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ABSTRACT

Desai, Saaketh Ph.D., Purdue University, December 2020. Enhancing the predictive
power of molecular dynamics simulations to further the Materials Genome Initiative.
Major Professor: Alejandro Strachan.

Accelerating the development of novel materials is one of the central goals of the

Materials Genome Initiative and improving the predictive power of computational

material science methods is critical to attain this goal. Molecular dynamics (MD)

is one such computational technique that has been used to study a wide range of

materials since its invention in the 1950s. In this work we explore some examples of

using and increasing the predictive power of MD simulations to understand materials

phenomena and provide guidelines to design tailored materials.

We first demonstrate the use of MD simulations as a tool to explore the design

space of shape memory alloys, using simple interatomic models to identify charac-

teristics of an integrated coherent second phase that will modify the transformation

characteristics of the base shape memory alloy to our desire. Our approach provides

guidelines to identify potential coherent phases that will achieve tailored transforma-

tion temperatures and hysteresis.

We subsequently explore ideas to enhance the length and time scales accessible

via MD simulations. We first discuss the use of kinetic Monte Carlo methods in

MD simulations to predict the microstructure evolution of carbon fibers. We find

our approach to accurately predict the transverse microstructures of carbon fibers,

additionally predicting the transverse modulus of these fibers, a quantity difficult to

measure via experiments. Another avenue to increase length and time scales acces-

sible via MD simulations is to explore novel implementations of algorithms involved

in machine-learned interatomic models to extract performance portability. Our ap-
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proach here results in significant speedups and an efficient utilization of increasingly

common CPU-GPU hybrid architectures.

We finally explore the use of machine learning methods in molecular dynamics,

specifically developing machine learning methods to discover interpretable laws di-

rectly from data. As examples, we demonstrate the discovery of integration schemes

for MD simulations, and the discovery of melting laws for perovskites and single

elements. Overall, this work attempts to illustrate how improving the predictive ca-

pabilities of molecular dynamics simulations and incorporating machine learning ideas

can help us design novel materials, in line with the goals of the Materials Genome

Initiative.
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1. INTRODUCTION

From the Stone Age and the Bronze Age, to the Industrial Revolution and the In-

formation Age, most of human history has been defined with the discovery of novel

materials. These materials defined the tools and technology of the time, and the

development of new materials has historically resulted in significant improvements in

these tools, improving human life. The quest to develop new materials has led to the

invention of increasingly complex materials designed for specific applications. One

example is the invention of steel by combining iron with carbon to improve on the

strength of iron. More recently, some of the greatest technological advances of the

twentieth century were also realized via novel materials, whose development was aided

by new experimental and computational techniques. One example is the development

of transistors in the 1940s, leading to the advent of electronic devices and heralding

the start of the Information Age. Yet another powerful example is the development

of lithium ion batteries in the 1980s and 1990s, revolutionizing energy technology

beyond fossil-fuels. Looking ahead, the 21st century will also be defined by materials

innovations that solve some of the grand challenges of humanity such as capturing

excess carbon dioxide, and developing sustainable, renewable energy sources.

Despite these successes in developing new materials, one of the current challenges

in developing new materials is to accelerate the time required to transition from dis-

covery/invention to deployment, a process that currently takes 15-20 years for most

novel materials [1]. For instance, Li-ion batteries were first discovered in 1985, but

saw widespread use only in the 2000s. Recognizing the need to develop new ma-

terials faster, the Materials Genome Initiative was launched in 2011 with the goal

of accelerating the development of advanced materials for energy storage, next gen-

eration electronics and various other applications by a factor of two [1]. The MGI

has identified that accelerating the development of novel materials requires synergy
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between computational modeling approaches, experimental tools, and increasingly,

data-driven approaches to material design. The role of computational approaches in

this synergy is to develop robust models that guide or replace expensive and time

consuming experiments, while also providing insight to processing-structure-property

relationships that are difficult or time consuming to obtain via experiments.

Computational material science methods span various length and time scales,

ranging from quantum mechanical methods such Density Functional Theory (DFT)

and molecular dynamics (MD) at the atomic scale, to mesoscale methods such as

phase field simulations, all the way to macroscale, component level methods such

as Finite Element Methods. Each method offers unique insights into materials phe-

nomena, for instance DFT calculations provide a detailed picture of the electronic

structure of material, critical to designing advanced semiconductors. However, they

are limited in the length and time scales accessible and cannot be used to predict

properties that require system sizes bigger than a few hundred atoms. Molecular

dynamics simulations also offer atomistic insight into materials phenomena but can

predict high temperature properties unlike DFT calculations and can be used to in-

form mesoscale and component level models, which then provide macroscale material

insights.

The computational design and understanding of materials thus requires integra-

tion of these various modeling techniques. This need was identified by the Integrated

Computational Materials Engineering (ICME) initiative. ICME was launched to

streamline materials development by linking modeling protocols across various length

and time scales to provide comprehensive predictions and guidance in developing

new materials. The ICME approach attempts to seamlessly link manufacturing pro-

cesses to materials models, integrating process-property and structure relationships

in materials. This approach has led to many success stories such as the design of

high-performance alloys for turbines [2] and the virtual aluminum casting process at

Ford [3].
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An emerging arm of materials development approaches is the use of machine

learning and data-driven methods in discovering and designing novel materials. The

role of data-driven methods is to develop surrogate models that offer rapid predic-

tions in situations that are difficult or expensive to understand via experiments and

computational methods. Recent success stories demonstrate the use of data-driven

approaches in conjunction with computational methods to develop new materials,

significantly reducing the time required to discover new perovskite materials [4], low

hysteresis shape memory alloys [5], and solid Li-ion conductors [6]. However, these

approaches are still limited to combining quantum mechanical DFT calculations with

machine learning methods, leveraging an increasing number of curated DFT calcuala-

tion databases such as Materials Project [7], OQMD [8], and AFLOW [9]. Utilizing

insights from higher scale computational materials models can further aid these data-

driven approaches, and is an active area of research. The existence of this ‘Materials

Data Infrastructure’ will allow streamlined access to this multi scale materials data,

in addition to standardized protocols to work with such data [10].

The central theme of this thesis is molecular dynamics simulations and this col-

lection of work will explore ways to use molecular dynamics simulations as well as

enhance them to design novel materials in an effort to achieve the goals outlined

by the MGI and ICME efforts. This thesis is organized as follows: We will first

introduce molecular dynamics simulations in Chapter 2, identifying limitations and

sources of improvement in the predictive capabilities of this technique. We will also

briefly explore machine learning methods in material science and molecular dynamics

simulations, again identifying limitations in the current state-of-the-art. Subsequent

chapters will discuss case studies of fundamentally improving on these limitations

for specific applications. Chapter 3 demonstrates the use of molecular dynamics

simulations with simple interatomic models to understand trends in martensitic ma-

terial behavior, guiding the design of novel, room-temperature operable, light-weight

shape memory alloys. Chapter 4 discusses the coupling of molecular dynamics simu-

lations with other computational material science techniques, such as kinetic Monte



4

Carlo methods, to describe microstructure evolution in carbon fibers, providing a first

step towards designing next generation high-strength, high-stiffness fibers. Chapter

5 explores novel implementations of molecular dynamics algorithms to access greater

length and time scales. Chapter 6 focuses on some novel machine learning approaches

to discover integration schemes for molecular dynamics simulations, exemplifying the

use of interpretable machine learning models as tools to discover underlying physics

directly from data.
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2. METHODS

In this chapter we will explore classical molecular dynamics (MD) simulations as a

method to go beyond highly accurate quantum mechanical calculations and connect

these calculations to higher scale models at the microstructural and component level.

We will also explore machine learning methods in material science and introduce

some methods that are used in this thesis, either to improve the accuracy of MD

simulations, or to discover laws relevant to MD simulations. We will also look at

limitations in the current state of the art and identify areas for improvement that will

be addressed in subsequent chapters.

2.1 Molecular Dynamics

Molecular dynamics simulations allow the study of complex systems at an atomic

scale by following the trajectory of a set of atoms whose interactions are defined

by Newton’s laws of motion. Classical molecular dynamics, here after referred to

as molecular dynamics, was first developed by Alder and Wainwright in the 1950s

[11,12] for a system of hard sphere particles, with realistic materials simulations soon

following in the 1960s and 1970s [13,14].

Since its inception, molecular dynamics simulations have been critical to provide

atomistic insight into materials phenomena that involve length and time scales larger

than Density Functional Theory calculations. MD simulations are crucial to connect

information from ab-initio calculations to higher scale models. For instance, MD sim-

ulations, with parameters fitted to DFT calculations, have provided discrete disloca-

tion dynamics models with dislocation core energies [15], which are critical to predict

dislocation interactions and crystal plasticity at macroscales. In recent times, large

scale MD simulations have also identified deformation mechanisms in single crystals
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beyond dislocation-based plasticity, further informing higher scale models of materi-

als phenomena under low temperatures and high strain rates [16]. MD simulations

can also inform dislocation behaviors concurrently, as is the case in coupled atom-

istic discrete dislocation (CADD) simulations [17]. A similar approach has proven

successful to study radiation damage in materials [18].

Another example of molecular dynamics simulations being used to propagate

quantum mechanical information to higher scale models is the use of multi-scale

models to simulate crack propagation [19]. In this case, the molecular dynamics

simulations simulate atomic stresses in environments where continuum elastic the-

ory fails, and is informed by bond-breaking events from the quantum mechanical

calculations.

The goal of this section is to provide an understanding of MD simulations, to

understand how these simulations can be more accurate and access higher length and

time scales, and couple more effectively with higher scale models. The typical work-

flow for a molecular dynamics simulation is shown in Figure 2.1, and each subsequent

subsection will expand on each aspect of this workflow.

2.1.1 Initial structure

To begin the simulation, we start with a set of atoms whose positions and veloc-

ities are defined. For simple crystal structures, the atom positions can be assigned

manually, or by using standard packages such as Atomsk [20] or LAMMPS [21]. For

instance, we use the LAMMPS package [21] to define a body centered cubic structure

as the initial structure that will subsequently undergo a martensitic transformation

to a monoclinic phase, see Chapter 3 for additional details. Software packages such

as Atomsk are also used to generate atomistic structures of polycrystalline materi-

als. For complex amorphous polymer structures, one can use Packmol [22] or the

Polymer Modeler tool [23]. These tools allow users to specify a single monomer or a

set of monomers, which can then be used to generate amorphous polymer structures.



7

Fig. 2.1. Typical molecular dynamics workflow

To generate structures with complex interfaces, one can use the Virtual NanoLab

toolkit from Synopsys-Quantum ATK [24]. Software packages like these showcase

how publicly available software can be beneficial to a large audience

However, certain specialized initial structures still require custom codes and scripts.

One example of this is the customized ladder-like structures built to represent sta-

bilized carbon fiber precursor structures, used as initial structures for the MD-CF
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carbonization algorithm presented in Chapter 4. Even for such specialized cases, the

availability of the codes used to generate these structures aids reproducibility.

2.1.2 Interactions between atoms

Having defined a set of positions and velocities, we now define the interactions

between atoms. The forces between atoms could be obtained by solving the time-

independent Schrodinger’s equation for the energy of the system, the negative gradi-

ent of which (with respect to the atomic coordinate) will give us the force on each

atom. This approach is known as ab− initio molecular dynamics (AIMD) and results

in highly accurate forces but at great computational cost. AIMD simulations are

thus usually limited to a few thousand atoms for hundreds of picoseconds. AIMD

simulations are most often used when accuracy is of prime concern, and/or a compu-

tationally cheaper interaction model is unavailable. In classical MD, we compute the

forces on each atom using an approximate ‘interatomic potential’, also known as an

‘interatomic model’, or a ‘force field’. This approximation removes the need to solve

the Schrodinger’s equation and reduces the cost of computing the forces, allowing

simulations of larger system sizes (up to billions of atoms) and longer timescales (up

to nanoseconds). We will now briefly introduce various forms of interatomic models.

The central idea of an interatomic model is to encode the environment around each

atom into a set of ‘descriptors’, subsequently mapping the descriptors to the energy of

the system and the forces acting on each atom. The earliest interatomic models were

designed to simulate the behavior of simple materials such as liquid argon [13], where

a two-body interatomic model could accurately describe the properties of interest

such as the self-diffusion coefficient. In a two-body model, the environment around

each atom is described by the set of distances {rij} between a central atom i and

each of its neighbors j. The mapping from the set of distances (descriptors) to the

potential energy is given by various functional forms, such as a power law form for

the Lennard-Jones model
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V ({ri}) =
N∑
i=1

i∑
j=1

4ε

[(
σ

rij

)12

−
(
σ

rij

)6
]

(2.1)

or an exponential function for the Morse model.

V ({ri}) =
N∑
i=1

i∑
j=1

D0

[
e−2α(rij−r0) − eα(rij−r0)

]
(2.2)

where ε, σ, D0, α, r0 are model parameters.

Two-body interatomic models are computationally cheap as they only consider

pairwise considerations, and can provide useful trends in materials properties if the

model is parametrized accordingly. As discussed in detail in Chapter 2, we use a

Morse interatomic model to obtain trends in martensitic phase transformations and

guide the design of lightweight shape memory alloys. In addition, these models are the

computationally cheapest. However, for all these advantages, a pairwise interaction

model has a few pitfalls. For instance, two-body models always predict the vacancy

formation energy and cohesive energy to be equal, which is not true for most materials.

To address these limitations, many body, higher order interatomic models were

developed such as the Embedded Atom Model (EAM) [25], Stillinger-Weber [26],

and Dreiding [27]. In the EAM formalism, the atomic environment is encoded in a

pairwise term, containing the set of distances {rij}, as well as an embedding term,

with the functional mapping for these terms varying for different models.

V ({ri}) =
N∑
i=1

Fi(ρi) +
N∑
i=1

i∑
j=1

φ(rij) (2.3)

where F is the embedding function, ρi is the electron density, approximated as a

function f(rij) that depends on pairwise distances.

In the Stillinger-Weber and Dreiding models, the descriptors for the environment

around each atom are defined to be the set of pairwise distances {rij} as well as three-

body and four-body descriptors such as angles and torsions [26,27]. For bonded and

organic systems, the ReaxFF interatomic models offer accurate manybody descrip-

tions of atomic interactions [28]. The ReaxFF model maps each atomic environment
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in terms of bond-orders, which are then mapped to the energy using exponential

functional forms, each functional form contributing one term of the total energy.

The interatomic models described so far have proven useful to model melting

and surface properties in metals [29], thermal transport in semiconductors [30], glass

transition phenomena in polymers [31], high energy materials [32] and a wide variety of

other properties and materials. However, the accuracy of these models is still limited

by the functional form chosen for the mapping, making these models fundamentally

limited in the range of atomic environments they can accurately represent. In the past

decade, machine learning methods have emerged as novel avenues to describe atomic

interactions accurately across a wide range of atomic environments by leveraging the

flexible nature of machine learned models and their thousands of tunable parameters.

This aspect will be discussed in detail in Section 2.3.2.

2.1.3 Integration schemes

The previous subsection described various ways of defining an empirical inter-

atomic model. We can now use any of those definitions to obtain the forces acting on

each atom, subsequently solving Newton’s second law of motion, F = ma, to obtain

the new position and velocity of each particle. To do this, we discretize Newton’s

second law of motion, obtaining a numerical integration scheme.

We re-write F = ma as

F = m
dv

dt
(2.4)

v =
dx

dt
(2.5)

Various discretization methods differ in the way the derivatives are approximated

numerically, giving us different integration schemes with varying accuracy.

The simplest integration scheme is the Euler integration scheme, which numeri-

cally approximates each derivative using the forward difference scheme. Thus,
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v(t) =
dx

dt
=
x(t+ ∆t)− x(t)

∆t

F (x(t)) = m
dv

dt
= m

v(t+ ∆t)− v(t)

∆t

(2.6)

which can be re-written as:

x(t+ ∆t) = x(t) + v(t)∆t

v(t+ ∆t) = v(t) +
F (x(t))

m
∆t

(2.7)

The Euler integration scheme can also be viewed as a Taylor series expansion of

the position and velocity about ∆t, truncated to the first-order.

To improve on this scheme, we can consider a central difference approximation for

the derivatives:

v(t) =
x(t+ ∆t)− x(t−∆t)

2∆t
(2.8)

including derivatives at a half-step, such as:

v(t+
∆t

2
) =

x(t+ ∆t)− x(t)

∆t
(2.9)

Using the central difference scheme, we can derive the Verlet formulation [33]:

x(t+ ∆t) = 2x(t)− x(t+ ∆t) +
F (x(t))

m
∆t2

v(t) =
x(t+ ∆t)− x(t−∆t)

2∆t

(2.10)

Note that this integration scheme was discovered earlier under various other names

[34]. While the Verlet formulation is not self-starting (we require both current and

previous position to evaluate the next position), we can reformulate this as:

x(t+ ∆t) = x(t) + v(t) +
1

2

F (x(t))

m
∆t2

v(t+ ∆t) =
x(t+ ∆t)− x(t)

∆t
+
F (x(t+ ∆t)

m

∆t

2

(2.11)

making the integration scheme self-starting and requiring one force evaluation per

integration step, F (x(t+ ∆t)).
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We can again see that the Verlet scheme amounts to a Taylor series expansion of

the position, truncated to the second-order. In practice, most MD codes will break

this down into three steps as follows:

v(t+
∆t

2
) = v(t) +

F (x(t))

m

∆t

2

x(t+ ∆t) = x(t) + v(t+
∆t

2
)∆t

v(t+ ∆t) = v(t+
∆t

2
) +

F (x(t+ ∆t))

m

∆t

2

(2.12)

This scheme is known as the Velocity Verlet scheme, and is the integration scheme

used in the LAMMPS software package [21]. An alternative formulation, the Position

Verlet scheme [35] can be obtained by using the Liouville operator, as discussed in

Chapter 6. Additionally, further higher order schemes such as Runge-Kutta integra-

tion methods can be obtained by including higher-order terms in the Taylor series

expansion, but require an increasing number of force evaluations at every step. In

Chapter 6, we will explore a scheme to discover integration schemes from data without

prior knowledge of the underlying physics.

2.2 Need for longer time scales and length scales

Newton’s second law of motion is a second-order ODE that can be re-written as

two first-order differential equations, as seen in the previous section. This system of

differential equations is chaotic, meaning that small errors in numerically solving for

the positions and velocities can quickly build up and generate inaccurate trajectories.

To avoid these numerical errors, we require small timesteps in the integration schemes

discussed before, which limits current molecular dynamics simulations to billions of

atoms as of today [36], and microsecond timescales [37].

However, many key problems in material science are governed by material phe-

nomena at higher length and time scales, while also requiring atomistic insight to

accurately predict material response. Some examples of this are the time evolution of

radiation damage in materials, low strain rate deformation response, and microstruc-
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ture evolution processes. Increasing the length and time scales accessible via MD

simulations are required to address these challenges. Accelerated MD methods such

as Hyperdynamics [38] and Parallel replica dynamics [39] leverage Transition State

Theory offer one way to access to microsecond - millisecond timescales, especially to

simulate rare events such as diffusion processes [40] and radiation damage events [41],

processes that are beyond the reach of conventional MD simulations.

In this thesis, we attempt to increase the time scales accessible via molecular

dynamics simulations in two ways: (i) Chapter 4 discusses incorporation of kinetic

Monte Carlo methods in MD to simulate the microstructure evolution in carbon

fibers (ii) Chapter 5 explores novel ways to implement MD algorithms to extract

performance across various platforms.

2.3 Machine learning methods for material science

Ever-increasing computing resources and the development of accelerated compu-

tational methods, as discussed in the previous section, continue to increase avenues

for the computational design of materials from first principles. At the same time,

the advent of machine learning methods has led to a novel avenue for accelerated

materials design: the combination of computational methods with machine learn-

ing techniques, as mentioned in Chapter 1. This thesis briefly explores the use of

machine learning methods in the context of molecular dynamics simulations. Specif-

ically, Chapter 5 discusses ways to implement machine-learned interatomic models

to extract cross-platform performance and leverage hybrid CPU-GPU architectures.

Chapter 6 discusses the use of novel machine learning methods to discover molecular

dynamics integration schemes directly from data. The goal of this section is to provide

a brief background of machine learning methods in molecular dynamics and material

science, providing context to the work in Chapter 5 and Chapter 6. This section will

also highlight cyber-infrastructure developed to promote the use of machine learning

and probabilistic methods in material science.
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We first introduce machine learning methods in materials design efforts, and po-

tential improvements in this area.

2.3.1 Machine learning for materials discovery and design

As mentioned in Chapter 1, the past decade has seen an increasing number of

attempts at discovering new materials via a combination of machine learning and

computational methods, specifically Density Functional Theory calculations. This has

led to the discovery of novel perovskites [4], low hysteresis shape memory alloys [5],

and solid Li-ion conductors [6]. The central thrust in these approaches is for the

machine learning model to rapidly predict a material property of interest, bypassing

time consuming simulations or experiments. This strategy leverages the flexibility in

various ML models and their ability to learn mappings in various tasks ranging from

image recognition [42] to sentence translation [43].

The inputs to these machine learning models in the case of materials design

problems can be elemental information such as atomic radii, electronegativity, and

other periodic table information readily accessible via databases such as Materials

Project [7] and OQMD [8]. While these inputs offer little insight into the problem

at hand, deep learning models can still learn mappings between these inputs and the

material property of interest. For instance, a deep neural network has proven suc-

cessful in predicting the stability of compounds directly from compositional data [44].

Another strategy for materials design is to inputs that capture the essential physics of

the problem. This feature engineering allows the use of smaller ML models with lesser

tunable parameters. A combination of feature engineering and transfer learning has

shown great promise in predicting Li-ion conductors from small datasets [45]. While

most materials design continue to rely on DFT calculations to design features for

ML models, future work could focus on the use of higher scale models as input fea-

tures to models, providing additional insight to the problem and providing increased

confidence in model predictions.
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One drawback of the use of ML models in materials design efforts is their lack

of interpretability. Despite their high accuracy, ML models cannot ‘explain’ their

predictions. The development of interepretable machine learning models is an active

are of research [46, 47], as is the development of machine learning methods that

satisfy pre-determined constraints [48, 49]. In Chapter 6, we will discuss the use of

Parsimonious Neural Networks to discover interpretable models directly from data.

2.3.2 Machine learning in molecular dynamics simulations

The biggest use of machine learning methods in molecular dynamics simulations

has been to increase the accuracy of interatomic models. Machine learned interatomic

models differ from the traditional interatomic models discussed in Section 2.1.2 by

using a wider set of descriptors for the atomic environment and by using flexible

functional mappings such as neural networks or gaussian processes.

In the case of neural network potentials [50], the descriptors chosen are symmetry

functions, which are a collection of gaussian functions describing the atomic environ-

ment. The symmetry functions are divided into radial and angular functions, which

are defined below:

Gk(rij) = e−ηk(rij−rsk )2fc(rij) (2.13)

Gk(rijk) = (1 + λcos(θijk))e
−ηk(r2ij+r2ik+r2jk)fc(rij)fc(rik)fc(rjk) (2.14)

These descriptors are then mapped to the energy of the system using a ‘shal-

low’ neural network, typically only two to three layers deep and consisting of ∼30-50

neurons each.

Along similar lines is the Spectral Neighbor Analysis Potential [51]. Here the

atomic environment is described in terms of Bispectrum coefficients, which are the

coefficients of a four dimensional hyperspherical harmonic expansion of the neighbor

density function. These bispectrum coefficients are then mapped to the energy and
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forces using a linear regression model, with recent work exploring higher order map-

pings [52], highlighting the flexibility and the de-coupled nature of the descriptor and

the mapping in machine learned interatomic models.

Recent efforts attempt to use machine learning methods to ‘learn’ the descriptors

for an environment, as opposed to using physics-based intuition to design custom

descriptors. These attempts show that an end-to-end machine learned interatomic

model without human intuition can also prove to be an accurate description of the

interactions between atoms in complex systems [53,54].

We have recently developed neural network interatomic models for reactive sys-

tems containing carbon, oxygen, nitrogen and hydrogen, specifically for high-energy

materials such as RDX. We develop an iterative scheme of training, where we train a

‘first generation’ interatomic model using an initial training set developed by scientific

intuition. We then test the first generation model and collect any trajectories deemed

incorrect to be passed back for training the subsequent generation. This iterative ap-

proach, in conjunction with small datasets periodically injected via scientific intuition,

shows great promise in obtaining an accurate neural network interatomic model. We

find that our interatomic model not only accurately the captures chemical kinetics

of RDX, but also is an order-of-magnitude more accurate than the state-of-the-art

ReaxFF models in predicting energies and forces for a wide variety of chemical con-

figurations. This scheme is similar to other active learning based interatomic model

fitting approaches [55].

Most machine learned interatomic models are at least an order of magnitude

slower than traditional interatomic models [56, 57]. This largely stems from the ex-

tra computations involved in converting distances and angles between atoms in a

neighborhood to multiple descriptors. While this may be rationalized as trading ac-

curacy for computational cost, we will see in Chapter 5 that implementing the critical

computational steps in a performance oriented manner can provide massive speedups

and enable near quantum-accurate neural network interatomic model based molecular

dynamics simulations for billions of atoms in the near future.
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Other applications of ML methods in MD simulations are the use of recurrent

neural networks to predict atomic trajectories, or the discovery of integrators directly

from atomic data [58,59]., as discussed in Chapter 6.

2.3.3 Cyber-infrastructure for machine learning methods in material sci-

ence

The rapid advances in machine learning methods for material science outlined in

the previous sections have relied on the availability of curated repositories of ma-

terials data. The rise of these databases has reduced the barrier to incorporate

machine learning methods in material science research. However, one major bar-

rier for more material scientists to adopt machine learning methods in their research

is the lack of high-quality machine learning training resources focused on material

science applications. To this end we develop Jupyter notebooks that introduce fun-

damental machine learning concepts [60] via nanoHUB, a cloud computing cyber-

infrastructure that has provided easy access to materials simulation tools for over a

decade (http://nanohub.org/). These notebooks introduce the ideas of data col-

lection and curation via Numpy arrays and Pandas dataframes and fitting neural

networks for regression and classification tasks. These notebook tools are accessible

from a web browser without the need to install additional software, further increasing

ease of access and widespread adoption.

The notebooks focus on problems relevant to material sciences, as introductory

machine learning tutorials for a broad audience are widely available. For instance,

instead of using neural networks to predict housing prices, the tool focuses on using

neural networks to predict the Young’s modulus of single elements given elemental

information such as electronegativity, atomic radius, melting temperature etc.

Other tools on nanoHUB allow advanced users to familiarize themselves with

advanced ML methods, such as training convolutional neural networks to predict the

solubility of organic materials [61], using random forests to predict formation energies

http://nanohub.org/
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of impurities in semiconductors [62], and and using state-of-the art active learning

methods to guide further experiments [63].

The coupling of machine learning methods with computational and experimen-

tal methods poses additional challenges associated with information exchange across

scales, physics, and models. Key among them is the quantification of uncertainties

across these scales [15]. We introduce a Jupyter notebook for calibration [64] where

users can easily upload data, determine state and calibration variables, match tool

outputs with calibration data, and perform either standard or Bayesian calibration

using the Dakota software package from Sandia National Laboratories [65]. One of

the goals of this tool is to promote the use of uncertainty quantification approaches

across material science. Here, we demonstrate this tool by performing a Bayesian

calibration of an interatomic potential for molecular dynamics simulations.

The objective of this calibration is to determine posterior distributions for the

parameters of an interatomic potential that match a given training dataset, including

uncertainties. In this case, we are interested in calibrating a Sutton–Chen EAM

potential, described by three parameters, ε, c and A, given a dataset consisting of

four quantities of interest: lattice parameter, cohesive energy, unrelaxed vacancy

formation energy and bulk modulus.

Uncertainties in parameters ε, c or A will thus be tied to uncertainties in each of

the quantities of interest and the ability, or lack thereof, of the model to reproduce the

training data. The uncertainties in the training data have various origins; in the case

of DFT data, they originate from choice of the exchange and correlation functional,

pseudopotential and numerical approximations, and in the case of experiments, orig-

inate from measurement errors or sample-to-sample variability. Uncertainties can

also arise from the ability of the model to represent the training data. Figure 2.2

shows the calibrated parameters for a Sutton–Chen type EAM potential with three

parameters [66].

Also shown in Figure 2.3 are the distributions for the output quantities of interest,
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Fig. 2.2. Prior and posterior probability distributions for ε, one of the
parameters of the interatomic model

Fig. 2.3. Predicted probability distributions for each of the four output
quantities of interest shown in red, with the blue histogram depicting brute
force calculations for the chain of points explored by Dakota’s Markov
Chain Monte Carlo algorithm. The experimental data is shown in grey,
while the predictions for the parameters in the Sutton Chen formulation
are shown as a black vertical line
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We find that our calibration results in potential parameters that aim to match

the experimental distributions such that quantities with low uncertainty (lattice pa-

rameter and bulk modulus in our training set) are described better than quantities

with higher uncertainty. This reflects the fact the posterior distributions strongly

depend on the uncertainties in the training data, and the calibrated parameters will

result in optimal output distributions for quantities with low variances, as opposed

to quantities with high variances, for which the output distributions will not be as

optimal, reflecting the uncertainty in the training data. We note that our parame-

ter distributions are slightly different from the parameters proposed by Sutton and

Chen, emanating from different training sets and approaches. Our new calibrated

parameters tend to underestimate the ratio between vacancy formation energy and

cohesive energy as compared to our ab initio-based training set and attempts to push

the distributions into better agreement with the training set.

Additional details on this work can found in our publication: S. Desai, M. Hunt,

and A. Strachan, ‘Online tools for uncertainty quantification in nanoHUB’, JOM [67].

The following chapters in this thesis will focus on the application and improve-

ment of molecular dynamics simulations for specific applications, in addition to the

development of novel, interpretable machine learning models. Chapter 3 focuses on

the use of large-scale molecular dynamics simulations as a tool to explore trends in

shape-memory alloy properties, guiding the design of room-temperature light-weight

shape memory alloys.
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3. MOLECULAR DYNAMICS SIMULATIONS TO

OPTIMIZE SHAPE MEMORY ALLOYS

Having described the details of a molecular dynamics simulation, we will now con-

sider an example of using molecular dynamics to explore the design space of shape

memory alloys and provide guidelines on designing lightweight, room-temperature

operable shape memory alloys. This example also serves as a demonstration of using

simple but computationally cheap interatomic models to explore trends in material

properties before developing specific interatomic models to predict properties with

greater accuracy.

This chapter is organized as follows: Section 3.1 introduces shape memory alloy

and the martensitic transformations governing these alloys, as well as the need to

explore the design space of these materials with molecular dynamics. Section 3.2

describes the choice of interatomic potential and the procedure to build atomistic

structures of the materials involved. Section 3.3 provides simulation details and Sec-

tions 3.4 and 3.5 describe the results of these simulations. We draw conclusions from

our results in Section 3.6 and discuss the implications of our results in providing

guidelines to design lightweight, room temperature shape memory alloys.

The work in this chapter has been published in the Journal of Applied Physics

and can be found as: Saaketh Desai, Sam Reeve, K.G Vishnu, Alejandro Strachan,

“Tuning martensitic transformations via coherent second phases in nanolaminates

using free energy landscape engineering”, Journal of Applied Physics 127, 125112

(2020).
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3.1 Introduction

Shape memory alloys are materials which recover deformations applied to them at

low temperatures upon heating back to high temperatures. Shape memory alloys also

display superelasticity, where large deformations can be applied to the material with-

out inducing plasticity, leading to complete strain recovery upon unloading. These

alloys are governed by a transformation between a high-temperature, high-symmetry

austenite phase and a low-temperature, low-symmetry martensite phase. Martensitic

transformations can be either temperature-induced or stress-induced, and are the un-

derlying cause for shape memory and superelasticity. Martensitic transformations are

thus desirable for a range of applications from connectors and micro-actuators [68]

to tires for Mars exploration rovers [69]. The effective design of shape memory al-

loys for these applications hinges on the ability to tune the underlying martensitic

transformation for the specific application. For example, low hysteresis is desirable

for actuation [68, 70], but the opposite is sought for mechanical damping [71]. Such

optimizations have traditionally been pursued by modifying the composition of the

alloy, using either physics-based approaches [72, 73] or via high-throughput experi-

mental searches, which have identified ternary and quaternary alloys with ultra-low

thermal hysteresis [74, 75]. More recently, machine learning principles coupled with

high-throughput density functional theory calculations and experiments have also

been used to discover alloy compositions with ultra-low hysteresis [76]. While these

efforts have shown significant success, additional avenues to tune the properties of

martensitic materials are desirable as they can open the design space and potentially

result in significantly improved properties. An example of this need is the β-type

family of Mg-Sc martensitic alloys, whose low density (about one third of NiTi based

alloys) makes them attractive for aerospace and energy storage applications, yet their

low operating temperatures currently make them impractical [77, 78]. Specifically, a

Mg-20.5 at.% Sc alloy showed superelasticity at -150 ◦C, while a Mg-19.2 at.% Sc

alloy showed a thermally induced martensitic transformation starting at -100 ◦C.
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The incorporation of coherent second phases has emerged as a novel avenue to tune

the thermo-mechanical response of shape memory alloys (SMAs). The first demon-

stration of this showed, via molecular dynamics simulations, that the incorporation

of a second phase with desirable characteristics can reduce the hysteresis associated

with the martensitic transformation in NiAl alloys [79]. Recent experiments have

shown ultra-low fatigue in NiTi-Cu SMAs via the precipitation of coherent nanoscale

Ti2Cu [80]. Other experiments have also seen favorable changes in transformation

characteristics in NiTi-Hf and NiTi-Pt SMAs due to the formation of coherent sec-

ond phases [81,82]. Similarly, nanoscale phase separation via spinodal decomposition

in a Ti-Nb gum metal creates a nanoscale composition variation, which in turn results

in local confinement of the transformation and superelasticity over a wide range of

temperatures [83]. In addition to second phases obtained through traditional metal-

lurgical processing, epitaxial growth of 5 nm Mg-Nb nanolaminates suppressed the

martensitic transformation in Mg, stabilizing the metastable bcc phase at ambient

pressure [84]. Similar work has shown the ability to stabilize metastable phases in

Cu-Mo thin films [85].

Our previous work with the concept of free energy landscape engineering (FELE)

also demonstrated the ability to use coherent second phases to tune transformation

characteristics in a controlled manner. Building on Ref. [79], MD simulations have

demonstrated that adding a non-martensitic second phase to a martensitic base mate-

rial, in the form of epitaxial nanolaminates, core-shell nanowires, or nanoprecipitates,

can result in reduced thermal hysteresis, tunable transformation temperatures, and

even ultra-low stiffness in a fully dense metal or second order martensitic transforma-

tions [86–88]. Ab initio simulations have also explored strain engineering to increase

the martensitic transition temperature in Mg-Sc alloys [89].

While prior work has demonstrated the effect of a specific second phase on trans-

formation characteristics and associated properties [85, 90], we lack a general un-

derstanding of how the properties of the non-martensitic second phase (relative to

the martensitic alloy) map onto the properties of the overall material. Here, we use
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MD simulations to characterize the tunability of martensitic transformation temper-

atures, thermal hysteresis, and transformation strain in a model system by adding

a family of second phases with systematically changing free energy landscapes, with

the aim of providing guidelines for choosing precipitates (or other nanostructures)

that enable the discovery of novel lightweight SMAs that can operate at room (or

elevated) temperature. Our choice of a nanolaminate configuration is partially mo-

tivated by the success of strain engineering to enhance semiconductor properties, as

exemplified in the increased mobility of strained silicon grown epitaxially on a SiGe

layer [91]. Our prior work has documented in detail the microstructure changes for

more metallurgically relevant geometries such as precipitates [87].

3.2 Hyperparameter dependent Morse potential

While metallic alloys, including martensites, are typically described with embed-

ded atom model (EAM) or modified EAM (MEAM) potentials, Guthikonda and

Elliott developed a generic Morse potential to describe martensitic transformation in

binary systems [92]. The potential parameters are a function of a hyperparameter

denoted as θ, which enables a continuous change in the stability of the martensite

and austenite and tuning of the transformation. The potential, accessible through the

OpenKIM repository [93], was developed to describe an Au 47.5 at.% Cd SMA (for θ

= 400), accurately describing the lattice parameters, thermal expansion coefficients,

and bulk moduli for the B2 (austenite) and B19 (martensite) phases, in addition to

the transformation between the B2 and B19 phases. Since our interest is in a model

martensitic material and not in the details of the AuCd system, we will denote the

two atom types A and B and treat the potential as one that describes a binary alloy

with a high temperature cubic (austenite) phase and, for certain values of the hy-

perparameter, a transformation to a low temperature monoclinic phase (martensite)

and potential transformation back to the cubic phase. The hyperparameter θ varies

the three parameters describing all interactions: cohesive energy, stiffness, and lattice
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parameter (D0, α, and r0) between different pairs of atom types. For given θ, varying

r0 allows us to simulate a family of second phases with various lattice parameters

but otherwise similar behavior and phase stability. Similarly, slightly reducing the

value of the hyperparameter θ results in a second phase with lower stiffness without

substantially different phase stability; see Table 3.1 for more details.

Table 3.1.
Morse potential parameters for the base material and the stiff and soft set
of second phases

Material Interaction D0 α r0

Base (θ = 400)

A - A 0.152716 1.46152 3.15313

B - B 0.482113 1.53431 3.04440

A - B 0.199790 1.76427 3.08713

2nd phases (stiff set,

θ = 1000)

A - A 0.17777 1.25703 3.19045 - 3.37045

B - B 0.437791 1.23394 3.12694 - 3.30694

A - B 0.216752 1.61549 3.06538 - 3.24538

2nd phases (soft set,

θ = 800)

A - A 0.16684 1.34838 3.20644 - 3.31644

B - B 0.46330 1.36743 3.11380 - 3.22380

A - B 0.20948 1.69309 3.11024 - 3.22024

3.3 Simulation Details

3.3.1 Simulating thermally induced martensitic transformations

We first built a disordered alloy of composition A 47.5 at.% B by replicating

the B2 unit cell 100 times in the x, y, and z directions, resulting in a system that

contains 2,000,000 atoms and with dimensions of 33.5 nm in each direction. Atom

types were randomly swapped until the composition of each system was 47.5 at.% B.

The simulation domain was chosen to be large enough to minimize size effects in the
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predicted transformation temperatures. Finite size effects are observed in molecular

dynamics simulations of phase transitions, as observed before in our prior work with

NiAl alloys [94], as well as in other solidification simulations [95]. An important

contributor to these size effects in this case is the disordered nature of the alloys as

small simulation domains limit the composition heterogeneities present. To simulate

thermally induced martensitic transformations, or lack thereof, in various systems

of interest (base martensitic material, each of the second phases, and the epitaxial

nanolaminates), each system was relaxed at 1600 K (above Ms for all systems) for 10

ps under constant stress and temperature (NPT) conditions, allowing all simulation

cell angles to evolve independently, using damping constants of 10 fs and 100 fs

for thermostat and barostat, respectively. We observed that all stress components

were near zero and the potential energy and lattice parameters stabilized after a 10

ps equilibration. Each relaxed structure was then cooled to 200 K at a rate of 5

K/ps under the same NPT conditions through austenite–martensite transition and

subsequently heated back to 2200 K, also at 5 K/ps.

Following this protocol for the base alloy (θ = 400), we find that the Ms tem-

perature varies strongly as the simulation domain increases from ∼16,000 atoms to

1,000,000 atoms where doubling the size to 2,000,000 atoms results in minimal change,

see Figure 3.1. We thus use a system size of 2 million atoms for all simulations in

this work.

3.3.2 Free energy landscape calculations

The relationship between free energy and the lattice parameter of the simulation

cell at various temperatures governs the thermodynamics and kinetics of the marten-

sitic transformation [96]. This free energy landscape for each system is calculated

by applying a biaxial strain on the austenite phase, in [100]A and [010]A directions

(where A refers to austenite). A strain of up to 5% was applied in both tension and

compression for second phases and nanolaminates, while a strain of 10% in tension is
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Fig. 3.1. Size effect on predicted Ms temperature shown via cooling sim-
ulations starting from the austenite phase at 1600 K. The labels indicate
the number of atoms in the system (∼16,000, ∼128,000, ∼524,000, ∼1 mil-
lion and 2 million atoms respectively). The Ms temperature, detected
by the change in lattice parameter varies widely, becomes independent of
system size for a system containing greater than 1 million atoms.

needed for the base material to cover the full transformation path. The components

of stress and strain tensors are integrated to obtain the free energy along the path,

∆F = −
∫
σxxdεx + σyydεy + σzzdεz + σyzdεyz + σxzdεxz + σxydεxy (3.1)

where the stress tensor is calculated by LAMMPS [21], as detailed elsewhere [97],

and involves computing the virial, while the strains are computed using the con-

ventional formulae based on changes in box lengths and angles. We note that the

resulting energy landscapes are only approximate representations of the free energy as

they depend on the strain rate applied and the path assumed for the transformation

(in this case, uniform biaxial deformation). Computing a number of these landscapes
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and applying Jarzynski’s equality [98] can address these limitations of the calculation

and relate our non-equilibrium free energy (work or potential of mean force) calcu-

lations to the equilibrium free energy landscape. While our approximations do not

allow for quantitative predictions of transformation temperatures, they provide useful

trends to understand how the properties of the family of second phases vary. All the

landscapes shown in this work use a strain rate of 5x109 s−1.

3.3.3 Base phases and potential parameters

The hyperparameter θ of the interatomic model allows a description of both

martensitic and non-martensitic materials. For θ = 400, resulting in Morse param-

eters shown in 3.1, a martensitic transformation occurs with an Ms temperature of

390 K, as shown in Fig. 3.2(a), with the cubic austenite phase transforming to the

monoclinic martensite phase. For θ = 1000, the resultant parameters describe a non-

martensitic alloy that does not transform thermally. The free energy landscapes,

Figure 3.2 (b), also describe the martensitic and non-martensitic nature of the ma-

terials. At 1000 K, θ = 400 displays a stress-induced transformation, resulting in a

double-well landscape with equally stable martensite and austenite, while the land-

scape for θ = 1000 phase is a single well for the austenite, with no transformation.

Figure 3.2 (c) shows free energy landscapes for θ = 400 across temperature, with the

martensite phase increasing in stability as the temperature is decreased. To describe

epitaxial nanolaminates consisting of both martensitic and non-martensitic phases,

we use the random structure generated as described above and add Morse potential

parameters for the cross terms, Figure 3.2 (d). The top half of the cell with the

nanolaminate consists of the non-martensitic second phase (atom types C and D),

while the bottom half describes the martensitic phase (atom types A and B). Inter-

actions between cross-laminate atom types are then given by mixing rules described

by the equations below, similar to mixing rules commonly used in other MD simula-

tions [99]. Here, interactions between similar atom types (A and C or B and D) are
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given by K = I and L = J and interactions between dissimilar atom types (B and C

or A and D) are given by (K, L) 6∈ (I, J).

We note that in some samples, we observed a transformation to a different marten-

site phase (with tetragonal symmetry), see Figure 3.3. Since these martensitic phases

rarely occur in the laminate materials studied here, we refer to the monoclinic marten-

site in the remainder of this chapter.

θ = 1000

θ = 400

(a)

θ = 400
θ = 1000

Austenite Martensite

(b)
1000 K

Au Cd

A B

C D

1st phase

2nd phase
(d)

(c)

1200 K

800 K
600 K

1000 K

Austenite
Martensite

θ = 400

Fig. 3.2. (a) Cooling simulations showing the martensitic transformation
for θ = 400 at ∼390 K, while θ = 1000 does not transform. The arrows
indicate the direction of change in the lattice parameter and the inset
snapshots show initial and final (austenite and martensite) structures for
θ = 400. (b) Free energy landscapes for both phases. The double-well
structure for θ = 400 shows the stress-induced martensitic transformation,
absent for θ = 1000. (c) Free energy landscapes for θ = 400 at various
temperatures. (d) Initial structure illustrating the four atom types used
to describe nanolaminates
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Fig. 3.3. Cooling simulations of the base material (θ = 400) showing
transformations of the austenite phase (blue) to the monoclinic (red) and
the tetragonal (green) martensite phases

3.4 Effect of second phase lattice parameter on transformation charac-

teristics

3.4.1 Second phase lattice parameter between the base material austenite

and martensite

Effect on transformation temperatures and microstructures

To understand the change in transformation characteristics induced by the lattice

parameter of the second phase (relative to the base martensitic material, i.e., misfit

strain), we start with six candidate second phases whose lattice parameters span from



31

the austenite to the martensite and epitaxially combine them as nanolaminates with

the base martensitic material, described by θ = 400, with 50 at.% of the second

phase. The family of second phase materials is described by θ = 1000 in the model

Morse potential (resulting in a single cubic phase), with individual second phases

obtained by changing r0 parameter to obtain the desired range of equilibrium lattice

parameters, see Table 3.2 for the full parameter set. The free energy landscapes of

each candidate second phase (denoted P1-P6) and the base material, at 600 K, are

shown in Figure 3.4. The family of second phases ranges from having near zero lattice

misfit to the austenite to having near zero misfit to [100]A and [010]A directions of

the monoclinic martensite. Note that lattice parameters of the monoclinic martensitic

phase and our nanolaminate arrangement allow for near zero in-plane misfit to the

martensite despite the difference in symmetry between the two phases.

Table 3.2.
r0 values for each individual phase from the first stiff set of second phases
(P1-P6), with θ = 1000, D0 and α in Table 3.1

r0 P1 P11 P12 P2 P3 P4 P5 P51 P6

A - A 3.26045 3.26295 3.26795 3.27045 3.29045 3.31045 3.33045 3.35045 3.37045

B - B 3.19694 3.19944 3.20444 3.20694 3.22694 3.24694 3.26694 3.28694 3.30694

A - B 3.13538 3.13788 3.14288 3.14538 3.16538 3.18538 3.20538 3.22538 3.24538

The cooling simulations, Figure 3.4 (b), indicate a significant ability to modify the

transformation temperature via coherency stresses from the coherent second phase.

For this model material, the simulations show that the addition of a second phase

can decrease the Ms temperature by up to ∼50% or increase it by up to ∼200%

depending on the lattice mismatch. The Ms temperatures for laminates constructed

from candidate phases P1 and P2 (approximately 120 K and 375 K, respectively) are

lower than the base material (∼390 K). On the other hand, laminates constructed

from phases P3-P5 (with lower misfit strain with the martensite phase) show Ms

temperatures higher than the base material (approximately 730 K, 970 K, and 1130
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(b)

base

P1 P2 P5P3 P4

(c)

base

P2 P3 P4 P5

P1

P1

base

P2 P3 P4 P5 P6

600 K

(a)

(d)

P3P2 P4 P5P1
100 𝐴

010 𝐴

001 𝐴

Fig. 3.4. Free energy landscapes of the six candidate phases, denoted P1
to P6, to be epitaxially integrated with the ‘base’ material, described by
θ = 400. Each second phase is non-martensitic, as indicated by the single
well energy landscape (b) Cooling simulations showing Ms for nanolam-
inates with P1 to P5 (c) Heating simulations showing Af for P1 to P5
nanolaminates and lack thereof for the ‘base’ material (d) Atomic snap-
shots (at 200 K), showing the transformed laminates (blue denotes the
austenite phase, red martensite, and green defects)

K, respectively). Somewhat surprisingly, see Figure 3.4 (c), all laminates containing

any of the P1-P5 phases result in a martensite to austenite transition upon heating,

and this is not seen in the base material. Thus, adding any of the second phase

studied reduces the Af temperature, even when the austenite phase is stabilized. As

expected, this reduction becomes more pronounced as the lattice parameter of the

second phase approaches that of the austenite phase. The mechanisms behind this

trend are discussed in Section 3.4.2.

Effect on microstructure: In all cases, despite misfit strains approaching 10%,

the laminates remain coherent over this wide range of strains due to the non-convex

energy landscape of the martensitic phase that results in significantly lower elastic

strain than a linear elastic material and nanoscale dimensions of the laminate peri-
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odicity. This is consistent with experimental observations in Fe–Pd magnetic shape

memory alloys, where coherent epitaxial growth was achieved for laminates as thick

as 50 nm, with the substrate applying strains as large as 8% [100]. We note that the

boundary conditions used here make it difficult to lose coherency, where open lateral

boundaries would be more appropriate to study coherency limits [101]. Snapshots

of these systems at T = 200 K, Figure 3.4(d), show that we form only one marten-

sitic domain whose close packed plane is oriented along (110)A, with stacking faults

observed on (110)A and (1̄10)A planes. We also observe that the non-martensitic

alloy (top half of the simulation cells) is driven to transform into the martensitic

phase (atoms with local martensitic structures are colored red) due to epitaxial stress

caused by the martensitic alloy. The laminate involving P2 second phase transforms

partially, and both martensite and austenite phases coexist. For laminates P3-P5,

the epitaxial stress from the martensite phase on the second phases is not enough to

drive the transformation, and the snapshots in 3.4(d) indicate transformation of only

the base martensitic phase, again with a single domain.

Figure 3.5 highlights the dependence of Ms, Af, and thermal hysteresis on the

lattice mismatch of the second phase. For reference, we include Ms of the base mate-

rial (dashed red line) and its melting temperature (dashed blue line) since the base

material does not have an Af temperature. The Ms and Af temperatures increase sig-

nificantly as the lattice mismatch with the austenite phase increases. A second phase

matching the martensite lattice parameter (P6) completely suppresses the martensite

to austenite transformation. Under the conditions studied, the austenite to martensite

transformation is never completely suppressed, even when the second phase matches

the lattice parameter of the austenite phase. We attribute this to low stiffness of

the austenite phase (as compared to the martensite), making it relatively easy to

transform to the martensite phase. A larger volume fraction of the second phase

or a second phase with higher stiffness would further stabilize the austenite phase

and could suppress transformation. Intermediate misfit strains, corresponding to a

second phase with a lattice parameter between austenite and martensitic phases, re-
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sult in largest reduction in the activation barrier associated with transformation and,

consequently, lead to lowest hysteresis. This is consistent with prior results in NiAl

alloys [79,87]. We note that our hysteresis values are large compared to experiments;

this can be attributed to the defect-free nature of our initial structures. We have

previously observed large hysteresis for defect-free NiAl systems [79,87]. Our results,

thus, indicate a potential avenue to increase the Ms temperature of a martensitic

material, as desired for the case of lightweight Mg-Sc shape memory alloys [77, 78].

The incorporation of a relatively soft second phase with low misfit strain with the

martensite, as demonstrated by second phases P3-P5, could increase the transforma-

tion temperature of these alloys to room temperature or above.

Underlying free energy landscapes of the nanolaminates

To understand the trends described in Section 3.4.1, we study the free energy land-

scapes of the family of nanolaminates. We approximate these landscapes by adding

the landscapes of the base material and the candidate second phase in equal propor-

tions (since the second phase constitutes 50 at.% of each laminate). Figures 3.6(a)

and 3.6(b) show free energy landscapes of the P2 and P4 second phases, respectively,

with thin colored lines, the landscape of the base alloy in black, and the analytically

combined laminate landscapes with thick colored lines. Landscapes are computed

at temperature (T0) where the free energies of austenite and martensite phases are

equal, i.e., the thermodynamic transformation temperature of the laminate (not of the

base phase). The features of a landscape that affect the transformation temperature

are the energy difference between the martensite and austenite (the thermodynamic

driving force) and the barrier for transformation (kinetics).

We first focus on the changes in Ms, Af, and hysteresis achieved by adding the

second phase, relative to the base material. Figure 3.6(a) indicates that adding the

P2 phase has the effect of stabilizing the austenite with respect to the martensite.

The reduction of the driving force to transform to martensite and slightly increased
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Fig. 3.5. Trends in Ms, Af, and hysteresis as a function of misfit strain
(or lattice mismatch) to the austenite and martensite phases of the base
material. The red bar indicates a region (phase P6) where the martensite
phase is fully stabilized. The dashed red and blue lines represent the
Ms and melting temperature (due to lack of Af) of the base material,
respectively

energy barrier would be expected to result in a lower Ms temperature, which matches

the direct cooling simulations. The P1 laminate shows similar behavior. In laminates

P3-P5, with P4 as an example in Figure 3.6(b), the significant reduction in the trans-

formation barrier can be expected to facilitate the martensitic transformation, even

with a smaller driving force, increasing Ms as seen in Figure 3.5. Candidate phase P6

fully stabilizes the martensite, spontaneously transforming to martensite even near

the melting temperature, and does not show martensite to austenite transformation

on heating; correspondingly, it has a single well landscape. Regarding martensite
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to austenite transition on heating, the reduction in the transformation barrier en-

ables transformation to austenite that is suppressed in the base material; this is clear

in Figs. 3.6(a) and 3.6(b). The hysteresis depends on the energy barrier between

the austenite and the martensite phase at the thermodynamic transformation tem-

perature, and Figure 3.6(c) compares the landscapes of the base material and each

nanolaminate. We can confirm that the energy barrier between the austenite and

the martensite phase is significantly reduced in the laminates as compared with the

base alloy, explaining the reduced hysteresis in thermally induced transformations.

Figure 3.6(d) compares free energy landscapes across phases P1-P6 at a single inter-

mediate temperature, complementing the information presented above and allowing

direct comparisons among the second phases themselves. This again confirms that

the phase with the lowest thermodynamic transformation temperature (P1) and the

highest transformation barrier (requiring large undercooling and overheating) will

show the lowest Ms and the lowest Af, and that the Ms and Af temperatures would

increase from P1 to P5, which is what we observe in Figure 3.5.

3.4.2 Second phase lattice parameter beyond the base material austenite

To characterize the limits of FELE in modifying the transformation temperature,

we designed a second family of second phases, P1* to P5*, with lattice parameters

smaller than those of the austenite phase, see Table 3.3 for potential parameters. The

landscapes for these second phases, in comparison to the base material, are shown

in Figure 3.7(a); direct heating and cooling simulations are shown in 3.8. One could

naively expect these second phases to further stabilize the austenite phase relative

to the martensite and reduce Ms and Af further, continuing the trend described in

Section 3.4.1. The cooling simulations, Figure 3.7(b), show that none of these second

phases fully stabilize the austenite. Quite the opposite, phases P4* and P5* stabilize

the martensite resulting in Ms temperatures of ∼800 K and ∼1000 K, comparable

with phases P4 and P5. To explain this result, one must consider the difference in
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Fig. 3.6. (a and b) Comparisons of base material landscapes with numer-
ically combined landscapes for laminates P2 and P4, shown as examples.
‘A’ indicates austenite and ‘M’ indicates martensite. (c) Free energy land-
scapes at the thermodynamic transformation temperature T0 (d) Free en-
ergy landscapes for each nanolaminate at 600 K. In all landscapes, the
horizontal axis is the lattice parameter in the [100]A and [010]A directions

symmetry between the phases. Reducing the lattice parameter of the cubic second

phase increases the misfit strain with respect to the cubic austenite in both in-plane

directions. However, one of the lattice parameters of the monoclinic martensite is

significantly shorter than the other two. Thus, reducing the lattice parameter of the

second phase creates an opportunity for a new martensite variant to form where the

small lattice parameter accommodates the misfit strain imposed by the lattice mis-

match instead of the alignment normal to the interface as is the case in P1-P5 simula-

tions. The explicit cooling simulations show this, with second phases P1-P5 forming

only one martensite variant, while second phases P1*-P5* result in two distinct vari-
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ants coexisting in elongated domains to accommodate overall strain. Interestingly,

we observed phases beyond P5* to fully stabilize the tetragonal martensite phase

(see Figure 3.3) since the in-plane lattice parameter of the second phase matches the

lattice parameter of the tetragonal martensite.

Table 3.3.
r0 values for each individual phase from the second stiff set of second
phases (P1*-P5*), with θ = 1000, D0 and α in Table 3.1

r0 P5* P4* P3* P2* P1*

A - A 3.19045 3.21045 3.23045 3.24045 3.25045

B - B 3.12694 3.14694 3.16694 3.17694 3.18694

A - B 3.06538 3.08538 3.10538 3.11538 3.12538

Fig. 3.7. (a) Free energy landscapes of the five candidate phases, de-
noted P1* to P5*, to be epitaxially integrated over the ‘base’ material,
described by θ = 400 (b) Trends in Ms, Af, and hysteresis as a function
of misfit strain. The vertical blue line demarcates phases which impose a
tensile strain on the base material from phases P1* to P5* which impose
a compressive strain. The red bar indicates a region where the monoclinic
martensite is fully stable, while the green bar indicates a region where
the tetragonal martensite is fully stable. The dashed red and blue lines
represent the Ms and melting temperature (due to lack of Af) of the base
material
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Fig. 3.8. (a) Cooling and (b) heating simulations for laminates P1* to
P5*

To further understand the effect of intermediate and negative lattice strains on

transformation characteristics, we estimate the strain energy added to the austenite

and the martensite phase, imposed by the lattice mismatch. This is described by the

equation below, where Cα
ij are the elastic constants of the α (austenite or martensite)

phase and Cε
ij are the strains with respect to that phase

Eα =
1

2
Cα

11(εα11)2 +
1

2
Cα

22(εα22)2 (3.2)

The strain energy of the austenite phase increases as the second phase varies

from P1 to P6, see Figure 3.9, while the strain energy added to the martensite phase

decreases, as expected from the landscapes in Figure 3.4. For second phases P1*–P5*,

the rotated martensite variants accommodate the strain such that the strain energy

added to the martensite again decreases from P1* to P5* although to a lesser degree

than from P1 to P5. This implies that martensite phase stability with respect to

the austenite phase increases from P1* to P5*; this corresponds to increases the Ms

and Af temperatures, as in Section 3.4.1. We note that this strain energy model

only allows us to consider the in-plane lattice mismatch and its effect on the energy

difference between the austenite and martensite and does not allow us to comment
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on the transformation barriers discussed in Section 3.4.1. We also find that the

strain energy added to austenite and martensite phases by second phases P1*–P5*

is comparable in magnitude to phases P1–P5, see Figure 3.9. Thus, phases P1*–P5*

stabilize the austenite and martensite phases in a similar manner as phases P1–P5,

resulting in similar Ms temperatures.

Fig. 3.9. Scaled strain energy added to the austenite and martensite
phases of the base material due to the in-plane and out-of-plane lattice
mismatch between the added second phase and the base material. The
blue line demarcates phases P1 to P6, which impose a tensile strain (pos-
itive in-place lattice mismatch) on the base material, from phases P1*
to P5* which impose a compressive strain (negative in-place lattice mis-
match) on the base material

A consequence of the stabilization of new martensite variants is that phases

P1*–P5* show distinct differences in the transformation, particularly in terms of

defects generated and the variants of the martensite obtained. Most notably, we

observe multiple domains in our microstructures despite the small simulation sizes,

where one domain has its close packed plane along (01̄1̄)A and the other domain has

its close packed plane along (101̄)A. The domain wall is oriented along (1̄1̄0)A. Figure

3.10(a) compares phases P5 and P5*, where the stacking faults (green) are useful in
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identifying martensite variants of different orientations. The P* family of phases con-

tain combinations of compatible domains, creating a greater number of domains and

stacking faults and therefore retained austenite upon cooling. Figure 3.10(b) shows

the transition from multi-domain microstructures (P5*) to a single domain (P1*).

(a)

P5* P5

100 𝐴

010 𝐴

001 𝐴

100 𝐴

010 𝐴

(b)

P5* P1*P3*

Fig. 3.10. (a) Atomic snapshots comparing the P5* laminate to the P5
laminate showing the increased defect formation (b) Slices showing the
transition from multi-domain to single domain microstructures from P5*
to P1*

3.5 Effect of stiffness of the second phase

To understand the effect of second phase stiffness, we now select six additional

candidate phases for a third family of phases, P1S-P5S, using θ = 800, and again
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changing r0 to systematically shift the stable lattice parameters; see Table 3.4 for

potential parameters. The free energy landscapes of each of these phases, at 600 K,

are shown in Figure 3.11, clearly visible to be much softer than the set of phases from

Section 3.4.1 [Figure 3.4(a)], indicated by the decreased curvature of the free energy

landscape of each of the second phases.

Table 3.4.
r0 values for each individual phase from the soft set of second phases
(P1S-P5S), with θ = 1000, D0 and α in Table 3.1

r0 P1S P11
S P12

S P2S P3S P4S P5S P51
S

A - A 3.20644 3.20894 3.21394 3.21644 3.23644 3.25644 3.27644 3.29644

B - B 3.11380 3.11630 3.12130 3.12380 3.14380 3.16380 3.18380 3.20380

A - B 3.11024 3.11274 3.11774 3.12024 3.14024 3.16024 3.18024 3.20024

Figure 3.11(b) again indicates that laminates P1S and P2S have an Ms lower than

the base material (∼110 K and 330 K vs 390 K) while laminates P3S-P5S have an Ms

higher than the base material. The P1S and P2S laminates show an Af of ∼2000 K

and 1900 K, while P3S-P5S laminates have an Af of approximately 1900 K, 1850 K,

and 2000 K, respectively. Note again that the base material does not have a well-

defined Af. This trend is different from that observed for the stiff set of second phases

and will be explored in detail below. The remainder of the trends and observations

for this family of second phases follow from Section 3.4. Direct heating and cooling

simulations are shown in 3.12.

3.5.1 Effect on microstructure

Using a softer set of second phases also allows us to tune the transformation

strain, see Figure 3.11(c). As expected, the softer set of second phases show a greater

transformation strain (and transformed volume) as the added second phase transforms

from the austenite to the martensite (for all second phases), Figure 3.11(d). We note
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Fig. 3.11. (a) Free energy landscapes of the six candidate phases, denoted
by P1S to P6S, softer second phases (b) Trends in Ms, Af and hysteresis
as a function of lattice mismatch to the austenite and martensite phase.
Filled symbols represent P1-P6, open symbols represent P1S-P5S. Refer
to Figure 3.5 for more detail (c) Transformation strain for P1-P5 (closed
circles) and P1S-P5S soft second phases (open circles) as a function of
lattice mismatch. Black dashed line represents the transformation strain
of the base material. (d) Atomic snapshots showing the transformation
for P5 and P5S (e) Atomic snapshots showing two-step transformation on
heating for P5S

that all the candidate second phases belonging to both the soft and stiff set have

transformation strains lower than the base material, both because the added second

phases are non-transforming on their own, and that all the candidate second phases

are stiffer than the base material austenite (in tension). The microstructures observed

here again show a single domain as observed in Section 3.4.1. In addition, we find

that laminates P4* and P5* show a distinct two-step transformation while heating

from martensite to austenite.
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Fig. 3.12. (a) Cooling and (b) heating simulations for laminates P1S to
P5S

3.5.2 Distinct effects on transformation temperatures

While most trends were observed to be similar between P1–P5 and P1S-P5S, some

key distinctions stand out. Most notably, we observe that the Af temperature for P1

and P2 laminates is now significantly higher than the stiffer second phase laminates

[see Figure 3.11(b)]. To explore this, we directly compare free energy landscapes for

the P2–P5 laminates with the P2S-P5S laminates, see Figure 3.13. We observe that

in all cases, the austenite to martensite transformation barrier is comparable for both

the soft and the stiff set of second phases; this matches the fact that the respective

Ms temperatures do not differ significantly. However, the martensite to austenite

transformation barrier for the P2 and P3 laminates is much higher for the soft set

of phases. This similarly matches the P2S and P3S laminates’ higher Af compared

to P2 and P3, respectively. The differences in landscapes become minor for P4 and

P5, as do the differences in Af. Finally, the free energy landscapes also reinforce the

fact that using softer second phases results in a greater transformation strain between

austenite and martensite.
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Fig. 3.13. Direct comparison of numerically combined landscapes for can-
didate phases (a) P2 and P2S, (b) P3 and P3S, (c) P4 and P4S and (d)
P5 and P5S. The arrows indicate the transformation strain, showing the
increase in strain obtained when using softer second phases

3.6 Conclusions

We systematically investigated the effects of the coherent integration of non-

martensitic second phase materials with a base martensitic alloy. We accomplished

this by studying a model martensitic system, described by a generic Morse inter-

atomic potential, varying the potential parameters that control lattice parameter and

stiffness of the second phases independently. This work is an extension of our previous

work in the NiAl family of SMAs, where we demonstrated tunability of Ms, Af, and

hysteresis for one second phase and multiple volume fractions [79,87].
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We find that the Ms temperature can be decreased up to 50% and increased

up to 200% (with respect to the base material) by varying the lattice parameter of

the second phase, with second phases having a lattice parameter close to the base

martensite phase even fully stabilizing the martensite phase. We also observe a reverse

transformation (martensite to austenite) in almost all nanolaminates, not seen in the

base material, with each of the second phases lowering the martensite to austenite

transformation barrier. The Ms and Af temperatures increase as the lattice mismatch

with respect to the austenite phase increases, with a minimum hysteresis observed for

a second phase with intermediate lattice mismatch to both martensite and austenite

phases, again due to a reduction in the transformation barrier. The addition of

second phases results in a decrease in the transformation strain for actuation with

respect to the base martensitic material due to mechanical constraints imposed by

the non-transforming phase. However, this reduction in transformation strain can

be minimized by using a softer second phase, with the caveat of larger hysteresis (as

compared to a stiffer non-transforming phase).

This work, therefore, maps the tradeoffs between what is desired: an SMA with

large transformation strain, minimal hysteresis, and transformation temperatures

near the operating temperature. This can prove to be a guideline for defining and

designing second phases that improve SMA characteristics, potentially the operating

temperature of lightweight Mg–Sc SMAs [77,78], by incorporating a soft second phase

with lattice mismatch to the martensite phase approaching zero. Future work could

generalize these trends in a metallurgically relevant precipitate geometry and more

specific alloys, providing further guidelines as well as exploring coherency limits.

In this chapter we explored the idea of a ‘search’ for a candidate material using

molecular dynamics for a case where the material behavior is characterized by the

diffusionless martensitic transformation. We will now turn our attention to a material

design problem where the microstructure evolution is governed by longer timescale

events.



47

4. ACCESSING GREATER TIMESCALES TO PREDICT

CARBON FIBER MICROSTRUCTURE

Chapter 3 discussed an example of molecular dynamics simulations to design shape

memory alloys with desired transformation characteristics. We saw how tailoring

the properties of an added second phase can modify the microstructure of the al-

loy and thus, its properties. A thorough understanding of these structure-property

relationships is critical to the design of tailored materials. While the microstruc-

ture of shape memory alloys is goverened by the diffusionless martensitic transfor-

mations, microstructure evolution in many other materials is governed by processes

at a longer timescale. We now turn to one such material, carbon fibers, to un-

derstand structure-property relationships in this material with the goal of designing

high-strength, high-stiffness carbon fibers. Specifically, we attempt to simulate the

microstructure evolution of carbon fibers, relating the microstructure obtained to the

mechanical properties displayed by the fibers. Simulating the microstructure evolu-

tion of these fibers requires accessing timescales greater than possible via conventional

molecular dynamics. We thus use a combination of molecular dynamics and kinetic

Monte Carlo methods to access greater timescales and simulate the microstructure

evolution of carbon fibers.

This chapter is organized as follows: Section 4.1 highlights the need to simu-

late the microstructure evolution of carbon fibers and the need to understand the

processing-structure-property relationships in these fibers to design next generation

fibers. Section 4.2 describes the molecular model in the context of carbon fiber pro-

cessing, providing details of the procedure used to simulate the chemical reactions and

the subsequent structure relaxation. Section 4.3 specifies the details of the simulation

workflow. This includes the procedures used to generate initial structures, crosslink

the samples, and evaluate their mechanical properties. This section also provides a
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justification of the choices employed in the model. The results obtained using our

model are illustrated in Section 4.4. Our predictions for the final microstructure and

its time evolution are discussed, along with quantitative experimental comparisons.

Section 4.5 emphasizes the transverse moduli predicted for the simulated structures,

along with a comparison to experimental results. Finally, we draw conclusions from

our results in Section 4.6.

The work in this chapter has been published in the Journal of Chemical Physics

and can be found as: Saaketh Desai, Chunyu Li, Tongtong Shen, Alejandro Strachan,

“Molecular modeling of the microstructure evolution during carbon fiber processing”,

Journal of Chemical Physics 147, 224705 (2017).

4.1 Introduction

Carbon fibers (CFs) are the material of choice for a wide range of high performance

composites due to their high stiffness and strength, combined with low density [102].

Early work in the field focused on pitch and cellulose (rayon) as precursors to carbon

fibers; see, for example, Refs. [102] and [103]. However, polyacrylonitrile (PAN)

is currently the precursor of choice for high-strength carbon fibers [104, 105]. The

properties of CFs have improved significantly over the last 20 years; for example,

high-strength fibers today reach tensile strengths of 12 GPa [106], significantly higher

than the state of the art in the 1990s and early 2000s [102]. Despite this progress, there

is significant room for improvement. While commercial carbon fibers today exhibit

tensile moduli approaching that of ideal graphite (1000 GPa), the highest strength

achieved to date [106] remains below 10% of the ideal value. Fiber strength is limited

by the microstructure and defects; thus, the design of next-generation fibers with

improved properties could be significantly accelerated with predictive models capable

of relating the molecular structure of the precursor and processing conditions to the

fiber microstructure and properties.
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Due to the direct relationship between the fiber microstructure and properties,

extensive experimental efforts have been devoted to microstructural characteriza-

tion [107–110] using a range of techniques including electron microscopy [109] and

Xray diffraction (XRD) [111]. Carbon fibers are polycrystalline in nature with long,

graphitic sheets arranged in a turbostratic manner. These sheets often exhibit cur-

vature along the fiber axis, with defects such as grain boundaries and voids between

individual grains in the fiber. Electron microscopy studies of the cross-sectional

microstructure indicate the presence of folded sheets and hairpin-type structures.

As expected, the details of the texture, crystallite size, and defects are dictated by

the processing conditions and the character of the initial precursor. This body of

knowledge has led to several proposed schematics of the internal structure of these

fibers [107, 109, 112]. Complementing this experimental work, molecular modeling is

beginning to shed light into processing microstructure-property relationships of CFs.

Recently, Schatz and co-workers used reactive molecular dynamics (MD) simulations

to model the initial steps of the process of carbonization starting from stabilized

PAN [113]. The authors were able to identify the mechanism for the formation of

polycyclic rings as well as the evolution of gases such as N2, H2, and HCN. How-

ever, due to the computational intensity of these simulations, only the formation of

a few graphitic rings was captured. Other efforts have focused on building charac-

teristic isolated structures identified experimentally, such as defective D-Loops [114],

basic structural units (BSUs) [115], or using simplified polycrystalline and multi-

layer graphite models [116, 117]. While these important studies provide insight into

the molecular processes of failure and suggest possible mechanisms, the predicted

strength values are one order of magnitude greater than experimental results. In sum-

mary, despite significant experimental and modeling work, we lack predictive models

to relate the molecular structure of the precursor and processing conditions to the

final microstructure and properties. In this chapter, we introduce the MD-based car-

bon fiber processing simulator, denoted MD-CF, to describe the carbonization and

graphitization of stabilized PAN precursors and predict the transverse cross-sectional
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microstructure of carbon fiber. The MD-CF simulator enables the prediction of the

transverse stiffness of a fiber starting from atomic-scale information, with no input

from experiments other that the insight used to develop the model. The process-

ing of PAN-based CFs involves a series of complex steps, starting with the spinning

of the precursor, followed by stabilization to transform it into a fiber capable of

withstanding the high temperatures required for the key step of carbonization and

graphitization. The model introduced here uses a combination of MD and kinetic

Monte Carlo (kMC) to predict the graphitization of a structure initially containing

stabilized ladder structures.

4.2 The MD-CF model for carbonization/graphitization

4.2.1 Scope of the model in the context of carbon fiber processing

The conversion of PAN to a carbon fiber involves three major steps: (i) spin-

ning, (ii) stabilization, and (iii) carbonization and graphitization. A review of these

manufacturing processes can be found in Refs. [103] and [118]. Stabilization involves

heating in air at a temperature of 450-550 K, where a series of chemical reactions

transform the PAN chains into structures that can withstand the high temperatures

required for carbonization without decomposing. While several reactions are believed

to take place during stabilization, there is consensus that the result is the conver-

sion of PAN chains into ladder-like structures [119]. In the carbonization stage, the

stabilized ladder-like structures are heated to a temperature of 1300-2000 K [105],

converting them to a carbon fiber consisting of graphitic sheets. In the graphitization

stage, the fibers are heated up to 2700-3000 K to improve sheet alignment and obtain

high modulus fibers [118]. This work focuses on the process of carbonization and

graphitization.

As mentioned above, a reactive MD study using the ReaxFF force field [113]

has provided an atomic picture of the first steps of carbonization and suggested the

elimination of gases such as N2, H2, NH3, and HCN, along with cyclization reactions,
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leading to formation of five-membered rings and eventually six- and seven-membered

rings. These predictions are consistent with experimental observations. However,

the use of reactive MD limits the time scales accessible and precludes the study

of microstructure evolution. Our motivation to study microstructure evolution and

predict the final CF microstructure dictates the use of a coarse-grained description

and employing a combined kMC and MD approach. In this endeavor, we ignore

the details of the reactions and chemical environments present during carbonization

and graphitization. Instead, we describe a generic, averaged version of the individual

processes and describe carbonization and graphitization as chemical reactions between

carbon atoms in nearby ladder structures to create sp2 bonds, resulting in graphitic

sheets.

4.2.2 Simulating the carbonization/graphitization process

Initial molecular structure

MD-CF starts with a well-relaxed simulation cell containing several coarse-grained

ladder structures representing the stabilized fiber. Our coarse-grained approach av-

erages over the details of various chemical reactions responsible for graphitization .

Thus, the initial ladder structure, see Figure 4.1(a), consists of a chain of carbon

atoms arranged in a hexagonal manner [119]; we focus on the chain structure and

not the specific heteroatoms present in the individual rings. The structure consists of

two types of carbon atoms: saturated sp2 carbon atoms bonded to three other carbon

atoms, marked as C in Figure 4.1(a), and reactive atoms, marked as C*.

A set of such chains are packed into a simulation cell with periodic boundary

conditions in all directions. All chains are infinitely long (with 8 atoms in the periodic

unit cell) and perfectly aligned along the Z direction of the simulation cell; see Figs.

4.1(b) and 4.1(c). We stress that assuming that the chains are perfectly aligned is

an approximation, and in this first effort to model microstructure evolution, we are

interested in predicting the cross-sectional CF microstructure and properties. Before
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cross-linking, this initial structure is relaxed, and the details of this procedure are

described in Subsection 4.3.1.

Fig. 4.1. (a) The initial chain configuration, where red atoms indicate the
saturated sp2 carbon atoms and blue atoms indicate the ‘reactive atoms’,
with only 2 bonds. (b) Perspective view of the packed monomers. Note
the small out-of-plane thickness of the simulation cell. (c) Top view of a
representative relaxed structure

Graphitization model

The graphitization model involves cycles of bond creation followed by relaxation

using MD; see Figure 4.3. A similar procedure has been applied previously to study

cross-linking in epoxy-amine systems [120,121] and has been successful in predicting

the molecular structure and a wide range of properties such as Young’s modulus and

the yield strength [122]. The key inputs to the carbonization/graphitization model

are the molecular structure of the initial ladder structures and the rate of the reactions

(bond formation). In reality, carbonization involves multiple reactions, including the

formation of polycyclic chains and the evolution of various gases, and the rates of

each of these processes would affect the reactivity of the chains and hence, the final

structure. The rate of these reactions depends on the activation energy associated

with these processes and a prefactor that depends on the entropy of the reagents

and transition state [123]. These rates can be calculated using electronic structure
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calculations, as is the custom in kMC simulations. The activation energy (and thus

the rate) in this case will depend on the local chemical environment (ignored in our

reaction model), the separation distance, and the relative orientation of the molecules.

MD-CF takes into account that only nearby atoms are likely to react imposing

a cutoff distance to identify possible reactive atom pairs; see Step 1 in Figure 4.3.

We assume that the rate of bond formation is zero for pairs of atoms outside the

cutoff. Given the set of carbon atom pairs within the cutoff, the energetics associated

with bond formation and, consequently, reaction rates will be affected by the relative

orientation and alignment between the two ladder molecules. To estimate the role of

misalignment on formation rates, we computed the strain energy of two fully bonded

ladder structures as a function of their angle. Figure 4.2 shows the molecular config-

uration and the energy as a function angle. As expected, the strain energy increases

monotonously as a function of angle; a misalignment of 20◦results in an increase of

approximately 4 kcal/mol per bond formed (0.17 eV) and misalignment of 60◦leads

to an energy increase of approximately 20 kcal/mol (0.87 eV). Assuming similar in-

creases in the activation energy, we can estimate the reduction in the bond formation

rate. An increase in barrier of 0.87 eV would result in a decrease in the reaction rate

by 15 orders of magnitude at 300 K and by 2 orders of magnitude at 2500 K, the

carbonization temperature.

We thus impose an additional criterion to restrict reactions between pairs of atoms

belonging to well-aligned molecules; see Step 2 in Figure 4.3. Consider a possible pair

of reactive atoms I and J. Let atom I be bonded to atoms G and H in molecule 1 and

atom J be bonded to atoms K and L in molecule 2. The additional constraint is based

on a measure of the separation between the planes determined by I-G-H and J-K-L,

in terms the relative orientation of the planes and their relative displacement. This

is evaluated by calculating the angle between the planes I-J-K and I-K-L, as well as

the angle between the planes G-I-J and G-H-J. Thus, given two reactive atoms, there

are two improper angles possible and the atoms are eligible for bond creation only if
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Fig. 4.2. Change in energy as a function of misalignment between two
representative ladder structures. The increase in energy with misalign-
ment shows the need to penalize bond formation between poorly oriented
ladders

both these angles are within the imposed cutoff. That is, we assume a constant rate

within the angle cutoff and zero otherwise.

Two-cutoff model

The dependence of reaction rate on the separation distance merits additional dis-

cussion. We find that two distinct processes, involving different separation distances,

are important for graphitization. Nearest neighboring ladder chains with no covalent

bonds between them are separated by typical van der Waals distances of approxi-

mately 3.5 Å; see Figure 4.4(a). Creating the first bond between them results in a

structure with significant strain; see Figure 4.4(b). We estimated the strain energy

associated with this process by comparing the energies of two chains before and after
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Fig. 4.3. Schematic of the crosslinking algorithm employed, where the
blue atoms are the ones considered for bond creation. Here, R0 indicates
the distance cutoff used and ‘θ0’ indicates the improper angle cutoff. The
probability ‘η’ can range from 0 to 1.

the creation of the first bond and found a value of over 90 kcal/mol; Figure 4.4(c).

However, once the first bond is created between two chains, the separation between

nearby reactive carbon atoms is reduced to less than 3 Å, see Figure 4.4(b), and the

strain energy associated with the creation of the subsequent bonds decreases signif-

icantly; see Figure 4.4(c). Thus, the activation energy associated with the chemical

bonding between reactive atoms neighboring a previously created bond will be lower

than that associated with creating the first bond between two ladder structures, re-

sulting in a lower reaction rate. We consider this aspect in our method using a

two-cutoff approach, as will be discussed next.

In this first effort to model the graphitization of the ladder chain structures, we

define a simple set of rules to determine chemical reactions and study how they affect

the resulting microstructures and properties. Given all pairs of reactive atoms (C*)
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that fall within the capture distance (R0) and whose ladder chains have an angle

mismatch less than a threshold variable (θ0), we select the possible reactants as pairs

of atoms I and J such that J is the closest reactive atom to I and I is the closest

reactive atom to J. All these possible reactions are considered to have equal reaction

rates. At each bond formation cycle, a pre-determined fraction (η) of these reactive

pairs is bonded; these are chosen stochastically. An extension of the current version

of MD-CF to include bond creation rates that depend on the separation distance and

relative angle between the two ladder structures involved would be straightforward.

Following each cycle of bond creation with capture radius R0 and the subsequent

relaxation of the structure, we reduce the capture radius to 2.85 Å, denoted as R1,

and perform three cycles of bond creation with η = 1 to account for the higher rate

of reaction for pairs of atoms with shorter separation distances shown in Fig. 3(b).

The two-cutoff model thus has a large primary cutoff (R0) and a smaller secondary

cutoff (R1).

Simulation time

The simulation time has contributions from both the kMC bond creation events

and from the MD relaxation. Within the kMC formalism, given a set of possible events

{i} with rates {ki}, the time is advanced by an amount selected stochastically from

a probability density function given by a0 ∗ exp(−a0t), where a0 = C ∗ Pki , t is the

time, and C denotes the number of reactants molecules for each reactant species [124].

Thus, the time in each of the bond creation cycle involving n reactions is the sum of

n stochastic numbers obtained by n samplings of this probability distribution. Each

cycle of bond creation is followed by a relaxation using MD for 20 ps under isothermal

and isobaric conditions. Note that this is significantly shorter that the kMC time as

the relaxation of the structure (following bond creation) occurs relatively fast due to

the high stiffness of the graphitic sheets. Reaction rates for the variety of chemical

processes involved in carbonization can be performed with ab-initio simulations or
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reactive force fields, but it is beyond the scope of this work. Such calculations would

be necessary to estimate the kMC time scales in the simulations.

Fig. 4.4. (a) Simulation snapshot showing the change in chain structure
after bond creation between two representative atoms (marked yellow).
The atoms surrounding the bonds are observed to be close, allowing for a
two-cutoff model (numbers indicate distances in Å).

4.3 Simulation Details

4.3.1 Initial structure relaxation

All simulations are performed using the LAMMPS software package [21], and the

atomic interactions are described by the DREIDING force field [99]. We use a Lennard

Jones form to describe the non-bonded (van der Waals) interactions. Both reactive

and saturated atoms are treated as sp2 carbon atoms, using the default DREIDING

parameters. The time step used to integrate the equations is 1 fs unless otherwise

specified. The temperature is controlled using the Nose-Hoover thermostat [125,126],

with a damping constant of 0.1 ps. Similarly, the pressure is controlled by the Hoover

barostat [127,128], with a damping constant of 1 ps.

The simulation begins by creating a ladder-like chain monomer, as shown in Fig-

ure 4.1(a). These infinite chains are packed into the simulation cell with random

orientations in the XY plane, at a density of 0.5 g/cc, as shown in Figure 4.1(b).
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After packing, we relax the structure via a series of steps; the first of which is an

energy minimization, using the conjugate gradient method with an energy tolerance

of 10-6. The system is then relaxed at constant volume and at a temperature of 300

K (isothermal, isochoric NVT ensemble) for 50 ps. We then equilibrate the system

at constant ambient pressure and temperature (isothermal, isobaric NPT ensemble)

until the density achieves steady state (with a value of 1.38 g/cc); this step requiring

1.5 ns. We couple cell parameters along the X and Y (in plane) directions in the

barostat to retain a square cross section.

The next step is to take the system to the temperature at which carbonization and

graphitization will be modeled, which is chosen to be 2500 K to represent experimental

conditions [118]. This is done in multiple steps to ensure a well-relaxed structure.We

begin by heating the relaxed structure from 300 K to 2500 K under NVT conditions

at a rate of 10 K/ps. The system is then equilibrated under NPT conditions with a

compressive stress of 0.5 GPa in the transverse directions to ensure good packing of

the chains, until the density achieves steady state (1 ns). This stress is then relaxed

to 1 atm in 100 ps, and the system is finally relaxed under NPT conditions, at 1

atm for 4 ns, enough to fully equilibrate the system. Throughout the procedure,

the barostat maintains a square cross section of the simulation cell. Given that our

cross-linking algorithm is stochastic in nature, we generated statistically independent

initial samples. This is done by using the relaxed structure from above and continuing

to equilibrate it under NPT conditions for 120 ps. From this trajectory, we selected

6 samples, each spaced 20 ps apart.

4.3.2 Carbonization and Graphitization

The samples are then cross-linked using the scheme described in Sec. II. The

method was implemented as an extension to the existing LAMMPS fix bond/create

command, and the code is available at The code to simulate the crosslinking procedure

is available at https://github.rcac.purdue.edu/StrachanGroup. The README

https://github.rcac.purdue.edu/StrachanGroup
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file associated with the GitHub repository provides instructions to download and use

MD-CF. During the cross-linking, the time step is reduced to 0.25 fs to avoid large

atomic displacements after bond creation, as was observed in Ref. [120]. After each

bond creation cycle, an energy minimization is performed, using the conjugate gradi-

ent method until the change in energy between successive steps relative to the total

energy is less than 10-6. During the minimization, the atoms are not allowed to move

more than 0.05 Å per step, allowing for a gradual descent in the energy of the system.

After the minimization, the system is relaxed for 20 ps under NPT conditions at at-

mospheric pressure and the graphitization temperature. The NPT relaxation begins

with optimized positions and velocities from the end of a minimization segment. The

target temperature is achieved in approximately 1000 MD steps (1 fs), which is about

5% of the total relaxation time for each cycle.

4.3.3 Evaluating properties

Before computing mechanical properties, we replicate the carbon fiber structures

in the fiber (Z) direction (5 times) in order to improve statistics. The structures

are then cooled down to 300 K (under NPT conditions at rate of 10 K/ps) before

equilibrating at 300 K for 200 ps, also under NPT conditions, at atmospheric pressure.

At this stage, we uncouple the X and Y simulation cell parameters in the barostat

to avoid residual strains. To evaluate the transverse moduli, the relaxed structures

from above are strained up to 5% in the X and Y directions, at a rate of 5x10-9s-1. A

linear fit to the stress-strain curve gives Young’s modulus in each direction.

4.3.4 Cross-sectional microstructure: Importance of two-cutoff model

and angle control

Before presenting a systematic study of how the parameters in the graphitization

model affect the microstructure and properties in Section 4.4, we illustrate MD-CF

runs and discuss the importance of using a two-cutoff model to account for the high
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reaction rates of reactive atoms at short distances (due to a nearby bond connecting

two ladder chains). Similarly, we examine the effect of including a torsional angle

constraint on the resulting microstructure. Figure 4.5 shows a series of structures

obtained by crosslinking ladder structures at 300 K, employing different choices for

the distance and angle cutoffs. Figure 4.5(a) shows a structure resulting from a single

cutoff, R0 = 5 Å, and no angle cutoff. The structure in Figure 4.5(b) was obtained

with R0 = 5 Å and an angle constraint θ0 = 60◦. Figure 4.5(c) additionally employs

the two-cutoff model, with R0 = 5 Å and R1 = 2.85 Å. In all cases, the probability

(η) is 0.1.

Fig. 4.5. (a) Structure obtained using a single cutoff has unrealistic nan-
otube structures (b) Implementing an additional angle control results in a
branched and disordered structure (c) Using the two cutoff model results
in structures similar to experimental PAN based fibers

Figures 4.5(a) and 4.5(b) highlight the importance of angle constraints. Not ac-

counting for the decrease in reaction rates associated with ladder misalignment in

Figure 4.5(a) enables bond formation between poorly oriented molecules resulting

in a large number of loops (nanotubes) and open structures. The addition of angle

control to a single cutoff distance approach restricts reactions to segments that are

relatively well aligned, resulting in a more compact structure without nanotubes, as

shown in Figure 4.5(b). However, this approach results in a disordered and open

structure that does not contain large graphitic sheets. This is due to the fact that the
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initial ladder structures have two sets of reactive atoms and using a single cutoff can

result in each reactive atom bonding to different chains, leading to branched struc-

tures. Finally, Figure 4.5(c) shows that the combination of two-cutoff model with

angle control which results in structures with high packing density and microstruc-

tures similar to experimental PAN-based fibers; a more quantitative comparison will

be presented in Section 4.4.2.

4.4 Microstructure evolution

4.4.1 Evolution during carbonization/graphitization

Figure 4.6 shows the microstructure evolution during the cross-linking process for

a representative sample with parameters R0 = 5 Å, R1 = 2.85 Å, θ0 = 60◦, and η =

0.1. The snapshots show the process through which the ladder chains cross-link and

form graphitic sheets that grow in length with conversion. A consistent feature of this

process is the volume shrinkage, occurring due to the fact that unsaturated atoms

that were previously at van der Waals separations (∼3.5 Å) are brought together to

∼1.42 Å (the equilibrium sp2 bond distance).

Figure 4.7(a) shows the evolution of cure degree as a function of MD simulation

time (ignoring the time associated with the kMC steps) for various bond creation rates

(represented by the probability η). The degree of conversion is defined as the ratio

between the number of bonds created and the total possible number of bonds that

can be created. A smaller probability η represents a smaller number of reactions per

kMC cycle and consequently, a shorter kMC time per cycle, i.e., a slower conversion

rate; see Figure 4.7(b). We find that conversion degrees close to 90% can be achieved

except for the fastest conversion rates, where the MD simulation time is not long

enough to enable full relaxation. The total MD relaxation time varies between 200

ps and 1 ns and is comparable to the time scales used to cross-link polymers using

atomistic simulations [120, 129]. At the start of the cross-linking, we see that the

number of reactions is directly proportional to the reaction rate; see Figure 4.7(b). As
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carbonization/graphitization occurs, the number of reactive carbon atoms decreases

and so does the number of reactions. We stress that the total simulation time is

the sum of the MD relaxation time and the kMC reaction (bond formation) time.

An accurate evaluation of the kMC time would require evaluating a large number

of possible chemical reactions and the rate constants associated with each of them,

which is beyond the scope of this work.

Fig. 4.6. Top view of the microstructure evolution during a sample
crosslinking process. The parameters used for this process were: R0=5Å,
R1=2.85Å, θ0=60◦and η=0.1

Figure 4.8(a) shows the evolution of density with the degree of conversion for

various probabilities (η). We find that the density increases with the conversion
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Fig. 4.7. (a) Time evolution of the degree of conversion for various prob-
abilities (b) Time evolution of the number of reactions, for various prob-
abilities, shown for the first 200 ps (MD time)

degree, again indicative of the fact that as more bonds are created, a greater number

of unsaturated atoms move from a van der Waals separation to the equilibrium sp2

bond distance. However, this trend is observed only until ∼60% conversion, with

the higher bond creation rates showing a subsequent drop in density. Achieving high

conversion degrees at fast rates results in significant strain in the graphitic sheets that

are unable to relax and pack efficiently, resulting in excluded volumes that remain

as voids throughout the rest of the simulation. The shaded area in Figure 4.8(a)

represents the typical range of experimental values for the density of PAN-based

carbon fibers. Our predicted structures overestimate the density by approximately

10%. We attribute this observation to the fact that we use infinitely periodic and
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perfectly aligned chains. This results in an unrealistically high degree of ordering in

the fiber direction, resulting in a high degree of packing.

Fig. 4.8. (a) Evolution of density with degree of conversion (b) Evolution
of the simulated XRD pattern with degree of conversion. The peaks at 26◦,
42◦and 78◦correspond to the (002), (100) and (110) planes, respectively

Figure 4.8(b) shows the evolution of simulated XRD patterns with time. The

predicted structures are compared to experimental data in Section 4.4.2; here we

discuss its evolution during processing.We observe that the (002) peak, corresponding

to the van der Waals separation in graphite, decreases in width, denoting the evolution

of a graphitic structure as the simulation progresses. Also, the broad peak initially

present between 40◦and 60◦transforms into a peak at ∼43.5◦, corresponding to the

(100) plane and a second, weaker, peak at ∼54◦, denoting the (004) plane.

4.4.2 Microstructure validation

Figures 4.9(a) and 4.9(b) compare one of our predicted microstructures (R0 =

5 Å, R1 = 2.85 Å, θ0 = 60◦, and η = 0.1) with an experimental high resolution

transmission electron microscope (HRTEM) image corresponding to high-strength

and high-modulus gel-spun PAN copolymer fibers [5]. We find that the simulated
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structure contains key microstructural features such as hairpins and curved graphitic

sheets observed experimentally.

To further validate our structures, we use the LAMMPS software package to

simulate a wide angle X-ray diffraction (WAXD) pattern, as shown in Figs. 4.9(c) and

4.9(d). We use the procedure detailed in Coleman et al. [130]. In this procedure, the

simulation cell is divided into a grid in reciprocal space, the grid spacing determined

either manually or using the cell lengths. At each point of this grid, the structure

factor is evaluated, using the following equation

F (k) =
N∑
j=1

fj(θ)exp(2πk • rj) (4.1)

where fj(θ) denotes the atomic form factors and rj denotes the atomic coordinates.

The structure factor, which gives the scattering due to the atom positions in all the

unit cells, can then be used to calculate peak intensity, using the following equation,

I = LP (θ)
|F |2

N
(4.2)

where LP (θ) denotes the polarization factor, used to account for unpolarized

beams as well as finite crystal sizes.

We compare our predictions with an experimental measurement on high modulus,

low strength, PAN-based, GY-70 fibers manufactured by BASF [111]. In Figure

4.9(c), we use the indexing notation followed in Ref. [111], where the (100) planes

are stacked in the zigzag direction of the basal plane of the graphite sheet, while the

(110) plane are stacked in the armchair direction. As seen in Figure 4.1(a), the initial

ladder structure is oriented such that successive reactions will extend the graphitic

sheet in the armchair direction, adding (110) planes. The absolute intensity depends

on the sample size, and we thus scale intensities to match the (110) peaks between

theory and experiments. The key features are the width of the (110) peak and the

significant broadening of the (112) peak which the simulations capture. The width

of the (110) peak is slightly underestimated in the predicted structure; this implies
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longer graphitic crystallites in the simulated structure than the specific carbon fiber

characterized in the experiment. This is likely associated with a high degree of order

in our structures in the direction of the fiber axis.

Fig. 4.9. (a) Top view of a representative simulated structure (b) An
HRTEM image of a carbon fiber cross section, reprinted from Ref. [106],
with permission from Elsevier (c) Simulated powder XRD pattern from
the predicted structures (blue) and experimentally observed XRD pattern
(red) taken from Ref. [111]. The (101) and (112) peaks indicate extent of
3D order in the carbon fiber, an aspect that the extended 3D model will
attempt to capture. (d) XRD patterns averaged over all six samples, for
various reaction rates

An important microstructural characteristic of carbonfibers is the average size of

the graphitic crystallites; and these values can be obtained experimentally from mi-

croscopy and diffraction studies. Three values are often used to describe microstruc-

tural features size in carbon fibers: Lc is the average size in the direction normal to

the graphene sheets and La is the characteristic size along the graphitic planes, which

is subdivided into Lapar , along the fiber axis, and Laperp , along the cross-sectional di-

rections. Inspection of Figure 4.9(a) indicates that La perp ranges from 3 to 6 nm in

our structures as well as in the gelspun fiber in Figure 4.9(b). Characteristic sizes can

also be obtained from the XRD diffraction patterns. From the simulated peak width

associated with 110 planes, we obtain an equivalent crystallite size of ∼16 nm using

the Scherrer equation. Typical PAN fiber crystallite sizes along the cross-sectional
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direction, Laperp , range from 5 to 8 nm [102], although larger values have been re-

ported. The experimental value is in agreement with the snapshot in Figure 4.9(a),

and we attribute the overestimation of the crystallite size from the simulated XRD

patterns to the fact that our fibers are perfectly aligned and infinitely long along the

fiber axis. In reality, longer chains would deviate from the fiber axis by about 15◦-

25◦ [102], reducing the strong preferred orientation and decreasing the peak inten-

sity, along with increasing the probability of random cross-linking between chains,

decreasing the probability of the formation of long graphitic sheets.We further note

that comparison between simulated and experiments should be performed with care.

We simulate a powder X-ray diffraction where each peak has contributions from the

entire family of the corresponding planes. In our case, this means that the 110 peak

also has contributions from those planes aligned along the fiber axis are highly or-

dered. In contrast, the experimental pattern was obtained using a four-circle X-ray

diffractometer, where the fiber sample is rotated at different angles to obtain spe-

cific diffraction peaks. For instance, the pattern shown in Figure 4.9(c) was obtained

when the sample was tilted at 70◦and the width of the (110) peak corresponds to the

crystallite size in a specific direction. The contribution from other planes of the 110

family will appear in peaks from different scans [say, the equatorial (0◦) or meridonial

(90◦) scans], and the effective crystallite size will thus be lower than observed in the

simulated pattern.

The peak at ∼43.5◦is a mixture of the (100) and (101) peaks and may be attributed

to the replication process employed in this study, which assumes greater order in

three dimensions than might be revealed by using a full 3D model, beginning with an

initial structure consisting of longer chains. We do not report the (002) peak as the

2D nature of the model ensures that the graphite planes in the fiber axis direction will

be spaced at the equilibrium van der Waals separation. The (002) interplanar spacing

will be of prime focus in the full 3D model as it determines Young’s modulus along

the fiber axis. Figure 4.9(d) shows that the XRD pattern varies little for various bond

creation rates, indicating that the structure of the graphitic sheets, characterized by
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the bonded C atoms in the basal plane and the van der Waals separation between

planes, remains similar, with variations occurring only in density, as will be shown in

Section 4.5.

4.5 Predicted properties

Figure 4.11 shows the average transverse modulus as a function of density for fully

converted MD-CF fibers created with various bond creation probabilities (η), capture

radius (R0), and angle control threshold (θ0). The predicted moduli range from 1.5

to 4.5 GPa. Before discussing how the model parameters affect the predictions, we

discuss the obtained stiffness values. Figure 4.10 contains several stress strain curves

(in tension and compression) up to a strain of 5%. The extracted modulus is sensitive

to the strain range used in the linear fit. The stress-strain curves show slight softening

after approximately 2.5% strain, and a linear fit up to 2.5% strain changes the range

of the predicted moduli from 1.5-4.5 GPa to 2-5.5 GPa. In compression, the predicted

moduli range from 2.5 to 5.5 GPa, similar to the range observed in tension.

It is useful to compare our predictions with the transverse modulus of graphite,

which is significantly stiffer, approximately 36 GPa [131]. The MD trajectories of the

uniaxial tension of converted fibers show that the prominent mode of CF deformation

is via sliding of the chains across each other, whereas the modulus of graphite is a

measure of the stiffness of the van der Waals attraction between the graphite layers.

Given that the shear modulus for ideal graphite is ∼4 GPa [132], it is clear that chain

sliding is a low activation barrier process compared to increasing the van der Waals

separation and can thus occur at lower stresses, explaining the order-of-magnitude

difference in the moduli even after correcting for the different densities.

The transverse modulus of carbon fibers has been experimentally estimated using

single fiber compression tests resulting in values in the 6-10 GPa range for high-

strength fibers [133] and 1-3 GPa for high modulus PAN and pitch-based fibers [134].

In these tests, the modulus is obtained by fitting the experimental data to an ana-
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Fig. 4.10. Stress strain curves (in tension) for same representative MD-CF
microstructures in the (a) X direction and (b) Y direction. (c) and (d)
Stress strain curves in compression. The parameters used for these set of
microstructures were: R0 = 5Å, R1 = 2.85 Å, θ0 = 60◦and η=0.1

lytical equation relating the change in the fiber diameter to the applied load using

anisotropic elasticity [135]. Our predicted average lies in the range of high modu-

lus pitch- and PAN-based fibers and is lower than the value for high-strength fibers.

This agreement is expected given the perfect axial order of our structures. Misori-

ented crystallites, sp3 bonds between graphitic sheets and amorphous regions in the

experimental fibers, particularly highstrength ones, will result in higher transverse

moduli. We note that nanoindentation experiments [136] report higher values of 9-

15 GPa for selected fibers from Toray and Mitsubishi. However, in the case of the

nanoindentation measurements, the modulus is extracted from the load displacement

curve by using the Oliver-Pharr method [137], which assumes that the material is
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Fig. 4.11. Transverse moduli as a function of density for the predicted
microstructures with conversion degree of 85%. For each panel, the legend
is a set of three numbers (l,m,n) where ‘l’ represents the distance cutoff
(in Å), ‘m’ represents the angle cutoff (in degrees), and ‘n’ represents the
probability. For each set of parameters, the individual points represent
the 6 samples, all at 85% conversion

isotropic. The anisotropic nature of fibers (high stiffness in the longitudinal direc-

tion) indicates that the extracted values (9-15 GPa) represent an upper bound to the

transverse stiffness [138]. Figure 4.12 shows that the transverse modulus evaluated

does not depend on the simulation cell.

We now discuss the effect of model parameters on the predicted properties. Fig-

ure 4.11(a) shows that increasing conversion rate results in a decrease in transverse

modulus and density. This is because reducing the effective MD simulation time

precludes the graphitic sheets to fully relax, resulting in significant internal strain

and the formation of voids. Similarly, employing a loose angle constraint, see Figure

4.11(b), results in folded sheets and nanotube-like structures that enclose a volume

that cannot be occupied by other chains, resulting in poor chain packing and lower

densities and, consequently, lower modulus. Varying capture radius (or distance cut-

off) from 4.5 to 5.5 Å does not result in significant changes in density or stiffness;

see Figure 4.11(c). Interestingly, comparing predictions across all parameter sweeps,

we observe that structures with nearly identical densities can have moduli varying
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Fig. 4.12. Transverse moduli in the X and Y directions (and the average
of the two) evaluated for different box lengths (in the Z direction)

by a factor of two. This is indicative of the large fluctuations expected in relatively

small systems with complex microstructures. Further analysis should be performed

to identify particular arrangements and lengths of the chains that result in easier

sliding and thus, lower modulus.

4.6 Conclusions

We introduced MD-CF, a molecular-level model to describe a key processing step

of carbon fibers and predict its molecular structure. The model considers the car-

bonization and graphitization of coarse-grain ladder chain structures and results in

predicted microstructures containing key structural features observed in experiments.

The main inputs to our model are as follows: (i) the initial molecular structure (deter-

mined by the arrangement of the ladder chains that represent the molecular structure

of the stabilized carbon fiber) and (ii) the parameters used to determine the rates of

the bond formation processes that convert ladder chains to graphitic sheets. Regard-
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ing the first item, in this initial effort, we assume the chains to be perfectly aligned

and infinitely periodic along the chain axis. This results in smaller simulation cells

and enablesus to explore several aspects of the model effectively. The limitation is

that we only predict the transverse microstructure and properties. Ongoing work is

exploring larger simulation cells where long, finite chains are packed and cross-linked.

In order to determine rates for chemical reactions, we use a simple but physically

based approach based on the separation distance between carbon atoms and the rel-

ative angle between the ladder chains.

MD-CF predicts key microstructural features known to exist in carbon fibers,

and the predicted diffraction patters are in good agreement with experiments. The

predicted densities are approximately 10% higher than experimental values, again

indicating good agreement. We attribute the overestimation to the high degree of

order in the fiber axis we impose in this first effort. Future work will focus on an initial

structure with long ladder chains and explore how the initial molecular structure

affects the final microstructure and properties of the fibers. The predicted transverse

Young’s modulus is in the range of high modulus pitch- and PAN-based fibers but

is slightly lower than the experimental values of high-strength PAN-based fibers.

This is also explained by the perfect nature of our models; as sp3 bonds, misaligned

crystallites and amorphous regions are expected to significantly increase stiffness.

The model presented here is a key first step towards predictive computational tools

for carbon fibers. Accurate atomic models for microstructures are key for property

predictions, not just elastic constants but also properties such as ultimate strength.

Such predictive tools have the potential to contribute to the design of new carbon

fibers with tailored properties.

4.7 Attempts at a three dimensional model and future work directions

Following the success of the MD-CF approach, we attempted to extend the model

to generate three dimensional, realistic, carbon fiber microstructures and while we did
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see some promising results, out predicted Young’s moduli and strengths were higher

than experimentally observed, indicating that we had not fully captured the defects

present in the fibers, see Figure 4.13. However, our efforts began to bridge the gap

between the current state of the art and the ideal limits of graphite. Other work

following up on ours has had greater success, with some molecular dynamics studies

able to capture a microstructure similar to observed in experiments, and with similar

mechanical properties [139,140].

Fig. 4.13. A summary of the carbon fiber design space. Red points indi-
cate the simulations using the MD-CF algorithms

Future work in this area could use the MD-CF approach to model fiber-matrix

interfaces in composites, simulating the complex microstructures that govern the

strength of the composites. Additional investigation of the chemical pathways gov-

erning the carbonization could lead to more informed versions of MD-CF that can

simulate complex microstructures.
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In this chapter, we explicitly used kinetic Monte Carlo approaches to access

timescales beyond conventional MD simulations. However, when such techniques

are not immediately applicable or are difficult to implement, a simpler way to ac-

cess greater timescales (and length scales) is to leverage increasing computational

resources. We will now see one approach to achieve cross-platform, portable perfor-

mance in molecular dynamics simulations with state-of-the-art interatomic models by

using novel libraries, algorithms and data structures.
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5. GREATER TIMESCALES AND LENGTHSCALES VIA

PERFORMANCE PORTABLE IMPLEMENTATIONS

In chapter 4 we saw an example of extending molecular dynamics (MD) simulations to

access greater timescales by explicitly incorporating kinetic Monte Carlo methods. We

now turn to another avenue to increase the lengthscales and timescales accessible via

MD. This method relies on re-implementing MD algorithms to leverage increasingly

common hybrid CPU-GPU architectures.

This chapter is organized as follows: We first describe the need for performance

portable implementations for MD algorithms in Section 5.1. We then describe neural

network and related, relatively new interatomic models in Section 5.2. In Section 5.3

we examine the neural network based interatomic kernels in detail, briefly describing

the CabanaMD proxy application and its use of the Kokkos programming model and

the Cabana particle toolkit to enable co-design for MD codes, as well as discussing the

main ways in which the code was modified from a current LAMMPS implementation.

On-node strong and weak scaling with the CabanaMD proxy application is demon-

strated on both multi-core CPU and GPU hardware for various materials, comparing

our code with the previous CPU-only implementation in Section 5.4. In addition, we

explore parallelism and data layout improvements using unique Kokkos and Cabana

library features and run simulations of up to 20 million (M) atoms on a single CPU

node and up to 4M atoms on a single GPU on state of the art pre-exascale architec-

tures in Section 5.5. Finally, we conclude and discuss impact and continuing work in

Section 5.6. Our work highlights a path forward for data-driven and machine-learned

interatomic models in classical MD at the exascale.

The work in this chapter has been published in the arXiv and can be found

as: Saaketh Desai, Sam Reeve, Jim Belak, “Implementing a neural network in-
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teratomic model with performance portability for emerging exascale architectures”,

arXiv preprint arXiv:2002.00054 (2020).

5.1 Introduction

Molecular dynamics (MD) simulations have been used for many years [11, 12]

to study metals and alloys, polymers, 2D materials, proteins, and more. Advances

in computing power have allowed MD simulations of billions of atoms in the last

decade [36], elucidating complex processes such as solidification [141, 142] and plas-

ticity [16], while also realizing microsecond timescales [37]. Such advances have been

possible largely due to the advent of GPUs, necessitating the re-implementation of

MD algorithms to extract maximal performance on both GPUs and increasingly hi-

erarchical multi-core CPUs. These re-implementations have resulted in an increasing

variety of parallel MD codes [143], particularly GPU-accelerated ones [37, 144–149],

with calls for performance portability measures [150]. Despite this progress, many

material science and physics problems remain unresolved to this date or are only be-

ginning to be understood at the atomic scale. Important advances are being made

by leveraging the improved accuracy of machine learned and data driven potentials,

notably including neural network potentials (NNP) [50] to discover atomistic mecha-

nisms of recrystallization in phase-change materials such as GeTe [151] and studying

the diffusion of Li-ions in novel solid-state amorphous battery materials [152]; how-

ever, accessible system sizes are still relatively small compared to traditional models.

With exascale computing on the horizon [153], modeling and simulations tools can be

increasingly used to solve ‘grand challenges’ in material science, such as the problems

stated above, or other high-impact problems such as understanding high-temperature

superconductivity using quantum mechanical (QM) simulations, simulating energetic

materials under extreme conditions at an atomistic level, and enabling additive man-

ufacturing (AM) with multi-scale modeling of the processes involved.
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Crucially, solving these ‘grand challenges’ requires efficient leverage of comput-

ing resources via exascale-ready simulation tools. The Exascale Computing Project

(ECP) is focused on achieving this by delivering an exascale computing ecosystem via

co-design between hardware architectures, software stack development, and applica-

tion development [154,155]. This ensures first that application requirements are met

by hardware and software innovations and also that applications can effectively use

cutting-edge hardware and software stacks. An important arm of the ECP initiative

is within co-design centers across all three areas based on computational “motifs”:

operations on particles, linear algebra, structured/unstructured grids, graph oper-

ations, etc. These co-design centers have two main outputs to facilitate co-design

and interoperability: libraries and proxy applications. Software libraries can be used

directly within production applications, while proxy apps are instead designed as a

testbed for the main features of a complex physics application, aiming to understand

and optimize computation, memory access, network usage, etc., separate from the

full application code.

The Co-design center for Particle Applications (CoPA) (https://github.com/

ECP-CoPA) addresses motifs within all particle-based simulations, across many appli-

cation areas, ranging from atoms to galaxies, via the development of software libraries

and packages targeted towards accelerating the key motifs for each application. CoPA

is developing the PROGRESS and BML libraries for linear algebra in quantum MD

for chemistry and materials science [156], as well as the Cabana library for parti-

cle operations [157] within N-body gravity for cosmology, particle-in-cell methods for

plasma physics, and classical MD for materials science, the focus of this work. Cabana

was designed to leverage on-node parallelism from the Kokkos library [158] for cross-

platform performance, adding particle specific algorithms and MPI communication

for particles.

CabanaMD is a classical MD proxy app that uses the Cabana and Kokkos libraries

and has shown performance portability across various hardware for a Lennard-Jones

(LJ) interatomic model. At nearly 100 years old, the LJ interatomic model is still

https://github.com/ECP-CoPA
https://github.com/ECP-CoPA
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widely used in qualitative studies and for van der Waals interactions in quantitative

predictions, the simplicity of the kernel also proving valuable for assessing one ex-

treme of MD performance. For most materials however, more complex interatomic

models are required. Machine learned, data driven, and neural network models aim

to offer near-quantum level accuracy in predicting energies and forces for a wide range

of systems, while retaining the linear scaling offered by classical MD. Neural network

interatomic models [50, 159] in particular offer unique and complex computational

kernels, enabling many avenues for improvement of the computational cost, as well as

expansion of features within both CabanaMD and Cabana. These neural network po-

tentials (NNP) have notably recently gained traction by accurately simulating phase

transitions in disparate materials [151, 160, 161]. Neural network models rely on the

flexible functional form of a neural network, with thousands of tunable parameters,

to approximate complex potential energy surfaces. In this work, we re-implement an

NNP in CabanaMD, demonstrating use of the Kokkos and Cabana libraries to achieve

performance portability, including a GPU implementation of a neural network inter-

atomic model.

5.2 Neural network interatomic models

Machine learned and data-driven interatomic models offer the opportunity to per-

form nearly-quantum accurate MD simulations while retaining the scaling of a stan-

dard interatomic model. These next-generation models are a departure from tradi-

tional, empirically motivated, parametric models, e.g. embedded atom method [25],

where the number of parameters and functions are fixed. Non-parametric interatomic

models instead use descriptors, which characterize the atomic environment of each

atom, with a separate regression model. These non-parametric descriptors are more

mathematically-motivated, although still physically derived and hand-tuned in im-

plementation, and include symmetry functions [50], bispectrum coefficients [51], and

others [162–164]. Notably, all versions of non-parametric interatomic models are sys-
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tematically improvable by adding additional basis functions or more nodes in the

neural network [163], unlike standard, fixed-parameter models. The physics of the

system, including any translational, rotational, and permutational invariances are in-

cluded in the descriptors. These descriptors can also be learned with machine learning

techniques such as a separate neural network, even a complex convolutional/residual

networks to learn the environment of each atom, as opposed to hand-tuning a set

of descriptors, thus requiring even less human intervention [53, 165, 166]. Assessing

and improving the performance of learned-descriptor-based models is fundamentally

different from descriptor-based models and will not be a part of this study.

Across non-parametric models, the descriptors and mapping techniques that re-

lates the structural descriptors (learned or prescribed) to the observed quantities (e.g.

energies, forces, and stresses from a QM calculation) varies widely. For instance,

SNAP uses a linear regression mapping of bispectrum coefficient descriptors [51],

while symmetry function descriptor based (Behler-style) NNP uses a simple feedfor-

ward neural network as the mapping [50]. For the learned-descriptor based NNPs,

additional neural network(s) are used as mappings [53,165,166]. We note that these

models are still under active development, with many iterations for each descrip-

tor, mapping, and combination. Having chosen a descriptor and a mapping, the

interatomic model parameters are typically obtained through a least-squares fitting

procedure, converging parameters to a local optimum. Improvements on this strategy

include combining local optimization techniques with global optimization for hyper-

parameters and using techniques such as genetic algorithms [167].

While not the focus of this work, it is important to note that the accuracy and

range of environments represented by non-parametric models depends strongly on the

QM data used to train the model, as with their parametric counterparts. See Ref.

[55,168,169] for recent work on parametrizing machine learned interatomic models.

In this work, we focus on the performance of an NNP that uses symmetry func-

tions as descriptors, which are Gaussian functions of neighbor distances with radial

or angular character for each of the elements involved. The flexibility and accuracy
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of neural network models is achieved at a high computational cost relative to em-

pirical interatomic models, with comparative performance for many non-parametric

models recently benchmarked [57]. Recent work has suggested improvements to NNP

descriptors, aiming to reduce the number of symmetry functions required to describe

multi-element neighborhoods [170], and thus improve performance. We aim to instead

improve performance by implementing a cross-platform, thread-scalable version of a

neural network model in the CabanaMD proxy app.

5.3 Model implementation on emerging exascale architectures

5.3.1 Neural network interatomic kernels

To understand the scope for improvements in the Behler-style NNP, we look at the

computational kernel in detail. Figure 5.1(a) shows a traditional Lennard-Jones (LJ)

kernel that shows the loop over each atom i and each of its neighbors j to compute the

force on each atom. Note that the energy compute step is shown only for comparison

and is not strictly required to compute the trajectory for an LJ kernel (and most

often computed only occasionally). Figure 5.1(b) contrasts the simple LJ kernel with

the computationally complex NNP kernel, broken down into 3 steps. Step 1 consists

of a loop over each atom i and each of its neighbors j, but also has an added loop over

each descriptor k to compute all radial atomic environment descriptors. Not shown

is a similar angular computation with one extra loop over neighbors of neighbors.

Step 2 is unique to the NNP kernel and involves matrix multiplications that forward-

propagate the computed symmetry functions (descriptors) through the neural network

to calculate the per-atom energy. Thus, the energy calculation is necessary for the

dynamics of the system, unlike a standard model. Step 3 is again similar to the

LJ kernel in that it consists of a loop over atom i and each of its neighbors j to

compute forces, but again involves an extra loop over descriptor k, and contains both

the gradient of the neural network (w.r.t descriptors) and the gradient of symmetry

functions (w.r.t coordinate). Note that while the neural network is not particularly
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large or deep (∼30 x 2), each atom has its own neural network, resulting in many

small sets of matrix multiplications (see Figure 5.1(c)). The use of machine learning

libraries such as Tensorflow/Pytorch could be explored to gain additional speedup,

but is left as future work, both because it is a relatively minor portion of the overall

computation, as seen later, and because these libraries are focused primarily on large,

deep networks.

Fig. 5.1. (a) Traditional Lennard-Jones model showing the main loops
over atoms and neighbors to compute energy and forces, (b) neural net-
work interatomic model broken down into 3 steps: descriptors, neural
network, and force calculations, and (c) representative NNP descriptors
and schematic atomic neural network used to predict energy and forces.

5.3.2 CabanaMD proxy application

CabanaMD (https://github.com/ECP-CoPA/CabanaMD), our testbed for reim-

plementing the neural network interatomic model, contains representative units from

production MD codes, with flexibility for parallelism and data layout improvements.

CabanaMD inherits the modular design and Kokkos implementations of the ExaM-

iniMD proxy app (https://github.com/ECP-CoPA/ExaMiniMD) [158]. CabanaMD

https://github.com/ECP-CoPA/CabanaMD
https://github.com/ECP-CoPA/ExaMiniMD
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primarily uses the Cabana library for flexibility of particle algorithms and data

layout, with underlying on-node performance portability from Kokkos. The com-

plete software stack is shown in Figure 5.2(a), highlighting that Cabana is a do-

main specific, direct extension of Kokkos. For parallelism across hardware in Ca-

banaMD, the Kokkos::parallel for is used for threading across atoms and Ca-

bana::neighbor parallel for for threading over both atoms and neighbors (where

either level can be serial or threaded), built on the hierarchical parallelism of Kokkos.

Portable memory for particle data uses array-of-structs-of-arrays (Cabana::AoSoA),

built directly on Kokkos::Views, with an additional compile-time array dimension

that can map to a SIMD/SIMT instruction length which we refer to as the vec-

tor length, see Figure 5.2(b)). The AoSoA is intermediate between array-of-structs

(AoS) and structs-of-arrays (SoA), more common data layouts which require a com-

plete tradeoff between data locality and sequential data access. The AoSoA provides

more complete layout flexibility and benefits of both AoS and SoA for intermediate

vector lengths. Cabana::AoSoAs are used for particle positions, velocities, forces,

and types, additionally storing symmetry functions and gradients of atomic energy

with respect to symmetry functions for the NNP kernel. Kokkos::Views are also

used for type-based storage, for potential parameters, masses, symmetry function

parameters, and neural network parameters (weights and biases). This functional-

ity has enabled CabanaMD to demonstrate portable performance for an LJ model

across multi-core CPU compute nodes, as well as GPUs. As shown in Section 5.5, the

use of appropriate levels of parallelism and data layouts for given hardware increases

performance by up to 50% for the NNP kernel.

5.3.3 Modifications from previous implementation

In this work, we re-implement the NNP from the n2p2 package (https://github.

com/CompPhysVienna/n2p2), a library-based LAMMPS [21] implementation with a

model for water provided [159, 171]. Our implementation has been included in the

https://github.com/CompPhysVienna/n2p2
https://github.com/CompPhysVienna/n2p2
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n2p2 package directly, available in the n2p2 Github repository [171], with an in-

terface to the n2p2-CabanaMD functionality in CabanaMD. We test our implemen-

tation using NNP models for H2O, as well as Ni, Cu, Si, Ge, Li, and Mo from a

recent comparative benchmarking study [57, 172]. Several key changes were neces-

sary in translating the original n2p2 implementation to n2p2-Cabana, particularly

for GPU architectures: (i) move from large storage classes and structs to mini-

mal Kokkos::Views and Cabana::AoSoAs, (ii) replace explicit OpenMP prag-

mas with Kokkos::parallel for and Cabana::neighbor parallel for, (iii) rewrite

some classes of object-oriented code to use less memory (iv) replace code that is not

GPU-compatible, such as replacing vector iterators with Kokkos::parallel for, and

(v) split computationally expensive kernels and use Kokkos and Cabana constructs

to consider various levels of parallelism (parallelism over only atoms vs atoms and

neighbors). Wherever possible we use the existing n2p2 library capabilities and in-

herit from existing n2p2 classes, extending and modifying to add the Kokkos and

Cabana features discussed above.

The n2p2 LAMMPS implementation was created and optimized extremely well for

standard CPU computing, avoiding floating point operations by precomputing and

storing variables wherever possible. In addition, a focus on MPI-parallelization, with

OpenMP included mainly for MPI+X, indicates that the code was not intended for

significant threading performance, meaning that a direct re-implementation of n2p2 in

CabanaMD would result in extremely low utilization of GPU resources. To avoid this,

an almost complete reversal was necessary: store and move as little data as possible,

recomputing where necessary. The n2p2 implementation neatly exposed potential

points of parallelization and we took advantage of this with Kokkos and Cabana

parallel constructs, using thread-safe atomics as needed for symmetry function and

force updates. However, the data layout needed to be fully inverted, from structs of

all atom and neighbor properties to minimal AoS or AoSoA in Cabana. We had to

further replace some of the object-oriented code structure with kernel-based parallel

code.
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Fig. 5.2. (a) Software stack representing CabanaMD-NNP (b) Cabana
AoSoA data structure allowing flexibility in data layout, compared to
standard AoS and SoA.

5.4 Performance of our implementation

We show on-node performance with many-core CPU and GPU architectures on a

current leadership-class supercomputer, the pre-exascale Lassen machine at Lawrence

Livermore National Laboratory (LLNL), see Figure 5.3. CPU scaling behavior is doc-

umented for an IBM POWER9 node (with 40 cores per node and 4 threads per core),
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while GPU results are shown for a single NVIDIA V100 GPU. This architecture

matches the Summit and Sierra supercomputers at Oak Ridge National Laboratory

and LLNL, respectively. Each test system was simulated in the ground state struc-

ture at room temperature with NVE dynamics, we used [173] to generate the wa-

ter structures. Throughout, we used Kokkos v3.2, Cabana (commit a7ace07), n2p2

v2.0.1, gcc 7.3, and CUDA 10.1. The CabanaMD-NNP functionality will updated

through both Github repositories: https://github.com/ECP-CoPA/CabanaMD and

https://github.com/CompPhysVienna/n2p2.

5.4.1 CPU OpenMP Performance

Figure 5.3(a) shows strong scaling performance with increasing number of OpenMP

threads on a single POWER9 node, comparing the n2p2 LAMMPS implementation

with CabanaMD for a nickel test system [172]. The n2p2 implementation shows sat-

urating performance due to a memory-bound implementation with large structs to

store atom and neighbor properties, including symmetry functions and derivatives. In

contrast, our thread-bound implementation shows linear thread scaling (with slight

reduction from linear for hyperthreading), which results in a greater parallel efficiency

for our implementation. The n2p2 algorithms show better performance for the small-

est numbers of threads, where the heavy compute and low resource nature of the task

result in performance gains from a storage-based approach, surpassing exposed par-

allelism. However, even in using hybrid MPI+OpenMP parallelization (a large focus

of their effort), the n2p2 implementation is more limited in system size by memory

than CabanaMD. Ultimately, CabanaMD shows a speedup of ∼4x for a moderate

system size (256K atoms) using the full node (all threads), while n2p2 is faster by

∼10x when restricted to a few threads, see Fig. 5.3(a). Weak scaling from Figure

5.3(b) reinforces these points, where n2p2’s superior performance for smaller systems

with a single thread is overtaken by the parallelism from Cabana and Kokkos in Ca-

banaMD. Figure 5.3(c) and 5.3(d) similarly compare n2p2 and CabanaMD strong

https://github.com/ECP-CoPA/CabanaMD
https://github.com/CompPhysVienna/n2p2
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and weak scaling for H2O [171], and while we see that n2p2 is faster than our im-

plementation, CabanaMD shows better thread scalability. We attribute this to the

larger cutoff for the H2O potential (6.4Å vs 3.9Å for Ni), which significantly increases

the number of neighbors for which computations are required. Thus, the H2O model

represents a cross-over point, where the memory and thread-based approaches are

similar, for the POWER9 hardware. The tradeoff between recomputing values and

storing them for more expensive models like H2O will be a focus of future work in Ca-

banaMD. Overall, CabanaMD is faster for many (but not all) systems with maximal

resources, but n2p2 will always be faster in serial.

Fig. 5.3. (a) Strong and (b) weak scaling for Ni contrasting the n2p2 and
CabanaMD implementations, evaluated on a single IBM POWER9 node
with a maximum of 256K atoms. (c) Strong and (d) weak scaling for H2O
further comparing codes. Perfect scaling is shown in the dashed lines.
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5.4.2 GPU Performance

The use of the Kokkos and Cabana libraries provides us a single-source solution

for performance portability. Figure 5.4 highlights the performance of our implemen-

tation on the GPU. For H2O, the GPU version shows a speedup of ∼14x compared to

the CPU compared to the CabanaMD CPU for Ni and ∼3x for H2O (and ∼12x, ∼11x

and ∼9x for other single element systems: Cu, Mo and Ge). Energy conservation for

all systems is documented in Figure 5.5. While CabanaMD is ∼4x faster than n2p2

for threaded-only CPU performance, Figure 5.6 shows that n2p2 is ultimately faster

when using MPI across one node (40 ranks, 4 threads per rank), also by ∼4x. The Ca-

banaMD CPU performance does not significantly change when using MPI+OpenMP

or only OpenMP; the GPU version is ∼3x faster than the MPI n2p2 on 1 rank, and

∼10x on the full node (4 GPU). Energy conservation for all systems is documented in

Figure 5.5. Total energy is conserved for the neural network interatomic models of

Ni, Cu, and Si and while Li, Mo, and Ge show small energy drifts, when comparing

to the fluctuation of the potential energy. A further trained interatomic model could

likely more accurately conserve energy for these systems. Crucially, the implemen-

tation decisions detailed in Section 5.3 resulted in faster GPU simulations, by first

achieving good CPU thread-scaling. Scaling studies across nodes will be a focus of

future efforts.

Our implementation also enables systems of up to 20M atoms to be run on a single

CPU node and 4M atoms on a single GPU (Ni), where performance in Figure 5.4 is

shown up to the memory limits of the hardware for each case. We achieve this by

avoiding a memory-based approach, which would particularly limit the system sizes

and speeds achievable on the GPU. For Ni, CabanaMD is faster across the range of

system sizes, except for those below a few thousand atoms. For H2O, n2p2 is faster

except for the largest systems achievable. Of course, these comparisons change with

different hardware; for example, Figure 5.7 shows results for Intel Xeon (Broadwell)

CPUs, with fewer cores and less memory per node. The Xeon node has significantly
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Fig. 5.4. Performance comparisons for Ni and H2O, with CabanaMD on a
single NVIDIA V100 GPU and CabanaMD with 176 threads on an IBM
POWER9 CPU node, and the n2p2 implementation with the same CPU

less total memory and fewer cores (36 total threads) as compared to POWER9. On

both CPUs, the memory-based n2p2 strategy is more limited in system size compared

to CabanaMD.

5.5 Parallelism and Data Layout Improvements

The CabanaMD implementation shown above largely retains the algorithms used

by n2p2 in the current LAMMPS implementation. However, the power of the Cabana

implementation is in enabling easy exploration of new algorithms and parallelization

strategies via separation of concerns, as well as exploration of data layouts via flexi-

ble AoSoAs. To better understand the performance of our implementation, we first

breakdown the kernel timings into the three steps from Figure 5.1, shown in Figure

5.8. We observe that the radial calculations are a minor part of the computation
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Fig. 5.5. Energy conservation with an NNP for various single element
systems

across hardware, with the calculation of angular forces taking up the most time per

MD step. In addition, the neural network time is negligible on the CPU and approx-

imately one third of time for the GPU. This highlights that while the NNP kernel

is novel and includes a new compute step (propagation through the neural network),

optimizations targeted at other models, up to and including the LJ kernel, are still

most useful for improvements.



90

Fig. 5.6. MPI performance comparisons for Ni (2M atoms) with Ca-
banaMD on 4 and 1 NVIDIA V100 GPU(s), CabanaMD with 40 MPI
ranks (4 threads/core) and 1 MPI rank (160 threads) on an IBM POWER9
CPU node, and n2p2 with the same CPU

The main algorithmic changes involved recomputing rather than reading stored

values throughout the code. In addition, we split the computation of symmetry

functions into separate radial and angular symmetry function kernels and exposed

greater parallelism, using Cabana::neighbor parallel for to parallelize computa-

tions over both atoms and neighbors. This functionality directly uses hierarchical

parallelism, mapping loops over atoms and neighbors to the multiple levels of com-

pute and memory hardware, which we compare and contrast with flat parallelism

(threaded parallelism over atoms only). Use of the hierarchical parallelism require an

additional atomic update of the symmetry functions, in addition to atomic update of

the final forces that is always necessary (unless serial). Figure 5.9 shows that the use

of hierarchical parallelism results in ∼25% performance improvement on the CPU for

large systems, while significantly reducing performance for a small system with ∼1000

atoms. At the smallest sizes there is not enough total work to make the additional
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Fig. 5.7. Performance comparisons for Ni and H2O on a single Intel Xeon
(Broadwell) node with 36 threads between CabanaMD and n2p2

overheads of multiple levels of parallelism worthwhile; however, for most systems on

the CPU the higher exposed parallelism outweighs the necessary additional atomic

operations, primarily because the total number of threads is small. On the GPU, the

use of hierarchical parallelism degrades performance by over a factor of 2, where in

this case the much larger number of threads results in significant contention between

them, making it difficult to leverage the greater exposed parallelism. There is again a

cross-over for the smallest systems on the GPU where, without enough work to fill the

GPU exposing neighbor parallelism improves performance (albeit with much lower

performance than larger systems overall). Throughout sections 5.4.1 and 5.4.2, we

thus use hierarchical parallelism on the CPU and flat parallelism on the GPU, except

for the smaller atom counts in Figure 5.4 (where each system has a different cross-over

point). This was done with a simple command line flag, a capability possible due to

use of flexible Kokkos and Cabana constructs.
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Fig. 5.8. Fraction of time taken by each portion of the CabanaMD-NNP
compute kernel for a ∼1.5M atom Ni system in computing symmetry func-
tions, propagating those symmetry functions through the atomic neural
networks, and computing forces. Note that the force contribution from
the neural network is computed and counted within the force bar

A third level of parallelism, again using Cabana::neighbor parallel for, paral-

lelizing computations over atoms, neighbor, and angular neighbors is also available,

but did not show any performance improvement as compared to parallelizing over

neighbors for this system. This third level of parallelism is mapped to vector units

directly, not amenable to random access neighbor operations which dominate these

simulations. However, for other materials, system sizes, interatomic models, or algo-

rithms this feature could be relevant.

We can also improve performance by choosing the appropriate data layout for the

architecture. Figure 5.10 shows performance gains obtained (on CPU and GPU) by

varying the vector length for the Cabana::AoSoA, in addition to demonstrating the

performance tradeoffs in using a single combined AoSoA vs using multiple separate
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Fig. 5.9. Performance for Ni compared across various levels of parallelism
and Ni system sizes on (a) a single IBM POWER9 node and (b) a single
NVIDIA V100 GPU

AoSoAs (for each particle property, including NNP-specific arrays). Each feature

contributes to tradeoffs between data locality and consecutive access. It should be

noted that the vector length of the NNP specific AoSoAs were separately optimized

to 1 for CPU and 32 for GPU.

Fig. 5.10. Performance for Ni compared across various vector length and
AoSoA sizes on (a) a single IBM POWER9 node and (b) a single NVIDIA
V100 GPU for 256K (CPU) and 2M (GPU) atom Ni systems
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Overall, the trends are reversed between CPU and GPU. For the CPU, a vector

length of 1 (AoS) gives best performance. As the vector length increases, data locality

is reduced and, without significant vectorization, the performance degrades, Figure

5.10(a). Because the majority of the simulation time is from random access (neigh-

bor list) force computations, the vectorizable benefits from the intermediate vector

length AoSoA layout are not currently taken advantage of; however, it is possible

to rewrite MD kernels to be partially vectorizable [174, 175]. Breaking the AoSoA

into individual particle properties does not significantly change performance, but is

consistently slightly slower, indicating the CPU benefits from the higher data locality

of the combined layout. The combined AoSoA with vector length of 1 results in ∼3%

better performance over the slowest data layout on the CPU and we accordingly use

this layout throughout Section 5.4. On the GPU, performance slightly increases with

increasing vector length, Figure 5.10(b). The loops over symmetry functions and neu-

ral networks can to some degree take advantage of the vector lengths near the warp

size and above, but without significant speed up. We again see a 3% improvement

between the fastest and slowest GPU data layout and used the split AoSoA with a

vector length of 32 throughout.

5.6 Conclusions

We have demonstrated a performance portable neural network interatomic model

for large-scale MD within the CabanaMD proxy app, comparing performance with

the existing LAMMPS-based n2p2 library. CabanaMD-NNP extends n2p2 to inter-

face with the Cabana library for particle methods, itself built on the Kokkos library

for on-node performance portability, enabling continuing exploration of paralleliza-

tion and data layout/access on emerging computing architectures. In addition to

a thread-scalable CPU implementations, we demonstrated GPU performance for an

NNP. These improvements are also relevant to the myriad of Behler-style NNP im-

plementations and extensions [176–182] and other new models using NN in different



95

ways [183,184]. Further, learned-descriptor-based non-parametric models, containing

completely unique kernels, will pose challenges to improving performance not seen

here and will be subject to future work [53,165,166].

The main ideas of this work apply to any current CPU-only code looking to

utilize GPU resources: with a performance portable library or programming model,

data storage and movement should generally be avoided in favor of re-computing.

In our case, this manifests itself in our choice to re-compute symmetry functions,

derivatives, and distances as opposed to storing large data structures for each atom

and neighbor. In addition, exposing as much parallelism as possible and determining

which levels to thread over is integral. Overall, improving CPU multi-threading was

a direct path to achieving significant GPU speedups. CabanaMD-NNP is available at

https://github.com/ECP-CoPA/CabanaMD, with our modifications to the n2p2 code

available at https://github.com/CompPhysVienna/n2p2.

The ability to simulate millions or billions of atoms with nearly-quantum accurate

models, using performant MD implementations such as ours, will significantly expand

the set of scientific problems within the reach of classical MD. We intend to use the

CabanaMD-NNP implementation to investigate complex materials without currently

available models: solid-solid phase transitions, AM-rate solidification processes, phys-

ical and chemical phenomena in energetic materials, and microstructural evolution

in metallic alloys. In addition, for NNP models that have already been developed,

CabanaMD-NNP enables unprecedented large-scale MD simulations of complicated

processes such as recrystallization in phase change memory applications [151] and

diffusion in amorphous solid-state battery electrolytes [152].

In Chapters 3, 4, and 5, we have seen how molecular dynamics simulations can

be used, and improved, to understand material behavior and aid the design of novel

materials. We now turn to another arm of the Materials Genome Initiative, the

increasingly popular avenue of incorporating machine learning methods in material

science. Specifically, we will focus on developing novel machine learning methods to

extract interpretable laws directly from data.

https://github.com/ECP-CoPA/CabanaMD
https://github.com/CompPhysVienna/n2p2
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6. PARSIMONIOUS NEURAL NETWORKS AND THEIR

APPLICATION TO MOLECULAR DYNAMICS

Machine learning is playing an increasing role in the physical sciences and significant

progress has been made towards embedding physics into domain-agnostic models.

Less explored is the potential of machine learning to discover interpretable physical

laws from observational data. In this chapter we will combine neural networks with

evolutionary optimization to design Parsimonious Neural Networks (PNNs) that can

extract interpretable laws from data. We will demonstrate the applicablility of PNNs

by finding laws in two cases: (i) the time evolution of a point particle under a highly

nonlinear potential, and (ii) the melting temperature of materials from fundamental

properties.

The work in this chapter has been published in the arXiv and can be found as:

Saaketh Desai, Alejandro Strachan, ”Parsimonious neural networks learn classical me-

chanics, its underlying symmetries, and an accurate time integrator” arXiv preprint

arXiv:2005.11144 (2020).

6.1 Introduction

Machine learning (ML) can provide predictive models in applications where data is

plentiful and the underlying governing laws are unknown [185–187]. These approaches

are playing an increasing role in the physical sciences where data is generally limited

but underlying laws (sometimes approximate) exist [188–193]. For example, ML sur-

rogate models are being used in electronic structure calculations [194] and molecular

dynamics (MD) simulations [50, 195, 196]. One of the major drawbacks of the use of

ML in the physical sciences is that models often do not learn the underlying physics

of the system at hand, such as constraints or symmetries, limiting their ability to gen-
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eralize. In addition, most ML models lack interpretability. That is, ML approaches

generally neither learn physics nor can they explain their predictions. In many fields,

these limitations are compensated by copious amounts of data, but this is often not

possible in areas such as materials science where acquiring data is expensive and time

consuming. To tackle this challenge, progress has been made towards using knowl-

edge (even partial) of underlying physics to improve the accuracy of models and/or

reduce the amount of data required during training [48,197]. Less explored is the use

of ML for scientific discovery, i.e., extracting physical laws from observational data,

see Refs. [46, 47, 198] for some notable exceptions. In this work we combine neural

networks (NNs) with stochastic optimization to find the simplest model capable of

(i) describing the dynamics of a particle under a highly non-linear potential, and (ii)

generating expressions to predict the melting temperature of materials, solely from

observational data. Our hypothesis is that the requirement of parsimony will result in

the discovery of the physical laws underlying the problem. We find that the resulting

descriptions are not only interpretable but also satisfy non-trivial underlying sym-

metries of the physical system. This second feature makes the parsimonious neural

networks (PNNs) significantly more accurate than generic NN models. Stochastic op-

timization has been previously used in conjunction with backpropagation to improve

robustness or minimize overfitting in models [199–205], this work extends these ideas

to learn physics from data.

The power of physics-based ML is well documented and remains an active area

of research. Neural networks have been used to both parametrize and solve differ-

ential equations such as Navier Stokes [48] and Hamilton’s equations of motion [49].

Recurrent architectures have also shown promise in predicting the time evolution of

systems [58, 59]. These examples focus on using prior knowledge of the underlying

physics to guide the model, often as a numerical constraint added to the models, or

by using the underlying physics to numerically solve equations with variables pre-

dicted by the ML algorithms. In contrast, we are interested in learning the physics,

including complete numerical solutions, directly from data, without prior knowledge.
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Pioneering work along these lines used sparse regression to identify invariants in dy-

namical systems by constructing a library of candidate functions and matching partial

derivatives of invariants to the numerical derivatives of the training data [46]. A sim-

ilar approach was used to identify partial differential equations from data [47]. More

recently, neural networks have been used to discover underlying equations directly

from data [206–209], using conventional neural networks as encoders and connecting

the encoders to custom networks aimed at equation discovery. Yet another approach

has been to design custom deep neural networks whose layers can be evaluated via

standard differential equation solvers [210]. We build on and extend these ideas to

propose PNNs designed to find the simplest possible model consistent with the un-

derlying data in a context where the discovered model must be highly accurate and

satisfy conservation laws to merit use. We first apply PNNs to learn the equations of

motion that govern the Hamiltonian dynamics of a particle under a highly non-linear

external potential with and without friction. Our hypothesis is that by requiring

parsimony (e.g. minimizing adjustable parameters and favoring linear relationships

between variables) the resulting model will not only be easily interpretable but also

will be forced to tease out the symmetries of the problem. We find that the result-

ing PNN not only lends itself to interpretation (as Newton’s laws) but also provides

a significantly more accurate description of the dynamics of the particle when ap-

plied iteratively as compared to a flexible feed forward neural network. The resulting

PNNs conserve energy and are time reversible, i.e. they learn non-trivial symmetries

hidden in the data but not explicitly provided. By virtue of being based on neural

networks, PNNs explore a large function space and obviate the need for estimating

numerical derivatives or matching a library of candidate functions, as was done in

prior efforts [46,47,198]. The PNN approach also allows complex composition of func-

tions by virtue of using neural networks, as opposed to prior sparse regression efforts,

which combine functions linearly. The generalizability of PNNs is demonstrated with

a second example: discovering models to predict the melting temperature of mate-

rials from atomic properties. By varying the relative importance of parsimony and
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accuracy in the genetic optimization, we discover a family of pareto optimal models,

including the celebrated Lindemann law [211].

6.2 Discovering molecular dynamics integration schemes from data

As a first example, we consider the dynamics of a particle under an external

Lennard-Jones (LJ) potential with and without friction. In both cases the training

data consists of accurate numerical trajectories with various totals energies. The

choice of numerical input data was made for convenience, it could have been obtained

experimentally.

6.2.1 Description of training data

The training trajectories are generated using the LAMMPS software package [21],

a popular choice to perform molecular dynamics simulations. We generate trajectories

of a two-particle system where interactions between the atoms are described by a

Lennard-Jones potential with parameters ε = 0.5 eV and σ = 2.5 Å. The system

consists of one particle at the origin and the other particle fixed at x = 1.12σ (the

y and z coordinates are fixed to be 0). The simulation cell is arbitrarily chosen to

be cubic with a side length of 80σ to avoid interactions between periodic images of

particles. Four different trajectories were generated under the microcanonical (NVE)

ensemble, with different initial velocities for the atom at origin, corresponding to total

energies of -0.999ε, -0.895ε, -0.797ε and -0.733ε, using a timestep of 0.011962
√

ε
σ2 .

The equations of motion are integrated using the velocity Verlet algorithm and each

trajectory contains 100,000 snapshots of atomic coordinates, velocities and forces

at each step, for a total of 400,000 snapshots. We consider this highly accurate

trajectory to be our baseline, from which we sample frames at different frequencies

to obtain trajectories at different timesteps. So, to sample a trajectory with timestep

0.011962
√

ε
σ2 , we sample every 10th snapshot from each trajectory. This amounts

to 40,000 data points consisting of input and output arrays, with the input array



100

consisting of position, velocity and force at time t, while the output array consisted

of position, velocity and force at time t+∆t (i.e., one step later). The data is split

into training and validation sets in an 80:20 ratio, with an additional test set of

10,000 points was generated independently at an energy of -0.884 ε. For the damped

dynamics cases, a frictional force proportional to negative the velocity is added, with

frictional coefficient γ = 0.004 eVps/Å2. Note that the PNN is not informed about

the additional frictional force for the trajectory with friction. The only way for the

PNN to learn about the damping is through the training data trajectories. While all

quantities are mentioned in Lennard-Jones units, in practice we use a different unit

system, with positions in pm, time in fs and energy in eV. This ensures that the inputs

to the network are of the same scale, where the standard practice of normalizing the

data could lead to a loss of interpretability in a general case. The training data is

available on nanoHUB [212].

6.2.2 Performance of a feed forward neural network

Before describing the PNN model, we establish a baseline by training a standard

feed forward neural network (FFNN) on our data for the case without friction and

evaluating its performance as an integrator. This network consists of three hidden

layers consisting of 20, 100 and 20 neurons respectively, with the rectified linear

(‘relu’) activations applied to the hidden layers and linear activations applied to the

output layer. We use mean squared error (MSE) as the loss function and the Adam

optimizer [213] with a learning rate of 10-3. The network is trained using the Keras

package [214] and the training data and models are available on nanoHUB [212].

We find the FFNN to be capable of matching the training/validation/test data

reasonably well. The root mean squared errors (RMSE) on the position and velocity,

across the training, validation and testing sets are (1.48x10-5, 9.73x10-5), (1.54x10-5,

9.98x10-5) and (1.59x10-5, 9.94x10-5) respectively. However, the network has poor

predictive power. Using it iteratively to find the temporal evolution of the particle
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results in significant drifts in total energy over time, and a lack of time reversibility,

see Figure 6.1. Reversibility is judged by applying the NN sequentially 1,000 times,

followed by time reversal (changing the sign of the particle’s velocity) and applying

the NN for a second set of 1,000 steps. We find that deeper architectures do not

improve the RMSE, reversibility or energy conservation.

Needless to say, these FFNNs are not interpretable. These results highlight the dif-

ficulty of the problem at hand. Hamilton’s equations for classical mechanics represent

a chaotic set of differential equations and small errors in each timestep accumulate

rapidly resulting in diverging trajectories. While some previous work attempts to

address such issues by explicitly training for multiple steps using a recurrent archi-

tecture [208], we are interested in solutions stable over timescales far greater than

those typically accessed by current recurrent architectures. Finding such models is

non-trivial and the development of algorithms to integrate equations of motion with

good energy conservation and time reversibility has a rich history [33, 35, 215, 216].

An example of such algorithms is the popular Verlet family of integrators [33,35] that

are both reversible and symplectic [217]; their theoretical justification lies in Trotter’s

theorem [218].

6.2.3 Feed forward network with a force sub-network

Having established that a standard feed forward neural network performs poorly

as integrator, we seek to establish whether a standard feed forward neural network

with a force sub-net built in can perform well as an integrator. The purpose of this

baseline is to establish if providing the network with the non-linear force model is

sufficient to discover integration schemes. The force sub-net is a two-layer network

(with 10 neurons in each layer) that attempts to predict the force given a position as

input, as shown in Figure 1 of the manuscript. The hidden layers of this network have

‘tanh’ activations and the network is trained using the same protocol as the FFNN.

We thus build a network as shown in Figure 6.2(a) and train the network, again
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Fig. 6.1. (a) Standard feed forward neural network, attempting to pre-
dict positions and velocities one step ahead (b) Energy drift for the feed
forward NN compared to the Verlet algorithm (c) Forward and reverse
trajectories generated by the feed forward NN, showing the lack of re-
versibility

using the same protocols used for the FFNN. We find that the network still performs

poorly as an integrator with RMSEs on the train, validation and test sets for the

position and velocity of (1.60x10-5, 3.84x10-4), (1.76x10-5, 4.95x10-4) and (1.56x10-5,
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4.38x10-4). Figure 6.2(b) and 6.2(c) document the poor energy conservation and

reversibility. This shows that adding the information about the force is not the key

to the development of accurate models for classical mechanics.

Fig. 6.2. (a) Feed forward neural network with a fixed force sub-net built
in (b) Energy conservation (TE: total energy) and (c) reversibility are
poor even for this network

6.2.4 Parsimonious neural networks

Having established the shortcomings of the feed-forward neural network, we now

switch to parsimonious neural networks (PNN). We begin with a generic neural net-

work shown in Figure 6.3 and use genetic algorithms to find the corresponding PNN.
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The neural network consists of three hidden layers and an output layer with two out-

puts, the position and velocity of the particle one timestep ahead of the inputs. Each

hidden layer has two neurons, with the central hidden layer including an additional

force sub-net, a network pre-trained to predict the force on the atom given its posi-

tion. Our use of a pre-trained force sub-net is motivated by the prior success of neural

networks in predicting interatomic forces in a wide variety of materials significantly

more complex than our example [160, 219, 220]. Our focus is on learning classical

dynamics and the use of a force sub-net only incorporates the physical insight that

the force is an important quantity. In the context of scientific discovery via neural

networks, the force sub-net is analogous to the latent variable learnt by an encoding

network [206].

Fig. 6.3. Neural network used as the starting point to find the parsimo-
nious neural network as the network that explains the data in the simplest
manner possible. The force sub-network is highlighted in orange and is
fed into the neural network as a pre-trained model, whose weights are
subsequently kept fixed throughout
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The starting neural network is a highly flexible mapping from input positions and

velocities to output positions and velocities and finding a PNN model reduces to

identifying the simplest function capable of describing this relationship. This is an

optimization problem in the space of functions spanned by the possible activations and

weights of the network. We consider four possible activation functions: linear, rectified

linear unit (relu), hyperbolic tangent (tanh), and exponential linear unit (elu). The

weights connecting the artificial neurons can be either fixed or trainable, with the fixed

category allowing the following values: 0, 1
2
, 1, 2, ∆t

2
, ∆t, and ∆t, with ∆t the timestep

separating the inputs and outputs. This is motivated by the fact that physical laws

often involve integer or simple fractional coefficients and that the timestep represents

important information. Future work will consider other common constants found in

physical laws, including additional fractional numbers and irrational numbers such as

π and e as well as additional activation functions. Our network has twenty weights

(each with eight possible settings) and six activation functions to optimize, see Figure

6.3 (top panel). A brute force approach to finding a PNN model would require training

∼1021 neural networks, an impossible computational task even for the relatively small

networks here. We thus resort to evolutionary optimization, using a genetic algorithm

to find the most parsimonious network consistent with our training data.

The genetic algorithm favors: (i) linear activation functions over non-linear ones,

and (ii) non-trainable weights with simple values over optimizable weights. The

objective function is defined to capture both the accuracy of a network in reproducing

the testing data and its parsimony:

F = f1(Etest) + p

(
N∑
i=1

w2
i +

N∑
j=1

f2(wj)

)
(6.1)

where Etest represents the mean squared error of the trained PNN on the testing

set and f1 is a logarithmic function that converts the wide range errors into a scale

comparable to the other terms. p is a parsimony coefficient that decides the weight on

the parsimony terms of the objective function. Increasing p will favor models that are
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simple, while decreasing p will favor models that are complex but are more accurate.

f1 is defined as follows:

f1(Etest) = 10log10Etest (6.2)

The second term runs over the six neurons of the network and is designed to favor

simple activation functions. The linear, relu, tanh and elu activation functions are

assigned scores of wi = 0, 1, 2 and 3, respectively. The third term runs over the

network weights and favors fixed, simple weights over trainable ones. A fixed weight

value of 0 is assigned a score of 0, while other fixed weights are assigned the score 1,

and a trainable weight is assigned a score of 2.

f2(wj) =


0 wj = 0

1 wj = 1, 1/2,∆t/2,∆t, 2∆t

2 wj = trainable

(6.3)

Given this fitness function, we can encode our network with 6 activations and 20

weights as an individual of length 26. The first 6 genes of this individual can take

values from 0 to 3, and the next 20 genes can take values from 0 to 7. We use the

DEAP package for the evolutionary optimization [221]. We start with populations of

200 and 500 individuals, evolving them for 50 generations each to discover PNNs. We

use a two-point crossover with a crossover probability of 0.5, and a custom mutation

operation, where the first 6 genes are randomly mutated between 0 and 3 while the

next 20 genes are randomly mutated between 0 and 7, with a mutation probability of

0.3. Individuals are selected for crossover using a tournament selection scheme with

a tournament size of 10. For each individual, the fitness described above is evaluated,

training the network using the functional API in the Keras package [214] if the network

has trainable weights. We use the simple evolutionary algorithm described in Chapter

7 of [222], as implemented in the DEAP package. For each population size, we perform

five independent runs (using different seeds to initialize the initial population) to

characterize the probability of successfully discovering an accurate integration scheme.
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The evolution of the fitness for the best individual in each generation is shown in

Figure 6.4. The complete code for the genetic algorithm optimization can be found

in a Jupyter notebook on nanoHUB [212].

Fig. 6.4. Evolution of the fitness of the best individual in each generation.
The colors represent different runs, while the black dashed lines represent
the fitness value for the position Verlet algorithm and the Euler algorithm.
Runs with a population size of 500 are marked with squares and runs
with a population size of 200 are marked with circles. The orange stars
represent the top 3 PNNs.

The resulting PNNs reproduce the training, validation and testing data more

accurately than the architecturally complex FFNNs. Figure 6.5(a) compares the

RMSE for positions and velocities from the optimal PNN (denoted PNN1) to the

feedforward NN. Remarkably, the PNNs also result in excellent long-term energy

conservation and time reversibility, evaluated using the same procedure as before.

Figures 6.5(b) and 6.5(c) compare the total energy and trajectories generated by

PNN1, the FFNN and the velocity Verlet integrator. We see that PNN1 learns both

time-reversibility and that total energy is a constant of motion. This is in stark

contrast to the physics-agnostic FFNN and even naive physics-based models like a
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first order Euler integration. A few of the top-ranked PNNs perform similarly to

PNN1 and they will be discussed below.

Fig. 6.5. (a) PNN model 1 RMSEs on the training/validation/test sets
compared to the feed forward network (b) We see that energy conserva-
tion between PNN1 and the verlet integrator is comparable (TE: total
energy) (c) Forward and reverse trajectories generated by PNN1 show
good reversibility (d) A visualization of PNN model 1 found by the ge-
netic algorithm, attempting to predict positions and velocities one step
ahead

Having established that the PNNs learn the physics of the system and result in

stable and accurate integrators, we now explore their interpretability in the hope of

finding out how time-reversibility and energy conservation are achieved. In short:

can the PNNs teach us what they learned? We find that the PNNs discover simple

models, with many weights taking fixed values (including zero) and all activations

functions taking the simplest possible alternative (linear functions). As an example,

the parameters corresponding to PNN1 are shown in Figure 6.5(d). This simplicity

allows us to trivially obtain position and velocity update equations. Equations (6.4-

6.7) represent the top three PNNs discovered from the data, rewritten in terms of

relevant quantities such as timestep and mass.
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x(t+ ∆t) = x(t) + v(t)
∆t

2
+

1

2
f(x(t) + v(t)

∆t

2
)

∆t2

1.0005m
(6.4)

x(t+ ∆t) = x(t) + 1.00005v(t)
∆t

2
+

1

2
f(x(t) + v(t)

∆t

2
)

∆t2

1.0005m
(6.5)

x(t+ ∆t) = x(t) + 1.00035v(t)
∆t

2
+

1

2
f(x(t) + 1.0007v(t)

∆t

2
)

∆t2

1.0005m
(6.6)

Figures 6.6 to 6.7 show other PNNs with comparable (but higher) objective func-

tions.

Fig. 6.6. Activation functions and weights for PNN Model 2

Fig. 6.7. Activation functions and weights for PNN Model 3

The RMSE values for PNN Model 1 on taking one step for the position and velocity

are-7 (1.88x10-7, 7.05x10-7), (1.89x10-7, 7.12x10-7), and (1.50x10-7, 4.73x10-7) respec-

tively for the training, validation and testing set. The RMSE values for PNN Model
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2 are (1.87x10-7, 6.92x10-7), (1.88x10-7, 7.07x10-7), and (1.51x10-7, 5.44x10-7), while

the RMSE values for PNN Model 3 are (1.88x10-7, 8.25x10-7), (1.88x10-7, 8.34x10-7),

and (1.51x10-7, 6.81x10-7).

Inspecting Figure 6.5(d) and Eq. (6.4) we find that PNN1 achieves time-reversibility

by evaluating the force at the midpoint between inputs and outputs, this central force

evaluation is key to many advanced numerical methods. In fact, PNN1 represents the

position Verlet algorithm [35] except that the NN training makes an error in the mass

of approximately 3 in 10,000. This algorithm is both reversible and symplectic, i.e. it

conserves volume in phase space. The small error in mass actually seems to originate

from the small inaccuracies of the force sub-net to describe the Lennard-Jones poten-

tial. The PNN models attempt to correct for the errors in the force sub-net, which

could be the reason for the PNN models to learn the Verlet integration scheme with

marginally different coefficients. Figure 6.8 shows the energy conservation for the

Verlet integration scheme (using the force sub-net) and PNN 1. The Verlet network

consists of weights corresponding to the position Verlet integration scheme, and we

find that the network predicts a total energy slightly different from the true total

energy, the discrepancy originating from an imperfect force sub-net. PNN 1 attempts

to correct this discrepancy, resulting in better predictions of the total energy.

Fig. 6.8. Energy conservation for the Verlet model compared to PNN 1.
While both networks conserve energy, PNN 1 attempts to correct for the
discrepancy in the force sub-net, predicting the absolute value of the total
energy more accurately
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PNN2 and 3 are similarly interpretable and, quite remarkably, they also learn to

evaluate the force at the half-step. The main difference between these networks and

PNN 1 is that a few additional parameters remain adjustable and thus decrease the

fitness value, learning a slightly inaccurate version of the position Verlet algorithm

with minor energy drifts due to the slight asymmetry in effective mass in the position

and velocity update equations.

6.2.5 Importance of parsimony in discovering equations from data

Having demonstrated that adding a force model to a standard feed forward net-

work is insufficient to discover an accurate integration scheme, we will now demon-

strate the importance of parsimony to discover an accurate scheme. We use the generic

neural network from Figure 6.3 and attempt to learn the force sub-net, keeping some

weights fixed and some trainable. Specifically, knowing the weights corresponding

to a Verlet integrator, any weight that would be designated as ‘fixed’ by the genetic

algorithm for this network (weights that have values 0, 1
2
, 1, 2, ∆t

2
, ∆t, and 2∆t) are

kept fixed at the values corresponding to the Verlet network, while any weight that

is deemed trainable is trained. Our attempt here is to simulate a situation where

the genetic algorithm has determined some weights to be fixed, and we wish to un-

derstand if the network can learn the force sub-net, and the remaining integrator

weights directly from the data. We find that the discovered PNN learns a force sub-

net that is a scaling factor times the true force, compensating for this scaling factor

by learning the appropriate trainable weight in the integration. This is expected since

a raw particle trajectory only provides information about acceleration (force/mass)

and not the force and mass individually. We make an error of ∼3% in the acceleration

learnt by the network, recovering an accurate integration scheme. This shows that by

enforcing parsimony, the network can learn the force sub-net to match the training

data.
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6.2.6 Discovering integration schemes for damped systems

Along similar lines, we tested the ability of the PNNs to discover the physics

governing a damped dynamical system. The equations for the top two PNNs, with γ

the damping constant, are:

x(t+ ∆t) = x(t) + v(t)
∆t

2
+

1

2
f(x(t) + v(t)

∆t

2
)

∆t2

1.0005m
(6.7)
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x(t+ ∆t) = x(t) + 1.00035v(t)
∆t
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2
f(x(t) + 1.0007v(t)

∆t
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The PNNs learn classical mechanics, the idea that the frictional force is propor-

tional to negative the velocity, and discover the same stable integrators based on the

position Verlet method, all from the observational data.

We consider the emergence of Verlet style integrators from data remarkable. This

family of integrators is the preferred choice for molecular dynamics simulations due

to their stability. Unlike other algorithms such as the Runge-Kutta family or the first

order Euler method, Verlet integrators are symplectic and time reversible [34]. This

class of integrators has been long known and proposed independently by several re-

searchers over decades (see Ref. [34] for a review), but a detailed understanding of their

properties and their justification from Trotter’s theorem are relatively modern [35].

We stress that the equations of motion and an advanced integrator were obtained

with only observational data of the motion of a particle and the force-displacement

relationship. We believe that, at the expense of computational cost, the force sub-net

could be learned together with the integrators (effectively learning the acceleration)

from dynamical data. Finally, we note that evolutionary optimization is not the only

way to achieve parsimony. For example, one could include hidden layers containing

a library of possible activation functions and use sparsity to prune unnecessary acti-

vations. This has recently been used to discover simple kinematics equations [206].
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An advantage of this approach over ours is simplicity and computational expedience

since such networks can be trained using backpropagation alone. However, unlike

the evolutionary approach used here, the solution can be sensitive to initialization

and the weights of the network may not automatically evolve to interpretable values,

finding sub-optimal adjustable values.

6.3 Discovering melting temperature laws from data

To demonstrate the generalizability of PNNs, we now explore the ability of PNNs

to discover melting laws from experimental data. Our goal is to predict the melting

temperature of materials from fundamental atomic and crystal properties.

6.3.1 Description of training data to discover melting laws

We collected a dataset of experimental melting temperatures for 218 materials

(including single elements and perovskites) from the Pymatgen [223] and the Wol-

fram Alpha [224] repositories respectively. For each of these materials, we collected

fundamental material properties such as the bulk modulus K, shear modulus G, vol-

ume per atom Vat, and density ρ by querying the Materials Project repository [7]. We

then compute the average sound speed vm in the material by averaging the S-wave vs

and P-wave vp velocities for the material:

vs =

√
G

ρ

vp =

√
K + 4G

3

ρ

(6.10)

vm =

[
3

( 1
vp

)3 + (2 1
vs

)3

]1/3

(6.11)
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We also compute a = V
1/3
at as an effective interatomic distance, and m to be

the mean mass of an atom in the material. Using these quantities, we define four

quantities with dimensions of temperature, as follows:

θ0 =
h̄vm
kba

θ1 =
h̄2

ma2kb

θ2 =
a3G

kb

θ3 =
a3K

kb

(6.12)

where h̄ is the Planck’s constant h divided by 2π, and kb is the Boltzmann’s

constant. We then normalize all inputs and the output (experimental melting tem-

perature) by θ0, giving us three dimensionless inputs:

θ′1 =
h̄

mavm

θ′2 =
a4G

h̄vm

θ′3 =
a4K

h̄vm

(6.13)

6.3.2 Parsimonious neural network architecture to discover melting laws

We now design a parsimonious neural network with three inputs θ′1, θ′2, θ′3, one

hidden layer with three neurons, and one output, the melting temperature of the

material. Each neuron can now take the linear, squared, multiply, inverse, and hy-

perbolic tangent (tanh) activations. The multiply and inverse activation functions

allow for additional complexity in the discovered laws via product and inverse terms.

The weights can again be fixed or trainable, with the fixed category allowing weight

values of 0 and 1. Unlike discovering integration schemes, the timestep ∆t is not a

relevant quantity anymore, so we do not consider this in our list of fixed weights.

This flexibility highlights the ability of PNNs to favor quantities relevant to the un-
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derlying physics in comparison to other fixed quantities, as well as arbitrary weights

obtained in standard neural network training. Our network thus has twelve weights

(each with three possible settings) and four activation functions to optimize. The

objective function is the same as Eq (6.1), with Eqs. (6.2) and (6.3) now modified to

f1(Etest) = log10(Etest + 1) (6.14)

f2(wj) =


0 wj = 0

1 wj = 1

2 wj = trainable

(6.15)

The scores assigned to the linear, squared, multiply, inverse and tanh activations

are 0, 1, 2, 3, and 4 respectively.

Varying the parsimony of the objective function, Eq. (6.1), we obtain a family of

melting laws, see Figure 6.9, that represent a tradeoff between complexity (defined

as the sum of the second and third terms of Eq. (6.1), i.e., the sum of the activation

function term and weight term) and accuracy.

We find extremely simple laws such as:

T PNNAm = 21.8671θ0 (6.16)

T PNNBm = 13.9654θ0 + 0.003015θ2 (6.17)

Most interestingly, we also find the celebrated Lindemann melting law, which

describes the melting temperature of a material as:

T lindm =
kb

9h̄2f
2a2mT 2

D = C
θ2

0

θ1

(6.18)

Where TD is the debye temperature of the material and f (equivalently C) is an

empirical constant.

We also find laws more complex than Lindemann that are more accurate:
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Fig. 6.9. Melting laws discovered by PNNs. The red points show the
celebrated Lindemann law, while the blue points show other models dis-
covered. The black dotted line denotes the pareto front of models, with
some of the models performing better than the Lindemann law while also
being simpler. Three models are highlighted and labeled

T PNNCm = 14.4216θ0 + 0.003286θ2 +
1.24119θ2

0

θ1 − 0.00326θ3

(6.19)

The equations discovered above can be obtained by interpreting the PNNs, as

shown in the figures below:

PNN A attempts to describe the melting temperature as a linear function of the

debye temperature, and we find this to be the simplest expression apart from the

expression Tm = 0. PNNs B and C attempt to improve on this model by adding

a correction term that is linear with the shear modulus. PNN C additionally also

uses a third correction term that is more complex and warrants further investigation.

Figure 6.9 shows that the PNN methodology can not only find existing laws directly

from data, but also find new, simple laws that better describe the data.
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Fig. 6.10. Activation functions and weights for PNN Model A

Fig. 6.11. Activation functions and weights for PNN Model B
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Fig. 6.12. Activation functions and weights for PNN Model C

6.4 Conclusions

In summary, we have shown that parsimonious neural networks are capable of

learning interpretable physics models from data and extract underlying symmetries

in the problem at hand. From data describing the classical evolution of a particle in an

external potential, the PNN produces integration schemes that are accurate, conserve

energy and satisfy time reversibility . Furthermore, they can be easily interpretable

as discrete versions of Newton’s equations of motion. Quite interestingly, the PNNs

learn the non-trivial need to evaluate the force at the half step for time reversibility.

The optimization could have learned the first order Runge-Kutta algorithm, which

is not reversible, but it favored central-difference based integrators. We note that

other high-order integrators are not compatible with our initial network, but these

can easily be incorporated by starting with a more complex network. As discussed

above, the resulting algorithms would not come as a surprise to experts in molecu-

lar dynamics simulations as this community has developed, over decades, accurate

algorithms to integrate Newton’s equations of motion. The fact that such knowledge
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and algorithms can be extracted automatically from observational data has, however,

deep implications if the approach presented is successful in other problems and fields.

This is confirmed with a second example that shows the ability of PNNs to extract

melting laws from experimental data. We discover a family of expressions that are

pareto optimal in terms of accuracy vs. parsimony, our results show that the widely

used Lindemann law, proposed in 1910, is remarkably close to the front but we find

PNNs that outperform it.
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7. CONCLUSIONS

7.1 Summary of current work

This thesis describes methods of using and improving molecular dynamics sim-

ulations to understand materials phenomena and aid the design of next generation

materials. Chapter 3 discusses how molecular dynamics simulations can be used to

understand how shape memory alloy properties such as thermal hysteresis and trans-

formation temperatures are modified when a coherent 2nd phase is added. We find

that we can increase martensite stability and transformation temperature by incor-

porating a soft second phase with near zero lattice mismatch to the martensite phase.

This finding, along with other trends we find, will aid the design of lightweight room-

temperature shape memory alloys, whose transformation temperature is currently

too low for practical use. Chapter 4 discusses how kinetic Monte Carlo methods

can be incorporated in MD simulations to extend timescales and predict microstruc-

ture evolution in carbon fibers. We developed the MD-CF model which accurately

predicted transverse microstructures, as well as predicted the transverse modulus of

carbon fibers, a quantity difficult to measure in experiments. We briefly explored the

role of processing parameters could affect the transverse microstructure and proper-

ties. Chapter 5 explores novel implementations of MD algorithms to achieve greater

length and time scales. This resulted in CabanaMD-NNP, an implementation that

relies on an existing LAMMPS implementation but leverages novel libraries to achieve

cross-platform performance, resulting in massive speedups by the efficient utilization

of the GPUs. Chapter 6 describes Parsimonious Neural Networks (PNNs), an ML

technique that combines genetic algorithms and neural network training to discover

interpretable laws directly from data. We demonstrate this method by discovering in-

tegration schemes for molecular dynamics and discovering novel melting laws directly
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from data. We find the PNNs to discover the Verlet integration scheme as a simple

model that also accurately describes the data. Similarly, the PNNs find the celebrated

Lindemann law to describe melting, but also find other simpler descriptions that also

describe the data better, effectively discovering new laws directly from data.

7.2 Potential future work

Future work following on Chapter 3 could generalize the trends we see in a met-

allurgically relevant precipitate geometries, providing specific guidelines for future

experiments. Precipitate geometries could be generated using Atomsk [20] and the

study could be repeated for various precipitate sizes. This could also be extended

to polycrystalline systems, where other relevant variables such as grain size, and the

effect of precipitate location with respect to the grain, could affect the transformation

characteristics. Ongoing work is currently exploring this for a Ni-Al system.

Another avenue for future work could be the development of an interatomic model

for the Mg-Sc alloy, parametrized to low Sc and high Sc regions of the Mg-Sc alloys.

Recent work using Density Functional Theory calculations has shown that the ad-

dition of pure Mg as a coherent 2nd phase can stabilize the martensite phase by

decreasing its energy, thus increasing its stability and increasing the transformation

temperature of the alloy. The availability of an Mg-Sc interatomic potential will allow

us to predict the transformation temperature accurately, and predict the concentra-

tion of Mg required to attain room-temperature martensite phase stability. Ongoing

work from collaborators is also exploring an automated search to match base marten-

sitic phases with coherent 2nd phases that can modify transformation characteristics

in a desired manner.

Future work following on Chapter 4 would mainly focus on extending MD-CF to

generate a three-dimensional atomisitc model of carbon fibers, a task that has proven

to be challenging thus far. Other groups following up on our work have recently

reported microstructures close to those experimentally observed [139, 140]. While
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these works show remarkable success, the microstructures are still generated by short

timescale MD evolutions of a basic unit such as a graphitic sheet or a structural

unit generated by reactive MD simulations. Increasingly realistic carbon fiber mi-

crostructures could be obtained combining the initial structures used in the studies

mentioned before, with the MD-CF approach to simulate long timescale microstruc-

ture evolution. This improvement is essentially focusing on an improved description

of the initial ladder structures which represent the early reactions that occur during

carbonization.

Specifically, we could build on work from Saha et al. [113] and Kowalik et al. [225],

who have characterized the chemical reactions that occur during the initial stages of

carbonization. The work from Saha et al. in particular suggests that ladder structures

consisting of six-membered rings with heteroatoms first form five-membered rings

and polyyne chains by the elimination of N2. These structures then fuse to form

six-membered rings over time, releasing H2, with the occasional release of HCN and

other gases throughout this process. This seems to suggest that ladder structures

with one six-membered ring are unlikely to form. To incorporate this insight, the

initial structure for a three dimensional MD-CF model could be a long set of ladder

chains that have a width of two or three six-membered rings, similar to the initial

structures considered in [139]. The subsequent MD-CF approach could then simulate

long-term microstructure evolution.

Another approach that could provide realistic microstructures is to add bond-

breaking capabilities in MD-CF. One limitation of the current MD-CF approach is

that long ladder structures can be forced into configurations that are potentially unfa-

vorable because of the formation of a few initial bonds between two ladders. In reality,

many chemical reactions could allow the ladders to break away from this configuration

and bond to another structural element that would lower the energy of the configura-

tion. The addition of a bond-breaking reaction into the MD-CF scheme would allow

partially bonded ladder structures to occasionally break the bonds they formed and

explore other low-energy possibilities to create bonds. From a kMC standpoint, if we
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consider the bond creation reaction as a forward process, the improvement suggested

here is the same as specifying a non-zero backward reaction rate.

A full extension of the ideas presented above is indeed considering a wide set of

chemical reactions that occur during carbonization, including bond creation and bond

breaking, and explicitly including all reactions into the kMC piece of MD-CF. The

initial ladder structure could then have heteroatoms in the aromatic rings, and allow

for the complex reactions suggested by Saha et al.

Yet another avenue for improved microstructures would be starting from a three-

dimensional stabilized structure that is in agreement with experiments. This agree-

ment would not only have to consider the atomic structure of the ladders, as men-

tioned above, but also the three dimensional arrangement of these ladder structures,

including defects, voids, and amorphous regions. These initial structures could be

obtained using schemes similar to the ones used in recent work that simulates car-

bonization [139]. A full extension of this approach would be to consider the generation

of ladder structures from precusor fibers, essentially applying the MD-CF idea to the

stabilization process. This, in conjunction with MD-CF for carbonization, could be

the first end-to-end atomistic model of carbon fiber processing, and provide atomistic

insight into the effect of processing variables such as carbonization temperature, heat-

ing rate, extent of stretching during graphitization etc, on the mechanical properties

of the created fibers. This insight can then be used as a guide to manufacture next

generation, high-strength and high-stiffness fibers. It must be noted that an experi-

mental database of carbon fiber microstructures, their associated characteristics such

as crystallite length, and the observed mechanical properties, would be crucial for

further modeling efforts to conslidate their approaches.

Apart from modeling the fibers, the MD-CF approach, or improved versions of it,

could also be used to predict microstructures at the surface of carbon fibers. This

would be relevant to understanding the behavior carbon fiber - epoxy matrices in

composites and determine the mechanical behavior of these interfaces and the effect

of fiber processing and microstructure on the properties of the composite.
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Future work following on Chapter 5 will focus on scaling across multiple nodes

and GPUs. Demonstrating scaling across the leading supercomputers in the U.S, such

as the Summit machine at Oak Ridge National Laboratory, and Sierra at Lawrence

Livermore National Laboratory, will be key to understanding the extent of simulations

capable with these new algorithms. The strong and weak scaling results could point us

to the possibility of near-quantum accurate, state-of-the-art neural network potential

MD simulations of a billion atoms or more. The CabanaMD implementation is also

limited to the NVE ensemble, and an integration into the LAMMPS software package

to provide other thermostat algorithms is critical to expand the range of problems that

could be solved with these algorithms. The scalability of these algorithms could be

used to investigate scientific problems of interest, such as Li-ion diffusion in electrode

materials, as well as recrystallization in phase change materials, problems which would

require the availability of appropriate neural network potentials.

Another front of development could be investigating potential speedups in kernels

where a bigger fraction of the compute time is spent on evaluating ML models, one

example of which is [54]. These kernels are more tightly coupled to scalable libraries

such as Tensorflow, and exploring methods to combine Cabana and Kokkos constructs

with Tensorflow is an exciting avenue to access even greater length and time scales

with neural network potentials.

Future following on Chapter 6 could benchmark the PNN approach against a stan-

dard dataset such as the recently introduced Feynman Symbolic Regression Database

in Ref. [226]. An ongoing work is the use of PNNs to discover chemical kinetics

for high energy materials directly from atomistic trajectory data. In this setup, an

encoder-decoder network is trained learn effective low dimensional encodings of the

high dimensional, raw atomic environment of each trajectory snapshot. The encoded

representations are then passed through a PNN to attempt to detect kinetics laws

that can be written in terms of the encoded variables. This approach is similar to

other recent work [206] that uses encoder networks to generate input variables for

equation learning networks. An interesting future direction here could be to enforce
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constraints on the learnt encoded variables. This could be done by using a customized

objective function for the encoder network, or by more advanced methods that au-

tomatically convert the encoded variables to dimensionless inputs [226]. Similarly,

the encoded variables could be simplified based on translational or other symmetries.

Future work could also re-implement the custom activation functions in the PNN

scheme as Keras custom layers, which would allow easy scalability to include many

more activation functions and physical constants as fixed weights.

Ongoing work is also attempting to use PNNs to learn equations that predict

the detonation velocity of high-energy materials, where current predictive models

could benefit from PNN’s automated approach to combining and composing functions

beyond human intuition. Each application of PNN will focus on automatically detect

equations from data, significantly increasing confidence in the learnt models due to

their interpretability.

Another application of machine learning methods to molecular dynamics is the

use of recurrent networks to accelerate molecular dynamics simulations. As discussed

in this work, MD simulations are limited by the small time steps required to resolve

high frequency atomic vibrations accurately. Accelerated integration schemes such as

RESPA [35] attempt to separate the force evaluation into a ‘fast force’ and a ‘slow

force’, where the fast force is computationally cheap and the slow force is relatively

expensive. The RESPA scheme then defines an integration scheme where the slow

force is evaluated once every ‘n’ steps, where n is often 4 or 5. Instead of using

conventional force models to compute the fast and slow forces, we could use recurrent

neural networks to predict a time series of the forces on each atom. The recurrent

network could then be used as a fast force, with the conventional force model used as

a slow force. This integration can provide speedups of ∼4-5x or even greater.

Finally, a continuing push should be made to make both computational and data-

science workflows accessible to a wider audience. This could be via creating curated

databases of simulation results and by creating new ways of interacting with the

databases. An example of this would be to explore a database of Density Functional
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Theory calculations to understand convergence criteria for predicting band gaps in

semiconductors. Such studies would save valuable time for new users and provide an

initial point for further studies.
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