposure to radiation (2 Gy) (D) Quantitative summary of the percent of astrocytes 
with SA-β-gal staining from 2 to 7 days after radiation (2 Gy). (E) Production of SASP-

associated cytokine mRNAs (IL-1b, IL-6 and IL-8 mRNA) and (F) neurotrophic factor mRNAs 
(NGF, GDNF, IGF-1) in irradiated or sham-treated primary human astrocytes measured by qRT-

PCR (Taqman). Representative images of (G) p16INK4 and (H) p21WAF1 immunolabeling in 
irradiated and sham-treated human astrocytes (I) Quantitation of p16INK4A and p21WAF1 

immunoreactivity in irradiated (2 Gy) and sham-treated primary human astrocytes on day 6. NS 
indicates p > 0.05, *p ≤ 0.05, **p ≤ 0.01, and ***p ≤ 0.001 by unpaired two-tailed Student’s t 

test. Scale = 25µm 
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Figure 2.3.  Radiation-induced Astrocyte Senescence is Dose-dependent. (A) Representative 
image and (B) Quantification of SA-β-gal staining in primary human astrocytes exposed to either 

2 Gy or 4 Gy (2 Gy fraction given twice 24 hours apart) and analyzed on day 6 after radiation 
exposure. (C) IL-6 production and (D-E) SA-b-gal staining in astrocytes exposed to 

stereosurgical doses of radiation (10 Gy). 
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Figure 2.4.  D133p53 is Decreased in Irradiated Astrocytes and its Overexpression Protects 
Astrocytes from Cellular Senescence. (A) Non-disease human brain tissue fluorescently-
labeled with antibodies to ∆133p53, astrocytic glial fibrillary acidic protein (GFAP), and 

neuronal-specific nuclear protein (NeuN) to identify cellular sources of ∆133p53 (arrows). (B) 
Primary human astrocytes labeled with nuclear staining (DAPI) and ∆133p53 on day 6 following 

either sham or radiation treatment (2 Gy). (C) Western blot analysis of ∆133p53 on day 6 in 
sham-treated or irradiated primary human astrocytes irradiated one time at 2 Gy or twice at 2 Gy 

24 hours apart (fractionated dose, 4 Gy total). (D) Nuclear D133p53 expression in human 
astrocytes transduced three days after radiation treatment (2 Gy) with either a GFP lentiviral 

vector driving D133p53 expression or its control vector (pLOC). (E) Representative image and 
(F) quantitative summary of SA-β-gal staining in primary human astrocytes with lentiviral pLOC 

and D133p53 transduced 3 days after radiation exposure (2 Gy). (G) Representative image and 
(H) quantification of SA-β-gal staining in primary human astrocytes transduced prior to radiation 

exposure (2 Gy). Scale = 25µm 
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Figure 2.5.  ∆133p53 Promotes DNA Repair. (A) RAD51 protein in sham and irradiated 
astrocytes expressing either control vector (pLOC) or ∆133p53 (B) Quantification and (C) 
representative western blots of RAD51 protein in irradiated astrocytes expressing pLOC or 

∆133p53 at low and high confluency. (D) Labeling of DNA double-strand breaks with γH2AX in 
transduced, irradiated astrocytes. (E) Quantitative summary of γH2AX staining on day 6 in 

irradiated human astrocytes transduced with pLOC or D133p53 on day 3 after radiation exposure 
(2 Gy). (F) Representative image of RAD51 and gH2AX labeling 4 hours after radiation 

exposure. (G) Quantification of gH2AX- and (H) 53BP1-positive foci at 4 and 24 hours after 
radiation exposure in astrocytes transduced prior to radiation treatment. NS indicates p > 0.05, *p 

≤ 0.05, **p ≤ 0.01, and ***p ≤ 0.001 by unpaired two-tailed Student’s t test. Scale = 5µm 
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Figure 2.6.  ∆133p53 Regulates Radiation-induced, Astrocyte-mediated Neurotoxicity. (A-
B) Immunopositivity of cleaved caspase 3 in mature neurons and (C) viability of neural stem 

cells following 24-hour IL-6 exposure (5ng/mL). (D) IL-6 mRNA production in sham and 
irradiated astrocytes transduced with either D133p53 (p = 0.389) or the control vector on day 
three and examined on day 6 by qRT-PCR (taqman). (E) IL-6 protein secreted by astrocytes 

transduced prior to radiation and examined by ELISA (F) IGF-1 mRNA expression in irradiated 
astrocytes transduced with pLOC or D133p53 vector prior to radiation exposure (p = 0.015) and 

examined by qRT-PCR (taqman). NS indicates p > 0.05, *p ≤ 0.05, **p ≤ 0.01, and ***p ≤ 0.001 
by unpaired two-tailed Student’s t test. Scale = 25µm 
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Figure 2.7.  Proposed Model of ∆133p53 Regulation of Astrocyte-mediated Neuroprotection 
and Neuroinflammation. Senescent astrocytes are increased in neurodegenerative diseases, 

including Alzheimer’s disease, and have diminished ∆133p53. Similarly, senescent astrocytes 
are observed in brain tissues from cancer patients receiving radiation treatment, suggesting that 
senescent astrocytes may contribute to chronic neuroinflammation in each of these pathologies. 
These findings are also reproduced in vitro where cellular senescence is induced in irradiated or 

replicatively exhausted astrocytes and is associated with loss of ∆133p53, adoption of the 
senescence-associated secretory phenotype (SASP), and diminished neurotrophic factor 

production, including insulin-like growth factor-1 (IGF-1), which can each be rescued by 
enhanced expression of ∆133p53. 1Turnquist et al., 2016; 2Current Study 
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Table 2.1 Patient tissue demographics and IHC scores. List of patient age and sex, radiation 
treatment including type and dose of radiation (whole brain, stereotactic) and p16INK4A and Hp1γ 
scores. Abbreviations: AD, Alzheimer’s disease; CM, case-matched; G, gray; ND, Non-disease; 

N/A, additional brain tissue not available for evaluation; S, stereotactic radiation; WB, whole 
brain radiation  

Group Case # Age/Sex Gy/Radiotherapy p16  Hp1g  

Brain radiation 1 68/M 40/WB +3 +1 

Brain radiation 2 49/M 30/S +3 +2 

Brain radiation 3 74/F 18/S +1 +3 

Brain radiation 4 74/M 15/S +2 +3 

Brain radiation 5 73/M 18/S +2 +3 

Brain radiation 6 64/M 30/WB+S +3 +3 

Brain radiation +AD 7 79/M 18S +3 +1 

Control(CM) 1 68/M -- +1 0 

Control(CM) 2 49/M -- +1 0 

Control(CM) 5 73/M -- 0 N/A 

Control(CM+AD) 7 79/M -- +2 +1 

Control (ND) 8 72/M -- 0 N/A 

Control (ND) 9 46/F -- +1 N/A 

Control (No radiation) 10 41/M -- 0 N/A 

Control (ND) 11 72/M -- N/A 0 

Control (ND) 12 61/M -- N/A 0 

Control (No radiation) 13 97/F -- N/A 0 
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3.1 Introduction 

Glioblastomas, or Grade IV astrocytomas, are the most common malignant brain tumor 

and are characterized histologically by cellular atypia, regions of pseudo-palisading necrosis, and 

microvascular proliferation.1,2 These tumors are difficult to treat with less than 50% of patients 

surviving one year after diagnosis.2 In 2005, the addition of temozolomide therapy to glioblastoma 

treatment protocols extended the two year survival rate by 15%.3 Temozolomide induces cellular 

senescence or permanent cell cycle arrest in glioblastoma cells.4-6 Cellular senescence is a 

protective mechanism that prevents the continued replication of DNA-damaged cells; however, 

cancer cells may develop methods to overcome cellular senescence programming leading to 

uncontrolled proliferation of abnormal cells and treatment failure. For example, many tumor types 

harbor mutations in TP537 which have been shown to inhibit treatment-induced senescence.8,9 In 

the case of temozolomide, the induction of senescence requires functional TP53 and sustained 

activation of the p53-target genes such as p21.9 In addition, inhibition of p53 activity is critical to 

the development of tumors in experimental models.10-12 Interestingly, the majority of 

glioblastomas lack p53 mutations.13 This suggests that p53 pathway dysfunction occurs through 

alternative mechanisms in glioblastomas. Factors that contribute to p53 dysregulation in 
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glioblastomas include altered expression of p53 regulators and failed induction of p53 targets.12,14-

16  

Another potential mechanism by which cells modulate p53 activity is through the altered 

expression of p53 isoforms.17 The p53 isoforms are truncated proteins physiologically expressed 

in normal human cells and produced through alternative RNA splicing or alternative initiation of 

transcription and translation.4,18 Two of the isoforms, D133p53a and p53b, serve as endogenous 

regulators of cellular senescence.4 The D133p53 isoform lacks the trans-activating domain (TAD) 

and dominant-negatively inhibits p53-mediated senescence in normal human cells. In contrast to 

D133p53, the p53b isoform is a C-terminally truncated protein that promotes cellular 

senescence.4,17 Previous studies have identified aberrant expression of p53 isoforms in cancer 

tissues suggesting that they may have functional implications for cancer progression.19-21 

In this study, we investigate the role of p53 isoforms, D133p53 and p53b, and the factors 

known to regulate their production, namely SRSF1, SRSF3, and SRSF7. Understanding the 

functions of p53 isoforms in tumor cells is critical to understanding the response of glioblastoma 

to senescence-inducing cancer therapies. This study identifies a role for p53 isoforms, D133p53 

and p53b, in regulating glioblastoma senescence and identifies SRSF3 as a potential therapeutic 

target to enhance treatment response. These findings also underscore the critical need to consider 

aberrant p53 isoform function as a potential mechanism by which cancer cells, especially those 

without TP53 mutations, disrupt the p53 pathway and promote tumor progression.  
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3.2 Methods 

3.2.1 Cell Culture 

Glioblastoma cells with wild-type p53 (U-87 MG, A172)22 were obtained from the Neuro-

Oncology Branch (C.Z.Y., M.G.). Glioblastoma cells with mutant p53 were obtained from the 

Division of Cancer Treatment & Diagnosis (DCTD) repository at the National Cancer Institute. 

Cells were maintained in DMEM supplemented with 10% FBS, 1% penicillin/streptomycin 

solution, and 1% L-glutamine. Where indicated, glioblastoma cells were exposed to temozolomide 

(50 µm for 5 days, Sigma). SA-β-gal staining was performed with the Senescence Associated 

(SA)-β-Galactosidase Staining Kit (Cell Signaling Technology, Danvers, MA, USA). 

Quantification of IL-6 in the cell culture media was performed using the Human IL-6 ELISA Kit 

(Sigma-Aldrich). 

3.2.2 Transfection 

siRNA oligonucleotides were transfected at a final concentration of 10 nM using Lipofectamine 

RNAiMAX (Invitrogen). The following oligonucleotides were obtained from Invitrogen targeting 

Δ133p53 (5′-GGAGGUGCUUACACAUGUU-3′), SRSF3 (SRSF3-A 5′-

AGAGCUAGAUGGAAGAACATT-3′), and Stealth non-specific RNAi negative control (no. 

12,935-100). SiRNA targeting beta (5’-GGACCAGACCAGCUUUCAA-3’) was purchased from 

Eurogentec and transfected at a final concentration of 15 nM using Lipofectamine RNAiMAX 

(Invitrogen). To examine D133p53 overexpression, U-87 glioblastoma cells were transfected with 

1 ug of plasmid using TurboFect (Thermofisher Scientific) and selected using Geneticin (Gibco) 

as described previously.19,23,24  
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3.2.3 Western Blot 

Cell samples were lysed in radioimmunoprecipitation assay buffer (RIPA) on ice. Protein 

concentration was measured using the Bradford assay method. Prior to running the western blot, 

all lysates were diluted with NuPAGE 4X loading buffer and boiled for 5 minutes. Tris-glycine 

gels (Novex) were loaded with 40 μg of protein for electrophoresis. Proteins were then transferred 

onto a polyvinylidene difluoride (PVDF) membrane at 4C. Membranes were blocked in 1:1 

mixture of Superblock and Tris Buffered Saline (TBS, 125 mM Tris and 200 mM NaCl), 

containing 0.1% Tween-20. After blocking, membranes were incubated in the primary antibodies 

(Appendix) overnight at 4°C. The following day, membranes were washed 3 times in TBS-Tween-

20 and incubated with mouse or rabbit HRP- conjugated secondary antibody (Pierce) for 1 hour at 

room temperature. Signal was visualized using SuperSignal developing reagent and the Biorad 

imager. To compare protein bands, densitometry was performed using ImageJ software. Patient 

sample lysates examined in Figure 3.9A were obtained from the Neuro-Oncology Branch at NCI 

(C.Z.Y. and M.R.G.) 

3.2.4 Quantitative Real-Time Polymerase Chain reaction (qRT-PCR) 

Extraction of mRNA from cell samples was performed using the RNeasy Mini Kit (Qiagen) 

according to the manufacturer’s instructions. The abundance and quality of the resulting RNA was 

assessed using a Nanodrop ND-1000 spectrophotometer (Nanodrop Technologies). RNA samples 

were diluted in RNase-free water. A total of 2 µg of RNA was converted to single-stranded cDNA 

in a 20 µL reaction using the High-Capacity cDNA Reverse Transcription Kit (Applied 

Biosystems). The Tecan Sunrise 7500 real time PCR system (Applied Biosystem) was used for 

the quantitative analysis of mRNA expression using DNA binding dye SYBR Green (Qiagen) or 

Taqman (Life Technologies) primers. Each reaction was performed in triplicate using 2 μL cDNA 
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in a final volume of 20 μL. The following thermal cycle was used: 10 minutes-95°C; 40 cycles of 

30 seconds-95°C, 40 seconds-primer specific annealing temperatures, 40 seconds-72°C. The 

expression level of each gene was analyzed using the ΔΔCt method and reported as relative 

expression normalized to the housekeeping gene.  

3.2.5 Immunocytochemistry 

Cells were washed with PBS and fixed for 10-15 minutes with 4% paraformaldehyde. 

Following fixation, cells were permeabilized (0.01% Triton-X, 10 minutes), washed with PBS (3 

washes, 10 minutes each), and blocked in 5% fetal bovine serum (FBS) for 1 hour at room 

temperature. Slides were incubated with primary antibodies (Appendix) overnight at 4◦C. 

Secondary antibodies conjugated to fluorophores were applied at a dilution of 1:400 (Life 

Technologies). Coverslips were mounted on slides with Vectashield mounting medium with DAPI 

(VectorLabs). 

3.2.6 Oncomine 

Oncomine was used to examine publicly available microarray data from the TCGA 

glioblastoma cohort and the Sun et al., Cancer Cell cohort and represented as log2-median centered 

intensity. TCGA samples include tumor and non-tumor tissue (TCGA Research Network: 

https://www.cancer.gov/tcga). The Sun cohort (Sun et al., Cancer Cell 2006;9(4):287-300) 

contains non-tumor brain tissue, astrocytoma samples (grade II, grade III) and glioblastomas 

(grade IV astrocytomas). 



 
 

91 

3.2.7 Statistical Analysis 

Data are presented as mean and standard deviation with comparisons made using two-sided, 

unpaired Student’s t test unless otherwise stated. Differences are considered significant at a value 

of * p ≤ 0.05, ** p ≤ 0.01, and *** p ≤ 0.001 or NS (not significant).  

3.2.8 Antibodies 

Antibodies used in Western blot (WB) and immunofluorescence (IF) are listed in Appendix.  

3.3 Results 

3.3.1 Temozolomide chemotherapy induces cellular senescence and is associated with 
reduced expression of Δ133p53 in glioblastoma cells 

Glioblastoma therapies have been shown to induce cellular senescence in cancer cells.5,6 

The field of p53 research has expanded following the discovery of at least 12 isoforms produced 

from the TP53 gene that modulate full-length p53 (FLp53) activity.17,25 Our previous studies 

identified a role for one of these isoforms, Δ133p53a, in inhibiting p53-mediated cellular 

senescence in non-neoplastic astrocytes.26,27 To investigate whether Δ133p53 might also regulate 

senescence in cancer cells, we examined glioblastoma cells after exposure to temozolomide (TMZ) 

at the peak concentration reported in the serum (50µM).28 Temozolomide induces DNA damage 

indicated by increased DNA breaks labeled by gH2AX in treated glioblastoma cells (Figure 3.1A). 

Senescent cells adopt the senescence-associated secretory phenotype (SASP) characterized by 

increased secretion of an array of factors including chemokines, cytokines, and 

metalloproteinases.29,30 Temozolomide increases glioblastoma secretion of SASP-associated IL-6 

(U-87MG, p = 0.003, Figure 3.1B) and induces glioblastoma cell senescence (U-87MG, p = 0.0002, 

Figure 3.1C). To determine whether p53 isoforms play a role in temozolomide-induced senescence, 
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we next examined temozolomide-exposed glioblastoma cells for the expression of the FLp53 and 

the senescence-inhibiting p53 isoform, D133p53a. Following temozolomide exposure, FLp53 is 

increased (U-87MG, p = 0.032, Figure 3.1D) and has been shown to be critical to the induction of 

temozolomide-induced senescence9; however, whether D133p53 isoforms also contribute to 

temozolomide-induced senescence was previously unknown. Five days after temozolomide 

treatment, glioblastoma cells have reduced expression of D133p53a protein (p = 0.018, Figure 

3.1D). There is also a reduction in the expression of D133p53b/g (p = 0.13, Figure 

3.1D). While D133p53a has been identified as an endogenous regulator of cellular senescence in 

non-tumor cells,4 it has not been thoroughly characterized in cancer cells. There are even fewer 

studies examining D133p53b or D133p53g. These findings suggest that the D133p53 isoforms may 

contribute to temozolomide-induced senescence. 

3.3.2 Δ133p53 regulates cellular senescence in glioblastoma cells 

In addition to FLp53, the TP53 produces multiple truncated isoforms including D133p53a, 

D133p53b, and D133p53g.17 These isoforms are produced through translation at the methionine 

codon 133 and differ due to alternative splicing at the C-terminal domain producing either the 

a, b, or g domain.17 After identifying diminished D133p53 expression in temozolomide-treated 

glioblastoma cells (Figure 3.1), we next aimed to directly investigate the role of the D133p53 

isoforms in glioblastoma senescence through siRNA knockdown. Following D133p53 knockdown 

(Figure 3.2A), U-87MG glioblastoma cells undergo cellular senescence (SA-b-gal activity, p < 

0.001, Figure 3.2B) and upregulate SASP-associated inflammatory cytokines (Figure 2E) 

including IL-6 (5.5 fold, p = 0.008) and IL-8 (14.7-fold, p = 0.013). In addition, senescent 

glioblastoma cells have increased p21 mRNA (9.2-fold, p = 2.6E-5; Figure 3.2D) and protein (p = 
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0.01, Figure 2C) and demonstrate reduced expression of Ki-6731 (p = 0.023, Figure 3.2D), a 

proliferation marker associated with poor prognosis.31,32 Finally, senescent U-87MG glioblastoma 

cells upregulate p53-associated apoptosis genes BAX (2.4-fold, p = 0.033) and PUMA (7.8-fold, 

p = 0.0024, Figure 3.2F). Similar results were observed in A172 glioblastoma cells following 

D133p53 knockdown (Figure 3.3) including increased SA-b-gal activity (p = 0.0003), reduced Ki-

67 (p = 0.007), and elevated p21 immunoreactivity (p = 0.01). Taken together, these findings 

identify D133p53 as a regulator of p53-mediated cell fate and identifies features of SASP in 

senescent glioblastoma cells.  

3.3.3 SRSF3 and SRSF1 are overexpressed in glioblastoma 

We next examined the known regulators of p53 isoforms to examine whether they could 

contribute to aberrant p53 isoform expression (Figure 3.4A).17,18,36-38 Although SRSF7 was not 

found to be dysregulated in the TCGA cohort (-1.5-fold; p = 0.964), both SRSF1 (Figure 3.4B) 

and SRSF3 (Figure 3.4C) were increased in glioblastoma compared to non-tumor brain tissue. 

Downregulation of either of these factors leads to increased production of p53b (Figure 3.4A), 

suggesting that their overexpression may inhibit the production of the pro-senescent p53 isoform, 

p53b.18,39  We also examined the expression of SRSF1 and SRSF3 in different grades of 

astrocytoma. This cohort also demonstrated elevated expression of SRSF1 (1.7-fold) and SRSF3 

(4.1-fold) in glioblastoma cells compared to non-tumor brain tissue (Figure 3.4D-E). Interestingly, 

SRSF3 expression was elevated in increasing grades of astrocytoma (p trend = <0.0001, Figure 

3.4E). A similar trend was not observed for SRSF1 (Figure 3.4D). Taken together, these findings 

identify high expression of SRSF1 and SRSF3 in glioblastoma tissues and suggest that 

overexpression of SRSF3 may be important to glioblastoma progression.  
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3.3.4 Loss of SRSF3 leads to increased p53b and induction of cellular senescence and 
apoptosis. 

After demonstrating SRSF3 overexpression in glioblastoma cells, we further interrogated the role 

of SRSF3 by treating U-87MG glioblastoma cells with siRNA to induce its knockdown. SRSF3 

inhibits the production of the pro-senescence p53 isoform, p53b.18 SRSF3 is reduced in 

temozolomide-treated cells (Figure 3.5A). Knockdown of SRSF3 increases expression of p53b in 

glioblastoma cells (Figure 3.5B) and induces cellular senescence (p < 0.0001, Figure 3.5C). It is 

also associated with increased secretion of IL-6 (p = 0.007, Figure 3.5D) and elevated mRNA 

expression of p21 (8.9-fold, p = 0.0006; Figure 3.5E) and SASP cytokine IL-8 (114-fold, p = 0.006; 

Figure 3.5E). Finally, although the primary response of SRSF3 loss appears to be senescence, there 

is also increased expression of apoptosis genes, BAX (2.2-fold, p = 0.03) and PUMA (8.5-fold, p 

= 0.004) (Figure 3.5E), and increased cleaved caspase 3 immunoreactivity (Figure 3.5F). Similar 

expression of p53b and induction of cellular senescence (p = <0.0001) was observed following 

knockdown of SRSF3 in A172 glioblastoma cells (Figure 3.6).  

3.3.5 Loss of SRSF3 induces mutant p53b and cellular senescence in glioblastoma cells 
with mutant p53 

Secondary glioblastomas, which progress from lower grade astrocytomas, can be 

differentiated based on their molecular signature including the presence of IDH1 mutations.40 In 

addition, although the majority of primary glioblastoma have wildtype p53, mutations in p53 are 

observed in approximately 65% of secondary glioblastomas.13 Critically, the majority of TP53 

mutations in cancer cells are observed in regions conserved in p53 isoforms (Figure 3.7). The 

increase in p53 mutations in secondary glioblastomas may suggest that the p53 pathway is 

important in malignant progression from lower grade astrocytoma to glioblastoma. In addition, 
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malignant transformation of benign tumors has been suggested to be at least partially regulated by 

p53 isoforms.4 Because p53 has been shown to be important in SRSF3-induced senescence,18 we 

next investigated this process in glioblastoma with mutant p53. Loss of SRSF3 was examined 

using SRSF3 siRNA in SF268 (R273H) and SF295 (R248Q) glioblastoma cells (SF268, p = 

<0.001; SF295, p = <0.001; Figure 3.8A). Loss of SRSF3 expression induces production of mutant 

p53b (SF268, p = <0.001; SF295, p = <0.001; Figure 3.8B-C) and is associated with induction of 

cellular senescence demonstrated by increased SA-b-gal activity (SF268, p = 0.01; SF295, p = 

0.005; Figure 3.8D), increased secretion of IL-6 (SF268, p = 0.04; SF295, p = 0.002; Figure 3.8E), 

elevated expression of p21 (SF268, p = <0.001; SF295, p = <0.001; Figure 3.8F), reduced 

expression of Ki-67 (SF268, p = 0.004; SF295, p = 0.001; Figure 3.8G), and increased expression 

of cleaved-caspase 3 (SF268, p = 0.030; SF295, p = 0.0014; Figure 3.8H). These findings identify 

a role for SRSF3 in regulating cellular senescence in mutant p53 glioblastoma cells.  

3.3.6 D133p53 isoforms regulate senescence in glioblastoma with mutant p53 

To further examine the impact of p53 mutations, we next examined D133p53a, which was 

confirmed to be expressed in CD133+ tumor-initiating cells derived from patient glioblastoma 

samples with mutant p53 (Figure 3.9A). Knockdown of D133p53 isoforms in mutant glioblastoma 

cells (R273H; Figure 3.9B) increases secretion of SASP-associated cytokine IL-6 (p = 0.011, 

Figure 3.9C), induces cellular senescence (p = 0.003, Figure 3.9D) and reduces expression of 

proliferation marker, Ki-67 (p = 0.002, Figure 3.9E). These findings suggest that mutant D133p53 

isoforms retain their ability to regulate cellular senescence in glioblastoma harboring TP53 

mutations.  
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3.4 Discussion 

The TP53 gene is the most commonly mutated gene in cancer underscoring the importance 

of p53’s anti-tumor activities. Because the isoforms modulate FLp53 activity17, altered expression 

of p53 isoforms may represent a novel mechanism by which tumors inhibit p53 tumor suppressor 

activities.20  In the current study, we examined the role of p53 isoforms, D133p53 and p53b, and 

their regulatory factors, SRSF1, SRSF3, and SRSF7, in cellular senescence. Critically, loss of 

D133p53 or SRSF3 induces cellular senescence in glioblastoma cells. These findings suggest that 

the p53 isoforms may have prognostic or therapeutic value in the treatment of glioblastoma. In 

addition, loss of D133p53 isoforms also induces senescence in tumors with mutant p53; however, 

it is not known whether high expression of mutant D133p53 isoforms contributes to temozolomide 

response. 

Cellular senescence plays a complicated role in disease. For instance, the induction of 

cancer cell senescence and SASP may initially be associated with tumor regression and 

maintenance of cellular senescence.9 However, the inflammatory milieu of senescent cells may 

also promote the side effects of cancer therapy and tumor recurrence.41 In addition, premature 

senescence has been associated with neurodegenerative disease.27 As such, modulating p53 

isoforms may have conflicting outcomes depending on the target cell type. Another potential way 

to target p53 isoforms is through the factors known to regulate their production or degradation. In 

this study, we found that SRSF3 is highly expressed in glioblastoma cells. Loss of SRSF3 leads to 

increased p53b production, cellular senescence and apoptosis. While this has previously been 

shown to be dependent on p53,18 the current study identified a similar response to SRSF3 loss in 

mutant p53 glioblastomas. Identifying how cancer cells modulate p53 isoforms and their 

regulatory proteins may facilitate the development of additional therapeutic opportunities. Further, 
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induction of apoptosis, as is observed in a subset of cells following SRSF3 knockdown, may 

represent a better therapeutic outcome as compared to cellular senescence. Examining p53 

isoforms and their regulatory proteins in mouse models will be critical to understanding how 

targeting p53 isoforms may affect cells in vivo. 

Finally, while the majority of primary glioblastoma harbor wildtype p53, TP53 is mutated 

in up to 65% of secondary glioblastomas which have progressed from lower grade astrocytomas.13 

Following temozolomide exposure, glioblastoma cells accumulate mutations and develop a 

specific temozolomide-associated mutation signature.42 Mutations in p53 have been shown to 

reduce temozolomide efficacy while stabilizing the wildtype p53 conformation enhances 

cytotoxicity suggesting that an intact p53 pathway is essential to temozolomide treatment 

efficacy.43 Many studies have focused on the various gain- or loss- of function for mutant 

FLp53.44,45 In contrast, there is a relative paucity of mutant p53 isoform research. This is 

particularly important because most mutations in p53 occur in hotspots within the DNA-binding 

domain, a domain which is conserved within p53 isoforms (Figure 3.7).17,46,47 In primary 

glioblastoma TCGA cases with mutant p53, 85% also have mutations in D133p53 isoforms while 

100% have mutations in p53b. It is likely that, similar to the effects shown in FL-p53,45 different 

types of p53 isoform mutations have distinct effects on p53 isoform functions. The current study 

underscores the need for p53 studies to consider the role of mutant p53 and p53 isoforms and the 

interplay between these mutated proteins in regulating cancer cell functions. Our ongoing studies 

aim to further interrogate the interplay of wildtype and mutant p53 isoforms in the regulation of 

p53-mediated cellular functions. Better characterization of mutant p53 isoform functions may 

elucidate additional mechanisms by which tumors disrupt the p53 pathway to promote progression, 
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better define the prognostic implications of p53 isoform expression, and identify novel therapeutic 

targets for the treatment of cancer.  
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Figure 3.1. Temozolomide chemotherapy induces cellular senescence and is associated with 

reduced expression of D133p53a in glioblastoma cells. (A) Representative images of U-87 
MG gH2AX immunoexpression following 5 days of temozolomide treatment (50 µM). (B) 

Quantification of IL-6 protein secreted in media after 5 days of temozolomide treatment (IL-6 
ELISA). (C) Representative image and quantification of senescence-associated beta-
galactosidase (SA-b-gal) staining in temozolomide-exposed glioblastoma cells. (D) 

Representative western blot and quantification of FLp53 and D133p53 in temozolomide-exposed 
glioblastoma cells. 
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Figure 3.2. D133p53 regulates cellular senescence in glioblastoma.  (A) Western blot 
demonstrating knockdown of D133p53 in U-87 MG glioblastoma cells. (B) Representative 

images and quantification of SA-b-gal activity following knockdown of D133p53 in U-87 MG 
glioblastoma cells. (C) Relative mRNA expression (fold-change) of p53 target genes following 
knockdown of D133p53 in U-87 MG glioblastoma cells (Taqman).  (D) Representative image 
and quantification of p21 immunoexpression following knockdown of D133p53 in U-87 MG 
glioblastoma cells. (E) Representative image and quantification of Ki-67 immunoexpression 

following knockdown of D133p53 in U-87 MG glioblastoma cells. (F) Relative mRNA 
expression (fold-change) of p53 target genes following knockdown of D133p53 in U-87 MG 

glioblastoma cells (Taqman).   
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Figure 3.3. D133p53 regulates cellular senescence in glioblastoma.  (A) Western blot 
demonstrating knockdown of D133p53 in A172 glioblastoma cells. (B) Representative images 

and quantification of SA-b-gal activity following knockdown of D133p53 in A172 glioblastoma 
cells. (C) Quantification of p21 and Ki-67 immunoexpression following knockdown of D133p53 

in A172 glioblastoma cells.  
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Figure 3.4. SRSF3 and SRSF1 are overexpressed in glioblastoma. (A) Cartoon depicting 
activities of SRSF1, SRSF3, and SRSF7 in the production of p53b. (B) SRSF1 and (C) SRSF3 
expression in glioblastoma (IV) and non-tumor (NT) samples from TCGA. (D) SRSF1 and (E) 
SRSF3 expression in non-tumor (NT) tissue, astrocytoma (II, III) and in glioblastoma (IV) from 

the Sun cohort (Oncomine, log2). 
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Figure 3.5. Loss of SRSF3 leads to increased expression of p53b and induction of cellular 
senescence. (A) mRNA expression of SRSF3 in DMSO and TMZ treated glioblastoma cells. (B) 
Western blot four days after SRSF3 knockdown demonstrating expression of SRSF3 and p53b  

in glioblastoma cells. (C) Representative image and quantification of SA-b-gal activity following 
SRSF3 knockdown in U-87MG glioblastoma cells. (D) Quantification of IL-6 secreted into 

media following SRSF3 knockdown. (E) Relative mRNA expression (fold-change) of p53 target 
genes following knockdown of p53b in U-87 MG glioblastoma cells (Taqman). (F) 

Representative image and quantification of cleaved caspase 3 (CC3) immunoexpression in U-
87MG glioblastoma cells following SRSF3 knockdown. 
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Figure 3.6. Loss of SRSF3 leads to increased expression of p53b and induction of cellular 
senescence. (A) Western blot four days after SRSF3 knockdown demonstrating expression of 

SRSF3 and p53b  in glioblastoma cells. (C) Representative image and quantification of SA-b-gal 
activity following SRSF3 knockdown in A182 glioblastoma cells.  
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Figure 3.7. Mutations in FLp53 are conserved in p53 isoforms. The TP53 gene is the most 
frequently mutated gene in cancer (IARC database).48 The majority of primary glioblastoma in the 

TCGA cohort have wildtype p53; however, those that have mutant p53 primarily harbor mutations in 
the DNA-binding domain which is conserved in p53 isoforms. As such, 100% have mutations in 

p53b while approximately 85% have mutations in D133p53. These findings underscore the critical 
need to evaluate p53 isoform mutations in the context of p53 functions in carcinogenesis and cancer 

treatment.  



 
 

106 

 

Figure 3.8. Loss of SRSF3 induces p53b and p53-mediated cell cycle arrest in glioblastoma 
cells with mutant p53. (A) SRSF3 and (B) p53b mRNA expression following treatment of 
mutant p53 glioblastoma cells (SF267, SF295) with siSRSF3. (C) p53b immunoexpression 

following SRSF3 knockdown in glioblastoma cells. (D) Representative image and quantification 
of SA-b-gal activity following SRSF3 knockdown. (E) Quantification of IL-6 protein secreted 
into the media after SRSF3 knockdown in mutant p53 glioblastoma cells (F) Representative 

image and quantification of p21, (G) Ki-67, and (H) Cleaved caspase 3 (CC3) expression after 
knockdown of SRSF3 in mutant p53 glioblastoma cells.    
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Figure 3.9. D133p53a regulates senescence in glioblastoma with mutant p53 . (A) Expression of 
FLp53 and D133p53 in CD133+ tumor cells isolated from four patients with mutant p53 GBM. (B) 

Western blot demonstrating D133p53 loss in SF268 glioblastoma cells. (C) Representative image and 
quantification of SA-b-gal activity in SF268 following D133p53 knockdown. (D) IL-6 secretion 

quantified by ELISA. (E) Immunoexpression of p21 and Ki67 following D133p53 knockdown. (F) 
Overexpression of D133p53a (R273H) in SF268. (G) Quantification of SA-b-gal activity in 

temozolomide-treated SF268 glioblastoma cells with or without overexpression of D133p53a 
(R273H). 
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 CELLULAR SENESCENCE: MECHANISMS, 
MORPHOLOGY, AND MOUSE MODELS 

Portions of this chapter are published in: Beck J, Horikawa I, Harris C. Cellular Senescence: 
Mechanisms, Morphology, and Mouse Models. Veterinary Pathology 2020;57(6):747-757. 

4.1 Abstract 

Cellular senescence is a cell cycle arrest in damaged or aged cells. Although this represents 

a critical mechanism of tumor suppression, persistence of senescent cells during aging induces 

chronic inflammation and tissue dysfunction through the adoption of senescence-associated 

secretory phenotype (SASP). This has been shown to promote the progression of age-associated 

diseases such as Alzheimer’s disease, pulmonary fibrosis, and atherosclerosis. As the global 

population ages, the role of cellular senescence in disease is becoming a more critical area of 

research. In this review, mechanisms, biomarkers, and pathology of cellular senescence and SASP 

are described with a brief discussion of literature supporting a role for cellular senescence in 

veterinary diseases. Cell culture and mouse models used in senescence studies are also reviewed 

including the senescence-accelerated mouse-prone (SAMP), senescence pathway knockout mice 

(p53, p21 [CDKN1A] and p16 [CDKN2A]), and the more recently developed senolysis mice 

which allow for direct visualization and elimination (or lysis) of senescent cells in live mice (p16-

3MR and INK-ATTAC). These and other mouse models have demonstrated the importance of 

cellular senescence in embryogenesis and wound healing but have also identified a therapeutic 

benefit for targeting persistent senescent cells in age-associated diseases including 

neurodegeneration, diabetes, and cardiac fibrosis. 
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4.2 Introduction 

Cellular senescence is a highly durable mode of cell cycle arrest that occurs in aged or DNA-

damaged cells.1-4 Following the induction of cellular senescence, senescent cells adopt the 

senescence-associated secretory phenotype (SASP) and produce a variety of factors including 

cytokines, chemokines, and matrix metalloproteinases.5-8 SASP proteins reinforce cellular 

senescence programming and mediate multiple tissue effects.9-11 During development and healing, 

tightly regulated induction of cellular senescence promotes tissue reorganization and repair.12,13 

Secreted SASP chemokines recruit inflammatory cells, such as macrophages, which help to 

remove senescent cells and restore normal tissue functions.6,13-15  However, in some cases, 

senescent cells are not effectively removed.14,16,17 This may be caused by an imbalance of 

senescence induction and clearance due to aging,18,19 immune dysfunction,20-22 or an acute stressor 

such as radiation23,24 or traumatic injury.25,26 Regardless of the cause, senescent cells accumulate 

in aged humans and animals and continue to secrete proteins which promote chronic inflammation, 

disrupt tissue homeostasis, and induce organ dysfunction.5,8,11,14,27 It is in this way that cellular 

senescence has been implicated as an important mechanism underlying age-associated 

degenerative disease (Figure 4.1). For example, senescent cells have been implicated in the 

progression of atherosclerosis,6,28 cystic fibrosis,29 age-related cataracts,30 and radiation-induced 

pulmonary fibrosis.24 In addition, mouse models have identified a therapeutic benefit for targeting 

and removing these senescent cells in disease including rescue of neurocognitive function in tau-

induced neurodegeneration,31 improved glucose metabolism in a model of type 2 diabetes,32,33 and 

attenuated myocardial hypertrophy and fibrosis in cardiac aging.34,35 Finally, although cellular 

senescence inhibits tumor initiation by preventing proliferation of damaged cells, it can also 

promote tumor progression and contribute to the late effects of cancer therapy through SASP.11,36,37 

Consistent with this, in vivo clearance of senescent cells has reduced tumor recurrence and 
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chemotherapy-associated side effects in a mouse model.36  In this review, we discuss the current 

understanding of the mechanisms and functions of cellular senescence and outline several 

experimental models used to study cellular senescence and SASP in disease. 

4.3 Mechanisms of Cellular Senescence 

The two major pathways of cellular senescence are replicative and stress-induced senescence 

(Figure 4.2).1-4 In replicative senescence, successive rounds of cellular replication and telomere 

shortening expose the chromosomal ends which are sensed by the cell as endogenous DNA 

damage.38,39 In contrast, internal or external stressors such as traumatic injury,25,26 oxidative 

stress,3,8,40 radiation,8,24 or chemotherapy8,36 cause cells to rapidly accumulate DNA damage and 

undergo stress-induced senescence.1 Both pathways trigger the DNA damage response mediated 

by p53, p21, and p16.1,39,41,42 This leads to inhibition of cyclin-dependent kinases resulting in cell 

cycle arrest and induction of cellular senescence.1,43 Critically, once cells undergo senescence, they 

secrete numerous proteins as part of the senescence-associated secretory phenotype (SASP).5,7,8 

Secreted chemokines recruit macrophages that assist in removing these stressed cells.6,13 Secretory 

factors have also been shown to induce senescence re-programming in adjacent cells, often 

referred to as the “bystander effect”.24,44,45  This is particularly well described in the lung where 

senescent pneumocytes produce secretory proteins that induce senescence in adjacent 

pneumocytes.24 Additional studies in mice have found significant increases in senescent cell 

burden following injection of senescent cells, further underscoring the importance of SASP in 

reinforcing cellular senescence.44,45 Finally, senescent cells can also affect neighboring cells of 

different cell types to induce a range of cellular states, including apoptosis or activation.11 For 

example, senescent astrocytes can induce cell death in neuronal cells31,46-48 while senescent 

pneumocytes activate fibroblasts resulting in pulmonary fibrosis.24,49 These findings highlight the 
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roles of cellular senescence in disease progression and identify cellular senescence as a potential 

therapeutic target in age-associated disease.16,49,50  

4.4 Senescent Cell Morphology and Biomarkers 

Researchers use several methods to identify senescent cells, including changes in cellular 

morphology and senescence-associated alterations in protein expression.51-54 In culture, senescent 

cells are typically enlarged, flattened, multinucleated and vacuolated (Figure 4.3A-B).1,7  Similar 

morphologic changes are also reported in tissues but may be restricted by the surrounding tissue 

architecture and thus more difficult to appreciate.1,53 In these cases, it may be easier to identify 

histologic features of chronic inflammation associated with cellular senescence such as fibrosis 

and mononuclear cell inflammation.6,14,24,49 Senescent cells also accumulate lipofuscin, a yellow-

brown lipid-containing residue formed through lysosomal digestion, which can be visualized 

histologically or highlighted using histochemical stains such as Sudan Black B.55,56 In addition, 

the senescence-associated b-galactosidase (SA-b-gal) assay is probably the best described and 

most commonly used staining technique.52 It can be used in vitro or in vivo and highlights 

senescent cells with blue dye by taking advantage of increased beta galactosidase activity within 

the lysosomes of aged cells (Figure 4.3C-D).57 Finally, altered protein expression in senescent cells 

can be detected using a variety of techniques including western blotting, quantitative real-time 

polymerase chain reaction or immunohistochemistry.51,58 Double-strand DNA breaks can be 

identified by gH2AX or 53BP1 labelling in both replicative and stress-induced cellular senescence 

(Figure 4.3E-F).51,59,60 Following activation of the DNA damage response pathway, early 

senescent cells have increased nuclear expression of p53 and p21 while late senescence is best 

characterized by elevated p16.1,42,43 Activation of these pathways induces cell cycle arrest and 

formation of senescence-associated heterochromatin foci (SAHFs) identified by DAPI staining, 
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trimethylated H3K9, or heterochromatin protein 1.7,61,62 These SAHF contribute to the stability of 

cellular senescence by repressing genes, such as those associated with cellular proliferation.62 

Functionally, senescent cells adopt SASP characterized by increased secretion of chemokines, 

growth factors, matrix metalloproteases and inflammatory cytokines.5,8,11 Over 300 SASP proteins 

have been characterized and can vary by cell type, stressor and time course but frequently include 

cytokines, such as IL-1, IL-6 and IL-8. These SASP proteins can be identified by increased mRNA 

production within cell or tissue samples or through the detection of secreted proteins in media or 

serum.51,63,64 Finally, senescent cells upregulate the expression of anti-apoptotic BCL-2 family 

proteins such as BCL-XL resulting in resistance to apoptosis and subsequent tissue 

persistence.17,65,66 

4.5 Models of Cellular Senescence: Cell Culture 

Primary cells proliferate in culture for a finite period of time.2,4 Serial passaging of human 

cells has been used as an experimental method to study cellular senescence and aging in vitro.4,46,67 

Cells in culture may also accumulate DNA damage over time or following application of an acute 

stressor such as radiation,8,68 chemotherapy,8,69 or oxidative stress (hydrogen peroxide)3,8,40 

resulting in stress-induced senescence. These studies can be used to isolate the effect of specific 

stimuli on individual cells and to investigate the potential roles of cellular senescence in disease 

processes.5,8,11 These types of experiments are also helpful to define the secretory proteins 

produced by senescent cell types. In addition, experiments involving transwells, co-culture or 

conditioned media exposure can be used to define the effects of senescent cells and their associated 

secretory factors on neighboring cells.11,46,70  
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4.6 Mouse Models: Senescence-accelerated Mouse-prone (SAMP) 

While maintaining an inbred colony of AKR/J mice at Kyoto University, researchers 

identified an aging phenotype in a subset of litters.71,72 Features of these mice included a poor hair 

coat, reduced activity, and decreased lifespan.71 Aging features are thought to develop due to 

elevated oxidative stress, are inherited by subsequent generations, and have been further separated 

into several distinct SAMP phenotypes.73-75 Litters of inbred AKR/J mice that did not experience 

an accelerated aging process are referred to as senescence-accelerated mouse-resistant (SAMR) 

and are typically used as controls for SAMP experimental studies.71,72  

Organismal senescence, such as that observed in SAMP mice, is the process of biological 

aging accompanied by the gradual deterioration of functional characteristics.19,76,77 Importantly, 

organismal senescence is a term applied to the entire organism and is not equivalent to cellular 

senescence which is a mechanism of cell cycle arrest within individual cells.19,77  Although 

organismal senescence is associated with increased numbers of senescent cells, not all cell types 

within an aged individual undergo cellular senescence.15,19 As such, cellular and organismal 

senescence are not mutually inclusive but do appear to maintain a critical interplay. In the case of 

aged SAMP mice, organismal senescence is associated with increased cellular senescence in a 

variety of cell types including astrocytes,78,79 endothelial cells,75,80 progenitor cells,81 retinal 

epithelial cells,82 and fibroblasts.83  

The role of cellular senescence in promoting neurodegeneration is a key area of aging 

research.47 SAMP8 mice experience age-dependent deficits in learning and memory and develop 

a variety of age-associated neuropathologic changes similar to those described in aging humans.84  

By as early as 5 months of age, neuropathologic changes include astrogliosis, microgliosis, and 

neurodegeneration.85,86 SAMP8 mice also accumulate amyloid,87,88 have increased nitric oxide 

synthase activity,88,89 and demonstrate age-associated hyperphosphorylation of tau further 
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underscoring their utility as a model of brain aging and Alzheimer’s disease.84,90 Senescent 

SAMP8-derived astrocytes have been identified as a key contributor to neurodegeneration and 

demonstrate critical impairment of their normal neuroprotective functions.78,79 A similar 

mechanism for astrocyte-mediated neurotoxicity in humans has also been shown to induce 

neuronal toxicity in vitro and may contribute to neurodegeneration in patients with Alzheimer’s 

disease, amyotrophic lateral sclerosis, and radiotherapy-induced brain injury.46-48,91   

In humans, cellular senescence has been suggested to promote a variety of musculoskeletal 

diseases including sarcopenia,92,93 muscular dystrophy,93,94 and osteoporosis.81,93,95 Adult SAMP6 

mice have a significantly higher incidence of spontaneous leg fractures attributed to 

osteoporosis.81,96,97 Induction of cellular senescence in bone marrow progenitor cells disrupts their 

differentiation favoring adipogenesis over osteoblastogenesis.81,98,99 This mechanism has been 

suggested to result in inefficient osteoblastic activity and osteoporosis in SAMP6 mice and in aged 

humans.81,93,100 

Critically, although SAMP mice are separated into distinct phenotypes, organismal 

senescence may be associated with age-related dysfunction in multiple organs within the same 

mouse. For example, although most frequently used for neurodegeneration research, SAMP8 mice 

also develop age-associated vascular disease and have been used to study cellular senescence in 

endothelial cells.75,101,102 In humans, increased numbers of senescent cells have been suggested to 

contribute to atherosclerosis,6,28,103 impaired angiogenesis,68,104 and cardiac fibrosis.34 While the 

development of accelerated aging in multiple organs can complicate the interpretation at a cellular 

level, these models may be more representative of the physiologic effects of aging on the entire 

organism.  
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In addition to these neurologic and musculoskeletal alterations, SAMP6 and SAMP8 mice 

also develop a variety of other age-associated conditions including retinal degeneration,82 

testosterone deficiency,75 myocardial fibrosis,101 and hepatic lipidosis105 (Table 4.1).  Finally, there 

are more than 10 SAMP mice strains, each of which can develop a variety of age-related conditions 

such as renal fibrosis (contracted kidneys), immune dysfunction, and degenerative joint 

disease.76,106,107 Although SAMP studies do not always examine cellular senescence in the 

development of age-related disease, each of these conditions has been associated with induction 

of cellular senescence in other experimental models suggesting that cellular senescence may also 

contribute to the development of these conditions in SAMP mice.21,22,26,108-110 

4.7 Mouse Models: Targeting Senescence Pathways (p53/p21/p16) 

Inhibiting senescence pathways is another way to investigate the role of cellular senescence 

in diseases, including targeting the induction (p53/p21) or persistence (p16) of senescence.1 These 

knockout mice may also be crossed to disease models to study the roles of these pathways in the 

progression of age-associated disease.  

Cellular senescence studies using p21- and p53- null mice have identified critical roles for 

cellular senescence in embryonic development and in the promotion of premature aging syndromes 

such as Hutchinson-Gilford progeria syndrome and ataxia telangiectasia.13,111-113 However, 

studying these processes in p53- and p21-null mice is complicated by the loss of beneficial p53 

pathway functions.1,114,115 Critically, p53-mediated induction of cellular senescence is an important 

mechanism of tumor suppression.42,116,117 Thus, mouse models that inhibit cellular senescence have 

an increased incidence of several neoplasms that can affect remarkably young mice (Table 4.2).118-

121 The p53-null mice develop tumors by 10 weeks of age with almost 75% of mice affected by 6 

months of age.120 As a result, mice are euthanized early making them difficult to study over time.120 
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The most common tumors in these mice include lymphoma (77%) and hemangiosarcoma (27%).120  

Because the majority of mice succumb to cancer, there are only rare cases of infectious or 

inflammatory diseases reported (e.g., abscesses, gastroenteritis, myocarditis).120  An alternative 

method to target the p53 pathway is through deletion of its downstream effector, p21.1,41 As 

expected, p21-null mice also develop tumors earlier than wild-type counterparts (16 months vs. >2 

years).119 Tumor types are similar to those reported in p53-null mice but with a longer latency 

period and include histiocytic sarcoma (52%), hemangioma/hemangiosarcoma (22%) and 

lymphoma (14%).119,120 Although 55% of male p21-null mice succumb to their tumors, the most 

common cause of death in female p21-null mice is severe autoimmune glomerulonephritis which 

affects approximately 60% and is thought to be due to an abnormal proliferation of T cells.119  

Finally, p16 has been characterized as the best in vivo marker for senescent cells and its 

knockout has produced another commonly used model to study cellular senescence.118,122 Studies 

in p16-null mice have suggested that inhibiting cellular senescence in the kidney leads to enhanced 

recovery of renal function following ischemia-reperfusion injury and reduces interstitial fibrosis 

and tubular atrophy in renal transplant models.108,123,124 Although these mice develop tumors later 

than p53 knockout mice, approximately 25% of p16-null mice develop tumors by 10 months of 

age.118-120 Spontaneous tumors reported in these mice include malignant spindle cell neoplasms 

(29%), angiosarcoma (23%), osteosarcoma (18%), histiocytic lymphoma (18%) and melanoma 

(12%).121 With loss of p16 function, these mice are also highly susceptible to carcinogen-induced 

tumors.118,121 Other reported changes in p16-null mice include elevated T cell proliferation, 

absolute T cell counts, and thymic hyperplasia.118 

Classically, the induction of cellular senescence in damaged cells is described as an 

important barrier to carcinogenesis. This theory is supported by the increased tumor burden 
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observed in these knockout mice; however, the role of cellular senescence in cancer progression 

may be more complicated (Figure 4.4).11,36 For example, while induction of cellular senescence is 

initially associated with inhibition of tumor initiation or regression, persistence of senescent tumor 

and non-tumor cells has been shown to promote tumor recurrence through SASP.11,36,37,125 In 

addition, some reports suggest that tumor cells can either escape or inhibit the induction of cellular 

senescence allowing them to re-enter the cell cycle.115,126,127 The contrasting roles of cellular 

senescence in cancer are being further investigated in senolysis mice, which are used to study the 

roles of cellular senescence in many age-associated diseases including cancer and cancer 

recurrence.36 

4.8 Mouse Models: Senolysis 

Recently, several transgenic mouse models have been developed which allow for direct 

visualization and elimination of senescent, p16-positive cells including the p16-3MR (tri-modal 

reporter) and the INK-ATTAC (apoptosis through targeted activation of caspase 8) models.12,128 

These models identify p16-positive senescent cells through expression of red or green fluorescent 

protein (RFP/GFP).12,128 This allows researchers to image and quantify fluorescent protein 

expression in live mice as they age or to study the accumulation of senescent cells following 

introduction of an acute stressor, such as chemotherapy.36,129 Finally, these mouse models were 

designed to allow for specific targeting and removal of senescent cells.12,128 This allows 

researchers to investigate the therapeutic value of senolysis in specific disease contexts.12,128 

Through the use of these models, the contributory roles of cellular senescence and the beneficial 

effects of senolysis have been demonstrated in several age-associated diseases including tau-

related neuropathology and cognitive decline,31 chemotherapy-induced fatigue,36 cancer 

recurrence,36 osteoporosis,95 myocardial hypertrophy,34 and cardiac fibrosis.34 
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Although fluorescent reporter genes offer a great opportunity to identify and study the spread 

of senescence, they are not without potential side effects.130 For example, GFP has been reported 

to cause injury through production of reactive oxygen species, promotion of apoptosis, and 

induction of immunogenicity.130,131  This is reported to be more severe in BALB/c than C57BL/6 

mice suggesting that the background strain is important when evaluating mouse models for GFP 

immunogenicity.131 In addition, transgenic mice using the INK-ATTAC model are injected with 

AP20187 while the p16-3MR model is controlled by ganciclovir administration.12,128 Although 

side effects of either treatment are not well described in these models, any intraperitoneal injection 

has the potential to cause ileus and peritonitis.132 Finally, inhibiting cellular senescence has been 

shown to impede wound healing which should be monitored in these mice.12,129 

4.9 Evidence for Cellular Senescence in Domestic Animals 

Although cellular senescence is not a newly discovered mechanism, researchers are still 

characterizing its potential role in human diseases,14 including neurodegeneration,31,47 pulmonary 

fibrosis,24 wound healing,12 and osteoarthritis.26 As researchers aim to identify ways to modulate 

cellular senescence in disease, it will become important to understand the comparative role of 

cellular senescence in veterinary diseases. In addition to mouse model studies, there are reports of 

cellular senescence contributing to disease or cellular dysfunction in domestic animals. For 

example, dogs have increased numbers of senescent cells in the aged testis,133 in chronic 

hepatitis,134 and within the non-tumor tissue surrounding intraocular tumors.135 In cats, cellular 

senescence is increased in feline chronic kidney disease and contributes to diminished self-renewal 

and reduced multipotency of mesenchymal stem cells in vitro.136,137 Although classic markers of 

cellular senescence are not always examined, there is also good evidence that aging alters cellular 

functions in animals consistent with the induction of cellular senescence. Examples include 
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reduced proliferation, cellular dysfunction, and features of immunosenescence in aged horses,138 

cats,139 and dogs,139-141 in horses with asthma,138 and in dogs with cancer.140 In addition, 

senescence-associated histologic changes are reported in aged animals including fibrosis and 

mononuclear cell inflammation.137,142,143  There is also evidence that SASP-associated cytokines 

such as IL-1, IL-6 and IL-8 are produced in animals with chronic inflammatory diseases that are 

attributed to cellular senescence in humans including pulmonary fibrosis, chronic kidney disease 

and arthritis.144-146 In the future, further examination of these and other age-related diseases may 

better identify the potential roles for cellular senescence in promoting pathology in domestic 

species.   

4.10 Conclusions 

Cellular senescence is a normal process by which aged and damaged cells are inhibited from 

replicating.116 It is important in normal embryonic development and serves as a critical tumor 

suppressor mechanism.13,116 Secretion of SASP proteins is thought to induce removal of senescent 

cells through inflammatory cell recruitment, thereby promoting healing and restoring tissue 

homeostasis.6,13,14 However, surviving senescent cells that are not cleared by the immune system 

continue to secrete SASP proteins and contribute to organ dysfunction.14 Like other biologic 

processes, senescence programming is critical in specific contexts, but its persistence can lead to 

an exuberant and long-lasting inflammatory response which can contribute to further tissue 

injury.12,14 

In this review, we discussed several mouse models used to investigate the roles of cellular 

senescence in aging and cancer; however, this list is not exhaustive. Importantly, cellular 

senescence may contribute to aging phenotypes in a variety of mouse models. For example, 

progeroid syndrome models, which have been reviewed previously, have increased numbers of 
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senescent cells that promote premature aging.128,147 Sirtuin-deficient mouse models, such as SIRT6 

null mice, also experience premature aging and have demonstrated a role for NF-kB signaling in 

regulating cellular senescence and SASP.148-150 Finally, mouse models with deficient DNA damage 

repair mechanisms or models of traumatic injury, such as traumatic brain injury or post-traumatic 

osteoarthritis, may be used to investigate the roles of premature or stress-induced senescence in 

injured tissues.18,25,26,151,152 These experimental models demonstrate the sudden increase in 

senescent cells following injury and, when incorporated into a senolysis mouse model, can be used 

to characterize the therapeutic benefit of senolysis on disease progression.26 

Currently, there is intense interest in defining the roles of cellular senescence in human 

diseases.14 This interest goes beyond simply characterizing senescent cells in vitro but rather 

identifying ways to restore or remove senescent cells to benefit patients.16 One of the first methods 

by which this was pursued was through the use of therapeutics which target the production or 

secretion of SASP proteins such as cytokine-directed antibodies,64,153 NF-kB inhibitors,154 or 

sirtuin activators.16,50,155 More recently, anti-SASP therapies have been augmented by senolytic 

drugs which reduce the organismal burden of senescent cells.16,93,95,156 These senolytics have 

shown promise in preliminary clinical trials in humans.157,158 As therapeutic interventions evolve, 

defining the roles of cellular senescence in veterinary diseases will be important not only for 

understanding chronic inflammation in the context of aging but also for facilitating the translation 

of anti-senescence therapies between humans and animals. 
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Figure 4.1. Cellular Senescence in Disease. Cellular senescence has been shown to promote or 
exacerbate age-associated diseases in humans through the induction of chronic inflammation and 

tissue dysfunction by the senescence-associated secretory phenotype (SASP). SASP proteins 
mediate an array of effects including mononuclear cell recruitment, fibroblast activation and 

degradation of the extracellular matrix. Senescent cells, such as endothelial cells, astrocytes, and 
myocardiocytes, contribute to the progression of age-related diseases including atherosclerosis, 

neurodegeneration, and myocardial fibrosis, respectively. In addition, although cellular 
senescence inhibits tumor initiation by preventing the proliferation of damaged cells, persistence 
of senescent cells within the tumor microenvironment promotes tumor recurrence. Thus, cellular 

senescence and SASP are potential therapeutic targets in the treatment of disease in aged 
individuals. 
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Figure 4.2.  Mechanisms of Cellular Senescence. Cells undergo cellular senescence following 
successive rounds of replication leading to exposure of telomeric DNA and activation of the 

DNA repair pathway (replicative senescence). Cellular senescence may also be induced 
following the accumulation of non-telomeric DNA damage due to a variety of a stressors 

including radiation, chemotherapy, or traumatic injury (stress-induced or premature cellular 
senescence). 
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Figure 4.3. Senescent Cell Morphology and Biomarkers. (A) Morphology of control 
glioblastoma cells. (B) Senescent glioblastoma cells are flattened and have expanded cytoplasm. 
(C) The majority of control glioblastoma cells lack blue staining using the senescence-associated 
beta galactosidase assay (SA-b-gal staining, negative). (D) Senescent glioblastoma cells are SA-
b-gal positive evidenced by perinuclear blue staining (SA-b-gal staining, positive). Scattered 
senescent glioblastoma cells are multinucleated. (E) Immunolabelling with gH2AX (red) and 

DAPI (blue) identifies DNA double-strand breaks in glioblastoma cells (immunofluorescence, 
confocal microscopy). (F) Higher magnification of nuclear gH2AX immunolabeling. 
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Figure 4.4.  Mechanisms of Tumor Suppression and Promotion. (a) Induction of cellular 
senescence is an important mechanism of tumor suppression which prevents tumor initiation by 

inhibiting proliferation of damaged cells. (b) Senescent cells undergo a permanent cell cycle 
arrest and adopt the senescence-associated secretory phenotype (SASP) which recruits 

leukocytes to remove senescent cells.  (c-d) However, there are several potential fates for cells 
undergoing senescence. First, normal tissue function can be restored if macrophages remove 

senescent cells; however, this process is not always efficient leading to the persistence of 
senescent cells which can promote tumor recurrence and the side effects of cancer therapy 

through SASP. Finally, some reports suggest that tumor cells can either escape or inhibit the 
induction of cellular senescence allowing them to re-enter the cell cycle leading to tumor 
initiation further underscoring the contrasting functions of cellular senescence in tumor 

suppression and promotion. 
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Table 4.1. Pathologic Findings in Senescence-accelerated Mouse-prone (SAMP). Description 
of conditions observed in specific tissues from SAMP6 and SAMP8 mice. 

Strain Tissue Condition 

SAMP6 Bone Osteoporosis, Increased Adipose Tissue 

 Liver Hepatic lipidosis 

   

SAMP8 Brain Amyloid Deposition, Astrogliosis, Microgliosis, Neurodegeneration 

 Eye Retinal Degeneration 

 Heart Fibrosis, Inflammation 

 Testis Senescent Leydig cells (low testosterone) 
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Table 4.2. Mouse Models Targeting Senescence Pathways. List of tumor latency period, 
tumor type and the major contributing cause of death in p53-null, p21-null, and p16-null mice. 

 p53-null p21-null p16-null 

Tumor Latency <6 months ~16 months ~18 months 

Tumor Type Lymphoma Histiocytic Sarcoma Spindle Cell Tumor 

Cause of Death Cancer GN/Cancera Cancer 

aContributing cause of death in p21-null mice varies by sex. Glomerulonephritis (GN) is the primary cause in 60% of 
females (males, 26%) while cancer is the cause in 55% of males (females, 26%). 
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APPENDIX 

Antibodies 

Antigen Name/Product # Source Application 

Cleaved Caspase 3 9661S Cell Signaling IF 

GAPDH MAB374 Millipore WB 

GFAP  AB5541 Millipore IF 

GFAP MA5-12023 ThermoFisher WB 

HP1g AB56978 Abcam IHC 

NeuN  MAB377 Millipore IF 

NOS2  Ab129372 Abcam IHC 

p16INK4A  550834 BD Pharmingen IF, IHC 

p21WAF1  SC-6246 Santa Cruz IF 

p53  SC-126 Santa Cruz WB 

RAD51 Ab63801 Abcam IF 

RAD51 SC-8349 Santa Cruz WB 

53BP1 NB100-304 Novus IF 

53BP1 MAB3802 Sigma Aldrich IF 

β-Actin  Ab6276 Abcam WB 

gH2AX 05-636-1 Millipore IF 

D133p53 MAP4 Rabbit Serum IF, WB 

IF and IHC Antibodies were applied to formalin-fixed samples  
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