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ABSTRACT

Self-organization in a multi-robot system is a spontaneous process where some form of

overall order arises from local interactions between robots in an initially disordered system.

Cooperative coordination strategies for self-organization promote teamwork to complete a

task while increasing the total utility of the system. In this dissertation, we apply prosocial

behavioral concepts such as altruism and cooperation in multi-robot systems and investigate

their effects on overall system performance on given tasks. We stress the significance of

this research in long-term applications involving minimal to no human supervision, where

self-sustainability of the multi-robot group is of utmost importance for the success of the

mission at hand and system re-usability in the future.

For part of the research, we take bio-inspiration of cooperation from the huddling behavior

of Emperor Penguins in the Antarctic which allows them to share body heat and survive

one of the harshest environments on Earth as a group. A cyclic energy sharing concept

is proposed for a convoying structured multi-robot group inspired from penguin movement

dynamics in a huddle with carefully placed induction coils to facilitate directional energy

sharing with neighbors and a position shuffling algorithm, allowing long-term survival of the

convoy as a group in the field. Simulation results validate that the cyclic process allows

individuals an equal opportunity to be at the center of the group identified as the most

energy conserving position, and as a result robot groups were able to travel over 4 times the

distance during convoying with the proposed method without any robot failing as opposed

to without the shuffling and energy sharing process.

An artificial potential based Adaptive Inter-agent Spacing (AIS) control law is also pro-

posed for efficient energy distribution in an unstructured multi-robot group aimed at long-

term survivability goals in the field. By design, as an altruistic behavior higher energy

bearing robots are dispersed throughout the group based on their individual energy levels

to counter skewed initial distributions for faster group energy equilibrium attainment. In-

spired by multi-huddle merging and splitting behavior of Emperor Penguins, a clustering

and sequential merging based systematic energy equilibrium attainment method is also pro-

posed as a supplement to the AIS controller. The proposed system ensures that high energy
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bearing agents are not over crowded by low energy bearing agents. The AIS controller pro-

posed for the unstructured energy sharing and distribution process yielded 55%, 42%, 23%

and 33% performance improvements in equilibrium attainment convergence time for skewed,

bi-modal, normal and random initial agent resource level distributions respectively on a 2D

plane using the proposed energy distribution method over the control method of no adaptive

spacing. Scalability analysis for both energy sharing concepts confirmed their application

with consistently improved performances different sized groups of robots. Applicability of

the AIS controller as a generalized resource distribution method under certain constraints is

also discussed to establish its significance in various multi-robot applications.

A concept of group based survival from damaging directional external stimuli is also

adapted from the Emperor Penguin huddling phenomenon where individuals on the damag-

ing stimuli side continuously relocate to the leeward side of the group following the group

boundary using Gaussian Processes Machine Learning based global health-loss rate minima

estimations in a distributed manner. The method relies on cooperation from all robots where

individuals take turns being sheltered by the group from the damaging external stimuli. The

distributed global health loss rate minima estimation allowed the development of two settling

conditions. The global health loss rate minima settling method yielded 12.6%, 5.3%, 16.7%

and 14.2% improvement in average robot health over the control case of no relocation, while

an optimized health loss rate minima settling method further improved on the global health

loss rate settling method by 3.9%, 1.9%, 1.7% and 0.6% for robot group sizes 26, 35, 70 and

107 respectively.

As a direct application case study of collaboration in multi-robot systems, a distributed

shape formation strategy is proposed where robots act as beacons to help neighbors settle

in a prescribed formation by local signaling. The process is completely distributed in nature

and does not require any external control due to the cooperation between robots. Beacon

robots looking for a robot to settle as a neighbor and continue the shape formation process,

generates a surface gradient throughout the formed shape that allow robots to determine the

direction of the structure forming frontier along the dynamically changing structure surface

and eventually reach the closest beacon. Simulation experiments validate complex shape

formation in 2D and 3D using the proposed method. The importance of group collaboration
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is emphasized in this case study without which the shape formation process would not be

possible, without a centralized control scheme directing individual agents to specific positions

in the structure.

As the final application case study, a collaborative multi-agent transportation strategy

is proposed for unknown objects with irregular shape and uneven weight distribution. Al-

though, the proposed system is robust to single robot object transportation, the proposed

methodology of transport is focused on robots regulating their effort while pushing objects

from an identified pushing location hoping other robots support the object moment on the

other end of the center of mass to prevent unintended rotation and create an efficient path

of the object to the goal. The design of the object transportation strategy takes coopera-

tion cues from human behaviors when coordinating pushing of heavy objects from two ends.

Collaboration is achieved when pushing agents can regulate their effort with one another

to maintain an efficient path for the object towards the set goal. Numerous experiments of

pushing simple shapes such as disks and rectangular boxes and complex arbitrary shapes

with increasing number of robots validate the significance and effectiveness of the proposed

method. Detailed robustness studies of changing weight of objects during transportation

portrayed the importance of cooperation in multi-agent systems in countering unintended

drift effects of the object and maintain a steady efficient path to the goal.

Each case study is presented independent of one another with the Penguin huddling

based self-organizations in response to internal and external stimuli focused on fundamental

self-organization methods, and the structure formation and object transportation strategies

focused on cooperation in specific applications. All case studies are validated by relevant sim-

ulation and experiments to establish the effectiveness of altruistic and cooperative behaviors

in multi-robot systems.
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1. INTRODUCTION

The concept of multi-robot systems in robotics research was first proposed in the 1980s. A

series of subsequent projects following its introduction, ACTRESS [1 ], GOFER [2 ], CEBOT

[3 ], ALLIANCE [4 ], M+ [5 ], MURDOCH [6 ] and ASyMTRe [7 ] brought to light the immense

potential of such systems to the research community. Potential advantages of multi-robot

systems over single-robot systems include better spatial distribution, overall performance

with regards to time required for task completion and energy consumption [8 ], [9 ], sys-

tem robustness and fault tolerance resulting from redundancy [10 ], low cost, better system

reliability, flexibility, scalability and versatility [11 ]. Multi-robot systems have since been

widely proposed for numerous applications in exploration, monitoring, surveillance, search

and rescue operations with research focused on coordination strategies between robots for

self-organization [12 ]–[14 ]. A number of these systems have often been directed towards

long-term applications in remote and dangerous locations with little to no human supervi-

sion; traditionally robots in such cases have been built to be individually self-sufficient and

self-reliant [15 ], [16 ]. Regardless, the safety, security and survivability of these robots are

important for the success of the mission.

Self-organization in a multi-robot system is a spontaneous process where some form of

overall order arises from local interactions between robots in an initially disordered system

without requiring any form of external control. Coordination between agents in a multi-robot

system has been previously categorized as competitive or cooperative [17 ]. Competitive co-

ordination strategies between individuals in such systems are considered selfish from a soci-

ological point of view as individuals tends to make decisions motivated by self-preservation

or some form of individual benefit. Cooperative coordination strategies on the other hand

promote teamwork to complete a task while increasing the total utility of the system. A

literature survey of prior work on this coordination distinction has been previously presented

in [18 ]. Under a cooperative system, individuals can benefit as a social group by looking

out for one another for support and survival. It is a proven phenomenon in nature with

examples including foraging behavior in ant colonies for food [19 ], formation flying of birds

allowing individuals to take turns resting during long flights [20 ], schooling of fish for en-
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hanced predator detection and evasion [21 ] etc. amongst many. The research presented in

this dissertation applies similar principles of social behavior and cooperation in a multi-robot

system to improve robustness in terms of robot group survivability, self-sustainability and

improved application specific performance. For part of the work, bio-inspiration has been

derived from the huddling behavior of Emperor Penguins in the Antarctic surviving long

extreme winters as a group.

Social behavioral concepts have historically been studied within groups of living organ-

isms. In the robotics area social behavioral concept application has generally remained

confined to human-robot interactions, where robots are designed to interact with people

in a natural, interpersonal manner in areas such as education, health, entertainment, and

tasks requiring collaborative teamwork [22 ]. In this dissertation, we focus specifically on the

prosocial behavioral concepts of altruism [23 ] and cooperation [24 ] applied in multi-robot

systems governing inter-robot interaction for the benefit of the group. It can be argued that

social behavioral concepts require an innate will by individuals to help or work with others

in the group, while being self-aware of one’s actions and its consequences to the extent of

understanding and prioritizing the need of the group over oneself. However, we emphasize

here that prescribed behavioral characteristics by individuals can be just as effective in their

outcome to benefit the group.

Individual robots determine their course of action based on a given set of current obser-

vation and analysis. Traditionally in cooperative robot groups, the decision making process

has been confined to individual assessment maximizing individual gain or minimizing system

cost at a given time [25 ]–[27 ]. As a step towards implementing prescribed altruistic behav-

iors in multi-robot systems, this research presents behavioral concepts by individual agents

in different applications in a group that is based on trust that its current course of action

might not result in immediate individual gain and may even be detrimental to itself, with the

expectation that others will exhibit the same behavior in return for the overall benefit of the

entire group. Although, cooperation in multi-robot systems have been previously proposed

in applications such as localization [28 ] [10 ], exploration [9 ] [29 ], search and rescue [30 ], the

benefits of altruistic behaviors or a combination of the two increasing the total utility of the

group to the best of our knowledge has never been studied in the multi-robot area.
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We stress the significance of this research in long-term applications involving minimal

to no human supervision where self-sustainability of the multi-robot group is of utmost

importance for the success of the mission at hand and re-usability in the future. Self-

organization methods studied in this research include several group energy sharing and group

surviving strategies for multi-robot systems, along with specific multi-robot applications of

cooperative shape formation and object transportation requiring or relying on inter-agent

support.

The dissertation chapters are organized as follows. Chapter 2 presents an Emperor Pen-

guin huddling inspired, index-based cyclic energy sharing concept in convoying structured

multi-robot systems. Individual robots are modeled as Emperor Penguin-based energy shar-

ing units analogous to body warmth sharing in huddling Emperor Penguins during Antarctic

winters while the group is on the move. A Position shuffling algorithm is presented for the

robot group for cyclic flank movements allowing all individuals an opportunity to be in the

center of the group which is shown to be the optimum place for energy sharing. Chapter 2 

also presents an adaptive inter-agent spacing control law for efficient energy distribution in

an unstructured multi-robot system with a supplementary clustering and sequential merging

process to reach global equilibrium in large swarms inspired by the continuous splitting and

merging of Emperor Penguin huddles sharing body heat. Inter-robot interaction is modeled

as artificial potentials and the proposed concept is validated with simulation experiments.

Chapter 3 introduces an Emperor Penguin huddling based multi-robot group survival strat-

egy from damaging directional external stimuli without any human intervention. Individuals

on the exposed side of the group successfully relocate to the global and optimum low health-

loss rate position in the group to settle on the leeward side in a distributed manner following

two separate settling criteria, without requiring any communication or prior knowledge of

the group size or shape. Gaussian Processes Machine Learning is implemented by individu-

als for minimal health loss location estimation using only local stimuli measurements. The

proposed energy sharing and continuous cyclic relocations for energy sharing and surviving

damaging external stimuli improve the overall survivability of the robot group with no robots

left behind as validated by relevant simulations.
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Lastly, as direct applications of inter-robot cooperative self-organization, Chapters 4 and

5 present a collaborative shape formation method based on robots guiding one another

for neighboring-robot settling to form prescribed shapes, and a transportation strategy for

objects of unknown, irregular shape, size and properties in multi-robot systems. Artificial

potential fields and a finite state machine controller governs the interaction between robots

and avoid collision, while completing the respective application specific tasks. Validation of

proof of concept of the proposed shape formation strategy and object transportation method

are presented with successful simulation and experimental results with a focus on inter-agent

cooperation and its benefits to the system.

Each application chapter includes its own relevant literature review on the topic along

with their respective assumptions, list of variables and symbols used. The dissertation is

concluded with closing notes on possible implications of the presented concepts in each of

the chapters, and the overall contribution of the dissertation in the field of self-sustaining

multi-robot systems relying on social and cooperative behaviors.

1.1 Preliminaries: Bio-inspiration of Social Behavior from the Huddling Behavior of Em-
peror Penguins in the Antarctic

Chapters 2 and 3 of this dissertation present cooperative energy sharing and group sur-

vival concepts proposed for multi-robot systems deployed on long-term missions without any

human supervision. The research work is partially based on the huddling behavior of Em-

peror Penguins in the Antarctic surviving long extreme winters as a group. In this section,

a brief description of this huddling phenomenon and its social implications in surviving as

a group is presented along with relevant prior work on the topic. Further details of this

huddling behavior relevant to each research work presented in this dissertation is included

in their respective chapters.

Every winter, thousands of Emperor Penguins (Aptenodytes forsteri) in the Antarctic

survive one of the harshest environments on Earth together as a group [31 ]. To survive the

severe cold conditions during storms and low ambient temperatures, they huddle together

from several hours [32 ] to even days [33 ] depending on weather conditions as depicted in

Fig. 1.1a . This allows them to conserve and share body heat with one another; survive
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(a) Emperor Penguins huddle together in
tightly packed structures in winter condi-
tions [39 ].

(b) Penguin huddling in the Antarctic win-
ter showing boundary movements from the
windward to the leeward side. Image taken
from the PBS Nature show.

Figure 1.1. Huddling behavior of Emperor Penguins in the Antarctic to survive
long extreme winters as a group.

winds over 100mph and temperatures below −45oC [34 ]. The huddles are not motionless.

Penguins that are most exposed to strong winds, slowly advance along the flanks downwind to

receive shelter behind the huddle [35 ]. This eventually causes penguins that were previously

at the center to be exposed and they start to move along the flanks to the leeward side

in turn as well accumulating behind the penguins that moved in before them. This flank

movement and constant shuffling of the penguins in the huddle ensure that each penguin has

an approximately equal opportunity for warmth and none are left behind [35 ].

The huddling behavior of Emperor penguins in the Antarctic has been studied extensively,

but very few theoretical models have been presented in literature so far. One theoretical

model of position shuffling was presented based on observations that Emperor penguins move

from the windward to the leeward side in a huddle [36 ]. This work was continued by taking

into account models of wind flow and the temperature profile around the huddle in [37 ].

Their model was based on a simple rule that individual penguins relocate themselves in the

huddle to a new position where its heat loss is minimized, without displacing another. The

huddle was modeled as a hexagonal grid based on [34 ]. The huddling behavior was modeled

as a second order phase transition triggered by cold temperatures in [38 ]. The work was

validated experimentally with a group of mice and suggested huddling as a self-organizing

event relevant among large groups of endotherms such as penguins.
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A lot of inspiration on multi-robot research has come from collective behaviors of bi-

ological organisms such as ant colonies [19 ], flocking of birds [20 ], schooling of fish [21 ]

etc. The huddling behavior of penguins shares some behavioral traits with some of the

above-mentioned organisms, but their social behavioral characteristics for group survival

have remained untouched. It allows them to look out for one another so that the entire

population of the colony may survive the whole winter as one unit. Upon literature review,

no studies have been found where the huddling phenomenon has inspired any potential work

in the multi-robot arena.
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2. ENERGY SHARING AND DISTRIBUTION

The material in this chapter of the dissertation is partially based on the following previously

published papers. The content has been added with the consent of all co-authors of all

papers.

• “Penguin Huddling-inspired Energy Sharing and Formation Movement in Multi-robot

Systems,” T. Mina, B.C. Min, 2018 IEEE International Symposium on Safety, Security,

and Rescue Robotics (SSRR), Philadelphia, PA, USA, August 6-8, 2018.

• “Efficient Resource Distribution by Adaptive Inter-agent Spacing in Multi-agent Sys-

tems,” T. Mina, M. Hossain, J.H. Park and B.C. Min, 2019 IEEE International Con-

ference on Systems, Man and Cybernetics (SMC), Bari, Italy, October 6-9, 2019.

2.1 Introduction

Multi-robot systems have the potential for application in various long-term missions such

as surveillance, monitoring, exploration etc covering large areas at a time. Self-sustainability

is a vital requirement in such cases where human supervision may not be available. Depend-

ing on the application, each robot in the group may have a different role in the team,

different hardware and movement actuation requirements; therefore, may use different levels

of battery. Different units may even use different types/sizes of batteries altogether requir-

ing different recharging times and processes. Regardless of having some on-board battery

re-charging system (e.g. solar cells), the duration of continuous survival/work of the entire

unit together is only as strong as the robot with the lowest battery life.

This chapter includes energy sharing and distribution concepts for convoying structured

and unstructured robot groups on long-term missions. The proposed concepts rely on neigh-

boring agents supporting one another by sharing or distributing energy, or self-organizing in

a systematic process by design where their immediate action might be detrimental to them-

selves but serves as beneficial to all in the long run. A cyclic energy sharing concept using

carefully placed induction coils for a structured group of robots convoying over large dis-

tances in long-term missions is presented in Section 2.3 followed by an Adaptive Inter-agent
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Spacing (AIS) control based self-organization process with group clustering and sequential

merging formulations for efficient global energy equilibrium attainment in multi-robot sys-

tems in Section 2.4 to ensure that entire multi-robot teams can survives longer in the field as

a group. The proposed cyclic energy sharing method for structured robot groups in convoy

is directly inspired by the huddling behavior of Emperor Penguins presented in Section 1.1 .

2.2 Related Work

The term trophallaxis is used in entomology to describe a mutual exchange of regurgitated

fluids between social insects [40 ]. It is also used in the multi-robot arena as exchanging

information [41 ] or energy [42 ] between agents. As a solution of energy transfer between

agents, a method of physical battery swapping between robots was proposed in [41 ]. However,

the mechanism is complicated and lacks robustness for application in a heterogeneous robot

group. An energy usage optimization approach for a multi-robot system inspired by the

foraging behavior and energy management of honeybees was proposed in [42 ]. This method

improves individual robot performance but fails to utilize the advantage of being in a group.

A number of wireless power transmission methods has been summarized by [43 ] and an

efficient non-contact method using inductive coils was patented in [44 ]. An image processing

based proper alignment of the induction coils for wireless charging between robotic agents

was later proposed in [45 ]. The coil alignment was later improved upon with a Bayesian

estimator in [46 ].

The work in [45 ] proves the feasibility of wireless charge sharing between robots. The en-

ergy sharing concepts presented in this chapter builds on this prior work by providing feasible

self-organization methods within the group for energy sharing and distribution irrespective

of heterogeneity constraints to extend the life of the group in the field.

2.3 Structured Self-organization for Cyclic Energy Sharing

In this section, the survival of a group of heterogeneous robots deployed on a long-term

mission to a remote location and on the move from site A to site B is considered. Studying the
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(a) Close packing of huddling penguins from Nature by PBS showing an individual Ai
and its neighbors indexed j ∈ (1,2, ..,8).
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(b) Top view of neighboring agents
modeled from (a).
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(c) Top view of individual agent showing induc-
tive coil placement for energy sharing with neigh-
bors.

Figure 2.1. Individual agent and group configuration based on close packing
of huddling penguins.

social behavior of Emperor penguins for group survival, the following concepts are proposed

to ensure the survival of the entire convoy for a longer period of time in the field:

• A gradient based multi-robot charge sharing concept using carefully placed inductive

coils.

• A position shuffling algorithm (PHS) for a group of robots to move to the center of

the formation in turns.

2.3.1 Methodology

Formation building block - Single agent Setup with Gradient based Charge Sharing

Huddling of Emperor penguins involves dense packing for maximal body heat sharing

and retainment as shown in Fig. 2.1a . In two dimensional euclidean space, the highest
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density lattice arrangement of circles is the hexagonal packing [47 ]. Therefore, we consider

the hexagonal lattice formation for our proposed group of robots and note an individual’s

neighbors as shown in Fig. 2.1b following Fig. 2.1a .

A hexagon structured robot is proposed as a concept for the charge sharing robot unit

as shown in Fig. 2.1c . Each agent is equipped with four induction coils; two coils upfront

marked in red to only transmit power to two front agents and two coils at the back marked

in green to only receive power from two rear agents. Charge transfer occurs when there is a

battery level difference between adjacent agents. Each side has a single coil only due to size

restrictions of the robot and efficiency requirements of the charge transfer process dependent

on the diameter of the coils [45 ]. In this study we only consider four coils rather than six on

each robot to minimize energy usage in transferring energy.

Consider an agent Ai, i∈D for D = {1,2,3, ..,N} with battery level bi and its neighboring

agents Aj, j ∈ {1,2, ..,8} with battery levels bj respectively as shown in Fig. 2.1b . The

proposed gradient based charge sharing scheme of agent Ai with surrounding agents Aj is

shown in (2.1 )-(2.3 ):

∆ij = bi−bj, (2.1)

f (bi,bj)∀j∈(1,2) =


K∆ij ∆ij > 0, K∆ij ≤ ∆t

∆t ∆ij > 0, K∆ij > ∆t

0 else,

(2.2)

f (bi,bj)∀j∈(5,6) =


−K∆ij ∆ij < 0, −K∆ij ≥−∆t

−∆t ∆ij < 0, −K∆ij <−∆t

0 else

(2.3)

where ∆ij represents the battery level gradient between agents Ai and Aj, f (bi,bj) represents

the proposed gradient based charging function with a scalar constant K > 0 dependent on

the charging efficiency of the inductive coils subject to misalignments during charging and

31



∆t is the charge sharing threshold allowed per unit time. Following Fig. 2.1c , the current

charge potential, cAi of agent Ai is therefore the sum of f (bi,bj) for j ∈ (1,2,5,6):

cAi = c5 + c6− c1− c2 = ∑
j∈(1,2,5,6)

f (bi,bj). (2.4)

The proposed method allows agents to share energy in a group. Note that the charge

sharing is one-directional; the net energy transfer is towards the front of the group supportive

of keeping the convoy moving forward in formation. For simplicity and to maintain generality

of our proposed method, each agent is assumed to be fully actuated and free to move in any

direction.

Formation Setup

We define the hexagonal lattice formation by a m−n notation with N agents each denoted

as Ai, i ∈ D, where m denotes the number of agents on the front row and n = m+1 denotes

the number of agents on the second row from the front. This m−n structure is repeated p

number of times until all N hexagonal agents are placed in a hexagonal lattice structure as

shown in Fig. 2.2 . Therefore, p = N
m+n . For simplicity, we assume that m is always even and

N is a multiple of m+n; i.e. p is Z>0.

Penguin Huddling-inspired Shuffling (PHS) Algorithm

Emperor penguins in a huddle lose more energy being exposed to the environment along

the boundary and save energy by being at the center. Similarly, robotic agents along the

boundary of a convoy use more energy monitoring the surroundings and being exposed to

the environment, than robots at the center that remain protected and are able to turn off

non-essential processes while following the leading agents. The battery usage with no charge

sharing and no flank movement is illustrated in Fig. 2.2 . We combine this assumption with

our charge sharing scheme to present the need for the proposed PHS algorithm.

In Fig. 2.2 , group 3 agents form the rear line of the convoy formation. Based on the

proposed charge sharing scheme, the agents here are always providing charge to one or more
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Figure 2.2. m− n=4-5 formation setup for N = 27 agents illustrating flank
movement and charge sharing. Robot groups by varying battery usage within
the formation without flank movement are also identified.

agents immediately in front. This is therefore the least favorable position in the convoy.

Group 2 agents form the flanks of the convoy and share charge with two adjacent agents;

one providing charge and the other taking charge. However, being at the boundary the

agents keep up monitoring the surroundings. This position is therefore better than group 3

but still not the best place to be in the convoy. The agents in group 1 form the front line

of the convoy and they are in charge of navigation (e.g. path planning, obstacle avoidance)

tasks. They have to keep their on-board functionalities on at all times. Sensing mechanisms

such as laser scanners, cameras [48 ] use a lot of power when used continuously. Such sensors

along with movement actuation results in group 1 agents having the highest battery usage

in the convoy. Agents in group 4 are in the most advantageous position being at the center

surrounded by agents on all directions. They are able to share charge with their neighbors

most effectively, and are protected from potentially harsh environmental conditions. They
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Algorithm 1 Penguin Huddling-inspired Shuffling (PHS) algorithm
1: procedure Boundary Movement(X ,Y,B) . Position movements of agents given battery levels

2: Input: Stacked agent configurations, xi and yi, and corresponding battery levels, bi.

3: Output: Updated coordinate position arrays X and Y , and battery level, B

4: Determine centerline, cy← ∑
N
i=0 yi
N , Ymax,Ymin,Xmax,Xmin of formation from X ,Y

5: for i = 1→ N do . Find boundary agents

6: if Ai lies on Ymax||Ymin||Xmax||Xmin then

7: Determine current charge potential, cAi , setting c1 = c2 = c3 = c4 = 1 . Check Eq. (2.4 )

8: Determine charge potential at neighboring points, ncpj = cAi for i = j, ∀j ∈ (1,2, ..,8)

9: Determine net charge gain at neighboring points, ngi,j = cAi −ncpj , ∀j ∈ (1,2, ..,8)

10: if yi ≥ cy then . if Ai is on left half

11: if cAi ≥ 0 then . Ai not on rear line

12: Check positions j = 4,2,7 in order, for movement availability . Refer to Fig. 2.1b 

13: if ngi,j ≥ 0 then

14: Move Ai to new position

15: else . Ai is on rear line

16: Check positions j = 7,1,3 in order, for movement availability . Refer to Fig. 2.1b 

17: if ngi,j ≥ 0 && new position≤ Ymax then

18: Move Ai to new position

19: else . Ai is on right half

20: if cAi ≥ 0 then . Ai not on rear line

21: Check positions j = 3,1,7 in order, for movement availability . Refer to Fig. 2.1b 

22: if ngi,j ≥ 0 then

23: if new position == 3 then

24: Hold until front line is full and then move Ai to new position

25: else

26: Move Ai to new position

27: else . Ai is on rear line

28: Check positions j = 7,2,4 in order, for movement availability . Refer to Fig. 2.1b 

29: if ngi,j ≥ 0 && new position ≥ Ymin then

30: Move Ai to new position

31: Update xi,yi, bi

32: return X ,Y,B . Return the new position coordinates and battery levels of the formation agents
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can also turn off non-essential on-board tasks such as navigation, exploration, environment

monitoring, etc. We will refer to this phenomenon as center advantage.

Even though huddles of Emperor penguins are inconsistent and change shape over time,

for a robotic system, it is important to maintain a set formation for ease of control and

proper functionality. If left freely to individual agents to try to move to the center directly

their movements may become chaotic and inefficient. To maintain a set formation and allow

agents to move to the center in turns in an organized way, the proposed one-directional

charge sharing scheme creates a net power flow towards the front of the huddle. This creates

an incentive for agents to try to move to the front first where they only receive charge from

their neighbors. For simplicity, we assume the net movement of the entire formation is

constrained to be along the x-axis only.

PHS described in Algorithm 1 systematically moves rear and flank agents to the front.

The agents are attracted towards the center line cy and hence they fill up the front line

over time. The agents that were previously on the front line therefore now become center

agents. As the flank agents move forward, space opens up for rear line agents to move along

the flanks in turn. The previously center agents at the back therefore now become rear-line

agents. This cyclic motion continues allowing all agents an equal opportunity for center

advantage.

PHS is effective only if the energy saving while being at the center is more than or equal

to the energy spent by an agent at the rear to move up the flank and get to the front and

eventually the center; without which there is no incentive for an agent to follow Algorithm

1 . This condition is formulated mathematically by:

µ
use
b z≤ µca∆tc

= µ
use
b (2

⌊n
2

⌋
+

N
m+n

+

⌊n
2

⌋
+ N

m+n⌊m+n
2

⌋ )

≤ µca(
⌊n

2

⌋
+

m
2
)(

N
m+n

−1)

(2.5)

where z denotes the total number of movements required by an agent in the worst case to

get from the rear line to the front, µuse
b denotes the battery usage for unit movement by an

agent, µca denotes the unit center advantage gained by an agent per unit time by being at
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the center and ∆tc represents the time duration an agent is able to stay at the center from

the front to the back as the formation progresses forward.

Therefore, the minimum center advantage, µmin
ca required for agents to have an incentive

to follow the proposed PHS algorithm and move to the center in turns can be written as:

µ
min
ca =

2
⌊n

2

⌋
+ N

m+n +
⌊ n

2
⌋
+ N

m+n⌊m+n
2

⌋
(
⌊n

2

⌋
+ m

2 )(
N

m+n −1)
µ

use
b . (2.6)

The required µmin
ca decreases with increasing N for any arbitrary m−n formation.

Stability Analysis of PHS algorithm

S(k) =



ae = a0 +(e−1)d where a0 = m+1,
d = 2m+1, e ∈ (1,2, .., p)

ae = ap−u + v where v ∈ (1,2, .., m
2 )

e ∈ (α p+1,α p+2, ..,α p+ m
2 )

ae = ap−u−m+w where w ∈ (0,1,2, .., m
2 −1)

e ∈ (α p+ m
2 +1,α p+ m

2 +2, ..,α p+m)

∀u ∈ (0,1, .., p−1), α ∈ (1,2, .., p)

(2.7)

S(k+1) =




a1 = a(k)wq+1

ae = a(k)vw−u for u ∈ (0,1,2, ..,w−1),
∀v ∈ (1,2, ..,q), e ∈ (2,3, .., p(m+1))

when mod(N,2) = 1, q = p(m+1)−1
w{

ae = a(k)vw−u for u ∈ (0,1,2, ..,w−1),
∀v ∈ (1,2, ..,q), e ∈ (1,2, .., p(m+1))

when mod(N,2) = 0, q = p(m+1)
w

(2.8)

The m−n formation with m always even, is symmetric about the center line cy parallel

to the x-axis. The left and right flank movements happen independent of each other but are

symmetric and in sync following PHS. Therefore, the stability proof of the proposed PHS

algorithm is shown for the left flank only as it holds true for the right flank as well.

We denote the indices of the agents Ai, i ∈ D in the left half of the formation as G, i.e.

G ⊂ D with elements ai. We represent agents in G as a sequence S(k) dependent on the

order at which they move from the initial state defined as z0 at time step k. At z0 the front

row agents ai, i ∈ (1,2, .., m
2 ) denoted as H, where (H ⊂ G), receive charge from two rear
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agents but do not have any agents in front to provide charge to. Following the proposed

PHS algorithm, we consider one complete cycle of movement when at least one agent in H

return to the front line receiving charge from two rear agents, with no one to provide charge

to in front and no open space is left in the front row. Based on the sequence of movements

from z0, the boundary agents on the left flank come first in the sequence. They are followed

by the rear line, and eventually the inner lines from the left-most to the middle in order.

For the 4-5 formation with N = 27 in Fig. 2.2 , the sequence S(k) with p(m+1) elements is

written as:

S(k) = 5,14,23,24,25,19,20,15,16,10,11,6,7,1,2. (2.9)

We denote this initial sequence at state z0 as S0. The sequence S(k) can be built for a

general case of m−n formation with N agents and p = N
2m+1 as (2.7 ). After each cycle the

sequence elements re-organize by (2.8 ) for w = m
2 following Algorithm 1 . To investigate the

stability of Algorithm 1 , assuming that the sequence starts from S0, we show that S(k+ s) =

S(k) for some finite s > 0.

Referring to (2.8 ), the even N case shows a pattern where sets of w consecutive elements

reverse order every cycle without overlap; i.e. at every even iteration, the cycle returns to

the original sequence S0. The general pattern of consecutive cycles of S(k) for even N and

the simplest case of q = 1 and arbitrary w can be written as:

ai(k+1) = aw+1−i(k) ∀i ∈ (1,2, ..,w). (2.10)

The odd N case is similar to the even case of reversing sets of w consecutive elements

without overlapping at each cycle. The difference is that, at each cycle the last element

of S(k) cycles to the front as element 1 in S(k+ 1). Some key observations of this process

include:

• At every order reversal of w consecutive elements without overlapping, element indexed

(w
2 +1) in that set remains in its position; i.e. for β ∈ (0,1,2, ..,q−1),

aβw+w
2 +1(k+1) = aβw+w

2 +1(k). (2.11)
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• At every cycle, a1 and every consecutive (w+1)st element move forward by w; i.e. for

β ∈ (0,1,2, ..,q−1),

aβw+1(k+β )→ a(β+1)w+1(k+β +1)

aqw+1(k+β )→ a1(k+β +1).
(2.12)

We denote these segments of the sequence as F1.

• Taking (2.12 ) into account, with every order reversal of w consecutive elements without

overlapping, one can see that only elements indexed i = 2 through i = w for every set

of w essentially reverse their order on every cycle; i.e. for β ∈ (0,1,2, ..,q−1),

aβw+2,aβw+3,aβw+4, ...,aβw+w

→ aβw+w,aβw+w−1, ...,aβw+3,aβw+2.
(2.13)

Following the proof for the even N case, every even iteration of (2.13 ) results in these

fragments of the sequence to return to the order in S0. Following the pattern from (2.12 ), if

every (γw+1)st , γ ∈ (0,1,2, ..,q−1) element moves forward by w indices on every cycle and

on reaching the (qw+1)st position cycles to index 1, these elements return to their original

position after q+1 iterations. We denote these segments of the sequence as F2.

Since F1 returns to S0 at every even iteration and F2 returns to S0 at every q+1 iteration,

the number of cycles where both segments return to S0 at the same time satisfies:

mod( min
η∈{1,2}

η(q+1),2) = 0. (2.14)

Therefore, s = η(q+1) is the number of iterations needed for S(k+ s) = S0 for an odd N.

For any even m > 0, w = m
2 . For p = 1, the total number of agents, N = 2m+1 is always

odd. Using (2.8 ), we get q = 2. The formation converges back to the original state z0 after

s = 6 cycles for η = 2.
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For p = g, where g is arbitrary, the total number of agents N = g(2m+1) is either odd

(for odd g) or even (for even g). Using (2.8 ), we get q =


2(g(m+1)−1)

m odd N

2g(m+1)
m even N

. For either

case, q can be odd or even. Therefore, regardless of N being odd or even, the formation

converges back to the original state z0 after s cycles for the p = g case depending on η .

For p = g+1, the total number of agents, N = (g+1)(2m+1) = 2mg+g+2m+1 is either

odd(for even g) or even(for odd g). Using (2.8 ), we get q =


2((g+1)(m+1)−1)

m odd N

2(g+1)(m+1)
m even N

. For

either case, q can be odd or even. Therefore, regardless of N being odd or even, the formation

converges back to the original state z0 after s cycles for the p = g+1 case depending on η .

Therefore, the PHS algorithm is stable for any N as it cycles agents and holds the original

formation for any case of valid m, where m> 0, mod(m,2) = 0 and p, where p=Z>0 as proved

by induction.

PHS Algorithm Simulation

Fig. 2.3 shows the sequence of unit time step position shuffling movements by agents in a

2-3 formation of N = 10 following Algorithm 1 . After a finite number of steps, the formation

returns to the initial configuration. Each agent is equipped with four induction coils; green

denote receiving of charge, red denote providing of charge and inactive coils are shown in

black. Agents in the most favorable positions in the convoy are marked green.

2.3.2 Validation

To validate the proposed concepts, we consider a group of N robots in the m−n formation

deployed on a 2-D terrain with no obstacles; starts at an initial position A and travels along

the x-axis towards B. We assume that all agents are in ideal communication with one another

and are capable of making precision movements.

The convoy moves forward from point A towards point B at velocity v. The agents in

the convoy are designed to be structurally identical (hexagonal) but have different roles or

assigned tasks; as a result, their battery usage varies significantly per unit time. The general
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Figure 2.3. Simulation steps showing position shuffling progression and conver-
gence back to original configuration for a 2−3 formation with N = 10. Agents
capable of receiving charge from both rear coils are identified as green.

battery usage (movement, specific tasks) is modeled per unit time as buse ∼ N (µuse
b ,σ2

use).

The additional battery usage by group 1 robots per unit time using specialized navigation

sensors such as LIDAR, camera etc. is modeled as bad ∼ N (µad
b ,σ2

ad). The power consump-

tion due to the charge sharing mechanism itself is assumed to be negligible compared to buse

based on [49 ]. Referring to Fig. 2.2 , the battery usage of agent Ai, ∀i ∈ D without charge

sharing is therefore modeled as:

bi =


bi−buse−bad Ai ∈ Group 1

bi−buse Ai ∈ Group 2 & 3

bi−buse +µca Ai ∈ Group 4.

(2.15)
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Table 2.1. Validation Scenarios for Cyclic Energy Sharing

Scenario Forward Center Gradient based Position
movement advantage charge sharing shuffling

S1 X
S2 X X
S3 X X X
S4 X X X
S5 X X X X

Table 2.2. Validation Parameters for Cyclic Energy Sharing

Forward velocity, v 2 x-units/time
Battery usage for movement, charge sharing (µuse

b ,σ2
use)

mechanism (groups 1, 2, 3, 4), buse (0.5 units/time, 0.5)
Additional battery usage (µad

b ,σ2
ad)

for navigational task (group 1), bad (0.3 units/time, 0.1)
Charge sharing threshold, |∆t | 0.2 units/time

The simulation is set up with five different scenarios, where the effectiveness of each of

the proposed methods is presented individually and as combinations. At the initial state

z0, all agents start with individual batteries at 100%. In S1, the agents only move forward

as a group to represent the base scenario as control. In S2, the agents are allowed the

minimum center advantage. In S3, the agents are allowed PHS so that all agents get an

opportunity for center advantage. In S4, PHS is allowed with gradient based charge sharing

but without center advantage to compare the effect these two concepts have on the convoy

performance. Finally, S5 utilizes all proposed concepts in this chapter adopted from the

huddling behavior of Emperor penguins. With this setup, the proposed concepts can be

validated if the convoy travels the furthest distance in S5 compared to the other scenarios.

The scenarios are summarized in Table 2.1 .

The simulation parameters are exaggerated for brevity of the simulations and are listed

in Table 2.2 . We set µca = µmin
ca for all cases. Since the aim of the study is to extend the

working life of the convoy as a whole, the simulation stops when the battery life of any agent

falls below 5%. The x-distance travelled by the convoy center and the battery level variance

amongst agents at the end are measured.
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Scenarios
S1 S2 S3 S4 S5
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(a) 4-5 formation, N=54
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(b) 6-7 formation, N=78

Scenarios
S1 S2 S3 S4 S5
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(c) 10-11 formation, N=126
Scenarios
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final battery variance
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192

71.0

127.7
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41.6

271.4

6.0
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11.3

320.9

(d) 12-13 formation, N=200

Figure 2.4. Simulation results showing the final battery level variance and
x-distance traveled by convoys under five different scenarios. The results pre-
sented are averages of 10 simulation runs. S5 yielded the maximum x-distance
with the lowest final battery level variance in all setups.

Results and Discussion

A 4-5 formation of N = 54 robots was considered for the first set of simulations with cal-

culated µmin
ca = 0.3. The average results from 10 independent runs for each of the scenarios

are tabulated in Fig. 2.4a . The x-distance traveled by the convoy in S1 and S2 was approxi-

mately equal. This is because even though S2 allowed center advantage, the convoy was still

as strong as the boundary agents who remained in place without any such advantage. With

agents in the center saving energy, the final battery variance in S2 was significantly higher.

S1 and S4 did not allow any center advantage. The x-distance values obtained for S4 were

close to S1 and S2 but consistently higher by a margin for all individual simulation runs.
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Figure 2.5. Scenario performance comparison for m−n formation with varying
N. S5 allows maximum x-distance traveled for all simulated formation cases
over a wide range of N values.

This observation closely relates to the final battery level variance readings for S1, S2 and

S4. S4 has the lowest final battery level variance because the gradient based charge sharing

method evened differences in battery levels of neighboring agents. This allowed agents using

more battery to survive longer by receiving energy from its neighbors.

S3 allowed position shuffling along with S2 methods and so all robots got an equal

opportunity to move to the center of the convoy in turns for center advantage. The convoy

was no longer as strong as the boundary agents only and so the x-distance traveled in S3 was

consistently higher than S1, S2 and S4. The final battery level variance between agents is
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also significantly lower than S2 but much higher than S4 without the gradient based charge

sharing method.

S5 allowed the convoy to travel the maximum x-distance consistently with a low final

battery level variance for all simulation runs. The combined effects of center advantage,

PHS and the gradient based charge sharing methods allowed the convoy to survive longer in

the field using the full potential of the group as validated by the simulation results.

Simulations were repeated for cases of 6-7, 10-11 and 12-13 formations with N = 78,

126 and 200 robots, calculated µmin
ca of 0.225, 0.171 and 0.126 respectively. The results are

shown in Fig. 2.4b -2.4d . For bigger convoys, the final battery level variance decreased for

S2 as expected given the large sample size for all cases. The effect of center advantage was

dominant over gradient based charge sharing with PHS (S3 vs S4) for smaller groups as shown

by the much higher x-distance values obtained in the 4-5 formation with N = 54. The effect

quickly deteriorates with bigger groups as shown for larger formation and N cases. However,

the overall conclusion remained the same. S5 with all the proposed concepts combined,

consistently yielded the best results in terms of maximum x-distance traveled while keeping

a low variance in battery levels of agents by a wide margin.

To verify that these conclusions hold over a range of N, the simulations were repeated

with varying N and corresponding µmin
ca for all the formation cases. The 4-5, 6-7, 10-11 and

12-13 formation x-distance travelled for varying N are plotted in Fig. 2.5a -2.5d . In each

case the average x-distance travelled over 10 independent sets of simulations for each value

of N are used. For all m−n setups, S1 and S2 consistently yielded similar x-distances over

the entire range of N as expected. S3 provided better results than S4 for smaller m− n

formations with low N. For larger values of N, the x-distance traveled with S3 become

increasingly worse. This is because the calculated µmin
ca does not take σ2

use into account.

Since for larger N, the agents have to move much longer distances to get to the front, the

effects of the high σ2
use add up and the center advantage is unable to match this significant

quantity of extra energy spent by any agent to get to the center. Similarly in S4, the gradient

based charge sharing alone is unable to counter this effect and its performance deteriorates

with increasing N as well. The performance of S5 deteriorates with larger N for the same

reason but with center advantage and the gradient based charge sharing scheme working
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together it is able to counter the effects of the high σ2
use for much larger N values than S3 or

S4. Therefore, S5 shows much higher x-distances traveled by the convoy over a larger range

of N compared to the other scenarios. The performance deterioration is higher in smaller

formations such as the 4−5 case where S5’s performance becomes the same as S1 and S2 for

N > 500. Therefore, we conclude that the width of the convoy (m−n) should be increased

with increasing N for better performance.

We conclude the topic of cyclic energy sharing in structured multi-robot systems here with

favorable simulation results validating that formations of different sizes successfully survive

longer as a group with the proposed concept compared to the base case of individuals only

relying on themselves. The next section of this chapter is aimed at energy sharing and

distribution in an unstructured robot group spread out over a large area.

2.4 Adaptive Self-organization in Unstructured Groups for Efficient Energy Distribution

In this section, we propose an artificial potential based, efficient and generalized ap-

proach to energy distribution in a multi-agent system with optimal distribution of higher

energy bearing agents throughout the group with adaptive inter-agent spacing (AIS) con-

trol, dependent on individual energy levels for fast energy distribution and group energy

equilibrium attainment. The adaptive inter-agent spacing control consequently prevents

over-crowding of low energy bearing agents on high energy bearing agents maximizing the

usage of individual energy transfer capabilities on minimal number of neighbors at a time

within a specified radius for optimal performance.

2.4.1 Preliminaries

Robot Group Dynamics and Setup

We consider N fully actuated mobile agents with dynamics of the form:

ṙi = vi and v̇i = ui i ∈ {1,2, ..,N} (2.16)
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in which ri ∈Rp, vi ∈Rp and ui ∈Rp denote the position, velocity and control input of each

robot i respectively. We denote the on-board energy level on each agent to be distributed

as 0 < bi ≤ 100, i ∈ {1,2, ..,N}. Maintaining generality, we assume that each agent is able

to transmit/receive energy b to/from other agents within a specified radius rb, at a rate

dependent on the number of agents within rb due to space and bandwidth limitations. We

model generalized energy sharing for the purposes of this work as:

δbi = β
∑∆bij

n
i, j ∈ ({1,2, ..,N}|rij ≤ rb) (2.17)

where β is a scalar control gain, ∆bij = bj−bi is the difference in energy level between agents i

and j, and n represents the number of agents around agent i within radius rb. energy sharing

only occurs when ∆bij > 0.

We denote the mean energy level of the group of N agents as bm. At any given time,

agent i∈ ({A,B} 3 A∪B = Λ, A∩B = /0), where A is defined as the set of agents with bi > bm,

and B as the set of agents with bi ≤ bm.

2.4.2 Methodology

Adaptive Inter-agent Spacing (AIS) Control Law

For efficient energy distribution in a group of N mobile agents governed by the dynamics

model in (2.16 ), we base our proposed control law on the previously established multiple

heterogeneous units segregation solution put forward in [50 ]:

ui =−∑
j 6=i

OriUij(||rij||)−∑
j 6=i

(vi− vj) (2.18)

where Uij(||rij||) is an artificial potential function defining the interaction between agents

i,j ∈ {1,2, ..,N}, ||rij|| is the Euclidean norm of the vector rij = ri− rj, and Ori is the gradient

with respect to the coordinates of agent i. The first term represents the resultant force acting

on agent i due to interactions with all other agents in the system. The second term acts as a

velocity damping force such that agents match their velocities to counter large variations in

potential differences among agents causing chaotic movements and maintain system stability.
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Figure 2.6. Proposed artificial potential function and corresponding scalar
force plot against agent inter-distance and proposed inter-agent spacing func-
tion d.

The artificial potential field Uij is defined as a function of current and target relative

distances between a pair of agents, expressed as:

Uij(||rij||) = α(
1
2
(||rij||−dij)

2 + ln||rij||+
dij
||rij||

) (2.19)

in which α is a scalar control gain, and dij is a positive inter-agent target distance parameter

described as a function of bj, and bm later in the chapter. We assume that at the initial time

instant ||rij|| 6= 0, for which (2.19 ) is undefined; i.e. agents i, j do not collide.
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AIS for Efficient Energy Distribution

For efficient distribution of energy b, we design the inter-agent target distance parame-

ter dij as a continuous function based on individual agent energy levels with the following

properties:

• At system equilibrium, all agents converge to the mean energy level bm and maintain

the equilibrium inter-distance de.

• Agents in A must maintain inter-distances proportional to the other’s energy level, such

that the higher the amount of energy to be distributed by the pair for equilibrium,

the higher the number of agents from B can occupy the created in-between space to

receive the distributed energy.

• Agents in B must maintain inter-distances inversely proportional to the other’s energy

level, such that the higher the amount of energy required by the pair for equilibrium,

the higher the number of agents from A can occupy the created in-between space to

distribute their energy.

We propose the following continuous function for dij, for:

• agents in A interacting with agents in Λ\A

• agents in B interacting with agents in Λ\B

derived from a smoothed approximation of the rectified linear unit (ReLU) activation func-

tion, satisfying the above set requirements:

dij =

ρ ln(1+ ebj−bm)+de if i ∈ A, j ∈ Λ

ρ ln(1+ ebm−bj)+de if i ∈ B, j ∈ Λ

(2.20)

where ρ is a scalar control gain. Figure 2.6 illustrates the distance relationship between

agents for the two cases.

The significance of the proposed function for dij is that it ensures that agents with large

on-board energy for distribution, spread out throughout the group without accumulating
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together. This is particularly important for efficient energy distribution in systems where

the initial energy distribution is skewed on certain areas of the group.

Furthermore, the design of the spacing between agents with lower energy ensure that no

agent with energy level larger than the mean is over-crowded with agents with lower energy

level agents at any given time. This allows fast and efficient energy transfer between agents

within rb when transfer limits are present dependent on number of connecting agents.

AIS Controller Analysis

To investigate the stability and the convergence of the multi-agent system to equilibrium

distance de using the proposed control law, we define the Lyapunov function as,

V (q,v) =U(q)+
1
2

vTv (2.21)

where q ∈ RN p and v ∈ RN p are stacked position and velocity vectors of N robots in the

system, and U(q) : RN p −→ R>0 is the collective potential energy of the system written as,

U(q) =
1
2 ∑

i∈A
∑
j 6=i

Uij(||qij||)+
1
2 ∑

i∈B
∑
j6=i

Uij(||qij||). (2.22)

where the first term represents the total potential for pairs of agents i ∈ A, j ∈ Λ and the

second term for pairs of agents in i ∈ B, j ∈ Λ. The collective dynamics of the system is

written as,

q̇ = v (2.23)

v̇ =−OU(q)− L̂(q)v (2.24)

where L̂(q) is the Kronecker product of the fully connected system’s graph Laplacian L(q)

and a p× p identity matrix Ip.

Proposition: Assuming a complete underlying adjacency graph at all times, for any

initial condition that belongs to the level set ΩC = {(q,v)|V (q,v) ≤C}, for C > 0, a multi-

agent system with agents in sets A or B, and dynamics, energy sharing and control defined
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by (2.16 ), (2.17 ) and (2.18 ) respectively, asymptotically converges to the largest invariant set

in ΩI = {(q,v) ∈ΩC|V̇ (q) = 0} without any inter-agent collision. At the largest invariant set

in ΩI, the velocity of each agent is bounded, all velocities match and the system’s collective

potential reaches a local minimum.

Proof: For proof of the proposition defined above, we refer to [50 ], where LaSalle’s

Invariance Principle is applied to show convergence, by demonstrating that V̇ (q,v) ≤ 0,

substituting the collective dynamics equations (2.23 ), (2.24 ). By design, the potential field

and collective dynamics defined for the proposed AIS control law in this research is identical

to the multi-robot segregation model put forward in [50 ]. Therefore, for proof of convergence

we refer to [50 ] where the authors show that the velocity of each agent is bounded, and

the system reaches a local minima at energy equilibrium (dij = de, ∀i, j) with no change in

velocities. Collision avoidance is also proved assuming no collision occurs at initialization.

2.4.3 Supplement for Large Swarms using AIS

The AIS based energy distribution method is designed to produce fast individual energy

convergence to the group energy mean by spacing high energy robots throughout the group.

It must be noted that the AIS controller requires high energy robots to travel at high speeds

over large distances avoiding collision with other robots to reach their spaced distances with

other high energy robots, which may be impractical in real life situations.

In reality, robotic agents are limited by their mobility. Maximum speed limitations may

prevent high energy bearing agents from initially distributing themselves throughout the

group, and continuously narrowing pathways may prevent further self-organization. The

problem incrementally worsens for larger robot swarms spread out over larger areas, where

more robots have to travel increasingly larger distances to re-distribute themselves with

narrowing passageways.

The huddling behavior of Emperor Penguins in the Antarctic presented in Section 1.1 

is a dynamic process, where observations suggest that huddles merge and split over time.

Current understanding of merging and splitting of huddles is limited to having a correlation

with ambient temperature that dictates penguin density in individual huddles [37 ]. However,
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observations of this phenomenon reveal that the continuous process of merging and splitting

of huddles create pathways for penguins to relocate to other huddles in the colony.

Clustering and Sequential Merging Algorithm for Large Swarms

Inspired by this continuous multi-huddle merging/splitting process where Penguins may

number in thousands, we propose an initial clustering method of all agents and a sequential

merging process of adjacent clusters each utilizing AIS locally, to eventually merge all clusters

into one. The clustering and merging process for large swarms is described as follows.

Large Swarm Clustering/Merging for AIS:

• Step 1: Determine k tanker agents as 90th percentile of the initial energy distribution.

• Step 2: Perform k−means clustering of the initial agent distribution.

• Step 3: Assign k tanker agents to the k cluster centroids, such that the total distance

travelled by all tankers is minimized.

• Step 4: k tanker agents move to the k cluster centroids avoiding collision with other

agents.

• Step 5: Run AIS controller for energy distribution locally within each cluster to reach

local cluster equilibrium.

• Step 6: Merge with adjacent neighboring cluster if both clusters have reached their

local energy equilibrium.

• Step 7: Repeat process from Steps 5 until all clusters are merged as one.

In order to ensure that the highest energy bearing agents of the group are distributed

throughout the group, we determine the 90th percentile of sorted agent energy levels, where

the number of agents is denoted as k and the agents are termed as tankers. We denote the

initial positions of the k tanker agents as vector A.
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The agent swarm is divided into k clusters by k−means clustering. The clustering problem

is formulated as follows where the objective is to find,

argmin
S

k

∑
i=1

∑
r∈Si

||r−µi||2 = argmin
S

k

∑
i=1

1
2|Si| ∑

rm,rn∈Si

||rm− rn||2 (2.25)

where r denotes the vector of N agent positions, S = {S1,S2, ..,Sk} denotes the k partitioned

sets of agents such that k ≤ N, and µi is the mean of agent positions in Si [51 ]. The k−

means clustering method is a well-established partitioning algorithm based on a squared error

criterion with a complexity of O(k) [52 ]. The centroid positions of each of the k clusters is

denoted as vector B. Each tanker robot is assigned to move to one of the centroid locations,

such that the total distance travelled by the k tankers is minimized. The optimization

problem is formulated as,

P∗ = argmin
P
||A−PB||2 (2.26)

B∗ = P∗B (2.27)

where P is a permutation matrix generated using Heap’s algorithm [53 ]. B∗ denotes the

sequence of cluster centroid positions corresponding to the sequence of tanker positions in A

such that the total distance is minimized. The complexity of the optimization formulation is

k! and therefore computationally heavy for large k. Since optimization is not the focus of our

study, we continue our formulation with this brute force approach. A number of relatively

efficient methods including the Hungarian algorithm [54 ] may be used to solve this problem.

A brief review of applicable methods is presented in [55 ].

The tanker agents relocate to their assigned cluster locations avoiding collision with other

agents. Once the tanker agents are in place, the local clusters use the proposed AIS controller

to attain their respective local mean energy level equilibriums. Once adjacent clusters reach

their equilibrium, they merge together sequentially and the process continues with each

merged cluster attaining their local energy mean equilibrium following the proposed AIS

controller. The continuous sequential merging process eventually joins all clusters together

into one and the global energy mean equilibrium is reached.
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2.4.4 Validation

To validate our proposed concept, we show that a group of agents randomly distributed on

a flat planar surface each having a different energy level 0< bi≤ 100, successfully converge to

the mean group energy level bm faster with AIS than without. We define the base case for our

comparison as, all agents rendezvous with agent inter-distance de and share energy with all

neighbors within rb. With such a setup, where all aspects of the experiment are held constant

except for the proposed dij function, we isolate the effectiveness of the proposed AIS control

law on system performance. First, the proposed clustering and sequential merging method

specifically for large swarms with a maximum speed restriction of vm = 1 is validated by

time lapse illustrations of the initial clustering, tanker allocation, local AIS implementation

and sequential merging of said clusters to eventually reach the global energy mean. Notable

observations of the simulation are presented along with their effectiveness on the agent

self-organization and energy distribution process. Scalability results are also presented for

increasing N.

Finally, an in-depth validation and effectiveness analysis of the proposed AIS controller

for general implementation is then presented in the following section without any maximum

velocity restrictions focusing specifically on the agent self-organizing process. The validation

process is set up with four specific scenarios to study the performance and effectiveness of

our proposed energy distribution method in comparison to the defined base method. The

scenarios include N randomly distributed agents on the x− y plane initially having:

• Scenario 1 (S1): Skewed

• Scenario 2 (S2): Bi-modal

• Scenario 3 (S3): Normal

• Scenario 4 (S4): Random

distributed energy levels on agents along the planar x-axis, each being compared to its

corresponding base approach solution. The left-skewed initial distribution is designed such

that all agents on the right one-quarter of the x-y plane have 80≤ b≤ 100, while all others
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have 0 < b≤ 20. The bi-modal initial distribution is designed such that all agents on the left

one-quarter and right one-quarter of the x-y plane have 80 ≤ b ≤ 100 and while all others

have 0 < b ≤ 20. The normal initial distribution is designed such that all agents on the

middle one-quarter of the x-y plane have 80 ≤ b ≤ 100, while all others have 0 < b ≤ 20.

Lastly, the random initial distribution allows all agents in the x-y plane to have a random

energy level 5 < b≤ 100.

Each set of experiments consisted of N = 100 robots, each with zero initial velocity, with

exaggerated parameters de = 2, rb = 3, α = 0.8, β = 0.1 and ρ = 0.8 for brevity of the

simulations.

Clustering and Sequential Merging Implementation for Large Swarms

We present the validation results of the proposed supplementary clustering and sequential

merging process utilizing local AIS control for energy distribution with time lapse images of

the process with N = 50 and N = 100 agents shown in Fig. 2.7 . The respective sequential

global energy equilibrium attainment process with time is plotted in Fig. 2.8 .

For N = 50, the 90th percentile tanker robot determination yielded 5 tanker robots result-

ing in 5 k-means initial clusters to form. The tanker robots were allocated to their respective

cluster centroids minimizing the required total distance to be travelled. The tanker robots

successfully navigated to the cluster centroids avoiding collision with neighboring robots.

Once the cluster centroids were reached, each cluster initiated their local AIS controller to

locally share and distribute their energy centered by their tanker agent. As adjacent clusters

reached their local equilibrium, sequential merging allowed clusters to join and eventually

reach the global energy mean as a single group. We emphasize here that compared to the

AIS controller applied to the entire group as a whole, the clustering method allows agents

to travel shorter distances within their clusters. The corresponding agent energy level plot

for N = 50 agents shows the sequential local equilibrium attainment process for each cluster.

After the initial clustering process, each cluster reaches an equilibrium where the cluster-to-

cluster energy level variance is observed to be small. Similar observations are noted for the

N = 100 agent simulation initially producing 10 tankers and 10 k-means clusters. Sequential
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(a) Clustering and merging for N = 50 agents using local AIS to reach global energy equilibrium.
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(b) Clustering and merging for N = 100 agents using local AIS to reach global energy equilibrium.

Figure 2.7. Proposed clustering and sequential merging with local AIS imple-
mentation for energy distribution with N = 50 and N = 100 agents to reach
global mean energy equilibrium.

merging eventually resulted in global energy mean equilibrium attainment under 1,500 time

steps.

We note here that low variance in inter-agent energy levels obtained by the clustering and

sequential merging of small groups is desirable using AIS, since inter-agent spacing following

the AIS controller is dependent on differences in energy levels. With a smaller variance,

sets of high energy bearing agents and sets of low energy bearing agents are not required

to space themselves far apart moving faster than other group members avoiding collision

with narrowing passageways. Therefore, the clustering method allowed reduced inter-agent
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Figure 2.9. Scalability analysis of the clustering and sequential merging process
showing increasing iteration time to reach global energy mean equilibrium for
increasing N with limited maximum velocity.

energy level variances and subsequently less travel for local AIS and at lower speeds during

cluster merging. Since, agent mobility and speed is minimal, each set of cluster merging

contributes to less energy usage by the self-organization process. The energy saving becomes

more evident for larger swarms spread over larger areas.

The clustering and sequential cluster merging simulation using local AIS was repeated

for a range of N = 50 to N = 1,000 at increments of 50, with each N value case being

independently repeated 5 times. The mean global energy equilibrium attainment time for

each N is shown in Fig. 2.9 . The equilibrium attainment time was observed to increase slowly

with N as expected; with larger N more clusters were formed and the sequential merging

process required more time to reach global equilibrium.

56



AIS Simulation

Figure 2.10 a, 2.10 b and 2.10 c each illustrate sets of simulation time step sequences using

the proposed method and its corresponding base method (a.1, a.2), (b.1, b.2) and (c.1, c.2)

for scenarios S1, S2 and S3 respectively.

Following the dij inter-distance formulation of the proposed method, agents with high

energy levels from the right in S1 fig. 2.10 a (a.1), start to diffuse in to the rest of the

group at t = 30 and t = 80. Similar behavior was observed in S2 fig. 2.10 b (b.1) and S3 fig.

2.10 c (c.1) with the proposed method, where agents with high energy levels from the ends

and center respectively, diffuse throughout the group at t = 30, t = 80 and t = 20, t = 60.

With high energy level agents placed throughout the group, the energy distribution following

(2.17 ) reaches the group mean energy level equilibrium at t = 229, t = 208 and t = 232 for

S1, S2 and S3 respectively.

In contrast, using the base method in each of the scenarios S1 fig. 2.10 a (a.2), S2 fig.

2.10 b (b.2) and S3 fig. 2.10 c (c.2) respectively, all agents rendezvous to a minimal potential

state at inter-distance de regardless of each other’s energy level. In S1 fig. 2.10 a (a.2), due to

the left-skewed initial energy distribution, agents with higher energy levels clump together on

the right. Similarly, agents with higher energy levels clump together on the ends and center

in S2 fig. 2.10 b (b.2) and S3 fig. 2.10 c (c.2) respectively, because of the bi-modal and normal

initial energy distribution in their corresponding scenarios. At time step t = 229, t = 208

and t = 232 for S1, S2 and S3, while the system has already reached the group mean energy

level equilibrium using the proposed method, the base case was yet to reach equilibrium as

seen from the simulation time step in each of the scenarios. The optimal placement of high

energy agents throughout the group using the proposed energy distribution method ensured

fast and efficient energy equilibrium attainment over the base method.

The convergence of energy levels of each agent to the group mean energy level for each

of the described scenarios S1, S2 and S3 using the proposed energy distribution and the

base method approaches is illustrated in fig 2.11 , 2.12 and 2.13 respectively. The system

converges to the mean group energy level at t = 521, t = 398 and t = 260 without using AIS

for each of the S1, S2 and S3 scenarios. Therefore, 55%, 42% and 23% performance
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Figure 2.10. Time lapse comparison of scenarios (a) S1: Skewed, (b) S2: Bi-
modal, (c) S3: Normal initial energy distributions using the proposed energy
distribution method and their corresponding base methods.
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Figure 2.11. S1: Skewed initial energy distribution - individual agent energy
level convergence vs iteration time.
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(b) S2: Bi-modal - convergence without AIS

Figure 2.12. S2: Bi-modal initial energy distribution - individual agent energy
level convergence vs iteration time.

improvements in equilibrium attainment convergence time was obtained using the proposed

energy distribution method over the base method.

The experiment was repeated for scenario S4 with a random initial energy distribution

5≤ b≤ 100 for all agents in the x-y plane. The system converged to bm = 57.57 at t = 149

using AIS and at t = 237 without using AIS. Fig 2.14 plots the convergence of energy levels of

each agent to the group mean energy level using the proposed and base methods. Significant

performance improvement of 33% in equilibrium attainment convergence time was observed

with the proposed method over the base method proving the effectiveness of the formulated

dij function in efficient energy distribution in a group.
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(b) S3: Normal - convergence without AIS

Figure 2.13. S3: Normal initial energy distribution - individual agent energy
level convergence vs iteration time.
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(b) S4: Random - convergence without AIS

Figure 2.14. S4: Random initial energy distribution - individual agent energy
level convergence vs iteration time.

AIS Robustness & Scalability

The significance of the proposed method is that it adaptively distributes agents with

higher individual energy levels throughout the entire group regardless of initial group energy

distribution. The process is continuous over time and thus the optimum calculated inter-

distance is always maintained throughout the group based on inter-agent energy levels at all

time instances until equilibrium.

Observation 1: The proposed energy distribution method out-performed the base method

in all scenarios S1, S2, S3 and S4 for N = 100 agents.
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(b) S2: Bi-modal initial distribution scal-
ability
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ability

Figure 2.15. System convergence time to mean group energy level with in-
creasing N for each of the four set scenarios with and without using AIS energy
distribution.

Therefore, we conclude that the proposed energy distribution method using adaptive

inter-agent spacing based on individual energy levels is robust to extreme initial group energy

distributions.

Observation 2: At any given time, each individual agent classifies itself and others as

either having an energy level above the mean or below to determine its inter-agent distance

dij. For local energy distribution, it only considers agents within rb. Therefore, the proposed

method performs independent of the number of agents in the entire group at any given time.

Hence, we conclude that the proposed energy distribution method is also robust to dy-

namic changes in the number of agents in the group during the energy distribution process

assuming no agent is incapacitated or faulty.
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Observation 2 also supports scalability of the proposed method. To further investigate,

we demonstrate the scalability by repeating scenarios S1, S2, S3 and S4 for N = 3 to 500,

and plotting the time required for the system to reach the energy equilibrium for each case.

Figure 2.15 plots the experiment results obtained from the proposed and base methods.

Observation 3: During the initial self-organization process where high energy bearing

agents distribute themselves throughout the group, the high energy bearing agents are re-

quired to travel at relatively much higher speeds compared to the rest. As individuals get

closer to the group mean energy level, the spacing between robots decreases narrowing path-

ways and preventing further self-organization of robots in the group.

An implementation of the proposed swarm clustering and sequential merging methodol-

ogy for energy distribution in large swarms is presented in Section 2.4.4 .

The proposed AIS energy distribution method consistently yielded shorter convergence

times for increasing N. The most effective difference is seen in initially skewed energy dis-

tributions and the closest difference is seen with the random initial energy distribution.

At N < 6, inconsistent convergence times were obtained. In most cases the base method of

without using AIS performed better since all robots converged together into a small enough

group for fast energy distribution; whereas with AIS, larger inter-distances between robots

meant larger traveling times until energy equilibrium attainment. Therefore, we conclude

that the proposed AIS energy distribution method is effective for N > 8.

The scalability plots with increasing N shows a diminishing convergence time for small N

and then gradually reaches a steady state. This is a consequence of using artificial potential

functions to model the dynamics of the system. With larger N, a larger amount of energy

transfer occurs resulting in longer convergence times. However, the total potential energy

of the system is higher as well, with each agent experiencing larger attraction and repulsion

forces resulting in faster movements in the environment. This contributes to smaller conver-

gence times. As a result of cancelling effects of the two phenomenon, a steady convergence

time is observed in all scenarios shown in Fig. 2.15 regardless of N.
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2.5 Conclusion

This chapter of the dissertation presents energy sharing concepts for structured and un-

structured robot groups on long-term missions. The structured robot group cyclic energy

sharing concepts include an Emperor Penguin huddling-inspired position shuffling algorithm

(PHS) and a gradient based energy sharing scheme. The unit robot design is described as a

hexagonal structure with carefully placed inductive coils for charge sharing between agents.

PHS allows individual robots equal opportunity to be at the center of the formation in turns.

The unstructured robot group energy sharing and distribution concept includes an AIS con-

trol law based on energy levels of robot pairs. Based on observations of continuous merging

and splitting of multiple Emperor Penguin huddles during body heat sharing and regula-

tion, a clustering and sequential merging of small robot groups for global energy equilibrium

attainment method is also proposed as a supplement to the AIS controller.

Structured case simulation results validate that formations of different sizes successfully

survive longer as a group with the proposed cyclic PHS algorithm compared to the base

case of individuals only relying on themselves. Unstructured case simulation results validate

improved energy distribution performance with AIS for both random and extreme cases of

skewed initial energy distributions in the group.
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3. SURVIVING DAMAGING EXTERNAL STIMULI

The material in this chapter of the dissertation is partially based on the following previously

published paper. The content has been added with the consent of all co-authors of the paper.

• “Penguin Huddling Inspired Distributed Boundary Movement for Group Survival in

Multi-robot Systems using Gaussian Processes,” T. Mina, B.C. Min, 2018 IEEE Inter-

national Conference on Robotics and Biomimetics (ROBIO), Kuala Lumpur, Malaysia,

December 12-15, 2018.

3.1 Introduction

Robots play an important role in exploring the unknown and in some of the harshest

environments on Earth [56 ]. To survive severe damaging environments (strong directional

winds, blizzards, dust storms, etc.), individual robots have traditionally required custom-

built hardware to survive long-term exposure to extreme external stimuli. For instance,

robots built for Antarctic explorations (such as NOMAD [57 ] and Cool [58 ]) encounter

extreme cold temperatures and strong damaging winds even in the Antarctic summer [59 ].

In such conditions, electronic components require specially sealed, insulated, aerogel warm-

housing [15 ] [60 ] for normal operation; lithium batteries despite being a popular choice, suffer

severe power loss at temperatures below 0oC [61 ]. Warm-up routines are often required as

well to keep lubricants from stiffening. Such adaptations are expensive and in most cases

specific to individuals and environmental conditions. Given the unpredictable nature of such

conditions, designing individual robots that can take into account all possible scenarios is

not feasible either.

As bio-inspiration of the research proposed in this chapter, we re-visit the Emperor

Penguin huddling behavior presented in Section 1.1 . While Emperor penguins have evolved

to withstand very low temperatures on their own, they can only survive conditions as severe

as Antarctic winters by being in a social group. Individual robots have been traditionally

designed the same way, but we ask the question how being in a group can increase robustness

in survivability. Similar to how penguins take turns being on the leeward side of the group

during storms, robots could take turns settling on the leeward side to minimize damage by
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physical protection from the group when no shelter is available nearby. In this chapter, we

propose a distributed boundary movement methodology using Gaussian Processes Machine

Learning (GPML) with a spectral mixture kernel to relocate individuals from the stimuli

side to the global and an optimized health-loss-rate minima on the leeward side following two

distinct settling conditions proposed in this chapter without requiring any communication

or prior knowledge of group size or shape, when exposed to a damaging directional external

stimuli. Fig. 1.1b shows the analogous process of Emperor Penguin huddling and boundary

movement around the group in Antarctic winters.

3.2 Related Work

Body heat and the energy saving benefits of penguin huddling and shuffling has been

studied in [39 ]. The dynamic movements in the huddle that allow an equal opportunity

for all penguins to be at the center based on temperature changes within the huddle was

explained in [62 ]. Despite numerous extensive studies, very few theoretical models of the

boundary movement in a huddle has been put forward.

A theoretical model focused on the boundary movements of huddling penguins moving

from the windward side to the leeward side was first proposed in [36 ]. Waters et al. [37 ]

extended that work by taking into account an inviscid and irrotational wind flow and a

temperature profile around the huddle. The huddle was created as a hexagonal grid based

on [34 ] and assumed that the penguins did not displace one another and the penguin with

the highest heat loss relocated to the centrally pre-computed best location in the huddle.

Previous work on robots following a boundary using machine learning include a wall-

following robot that used linear regression and Support Vector Regression to predict motor

commands to determine the direction of motion [63 ]. Programmable self-assembly of multi-

robots was achieved by [64 ] using Kilobots [65 ] following the boundary of the group to

form complex planar prescribed shapes. A centralized approach of robot relocation in a

structured robot formation was previously studied in [66 ] assuming full communication and

state information.

Adaptive behaviors by robots to external stimuli have primarily focused on peripheral

stages of sensory perception or on peripheral motor control [67 ][68 ]. Conditioned reward-
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based behavior to adapt to external stimuli using spiking neural networks was proposed by

[69 ].

For our multi-robot system with distributed control and without communication, we build

on the huddle modeling work by Waters et al. [37 ]. Since the robots are unaware of the size

and shape of the huddle, nor have any information on a suitable safe relocation position, a

machine learning approach is proposed where robots move along the boundary looking for

a favorable position to relocate to, only relying on external stimuli readings and distance to

neighbors. Our proposed method combines learning algorithms in artificial intelligence to

multi-robot group survival decision making in extreme environments in a distributed manner.

3.3 Preliminaries

3.3.1 Robot Dynamics and Group Formation

We consider a scenario where a robot group has been deployed on a long-term mission

without any human supervision and encounters a severe external stimuli without any shelter

nearby. The huddling behavior of Emperor penguins involve tight packing of individuals for

group survival. Therefore, we consider a closed hexagonal lattice formation for our group of

robots with no empty spaces within the robot group. We let rt
i ∈ R2 denote the position of

the ith robot Ri on a planar surface with respect to a global inertial frame for i = {1,2..,N}

at time instant t, with a neighbor detection radius of rd. For simplicity, we model the robots

as point masses with full actuation. The dynamic model of the ith robot can be written as,

ṙi = vi, v̇i = ui; where vi and ui denote the absolute velocity and the control force for the

corresponding robot i.

At any given time t, Ri can either be staying in formation (i ∈ A) or moving along the

boundary (i ∈ B) where A is defined as the set of robots staying in formation and B the set

of robots moving around the boundary. We assume every robot is equipped with distance

sensors and are able to classify neighboring robots within rd to be in A or B. We model

robots in A and B to only interact with robots in their own set. This ensures that boundary

moving robots do not displace robots that are currently in formation.
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(a) N=26 robot hexagonal lat-
tice formation with a damag-
ing directional external stimuli
along x+.
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(b) Pressure/Density
(units4/t2) distribution of
modeled damaging directional
external stimuli as a fluid flow.
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(c) x-velocity (units/t) dis-
tribution from modeling the
damaging directional external
stimuli as a fluid flow.

Figure 3.1. Damaging directional external stimuli as a viscous incompressible
flow around the robot formation.

3.3.2 Modeling Damaging Directional External Stimuli and Robot Health Loss

For a multi-robot group on a planar surface modeled as a hexagonal lattice formation, we

assume a damaging external stimuli from the left, detrimental to the set of exposed robots.

The setup is illustrated in Fig. 3.1a . To maintain generality of a damaging directional

external stimuli, we set the following requirements:

• A direct damaging force on the stimuli side.

• Stimuli affects flank members exposed to the outside.

• Direct protection is only available on the leeward side.

We model such a damaging external stimuli as a directional, viscous and incompressible fluid

flow with an inlet on the x =−10 line, flow directed towards x+ with inlet velocity, vx = v f

around our robot group. Fig. 3.1b -3.1c show the pressure/density distribution and vx dis-

tribution of the fluid around the robot group respectively. We assume high pressure/density

zones and high vx zones as damaging elements to an exposed robot in the group. The mod-

eled fluid flow fulfills our set requirements for a damaging directional external stimuli as

follows:

• Creates a high pressure zone on the stimuli side (analogous to a direct damaging force).
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• Flanks experience high fluid velocity with variations in pressure (damaging for exposed

flank robots).

• A low absolute pressure zone with low fluid velocity on the leeward side (protected

zone).

The illustrated fluid flow was simulated in the MATLAB QuickerSim toolbox with viscous

coefficient ν = 10. We assume that robots have negligible spacing in between such that the

robot group may be considered a solid non-deformable planar object. Thus, the fluid flow

model may be simplified as a flow around a single solid object.

At time t, Ri measures the external stimuli at its location ri to determine its rate of health

loss written as,

Lt
i =


βP|Pt

i |+βVV t
i

nt
i

if nt
i < 6

0 else
(3.1)

where βP and βV are scaling constants, Pt
i and V t

i are measured pressure and fluid velocity

and nt
i is the number of neighbors detected within rd.

Ri, i∈ A breaks off the formation if Lt
i > Lthreshold, such that Ri for A← A\{i}, B← B∪{i}

starts moving along the boundary with η determined as away from the direction of the

damaging external stimuli.

3.4 Methodology

3.4.1 Robot Interaction and Motion Control

The hexagonal lattice formation with robots in A is maintained using an artificial poten-

tial UI previously established in [70 ] written as,

FI =

αI(ln(rij)+
d0
rij
) 0 < rij < d1

αI(ln(rd1)+
d0
d1
) rij ≥ d1.

(3.2)
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where rij is the distance between robots i and j in A, αI is a scalar control gain; d0 and d1 are

scalar constants such that d0 < d1≤ rd. At equilibrium, all robots are grouped together in the

hexagonal lattice formation. The hexagonal lattice formation is locally stable in the sense

of Lyapunov because by design, the equilibrium is a global minimum of the total artificial

potential [70 ]. Robots in B also interact with other members of B exclusively using Eq.

(3.2 )-(3.4 ) to prevent collision.

We assume that the robot group is initially centered at location rc. An attractive potential

is defined for a robot determined as the geometric group centroid of robots in A towards rc

where neighboring robots match this attractive potential of the initiator detected within dij.

The potential function can be written as,

Fc =


1
2αcr2

ic if i ∈ A is the group center

1
2αcr2

ic ∀Rj, j ∈ A, if i ∈ A is the group center, j 6= i, 0 < rij < d1.

(3.3)

The geometric group center is determined in a distributed manner using the Barycenter

Algorithm discussed in Section 3.4.3 . The inter-robot interaction force for all Ri ∈ A can

therefore be written as,

fI =

OrijFI +OricFc 0 < rij < d1

OricFc rij ≥ d1.
(3.4)

We define an artificial potential Fd and the attractive force fd for the tangential boundary

movement of robot Ri, i ∈ B around its closest neighbor Rj, j ∈ A by,

Fd =
1
2

αdr2
ij fd = OFd (3.5)

where αd is a scalar gain constant, rij ≤ rd is the distance between Ri and Rj. We denote ft as

the tangential force vector derived with magnitude equal to || fd|| and direction θt = θd +η
π

2 ,

where θd denotes the direction of fd and η ∈{1,−1} depending on the direction of movement.
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Therefore, the control input can be written as,

ui =

−∑
N
j6=i,j6=m fI(rij) i, j ∈ A,m ∈ B

− ft(rij) i ∈ B, j ∈ A.
(3.6)

We constraint each robot with a maximum velocity vm.

3.4.2 Distributed Robot Relocation using Gaussian Processes Machine Learning (GPML)

Once movement is initialized for Ri, i ∈ B the time is recorded as t i. Ri, i ∈ B continues to

move along the boundary unaware of the size and shape of the robot group, without moving

backwards or displacing neighboring robots, measuring fluid pressure Pt
i , fluid velocity V t

i at

coordinates rt
i = (xt

i,y
t
i) at every time instant t ≥ t i. Without any communication it is unable

to determine its safest relocation position from the group where absolute pressure and fluid

velocity are lowest suggesting a minimal Li position from the external stimuli. We denote

the current time as tc.

Gaussian Processes (GP) are a powerful regression technique which provide Bayesian

non-parametric smoothing and interpolation with a set of basis functions. We define a

distribution over functions f (x),

f (x)∼ G P(m(x),k(x,x))

m(x) = E[ f (x)]

k(x,x) = cov( f (x), f (x))

(3.7)

where x ∈ RS is an arbitrary input variable over space S, m(x) is the mean and k(x,x) is the

covariance function respectively.

The properties of the likely functions under a GP are controlled by the positive definite

covariance function. The choice of the kernel affects performance significantly on a given

70



task. A commonly used kernel function is the squared exponential kernel (3.8 ) where the

only covariance structure learned from training data is the length scale l,

kSE(x,x) = exp(−0.5||x− x||2/l2). (3.8)

However, by using a mixture of Gaussians that have non-zero means, a much wider range of

spectral densities can be obtained [71 ]. Therefore, for better performance we use the spectral

mixture kernel,

kSM(τ) =
Q

∑
q=1

wq

S

∏
s=1

exp{−2π
2
τ

2
s v(s)q }cos2πτsµ

(s)
q (3.9)

where wq are weights that specify the relative contribution of each mixture component, Q is

the number of Gaussians on RS with the qth component having mean µq = (µq(1), ...,µq(S))

and covariance matrix Mq = diag(vq(1), ...,vq(S)) and τs is the sth component of the S dimen-

sional vector τ = (x− x).

The advantage of GP over other learning approaches is that it provides well defined

confidence intervals important to assess the predicted model. Therefore, we propose GP

machine learning at time intervals of tint for Ri, i ∈ B to determine pressure and velocity

models f P
i (t) and fV

i (t) as trends in Pt
i and V t

i measurements collected as training data

between t i ≤ t ≤ tc respectively, and extrapolate the models to predict if a better relocation

position is available ahead up to time textrap. We define a cost function Lc
i (t) using weighted

f P
i (t) and fV

i (t) components and determine a global minima corresponding to the safest

location in the group at t = tmin. The cost function Lc
i is defined as,

Lc
i (t) = λ1| f P

i (t)|+λ2 fV
i (t) (3.10)

tmin = argmin
t

Lc
i (3.11)

where λ1 and λ2 are weights of each component. The global minima is determined by a simple

exhaustive search. We present two settling conditions for robots following the boundary.
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Settling at Global Minimum Health Loss Rate

In this global health loss rate minimum settling condition, robots prioritize getting to

the estimated global health loss rate minimum regardless of the loss of health getting to the

estimated location. The robot continues to move along the boundary until the estimated

global health loss rate minimum is reached. After every GP iteration at time interval tint ,

the determined tmin is compared to tc to asses if Ri, i∈ B should settle or continue to move. If

tc− ttol ≤ tmin ≤ tc+ ttol, where ttol is a defined tolerance constant, implying that tmin has been

found within a certain tolerance of the current iteration time tc, then the best location is in

the immediate vicinity of rtc
i and Ri settles at the current location. If not, Ri, i ∈ B continues

to move along the boundary in the same direction for tmin > tc+ ttol. We ensure tmin ≥ tc− ttol

is always true such that Ri, i∈ B does not have to move backwards by setting a small enough

tint . With more training data after every iteration, the predicted models improve over time

providing better estimations of the global minima.

Settling at Optimized Minimum Health Loss Rate

For large robot groups, the proposed global health loss minimum settling method may

not be ideal when robots lose more health during the relocating process itself due to the

large distance they may have to cover to get to the estimated global health loss minimum

position on the leeward side. Therefore, we propose a second settling method specifically

for large robot groups. Once a local health loss rate minimum is reached, the boundary

following robot evaluates the total health loss getting to the detected global health loss rate

minimum from the current location, and compares it with the total health loss settling at the

current local health loss minimum location for the same duration. The local current health

loss rate must be below the acceptable health loss rate threshold beyond which robots decide

to relocate; i.e. Lc
i (t)≤ Lthreshold. The total health loss getting to the detected global health

loss rate minimum can be evaluated as,

Lg
i =

∫ tmin

tc
Lc

i (t). (3.12)
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The total loss of health settling at the current local health loss minimum location over the

same duration can be calculated as Ll
i = (tmin− tc)Lc

i (tc). Following this optimized health loss

assessment during boundary following, the robot settles at the current local health loss rate

minimum if Ll
i < Lg

i .

For both proposed settling methods, once the respective settling condition is met by Ri,

i ∈ B, the robot group is updated as B← B\{i}, A← A∪{i}.

3.4.3 Distributed Robot Group Location Maintenance

The continuous relocation of individual robots from the stimuli side to the leeward side

creates a net movement of the robot group away from the initial group location. Therefore,

in order to maintain the initial position of the robot group center regardless of the group

shape, a counter drift strategy is proposed that pushes the robot group centroid back to the

initial group location.

Under the distributed computation and limited communication constraints of the system,

each robot in A must individually determine if it is the group center. We base our center

maintaining solution on the distributed group center identification research using the idea

of morphogen gradients by Mamei et al. in [72 ]. The gravitational center of a given group

of robots is determined by the Barycenter algorithm briefly described in Algorithm 2 . The

Barycenter algorithm uses the concept of morphogen gradients to spatially identify group

centers. Each robot broadcasts a message containing its unique name and an initial counter

value of zero to its neighboring robots within a limited communication range. Neighboring

robots re-broadcast that message incrementing the counter by one, until the gradient has

been propagated to all robots in the group. The process is repeated by each robot initiating a

gradient and the rest propagating the incremented counter. During this continuous process,

each robot stores and forwards only the minimum gradient value it has received from a unique

robot name analogous to broadcasting the shortest distance from it. Each robot may asses

if it is the group barycenter by comparing its own sum of all received gradient values from

its neighbors with the sum of all gradient values received by its neighbors; if a robot’s sum

of received gradient values is smaller than all its neighbors, it is positioned with a sum-total
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Algorithm 2 Pseudo-code of the Barycenter Algorithm
1: barycenter = FALSE
2: sum_o f _gradients = 0
3: Initiate own gradient
4: while (1) do
5: gradient ←gradient from all neighbors
6: sum_o f _gradients = ∑gradient
7: count = 0
8: for all neighbor robots do
9: if neighbor[i].sum_o f _gradients > sum_o f _gradients then

10: count ++

11: if number_o f _neighbors == count then
12: barycenter = T RUE
13: else
14: barycenter = FALSE

shortest distance from all other robots in the group. Therefore, the identified robot is the

group barycenter.

Variants of the Barycenter algorithm have been widely used in several other applications

including leader election [73 ], region selection using multiple gradients [74 ] and communica-

tion [75 ] in large swarms etc.

Once the group center is determined, the robot determined to be the group barycenter

moves towards the group initial location following the attractive artificial potential presented

in Eq. 3.3 . Neighboring robots match their velocity to the detected motion of the initiator.

Neighbors of these neighbors follow the same process of velocity matching until the initiator

motion towards the initial goal location is propagated throughout the robot group consisting

of robots in A. A 1D implementation of this velocity matching method has been previously

used to model the travelling waves phenomenon in huddled groups of penguins with a time

delay constant [76 ]. Given the tightly packed hexagonal lattice structure of our proposed

robot group, we assume velocity matching occurs without any delay in any direction on the

plane.
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Table 3.1. Validation Scenarios for Surviving Damaging Directional External Stimuli

Simulation scenario Conditions for robot relocation
S1 GP estimated global minima settling
S2 Local minima settling with Ltc

i < Lti
i

S3 Optimized settling with group location maintenance
S4 (control) Robots do not relocate

Table 3.2. Validation Parameters for Surviving Damaging Directional External Stimuli

Parameter Value Parameter Value
d0

√
3 units βP/βV 2.05

d1 d0
√

3 units αI 4
λ1/λ2 2.05 αd 8

ttol 2ts vm 0.25 units/ts
tint 5ts for (tc− t i)> 30ts rd d1

Lthreshold 0.01

3.5 Validation

3.5.1 Setup

To validate the two proposed GPML based relocation methods, we show that Ri, i ∈

{1,2..,N} on the exposed side of the group is successfully able to move from the stimuli-side

to the leeward side health-loss-rate minima of the group, using external stimuli measurements

only, without any communication requirements or prior knowledge of the group size or shape.

Detailed comparison studies of robot health loss are presented for the proposed global and

optimized health loss rate minima settling with local minima settling and a no-relocation

case as the control scenario. Scalability analysis of the proposed settling methods are also

investigated.

The validation process is set up with four scenarios to establish the need and effectiveness

of the proposed GPML estimated distributed relocation methods as presented in Table 3.1 .

We compare S1 and S2 to show the importance of using a relocation by health-loss-rate

global minima approach in comparison to local minima; the use of a learning algorithm is

also justified. We compare S1 with S3 to assess the need of the optimized settling method
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weighing predicted health loss during the relocation process. S1, S3 and S4 are finally

compared to show the extent of improved survivability of individual robots and the group as

a whole with the proposed settling methods in comparison to a control group where robots

do not relocate or seek safety.

We consider groups of N robots in a closed hexagonal lattice formation on a plane as

previously shown in Fig. 3.1a . The group is exposed to a damaging directional external

stimuli modeled as a viscous incompressible fluid flow from the left with v f = 1 units/t and

ν = 10 as shown in Fig. 3.1b - 3.1c . We assume the following:

• Robots do not communicate with each other during relocation.

• Robots do not displace each other.

• Robots can measure distance to neighbors within rd.

• Robots can measure external stimuli.

• All robots are identical in shape and size.

For demonstration purposes, we track and present the progress of five randomly picked

robots from the stimuli side at t0 denoted as Ri, i ∈ GN where GN is the set of the five

randomly picked robot indices. For all scenarios, we initialize the simulation at time t0 with

sampling time ∂ t = 0.1 and time step unit written as (ts). At t0, ∀Ri, i ∈ A. At every time

instant t, Ri determines its Lt
i using (3.1 ). For comparison between the scenarios, we denote

the final health-loss-rate for Ri, i ∈ GN when settling under S1 as (Lt
i)S1, S2 as (Lt

i)S2, S3 as

(Lt
i)S3 and S4 as (Lt

i)S4. The simulation parameters used are exaggerated for brevity and are

listed in Table 3.2 . rd is chosen to be the minimum distance to possible immediate neighbors

to show the effectiveness of the proposed algorithm even with limited sensing. The proposed

concept of relocating individuals to the leeward side is a continuous process in the group;

for presentation and analysis purposes the simulation is stopped at t = 55.
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Figure 3.2. Simulation time-lapse for N = 26 in S1, showing the progress of
five randomly picked robots (R12, R15, R23, R24, and R25,) in G26 exposed to a
damaging directional stimuli along the x+ direction. The robots successfully
move along the boundary from the damaging stimuli side to the leeward side
of the group and settle at the health-loss-rate global minima determined by
the proposed GP estimated global minima methodology.
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Figure 3.3. Lt
i for i∈G26 in S1 decreases with time as the robots move from the

damaging stimuli side to the leeward side using the proposed GP estimated
global minima method.

3.5.2 Relocation using S1 vs. S2

Fig. 3.2 shows the progress of the boundary movement of Ri, i ∈ G26, where G26 =

{12,15,23,24,25} along with the fluid pressure and velocity distribution around the robot

group with changing boundary at specific time intervals. Fig. 3.3 tracks the corresponding

Lt
i for robots Ri, i ∈ G26 following their boundary movements.

At t0, R15, R23, R24 and R25 are directly exposed to the external stimuli and start to

move along the boundary as shown at time t = 0.2. At t = 0.6, R12 becomes exposed as R15

and R25 moved away; therefore, R12 starts to move along the boundary as well, as shown

at time t = 4.1. R24 was successfully able to determine its global minima on the leeward

side at t = 13.1, followed by R23 at t = 14.7. R25 reached a minima close to zero at t = 13.2

but continued to move based on its estimation of a global minima being further ahead. R25

finally settled at t = 29.7. R15 and R12 settled around the same time at t = 29.5 and t = 29.6.

Lt
24 reached zero after t > 12 as it was surrounded on all sides by neighbors; Lt

12, Lt
15,

Lt
23 and Lt

25 get very close to zero since the corresponding robots stay on the boundary of

the robot group even at t = 41.4. Lt
avg plots the average health loss rate of the five tracked

robots in Fig 3.3 .

While moving around the flanks and extrema of the group boundary, all robots experi-

enced a sudden increase in Lt
i. In this region, vx is at its peak along with very low pressure.

Since Lt
i considers the absolute value of the pressure component, the robots experienced the
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Figure 3.4. Simulation time instances for N = 26 in S2, showing the progress of
five randomly picked robots in G26 exposed to a damaging directional stimuli
along the x+ direction. The robots settle along the group flank boundary using
the local minima methodology.

highest health loss rate here modeled by (3.1 ) as opposed to the stimuli-side where vx is low

with very high pressure. Regardless, Gaussian Processes estimation was able to cope with

such extreme fluctuations to determine the overall trend in the measurements; the global

minima in terms of health loss rate was determined to be further ahead for each robot. No

communication was necessary at any time between the robots for relocation.

The relocation process continued for other robots as well and over time as more and

more robots successfully relocated to the leeward side, an aerodynamic group boundary was

obtained as shown at t = 41.4. The protruding flanks of the initial robot group boundary

gave away creating a streamlined shape and the initial high pressure zone on the stimuli side

shrank considerably over time. With this continuous relocation process, the robot group

was observed to drift away from the stimuli as expected with the proposed group location

maintenance method.

The simulation was repeated with the same robot group setup of N = 26 and damaging

external stimuli model with robots measuring Pt
i and V t

i at every time instant and relocating

to Lt
i local minima. As Ri moved with time, the change in the calculated Lt

i was checked

continuously for a local minimum. Upon determining the local minimum at time tmin, if

tc− ttol ≤ tmin ≤ tc + ttol, Ri settled at tc if Ltc
i < Lt

i.
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Figure 3.5. Lt
i for i ∈ G26 in S2 decreases with time for some individuals

as the robots move along the boundary to relocate using the local minima
methodology.

The simulation progression of S2 at time instants t = 22.8 and t = 41.4 is shown in Fig.

3.4 and the corresponding Lt
i, i ∈ G26 is plotted in Fig. 3.5 . Comparing the progress of S2

with S1 at t = 22.8 and t = 41.4 in Fig. 3.4 and Fig. 3.2 respectively, we make the following

observations:

• R12, R15, R24 and R25 settled at boundary extrema in the local minima case with final

(Lt
i)S2 > (Lt

i)S1 at the end of t = 41.4.

• R23 was unable to follow the same path as before because of frequently changing group

boundary in the local minima case and was still moving after t = 41.4.

In the local minima case, individual robots moved short distances to a local minimum

and settled for short periods of time before moving again. With this method of moving,

individuals are constantly moving and settling and may eventually reach a rate of health

loss global minima at a certain time and position around the fast changing boundary, but

it is not guaranteed. The local minima method was chaotic in comparison and did not

allow individuals an equal opportunity to reach the best available position around the group

boundary for survival. The global minima methodology also created an aerodynamic group

boundary over time as opposed to the local minima methodology where the flanks expanded

as seen at time t = 41.4 in Fig 3.4 . Such observations prove that the proposed GP estimated

health-loss-rate global minima method is essential for group survival of individuals in the

long run.
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(a) Lt
i for i ∈ G35 with time.
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(b) Lt
i for i ∈ G70 with time.
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(c) Lt
i for i ∈ G107 with time.

Figure 3.6. Lt
i for the tracked robots in each of the N = 35, N = 70 and

N = 107 cases for S1 decreases with time as the robots move from the damaging
stimuli side to the leeward side using the proposed GP estimated global minima
method.

Scalability Analysis of S1

To verify that the conclusions from S1 hold true over a range of N, the simulation was

repeated for N = 35, 70 and 107 with arbitrary formation shapes against the same modeled

fluid flow as external stimuli. For each N case, five randomly picked robots Ri on the stimuli

side of the group were tracked; i ∈ G35 for N = 35, i ∈ G70 for N = 70 and i ∈ G107 for N =

107 where G35 = {11,14,25,26,27}, G70 = {52,53,58,61,69} and G107 = {21,32,74,97,103},

respectively. Their health loss rate Lt
i with time corresponding to movement around the

boundary is shown in Fig. 3.6a -3.6c . The simulations were allowed to run up to t = 50.

In each case, all tracked robots were able to successfully move from the stimuli side to

the estimated best location on the leeward side. For N = 35 and N = 70, all tracked robots

were able to move at t = t0. For N = 107, R21 regardless of having Lt
21 > Lthreshold at t = t0

was unable to move without displacing a neighbor. The sudden increase in Lt
21 between

9 < t < 12 is as a result of its neighbors moving away for relocation leaving R21 with a higher

Lt
21 and able to move.

We denote the average time required for convergence of Lt
avg to the health-loss-rate global

minima as tavg
min. tavg

min for N = 26 is significantly smaller than tavg
min for N = 107 because of the

large difference in group size. However, tavg
min for N = 70 is greater than tavg

min for N = 107. This

is because the initial shape of the N = 70 robot group had larger protruding flanks than

N = 107. As a result, robots on the stimuli side for N = 70 had to travel longer distances
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in comparison to reach the health loss global minima on the leeward side. This observation

suggested that tavg
min for different N cases has a strong correlation with the size and shape of

the robot group. Regardless, the scalability of the proposed GP estimated global-minima

method was established without any effects on the outcome due to group size or shape.

3.5.3 Relocation using S3 with Group Location Maintenance

The GPML based optimized health loss rate robot relocation process is specifically de-

signed for robots to assess the health loss during the relocation process in determining

whether to settle at a current local minimum under the acceptable health loss rate threshold

or keep moving forward towards the GPML estimated global health loss minima.

The local health loss rate minima settling method in S2 resulted in robots continuously

settling along shielded pockets within the flanks of the robot group, which in turn caused the

robot group shape facing the stimuli to eventually elongate. The method was concluded to be

significantly worse for smaller robot groups where the elongation took place within a shorter

time span. Therefore, the optimized health loss rate settling method where robots may settle

at local health loss rate minima around the flanks is investigated for smaller and larger N

robot groups with the same fluid pressure and velocity external stimuli model around the

robot group. Time lapse illustrations of the implemented optimized health loss rates settling

method for N = 35 and N = 70 robot groups are shown in Fig. 3.7 for comparison purposes.

For the smaller robot group, the time lapse images show the progress of the boundary

movement of Ri, i ∈ G35, where G35 = {14,26,27,31,34} along with changing boundary at

specific time intervals. Fig. 3.8a tracks the corresponding Lt
i for robots Ri, i ∈ G35 following

their boundary movements. All tracked robots were successfully able to relocate following

the optimized health loss rate minima settling method; the individual health loss rate of all

robot is observed to reach close to zero after a single relocation cycle within the simulation

time frame. Lt
avg plots the average health loss rate of the five tracked robots. The same

conclusion could be made following similar observations for the larger robot group of N = 70

robots. The time lapse images show the progress of the boundary movement of Ri, i ∈ G70,

where G70 = {52,53,58,61,69} along with changing boundary at specific time intervals. Fig.

3.8b tracks the corresponding Lt
i for robots Ri, i ∈ G70 following their boundary movements.
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(a) Simulation time-lapse for N = 35 in S3,
showing the progress of five randomly picked
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exposed to a damaging directional stimuli
along the x+ direction.
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Figure 3.7. Optimized method comparison for small and large robot group
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i for i∈G70 with time using

the optimized settling method.
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Figure 3.8. Optimized method comparison of health loss for small and large robot group.

Comparing the time lapse progression of the N = 35 and N = 70 robot group cases, the

following observation could be made. While moving around the flanks and extrema of the

group boundary, all robots experienced a sudden increase in Lt
i similar to the observation

made in S1. In this region, vx is at its peak along with very low pressure. The robots

experienced the highest health loss rate Lt
i here modeled by (3.1 ) as opposed to the stimuli-

side where vx is low with very high pressure. As the robots continued to move along the

flank, they assessed the optimized settling method condition Ll
i < Lg

i at every local health

loss minima encountered to determine if it should settle. For the smaller robot group, the

boundary following robots are observed to settle around the trailing ends of robot group

corners on the leeward side. As a result, lobe like structures are observed to form at the

trailing edges creating a horse-shoe like robot group shape over time. In contrast, the larger

robot group of N = 70 is observed to create multiple lobes throughout the leeward side as

more and more robots settled; the robots are not concentrated on the leading edges on the

leeward side suggesting that the optimized settling condition of Ll
i < Lg

i at these locations

were not fulfilled. The significant number of the boundary following robots were able to move

beyond this local health loss minima towards the estimated global health loss minima. The

robot group did not result in an aerodynamic shape over time as observed in S1. The robot

group shape remained random with several observable trailing edges forming on the leeward

side with the in-between pockets being occupied by the continuously relocating robots.

The trade-off of the proposed optimized settling method not yielding the favorable aero-

dynamic shape from S1 lies in individual robots losing less health during the relocation
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process as some assess the journey to the estimated global health loss minima to be too

expensive and settle at a local health loss minimum, i.e. individually robots are able to save

health over time. The health saving grows substantially with increasing robot group size that

in turn increases the distance to be travelled to the estimated global health loss minima.

The effectiveness of this health loss saving trade-off over S1 is substantiated in Section 3.5.4 .

With this continuous relocation process, the robot group tended to drift away from

the stimuli; an observation consistent with S1 and S2. With the implementation of the

distributed robot group center determination and initial location maintenance method from

Section 3.4.3 , the robot group is observed to return its geometric centroid to the original

location of the group. The group center robot is continuously assessed and determined

that initiates a group motion towards the original location, while the neighbors match their

velocity with the detected initiator. Fig. 3.8c plots the robot group center distance to

group initial location distance with time step over the duration of the simulation; with

newly determined group center robots, the group center distance to the original location was

observed to return to zero every time for both the N = 35 and N = 70 robot cases. The robot

group shape was maintained throughout the process as observed from the time lapse images.

Scalability Analysis of S3

This optimized health loss minima settling method relies on a good estimation of the

global health loss rate minima location in order to effectively determine whether to settle

or keep moving forward. Therefore, similar to the S1 scenario, S3 yields improved result

in the global health loss minima estimation for larger robot groups allowing it to utilize

a larger training data set for the estimation process. The relocation process with the op-

timized health loss rate settling method was repeated for N = 26, 57 and 107 in addition

to previously presented N = 35 and N = 70 robot cases with arbitrary formation shapes

against the same modeled fluid flow as external stimuli. For each N case, five randomly

picked robots Ri on the stimuli side of the group were tracked; i ∈G26 for N = 26, i ∈G57 for

N = 57 and i∈G107 for N = 107 where G26 = {12,15,23,24,25}, G57 = {42,30,55,56,57} and

G107 = {21,32,74,97,103} respectively. Their health loss rate Lt
i with time corresponding to

movement around the boundary is shown in Fig. 3.9a -3.9c .
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(a) Lt
i for i ∈ G26 with time.
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i for i ∈ G57 with time.
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(c) Lt
i for i ∈ G107 with time.

Figure 3.9. Lt
i for the tracked robots in each of the N = 26, N = 57 and N = 107

cases for S3 decreases with time as the robots move from the damaging stimuli
side to the leeward side using the proposed GP estimated optimized minima
method.

In each case, some of the robots are observed to settle in their optimized settling locations

while some remained in the relocation process. However, as the tracked robots made their

way from the stimuli side to the leeward side, their respective average health loss rate was

observed to decrease over time for all cases of N.

3.5.4 Effectiveness of the Proposed GPML Estimated Settling Methods: S1 vs. S3 vs. S4

The effectiveness of the proposed settling methods is established by comparing the aver-

age robot health of the five randomly picked robots in the same robot groups in S1 and S3

with control scenario S4, when encountering the same modeled damaging directional external

stimuli. For all the simulation cases of N = 26, 35, 70 and 107 in all scenarios, each of the

five tracked robots started with full health. We denote the robot health at every time step

when allowed to relocate with the global health loss minima as gHt
i , the optimized health

loss minima as hHt
i and when not allowed to move as nHt

i . At every time step for all cases,

gHt
i , hHt

i and nHt
i deteriorates by the corresponding Lt

i for each robot. The average robot

health for the five tracked robots for each N case in S1, S3 and S4 are denoted as gHt
avgN

,

hHt
avgN

and nHt
avgN

respectively. The results of the comparison are shown in Fig. 3.10 .

In S4, nHt
avgN

for all cases of N deteriorated linearly with time depending on individual Lt
i

measurements. For S1, gHt
avgN

leveled out over time with 12.6%, 5.3%, 16.7% and 14.2% more

health than the control case S4 with nHt
avgN

at t = 50, for N = 26, 35, 70 and 107 respectively.

As more robots relocate behind the initially moved robots in S1 in a continuous process, every
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Figure 3.10. The average robot health of tracked robots in all N cases was
consistently better for S1 (proposed GP estimated global minima settling) and
S3 (proposed GP estimated optimized minima settling) than control scenario
S4 over time. The average robot health for all N cases was higher with S3 at
time step 50.

robot in the group gets an opportunity to reduce their rate of health loss by relocating to

the safest available position behind the group. As a result, the whole group is able to survive

together for a longer period of time in the field. However, for S3, hHt
avgN

leveled out over

time with 3.9%, 1.9%, 1.7% and 0.6% more health than the S1 case with gHt
avgN

at t = 50,

for N = 26, 35, 70 and 107 respectively suggesting further improved average health loss for

relocating robots in the long run. However, it must be noted that the optimized health loss

rate minima settling method resulted in more frequent relocations by robots in many of the

trials depending on the shape of the robot group compared to the global health loss rate

minima settling method.

3.6 Conclusion

In this chapter, an Emperor Penguin huddling-inspired multi-robot group survival method-

ology of surviving a directional damaging external stimuli is proposed. A distributed bound-

ary movement control method is presented that allow robots to move from the stimuli-side

to the safest available position on the leeward side without requiring any communication
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with each other or prior knowledge of group size or shape. GPML with SM kernel is used to

determine the best relocating position for the moving robot based on only stimuli measure-

ments. With this continuous relocation process, the robot group as a whole ensures that no

robot remains exposed to the damaging external stimuli for too long; individuals are able to

seek safety and shelter behind the group in turns benefiting the entire group in the long run.
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4. COLLABORATIVE SHAPE FORMATION

4.1 Introduction

Self-organizing shape formation in multi-robot systems have a wide range of applications

ranging from multi-robot navigation, exploring, escorting, rescue missions to developing

programmable matter. Mora et al. [26 ] identified the fundamental problems of the multi-

robot shape formation task as, 1) assigning an arbitrary number of robots to goal positions

that define the shape and 2) control the robots (positioning, collision avoidance) to establish

that formation.

Over the years, a substantial amount of work has been proposed on self-organization

in multi-robot systems. We summarize all relevant works from literature in Section 4.2 .

Most of these studies have assumed individual to be fully aware of either their immediate

surroundings or the complete environment of operation using a combination or a variety of

sensors; individuals capable of communicating either within a specified radius or throughout

the robot group over a communication network. Validation with small robot groups has

been achieved with convincing results on commercially available multi-robot platforms such

as the E-puck [77 ], R-One [78 ], Colias [79 ] etc. to name a few.

However, when dealing with a large scale robot group (numbering thousands), the com-

plexity of the fundamental problems in multi-robot shape formation identified by Mora et

al. [26 ] and the difficulty of real world implementation of such systems increases exponen-

tially. Individuals suffer from heavy on-board computation processing data from a variety

of sensors, increased weight and slow response times [80 ]. Frequent delays in the required

communication network slows down the entire system even further [81 ]. Additionally, due to

their increased individual cost, using thousands of such robots on swarm robot applications

has thus remained far from reality [64 ].

Therefore, the design of a self-organizing shape formation system for a large scale robot

group must include the following properties:

• A robust shape representation: The shape to be formed must not dictate the exact

location of specific agents within the shape
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• Achievable by simple, low cost, low to no overhead bearing agents following simple

rules

• Achievable by local communication.

A lot of work in literature has successfully addressed the shape representation requirement,

but almost all still falls considerably short on the rest. In this chapter, a fully distributed

shape formation methodology is proposed for a large scale multi-robot system consisting

of simple individual agents with limited sensing and communication for coordination. By

design, inter-robot cooperation allows guiding of neighboring robots towards the shape form-

ing frontier lined with beacon robots that help robots settle to continue the shape formation

process, as opposed to a central controller-based robot formation control or search based

inefficient methods where robots search for a place to settle in forming the required shape.

4.2 Related Works

Typical work on shape formation has focused on positioning robots in a specified shape

and measuring the accuracy of the shape achieved [82 ]. Oh et al. categorized multi-robot

shape formation as either a position, displacement or distance based control problem in [83 ].

Potential field based approaches using global parameters have been a popular method on

directing robots to goal locations over collision-free trajectories [84 ], [85 ]. Ikemoto et al.

proposed a distributed gradual pattern formation algorithm based on the Turing diffusion-

driven instability theory in [86 ]. Assuming the associated network of a multi-agent system

is jointly connected, Zhang et al. showed that collective motion patterns can be obtained

without any global beacon or guidance in [87 ]. Artistic pattern formation with attention

to visually appealing trajectories was achieved by Mora et al. in [26 ]. Numerous other

distributed shape/pattern formation approaches have been proposed in literature following

consensus control [87 ]–[99 ].

Formation control strategies based on relative positions of robots (distances and direc-

tions to neighbors) to maintain a shape has been proposed in [84 ], [85 ], [100 ]–[104 ]. For-

mation control exclusively using range only distance sensors were considered in [105 ]–[109 ].
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Approaches assuming the usage of wide-directional camera, laser range finders for local sens-

ing have also been studied in [110 ]–[114 ].

A substantial gap exists between large-scale multi-robot conceptual systems and system

realization, due to complex individual robot design requirements by most proposed works

in literature and their associated costs. Rubenstein et al. proposed the Kilobot platform

in [65 ] to mitigate the problem of high cost of swarm robotics with design simplicity. The

design utilized vibration motors to allow translation and rotation over 3 pin legs; an infrared

transmitter and receiver mounted under the belly to measure the distance to neighbors

and communicate by varying the intensity. Programmable self-assembly of complex two-

dimensional shapes with a thousand Kilobot swarm was successfully shown in [64 ].

4.3 Preliminaries

4.3.1 Shape Representation

We assume an arbitrary geometric shape made up of unit nodes arranged as a structure

and represented by a connected graph G = (V,E), where V represents the set of N nodes

and E represents the set of edges connecting neighboring nodes without any self-connectivity

following [115 ]. We represent node connections from node Dk ∈V to node De ∈V , ∀{k,e} ∈ E

as e
k{r,θ ,ψ}, defined as the distance, elevation and azimuth respectively of De from Dk relative

to the parent node of Dk. The structure of the arbitrary shape can therefore be represented

by a modified adjacency matrix X with entries,

X(m,n) =


n
m{r,θ ,ψ} {m,n} ∈ E

0 else
(4.1)

where m ∈ {1, ..,N} and n ∈ {1, ..,N} denote row and column numbers respectively.

4.3.2 Robot Group Setup

We assume that at time t0, robot Ri, i ∈ {2, ..,N} is randomly placed in a closed 3D

environment. All robots are given the shape structure representation matrix X and the
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Figure 4.1. Finite State Machine controller. Robot initial state is S1.

distributed self-organizing control law proposed in this paper. Each robot is assumed to

have a spherical detection and communication region of radius rd and rc respectively. The

self-organizing process is started by placing robot R1 at the starting location of the to-be-

formed structure.

At time t, Ri can either be staying in formation (i ∈ A), having detected the formation

and moving towards it or moving along the structure surface (i ∈ B) or on random walk

(i ∈ C), where A is defined as the set of robots staying in formation, B the set of robots

moving towards the formation or along the structure surface, and C the set of robots on

random walk.
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4.4 Methodology

4.4.1 Finite State Machine for Shape Formation

The shape formation process following the initial robot setup can be implemented as

a finite state machine as shown in Fig. 4.1 . A description of the operation of this state

machine is as follows.

• State S1: Search for shape structure. Ri, i ∈C performs random walk in the environ-

ment looking for settled robots Rj, j ∈ A. Transitions:

– S1−→ S2: if Rj, j ∈ A found.

• State S2: Move towards structure. C←C\{i}, B← B∪{i}. The nearest robot Rj, j∈ A

from Ri is set as the parent robot Oi of Ri with position denoted as oi. Ri, i ∈ B is

attracted towards Oi. Transitions:

– S2 −→ S4: if Ri, i ∈ B reaches surface following distance ||rioi|| ≤ d0 from parent

Oi, where d0 is the set surface following distance and the surface gradient value

of Oi is bOi = 0, suggesting Oi is a beacon.

– S2 −→ S3: if Ri, i ∈ B reaches surface following distance ||rioi|| ≤ d0 from parent

Oi, where d0 is the set surface following distance.

– S2−→ S1: if Oi lost for time Tl.

• State S3: Follow surface towards beacon. Robot Ri, i ∈ B receives surface gradient

values from all robots in structure within rd, Rj, j ∈ A. It moves along the surface

towards the direction of minimum decreasing gradient from Oi towards the nearest

beacon maintaining distance d0 from the structure surface. Transitions:

– S3−→ S4: if the surface gradient value of Oi is bOi = 0, suggesting Oi is a beacon.

– S3−→ S1: if Oi lost for time Tl.

• State S4: Bidding to settle. Robot Ri, i∈ B receives its possible node number k from its

beacon robot Oi serving as node p and communicates its bidding value εi to all other

robots within rd, Rj ∈ B bidding for node k. Transition:
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Figure 4.2. Shape structure formation in progress showing surface following
motion and node-neighbor interaction.

– S4−→ S5: if εi > εj, ∀Rj ∈ B within rd of Ri bidding for node k, communicates to

Oi that node k has been settled.

– S4 −→ S1: if εi <= εj, ∀Rj ∈ B within rd of Ri bidding for node k, or Oi lost for

time Tl.

• State S5: Settle neighbors. B← B\{i}, A← A∪{i}. Ri moves to location k
p{r,θ ,ψ} rel-

ative to the position of Oi and executes Algorithm 3 to act as beacon for its neighboring

robots to settle. Once all neighbors are settled, transitions:

– S5−→ S6: all neighbors settled.

– S5−→ S1: if Oi lost for time Tl.

• State S6: Settle as node. Ri, i ∈ A settles in formation. Transitions:

– S6−→ S1: if Oi lost for time Tl.

Figure 4.2 illustrates the proposed shape formation strategy with robot state and the surface

gradient initiated by a beacon robot.
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4.4.2 Surface Gradient Propagation

Robots in S3 move along the surface of the structure towards a beacon robot looking to

settle a neighbor. In order to attract surface following robots towards them, beacon robots

initiate a gradient that incrementally propagates throughout the structure. The surface

gradient generating method is a variant of the previously discussed Barycenter Algorithm in

Chapter 3 .

We denote the gradient value of robot Ri, i ∈ A as bRi . A beacon robot broadcasts its

robot ID and an initial gradient value of 0 within its limited spherical communication range

with radius rc. Having received the beacon robot gradient value of zero, all immediate

neighbors re-broadcast their robot ID and an incremented gradient value of 1. For multiple

propagating gradients received, the minimum gradient value of all neighbors less than or

equal to the current broadcast gradient value is incremented and broadcast as the new

gradient value in the next time step. The process continues to propagate the incrementing

gradient by subsequent neighbors. The continuous gradient propagation process where each

robot broadcasts its gradient value in the next time step assessing the gradient values of all

its immediate neighbors, can be formulated as,

bRi = minbRj +1, {j ∈ A|bRj < bprev
Ri

,rij ≤ d0}, (4.2)

where bprev
Ri

is the gradient value broadcast by Ri in the previous time step, and rij is the

Euclidean distance between robots i, j ∈ {A}. This distributed process of generating a sur-

face gradient does not require any fully connected communication network of robots; robots

within the forming structure maintaining a set distance of d0 are able to broadcast and

receive gradient values to create the surface gradient that the surface following robots use

to navigate along the surface of the forming structure and reach potential beacon robots

currently following Algorithm 3 to settle its neighbors. An illustration of the surface propa-

gated gradient from a beacon robot is shown in Fig. 4.2 . The controller for surface following

robots in S3 are described in Section 4.4.5 .
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Algorithm 3 Beacon Settling Algorithm
1: procedure (X ,k, p)
2: Communicate to Oi of successful settlement as node k
3: Set beacon gradient value b = 0
4: for e = 1→ N do
5: if X(k,e) 6= 0 then
6: while Neighbor node e settlement confirmation not received do
7: Broadcast {i,k,e,b}
8: if Neighbor node e settled then
9: Break

4.4.3 Beacon Settling Algorithm

Upon moving to S5, a robot Ri is aware of its parents and its own node number on the

shape structure mapping matrix X denoted as p and k respectively. Ri sequentially settles

each of its neighbors following row k of the shape structure mapping matrix having non-zero

entries and ignoring column p. The neighbor settling process is summarized in Algorithm 3 .

Ri sets itself as the beacon (b = 0) to propagate its own gradient over the forming structure

surface. For every non-zero entry in row k of the matrix X , Ri broadcasts the message

{i,k,e,b} where i is its own robot index, k and e are its own node ID and the neighbor’s node

ID on the shape structure mapping matrix respectively, and b = 0 is its initiating gradient

value that surface following robots may read to detect it has a beacon. Once a robot settles

as structure node ID e and communicates that it has settled, Ri moves on to settle its next

neighbor following the shape structure mapping matrix X .

4.4.4 Bidding for Node k

Robot Ri in S3 having detected Oi as a beacon receives the broadcasted beacon node and

neighbor node number p and k respectively from the beacon. At any given time, more than

one robot may reach a beacon. Each robot trying to occupy node k of the structure bids for
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the position based on the distance travelled so far and its current distance to the location of

node k. The bidding value may be calculated as,

εi = κ1

t

∑
t0+1
|ri(τ)− ri(τ−1)|+κ2||rirk|| (4.3)

where κ1 and κ2 are scalar constants and rk is the location of the node k determined from

the shape structure mapping matrix X and relative position of the beacon node p. All

bidding robots within rd of one another broadcast and receive each other’s bids. Robot Ri

individually evaluates its own bidding value against the rest to determine if the bid is won

or lost. The robot with the winning bid moves in to occupy the node k of the structure by

setting constant η = 1 while the rest return to random walk on the finite state machine after

an initial repulsion with η =−1. Implementation details of η are included in Section 4.4.5 

of this chapter.

4.4.5 Robot Interaction and Motion Control

For modeling simplicity, we assume point mass dynamics for all robots without any ma-

neuvering constraints. Robots in sets A and B maintain inter-robot distances using artificial

potential Uij, i, j ∈ {A,B} previously established in [70 ] with an additional attraction term

written as,

Uij
∀i,j∈{A,B}

=

αij(
1
2(rij−d0)

2 + ln(rij)+
d0
rij
) 0 < rij < d1

αij(
1
2(rij−d1)

2 + ln(rij)+
d0
d1
) rij ≥ d1

(4.4)

where rij is the Euclidean distance between robots i, j ∈ {A,B}, α is a scalar control gain; d0

and d1 are scalar constants such that d0 < d1 ≤ rd. We define d0 as,

d0 =

dAA ∀i, j ∈ A

dAB ∀i ∈ A, j ∈ B
(4.5)
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such that dAA ≤ dAB, where dAA and dAB are scalar constant parameters defining the inter-

robot distances between robots in set A, and inter-robot distances in sets A and B. For State

S4, robots are attracted to or repelled from a given relative node location based on bidding

that can be formulated as,

Urirk =


η

2 αa|rirk|2 Ri in S4

0 else
(4.6)

where rirk is the Euclidean distance between Ri and the relative location of the bidding node

k in the structure, αa is a scalar constant and η ∈ {−1,1} for attraction or repulsion of Ri

from node location k depending on the bidding outcome. The corresponding control input

to maintain the desired distance between robots in sets A and B and in states S2, S4, S5

and S6 is defined as,

ui
Ri∈{S2,S4,S5,S6}

=

−∑j 6=iOrijUij(rij)+OrirkUrirk 0 < rij < d1

0 rij ≥ d1.
(4.7)

Robots currently in state S3 of the finite state machine and part of set B move along the

structure surface in the direction of detected minimum surface gradient following the control

law,

ui
Ri∈S3

=
1
2 ∑
∀(bRj−bOi)<0

|bRj−bOi | | ~rioi| ~̂OiRj, {j ∈ A|rij ≤ rd}. (4.8)

For robots in set C or state S1, random walk is achieved by setting a constant velocity vr

at safe and bounded random elevation and azimuth orientations θr and ψr without path

overlap and avoiding collision.

4.5 Inter-robot Collision and Stagnation Point Avoidance

Robots in sets A and B avoid collision with one another throughout the shape formation

process following Eq. 4.4 . The safe equilibrium distance of robots already settled is set as dAA

and boundary following robots maintain a distance of dAB with robots already in structure.
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Boundary following robots have an attractive potential beyond the set safety distance to

maintain the safe surface following distance.

Artificial potential based motion control is susceptible to stagnation points where the

summation of all affecting potentials is zero resulting in no net movement of the robot.

Robots already settled in structure (set A) are exempt from this problem. We note the

following strategies by robots in set B to escape possible stagnation points. Robots in random

walk generate a new possible path after a set translation distance. Stagnation points can

be escaped over a number of iterations as long as there is an escape path available. Surface

following robots on the other hand are prone to stagnation points in a number of unique

situations. Eq. 4.8 sums the gradient difference of neighboring robots from the closest node

which may result in a net zero control input if the closest node is equidistant from two

beacons on opposite sides. In such cases, the surface following robot returns to random walk

to generate a new path that allows it to escape the stagnation point. The robot follows the

finite state machine to reacquire the structure and follow the surface gradient to the closest

beacon.

The proposed surface following method is also robust to robot failures. Robots in struc-

ture failing to broadcast their gradient values to surface following robots are treated as not

in structure. Therefore, surface following robots move around them following the available

gradient values from neighboring robots. In unique failure cases where all neighbors of the

closest node robot within the detection range of a surface following robot have failed, the

robot is unable to determine a direction of motion. In such cases, the resulting zero poten-

tial forces the surface following robot to return to random walk and reacquire the structure

following the finite state machine. Therefore, the motion of surface following robots is con-

cluded to be always in the direction of the nearest beacon even in the presence of possible

stagnation points that may arise within the forming structure of the given shape.

By design the surface following process requires a continuously differentiable surface.

The system is unable to move around sharp edges where the minimum gradient direction

maybe aligned with an opposing force from the nearest robot. However, we note here that

the system may still be applicable follow discontinuous surfaces with small exterior angles
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around the edge. Simulation results verifying this assessment has been included in Section

4.6 .

4.6 Validation

The proposed shape formation strategy is validated by forming shapes with continuously

differentiable and discontinuous surfaces with small exterior angles, both in 2D and 3D forms.

The proposed method utilizing surface gradient propagation allows surface following robots

to independently identify their motion direction towards the nearest beacon. All robots are

randomly placed in a 400× 400× 400 3D space for all simulation cases with an initial height

of 10 in the z direction. Robots are assumed to follow point mass dynamics and free to move

in any direction with the simulation parameters set as rd = 40, d1 = 40, dAA = 30, dAB = 30,

α = 0.1 and αa = 0.6, and random walk bound parameters as vr = 0.8, θr = 0, ψr =
π

2 . The

formation process is started by placing the first node of the shape structure at the initializing

location which acts as the first beacon.

4.6.1 2D Shape Formation: Circle and Pentagon

For analysis purposes, we consider simple shapes such as a circle (continuously differen-

tiable boundary) and a pentagon (discontinuous boundary with small exterior angle) for the

validation of the proposed strategy forming 2D shapes. The time-lapse simulation results

for a system of N = 30 robots forming the circle and pentagon shapes are shown in Fig. 4.3 .

At initial time t = 0, the initiating node is placed that acts as the first beacon following

Algorithm 3 attracting neighboring robots on random walk to settle and start the shape

formation process. With more and more robots settling, the circle and pentagon shapes are

observed to form over time from two ends until the last robot is attracted in place connecting

the two ends to form the closed shape. Robots acting as beacon are highlighted with red

circles. Robots detecting the forming shape are attracted to the nearest robot already in

the formation; boundary following robots follow the generated gradient from the beacon

robots along the length of the formed structure. The color scheme of the robots currently

in structure illustrate their broadcasted gradient values; beacon robots highlighted in red
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circles have a gradient value of zero while the propagated gradient reached as high as 15

and 16 on the far end of the forming structure towards the end of the simulation for the two

cases respectively.
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(a) 2D circle shape formation with N = 30 robots.
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(b) 2D pentagon shape formation with N = 30 robots.

Figure 4.3. 2D shape formation using N = 30 robots.
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(a) Cylindrical shape formation with N = 150 robots.
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(b) Pentagonal prism shape formation with N = 150 robots.

Figure 4.4. 3D shape formation using N = 150 robots assuming point mass
dynamics. The proposed method successfully constructed shapes with convex
continuously differentiable and discontinuous surfaces.

4.6.2 3D Shape Formation: Cylinder and Pentagonal Prism

The same initial simulation setup was repeated for N = 150 robots to create a cylinder and

a pentagonal prism having a circular base and a pentagonal base with 30 robots respectively

to validate the 3D shape formation process. The time lapse images of the shape formation

process are shown in Fig. 4.4 . With the initiating robot placed as the first beacon for

each case, neighboring robots on random walk were attracted to start the shape’s structure

formation process similar to the 2D simulation cases. After subsequent bidding rounds robots

are observed to settle at neighboring nodes and the corresponding structures are observed

to take shape over time. The propagated gradient along the surface of the forming structure

is visualized by the color scheme where the beacon robots are seen in blue with a gradient

value of zero while the robots in structure on opposite ends reached a gradient value as high
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Figure 4.5. Surface following paths of 3 randomly picked robots forming the
3D cylindrical shape.

as 16 over time shown in yellow. All robots successfully followed the proposed distributed

finite state machine controller to form the respective 3D shapes.

Figures 4.5 and 4.6 plot the paths taken by 3 randomly picked robots in their corre-

sponding cylinder and pentagonal prism shape formation process. The robots are initially

on random walk and are attracted to a robot detected to be in formation broadcasting a gra-

dient value. Once within surface following distance, the robots are observed to successfully

follow in the minimum surface gradient direction to reach their respective beacons. Since

surface following is a dynamic process where the surface is constantly changing with more

and more robots settling, robots are observed to move inside the enclosed structure at times

as seen in the pentagonal prism formation case and successfully follow the concave boundary

to reach its settling node. Paths observed to be present over the structure robots (blue and

yellow) in top view of the pentagonal prism formation were taken by robots before levels 4

and 5 were formed in the structure.

4.6.3 Discussion

The proposed distributed shape formation process includes: 1) individually assessing

the surface gradient to determine the direction of the forming structure, 2) individually

determining node settling consensus in structure after receiving all bids, 3) systematically

guiding one neighbor at a time as a beacon to form the structure with local communication
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Figure 4.6. Surface following paths of 3 randomly picked robots forming the
3D pentagonal prism shape.

only. The simulation results presented conclude the validity of the proposed strategy in

effectively forming simple 2D and 3D shapes. The proposed method is scalable to form the

structure of a given shape assuming adequate number of robots are available in the system.

The surface following process in the shape formation strategy is specifically designed for

continuous surfaces without any sharp edges in the structure. However, the system was

observed to be robust to edges with small exterior angles; shapes such as the pentagon

and pentagonal prism were successfully formed in all trials. We note here that the system

failed to form structures for shapes such as rectangles and rectangular prisms, where the

direction of minimum gradient either could not be determined or could not be followed by

surface following robots with their nearest structure robot being the edge. Even if the edge

continued on the other side with the minimum gradient attracting the surface following

robot, the nearest node at the edge repelled the robot to remain stuck at a stagnation point

in such cases. We conclude here that further investigation must be made in determining

the maximum allowed exterior angle of surface edges. The proposed methodology could

be improved by formulating the motion of surface following robots to independently move

around sharp edges to the other side. For our current design, we conclude that shapes with

structures requiring sharp edges or corners must be rounded with a higher robot density

such that a continuous surface could be achieved for the surface following process.
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Following the simulation results presented, a large number of robots were observed at

times to bid for specific nodes during the shape formation process. The proposed method

was successfully able to coordinate distributed robot settling without any failure cases. The

proposed system yielded fairly efficient paths taken by each robot during their motion along

the structure surface following the minimum gradient to reach the beacon robots. We stress

here the importance of this gradient following method as opposed to fixed motion patterns

such as raster scanning along aligned robots, helical motion of surface following robots in the

vertical direction or random motion to eventually reach a beacon robot looking for a neighbor

to settle; although, the fixed motion methods may require minimal computation and less or

no communication in determining motion direction, the paths taken by the robots would

likely be highly inefficient in comparison without a sense of how and where the structure is

currently forming.

Since the proposed system utilizes a completely distributed process where each robot

determines its own action based on received communication and observations of neighbors,

the system is concluded to be robust to robot motion failures; since any position in the

structure may be taken by any robot, the shape formation process will proceed and complete

with the remaining robots as long as their paths are not blocked by disabled robots. Robots

in motion would simply avoid collision with the disabled robot and continue the shape

formation process. The simulation was repeated for a special case where clusters of robots

in structure broadcasting their propagated gradient values were disabled to simulate their

failure cases. Surface following robots were observed to simply move around these failed

robot clusters without any broadcasted gradients; the failed robots were treated as robots

not in structure and therefore no surface was present to follow. Special cases of stagnation

points were also validated where a surface following robot was unable to find a motion

direction when its nearest node was broadcasting but all its neighbors were simulated to fail.

Following the stagnation point avoidance criteria in Section 4.5 , the surface following robot

simply repelled away from the node to random walk to escape and find another surface robot

still broadcasting. However, we note here that the proposed system is unable to account for

beacon robot failures to settle a neighbor that is not accounted for by any other beacons in

the vicinity.
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4.7 Conclusion

In this chapter, we present a local communication based cooperative self-organizing strat-

egy in multi-robot systems to form complex prescribed shapes. A finite state machine with

potential field based motion control is proposed depending on the states of robots. Simula-

tion results forming 2D and 3D shapes validate the proof of concept.
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5. COLLABORATIVE OBJECT TRANSPORTATION

The material in this chapter of the dissertation is partially based on the following submitted

paper currently under review. The content has been added with the consent of all co-authors

of the paper.

• “Distributed Multi-robot Arbitrary Object Transportation with Pushing Surface Iden-

tification and Model-based Pushing Effort Regulation,” T. Mina, S. S. Kannan, W. Jo,

S. Luo, G. B. King and B.C. Min, IEEE Transactions on Systems, Man and Cyber-

netics: Systems. (Under Review)

5.1 Introduction

Object transportation by robotic systems has a rich potential for application in warehouse

logistics, bomb disposal, path clearing of obstacles in search and rescue, evacuation scenarios,

and the construction industry etc. Given the variety of objects involved in these applications

in terms of size, shape, and properties, multi-robot teams benefit the system in such cases

providing redundancy in enabling reconfiguration, distributed sensing and action at scales

that would be impractical or expensive with a single unit [116 ]. Multi-robot strategies on

the other hand introduce its own set of challenges of coordinating multiple units in the

application process. The object transportation method proposed in this chapter is designed

to be salable for any number of robots, but also presents the advantages of cooperation

between agents in improving efficiency of the transportation process.

Multi-robot object transportation proposed in literature can be broadly classified into

caging/grasping, towing and pushing strategies. Caging involves the object being trapped

within a multi-robot formation and transported by controlling the robot formation [117 ],

[118 ]; robotic manipulator based object grasping has been proposed based on the caging

principle of trapping the object within the end-effector prongs for transportation and/or

manipulation [119 ]–[121 ]. Object manipulation by a single robotic agent have also been

proposed in [122 ]. Caging and grasping strategies suffer from a minimum number of robot

requirement to trap the object, often requires graspable features for manipulation and are

limited to convex shapes. Towing requires attachable points on the object and involves
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Figure 5.1. Proposed multi-robot arbitrary object transportation.

the object being pulled for manipulation usually by cables [123 ]–[125 ]. In this chapter of

the dissertation, we are interested in the pushing strategy that involves robots collectively

exerting pushing forces on the object without being physically attached to the object or

constrained within any formation. The process involves a significant amount of physical

interaction to align applied forces and is significantly more challenging if the object of interest

is of unknown shape, size, mass, and mass distribution. However, we emphasize that pushing

strategies do not require attachable points on the object and allows versatility and robustness

in terms of robot coordination, object motion correction, and computation requirements.

Although a substantial amount of research on pushing-based multi-robot object trans-

portation has been proposed over the years, most of these studies have remained confined to

transporting simple convex shapes, assuming known object properties. Furthermore, robot

contact with object to initiate pushing without any physical damage to the object have never

been considered in the strategy formulation. A representative summary of all relevant work

from literature on multi-robot object transportation is provided in Section 5.2 .

The underlying inspiration of the proposed collective object pushing method lies on ob-

servations made in how two or more human beings coordinate transporting an object by

pushing. Pushers individually identify possible pushing surfaces and engage in pushing. Ef-

fort or force applied is regulated either by direct communication or balancing the applied

effort with others as a reaction to the resulting motion of the object, such that the resultant
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motion of the object is towards the intended direction with minimal rotation. This coopera-

tion between multiple pushers allow the object to maintain a steady and fairly efficient path

towards its goal. We note here that in certain situations individuals may be pushing with a

much higher effort or force over the rest, but the process is continued for the benefit of the

overall team’s performance in transporting the object as efficiently as possible.

Analogous to this cooperative behavior in humans, we propose a scalable multi-robot

pushing-based strategy of transporting an object of unknown and/or changing shape, size,

mass, and center of mass properties to a predefined goal location without any prior knowledge

about the object or the number of robots involved in the transportation process, that is robust

to imprecise contact and non-uniform friction between contacting surfaces. Robots rely on

individual assessments in order to:

• identify potential pushing surfaces on the perceived object boundary within its field-

of-view (FOV) and initiate pushing without damaging the object, and

• regulate their pushing effort based on a proposed model relying on resulting object

behavior such that their combined action creates a resultant motion of the unknown

object in the intended direction,

without any prior knowledge of the object. Each individual actively reacts to changes in the

object’s behavior, ensuring it is not lost from its FOV, unintended collision with the object

is avoided, and robots do not obstruct the object’s motion towards the goal; inter-robot

collisions are also avoided, and robots currently in the act of pushing are not affected by

robots still searching for a potential pushing location. A rendition of the proposed object

transportation method is presented in Fig. 5.1 .

5.2 Related Work

One of the pioneering object transportation studies by pushing was proposed in [126 ]

showing that a box could be transported by a group of robots without differentiating be-

tween each robot; stagnation point recovery strategies were later included in [127 ]. Goal

occlusion has been identified as one of the fundamental problems in pushing-based object

transportation [128 ] method. A watcher-pusher heterogeneous robot group approach was
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initially proposed in [129 ] as a solution, where watcher robots track object and goal loca-

tions coordinating the pushing robots. Transport strategies based on exclusively the pushing

method have since been proposed in [130 ]–[133 ] that suffers from goal occlusion when robots

position themselves behind objects to push. An alternative approach to object pushing

specifically taking advantage of goal occlusion was recently proposed in [134 ], where e-puck

robots push with a constant force when the object occludes its vision of the goal. This simple

method allowed object transportation towards a set goal without using any form of commu-

nication and was later extended to transporting objects to moving goal locations in [135 ].

Goal occlusion-based methods can produce relatively efficient object paths for simple shaped

objects with relatively perpendicular boundary regions to the direction of the occluded goal;

however, its path efficiency can drastically fall for complex shapes on the goal occluded side

of the object, where the robots may start to push resulting in the object drifting wide away

from the goal location. Therefore, identification of correct pushing surfaces on the goal

occluded side of the object is of significant importance in maintaining an efficient path for

objects with complex shapes.

Pushing strategies have often incorporated force feedback in their object manipulation

process. Alkilabi et al. proposed a multi-robot group each equipped with optic-flow sensors

whose readings were used to distinguish whether a robot’s pushing force contributed to ob-

ject motion [130 ]. Position and force control for object path keeping has also been proposed

in [136 ]. Manipulator systems making use of force control in object manipulation include

[137 ], where force control provides the benefit of preventing accumulation or application of

large forces that could potentially damage the object or the robots themselves. Central-

ized methods of multi-robot coordination have also been proposed in [131 ], where a central

computer directs robots to pushing locations and determines the pushing force magnitude.

Centralized approaches suffer from lack of fault tolerance characteristics and limited field im-

plementation. A decentralized leader-follower approach of object transportation with force

feedback has been proposed in [138 ] requiring no communication, where the follower robots

synchronize their applied force direction with the leader who guides the fleet towards the

goal. Numerous purely analytical approaches to object pushing have been proposed, includ-

ing a contact-preserving push plan for a point-sized pusher and a disk-shaped object [139 ],
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[140 ], a hierarchical approach to planning sequences of non-prehensile and prehensile actions

[141 ], and a rapidly-exploring random tree for planning pushing actions on a polyhedron by

a robot [142 ]. Data-driven approaches have also been investigated in literature including es-

timation of friction centers based on object motion observations by a robot [143 ], perception

of everyday objects by robotic systems for manipulation [144 ], and development of planar

pushing models to predict the most likely outcome of a push and its expected variability

[145 ]. However, purely analytical approaches are limited by their own assumptions and of-

ten do not take into account the stochastic nature of pushing [146 ], and data-driven learned

models are specific to objects and materials [147 ]. Although numerous other prior works have

been proposed in force control in object transportation, very little work has been done to

address force application requirements in tandem with a fully distributed robot coordination

strategy for object transportation [148 ].

Our proposed work bridges the gap in identifying viable pushing surfaces given an un-

known object of arbitrary shape, size, mass, and center of mass based on individual as-

sessment of the object within the limited FOV of any robot, and developing a model-based

pushing force regulation method to ensure the object transportation heading is directed to-

wards the goal regardless of object mass distribution and external disturbances. Although

the robots operate over a fully connected communication network sharing their heading error

during pushing, we stress the distributed nature of our proposed method as pushing surface

identification and individual pushing effort regulation are designed to be based on individual

assessments of each robot only.

5.3 Methodology

We define the object transport problem as follows. A bounded planar environment con-

tains an arbitrary shaped object O of unknown mass and mass distribution that is to be

transported to a set goal location g ∈ R2. N identical robots are placed within the envi-

ronment to transport the object by pushing. Each robot Ri, i ∈ {1, ..,N} with position and

orientation/heading defined as ri ∈ R2 and π≥ θi >−π, is assumed to have a circular FOV

with a detection radius of rd and is aware of the direction towards the goal location g defined

as θi,g relative to the local frame of robot Ri at all times.
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Definition 5.3.1 Pushing effort of a robot is defined as a unit-less measure of applied pushing

force relative to the pushing ability of the robot platform. It is regulated based on individual

and the collective heading error of all robots during pushing to ensure the object is pushed

in the intended direction.

Robots relocate to a new pushing location if the required pushing effort exceeds its own

ability. Details of the proposed model-based pushing effort regulation method are provided

later in Section 5.3.2 .

5.3.1 Finite State Machine for Object Transportation

The object transportation process following the initial robot setup can be implemented as

a finite state machine as shown in Fig. 5.2 with a conceptual illustration shown in Fig. 5.3 .

At initial time, all robots search for the object with random walk at state S1. A description

of the operation of this state machine is as follows.

• State S1: Search for object. Ri in S1 performs random walk in the environment avoiding

collision and looking for the object O. The set of detected boundary points of object

O within the FOV of Ri is recorded as set Vi as ordered pairs of the distance and

its relative direction from Ri. The nearest boundary point of O from Ri is therefore

determined as {oi,θi,o}, where oi is the minimum detected distance in Vi and θi,o is the

relative direction of oi from Ri. Transition:

– S1−→ S2: if oi found.

• State S2: Move towards object O. Ri in S2 translates towards oi to reach a defined

boundary following distance ds. Transitions:

– S2−→ S3: if |−→rioi| ≤ ds for Ri in S2.

– S2−→ S6: if oi lost from FOV.

• State S3: Follow object boundary until a pushing surface is detected. Robot Ri in S3 de-

termines the collective heading angle error of all robots in S5 as, θnet = ∑
N
i=1,Ri in S5 θi,g,

where θi,g is the heading angle error of Ri when pushing in S5, to set η = sign(θnet).
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Figure 5.2. Finite state machine controller with initial state S1.

η determines the direction of tangential boundary motion at a distance ds from the

nearest detected point on the object oi defined as (−̂→rioi)
⊥
η . During boundary following,

Ri assesses −̂→rig · (−̂→rioi)
⊥
η looking for a pushing surface point, where −̂→rig is the unit vector

from Ri to the goal g. Transitions:

– S3−→ S2: if |−→rioi|> ds + ε where ε is a defined small tolerance distance.

– S3−→ S4: if −̂→rig · (−̂→rioi)
⊥
η ≤ δ detected for δ ≈ 0 with g obstructed from Ri by O,

a viable pushing surface point is reached.

– S3−→ S6: if oi lost from FOV.

• State S4: Contact pushing surface at oioioi. Robot Ri in S4 rotates towards the object and

approaches the object surface at the determined pushing point oi and makes a perfectly
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inelastic collision with the object; i.e. collision with a coefficient of restitution, e = 0.

Transition:

– S4−→ S2: if |−→rioi|> ds + ε .

– S4−→ S3: if |−→rirj| ≤ de, Rj in S4 or S5 with |θi,g| ≥ |θj,g|, where de is a set inter-

robot safety distance.

– S4−→ S5: if |−→rioi| ≈ 0.

• State S5: Push object at oioioi regulating effort. Robot Ri in S5 pushes the object at

the determined pushing point oi with a pushing effort magnitude defined as ρ5 =

f (θnet ,θi,g), (see Section 5.3.2 ) in the direction of the object goal position g, while θi,g

is bounded within [−φ ,φ ]. Transition:

– S5 −→ S3: if |θi,g| > φ or |−→rirj| ≤ de Rj in S4 or S5 with |θi,g| ≥ |θj,g| or no net

motion of object with θnet ≈ 0 (possible stagnation point).

– S5−→ S4: if ds + ε > |−→rioi|> 0.

– S5−→ S6: if oi lost from FOV.

• State S6: Check last known direction for object O. In each state S2, S3 and S5 robot

Ri records the last known direction of oi as θ
prev
i,o . Ri in S6 rotates towards the last

known direction θ
prev
i,o and translates up to distance rd to reacquire the lost object O.

Transition:

– S6−→ S1: if oi lost permanently.

– S6−→ S2: if rd ≥ |−→rioi|> ds.

During boundary following in S3, if Ri encounters a robot in S5 on its path, it treats the

robot in S5 as part of the object and continues to follow around its boundary. However, the

transition to S4 is temporarily disabled until oi is reacquired.

When object O is far away from g, θi,g remains small with changes in ||ri−g||. Closer to

g, θi,g changes rapidly and hence its defined bounds [−φ ,φ ] determine how frequently robots

will relocate. The constant φ must be chosen as small as possible such that θnet remains close
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Figure 5.3. Conceptual image of the proposed multi-robot object transporta-
tion process for objects with unknown geometric centroid and center of mass
(heavy and light ends illustrated by darker and lighter shade). Robots iden-
tify pushing points with zero heading error (θi,g ≈ 0) and continue to regulate
their individual pushing efforts and relocate if necessary to keep their collective
heading error within predefined bounds.

to zero after transient. Robot anti-wheel slip capabilities in achieving calculated pushing

effort must also be considered when choosing φ .

5.3.2 Robot Interaction and Motion Control

A potential field approach [149 ] is used to generate the movement vectors of robot Ri at

each defined state of the proposed finite state machine controller. The set of control inputs

u for each robot Ri in each state is defined as follows:

uS1 = ρ1vm
−̂−−→ri,rand (5.1)

uS2 = ρ2|−→rioi|−̂→rioi (5.2)

uS3 = ρ3(|−→rioi|)(−̂→rioi)
⊥
η +

ρ2

2
(|−→rioi|−ds)

−̂→rioi (5.3)

uS4 = ρ4(|−→rioi|)−̂→rioi (5.4)

uS5 = ρ5vm
−̂→rig (5.5)
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where −̂−−→ri,rand is a random unit vector with direction defined within ±45o of θi and updated

every 2 s of operation; 0 < ρ1 ≤ 1, ρ2, ρ3 and ρ4 are constants. The control input for S6 may

be defined as a constant attractive potential in the direction of θ
prev
i,o with gain constant ρ6

for a travel distance of up to rd.

uS2 and uS4 are based on attractive potentials to drive robot Ri towards the detected

nearest boundary point oi. In S2, Ri must reach the defined boundary following distance

faster than the translation of the object such that the detected boundary point of the object

within its FOV is not lost; and in S4, Ri must move faster than the translation of the object

and make contact with the identified pushing point on its surface before it is lost following any

resultant motion of the object due to the collective effort of other pushing robots. Therefore,

the system must be tuned to reflect ρ4 > ρ2 > ρ5.

uS3 sets the motion of Ri on a tangential path around the object boundary in the direction

of η . The first term represents tangential boundary following, while the second term allows

distance correction from the object boundary to maintain the set distance of ds. We set

ρ2≥ ρ3 > ρ5 for smooth boundary traversing in non-convex boundary regions. We constraint

each robot with a maximum linear velocity vm and rotational velocity ωm.

Pushing Effort Regulation

When a robot transitions from state S4 to S5, it is initially positioned in contact with

the object with its heading aligned with the goal location. Without any prior knowledge

of the object centroid or center of mass, it starts to push with a minimum defined effort in

the hopes that other robots are present or will position themselves to balance the rotational

moment of object O. Individuals constantly monitor their individual heading error from the

goal location θi,g and the collective heading error of all robots in S5 defined as θnet . If θi,g

and the collective heading error are either both positive or both negative, robot Ri linearly

increases its pushing effort with its heading error θi,g in the hope of driving the collective

error to zero. The proposed pushing effort model defined in terms of ρ5 can therefore be

written as,

ρ5 = max(0,sign(θnet)
2α

π
θi,g)+

α

2
(5.6)
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Figure 5.4. Pushing effort ρ5 model for robots in state S5 based on θi,g and
sign(θnet) for φ = 30o, α = 1 following Eq. 5.6 .

where α is a constant, and 0 < α ≤ 1.

Acknowledging that in reality, individual robots are constrained by their pushing capa-

bilities without any wheel slip and may be unable to drive the collective heading error to

zero. This maximum pushing capability of each robot is reflected by the choice of α in Eq.

5.6 . Once the pushing effort saturation is exceeded, i.e. ρ5 > 2α for |θi,g| > φ , the robot

transitions back to state S3 in search of another pushing location. This ensures that the col-

lective heading error of all robots in S5 is always bounded within [−nφ ,nφ ], where n is the

number of robots in S5 at any given time. A visual illustration of the proposed model-based

linear pushing effort regulation for φ = 30o and α = 1 is shown in Fig. 5.4 .

Inter-robot Collision Avoidance

Free moving robots in the system must repel one another to maintain a safe distance and

prevent collision. Therefore, robots in states S1, S2, S3 and S6 actively repel neighboring

robots in states S1, S2, S3, S4, S5 and S6 using a repulsive potential within safety distance

de:

urepel =−
ρr

|−→rirj|2
−̂→rirj for |−→rirj| ≤ de (5.7)

where ρr is a repulsion constant, and Ri is in state S1, S2, S3 or S6, and Rj is in S1, S2,

S3, S4, S5 or S6. Ri in state S4 or S5 prioritizes object pushing and relies on the repulsion

set by other robots in its vicinity to maintain a safe distance from it; it transitions to S3 to
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avoid collision and relocates if a nearby pushing robot Rj in S4 or S5 comes too close with

an impending collision while pushing with a smaller heading angle error, i.e. |−→rirj| ≤ de for

Ri,Rj in S4 or S5 and |θi,g| ≥ |θj,g|.

The proposed finite state machine implementation along with the motion control method

allows robots to only settle at identified pushing surfaces on the goal occluded region and

push the object regulating their effort trying to correct their individual heading angle error

within the bounded angle φ avoiding any inter-robot collision. Stagnation points where the

sum of all pushing efforts equal zero are avoided by pushing robots in S5 by robots returning

to boundary following in S3 to determine a new set of pushing surfaces. The process repeats

until the object starts to move again and the stagnation point is overcome. Therefore, the

motion of the object is concluded to be always in the direction of the goal by the pushing

robots only, assuming that the object is placed on a flat surface with zero gradient. The

proposed method may still be applicable for objects placed on a gradient if the static friction

between the object and the floor is enough to oppose any resultant motion of the object by

itself.

5.4 Validation

We present the validation results of the proposed multi-robot arbitrary object trans-

portation method over three sets of experiments. Experiment sets A and B present object

transportation results of simple shapes such as a disk and a rectangular box for analysis pur-

poses. The effectiveness of the proposed model-based pushing effort regulation is presented

comparing transportation performance with and without the proposed method; the robust-

ness of pushing effort regulation is also investigated with dynamically changing object weight

and center of mass of the object. Experiment Set C presents the effectiveness and robustness

of the proposed method in transporting a general arbitrary shaped object having convex and

non-convex boundary regions, and non-uniform weight distribution using a larger number of

robots. Effects of initial object pose on transportation time and path efficiency results are

presented along with scalability analysis. All robots in all experiments were assumed to be

capable of pushing the sample objects individually within their abilities. In all cases, robots
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(a) Trial 1 time lapse illustration of the 2 robots transporting a disk-shaped object of uniform
weight distribution towards the goal.
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lective heading angle error to
push object towards the goal
location.
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Figure 5.5. Experiment A.1: Transporting a 0.04 kg disk with diameter 0.83 m
and uniform weight distribution using 2 robots. With only one potential push-
ing location, the object was transported by one robot as expected.

were unaware of the object shape, size, weight, center of mass, or the total number of robots

involved in the transportation process.

For object transport performance analysis purposes, we define a required object trans-

portation time metric as the time elapsed from the start of a trial until the object centroid

reaches the defined goal region. A path efficiency metric is also defined based on the shortest

distance from the object centroid location at initial time to the nearest point on the goal re-

gion lmin, and the actual total distance travelled by the object centroid in the transportation

process l, evaluated as lmin
l .

5.4.1 Experiment A: Disk and Rectangular Box Transportation

In Experiment Set A, experimental results of transporting simple shapes with uniform

weight distribution such as a disk and a large rectangular box with two iRobot Create robots

are presented over repeated trials. The disk was weighed at 0.04 kg with a diameter of 0.83 m,

and the rectangular box was weighed at 3.5 kg with dimensions of 1.27×0.78 m. Experiments
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(a) Trial 1 time lapse illustration of the 2 robots transporting a rectangular box of uniform weight
distribution towards the goal.
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tively.
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(c) Pushing effort ρ5 in re-
sponse to individual and col-
lective heading angle error to
push object towards the goal
location.

0 1 2 3 4
x(m)

0

1

2

3

4

y(
m

)

Goal

Start

Trial 1
Trial 2
Trial 3

(d) Object centroid path to
goal, showing object path con-
verging towards the goal re-
gion successfully for all inde-
pendent trials.

Figure 5.6. Experiment A.2: Transporting a 1.27×0.78 m, 3.5 kg rectangular
box with uniform weight distribution using 2 robots. Due to its shape, two
pushing locations are available when a side is perpendicular to the goal direc-
tion; at other times, the box must be pushed at the corners. The robots are
observed to collaboratively transport the object to the goal.

were conducted on a 4× 4 m planar surface with two iRobot Create robots assumed to be

capable of detecting the object boundary and other robots within a limited FOV. The front

bumpers are considered the pushing surfaces of the iRobot Create robots. Robot and object

position data recording, and robot and object detection capabilities were simulated using a

VICON tracking system. Given the size of these objects, the disk shape (Experiment A.1)

potentially has a single pushing point while the rectangular box (Experiment A.2) has two

at certain orientations at any given time.

Figures 5.5a and 5.6a show the time lapse illustration of the object transportation process.

Time instant t = 0 s shows the initial setup of the object’s relative position from the goal with

the iRobot Create robots randomly placed around it. The goal location is set at a horizontal

distance of approximately 3.30 m from the initial object geometric centroid position. In each

case, the object transportation method was considered successful if the geometric centroid of

the object reached within a 0.5 m radius of the set goal. The motion control parameters are

set as ρ1 = 1, ρ2 = ρ3 = ρ6 = 0.56, ρ4 = 0.6, ρr = 0.003 with vm = 0.3 m/s and ωm = 2.2 rad/s,
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the distance parameters are set as rd = 2 m, de = 0.3 m and ds = 0.3 m, the pushing effort

parameter is set as α = 1 and the finite state machine parameters are set as δ = 0.2 and

φ = 30o.

In Experiment A.1, the robots are observed to follow the boundary at t = 17 s. The

disk shape potentially having a single pushing point was transported by a single robot (R2)

over t = 34 s and t = 62 s having successfully detected the pushing location. With no prior

knowledge of the object shape, the other iRobot Create (R1) continued to follow the boundary

looking for a pushing location. Fig. 5.5b and 5.5c plots the measured individual heading

angle error of each robot and the net heading error governing η determining the boundary

following direction, and the resulting pushing effort. Without R1 ever pushing the object,

θnet was equal to θ2,g, and R2 is observed to regulate its pushing based on the heading angle

error. Since R1 was never involved in pushing, its pushing effort remained at zero throughout.

Several trials were run of the disk transportation process. The object centroid path from

the start to the goal location for the first 3 trials are shown in Fig. 5.5d ; the disk was

successfully transported in all trials with the lowest path efficiency recorded to be 96 %. The

disk-shaped object was transported with a mean time of 65.4 s with a standard deviation of

6.02 s.

Similar observations were made for the rectangular box transportation in Experiment A.2.

The measured individual heading angle error of each robot and the net heading error along

with the resulting pushing effort are plotted in Fig. 5.6b and 5.6c . R2 initially identified the

corner of the box as a potential pushing location at t = 26 s. It continued to push regulating

its pushing effort based on θnet equal to θ2,g until the resultant change in orientation of the

box allowed a second pushing location of the object to become available to R1 at t = 47 s. The

two robots were then observed to successfully transport the rectangular box collaboratively

to the set goal location. R2 was continuously observed to exert a larger pushing effort to

generate a net clockwise rotation of the object around its unknown center of mass as θnet

remained positive throughout as a result of the goal location placed on the opposite end of

the center of mass of the box. R1 was observed to correct any overshoots in the clockwise

rotation of the object by balancing it with an increasing counterclockwise motion when its
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own heading angle error became the same sign as θnet . As a result, a fairly straight efficient

path of the object was observed to the goal location in Trial 1 as shown in Fig. 5.6d .

The rectangular box transportation process was repeated over several independent trials.

Although the object was successfully transported to the goal location in all trials, some of

the observed paths resulted in a large standard deviation of required transport time, due

to the shape of the rectangular box. For a majority of the time, the robots could push

the object from corner locations only; for more than one pushing location to be used, one

of the boundary surfaces of the object needed to be perpendicular to the goal vector from

a robot currently following this side of the object boundary; which only happened in rare

instances with the 2 robot setup. The process could therefore be improved with redundant

robots available. Regardless, the lowest path efficiency was observed to be as low as 71.2%

with reference to the shortest distance. Paths recorded from trials 2 and 3 are shown in

Fig. 5.6d . The rectangular box shaped object was transported with a mean time of 69.7 s

with a standard deviation of 46 s. We also note here that an increased path efficiency could

be obtained with a transportation time trade-off by setting a smaller φ ; with a smaller

bound on allowed heading angle error robots will tend to relocate more often increasing the

transportation time, but the object centroid will remain closer to the shortest path to the

goal during the transportation process.

5.4.2 Experiment B: Robustness study of Model-based Pushing Effort Regulation

Experiment Set B is a special case of Experiment A.2 that investigates the effectiveness

of the proposed pushing effort regulation, where the rectangular box is required to be trans-

ported along a straight line along with robustness studies of dynamically changing weight

and center of mass of the rectangular box using two iRobot Create robots. Following the

same experiment setup as Experiment A, the object is positioned such that the longest edge

is perpendicular to the object centroid to goal vector; the two robots are initially positioned

such that both identify a pushing point on the goal occluded side on opposite sides of the

object rotational pivot point around the same time. Experiment B.1 presents the straight

line motion showing the two robot regulating their balanced pushing efforts to keep the ob-

ject on a straight line path towards the goal robust to any robot wheel slip effects from the
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Figure 5.7. Experiment B.1:
Two robots carefully placed to
find two pushing locations si-
multaneously; the rectangular
box is initially positioned such
that the object center to goal
vector is perpendicular to its
longest edge.
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Figure 5.8. Experiment B.2:
An additional weight of 2.2 kg
added on one end of the object
during the straight line trans-
portation process as in Exper-
iment B.1, to mimic dynam-
ically changing weight and
weight distribution of object.
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robot and irregular frictional effects between the object and the floor, and the object and the

robot pushing surface. Experiment B.2 presents the results of the pushing effort regulation

robustness study with a 2.2 kg weight added to one end of the rectangular box during the

transportation process.

Pushing points were identified by both the robots within the first 10 s in both experimen-

tal cases. The measured individual heading angle error of each robot and the net heading

error along with their resulting pushing efforts by each robot for Experiment B.1 are plotted

in Fig. 5.7a and 5.7b . The heading angle error θ1,g remains positive and θ2,g remains negative

after initial pushing location identification as the robots positioned themselves on opposite

sides of the rotational pivot point of the object. As a result, the collective heading error θnet

remained bounded within [θ2,g,θ1,g] for the remainder of the transportation process. The

two robots are observed to continuously regulate their pushing effort one at a time to drive

θnet towards zero countering the effects of any object drift due to wheel slip or irregular

friction. ρ5 always remained within the maximum pushing capability of the robots with

θi,g for i ∈ {1,2} remaining within ±φ ; therefore, no robot relocation was required during

the transportation process. The path traced by the geometric centroid of the object during

transportation in Experiment B.1 shows a fairly straight line with minor deviations over 3

presented trials as shown in Fig 5.7c . The cross-track error of the object centroid path with

the shortest distance path from the initial position to the goal remained within 0.12 m at all

times with the lowest path efficiency recorded to be at 93.5 %.

For comparison purposes, Experiment B.1 was repeated without the proposed model-

based pushing effort regulation; both robots detected the pushing locations and were allowed

to push with a constant pushing effort of 0.5 within a heading angle error of [−φ ,φ ]. Three

resulting object paths from three independent trials are also presented in Fig. 5.7c . A

relatively straight path was obtained from Trial 2 with a maximum cross tract error of

0.22 m, while Trials 1 and 3 produced significantly inefficient object transportation paths

to the goal. Due to initial minor contact time differences for pushing, and object and floor

surface irregular frictional effects, the object drifted off the goal heading direction; without

any correction in object rotation by pushing effort regulation, the robots continued to push

within the defined heading angle error of [− φ ,φ ]. Robot relocation took place at two
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instances where heading angle error exceeded [− φ ,φ ]; however, the object continued to

drift far from the set goal. Based on the observations, it was concluded that the object

will eventually converge within the defined goal region following a spiraling path around the

goal region requiring several robot relocations, creating a far inefficient path compared to

the proposed model-based pushing effort regulation case. Due to space limitations in the

experiment setup and the given size of the object, most of the trials including 1 and 3 were

stopped without reaching the goal when the object centroid x-position turned negative.

Similar observations were made in Experiment B.2 where an additional weight of 2.2 kg

was added on the right end of the rectangular box during the transportation process at

t = 13 s. The measured individual heading angle error of each robot and the net heading

error along with the resulting pushing effort are plotted in Fig. 5.8a and 5.8b . With the

dynamic weight addition, the lighter end of the object started to rotate clockwise as expected

between time 14 ≤ t ≤ 17 s with θnet turning negative for a longer duration between time

16≤ t ≤ 23 s. As θ2,g decreased as a result of this rotation, the pushing effort for R2 increased

its pushing effort to ρ5 = 0.7 with θ2,g < 0 to counter the drift effect of the non-uniform weight

distribution of the object, while R1 remained at the minimum of ρ5 = 0.5 with θ1,g > 0. The

additional effort by R2 rotated the object back in the clockwise direction to correct the

object’s heading towards the goal. As a result, θnet returned to being close to zero. As

the object got closer to the goal, the individual heading angle errors increased due to their

relative location; as a result, both robots regulated the object heading with an increasingly

higher pushing effort over time. However, R2 was observed to apply larger pushing efforts

than R1 over longer time durations due to the center of mass offset placing it closer to its

pushing end on the object. The path traced by the geometric centroid of the object during

transportation with the dynamically added weight shows a fairly straight line with minor

deviations over 3 presented trials as shown in Fig 5.8c with a maximum cross-track error of

0.3 m and the lowest recorded path efficiency of 87.7 %.

The proposed system is therefore concluded to be robust to dynamically changing weight

and center of mass. For comparison purposes, the experiment was repeated without the

proposed pushing effort regulation and the observed path of 3 independent trials are shown

in Fig 5.8c . In both Trials 1 and 3, the object started drifting to the right with a net
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clockwise rotation due to the center of mass offset as expected before requiring robots to

relocate and continue pushing. Trial 2 produced a path where the object drifted to the left;

this was due to an unexpected case where both robots determined their pushing locations

and settling on the same end of the object relative to the object center line to the goal

location. Regardless, in all 3 trials the paths obtained without the proposed pushing effort

regulation were significantly less efficient and the transportation process was stopped being

deemed irrelevant, when the object was within 1 m of the goal region with an inaccurate

heading and requiring robot relocation.

5.4.3 Experiment C: Robustness to Object Shape, Weight Distribution and Initial Pose

A 20× 15 m planar confined area with Pioneer P3-DX robots was considered on the

physics-based 3D robotic simulator V-Rep [150 ] for the setup of Experiment Set C. The

stretched bumpers of the P3-DX robots on the front were considered the pushing surfaces

and the array of ultrasonic sensors available were used for distance measurements. A repre-

sentative sample object of arbitrary shape having convex and non-convex boundary regions

weighing 10 kg and having its center of mass at an offset from its geometric centroid on the

xy plane was created for the experiment. The goal location was set at a horizontal distance

of 13.42 m from the object geometric centroid closer to the lighter end of the object, such

that with a uniform pushing profile on the goal occluded region of the object, the object was

expected to have a net counter-clockwise rotation drifting it away from the set goal. Five

Pioneer P3-dx robots were considered to transport the sample object of non-uniform weight

distribution at initial orientation θo = 30o, to the set goal region. Fig. 5.9a shows the time

lapse illustration of the object transportation process.

The object path was observed to drift towards the heavier end of the object and following

the proposed object transport method more robots relocated to the heavier end as a conse-

quence, to push the object back towards the goal. Robots continued to accumulate behind

the heavy end of the object to push it towards the goal. The goal region was reached in

around 4.5 minutes. The path traced by the geometric centroid of the object during trans-

portation shows a fairly straight line with minor deviations closer to the goal and the object

orientation goes to zero over time with the lighter end of the object eventually pushed to the
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Figure 5.9. Experiment C: Object with arbitrary shape having convex and
non-convex boundary regions, and non-uniform weight distribution at θo = 30o

transported to the goal location by 5 Pioneer robots regulating their pushing
effort and relocating if necessary in response to object behavior.

front as shown in the final time step of Fig. 5.9a . Several independent trials of the arbitrary

object transportation process were conducted and the resulting object centroid distance to

goal, path to goal and the net heading angle error θnet of the first 5 trials are shown in Fig.

5.9b , 5.9c and 5.9d respectively. Similar observations were recorded in all trials. The mean

and median of the transport times obtained were 291 s and 268 s.

Experiment sets A and B concluded that the number of pushing surfaces available on the

object boundary at any given time, their utilization depending on initial robot deployment,

and even minor differences in the initial object orientation can have a significant impact on

the object transportation performance. Therefore, Experiment C was repeated for initial

object orientation θo = 0o to 330o at increments of 30o with 5 independent trials run at each

orientation for random initial distributions of robots. Since object detection by random walk

is not the focus of our study, for every trial all robots positioned randomly around the object

were ensured to have the object at least partially visible within their FOV. The performance

of the proposed object transport method was analyzed in terms of the required transportation
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(a) The median and variability of object trans-
portation elapsed time for 5 trial sets for each
θo = 0o to 330o.
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(b) The median and variability of path effi-
ciency for 5 trial sets for each θo = 0o to 330o.

Figure 5.10. The object of non-uniform weight was successfully transported
to the defined goal location with 5 randomly placed robots around the object,
for all trials of initial object orientation 0o to 330o with increments of 30o.

time and the efficiency of the path taken by the multi-robot object transportation for each

initial orientation and trial.

For all θo = 0o to 330o, the object was successfully transported to the goal location within

finite time. The median elapsed time for all initial orientations were recorded between

250 and 400 s with the minimum and maximum of 247 and 543 s at θo = 150o and θo =

270o respectively. The variability in the recorded data remained more or less consistent as

expected, except for θo = 120o and 270o. By design of the object and the experiment setup,

at these object orientations, robots were either pushing only the heavier end or the lighter

end of the object at a time. Due to the less number of pushing points available at these

orientations and the imbalanced nature of the load along this pushing line because of the

non-uniform weight distribution, a larger variability in the object transportation time was

observed. A box and whisker plot of elapsed time for all 5 trial sets for each θo = 0o to 330o

is shown in Fig. 5.10a .

A path efficiency box and whisker plot for all 5 trial sets for each θo = 0o to 330o is

shown in Fig. 5.10b . The path efficiency for most trial sets for θo = 0o to 330o showed small

variability and the median for all were recorded higher than 90 % except for one instance

of 87 % at θo = 300o. The minimum path efficiency was recorded 69 % at one instance for

θo = 120o and the maximum was recorded to be 99 %. The object was therefore pushed in

a more or less straight path for the majority of the trials. For the rest, that showed minor
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Figure 5.11. Scalability: The object of non-uniform weight with θo = 30o was
successfully transported to the defined goal location with N = 1, 2, 5, 10, 15
and 20 randomly placed robots around the object over 10 trials each.

deviations from the shortest distance path, the actual path was eventually corrected to reach

the goal. The object was transported to the goal location successfully for all trials.

5.4.4 Scalability Analysis

A larger robot group may provide a potentially larger net pushing effort to push an object

towards the goal. However, pushing is limited to the number of available pushing surfaces

on the object boundary that depends on the size, shape, and orientation of the object at any

given time of the transportation process. Pushing is also limited by the inter-robot safety

distance that affects how many robots are able to push at a time safely without any collision

with one another. Experiment C of transporting the arbitrary shaped object initially at

θo = 30o was repeated with an increasing number of N = 1, 2, 5, 10, 15, and 20 Pioneer P3-

DX robots each with 10 independent trials with random robot placement around the object.

The median and variability of the object transportation elapsed time and path efficiency

obtained are shown in Fig. 5.11a and 5.11b respectively. The N = 1 robot case yielded the

longest transportation time as expected. The object was transported increasingly quickly

with N = 2, 5 and 10 robots; however, given the size of the object relative to the robots, the

elapsed time is observed to increase for larger N values beyond that. This was due to robots

constantly relocating to avoid collision with other nearby pushing robots by maintaining
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their set safety distance as their pushing surface slide along the object boundary during its

motion. The analysis was confirmed with the scalability experiment repeated for the same

arbitrary object 3 times the current size where the lowest elapsed time was obtained for

N = 20. The median path efficiency for all scalability experiment cases remained over 90 %

with the lowest observed for N = 1 as expected, and the highest observed for N = 2 closely

followed by N = 10 and N = 5 for similar reasons as the analyzed object transportation time.

5.4.5 Discussion

The proposed multi-robot object transport process includes: 1) robots relying on in-

dividual assessment for identification of potential pushing points based on their perceived

boundary of the object of interest within its FOV, 2) zero coefficient of restitution colli-

sion with object during initial contact for pushing, 3) model-based pushing effort regulation

within capabilities based on changing individual heading while pushing, and 4) potential

field-based motion coordination with passive and active collision avoidance based on robot

state. Experiment sets A, B and C demonstrated the effectiveness of the proposed multi-

robot arbitrary object transportation method including robustness to dynamically changing

weight distributions and external disturbances such as non-uniform friction between con-

tacting surfaces and robot wheel slip. Scalability analysis revealed that the proposed system

performance in terms of transportation time is dependent on the number of pushing sur-

faces available which in turn depends on the object size, shape and set inter-robot safety

distance. The proposed system yielded fairly efficient paths of the object transportation

process with consistent elapsed time requirement over several trials. All robots successfully

avoided inter-robot and robot-object collisions in all experiment and simulation trials.

The applicability of our method can be extended to path following of an object to move

around obstacles. Experimental results verified successful path following implementation of

the designed object by 5 robots as shown in Fig. 5.12 .

Given the complexity of different shapes including discontinuous boundary surfaces, sys-

tem parameter δ must be adjusted based on the application scenario for ensuring that a

pushing surface is always found for any arbitrary shape. Pushing surface locations on the

disk-shaped object was successfully determined every time by robots for δ = 0.1. However,
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Figure 5.12. Object transportation to goal locations extended to path following
with acceptable cross-track error. Blue, red and white markers denote starting,
end and intermediate path positions.

at certain orientation of the rectangular box when a corner is the only pushing location

available, δ was increased to 0.2 to obtain the same success rate. Allowing the robots to

boundary follow at slower speeds also improved the success rate of determining pushing

surface identification.

In spite of the robustness of our approach to arbitrary object shapes and weight distribu-

tions, our method does not consider wheel slip effects on the pushing effort regulation. We

admit that it limits the applicability of our method to robots with traction control; design

parameter α must be tuned based on the robot’s pushing capability of objects. The system

is therefore currently limited to objects being light enough for each robot to push. We leave

incorporating anti-wheel slip considerations in pushing effort regulation as future work of

our proposed method.

The proposed transportation method is robust to robot failures assuming at least one

robot remains functional and a disabled robot does not block the path of the object. Push-
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ing location identification and effort regulation are dynamic processes; failed robots during

pushing are replaced by other robots since the pushing frontier is continuously changing with

the object’s motion.

5.5 Conclusion

In this chapter, a multi-robot object transportation strategy is presented for objects of

arbitrary shape and geometry, mass and mass distribution based on observable coordination

strategies employed by human beings in object transport processes. A finite state machine

design with specific motion control formulation for distributed pushing point identification,

collision avoidance, and dynamic model-based pushing effort regulation has been proposed.

Experimental results validated the effectiveness and robustness of the proposed methods in

presence of dynamically changing object weight and weight distribution of the object and

external disturbances such as non-uniform friction between contacting surfaces and robot

wheel slip to drive the object towards the goal. Detailed analysis on object transportation

performance based on initial object pose and availability of pushing points has been presented

in terms of required transportation time and path efficiency for a number of trials. Scalability

analysis of the proposed method suggests that elapsed transport time and path efficiency

of objects are significantly improved for two or more robots cooperating in the transport

process over single robots.
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6. CONCLUSION

Numerous living organisms found in nature have learnt to be self-sustainable as a group

through the proven method of evolution; schools of fish have developed fruitful methods of

predator detection and evasion as a group and flocks of birds flying in shapes have developed

methods of relying on one another to maintain flight over long distances without tiring.

In both these examples, individuals are observed to take turns being in positions that are

detrimental to them; individuals on the outside of the school are most exposed to predators

and birds on the front of the V-shape formation require more effort to fly. But the continuous

process benefits the group as a whole. Numerous other examples are available in nature that

have allowed individuals capable of feats as part of a cooperating group otherwise impossible.

Human beings have also learnt to live as a society relying on one another for protection and

livelihoods. Certain social conducts such as cooperation, and altruistic behavioral traits have

emerged with time that have allowed individuals to support one another that benefits the

group as a whole. Although the field of multi-robot systems have come a long way since its

initiation, we believe the true potential of connected robotic systems is yet to be realized.

The research presented in this dissertation is a step towards such group based improved

capabilities in multi-robot systems that can only be achieved by relying on one another. To

that end, a number of group dependent multi-robot self-organization and application specific

strategies have been proposed in this research work.

Group survival strategies proposed in this dissertation include self-organization meth-

ods for internal resource sharing and/or distribution in structured and unstructured robot

groups, and surviving damaging external stimuli as a group by taking turns on the leeward

side. The cyclic energy sharing method in structured convoying robot groups allowed groups

of increasing numbers of robots and various sizes to consistently travel much larger distances

over the control case of no relocation, while maintaining a small variance in battery levels

between all robots. In all simulation cases, robot groups were able to travel over 4 times the

distance with the proposed method as tested. The AIS controller proposed for the unstruc-

tured energy sharing and distribution process yielded 55%, 42%, 23% and 33% performance

improvements in equilibrium attainment convergence time for skewed, bi-modal, normal
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and random initial agent resource level distributions respectively on a 2D plane using the

proposed energy distribution method over the control method of no adaptive spacing. Scala-

bility analysis for both energy sharing concepts confirmed their application with consistently

improved performances different sized groups of robots.

In addition to internal energy sharing classified as self-organization based in internal

stimuli, the proposed group survival methods in this dissertation also presented a distributed

strategy of surviving damaging directional external stimuli as a group. Partially inspired by

the Huddling behavior of Emperor Penguins in the Antarctic, simulation results verified

that groups of robots were able to survive longer in the field exposed to extreme conditions

using the proposed relocation strategies in the group. The distributed global health loss rate

minima estimation allowed the development of two settling conditions. The global health

loss rate minima settling method yielded 12.6%, 5.3%, 16.7% and 14.2% improvement in

average robot health over the control case of no relocation, while the optimized health loss

rate minima settling method further improved on the global health loss rate settling method

by 3.9%, 1.9%, 1.7% and 0.6% for robot group sizes 26, 35, 70 and 107 respectively.

Group survival is a fundamental requirement of functioning groups of robots that becomes

significantly relevant in long term applications where field deployed multi-robot systems do

not have access to human assistance or supervision. The proposed self-organizing method-

ologies for group survival present enormous opportunities for application in a number of

research areas. The resource distribution method could be utilized for energy management

for a large robot swarm on large area exploration where recharging methods are sporadically

available in certain areas. Specific examples include cloud cover or low light hampering solar

based recharging of robot units in the field, where robots from other areas may dynami-

cally self-organize from time to time to distribute total accumulated energy to the group.

The proposed method is generalized to be applicable for any on-board resource that could

be shared within a close proximity without overcrowding one another, e.g. exchange of

information for continuous map building, surveillance etc. The damaging external stimuli

survival method using GPML could be directly applied to multi-robot groups in the field

exposed to a directional external stimuli. This cyclic self-organization method could also

be applied in self-healing material research where nano or micro-size building units cycle
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to the damaging side of the material layer while taking turns on the leeward side to heal.

Self-healing materials with such advanced capabilities could one day be applied on space

crafts as protection during re-entry into the atmosphere or even on deep sea diving robots

reaching extreme low temperatures and pressures to cycle outer damaged material layers

continuously for protection.

As part of the research on application specific cooperation based self-organization case

studies, a distributed shape formation strategy with cooperative robots relying on one an-

other is also proposed in this research work. The distributed shape formation method relies

on robots that have already settled as part of a forming structure to guide others towards

the structure forming frontier. This form of cooperation in providing guidance implemented

as a propagating gradient from beacon robots, allows searching robots to follow efficient

paths along the structure surface to reach the next required structure forming location and

settle. Simulation results validated the successful formation of 2D and 3D shapes using the

finite state machine-based shape formation process. The proposed methodology could be

applied in a number of application areas ranging from programmable matter [151 ] to the

construction and manufacturing industry. The proposed method does not require any exter-

nal control or human supervision; robots cooperate with one another to guide neighbors to

required positions. The system is also concluded to be robust to robot failures during the

shape formation process.

The second case study on application specific cooperation based self-organization in

multi-robot systems include an arbitrary object transportation strategy for objects of ir-

regular shape, size and weight distribution. The system is robust enough to ensure that a

given object can be transported by a single robot assuming the robot is capable of pushing

it on its own. However, experimental results with two iRobot Create robots validate that

an efficient object path can only be achieved with two or more cooperating robots pushing

at the same time. Individual robots start to push the object regulating their effort, with

hope that another robot finds a pushing location on the other end of the center of mass to

balance the moment and ensure no unintended object rotation occurs during its transporta-

tion. Applications of this research work include direct implementation in the construction

industry transporting heavy building blocks, warehouse logistics, path clearance for evac-
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uation in disaster scenarios etc. Efficient paths of object transportation are a necessity in

all such applications often with multi-robot systems unaware of object shape, size or weight

distribution. The current method is confined to planar operations of object transport. As

future work, the proposed method could be adapted for usability in 3D space in presence

of external disturbances resulting in object motion for applications including targeted drug

delivery [152 ] and deep sea rescue operations [153 ].

The research presented in this dissertation effectively demonstrates how certain multi-

robot system characteristics such as chances of survival or application performance can

be greatly improved by altruistic and cooperative behaviors by individual robotic systems.

Given the variety of ways inter-robot support can be implemented, each chapter is concluded

with its own analysis and discussion on current shortcomings and future work on the topic.

The research presented in this dissertation directly impacts how robots may one day

interact with one another. More importantly, it changes human perception of robots from

machines to social entities capable of exhibiting prosocial behaviors in a society for the

greater good of the group. With promising results, the work presented here opens new doors

on multi-robot self-sustainability research in the future.
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