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ABSTRACT

Akbar, Shayan A. Ph.D., Purdue University, December 2020. Source code search for
automatic bug localization. Major Professor: Avinash C. Kak.

This dissertation advances the state-of-the-art in information retrieval (IR) based

automatic bug localization for large software systems. We present techniques from

three generations of IR based bug localization and compare their performances on

our large and diverse bug localization dataset — the Bugzbook dataset. The three

generations span over fifteen years of research in mining software repositories for

bug localization and include: (1) the generation of simple bag-of-words (BoW) based

techniques, (2) the generation in which software-centric information such as bug and

code change histories as well as structured information embedded in bug reports

and code files are exploited to improve retrieval, and (3) the third and most recent

generation in which order and semantic relationships between terms are modeled to

improve the performance of bug localization systems. The dissertation also presents

a novel technique called SCOR (Source Code Retrieval with Semantics and Order)

which combines Markov Random Fields (MRF) based term-term ordering dependen-

cies with semantic word vectors obtained from neural network based word embed-

ding algorithms, such as word2vec, to better localize bugs in code files. The results

presented in this dissertation show that while term-term ordering and semantic rela-

tionships significantly improve the performance when they are modeled separately in

retrieval systems, the best precisions in retrieval are obtained when they are modeled

together in a single retrieval system. We also show that the semantic representations

of software terms learned by training the word embedding algorithm on a corpus of

software repositories can be used to perform search in new software code repositories

not present in the training corpus of the word embedding algorithm.
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1. INTRODUCTION

Over 40 million software developers contribute to the free and open-source software

repositories hosted on the GitHub software development platform [1]. Various other

such platforms exist, like GitLab [2], BitBucket [3], and GitBox [4], that have their

own communities of software developers. Additionally, many large software-centric

companies have internal tools and platforms for the development and maintenance of

their proprietary software repositories.

The millions of software developers, working in companies or contributing publicly

through open-source development, are distributed across the globe, and collaborate

with each other using various software development platforms over the internet.

The number of software repositories publicly available on only one platform —

GitHub — is in several hundred million. Many of these software repositories contain

millions of source code files. And the total number of source code files hosted on

GitHub is in billions.

All of the above discussion on the scale of software development activity in the

world calls for the development of methods and tools for the organization and main-

tenance of software repositories. Tools that are capable of locating relevant source

code files when provided with software search queries — especially, queries concern-

ing localization of bugs in the software — are incredibly useful for the organization,

maintenance, and evolution of large software systems.

In this dissertation, we investigate various software search tools that can localize

a bug in a software repository when provided with a bug report query1. In order to

localize a bug in the codebase, the search system locates the source code files that

1A bug report is a piece of document that is submitted usually by a software developer when they
encounter a bug in the software system. In future discussion, we will show examples of bug reports
filed for various open-source software projects.
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are affected by the bug by comparing the textual content of the bug report with the

textual contents of the code files.

Over the last decade or so, several bug localization techniques have been developed

[5–16] that are inspired from the methods invented for information retrieval (IR),

and the field has evolved to such a large scale that there is an entire IEEE/ACM

conference — called the International Conference on Mining Software Repositories

(MSR) — dedicated mainly to localizing artifacts in software repositories.

The traditional approach to solving the bug localization problem involves model-

ing software code repositories with the Bag-of-Words (BoW) assumption. The early

works [5, 7–13] in the field used simple BoW models that measure the frequencies

of individual bug report terms appearing in code files to rank the files according to

their relevancy to the bug reports. However, since BoW based models only consider

frequencies of individual query terms in source code files, they are unable to exploit

any ordering or semantic relationships between the terms in the query and the terms

in the code files.

Consider an example search query ‘‘initialize model parameters’’ for which

a BoW based model, while ignoring the positions, order, and meanings of terms

initialize, model, and parameters, retrieves files only based on the frequencies

of individual terms initialize, model, and parameters. Whereas, for the same

search query if we incorporate ordering relationships between terms in the modeling

framework, the files in which the pairs of query terms — such as, initialize and

model, initialize and parameters, and model and parameters — occur together

in close proximity while maintaining the same order in which they appear in the query

would be ranked higher than the files in which individual query terms initialize,

model, and parameters occur. And when semantic relationships between terms are

built into the search engine, the files containing terms — such as, start, mod, and

pars — that are semantically related to the original query terms —initialize,

model, and parameters — would be considered potentially relevant to the query in

addition to the files containing the original query terms. Developing such a software
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search system that models order and semantics would be incredibly useful for bug

localization.

In addition to effectively modeling ordering and semantic relationships between

terms, searching in a large codebase comes with the challenge of modeling software-

centric information embedded in the code files and bug report. Note that the bug

report queries are not regular natural language queries, rather strings that often

contain source code identifiers and other structured information such as stack traces

and code patches. Also, the documents present in the corpus are not regular natural

language documents, rather specially structured source code files containing comment

blocks and import statements among other things.

A software search system that goes beyond simple BoW modeling, and incorpo-

rates inter-term ordering and semantic relationships along with the software-centric

information derived from the source code files and bug reports in the modeling proce-

dure, is needed to enhance the search precision of bug localization. Therefore, the

first objective of this dissertation is to develop a code searching framework

for automatic bug localization that incorporates semantic and ordering re-

lationships between terms while modeling the software-centric information

extracted from bug reports and code files to achieve better precision.

In recent years, the researchers in the bug localization community have devel-

oped techniques to effectively solve the bug localization problem by incorporating

software-centric information and term-term dependency relationships in the model-

ing procedure. However, their studies were conducted on datasets of relatively small

sizes, and also only considered Java-based software repositories in the experiments.

A comprehensive large-scale study of state-of-the-art bug localization algorithms

on a large and diverse dataset containing bug reports from multiple programming

languages is currently absent from the existing bug localization literature. An exten-

sive and thorough study is critical because it is not uncommon for the performance

numbers produced by testing with a large dataset to be different from those obtained

with smaller datasets.
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Another important reason why a large-scale study is needed is because the BoW

models continue to be used widely in the industry despite the availability of more

advanced tools with greater retrieval accuracies. We believe that the software industry

has exhibited reluctance in adopting more advanced retrieval methods largely due to

the credibility gap created by the absence of a large-scale comparative evaluation.

Therefore, the second important objective of this dissertation is to

develop a large and diverse dataset using bug reports filed for software

repositories that are written in multiple programming languages, and

subsequently perform a comprehensive comparative evaluation of state-

of-the-art bug localization algorithms. We believe that the dataset will serve

as a benchmark for the research community to test their bug localization algorithms.

And the large-scale study is expected to encourage the adoption of advanced bug

localization methods for industrial usage.

1.1 Primary Contributions

We propose the following important contributions towards addressing the objec-

tives of this dissertation:

1. We developed SCOR (Source Code Retrieval with Semantics and Order) —

a novel code search tool for automatic bug localization that jointly models se-

mantics and order in a single retrieval framework for improved precision. SCOR

combines Markov Random Fields (MRF) based term-term ordering dependen-

cies with semantic word vectors obtained after training a word embedding algo-

rithm, such as word2vec [17], FastText [18], and GloVe [19], on a large corpus

of software repositories to model both order and semantics together.

At the heart of the SCOR retrieval framework are two “layers” that we call

the “Match Layer (ML1)” and the “Match Layer 2 (ML2)”. In the form of

a 2D numeric array, ML1 is simply a record of the similarities between the

terms in a query and the terms in a file, with the similarities being computed
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by applying the cosine distance measure to the numeric vectors produced by

the word embedding algorithm, such as word2vec. Subsequently, in the spirit of

convolutional neural networks, we convolve the ML1 layer with a 2×2 kernel —

whose elements must possess certain pre-specified properties — to yield another

2D numeric array that is ML2. As we argue in this dissertation, the numbers

in the ML2 layer become high only for those sequences of terms in the query

and a file, which is being evaluated for retrieval vis-a-vis the query, when there

is significant semantic similarity between the two both respect to the terms and

with respect to the ordering constraints on the terms. We show that convolving

the 2D array of numbers in ML1 with a 2×2 operator produces the same effect

as what would be achieved with MRF based logic as presented in [6, 20].

SCOR provides improvements in the range of 7−21% in terms of Mean Average

Precision (MAP) when compared with the existing techniques. While there exist

several bug localization algorithms that incorporate order or semantics in the

retrieval framework, SCOR is the only method that combines both order and

semantics into a single retrieval framework.

2. In order to train the word embedding algorithms, like word2vec, FastText, and

GloVe, we created a large dataset of 35,000 Java based software repositories

downloaded from GitHub. These repositories contain 35 million source code

files and around 1 billion software term tokens. After training the semantic

word embedding algorithms on this dataset, we obtain word vectors for half

a million software terms. We also perform analysis pertaining to the quality

of word embeddings produced by the algorithms, and present a comparative

study of various word embedding algorithm in identifying semantically similar

software terms.

3. For the purpose of performing a large-scale comparative evaluation of IR tools

for bug localization we created a novel, large, and diverse Bugzbook dataset.

Bugzbook contains over 20,000 bug reports belonging to 30 different software
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projects written in Java, C/C++, and Python programming languages. The

existing bug localization datasets are significantly smaller in size, and contain

bug reports belonging only to Java-based software repositories. Bugzbook is

the largest dataset for bug localization in terms of the number of bug reports,

and is double the size of the second largest dataset publicly available for ex-

perimentation. Bugzbook is also the first dataset of its kind that includes

significant number of bug reports belonging to software repositories written in

programming languages other than Java. We believe this will encourage the

researchers to extend the testing of their bug localization algorithms from Java

based projects to non-Java projects.

4. We perform a large-scale study of eight retrieval algorithms on Bugzbook, and

report results on their comparative performances. The results drawn from this

study reveal: (1) The state-of-the-art tools for bug localization significantly

outperform the traditional BoW models, (2) SCOR outperforms the previous

algorithms for bug localization, (3) The word embeddings obtained after train-

ing the model on the corpus of 35000 Java software repositories are quite generic,

and therefore, can be used to effectively perform search in novel software repos-

itories not present in the training dataset even if the software repositories are

written in programming languages other than Java.

5. There exist several IR models that incorporate ordering relationships between

terms to enhance bug localization. These models include Markov Random Fields

(MRF) [6,20], Proximity based Divergence from Randomness (PDFR) [21], and

Positional Language model [22]. Unlike BoW models that model frequencies of

individual bug report terms in code files to produce a relevance score, these

term-term dependency models consider frequencies of sequences of bug report

terms in code files to improve retrieval precision. We perform a comparative

evaluation of these models in this dissertation.
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1.2 Organization of the Dissertation

Chapter 2 reviews a timeline of fifteen years of research in IR based automatic bug

localization. We also discuss techniques belonging to three generations of research in

the field.

In Chapter 3, we discuss the features and construction of our novel, large, and

diverse Bugzbook dataset. We also present statistics about the bug reports and source

code files present in the Bugzbook dataset.

Traditional BoW based source code retrieval models are discussed in Chapter 4.

In Chapter 5, we compare the performances of three term-term dependency models

that exploit proximity and ordering relationships to enhance bug localization.

In Chapter 6, we discuss how inter-term semantic relationships can be modelled

using semantic word embedding algorithms, such as word2vec, FastText, and GloVe.

We also perform analysis of the quality of word vectors produced by these algorithms.

Chapter 7 introduces SCOR (Source code retrieval with semantics and order), a

novel code search tool that significantly improves the performance of bug localiza-

tion. SCOR combines MRF based ordering with semantic word embeddings to better

localize bugs in code files.

In Chapter 8, we perform a large scale study of bug localization using our Bugz-

book dataset that contains over 20,000 bug reports belonging to approximately 30

software projects. This is the largest study performed so far on bug localization.

We compare the performances of eight retrieval algorithms on Bugzbook and present

results in terms of retrieval precisions.
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2. A TIMELINE OF PREVIOUS RESEARCH IN BUG

LOCALIZATION

A timeline of important publications on the subject of automatic bug localization is

presented in Figure 2.1. The figure shows around 30 papers published between the

years 2004 and 2019. These publications that appeared in roughly 15 highly-respected

venues — conferences and journals — belong to the three generations of software bug

localization. The names of these conferences and journals are also shown in the figure.

From 2004 to 2011 — that’s when the first-generation tools came into existence

— one could say that research in automatic bug localization was in its infancy. The

algorithms presented in [5, 23–25] laid the foundations for such tools and these were

based purely on the Bag-of-Words (BoW) based assumption. Marcus et al. [23] led

the way through their demonstration that Latent Semantic Indexing (LSI) could

be used for concept location. Kuhn et al. [24] extended the work of Marcus et al.

and presented results in software comprehension. Next came the Latent Dirichlet

Allocation (LDA) based bug localization algorithm proposed by Lukins et al. [25]. To

round off this series of algorithms, Rao and Kak [5] compared several early BoW based

IR techniques for bug localization, and showed that simpler BoW based approaches,

such as Vector Space Model (VSM) and Unigram Model (UM) outperformed the more

sophisticated ones, such as those using LDA.

The second-generation bug localization tools, developed between the years 2010

and 2016 [8–12, 26–32], exploit structural information embedded in the source code

files and in the bug reports as well as the software-evolution related information de-

rived from bug and version histories to enhance the performance of BoW based sys-

tems. These studies suggest that the information derived from the evolution of a soft-

ware project such as historical bug reports [8,26,27,30] and code change [10,11,31,32]

history plays an important role in localizing buggy files given a bug report. These
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studies also suggest that exploiting structural information embedded in the source

code files [10, 12, 29, 31], such as method names and class names, and in the bug re-

ports [9,28,29,31], such as execution stack traces and source code patches, enhances

the performance of a bug localization system. BugLocator [8], DHbPd (Defect His-

tory based Prior with decay) [11], BLUiR (Bug Localization Using information Re-

trieval) [12], BRTracer (Bug Report Tracer) [29], LOBSTER (Locating Bugs using

Stack Traces and text Retrieval) [9], Amalgam (Automated Localization of Bug using

Various Information), [10], BLIA (Bug Localization using Integrated Analysis) [31],

and LOCUS (LOcating bugs from software Change hUnkS) [32] are some of the

prominent bug localization tools developed during the second-generation.

The third and the most recent generation of bug localization tools date back to

roughly 2016 when term-term order and semantics began to be considered for im-

proving the retrieval performance of such tools [6, 15, 16, 33, 34]. For exploiting the

term-term order, as for example reported in [6], these tools utilized the Markov mod-

eling ideas first advanced in the text retrieval community [20]. And for incorporating

contextual semantics, as in [15, 16, 33, 34], the tools used word embeddings based on

the word2vec modelling [17] of textual data.

For the sake of completeness, it is important to point out that the organization of

our evaluation study resulted in our having to leave out the contributions in two ad-

ditional and relevant threads of research: (1) the query reformulation based methods

for bug localization, such as those reported in [7,35] and (2) the machine-learning and

deep-learning based methods [14, 15, 30, 36–39] in which a ranking model is trained

to produce relevance scores for source code files vis-a-vis historical bug reports, and

afterwards, the learned model is used to test the relevance of a new bug report to

a source code file. We leave the evaluation of such bug localization methods for a

future study.

With regards to a large-scale comparative evaluation, we are aware of only one

other recent study [40] that evaluates six different IR based bug localization tools on

a dataset called Bench4BL that involves 46 different Java projects that come with
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Fig. 2.1.: A 15-year timeline of the cited publications in the field of IR-based

automatic bug localization. We represent a publication by the last name of the

first author of the publication along with the venue in which the publication appeared.

The abbreviation inside square brackets, for example “WCRE” in “[WCRE]”, refers

to the conference or the journal in which the publication appeared, while the abbrevi-

ation inside round brackets, for example “BLUiR” in “(BLUiR)” indicates the name of

the tool presented in the publication. The list of publications mentioned in the time-

line is, obviously, not complete and is only a representative subset of the hundreds of

publications on IR-based bug localization. Notice that we have only included those

publications in this timeline in which bug localization experiments were performed

(with the exception of a few very early publications — that appeared before the year

2010, such as [23] — which performed experiments for concept location).
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61,431 files and 9,459 bug reports. As the authors say, their work was motivated by

the current “lack of comprehensive evaluations for state-of-the-art approaches which

offer insights into the actual performance of the techniques.” However, this study

only covers bug localization methods from the second-generation of the tools, and

therefore, does not include the important developments in bug localization made

possible by the third-generation tools. That is, this study has left out the tools that

incorporate term-term order and contextual semantics to enhance bug localization

performance as in [6, 15, 16,33,34].

Additionally, note that the study carried out by Lee et al. [40] considers only

Java-based software projects. On the other hand, our evaluation in this dissertation

uses the Bugzbook dataset and involves eight different IR tools from all the three

generations of software bug localization systems, and is based on a diverse collection

of Java, C/C++, and Python based software projects that come with 4.5 million files

and over 20,000 bug reports.

For yet another reason as to why we developed our own dataset and did not use

the existing Bench4BL toolchain, that toolchain was designed to work only with the

Jira issue tracking platform [41]. Because of our interest in cross-language effects on

retrieval platforms, we also wanted to download and process the bug reports from

GitHub [1]. Our Bugzbook dataset construction tool has the capability of extracting

and processing bug reports and code files from both Jira as well as GitHub open-

source issue tracking and software development platforms.

We should also mention the past studies by Ye et al. [42] and Thomas et al. [37] in

which number of queries analysed are around 20,000 and 8,000, respectively. However,

these studies are also focused mainly toward Java-based projects, and also do not

consider the tools from the most recent generation of tools that include term-term

order and semantics. Whereas, in this dissertation we consider C/C++ and Python

projects in addition to Java projects, and also, examine the retrieval performances of

novel state-of-the-art tools that consider order and semantic relationships to enhance

retrieval.
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3. BUGZBOOK — A VERY LARGE DATASET FOR

AUTOMATIC BUG LOCALIZATION

The problem of automatic bug localization has been investigated thoroughly in the

past decade or so, and various datasets have been developed and published in this

regard. These datasets contain bug reports belonging to software projects publicly

available on the internet. A thorough examination of these datasets reveals that (1)

Their sizes are relatively small; and (2) They consisted mostly of Java-based projects.

To elaborate on the dataset sizes, at the low end, the researchers conducted exper-

iments using datasets with just a few hundred bug reports, and, at the high end, the

reported results were based on datasets with just a few thousand bug reports. The

studies presented in [40], [42], and [37] are the only ones that include more than a few

thousand queries to evaluate the performance of their bug localization algorithms.

Regarding the above-mentioned studies that are based on large datasets, Ye et

al. [42] evaluated their bug localization algorithm on around 20,000 bug reports drawn

from six Java projects. The study presented in [37] was performed on 8000 bug

reports belonging to three Java and C/C++ based projects. The most recent large-

scale comparative study carried out by Lee et al. [40] used around 9000 bug reports,

all belonging to Java-based projects. Therefore, a large-scale bug localization dataset

that contains code libraries in multiple languages is needed for a thorough evaluation

of bug localization algorithms.

The goal of this chapter is to present the features and construction of a novel,

large, and diverse Bugzbook dataset to overcome the shortcomings of prior datasets.

A large-scale evaluation using a dataset such as Bugzbook is important because it is

not uncommon for the performance numbers produced by testing with a large dataset

to be different from those obtained with smaller datasets.
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Table 3.1.: Comparing Bugzbook with other bug localization datasets

Dataset #projects # bugs reports

moreBugs 2 ∼400

BUGLinks 2 ∼4000

iBUGS 3 ∼400

Bench4BL 46 ∼10000

Bugzbook 29 ∼20000

Another important reason why a comprehensive large-scale evaluation such as the

one presented in this dissertation is needed is that the first-generation search tools —

those based on the Bag-of-Words (BoW) assumption — continue to be used widely

in industry despite the availability of the more advanced tools with greater search

precision. We attribute this state of affairs to the credibility gap created by the

absence of performance comparisons of the sort reported by us in this dissertation.

We believe that the availability of a large-scale study will encourage adoption of

state-of-the-art bug localization tools for industrial usage.

An important issue related to any large-scale evaluation is the quality of the

evaluation dataset — in our case, that would be the quality of the bug reports — to

make sure that the dataset does not include duplicate bug reports and other textual

artifacts that are not legitimate bug reports. Our Section 3.2.2 describes how the raw

data was filtered in order to retain only the legitimate and non-duplicate bug reports.

Also, in Section 3.2.5, we present how we performed manual verification of the steps

involved in the dataset construction process.

We believe Bugzbook will encourage researchers to carry out large-scale evalu-

ations of their software retrieval algorithms. Given the size of the dataset, it may

also encourage further research in deep-learning based approaches for software search.

Table 3.1 compares Bugzbook with other bug localization datasets.
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Fig. 3.1.: An example bug report taken from Apache Ambari project. Notice the two

most important fields “Title” and “Description” are highlighted in the figure.

In the section that follows, we highlight some unique features of Bugzbook. In

Section 3.2, we then explain the process that was used to construct this dataset.

Analysis of Bugzbook is presented in Section 3.3.

3.1 Features of Bugzbook Dataset

As shown in Table 3.2, the Bugzbook dataset includes a large collection of Java,

C/C++, and Python projects, 29 to be exact. The reader should note that two of

the Java based projects listed in the table, AspectJ and Eclipse, were used previously

in two datasets, iBugs [43] and BUGLinks [44], that have frequently been used for

testing new algorithms for automatic bug localization.

Bugzbook includes several Apache projects. The reason for selecting projects from

Apache is because its software developer community is believed to be the largest in
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the open-source software world with regards to Java programming language. From

Apache we only selected those projects for which we could find the bug reports online

in the well managed Jira [41] issue tracking platform.

In addition to the Apache projects, Bugzbook also contains bug reports from other

large-scale open-source projects, such as Tensorflow, OpenCV, Chrome, and Pandas.

The bug reports for these projects are maintained on the GitHub platform1.

As shown in Table 3.2, the total number of bug reports in Bugzbook is 21,253. An

example bug report is shown in Figure 3.1. The total number of source-code files in all

of the projects together adds up to 4,253,610. Note that the last column of the table

shows the number of versions for each project. We maintain the association between

the bug reports and the project versions they belong to. Additionally, we record the

files that were fixed in response to the bug reports. The association between bug

reports and fixed code files is important because the files that were fixed in response

to a bug report serve as the ground truth relevance files in the evaluation of the

bug localization algorithms. The data format used in Bugzbook for storing the bug

reports is the same XML schema as used previously for BUGLinks.

3.2 How the Bugzbook Dataset was Constructed

The Bugzbook dataset was constructed from the open-source software repository

archives and their associated issue tracking platforms. The Apache project archive

and the associated Jira issue tracking platform would be prime examples of that.

In the material that follows in this subsection, we will address the following steps

used to create Bugzbook: (1) Gathering the raw data for bug reports and source code

files; (2) Filtering the raw bug reports to eliminate any duplicates and other textual

artifacts; (3) Linking the bug reports with their respective source code files after the

files were fixed; (4) Matching each bug report with the respective project version; and,

1Chrome bug reports are obtained from BUGLinks website.
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Table 3.2.: Stats related to Bugzbook dataset.

Project Description # files # bugs # vers

Java projects

Ambari Hadoop cluster mgr 85113 2253 29

Aspectj Java extension 6636 291 1

Bigtop Big data manager 1291 5 5

Camel Integration library 1229503 2308 101

Cassandra Database mgmt tool 187150 514 133

Cxf Services framework 768444 1795 138

Drill Hadoop query 42360 800 17

Eclipse IDE 12825 4035 1

HBase Database mgmt tool 265491 2476 95

Hive Data warehouse 114993 2221 32

JCR Content Repository 472680 457 104

Karaf Server-side app 63420 390 34

Mahout Machine learning 27263 162 10

Math Mathematics tool 16735 17 3

OpenNLP NLP library 10250 84 11

PDFBox PDF processor 38943 1163 35

Pig Database manager 25462 47 11

Solr Search server 404944 471 54

Spark Database manager 18737 185 29

Sqoop Database manager 7415 201 7

Tez Graph processor 14795 177 14

Tika Docs processor 16983 183 16

Wicket Web app 317975 567 63

WW Web app 72838 87 23

Zookeeper Distr comp tool 9911 20 9

C/C++ and Python projects

Chrome Browser 7232 147 1

OpenCV Computer vision tool 2865 8 1

Pandas Data analysis tool 523 179 1

Tensorflow Deep learning tool 10833 10 1

Total 4253610 21253 976
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finally, (5) Carrying out a manual verification of the dataset on randomly chosen bug

reports and the corresponding source code files.

3.2.1 Gathering Raw Bug Reports and Source Code Files

Jira, the issue tracking platform for Apache, provides bug reports in XML format

with multiple fields. We wrote a script that automatically downloaded all the bug

reports that were marked as “FIXED” by the issue tracker and stored them in a

disk file. The reason we downloaded only the fixed bug reports is because we could

obtain the relevant source code files that were fixed in response to those bugs. With

regard to downloading bug reports from GitHub, we used a publicly available Python

script [45]. We modified the script so that it downloaded only those reports from

GitHub that were explicitly marked as “closed bugs” by the report filer. This overall

approach to the creation of an evaluation dataset has also been used in the past for

creating some well-known datasets [6, 8, 40].

That brings us to the downloading of the source-code files. For downloading these

files for the Apache projects, we wrote another script that automatically downloaded

all the versions of the software projects we use in this study from the Apache archives

website [46]. These software repositories were downloaded in the form of compressed

ZIP or TGZ archives. The compressed files belonging to the different versions of the

projects were then extracted from the archives and stored in the disk.

In addition to downloading the archives for the software projects, we also cloned

the most recent snapshot of the projects from the relevant version control platforms

(GitHub, GitBox, etc.) in order to obtain the most recent commit logs for the software

repositories. As explained later in this section, the commit logs are used to establish

associations between the bug reports and the files.

As for the Eclipse, Chrome, and AspectJ projects, we downloaded their bug re-

ports from the BUGLinks and the iBUGS datasets that are available on the internet.
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Since these bug reports relate to a single version of the project, we downloaded just

those versions from the Eclipse, Chrome, and AspectJ archived project repositories.

3.2.2 Filtering the Raw Bug Reports

On the Jira online platform [47], the individual filing a report has the option to

label it as belonging to one of the following categories: “task”, “subtask”, “story”,

“epic”, or “bug”. We made sure that we downloaded only those reports that were

labeled “bug” for inclusion into our Bugzbook dataset.

On GitHub as well, the individual filing a report has the option to assign labels to

the report based on pre-defined categories2. We select only those reports for Bugzbook

that had been marked explicitly as “bug” or “Bug” by whomsoever filed the reports.

Finally, in order to avoid including duplicate bug reports in the Bugzbook dataset,

we only selected those bug reports that were not marked as a “duplicate” of another

bug report by the report filer.

3.2.3 Linking Bug Reports with Source Code Files

The most difficult part of what it takes to create a dataset like Bugzbook is the

linking of the bug reports with the source code files which were fixed in response to

the bug reports. This step is critical because it provides the ground truth data with

which a bug localization technique can be evaluated.

The commit messages that are filed when the developers modify or fix the files

play an important role in linking the bug reports with the relevant files. If a commit

is about a bug having been resolved, the developer who fixed the bug includes in the

commit message the ID of the bug that was fixed as a specially formatted string. For

most of the projects we examined, this string is in the following format: “PROJECT-

###”, where “PROJECT” is the name of the software project, such as “AMBARI”,

and “###” is the ID of the bug report that was resolved. An example of a commit

2These categories are defined by the project administrators
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Fig. 3.2.: A commit message with bug ID and source code files highlighted in the

text. The commit message is taken from the Apache Ambari project. It includes the

specially structured string “[AMBARI-25131]” in the commit message. Notice that

this is the commit message filed in response to the bug report shown in Figure 3.1.

This means that the developer responsible for this commit notified that this commit

message resolves the bug with the ID 25131. Also, the version control system records

the files that were modified in response to this commit message. Therefore, the two

files highlighted are the files that were fixed in order to resolve the bug 25131.

message with the bug ID and the names of the source code files fixed is shown in the

Figure 3.2.

A GIT based version control system that manages a software project also attaches

the names of the files that were modified in response to a bug report with the commit

messages. The associations thus created between the file names and the bug reports

can be used directly to link the bug reports with the relevant source code files.
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Although there are advanced techniques available in the software engineering lit-

erature [48] that automatically link bug reports with source code files on the basis of

textual information contained in the bug reports and the commit messages, we use

the explicit method described above to establish the links between the bug reports

and the files. To elaborate further, by explicit we mean that if a commit message

mentions a file name along with the bug ID, then we can match up the two and form

a link. Otherwise, we discard the commit message. The reason to use this explicit

method for linking the bug reports with the source code files is because we want

to avoid false positives in the linking process at the possible cost of incurring false

negatives.

3.2.4 Versioned Associations between the Bug Reports and the Files

In much research in the past on automatic bug localization, the practice was to

use only the latest version of the software library for the source code and for file

identification. Bugzbook, on the other hand, maintains all of the different versions of

a software project and the files relevant to a bug belong to a specific version of the

project.

The bug reports often come with either the version number of the software that is

presumably the source of the bug, or the version number in which the bug is fixed. If

the affected version of the project that resulted in a bug is present in the bug report

description, we link the bug report with the version mentioned in the report. On the

other hand, if the bug report mentions the fixed version of the software, we use the

version that was released prior to the fixed version as the linked version for the bug

report. This obviously is based on the assumption that the version that was released

prior to the fixed version contained the bug mentioned in the bug report.
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3.2.5 Manual Verification of the Bugzbook Dataset

For verification of the steps described previously in this section to control the

quality of the dataset, we manually check a randomly chosen small portion of the

dataset by comparing the bug report entry in the Bugzbook dataset with the bug

report entry in the online bug tracking platform like Jira and GitHub. In particular,

we randomly selected two bug reports from each software project present in Bugzbook

and manually verified its entry in the online platform. We check if the bug ID associ-

ated with a bug report in Bugzbook indeed belongs to the correct bug report in the

online tracking system. We also verify all the attributes, such as title and description

entries, of the bug reports. In addition to verifying the bug report entry in the online

tracking system, we also verify if the bug ID associated with the bug report has a

commit message associated with it in the GIT commit log, and that the fixed files

mentioned in the commit log match the repaired files stored in the Bugzbook entry

of the bug report.

3.3 Analysis of Bugzbook Dataset

We present our analysis of the Bugzbook dataset in this section. In particular, we

show statistics related to bug reports and code files, and also present a novel measure

of the level-of-difficulty of performing retrieval in different software projects.

The analysis report is present in Table 3.3. The rows of the table correspond to

the software projects while the columns present the statistics about that project.

3.3.1 Bug Reports Statistics

We show the average number of bug reports present in different versions of the

project, the average length of the title of the bug reports, and the average length of

the description of the bug reports, in the third, fourth, and fifth columns of the table,

respectively.
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Table 3.3.: A thorough analysis of the Bugzbook dataset.

Project LoD avg #bugsvers avg title avg desc avg #filesvers avg files

Java projects

Ambari 1.98 75 11 40 2837 373

Aspectj 1.07 291 7 99 6630 147

Bigtop 0.47 0 11 36 143 125

Camel 1.9 20 11 133 10880 139

Cassandra 1.69 2 9 151 1127 379

CXF 1.46 11 11 158 5122 221

Drill 1.58 42 11 232 2229 329

Eclipse 1.3 4035 9 35 12825 357

Hbase 1.74 19 10 125 2074 698

Hive 1.77 69 10 175 3593 536

JCR 1.88 2 9 109 2685 272

Karaf 1.8 5 10 128 834 156

Mahout 1.27 6 9 152 1514 195

Math 0.81 1 6 114 1045 236

Opennlp 1.06 7 9 46 854 139

Pdfbox 1.57 29 8 116 973 233

Pig 0.85 2 10 96 1591 372

Solr 1.2 6 10 131 5399 324

Spark 1.77 5 9 122 520 268

Sqoop 1.4 14 11 131 529 192

Tez 1.48 11 10 63 924 458

Tika 1.27 7 9 110 679 219

Wicket 1.99 4 10 107 2717 143

WW 1.34 1 9 147 1693 189

Zookeeper 0.99 1 9 108 550 228

C/C++ and Python projects

Chrome 0.58 147 11 138 7232 294

OpenCV 0.16 8 9 34 2399 456

Pandas 0.64 149 9 56 587 2570

Tensorflow 0.23 10 8 338 10883 238
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We notice that the average length of the title remains in the range 7 − 11 words

across all projects, while the average length of the description changes significantly

across all projects ranging from 34− 338 words.

The average number of bug reports across all versions is also not uniform for

different projects. Some projects have only a few (as low as only one) bug report per

version, whereas, the Eclipse project has the most number of bug reports (4035) in a

single version.

3.3.2 Source Code Files Statistics

For each project we also examine the source code files present in different versions.

The stats about the average number of files present in different versions of a specific

project, and the average length of files are reported in the last two columns of Table

3.3.

We notice that the Bigtop project has on average only 147 code files in different

versions, while Camel, Eclipse, and Tensorflow projects have over 10,000 code files on

average in their different versions.

We also notice that usually the average length of code files range from 100 to 500

words. However, for the Pandas project, the average number of words in a code file

is around 2500.

3.3.3 Level of Difficulty (LoD) of Different Projects in Bugzbook

When a bug localization dataset involves multiple projects, it is unlikely that all

the projects would present the same level of difficulty (LoD) to a retrieval engine. So,

ideally, one should weight the performance numbers for the different projects with

some measure of LoD for the individual projects. We have experimented with the

information-theoretic idea of Mutual Information (MI) for the source-code library and

the bug reports as a measure of retrieval LoD for the library. We characterize each

project by two random variables X and Y , where X represents the vocabulary in the
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source code and Y represents the vocabulary in all the bug reports for that project.

Now we can measure MI for any given project by

MI(X, Y ) = H(X) +H(Y )−H(X, Y ) (3.1)

where H(X) and H(Y ) are the marginal entropies and H(X, Y ) the joint entropy.

Note that MI(X, Y ) quantifies the amount of information that the two random vari-

ables X and Y share. So the higher the value of MI for a project, the more the bug

reports can tell us about the project vocabulary and vice versa.

The second column of Table 8.2 shows the calculated MI values for the software

projects in Bugzbook. We observe that OpenCV project has the least MI value, while

the project with largest MI value is Wicket.

In Chapter 8, we will perform an analysis on the relationship between MI values

and the performances of retrieval algorithms on different software projects.
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4. TRADITIONAL BAG-OF-WORDS BASED SOURCE

CODE RETRIEVAL MODELS FOR BUG LOCALIZATION

Now that we have discussed the components of a bug localization dataset and how one

can go about creating one, in this chapter, we will start our discussion of retrieval

techniques used for bug localization with the traditional approach of BoW based

modeling [5, 7–13].

In BoW based modeling the relevance score for a file to a query is computed based

on the frequencies of individual query terms appearing in the code files. Afterwards,

the files are ranked according to their relevance scores and presented as output to the

user.

There are several methods for BoW modeling of software code repositories for

bug localization. In this dissertation we will focus on the Dirichlet Language Model

(DLM) and Term Frequency Inverse Document Frequency Model (TFIDF). These

two serve as the baseline models for evaluating the performances of more advanced

models we will discuss later in this dissertation.

In what follows, we will review DLM and TFIDF. We will derive the formulas for

their relevance scores and provide rationale behind the heuristics used in developing

these models.

4.1 Dirichlet Language Model (DLM)

The task of retrieving code files given search queries, such as bug reports, can be

interpreted as a language modeling problem. In that, a code file is considered a good

match to a bug report query if the model of the file is likely to generate the query,

which in turn will happen if the query terms appear frequently in the code file.
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Given a query Q = q1, q2, ..., qn, and a code file f = f1, f2, ..., fm, the goal is

to measure the conditional probability P (f |Q), i.e., the probability that the file f

generates the observed query Q.

Using the Bayes’ rule:

P (f |Q) =
P (Q|f)P (f)

P (Q)
(4.1)

The denominator P (Q) is dropped because it’s a constant, and therefore, does not

contribute to the ranking of files, and the term P (f) is dropped because it is assumed

to be uniform.

Therefore, the retrieval model reduces to the computation of P (Q|f), which is the

multinomial model:

P (Q|f) =
∏
i

P (qi|f) (4.2)

Clearly, we assumed independence between query terms qi in the above unigram

model. This independence assumption is at the heart of Bag-of-Words modeling.

Taking the logarithm on both sides to overcome the problem of numerical underflow:

logP (Q|f) =
∑
i

logP (qi|f) (4.3)

Given a term qi from the vocabulary of the collection C, the maximum likelihood

estimate is given by:

P (qi|f) =
tf(qi, f)∑
w∈f tf(w, f)

(4.4)

where tf(w, f) is the frequency of term w in file f , and
∑

w∈f tf(w, f) is simply

the total number of terms in the file f .

To resolve the issue of zero frequencies when a query term is not present in the

file, we need to perform smoothing of the probability distribution. Using Bayesian

Smoothing with Dirichlet Priors [49], the file likelihood of a term is given by:
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P (qi|f) =
tf(qi, f) + µP (qi|C)∑

w∈f tf(w, f) + µ
(4.5)

where µ is the smoothing parameter. The above equation is the equation of the

Dirichlet Language Model (DLM) for code retrieval.

4.2 Term Frequency Inverse Document Frequency (TFIDF)

In [50], Robertson and Jones presented a BoW model for text retrieval called the

Term Frequency Inverse Document Frequency Model (TFIDF). In this section we

show how TFIDF can be used for bug localization.

The TFIDF model is based on two important measurements: (1) the number of

times a query term qi appears in the file f , and (2) the document frequency of the

term qi. Here, the document frequency of the term qi refers to the number of files

that contain the term qi.

The rationale for having the document frequency in the equation for score calcu-

lation is that the terms present in only a few documents are often more valuable than

the ones that occur in many.

We define the inverse document frequency weight for a term qi as:

IDF (qi) = logNf − log df(qi) (4.6)

where, Nf is the number of code files in the repository, and df(qi) is the document

frequency of the term qi.

The score function for TFIDF is given as follows:

TFIDF (Q, f) =
∑
qi∈Q

IDF (qi) ∗ tf(qi, f) ∗ (K + 1)

K ∗ ((1− b) + (b ∗ |f |)) + tf(qi, f)
(4.7)

where, K and b are parameters that require tuning, and |f | denotes the total

number of terms present in the code file.
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5. MODELING TERM-TERM ORDERING

RELATIONSHIPS FOR SOURCE CODE RETRIEVAL

In the previous chapter, we have discussed how simple BoW models that are based

on measuring frequencies of individual query terms in code files, can be used for

automatic bug localization. Because of their simplicity and reasonable effectiveness,

the usage of BoW models is quite prevalent in the industry. The academic researchers

in the field have also found them useful for quite some time. Several BoW based

source code retrieval methods exist in the literature of mining software repositories

[5, 7–12,29].

With regard to the BoW based methods in the literature, Sisman and Kak [7]

introduced a BoW model called SCP-QR which is a Query Reformulation method

based on the Spatial Code Proximity of non-query terms with the query terms inside

the source code files. Zhou et al. [8] proposed BugLocator which takes into account

past bug history to identify similar bugs. The relevance of a file to a bug report is

determined using simple BoW based retrieval combined with an analysis of the source

code files that were fixed for past similar bug reports. Moreno et al. [9] and Wong

et al. [29] exploited the stack trace information present in the bug reports to better

localize the bug. Sisman and Kak [11] incorporated version history in information

retrieval based bug localization for source code search. BLUiR (Bug Localization

Using information Retrieval) was introduced by Saha et al. [12] in which different

components of a source code file — classes, methods, variables, and comments — are

assigned different weights based on their importance in the retrieval process. Rao

and Kak [5] showed that for the purpose of retrieval from software libraries for bug

localization the simplest BoW models, such as those based on Vector Space Model

(VSM), Simple Unigram Model (SUM), etc., are much more effective than the more

complicated ones like Latent Dirichlet Allocation (LDA).
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Notice that since all of the above mentioned models are based on the BoW as-

sumption and, therefore, only consider the frequencies of query terms in source code

files, all positional, ordering and semantic relationships between the terms are lost. In

this chapter, we will focus only on the positional and ordering relationships between

terms for improved retrieval. As for the inter-term semantic relationships, we will

discuss them in later chapters.

Several researchers in the IR community have developed retrieval techniques [20–

22, 51] that, in addition to considering the frequencies of the terms, also take into

account the term-term positional and ordering relationships. The earliest of these

term-term dependency models1, by Metzler and Croft [20], uses the notion of Markov

Random Fields (MRF) to generate a second-order probabilistic model for a corpus,

which is in contrast to the first-order probabilistic models that are generated by the

BoW assumption.

The Weighted Sequential Dependence (WSD) model by Bendersky’s et al. [51] is

an extension of MRF based modeling in which weights are assigned to query terms

and their combinations based on their importance to the retrieval engine.

Another extension of the basic MRF modeling is by Peng et al. [21]. Their al-

gorithm, known as Proximity Based Divergence From Randomness (PDFR), forgoes

Dirichlet smoothing for the corpus terms that are absent in a query and instead uses

DFR based weighting for such terms as advocated in [52].

Finally, we have the Positional Language Model (PLM) by Lv and Zhai [22] that is

very different from MRF. In PLM, the significance of a term in the model is defined by

the proximity-distance-weighted counts associated with all other terms in the corpus.

The fact that these term-term dependency models greatly improve the retrieval

precision is now well established in the literature [20–22, 51, 53, 54]. In this chapter

we compare these term-term dependency models with the simple BoW based models

for solving the problem of automatic bug localization. We also carry out a com-

1We will refer to the retrieval techniques that incorporate term-term ordering relationships in the
modeling procedure as the term-term dependency models in this chapter.
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parative study of the different term-term dependency models — MRF, PDFR, and

PLM — using the open-source search engine Terrier2. We have extended Terrier by

incorporating in it the implementations for the WSD [51] and PLM [22] models.

In this comparison, we use the same software-centric query conditioning (QC)

for all models. The query conditioning step can easily be turned off and on in our

extension of Terrier. We report comparative results with QC on and off. For our

comparative investigation, we use approximately 4000 bug reports of Eclipse software

library obtained from the BUGLinks dataset and approximately 300 bug reports of

AspectJ obtained from the widely popular iBUGS dataset. Notice that BUGLinks

and iBUGS datasets are also a part of our large-scale novel Bugzbook dataset dis-

cussed in Chapter 3.

We report comparative results based on retrievals with (1) just the titles of the

bug reports as queries; and (2) the entire description of the bug reports as queries.

With both software libraries, we show that all three term-term dependency models

significantly outperform the BoW based retrievals by as much as 5.2% to 26.4%.

When comparing the term-term dependency models with the more advanced BoW

based techniques — BugLocator, BLUiR, and SCP-QR — we see that the term-term

dependency models outperform BugLocator and SCP-QR, but fails to outperform

the BLUiR model. Notice that BugLocator requires a history of all bug reports that

are filed for the software. Whereas no such history is used in our methods. Also, the

BLUiR model analyses the structured information embedded in code files for better

retrieval, whereas no such analyses is performed in the term-term dependency models.

Additionally, SCP-QR is a query reformulation based method, whereas term-term

dependency models are executed without the reformulation of query.

Our experiments also demonstrate that not all three term-term dependency mod-

els are equally effective in improving retrieval precision. We show that MRF consis-

tently performs well in all our experiments, and MRF and PDFR are comparable in

their superiority over BoW, with both outperforming PLM in all but one experiment

2http://terrier.org
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(a) Full Independence (b) Sequential Dependence (c) Full Dependence

Fig. 5.1.: Using a three-term query as an example, illustrated here are the three term-

term dependency assumptions for MRF modeling of a software library.

by around 10%. PLM, however, did perform better than PDFR in one experiment

but not better than MRF. Therefore, our comparative study also concludes that out

of the three term-term dependency models MRF is the most reliable model to use.

Therefore, in the later chapters of this dissertation, we will build semantics-based

retrieval engine on top of the variants of MRF model.

The organization of this chapter is as follows. In the next section we review the

three term-term dependency models, these being MRF, PDFR, and PLM. Subse-

quently, in Section 5.2, we discuss how we use software-centric Query Conditioning

before using the queries for retrieval. Notice that the same preprocessing of bug

reports as described in this chapter is used throughout this dissertation for more

advanced methods. Experimental results are reported in Section 5.3.

5.1 Three Term-Term Dependency Models

In this section, we briefly review the three term-term dependency models for IR

based retrieval.
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5.1.1 Markov Random Field

The genesis of Markov Random Field (and the closely related Bayesian Belief

Networks) lies in attempts at making probabilistic inferences from a network of nodes,

with each node representing a variable that depends on some or all of the other nodes.

The dependency between the variables at the different nodes may be expressed in the

form of conditional or joint probabilities. Kollar and Friedman [55] present a thorough

overview of all such graphical models for probabilistic inference.

Metzler and Croft [20] were the first to recommend that MRF be used for re-

trieving information from text corporas. Subsequently, it was shown by Sisman et

al. [6] that when MRF modeling for incorporating term-term dependencies is com-

bined with query conditioning specific to software retrieval, one obtains a powerful

retrieval engine for automatic bug localization.

In the context of IR based bug localization, a Markov Random Field is an undi-

rected graph G in which one of the nodes represents a source-code file f that is being

evaluated for its relevance to a given query Q and all other nodes represent the indi-

vidual terms Q = {q1, q2, ..., q|Q|} in the query. The arcs between the nodes represent

probabilistic dependencies between the nodes. We measure the relevance of file f to

query Q by computing the conditional probability P (f |Q). Since

P (f |Q) =
P (Q, f)

P (Q)
(5.1)

and since, the denominator shown above, being independent of f , would remain the

same for all the files in a repository, the relevance of a file f to the query Q can

also be measured by estimating the joint probability P (Q, f). That is, we can say

P (f |Q)
rank
= P (Q, f).

A most interesting property of a network of probabilistic nodes in a graph G

is regarding the necessary and sufficient condition that must be satisfied by any

joint probability distribution over the nodes: Any normalized product of nonnegative
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values assigned to the cliques in G is a legitimate value for the joint distribution.3

A set of nonnegative values for a clique can be thought of as defining a potential

function for that clique. Using this property, the joint distribution P (Q, f) in the

graph G formed by f and the terms in Q can be expressed as

P (Q, f) =
1

Z

K∏
k=1

φ(Ck)
rank
=

K∑
k=1

log(φ(Ck)) (5.2)

where Ck = {C1, C2, ..., CK} represents the set of cliques in graph G, and φ(Ck) a

nonnegative potential function associated with clique Ck. The normalization factor

Z is usually ignored since the goal is to rank the files according to their relevance to

the bug report terms. Note that we express the potential functions in logarithmic

form for computational ease.

That leads to the question of how to actually determine the potential functions for

the different cliques in G. The answer depends on what sort of assumptions we want

to make regarding the probabilistic dependence of the query terms on one another and

on the file node f . With regard to such assumptions, in the following subsections we

will discuss four different ways of using the MRF model for bug localization: the full

independence assumption (FI), the sequential dependence assumption (SD), the full

dependence assumption (FD), and the weighted sequential dependence assumption

(WSD).

For the purpose of explaining the basic ideas of what goes into calculating P (Q, f)

in Equation (2), we will assume that the query Q has just three terms (q1, q2, q3). In

what follows, our elaboration of the above mentioned dependency assumptions are

based on the three subfigures in Figure 1.

3This legitimacy holds in the same as: Any nonnegative assignment of numbers to the different
outcomes of a random variable X is a legitimate probability distribution for X provided, of course,
the numbers add up to 1. By the way, the normalization constraint applies also to the nonnegative
numbers assigned to the cliques in a graph G, as should be evident by the normalization in Equation
(5.2).
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Full Independence (FI, BoW)

When using MRF modeling, the simplest assumption to make is that of full in-

dependence (FI), which amounts to the old BoW assumption that has already been

investigated extensively for bug localization [5, 7–12, 29]. In particular, the FI BoW

model is equivalent to the Dirichlet Language Model (DLM) discussed in Chapter 4.

Examining MRF with FI serves two important purposes: (1) It will help us clarify

how the potential functions needed in Equation (2) are calculated from the source

code files for the simple case of FI. Subsequently, it will be easier for the reader

to see the generalization of those explanations to the other term-term dependency

assumptions. And, (2) It will provide us with a baseline for comparing the BoW

retrieval performance with those from the other term-term dependency assumptions.

Figure 5.1a illustrates the FI assumption for the simple case of three-term query.

Notice the absence of any arcs between the nodes that stand for the query terms.

Naturally, FI implies that the graph G will consist of just 2-nodes cliques, with each

clique focusing on just one query term and its importance to the file f . The most

straightforward way to set the potential for each clique is to make it proportional to

the frequency of the query term in the file.

The ploy of setting the potential of each clique to the frequency of the correspond-

ing term in file f only works well for those query terms that are actually present in

the file. So what about the query terms that are absent in f? In MRF modeling,

the cliques formed by those query terms are taken care of through Dirichlet smooth-

ing [49].

As discussed in Chapter 4, Dirichlet smoothing means that, for a query term q

that is not present in the file whose relevance to the query is being tested, we make

the potential for the corresponding clique proportional to the collection frequency for

q. If we represent the entire software library as the collection C, we can now write

the following equation for the clique potentials for the FI case:
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log(φfi) = log
tf(qi, f) +

µfitf(qi,C)

|C|

(|f |+ µfi)
(5.3)

where tf(qi, f), and tf(qi, C) are, respectively, the frequency of the term qi in the

source code file f and in the collection C. The notations |f | and |C| stand for the

size of file and the collection, respectively. Finally, µfi is the smoothing parameter.

Therefore, the joint distribution Pfi(Q, f) to compute the relevance score for a file f

for the case of FI is given by:

Pfi(Q, f) =

|Q|∑
i=1

log
tf(qi, f) +

µfitf(qi,C)

|C|

(|f |+ µfi)
(5.4)

Sequential Dependence (MRF SD)

Figure 5.1b illustrates the sequential dependence assumption for the simple case of

a three-term query Q. Notice the arcs that connect the query term nodes sequentially.

The SD model is a result of the dependency assumption that given a file f and the

full query Q, how an individual query term qi depends on those two can be expressed

as: P (qi|f, q1, q2, ..., q|Q|) = P (qi|f, qi−1, qi+1). For the three-term example shown

in Figure 5.1b, this implies that we place an arc between the nodes q1 and q2, and

between the nodes q2 and q3. Those two arcs would be in addition to the arcs between

the file node f and the term nodes q1, q2, and q3. Consequently, we now have 3-node

cliques in addition to the 2-nodes cliques of the FI model.

While we can continue to use Equation (3) for 2-node clique potentials in Figure

5.1b, the 3-node clique potentials can be made proportional to the number of times

consecutively occurring pairs of query terms occur together in a file. Given a pair of

query terms qi and qi+1 in a graph such as the one shown in Figure 5.1b, all that the

SD assumption requires is that, when we count the number of times the pair (qi, qi+1)

occurs in a file, we ensure that the term qi+1 comes after the term qi in the file without

requiring that the two terms be adjacent. For practical reasons, this requires using a
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Table 5.1.: Features used by WSD variant of MRF

Feature Description

c1 constant value for terms (1.0)

tf(qi, C) collection frequency of term qi

df(qi) document frequency of term qi

c2 constant value for pair of terms (1.0)

tf(qiqi+1, C) collection frequency of pair of terms qiqi+1

df(qiqi+1) document frequency of pair of terms qiqi+1

window of size w in which to look for qi+1 after we have encountered qi while scanning

through the file f . The window size w is a tunable parameter for the SD assumption.

Denoting pair of terms qiqi+1 by ρ the clique potentials for the three-node cliques

in the SD assumption are given by:

log(φsd) = log
tfw(ρ, f) + µsdtfw(ρ,C)

|C|

(|f |+ µsd)
(5.5)

where the expressions tfw(ρ, f), and tfw(ρ, C), respectively, are the frequencies of the

pairs of terms ρ = qiqi+1 in file f and in the collection C. The notation µsd stands

for the smoothing parameter.

Combining these with the potentials for the 2-node cliques, we can write down

the following formula for the joint distribution P (Q, f) for the case of SD:

Pmrf,sd(Q, f) = λfi

|Q|∑
i=1

log(φfi) + λsd

|Q|−1∑
i=1

log(φsd) (5.6)

Note that in Equation (5.6) the weight parameters λfi and λsd control the relative

importance of the 3-node cliques vis-à-vis the 2-node cliques. We set the values of

these parameters such that λfi + λsd = 1.
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Full Dependence (MRF FD)

The fully connected graph in Figure 5.1c illustrates the FD assumption. In gen-

eral, this graph implies that a file f is to be considered relevant to a query when all

possible permutations of the query terms occur with frequencies that are proportional

to their frequencies in the query itself. However, since the number of permutations of

the query terms grows exponentially with the size of the query, any practical imple-

mentation of FD must place a limit on the length of the permutations considered. For

example, it is common to only consider 2- and 3-node cliques for the FD assumption.4

And when limiting oneself to 3-node cliques, one usually also places a constraint on

the order in which the terms appear in a query vis-a-vis their order in the file.

Denote again a pair of terms qiqj by ρ, the clique potentials for FD model can be

calculated as follows:

log(φfd) = log
tfw(ρ, f) +

µfdtfw(ρ,C)

|C|

(|f |+ µfd)
(5.7)

where, as for the SD case, tfw(ρ, f), and tfw(ρ, C), are, respectively, the frequencies

of the pair of terms ρ = qiqj in file f and in collection C. The notation µfd is the

smoothing parameter.

Now the joint distribution for FD case, P (Q, f) can be expressed in the following

form:

Pmrf,fd(Q, f) = λfi

|Q|∑
i=1

log(φfi) + λfd

|Q|∑
i=1

|Q|∑
j=1
j 6=i

log(φfd) (5.8)

As with the SD assumption, we set the values of the parameters λfi and λfd such

that they sum to unity.

4The 3-node cliques used in FD are not to be confused with 3-node cliques in SD. For example, in
Figure 5.1b, the nodes {f, q1, q3} do NOT form a 3-node clique. However, in Figure 5.1b, the same
three nodes do.
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Weighted Sequential Dependence (MRF WSD)

In the Weighted Sequential Dependence (WSD) assumption proposed by Bender-

sky et al. [51], a weight is assigned to individual and pairs of query terms based on

their importance to the retrieval process. This weight depends on several features

that can be computed using internal and/or external data sources. Since the goal of

Bendersky et al. [51] was retrieval from natural language corpus, the authors used

Wikipedia and Google n-grams collection as external data sources. In our study, for

the purpose of an unbiased comparative evaluation, we only consider internal data

sources —the source code files— to compute feature values. Specifically, we find the

collection and document frequency of each term and pair of terms which serves as

their feature values. The set of six features used to compute the weight of each term

and pair of terms are listed in Table 5.1.

The following scoring function is used to calculate the relevance of a bug report

Q to source code file f :

Pmrf,wsd(Q, f) =
kt∑
i=1

λi,t

|Q|∑
j=1

βt(qj, f, i)

+

kp∑
i=1

λi,p

|Q|−1∑
j=1

βp(qjqj+1, f, i) (5.9)

where kt and kp respectively are the numbers of single-term features and pair-of-terms

features. Note that we have three single-term features and three pair-of-terms feature

as listed in Table 5.1. Hence, kt = kp = 3. In Equation (5.9), λi,t and λi,p respectively

are the weights assigned to ith single-term feature and ith pair-of-terms features. The

functions β(.) for single-term qj and pair-of-terms ρ = qjqj+1 respectively are given

below:

βt(qj, f, i) =


0 , gi(qj) = 0

log

(
gi(qj)

tf(qj ,f)+
µwsdtf(qj ,C)

|C|
(|f |+µwsd)

)
, otherwise
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βp(ρ, f, i) =


0 , hi(ρ) = 0

log

(
hi(ρ)

tfw(ρ,f)+
µwsdtfw(ρ,C)

|C|
(|f |+µwsd)

)
, otherwise

where gi(qj) and hi(ρ) respectively are functions which return the value of ith feature

for jth single term and ith feature for ρ = qjqj+1 pair of terms.

Note that WSD model reduces to SD model if we only consider the constant

features (c1 and c2) mentioned in Table 5.1. Also note that if a feature value is zero

for any term or pair of terms, the function β(.) is set to zero since that term or pair

of term has no significance in determining the relevance of file to the bug report.

5.1.2 Proximity based Divergence from Randomness

The basic idea of Divergence From Randomness (DFR) for retrieval, originally

proposed by [52], has previously been incorporated in BoW based bug localization

studies [11,13]. Using this notion in term-term dependency modeling owes its origins

to Peng et al. [21] who incorporated the sequential-dependency (SD) and the full-

dependency (FD) assumptions as described in the previous section in a DFR based

retrieval framework.

The main idea in DFR is that the importance of a term to a file should be measured

by the extent to which the probability associated with the occurrence of the term

in the file exceeds the probability associated with a pure chance based occurrence.

Obviously, the more sparingly a term appears in a file, vis-a-vis its appearance in

other files, should dictate the importance of that term for making discriminations

between the files. Measuring this effect requires both a measure of the frequency

with which the term occurs in the file and a measure of how unlikely it is to occur

again in the same file, as we explain below.

DFR modeling says that the score of a file f with respect to either a single query

term qi, or a pair of terms qi and qj when we need to take term-term dependencies
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into account, is a decreasing function of two probabilities, Prob1 and Prob2, in the

form of:

Pdfr(ρ, f) = (− logProb1)(1− Prob2) (5.10)

where, for the case of a single term qi, ρ = qi, and, for the case of a pair of terms

qi and qj, we set ρ = qiqj. Prob1 is the probability that ρ will occur in file f purely

by chance according to some chosen model of randomness. We must discount the

importance lent by ρ to f by the complement of the probability that the same ρ will

occur again in that file. As to why, the ability of a given ρ to discriminate between

the files depends obviously on the extent to which ρ occurs sparingly in the files. The

discounting provided by Prob2 serves that purpose.

The Binomial model of randomness that we have used for our comparative study

yields the following formula for calculating Prob1:

Prob1 =

(
tf(ρ, C)

tf(ρ, f)

)
ptf(ρ,f)(1− p)tf(ρ,C)−tf(ρ,f) (5.11)

where, for the case of a single term qi, ρ = qi, and, for the case of a pair of terms

when we want to incorporate term-term dependency, we set ρ = qiqi+1.

We can use the following Poisson approximation to the formula in Equation (5.11)

for the case when the query terms are considered individually:

Prob1 =
eξξtf(qi,f)

tf(qi, f)!
(5.12)

where ξ = tf(qi, C)/nf = p·tf(qi, C) is the expected frequency of term qi in collection

C.

As was mentioned previously, Prob1 all by itself cannot be trusted to tell us how

important a file f is to query term qi (or to a pair of terms qiqj taken together). What

Prob1 says about a file needs to be discounted by the complement of Prob2, which

gives us the probability that the same ρ will not occur again in the file. We compute

Prob2 as follows:
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Prob2 =
tf(qi, f)

1 + tf(qi, f)
(5.13)

This formula can be extended to pair of terms ρ in which case qi is replaced by ρ in

the above equation. ρ can either be qiqi+1 or qiqj depending on whether we are using

the SD or the FD assumption.

When translating Prob1 and Prob2 into file scoring functions, it is necessary to

factor in a normalization with respect to file sizes, as has been argued by Singhal et

al. [56]. We refer to this normalization by Normalization 2 in the context of DFR

based retrieval. Under Normalization 2, the normalized term frequency is given by:

tfn(qi, f) = tf(qi, f) log(1 + µ
|favg|
|f |

) (5.14)

where µ is a tunable parameter, and |favg| is the average length of a file in the

collection. The normalization formula for the case of a pair of terms is obtained from

Equation (5.14) by replacing qi with ρ = qiqi+1 for the SD assumption and ρ = qiqj

for the FD assumption.

Based on the discussion so far, we have investigated two separate retrieval models

under DFR, one for SD and the other for FD, with both using the Binomial model

of randomness, denoted BiL2, for pairs of query terms and both using the Poisson

approximation, denoted PL2, for single query terms. Here is the file scoring function

for a single term qi :

PPL2(qi, f) =
1

tfn(qi, f) + 1
{tfn(qi, f) log

tfn(qi, f)

ξ

+ (ξ +
1

12tfn(qi, f)
− tfn(qi, f))) log e+ 0.5 log(2πtfn(qi, f)}

and here is the file scoring function for a single pair of terms ρ:
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PBiL2(ρ, f) =
1

tfn(ρ, f) + 1
{− log(|f | − 1)! + log(tfn(ρ, f))

+ log(|f | − 1− tfn(ρ, f))!

− tfn(ρ, f) log(pp)

− (|f | − 1− tfn(ρ, f)) log(p′p)}

where pp = 1
|f |−1

, p′p = 1− pp .

Next we combine the single-term and pair-of-terms file scoring functions into func-

tions that can be applied to the whole query. The final formula after combination for

the case of the SD assumption is given by:

Pdfr,sd(Q, f) = λ1

|Q|∑
i=1

PPL2(qi, f) + λ2

|Q|∑
i=1

PBiL2(ρ, f)

where ρ = qiqi+1, and the weights λ1 and λ2 are set such that they sum to unity.

And, for the case of the FD assumption, the scoring function is given by:

Pdfr,fd(Q, f) = λ1

|Q|∑
i=1

PPL2(qi, f) + λ2

|Q|∑
i=1

|Q|∑
j=i+1

PBiL2(ρ, f)

where ρ = qiqj and as for the case of SD. Again, the weights λ1 and λ2 are set such

that λ1 + λ2 = 1.

5.1.3 Positional Language Model

We will now review the final term-term dependency model for our comparative

study: the Positional Language Model (PLM) [22].

PLM modeling is based on the assumption that all query terms are dependent

on one another in some probabilistic manner. One could argue that the MRF model

with the FD assumption does the same thing. Note, however, that, in principle, the

FD assumption implies an exponential number of dependency term groups. On the
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Table 5.2.: Summary of all the term-term dependency models investigated along

with the parameter settings that yielded the best results for each. For the sake of

completeness, we have included the FI case (which is the same thing as BoW) in this

table. Note that the subscript for the parameter µ is dropped in this table.

Method Name,

Modeling scheme

Eclipse

(title)

Eclipse

(title+desc)

AspectJ

(title)

AspectJ

(title+desc)

MRF SD, MRF with

Dirichlet smoothing

w = 8

λsd = 0.2

µ = 4000

w = 20

λsd = 0.2

µ = 4000

w = 2

λsd = 0.2

µ = 4000

w = 16

λsd = 0.2

µ = 4000

MRF FD, MRF with

Dirichlet smoothing

w = 8

λfd = 0.2

µ = 4000

w = 8

λfd = 0.2

µ = 4000

w = 8

λfd = 0.2

µ = 4000

w = 16

λfd = 0.2

µ = 4000

MRF WSD, MRF with

Dirichlet smoothing

w = 2

λ1 = 0.8

λ2,3 = 0.05

λ4 = 0.2

λ5,6 = 0.05

µ = 35000

w = 2

λ1 = 0.95

λ2,3 = 0.03

λ4 = 0.25

λ5,6 = 0.03

µ = 500

w = 2

λ1 = 0.8

λ2,3 = 0.1

λ4 = 0.2

λ5,6 = 0.1

µ = 4000

w = 2

λ1 = 0.85

λ2,3 = 0.05

λ4 = 0.4

λ5,6 = 0.05

µ = 4000

DFR SD, MRF with

PL2&BiL2

w = 2

λ2 = 0.8

µ = 10

w = 30

λ2 = 0.8

µ = 10

w = 8

λ2 = 0.5

µ = 150

w = 8

λ2 = 0.8

µ = 50

DFR FD, MRF with

PL2&BiL2

w = 26

λ2 = 0.6

µ = 5

w = 16

λ2 = 0.8

µ = 5

w = 8

λ2 = 0.5

µ = 10

w = 2

λ2 = 0.7

µ = 20

PLM BS,

Propagation (Gaussian)

σ = 65

µ = 250

σ = 200

µ = 2500

σ = 100

µ = 500

σ = 90

µ = 500

PLM MS,

Propagation (Gaussian)

σ = 65

µ = 250

γ = 0.5

σ = 250

µ = 2500

γ = 0.7

σ = 100

µ = 500

γ = 0.7

σ = 100

µ = 500

γ = 0.6

FI BoW, MRF with

Dirichlet smoothing
µ = 4000 µ = 4000 µ = 4000 µ = 4000
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Fig. 5.2.: Illustration of term propagation using Gaussian density function. Notice

that term q1 appears at two positions 5 and 15, while term q2 appears only at one

position 8 in the file. The propagated count of q1 at position * is approximately 0.6

while that of q2 is approximately 0.1.
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other hand, PLM creates just a single group of dependent terms — the group of all

query terms.

In PLM, we represent each position i of a source code file f by a probabilistic

distribution that, implicitly, depends on all other positions through a proximity-based

density function as given in Figure 5.2. Consequently, we obtain what is referred to

as propagated counts at position i from all other positions in the file. As to the

choice of density function for this propagation effect, following [22], we have used the

Gaussian density function in our bug localization experiments. After experimenting

with several density functions for this purpose, we observed that Gaussian function

worked the best in terms of retrieval accuracy. A smoothed version of this density

function at each position i of source code file is given by:

P (w|f, i) =
c
′
(w, i) + µ tf(w,C)

|C|

(Zi + µ) tf(w,C)
|C|

(5.15)

with the following notation:

• w is a term in source code file f

• c′(w, i) is the total propagated count of term w at position i from the occurrences

of w in all the positions and is given by:

c
′
(w, i) =

|f |∑
j=1

c(w, j)k(i, j) (5.16)

where c(w, j) is 1 if w is at i and 0 otherwise, and k(i, j) is the propagated count

from a term at j to a term at i determined using Gaussian function exp(−(i−j)2
2σ2 ).

Here σ is a parameter.

• tf(w,C) is the collection frequency of term w

• Zi =
∑

w∈V c
′
(w, i) and is calculated using cumulative normal distribution [22].

• µ is a smoothing parameter.
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As the reader can see, each file f is represented by a collection of the probability

densities of the sort shown above. In the explanation that follows, we will refer to

each density as a single PLM.

In order to determine the importance of a file f , as represented by the PLMs that

apply to it, to a given query Q, we use KL-divergence as shown below to measure the

weight that should be given to each of those PLMs:5

PKL(Q, f, i) = −
∑
w∈V

P (w|Q) log
P (w|Q)

P (w|f, i)
(5.17)

where P (w|Q) is estimated using a maximum likelihood estimate. Note that the KL-

divergence score involves summing over only those terms that both have a non-zero

probability according to P (w|Q) and occur in file f .

With PLMs we estimate a position specific score PKL(Q, f, i) at i using KL-

divergence between a query, which is also represented by a collection of PLMs, and

the PLMs for f . In what follows, we describe two variants of this model to estimate

the overall score for the file f vis-a-vis a given query Q.

Best Position Strategy (PLM BS)

In this variant we simply score the file f based on the best matching position.

The best matching position is the one where KL-divergence score will be maximum.

Formally,

Pplm,bs = max
i∈[1,|f |]

{PKL(Q, f, i) (5.18)

5Because calculating the PLM at each position i of file f is computationally expensive, we re-
sort to computing the PLMs at only those positions of f at which the query terms appear. In-
tuitively, that makes sense because, as we discuss in Sections 5.1.3 and 5.1.3 we eventually re-
quire the score as computed from the best matching positions between f and Q. The match-
ing values yielded by KL-divergence will be the highest at such positions. This approximation
is in accordance with the implementation of PLM made available by its original authors. See
http://sifaka.cs.uiuc.edu/ ylv2/pub/plm/plm.htm
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Table 5.3.: Stats related to the two different software libraries used in our comparative

study: Eclipse and AspectJ.

Eclipse AspectJ

Description IDE Java extension

Programming Language Java Java

number of bug reports 4035 291

average number of relevant files / report 2.76 3.09

number of bug reports with stack traces 519 89

number of bug reports with patches 8 4

Multi-σ Strategy (PLM MS)

We compute several best position scores for different σ values, and then combine

these scores together to estimate the final relevance score for a file f with respect

to query Q. As recommended by Lv and Zhai [22] we find scores using two values

of sigma: ∞ and σ0. Note that with σ = ∞, the PLM model degenerates into a

traditional BoW model. The relevance score for multi-σ variant of PLM is given by:

Pplm,ms = λ1Pσ∞(Q, f) + λ2Pσ0(Q, f) (5.19)

where Pσ∞(Q, f) can be computed using any of the BoW models, for example, we

have used FI variant of MRF, and Pσ0(Q, f) can be calculated using BS variant of

PLM described in the earlier section. λ1 and λ2 are the weights we assign to the FI

and PLM models with the condition that they must sum to unity.

5.2 Query Conditioning

In the context of retrieval from software repositories, it is important to investigate

the role of software-centric query conditioning (QC) procedures that give special
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importance to what are usually referred to as “structured artifacts” — in particular,

stack traces, patches, and the terms that stand for identifiers in code — that can be

found in some bug reports [6,9,29]. The comparative results in this chapter are with

and without query conditioning. These results help us understand the contribution

that QC can make to each term-term dependency model.

When a stack trace or a patch is present in a bug report, it is first extracted

from the bug report before further processing. For such bug reports, only the terms

present in the structured artifacts are considered for further processing. Otherwise,

the entire bug report is considered as it is. For structured-artifact-bearing bug reports,

we next extract any camel-cased terms contained therein; these would normally be

the identifiers used in the source code. The number of camel-cased terms must exceed

a user-specified threshold ncc in order to trigger the special treatment for such bug

reports.

In the rest of this section, we briefly discuss the extraction of stack traces, patches,

and the camel-cased terms when they are present in the bug reports.

For extracting a stack trace from a bug report, we take note of the fact that

the most recent method call appears first in the call sequence of a stack trace6.

Therefore, we extract only the topmost nst methods since the methods which appear

further down in the trace have a low probability of containing relevant terms, and

they may introduce noise into the retrieval process. In our experiments, we have set

nst to 3 since it was found to provide the best accuracy. Note that only the methods

belonging to the software library from which we want to retrieve files are extracted

from a stack trace. In particular, the methods belonging to the Java platform itself

are ignored while extracting stack traces.

Regarding source code patches, they are incorporated in bug reports using the

Unified Format which calls for showing the differences between the original and the

modified versions of a file. In this format, a patch contains the lines that need to

6For languages in which call sequence appears in the reverse order, obviously, the logic of identifying
the methods needs to be reversed.
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be removed or added apart from the contextual lines that are supposed to remain

unchanged after the application of the patch. Obviously, the terms present in the

lines that would be added after the application of the patch are not extracted since

these lines are not yet present in the source code and, therefore, will not help in

improving the retrieval process.

Regarding camel-cased terms, in addition to existing on their own in the bug

reports, they are most likely to occur inside stack traces and code patches. When our

regular expression based detectors identify a bug report as containing either a stack

trace or a code patch or both, extraction of camel-cased terms is confined to the stack

trace and/or patch.

5.3 Comparative Evaluation

We now present our comparative evaluation of the different term-term dependency

models for automatic bug localization.

We report results using two different software libraries: Eclipse and AspectJ. The

results for the Eclipse 7 and AspectJ 8 libraries are for two different types of retrievals:

using just the titles of the bug reports as queries, and using the entire bug reports as

queries.

The bug reports for Eclipse and AspectJ software libraries were obtained from the

publicly available BUGLinks9 and iBUGS10 datasets, respectively. Table 5.3 presents

the relevant stats related to the two software libraries. Notice that Eclipse is a Java

based software with a large number of bug reports (4035) in the BUGLinks dataset.

The iBUGS dataset, on the other hand, contains relatively smaller number of bug

reports (291) for AspectJ repository 11.

7www.eclipse.org
8https://eclipse.org/aspectj
9https://engineering.purdue.edu/RVL/Database/BUGLinks/
10https://www.st.cs.uni-saarland.de/ibugs/
11Although BugLinks dataset contains 4650 bug reports for Eclipse and iBUGS dataset 350 bug
reports for AspectJ software libraries, we have chosen 4035 and 291 bug reports from the dataset
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In the rest of this section, we will first discuss the data flow in our bug localization

framework. Then, we will describe the metrics we use in our study for comparative

evaluation. That will be followed by the experimental results of the comparative

study.

5.3.1 Overall Framework

Figure 7.2 illustrates the different steps in the bug localization framework used in

this chapter.

The source code files in a library must go through stemming with the Porter

stemming algorithm and stop word removal. Subsequently, each file is indexed, an

inverted index constructed from the main index, and the two stored in hash tables.

Also, note that while indexing the source code files we extract the positions of each

term in the file and store them as part of the index. These positions are then loaded

from the index and used in the retrieval process. Specifically, frequencies of occurrence

of a pair of terms qiqj (within a window of size w) in a file f can be computed using

the positions of the query terms in file.

On the other hand, the bug reports are first subject to regular-expression based

testing for the detection of stack traces or code patches. If these are absent, further

regular-expression based testing is carried out for the detection of camel-cased source

code identifiers. In the absence of such identifiers, the bug reports are subject to the

same preprocessing steps as the source code files.

5.3.2 Evaluation Metrics

The retrieval accuracies of different term-term dependency models are measured

using precision based metrics [57]. Specifically, precision at rank r (P@r), and mean

average precision (MAP) metrics are used to evaluate the retrievals for different term-

for our analysis , respectively. We ignored those bug reports for which we could not find any of the
accompanied source code file(s) in the software library.
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Fig. 5.3.: Block diagram for the retrieval framework.
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term dependency models. P@r measures the accuracy with which retrieval is per-

formed upto rank r. The average precision (AP) for a query Q is given by:

AP (Q) =

∑RF
r=1 P@r · I(r)

relQ

where relQ is the total number of relevant files for Q, RF the number of top-ranked

files which are analyzed for the calculation of AP , and I(r) the indicator function

which returns 1 when the file at rank r is a relevant file, and 0 otherwise. MAP and

P@1 are the most important metrics which determine the power of retrieval engine.

Significance testing based on student’s t-test is performed to determine whether

improvements observed in the retrieval results obtained using term-term dependency

models vis-à-vis the BoW model are significantly different. However, since significance

testing can only tell whether the results are significantly different or not without

providing any measure of the amount of difference, we also compute the effect size

to determine that measure. In this chapter, we report one such popular effect size

metric called Cohen’s d which is calculated as the standardized difference between

two sample means.

5.3.3 Bug Localization Experiments

As summarized in Table 5.2, we compared the following eight retrieval models:

(1) MRF FD, (2) MRF SD, (3) MRF WSD, (4) DFR SD, (5) DFR FD, (6) PLM BS,

(7) PLM MS, and (8) FI BoW. That table also displays the tunable-parameter values

used for each case. These parameters were set to yield the best performance from

each model. For obvious reasons, the larger the number of parameters in a model,

the greater the effort required for tuning them. The number of parameters ranges

from eight for WSD to just one for FI.
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Table 5.4.: Retrieval accuracy for the “title-only” queries.

Method
Eclipse

MAP (%) (d) P@1 P@5 R@10

MRF FD 0.2527 (23.5%) (0.150) 0.2169 0.1094 0.4007

MRF SD 0.2466 (20.5%) (0.135) 0.2134 0.1055 0.3895

MRF WSD 0.2585 (26.4%) (0.167) 0.2226 0.1114 0.4123

DFR SD 0.2496 (22.0%) (0.141) 0.2102 0.1087 0.4014

DFR FD 0.2551 (24.7%) (0.158) 0.2208 0.1107 0.4066

PLM BS 0.2173 (6.20%) (0.041) 0.1772 0.0957 0.3651

PLM MS 0.2332 (14.0%) (0.091) 0.1963 0.0998 0.3841

FI BoW 0.2045 0.1695 0.0883 0.3400

AspectJ

MRF FD 0.1462 (16.5%) (0.091) 0.1478 0.0845 0.2483

MRF SD 0.1411 (12.5%) (0.068) 0.1615 0.0742 0.2312

MRF WSD 0.1506 (20.0%) (0.110) 0.1615 0.0811 0.2566

DFR SD 0.1502 (19.7%) (0.109) 0.1478 0.0825 0.2601

DFR FD 0.1495 (19.2%) (0.105) 0.1409 0.0832 0.2600

PLM BS 0.1336 (6.50%) (0.037) 0.1340 0.0784 0.2362

PLM MS 0.1373 (9.40%) (0.053) 0.1478 0.0784 0.2370

FI BoW 0.1254 0.1306 0.0708 0.2128
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Results for title-only queries

The experimental results for the case of title-only queries are shown in Table 5.4.

From the results it can be seen that WSD variant of MRF outperforms all the other

algorithms in terms of MAP values for Eclipse as well as for AspectJ software libraries.

MRF WSD is an extension of SD variant of MRF in which instead of considering all

terms and pairs of terms being equal, weights are assigned to them based on their

importance.

It is also worth noting that every variant of every term-term dependency model is

more powerful than the FI BoW model. The values in brackets in the second column

refer to the percent improvement over BoW model. All the dependency-model based

improvements reported for Eclipse in Table 5.4 are significant at α = 0.05 level

when evaluated using student’s t-test. Also the effect sizes d for each dependency

model when compared against the BoW model are noted in the second column. It is

interesting to note that the top 3 methods that perform the best in terms of MAP

values for Eclipse are: (1) MRF WSD, (2) DFR FD, and (3) MRF FD. While, for

AspectJ the top 3 models are: (1) MRF WSD, (2) DFR SD, and (4) DFR FD.

All MRF based term-term dependency models perform better than PLM. The

improvements observed over the best of PLM variant (i.e. PLM MS) using the best

of MRF variant (i.e. MRF WSD) and the best of PDFR variant (i.e. DFR FD) on

Eclipse title-only queries are 10.85% and 9.39%, respectively. Notice that on AspectJ

title-only queries, the best performing PDFR variant is DFR SD. And the improve-

ments over PLM MS using MRF WSD and DFR SD are 9.6% and 9.3%, respectively.

All the dependency models except PLM MS and PLM BS are statistically significant

at α = 0.05 level when evaluated using student’s t-test.

Results for title+desc queries with QC

In this section, we discuss the results for the second experiment which uses ti-

tle+desc queries with QC. Shown in Table 5.5 are the results for this experiment.
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Table 5.5.: Retrieval accuracy for the “title+desc” queries.

Method
Eclipse

MAP (%) (d) P@1 P@5 R@10

MRF FD 0.3066 (15.6%) (0.113) 0.2756 0.1292 0.4640

MRF SD 0.3022 (13.9%) (0.105) 0.2701 0.1281 0.4553

MRF WSD 0.3089 (16.5%) (0.123) 0.2793 0.1290 0.4602

DFR SD 0.2976 (12.2%) (0.092) 0.2691 0.1261 0.4481

DFR FD 0.3098 (16.8%) (0.126) 0.2796 0.1303 0.4687

PLM BS 0.2697 (1.74%) (0.013) 0.2305 0.1174 0.4298

PLM MS 0.2791 (5.28%) (0.040) 0.2401 0.1190 0.4358

FI BoW 0.2651 0.2283 0.1144 0..4114

0AspectJ

MRF FD 0.2371 (10.1%) (0.073) 0.2818 0.1175 0.3468

MRF SD 0.2311 (7.30%) (0.053) 0.2680 0.1148 0.3530

MRF WSD 0.2458 (14.1%) (0.102) 0.2852 0.1265 0.3768

DFR SD 0.2276 (5.71%) (0.041) 0.2474 0.1162 0.3534

DFR FD 0.2343 (8.80%) (0.063) 0.2543 0.1155 0.3582

PLM BS 0.2340 (8.60%) (0.063) 0.2749 0.1203 0.3533

PLM MS 0.2456 (14.0%) (0.100) 0.2887 0.1203 0.3599

FI BoW 0.2153 0.2440 0.1072 0.3179
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As can be seen in Table 5.5, DFR FD beats all the other term-term dependency

models in terms of MAP values for Eclipse dataset. The top three models that perform

the best in terms of MAP values are: (1) DFR FD, (2) MRF WSD, and (3) MRF

FD. While for AspectJ dataset, MRF WSD outperforms all other models. And the

top three models for AspectJ are (1) MRF WSD (2) PLM MS, and (3) MRF FD.

As with the results for the title-only queries, note that all term-term dependency

models significantly improve the retrieval accuracy when compared with the BoW

model. Again, we perform significance testing to evaluate whether the improvements

over BoW model are significant or not. We note that all the results except for PLM

BS are statistically significant at α = 0.05 level for Eclipse dataset. While for AspectJ

dataset, only the top three models — MRF WSD, PLM MS, and MRF FD — are

statistically significant. The effect sizes d are noted in the second column of the table.

Additionally, PLM based term-term dependency models do not perform as well

as the MRF based term-term dependency models for Eclipse title+desc queries. But

the results of PLM on AspectJ dataset are surprisingly good.

The improvements observed over the best of PLM variant (i.e. PLM MS) using

the best of MRF variant (i.e. MRF WSD) and the best of PDFR variant (i.e. DFR

FD) for Eclipse title+desc with QC experiment are 10.68% and 11.00%, respectively.

It is interesting to note that PDFR which performed better than PLM in all previ-

ous experiments — Eclipse title-only, AspectJ title-only, and Eclipse title+desc —

performs worse than PLM in AspectJ title+desc experiment.

Effect of using QC

When structured components like stack traces and patches are present in a bug

report we found that the retrieval precision greatly improves if they are utilized

appropriately. Figure 5.4 shows the MAP values for different term-term dependency

models with and without using QC. It can be noted that MAP values are significantly
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Fig. 5.4.: Effect of using QC for bug localization.

higher when QC is used than when it is not used for all the term-term dependency

models.

In addition to these structured components, when the bug report narrative con-

tains camel-cased terms, it implies that the individual who has filed the bug report is

familiar with the software library. These camel-cased terms, when present in abun-

dance in the report, are very significant because they usually refer to the source code

identifiers used in the software library. Therefore they can directly point to the source

code files which contain the bug. Exploiting this important information as described

in Section 5.2, we perform experiments using title+desc queries. The results with

and without using these camel-cased words (CCW) for different models on Eclipse

dataset are shown in Figure 5.4. It can be seen from the results that the camel-cased

words are very informative and their presence must be exploited to fully utilize the

power of term-term dependency models.
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Comparison with state-of-the-art BoW models

In order to evaluate the power of term-term dependency models vis-à-vis the state-

of-the-art techniques in bug localization, we perform a comparative study between the

term-term dependency models and three popular bug localization techniques using

Eclipse dataset. These three techniques are: BugLocator 12 [8], BLUiR 13 [12], and

SCP-QR 14 [7]. It is important to note that at the heart of these three techniques

are three separate ideas; BugLocator exploits bug history, BLUiR uses the notion of

field-based retrieval, and SCP-QR uses query reformulation.

In BugLocator when a new bug report is received it is treated as an initial query

and revised Vector Space Model (rVSM) is used to retrieve files from the repository.

For this new bug report, previously resolved similar bugs are also collected. The final

ranks of files are determined by combining the ranks obtained from the initial query

on the source code files as well as from the analysis of past similar bugs.

BLUiR splits the bug report and source code files into separate fields. Specifically,

a bug report is broken into summary and description. While each source code file is

split into four components: class, method, variable, comments. Afterwards, a separate

search is performed for each of the eight (bug report field, file field) combinations using

Okapi BM25 retrieval model. The final score for a certain file is obtained by summing

the scores across all eight searches.

The comparative results of term-term dependency models vis-á-vis BugLocator

and BLUiR for Eclipse title+desc queries are shown in Figure 5.5. Notice that DFR

FD and MRF WSD beat all state-of-the-art bug localization methods except BLUiR.

Also, BugLocator comes very close to these dependency models. However, it is worth

noting that term-term dependency models outperform BugLocator without having to

keep track of the history of bug reports.

12https://code.google.com/archive/p/bugcenter/wikis/BugLocator.wiki
13http://www.riponsaha.com/BLUiR.html
14The software for SCP-QR is obtained by contacting the authors.
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Fig. 5.5.: Comparison with state-of-the-art bug localization.

Using SCP-QR, the MAP value obtained for Eclipse title-only queries is 0.2296.

In comparison, MRF WSD, DFR FD, and PLM MS outperform SCP-QR with MAP

values 0.2585, 0.2551, and 0.2332, respectively. Notice that the results are compared

using title-only queries because, as argued in [7], the query reformulation method is

only effective for title-only queries.

Even though term-term dependency models greatly improve retrieval performance

when compared against simple BoW models, their performance against advanced

BoW models —BugLocator and BLUiR— is not very impressive. Therefore, in the

subsequent chapters of this dissertation, we will explore additional ways to improve

the performance of bug localization systems.
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6. CONSTRUCTING WORD EMBEDDINGS FOR

SOFTWARE-CENTRIC TERMS

In the earlier chapters, we have discussed retrieval models that compute the relevance

score for a file given a query based on the frequencies of individual query terms

appearing in the code files. These models are called BoW models and are considered

the baseline models for evaluating the performances of more advanced methods. In

particular, we have discussed the DLM and TFIDF BoW retrieval models in Chapter

4.

We have also discussed advancements in retrieval frameworks that extend simple

BoW models by incorporating term-term ordering dependencies. For example, in the

MRF based retrieval model presented in Chapter 5, the frequencies of pairs of query

terms are measured in code files to enhance retrieval precision.

These advances in the development of software search tools can now be further

augmented with semantics by drawing on the work that shows how the words in a

corpus can be represented by numeric vectors — referred to as their semantic word

embeddings — such that the cosine distance between the vectors for two different

words is small when the words are semantically related. This entirely new way of

looking at textual data was popularized by the word2vec contribution by Mikolov et al.

[17] and remains highly popular for incorporating semantics in text based processing

of information.

The semantic word embedding algorithms are trained on a large corpus of text doc-

uments in a self-supervised fashion. In this chapter, we study various word embedding

algorithms for modeling software repositories along with their relative performances

on the identification of semantically similar software-centric words.

The most popular algorithm for constructing word embeddings — word2vec —

is based on a shallow single-layer neural network and works by scanning the corpus
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with a window of pre-defined size while predicting the context words appearing in a

window around target words. One important limiting factor of word2vec is that it

cannot generate vectors for what are called out-of-vocabulary (OOV) words, which

are words that were not seen by the word2vec neural network during the time of

training. However, if word2vec is trained to understand the morphological structure

with which words are formed in a given language, then the vector for an OOV word

can be constructed at the testing time using the vector representation of morphologies

of words that word2vec had already seen in the training dataset.

This is exactly what FastText proposes [18]. It extends word2vec by enriching the

word vectors with subword level information. More specifically, FastText proposes to

learn representations for character n-grams, as opposed to words, and to represent

words using the summation of the vectors of their respective component n-grams.

Both word2vec and FastText are called prediction-based methods because they

both work by training a neural network to discriminate words that appear in the con-

text of target words from all the other words that are present in the vocabulary. Both

word2vec and FastText, therefore, ignore the statistics of pairs of terms occurring

together in the corpus. GloVe [19], which is another semantic word embedding algo-

rithm, is considered a count-based method because it considers the statistics of pairs

of terms occurring together, and works by factorizing the term-term co-occurrence

count matrix to construct word embeddings1.

Before we start discussing the three semantic word embeddings algorithms men-

tioned above in greater detail, it is important to note that the word2vec algorithm

builds on top of the works proposed in [58–60]. Bengio et al. [58] introduced for the

first time a neural network model that could be used for generating semantic embed-

dings. Subsequently, refinements were made to their algorithm in order to make it

more efficient by several researchers [59,60].

1While word2vec embeddings have previously been utilized for building a source code search engine
in the SCOR [16] retrieval framework, the other techniques — FastText and GloVe — are used for
the first time in this study.
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Table 6.1.: Stats related to the large Java corpus that we used to learn the semantic

word vectors from the word2vec model.

Statistics

Number of repositories 34264

Programming Language Java

Size of raw dataset 368 GB

Number of source code files 3444730

Number of word tokens 940053404

Number of words in vocabulary 415554

In the rest of this chapter, we first discuss the dataset that we have used to train

the word embedding algorithms. We will then review the three word embedding

models — word2vec, FastText, and GloVe — to construct semantic word vectors for

software-centric terms. Finally, we will analyse the quality of semantic word vectors

produced by these word embedding models.

6.1 Dataset for Training Word Embedding Models

The word2vec, FastText, and GloVe word embedding models were originally de-

veloped to learn semantic word vectors for regular English language words. Therefore,

the authors of these models used thousands of Wikipedia and news articles for the

purpose of training their models.

Our task, however, involves searching in software codebases which contain terms

that are quite distinct from regular English words. Additionally, when writing code

for a software, the developers invent their own abbreviations for commonly occurring

software terms. For example, the term ‘‘model’’ is often abbreviated as ‘‘mod’’,

‘‘delete’’ as ‘‘del’’, ‘‘socket’’ as ‘‘skt’’, and ‘‘iteration’’ as ‘‘iter’’.
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Therefore, in order to train word embedding models to generate vectors for software-

centric terms, we developed our own dataset of software repositories called the SCOR2

word embeddings dataset3 [16]. This dataset contains 1 billion software term tokens

present in 35 million Java source code files belonging to 35000 repositories. The re-

sulting semantic word vector space contains vectors for half a million unique software

terms.

Table 6.1 shows the stats related to the Java source code dataset that we have

used for training the word embedding algorithms. In light of the diversity of the

software projects used for generating the embeddings, it is safe to assume that these

word vectors are sufficiently generic and should be useful for software search in the

wild even when the target library was not present in the training dataset of the word

embedding model.

6.2 Word Embedding Models

In this section, we discuss the word embedding models that we have used for

incorporating term-term semantic relationships in the retrieval framework. These

models include: word2vec Skipgram, word2vec CBoW, FastText, and GloVe.

6.2.1 W2V: Word2vec Model

The word2vec model [17] is based on a shallow single-layer neural network which

gives us a way to construct a vector space that holds contextually semantic rela-

tionships between the words in a vocabulary. Contextual semantics means that we

consider two terms similar if the words appearing in their contextual neighborhoods

are similar. For example, for software-centric word embeddings, one would expect to

2SCOR, which stands for source code retrieval with semantics and order, is a retrieval framework
that combines MRF [6] with word2vec based word embeddings to model both order and semantics
into a single retrieval framework. The word embeddings obtained from FastText and GloVe can
directly be plugged into the SCOR retrieval framework to replace word2vec. In Chapter 7, we
provide a detailed treatment of the SCOR retrieval framework.
3https://engineering.purdue.edu/RVL/SCOR WordEmbeddings
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Fig. 6.1.: An illustration of a context window of size 5 around the target term “calls”.

Notice that the four terms “main”, “method”, “new”, and “functions” are the context

terms of the target term “calls” and will be used to train the model.

see vectors for terms like “delete”, “del”, “remove”, “cancel”, and “update” similar

from the standpoint of the cosine distance measure.

For generating these word embeddings, the training samples are automatically

generated by scanning the source code files using a window of a pre-specified size to

define the contextual terms in the vicinity of each target term. That is, a training

sample consists of a term in a repository along with a list of terms that appear inside

the window. The width of the window is a user defined parameter. The term around

which a window is placed is called the “target” term, while the terms appearing inside

the window other than the target term are called the “context” terms with respect to

that target term. Figure 6.1 illustrates the concepts of target and context terms using

an example. Notice that there are four training pair samples that can be extracted

from the window shown in the figure. These training pairs are (“main”, “calls”),

(“method”, “calls”), (“new”, “calls”), and (“functions”, ”calls”).

The word2vec neural network is trained using the training pairs consisting of target

and context terms. The prediction task can either be formulated as being from target

terms to context terms as carried out in the word2vec’s Skipgram model, or from

context terms to target terms as in word2vec’s Continuous Bag of Words (CBoW)

model. The important thing to note is that after word2vec has scanned through all
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Fig. 6.2.: The Skip-gram neural network predicts the softmax probabilities of context

terms from one-hot encoding of given target terms.

the source code files and has finished training, the weights of the neural network can

be used to construct meaningful semantic word vector representations for software

terms in the vocabulary set.

In our study we use Skipgram as well as CBoW word embeddings for source code

retrieval. The Skipgram neural network shown in Figure 6.2 is designed to predict

target terms from the context terms. Throughout the corpus, the context terms are

believed to appear with a high likelihood in the neighborhood of the target term. The

neural network consists of three layers: input, projection, and output. Notice that

the nodes in the adjacent layers are fully connected.

The sizes of input and output layers in the network shown in the figure are equal

to the number of words V in the vocabulary set, while the size of the projection layer

present in between input and output layers is N — a tunable parameter. The size

of the projection layer N is set to be always less than V , and is used to control the

dimensionality of the vectors produced by the neural network.
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The vocabulary set is sorted in alphabetical order, and each term in the vocab-

ulary is assigned an index corresponding to its position in the vocabulary. The V

dimensional one-hot encoding vector of the target term, which is a vector of all zeros

except for a 1 at the target term index, is provided as input to the neural network.

The network is trained to predict V dimensional output in which each node represents

the softmax probability of prediction for each term in the vocabulary set.

The input, projection, and output layers are represented by the vectors x, h and

y, while the weights between the input and projection layers are denoted by a V ×N

matrix W, and between projection and output layers by another N × V matrix W′.

The rows of W are referred to as the N -dimensional input vectors vw for the terms

w in the vocabulary, while the columns of W′ are referred to as the output vectors

v′w for the terms w in the vocabulary.

If vwI is the input vector for a target term, the projection layer output would be

given by h = WTx = vwI , which is the I th row of the matrix W .

Applying the weights in the matrix W′ to the outputs of the projection layer we

get the score v′Twjh = v′TwjvwI , where v′Twj denotes the j-th column of W′. To convert

the results into probability estimates p(wj|wI) we apply the softmax nonlinearity

function:

p(wj|wI) = yj =
exp(v′Twjh)∑V
j′=1 exp(v′Twj′h)

(6.1)

The goal of this neural network is to maximize the above conditional probability

that the term wj is the context term given the target term wI at input. Maximizing

this probability amounts to minimizing the loss function:

E = − log p(wj|wI) =− log
exp(v′Twj∗h)∑V
j′=1 exp(v′Twj′h)

(6.2)

=− v′
T
wj∗h + log

V∑
j′=1

exp(v′
T
wj′

h) (6.3)
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Fig. 6.3.: The CBoW neural network predicts the softmax probabilities of target

terms from one-hot encoding of given context terms.

In the above equation, j∗ corresponds to the index of the actual context term

observed in the context window of target term wI .

The training of Continuous Bag-of-Words (CBoW) model is very similar to the

Skipgram model as shown in Figure 6.3. Notice that in Skipgram we predict context

terms from target terms, while in CBoW we predict target terms from context terms.

The difference between CBoW and Skipgram is in the computation of input-to-

projection layer. The input layer in CBoW has a size of C times V , where C is the

number of context terms appearing inside the window of the target term.

While in Skipgram h is simply the input vector of the target term vwI , in CBoW

h is computed by averaging the input vectors vw1 ,vw2 , ...,vwC of all the context terms

of the target term:
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h =
1

C
(vw1 + vw2 + ...+ vwC ) (6.4)

The formulas for conditional probability and loss function for CBoW take the

same forms as they do for the Skipgram model, with the h vector being computed

as presented in the equation above and wj representing the predicted target term

instead of predicted context term at the output layer.

A detailed treatment of the training procedure that can learn the weights of the

Skipgram and CBoW neural networks is provided in Appendix A and in [61]. After

the learning process converges, the resulting vectors vw and v′w correspond to the

terms w in the vocabulary. In our retrieval experiments, we only use the input vectors

vw to represent terms in the vocabulary. Two terms can be compared on the basis of

their vector representations using an appropriate similarity metric to determine the

semantic relatedness of one vis-a-vis the other.

6.2.2 FastText: Enriching Vectors With Subword Information

FastText extends word2vec by introducing subword level information into the

vector representation of words. The main motivation behind FastText is to solve the

problem of out-of-vocabulary (OOV) words appearing at the testing stage. The OOV

words are the words that did not appear in the training corpus.

FastText solves this problem by learning vector representations of character n-

grams, instead of words themselves, and by representing each word as the sum of the

n-gram vectors.

Before constructing character n-grams from a word, special boundary symbols

< and > are added at the start and end of each word, respectively. For example,

the word “method” becomes “<method>”. The role of these special symbols is

to distinguish prefixes and suffixes of a word from the other character sequences.

Considering n=3, the word “<method>” becomes a bag of following character n-

grams:
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<me, met, eth, tho, hod, od>

In addition to the above character n-grams a special sequence “<method>”, i.e.

the word itself along with the boundary symbols, is also included in the bag of n-

grams.

To train the FastText model, the first step is to construct a dictionary G of all the

n-grams that can be formed from the words present in the input corpus. The set of

n-grams for a specific word w is denoted by Gw which would be a very small subset

of G.

Using zg to represent the vector representation of n-gram g, the vector represen-

tation of a word w can be computed by summing the vectors zg of all the n-grams g

in Gw:

vw =
∑
g∈Gw

zg (6.5)

FastText uses the same neural network as the word2vec model. The only difference

is that the words are represented by the summation of the vectors belonging to their

character n-grams in FastText. In doing so, when a new OOV word appears in

the testing stage, as long as the character n-grams of the word are present in the

dictionary G of the FastText model, a vector representation of the OOV word can be

constructed by summing the vectors of its constituent n-grams4.

The loss function for FastText is the same as the one given in Equation (A.4),

except that the vectors vw for words w are represented as summation of the character

n-grams formed by w. The loss function is given by:

E = −
∑
g∈Gw

zTg vwj + log
V∑
j′=1

exp(
∑
g∈Gw

zTg vw′j) (6.6)

4Obviously, the vector representation for the special sequence, i.e. OOV word itself, would not be
present in the model, and will therefore be ignored in the summation. FastText paper shows that
ignoring it does not affect the vector representation of the word.
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6.2.3 GloVe: Global Vectors for Word Representation

Unlike word2vec model which works by predicting context terms from target terms

using a neural network, GloVe [19] uses frequencies of pairs of context and target terms

occurring together in the corpus to construct vector representations for terms. GloVe

has been shown to improve results over word2vec for certain NLP tasks.

GloVe works in the following manner. The term-term co-occurrence statistics

Xwiwj is gathered by scanning the corpus with a small window of predefined size, and

counting the number of times the terms wi and wj appear together in the corpus.

To train GloVe, two randomly initialized vectors vwi and v′wi are associated with

each word i in the vocabulary and the following loss function is minimized:

E =
∑
i,j

f(Xwiwj)(v
T
wi

v′wj − log(Xwiwj))
2 (6.7)

In the above equation equation f(X) is a weighting function whose main purpose

is to downweight the rare term-term cooccurrences using the following heuristic:

f(Xwiwj) =


(
Xwiwj
Xmax

)α
if Xwiwj ≤ Xmax

1 otherwise
(6.8)

where Xmax and α are parameters that are chosen to be 100, and 0.75, respectively.

6.3 Implementation Details

The source code files present in the 35000 Java software repositories that are used

to construct word embeddings are first preprocessed using tokenization and stop-word

removal. The software terms that survive the preprocessing step are stemmed to their

roots using the Porter stemming algorithm. The preprocessed source code files are

stored in a large text file to provide as input to the word embedding algorithms —

word2vec, FastText, and GloVe.
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Table 6.2.: Some pairs of words and their abbreviations sampled from the

SoftwarePairs-400 benchmark.

Abbr. Word Score

del delete 5

tmp temporary 5

rght right 2

min minimum 5

num number 5

Abbr. Word Score

med median 3

col column 5

tot total 4

acc accept 1

alloc allocate 5

We used our own implementation of word2vec5 for training on large software

corpus. The FastText model is trained using the popular Gensim6 implementation,

while the GloVe7 model is trained using the official implementation made available

by the authors.

These models are trained on a multi-core machine with 20 processes for 20 epochs.

The FastText and word2vec models take more time to train than the GloVe model.

FastText and word2vec work by updating the weight vectors on each occurrence of a

pair of terms in the corpus, while GloVe first collects the counts of all the pairwise

occurrences of a pair of term in the corpus and then updates the weight vectors only

once for that pair of terms. The word2vec and FastText models take 2-5 days to train

depending on the size of vectors, while GloVe takes only several hours to a single day

to train.

For more details on their implementation, please refer to the Appendix A.
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Table 6.3.: Some words with their top 3 most (cosine) similar words as learned from

the word2vec Skip-gram model.

rank alexnet delete rotation add parameter

1 resnet remove angle list param

2 lenet update rot set method

3 imagenet copy lhornang create argument

6.4 How Good are the Software-centric Word Vectors?

To answer the question posed above we need to evaluate the quality of the word

embeddings generated by the word2vec model for terms that occur in the software

context. We, therefore, need a semantic similarity benchmark with which we can

measure the quality of the word2vec generated word embeddings.

In this section we present an evaluation benchmark for word embeddings ob-

tained for software-centric words. We also evaluate the software-centric word vectors

obtained from word2vec model using our novel evaluation benchmark.

Semantic Similarity Benchmark

There exist in the natural language processing (NLP) research literature [62] many

semantic similarity evaluation benchmarks for natural language words that are found

in the articles of general interest, e.g. Wikipedia articles. There also exist domain-

specific evaluation benchmarks for semantic word embeddings of a wide range of

concepts in medicine, such as disease names, and medical procedures [63]. However,

to the best of our knowledge, no such evaluation benchmark exists for software-centric

5https://github.com/sakbarpu/bme project/word2vec.py
6https://radimrehurek.com/gensim/
7https://nlp.stanford.edu/projects/glove/
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word embeddings. Therefore, we present in this section for the first time a semantic

similarity evaluation benchmark exclusively for software-centric word vectors.

In NLP and also in the literature related to medicine, what these human-created

benchmarks contain are pairs of words that are similar in meaning, and therefore,

should have similar word vectors. For example, a pair could contain the words “fe-

male” and “woman”, or “tumor” and “cancer”, because they are semantically similar.

These benchmarks also contain a human supplied semantic similarity score on a scale

of 1 through 5 for each pair of such words. Therefore, to evaluate the word em-

beddings obtained from a model like word2vec, the word vectors of the semantically

similar words in the list of pairs in the benchmark are compared against each other

using a similarity measure, say the cosine similarity. Subsequently, these calculated

similarity scores can be compared with the human-supplied scores to measure the

quality of the embeddings.

With inspiration drawn from prior research in semantic word embeddings in NLP

and medicine, we have created a benchmark called SoftwarePairs-400 for terms oc-

curring specifically in the software programs. In our novel benchmark, we carefully

compiled a list of pairs of 400 words along with their commonly used abbreviations in

programming languages. A sample from this list of pairs along with their respective

human-assigned scores is given in Table 6.2.

Evaluation

We now evaluate the word embeddings produced by word2vec for software-centric

words using two evaluation metrics — correct @r (C@r), and Pearson correlation

score. The correct at r (C@r) metric is defined as the number of pairs in the list

of 400 pairs, in which the abbreviation appears in the top r ranked positions when

the vector for the term corresponding to the abbreviation is compared with all the

vectors in the database using cosine similarity. The higher the value for C@r the

better is the word embedding model. On the other hand, the Pearson correlation
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Table 6.4.: Evaluation results on semantic similarity benchmark SoftwarePairs-400

for Skip-gram and CBoW models while changing N , which is the dimension of the

word vectors.

Model (N) C@1 (%) C@5 (%) C@10 (%) Correlation

SG (1500) 105 (26%) 140 (35%) 161 (40%) 0.221

SG (1000) 112 (28%) 153 (38%) 172 (43%) 0.224

SG (500) 23 (5%) 52 (13%) 62 (15%) 0.108

SG (200) 19 (4%) 42 (10%) 53 (13%) 0.128

CBoW (1500) 38 (9%) 61 (15%) 69 (17%) 0.010

CBoW (1000) 45 (11%) 63 (15%) 67 (16%) 0.020

CBoW (500) 15 (3%) 37 (9%) 57 (14%) 0.053

CBoW (200) 19 (4%) 45 (11%) 53 (13%) 0.141

Fig. 6.4.: Zoomed-in view of the word vectors in the first two dimensions. Note the

clusters: (“write”, “output”, “close”), (“open”, ”read”, “input”, “file”), (“polygon”,

“shape”), (“xml”, “sax”)
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score is calculated by comparing the human-assigned scores to the pairs of words,

with the cosine similarity values obtained when the vectors of words present in the

pair are compared against each other. Higher correlation values imply better word

embedding models.

In Table 6.4 we provide evaluation results on SoftwarePairs-400 for two different

models: (1) Skip-gram (SG), and (2) Continuous Bag of Words (CBOW). Both the

models are run with four different values of N — 200, 500, 1000, or 1500. Our results

show that the Skip-gram model with N = 1000 produces the best values for C@r. It

can also be observed from the experimental results that CBoW performs worse than

Skip-gram in terms of C@R. Also, the SG model with N = 1500 performs worse than

SG model with N = 1000. Therefore, our results show that increasing the number

of dimensions of word vectors beyond 1000 actually reduces the performance of the

model in identifying similar meaning terms present in SoftwarePairs-400.

The reason for evaluating the quality of word vectors is simply to ensure that the

terms with similar meanings have their vectors close to each other in the semantic

vector space. As we will show in Chapter 8, the performance of a semantics based

retrieval engine is not significantly affected by which word embedding algorithm is

used to construct the semantic vector space.

Visualization

In addition to quantitatively evaluating the word embeddings as described in the

previous subsection, we can visualize them after their dimensionality is reduced with

an algorithm like PCA (Principal Component Analysis). After such a step, usually

one retains only a very small number of dimensions, typically 2 or 3.

A zoomed-in view for a few software-centric words when considering only the top

two dimensions of PCA is shown in Figure 6.4. It can be readily observed from

the figure that the words with similar meanings form distinguishable clusters in the

2-dimensional PCA space.
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In addition to visualization, in Table 6.3 we show five interesting software terms

in the first row along with their three most cosine similar terms in the following three

rows.

Now that we have established that meaningful vector representations of software

terms can be constructed using semantic word embedding algorithms, in the next

chapter, we will exploit these representations to build a powerful code search tool

and evaluate its performance on bug localization task.
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7. SCOR: SOURCE CODE RETRIEVAL WITH

SEMANTICS AND ORDER

As discussed in the previous chapter, representing textual words with their dense

numeric vectors has emerged as a powerful approach for associating context-based

meanings with the words and for comparing words for their similarity on the basis

of such meanings. What is perhaps the most commonly used algorithm today for

creating such embeddings is the word2vec algorithm proposed by Mikolov et al. [17].

Given the semantically rich representation for the words created by, say, word2vec,

one is led to wonder if a retrieval framework based on such representations can be

made even more powerful if it is subject to term-term ordering constraints modeled

by, say, Markov Random Fields (MRF).

As we demonstrate in this chapter, the answer to the question posed above is a

categorical yes.

The SCOR retrieval framework that we present in this chapter for establishing

the above claim invokes MRF based ordering constraints on the query terms and the

file terms that are matched on the basis of contextual semantics using the word2vec

generated numeric vectors for the terms. This is facilitated by two “layers” that we

refer as the “Match Layer (ML1)” and the “Match Layer 2 (ML2)”. In the form of a

2D numeric array, ML1 is simply a record of the similarities between the terms in a

query and the terms in a file, with the similarities being computed by applying the

cosine distance measure to the numeric vectors produced by word2vec. Subsequently,

in the spirit of convolutional neural networks, we convolve the ML1 layer with a 2×2

kernel — whose elements must possess certain pre-specified properties — to yield

another 2D numeric array that is ML2. As we argue in this chapter, the numbers

in the ML2 layer become high only for those sequences of terms in the query and a

file, which is being evaluated for retrieval vis-a-vis the query, when there is significant
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semantic similarity between the two both respect to the terms and with respect to

the ordering constraints on the terms. As we show later, convolving the 2D array of

numbers in ML1 with a 2 × 2 operator produces the same effect as what would be

achieved with MRF based logic as presented in [6, 20].

In this chapter, we have established the superiority of the “semantics plus order”

approach for source-code retrieval over the more traditional methods by comparing

the following retrieval frameworks in the context of automatic bug localization: (1) an

approach based on the BoW (Bag-of-Words) assumption; (2) an approach based on

MRF modeling using term and term-term frequencies; (3) a retrieval framework that

uses contextual semantics through the word embeddings produced by the word2vec

algorithm; and, finally, (4) a framework that uses MRF modeling on top of the word

embeddings produced by the word2vec algorithm.

While the first three retrieval methods in the comparison mentioned above refer

to frameworks that are already well known, the last — which combines MRF with the

word embeddings produced by word2vec — is something that has not been attempted

before. Combining MRF with word embeddings allows us to jointly model the se-

mantic and the ordering relationships in a single source code retrieval framework.

For our experiments, we use approximately 4000 bug reports of the Eclipse soft-

ware library obtained from the BUGLinks dataset and approximately 300 bug reports

of AspectJ obtained from the popular iBUGS dataset. We report results based on

retrievals with (1) just the titles of the bug reports as queries; and (2) the entire

description of the bug reports as queries. With both software libraries, we show that

the retrieval precision can be improved between 6% and 30% over the best results

that can be obtained with the more traditional applications of MRF to the representa-

tions based on term and term-term frequencies. In the next chapter we will use all the

29 software libraries present in the Bugzbook dataset considering title+description

queries for evaluating the performances of eight retrieval algorithms.

Comparing our SCOR model with the best of what the literature has to offer, it

significantly outperforms the purely MRF based framework presented in Sisman et al.
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[6]. SCOR also outperforms the more advanced BoW based techniques — BugLocator

[8], BLUiR [12], and SCP-QR [7]. We also compare our retrieval model with semantic

embeddings based bug localization algorithms — LSA (Latent Semantic Analysis) [5],

and Ye et al.’s semantic retrieval algorithm [15]. Our results show that our retrieval

algorithm can significantly outperform the LSA algorithm presented in [5], while

the performance of our retrieval algorithm with respect to Ye et al.’s [15] semantic

retrieval algorithm is comparable in terms of retrieval precision.

We use the word embeddings obtained as described in the previous chapter after

training the semantic word embedding algorithm on the large corpus of 35000 Java

software repositories present in the SCOR word embeddings dataset. The reason for

generating word vectors for such a large software vocabulary is to ensure that our

semantic word embeddings are sufficiently generic so that they can be applied to new

software repositories that were not used for generating the embeddings. Our results

demonstrate that to be the case.

With this introduction the rest of the chapter is organized as follows. In the

next section “Related Works”, we present past works in the field of semantics based

retrieval. In section 7.2 we explain our novel retrieval model. Finally, We present our

experimental results in section 8.2.

7.1 Related Works

The notion of generating corpus-based semantic embeddings to model semantic

relationships in a retrieval framework dates back to 1990’s when Latent Semantic

Analysis (LSA) was first published. Since then, LSA has successfully been applied to

solve the problem of software search [5, 23].

The use of neural networks to learn semantic word embeddings was first proposed

by Bengio et al. [58], with several modifications made to their neural network ar-

chitecture by the contributions in [17, 59, 60]. From amongst these contributions,
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the word2vec implementation of [17] is arguably the most successful and the most

commonly used today.

Several authors have investigated using word2vec in different application domains

[64–68] that include web search, questing-answering systems, and paraphrase identifi-

cation. Authors have also reported using word2vec for software search [15,33,34,69].

These contributions, however, do not include ordering constraints. Finally, note that

researchers have also proposed using deep-learning based frameworks for solving the

IR problem [70–75].

In contrast with the word2vec-based software search investigations as reported

in [15, 33, 34, 68, 69], our SCOR framework [16] combines MRF based modeling with

word2vec based semantic word embeddings to lead to a new class of retrieval algo-

rithms that account for both order and semantic relationships between terms. Our

SCOR model improves retrieval precision over pure MRF based approaches presented

in [6], as well as over modern BoW models [8, 12].

7.2 Modeling Ordering and Semantic Relationships for Software Retrieval

In this section we present how we jointly model the two seemingly disparate aspects

of our framework for source code retrieval: the term-term ordering constraints and

the word2vec generated semantic relationships between the terms. The term-term

ordering constraints are imposed using the MRF framework described by Sisman et

al. [6], and described in Chapter 5, whereas the semantic relationships between the

terms are modeled by comparing the semantic word embeddings [17] of the query and

the file terms using cosine similarity measure. The computation of semantic vectors

for software terms is presented in Chapter 6.

7.2.1 Modeling Ordering Relationships Between Terms

In the context of IR based bug localization, a Markov Random Field is an undi-

rected graph G in which one of the nodes represents a source-code file f that is being
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evaluated for its relevance to a given query Q and all other nodes represent the indi-

vidual terms Q = {q1, q2, ..., q|Q|} in the query. The arcs between the nodes represent

probabilistic dependencies between the nodes [6].

The MRF framework gives us the liberty to choose different kinds of probabilistic

dependencies we want to encode in the retrieval model. In Chapter 5 we showed

three possible dependency assumptions that we can make about the construction of

the MRF graph G. We will focus on the FI (Full Independence), and SD (Sequential

Dependence) assumptions in this chapter. In FI assumption all the query terms are

considered independent of one another. Therefore, the arcs between nodes that stand

for the query terms q1, q2, and q3 are absent. In SD assumption the nodes for the

consecutive query terms are connected to each other via arcs. We use the SD model

to incorporate term-term ordering relationships between the query terms that may

be present in the file f .

As shown in Chapter 5, the Dirichlet smoothed BoW based Full Independence

(FI) relevance score is calculated as:

scorefi(Q, f) =

|Q|∑
i=1

log
tf(qi, f) +

µfitf(qi,C)

|C|

(|f |+ µfi)
(7.1)

where tf(qi, f), and tf(qi, C) are, respectively, the frequencies of the term qi in the

source code file f and in the collection C. The notations |f | and |C| stand for the size

of the file and the collection, respectively. Finally, µfi is the smoothing parameter.

Denoting a pair of sequential terms qiqi+1 by ρ, the MRF SD relevance score is

calculated as:

scoresd(Q, f) =

|Q|−1∑
i=1

log
tfw(ρ, f) + µsdtfw(ρ,C)

|C|

(|f |+ µsd)
(7.2)

where tfw(ρ, f) and tfw(ρ, C) are, respectively, the frequencies of the pair of terms

ρ = qiqi+1 in a file f and in the collection C. The notation µsd is for the smoothing

parameter.
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Fig. 7.1.: An illustration of a semantic retrieval framework with ordering

constraints: The N -dimensional numeric vectors for the terms in a query Q and a

file f are provided as inputs as shown at left. The query terms and file terms are

compared pairwise using cosine similarity to produce ML1. As shown in the top row,

we perform further processing on ML1 to produce relevance score based on matching

terms individually scorepwsm(f,Q). As shown in the bottom row we convolve ML1

with a pre-defined 2 × 2 kernel to produce ML2, which is subsequently processed to

produce the relevance score scoreordsm(f,Q).
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7.2.2 Modeling Semantic Relationships Between Terms

With the help of Figure 7.1, we now illustrate using an example our semantic

retrieval framework that includes ordering constraints. The example used in the

figure assumes that the query consists of just four terms. That is, Q = {q1, q2, q3, q4}.

And that a file being evaluated for its relevance to the query consists of just five

terms. That is, f = {t1, t2, t3, t4, t5}. We also assume that the dimensionality of the

numeric term vectors provided by word2vec is N . As we explained earlier in Chapter

6, we obtain these vectors by training a word2vec Skip-gram model on a large corpus

of Java source code repositories.

As shown in the figure at its left, the numeric vectors for the query terms and the

file terms serve as inputs to the processing chain in Figure 7.1. The query terms qi

and the file terms tj are compared pairwise using the cosine similarity measure shown

below to produce the “Match Layer 1” (ML1):

σ1(vqi ,vtj) =
vqi · vtj
||vqi ||||vtj ||

(7.3)

Each row of ML1 corresponds to the cosine similarity between a given query term

qi and all the terms in the file f . The layer ML1 is then treated as described below

to produce a semantic relevance score.

As shown in the top row of Figure 7.1, we take the maximum of ML1 across all

the file terms to produce the “Best-matching vector”. In this vector, we retain only

the largest cosine similarity value for each query term that corresponds to its best

matched file term. The cosine similarity values for all other file terms are discarded

and, therefore, do not influence the final relevance score.

Afterwards, only the largest ξ1 values from the “Best-matching vector” are re-

tained. This second maximum selection operation discards the cosine similarity val-

ues for all those query terms that are deemed to not match the file sufficiently. In

this manner, the terms that may negatively influence the final relevance score are

dropped.
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We refer to the vector obtained by the second maximum operation as the “Best-

of-best vector” since it is obtained as a result of two successive maximum operations

on array ML1 of cosine similarity values: (1) The first maximum is taken across all

file terms for each query term to produce the best cosine similarity value for each

query term that corresponds to its best-matched file term, (2) The second maximum

is taken across all the query terms to produce a vector of cosine similarity values for

only those ξ1 query terms that best match the file. Notice that the parameter ξ1 is

tunable.

The retained ξ1 cosine similarity values are summed and normalized to obtain the

relevance score scorepwsm(f,Q) based on our Per-Word Semantic Model (PWSM):

scorepwsm(f,Q) =
1

|Q′|
∑
qi∈Q′

argmax
Q′⊆Q
|Q′|≤ξ1

∑
qi∈Q′

max
tj∈f

σ1(vqi ,vtj) (7.4)

where Q′ is a subset of query Q composed of only those ξ1 query terms for which we

get the largest cosine similarities.

The great thing about the array of numbers in ML1 is that it lends itself to

further processing that allows the incorporation of the MRF based term-term ordering

constraints in how a query is matched with a file.

As shown in the bottom row of Figure 7.1, we now convolve the array of numbers

in ML1 with a pre-defined 2 × 2 kernel K to produce another layer “Match Layer

2” (ML2). Each element in the array of numbers in ML2 represents the similarity

measure between two consecutive query terms qiqi+1 and two consecutive file terms

tjtj+1. This obviously implies incorporating ordering relationships between the query

terms that semantically match the file terms.

The 2× 2 kernel K mentioned above is designed such that it has non-zero values

on its diagonal, while its off-diagonal elements are either zero or very close to zero.

This is a key condition on K that allows the ordering constraints to be satisfied as

explained below.
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During the convolution of K with the array of numbers in ML1, the output at a

specific location (i, j) results in a high value if the cosine similarity values between the

terms qi and tj, and terms qi+1 and tj+1 are both high. The convolution operation,

which results in a weighted sum over 2× 2 neighborhoods in ML1, is similar to what

is used in modern deep convolutional neural networks. The similarity values σ2 in

the ML2 are computed from the similarity values σ1 of the ML1 as follows:

σ2(qiqi+1, tjtj+1) = K11σ1(vqi ,vtj) +K22σ1(vqi+1
,vtj+1

)

+K12σ1(vqi ,vtj+1
) +K21σ1(vqi+1

,vtj)

The array of numbers in ML2 are treated in the same manner as those in ML1

to produce the ordered-semantic (ORDSM) relevance score scoreordsm(f,Q) based on

comparing two consecutive query with two consecutive file terms. Notice that we use

a new parameter ξ2 that is different from ξ1 to obtain the “Best-of-best vector” from

the “Match Layer 2” (ML2). The ordered-semantic (ORDSM) score is computed as:

scoreordsm(f,Q) =
1

|P ′|
∑
ρi∈P ′

argmax
P ′⊆P
|P ′|≤ξ2

∑
ρi∈P ′

max
ej∈E

σ2(ρi, ej) (7.5)

where ρi ∈ P represents the pair of query terms qiqi+1, ej ∈ E represents the pair

of file terms tjtj+1, and P and E are the sets of pairs of query terms and file terms,

respectively.

The computation of scorepwsm and scoreordsm in the manner described above is

one of the key contributions of this dissertation.

7.2.3 Computing a Composite Score for a Repository File

The previous two subsections presented different formulas for measuring the rel-

evancy of a file to a query. The formulas in Section 7.2.1 showed how a file could

be ranked vis-a-vis a query using just the BoW modeling of the relationship between

the two and also using the MRF based ordering constraints. And the formulas in
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Section 7.2.2 showed how a file could be ranked purely on the basis of the similarities

of the term-contextual relationships and on the basis when ordering constraints are

superimposed on top of the term-contextual relationships.

We now combine all those measures of relevancy of a file to query to create a com-

posite file relevancy score. As shown below, this composite formula uses a weighted

aggregation of the scores given by the Equations (7.1), (7.2), (7.4), and (7.5):

scorescor(f,Q) = α · scorefi(f,Q) + β · scoresd(f,Q)+

γ · scorepwsm(f,Q) + η · scoreordsm(f,Q)

where α, β, γ, and η are tunable parameters.

To review quickly, scorefi(f,Q) represents a simple BOW score in which frequen-

cies of the query terms and the file terms are compared directly; scoresd(f,Q) is the

MRF based sequential dependence score in which the frequencies of pairs of consecu-

tive query terms and the corresponding consecutive file terms are compared to impose

ordering constraints for “exact” term matches; scorepwsm(f,Q) is the relevance score

computed using cosine similarity measures on the term numeric vectors for the word

embeddings of the individual query terms and the file terms to incorporate semantic

relationships for “inexact” term matches; and, finally, scoreordsm(f,Q) represents the

ordered semantic relevance score which is based on “inexact” matching between pairs

of consecutive query terms and the corresponding consecutive file terms.

7.3 Experimental Results

With the framework we have presented in the preceding sections, we now present

our experimental results on source-code retrieval for solving the problem of automatic

bug localization. We report results using two different software libraries: Eclipse and

AspectJ. The results for the Eclipse [76] and AspectJ [77] libraries are for two different

types of retrievals: using just the titles of the bug reports as queries (“title-only”),

and using the entire bug reports as queries (“title+desc”).
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The bug reports for Eclipse and AspectJ software libraries were obtained from

the publicly available BUGLinks [44] and iBUGS [43] datasets, respectively. We

presented the statistics related to these two datasets in Chapter 5. Notice that our

large and diverse Bugzbook dataset that we discussed in Chapter 3 contains Eclipse

and AspectJ bug reports taken from BUGLinks and iBUGS datasets.

Eclipse is a Java based software with a large number of bug reports (4035) in

the BUGLinks dataset. The iBUGS dataset, on the other hand, contains relatively

smaller number of bug reports (291) for AspectJ repository.

In what follows, we first present the overall processing pipeline of our bug local-

ization framework. Then we describe the metrics used for evaluating the source code

retrieval results. That is followed by a motivating example that illustrates the power

of semantic modeling for retrieval. Lastly, we present our experimental results.

7.3.1 Overall Framework

Figure 7.2 shows the steps involved in our SCOR bug localization framework. The

word2vec neural network shown at left takes for its input a very large corpus of Java

source code repositories and generates semantic word embeddings for the software-

centric words present in those repositories. Approximately 35000 open-source Java

repositories were downloaded from GitHub [1] were used in this study. Except for a

few that are now defunct, we downloaded the same repositories as those listed in [78].

In Chapter 6, Table 6.1 we showed the statistics of our Java source code dataset.

We used the popular Gensim library [79] to learn the word embeddings from

the Java source-code dataset. The two important parameters that we can tune for

training the Skip-gram model are: (1) vector size (N), and (2) window size (w). We

set N = 1000, and w = 8 for all our retrieval experiments. The word vectors learned

from the Skip-gram model are stored in a disk file.
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Fig. 7.2.: Block diagram for the retrieval framework.

The word embeddings along with the source-code files for the library (such as

Eclipse) that we are interested, and also the bug reports, are fed into the retrieval

engine.

The source-code files go through Porter stemming and stop word removal. Sub-

sequently, each source-code file is indexed, an inverted index constructed from the

main index, and the two stored in hash tables. On the other hand, the bug reports

are first subject to regular-expression based testing for the detection of stack traces

or code patches. If these are absent, further testing is carried out for the detection of

camel-cased source code identifiers. In the absence of such identifiers, the bug reports

are subject to the same preprocessing steps as the source code files.
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7.3.2 Evaluation Metrics

We use precision based metrics — specifically MAP (Mean Average Precision),

P@r for precision at rank r, and R@r for recall at rank r — for a quantitative

characterization of the performance of the different retrieval models. MAP and P@1

would generally be considered to be the most important metrics for evaluating the

power of retrieval algorithms of the type under investigation here [57].

In order to determine whether the improvement observed in the retrieval results

obtained using one model vis-a-vis another is significant, we carried out significance

testing based on the Student’s Paired t-Test [80].

7.3.3 A Motivating Example

In this section we use a simple retrieval exercise to show the power of semantic

modeling in a source code retrieval system. We use the title of a bug report with ID

106140 filed for the Eclipse software library as a query to the two retrieval models —

FI-BOW and PWSM — and compare their results. For simplification of our analysis

we ignore the description of the bug that is a part of the bug report.

The title of bug ID 106140 reads “[compiler] Eclipse3.1.0: unrecognized class in-

visibility”, which after preprocessing produces the term tokens [“compiler”, “eclipse”,

“unrecognized”, “class”, “inivisibility”]. The Eclipse source code files that were fixed

in response to this bug are:

1. org.eclipse.jdt.core/compiler/../lookup/Scope.java

2. org.eclipse.jdt.core.tests.compiler/../LookupTest.java

Examining the top-ranked 100 retrievals, while the average precision using the FI-

BoW model for this bug report is just 0.0, when semantic relationships between terms

are modeled using Per-Word Semantic Model (PWSM) the AP increases slightly to

0.03. What that means is that while FI BoW could not retrieve any of the two

relevant files, the PWSM model could retrieve the “Scope.java” file.
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Table 7.1.: Summary of retrieval models along with the parameter settings that

yielded the best results for each.

Method

Name,

Modeling

scheme

Parameters

Eclipse

(title)

Parameters

Eclipse

(title+desc)

Parameters

AspectJ

(title)

Parameters

AspectJ

(title+desc)

SCOR,

FI BoW +

MRF SD +

PWSM +

ORDSM

w = 8

µfi = 1k

µsd = 8k

ξ1 = 10

ξ2 = 3

α = 0.32

β = 0.12

γ = 3.2

η = 25

w = 8

µfi = 1k

µsd = 4k

ξ1 = 10

ξ2 = 3

α = 0.3

β = 0.12

γ = 2.5

η = 30

w = 8

µfi = 3.5k

µsd = 4k

ξ1 = 10

ξ2 = 5

α = 0.3

β = 0.15

γ = 2.8

η = 25

w = 8

µfi = 3.5k

µsd = 4k

ξ1 = 10

ξ2 = 5

α = 0.7

β = 0.04

γ = 2.8

η = 27

MRF SD,

FI + SD

w = 8

λsd = 0.2

µ = 4k

w = 20

λsd = 0.2

µ = 4k

w = 2

λsd = 0.2

µ = 4k

w = 16

λsd = 0.2

µ = 4k

PWSM,

FI BoW +

PWSM

µfi = 2.5k

ξ1 = 10

γ = 0.95

µfi = 4k

ξ1 = 10

γ = 0.9

µfi = 3.5k

ξ1 = 10

γ = 0.95

µfi = 3.5k

ξ1 = 10

γ = 0.8

FI BOW,

Dirichlet

smoothing

µ = 4000 µ = 4000 µ = 4000 µ = 4000
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Investigating further, we found that while the non-discriminatory query terms

“compiler”, “eclipse”, and “class” did appear in the “Scope.java” source code, the

important discriminatory terms “unrecognized”, and “invisibility”, which could rank

“Scope.java” higher than the other files containing the non-discriminatory terms,

did not. Examining the “Scope.java” more closely, we found that even though it

did not contain the exact terms “unrecognized” and “invisibility”, it did contain

their semantically related terms “missed”, and “visible”. In fact, the term “visible”

appeared approximately 100 times in the file. Therefore, when “Scope.java” is scored

using PWSM, the semantic matching between terms “visible” and “invisibility” makes

the overall score for the file higher than the other files which only contained the non-

discriminatory query terms.

7.3.4 Retrieval Experiments

We provide experimental results for comparing the following four retrieval models:

(1) FI BOW, (2) MRF SD, (3) PWSM, (4) SCOR. Table 7.1 displays the tunable

parameter values used for each model. These parameters were set to yield the best

performance from each model.

Through our experiments we attempt to answer the following important research

questions (RQs):

RQ1: Does the IR model that only incorporates ordering relationships improve

the result over BoW IR models?

RQ2: Does the IR model that only incorporates semantic relationships improve

the result over BoW IR models?

RQ3: How does our novel SCOR retrieval model perform against various BoW

based source code retrieval models?

RQ4: How good is SCOR against pure MRF based retrieval techniques that

only model ordering relationships?
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Table 7.2.: Retrieval accuracy for the “title-only” queries.

Method
Eclipse

MAP (%) (p-value) P@1 P@5 R@10

SCOR 0.2709 (32.8%)∓∗ (3e-20) 0.238 0.115 0.332

FI + MRF SD 0.2493 (22.2%)∗ (1e-10) 0.211 0.108 0.315

FI + PWSM 0.2336 (14.5%)∗ (2e-5) 0.192 0.101 0.297

FI BoW 0.2039 0.169 0.088 0.258

AspectJ

SCOR 0.1802 (44.2%)∓∗ (8e-3) 0.206 0.092 0.193

FI + MRF SD 0.1348 (7.9%)∗ (6e-2) 0.134 0.079 0.167

FI + PWSM 0.1641 (31.3%)∗ (4e-2) 0.164 0.094 0.197

FI BoW 0.1249 0.137 0.070 0.149

∗ significantly different from FI BOW. ∓ significantly different from MRF SD.

RQ5: How does our SCOR retrieval model perform against other semantic

embeddings based retrieval models?

RQ6: Are word2vec based word vectors generic enough to be used for searching

in a new software library?

To answer the questions that follow we will frequently refer to Tables 7.2 and 7.3.

Table 7.2 shows the evaluation results of the four different retrieval algorithms on two

different datasets — Eclipse and AspectJ — under “title-only” setting, while Table

7.3 shows the same for “title+desc” queries. In the tables we show the percentage

improvements and the p-values for each of the retrieval models vis-a-vis the FI BOW

model along with the MAP values.

RQ1: Does the IR model that only incorporates ordering relationships

improve the result over simple BoW IR model?
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The IR model that only incorporates ordering relationships, i.e. MRF SD model,

significantly beats the traditional FI BoW model in all four experiments — Eclipse

title-only, AspectJ title-only, Eclipse title+desc, and AspectJ title+desc.

The improvement observed using MRF SD over FI BoW model ranges from 6%

to 22% in different experiments with respect to MAP values. The P@r and R@r

values are also significantly higher for MRF SD vis-a-vis FI BOW. We also observe

that MRF SD model shows more improvement when run against Eclipse dataset as

opposed to AspectJ dataset.

RQ2: Does the IR model that only incorporates semantic relationships

improve the result over simple BoW IR models?

To answer the question posed above we again refer to Tables 7.2 and 7.3. As

we can observe from the tables the PWSM model that only incorporates term-term

semantic relationships significantly outperforms the traditional FI BoW model with

improvements ranging from 9% to 31% in terms of MAP values. The values for P@r

and R@r are also significantly higher for PWSM in relation to BoW model.

The biggest improvement is observed in the retrieval experiment performed for

the Aspectj software library using title-only queries. It can also be observed that

the improvements for title+desc experiments are lower than the improvements for

title-only experiments.

RQ3: How does our novel SCOR retrieval model perform against

various BoW IR models?

This question requires comparing our SCOR retrieval model against various BoW

based source code retrieval models — FI BOW, BugLocator [8], BLUiR [12], and

SCP-QR [7].

Note that SCOR and FI BoW results are provided in Tables 7.2 and 7.3. When

comparing SCOR against the simple FI BOW model we observe that the improve-

ments observed in term of MAP values, by SCOR over FI BOW range from 17% for

AspectJ title+desc queries to even 44% for AspectJ title-only queries.
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BugLocator takes into account past bug history to identify similar bug reports.

The relevance of a source code file to a bug report is then determined using sim-

ple BOW based retrieval combined with an analysis of the source code files that

were fixed in response to the past similar bug reports. BLUiR (Bug Localization

Using information Retrieval) divides the source code file into different components

— classes, methods, variables, and comments — and assign different weights to each

component based on their importance in the retrieval process. Sisman and Kak [7]

introduced SCP-QR which is a Query Reformulation method based on the Spatial

Code Proximity of non-query terms with the query terms inside the source code files.

For comparing SCOR with more advanced retrieval engines — BugLocator [8]

and BLUiR [12] — we refer to the Figure 7.3. We observe from the chart that for

Eclipse title+desc dataset our SCOR retrieval algorithm with MAP value of 0.320

beats BugLocator, which has a MAP value of 0.310, while performs comparably to

BLUiR, which has a MAP value of 0.320. Also, for AspectJ title+desc dataset,

SCOR with MAP value of 0.255 outperforms BugLocator, which have MAP values

0.220 and 0.250, respectively. However, SCOR and BLUiR retrieval accuracies on

AspectJ dataset are quite comparable.

Finally, we compare SCOR with SCP-QR [7]. The MAP value obtained using

SCP-QR for 4035 Eclipse title-only queries is 0.2296. In comparison, SCOR with

MAP value of 0.2709 outperforms SCP-QR by 18%.

RQ4: How good is SCOR against pure MRF based retrieval techniques

that only model ordering relationships?

The answer to this question requires comparing SCOR with the MRF based Se-

quential Dependence (SD) and Full Dependence (FD) source code retrieval models

presented in [6], and described in Chapter 5. Notice that the same MRF SD model

used in [6] is an important component inside our SCOR retrieval framework.

As shown in the retrieval results provided in Figure 7.4 our SCOR retrieval model

significantly outperforms both MRF SD and FD models on Eclipse and AspectJ

title-only as well as title+desc queries. The improvements observed using SCOR over
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Table 7.3.: Retrieval accuracy for the “title+desc” queries.

Method
Eclipse

MAP (%) (p-value) P@1 P@5 R@10

SCOR 0.3204 (29.1%)∓∗ (6e-20) 0.289 0.134 0.394

FI + MRF SD 0.3034 (22.2%)∗ (5e-31) 0.272 0.127 0.374

FI + PWSM 0.2713 (9.3%)∗ (1e-3) 0.233 0.116 0.341

FI BoW 0.2481 0.210 0.106 0.317

AspectJ

SCOR 0.2506 (17.6%)∓∗ (1e-3) 0.299 0.127 0.299

FI + MRF SD 0.2263 (6.24%)∗ (2e-2) 0.264 0.114 0.265

FI + PWSM 0.2334 (9.5%)∗ (1e-2) 0.244 0.125 0.283

FI BoW 0.2130 0.244 0.105 0.243

∗ significantly different from FI BOW. ∓ significantly different from MRF SD.

MRF SD range from 5.6% for Eclipse title+desc queries to 33% for AspectJ title-only

queries, while the improvements observed using SCOR over MRF FD range from

5.6% for AspectJ title+desc to 27% for AspectJ title+desc queries. With regard to

significance testing with the Student’s Paired t-test [80], the p-values obtained when

comparing SCOR with MRF SD model for different experiments are as follows: 3e-2

for Eclipse title+desc, 4e-3 for Eclipse title-only, 3e-2 for AspectJ title+desc, and 3e-2

for AspectJ title-only.

RQ5: How does our SCOR retrieval model perform against other

semantic embeddings based retrieval models?

To answer this question we compare our retrieval algorithm with two semantic

embeddings based retrieval algorithms — the neural embeddings based retrieval al-

gorithm proposed by Ye et al. [15], and Latent Semantic Analysis (LSA) based source

code retrieval model proposed by Rao and Kak [5].
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Notice that while the model presented in [15] is composed of many relevance scores

that linearly combine to produce a single composite score, we limit our focus only to

the semantic portion of the model. Therefore, for the purpose of a comparative study,

we only implemented the semantic embedding based scoring mechanism presented

in [15] and linearly combined it with our baseline Dirichlet smoothed FI BoW model

as provided in Equation (7.1). We compare this model against our PWSM retrieval

model instead of the more powerful SCOR retrieval engine. We believe that such a

comparison is fair in nature. Notice that we use the same word vectors we learn by

applying the Skip-gram to 35000 repositories for both the algorithms. We notice that

the MAP value obtained for PWSM for Eclipse title+desc is 0.2713, while the MAP

value for Ye et al.’s algorithm is 0.2687.

With regards to comparing with LSA model proposed in [5], we notice that Rao

and Kak used the same iBUGS AspectJ queries in their study as we have used in this

chapter. Therefore, a direct comparison is possible between PWSM and the models

presented in [5]. The best MAP value reported by Rao and Kak for LSA on iBUGS

using 291 queries is 0.0700, while the MAP value for PWSM on the same dataset

with the same 291 queries is 0.2334.

RQ6: Are word2vec based word vectors generic enough to be used for

searching in a new software library?

The answer to this question is yes, because the AspectJ library on which we

perform retrievals using iBUGS queries was not present in the training set when we

generated the word embedding using the Skip-gram model. Yet, the improvements

observed in retrieval precision when semantic embeddings based models are used for

searching in the AspectJ library are very impressive as shown in Tables 7.2 and 7.3.

In the next chapter on large-scale evaluation of retrieval algorithms for bug local-

ization, we will see more examples of software libraries that were not present in the

training corpus of word embedding algorithms. Still, the performance of semantic

based retrieval algorithms improve when generic word embeddings are used in the

process.
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Fig. 7.3.: Comparison of SCOR with various BoW models on Eclipse and AspectJ

“title+desc” queries using MAP values.

Fig. 7.4.: Comparison of SCOR with MRF SD and FD models on Eclipse and AspectJ

queries using MAP values.
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8. EXPERIMENTAL EVALUATION: A LARGE SCALE

STUDY OF IR TOOLS FOR BUG LOCALIZATION

Retrieving relevant source code files from software libraries in response to a bug

report query plays an important role in the maintenance of a software project. We

showed a timeline of past research in bug localization in Chapter 2, and noticed that

the past fifteen years have witnessed the publication of several algorithms for an IR

based approach to solving this problem. An examination of these prior contributions

reveals that (1) They mostly used datasets of relatively small sizes for the evaluation

of the proposed algorithms; and (2) The datasets used consisted mostly of Java-based

projects.

Except for the evaluations presented in [40], [42], and [37], all other publications

performed their experiments using datasets that range in sizes from a few hundred

to a few thousand bug reports.

Regarding the three studies mentioned above that performed relatively large-scale

evaluations, Ye et al. [42] performed their bug localization experiments on around

20,000 bug reports taken from six Java projects. The study presented in [37] was

performed on 8000 bug reports belonging to three Java and C/C++ based projects.

The most recent large-scale comparative study carried out by Lee et al. [40] used

around 9000 bug reports, all belonging to Java-based projects. These three studies,

however, evaluate bug localization methods belonging only to the first and the second

generations of tools, and are mostly focused toward Java based projects. Therefore,

a large-scale bug localization study that involves code libraries in multiple languages

and that includes all three generation of tools has yet to be carried out. The goal of

this chapter is to remedy this shortcoming.

We present a comprehensive large-scale evaluation of a representative set of IR-

based bug localization tools with the set spanning all three generations. The eval-
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uation dataset we use, named Bugzbook, consists of over 20,000 bug reports drawn

from a diverse collection of Java, C/C++, and Python software projects at GitHub.

The features, construction and statistics of Bugzbook are presented in Chapter 3. A

large-scale evaluation such as the one we report here is important because it is not

uncommon for the performance numbers produced by testing with a large dataset to

be different from those obtained with smaller datasets.

For the large-scale evaluation reported here, we chose eight search tools, one from

each generation of the now 15-year history of the development of such tools. As

mentioned previously, the earliest of the tools — the first-generation tools — are

based solely on BoW modelling in which the relevance of a file to a bug report is

evaluated by comparing the frequencies of the terms appearing in the file with the

frequencies of the terms appearing in the bug report. In general, a BoW approach

may either be deterministic or probabilistic. For the deterministic versions of such

tools, we chose the TFIDF (Term Frequency Inverse Document Frequency) approach

presented in [50]. And, for probabilistic BoW, we chose what is known as the FI (Full

Independence) version of the framework based on Markov Random Fields (MRF)

[6, 20]. The probabilistic version is also referred to as the Dirichlet Language Model

(DLM) [49]. We have discussed DLM and TFIDF in greater detail in Chapter 4.

For representing the second generation tools, we chose BugLocator [8] and BLUiR

(Bug Localization Using information Retrieval) [12]. In addition to the term fre-

quencies, these tools also exploit the structural information (when available) and

information related to the revision history of a software library.

That brings us to the third generation tools that, in addition to the usual term

frequencies, also take advantage of term-term order and contextual semantics in the

source-code files, on the one hand, and in the bug reports, on the other. We have

used the algorithms described in [6] and [16] to represent this generation of tools.

In addition to generating the usual performance numbers for the algorithms cho-

sen, our large-scale evaluation also provides answers to the six research questions

that are listed in Section 8.2.3 of this chapter. Most of these questions deal with the
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Table 8.1.: Comparison of the different bug localization tools based on the logic

components used for ranking files.

TI DLM BL BR MRF SCOR

SD FD PWSM SCOR

BoW 3 3 3 3 3 3 3 3

Order 3 3 3

Semantic 3 3

Trace 3 3 3 3

Structure 3

Past Bugs 3

TI - TFIDF, DLM - Dirichlet LM, BL - BugLocator, BR - BLUiR

relative importance of the different components of the algorithms that belong to the

second and the third generation of the tools.

At this point, the reader may ask: What was learned from our large-scale multi-

generational evaluation that was not known before? To respond, here is a list of the

new insights we have gained through our study:

1. Contrary to what was reported earlier, the retrieval effectiveness of two different

ways of capturing the term-term dependencies [6] in software libraries — these

are referred to as MRF-SD and MRF-FD — is the same.

2. The performance of second generation tools BugLocator and BLUiR are not

equivalent in terms of retrieval precision, contradicting the finding presented

in [40].

3. Including software libraries in different languages (Java, C++, and Python) in

our study has led to a very important new insight: for the contextual semantics

needed for the third-generation tools, it is possible to use the word embeddings
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generated for one language for developing a bug localization tool in another

language. We refer to this as the “cross-utilization of word embeddings.”

Note that these are just the high-level conclusions that can be made from the

answers to the six questions listed in Section 8.2.3.

8.1 Catalog of the Bug Localization Tools in Our Evaluation

The comparative evaluation we report in this chapter involves the following bug

localization tools:

1. TFIDF: TFIDF (Term Frequency Inverse Document Frequency) [50] works

by combining the frequencies of query terms in the file (TF) and the inverse

document frequencies of the query terms in the corpus (IDF) to determine the

relevance of a file to a query.

2. DLM: DLM (Dirichlet Language Model) [6, 49] or FI (Full Independence)

BoW is a probabilistic model that estimates a smoothed first order probability

distribution of the query terms in the file to produce the relevance score for the

file given the query.

3. BugLocator: BugLocator [8] takes into account the history of the past

bug reports and leverages similar bug reports that have been previously fixed

to improve bug localization performance.

4. BLUiR: BLUiR (Bug Localization Using information Retrieval) [12] ex-

tracts code entities such as classes, methods, and variable names from source

code files to help in localizing a buggy file.

5. MRF SD: MRF (Markov Random Field) based SD (Sequential Depen-

dence) model [6] measures the probability distribution of the frequencies of the

pairs of consecutively occurring query terms appearing in the file to compute

the relevance score for the file given a query.
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6. MRF FD: MRF based FD (Full Dependence) [6] is a term-term dependency

model that considers frequencies of all pairs of query terms appearing in the

file to determine the relevance of the file to the query.

7. PWSM: PWSM (Per-Word Semantic Model) [16] uses word embeddings

derived from the word2vec algorithm to model term-term contextual semantic

relationships in retrieval algorithm.

8. SCOR: SCOR (Source code retrieval with semantics and order) [16] com-

bines the MRF based term-term dependency modeling, as described in [6], with

semantic word embeddings as made possible by word2vec [17] to improve bug

localization performance.

In Table 8.1, we compare the bug localization tools in our evaluation based on the

logic components they use to produce the relevance score for a file vis-a-vis a given

bug report.

8.2 Experimental Results

This section presents the experimental results of our large-scale study on the effec-

tiveness of modeling source code repositories using first, second, and third generations

of bug localization tools. Also presented in this section is the evaluation metric used.

8.2.1 Implementation Details

For the first generation tools — DLM (FI BoW) and TFIDF — we used the

implementations provided by the popular open-source search engine tool Terrier [81].

For the second generation tools we used the implementations of BugLocator [82],

and BLUiR [83] that have been made available online by the authors of the tools. For

these tools, we used the parameter settings as suggested by the same authors.

For the third generation tools, for MRF-SD and MRF-FD we used the imple-

mentations that are built into Terrier engine. And for PWSM and SCOR, we used
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the implementation provided by the authors of [16]. This implementation uses the

DLM-FI BoW model as the baseline model upon which enhancements are made to

introduce the semantic and ordering relationships between the terms. For the word

embeddings needed by PWSM and SCOR, we make use of the semantic word vectors

obtained after training word embedding algorithms on the SCOR dataset as described

in Chapter 6. These word vectors can be downloaded from the website where we have

posted the embeddings for half a million software terms [84].

We use the parameters recommended by the authors of the respective tools to

evaluate their performances on bug localization dataset.

8.2.2 Evaluation Metrics

We use the Mean Average Precision (MAP) values to evaluate the performance

of retrieval algorithms. This metric is the mean of the Average Precisions (AP) cal-

culated for each of the bug report queries. The MAP values are subject to statistical

significance testing using the Student’s Paired t-Test. Significance testing tells us

whether the measured difference in the results obtained with two different retrieval

models is statistically significant. Student’s t-Test has been used in previous stud-

ies [6, 8] to establish the performance gain of one algorithm over another.
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Table 8.2.: MAP values for the retrieval algorithms evaluated on Bugzbook dataset.

Project MI TFIDF DLM BL BR SD FD PWSM SCOR

Ambari 1.98 0.268 0.227 0.257 0.242 0.268 0.278 0.253 0.295

Aspectj 1.07 0.211 0.216 0.220 0.250 0.226 0.230 0.233 0.250

Bigtop 0.47 0.456 0.079 0.080 0.567 0.304 0.300 0.110 0.560

Camel 1.90 0.390 0.369 0.345 0.345 0.405 0.382 0.395 0.407

Cassndr 1.69 0.364 0.394 0.361 0.394 0.367 0.310 0.356 0.411

Cxf 1.46 0.332 0.287 0.319 0.303 0.348 0.342 0.329 0.363

Drill 1.58 0.196 0.210 0.170 0.169 0.218 0.189 0.223 0.240

Eclipse 1.30 0.284 0.248 0.310 0.320 0.303 0.305 0.271 0.320

HBase 1.74 0.387 0.362 0.370 0.333 0.429 0.424 0.408 0.453

Hive 1.77 0.332 0.278 0.219 0.224 0.335 0.346 0.269 0.345

JCR 1.88 0.432 0.396 0.417 0.394 0.453 0.454 0.437 0.450

Karaf 1.80 0.372 0.386 0.348 0.382 0.374 0.332 0.399 0.427

Mahout 1.27 0.320 0.295 0.481 0.367 0.315 0.267 0.320 0.338

Math 0.81 0.482 0.495 0.601 0.557 0.454 0.481 0.458 0.512

Opennlp 1.06 0.435 0.456 0.500 0.261 0.433 0.347 0.437 0.498

PDFBox 1.57 0.351 0.319 0.430 0.370 0.368 0.357 0.358 0.380

PIG 0.85 0.285 0.228 0.360 0.315 0.295 0.312 0.311 0.335

SOLR 1.20 0.343 0.305 0.323 0.331 0.371 0.370 0.344 0.394

Spark 1.77 0.339 0.369 0.398 0.348 0.377 0.332 0.362 0.418

Sqoop 1.40 0.358 0.385 0.379 0.406 0.367 0.307 0.322 0.417

Tez 1.48 0.373 0.373 0.376 0.277 0.424 0.428 0.401 0.431

Tika 1.27 0.341 0.270 0.375 0.411 0.290 0.316 0.333 0.326

Wicket 1.99 0.439 0.420 0.489 0.411 0.450 0.389 0.399 0.440

WW 1.34 0.397 0.354 0.288 0.226 0.414 0.379 0.376 0.430

Zkeepr 0.99 0.468 0.494 0.502 0.456 0.565 0.527 0.532 0.529

MAPavg (Java) 0.358drdr 0.329 0.357drfdr 0.346d 0.366tdlrfptdlrp 0.348drdr 0.345dd 0.399tdlrsfptdlrsfp

Chrome 0.58 0.113 0.118 0.039 - 0.119 0.101 0.122 0.137

OpenCV 0.16 0.481 0.802 0.195 - 0.845 0.680 0.818 0.819

Pandas 0.64 0.266 0.265 0.266 - 0.375 0.405 0.388 0.435

Tnsrflw 0.23 0.208 0.166 0.111 - 0.246 0.163 0.189 0.182

MAPavg (Others) 0.267 0.338 0.153 - 0.396 0.339 0.379 0.393

MAPavg (Overall) 0.346dd 0.330 0.328 - 0.370tdlfptdlp 0.347dd 0.350dfdf 0.398tdlsfptdlsfp

MI-wtd MAP 0.447 0.424 0.447 - 0.467 0.442 0.446 0.500

t: TFIDF d: DLM (FI) l: BugLocator r: BLUiR s: MRF SD f : MRF FD p: PWSM
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8.2.3 Retrieval Experiments

We provide bug localization results for comparing the following eight retrieval

algorithms: (1) TFIDF, (2), FI BoW, (3) BugLocator, (4) BLUiR, (5) MRF SD, (6)

MRF FD, (7) PWSM, and (8) SCOR. Through our retrieval experiments we attempt

to answer the following 6 important research questions:

RQ1: In terms of retrieval precision, how do the first, second, and third generation

tools compare against each other?

RQ2: Does the performance of the retrieval algorithms depend on the program-

ming language used in the software?

RQ3: Are the word embeddings provided by SCOR really generic?

RQ4: How to best create a composite retrieval performance metric for large-scale

evaluations?

RQ5: Does changing the semantic word embeddings affect the performance of

the semantics-based retrieval algorithms?

RQ6: Does replacing DLM with TFIDF in MRF based frameworks enhance the

performance of bug localization systems?

The questions RQ1 and RQ2 are important because they represent the primary

motivation for our research. As for RQ3, RQ5, and RQ6, they are included because of

the current focus of research in software mining and text retrieval, which is exploiting

semantics and term-term ordering for retrieval. Finally, RQ4 reflects moving from

small-scale evaluations to large-scale evaluations.

The MAP performance numbers for the eight retrieval algorithms evaluated on

29 Java, C/C++, and Python projects present in Bugzbook are shown in Table

8.2. Notice that the last two rows contain the MAP values for the eight retrieval

algorithms averaged across all projects, and the Mutual Information weighted (MI-

wtd) MAP values for the same, respectively. Also notice that the second column

contains the MI values for each project. We also show in the second to the last row

for just the C/C++/Python projects and, in the 8th row from the bottom for just
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the Java-based projects, the results of significance testing. The superscript denotes

the significant difference when considering p-value less than 0.05, while the subscript

denotes significance difference when considering p-value less than 0.01. For example,

in the second to the last row of MRF SD column, we have 0.370tdlfptdlp which specifies

that MRF SD is significantly better than TFIDF, DLM, BugLocator, MRF FD, and

PWSM when considering p-value less than 0.05, while it is significantly better than

only TFIDF, DLM, BugLocator, and PWSM when considering p-value less than 0.01.

In the discussion that follows, we use this table to answer the six important

research questions posed above. Regarding the empty entries in the last seven rows

of the BLUiR column in Table 8.2, since this tool was designed specifically for Java

source code, we do not report on its performance on non-Java projects (these being

Chrome, OpenCV, Pandas, and Tensorflow). BLUiR uses a Java-specific parser to

extract the method, the class, and the identifier names, and the comment blocks from

Java source code files. Therefore, in all our comparison involving BLUiR, we include

only the Java based projects in Bugzbook.

RQ1: In terms of retrieval precision, how do the first, second, and

third generation tools compare against each other?

TFIDF and DLM are the two first generation tools whose average MAP values

across all software projects in Bugzbook are 0.346 and 0.330, respectively, as shown

in the table. Our results show that TFIDF outperforms DLM (or FI BoW) model

by around 5%. The performance difference between TFIDF and FI is significant

even when considering p-value less than 0.01. This implies that when considering

pure-BoW based tools one should choose TFIDF over FI (DLM) model.

The second generation tools BugLocator and BLUiR that incorporate software-

evolution history and structural information have average MAP values across all Java

projects of 0.357 and 0.346, respectively. The MAP value for BugLocator on all the

projects present in Bugzbook is 0.328. Both these bug localization tools perform

significantly better than the FI BoW (DLM) model when only Java projects are

considered in evaluation and when p-value is 0.05. However, when p-value is 0.01, only
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BugLocator outperforms DLM. The performance numbers for BugLocator and DLM

when all the projects in Bugzbook (including Java, C/C++, and Python projects)

are considered are comparable.

We note that the simple TFIDF BoW model significantly outperforms BLUiR by

4% when examined through our large-scale bug localization study of Java projects.

In a project-by-project comparison, BLUiR outperforms TFIDF in just 12 out of

the 25 Java-based projects in Table 8.2 . Amongst these, the comparative results

for AspectJ and Eclipse are along the same lines as those reported previously in the

original BLUiR paper. However, with regard to the projects on which BLUiR was

not evaluated previously, its performance on several Apache based projects is worse

than that of TFIDF.

On the other hand, the performance numbers for TFIDF and BugLocator are

comparable. The performance of BugLocator is significantly better than that of

BLUiR for the Java only projects. This contradicts the finding presented in [40]

and [12].

The third generation order-only MRF SD and MRF FD models with average

MAP values across all projects of 0.370 and 0.347, significantly outperform the first

generation tool DLM by 12% and 5%, respectively. This confirms the finding in

[6]. However, when compared with TFIDF, while MRF SD significantly outperforms

TFIDF, the performance of MRF FD is similar to that of TFIDF.

We observe that the two order-only MRF SD and MRF FD retrieval models per-

form equivalently when evaluated using statistical t-testing and considering p-value

less than 0.01. This contradicts the finding in [6] which shows that the performance

of MRF SD and MRF FD are similar in terms retrieval accuracy.

We notice that MRF SD outperforms MRF FD on 19 out of 29 projects. The

projects on which MRF FD outperforms MRF SD are Ambari, AspectJ, Eclipse, Hive,

JCR, Math, Pig, Tez, Tika, and Pandas. Most of these projects have large number of

bug reports and contribute in total around 10000 — that is roughly around 50% — of

bug reports to the Bugzbook dataset. Since both MRF SD and MRF FD outperform
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each other on roughly equal number of bug reports, this is a possible reason for their

statistically equivalent performance.

We compare the performance of second generation tools, BugLocator and BLUiR,

with the pure-ordering based third generation tools, MRF SD and MRF FD, and

observe that both MRF SD and MRF FD outperform both BugLocator and BLUiR.

The performance of MRF SD is significantly better than that of both BugLocator

and BLUiR on Java based projects. MRF SD also significantly outperforms BugLo-

cator by 13% on all the projects in Bugzbook. The performance of MRF FD is better

than that of BLUiR. The performance of BugLocator is better than that of MRF FD

on Java projects with a p-value of 0.05. However, the performance numbers for the

two are comparable when p-value of 0.01 is considered. Their performance is also

comparable when all projects in Bugzbook are considered. This result contradicts

the results reported in [6].

When considering semantics-only based retrieval with the PWSM model we ob-

serve a mean MAP value of 0.350 across all the projects in the Bugzbook dataset.

We notice that whereas PWSM outperforms DLM significantly by 6%, it does not

do so vis-a-vis TFIDF. The performance of PWSM is comparable to that of BLUiR

when only the Java projects are considered. Additionally, PWSM does not signifi-

cantly outperform BugLocator when all projects in Bugzbook are considered. The

percentage difference between the all-projects performance numbers for PWSM and

BugLocator is around 6%.

The performance of PWSM — which is a pure-semantics based third generation

tool — is comparable to the performance of pure-ordering based MRF SD model.

However, PWSM significantly outperforms MRF FD model. This comparison is

not performed in [16]. The performance of SCOR — which combines MRF based

term-term ordering dependencies with word2vec based semantic word embeddings,

outperforms the first and second generation tools. We observe that the performance

of SCOR is significantly better than the other seven retrieval algorithms when con-

sidering retrieval accuracies.
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RQ2: Does the performance of the retrieval algorithms depend on the

programming language used in the software?

In many past studies, only Java based software projects were used for evaluating

the performance of bug localization tools. This question is important as it helps in

determining the performance of these bug localization tools on non-Java projects.

To answer this question we compare the performance of each retrieval algorithm on

projects written in Java and other programming languages.

The average MAP values for all the eight retrieval algorithms on projects that

only use Java programming language are shown in the 8th row from the bottom in

Table 8.2. The average MAP values for all retrieval algorithms except BLUiR on

C/C++ and Python based projects are shown in the 3rd row from the bottom in

Table 8.2.

We notice that the performance of all retrieval algorithms except for TFIDF and

BugLocator on Java-based libraries is similar to what we get on C/C++ and Python

based projects. TFIDF and BugLocator perform significantly poorly on non-Java

projects. We also observe that the semantics-based retrieval algorithms perform sur-

prisingly very well on C/C++ and Python projects. What makes the last observation

all the more surprising is that the word2vec algorithm was trained on only the Java

based projects used by SCOR.

With a minimum MAP value of 0.039 for BugLocator and a maximum MAP value

of 0.137 for SCOR, Chrome is the project on which the performance of all the retrieval

algorithms is the lowest. The top three algorithms on Chrome are SCOR, PWSM,

and MRF SD with MAP values of only 0.137, 0.122, and 0.119, respectively.

The MAP values for all retrieval algorithms except for TFIDF and BugLocator on

the 8 bug reports of the OpenCV project are very high. The three bug localization

techniques that worked the best on the OpenCV project are MRF SD, SCOR, and

PWSM with MAP values of 0.845, 0.819, and 0.818, respectively.
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As for Pandas — a pure Python project — SCOR, MRF FD, and PWSM are

the three algorithms that perform the best in terms of retrieval precision with MAP

values of 0.435, 0.405, and 0.388.

The MAP values of the retrieval algorithms on Tensorflow are not very impressive.

The lowest performing algorithm, BugLocator, achieved a MAP value of only 0.111,

while the top performing algorithm, MRF SD, works with a MAP value of only 0.246.

The top three algorithms for this project are MRF SD, TFIDF, and PWSM with MAP

values of 0.246, 0.208, and 0.189.

RQ3: Are the word embeddings provided by SCOR really generic?

In the SCOR paper [16], we claimed that the SCOR word embeddings generated by

the word2vec algorithm in that paper would be generic enough so that they could be

used for carrying out semantic search in new libraries, that is, the libraries that were

not used for generating the embeddings. However, in [16], this claim was supported

with the results from just one library, AspectJ.

Our new results, as reported in this chapter, provide further affirmation for that

claim. The Java-based dataset that was used for training the word2vec algorithm

in [16] did not include the following Apache projects in the Bugzbook dataset: Bigtop,

OpenNLP, PDFBox, and Drill. The retrieval results for SCOR on these four projects

as shown in Table 8.2 speak for themselves.

Further affirmation of our claim is provided by the C/C++ and Python based

projects in Bugzbook. We observe that the performance of SCOR on roughly 150

Chrome bug reports and roughly 180 Pandas bug reports is the best among all the

retrieval algorithms. Notice that Chrome is a pure C/C++ based project while

Pandas is a pure Python based project. On the 8 OpenCV bug reports and the 10

Tensorflow bug reports, however, the performance of MRF SD is better than that of

SCOR.

Therefore, in answer to this question, we can say that the word embeddings gener-

ated by the word2vec algorithm in SCOR are generic enough to be used for carrying
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Fig. 8.1.: Scatter plot of average MAP vs MI values. Each data point in the plot

is a tuple (MAP, MI) for a software project. The MAP value plotted for a software

project is the mean of the 8 MAP values obtained while evaluating the 8 retrieval

algorithms on a specific project. Also shown in the figure is the RANSAC fitted line

along with inlier and outlier points. A low MI implies a difficult project, which in

turn, implies a low mean MAP value for the retrieval algorithms.
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out semantic search not only in Java based projects not seen in SCOR but also in

C/C++ and Python projects.

RQ4: How to best create a composite retrieval performance metric

for large-scale evaluations?

When a bug localization dataset involves multiple projects, it is unlikely that all

the projects would present the same level of difficulty (LoD) to a retrieval engine. So,

ideally, one should weight the performance numbers for the different projects with

some measure of LoD for the individual projects.

In Chapter 3 Section 3.3.3, we show how Mutual Information (MI) between source

code files and bug reports can be used as measure of LoD of performing retrieval. The

higher the value of MI for a project, the more the bug reports can tell us about the

project vocabulary and vice versa, and in turn the easier the retrieval is for the

project.

When we plot the MI value for each project against the mean of the MAP perfor-

mance numbers obtained with the different retrieval algorithms for that project, we

obtain the scatter plot shown in Figure 8.1. We also show in the figure a least-squares

line fitted to the data points using the RANSAC (Random Sample and Consensus)

algorithm along with the inlier and the outlier points. The slope of this line is 4.085

and the intercept 0.073.

The correlation that is present between MI and MAP implies that MI captures,

albeit approximately, the level of retrieval difficulty for a given software library along

with its bug reports. Note that at any given value of MI, we do not distinguish

between the retrieval algorithms in terms of their performance values. Rather, we

take a mean MAP value across all the algorithms to represent the performance of all

the retrieval algorithms on the project that corresponds to MI value.

The second column of Table 8.2 shows the calculated MI values for the software

projects in Bugzbook. Also, the last row of the table shows the MI-weighted MAP

values averaged across all the projects for each retrieval algorithm. We observe that

when the MI value for a project is high — as for example 1.90 for Camel and 1.99 for
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Table 8.3.: Shown are the MAP values obtained while changing the size of the seman-

tic word vectors for the SCOR algorithm, evaluated on the Eclipse software project.

Also shown are the results obtained by replacing word2vec with other word embedding

generators.

SCOR-V500 SCOR-V1000 SCOR-V1500

0.3191 0.3204 0.3193

SCORskipgram SCORglove SCORfasttext

0.3204 0.3192 0.3182

Wicket — the MAP values of the retrieval algorithms for that project are also high.

The lowest MAP value observed for Camel is 0.345 and for Wicket is 0.389. On the

other hand, with a low MI value of 1.57 for Drill project, the highest MAP value in

that row is only 0.240 for SCOR algorithm.

RQ5: Does changing the semantic word embeddings affect the perfor-

mance of the semantics-based retrieval algorithms?

The word embeddings can be changed either by changing the sizes of the vector

involved, or by using different embeddings altogether.

To address the question related to the sizes of the vectors, we varied the size of the

word2vec representations and generated the retrieval results for the SCOR retrieval

model. The results are presented in Table 8.3. We refer to the different versions

of SCOR, with each version using vectors of a specific size, as SCOR-V500, SCOR-

V1000, and SCOR-V1500. In this notation, SCOR-VN uses word embedding vectors

of size N. The first row of Table 8.3 shows the retrieval results on the Eclipse dataset

that contains 4000 bug reports with the different versions of SCOR. Based on these

results, we conclude that the size used for the word embeddings has no significant

impact on the retrieval performance. We chose Eclipse for this test as it has already

been used in several previous studies related to bug localization.
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We also compare the performance of SCOR when it is used with different types

of word embeddings. In addition to word2vec, there are now two other well-known

word embeddings: GloVe (Global Vector Representations) [19] and FastText [18].

When we replace the word2vec Skipgram model with GloVe and FastText in SCOR,

the difference observed in terms of MAP performance on the 4000 bug reports of

Eclipse dataset is negligible as shown in the second row of Table 8.3. In that table,

SCORskipgram refers to the original SCOR algorithm, and SCORglove and SCORfasttext

refer to the versions of SCOR using GloVe and FastText word embeddings. For all

the three word embedding algorithms we use the same input training dataset that is

available at our SCOR website. For this study, we used embedding vectors of size

500. We conclude that the retrieval results with SCOR are not affected by either the

choice of the embeddings used or the sizes of the vectors involved.

RQ6: Does replacing DLM with TFIDF in MRF based retrieval en-

hance the performance of bug localization systems?

Since TFIDF performs better than FI in terms of retrieval precision, and is compa-

rable in performance to the more advanced BoW tools like BugLocator and BLUiR

as we discussed in the answer to RQ1, we believe tht the question posed above is

important. The comparative results presented in Table 8.4 say that the answer to

this question is a definite yes. That table shows the performance of MRF SD and

SCOR using TFIDF as the BoW model versus the results shown previously in Table

8.2. The notation SD-T and SCOR-T is for these algorithms when use the TFIDF

score for the BoW contribution when computing the composite relevance score of a

file vis-a-vis a bug report.
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Table 8.4.: We compare MAP values of MRF SD with MRF SD-T, and SCOR with

SCOR-T retrieval algorithms evaluated on Bugzbook dataset. Notice that SD-T

and SCOR-T are the versions of MRF SD and SCOR when using TFIDF scores in

computing the composite score for retrieval, respectively.

Project SD SD-T SCOR SCOR-T

Ambari 0.268 0.294 0.295 0.298

Aspectj 0.226 0.232 0.250 0.235

Bigtop 0.304 0.325 0.560 0.572

Camel 0.405 0.420 0.407 0.417

Cassandra 0.369 0.389 0.411 0.451

CXF 0.348 0.358 0.363 0.376

Drill 0.218 0.231 0.240 0.245

Eclipse 0.303 0.313 0.320 0.323

HBase 0.429 0.443 0.453 0.449

Hive 0.335 0.370 0.345 0.339

JCR 0.453 0.454 0.450 0.465

Karaf 0.374 0.393 0.427 0.424

Mahout 0.315 0.334 0.338 0.348

Math 0.545 0.519 0.512 0.481

Opennlp 0.433 0.470 0.498 0.510

PDFBox 0.368 0.381 0.380 0.394

PIG 0.295 0.353 0.335 0.396

SOLR 0.371 0.384 0.394 0.398

Spark 0.377 0.437 0.418 0.441

Sqoop 0.367 0.384 0.417 0.419

Tez 0.424 0.439 0.431 0.468

Tika 0.290 0.328 0.326 0.361

Wicket 0.450 0.458 0.440 0.440

WW 0.414 0.426 0.430 0.448

Zookeeper 0.565 0.507 0.529 0.524

Chrome 0.119 0.125 0.137 0.125

OpenCV 0.845 0.699 0.819 0.804

Pandas 0.375 0.365 0.435 0.437

Tensorflow 0.246 0.201 0.182 0.186

Average 0.370 0.380 0.398 0.409

MI-wtd 0.467 0.490 0.500 0.512
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9. CONCLUSION

We advance the state-of-the-art in information retrieval (IR) based automatic bug

localization in this dissertation. We developed a novel source code search tool for

bug localization, called SCOR, that jointly models order and semantics for better

retrieval. Our SCOR retrieval model outperforms various state-of-the-art tools in

bug localization.

SCOR is the first source code search algorithm that combines both order and

semantics into a single retrieval framework. We achieve this by modeling term-term

ordering dependencies using Markov Random Fields (MRF) and inter-term semantic

relationships using cosine similarities between the word vectors of software terms

present in the code files and bug reports.

The manner in which we combine order and semantics into a single retrieval frame-

work is quite novel, and is therefore, one of the key contributions of this dissertation.

We compute a 2D numeric array of cosine similarity values between pairs of terms

in the query and in the file. Afterwards, we subject the 2D array with a convolution

operator designed specifically for the purpose of imposing ordering constraints in the

semantic-based retrieval. The specially designed kernel used for convolution contains

high values in its diagonal, and zeros elsewhere. We argue that convolution with such

a kernel produces the same effect as what would be achieved with MRF based logic.

SCOR requires semantic word vectors for software terms present in the vocabulary

of the corpus. To obtain these word vectors for the software terms, we experimented

with various semantic word embedding algorithms, such as word2vec, FastText, and

GloVe. We noticed their performances to be comparable when it comes to achieving

effective code retrieval for bug localization.
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The original authors of word2vec, FastText, and GloVe trained their algorithms on

a corpus containing regular English language documents, such as Wikipedia and news

articles. Such datasets are readily available in preprocessed form over the internet.

However, these datasets are not useful to us because our task involves bug local-

ization in source code repositories, and the vocabulary used in the software world is

quite distinct from the regular English vocabulary. Therefore, we created our own

dataset of 35000 Java software repositories downloaded from GitHub. This dataset

contains 35 million code files and around 1 billion software term tokens. We processed

these code files using our specialized preprocessing pipeline that involves source-code

identifier splitting into components, stopwords removal, and Porter stemming. We

call the resulting preprocessed dataset the SCOR word embeddings dataset.

We trained the word2vec, FastText, and GloVe models on our SCOR word em-

beddings dataset and performed a thorough analysis of the word vectors generated by

these models. We noticed that the vectors for software terms that are semantically

related to each other are very close in the semantic vector space.

In addition to presenting our SCOR retrieval framework, we performed a thorough

analysis of existing approaches for bug localization in the literature. We categorized

the past fifteen years of research in the field into three generations starting from 2004

until 2019.

The first generation tools are the ones that are based on simple BoW based models

in which frequencies of individual bug report terms are measured in source code files.

The second generation tools exploited software-centric information embedded in code

files and bug reports for better retrieval. However, the underlying ranking function in

second generation tools were still based on simple BoW assumption. The third and

the most recent generation tools go beyond the BoW assumption and are based on

modeling semantic and ordering relationship between terms for better retrieval.

However, a thorough analysis of past studies revealed a disconcerting trend that

the datasets used by the researchers in bug localization were all relatively small in

sizes, and also, were all based mostly on Java software repositories.
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Therefore, we created our novel, large, and diverse Bugzbook dataset that contains

over 20,000 bug reports taken from 30 different software projects written in multiple

programming languages. We then selected eight notable techniques from the three

generations of bug localization research, and performed experiments on them using

our Bugzbook dataset.

Our comprehensive large-scale evaluation of three generation of techniques re-

veal some important insights: (1) The third generation tools are more effective in

performance than the previous generation tools, (2) Our SCOR retrieval framework

outperforms various state-of-the-art bug localization algorithms, and (3) The word

embeddings generated after training a semantic embedding model on a large corpus

of 35000 Java repositories are quite generic, and therefore, can be used to perform

retrieval in new software repositories not seen by the model in the training phase,

even if the new repositories are written in non-Java programming languages.

We expect that the bug localization research community will benefit from the

SCOR retrieval framework along with the semantic word embeddings dataset, as well

as the Bugzbook bug reports dataset and the accompanying large-scale comparative

study of retrieval algorithms from different generations.
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A. SOFTWARE TOOLS FOR CONSTRUCTING WORD

EMBEDDINGS

In this Appendix, we discuss the software tools that we have used to generate semantic

word embeddings for software terms. Note that these semantic word vectors are

essential for modeling semantic relationships between terms in the source code files

and the terms in the software search query. Semantic word embeddings are used in

Chapter 7 to develop our software search tool called SCOR — Source Code Retrieval

with Semantics and Order.

The following software implementations are discussed in this Appendix: (1) Our

own implementation of word2vec tool to generate Skipgram word embeddings, (2)

Gensim library to generate word embeddings using FastText technique, and (3) GloVe

(Global Vectors) software tool to generate word embeddings using GloVe technique.

Note that our dataset consists of a corpus of 35 million source code files drawn

from 35000 Java software repositories that are publicly available at GitHub. The

stats related to this dataset are presented in Chapter 6.

A.1 A Parallel Multiprocessing Implementation of word2vec

Our implementation for word2vec can be found on the internet1. We imple-

mented word2vec from scratch in Python programming language with the ability to

process millions of source code files in parallel using Python multiprocessing frame-

work. Notice that we did not use any Python machine learning software tool, such

as scikit-learn or PyTorch, in the process of implementing the word2vec tech-

nique in Python. We avoid using these high-level machine learning tools in order

1https://github.com/sakbarpu/bme project
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to gain deeper insights about the internal workings of the word2vec algorithm while

implementing it from scratch in Python.

We have, however, used Python libraries, such as regex, string, numpy, and math

to perform low level operations on numbers, arrays, and strings. Our Python imple-

mentation of word2vec has the ability to process documents in parallel on multiple

processes using Python’s multiprocessing library.

The Python word2vec tool takes as input the root directory corpuspath where

all the software repositories are located on the disk, and the output directory output

where the output semantic word vectors generated by word2vec tool are stored.

The software implementation explained in this section concerns the Skipgram

variant of word2vec model that uses negative sampling heuristic for efficient imple-

mentation. Notice that in Skipgram model the word2vec neural network is trained to

predict context terms appearing in the window from the target term.

The process of generating semantic word vectors using word2vec Skipgram tech-

nique can be divided into several steps which we will discuss in this section. These

steps are: (1) Preprocessing the raw dataset of source code files, (2) Learning the

vocabulary from the source code corpus, and (3) Training word2vec on the software

corpus using multiple processes.

In the subsections that follow we provide a detailed explanation of the above

mentioned steps. The first two steps simply prepare the data for processing, while

the fourth step that involves training word2vec in parallel on multiple processes is

the most important part of the word2vec algorithm.

In the final two subsections we discuss the Negative Sampling (NS) approach

to efficiently compute the word vectors, and multiprocessing based implementation

of word2vec which is inspired from the “Asynchronous Stochastic Gradient Descent

(SGD)” or “Hogwild SGD” [85].
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A.1.1 Preprocessing Raw Dataset

The preprocessing follows the routine that is common to many retrieval frame-

works published in the software engineering literature [5, 11]. Specifically, the source

code files are first tokenized and special punctuation characters are removed, which

is followed by camel-cased splitting of software terms. The remaining terms are then

lower-cased, and subjected to a stopwords removal procedure. The terms survived

after stopword removal are stemmed to their roots using Porter stemming procedure.

The preprocessed source code files are stored in a single large text file with textual

content of each file stored on a separate line. Each line of the text file, therefore,

corresponds to a source code file in the software corpus, and is referred to as a

sentence.

The whole preprocessing pipeline is implemented in the class called Preprocessor

in our word2vec implementation. The text file containing contents from all the source

code files is fed into the word2vec algorithm for training.

A.1.2 Learning the Software Vocabulary

After preprocessing the source code files and storing them in single large text file,

the next step in the word2vec implementation is to learn the vocabulary from the text

file containing the content from the entire software corpus. The Python function that

implements this procedure is called learn vocab() in our word2vec implementation.

The vocabulary is initialized in the form of a Python dictionary dict data struc-

ture. The vocabulary contains an entry for each individual unique software term. The

value corresponding to a software term key in the dictionary is the total number of

times the software term appears in the entire corpus. In other words, the vocabulary

provides us with two pieces of information: (1) the software terms present in the

corpus, and (2) the frequencies with which each individual software term appears in

the entire corpus.
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In order to populate the vocabulary, the input text file is scanned while updating

the count for each individual software term present in the file.

Notice that the input text file that contains the preprocessed textual content

obtained from the entire corpus is very large in size, and therefore, may not be able

to load completely into the working memory. Therefore, we implement a mechanism

to read the sentences from the file on-the-fly. The class that enables reading text file

directly from the disk is called LineSentences in our word2vec implementation.

In order to read the sentences directly from the file, without loading the file into

RAM, a pointer to the file is first initialized using open(), and returned as an object to

the calling function that instantiated the object of this class. Afterwards, the calling

function can simply iterate through the sentences using a for loop. The iteration

is made possible because of a iter method implemented in the LineSentences

class.

After the vocabulary is learned it is truncated to remove the software terms that

appear extremely rarely in the entire corpus and are considered as noise in the dataset.

In our implementation the truncation is controlled by a parameter called min count

which is defined as the least number occurrences a software term should have in the

corpus to be considered for training using word2vec. The word2vec does not build a

semantic word vector for a term that occurs very rarely in the corpus. An example

value of min count could be 3.

The truncated vocabulary is stored on RAM to assist in further processing.

A.1.3 Training word2vec

The training of word2vec is divided into several components: (1) initializing model

parameters, (2) dividing code files into chunks for distributed processing, (3) forward

pass through the network, (4) computing loss function for training, and (5) backprop-

agating error for weight adjustments.
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Model Initialization

We first initialize the model parameters W and W′ that serve as the 2D weight

matrices for input-to-projection and projection-to-output connections, respectively.

The dimensionality of W and W′ is V × N and N × V , respectively, where V is

the size of the vocabulary, and N is the desired size of the word vectors. This

model initialization is implemented in the init model() function of our word2vec

implementation. Note that W is initialized as a uniform random distribution, while

W′ is initialized to be all zeros.

For fast processing, we utilize Python Numpy’s ctypeslib module which is an

advanced “Foreign Function Interface” package. And we make W and W′ globally

accessible from all the processes using the multiprocessing library’s Array() ob-

ject. Also, synchronization locks are not placed in these arrays that allows all the

processes to simultaneously access these arrays for read/write purposes. The rationale

behind making these arrays global is discussed in the last section when we discuss

Asynchronous Hogwild SGD.

Distributed Processing

We then divide the training corpus equally into p chunks, where p is the number

of worker processes that are executing in parallel on the multicore machine. Each

worker process is responsible for processing its dataset chunk of code files and train

the word2vec model using that chunk. Obviously, the last worker may get less work

depending on how the dataset is distributed. We compute the start and end sentence

indexes in the corpus for each worker and provide the sentences with indexes within

the range start to end to worker for processing.

We make use of the Pool class of the multiprocessing library for distributed

training with multiple processes. The Pool object maps a function callp across all

workers for parallel processing. This callp function implements the core functionality

of word2vec algorithm.
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The Forward Pass

The training pairs of software terms are extracted from each sentence and sub-

jected to word2vec based processing. The terms in each training pair are the input

target term wI and the output context term wj∗. Here, I is the index of input target

term and j∗ is the index of output context term in the vocabulary.

The neural network architecture for word2vec Skipgram model is shown in Figure

A.1. At the input we provide the target term around which a window is placed, while

the goal is to predict the context term appearing in the window around the target

term.

In the forward pass, the one-hot encoding x is provided at the input layer of

word2vec. All the values of one-hot vectorx are zero except for the value at index I

that corresponds to the input target term, which is 1. The output of projection layer

h is computed as:

h = WTx = vTwI (A.1)

Notice that the output h is actually the Ith row of the matrix W. Therefore,

in the actual implementation there is no notion of input one-hot encoding, rather

we obtain the index of the target term in the window and directly access the Ith

row of the weight matrix W using Python indexing W[index] to compute h. Notice

also, that the output of projection layer is not passed through a non-linear activation

function, such as softmax.

Proceeding further in the forward pass, the output of projection layer h is sub-

jected to another weight matrix W′ to produce a score uj for each word in the

vocabulary.

uj = v’Twjh (A.2)
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Fig. A.1.: The word2vec neural network architecture
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where v’wj is the jth column of the matrix W′. Therefore, we can access the

vector v’wj simply using Python indexing Z[index]2.

At the end of the forward pass, we compute softmax probability estimate for each

word j in the vocabulary belonging to the context of the target term I:

P (wj|wI) = yj =
exp(uj)∑V
j′=1 exp(uj′)

=
exp(v’TwjvwI )∑V
j′=1 exp(v’Twj′vwI )

(A.3)

where yj is the output probability value for the jth term in the vocabulary. We

refer to vwi as the input vector and v’wi as the output vector of the term wi in

the vocabulary. The forward pass can computed in word2vec implementation as

numpy.dot(W[index1], Z[index2]).

Loss Function

We optimize for the conditional probability P (wj|wI), meaning that we use the

Negative Log Likelihood loss function for training word2vec. Therefore, the optimiza-

tion problem solved by word2vec is given as:

E = − logP (wj|wI) =− log
exp(v’TwjvwI )∑V
j′=1 exp(v’Twj′vwI )

(A.4)

=− v’Twj∗vwI + log
V∑
j′=1

exp(v’Twj′vwI ) (A.5)

The energy E is minimized by maximizing the logarithmic conditional probability

logP (wj|wI), where wj is the output context word and wI is the input target word.

We use backpropagation with stochastic gradient descent algorithm to minimize the

loss function while adjusting the weight matrices.

2In our word2vec implementation Z denotes W’
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Backpropagation

The goal in backpropagation is to adjust the weights W and W′ of the word2vec

neural network so as to minimize the loss function E. The manner in which we achieve

that is by taking derivative of the loss function with respect to the weights in the

network using Chain rule for differentiation.

Computation of ∂E/∂uj

We take the derivative of the negative log likelihood E with respect to the output

of the linear layer uj just before applying softmax activation.

Notice that the output of the network given in Equation A.3 is a vector function,

i.e., a vector is given as input and a vector is produced at the output. In order to

compute P (wj|wI) or yj for a specific term wj in the vocabulary, we need uj for all

the terms at the output.

We first compute how loss, i.e. Ej = − log(yj) changes with respect to yj. Since

it’s a simple scalar function, the derivative calculation is quite straightforward:

dEj
dyj

=
d

dyj
(−log(yj)) = − 1

yj
(A.6)

Next we compute the derivative of Ei with respect to uj. Note that uj is the

output before softmax and we are deliberately using two indices, i and j, to measure

the effect of changing score uj for jth term on the loss for ith term. The loss Ei at

node i is not affected just by the score ui, rather by all the scores uj for all the nodes

j because of the software computation in between ui and yj.

Therefore, we compute the partial derivative, as opposed to the total derivative,

of the loss Ei at output node i with respect to the score uj at node j.

We can use the Chain rule to compute this partial derivative as follows:

∂Ei
∂uj

=
∂Ei
∂yi
∗ ∂yi
∂uj

(A.7)
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For the first expression of the Chain rule, we can simply use the scalar derivative

already computed in Equation A.6.

The derivative in the second part ∂yi/∂uj requires more work since the function yi

that we want to differentiate over is a fraction, i.e., yi = exp(ui)/
∑

j exp(uj). Taking

the derivative of yi with respect to uj:

∂yi
∂uj

=
∂

∂uj

exp(ui)∑
j exp(uj)

(A.8)

At this point, we have two choices: (1) i = j, or (2) i 6= j. Therefore, after

performing differentiation, we obtain:

∂yi
∂uj

=

yi ∗ (1− yi) , i = j

−yi ∗ yj , i 6= j

Plugging the appropriate values in Equation A.8:

∂Ei
∂uj

= yi − tij (A.9)

where tij is 1 when i = j and tij is 0 when i 6= j. We know that total loss

E =
∑

iEi. Therefore,

∂E

∂uj
= yj − tj = ej (A.10)

where tj is 1 when j is the actual output term and 0, otherwise.

Note that the above computation implies that for each term in the vocabulary

we have to compare its output probability yj with the expected output tj which can

take on a value of either 0 or 1. In our word2vec implementation, this is achieved by

simply taking the difference between label and p, where label refers to the ground

truth label tj and p the probability measure yj.

Obviously, we would never have to adjust the output uj. Rather, we will use the

derivatives ∂E/∂uj in backward pass to adjust the weights.

Computation of ∂E/∂w’ij
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We now take the derivative of E with respect to the weights in the matrix W’.

∂E

∂w’ij
=
∂E

∂uj
∗ ∂uj
∂w’ij

= ej ∗ hi = ej ∗ vwI i (A.11)

where ej is the error at output node j, hi is the output of the ith unit of projection

layer, and vwIi is the ith unit in the input vector of the target term wI .

We use the partial derivatives to adjust the weights, and the weight update equa-

tion is given as follows:

w’ij
(new) = w’ij

(old) − α ∗ ej ∗ vwIi (A.12)

In terms of output word vector, the update can be written as:

v’wj
(new) = v’wj

(old) − α ∗ ej ∗ vwI (A.13)

where α is the learning rate. Notice that if yj and tj are very close to each other,

then there is very little update performed on v’wj . If tj = 0 but yj is very high, then

we subtract a portion of vwI from v’wj , thereby, pushing v’wj away from vwI . And

if tj = 1 but yj is very small, we add a portion of vwI to v’wj , thereby, making v’wj

closer to vwI .

Computation of ∂E/∂wki

The goal now is to compute the derivative of E with respect to the input weight

matrix W. We know from Chain rule that:

∂E

wki

=
∂E

∂hi
∗ ∂hi
∂wki

(A.14)

We first backpropagate the error to compute the partial derivative of E with

respect to the output of the projection layer hi or vwIi . Here, hi is the output at the

ith unit of projection layer and is equivalent to the ith unit of the input vector for

the target term vwIi .
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∂E

∂hi
=

∂E

∂vwIi
=

V∑
j=1

∂E

∂uj
∗ ∂uj
∂hi

=
V∑
j=1

ej ∗w’ij = νi (A.15)

where ν is an N -dimensional vector and is the sum of the output vectors v’wj of

all the terms in the vocabulary weighted by their prediction error ej.

Next we compute the partial derivative of hi with respect to wki. Recall that:

hi =
V∑
k=1

xk ∗wki (A.16)

Therefore,

∂hi
∂wki

= xk (A.17)

Plugging the appropriate values in Equation A.14,

∂E

∂wki

= νi ∗ xk (A.18)

Since, only one component of input x is non-zero, we only need to compute the

partial derivative of only one row of W that corresponds to the input term wI . This

row is also the input vector vwI for term wI . The derivatives for rest of the rows of

W are all zeros.

Therefore, the weight update for the input vector becomes:

vwI
(new) = vwI

(old) − αν (A.19)

We can interpret the above weight update as adding a portion of every output

vector in the vocabulary to the input vector of the target term. If tj = 0 and the

probability yj of an output context term wj is high, then the input vector for wI will

move away from the output vector for term wj. On the other hand, if tj = 1 and yj

is very small, then the input vector for wI will move closer to the output vector for

wj. There is very little effect on input vector if the probability measurements yj are

very accurate.
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It is also important to note that the prediction error ej determines how big the

update needs to be in order to make the predictions accurate. As we go through

the updates, we can imagine the output vector for a word wj being dragged back-

and-forth by the input vector of word wI that appeared in the same window of wj.

Similarly, an input vector can also be imagined as being dragged back-and-forth by

many output vectors.

A.1.4 Negative Sampling

The word2vec processing to generate word vectors as described earlier is very

computationally expensive because for each training target-context pair, we have

to perform updates to the output vectors of all the terms in the vocabulary. The

reason to perform these updates is because we want to distinguish the actual context

word from all the other words in the vocabulary. This is a major bottleneck in the

computation process.

In negative sampling approach, we only update the output vectors for a small

sample terms in the vocabulary. That sample should obviously include the actual

output (ground truth) word because it is our positive sample. Additionally, few

randomly sampled words are included as negative samples.

To construct a probability distribution for sampling words from the vocabulary,

we build a unigram table from the count of words in the vocabulary.

Mikolov et al. [17] provide a heuristic for this purpose that works well for gen-

erating word vectors. The function we have used to implement the construction of

unigram table using their heuristic is called build unigram table(). We first com-

pute the normalization factor ξ =
∑

w U(w)0.75, where U(w) represents the count of

the term w in the corpus.

Afterwards, we compute the unigram distribution as P (w) = U(w)0.75/ξ, and

store the values in the memory.
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The training objective of word2vec with Negative Sampling is different from the

one we saw earlier in A.4, and is given as:

E = − log σ(v’wj∗
Th)−

∑
wj∈Λ

log σ(−v’wj
Th) (A.20)

where σ(.) represents the sigmoid activation function, wj∗ is the true output word

(i.e., positive sample) and v’wj∗ its corresponding output vector, h is the output of

projection layer, and Λ is the set of randomly sampled words that form the negative

samples for training.

We again denote the score uj = v’wjvwI as the output of the linear layer. The

derivative of E with respect to uj is given as:

∂E

∂uj
=

σ(uj)− 1 , j is the positive word index

σ(uj) , j is the negative word index

Therefore,

∂E

∂uj
= σ(uj)− tj = yj − tj (A.21)

Next, we take the derivative of E with respect to output vector v’wj .

∂E

∂v’wj
=
∂E

∂uj
∗ ∂uj
∂v’wj

= (σ(uj)− tj) vwI = (yj − tj) vwI = ejvwI

Note that ej the output prediction error and is computed as the difference between

the probability estimate yj and the true label tj. However, obviously j does not iterate

over all the terms V in the vocabulary, rather over all the terms in Λ sample.

The output vector of the terms present in the sample are updated as:

v’wj
(new) = v’wj

(old) − α (σ(uj)− tj) vwI (A.22)

This is implemented in our word2vec Skipgram implementation with Negative

Sampling as:
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Fig. A.2.: Multiprocessing implementation of word2vec

f = numpy.dot(W[target], Z[context]), get net score

p = sigmoid(f), get probability estimate a scalar value

g = local alpha * (label - p), get derivative/gradient

Z[context] += g * W[target], update output vector

We propagate the error backward to compute the derivative of E with respect to

the input vector vwI . But before that we compute the derivative of E with respect

to h:

∂E

∂h
=

∑
j∈Λ

⋃
{wj∗}

∂E

∂uj
∗ ∂uj
∂h

=
∑

j∈Λ
⋃
{wj∗}

(σ(uj)− tj) v’wj = ν (A.23)

We use this value of ν in A.19 to update the input vector. The following imple-

ments the weight update portion for input vectors in the implementation.

neu += g * Z[context]

W[target] += neu
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A.1.5 Hogwild SGD Implementation Using multiprocessing Library

The word2vec algorithm scans through millions of source code files with a window

of predefined size and trains to predict context words from target words using a neural

network. The training of neural network requires adjusting weight matrices W and

W′. The weight adjustment procedure is performed using stochastic gradient descent

in which weights are adjusted for each training pair of context term and target term,

as described earlier.

However, if word2vec algorithm is implemented to perform training on the files in

a serial fashion using a single computational process, it would take prohibitively long

time to process millions of files. Therefore, the input source code files or sentences

are randomly distributed across multiple processes and each process is responsible to

perform training using only its respective files. This is illustrated in Figure A.2.

A natural question that arises from the above discussion is that, if we allow the files

to be distributed across processes in a multiprocessing framework, and each process

is responsible to train on a specific chunk of source code files, then does each process

keep a separate copy of weight matrices to train on the files?

The answer to the question posed above is, no. The matrices W and W′ are, in

fact, global to all the processes? By global we simply mean that there is only one copy

of each of these matrices and that copy is shared across all processes. Obviously, a

natural assumption then would be that in parallel multiprocessing implementation of

word2vec these global matrices will be synchronized using a certain locking mechanism

that would restrict multiple processes from accessing — reading from and writing into

— these global matrices in order to avoid race conditions.

However, if the global weight matrices are implemented using synchronization

locks then effectively the implementation would become a serial implementation since

at each time step a certain process will lock the global matrices to read from and write

into them.
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While the global matrices should be locked in a usual setting, in our word2vec

implementation these matrices are not synchronized using locks. Instead, inspired

from the original implementation of word2vec 3, the processes are allowed to simul-

taneously read from and make updates to the matrices. This loose implementation

of SGD is called Asynchronous or Hogwild SGD, and works under the assumption

that at each weight adjustment only a few parameters — only those vectors corre-

sponding to the context and target words in the window — out of all the parameters

in the weight matrices are updated by a certain computational process in the neural

network training. Since the files are randomly distributed across processes and there

are millions of files in the dataset, the probability of collision — defined as the prob-

ability that two processes will update the same weight vectors in the weight matrices

corresponding to the context and target words that the processes have encountered

in the window — is very low.

A.2 Gensim Software Library

Gensim4 is a popular software library that contains implementation of various

semantic word embedding algorithms including word2vec, and FastText.

It has the functionality built-in to read the sentences from a large text file without

having to load it entirely into the memory using LineSentences:

sentences = gensim.models.word2vec.LineSentence(’path/to/file’)

where ‘path/to/file’ is the location of the file containing source code files as sen-

tences. Afterwards the call to execute the model such as FastText is very straight-

forwards:

gensim.models.fasttext.FastText(sentences=sentences, min count=3,

size=200,sg=1, iter=20, window=8, workers=12)

where min count is the minimum number of occurrences of a term in the corpus

to be considered in training using the algorithm, size is the desired dimensionality

3https://code.google.com/archive/p/word2vec/
4https://radimrehurek.com/gensim/
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of word vectors, sg denotes whether we want to train using Skipgram model or not,

window is the size of the window used to scan and obtain target-context pairs of

terms, and workers is the number of parallel workers used for training.

A.3 GloVe Software Tool

We used the GloVe5 implementation that is made publicly available on the internet

by the original authors. The input to the system is the same single large file that we

have used for our word2vec and Gensim software.

We first run the vocab count tool to construct unigram counts from the corpus,

and discard the terms that have very low frequency in the corpus. The output of

running this program is a vocabulary file containing unique terms in the corpus along

with their respective counts in the corpus.

Next we use the cooccur tool to construct the term-term cooccurrence statistics

from the corpus. The input to this tools is the corpus file as well as the vocabulary file

created in the previous step. The output of this program is a binary file containing

cooccurrence statistics.

We then use the shuffle program to randomly shuffle the binary file of cooc-

currence statistics. And finally, we execute the glove program to train the GloVe

model.

5https://nlp.stanford.edu/projects/glove/
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