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MATHEMATICAL NOTATION 

𝑓 = 𝑟𝑜𝑢𝑡𝑒 − 𝑓𝑙𝑜𝑤𝑠 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑟𝑜𝑢𝑡𝑒𝑠 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑂𝐷 𝑝𝑎𝑖𝑟𝑠 

𝐴 = 𝑙𝑖𝑛𝑘 − 𝑓𝑙𝑜𝑤𝑠 𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑐𝑒 𝑚𝑎𝑡𝑟𝑖𝑥 

𝑔𝑖 = 𝑐𝑜𝑛𝑣𝑒𝑥 𝐵𝑃𝑅 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 

𝑔𝑖 = 𝑐𝑜𝑛𝑣𝑒𝑥 𝐵𝑃𝑅 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 
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𝐷 = 𝑑𝑒𝑚𝑎𝑛𝑑 𝑣𝑒𝑐𝑡𝑜𝑟 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑖𝑛𝑔 𝑑𝑒𝑚𝑎𝑛𝑑 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑂𝐷 𝑝𝑎𝑖𝑟𝑠 

𝐶 = 𝐶𝑜𝑠𝑡 𝑣𝑒𝑐𝑡𝑜𝑟 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔 𝑡𝑜 𝑡ℎ𝑒 𝑡𝑟𝑎𝑣𝑒𝑙 𝑐𝑜𝑠𝑡 𝑜𝑓 𝑒𝑎𝑐ℎ 𝑟𝑜𝑢𝑡𝑒 𝑓𝑙𝑜𝑤 𝑎𝑡 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 

𝑈 = 𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝑐𝑜𝑠𝑡 𝑣𝑒𝑐𝑡𝑜𝑟 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔 𝑡𝑜 𝑡ℎ𝑒 𝑚𝑖𝑛 𝑐𝑜𝑠𝑡 𝑟𝑜𝑢𝑡𝑒 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑂𝐷 

𝑥𝑖 = 𝑙𝑖𝑛𝑘 𝑓𝑙𝑜𝑤𝑠 𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒𝑑 𝑤𝑖𝑡ℎ 𝑜𝑟𝑖𝑔𝑖𝑛 𝑖 𝑔𝑜𝑖𝑛𝑔 𝑡𝑜 𝑎𝑙𝑙 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 

𝑀 = 𝑛𝑜𝑑𝑒 − 𝑙𝑖𝑛𝑘 𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑐𝑒 𝑚𝑎𝑡𝑟𝑖𝑥 

𝑋 = 𝑙𝑖𝑛𝑘 𝑓𝑙𝑜𝑤 𝑣𝑒𝑐𝑡𝑜𝑟 
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𝑓𝑣 = 𝑓𝑙𝑜𝑤 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒𝑑 𝑤𝑖𝑡ℎ 𝑝𝑙𝑎𝑦𝑒𝑟 𝑣 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑢𝑠𝑒𝑑 𝑜𝑑 𝑝𝑎𝑖𝑟𝑠 (𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒) 

𝑥𝑖
𝑣 = 𝑓𝑙𝑜𝑤 𝑜𝑓 𝑙𝑖𝑛𝑘 𝑖 𝑤𝑖𝑡ℎ 𝑟𝑒𝑠𝑝𝑒𝑐𝑡 𝑡𝑜 𝑝𝑙𝑎𝑦𝑒𝑟 𝑣 

𝑋𝑣 = 𝑙𝑖𝑛𝑘 − 𝑓𝑙𝑜𝑤 𝑣𝑒𝑐𝑡𝑜𝑟 𝑜𝑓 𝑝𝑙𝑎𝑦𝑒𝑟 𝑖 
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ABSTRACT 

New technologies such as electric vehicles, Autonomous vehicles and transportation 

platforms are changing the way humanity move in a dramatic way and cities around the world 

need to adjust to this rapid change brought by technology. One of the aspects more challenging for 

urban planners is the parking problem as the new increase or desire for these private technologies 

may increase traffic congestion and change the parking requirements across the city. For example, 

Electric vehicles will need parking places for both parking and charging and Autonomous vehicles 

could increase the congestion by making longer trips in order to search better parking alternatives. 

Thus, it becomes essential to have clear, precise and practical models for transportation engineers 

in order to better represent present and future scenarios including normal vehicles, autonomous 

vehicles and electric vehicles in the context of parking and traffic alike. Classical network model 

such as traffic assignment have been frequently used for this purpose although they do not take 

into account essential aspects of parking such as fixed capacities, variety of users and autonomous 

vehicles. In this work a new methodology for modelling parking for multi class traffic assignment 

is proposed including autonomous vehicles and hard capacity constraints. The proposed model is 

presented in the classical Cournot Game formulation based on path flows and in a new link-node 

formulation which states the traffic assignment problem in terms of link flows instead of path 

flows. This proposed model allows for the creation of a new algorithm which is more flexible to 

model requirements such as linear constrains among different players flows and take advantage of 

fast convergence of Linear programs in the literature and in practice. Also, this link node 

formulation is used to redefine the network capacity problem as a linear program making it more 

tractable and easier to calculate. Numerical examples are presented across this work to better 

exemplify its implications and characteristics. The present work will allow planners to have a clear 

methodology for modelling parking and traffic in the context of multiusers which can represent 

diverse characteristics as parking time or type of vehicles. This model will be modified to take into 

account AV and the necessary assumptions and discussion will be provided. 
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 INTRODUCTION 

Urban mobility patterns of humanity have drastically changed in the last centuries. During 

the last century the increase of inflow from rural areas to cities and urban centers have represented 

one of the main changes in human activity. Today around the world more than 60% of population 

lives in urban areas [1], which makes the cities to be more important than ever in history and the 

challenges of supplying all requirements of transportation for such amount of people is an 

enormous challenge. In fact, around the world there are more than 30 cities with a population 

higher than 10 million people, implying that the available space for private and public 

transportation system is smaller. Between the challenges faced by urban areas and prospect cities 

which are growing exponentially in size are the creation of efficient transit, balance of roads and 

spaces for private vehicles, electrification of transportation modes, shared mobility and parking of 

vehicles for freight, commuting and recreational trips.  

These problems have been the backbone of transportation engineering during the twenty 

century [2] and have shifted and shaped the literature in terms of planning aspects. As a result 

methods such as the classical four stage planning method and more recent methodologies including 

big data analyses have been created in order to model and plan the movement of people and the 

need for infrastructure. Historically speaking different places in the world have privileged different 

transportation modes as a function of local constrains. For example, in the US thanks to the big 

spaces and available land area the private vehicle gained a leading importance in both rural and 

urban areas which shaped the planning thinking during the twentieth century. Contrary to this, in 

most of Europe the transit system gained a leading importance given their space constrains. In 

Asia, the focus of transportation planner was a combination of both modes as a function of income, 

with a primary focus in private vehicles as cities densities started to grow and the shift to transit 

system in the last decades. While in Latin America this shif is just happening with the construction 

of new transit and metro lines and the modification of bus routes that can compete with the 

convenience of the motorcycle [3]. 

One other important aspect of urban planning during the twentieth century was the parking 

problem, which consists of the planification and policies related with the offering and usage of 

space for parking [4]. In fact, most of the policies design of cities during the twentieth century in 

the United States were related or linked with the availability of parking in the central zones of 
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cities in order to increase or decrease their demand of private trips. The research in this aspect was 

bast and brought policies such as minimal parking requirement for new construction places, 

introduction of curb parking in central zones and regulation of parking prices in order to shift the 

mode and destination choice of users [5], [6]. These type of methodologies were supported in 

economic and choice models which predicted the average usage of parking cells in different places, 

some of them were based in Nash equilibrium [7] between offer and demand. These types of 

models brought the ability of analyze the impact of price on total demand in descriptive manner. 

In this case the main modelling aspect was the usage of Wardrop equilibrium in order to understand 

how parking search affected the route choice and even the modal split in big cities. Nevertheless, 

these models were not able to scale well in the size of urban areas such as Chicago or New York 

which could easily have more than 20000 nodes making its use impractical for the time, which 

were partially solved with better optimization techniques and an increase in computation power. 

With the increase in computing power and development of fastest optimization techniques a new 

modelling approach started to emerge which was the dynamic assignment and agent-based 

simulation (ABS). These models go into details of specific choices made in a timely manner by 

users, which are not considered in macro scale models but that are much harder to scale in 

computation time. These new approaches started to take into account aspects such as visibility of 

parking availability, complex choice model, lack of information, between others, which made the 

results more realistic in terms of assumptions. Although these new methodologies for modelling 

parking became more better understood and accessible for the practitioners, parking planning 

around the world has not changed much, and simple rules of thumb for number of minimum 

required parking places still stand to be the norm in terms of policies in cities such as New York 

City or Chicago [8].  However, new policies such as maximum parking lots have been 

implemented in countries such as Japan or Singapore showing the parking policy around the world. 

One of the main reasons why these simple parking policies are still in use in a lot of areas 

around the world is because of history and requirements of minimal change in policies that can 

make stable the decision taking of private enterprises and actors alike. Also, other challenging 

aspect of the usage of more sophisticated tools for managing parking becomes more important in 

the third world planning agencies which have the challenge of not making the same mistakes made 

by other cities in the past while planning for their rapid growth. And, with the introduction of 

emerging technologies such as electric and autonomous vehicles, the modelling aspect of parking 
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becomes essential. For Electric Vehicles (EV) there is the planning of the locations and number of 

charging places which would work as parking places. For the Autonomous Vehicles (AV) the 

automatic search of parking places or the return to home could reduce the parking necessities while 

increasing the traffic demand of the system. These technologies which are under research in the 

academic and industry community must have clear modeling tools for planning agencies which 

can lead to improve decision taking and better transportation performance overall.  

 Therefore, it becomes essential for planning agencies to better understand difference, pros 

and cons of different modeling aspects going from macro simulation to microsimulations, how to 

interpret the results and easy to use tools and scalable algorithms that can allow these models to 

be used in practice. Specifically, one of the most used models in practice is the static assignment 

which is based on the ideas of User Equilibrium and in a generalized manner can be analyzed 

under the general framework of network games from a theoretical perspective. The static traffic 

assignment generally speaking has the advantage of providing good algorithm scaling, and good 

theorical analysis. Specifically, in parking the static traffic assignment model has been worked in 

the perspective of using one mode and type of user describing capacity of parking lots as their 

available cells. Nevertheless, in this model the differentiation among users is classically not taken 

into account, which has major importance as difference user’s choice different parking spaces 

based on the type of vehicle or parking duration that they may have. In this sense it becomes 

essential to have static model which consider a multiuser modeling scenario taking into account 

parking duration, capacity constraints of parking and traffic links into a unique model. This type 

of work has received special attention in last years although not clear relationship of parking 

duration and parking capacity has been stablished. Also, one big missing factor in the literature is 

the analysis of network capacity, which in a sense is an extension of the capacity of individual 

links but in the case of networks where the overall capacity comprises  

1.1 Description of the Parking Problem 

Parking is one of the main ways to control decisions and modal choice in city planning, and 

has been traditionally used as a main way to force and shape the landscape of cities in terms of 

land usage, mode decision and traffic congestion. Nonetheless, initially in terms of modelling the 

aspects taken into account were simple compared to the development of traffic assignment. In fact, 

although for traffic assignment the software and mathematical models are bast, for parking most 
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of the rules and analysis done before the twenty-one century were based on general models which 

stablish the relationship in the macro scale of offer and demand for parking. Parking by itself 

consist on the allocation of physicals space to stop while the user does some other activity. For 

different cities around the world the increase in parking space followed a differentiated behavior, 

for example for UK there was a big increase in parking places during the 1960-1980 time period, 

where cities such has Arlington, Berkeley and Cambridge experienced an increase on its number 

of parking places of more than 50 percent while in the following twenty years it growth by 11 

percent [9] . This tendency was repeated in multiple cities around the world that consolidated their 

urban growth at the end of the twentieth centuries, although is still on the rise in Asian cities. This 

differentiated behavior has become a fertile opportunity for studying the implications of different 

parking policies, but the results are inconclusive. The parking analysis have covered topics such 

as parking choice, effect of parking on urban and economic growth and its impact on congestion 

[4]. In terms of parking choice some authors specify that the most important choice decision in 

parking choice are cost and walking distance to final destination, but results may vary greatly by 

city and type of trip [10]. Urban and economic impact of parking demand studies demonstrated 

that parking availability may not have a big effect on the decision of users to go to certain place in 

central areas of cities, although may have an impact in not centric ones. In terms of congestion the 

analysis of parking has been scarce since most of the analysis center on the relationship of offer 

and demand of parking, nevertheless since the 1980 parking has taken a central role in analysis of 

congestion.  

Urban and mobility planning in general focus on policies and infrastructure planning of 

traffic and transit. Parking infrastructure, historically was generally provided by private institutions 

making planner to take it for granted and sometimes to not take it into account in city planning. 

Because of this during most part of the twenty century and even today, a lot of city plans reference 

minimum parking requirements based on constructed area and functionality. This resulted in an 

increase of traffic attraction to city centers, and fast increase in congestion. This due to the increase 

of urban density but a not proportional increase in transit offer. For a long time, the mentality of 

city planners consisted in the increase of road supply as a response to the increase of demand in 

order to reduce congestion. Nevertheless, the experience showed that it was impossible to keep up 

with the rapid increase in motorization which made planners to move away from this idea. Some 

European cities experienced with this thematic in the last decades incentivizing substantial 
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increase in the usage of public transit and reduction of the usage of private modes. This change in 

the last decades brought benefits for the society in term of health and money savings. Nevertheless, 

as populations gets older and new technologies like self-driving and electric vehicles start to enter 

the market, planners are starting to face new struggles in terms of parking design. The parking 

problem is highly connected with the development of technology such as electric vehicles for 

charging or autonomous parking for the decrease in number of required parking cells.  

1.2 Description of Network Capacity 

Network capacity is a known term in communications networks and in other areas where it 

plays a central role in network and protocol design [11]. Nevertheless, in transportation science 

the capacity analysis has been mostly focused on individual link analysis, where the capacity of 

different systems such as transit lines, metros and traffic lanes are analyzed. Thus, explicit 

functions for the capacity of a multitude of transportation lanes or links exist, nevertheless when 

the whole network is considered the problem received less attention. The definition of network 

capacity can be stated as what is the maximum throughput of a given transportation network in a 

given period of time and under some behavior and flow patterns. In the case of static assignment 

the Capacity of networks is considered when hard capacity constrains are taken into account [12]. 

In this formulation the capacity is defined as the maximum OD matrix that can be putted on it until 

the problem remains feasible given the link flow constrains. When the sum of such a matrix is 

considered an unique value describes the maximum throughput of the system in terms of 

Maximum number of vehicles per study period which for static models tends to be between 1 to 3 

hours [13]. When analyzed over parking networks classic literature defines the capacity of parking 

lots as the number of parking spaces in a given place. However, the problem with this definition 

is that it does not take into account the parking duration factor of users, which would be the 

equivalent of calculating the capacity of traffic links without taking into account the safe space 

which each user considers when driver under certain velocity. Therefore, it becomes clear that in 

order to make a simile of infrastructure capacity of traffic links and parking links the demand 

characteristics should be taken into account. This implies that the parking duration of users define 

the capacity of a parking link. Thus, if in studied during a certain period of time the capacity of a 

parking link should be equal to the total amount of vehicles that can be attended in a given period 

of time. In average the capacity of a parking link is equal to the number of cells multiplied by the 
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study period and divided by the average parking duration. The importance of this definition is that 

when considered as a whole each link in a network can represent a traffic segmented or a parking 

location. The capacity of each link must be clearly defined and be consistent among them. With 

this definition the network capacity is measure of the maximum throughput that as a system the 

network could serve under a given OD matrix and in a period of time. The usage of this concept 

can be enormous as for example it could be used to measure the quality of service of a network, 

identify inefficient links and even improve the design of the network with capacity increase. Also 

with the introduction of new technologies such as AV the network capacity concept can become 

as a metric which helps to understand the effect of automatization as this technology enters the 

market. In this work a precise definition and review of the literature of network capacity will be 

included and algorithms for calculating it will be proposed based on the classic traffic assignment 

with hard capacity constraints and the multi user traffic assignment model proposed. 

1.3 Motivation and Objectives 

Parking has been and keep being an ongoing problem of city planning which is being 

related with a lot of new technologies such as electric vehicles, autonomous vehicles and other 

tendencies of technology of the twenty-one century. As explained before the problem has had a lot 

of different perspectives and treatments from traffic modelers and planning agencies alike which 

have not come in unified methods or manuals to understand differences, advantages and cons of 

the different modelling methodologies. These methodologies range from the more classical 

economic modelling to static traffic assignment to the newer ones being the dynamic traffic 

assignment and data analysis which have become popular as computation power and accessibility 

has increased drastically. Therefore, this work focuses on proposing a clear methodology form 

modelling parking based on network models starting with the proposed model for static parking 

modelling taking into account different users such as Autonomous Vehicles. Thus, comparison of 

these models can be used by traffic modelers in order to take better decision when planning parking 

plans for a city. Allowing them to understand the pros, cons and requirements of each model. Also, 

in this work we propose a faster and more tractable logic to find the capacity of the network in the 

static case and give a definition and procedure on how to calculate it. The network capacity has an 

important meaning from the planning aspect since it allows to check the efficiency of the system 

to attend a given demand pattern and could be used in network design problems. 
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In the case of the objectives this work has 4 main objectives which one for each modelling 

aspect which correspond to static assignment of parking, static assignment of parking including 

autonomous vehicles, Network capacity definition of static model with normal vehicles and 

Network capacity definition including Autonomous Vehicles. These are described in detail below. 

 

 Propose a clear methodology and mathematical formulation for the Multi User Traffic 

Assignment with Hard capacity constraints of parking and traffic combined, including 

efficient algorithm for calculating solutions to the problem and parameters required to 

modify inputs such as Travel cost functions. 

 Propose a clear methodology and mathematical formulation for the Multi User Traffic 

Assignment with Hard capacity constraints of parking and traffic combined with 

autonomous vehicles including efficient algorithms for calculating solutions to the problem 

and parameters required to modify inputs such as Travel cost functions. 

 Definition of network capacity in the scenario of Normal vehicles in a multi class network 

including traffic and parking links and propose efficient algorithm for solving it.  

 Definition of network capacity in the scenario including Autonomous and Normal vehicles 

in a multi class network including traffic and parking links, and propose efficient algorithm 

for solving it. 

 

Overall, this work is organized 7 chapters with the first chapter being the introduction giving an 

overall overview of the problem, motivation and objective. The second chapter is an overall 

literature review of the parking research area including the different type of approaches given in 

the literature with respect to economic analysis, policy analysis, network models, dynamic models 

and data driven works which are related to parking including at the end the contribution of this 

work on the existing literature and its importance. The third chapter includes a review of network 

models for parking analysis including differences between User Equilibrium and System optimum 

will be important in autonomous driving. The chapter includes mathematical formulation, solution 

algorithms, network capacity definition and small numerical cases for the different models. The 

fourth chapter presents the proposed formulation to the multi user hard capacitated network model 

including parking, solution algorithm, numerical examples and the presentation of the study case 

of Bello city in Colombia. The fifth chapter presents the proposed formulation for the autonomous 
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vehicle modelling in the perspective of network models, mathematical formulation, differences 

that autonomous vehicles bring over travel delay functions and users dynamic, small numerical 

examples and the application on the same study case in Bello city. The sixth chapter gives a 

comparison of the results of the described models, advantages and disadvantages, recommendation 

for modelling in real scenarios and future work. 
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 LITERATURE REVIEW 

Parking analysis has been a broad interest topic for transportation engineers, general 

research in the topic could be divided in five main categories: economic and policy analysis of 

parking, Mode choice selection of parking, static assignment models of traffic and parking 

assignment, dynamic and simulation models for parking and traffic simulation and optimal parking 

network design. The main focus of this work is the static assignment of traffic and parking, so a 

more profound review will be given of parking policy, Traffic and parking assignment. However, 

a brief overall review of the literature review will be described. 

2.1 General description of Parking Research 

The research on the topic dates back to 1922, where N.P Lewis and HML Lewis [14] 

pointed out to the parking necessities of the expansion of cities in the USA. They recommended 

and recorded some of the first rules of minimum parking provision per constructed area. This 

started an analysis of the best policies and methodologies for parking assessment. Later, on the 

decade of the forties, with the implementation of out of street regulations and parking meters, 

research started to focus on the analysis of these measurements. Problems such as congestion 

where studied by authors such as Brinkman, et al [15] Pointing out to some statistics and basic 

analysis of these measurements. Modern authors started to use econometric, traffic assignment and 

simulations to analyze the parking problems. Young W, et al [16] made a review of the types of 

models used in parking. They explained how multiple authors in the 80’s used econometric and 

choice models to describe the choice of parking options and the important characteristics 

associated with them.  In fact, Hunt et al [17], created a logit for choice model finding that distance, 

price and type or parking as the most relevant variables in parking choice. On the other hand, 

traffic assignment has been used to analyze the situation. R Thompson and A.J Richardson [7] 

developed a traffic assignment model with integrated parking facilities choosing as part of the 

equilibrium formulation. Recently simulation has been one of the main choices for parking 

modelling, where multiple researchers have created frameworks taking into account parking 

choice, distance, time variation of parking demand among other factors into account. Horni et al. 

[18] created an Agent Based Simulation (ABS) for parking cruising including traffic assignment, 
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they applied the model to the study case of Zurich. One of the main drawbacks of simulation, is 

the high complexity of the algorithms which make it slow to run in bigger instances, but generally 

a big part of its internal calculations can be made in parallel.  

Although there is a rich literature for the modelling of parking, one of the main lacks is the 

definition of network capacity. This concept is generally assumed to be the sum of the capacity of 

all the cells in the parking network, nevertheless the problem with this assumption is that it lacks 

the ability to capture the reality of rotation and different parking behavior around the city. On the 

other hand on traffic assignment H Yang, MGH Bell, Q Meng [19] ,  proposed a Network capacity 

definition as the maximum amount of demand that can be assigned in a given set of OD-pairs, such 

that throughput of the network is maximized. The importance of this definitions is that it takes into 

account capacity constraints on links and produces a maximum throughput estimate of the network 

under a given demand characterization. Nevertheless this definition has a high mathematical 

complexity as the problem is defined as a bilevel optimization program, which in general is hard 

to solve [20]. Also, a discussion of the properties of such a problem have not been discussed and 

its implication in practical use are still low.  

2.2 Economic and Policy Analysis of Parking  

Economic and policy analysis of parking problems plays a central role in overall urban 

planning and policy making. Specially since the beginning of this research area, economic analysis 

was one of the main drivers for policy making and planners alike [21]. Initially the authors started 

to model the problem of parking in terms of possible financial gains or cost for the public 

institutions, so the parking supply side was made a requirement for the private land developers as 

a function of the project total area. Because of this, a great concern was created around city planner 

and research in order to find ways to fund the creation of parking spaces where supply was not 

enough [22]. This marked the start of the usage of policies such as curb parking, public parking 

facilities and discount for private companies investing in parking supply [23]. In modelling terms 

the economic analysis of parking focused on a multi scenario analysis of offer and demand and 

correspondent estimation of benefits and cost [24]. For this, simple rules of demand and 

relationship between behavior of users was taken into account which were required given the low 

computational power of the moment so simplicity was chosen for any modelling mechanism 

applied in real cases. However, with the increase of the complications of parking over cities and a 

https://scholar.google.com/citations?user=vIq1GlUAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=S704pPIAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=0VPLFAgAAAAJ&hl=en&oi=sra
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rapidly increasing computation power offered by multiple companies more realistic and complex 

models were taken into account by the research academy. In these models the prices of parking are 

taking into account and final destinations estimated on relationships between costs and behavior 

of demand until certain defined equilibrium is reached [25]. Other type of models are based in 

optimal design of parking fares for curb parking, were optimization scenarios are created in order 

to optimally select the fares of parking facilities [26]. Generally speaking, the resulting models are 

NLP (Non Linear Programs) which are solved by successive linearization algorithms by solving 

an LP (Linear Program) per iteration, making them feasible for big instances of problems. In terms 

of policy analysis, the literature focuses on the effect of different policies on parking and traffic 

combined. One of the best reviews in the topic was given in [27] were the authors reviewed 

different parking policies and implications around the USA and Europe, concluding that parking 

diminution is correlated with private vehicle usage. Lastly these type of analysis have become an 

essential part of any real implementation of policies and in general new literature in the topic uses 

economic analysis to study benefits and cons of policies such as Autonomous vehicles or 

maximum parking laws [28].  

2.3 Static Traffic Assignment with Parking. 

Static models have been the preferred choose for practitioner and academia alike for traffic 

simulation in the last century. When parking is considered the literature on the topic becomes large 

although is relatively new with respect to other areas of traffic modeling with a more active 

research since the decade of the eighties. In this regard, one of the most important papers on the 

topic was given by [29], where parking was combined with traffic classical traffic assignment by 

the usage of adequate cost performance functions. This concept was further extended by [30] with 

the usage of multilayer network representation including the parking, traffic and pedestrian 

network which allowed for the usage of classic traffic assignment algorithm with convex BPR 

functions. However, hard capacity constraints of links where still out of radar in the literature, 

although formulation and algorithm for the Traffic Assignment Problem Constrained (TAPC) was 

already developed [31]. This problem in specific was studied in multiple cases, and one of the best 

performing algorithms was given by [32] with the introduction of the Augmented Lagrangian 

algorithm 
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Dynamic model for parking including Agent Based simulation Dual Simplicial 

Decomposition, whose idea is the usage of the augmented Lagrangian method to put the capacity 

constrains in the objective function and the solution of the resultant Assignment problem by using 

the DSD Algorithm. Combination of capacity constrains for parking and traffic constrains was 

worked out by [33] by an extended formulation of the problem including hard capacity constraints, 

stochastic assignment, parking links and transit routes. Nevertheless, for the solution of the 

problem the author just enumerated some paths and solve the equivalent formulation using GAMS, 

which makes the solution not equivalent to the real UE as not guarantee exist that the preselected 

paths where the optimal ones. The advancement in modelling techniques and the usage of 

Variational Inequalities [34] for problem formulation attracted new research in the parking 

modelling topic. Multi User traffic assignment for example was analyzed in the context of parking 

by [35] with the introduction of multiple modes in a multinetwork representation and multiple 

users formulation including parking prices. However, this formulation does not bring advantages 

in terms of computation time since the all simple path enumeration is NP hard problem which 

implies that the number of paths would be incredibly large and therefore the problem size would 

become intractable. Recent works in this topic [36] have included the similar problem formulation 

although the usage of the fixed point algorithm is considered, detailed algorithm characteristics 

are not specified which makes harder to verify or implement.  

2.4 Big data and Parking Analysis 

The last decade has seen an increase in the data available for analyzing different aspect of 

human behavior and mobility patterns. In the literature the usage of data related with vehicle 

locations and in some cases parking occupations has allowed authors to understand the dynamic 

of parking. The work in this area has boomed since 2015. The work in this area focuses on the 

usage of the data to give better recommendations for parking availability to users, optimize parking 

lots location and diagnosis of demand requirements. [37] Presented a first glance of the usage of 

Internet of Things and big data analysis to provide parking services information for users, which 

has a big implication in real systems as cruising for parking is estimated to take around 30% of 

total trip travel time [38]. Nevertheless his description was just theoretical and demonstrative. [39] 

Described a system were such data collection and processing were putted into a real case study 

with data in the city of Aarhus in Denmark. In the study the authors give a clear description of the 
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usage of cluster and parallel collection techniques based on the Hadoop technology. The results 

presented are of interest for the planning authorities as real time and historic analysis of parking 

occupation is given which could be used for parking planning or dynamic fare estimation.[40] 

further works into these type of analysis although with the usage of Deep learning is able to give 

an estimate of available cells in parking locations around the Federal University of Parana, which 

allows users to better plan their trips and reduce the cruising time. Other type of application of big 

data is in the planning of parking locations for normal and future Autonomous vehicles. In this 

aspect [41] used trip data from taxis in the city of Beijing in order to optimize the selection of 

parking and charging location for Electric Vehicles. For this study the authors used big data of taxi 

trips in order to stablish the potential demand of different parking location for charging. On the 

same line [42] proposed a more robust framework contrasting existing and potential locations and 

using data from cellphone users which allowed them to have more data and better analysis. In 

general, all these studies focused mainly on the collection and processing of the data while giving 

recommendations and results analysis over study cases. Nevertheless, it is expected that in the 

future and with the implementation of systems based on IoT more analysis will be perform 

comparing predicted outcomes with real measurements. This is of great importance as one of the 

biggest problems in parking and transportation modelling in general is the lack of experimental 

data to verify the mathematical models used to predict the behavior of users. Therefore, the usage 

of data analysis and machine learning in parking planning analysis has a big potential of improving 

the usage of existing parking layouts and give better recommendations to the creation of new ones. 

Also, as AV and EV market share increase this data will be vastly available and efficient algorithm 

for its exploitation and usage will become necessary. 

2.5 Dynamic Modelling of traffic and parking 

Dynamic models in traffic engineering refer to network model that take time into account 

the time dimension and specific behavior characteristics of individual users in order to obtain 

aggerated and individual results of travel time, cost, etc. These model started being developed in 

the seventies and one of the best references was given by [43] presenting an non convex 

optimization framework to calculate system optimum dynamic traffic assignment (DTA). 

Although this model did not take into account the UE, while also using simplistic assumptions as 

fixed demand, single-destination, single-commodity. Furthermore [44] reformulates the problem 
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as a well-behaved convex nonlinear, gaining some theoretical and algorithm gains performance 

wise. Nonetheless these formulations had the problem of the violation of First in First Out (FIFO) 

component which is related with dynamically how users are assigned into the network. These types 

of model belong to the class of analytical formulation of DTA, where a mathematical formulation 

of the problem is available which can have insights on algorithm, behavior or parties such a 

uniqueness and existence. Nevertheless, these model even today lack the ability to be sued for 

generalized networks and do not include a lot of realistic properties such as advanced behavior 

models control strategies, thus the most popular way to apply DTA consist of simulation-based 

modelling combining with equilibrium conditions. This type of models have been worked out by 

multiple authors, with [45] being one of the more referenced. In that worked the selected model 

which consisted of demand and supply generator which interact based on a UE search principle, 

were the assignment is finalized when a UE dynamic equilibrium criterion is met. The model is 

mesoscopic which implies that some way of cost delay function is still taken into account, avoiding 

the extra complexity brought by Agent Based simulation. The main difficulty with DTA 

formulation is the concept of equilibrium which implies that user’s selection of routes must follow 

an overall pattern across time and space. On the other hand, Agent Based simulation (ABS) which 

as discussed can be used as an input for DTA is based on a set of logical rules which determine 

the agents and rules among them which can dynamically vary. Thus, ABS is an easy way to 

implement a lot of realistic scenarios although the computational cost can be expensive. In this 

regard one of the most prominent works was given by [46] using a general ABS model called 

MATSIM, including specific following behavior showing good computational power and 

comparing to real data from a real case scenario of Zurich. When it comes to parking ABS has 

been the primary focus of research as it can allow for complex behavior in parking search and 

decision making. In this regard [47] developed a Abs model taking into account lack of information 

of available parking and occupation realization based on line of sight. When taking into account 

autonomous vehicles [48] developed a simulation framework for shared AV which would serve 

around 2% of population and would avoid parking in a shared mobility scheme. The study case 

for that study was the city is run on a hypothetical study case, although some precaution was taken 

in order to make it as realistic as possible. Results show a fast reduction of parking requirement 

with fleet increase, as the system is more efficient in the usage of available vehicles. Overall, the 

simulation methodology has the advantage of model advanced characteristics such as reaction time 
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or connection among vehicles, shared mobility among other. Overall, the literature presents a rich 

environment of modeling scenarios and characteristic, although results are only theoretical as real 

implementation cases are still not available. More analysis needs to be done in order to compare 

static and dynamic results and to understand how good can they predict reality. 
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 NETWORK MODELS FOR TRAFFIC ASSIGNMENT 

This chapter presents a description of classical network models for traffic assignment in 

the perspective of static assignment which is based on the concept of equilibrium, analysis of 

classical methods and proposed algorithms for solving the problems are presented. Classical 

Traffic assignment and Hard capacity constrained traffic assignment are studied as they are the 

backbone of the proposed multiuser framework for both normal users and autonomous vehicles 

which will be detailed in chapter 4 and 5 respectively. An overview of the literature and the 

mathematical formulation is given and some numerical examples studied and compared for both 

cases. 

3.1 Transportation Assignment Problem (TAP) 

Static models refer to the classical form of traffic assignment where the route choice of 

users in the network follows a given behavior stablished as User Equilibrium (UE) which was 

introduced for the first time in the 1952 by John Glen Wardrop. In this equilibrium the premise is 

that for any user Origin-Destination (OD) pair all used routes will have an equal and minimal travel 

cost while for the unused ones the travel time can be any value and flow will be zero. Later this 

principle of equilibrium was stablished to be a Nash Equilibrium where a simultaneous game is 

played between different agents and each agent just wants to minimize its own travel time [49]. 

These types of models are based on finding a certain structure on the optimality conditions which 

show that the given equilibrium is followed and on its simple version it can be reduced to a single 

convex optimization format. While on its extended version Variational Inequalities are required in 

order to stablish the optimality conditions and formulate the problem in the right manner. The 

classical formulation of the traffic assignment assumes that there is just one type of user to be 

assigned which has complete knowledge of the network. This implies that all users know the exact 

cost performance functions of all links in the networks and all paths that can be followed between 

a pair and destination. The usage of these methodologies is still on high demand and although its 

assumptions are generally not true in reality, metanalysis have concluded that it has reasonable 

performance in real implementations. On its basic form this model assumes perfect knowledge 

from users of the overall state of the network, convex cost performance functions and a strict 
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guidance of user behavior under the UE principle. In this chapter some of these assumptions will 

be relaxed and discusses as capacity constraints of links should be considered. Also, algorithm and 

difference between System Optimum and User equilibrium will be discussed as those will play a 

central role in parking and Autonomous vehicles modelling. 

3.1.1 Mathematical Formulation 

Classical mathematical modelling of this problem included algorithm and behavior 

description of users which became important in the context of solution algorithm. Nevertheless, 

the problem was later found to have an equivalent optimization framework formulation, which 

could be proven to reduce to the UE conditions. For this an integral transformation of the cost 

functions is required and which work in the case where the cost performance function is self-

dependent on their own link flow. In terms of behavior all users follow the classical UE, in this 

context this formulation is reduced to the following optimization problem. 

 

min
𝑓
∑∫ 𝑔𝑖(𝑠)𝑑𝑠 (1)

𝑥𝑖

0

𝑛

𝑖=0

𝐴𝑓 = 𝑥 (2)
𝐵𝑓 = 𝐷 (3)
𝑓 ≥ 0

 

Equation 1. TAP mathematical formulation 

𝑓 = 𝑟𝑜𝑢𝑡𝑒 − 𝑓𝑙𝑜𝑤𝑠 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑟𝑜𝑢𝑡𝑒𝑠 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑂𝐷 𝑝𝑎𝑖𝑟𝑠
𝐴 = 𝑙𝑖𝑛𝑘 − 𝑓𝑙𝑜𝑤𝑠 𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑐𝑒 𝑚𝑎𝑡𝑟𝑖𝑥

𝑔𝑖 = 𝑐𝑜𝑛𝑣𝑒𝑥 𝐵𝑃𝑅 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛
𝐵 = 𝑓𝑙𝑜𝑤 − 𝑂𝐷 𝑝𝑎𝑖𝑟 𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑐𝑒 𝑚𝑎𝑡𝑟𝑖𝑥 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑖𝑛𝑔 𝑖𝑓 𝑎 𝑔𝑖𝑣𝑒𝑛 𝑓𝑙𝑜𝑤 𝑏𝑒𝑙𝑜𝑛𝑔𝑠 𝑡𝑜 𝑎𝑛 𝑂𝐷 𝑝𝑎𝑖𝑟

𝐷 = 𝑑𝑒𝑚𝑎𝑛𝑑 𝑣𝑒𝑐𝑡𝑜𝑟 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑖𝑛𝑔 𝑑𝑒𝑚𝑎𝑛𝑑 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑂𝐷 𝑝𝑎𝑖𝑟𝑠

 

 

This problem has multiple properties, as can be checked the constrains are linear, therefore 

as long as feasible they will describe a polytope, also since the BPR or travel cost function are 

convex so will be the overall objective function which is the sum of the integrals of them. It is not 

evident that an answer to this problem would results in UE, and in order to check it, the optimality 

conditions of the answer most be studied. For this the KKT conditions of the problem must be 

obtained which in this case correspond to: 
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𝑓(𝐶 − 𝑈) = 0 (1)

𝐶 − 𝑈 ≥ 0 (2)
𝐵𝑓 = 𝐷 (3)

𝑓 ≥ 0 (4)

 

Equation 2. First order optimality conditions for TAP 

 

𝐶 = 𝐶𝑜𝑠𝑡 𝑣𝑒𝑐𝑡𝑜𝑟 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔 𝑡𝑜 𝑡ℎ𝑒 𝑡𝑟𝑎𝑣𝑒𝑙 𝑐𝑜𝑠𝑡 𝑜𝑓 𝑒𝑎𝑐ℎ 𝑟𝑜𝑢𝑡𝑒 𝑓𝑙𝑜𝑤 𝑎𝑡 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 

𝑈 = 𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝑐𝑜𝑠𝑡 𝑣𝑒𝑐𝑡𝑜𝑟 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔 𝑡𝑜 𝑡ℎ𝑒 𝑚𝑖𝑛 𝑐𝑜𝑠𝑡 𝑟𝑜𝑢𝑡𝑒 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑂𝐷 

 

From the first condition it can be seen that there are two possible outcomes for routes cost 

and flows, either the flow is zero and the associated cost can be greater than the minimum one, or 

the flow can be greater than zero but it’s cost must be equal to the minimum one of all routes 

between that OD pair. This condition corresponds to the definition of UE and the solution to this 

optimization problem corresponds a solution of traffic equilibrium. The second important thing to 

consider in this problem is checking whether the problem is or not convex, since it can foresee 

properties such as uniqueness of the solution. To check this the second derivative of the Lagrangian 

projected into the feasible set must be checked, nevertheless since in this case the constrains form 

a polytope which is compact and convex, it is only needed to check the Hessian of the objective 

function. The aforementioned mathematical program has the path-flows as decision variables 

which imply that every link flow is a function of a set of path flows. Although for every OD a 

given path flow will just appear once in every link flow. Since the link flow cost function are 

dependent only on their own link flow, the hessian matrix with respect to link flows would be 

 

𝜕𝐹(𝑋)

𝜕𝑋
=

[
 
 
 
 
𝜕𝑓1

𝜕𝑥1
⋯ 0

⋮ ⋱ 0

0 0
𝜕𝑓𝑛

𝜕𝑥𝑛]
 
 
 
 

 

Equation 3. Hessian Matrix of TAP objective function 

 

Which is a diagonal matrix with positive entries since, all cost function are assumed to be 

convex and strictly positive, therefore this matrix is positive definite and the optimization program 

would be convex [50]. Nevertheless this result just holds with respect to link flows, but in terms 
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of path flows the problem is not convex so multiple solution can be found that follow a unique link 

flow pattern, which has been further analyzed in the literature [51]. 

3.1.2 Solution Algorithms for the TAP 

This formulation has been widely used by practitioners and researchers alike and stablished 

an important correlation between optimization and traffic assignment which does not hold in 

general. In terms of the algorithms the literature has proposed multiple procedures to solve the 

problem, and these algorithms divide in two categories. The first category is link flow based which 

gives solution in terms of link flows while not conserving information of path flows. The second 

category is path flow based which gives solution for both the link path and flow paths variables 

although the path flows can be not unique. The classical approach for solving the classical traffic 

assignment for UE consists of the Modified Frank Wolf method which takes a linear 

approximation of the objective functions and proceeds to solve the resulting linear program (LP), 

then the new estimate for each iteration is found by performing a line search between the sequential 

solutions to the LP. This new solution is assured to be inside the feasible region since the region 

is a convex set thus an affine combination inside the feasible set will belong to it. This algorithm 

improved greatly with respect to past iteration algorithm such as capacity constrain iterations. One 

further improvement of this algorithm was proposed by [52] by introducing the concept of 

conjugate direction, which makes the Frank wolf of each iterations to be conjugate between with 

respect to the hessian of the objective function 𝑑𝑖𝐻𝑑𝑖
𝑇 = 0. Also since most of the execution time 

is spent in the All or Nothing Assignment and the shortest path identification, further progress by 

[53] was made in this regard by formulating the subproblems in terms of link incidence matrix and 

using a tree structure representation to speed up its performance in factors up to 2x. This algorithm 

was shown to have a better practical and theoretical convergence in the original paper and has been 

implemented in commercial algorithm such as TransCAD, a detailed description of this algorithm 

is given in Figure 1. 
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Figure 1 Conjugate Franw Wolf Algorithm 

 

∝𝑘=

{
 
 

 
 
𝑁𝑘

𝐷𝑘
𝑖𝑓 𝐷𝑘 ≠ 0 𝑎𝑛𝑑

𝑁𝑘

𝐷𝑘
∈ [0,1 − 𝛿]

1 − 𝛿 𝑖𝑓 𝐷𝑘 ≠ 0 𝑎𝑛𝑑
𝑁𝑘

𝐷𝑘
> 1− 𝛿

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 }
 
 

 
 

 ; 𝑁𝑘 = �̅�𝑘−1
𝑇 𝐻𝑘𝑑𝑘

𝐹𝑊 ; 𝐷𝑘 = �̅�𝑘−1
𝑇 𝐻𝑘(𝑑𝑘

𝐹𝑊 − �̅�𝑘−1)  

�̅�𝑘−1 = 𝑠𝑘
𝐶𝐹𝑊 − 𝑥𝑘 ; 𝑠𝑘

𝐶𝐹𝑊 =∝𝑘 𝑠𝑘−1
𝐶𝐹𝑊 + (1 −∝𝑘)𝑦𝑘

𝐹𝑊 

 

To have a further understanding and proofs of the convergence of the algorithm the reader 

may refer to [52]. The experiments show that the method has an overall faster convergence than 

classical FW method and the author go further showing a Bi conjugate method, which makes the 

new direction at each iteration to be conjugate with respect to the last two search direction further 

improving its convergence but for high levels of precision. On the other hand, the same problem 

can be solved by enumerating a set of feasible paths before formulation of the problem though 

some heuristic and then simply using some known and fast algorithm or commercial software to 

solve the equivalent problem in term of path flows using the optimization formulation. 

Nevertheless, this method suffers from the path computation problem. This is the case since 

computing such paths is as hard as solving the optimization problem, and resembles the problem 

of obtaining a feasible solution for LPS, where the problem of finding a good starting point is as 
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hard as solving the original LP [54], [55].  Thus, must of the literature in the topic and current 

applications use variant of the Frank Wolf method when link-flow variables are required and the 

best algorithms known generally use a combination of conjugate direction method with fast 

solution algorithm for the all or Nothing Assignment. 

3.1.3 Difference between UE and SO in TAP 

It is important to notice that this formulation can also be used to analyze the system optimal 

behavior of the system, for this the objective function of the problem changes to be the overall 

travel time of the whole system, the equivalent formulation is  shown in Equation 4. Equivalently 

the problem can be stated as UE, but with a modification of the cost function of each link, by 

adding the marginal cost of each function. This implies that the SO system is equivalent to solving 

for UE with BPR function 𝑓̅(𝑥) = 𝑓𝑖(𝑥) + 𝑥𝑖
𝑑𝑓𝑖(𝑥𝑖)

𝑑𝑥𝑖
, which has an great importance since it implies 

that the same algorithm used for UE can be used for SO by just changing the BPR functions. 

 

min
𝑓
∑𝑥𝑖𝑓�̅�(𝑥𝑖)

𝑛

𝑖=0

𝐴𝑓 = 𝑥 (2)
𝐵𝑓 = 𝐷 (3)
𝑓 ≥ 0

 

Equation 4 System Optimal (SO formulation) 

  

One important question to address once the system optimal is stated is how different are 

the solution of one problem with respect to the other both in terms of link flows and in terms of 

total travel time for the system. The literature in the topic is broad, although the existence of 

theorical results imply the imposition of constrains on the functional form of the cost functions. 

One of the most generalized results in the topic was given by [56] where the author claimed that 

the worst case scenarios (although not generally) occur in simple parallel networks and the 

difference between UE and SO can be unbounded as a function of the functional form of the cost 

function. When this cost function takes the form of a polynomial of degree p then the author shows 

that for parallel networks the relationship between UE and SO time is of the form 𝑂(𝑝/ log(𝑝)) , 

this relationship is generally denominated as price of Anarchy in traffic assignment and the topic 
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is also of high interest in economic fields. Nevertheless, this result holds only for classical traffic 

assignment without hard capacity constrains which will be introduced later in this chapter and that 

force the maximum travel time of a network to be bounded, thus giving a maximum amount of 

travel time for the system and making the value of the price of Anarchy to be bounded as well.  

3.1.4 Discussion of TAP and its Problems 

Generally speaking, the classical Traffic Assignment Problem (TAP) has brought big 

advantages for traffic modelers and has been widely use in real cases all around the world. 

Nonetheless since its beginning this formulation has suffered from multiple criticisms of its 

simplistic assumptions and inability to model dynamic behaviors. 

In terms of parking modelling this classical formulation has received some major or small 

changes in order to take parking into account which include the addition of cost function of parking 

links which stablish the approximate cruising time if a vehicle where to park in this segment. 

However, there are a source of inconsistencies in the assumption or modelling aspects of this 

classical traffic assignment. On one hand all users are assumed to behave the same, have perfect 

information and perception of travel times, which has been modified in other formulations such as 

stochastic traffic assignment [57]. Other assumption is that the link traffic flow can take an infinity 

value, which is not true as clearly specified by the capacity of a given link which has been 

extensively researched [19], [58]. For these reasons there have been simple modifications for the 

classic formulation which include the addition of hard constrains for the maximum link volume. 

This change drastically modifies the problem, as a change in the constraint set of the optimization 

problem makes the problem much harder to solve. Also, it makes the problem to have an additional 

complexity for which the problem may not be feasible for any OD matrix since it may the network 

capacity of some od pairs. For this reason, this work will introduce the addition of the hard capacity 

constraints in classical traffic assignment. 

3.2 Traffic Assignment with Hard capacity Constrains 

The traffic Assignment problem with Hard capacity constrains correspond to the same 

problem formulation of the TAP, but with the addition of extra constrains on the link flows which 

allow for a better representation of real conditions as real traffic links flows are bounded by 
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maximum amounts. As discussed before, TAP although highly used in real modelling scenarios 

suffers from a lot of assumptions which are important to address in order to have realistic results. 

For this reason during the 1980 the research community started to work with the modelling of the 

problem when adding hard constrains that represent the upper bound of link-flow [31], [59].  This 

formulation plays a central role in the modelling of parking as this phenomenon is highly 

constrained by physical capacity described by parking time and parking cells. In this chapter a 

detailed description of this formulation will be given including formulation, solution algorithm, 

difference between UE and SO and network capacity concept. 

3.2.1 Mathematical Formulation 

This approach is simple in terms on formulation and its mathematical equivalence is  

identical to TAP with the addition of a linear inequality term representing relationship of path 

flows and link flows with their Upper Bound value or Capacity as seen in Equation 5 

 

min
𝑓
∑∫ 𝑓𝑖(𝑠)𝑑𝑠 (1)

𝑥𝑖

0

𝑛

𝑖=0

𝐴𝑓 = 𝑥 (2)
𝐵𝑓 = 𝐷 (3)

𝐴𝑓 ≤ 𝐻𝐶 (4)
𝑓 ≥ 0

 

Equation 5 TAP-C formulation 

 

The TAP-C (Traffic Assignment problem Constrained) formulation is equivalent to the 

TAP but with the addition of the linear constrains of capacity. Therefore the feasible region is still 

a convex polytope which as long as feasible is convex, closed and compact [60]. In terms of the 

formulation the changes are minor, but the solution algorithm, interpretation of the model and 

possible results has a high impact. To verify that the actual problem formulation is a UE, the FOC 

(First Order Conditions) must be analyzed which are shown in  Equation 6 
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𝑓(𝐶 − 𝑈 + 𝛼) = 0 (1)

𝛼(𝐻𝐶 − 𝐴𝑓) = 0
(𝐶 − 𝑈 + 𝛼) ≥ 0
𝐴𝑓 = 𝑥 (2)

𝐵𝑓 = 𝐷 (3)
𝐴𝑓 ≤ 𝐻𝐶
𝑓 ≥ 0 (4)

 

Equation 6 FOC TAP-C 

 

Where ∝ is the associated Lagrange multiplier of the capacity constrains, therefore if we 

define a generalized cost of each route to be the sum of the travel time plus the LaGrange multiplier 

of all links associated to each path condition 1 would imply that at equilibrium the generalized 

cost of the used routes is either minimal and have a positive flow or greater than that but with a 

flow of zero. Nevertheless, the problem with this definition is that the there is no longer guaranteed 

that the actual travel time of all used routes is equal which greatly differs with the TAP formulation. 

This implies that in a congested network the pure UE in cost that can be measured directly in the 

network does not hold. This is essential since it will change not just the solution difference with 

respect to the TAP problem but also change the performance of system travel time with respect to 

the TAP-C when considering the SO solution. The formulation in that case would be the same as 

with the TAP problem but changing the objective function, also the same replacement could be 

done to solve the SO TAP-C as UE problem, by using the replaced cost function plus link flow by 

its derivative.  

 

min
𝑓
∑𝑥𝑓𝑖(𝑥)

𝑛

𝑖=0

 (1)

𝐴𝑓 = 𝑥 (2)
𝐵𝑓 = 𝐷 (3)

𝐴𝑓 ≤ 𝐻𝐶 (4)
𝑓 ≥ 0

 

Equation 7 Link flow formulation of TAPC subproblems 

 

This formulation is also convex as the multiplication of a linear term with a strictly convex 

function does not alter the convexity of the resultant product. Thus, the problem also has a unique 
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solution and as with the case of TAP can be solved by directly solving with the formulation or by 

transforming the problem into an equivalent UEC formulation. Thereby the transformed cost 

function is still equal to the original function with the marginal cost of the link added. 

3.2.2 Solution Algorithms 

In terms of solution algorithm, the addition of these constrains completely change the 

problem, since for example if using a first order Taylor approximation of the objective function 

the resultant Linear programs do not equate to the AON assignment, as the feasible set is changed. 

This implies that these subproblems cannot be solved using the independent shortest path for all 

used od pairs and assigning the traffic accordingly, but the subproblems would equate to the multi 

commodity flow problem with capacity constrains [61]. Because of this the solution algorithm for 

this problem proposed in the literature often rely on the replacement of the capacity constrains by 

some penalization function in the objective function. This would be equivalent to estimating at 

each iteration the equivalent Lagrange multiplier of each constrain and adding it as a generalized 

cost. One of the simplest algorithms for solving this problem takes the form of penalty functions, 

which change the objective function in such a way that the overall problem is solved as a sequence 

of simplified problems, where the desired constrains are incorporated in the objective function and 

their value increased as the constrain violation increases. This method was studied thoughtfully by 

multiple authors [59], [62] where the results pointed out to a good performance given the simplicity 

of the constrains. On the other hand, augmented Lagrangian methods which use a similar technique 

but add an equivalent term to a Lagrange multiplier which is a function of the constrain penalty 

value. This method was also studied in the traffic applications by some authors [32], [59], the 

authors find that these method are more reliable and still tractable in terms of extra computation 

time, since the additional calculations increase linearly with the number of links. Based on this, 

the method of solution adopted in this work is a combination of the conjugate Frank wolf method 

with the augmented Lagrangian penalty function. The algorithm is described below. 
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Figure 2 Algorithm for TAP-C (CCFW) 

 

This algorithm has the property of updating the link flow functions at each iteration and 

making the last search direction conjugate with respect to the varying Hessian matrix. The 

convergence of this algorithm is assured when the function 𝑃𝑎  tends to infinity as the constrain 

violation becomes larger and an extensive proof of this is presented in [32]. Nevertheless, the 

problem with this formulation is that it does not address the initial feasible solution which stablish 

whether or not the OD matrix can be assigned in the given network given the imposed hard 

capacity constraints. Thus, it becomes necessary to make transform the problem into a two-phase 

optimization problem with the first level checking feasibility and the second one improving upon 

the feasible solution. The reason why this is important is given by the fact that the algorithm will 

not end if not feasible solution can be found. In order to solve this, the first phase requires that the 

constrain set to be further analyzed, which as discussed is a polytope and therefore can be threaded 

with linear programing. The main problem with this approach is that it would require an 

enumeration of all paths which makes it infeasible for big size networks as the simple paths 

problems is a known NP-Hard problem [63]. Therefore, a link incidence formulation is proposed, 

for this all real links are assigned a new variable for each Origin with non-zero destination in the 
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network. The link flow becomes the sum of all the proportions of link flow of each Origin. This 

formulation is presented in  Equation 8 

 

min
𝑥𝑖
∑�̅�𝑓𝑖

𝑛

𝑖=0

𝑀𝑥𝑖 = 𝑂𝐷𝑖  ∀ 𝑖

�̅� = ∑𝑥𝑖

𝑟

𝑖=0

 

�̅� ≤ 𝐻𝐶
𝑥𝑖 ≥ 0

 

Equation 8 Link flow formulation of Multicommodity flow problem 

 

 𝑥𝑖 = 𝑙𝑖𝑛𝑘 𝑓𝑙𝑜𝑤𝑠 𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒𝑑 𝑤𝑖𝑡ℎ 𝑜𝑟𝑖𝑔𝑖𝑛 𝑖 𝑔𝑜𝑖𝑛𝑔 𝑡𝑜 𝑎𝑙𝑙 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 

𝑀 = 𝑛𝑜𝑑𝑒 − 𝑙𝑖𝑛𝑘 𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑐𝑒 𝑚𝑎𝑡𝑟𝑖𝑥  

�̅� = 𝑙𝑖𝑛𝑘 𝑓𝑙𝑜𝑤 𝑣𝑒𝑐𝑡𝑜𝑟 

𝑂𝐷𝑖   𝑣𝑒𝑐𝑡𝑜𝑟 𝑜𝑓 𝑂𝐷 𝑑𝑒𝑚𝑎𝑛𝑑 𝑎𝑡 𝑛𝑜𝑑𝑒 𝑖 

This problem is similar to the ones exposed in [53] where for the acceleration of the 

subproblem a link incidence formulation was used in combination with fast tree structure method 

for the construction of the path tree. In order to check the equivalence of the problem the following 

example is presented and the flow path and link flow formulations given. 

 

 

Figure 3 Multi commodity example 
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min
𝑥0
[5,5,5,5,5]𝑥𝑜

1 1 0 0 0
−1 0 −1 0 1
0 −1 1 1 0
0 0 −1 −1 0

∗

𝑥0−1
𝑥0−2
𝑥2−1
𝑥2−3
𝑥1−3

=

40
−10
0
−30

0 ≤ 𝑥0 ≤ 𝐻𝐶
𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑥0 = [20 20 10 10 20]

 

Equation 9 Node-link formulation Linearization example 

 

 

min
𝑓
[5,5,5,5,5] ∗ 𝐴 ∗ 𝑓

1 1 1 0 0
0 0 0 1 1

∗ 𝐹 =
30
10

𝐴 ∗ 𝐹 ≤ 𝐻𝐶
𝐹 ≥ 0

𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝐹 = [20 0 10 0 10]; 𝑋 = [20 20 10 10 20]

 

Equation 10 path-flow formulation Linearization example 

 

Clearly both problems have similar solutions although the solution properties and 

advantages are different, in the case of the flow formulation more information is incorporated but 

the disadvantage becomes the intractability of the computation of all simple paths. On the other 

hand, the link formulation creates new variables equivalent to non-zero origins, then the number 

of variables in the worst-case scenario (All OD pairs used) increases in a factor of 𝑂(𝑉𝑁) where 

V is the number of vertexes and N the number of nodes in the networks. However realistically 

traffic assignment problems usually have very sparse OD matrix so this factor will be around 5% 

of the Nodes in the networks create flow since most of the models assign OD demand matrix that 

are related with zones covering multiple nodes. The subproblems which result from the 

linearization of the Frank Wolf problem can be formulated despite size of the networks and solved 

using efficient interior point methods. These subproblems have the capacity problem incorporated 

so if the implemented methods are efficient there might be an efficiency gain with respect to the 

CCFW algorithm. Therefore, the search direction would be generated by solving these 

subproblems and then the new direction could be made to be H orthogonal to the n past directions. 
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With this formulation the finalized TAPC algorithm becomes a two-stage algorithm, in the first 

stage a node link linearization of the problem is taken assuming the travel time of the links as 

𝑡𝑎(0). If the above LP is feasible this solution is used to solve the CCFW algorithm, if not then it 

means that the capacity of the network is not able to accommodate such an OD matrix and some 

OD flows must be reduced. 

3.2.3 Differences between UEC and SOC 

There are multiple differences analysis to be done over the TAPC one of the most important 

ones being the difference of UEC (User Equilibrium Capacitated) and UEC (User equilibrium 

Capacitated) with respect to the classical TAP. This analysis becomes highly important since as 

expressed before for generalized function and network forms in the TAP problems there is not 

bound on the price of anarchy. On the other hand, on the TAPC problem there is a clear upper 

bound for the system travel time. This plays a huge role, since it implies that as demand increases 

the travel time of the system will tend to an upper bound regardless of the distribution pattern of 

users as long as all links have a hard capacity constrain which is the case of real modelling 

scenarios. In order to compare the differences a small example network was used, on which one 

OD pair is used and the demand increases until it reaches its maximum. For this a random planar 

graph was used, which is created by using a simple generation procedure which is described in  

Figure 4. This algorithm consisting on random sampling from an initial Strongly connected graph 

and then proceeding to recover its Strong Connectivity property, this process is similar to the 

creation of free scale networks proposed in the literature [64]. Although in this case the random 

planar are clearly biased towards rectangular grids, but since it is the case of most transportation 

networks the algorithm can be used for this case. 
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Figure 4. Algorithm for random planar graph generation 

The generated graph was created using a square grid of 10 by 10 points, the resulting 

connected graph has 144 links and 58 nodes, the capacity of all links is set to 100 with the exception 

of 4 links related with the paths that connect node 40 and 43. In this case most of the links are 

considered bi directional a plot of the network is shown in Figure 5. For this experiment the OD 

used will be between node 40  and 89 and a simple analysis of the network allows us to determine 

that the maximum flow achievable between these two od pairs is 300, so the experiment will 

calculate the resultant flows between these two nodes solving for UE,SO, UEC and SOC and 

changing the demand from 0 to 300. 

 

 

Figure 5. Example network capacity plot 
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The results indicate that the four types of assignments although different in link flows are 

similar in overall system travel time until some of the links capacity start to be reached. At this 

point the UEC starts to be closer to the SOC, which implies that the hard constrains force users to 

act in a more efficient way, as their real times cannot longer be exactly equal. Therefore, the 

difference between the SO and UE in the constrain setting is much lesser than in the unconstrained 

setting, implying that congested networks have a lower chance of improvement on travel time 

savings by applying route choice control of users. On the other hand, the route choice behavior is 

also similar as the congestion in the networks starts to appear, since routes possibilities get reduced 

by the congested links.  

 

 

Figure 6 Comparison of UE and SO for TAPC example 

 

Figure 7 and Figure 8 show the difference in the links flows as demand approaches capacity 

and as seen in the previous results the link flows are similar until total demand goes over 200, as 

links start to get to congested levels and traffic is forced to used other routes. This route patterns 

at congestion of both UEC and SOC start to get closer to the routes of the SO, which means that 
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users start to use distribute themselves in more diverse routes although their real travel time is no 

longer equal to similar users in other routes.   
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Figure 7 TAPC Results 

 

 

 

Figure 8 TAP Results 
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Another critical issue analyzed in classical traffic assignment which is related to the 

difference of UE and SO is the Braess Paradox [65] which consists on a simple question of network 

design : Does the addition of a new link increase the performance of the system travel time?. The 

question is crucial in the context of planning since is a long-standing practice to create more roads 

in order to reduce congestion. On its simplest version using TAP, past results shows that given the 

non-cooperative behavior of users under UE, the addition of new links may make the overall 

system travel time to become larger under some conditions. In the case of TAPC the problem has 

been less studied although a simple analysis was given by [66] where the author stablished an 

example and studied the existence of the paradox in the classic Braess network. In order to better 

illustrate this effect an example was created and the TAP and TAPC where considered, the results 

are shown in Figure 9. 

 

 

Figure 9. Example of Braess Paradox in TAPC 

 

Notice that the added link does not increase the capacity of the network before which in 

this case corresponds to 10. As mention before the UEC travel time with respect to the SOC has a 

maximum difference achieve between some value of 0 ≤ 𝑥 ≤ 𝑐 where c is the capacity of the 

network for that OD flow. In this specific network the UEC and SOC travel time are the same 

when link 1-2 is not active, thus the Braess paradox occurs for OD flows ≥ 6, although this starts 

to become smaller as the demand become close to the capacity of the network. All the results of 

travel time are plotted relative to the SO travel time which is the guaranteed to be smaller than the 
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SOC, since no hard capacity constrains are present. Nevertheless, in this range of Braess demand 

the percentual difference of the UEC with respect to SO was smaller than 6% for any demand. 

This is critically important since it shows that although Braess paradox may occur, the difference 

in system travel time gain may not be significant, especially if the network is congested. Also, the 

addition of the link can have practical importance since it can increase the capacity of the given 

OD flow, so even if Braess may occur, the addition of the link can have other positive effect to 

have into account. Also in real networks where the travel time function are function of capacity 

generally under the BPR [67] which takes the form of 𝑡𝑎 = 𝐹𝐹(1 + 𝛼 (
𝑋

𝐶
)
4
). This function implies 

that the travel time increase from free flow to congested (x=C) has a maximum factor α which 

ranges from 0.3 to 0.86. Thus, when these BPR are used as link performance function the 

occurrence of Braess paradox may be even smaller. 

3.2.4 Network Capacity based on TAPC 

The addition of link capacity to the modelling perspective brings a lot of challenges in 

terms of the solution algorithm and results interpretation. One of the most challenging aspects is 

the fact that solutions are no longer guaranteed to exist for any OD matrix but feasibility must be 

checked. The reason for this is that the new capacity constrains make the problem to be bounded 

with respect to the link flows, thus the OD demand matrix must satisfy some requirements. These 

requirements are encapsulated under the umbrella term of network capacity. 

 The study of network capacity has been a low important subject in transportation networks, 

although a highly useful aspect of telecommunications and electric networks [61]. Maximum flow 

problem is a type of such problems where the maximum achievable flow between a source and 

target node is analyzed and polynomial time algorithms exists [68] for its solution. In the case of 

traffic flow problems, the network capacity is not as clearly design as the flow in the network 

should be guided under the User equilibrium principle. Nonetheless, when capacity is achieved 

and as shown before in this chapter TAPC does not follow classical UE. Initial attempts to quantify 

this network capacity under TAPC were researched by [69], in which network capacity 

formulation is presented as a bilevel optimization problem with maximum achievable demand as 

objective function. 
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max
𝑄
|𝑄|

𝑠𝑡.

min
𝑓
∑∫ 𝑓𝑖(𝑠)𝑑𝑠 (1)

𝑥𝑖

0

𝑛

𝑖=0

𝐴𝑓 = 𝑥 (2)

𝐵𝑓 = 𝑄 (3)
𝐴𝑓 ≤ 𝐻𝐶 (4)

𝑓 ≥ 0
𝑄 ≥ 0

 

Equation 11 Bilevel Network Capacity formulation 

 

The formulation is shown in Equation 11 which is max-min bi level program where the 

upper level is the maximization of the used OD flows Q and the lower level is the solution of the 

corresponding TAPC problem. In this case the objective function of the subproblem is not 

modified but the feasible region of it is. It is important to notice that this problem is highly similar 

to a primal-dual formulation, although in this case the primal is a nonlinear program. Nevertheless, 

it is important to notice that an any moment the change on the lower program occurs on the 

intersection of the facets described by the link flows and capacity. At any TAPC the network 

capacity is defined as the maximum OD matrix that can be imposed on the system while conserving 

feasibility. Also as seen before in TAPC any feasible problem will have a unique solution in terms 

of link flows. Therefore, an equivalent formulation using maximum multicommodity flow 

formulation is proposed using a node-link incidence formulation which preserves constrains of 

OD pairs utilized. 

 

max
𝑥𝑖

∑�̅�

𝑛

𝑖=0

𝑀𝑥𝑖 ≤ 0 ∀ 𝑂𝐷𝑖
− 

𝑀𝑥𝑖 ≥ 0 ∀ 𝑂𝐷𝑖
+

𝑀𝑥𝑖 = 0  ∀ 𝑂𝐷𝑖
∅

�̅� = ∑𝑥𝑖

𝑟

𝑖=0

 

�̅� ≤ 𝐻𝐶
𝑥𝑖 ≥ 0

 

Equation 12 Link flow formulation for Network Capacity 
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The solution of such problem would be the flows of each link when capacity is achieved, 

although the relevant information is the sum of such flows which would represent the maximum 

achievable flow under a given OD pairs utilization. This is because when a solution is reached the 

link-flows solved will not be unique. In order to better illustrate both the simulation and the fact 

that the solution may not be unique let us consider the same Braess network in Figure 3 also assume 

that the only used od pair is 0-3. The math formulation is shown in Figure 10 where there are two 

possible solution for this problem in terms of maximum links flows, although in both cases the OD 

flow is equivalent to 20, also the links which get congested are the same for both solutions and 

they correspond to bottleneck links. 

 

 

Figure 10 Example of formulation of network capacity problem 

 

This equivalent formulation makes much easier the calculation of the capacity, and the 

importance of this formulation is that it can help to understand the feasibility of any TAPC 

problem. But more importantly its practical use could have great implication for planning analysis, 

since the network capacity defined as the sum of all origin flows of all used OD pairs after this 

analysis can easily describe the network performance. One simple upper bound for the network 

capacity is just the sum of all capacities, nevertheless the network capacity is clearly a function of 

which OD pairs are used and therefore which links start to become bottlenecks. Thus an easy 

measurement of network capacity performance is 𝑟𝑝 =
𝑁𝐶

∑𝐻𝐶
 where NC is the Network capacity as 

described in this chapter and the sum of HC is the sum of all hard capacities in the network. As 
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the 𝑟𝑝(ratio-performance) approaches 1 the network is being better utilized by the OD demand. 

This is especially important in cases such as in Medellin city, where the network capacity of the 

metro system is performed under simplistic assumptions of worst performance link capacity of 

network according to [70]. This has made the municipality invest various million dollars in buying 

more trains to reduce frequency, while the bottleneck of the system is present due to an inefficient 

use of long OD pairs between its North and South extremes making intermediate Shortest OD pairs 

have long waiting times. In terms of parking analysis this becomes an essential term since, for a 

parking network with traffic capacity, an analysis can be done over the network to check if the 

bottlenecks in the networks correspond to parking links allowing the planners to understand which 

ones to intervene. 

3.2.5 Application of TAPC to Parking Modelling 

The usage of side capacity constrains to the parking problem has been broad and is one of 

the most common practices when static modelling is used. The usage of these constrains is given 

since the amount of parking cells is well known so the available parking capacity is easily 

estimated when compared to the road capacity. For the usage of this method a super network 

representation is generally necessary as 3 networks types must be integrated including traffic and 

pedestrian links with parking links as connector among them. The usage of such multi-Layer 

Network is a common standard in both research and Academia alike. This representation implies 

that multiple networks which belong to different traffic classes may coexist in the same modelling 

scenario. For example, in the case of Figure 5 if some parking links were joined between a 

pedestrian and traffic network an equivalent network could be formulated as presented in Figure 

11. Thus, the equivalent formulation of the problem including parking would modify the original 

destinations of the OD matrix by using their equivalent nodes in the pedestrian Network. In this 

way all traffic would need to park since parking links are the only link between these networks. 

Also, the parking delay function could take the form of estimated average attendance time from 

queuing theory and an additional price addition to consider the price charge of each parking slot. 

Meanwhile the pedestrian network delay functions could be considered constant assuming 

classical walking speeds and calculating the respective travel time as function of link length which 

would be constant for any number of users. This would imply that all shortest paths could be 

precomputed before execution for every used OD pair and then from each parking place a direct 
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link for each possible destination created reducing the increase of complexity by the addition of 

the new supporting links in the pedestrian network. 

 

 

Figure 11 Multi layer  Parking network. 

 

There are some drawbacks in this formulation, one of them is the real heterogeneity of 

users, which perceive the performance function in different manner and have certain characteristics 

such as different parking times which can be not uniformly distributed across the network. This is 

important since in this modelling alternative the modeling period which is usually an hour to 3 

hours (Peak periods) has the problem that users with different parking times could not be modelled. 

Then the results will not reflect the election of users based on their own parking time, which has 

been shown to be an important aspect in parking choice as users are sensitive to it. Also, for any 

parking cell during a given study period the number of vehicles that can park is equal to the sum 

of all parking times, this implies that for example a parking cell could park 2 vehicles each one for 

20 minutes and then 1 vehicle for 80 minutes or 6 vehicles with 20 minutes each during a 2 hour 

study period. This equivalence is also related with traffic networks capacity where users’ 

characteristics such as safe distance can determine the spacing between vehicles which in 

combination o velocity defines the road capacity. Thus, when combined traffic and parking links 

in a safe environment a right interpretation of the problem characteristics is required. Classical 

formulation and analysis of parking using hard capacity constrains directly consider the physical 

space as the hard constrains of these links. Which as discussed is false and a better estimation of 
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them could be the one presented before where the parking capacity of a link is defined as 𝐶𝑝 =

#𝑐𝑒𝑙𝑙𝑠 ∗
𝑆𝑃

𝑃𝐷̅̅ ̅̅
 with SP being the study period in minutes, PD being the average parking duration of 

users in that parking slot and the number of cells being the count of number of parking cells in that 

location. Thus, the TAPC formulation results in an important formulation tool for parking analysis, 

further improve needs to be done in terms of modelling multiple users in the same network as each 

user parking duration will influence final results. This aspect will be further analyzed in next 

chapter comparing results when one or multiple users with different parking duration interact in a 

network. 
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 MULTIUSER TAPC FORMULATION PROPOSED FOR PARKING 

PROBLEM  

In this chapter a multi user TAPC formulation will be proposed which includes network 

modification, mathematical formulation, solution algorithms, numerical examples and a case study. 

Multiple author have worked the multi-use traffic assignment [71], [72] generally speaking the 

problem can be modeled as the addition of flow variables on every link which describe the link 

flows of each user that might or might not have unique and separate travel cost functions, in the 

case that the function are independent the problem becomes a set of separable classic traffic 

assignment problem. In the other case the problem becomes a non-symmetrical cost dependent 

traffic assignment. In this case the well know method of successive averages becomes the favorite 

solution methodology because of simplicity, good performance and well stablish demonstration of 

convergence techniques categorized as fix point methods. In this work the proposed method will 

create parallel not interconnected networks for each user which be linked between them by the 

capacity constraints and non-symmetric cost travel functions. Generally speaking, the problem will 

not have an equivalent minimization program equivalence, but can be formulated as a set of self-

dependent optimization problem in a Cournot Game setting which is equivalent to a Variational 

Inequality. In algorithmic term the classical formulation is hard to solve and generally speaking 

requires path enumeration to use classical Variational Inequality algorithm or classical Fran wolf 

iterations with iterative cost performance functions. In this work two algorithm are shown the first 

used the classical diagonalization approach which in this case consist of solving each user 

independently using the flows of others users to self-calculate their cost. Also, the network 

capacity concept is studied in terms of formulation and algorithmic solution. Finally, numerical 

examples and a study case is presented in order to visualize the outcomes of the model.  

4.1 Consideration and Mathematical Formulation. 

For the problem formulation it will be necessary to understand the assumptions of the 

model. In this case the multiple users will be described by a unique perceived travel cost, although 

for most of the cases the function form of link cost will be the same for all users among same link. 

These functions will be applied to each network and each of them will be a function of the link 
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flow of the user and the sum of the link flows of the other users. Also, the combined flow of all 

users cannot exceed specific and common capacity constraints, which make the problem hardly 

constrain and feasibility will need to be ensured before start. In the case of traffic links, the well-

known BPR function will be used, although any other function as long as convex could be used. 

For the case of parking links their travel time will be a function of the user average parking time 

and the price of parking of each cell plus a wait time which describes the attention rate of each 

parking slot as a function of demand and its serving speed. The User average parking time must 

come from some source which divides user in homogenous groups of people in terms of parking 

behavior and equal parking time. Therefore, each user will have a given OD demand matrix and 

parking travel time, plus the perceived cost functions. The proposed formulation consist of a set 

of n stacked TAPC problems, one for each user type in a Cournot Setting [73] which will be 

refereed as Multi User Traffic Assignment Problem Capacitated (MUTAPC) 

min
𝑓𝑣,

∑∫ 𝑇𝐹𝑖
𝑣 (𝑠 +∑ 𝑥𝑖

𝑣

𝑉≠𝑣

)𝑑𝑠 (1)
𝑥𝑖
𝑣

0

𝑛

𝑖=0

𝐴𝑣𝑓𝑣 = 𝑋𝑣  (2)

𝐵𝑣𝑓𝑣 = 𝐷𝑣  (3)

𝐴𝑣𝑓𝑣 ≤ 𝐻𝐶𝑣  (4)

∑𝐴𝑣𝑓𝑣

𝑣∈𝑉

≤ 𝐻𝐶𝑣  (5)

𝑓𝑣 ≥ 0

∑𝑃𝑇𝑣𝑥𝑝
𝑣

𝑣∈𝑉

≤ 𝐻𝐶𝑃

∀ 𝑣 ∈ 𝑉

 

Equation 13 MUTAPC mathematical formulation for UE equilibrium 

 

𝑓𝑣 = 𝑓𝑙𝑜𝑤 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒𝑑 𝑤𝑖𝑡ℎ 𝑝𝑙𝑎𝑦𝑒𝑟 𝑣 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑢𝑠𝑒𝑑 𝑜𝑑 𝑝𝑎𝑖𝑟𝑠 (𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒)

𝑥𝑖
𝑣 = 𝑓𝑙𝑜𝑤 𝑜𝑓 𝑙𝑖𝑛𝑘 𝑖 𝑤𝑖𝑡ℎ 𝑟𝑒𝑠𝑝𝑒𝑐𝑡 𝑡𝑜 𝑝𝑙𝑎𝑦𝑒𝑟 𝑣

𝑋𝑣 = 𝑙𝑖𝑛𝑘 − 𝑓𝑙𝑜𝑤 𝑣𝑒𝑐𝑡𝑜𝑟 𝑜𝑓 𝑝𝑙𝑎𝑦𝑒𝑟 𝑖

𝐴𝑣 = 𝑓𝑙𝑜𝑤 − 𝑙𝑖𝑛𝑘 𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑐𝑒 𝑚𝑎𝑡𝑟𝑖𝑥 𝑓𝑜𝑟 𝑝𝑙𝑎𝑦𝑒𝑟 𝑣

𝐵𝑣 = 𝑓𝑙𝑜𝑤 − 𝑂𝐷 𝑣𝑒𝑐𝑡𝑜𝑟 𝑚𝑎𝑡𝑟𝑖𝑥 𝑓𝑜𝑟 𝑝𝑙𝑎𝑦𝑒𝑟 𝑣
𝐷𝑣 = 𝐷𝑒𝑚𝑎𝑛𝑑 𝑣𝑒𝑐𝑡𝑜𝑟 𝑓𝑜𝑟 𝑝𝑙𝑎𝑦𝑒𝑟 𝑣

𝑇𝐹𝑖
𝑣 = 𝐶𝑜𝑠𝑡 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑙𝑖𝑛𝑘 𝑖 𝑓𝑜𝑟 𝑝𝑙𝑎𝑦𝑒𝑟 𝑣

𝑃𝑇𝑣 = 𝑃𝑎𝑟𝑘𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑝𝑙𝑎𝑦𝑒𝑟 𝑣

𝑥𝑝
𝑣 = 𝑙𝑖𝑛𝑘 𝑓𝑙𝑜𝑤𝑠 𝑜𝑓 𝑝𝑎𝑟𝑘𝑖𝑛𝑔 𝑙𝑖𝑛𝑘𝑠 𝑓𝑜𝑟 𝑝𝑙𝑎𝑦𝑒𝑟 𝑣

𝐻𝐶𝑃𝑣 = 𝑇𝑜𝑡𝑎𝑙 𝑝𝑎𝑟𝑘𝑖𝑛𝑔 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑡𝑖𝑚𝑒 𝑣𝑒𝑐𝑡𝑜𝑟 
𝑉 =  𝑠𝑒𝑡 𝑜𝑓 𝑝𝑙𝑎𝑦𝑒𝑟𝑠
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A detail analysis of the formulation implies that there are 𝑉 players and each has its own 

separate TAPC formulation, nevertheless each of them depend on the link flow of the other players 

link flow solution. This dependency exists for the objective function and the feasible set. On the 

other hand, a VI formulation of this problem would imply the KKT condition of this equivalent 

problem to be formulated. Each player KKT would be declared with respect to their own variables, 

the results of such operation is given in Equation 14. 

 

𝑓𝑣(𝐶𝑣 − 𝑈𝑣 + 𝛼𝑣 + 𝛼𝑃
𝑣) = 0 (1)

𝛼𝑣 (𝐻𝐶 − ∑ 𝐴𝑣𝑓𝑣

𝑣 ∈ 𝑉

) = 0 (2)

𝛼𝑝
𝑣 (𝐻𝐶𝑃 − ∑ 𝑃𝑇𝑣𝑥𝑝

𝑣

𝑣 ∈ 𝑉

) = 0 (3)

(𝐶𝑣 − 𝑈𝑣 + 𝛼𝑣 + 𝛼𝑃
𝑣) ≥ 0 (4)

𝐴𝑣𝑓𝑣 = 𝑥𝑣  (2)

𝐵𝑣𝑓𝑣  = 𝐷𝑣  (3)

∑ 𝐴𝑣𝑓𝑣

𝑣 ∈ 𝑉

≤ 𝐻𝐶

∑𝑃𝑇𝑣𝑥𝑝
𝑣

𝑣∈𝑉

≤ 𝐻𝐶𝑃

𝑓 ≥ 0 (4)

𝐶𝑣 =∑
𝜕∫ 𝑇𝐹𝑖

𝑣(𝑠 + ∑ 𝑥𝑖
𝑣

𝑉≠𝑣 )𝑑𝑠 
𝑥𝑖
𝑣

0

𝜕𝑥𝑖
𝑣

𝑛

𝑖=0

= ∑𝑇𝐹𝑖
𝑣 (𝑠 +∑ 𝑥𝑖

𝑣

𝑉≠𝑣

)

𝑛

𝑖=0

 

Equation 14 KKT conditions for SITAPC 

 

Analyzing the first condition makes it clear that the resulting optimal flows are optimal 

with respect to the generalized travel cost function including the LaGrange multipliers of the link 

constrain of traffic and parking links for each player. Now in terms of uniqueness, it is important 

to note that the problem may or may not be unique with respect to link flows of each user. This 

given that this problem is equivalent to the solution of a unique network equilibrium problem with 

asymmetrical cost functions. In order to have a uniqueness property for such a model the link 

performance function would need to be symmetrical and have a bigger partial derivative with 

respect to their own link, with respect to the derivative of the other users or links related with it 

[74].  This can be rationalized by the undifferentiability test, which could be understood as follows, 
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“if two identical users are assigned to a network with the same OD, then the link flow generated 

by one could be replaced by the other since in principle they are interchangeable”. This logic 

implies that in some cases users link flow could be changed and since equilibrium would still hold 

for both users with respect to each other, another possible solution may emerge in term of link 

flows of each user. An example of this formulation is given next in order to clarify these concepts. 

 

 

Figure 12. Example of Parking problem 

 

In this example the travel performance function is perceived the same by both users and 

are the same for all links. The OD flows for both users are 10 and capacities are the same. The 

equivalent mathematical formulation of the problem is given in Figure 12. Given these conditions 

a solution for the problem is not unique since both players OD can be replaced even if their travel 

time function is different given that the parking or final link controls the behavior of the system. 

 

𝑀𝑖𝑛 ∫𝑓1,𝑝1 +𝑓1,𝑝2 +∫𝑓2,𝑝1 +𝑓2,𝑝2 +∫(𝑓1,𝑝1 + 𝑓1,𝑝2 +𝑓2,𝑝1 +𝑓2,𝑝2 + 10) 

𝑠𝑡
𝑓1,𝑝1 + 𝑓2,𝑝1 = 10

[𝑓1,𝑝1 + 𝑓1,𝑝2, 𝑓2,𝑝1 + 𝑓2,𝑝2] ≤ 20

10 ∗ (𝑓1,𝑝1 +𝑓2,𝑝1) + 30(𝑓1,𝑝2 + 𝑓2,𝑝2) ≤ 600

 

𝑀𝑖𝑛 ∫𝑓1,𝑝1 +𝑓1,𝑝2 +∫𝑓2,𝑝1 +𝑓2,𝑝2 +∫(𝑓1,𝑝1 + 𝑓1,𝑝2 +𝑓2,𝑝1 +𝑓2,𝑝2 + 30) 

𝑠𝑡
𝑓1,𝑝2 + 𝑓2,𝑝2 = 10

[𝑓1,𝑝1 + 𝑓1,𝑝2, 𝑓2,𝑝1 + 𝑓2,𝑝2] ≤ 20

10 ∗ (𝑓1,𝑝1 +𝑓2,𝑝1) + 30(𝑓1,𝑝2 + 𝑓2,𝑝2) ≤ 600

 

Equation 15. Equivalent mathematical formulation of problem 
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When solving this problem, it becomes apparent that for symmetry the flows of player one 

is interchangeable with player 2. Thus, the problem can have multiple solution which still yield 

the same overall links flows.  

4.2 Solution Algorithm 

As explained before this problem incorporates a set of multiple users trying to play a 

simultaneous game with shared resources (Capacity) and unique perception, which although 

makes the problem suitable for realistic simulation of certain aspects, makes it hard for finding 

solution algorithms as the mathematical solution does not have advantageous properties such as 

convexity. This is a recurrent problem of any algorithm or mathematical problem where the 

problem relaxes assumption trading off complexity with more realistic behaviors. In general, the 

complexity of solution algorithms increases as algorithm tend to center on the recursion of simplest 

algorithm which solve instances or subproblems. In this case there are two proposed solution 

algorithms based on the interpretation of the problem. The first solution algorithm is inspired by 

the stacked game formulation and solves the problem by a successive solution of parallel and 

independent TAPC problems which are updated at each iteration.  

 

 

Figure 13 MUTAPC (Sequential Independent TAPC solution algorithm) 
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Figure 13 Presents the pseudo code for the solution algorithm proposed, in the case of the 

TAPC the subproblem may be solved using the CCFW algorithm with a high tolerance standard 

and a high number of max iterations. This given that the dependence of each players makes the 

algorithm to have bad convergence if precision of flows is low and in general the number of 

iterations to reach the equilibrium becomes lower. At convergence the link flows of each user do 

not change relative to the other users which imply that equilibrium was reached. However, 

convergence of the algorithm is just assured under strong properties of the link flow functions. The 

philosophy of the independence of the V players TAPC comes from the multinetwork equivalent 

formulation which would have independence and could be seen as one TAPC with more links. On 

the other hand, this problem requires an initial feasible solution, thus a link-node incidence 

formulation will be created. The equivalent formulation would have number of variables equal to 

𝑁 ∗ 𝑉 ∗ 𝑍 where N would be the number of used origins, V the number of vertexes and Z the 

number of players. Given that in reality the implementation of multiple players generally would 

have small values the increase in decision variables would not be intractable in computation terms. 

The second solution algorithm will be explained in detail in the next chapter when AV are included 

and will take advantage of the link-node incidence formulation where in each subproblem a 

Multicommodity flow problem is solved being formulated as LP in the link node space variables. 

4.3 Formulation of Network capacity in Parking Problem 

In the case of the described problem the network capacity definition keeps being the same, 

and in the more complex form would be a bilevel program with the upper level being the demand 

flows and in the lower level the set of Variational inequalities described by the KKT condition of 

the equivalent mathematical formulation. However as seen before, this problem can be formulated 

as a multi flow commodity problem with an increased set of link flows for each different user to 

be simulated, the formulation of one subproblem assignment based on constant link flow times is 

given below. 
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min
𝑥𝑖
𝑣
∑∑𝑥𝑖

𝑣

𝑉

𝑣=0

𝐹𝑖
𝑣(0) … (1)

𝑛

𝑖=0

𝑀𝑣𝑥𝑖
𝑣 = 𝑂𝐷𝑖

𝑣  ∀ 𝑖, 𝑣. . (2)

�̅� = ∑𝑥𝑖
𝑣

𝑉

𝑣=0

 (3)

�̅� ≤ 𝐻𝐶

∑𝑃𝑇𝑣𝑥𝑖𝑝
𝑣 ≤ 𝐻𝐶𝑃

𝑉

𝑣=0

𝑥𝑖
𝑣 ≥ 0

 

Equation 16. General mathematical formulation for SITAPC subproblem formulation 

 

The formulation is equivalent to the one previously stated with the difference of the 

additional index for every player and the addition of parking slots conditions which will be the 

product of a matrix with a vector of players Parking time. This formulation increases the 

complexity of the overall problem by adding as much variables as users. Now the main advantage 

of this formulation is that it can be used in order to stablish the network capacity. For this purpose, 

the dual LP of the link node formulation is considered, although just the LaGrange Multiplier 

associated with the inequality constrains are taken into account. For the used od pairs the condition 

is that the corresponding nodes must be greater or equal than zero and the OD flows must be 

conserved. This construction is based on the maximum flow problem, which in the literature is 

generally defined as finding the maximum flow between an OD pair. 
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max
𝑥𝑖
𝑣
∑∑𝑥𝑖

𝑣

𝑉

𝑣=0

(1)

𝑛

𝑖=0

𝑀𝑣𝑥𝑖
𝑣 = 0 ∀ 𝑗 ≠ 𝑖, 𝑣

𝑀𝑣𝑥𝑖
𝑣 ≥ 0 ∀ 𝑗 = 𝑖, 𝑣

𝑀𝑣𝑥𝑖
𝑣 ≤ 0 ∀ 𝑗 𝑤𝑖𝑡ℎ 𝑛𝑜𝑛𝑧𝑒𝑟𝑜 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 

𝑋 =∑𝑥𝑖
𝑣

𝑉

𝑣=0

 (3)

𝑋 ≤ 𝐻𝐶

∑𝑃𝑇𝑣𝑥𝑖𝑝
𝑣 ≤ 𝐻𝐶𝑃

𝑉

𝑣=0

𝑥𝑖
𝑣 ≥ 0

 

Equation 17 Link flow formulation of network capacity in link flow space 

 

The formulation is equivalent to the one proposed for TAPC, with the addition of the new 

conditions for hard capacity constraints of the parking links and an increase in the flow variables. 

In order to make the introduced formulations clearer a simple example formulation is presented as 

before, in this case the example is the same used for the path flow formulation given in this chapter 

but in the link flow space. 

 

 

Figure 14. Example of link-flow formulation for SITAPC subproblems 

 

 

min
𝑥
0

𝑀 ∗ 𝑋 = 𝑂𝐷
�̅� = 𝐸 ∗ 𝑋
�̅� ≤ 𝐻𝐶
𝑥𝑖
𝑣 ≥ 0

 

Equation 18 Mathematical formulation of SITAPC link-flow subproblem 
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This formulation as seen before differs from the one planted by the equations; this is given 

by the simplification process that the matrix expressions allow which makes the problem suitable 

for usage in any linear program solver. In terms of the maximum flow formulation, the problem 

remains almost the same but the MX matrix multiplication is no longer all equal to zero but the M 

matrix is divided into block matrix each one corresponding to the columns of the matrix B which 

are either an origin, destination or none. 

 

max
𝑥
𝑥1
1 + 𝑥2

1 + 𝑥3
1 + 𝑥1

2 + 𝑥2
2 + 𝑥3

2

𝑀𝑎 ≥ 0
𝑀𝑏 = 0
𝑀𝑐 ≤ 0

�̅� = 𝐸 ∗ 𝑋
�̅� ≤ 𝐻𝐶
𝑥𝑖
𝑣 ≥ 0

; 

𝑀𝑎 =
1 1 0 0 0 0
0 0 1 1 0 0

𝑀𝑏 =
−1 −1 1 0 0 0
0 0 0 −1 −1 1

𝑀𝑐 =
0 0 0 −1 −1 1
0 0 0 1 0 −1

 

Equation 19. Formulation of Capacity problem in link-node form 

 

This capacity formulation would give the same answers as before, which can be defined as 

the maximum total amount of combined flow that under a given OD matrix pattern can be assigned. 

This brings a huge advantage for planning since as discussed before this network capacity is a 

number by unit of time that can easily describe the network performance. Which could be used as 

a way to incentivize mode changing or even demand shifting with urban planning based on the 

search of optimal usage of available network capacity. Also, with the help of the detection of the 

bottleneck links a network design problem could be formulated in search of optimal resource 

allocation to increase Network capacity. This topic has been lightly researched before [75] given 

that the classical by level formulation of network capacity made it prohibitive harder. However, 

with the Linear programming formulation given in this work, the problem would become tractable 

as bi-level program with upper level objective being the optimization of the network capacity, and 

the lower level the definition of network capacity as a function of the decision variables which can 

be amount invested on a given link or the addition of new links. 
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4.4 Discussion of practical importance of proposed Formulation 

One of the main goals of this work is the development of a useful formulation for a variety 

of problems in terms of parking planning and modelling. In this case the aforementioned 

formulation is able to capture multiple important characteristics such as interaction among 

different users, hard capacity constraints on links and analysis of network capacity. Therefore, 

planners can include variables such as parking prices and walking distances in the cost function 

which could help them to better understand their effect in people choices in an equilibrium setting. 

On other hand the algorithm capabilities although will not be as fast as classical TAPC, can still 

be tractable, since each TAPC is around 4 times slower than a normal TAP and the number of 

players is generally low. The overall added complexity of the capacity constrain and multiuser 

setting could imply increases in calculation times of around 20. Which although sounds bad would 

still be tractable for medium size network with a number of links in the order of 1000. In the case 

of bigger cities, the algorithm as presented would be prohibited, nevertheless in these cases the 

usage of network partition schemes could be useful. These schemes work by dividing the network 

in independent subnetwork that can be solved independently making the problem faster while 

trying to reduce the overall lost in accuracy. These methodologies have been studied in the 

literature [76], [77] which have gain increased popularity as new models make complexity 

increases. This can have huge performance implications since the complexity of these assignment 

problem is polynomial of degree higher than 2 in the best-case scenario with respect to the number 

of links. Therefore solving 2 networks of the same size is not equal in time complexity than solving 

a network of twice the size. Thus, practitioners could still gain the benefits of the proposed model 

in these scenarios for big scale cities while reducing the precision in a controlled manner. On the 

other hand, one of the biggest contributions in this work is the reformulation of the network 

capacity as an LP for both TAPC and MUTAPC which can easily be calculated and scales well 

with number of links even in the order of magnitude of a few thousands. This easy and tractable 

capacity network definition can help to understand the existence of bottlenecks links and help with 

the high variability of OD demands as network capacity does not require a detail definition of it in 

order to be stablished. This formulation could help in the design process where the objective of 

the network design problem could be replaced by the maximization of network capacity.  



 

 

63 

4.5 Numerical Example and sensitivity analysis 

In order to better summarize some of the formulations and algorithms illustrated in this 

chapter a simple numerical example will be made in a parking and traffic network. In this network 

the walking nodes will be removed and just a virtual node of parking will be considered. The 

example will contemplate what happens in terms of run time and overall traffic distribution and 

congestion of the network. In this example all traffic link capacity will be set at 1800 veh/h, the 

study period will be 1 hour and the OD pairs to use consist of an origin in node 40 and destination 

in node 89. Also parking vehicles going from this target to the virtual parking node will be 

considered. A fifth of the total demand generated will consist of parking players and the rest will 

be traffic players. The BPR functions used will have the form 𝑓(𝑥) = 𝑡𝑓 ∗ (1 + 0.8 (
𝑥

0.8𝑐
)
3.5
) 

where 𝑡𝑓 =
𝑙𝑒𝑛𝑔𝑡ℎ(𝑚)

600 𝑚/𝑚𝑖𝑛
 so travel time will be given in minutes. The parking cost of the links will be 

equal to 1 USD/hour or 0.16 USD/minute. Three user types will be used based on parking times 

of 10 minutes, 30 minutes and 60 minutes. The original distribution of players will consist of 60 

% of players parking 10 minutes, 30 % parking 30 minutes and the rest 10 % parking 60 minutes. 

So, the average parking time of all users is equal to 21 minutes. The comparison will be made 

between running the model following the original distribution (3 type of players) and running the 

model with just 1 player having the average parking time of 21 minutes. The total number of 

players to simulate will be 3000 in 1 hour and their finals OD matrixes will be described below.  
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Figure 15. Numeric example MUTAPC 

 

An analysis of the convergence for the 1 player case was made showing the required time 

and change in norm among solution for all 30 iterations. The results are shown in Figure 16, the 

convergence of the algorithm is achieved in the first five iterations, which implies that overall, the 

algorithm convergence is fast. The spent time per iteration shows that the linear program takes 

more time that the line search, in this case since the system has a low number of players and links 

the difference is not extreme. Although in realistic cases it is expected that the solution of the LP 

takes around 90% of overall running time. 
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Figure 16. Analysis of convergence of algorithm 

 

The solutions of the problem show that for the case in of the only player the parking links 

are occupied based on capacity, which implies that the closer links are occupied faster. In the case 

of the multiplayer scenario the solution shows that players with shorter parking time tend to park 

closer this is given by the fact that the total cost of parking is smaller so tradeoff of traffic distance 

and parking destination is made.  

 

 

Figure 17. Average player solution 
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 In the case of the multiplayer traffic assignment the solution is not unique which implies 

that in the traffic network the distribution of players could have a multiplicity of solution for each 

link player traffic. One important point about the multiplicity of the solution is that predicting 

reality becomes much harder as there are multiple outcome states that could happen in reality. In 

general, the bigger the number of players the highest number of possibilities for flow player exists.  

 

 

Figure 18 Network solution for the 3 player MUTAPC formulation 

 

When the solutions of both problems are compared it becomes apparent that traffic and 

parking flows become different as players with different parking locations distribute themselves 

in different manner forcing them to have different to have different traffic paths. Overall, when 

just one player is considered the overall time spent in the traffic network is 20% smaller than when 

the three players are considered separately. The parking cost difference among each solution is 

also notorious and the total collection of the system when just one player is considered is around 

10 % higher when one unique user is considered. This implies that the inclusion of more players 

makes their selection to be more constrained by their parking selection which affect the overall 

traffic cost, although reducing parking cost. In reality this implies that the multiplayer formulation 

can have an important impact on cost or benefit analysis of new fees or structural decisions. Also, 

this becomes more important in the case where players differences exist in both parking duration, 

destinations and type of vehicles.  
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As part of the study of the described model a sensitivity analysis of the numerical example 

is proposed. For this a variation of some of the parameters of the model is performed, in this case 

the parameters to be analyzed are the total number of cells and average parking time. The main 

reason for this analysis is to understand the influence of this variables over the network level 

properties. The first sensitivity analysis is made with respect to the total number of cells and the 

results show a decrease in cost and the overall relationship of flow/cap which are metrics related 

with congestion. Close to the 27000 number of cells the reduction of outputs variables is stopped 

which implies that not benefits are longer obtained. Thus, the traffic network congestion is heavily 

influenced by the availability of parking as cruising for parking becomes harder when scarcity is 

present. This result is several importance as shows the influence of the parking layer of model into 

the traffic network which is one of the central points of this work, as classical models separate 

different transportation layers although in reality they have influences among them. 

 

 

Figure 19 Sensitivity analysis of number of parking cells 

 

On the other hand, the sensitivity analysis of the average parking duration is performed, 

which is of essential importance as different zones of the city can have different parking durations 

and one of the strengths of the developed model is the inclusion of parking duration as a analysis 
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variable. Overall, the effect of the variable repercusses in the route decision, network capacity and 

parking costs. In this case the sensitivity analysis was used using the same default values for 

network properties, results are shown in Figure 20. The analysis show that there is highly nonlinear 

behavior with respect to parking duration where after the average parking duration reaches a value 

higher than 55 minutes then the system starts to experience an increase in system cost. Nevertheless 

overall, these changes are small in properties, this is due to the low sensitivity of the MUTAPC to 

variables related to the objective function.  

 

 

Figure 20 Sensitivity to average parking duration 

 

Overall, the sensitivity analysis performed shows small changes in the output properties 

this is due to the small sensitivity to this problem to the objective function. Generally speaking, 

Traffic assignment is more sensitive to the constrain set than to the decision function. The main 

reason behind this is that generally speaking the functions used have not much variation over the 

possible traffic flows that could come out of the problem. In the case of MUTAPC the problem 
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becomes even stronger as the hard capacity constrain limit the decision set of users in an important 

manner. Nevertheless, the main change of this input to the overall problem properties come to the 

actual distribution of flows which change based on the inputs. Overall, the developed model is 

able to introduce different characteristics and the effects among them into account as for example 

user characteristics, parking capacities, traffic conditions or network structure. In this case the 

main variables tested were the one related with parking as is one of the main subjects of analysis 

in this work. 

4.6 Study case in Bello City, Colombia 

In order to make a comparable scenario of real modelling, a real case in the city of Bello 

Colombia is chosen, this case was taken from a study made in this city where dynamic models 

were used. In the case of static models, the study period should be of short duration to reduce the 

possible violations of densities which happen when flow of links is not uniformly distributed over 

the study period. This implies that static modelling works best when the study period can be 

considered to have a constant behavior during its duration, so shorter study periods are desired. In 

the case of users, the different users to be modelled must be represented by am OD matrix, type of 

equilibrium to search and parking duration. Also, if required each user could have a different 

perspective of the travel cost functions of each segment, although in this case it will remain 

constant among users. In this chapter a general introduction of all data will be given, then the 

demand table procedure will be explained and the results for the model will be presented using the 

aforementioned modelling.   

4.6.1 General description of the Data  

The data chosen for analysis comes from a study developed in 2017 in Bello, a Colombian 

city located at the north of Medellin Metropolitan area. Bello has near 0.5 Million inhabitants. This 

data consists of three datasets. The first dataset is a parking plate rotation study in which for one 

day from 7:00 AM to 7:00 PM, approximately 60% of all the parking spots were tracked in a sector 

of 2.1 km2 accounting for 15% of the city urban area. The total number of segments add up to 30 

km in length, which is the 8% of the network size. The information recorded for 13500 vehicles 

includes initial node, parking destination, initial park time, end park time. For the out of street 
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parking lots, a dataset with the total demand of 8000 vehicles per day was used, which contained 

their typology and mean parking durations for each parking lot, a description of this network is 

shown in Figure 21. The second dataset consist of the OD matrix of the background traffic, which 

consists of one OD matrix per hour of all the background traffic which will not park. The last 

dataset consists of the road and parking network information, containing the length, geometric 

characteristics, number of cells, price of parking and type of parking of all parking zones in the 

study area. This dataset includes parking in and out of street and contain a total of 340 road 

segments and 40 out of street parking locations. The combination of the datasets brings some 

challenges, one of the most important is the fact that the original OD matrix did not have 

information of the arrival time and parking duration of each OD. Therefore, a random model was 

required to be created using the first and third dataset which is able to create a random demand 

table which includes all the users to be simulated with the corresponding origin node, destination 

node, start time and parking duration. With this random function created, multiple experiment 

setups of demand could be sampled and then applied to the desired model either static or dynamic, 

taking into account that in the static model the parking duration time would be reclassified into the 

desired division bins predefining the different type of users with respect to parking time. 

 

 

Figure 21. Traffic network of Bello city 
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4.6.2 Demand Table Generation 

The demand table must specify the characteristics of all the users to be generated in the 

model which includes 5 basic fields: origin, destination, arrival time, parking duration, type of user 

(Human or autonomous). As explained before the input datasets did not have the information in 

this detail so a model was created in order to randomly sample such a table for any specific scenario 

of number of vehicles, OD pairs to use and number of autonomous vehicles. The construction of 

such a function consisted of two stages which will be detailed and the overall way of using the 

model to generate any demand table will be described. In the first stage a simple statistical analysis 

was carried out, including a distribution of the parking duration for the whole city. For each spatial 

segment the mean parking time was obtained. In this case the result of this distribution is shown 

below in Figure 22. 

 

 

Figure 22 Histogram of mean parking duration 

 

For the second stage a plot of parking duration vs initial parking time is shown in Figure 

23 The “triangular behavior” in the data points is explained by the study period, which means that 

for a given time the maximum time that a car parking duration can be recorded is the last time of 

the time period, which in this case is at 8pm (1200 mins). This implies that the information has a 
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bias towards short parking duration. Due to this the interpolation was done with the data from 7 

AM to 2 PM, to overcome the lack of data on the evening period.    

 

 

Figure 23. Parking duration vs hour of the day. 

 

Based on these two inputs a random procedure is created which replicates the overall data 

obtained in the study by the usage of a random sample from a distribution whose parameters are 

function of departure time and location. The final spatial temporal function is described in the 

equation below: 

 

𝐹(𝑃𝐷̅̅ ̅̅ 𝑠, 𝑡) = 𝑃𝐷̅̅ ̅̅ 𝑠 ∗ (−
427𝑡3

5949000000
+

263𝑡2

1487250
−
851𝑡

5949
+
232000

5949
 )       (6) 

 

Where: 

𝑃𝐷̅̅ ̅̅ 𝑠  is the mean parking duration of the segment s 

t is the time of the day in minutes 

 

This function F gives the mean parking time of any vehicle in that segment, then with 

information a real value of parking duration is sampled from the general parking duration 
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distribution of  Figure 22. Therefore, to create the demand table of users the following two step 

are required. 

 

1. Stablish the number of users to create for each OD pair, also assign the initial or departure 

time, either from outsources or from a random sample of the arrival time distribution of the 

data. 

2. For each user in each destination apply the 𝐹(𝑃𝐷̅̅ ̅̅ 𝑠, 𝑡) with the mean parking duration of 

the segment and the arrival time, then with this value normalize the parking duration 

distribution and sample the parking durations from it for each user. 

4.6.3 Setup and Results 

Base on the general description of the data and the process for creating the players demand 

table a simple loading of the model was executed in order to obtain the static model results. As 

explained before for this study a period of 120 minutes was used which cover the time period of 

12 PM to 2 PM, selected based on the peak parking demand that in the zone occurs in this moment. 

The total demand reported from the OD matrix of this period is about 25000 vehicles with a 

particular OD matrix distribution for the whole period. The 3 % more important od pairs are shown 

in Figure 24, where long od pairs can be checked implying a big amount of passing traffic. From 

the overall demand around 15000 trips have as final destination the parking in the study zone. As 

described before all traffic links are considered to have an 1800 veh/h capacity which becomes 

3600veh/p where p means the study period, the total number of directed traffic links is 223. 

Considering this we have a maximum or brute network capacity of 802000 vehicle in the study 

period which will be drastically lower when the actual matrix distribution of players is taken into 

account in the network capacity estimation. 
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Figure 24. 3 percent most important OD pairs in study case from 12 PM to 2 PM 

 

Parking wise the network has a total amount of 4683 cells distributed among out of street and 

curbside parking, considering that the average parking duration is 30 minutes, the estimated cell 

rotation would be of 4 veh/p so the average capacity of the parking system would be of an estimated 

18732 vehicles which in theory should be enough to accommodate the input demand. In terms of 

users the parking duration distribution was divided into three users which will have the following 

parking duration: player 1 will contains all duration from 0 to 20 minutes with an average parking 

duration of 10 minutes and covering 46% of all demand; second player will cover duration from 

20 to 60 minutes having an average parking duration of 40 minutes and covering 32 % of all 

demand and player 3 will cover all durations higher than 60 minutes with an average parking 

duration of 90 minutes and covering the 22% of all demand. The reason why three player were 

chosen was based on numerical examples experiences where increase in users have a highly 

significant complexity gain, while poor converging behavior given that players perceive and 

behave to similarly. The final difficulty in modelling is the stochastic behavior of the table 

generation function which assign players a random duration implying that for each run the player 

demand table is different although overall average of parking durations and od matrixes are 

conserved. Thus, a simple Montecarlo sampling was made were the od demand matrix was called 

a total of 50 times and the results of total link flows and players link flows averaged for all cases. 
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The run time of the algorithm per iteration was around 20 minutes implying a total run time of 

around 17 hours on a 8 core 3.4 GHz processor with 64 Gb of ram.  

 

 

Figure 25. Algorithm convergence analysis for one run 

 

Convergence results for one of the fifty runs is shown in Figure 25, where most of the norm 

difference is achieves in the main 20 iterations, compared to past numerical examples the LP 

solution starts to be more than 85% of total run time, given the increase in size and number of OD 

pairs. On the other hand, the results of the aggregated link flows are shown in Figure 26, where it 

becomes clear that the traffic flow congestion is quite low, although parking links start to get 

congested. In fact, the average occupation rate which is defined as the average of the relationship 

between flow and their capacity is 0.33 for all the network, while being 0.21 for traffic network 

and 0.42 for parking links. Now based on this it would be easy to assume that the leftover capacity 

could be obtained from these leftovers’ capacity, but again this relationship fails to take into 

account bottlenecks and moving patterns. In order to analyze the capacity of the network 2 analysis 

are made.  
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Figure 26. Results of study case aggregated flows using MUTAPC 

 

The total travel time of the system based on the link flows is 4.5 million minutes and the 

total collected money by the parking places is estimated to be 3.3 thousand dollars both of these 

measure in the study period of 120 minutes. Is important to notice that the monetary money found 

is similar to the ones estimated from the original Bello study, where the calculated earning of the 

noon parking period rounded 5 thousand dollars although in the original study a dynamic 

methodology was used. In terms of capacity the estimation was divided in two part for the first 

capacity estimation all background traffic was removed and only parking destination flows were 

taken into account, giving as result a network capacity of 18096 vehicles in the study period. This 

value is around 96% of the average network capacity, implying that the parking distribution of the 

current parking places is able to attend the OD matrix pattern accordingly and that the traffic 

network does not have hard bottlenecks for the parking network. On the other hand, the network 

capacity for the traffic network is about 43200 vehicles, while the sum of all the capacities in the 

traffic network gives an estimated capacity of 1.6 million vehicles. In here the difference among 
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the capacities is highly clear and shows that the traffic networks have much higher reserve capacity, 

since the relationship in this case is just about 2% of the sum of the upper bound for the network 

capacity. This is a normal fact an there are multiple reasons why this happens. The first one is that 

traffic trips generally cover more than 1 link why imply than one od flow can occupy the capacity 

of multiple links at once, the second reason is that traffic network can serve multiple purpose 

including connectivity which might not be efficient for most of the time but that even on the 

minimal requirements make the link have a high capacity which will not be utilized. Thus, 

redundancy is a common part of transportation network which also gives the network resilience to 

link failure which frequently occur in the forms of repairs and accidents. The overall results for 

each player are different and give a more detail distribution of players choosing parking based on 

a  variety of decisions. The presented model has the power to be able to incorporate individual 

characteristics aggregated while still conserving fast convergence results and equilibrium 

considerations. Also, the network capacity calculation allows the planer to check how efficient the 

parking and traffic network are and could be used in stochastic or robust optimization frameworks 

where varying od patterns can be used in order to better understand if the network could 

accommodate a future or peak demand that can happen during events. Also, the formulated link 

node formulation allows the model to be flexible when certain conditions are to be taking into 

account, for example if a given link or set of links must preserve certain conditions of flows or 

follows rules as certain maximum allowable number of users by type as can happen when 

modelling users of different vehicle types.  

4.7 Final Model Remarks and possible impacts on policy design 

The proposed model in this chapter is a combination of multiple characteristics that play a 

central role in parking and traffic modelling, for one side the multiuser traffic assignment allows 

planner to take into account user and vehicle characteristics that play a role in the perceived travel 

time and capacities of different categories of vehicles in a given link. From the other side the link 

node formulation allows for the development of new algorithm approaches based on efficient 

subroutines which can easily be adapted to new conditions., This differs from traditional traffic 

assignment as generally speaking each new formulation requires the development of specialized 

algorithms crafter in adjustment to the different assumptions, nevertheless since the problem can 

actually be enumerated in polynomial time, then the problem be solved using efficient LP 
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subroutines which can adjust to function changes or new constraints related to flows. On the other 

hand, this formulation allows for a simpler formulation of the network capacity problem as a partial 

dual of this formulation and resulting in another LP. This brings huge winning over previous 

attempts for the network capacity definition which were based on bi level programming, thus 

making calculation a tedious process. With this new formulation future works of network design 

could focus on maximization of network capacity, which has the potential of being a network 

property that can be easy to express, as well as be a way to understand whether a given network 

could withstand a given increase in demand. The numerical tests presented give evidence of the 

different that a model with one average user vs multiple users with different parking durations can 

have over the cost results, which is especially true for the parking links. This difference is expected 

to go stronger if different users include different parking times or vehicle characteristics such as 

motorcycles, trucks or cars, thus in practical terms it is recommended that a sensitivity analysis of 

the model on the number of users is presented.  

In terms of practical usage, the presented model has multiple advantages over the classical 

models presented in the literature. For example, when compared to classical Traffic Assignment 

the described model is able to capture hard capacity constraints, different users and parking 

conditions. With respect to the last models in the literature most of them implement multi user 

with some capacity constraints. Nevertheless, the parking durations aspect is not taking into 

account, and the actual parking capacity division among users not explicitly taken into account. 

Overall the developed method has the capacity to take into account different modelling aspects 

which previous method would not, for example what happens if payment increases for the parking 

locations, which implies that users with different parking durations will have different costs. Also, 

for example what would happen if you force or create certain policies which can reduce or alter 

the parking duration of users. The network capacity on other hand gives a completely different 

perspective to the problem as it enables policy makers to test the effectiveness of policies such as 

parking restriction or increase in fees in terms of overall network capacity, instead of actual 

network cost. This is extremely important as the sensitivity analysis showed that the cost variables 

were not sensitive to the parking characteristics. Nevertheless, capacity is highly dependent upon 

these variables.  

 



 

 

79 

On other hand the developed model and the possible policies that could be evaluated with 

it can have a big impact on common social dilemmas that arise in the context of parking for 

example the shared resource dilemma that will exist when parking is shared or managed in the 

perspective of AV. The social dilemmas problems are of highly importance and have made a 

resurgence in this century as more data and ways of modelling social behavior are available. This 

in the context of parking for example arises when free parking is available, which for example 

incentivizes users to have long durations parking which decreases the network capacity and overall 

social benefit. Thus, special policies or fees that tackle such users is of absolute importance, as 

they can have an important impact of network efficiency if not tackled. In fact, this dilemma of 

the common is one of the reasons why so many countries are promoting policies such as congestion 

charge in some places in cities. As cost makes users to realize their actions and to change behaviors 

which in turn benefit overall society in terms of congestion and pollution. Parking for example can 

be used in a similar manner but in a easier way by increasing cost of parking in some places to 

incentivize the usage of certain transportation modes. The present model has the power to be able 

to take into account a lot of characteristics and variables which were not able to be tackled 

efficiently or at all by previous methods. 
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 STATIC MODELLING OF PARKING INCLUDING AUTONOMOUS 

VEHICLES 

In this chapter autonomous vehicle s(AV) will be included in the modeling scenarios, for 

this some assumptions on the changes that they will bring will be discussed. The same multiuser 

formulation will be used although some changes will become necessary in order to make the 

resulting flows to follow SO instead of UE. This chapter will be divided in five main parts, the 

first will be an overall view of the inclusion of autonomous vehicles and related literature, the 

second one will give the mathematical formulation for the problem when including the 

autonomous vehicles and its implications on uniqueness of solution, the third part will give an 

overview of the solution algorithm and network capacity, the forth chapter will give some small 

numerical examples to exemplify the explain model and the final subchapter will have the same 

numerical example of Bello city, including the difference in solution as autonomous vehicles start 

to appear in the market and a share of total users have this property. 

5.1 General description of implications of Autonomous Vehicles in Static Assignment 

and Parking Modeling 

Autonomous vehicles are one of the main technologies that are expected to highly change 

the driving dynamics and transportation usage in the entire world. Right now, the technology is on 

a rapid development and is able to do automatic cruising in highways or non-urban roads where 

intersections are scarce. In terms of transportation modelling the last two years have seen a rise in 

the number of researches related with the topic. One of the first researches of the topic was given 

by [78] where the author introduced a cell transmission model in a dynamic case where the 

autonomous vehicles affected different variables related to the vehicle movement. Is important to 

notice that in general autonomous vehicles (AV) are expected to bring a variety of different 

conditions which vary greatly by the perspective of experts in the field. Nevertheless in general 

Autonomous Vehicles (AV) are expected to change, demand or number of trips, capacity of roads, 

travel time of vehicles, parking patterns and mode choice [79]. In this work a framework for 

modelling the interactions among these two types of users will be explored, and the possible 

outcomes as the technology is adopted will be discussed. In terms of demand change brought by 

AV, the literature can be divided in two categories, the first one which proposes a long-term future 
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where all vehicles are autonomous and thus not human driver is allowed or a future with mixed 

traffic of AV and NV. In the case of this work a mixed traffic will be considered, parking wise this 

would bring an important change in possibility of empty trips of AV searching for parking. 

Thereby any of three behavior of users could happen, the first one would imply coming back to 

the original source of the trip, the second one is to search available and cheap parking far away 

from the origin, and the third possibility is that the AV try to serve other users trips reducing 

parking needs and empty trips. In general, each of these scenarios would imply completely 

different things in terms of modelling, in this work the adopted choice will be the possibility of 

vehicles dropping passengers and then searching for parking with a special importance of price of 

parking over travel time. In terms of travel time and capacity, it is expected that as AV are less 

prone to error the acceptance rates of velocities could improve, thus increasing roads capacity and 

reducing travel time. In this aspect the literature is filled with multiple suppositions of which 

aspects of the driver following model would be impacted and what could be the resulting 

conditions. In this regard [80] present a cell transmission model using a two state speed model 

including a percentage rate of  CAV (Connected Autonomous Vehicles) with respect to NV, their 

results suggest that the main aspect of the model id the 𝑇𝐴𝐶𝐶which describes the gap time 

acceptance of CAV, varying from 1.1 seconds to 2 seconds. According to this work the resulting 

capacity of a 2-lane road with CAVS would follow a linear regime until CAV reach 40% and then 

a second regime which depends on TACC as shown in Figure 27. Now in general is important to 

notice that these results show a high susceptibility to the TACC and in general capacity increases 

even with a small percentage of CAV involved in the system. Nevertheless, the assumptions made 

in the paper are quite conservative since they assume no response time of CAV, which in reality 

means no delay of processing time and decision making of the vehicle. Also the model does not 

take into account outside factors such as pedestrian movements and other interaction which 

become highly important in urban context while the work focused on rural roads. In general, the 

results show that the capacity of the road can be considered as a linear function of percentage of 

CAV in reasonable conditions of acceptance gaps times.  
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Figure 27 lane road capacity analysis with CAV mixed traffic 

 

The BPR function is one of the generally used function for modelling influence of 

congestion on travel time and  has been widely used and calibrated for different condition in both 

urban and rural roads [81]. When AV are considered authors have proposed multiple modifications, 

one of them is just the change of inputs while conserving the overall form. In this aspect the two 

main changes of the function are the fact that the flee flow time and capacity become a function of 

the percentage of CAV or AVS. As discussed before the capacity is clear function of this 

percentage, although the freeflow time is generally considered as constant with respect to this 

variable. Nevertheless, some authors [82], [83] point out that in fully autonomy free flow travel 

time could increase as intersection would not become a hard constrain of the velocity and vehicles 

could accept higher velocities. But in this work the accepted hypothesis will be the that just 

capacity would change and other parameters would remain constant as assumed in [84], where the 

assumed new BPR would become: 

𝑓(𝑥) = 𝑡𝑓(1+∝ (
𝑋

(𝐶𝐴𝑉 − 𝐶𝑁𝑉) ∗ (𝛾) + 𝐶𝑁𝑉
)
𝛽

) 

Where 𝑋 = 𝑡𝑜𝑡𝑎𝑙 𝑓𝑙𝑜𝑤 𝑖𝑛 𝑙𝑖𝑛𝑘, 𝛾 = 𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝑜𝑓 𝐴𝑉 𝑟𝑒𝑙𝑎𝑡𝑒𝑑 𝑡𝑜 𝑡𝑜𝑡𝑎𝑙 𝑓𝑙𝑜𝑤 

𝐶𝐴𝑉 = 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑜𝑓 𝑟𝑜𝑎𝑑 𝑤ℎ𝑒𝑛 𝑎𝑙𝑙 𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠 𝑎𝑟𝑒 𝐴𝑉 

𝐶𝑁𝑉 = 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑜𝑓 𝑟𝑜𝑎𝑑 𝑤ℎ𝑒𝑛 𝑎𝑙𝑙 𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠 𝑎𝑟𝑒 𝑁𝑉 
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In this modification the main assumption is that capacity of mixed traffic is a linear 

combination of both capacities which as seen before is not a bad assumption in the case of CAV, 

nevertheless in the case of AV if the technology is primitive and the AV driving characteristics 

stay low to keep safe distances then such assumption will not hold. Under such conditions a 

sensitivity analysis of the function shows that the maximum ranges of variation of such a function 

are defined, and are bounded by 1+ ∝ times the free flow time as both flows are bounded by the 

capacity. In terms of macro model or network models considering Autonomous Vehicles and 

parking behavior, is possible to check that the literature is still new. One of the first studies in the 

topic was given in [85] where the authors took into account a multi class traffic assignment such 

that all users follow the UE principle and the generalized cost of trip was to be minimized. This 

cost included the travel time cost plus fuel consumption cost and parking fee, the main differences 

between AV(Autonomous Vehicles) and NV (Normal vehicles) consisted in the fact that AV  

included routes where the vehicles first went to the destination and later parked while NV routes 

included the users parking and then walking to final destination. In here a tradeoff is made in AV 

since travel time can be decrease, parking costs can decrease but fuel costs can increase since 

vehicle needs to go farther away to park. 

 

In this work the approach for AV and parking will include CAV which implies that capacity 

of network will vary in small ranges as initially the technology is expected to perform in similar 

fashion to NV. The parking behavior of NV will be assumed to have as final destination a parking 

node, while CAV will be supposed to drive users in UE to the original destination and then create 

a new trip from this node to any available parking while decreasing the transformation factor of 

travel time of links and following the SO. Also, hard capacity constraints of flows will be 

considered on all links and all users will be identified by their type and parking duration which 

will make them choose different parking places as the cost of parking is a function of parking 

duration and price of parking per time unit. Network capacity will be discussed which in this case 

will be different from the previous chapter by the fact that capacity becomes a function of the 

percentage of autonomous vehicles, nevertheless since such change make the feasible region 

nonlinear a simplification will made making the feasible region linear but taking into account the 

proportion of AV and NV. 
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5.2 Mathematical Formulation of Traffic Assignment with Autonomous Vehicles in 

Parking context 

As in the chapter 3.1.1, the formulation for this problem is equivalent where the overall 

problem could be considered as a MUTAPC, but a part of the players will be AV that will make 

their objective function to be different and since the capacity is a function of the relationship of 

AV and total traffic then the capacity will be modified as well. The main differences between the 

models are listed below. 

 

 Players are known and identified by two characteristics. The first one being their 

parking travel function and second one being whether they are AV, NV or CAV 

which will influence their objective function, since NV will follow UE but will be 

included in 𝑋𝑁𝑉, AV will follow UE but will count as 𝑋𝐴𝑉 and CAV which will 

follow SO and will count as 𝑋𝐴𝑉.  

 The BPR of all links will be a function of the total flow AV and NV in each link, 

also the capacity of all links will be a linear function of the relationship between 

the number of AV over the total flow of the link. However, this would make the 

problem much harder since the feasible region of the overall problem would be 

nonlinear and probably non convex, this would imply that for a given link: 

𝑋𝐴𝑉 + 𝑋𝑁𝑉 ≤
(𝐶𝐴𝑉 − 𝐶𝑁𝑉)(𝑋𝐴𝑉)

𝑋𝐴𝑉 + 𝑋𝑁𝑉
+ 𝐶𝑁𝑉 

Which is a clear nonlinear constrain, as solution the following modification will be 

made to keep the problem simple enough: 

𝐶𝑁𝑉𝑋𝐴𝑉 + 𝐶𝐴𝑉𝑋𝑁𝑉 ≤ (𝐶𝐴𝑉 ∗ 𝐶𝑁𝑉) 

This simplification makes the hard constrain to be linear in the link flow space and 

the feasible region would still be a polytope which would imply that it would be 

convex as long as it is feasible.        

 NV will have as final destination a parking node implying that users need to walk 

to the actual final destination, while for the CAV two trips will be created for each 

real trip. The first trip would be normal UE trip although the flow would still count 

as AV and a second trip from the actual traffic destination node to the virtual 

parking node connecting all parking links. 
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The final formulation could be seen as a stacked Cournot game with 3 main type of players 

being NV AV and CV, and each of them with different players in terms of parking time. 

 

min
𝑓𝑁𝑉
𝑣 ,
∑∫ 𝑇𝐹𝑖

𝑣 (𝑠;∑ 𝑥𝐶𝐴𝑉𝑖
𝑣

𝑉≠𝑣

+∑ 𝑥𝐴𝑉𝑖
𝑣

𝑉≠𝑣

)𝑑𝑠 (1) ∀ 𝑣 ∈ 𝑉𝑁𝑉  
𝑥𝑖
𝑣

0

𝑛

𝑖=0

min
𝑓𝐴𝑉
𝑣 ,
∑∫ 𝑇𝐹𝑖

𝑣 (∑ 𝑥𝑁𝑉𝑖
𝑣

𝑉≠𝑣

; 𝑠 + ∑𝑥𝐴𝑉𝑖
𝑣

𝑉≠𝑣

) 𝑑𝑠 (1) ∀ 𝑣 ∈ 𝑉𝐴𝑉  
𝑥𝑖
𝑣

0

𝑛

𝑖=0

min
𝑓𝐶𝐴𝑉
𝑣 ,

∑𝑥𝐶𝐴𝑉 ∗ 𝑇𝐹𝑖
𝑣 (∑ 𝑥𝑁𝑉𝑖

𝑣;𝑋𝐶𝐴𝑉 +∑𝑥𝐴𝑉𝑖
𝑣

𝑉≠𝑣𝑉≠𝑣

)

𝑛

𝑖=0

 ∀ 𝑣 ∈ 𝑉𝐶𝐴𝑉

𝐴𝑁𝑉
𝑣 𝑓𝑁𝑉

𝑣 + 𝐴𝐴𝑉
𝑣 𝑓𝐴𝑉

𝑣 + 𝐴𝐶𝐴𝑉
𝑣 𝑓𝐶𝐴𝑉

𝑣 = 𝑋𝑣  (2)

𝐵𝑁𝑉
𝑣 𝑓𝑁𝑉

𝑣 + 𝐵𝐴𝑉
𝑣 𝑓𝐴𝑉

𝑣 + 𝐵𝐶𝐴𝑉
𝑣 𝑓𝐶𝐴𝑉

𝑣 = 𝐷𝑣  (2)

𝐶𝐴𝑉(𝐴𝑁𝑉
𝑣 𝑓𝑁𝑉

𝑣 ) + 𝐶𝑁𝑉(𝐴𝐴𝑉
𝑣 𝑓𝐴𝑉

𝑣 + 𝐴𝐶𝐴𝑉
𝑣 𝑓𝐶𝐴𝑉

𝑣 ) ≤ (𝐶𝐴𝑉 ∗ 𝐶𝑁𝑉) (4)

∑𝑃𝑇𝑣𝑥𝑝
𝑣

𝑣∈𝑉

≤ 𝐻𝐶𝑃

𝑓𝑁𝑉
𝑣 , 𝑓𝐴𝑉

𝑣 , 𝑓𝐶𝐴𝑉
𝑣 ≥ 0

∀ 𝑣 ∈ 𝑉𝐶𝐴𝑉, 𝑉𝐴𝑉 , 𝑉𝑁𝑉

 

Equation 20 SITAPC mathematical formulation for MIXED equilibrium 

 

𝑓𝑣 = 𝑓𝑙𝑜𝑤 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒𝑑 𝑤𝑖𝑡ℎ 𝑝𝑙𝑎𝑦𝑒𝑟 𝑣 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑢𝑠𝑒𝑑 𝑜𝑑 𝑝𝑎𝑖𝑟𝑠 (𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒)

𝑥𝑖
𝑣 = 𝑓𝑙𝑜𝑤 𝑜𝑓 𝑙𝑖𝑛𝑘 𝑖 𝑤𝑖𝑡ℎ 𝑟𝑒𝑠𝑝𝑒𝑐𝑡 𝑡𝑜 𝑝𝑙𝑎𝑦𝑒𝑟 𝑣

𝑋𝑣 = 𝑙𝑖𝑛𝑘 − 𝑓𝑙𝑜𝑤 𝑣𝑒𝑐𝑡𝑜𝑟 𝑜𝑓 𝑝𝑙𝑎𝑦𝑒𝑟 𝑖

𝐴𝑣 = 𝑓𝑙𝑜𝑤 − 𝑙𝑖𝑛𝑘 𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑐𝑒 𝑚𝑎𝑡𝑟𝑖𝑥 𝑓𝑜𝑟 𝑝𝑙𝑎𝑦𝑒𝑟 𝑣

𝐵𝑣 = 𝑓𝑙𝑜𝑤 − 𝑂𝐷 𝑣𝑒𝑐𝑡𝑜𝑟 𝑚𝑎𝑡𝑟𝑖𝑥 𝑓𝑜𝑟 𝑝𝑙𝑎𝑦𝑒𝑟 𝑣

𝐷𝑣 = 𝐷𝑒𝑚𝑎𝑛𝑑 𝑣𝑒𝑐𝑡𝑜𝑟 𝑓𝑜𝑟 𝑝𝑙𝑎𝑦𝑒𝑟 𝑣

𝑇𝐹𝑖
𝑣 = 𝐶𝑜𝑠𝑡 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑙𝑖𝑛𝑘 𝑖 𝑓𝑜𝑟 𝑝𝑙𝑎𝑦𝑒𝑟 𝑣

𝑃𝑇𝑣 = 𝑃𝑎𝑟𝑘𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑝𝑙𝑎𝑦𝑒𝑟 𝑣

𝑥𝑝
𝑣 = 𝑙𝑖𝑛𝑘 𝑓𝑙𝑜𝑤𝑠 𝑜𝑓 𝑝𝑎𝑟𝑘𝑖𝑛𝑔 𝑙𝑖𝑛𝑘𝑠 𝑓𝑜𝑟 𝑝𝑙𝑎𝑦𝑒𝑟 𝑣

𝐻𝐶𝑃𝑣 = 𝑇𝑜𝑡𝑎𝑙 𝑝𝑎𝑟𝑘𝑖𝑛𝑔 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑡𝑖𝑚𝑒 𝑣𝑒𝑐𝑡𝑜𝑟 (#𝑐𝑒𝑙𝑙𝑠 ∗ 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒) 
𝑉 𝑠𝑒𝑡 𝑜𝑓 𝑝𝑙𝑎𝑦𝑒𝑟𝑠

𝐶𝑁𝑉 = 𝑁𝑜𝑟𝑚𝑎𝑙 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑣𝑒𝑐𝑡𝑜𝑟 𝑜𝑓 𝑎𝑙𝑙 𝑙𝑖𝑛𝑘𝑠 

𝐶𝐴𝑉 = 𝑁𝑜𝑟𝑚𝑎𝑙 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑣𝑒𝑐𝑡𝑜𝑟 𝑜𝑓 𝑎𝑙𝑙 𝑙𝑖𝑛𝑘𝑠 𝑎𝑠𝑠𝑢𝑚𝑖𝑛𝑔 100% 𝐴𝑉

 

 

In this formulation there would be a total of N players, each player would be constrained 

by the same feasible region. The input of the users could be summarized in a trip table containing 

the respective origin, demand, type of user, parking time of each users and trip. Then the table 

would be aggregated based on type of vehicle (AV,NV,CAV) and parking time which describes a 
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player,  and its OD matrix would be defined by aggregating the number of trips for each common 

OD pair of each user. In terms of uniqueness and existence of the solution it can be noted that since 

the feasible region is a polytope then if it is feasible the problem will be bounded. Nevertheless 

the solution would not be unique, since the problem corresponds to a nonsymmetrical cost 

functions given that the function of each link is equal to 𝐹(𝑋 + 𝑌) which in general means that 

𝜕𝐹

𝜕𝑥
≠

𝜕𝐹

𝜕𝑦
 and as mention in the chapter before if not such condition is met then the VI problem or 

the equivalent Cournot game would not have an unique solution.  

In order to better understand the formulation, the same example as before will be made for 

the formulation but in this case all players will have a parking time of 10 minutes. In this case 3 

players will be needed based on the aforementioned model, the first one being the NV, second one 

being the AV following UE until reaching node 2 and the third player being an extra player going 

from node 2 to node 3 (end of link 3) following the SO. In total there are 6 flows the first flows 

for NV players contain link 1 and link 3 and the second one contains link 2 and 3 flows. For the 

AV players the first flow contains just link 1 and the second flow contains link 2. For the CAV 

player the flow 1 contains link 3 which corresponds to a parking link. 

 

 

Figure 28 Example of Parking problem 

 

𝑀𝑖𝑛 ∫(𝑓1,𝑝𝑁𝑉 +𝑓1,𝑝𝐴𝑉) +∫(𝑓2,𝑝𝑁𝑉 + 𝑓2,𝑝𝑁𝑉) +∫(𝑓1,𝑝𝑁𝑉 + 𝑓2,𝑝𝑁𝑉 +𝑓1,𝑝𝐶𝐴𝑉 + 10) 

 

𝑠𝑡
𝑓1,𝑝𝑁𝑉 +𝑓2,𝑝𝑁𝑉 = 10

𝐶𝐴𝑉(𝑓1,𝑝𝑁𝑉) + 𝐶𝑁𝑉𝑓1,𝑝𝐴𝑉 ≤ (𝐶𝑁𝑉 ∗ 𝐶𝐴𝑉)

𝐶𝐴𝑉(𝑓2,𝑝𝑁𝑉) + 𝐶𝑁𝑉𝑓2,𝑝𝐴𝑉 ≤ (𝐶𝑁𝑉 ∗ 𝐶𝐴𝑉)

10 ∗ (𝑓1,𝑝𝐶𝐴𝑉 + 𝑓1,𝑝𝑁𝑉 + 𝑓2,𝑝𝑁𝑉) ≤ 600

 

𝑀𝑖𝑛 ∫(𝑓1,𝑝𝑁𝑉 + 𝑓1,𝑝𝐴𝑉) + ∫(𝑓2,𝑝𝑁𝑉 +𝑓2,𝑝𝑁𝑉) 
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𝑠𝑡
𝑓1,𝑝𝐴𝑉 +𝑓2,𝑝𝐴𝑉 = 10

𝐶𝐴𝑉(𝑓1,𝑝𝑁𝑉) + 𝐶𝑁𝑉𝑓1,𝑝𝐴𝑉 ≤ (𝐶𝑁𝑉 ∗ 𝐶𝐴𝑉)

𝐶𝐴𝑉(𝑓2,𝑝𝑁𝑉) + 𝐶𝑁𝑉𝑓2,𝑝𝐴𝑉 ≤ (𝐶𝑁𝑉 ∗ 𝐶𝐴𝑉)

 

𝑀𝑖𝑛 (𝑓1,𝑝𝐶𝐴𝑉) ∗ (𝑓1,𝑝𝑁𝑉 +𝑓2,𝑝𝑁𝑉 +𝑓1,𝑝𝐶𝐴𝑉 +10) 

𝑠𝑡
𝑓1,𝑝𝐶𝐴𝑉 = 10

10 ∗ (𝑓1,𝑝𝐶𝐴𝑉 +𝑓1,𝑝𝑁𝑉 + 𝑓2,𝑝𝑁𝑉) ≤ 600
 

Equation 21. Mathematical formulation of numerical example MUTAPC with AV 

 

The problem does not have a unique solution and shows the complexity of the multiuser 

traffic assignment. Main drawback of the formulation is the linear increase in problem size with 

respect to number of od and players, given that at each iteration an LP is solved which has a non-

linear run time with respect to problem size. Nevertheless, for small instances the problem can be 

solved using A variational Inequality solver as CPLEX which differs from previous approaches. 

The main differ comes from the fact that classical Vi formulation of the assignment problem work 

in path flow space, which cannot be enumerated in polynomial time, thus some heuristics are 

created to calculate feasible paths before solution time. The main problem with this approach is 

that limits the available paths for each user and therefore may make the problem infeasible while 

remaining capacity is still existent.  

5.3 Solution Algorithm 

As was the case with the basic formulation the solution algorithm for the classical 

formulation the solution algorithm consists of the solution of a set of independent TAPC problems 

such that in each iteration each player perspective of the network is modified based on the 

remaining capacity of traffic and parking links. Figure 29 shows the pseudocode of the algorithm, 

and the procedure is almost the same as in the case of NV. The only addition is the calculation of 

the new delay function which results from the replacement of the link numeric values of past 

iterations and if the player follows SO the replacement with the equivalent function which will 

solve the TAPC. The reason why the same TAPC problem (which solves for UE) can be used with 

an equivalent modified function is given by the fact that the solution of a normal TAPC problem 

with SO is equivalent to solving for UE with marginal cost. Thus, solving SO implies 𝐹𝑆𝑂(𝑠) =
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𝐹(𝑠; 𝑥, 𝑦) + 𝑠 ∗
𝜕𝐹(𝑠;𝑥,𝑦)

𝜕𝑠
. A formal proof of this is given in [51] where the first order condition of 

the SO and UE formulation are compared and then it is proven that the SO is equivalent to for 

solve for UE with a modified delay function. Now the convergence of the overall algorithm is not 

guaranteed as cycling could occur. Therefore, this algorithm can be considered a heuristic.  

 

 

Figure 29 MUTAPC (Sequential Independent TAPC solution algorithm) with AV 

 

In general terms the algorithm main iteration in a big network will be in the TAPC solution 

and the general complexity of the problem in the observed examples seems to be focused on the 

solution of each TAPC. A good initial feasible solution can greatly improve the convergence of 
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the problem. As was the case before in order to have a good initial feasible solution the link-node 

formulation is proposed, in this case the formulation is described in Equation 22 

 

 

min
𝑥𝑖
𝑣
∑∑𝑥𝑖

𝑣

𝑉

𝑣=0

𝐹𝑖
𝑣(0; 0) … (1)

𝑛

𝑖=0

𝑀𝑣𝑥𝑖
𝑣 = 𝑂𝐷𝑖

𝑣  ∀ 𝑖, 𝑣. . (2)

�̅�𝐴𝑉 =∑𝑥𝑖
𝑣

𝑉

𝑣=0

 ∀ 𝑣 ∈ 𝑣𝐴𝑉(3)

�̅�𝑁𝑉 =∑𝑥𝑖
𝑣  

𝑉

𝑣=0

∀ 𝑣 ∈ 𝑣𝑁𝑉

𝐶𝑁𝑉�̅�𝐴𝑉 + 𝐶𝐴𝑉�̅�𝑁𝑉 ≤ (𝐶𝐴𝑉 ∗ 𝐶𝑁𝑉)

∑𝑃𝑇𝑣𝑥𝑖𝑝
𝑣 ≤ 𝐻𝐶𝑃

𝑉

𝑣=0

𝑥𝑖
𝑣 ≥ 0

 

Equation 22. AV MUTAPC Link-Node formulation 

 

In this formulation is important to notice that in order to guarantee the OD demand 

conservation a copy of all links is required for each player and for each O or for each D, the reason 

for this is that in the link-node formulation when multiple origin and destinations are present then 

if just the original network is considered then the OD matrix specific values can’t be guaranteed 

but just the sum of rows and columns can be guaranteed. This means that although this will increase 

the complexity of the problem since more links will be required the OD matrix conservation 

constrains will be accomplished. One of the reasons why this LP can be so important is that any 

LP solver can tell if a given problem is feasible or not which is important given the hard capacity 

constraint on the links flows which can help to determine whether a given OD matrix pattern can 

be assigned. As before other advantage of the LP formulation is that the solution is well developed 

and highly optimized and I a basic feasible solution is present then the problem can be solved from 

there using classical simplex. This formulation takes another importance if the problem is solved 

using Fran-wolf algorithm with diagonalization where each subproblem is a multiplayer TAPC 
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described by the LP, then the functions are updated based on the flow of other vehicles and the 

line search performed in terms of their own link flows.  

5.4 Network Capacity Definition  

It is expected that network capacity under the existence of autonomous vehicle will change, 

since their presence changes the feasible set by dividing the flow in a linear combination of the 

capacity given by Autonomous vehicles and normal drives. This in order to measure such change 

is important to stablish the possible upper bounds for this value. As explained before the network 

capacity under a given set of OD flows is defined as the maximum amount of flow that can be 

putted in these OD pairs in order to maximize the throughput of the network. The formulation of 

the problem can be defined in two ways, the first way is to define the capacity as a multi flow and 

sinks maximum flow problem. Under this formulation the problem can be seen as the solution of 

a set of one source and all targets connected to a unique sink. Also, other way to define the problem 

would be as the solution of a set of 1 source 1 sink maximum flow problems and after each solution 

iteration the left-over capacity of used links must be considered. This formulation can also be 

transformed to the maximum multicommodity flow problem which can be formulated as an LP 

and therefore has Polynomial time complexity  [86]. The proposed LP formulation for this problem 

has the following description. 

 

max
𝑥𝑖
𝑣
∑𝑥𝑣𝑖𝑟𝑡𝑢𝑎𝑙

𝑣

𝑀𝑣𝑥𝑖
𝑣 = 0 ∀ 𝑛𝑜𝑛 𝑢𝑠𝑒𝑑 𝑛𝑜𝑑𝑒, 𝑣

𝑀𝑣𝑥𝑣𝑖𝑟𝑡𝑢𝑎𝑙
𝑣 −𝑀𝑣𝑥𝑣𝑖𝑟𝑡𝑢𝑎𝑙

𝑣 = 0 ∀ 𝑢𝑠𝑒𝑑 𝑠𝑖𝑛𝑘𝑠 𝑎𝑛𝑑 𝑛𝑜𝑑𝑒𝑠, 𝑣

�̅�𝐴𝑉 =∑𝑥𝑖
𝑣

𝑉

𝑣=0

 ∀ 𝑣 ∈ 𝑣𝐴𝑉

�̅�𝑁𝑉 =∑𝑥𝑖
𝑣  

𝑉

𝑣=0

∀ 𝑣 ∈ 𝑣𝑁𝑉

𝐶𝑁𝑉�̅�𝐴𝑉 + 𝐶𝐴𝑉�̅�𝑁𝑉 ≤ (𝐶𝐴𝑉 ∗ 𝐶𝑁𝑉)

∑𝑃𝑇𝑣𝑥𝑖𝑝
𝑣 ≤ 𝐻𝐶𝑃

𝑉

𝑣=0

𝑥𝑖
𝑣 ≥ 0

 

Equation 23 Network capacity link-node formulation 
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In order to user this formulation is important to create virtual copies of all edges in the 

network for any non-zero origin id the OD matrix, which guarantee that the od pairs to be used are 

the ones which were constraint by the problem. Also, in the non-zero origins or destination a virtual 

link must be created which works as flow measurers and to maintain the constrains for used od 

pairs. This formulation has the advantage of taken advantage of linear programming as a well 

stablished subject, although it suffers from the problem that linear programs can have infinite 

solution when the gradient of the objective function is perpendicular to any of the constrains faces. 

In this case the feasible set or polytope is described by the adjacency matrix and linear combination 

of capacity constrains for parking and vehicular flows. So for example if the network has a cycle 

is possible to put maximum flow on this cycle and not altered the solution given that the flow 

conservation constrains allow it and the overall solution would not change. The following example 

shows the setup, formulation and problems. 

 

Figure 30 MUTAPC with AV Network capacity example 
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𝑂𝐷𝑁𝑉 = [0,1], 𝑂𝐷𝐴𝑉 = [0,2]; 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑙𝑎𝑦𝑒𝑟𝑠 = 2; 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑁𝑉 = 100; 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝐴𝑉 = 200

𝑥𝑖𝑗
𝐴𝑉 = 𝑓𝑙𝑜𝑤 𝑙𝑖𝑛𝑘 𝑖 − 𝑗 𝑓𝑜𝑟 𝐴𝑉 𝑝𝑙𝑎𝑦𝑒𝑟, 𝑥𝑖𝑗

𝑁𝑉 = 𝑓𝑙𝑜𝑤 𝑙𝑖𝑛𝑘 𝑖 − 𝑗 𝑓𝑜𝑟 𝑁𝑉 𝑝𝑙𝑎𝑦𝑒𝑟

max 𝑥𝑣1,1
𝐴𝑉 + 𝑥𝑣1,1

𝑁𝑉

𝑥𝑣1,1
𝐴𝑉 − 𝑥2,𝑣2

𝐴𝑉 − 𝑥2,𝑣2
𝐴𝑉 = 0

𝑥𝑣1,1
𝑁𝑉 − 𝑥2,𝑣2

𝑁𝑉 − 𝑥2,𝑣2
𝑁𝑉 = 0

𝑥𝑣1,1
𝐴𝑉 − 𝑥0,1

𝐴𝑉 − 𝑥0,2
𝐴𝑉 = 0

𝑥𝑣1,1
𝑁𝑉 − 𝑥0,1

𝑁𝑉 − 𝑥0,2
𝑁𝑉 = 0

𝑥0,1
𝐴𝑉 + 𝑥2,1

𝐴𝑉 − 𝑥1,2
𝐴𝑉 − 𝑥1,𝑣2

𝐴𝑉 = 0

𝑥0,2
𝑁𝑉 + 𝑥1,2

𝑁𝑉 − 𝑥2,1
𝑁𝑉 − 𝑥2,𝑣2

𝑁𝑉 = 0

𝑥0,1
𝐴𝑉 + 𝑥2,1

𝐴𝑉 − 𝑥1,2
𝐴𝑉 − 𝑥1,𝑣2

𝐴𝑉 = 0

𝑥0,1
𝑁𝑉 + 𝑥2,1

𝑁𝑉 − 𝑥1,2
𝑁𝑉 − 𝑥1,𝑣2

𝑁𝑉 = 0

100𝑥0,1
𝐴𝑉 + 200𝑥0,1

𝑁𝑉 ≤ 200 ∗ 100

100𝑥0,2
𝐴𝑉 + 200𝑥0,2

𝑁𝑉 ≤ 200 ∗ 100

100𝑥1,2
𝐴𝑉 + 200𝑥1,2

𝑁𝑉 ≤ 200 ∗ 100

100𝑥2,1
𝐴𝑉 + 200𝑥2,1

𝑁𝑉 ≤ 200 ∗ 100

𝑥𝑖,𝑗
𝐴𝑉, 𝑥𝑖,𝑗

𝑁𝑉∀ 𝑖, 𝑗

 

Equation 24 LP formulation for AV and NV example of network capacity 

 

The solution for this problem is not unique as for example the solution of flows 𝑥𝑖𝑗
𝐴𝑉 =

[100,100,0,0], 𝑥𝑖𝑗
𝑁𝑉 = [0,0,0] or 𝑥𝑖𝑗

𝐴𝑉 = [100,100,100,100], 𝑥𝑖𝑗
𝑁𝑉 = [0,0,0] 

 

The reason for this is that there is a cycle between nodes 1 and 2 so any unitary flow that 

is smaller than the minimum capacity in the cycle can be put in the cycle and the solution would 

still be the same as not extra flow is being added to the virtual nodes. The problem with this fact 

is that given a solution there are two main things that are important to have for analysis, the first 

one is the network capacity which is just the sum of the virtual nodes and is conserved for any 

feasible solution. The second one is the flow of edges when capacity is reached which since is not 

unique can have multiple values but the constrain links must be the same regardless of the solution, 

this means that at capacity the limiting links are the same although the distribution of flow might 

be different across the non-hard constrained links. Therefore, this link formulation of the problem 

can cause the problem of giving false flows of links which are just receiving a cyclic flow which 

is not relevant for the capacity analysis. In order to solve this problem, there are two main 

approaches, the first approach is using the first proposed formulation which solves the multi od 
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pair capacity problem as a sequence of one source multiple sinks problem. In this scenario the 

solution algorithm for the problem is not Linear program but the classical ford-Fulkerson algorithm 

[87]. In this case because links share capacity across players a modification over the original 

algorithm is needed and will be described in the next subchapter. 

5.5 Solution Algorithm for Network Capacity Problem 

In order to solve the network capacity problem two main algorithms are proposed the first 

algorithm is based on the link-node formulation and uses linear programing for solving the 

problem. The advantage of this formulation is that is easy to understand, is fast since LP solvers 

are well developed and is flexible if more linear condition across links must be added. The 

algorithm consists of a processing stage which takes a base network and a player’s table which 

contains information of thew type of players and od matrix. The network information must contain 

information of source, links and capacity for AV and capacity for NV. In this processing stage 

virtual links are added for each player and non-zero origin on its od matrix, also conditions of 

equality across the virtual sinks and sources edges for each player are created. After this the LP is 

formulated and solved and the network capacity is reported as the objective function value when 

the LP is solved. In order to get the actual link flows the problem is resolved with the values of the 

source and sink edges as constraints, but the objective function is changed to minimize the overall 

flow of all links while conserving the link-node matrix.  This process gives the link flows obtained 

after the formulation. The second algorithm consists of the sequential maximum flow problem 

solutions, this algorithm consists of a basic update and solution stage that is repeated for every 

player and every nonzero row of the OD matrix of each player. The updating stage consist of 

calculating the remaining capacity of the network based on the past solutions based on the parking 

duration of each player and its type AV or NV. The order in which the players are solved is 

important, since each player has characteristics which affect the available capacity for posterior 

maximum flow solutions. Thus, the order of the players should be one such that maximizes the 

overall flow. In general, the order problem is hard since, it is not clear which players flow should 

be maximized first or whether a series of players should be maximized jointly. Nevertheless, for 

simplicity the heuristic used in the following algorithm assumes that players must be sorted based 

on their type and then on their parking duration. The pseudocode for this algorithm is shown in 

Figure 31  
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Figure 31. Pseudocode for Sequential flow solution of network capacity 

 

The advantages of this algorithm are that it needs to solve K independent maximum flow 

problems which are efficient to solve and we are sure that no cyclic flows will be present since the 

maximum flow algorithm do not allow them because of their internal algorithm structure. 

Comparing both solution method is important to notice to use the theoretical algorithm 

complexities of LP and the desired solver for the maximum flow problem which in this case is the 

Ford Fulkerson algorithm. Using efficient interior point method of LP is known that their 
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complexity is bounded by 𝑂(𝑛2+
1

6log (
𝑛

0.01
)) [88] where n is the number of variables and L is the 

number of bytes. On the other hand Edmonds karp algorithm has a complexity of 𝑂(𝑉2 ∗ 𝐸) where 

V is the number of vertexes and E is the number of edges in the graph. Using the fact that the 

number of variables 𝑛 = 𝑘𝐸 and the fact that in transportation networks 𝑉 ≈
𝐸

3
, then in terms of 

the number of edges the LP algorithm would have a complexity of 𝑂((𝑘𝐸)2.2log (
𝑘𝐸

0.01
)), while 

using the proposed heuristic 𝑂(𝑘 ∗
𝐸3

9
), where 𝑘 is the sum of the number of nonzero rows of the 

OD matrix of all players. This analysis allows to check that the problem with the LP problem is 

that it grows in more than quadratic terms with respect to k, thus for a big number of players or 

non-zero od matrixes the heuristic approach will be much better. 

In terms of implications of the autonomous vehicles on the capacity is easy to check that 

the maximum factor of increase in capacity of the network is bounded by the capacity of the 

network if all flows are AV, which as discussed is in the ranges of 2 to 3 the original capacity of 

the network. The implication of the network analysis can help planner to better understand 

bottlenecks and possible earnings in capacity by the usage of spatial districts where all vehicle 

could be autonomous, which in normal case may be congested or constrain by highly congested 

links. Also, in general network capacity can be used as simple metrics which allow planners to 

better communicate the possible outcomes of infrastructure or policy planning, as travel times 

earnings may not be enough to describe the improvements of changes in the network. Also given 

that in general the network design problem is a hard problem since generally speaking the lower 

level is the solution of a nonlinear program then this approach becomes essential for simplification 

of the solution algorithms. This means that since the network capacity can be casted as a LP then 

if any network design problem is made in order to maximize the capacity of the network the 

subproblems to be solved would be much easier to solve. 

5.6 Numerical Example 

In order to better understand the described models and to check the implications in terms 

of travel time and capacity when autonomous vehicles are present a small example will be 

conducted which shows what happens with the network capacity and network travel times as 

Autonomous vehicles are added to a network. For this example, one OD pair will be used and 
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drivers will be divided in AV and NV, also the parking duration of all players will be set equal to 

20 minutes, the used network will be the same as in the past numeric examples and the capacity of 

all traffic links will be set to 1800 veh/h for NV and 3600 veh/h for AV. For the parking links all 

parking links will have a cell count of 10 cells and the study period will be 60 minutes. The BPR 

functions used will be the ones described in this chapter with 𝑓(𝑥) = 𝑡𝑓(1+∝

(
𝑋

(𝐶𝐴𝑉−𝐶𝑁𝑉)∗(𝛾)+𝐶𝑁𝑉
)
𝛽
). In order to check the implication for the autonomous vehicles 2 main 

parameters will be analyzed total demand in the od and the percentage of AV vehicles. The total 

demand will vary from 0 to 3000 vehicles. The results are shown in, where in terms of parking 

duration it becomes clear that overall network cost does not change drastically for any demand 

level or amount of AV and NV. These results are aligned with previous results from chapter 3, 

where the difference of UE and SO was discussed in TAPC. The reason why this happens is given 

by the upper bound of travel time that the BPR function has given the link flow upper bound. Thus, 

as these BPR are convex with respect to total link flow, then even for intermediate link flows 

between 0 and capacity the gains of optimal matching are expected to be low, this is especially 

true as the network gets closed to its capacity, as in this case the choice of users becomes very 

limited and therefore the possible cost saving becomes smaller. 

 

 

Figure 32. Sensitivity analysis of total network travel time with respect to AV and NV 
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Figure 33 Network capacity evolution as AV percentage increases 

 

Nevertheless, in terms of network capacity the results show a different behavior were the 

increased if AV have a significant impact on the overall network capacity. These results were 

expected as capacity has bigger room of improvement as Av are incorporated into the traffic 

streams. In this case the bottleneck links correspond to traffic links given that the used od pair is 

connected by only 2 vertexes whose capacity in the study period is equal to 1800 each. The overall 

behavior of the capacity curve seems to be nonlinear, and concave. The overall numerical results 

of this numerical example are similar to related results in the literature [89], [90], where a 

comparison of the incorporation of AV was made in terms of game theoretic formulation. From 

this numerical example it becomes important to notice that results are consistent with the 

expectations and last results, also it shows the potential power of the presented methodology which 

enables practitioner with tools to justify and predict what would happen as AV enter the market. 

In general, it should be expected that overall travel time would not be greatly impacted although 

network capacity would be a major change. Broadly speaking AV penetration in the market would 

have two main effects. The main one being the increase in network capacity and the second one 

being the reduction of network travel time which is given by the SO pattern of these vehicles. 

However, this result is based upon the fact that AV would behave as CAV when searching for 
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parking which could not be true in reality so modification of this behavior should be taken carefully 

into account 

5.7 Case Study in Bello City, Colombia 

As was the case in last chapter a more profound implementation of the devolved model 

will be used in a real study case in order to understand the convergence properties of the model in 

more realistic scenarios and to analyze the possible effects of it on real analysis cases. Overall, the 

data used for this analysis is the same as described in chapter 4.6 and can be referenced in there. 

The main difference will be the presence of AV and CAV, which as described in this section will 

be based on the type of user their represent. The variation of all AVs will go from 0 to 1 and will 

include the original OD matrix and the variation as the AV proportion increases. A comparison of 

network capacity will also be made. In this case the capacity of the road when all vehicles are AV 

will be equal to 3600 veh/h, so in theory when all vehicles become AV the capacity of the network 

should double. The overall setup begins with a variation from demand going from 1000 vehicles 

to 13000 vehicles and for each demand size the overall demand is repeated based on the proportion 

of AV and NV. In total 25 scenarios were run in order to obtain the total cost and capacity of each 

run case. The results of the overall network are similar to the ones obtain in the simple numerical 

results, were the possible saving in system travel time are smaller than 10% of the UE solution. 
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Figure 34. Study case comparison of AV ns NV 

 

Although in general the difference among pure UE and SO solution becomes larger as 

demand increases. Is important to notice that the network capacity of network under the given od 

pattern demand is not 13000, but instead that is the maximum amount of demand until one of the 

od pairs can’t handle more demand. This is due to the fact that demand is increasingly linearly and 

equally among all ODs, so once one OD reaches capacity no more increase on the overall demand 

can be made unless this od remains unmodified, which would make the results not comparable. 

On the other hand, the network capacity result shows a similar result than the numerical example, 

although the capacity seems to be reached at a lower level of AV penetration. These results indicate 

the potential improvement of capacity as Av enter the market, although the gain in travel time is 

small. One of the main reasons why this happens is that the BPR functions changes considered in 

this work are just related with an increase in capacity, although the main factor of these functions 

are the 𝛼, 𝛽 parameters. Since these parameters define the upper bounds of travel time for each 

links based on capacity. In comparison the literature in the dynamic case report possible gains in 

function travel time much more favorable [85], [91].  
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Figure 35. Network analysis for study case with AV 

 

Overall thew results from this study case show the capacity of the model to capture capacity 

and importance of suers decisions among these characteristics. Overall, the proposed model shows 

that for the city the main gain with the implementation of AV rely on an increase on network 

capacity. Nevertheless, these results are given by the way which the BPR function was modified 

with respect to just NV.  

5.8 Final Model Remarks 

A multiuser model taking into account parking characteristics and autonomous vehicles 

was presented based on the developed multi user framework. The presented model present AV as 

a percentage of overall demand which has the c=characteristic of act as AV while driving to the 

final destination and CAV when search parking, which implies that vehicles follow the UE while 

driving and SO when doing parking search. The main change over the network characteristics 

considered by AV in this model is over link capacity, which may under estimate possible time 
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saving as free flow times could be expected to decrease as well in the presence of AV. Nonetheless 

such changes could easily be implemented in the existing network if strong evidence supporting 

these changes on the cost delay functions are found. As was the case with MUTAPC a node link 

formulation of the problem is presented and associated algorithm developed. The network capacity 

definition remains the same, although a further exploration of alternative solution algorithms is 

explored by using multiple one maximum flow problems. The developed algorithm allows for a 

sensitivity analysis of percentage of AVs over network capacity, showing a nonlinear behavior 

between NV capacity and AV capacity. The numerical tests developed support this remark and 

showed a marginal change in overall system travel time as the number of AV increases in the 

network, this small difference has been also predicted in some more detail dynamic studied. 

Nevertheless, in this case the main reason for this small difference is the delay cost function 

modification which as discussed did not take into account changes in free flow time or alfa 

parameters which are the two main parameters in the BPR function. Overall, the results of this 

study open the door for more in-depth practical analysis of implementation schemes of AV and its 

direct impact of parking and traffic which can shape future policies such as charging parking, 

parking fees, among others which are in a critical point of discussing as society starts to adopt 

these technologies. 
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 CONCLUSSION AND FUTURE WORK 

6.1 Conclusions 

The main objective of this work as described before was the development of a more precise 

methodology for modelling traffic and parking coexisting in the same scenarios under static 

assignment including efficient algorithms for its solution. The second main goal was the clear 

definition of the network capacity including a new mathematical formulation and solution 

algorithm. Both of these objectives were achieved by the present work and were carefully 

described and exemplified. The proposed model is a combination of hard capacity constraints, 

multiuser traffic assignment and parking and traffic modelling which as discussed have been 

worked extensively in the literature in an independent manner. Nevertheless, in this work a full 

integration of these characteristics is proposed which has the advantage of having a mathematical 

formulation based on game theory which could be used for theoretical results. Although at the 

same time the presented algorithms in this work allow the problem to be tractable in reasonable 

computation time based on Linear programs solved at each iteration. The presented model has the 

power of the inclusion of the parking duration and the multiplayer perspective which play a central 

role when modeling realistic scenarios. The first results made on chapter three pointed out to the 

importance of the hard capacity constrains in the problem which for example completely change 

the concept of price of Anarchy which is an important factor considered in traffic assignment and 

that has traditionally been used as a way of bounding the possible advantages of AV. Results from 

the study case and numerical example show that possible travel time reduction are small in the 

order of 10% and as network get closes to capacity difference among UE and SO becomes smaller 

as possible routing option shrinks. One of the most important contribution of this work comes from 

the link node formulation of the traffic assignment problem which although do not show a much 

faster algorithm convergence than classic traffic assignment, allows for an easier definition of the 

network capacity problem. Also, this formulation allows to have an initial feasible solution for the 

MUTAPC algorithm which is not trivial as the presence of capacity contains make hard to check 

feasibility. On the other hand, this formulation allows to redefine the network capacity problem as 

an LP which has enormous algorithm and theoretical importance. Considering practical 

implications, the present work allow planner to take more characteristic of users into account for 
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example vehicle characteristics, perception of travel time cost, non-symmetrical cost function, 

among others. This can allow planners to have a holistic view when considering scenarios testing 

and have numerical realizations of their repercussion. Also, the network capacity definition 

expands the concept of link capacity which is highly important in traffic engineering to the network 

space which can be used as reference for explanation purposes. Also, in terms of network design 

classic approaches for the problem take into account minimization or reduction of travel time cost. 

This new formulation allows the network design to be formulated in easily manner which allow 

solution algorithm to work better, so new network design problem could be formulated in order to 

maximize network capacity. 

The AV formulation presented in this work presented some limitations in modeling cases, 

as the cost delay function was modified by capacity only which results in small changes in network 

travel time that are conservative considering previous literature results. Nevertheless, the presented 

model has the advantage of taking into account parking characteristics, user perception and routing 

choice, and can be modified on arbitrary delay cost function which could more realistically express 

the time wins. The objective with the developed algorithm is to develop a python package and 

make it openly available which can have impacts on the scientific network as further improvements 

and applications of the model can be used.  

6.2 Limitations 

The presented model was design in the realm of static model which implies that during the 

study period all flow variables are considered to be uniform and constant. Generally speaking, this 

modelling scenarios are used in peak hours and some previous authors have stablish the necessity 

for further analysis on model performance to predict user behavior and the strong stationarity 

assumptions. Static assignment keeps being one of the most useful tools for traffic engineering, 

since it counts with a strong mathematical background and some important theoretical results. Also, 

the speed of solution algorithm, scalability and low input data requirements make it quite 

competitive with respect to more robust models as dynamic models or ABS. In this regard the 

presented model although take into account capacity constrains do not take into account 

spatiotemporal characteristics such as densities, so the selected study period should be uniform 

and short such that the required stationary assumptions hold. On the other hand, the presented 

model does not have theoretical guarantees of the existence of solution or convergence of the 



 

 

104 

algorithm as the input delay cost function and constrain set has a more complex form that in the 

classic TAP formulation. This implies that the usage of this model must include sensitivity analysis 

and multiple runs which confirm convergence of algorithm and consistency among solutions. In 

regards to the AV modeling the present work focus the attention of AV on its capacity constraint 

changes and behavior model of vehicles. Thus, the network cost or travel time is not expected to 

change which remains on conservative side of AV, as some other studies point out to bigger 

benefits on its implementations. Nevertheless, there is not unified acceptance among researches 

on the possible changes that this technology will imply, so a conservative modification was used, 

although other ones could still be used under same formulation and solution algorithms. 

6.3 Future Work 

Future work must be focus on the validation of the model with real data and exploring the 

importance and usage of dynamic models in the evaluation of parking measurement with and 

without AV. One way of doing this simulation involves the usage of commercial software such as 

SUMO, VISSIM and TRANSCAD. These models are based on ABS or simulation, although they 

are not equilibrium based, so software such as DYNASMART. The overall objective of this 

comparison is to test at which point the hypothesis of the static model start to fail and how well 

the model predicts. An implementation of AV will be required and overall, this is still a hot 

research topic, as dynamic models that track AV and parking are still on the rise. A second 

extension of this work is the usage of the network capacity as input for network design problems 

which can have big implications in practical terms. As discussed, the main advantage of this 

formulation is the simplicity of the lower level as being described by an LP. On the practical side 

the usage of this type of network design has the advantage of being less limited by the estimated 

OD which players a huge role as real planning take place in long term planning periods which 

imply that precision of estimated future OD matrix will be low. But the network capacity problem 

allows planners to give estimates of how much total demand can the network serve and when 

combined with actual travel times could help to developed city wise network levels. This type of 

work has been in a sense been studied from the perspective of city-wide fundamental histograms, 

although that approach does not have a simple mathematical formulation as the proposed in this 

work which could imply easier calculations and better possibilities for network design.  
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