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ż non-dimensional z−component of the spacecraft’s velocity vector in ro-

tating coordinates

Li ith Libration —Lagrangian— point

U∗ pseudo-potential function

U∗
LT low-thrust augmented pseudo-potential function

µ mass-ratio parameter
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DP Dynamic Programming
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ABSTRACT

As cislunar and outer space exploration regains worldwide popularity, the low-thrust

spacecraft technology, whether in the form of solar sails, electric propulsion or nuclear propul-

sion, has seen a major increase in the last two decades, as new technologies arise that not

only seek for a reduction of the size of the spacecraft —and/or the payloads— but also to

minimize the cost of spaceflights, while trying to approach further destinations in our solar

system. Mission designers are being challenged with the need to develop new strategies to

generate rapid and informed initial guesses for low-thrust spacecraft trajectory design, that

are easily converged into fully continuous solutions in position, velocity and mass states, in

a high-fidelity dynamical model that incorporates the true ephemerides and perturbations

of the gravitational attracting bodies acting on the spacecraft as it navigates through space.

In an effort to explore further mission options for spacecraft traveling in the lunar vicinity,

new interest arises into the problem of constructing a general framework for the initial guess

generation of low-thrust trajectories in cislunar space, that is independent of the force models

in which the orbits of interest are defined. Given the efficiency of the low-thrust engines, most

vehicles are equipped to perform further exploration of the cislunar space after completion

of their primary science and technology demonstrations in orbits around the Moon. In this

investigation, a generalized strategy for constructing initial guesses for low-thrust spacecraft

traveling between lunar orbits that exist within the context of multiple dynamical models

is presented. These trajectories are converged as mass-optimal solutions in lower fidelity

model, that are easily transitioned and validated in the higher-fidelity ephemeris model,

and, achieve large orbital plane changes while evolving entirely within the cislunar region.

The robustness of the initial guess generation of the spacecraft’s path, depends highly on

the fidelity of the dynamical model utilized to construct such trajectories, as well as on the

numerical techniques employed to converge and propagate them into continuous solutions.

Other researchers have extensively investigated novel techniques for the generation of initial

guesses for the low-thrust spacecraft trajectory design problem including, but not limited to,

patched conics strategies, methodologies for the transformation of impulsive burns into finite

burns, the orbit chaining framework and, more recently, artificial intelligence schemes. This
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investigation develops an adaptive orbit chaining type approach that relies on the energy

parametrization of periodic orbits that exist within the context of the circular restricted

three-body problem, to construct informed initial guess for the low-thrust spacecraft trajec-

tory.

A variety of multiple transfer applications for vehicles traveling between orbits in the

cislunar region is explored for a wide range of low-thrust spacecraft with varying thrust

acceleration magnitude. The examples presented in this investigation are consistent with

the low-thrust parameters of previously flown missions that utilized the same propulsion

capabilities, such as, the DAWN mission and the Japanese Hayabusa missions 1 and 2. The

trajectories presented in this work are optimized for either propellant consumption or time-

of-flight in the lower-fidelity model, and later transitioned into a higher-fidelity ephemeris

model that includes the gravitational attraction of the Sun, the Earth and the Moon.

Two strategies are explored for the transition of trajectories from a lower-fidelity model

to the higher-fidelity ephemeris model, both of which are successful in retaining the transfer

geometry. The framework presented in this investigation is further applied to the upcoming

NASA Lunar IceCube (LIC) mission to explore possible extended mission options once its

primary science and technology demonstration objectives are achieved. It is demonstrated in

this investigation that the strategies developed and presented in this work are not only appli-

cable to the specific low-thrust vehicles explored, but it is applicable to any spacecraft with

any type of propulsion technology. Furthermore, the energy-informed adaptive algorithm is

easily transition to generate trajectories in a range of varying dynamical models.
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1. INTRODUCTION

While it is known that there exists no closed-form solution to solve the problem of a

spacecraft moving under the perturbation of N gravitational attracting bodies (N primary

bodies) —the N -body problem— Diacu [ 1 ], numerical methods offer valuable techniques for

describing and understanding this motion. The study of numerical methods dates back to

Lorenz [ 2 ], Hénon and Heiles [  3 ], whose insight into solving astrodynamics problems is still

used today’s applications. The application of numerical techniques into solving trajectory

design problems, offers an infinite number of solutions, which motivates current researchers

and mission designers to explore and develop novel strategies that help uncover some of the

yet undiscovered motion of spacecraft in specific regions of space.

Some of the most popular strategies for solving an astrodynamics problem in which a

spacecraft moves under the perturbation of more than two primary bodies via numerical

methods, is the application of the commonly known shooting methods. Shooting techniques

explicitly integrate the equations of motion that govern the path of a spacecraft to determine

the numerical value of the control variables that meet a set of constraint equations. The sim-

plest form of a shooting algorithm is the single shooting approach. Increasing the complexity

of the single shooting follows the definition of the multiple shooting scheme, that discretizes

the trajectory into patch-points and segments, such that, each individual arc is treated as

a single shooting event. Moreover, the multiple shooting approach can be analyzed as a

series of concatenated single shooting arcs linked together, as developed by Keller [  4 ] and

Stoer and Burlisch [  5 ]. In the mission design applications, Gómez [ 6 ] is one of the pioneers

of utilizing multiple shooting strategies to solve the trajectory design problem, followed by

Mondelo [  7 ], Howell et al.[  8 ], and Pavlak [  9 ]. Shooting algorithms are iterative methods that

require an initial condition to be initialized.

The process of designing trajectories for spacecraft in cislunar orbits is similar whether

the vehicle is propelled by a chemical engine or within a low-thrust regime; it starts with the

construction of an initial guess for the spacecraft’s path. As numerical methods are iterative

by nature, the algorithms are initialized with a user supplied initial condition; successive

updates are made that drive the initial estimate to meet all the problem constraints until a
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converged solution is found. The initial guess of the trajectory not only drives the geometry

of the converged path, but also determines the successful performance of the algorithm,

as poor initial guesses might cause a corrections process or an optimizer to diverge. The

construction of an informed initial guess for a numerical method is then a important area of

research that is currently still under development.

Vehicles propelled within the low-thrust engine regime encompass a variety of different

propulsion technologies from ion engines to solar sails, and typically exchange thrust force

for engine efficiency. These concepts were introduced in the early 20th century [  10 ]; design

and technology demonstrations of low-thrust engines have been laid in since the 1950s [ 11 ],

but it was not until recent decades that the first low-thrust spacecraft missions were flown.

Some of this missions include Deep Space 1 [ 12 ], Dawn [  13 ], and Hayabusa 1 and 2 [  14 ].

However, the low-thrust trajectory design problem still poses challenges when analyzed as

an optimal control problem, since the determination of the control variables that optimize

an objective function —typically propellant consumption or time-of-flight— is a non trivial

process.

There exist multiple techniques to address the initial guess generations of low-thrust

spacecraft trajectories, one of which is the orbit chain approach. This strategy offers a flex-

ible methodology for connecting dynamical structures —periodic orbits or manifold arcs—

to construct the initial guess for the numerical algorithms to converged into a continuous

solution. In the low-thrust trajectory design framework for specified departure and arrival

orbits, the basic approach of the orbit chaining strategy is to leverage the natural dynamics

that exists within any dynamical model, to patch together intermediate arcs to aid in the

construction of an informed initial guess for the low-thrust transfer. Typically, these inter-

mediate arcs consist of either periodic orbits that exist within the context of lower fidelity

force models, or, natural structures, such as manifold arcs, that traverse the region of inter-

est in space. To select an appropriate set of intermediate arcs, the utilization of an energy

parametrization of the space to generate fully continuous paths in position, velocity and

mass states, and, to deliver mass-optimal solutions is developed in this investigation. The

strategy presented in this work is utilized to construct initial guesses for CubeSat-type space-

craft transfers, under the assumptions of the Two-Body Problem (TBP) and the Circular
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Restricted Three-Body Problem (CRTBP) lower-fidelity models, that are later transitioned

into a higher fidelity ephemeris model. Low-thrust trajectories for spacecraft traveling in cis-

lunar space are generated via a modified version of the traditional orbit chaining framework.

This strategy is employed regardless of the force model in which the departure and arrival

orbits exits, and, a step-by-step approach is provided for the construction of informed initial

guesses for the trajectory design problem.

Furthermore, a natural parameter continuation method is successfully introduced into

the implementation of a generalized modified orbit chaining technique, that leverages an

energy-informed adaptive sliding algorithm to navigate the cislunar space in the creation of

informed initial guesses, and delivers optimal trajectories for low-thrust spacecraft moving

in the vicinity of the Moon.

1.1 State of the Art

Many authors have contributed throughout the years to the development of generalized

methods for the low-thrust spacecraft trajectory design problem, specially the field of initial

guess generation. Whether the solutions are presented in lower-fidelity models such as, the

two-body and three-body problems, or in a higher-fidelity ephemeris model, all techniques

are met with benefits and drawbacks that present itself more or less challenging depending on

the type of spacecraft being considered, as well as the number and nature of the perturbations

introduced in the equations of motion.

1.1.1 A Summary of the Development of the Orbit Chaining Framework

Howell, Barden, and Lo [  15 ] demonstrated the orbit chaining strategy by link mani-

fold arcs to transfer between periodic orbits within the context of the circular restricted

three-body problem (CRTBP). Their explorations and investigations in the trajectory de-

sign problem, led the path for the NASA Genesis mission [ 16 ]. Later, Koon et al. [ 17 ]

presented their work on ”dynamical chains” in which heteroclinic and homoclinic connec-

tions are linked to uncover three-dimensional natural flow to and from periodic orbits in the

CRTBP, including the Jupiter system, for which tours of the Jovian moons were explored
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[ 18 ]. Ross and Lo [  19 ] describe an “Interplanetary Superhighway” that expands across the

solar system, as a series of manifold tubes linked together. These manifolds are also derived

within the context of the three-body problem dynamical model.

Lo and Parker [ 20 ], and Parker et al. [  21 ], continue the exploration of orbit chaining by

developing a generalized scheme to transfer between periodic orbits in the vicinity of the

libration points. Vaquero and Howell [ 22 ] explored resonant orbits within the context of

the CRTBP, as possible arcs to utilize in the construction of initial guesses using the orbit

chaining approach. Haapala and Howell [ 23 ] created a catalog of heteroclinic and homoclinic

connections for transfers between libration point orbits (LPOs) within the context of the

three-body force model, by utilizing invariant manifolds.

More recently, Restrepo and Russell [  24 ] developed the “Patched Periodic Orbits” strat-

egy for the fast design of low-thrust trajectories in the CRTBP, in which successive periodic

orbits are patched together. Das-Stuart [ 25 ] develops a framework that combines dynamical

systems theory with artificial intelligence and machine learning techniques to aid in the rapid

generation of initial guesses. Pritchett [  26 ] combines together periodic orbit chains in various

dynamical structures that helps with the construction of the initial guess for the low-thrust

spacecraft trajectory design.

Most of these authors rely on numerical techniques —mainly multiple shooting and op-

timizations methods — to transition the initial guess of the trajectory generated via the

orbit chaining framework into a fully continuous solution between two orbits. Some of the

benefits of the multiple shooting techniques include, but are not limited to, the sensitivity of

the initial guess being distributed across multiple patch-points; the geometry of the initial

guess being retained; a wider convergence radius since the error is distributed across the

entire trajectory. As the focus of this investigation is to develop alternate strategies for the

initial guess generation of low-thrust spacecraft trajectories within the context of the circular

restricted three-body problem, some of the contributions within this regime are presented in

the following section.
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1.1.2 Advances in the Circular Restricted Three-Body Problem

The study of the circular restricted three-body problem dates back to Newton in 1687

[ 27 ], when the exploration of the interaction between multiple gravitational celestial bodies

was introduced. In 1772, Lagrange determined the existence of five equilibrium points in

the three-body problem, that are also known as Lagrangian or libration points. Poincaré

explored the existence of periodic motion around these Lagrangian points [  28 ], and opened

the space to an infinite number of possibilities for spacecraft motion under this regime. In

1920, Moulton [  29 ] published the book Periodic Orbits, in which analytical methods for

approximating periodic orbits in the vicinity of the Lagrangian points is explored.

In 1965, Hénon [  30 ] published on stability and bifurcations of periodic solutions, while

Goodrich [  31 ] explored orbits in the vicinity of the non-collinear libration points in the Earth-

Moon system. At around the same time period, Szebehely [  32 ] published his book ”Theory

of Orbits: The Restricted Problem of Three Bodies”, and, in 1968 Broucke [ 33 ] completed an

analysis of planar motion and bifurcations in the RTBP. Breakwell and Brown [ 34 ] explored

the existence of halo orbits in the Earth-Moon system while Zagouras and Kazantzis [  35 ] in

1979, explored the existence of halo, axial, and vertical families of orbits in the Sun-Jupiter

RTBP system. Howell [  36 ] completed an extensive investigation of the halo family of orbits.

Furthermore, In 1999, Howell and Campbell [  37 ] performed an extensive investigation of

periodic family of orbits and their stability in the Sun-Earth/Moon system.

More recently, Grebow [  38 ] computed many periodic orbits within the context of the

Earth-Moon CRTBP. Anderson and Lo [ 39 ] exploited the use of Poincaré maps and invariant

manifolds to study motion in the Jupiter- Europa R3BP system, and explored the low-

thrust trajectory design problem within this regime. Cox [  40 ] created a catalog of dynamical

structures from the CRTBP that includes both, gravitational dynamics and the low-thrust

force.

Dynamical structures that exist within the context of the CRTBP are nowadays a fun-

damental part of the work performed by mission designers. Some of the more recent mission

examples that will enable low-thrust spacecraft trajectory design in the Earth-Moon CRTBP

system are the Lunar IceCube [ 41 ] mission, as well as the NASA’s Artemis-1 mission [ 42 ].
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Furthermore, many other authors and researchers have contributed to the development of

the theory behind the circular restricted three-body problem regime, as new periodic motion

in the vicinity of the Lagrangian points continues to be unveiled.

1.1.3 Low-thrust Enabled Trajectory Design

The low-thrust enabled trajectories in the CRTBP are often referred to as low-energy

transfers. These transfer have been computed by many authors using different techniques,

some of which include the addition of natural or ballistic arcs in the construction of the

initial estimate for the trajectory. Two types of low-thrust propulsion are considered in this

investigation: one whose engine efficiency possesses a Constant Specific Impulse (CSI), as

well as the VASIMIR engine [  43 ] that operates on a Variable Specific Impulse (VSI) regime.

Parker and Anderson [ 44 ], as well as Mingotti and Topputo [ 45 ] explored a variety of low-

thrust trajectories in the Earth-Moon CRTBP system and their applications. Furthermore,

the successfully flown SMART-1 mission employed an electric propulsion type of engine to

transfer from the Earth to the vicinity of the Moon [  46 ]. Grebow et al. [  47 ], [ 48 ] stud-

ied long-duration coverage of pole-sitter orbits with a low-thrust spacecraft with electric

propulsion. Betts [24] solved the continuous problem of obtaining time-history for the thrust

control orientation vector despite computational difficulties. Radice and Olmo [ 49 ], Ceriotti

and Vasile [  50 ], Stuart and Howell [  51 ], as well as Furfaro and Linares [ 52 ], among others,

offer solutions of the low-thrust problem via optimization techniques and the convergence

of locally optimal solutions. Witsberger and Longuski [  53 ] and De Smet et al. [  54 ] utilized

Artificial Neural Networks (ANNs) to construct solutions for interplanetary transfers. Miller

and Linares [ 55 ], as well as Das-Stuart et al. [  56 ] leverage Reinforcement Learning (RL)

techniques into the a low-thrust spacecraft trajectory design.

Some examples of previuosly flown low-thrust missions include the Deep Space 1 mission

to the McAuliffe asteroid and the West-Kohoutek-Ikemura comet [  57 ], the Dawn mission to

the dwarf planets Vesta and Ceres [  58 ], and the Hayabusa 1 and 2 missions to the Itokawa and

Ryugu asteroids [  14 ], [ 59 ]. Some examples of future low-thrust missions include the Lunar

IceCube spacecraft [  41 ], and NASA’s Gateway mission [  42 ]. As low-thrust technologies

continue to be developed and tested, the number of low-thrust-enabled missions within the
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context of the circular restricted three-body problem will increase, and more strategies will

need to be designed and validated.

1.2 Thesis Overview

Even though the advantages of low-thrust propulsion for spacecraft were analyzed long

before the technology was ready for implementation in an actual mission, much analysis con-

tinues on the topics of spacecraft trajectory optimization and low-thrust transfer design in

the cislunar vicinity; such trajectories minimize parameters such as the propellant consump-

tion or time-of-flight. When direct and indirect optimization strategies are incorporated

into the low-thrust transfer design process, it enables the identification of locally optimal

solutions that extremize the control parameters [ 60 ], [ 61 ].

It is then the goal of this investigation to explore the time-of-flight and propellant usage

trade-offs in the design of low-cost low-thrust transfers in cislunar space, by leveraging an

energy-informed control and optimization strategy. This analysis seeks to address this goal

by exploring the answers to the following fundamental questions:

1. Can an automated algorithm be developed to further exploit orbit chaining with nat-

ural arcs for initial guess generation of low-thrust transfers in the lunar vicinity?

2. Do transfer geometries that escape the system always provide a better propellant

consumption performance?

3. What is the impact of the thrust acceleration level in the geometry of a low-thrust

transfer within the context of the CR3BP?

Each of the previous queries introduces a new challenge into the low-thrust transfer design,

possibly in the form of additional constraints, or by developing suitable and rapid strategies

to generate feasible and informed initial conditions for the numerical corrections process.

Furthermore, these strategies should produce robust low-cost optimal solutions that are

easily translated to a higher fidelity ephemeris model.

This work is organized in the following manner:
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• Chapter 2. Low-thrust Spacecraft Dynamical Models.

Within the context of trajectory design for vehicles powered by low-thrust engines in

the vicinity of the Moon, a first step in the analysis is the development of a dynam-

ical model that describes the motion of the spacecraft in a multi-body environment,

while incorporating the additional acceleration term provided by the thrust force. The

complexity of this design will be addressed first, by understanding the dynamics of

the low-thrust spacecraft in an environment where only the gravitational acceleration

of the Earth and the Moon are incorporated, without any additional perturbations,

and later expanding this dynamical fidelity to a model that includes the gravitational

attraction of the Sun as a third body perturbation.

• Chapter 3. Low-thrust Spacecraft Optimization Techniques.

With the thrust acceleration of the spacecraft being the main control variable for a

low-thrust vehicle in the CRTBP-LT regime, an informed guess for the control history

becomes crucial to determining a continuous solution to the equations of motion. Fur-

thermore, this solution is expected to satisfy certain constraints along the path, while

minimizing a predetermined performance function that supports the mission applica-

tion requirements. To identify a suitable control history for the thrust acceleration

terms, optimal control theory is employed, and both direct and indirect methods are

explored to minimize the propellant consumption of the spacecraft, along with the

time-of-flight of the trajectories.

• Chapter 4. Cislunar Trajectory Design Framework.

An automated algorithm that generates sliding-type geometry initial guesses, and lo-

cally optimal converged solutions, is developed in trying to answer the first fundamental

question. This algorithm exploits natural arcs within the orbit chaining framework,

to construct trajectories for low-thrust spacecraft between libration point orbits in the

vicinity of the Moon. The sliding-type algorithm consists of constructing the initial

guess based on the selection of a set of intermediate orbits patched together from the

departure to the arrival orbits. These orbits can belong to either of the families, that

is, the departure or destination orbits, or could belong to a completely different family
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of periodic orbits that lie in the vicinity of the orbits of interest. Furthermore, this

algorithm offers the capability to identify interior transfer geometries when manifolds

arcs are not available, e.g., when transferring between stable periodic orbits.

• Chapter 5. Applications.

Results for the performances obtained with the energy-informed adaptive sliding al-

gorithm are demonstrated in a variety of applications for a low-thrust spacecraft with

a VSI engine model, travelling between orbits in the vicinity of the Moon. A special

application is examined in an effort to explore further extended mission options for

the secondary payload riding along the NASA Artemis-1 spacecraft [  62 ], the Lunar

IceCube (LIC) satellite. New interest arises into the problem of constructing a general

framework for the initial guess generation of low-thrust trajectories in cislunar space,

that is independent of the force models in which the orbits of interest are defined.

Given the efficiency of the LIC low-thrust engine [  63 ], after completion of its primary

science and technology demonstrations in an orbit around the Moon, the spacecraft

could perform further exploration of the cislunar space. These trajectories are con-

verged as mass-optimal solutions in lower fidelity model, that are easily transitioned

and validated in the higher fidelity ephemeris model, and, achieve large orbital plane

changes while evolving entirely within the cislunar region.

• Chapter 6. Concluding Remarks.

A summary of the trajectory design framework developed in this investigation is sum-

marized in this chapter, along with the conclusions drawn from the results of the

sample applications. Potential recommendations for future work are also offered.
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2. LOW-THRUST SPACECRAFT DYNAMICAL MODELS

When exploring strategies for designing trajectories for vehicles moving in outer space,

the very first step consists of understanding the environment in which these vessels will be

navigating. Questions arise concerning the effects of the perturbations that the spacecraft

will undergo, such as, but not limited to, the number of gravitational forces acting on the

body, parameter that determines the dynamical sensitivity of a particular region in space.

While it is impossible to accurately and precisely model every individual celestial body that

resides in the outer space, scientists and researchers throughout history have tried to under-

stand and approximate the motion of the celestial bodies, providing sufficient information

that enables the capability to produce high fidelity dynamical models that describe the path

of a natural satellite moving in a particular region of space.

One example of such data, for a high fidelity model of the motion of natural satellites is

found in the ephemeris files provided by the Solar Systems Dynamics Group of the NASA

Jet Propulsion Laboratory (JPL) in Pasadena, California; This data is obtained either via

the JPL Horizons online system, or, via the ephemeris files in SPK format from the JPL’s

NAIF website. The ephemeris data is utilized to approximate the true path of the celestial

bodies as seen by an observer fixed in an inertial reference frame. Furthermore, the number of

celestial bodies incorporated in a dynamical model to approximate the motion of an artificial

spacecraft moving in space, determines the fidelity of such force model approximation. If the

spacecraft undergoes the gravitational perturbation of N attracting bodies, this force model

is referred to as the N -Body Problem (N BP). The larger the number of celestial bodies

included in the model —the numerical value of N — the higher the fidelity of the dynamical

model approximating the perturbations acting on the motion of the spacecraft.

Although there exist a variety of mathematical formulations to describe the path of a

spacecraft under the perturbation of N attracting bodies, there exists however not known

analytical solution to describe the motion of a vehicle moving under the perturbation of more

than two gravitational accelerations. This problem is the well known Two-Body Problem

(2BP), for which Kepler found a closed-form solution in the form of conics —circles, ellipses,

hyperbolas and parabolas—. The 2BP is the dynamical model with the lowest fidelity of
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perturbations, in which the gravitational attraction of only one attracting body is utilized

to model the forces under which a spacecraft is navigating in space. For instance, the Sun-

Mars system, Earth-Moon system, or Earth-Spacecraft system, are all examples of models in

which only one perturbing body is included to understand the motion of a satellite traveling

in its proximity.

When the effects of a second gravitational attraction is included in the model, this dy-

namical environment is now considered the three-body problem. Furthermore, if the two

primaries are orbiting in circular motion around their common barycenter, this is called the

Circular Restricted Three-Body Problem (CR3BP). This model is of particular interest since,

even though there exist no analytical, or closed-form solution, to describe the motion of the

spacecraft in this regime, numerical methods and computational propagation are leveraged

to generate closed trajectories for vehicles. Moreover, some of these paths are periodic in

configuration space, resulting in the generation of periodic orbits.

2.1 Coordinate Frames

To represent a vector quantity —magnitude and direction— in a three-dimensional space,

a set of three infinite axes perpendicular to each other is utilized. The direction of each axis

is represented by a unit vector, such that, the set of the three unit vectors perpendicular

to each other is referred to as a coordinate frame. Moreover, even though the axes of a

coordinate frame are infinite, an origin or base-point is identified, that locates any vector

quantity in space with respect to the particular coordinate frame.

Coordinate frames can be inertially fixed in space —inertial frames—, or can rotate

about its origin at a specified angular rate —rotating frames—. Furthermore, as illustrated

in Figure  2.1 , multiple frames can share the same origin or based-point, regardless of whether

the set of axes are inertial or rotating. Figure  2.1 is a generic representation of an arbitrary

inertial frame, I, with coordinates {X̂, Ŷ , Ẑ} and an arbitrary rotating frame, R, with

coordinates {x̂, ŷ, ẑ}, that rotate about their common based-point at an angular rate θ̇.

In the process to develop the equations of motion of a spacecraft moving under the per-

turbation of multiple gravitational accelerations, using either a Newtonian or a Hamiltonian

formulation, the first step is to identify its position and velocity vectors with respect to an
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Figure 2.1. Generic representation of an arbitrary inertial and rotational
coordinate frames with the same base-point origin

inertial coordinate frame. Depending on the dynamical model being utilized, the inertial

frame however, is not always the better choice to observe and understand the path of a

space vehicle. Therefore, a transformation from an inertial to a rotational frame is often

times necessary.

2.1.1 Transformation Between Rotating and Inertial Coordinate Frames

To illustrate the process to transform a vector from an arbitrary inertial reference frame

to a rotational reference frame and vice versa, consider the position and velocity vectors for

a spacecraft expressed in terms of the rotating coordinates in Figure  2.1 :

r̄ =
[
x y z

]
(2.1)

v̄ =
Rdr̄

dt
=
[
ẋ ẏ ż

]
(2.2)
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By applying the basic kinematic equation (BKE), an expression for the velocity vector in

inertial coordinates is found as follows:

Idr̄

dt
=

Rdr̄

dt
+ Iω̄R × r̄ (2.3)

where Iω̄R = θ̇ẑ represents the angular velocity of the rotating frame with respect to the

inertial frame. Idr̄
dt

corresponds to the derivative of the position vector with respect to time as

seen by an inertial observer, and Rdr̄
dt

corresponds to the time rate of change of the position

vector with respect to an observer fixed in the rotating frame:

Idr̄

dt
= v̄ + θ̇ẑ × r̄

=
[
ẋ ẏ ż

]
+ θ̇ẑ ×

[
x y z

]
=

(
ẋ− θ̇y

)
x̂+

(
ẏ + θ̇x

)
ŷ + żẑ (2.4)

If both reference frames are assumed to be initially aligned, i.e., at time t = 0, the angle

θ = 0 deg, such that:

x̂(t = 0) = X̂(t = 0)

ŷ(t = 0) = Ŷ (t = 0)

ẑ(t = 0) = Ẑ(t = 0)

then, the Direction Cosine Matrix (DCM) that relates the two coordinate frames is obtained

by a simple rotation of θ degrees about the ẑ− axis (that is equivalent to the inertial Ẑ−

axis for all times) as follows:

ICR =


cos(θ) −sin(θ) 0

sin(θ) cos(θ) 0

0 0 1

 (2.5)

Thus, to transform the position vector from rotational to inertial coordinates, the following

matrix operation is performed:
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X

Y

Z

 =


cos(θ) −sin(θ) 0

sin(θ) cos(θ) 0

0 0 1




x

y

z

 (2.6)

or, in a more compact form:


X

Y

Z

 = ICR


x

y

z

 (2.7)

Likewise, to transform the velocity vector from rotating to inertial coordinates, apply the

chain rule of derivatives to Equation  2.7 , such that, the time derivative of the DCM is

employed to compute the inertial velocity as follows:


Ẋ

Ẏ

Ż

 = ICR


ẋ

ẏ

ż

+ IĊR


x

y

z

 (2.8)

Combining the results from Equations  2.7 and  2.8 , delivers the transformation equation for

the position and velocity vectors of a spacecraft from rotating to inertial coordinates:



X

Y

Z

Ẋ

Ẏ

Ż


=

 ICR 03×3

IĊR ICR





x

y

z

ẋ

ẏ

ż


(2.9)

One of the properties of transformation matrices —direction cosine matrices— is that

their inverse is equal to their transpose:

[
ICR

]−1
=
[

ICR
]T

= RCI
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therefore, if the inverse process is required, in which it is desired to transition a position and

velocity vectors from inertial to rotating coordinates, Equation  2.9 is modified as follows:



x

y

z

ẋ

ẏ

ż


=

 RCI 03×3

RĊI RCI





X

Y

Z

Ẋ

Ẏ

Ż


(2.10)

where the rotation matrix from inertial to rotating coordinates is given by:

RCI =


cos(θ) sin(θ) 0

−sin(θ) cos(θ) 0

0 0 1

 (2.11)

The process described for transforming a position and velocity vector from inertial to rotating

coordinates and vice versa, is applicable for any three-dimensional vector representing any

quantity and its rate of change with respect to time.

2.1.2 Transformation Between Rotating and J2000 Inertial Reference Frame

The J2000 reference frame is an inertial coordinate frame whose origin —base point—

is the Earth, and for which all directions are recorded on January 1st, 2000 at 12:00:00

Ephemeris Time (ET). This is the most popular reference frame to utilize when modeling the

motion of a spacecraft in a high fidelity ephemeris model, under the gravitational attraction

of multiple celestial bodies, as all ephemeris in this frame are recorded as days past J2000.

Let R̄ and V̄ represent the inertial position and velocity vectors of a spacecraft with

respect to an observer fixed in the Earth. Utilizing the ephemeris data, an instantaneous

Earth-centered rotating frame Rinst is constructed as follows:
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x̂inst = R̄

||R||
(2.12)

ẑinst = R̄ × V̄

||R̄ × V̄ ||
(2.13)

ŷinst = ẑinst × x̂inst (2.14)

where {x̂inst, ŷinst, ẑinst} are the individual components of the instantaneous rotating frame.

In the J2000 coordinate frame, the angular velocity is no longer constant —as it is in the

case of an arbitrary inertial frame— such that, this quantity must also be computed instan-

taneously:

θ̇inst = hinst

R2 = R̄ × V̄

R2 (2.15)

In Equation  2.15 , hinst represents the instantaneous angular momentum derived from a two-

body definition. Utilizing this definition for the angular rate, if the instantaneous rotational

position is given by:

r̄inst =
[
xinst yinst zinst

]
(2.16)

then, the instantaneous rotational velocity is obtained by applying the BKE as follows:

Idr̄inst

dt̃
=

Rinstdr̄inst

dt̃
+ Iω̄Rinst × ¯rinst (2.17)

where Iω̄Rinst = θ̇instẑinst represents the angular velocity of the instantaneous rotating frame

with respect to the J2000 inertial reference frame. Idr̄inst

dt̃
corresponds to the derivative of

the position vector with respect to time as seen by an inertial observer fixed in the Earth,

and R̃dr̄inst

dt̃
corresponds to the time rate of change of the position vector with respect to an

observer fixed in the instantaneous rotating frame:
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Idr̄inst

dt̃
= v̄inst + θ̇instẑinst × r̄inst

=
[
ẋinst ẏinst żinst

]
+ θ̇instẑinst ×

[
xinst yinst zinst

]
=

(
ẋinst − θ̇instyinst

)
x̂inst +

(
ẏinst + θ̇instxinst

)
ŷinst + żinstẑinst (2.18)

Following the same procedure to transform rotating coordinates to an arbitrary inertial

frame, a transformation matrix —direction cosine matrix—- is required to transform rotat-

ing coordinates into a J2000 inertial reference frame. In this case, the rotation matrix is

instantaneous, and it is constructed via the instantaneous rotating axes as follows:

ICRinst =
[
x̂inst ŷinst ẑinst

]
=


C11 C12 C13

C21 C22 C23

C31 C32 C33

 (2.19)

such that, the instantaneous rotational position vector transformed into the J2000 inertial

coordinates is given by:


X

Y

Z

 =


C11 C12 C13

C21 C22 C23

C31 C32 C33




xinst

yinst

zinst

 (2.20)

or, simply written: 
X

Y

Z

 = ICRinst


xinst

yinst

zinst

 (2.21)

Moreover, from Equation  2.18 , the instantaneous rotating velocity vector written in J2000

inertial coordinates, is given by:
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Ẋ

Ẏ

Ż

 =


θ̇instC12 −θ̇instC11 0 C11 C12 C13

θ̇instC22 −θ̇instC21 0 C21 C22 C23

θ̇instC32 −θ̇instC31 0 C31 C32 C33





xinst

yinst

zinst

ẋinst

ẏinst

żinst


(2.22)

Combining the results from Equations  2.21 and  2.23 , delivers the transformation equation

for the position and velocity vectors of a spacecraft from an instantaneous rotating frame to

J2000 inertial coordinates:



X

Y

Z

Ẋ

Ẏ

Ż


=



C11 C12 C13 0 0 0

C21 C22 C23 0 0 0

C31 C32 C33 0 0 0

θ̇instC12 −θ̇instC11 0 C11 C12 C13

θ̇instC22 −θ̇instC21 0 C21 C22 C23

θ̇instC32 −θ̇instC31 0 C31 C32 C33





xinst

yinst

zinst

ẋinst

ẏinst

żinst


(2.23)

Although the coordinate transformation process described in this section corresponds to an

Earth-centered inertial frame, the process is applicable to any primary-centered coordinate

frame, whether the goal is to transformed rotating coordinates into inertial quantities or vice

versa.

2.2 Numerical Methods

To accurately represent the evolution of an unknown trajectory (be it a periodic orbit, or

just an arbitrary path for a spacecraft travelling within a particular system), it is assumed

that a set of terminal conditions must be satisfied. This becomes then a targeting problem

for which end conditions are specified to be met while varying a set of initial conditions. The

term ‘shooting’ is utilized to describe such targeting technique. The shooting methods ne-

cessitate iterations on the initial conditions that need be updated to meet the final targeting

conditions, hence, these methods are separated into three main steps:

39



• Step 1. Targeting the desired states

• Step 2. Correcting for deviations

• Step 3. Updating the initial states

Steps 1 through 3 are implemented iteratively, until the desired target conditions are met.

One of the most popular ways to formulate the iterative process is by rearranging the system

of differential equations that drive the motion of the vehicle as a set of first-order differential

equations, and implementing a Newton-Raphson strategy. Furthermore, this strategy implies

knowledge of the partial derivatives of the system, that is, knowledge about the sensitivity

of the final states to the initial states (also known as the State Transition Matrix, STM), as

well as the sensitivity of the terminal conditions —or constraints— to the initial states.

2.2.1 Newton-Raphson Method

Within the context of a Newton-Raphson technique, let X̄ be a vector of design variables

—or controls— that are part of the state vector in a set of first-order differential equations of

motion, and are to be modified in order to meet a set of terminal constraints on the states:

X̄ =



X1

X2

X3
...

Xn


(2.24)

Let the terminal constraints be the components of a vector of targeting conditions, F(X̄ ),

such that, the goal of the iterative algorithm is to find the initial value of the control variables,

X̄ , that drive the vector of constraints to zero, i.e., F(X̄ ) = 0.
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F(X̄ ) =



F1(X̄ )

F2(X̄ )

F3(X̄ )
...

Fk(X̄ )


= 0̄ (2.25)

In theory, the solution to Equation  2.25 is attained by iterating on the control variables until

each individual condition is set to zero; in practice, solutions satisfying F(X̄ ) < ε are sought

instead, where ε is a user-defined tolerance that accommodates for numerical errors during

the convergence process.

One characteristic of the numerical methods is that an initial condition for the control

variables, X̄0, is needed to initialize the iterations process. Moreover, an update equation

is derived that feeds the current initial conditions and approximates the deviations on the

terminal constraints. To derive the update equation, a first-order Taylor series expansion

about X̄0 is applied to F(X̄ ), such that:

F(X̄ + δX̄0) ≈ F(X̄0) +DF(X̄0)(X̄ − X̄0) (2.26)

where DF(X̄0) is the matrix of partial derivatives of the constraints with respect to the

control variables, given by:

DF(X̄0) = ∂F(X̄ )0

∂X̄0
=



∂F1
∂X1

∂F1
∂X2

· · · ∂F1
∂Xn

∂F2
∂X1

∂F2
∂X2

· · · ∂F2
∂Xn

... ... . . . ...
∂Fm

∂X1
∂Fm

∂X2
· · · ∂Fm

∂Xn


t0

(2.27)

Let the variations of the control vector around the initial conditions be defined as δX̄ = (X̄ −

X̄0), such that. Generalizing this realization such that X̄0) represents the initial conditions

at any point in time ti, Equation  2.26 can be rewritten as:

F(X̄i+1 + δX̄i) ≈ F(X̄i) +DF(X̄i)(X̄i+1 − X̄i) = 0 (2.28)
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To solve for Equation  2.28 utilizing matrix algebra, the solution varies depending on the

size of the matrix of partial differential equations, which ultimately relates to the size of the

vector of control variables, n, and the size of the vector of constraints, m.

Size of the State Vector Equals Size of Vector of Constraints

The case for which n = m in Equation  2.28 , suggests that the number of control variables

is exactly equal to the number of constraint equations, in which case, the matrix of partial

derivatives DF is a square matrix. The iterative process consists of updating the vector of

controls until the vector of constraints approaches zero. If X̄i represents the initial condition

for the iterations process at time ti, then the updated vector of control variables at time ti+1,

X̄i+1, is found by rearranging Equation  2.28 , as follows:

X̄i+1 = X̄i −DF(X̄i)−1F(X̄i) (2.29)

Equation  2.29 assumes that the matrix DF is invertible, and that a unique solution exist.

The iteration process continues until F(X̄i) < ε.

Size of the State Vector Greater than Size of Vector of Constraints

The case for which n > m in Equation  2.28 , suggests that the number of control variables

is greater than the number of constraint equations, in which case, the matrix of partial

derivatives DF is a rectangular matrix. In this scenario, an infinite number of solutions

exist, one of which is known as the minimum-norm solution, whose goal is to identify the

solution closest to the vector of control variables at time ti. The minimum-norm solution is

found by as follows:

X̄i+1 = X̄i −DF(X̄i)T
[
DF(X̄i)DF(X̄i)T

]−1
F(X̄i) (2.30)

Similar to the procedure in Equation  2.29 , it is assumed that Equation  2.30 produces a

unique solution, and the iteration process continues until F(X̄i) < ε.
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2.3 Low-Thrust Circular Restricted Three-Body Problem

The Circular Restricted Three-Body Problem (CR3BP) is a time-invariant system in

which two primary bodies –modeled as point masses– are assumed to be in coplanar and

circular orbits relative to their common barycenter, while a third body of negligible mass

moves throughout the system [  64 ]. Some common applications of the CR3BP model are the

Earth-Moon-spacecraft system —the focus of this investigation—, the Sun-Earth-spacecraft

system, that was the main focus of the previously flown NASA Genesis mission, as well

as some planet-moon-spacecraft systems including, but not limited to, the Jupiter-Europa-

spacecraft system, and the Saturn-Enceladus-spacecraft system.

The two primaries are labeled P1 and P2 with corresponding masses M1 and M2, respec-

tively; by convention, P1 is assumed to be the larger body (M1 > M2), while the third-body,

P3, is assumed to be the spacecraft. The ultimate goal of utilizing the CRTBP system is

to derive the Equations of Motion (EOMs) that govern the path of the spacecraft under

the gravitational attraction of the two primaries —the two attracting bodies—. The mass of

third-body is assumed to be much smaller than those of P1 and P2, such that, M3 � M1,M2.

Within the context of the CR3BP, a rotating coordinate frame, R is defined such that,

the origin is the common barycenter of the P1-P2 system; moreover, this barycenter is an

inertially-fixed point. The x-axis of the rotating frame is directed along the line from P1 to

P2, the z-axis is aligned with the angular momentum of the primary system, and the y-axis

completes the right-handed triad. Figure  2.2 is a graphical representation of the CR3BP.

The right handed triad (x̂, ŷ, ẑ) represents the rotating coordinate system, while (X̂, Ŷ , Ẑ)

corresponds to an inertially fixed frame, centered at the system barycenter.

The two primaries are assumed to move strictly in the xy-plane, while the spacecraft,

P3 is free to move anywhere in the three-dimensional space. The position vector for each of

the bodies with respect to the barycenter of the system is represented by R̄1, R̄2 and R̄3 for

P1, P2 and P3, respectively. The vector from directed from P1 to P3 is labeled R̄13, and the

vector from directed from P2 to P3 is labeled R̄23; these vectors are given by:

43



Figure 2.2. Graphical representation of the CRTBP.

R̄13 = R̄1 − R̄3 (2.31)

R̄23 = R̄2 − R̄3 (2.32)

the angle θ is directly related to the angular rate of rotation of the rotating frame, R, with

respect to the inertial frame, I. Utilizing a Newtonian approach —Newton’s second law—

the equations of motions of the spacecraft, P3, under this regime are determined by equating

the kinematic expression of the acceleration vector as seen by an observer fixed in the inertial

frame, to the net sum of gravitational forces acting on the body, such that, the equations of

motion due to the gravitational attraction of the two primaries are:

M3
IR̄′′

3 = −G̃M3M1

R3
13

R̄13 − G̃M2M1

R3
12

R̄12 (2.33)

where G̃ represents the universal gravitational constant, and the double prime upper script

corresponds to the second derivative with respect to time.

44



To completely solve the problem in Equation  2.33 , eighteen constants —integrals of

motion— are necessary. However, only ten integrals of motion are known to date, suggesting

that there is no analytical (or closed-form solution) to the CR3BP. The problem is then

solved via numerical methods. Due to the nature of the natural motion of satellites in space,

distance quantities are often times a couple of orders of magnitude larger than those related

to velocity or time. When numerically solving for the motion of P3 in Equation  2.33 , the

difference in the numerical values for each of the terms in the EOMs introduces numerical

errors. Thus, a popular way to reduce the sensitivity of the EOMs to numerical errors is to

non dimensionalize the equations of motion.

Using the standard characteristic quantities of distance, time and mass to appropriately

non dimensionalize the system of equations, such that, the equations of motion are rewritten

in terms of non dimensional time. Let the characteristic length, l∗, be defined as:

l∗ = R1 +R2 (2.34)

where R1 and R2 are the distances — magnitude of the position vector— of the two primaries

from the system barycenter, respectively; moreover, all of the position vectors that appear

in Figure  2.2 are non dimensionalized by the characteristic length as follows:

r1 = R1

l∗
(2.35)

r2 = R2

l∗
(2.36)

r3 = R3

l∗
(2.37)

r13 = R13

l∗
(2.38)

r23 = R23

l∗
(2.39)

Let us define as well the characteristic mass, m∗, as the sum of the masses of the two

primaries:
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m∗ = M1 +M2 (2.40)

The characteristic time, t∗, is constructed such that the non dimensional value of the universal

gravitational constant, G̃, equals one:

t∗ =
√

l∗3

G̃m∗
(2.41)

once the characteristic time is identified, the non-dimensional time is evaluated as follows:

t = t̃

t∗
(2.42)

Furthermore, recall that the rotating frame moves with respect to the inertial frame at an

angular rate IωR = θ̇ẑ. One of the main assumptions of the CR3BP is that the rotating

frame moves at the same angular rate at which the second primary, P2, moves with respect

to the larger primary, P1. In the two-body problem, this rate is known as the mean motion,

which is calculated as:

˙̃θ =
(
G̃m∗

l∗3

)
(2.43)

Manipulating Equation  2.43 , an expression for the non-dimensional mean motion of the

rotating frame with respect to the inertially fixed frame is found by:

θ̇ =
(
G̃m∗

l∗3

)(
l∗3

G̃m∗

)
= 1 (2.44)

Lastly, a non dimensional mass ratio, µ, is defined, to help simplify the equations of motion

in Equation  2.33 as follows:

µ = M2

m∗ (2.45)

The mass ratio is an important parameter of the CR3BP, and often times it is utilized to

describe the sensitivity of the system. Table  2.1 presents a summary of some of the µ values

encountered in the most popular CRTBP systems across our solar system.
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Table 2.1. Summary of mass ratio parameters, µ, across multiple CR3BP in
our solar system

CR3BP System µ[nd]

Earth-Moon 1.21 × 10−2

Sun-Earth 3.04 × 10−6

Sun-Jupiter 9.54 × 10−4

Saturn-Titan 2.37 × 10−4

The µ parameter is also utilized to redefine the non dimensional position vectors of the

primary bodies and the spacecraft with respect to the system barycenter, B. The barycenter

of the CR3BP system —the origin of the coordinate frame— corresponds to the location of

the center of mass of the P1 − P2 system [ 65 ], such that:

Bx̂ = −M1r1x̂+M2r2x̂

m∗ = 0̄ (2.46)

from the definition of the non dimensional mass ratio, expressions for M1 and M2 are rede-

fined as follows:

M2 = µ (M1 +M2) = µm∗ (2.47)

M1 = (1 − µ) (M1 +M2) = (1 − µ)m∗ (2.48)

Such that, the system barycenter in terms of µ is given by

Bx̂ = (1 − µ) r1x̂+ µr2x̂ = 0 (2.49)

Algebraic manipulation of Equation  2.49 , yields the following expressions to represent the

non dimensional position vectors of the primary bodies and the spacecraft, with respect to

the system barycenter, in terms of the mass ratio parameter:
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r̄1 = −µx̂ (2.50)

r̄2 = (1 − µ) x̂ (2.51)

r̄13 = (x+ µ) x̂+ yŷ + zẑ (2.52)

r̄23 = (x− 1 + µ) x̂+ yŷ + zẑ (2.53)

Rewriting the equations of motion of the spacecraft in Equation  2.33 in terms of the non

dimensional quantities, yields the following non dimensional EOMs:

I ¨̄r3 = −(1 − µ)
r3

13
r̄13 − µ

r3
12
r̄12 (2.54)

The left-hand side of Equation  2.54 is obtained by finding the kinematic expression for the

non dimensional acceleration vector of the spacecraft. Let the position vector of P3 written

in terms of rotating coordinates be:

r̄3 = xx̂+ yŷ + zẑ (2.55)

Apply the rule of the basic kinematic equation twice in Equation  2.55 to obtained the

acceleration as seen by an inertial observer as follows:

I ˙̄r3 = R ˙̄r3 + Iω̄R × r̄3 (2.56)
I ¨̄r3 = R ¨̄r3 + 2Iω̄R × R ˙̄r3 + Iω̄R × Iω̄R × r̄3 (2.57)

Written in terms of the components in rotating coordinates, the spacecraft kinematic accel-

eration vector is given by:

I ¨̄r3 =
(
ẍ− 2θ̇ẏ − θ̇2x

)
x̂+

(
ÿ + 2θ̇ẋ− θ̇2y

)
ŷ + z̈ẑ (2.58)
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Recall that the non dimensional mean motion of the system is equal to one. Thus, combining

Equations  2.54 and  2.58 , yields the set of non dimensional equations of motion in rotational

component form given by:

ẍ− 2ẏ − x = −(1 − µ) (x+ µ)
r3

13
− µ (x− 1 + µ)

r3
23

(2.59)

ÿ + 2ẋ− y = −(1 − µ) y
r3

13
− µy

r3
23

(2.60)

z̈ = −(1 − µ) z
r3

13
− µz

r3
23

(2.61)

Equations  2.59 - 2.61 represent a system of second-order differential equations that dictate the

motion of a spacecraft in any CR3BP model. To change the system, the mass parameter,

µ, is modified. Table  2.2 offers a summary of the numerical values of the characteristic

quantities utilized in the derivation of the Earth-Moon CR3BP system.

Table 2.2. Earth-Moon CR3BP system characteristic quantities

Quantity Numerical Value
l∗ 384747.99198 [km]
m∗ 6.04604 × 1024 [kg]
t∗ 375699.85904 [sec]
µ 0.01215 [nd]

To incorporate the low-thrust acceleration of the spacecraft into the equations of motion,

three control input parameters are introduced: a scalar quantity to represent the thrust

magnitude, and two angles to orient the thrust orientation vector as illustrated in Figure

 2.3 . The angle α orients the thrust vector in the x̂ŷ-plane, while the angle β provides the

out-of-plane component.

A pseudo-potential function, U∗
LT , in terms of the rotating non dimensional quantities is

realized such that, all forces acting on the spacecraft, P3, are derivable from such potential

function as follows [12]:
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Figure 2.3. Graphical representation of the low-thrust augmented circular
restricted three-body problem.

U∗
LT = 1 − µ

r13
+ µ

r23
+ 1

2
(
x2 + y2

)
+ r̄3 · āT (2.62)

where

āT = T

m3
âT (2.63)

represents the non-dimensional thrust acceleration vector, and the unit vector âT corresponds

to the thrust direction —thrust orientation vector—. The term T̃ is the dimensional thrust

magnitude, and the mass term, m, corresponds to the non dimensional mass of the spacecraft,

that is evaluated as follows:

m = M3

M3,0
(2.64)
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with M3,0 representing the initial spacecraft mass. Utilizing the characteristic quantities of

the CR3BP in Table  2.2 , along with the non dimensional mass of the spacecraft, the non

dimensional thrust magnitude, T , is given by:

T = T̃
t∗2

ml∗1000 (2.65)

With the inclusion of the low-thrust acceleration term to the pseudo-potential function,

the CR3BP model is augmented and referred to as the Low-Thrust Augmented Circular

Restricted Three-Body Problem (CR3BP-LT) [  66 ]. Furthermore, a new state variable is

incorporated into the state vector of the second-order system of differential equations in

Equation  2.54 . This new added variable corresponds to the non dimensional mass of the

spacecraft, m, and its rate of change with respect to the non dimensional time is evaluated

as:

ṁ = − T 2

2P
(2.66)

where P represents the engine power. Thus, the equations of motion that govern the dy-

namics of a low-thrust spacecraft under the circular restricted three-body problem regime

are described as:

ẍ− 2ẏ − x = −(1 − µ) (x+ µ)
r3

13
− µ (x− 1 + µ)

r3
23

+ T

m
âT,x (2.67)

ÿ + 2ẋ− y = −(1 − µ) y
r3

13
− µy

r3
23

+ T

m
âT,y (2.68)

z̈ = −(1 − µ) z
r3

13
− µz

r3
23

+ T

m
âT,z (2.69)

where the rotating Cartesian components of the thrust acceleration unit vector, âT , in terms

of the control orientation angles, α and β, are given by:
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âT,x = cosα cos β (2.70)

âT,y = sinα cos β (2.71)

âT,z = sin β (2.72)

Since the mass of the spacecraft is not a constant numerical value —the total mass is con-

tinuously reduced monotonically when the thrusters are active—, Equations  2.67 -  2.69 can

also be written in a more compact form, as a set of first-order differential equations as fol-

lows. Let x̄ be the state vector composed of the position, r̄, velocity, v̄ and mass, m, state

variables:

x̄ =


r̄

v̄

m


(2.73)

and let the nonlinear function f̄(r̄, v̄) be:

f̄(r̄, v̄, m) = ∇U∗
LT − 2ẑ × v̄ (2.74)

such that:


˙̄r
˙̄v

ṁ


=


v̄

f̄(r̄, v̄)

− T 2

2P


(2.75)

Moreover, if the specific impulse of the engine varies as time evolves, the mass rate of change

with respect to time is denoted a Variable Specific Impulse model, or VSI. On the contrary,

if the specific impulse remains fixed, the model is considered a Constant Specific Impulse

engine, or CSI model. For the equations of motion described in Equations (  2.75 ), a VSI

model for the low-thrust spacecraft has been adopted for this investigation [ 67 ].
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2.3.1 Libration Points

Within the context of the natural circular restricted three-body problem —without the

augmented low-thrust acceleration term—, Lagrange discovered the existence of five unique

equilibrium points, also called Lagrangian points or libration points. An equilibrium point,

by definition, is a point in space for which all time derivatives are set to zero, i.e., points

where the net sum of forces are cancelled. Therefore, to estimate the location of the five

equilibrium points of the second order system of differential equations in Equations  2.59 -

 2.61 , with rotating coordinates (xeq, yeq, zeq), set all time derivatives to zero as follows [ 68 ]:

0 − 2(0) − xeq = −(1 − µ) (xeq + µ)
r3

13
− µ (xeq − 1 + µ)

r3
23

(2.76)

0 + 2(0) − yeq = −(1 − µ) yeq

r3
13

− µy

r3
23

(2.77)

0 = −(1 − µ) zeq

r3
13

− µzeq

r3
23

(2.78)

Solving Equations  2.76 -  2.78 for (xeq, yeq and zeq) in terms of µ, r13 and r23 yields the exact

location of the five equlibrium points for this particular system. Note from Equation  2.78 

that for the equality to be equal to zero, the out-of-plane coordinate zeq must equal zero;

thus, regardless of the CR3BP system being analyzed, i.e. regardless of the mass paramterer

µ, all five equilibrium points exist only within the xy-plane. All five equilibrium points are

planar. Furthermore, a possible solution from Equation  2.77 that makes the equality equal

to zero is yeq = 0. Thus, plugging for yeq = zeq = 0 in Equation  2.76 yields:

r̄13 = (xeq + µ) x̂+ 0ŷ + 0ẑ (2.79)

r̄23 = (xeq − 1 + µ) x̂+ 0ŷ + 0ẑ (2.80)

such that:

xeq = −(1 − µ) (xeq + µ)
(xeq + µ)3 − µ (xeq − 1 + µ)

(xeq − 1 + µ)3 (2.81)

53



Equation  2.81 possesses three roots, which suggests that there exist three real equilibrium

solutions that lie on the x̂- axis. To solve for these points —also known as the collinear

libration points—, a Newton’s iterative method is formulated. The remaining two Lagrangian

points are found by simultaneously solving for the system of equations formed by Equations

 2.76 and  2.77 . Table  2.3 shows the numerical value of the five equilibrium points for the

Earth-Moon CR3BP dyamical model.

Table 2.3. Rotating coordinates of the five Lagrangian points in the CR3BP system

Libration Point x[km] y[km]

L1 321710.2452 0
L2 444244.1690 0
L3 −386346.0751 0
L4 187529.3293 332900.1652
L5 187529.3293 −332900.1652

By convention, the three collinear libration points are termed L1, L2 and L3, respectively.

The two remaining libration points, those with a y-component different than zero, are referred

to as the triangular points, L4 and L5. Figure  2.4 offers a graphical representation of the

five equilibrium solutions in the Earth-Moon rotating coordinate frame.

2.3.2 Energy in the Circular Restricted Three-Body Problem

Even though there exists no closed-form solution to the circular restricted three-body

problem, recall that the equations of motion that govern the dynamics of the spacecraft

under this regime are derivable from a potential function, therefore, there exists one integral

of the motion which is an energy-like quantity, also known as the Jacobi Constant (JC)

[ 69 ]. The mathematical expression for the Jacobi constant is obtained by taking the dot

product between the velocity and the acceleration vectors, and then integrating that result

with respect to time, as follows :

R ¨̄r3 · R ˙̄r3 = ẍẋ+ ÿẏ + z̈ż = 1
2
(
ẋ2 + ẏ2 + ż2

)
(2.82)

54



Figure 2.4. Graphical representation of the five Lagrangian points in the
Earth-Moon CR3BP system

The potential pseudo-potential function for the natural circular restricted three-body prob-

lem is given by:

U∗ = 1 − µ

r13
+ µ

r23
+ 1

2
(
x2 + y2

)
(2.83)

such that

ẍ = ∂U∗

∂x
(2.84)

ÿ = ∂U∗

∂z
(2.85)

z̈ = ∂U∗

∂z
(2.86)

(2.87)

plugging these equalities back into Equation  2.88 yields:
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R ¨̄r3 · R ˙̄r3 = ẍẋ+ ÿẏ + z̈ż = ∂U∗

∂x

dx

dt
+ ∂U∗

∂y

dy

dt
+ ∂U∗

∂z

dz

dt
(2.88)

integrating both sides of the equation with respect to the non-dimensional time, t, produces

the following equation:

∫ 1
2
(
ẋ2 + ẏ2 + ż2

)
dt =

∫ (
∂U∗

∂x

dx

dt
+ ∂U∗

∂y

dy

dt
+ ∂U∗

∂z

dz

dt

)
dt

∫ (
1
2
dv

dt

)
dt =

∫ (
dU∗

dt

)
dt

1
2v

2 = U∗ +K (2.89)

where, v is the magnitude of the rotating velocity vector, and K is the constant of integra-

tion. Furthermore, solving for the constant K, and renaming it as the Jacobi constant of

integration, JC, gives birth to this energy-like quantity that is the only known integral of

motion within the context of the CR3BP:

JC = 2U∗ − v2 (2.90)

In this investigation, the Jacobi constant is exploited as the main characteristic quantity

describing ballistic arcs in the cislunar space. Every arc within the context of the CR3BP

has an energy level associated with it; this energy level is described in terms of the Jacobi

constant, and it is leveraged to determine the type of motion to be included within the orbit

chaining framework for the construction of low-thrust spacecraft trajectory initial guesses.

In addition to spacecraft paths being associated with a particular energy level, the five

equilibrium points of the system —the Lagrangian points— also have a corresponding Jacobi

constant [ 70 ]. Table  2.4 shows the energy values for the five libration points within the

context of the Earth-Moon CR3BP system. One of the many applications of the Jacobi

constant in astrodynamics and trajectory design, is to identify regions of space in which
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the spacecraft is free to travel through, while obeying the laws of physics and the dynamics

included in the assumptions of the derivation of the equations of motion.

Table 2.4. Energy value of the five Lagrangian points in the Earth-Moon CR3BP system

Libration Point Jacobi Constant
L1 321710.2452
L2 444244.1690
L3 −386346.0751
L4 187529.3293
L5 187529.3293

2.3.3 Continuation Strategies

Within the context of the unperturbed circular restricted three-body problem (CRTBP),

if an appropriate perturbation is applied to the libration points —equilibrium points—, this

perturbation generates a initial conditions that excites periodic motion in said equilibrium

point vicinity. This perturbation can be given in the form of position and/or velocity errors.

Periodic motion, in this context, refers to the property that if the state vector

x̄ =
{
x y z ẋ ẏ ż

}
is a solution satisfying the nonlinear equations of motion in Equation  2.75 in forward time,

t, then by periodicity, the vector state

x̄ =
{
x −y z −ẋ ẏ −ż

}
also satisfies the equations of motion in reverse time, −t. Once a periodic solution in the

CR3BP is identified, this orbit can be grown into a family of solutions —family of orbits—

by following a numerical continuation strategy [  71 ]. While there exist a variety of different

continuation schemes, two are examined in this investigation.

Natural Parameter Continuation

A family of orbits, in its more basic definition, is referred to as a set of periodic orbits

that share a set of natural characteristics that evolve continuously with each new member
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of the family. Some of these natural characteristics include continuity in the evolution of

orbital period across all members of the family, a continuous evolution in energy —or Jacobi

constant—, as well as a continuous evolution in the position and velocity components.

To grow a family from an individual periodic solution utilizing a natural parameter

continuation scheme, the following steps are followed:

1. From the initial conditions of an already converged periodic orbit,

x̄0,i =
{
x0,i y0,i z0,i ẋ0,i ẏ0,i ż0,i

}

with orbital period P0,i, and Jacobi constant C0,i, select a quantity to utilize as the

natural parameter to continue, e.g., select the x− component of the position vector

2. Add a small perturbation to the specified natural parameter, and utilize this perturbed

stated as the initial condition for a new member of the periodic orbits family

x̄0,i+1 =
{
x0,i + δx0,i y0,i z0,i ẋ0,i ẏ0,i ż0,i

}

3. Converge the new periodic solution utilizing a numerical method

The process is continued until a specified number of members in a family is achieved, or until

the family reaches an end. By definition, a family of orbits reaches an ending condition when

the evolution of the natural parameter no longer increases or decreases, but instead, reaches

an asymptotic behaviour. Furthermore, the size of the perturbation, δx0,i, determines how

close one orbit member is to the next. This value can be modified by the user, depending

on the requirements of the family of orbits sought.

Pseudo-Arc Length Continuation

To grow a family from an individual periodic solution utilizing a pseudo-arc length con-

tinuation scheme, the problem is constructed by formulating an additional constraint vector

in the numerical algorithm for converging the next periodic orbit.The additional constraint

is given such that, a perturbation is applied to the initial conditions of the original orbit

along the direction tangent to the family, as follows:
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(x̄0,i+1 − x̄0,i)T u(DF0,i) − S = 0 (2.91)

where S corresponds to the step size, u represents the null vector of the matrix of partial

derivatives, DF0,i, such that, the steps for converging the next periodic orbit member of the

family are summarized as follows:

1. From the initial conditions of an already converged periodic orbit,

x̄0,i =
{
x0,i y0,i z0,i ẋ0,i ẏ0,i ż0,i

}

with orbital period P0,i, and Jacobi constant C0,i, compute the null vector of the matrix

of partial derivatives, u(DF0,i)

2. Add a small perturbation along the direction tangent to the family, and utilize this

perturbed stated as the initial condition for a new member of the periodic orbits family

x̄0,i+1 = x̄0,i + Su(DF0,i)

3. Converge the new periodic solution utilizing a numerical method, by augmenting the

vector of constraints, F0,i+1, as follows:

G0,i+1 =

 F0,i+1

(x̄0,i+1 − x̄0,i)T u(DF0,i) − S = 0


where G0,i+1 is the augmented vector of constraints for the next orbit member of the fam-

ily. Similar to the natural parameter continuation scheme, the process is continued until

the family reaches an ending conditions, or until a specified number of periodic orbits is

generated.

2.3.4 Libration Point Orbits (LPOs)

In addition to the libration points offering fundamental information regarding the points

in space where the net sum of forces acting on the spacecraft vanishes, they also offer a

valuable insight into the type of motion that the spacecraft undergoes while navigating the
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space under the circular restricted three-body problem regime [  72 ]. This motion corresponds

to periodic orbits that exist in the vicinity of the Lagrangian points, and are most commonly

known as Libration Point Orbits (LPOs).

Throughout the years, many authors have discovered and extensively examined the ex-

istence of periodic orbits within the context of the circular restricted three-body problem,

that have been crucial for the planning and execution of multiple missions flown to date.

Some examples of periodic motion that exist in the Earth-Moon CR3BP system include, but

are not limited to, Lyapunov orbits, halo orbits and vertical orbits, as well as some resonant

orbits whose period is directly related to the period of the Moon around the Earth.

Once a periodic motion is identified, a continuation scheme can be utilized to determine

a family of orbits. These families are typically described in terms of a continuously evolving

parameter, such as, orbital period or Jacobi constant. The following figures illustrate a

representation of some of the periodic families of orbits utilized in this investigation to

construct initial guesses for the development of the orbit chaining framework. Figure  2.5 

represents a family of Lyapunov orbits that evolves around the L2 Lagrangian point in the

Earth-Moon CR3BP. This family is planar —no out-of-plane components— and its excursion

in energy level is represented as the color variable in the plot. The larger orbits present an

excursion very close to the Moon, which makes the numerical computation sensitive when

approaching this vicinity.

Figure  2.6 represents a family of Distant Retrograde Orbits (DROs) that evolves around

the second primary P2; since this family is computed within the context of the Earth-Moon

CR3BP system, this particular DRO family evolves around the Moon [  73 ]. The DRO family

represented in this figure is a family of planar orbits —no out-of-plane components—, that

exerts linearly stable characteristics. The larger the family is grown, the closer the motion

gets to the Earth, P1.

Figure  2.7 represents a family of Short Period Orbits (SPOs) that evolves around the

Earth-Moon circular restricted three-body problem L4 libration point. The L4 SPO family is

composed of individual planar orbits —no out-of-plane components—, that in its majority,

exert linearly stable characteristics. The larger members of the family approach the Earth,

P1 on the L3 libration point side, and offer large excursions of the xy-plane in this region
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Figure 2.5. Family of L2 Lyapunov orbits in the Earth-Moon CR3BP system

Figure 2.6. Family of P2 DRO orbits in the Earth-Moon CR3BP system
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of space. This family is characterized for its symmetry, and similarly, the same family is

encountered in the vicinity of the L5 libration point —the L5 SPO family of orbits—, that

present exactly the same characteristics in terms of large excursions in configuration space,

as well its span in energy levels.

These families of orbits exist within the context of all other circular restricted three-body

problem regimes, regardless of the mass parameter µ that characterized them. For instance,

the commonly known trojan asteroids in the Jovian system, travel in periodic type motion

around the L4 and L5 lagrangian points of the Sun-Jupiter CR3BP dynamical system.

Figure 2.7. Family of L4 SPO orbits in the Earth-Moon CR3BP system

Figure  2.8 represents two different family of orbits that evolve around the L2 libration

point: the L2 Southern (S) halo family, and the L2 Northern (N) halo family. Both of these

families are composed of individual three-dimensional orbits. These orbits are considered

unstable in the Lyapunov sense, as they offer flow that travels to and from the orbit naturally

—ballistic arcs— and traverse large regions of space. This flow is derived from the theory of

invariant manifolds. As the members of these families approach the Moon, P2, they become
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more and more rectilinear, giving birth to a subset of orbits that belong to these families

known as the L2 southern and northern Near Rectilinear Halo Orbits (NRHO) [ 74 ].

Figure 2.8. Family of Northern (N) and Southern (S) L2 halo orbits in the
Earth-Moon CR3BP system

Figure  2.9 represents a family of vertical orbits that evolves around the L2 Lagrangian

point in the Earth-Moon CR3BP system. This family is composed of individual linearly un-

stable individual three-dimensional orbits that, as they grow further away from the libration

point, reach a point in space at which the larger orbits grown past the Earth and the Moon,

i.e., they present excursions that navigate the entire Earth-Moon system, offering a wide

variety of possibility for initial guess generation of spacecraft transfer scenarios. Moreover,

the energy span of this family of orbits reaches the negative values, suggesting very close

proximity with highly-sensitive dynamical regions in space.

Figure  2.10 corresponds to the family of axial orbits that evolves around the L2 La-

grangian point within the context of the Earth-Moon circular restricted three-body problem.
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The three-dimensional individual orbits members of this family are unstable in the Lyapunov

sense, offering manifold arcs that freely approach and depart from the periodic orbit.

Figure 2.9. Family of L2 vertical orbits in the Earth-Moon CR3BP system

The last sample family of periodic orbits presented in this section corresponds to a subset

of the Earth-Moon 3 : 4 resonant family illustrated in Figure  2.11 . This family is considered

an exterior-type resonant orbit, as its span in configuration —position— space, reaches well

beyond the larger primary of the system, the Earth. Furthermore, even though the orbits are

significantly large and thus, with large values of orbital periods, their energy levels remain

well within a specific range and do not offer much variation. The energy characteristics of

this family provides both benefits and drawbacks when utilizing members of this particular

group for the construction of initial guesses in the orbit chaining framework.

In the case in which large exterior transfers are sought, this family offer a wide variety

of suitable candidates for intermediate arcs in the generation of the initial guess estimate,

as long as the energy level falls within the range of values needed to move the spacecraft

around the space. Some transfer examples for low-thrust spacecraft travelling between LPOs
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Figure 2.10. Family of L2 axial orbits in the Earth-Moon CR3BP system

in the Earth-Moon CR3BP system that utilize this family of orbit for the construction of

the initial guess, is presented later in the Applications section of this investigation.

2.4 Low-Thrust N -Body Problem

To represent the motion of a low-thrust spacecraft, P3, moving with respect to a primary

body, Pq, in a time-dependent system, under perturbations from the gravitational influences

of N additional nearby bodies, as represented in Figure  2.12 , let T̃ represent the dimensional

thrust acceleration magnitude, M correspond to the dimensional mass of the spacecraft,

Mj (j = 1, , n) be the dimensional mass of each additional perturbing body, and G̃ be the

dimensional gravitational constant. The spacecraft’s acceleration vector expressed in a J2000

inertial reference coordinate frame, centered on the primary body, is given by:

¨̄Rq3 = −G̃Mq

R3
q3
R̄3

q3 + G̃
N∑

j=1,j 6=q,3
Mj

(
R̄3j

R3
3j

− R̄qj

R3
qj

)
+ T̃

M
âT (2.92)
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Figure 2.11. Family of 3 : 4 resonant orbits in the Earth-Moon CR3BP system

where the unit vector âT represents the thrust orientation vector, the vector R̄q3 corresponds

to the inertial dimensional position vector from the primary body to the spacecraft, the

vector R̄qj is the dimensional position vector from each perturbing body to the primary

body in inertial coordinates, and the vector R̄3j corresponds to the dimensional inertial

position vector from the spacecraft to each of the perturbing bodies.

Equation  2.92 is derived in dimensional inertial coordinates following a Newtonian ap-

proach, as follows: the inertial position vector from the central body, Pq, to the spacecraft,

P3, is given by:

R̄q3 = R̄3 − R̄q (2.93)

Since these position vectors are all expressed in terms of inertial cartesian components, the

time derivative with respect to an inertial frame are straightforward —there is no need

to utilized the basic kinematic equation— hence, the inertial position and velocity of the

spacecraft with respect to the central body are:
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Figure 2.12. Graphical representation of the N-body problem. Particle Pj
under the gravitational influence of N − 1 attracting bodies

I ˙̄Rq3 = I ˙̄R3 −I ˙̄Rq (2.94)
I ¨̄Rq3 = I ¨̄R3 −I ¨̄Rq (2.95)

Applying Newton’s second law of gravity, the individual inertial acceleration terms in Equa-

tions  2.94 and  2.95 are expressed as:

Mq
I ¨̄Rq = −G̃

N∑
j=1,j 6=q

MqMj

R3
jq

R̄jq (2.96)

M3
I ¨̄R3 = −G̃

N∑
j=1,j 6=3

M3Mj

R3
j3

R̄j3 (2.97)

Substituting Equations  2.96 and  2.97 into Equation  2.95 , yields:
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I ¨̄Rq3 = − G̃

M3

N∑
j=1,j 6=q

M3Mj

R3
jq

R̄jq + G̃

M3

N∑
j=1,j6=3

M3Mj

R3
j3

R̄j3 (2.98)

Simplifying the mass of the spacecraft, M3, from the above equation, and reversing the

orientation of the inertial position vectors of the spacecraft with respect to the primary

—perturbing— bodies yields:

I ¨̄Rq3 = G̃
N∑

j=1,j6=3

Mj

R3
3j
R̄3j − G̃

N∑
j=1,j 6=q

Mj

R3
qj
R̄qj (2.99)

Finally, to arrive at Equation  2.92 , isolate the j = 3 term from the second term in Equation

 2.99 , and combine the two summations into one.

The acceleration term introduced by the low-thrust engine to the equations of motion,

is valid independently of the engine model assumed, i.e., it is valid for both the Constant

Specific Impulse (CSI) engine model, as well as the Variable Specific Impulse (VSI) regime.

Furthermore, the relationship between the engine specific impulse, Isp, and the magnitude

of the thrust force is given by:

T̃ = 2P
Ispg0

(2.100)

where g0 is the dimensional reference gravitational acceleration constant for the system of

interest. Furthermore, in a CSI regime, in which the power of the engine is assumed to

be constant, the control authority on the trust acceleration magnitude is restricted to a

turn-and-hold type of regime, such that:

T̃ =

 engine on, T̃ = T̃max

engine off, T̃ = 0

and, the mass flow rate of the spacecraft is computed analytically as:

ṁ = − T̃

Ispg0
(2.101)

note that, the equation for the mass rate of flow under the CSI regime possesses an analytical

solution, whereas, in a VSI regime, the mass flow rate of the spacecraft must be integrated

as part of the state vector to obtain its time history.
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Lastly, recall that the J2000 coordinate frame is an Earth-centered inertial reference

frame where all directions are recorded on January 1st, 2000 at 12:00:00 Ephemeris Time

(ET) (Julian Date: 2451545.0 ET) [ 75 ], in which the x-axis is directed along the vernal

equinox, the z-axis is parallel to the Earth spin axis direction, and the y-axis completes

the right-handed triad. The relative position quantities in Equation  2.92 associated with

the gravitational bodies, are accessed via SPICE toolkits [  76 ], and are computed from the

NASA’s Jet Propulsion Laboratory DE421 ephemerides data.

In this investigation, the solutions computed in the J2000 inertial reference frame are

transformed into alternate frames inertial and rotating in the ephemeris models for further

analysis. For instance employing the Moon as the central body in the inertial frame is of

great advantage when visualizing trjectories between libration point orbits in the cislunar

region. There exist multiple approaches for transforming trajectories from a primary body

centered inertial frame to a barycentered rotating frame some of which are presented in the

work by Pavlak [ 77 ] and Stuart [ 78 ].
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3. LOW-THRUST SPACECRAFT OPTIMIZATION

TECHNIQUES

With the thrust acceleration of the spacecraft being the main control variable for a low-thrust

vehicle in the CR3BP-LT regime, an informed guess for the control history becomes crucial

to determining a continuous solution to the equations of motion. Furthermore, this solution

is expected to satisfy certain constraints along the path, while minimizing a predetermined

performance function that supports the mission application requirements. To identify a

suitable control history for the thrust acceleration terms, optimal control theory is employed,

and both direct and indirect methods are explored to minimize the propellant consumption

of the spacecraft, along with the time-of-flight of the trajectories.

3.1 An Overview of Optimal Control Theory

Within the context of optimal control theory, the optimal control problem determines of

a set of control, also referred to as design variables, that extremize an objective function. In

the low-thrust spacecraft trajectory design problem a thrust orientation vector must be spec-

ified at each instant of time to minimize a cost, commonly represented in terms of propellant

consumption or time-of-flight (ToF). Many authors, such as, Betts [  79 ], [ 80 ], Conway [  81 ],

Rao [  82 ], and Topputo and Zhang [  83 ] have devoted significant effort to solve this optimiza-

tion problem. Optimal control was born in 1697 in Groningen, Netherlands when Johann

Bernoulli published his solution of ”Brachystochrone Problem”. The ”Brachystochrone Prob-

lem” is illustrated in Figure  3.1 , and its main goal is to answer the following question: find

a trajectory which is traveled in the shortest time.

This problem was solved by Johann Bernoulli, Jacob Bernoulli, Newton, Leibnitz, Tschirn-

haus, and L’hospital, and it was expected to be solved by Huygens who died in 1695. The

solution is the well-known cycloid. Before this problem was posed and solved, the shortest

path joining two points was a straight line. Later, the Isoperimetric Problem (Dido’s prob-

lem) arose, whose goal was to find the plane curve of a given length that encloses the largest

possible area. Hero (or Heron) of Alexandria published that a light ray emitted by an object

travels a path which is shortest —fastest—, while Fermat (1601-1665) predicted that light
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rays follow the fastest (i.e. minimum time) paths. Later, in 1685, Newton worked on the

determination of the shape of a body with minimum drag, which gave birth to the Calculus

of Variations (CoV) [ 84 ].

Figure 3.1. The Brachystochrone Problem: the birth of the optimal control theory

In 1744, Euler, a student of Johann Bernoulli at University of Basel at the age of 13

published his thesis: “The method of finding plane curves that show some property of

maximum and minimum”. Around the same time Lagrange became interested in variational

problems after reading Euler’s works and wrote a letter to Euler in 1755 at the age of 19,

from these interactions they developed the stationary condition for maximum or minimum

—also known as the Euler-Lagrange Equation—.

S(q(t)) =
∫ b

a
L(q, q̇, t)dt (3.1)

where S represents an arbitrary cost function, and q corresponds to an arbitrary state vari-

able. Furthermore, L is the energy function given by:
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L(q, q̇, t) = kinetic energy - potential energy

such that, the Euler-Lagrange necessary condition for maximum or minimum is given by:

d

dt

∂L
∂q̇

− ∂L
∂q

= 0 (3.2)

Later on, Legendre (1752-1833) developed an additional necessary condition for a minimum,

that states:

∂2L
∂q̇2 > 0 (3.3)

In the 1800s, Hamilton posed the following question: is it possible that both can be expressed

necessary conditions for a minimum of one and the same function? The answer to this

questions gave birth tho well-known Hamiltonian function, H, given by:

H(x, u, p, t) = pTf(x, u, t) − L(x, u, t) (3.4)

where x represents an arbitrary state variable, u corresponds to an arbitrary control variable,

and p is an arbitrary optimization parameter, also known as co-states or lagrange multipliers.

Moreover, Hamilton redefined the optimal control problem as:

minJ =
∫ b

a
L(x, u, t)dt

subject to ẋ = f(x, u, t)

x(a) = xa

x(b) = xb (3.5)

where xa and xb represent the initial and final condition on the state variable, respectively.

The necessary conditions for a minimum as proposed by Hamilton are given by:
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dx

dt
= ∂H

∂p
(3.6)

dp

dt
= −∂H

∂x
(3.7)

∂H
∂u

= 0 (3.8)

In the 1900s, Pontryagin introduced his maximum principle:

H(x∗, u∗, p∗, t) ≥ H(x, u, p, t) (3.9)

that is the most general necessary conditions for a maximum. Furthermore, it is true for

all admissible control values where the symbol ∗ denotes optimal values. This principle

works for a system with inequality constraints on the states and/or the control variables.

There exist different optimization methods to determine a solution once the optimal control

problem is formulated. These methods are divided into two categories: indirect and direct

approaches. Indirect methods apply the Euler-Lagrange theorem to the continuous optimal

control problem to transform it into a Two-Point Boundary Value Problem, TPBVP; while

direct methods extremize the cost function directly [ 85 ].

The main differences between the two categories of optimization problems is that direct

methods are first discretized into sub problems, and then the optimal control problem is

transformed into a Nonlinear Programming Problem, NLP. On the contrary, indirect op-

timization methods first optimize by means of the Euler-Lagrange theory to generate a

TPBVP, after which the problem is discretized and solved.

3.2 Indirect Optimization Methods

Indirect optimization methods rely on the calculus of variations, also referred to as the

Euler-Lagrange theory, that was develop in the 1700s by mathematicians Euler and Lagrange.

The main idea of this approach is to transform the general optimal control problem into a

parameter optimization problem, in which a Two-Point Boundary Value Problem (TPBVP)

is solved. To formulate the optimal control problem as a well-defined two point boundary
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value problem, its solution is sought via the introduction of adjoint states —also termed

co-states or Lagrange multipliers — as follows [ 60 ], [ 61 ].

To illustrate the implementation of the Euler-Lagrange theory, let the first order system

of equations given by ẋ, represent the nonlinear equations of motion that describe the path

of a state variable, x, such that:

ẋ(t) = f (x(t), u(t), w(t), p(t), t) (3.10)

where f ∈ Rn represents a nonlinear function describing the dynamical environment. u(t) ∈

Rm is the input or control variable, w ∈ Rs are the disturbance inputs, and p(t) ∈ Rl

correspond to the optimization parameters. Furthermore, if the are no disturbances, and all

the parameters are known, Equation  3.10 reduces to:

ẋ(t) = f (x(t), u(t), t) (3.11)

The Euler-Lagrange indirect optimization problem consists of finding a history of the control

input u(t) for t0 ≤ t ≤ tf which drives the state from its initial value to its final value and at

the same time minimizes (or maximizes) a cost function. The cost function —also referred

to as the objective function— can be given in one of three forms:

• Mayer problem:

J = φ̌ (x(tf ), tf ) (3.12)

• Lagrange Problem

J =
∫ tf

t0
{L (x(t), u(t), t)}dt (3.13)

• Bolza Problem

J = φ̌ (x(tf ), tf ) +
∫ tf

t0
{L (x(t), u(t), t)}dt (3.14)

where the function in the integrand corresponds to the path constraints and the scalar func-

tion L is known as the Lagrangian function. Moreover, any optimal control problem can be

expressed in the form of an unconstrained problem, one that seeks to find the control his-

tory without satisfying any extra constraints on the states variables or the control variables;
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or a constrained minimization problem, one that is subject to equality and/or inequality

constraints either on the states or on the control variables.

When a constrained minimization problem is approached, the best way to solve these

types of problems is by adjoining —adding— the equality constraints to the cost —objective—

function, by means of a vector of Lagrange multiplier, λ̄ ∈ Rn, that is also referred to as the

vector of co-states. These co-states augment then the objective function, such that, a larger

number of equations must now be solved. Some of the most common objective functions for

the spacecraft trajectory design problem are:

• Minimum-time problem:

J =
∫ tf

t0
{1}dt = tf − t0 (3.15)

• Minimum-fuel Problem

J =
∫ tf

t0
{ṁ}dt = m(tf ) −m(t0) (3.16)

where ṁ is the mass flow rate of the fuel.

Assume that is desired to minimize a cost function of the Bolza problem type, where the

state variables are subject to the differential equations in Equation  3.11 , and to the boundary

conditions x(t0) = x0 and x(tf ) = xf . Furthemore, let J be a differentiable functional of x;

if x∗ is an extrema, then if follows that:

δJ (x∗, δx) = 0 for all admissible δx

By utilizing Lagrange multipliers, the constrained Bolza problem is transformed into an

unconstrained with an augmented cost function, as follows:

Ja = φ̌ (x(tf ), tf ) +
∫ tf

t0
{L (x(t), u(t), t) + λT (t) [f (x(t), u(t), t) − ẋ]}dt (3.17)

Next, a Hamiltonian function is realized, such that:
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H (x(t), u(t), λ(t), t) = L (x(t), u(t), t) + λT (t)f (x(t), u(t), t) (3.18)

and the augmented cost function is rewritten as:

Ja = φ̌ (x(tf ), tf ) +
∫ tf

t0
{H (x(t), u(t), t)}dt−

∫ tf

t0
{λT (t)ẋ}dt (3.19)

using integration by parts on the augmented cost function yields:

Ja = φ̌ (x(tf ), tf )+
(
λT (t0)x(t0) − λT (tf )x(tf )

)
+
∫ tf

t0
{H (x(t), u(t), t)+ λ̇T (t)x(t)}dt (3.20)

to identify the necessary conditions for optimality, the variations on the augmented cost

function are assessed as follows:

∆Ja(x, u, , t) = Ja(x+ δx, u+ δu, , t) − Ja(x, u, , t) (3.21)

= δJa +H.O.T (3.22)

Utilizing calculus of variations, and assuming that the final time, tf , is fixed, the variations

are expanded such that:

δJa =
∂φ̌

∂x
− λT (tf )

 δx


tf

+
[
λT (t)δx

]
t0

+
∫ tf

t0

(
∂H
∂u

δu+
[
∂H
∂x

+ λ̇T

]
δx

)
dt(3.23)

= δJ (tf ) + δJ (t0) + δJ (t0, tf ) (3.24)

the necessary conditions for optimality are obtained by setting δJa = 0, yielding:
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λ̇T = −∂H
∂x

(3.25)

with λT (tf ) = ∂φ̌

∂x
(3.26)

0 = ∂H
∂u

(3.27)

Note that these optimality equations form a two-point boundary value problem, for which the

value of the Lagrange multipliers at the final time is required. To solve for this equations, a

backwards propagation in time is necessary, for which the principle of Dynamic Programming

(DP) is utilized —discussed in Section  3.4.1 —. The set of equations in Equations  3.25 - 3.27 

are the well-known Euler-Lagrange equations for optimality.

In addition to the necessary conditions for optimality, there exists a set of sufficient

conditions for optimality that are required to be met in order for the optimal solution to be

considered a minimum, as follows:

• Legendre-Clebsch (or comvexity) condition:

∂2H
∂u2 (x∗, u∗, λ∗, t) = Huu > 0 for t ∈ [t0, tf ] (3.28)

• Conjugate point: these are points where minimizing trajectories are intersected (or

joined) together. Furthermore, If there are no conjugate points on the optimal path,

the locally optimal trajectory is unique.

Moreover, if terminal constraints are added to either the state or the control variables in the

original formulation of the optimal control problem, let a function Φ (x̄, ū, t) be utilized to

incorporate the initial and final constraints, such that:

Φ̌ (x, u, t) = φ̌+ νTψ (3.29)

with ψ̌ representing the equality constraints on the initial and final conditions on the state

variables, φ̌ corresponds to the terminal constraints and ν̄ is the vector of Lagrange multi-

pliers to adjoint the boundary constraints.
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Once all necessary and sufficient conditions are determined for the optimal control prob-

lem, the minimum (maximum) principle for the optimal control problem, introduced by

Pontryagm, is stated such that:

H (x∗(t), u(t), λ(t), t) ≥ H (x∗(t), u∗(t), λ(t), t) (3.30)

for all t and u ∈ U , where u∗ is the control input that minimizes the Hamiltonian function

H.

Consider the case of finding an optimal path for a low-thrust spacecraft travelling in

the vicinity of Moon, within the context of the circular restricted three-body problem. The

optimal control problem is formulated such that it is desired to minimize the performance

function, J , as:

min J = −1
2W1 (1 −mf )2 +W2ToF (3.31)

The cost function in Equation  3.31 is comprised of two different terms, one concerned with

the minimization of the propellant consumption of the spacecraft,−1
2W1 (1 −mf )2, and the

second one, introduced to minimize for the time-of-flight —or duration– of the trajectory,

W2ToF . Furthermore, to highlight the priority of each of the terms in the objective function,

scalar weights W1 and W2 are introduced.

The goal of the optimal control problem is to minimize the performance function subject

to the nonlinear differential equations of motion described in Equation (  2.75 ), and with a

set of prescribed initial and final conditions for the state vector, x̄(t0) = x̄0 and x̄(tf ) = x̄f ,

such that:

ψ0 =


r̄0 − r̄i

v̄0 − v̄i

m0 − 1


= 0̄ (3.32)
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ψf =

 r̄f − r̄f

v̄f − v̄f

 = 0̄ (3.33)

with the subscripts i and f signifying initial and final conditions, respectively. Furthermore,

a constraint exists as well on the thrust orientation vector, such that it is always of magnitude

equal to one, as follows:

âT
T âT − 1 = 0 (3.34)

Following the Euler-Lagrange theory, a set of Lagrange multipliers, λ̄ and ν̄, are introduced

to augment the cost function, such that the dynamics of the system, and the terminal

constraints, are adjoined to the performance function, as follows:

min J = −1
2W1 (1 −mf )2 +W2ToF + ν̄T

0 ψ0 + ν̄T
f ψf +

∫ tf

t0

{
H − λ̄T ˙̄x

}
dt (3.35)

Recall that the state vector for the low-thrust spacecraft trajectory design problem within

the context of the CR3BP-LT, in terms of non dimensional rotating coordinates is given by:

x̄ =


r̄

v̄

m


(3.36)

Therefore, the Lagrange multipliers that adjoin the equations of motion corresponding to

this state vector are written as:

λ̄ =


λ̄r

λ̄v

λm


(3.37)
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Moreover, note that the performance function in Equation  3.31 is of the Mayer problem

type, i.e. the Lagrangian function, L, equals zero; thus, the Hamiltonian function for this

low-thrust spacecraft optimal control problem is formed as follows:

H = L+ λ̄T ˙̄x

= λ̄T
r v̄ + λ̄T

v

[
f̄(r̄, v̄) + T

m
âT

]
− λT

m

T 2

2P
(3.38)

where λ̄T
r , λ̄T

v , and λ̄T
m correspond to the position, velocity and mass co-states, respectively.

Applying the necessary and sufficient conditions for optimality to the first-order derivatives

of Equation ( 3.38 ), the following equalities are true:

˙̄λT = −∂H

∂x̄

=



˙̄λr = −λ̄T
v

∂f(r̄,v̄)
∂r̄

˙̄λv = −λ̄T
r − λ̄T

v
∂f(r̄,v̄)

∂v̄

λ̇m = λ̇v
T

m2

(3.39)

0̄ = ∂H

∂ū

=

 0 = ∂H
∂T

0 = ∂H
∂âT

=

 0 = λ̄v
âT

m
− λm

T
P

0 = λ̄T
v

T
m

+ 2ζâT

(3.40)

where ζ corresponds to the Lagrange multipliers associated with the constraint on the di-

rection of the thrust orientation vector of the spacecraft. Moreover, exploiting Pontryagin’s

maximum principle, it is determined that the performance function is minimized when the

thrust direction, âT , is oriented parallel to the velocity co-state, λ̄T
v , and the power is set at

its maximum value, as follows:
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P = Pmax (3.41)

yielding the following control law:

âT = λ̄T
v

λT
v

(3.42)

This control law is more commonly denoted Lawden’s primer vector [  86 ]. Furthermore,

since the solution is found via a method for satisfying a set of boundary conditions, the

trajectory does meet all initial, final, and path constraints, without directly minimizing the

cost function. The main drawback of Lawden’s primer vector solution is that the thrust

orientation vector is oriented along a different location in space at each time step, which

makes its implementation in real-life applications feasibly impossible.

The main drawbacks of the indirect optimization methods are then the difficulty to gen-

erate educated initial guesses for the co-states variables —Lagrange multipliers— given that

the computation of the required partial derivatives is non-trivial. Furthermore, any changes

made to the original formulation of the optimal control problem requires a re derivation of

the Euler-Lagrange Theory for the numerical value of the adjoints, and a reformulation of a

new two-point boundary value problem arises.

The generation of optimal spacecraft trajectories involves the formulation of an optimal

control problem, and the solution of the time histories evolution of the control variables, in

order to meet a set of specified boundary conditions. Nonlinear Programming (NLP) tech-

niques are a common approach exploited to compute these histories of the control variables,

and solve for the associated Two-Point Boundary Value Problem (TPBVP). In general, it

has been shown by previous authors that direct optimization methods are more robust; how-

ever, those methods introduce a large increase in the dimensionality of the problem. On the

contrary, while indirect optimization schemes also introduce numerical challenges, those are

mainly due to the robutsness of the initial guesses. Both approaches —direct and indirect

optimization methods— are explored in this investigation.
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3.3 Direct Optimization Methods

Direct optimization methods are generally characterized for being more straightforward

to implement than indirect approaches. This is due to the fact that the optimal control

problem is transformed into a nonlinear programming problem, in which a discretization of

the states is performed first, and then, the two-point boundary value problem is addressed.

This feature enables for direct approaches to reduce the number of analytical partial deriva-

tives that need to be computed, as well as, easier implementation of terminal constraints

[ 87 ].

However, one of the main disadvantages of the direct approaches is the increase in di-

mensionality of the optimal control problem. This drawback can be alleviated by utilizing

numerical techniques, that allow for computation of numerical derivatives of Jacobian and

Hessian matrices, and hence, a trade-off between large dimensionality of the problem and

the potential addition of numerical errors is obtained. Another drawback of the direct opti-

mization approaches is that the solutions found are only locally optimal solution, and there

is no guarantee that a global solution can be produced. Ultimately, the optimal solution gen-

erated is that which resides in the vicinity of the initial guess provided to the optimization

algorithm.

Direct methods use the gradient of the cost function to ensure that, at each iteration, the

solution is shifted in a direction that minimizes the norm of the gradient of the performance.

The most common approach for direct optimization schemes is to transform the optimal

control problem into a parameter optimization problem that can be solved using non-linear

programming, as follows:

minx̄ E(x̄)

subject to the inequality constraints c̄l ≤ c̄(x̄) ≤ c̄u

and the bounds x̄l ≤ x̄ ≤ x̄u

where the vector c̄(x̄) is comprised of the path constraints, and E(x̄) is a function that

depends on one or more state variables. Defining a Lagrangian function L, one of the most

common approaches for solving a direct optimization problem is the Sequential Quadratic
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Programming (SQP) method, that employs a quasi-Newton approach to solve for the Hessian

matrix of the Lagrangian equation:

L(x̄, λ̄) = E(x̄) − λ̄T c̄(x̄) (3.43)

where the vector λ̄ corresponds to a set of Lagrange multipliers that do not necessarily

represent the co-states in Equation ( 3.38 ). The necessary conditions for solving the nonlinear

programming problem are formed as the gradient of the Lagrangian function with respect

to both the states and the Lagrange multipliers:

∇xL(x̄, λ̄) = ḡ(x̄) − GT (x̄)λ̄ = 0

∇λL(x̄, λ̄) = −c̄(x̄) (3.44)

for which ḡ(x̄) = ∇xE, is the gradient of the performance function, and G is the Jacobian

matrix of the equality constraint vector. To obtain the updates of the states and the Lagrange

multipliers, the following linear system is formed

 HL −GT

G 0̄


 ∆x̄

∆λ̄

 =

 −ḡ

−c̄

 (3.45)

where HL represents the Hessian matrix, or matrix of second derivatives of the equality

constraints. Note that by utilizing direct methods, a turn-and-hold model can be constrained

on the thrust orientation vector, which facilitates feasibility of real-life implementation finite-

burn maneuvers.

Another characteristic of the direct optimization techniques, mainly when apply to

the low-thrust trayectory design problem, is that the vector of control variables —design

variables— are dicretized along the baseline trayectory. Furthermore, the locally optimal

solution is generated by implementing the Karush-Kuhn-Tucker (KKT) conditions for opti-

mality [ 88 ]:

1. The optimal solution found, x̄∗, is feasible
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2. Let the Lagrange multipliers utilized to adjoint the constraints on the state vector

be defined by ν̄ ≥ 0, then, the following equation must be satisfied for every ith

discretization step:

νigi(x̄∗) = 0

3. the gradient of the augmented objective function vanishes

These conditions are valid for all constraints within or on the boundaries, characteristic that

makes the locally optimal solution found with direct approaches robust to the implementation

of constraints both on the state variables or on the vector of controls.

3.4 Global Optimization Methods

Conway [ 81 ] introduced the concept of global optimization techniques as an attempt

to alleviate the burden for direct and indirect optimization approached to find a globally

optimal solution. These methods are generally characterized for exploring a large sample

space and multiple combination of initial guesses, in order to arrive at a global optimal,

hence, the trade-off involves a larger computation time utilizing numerical methods, than

those necessitated with direct and/or indirect approaches.

Many variations of global optimization methods have been introduced in the low-thrust

trajectory design problem by multiple authors [ 89 ]–[ 92 ], and some examples of these type of

optimization approaches include, but are not limited to, ant-colony optimization, monotonic

basin hopping, dynamic programming, and more recently, reinforcement learning approaches

[ 93 ]–[ 95 ].

3.4.1 Dynamic Programming

In Dynamic Programming (DP), an optimal control is found by the principle of optimal-

ity (PoO). Dynamic Programming is a computational technique which extends a decision-

making concept to sequences of decisions which together define an optimal policy (optimal

control history). Consider the cost function J (u) given by:
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J (u) = φ̌ (x(tf ), tf ) +
∫ tf

t0
{L (x(t), u(t), t)}dt (3.46)

with t ∈ [t0, tf ]; the dynamics of the system are given by:

ẋ(t) = f (x(t), u(t), t) (3.47)

subject to the initial conditions x(t0) = x0. Define a value function, V∗, for the time interval

[t1, tf ], where t0 < t1 < tf ], such that:

V∗(x∗, t1) = min
u

{φ̌ (x(t1), t1) +
∫ tf

t1
{L (x∗(t), u(t), t) dt}} (3.48)

taking the derivative of the value function with respect to time yields:

− ∂V∗(x∗, t1)
∂t

= L (x∗(t1), u∗(t1), t1) +
(
∂V∗

∂x

)
f (x∗(t1), u∗(t1), t1) (3.49)

Recall the definition of the Hamiltonian function:

H (x(t), u(t), λ(t), t) = L (x(t), u(t), t) + λT (t)f (x(t), u(t), t) (3.50)

setting

λ(t)∗T = ∂V∗

∂x
(3.51)

along the optimal trajectory, yields Hamilton-Jacobi-Bellman (HJB) equation given by:

− ∂V∗(t)
∂t

= H
(
x∗(t), u∗(t), ∂V∗(t)

∂x
, t

)
(3.52)

with the boundary condition:

V∗(tf ) = φ̌ (x∗(tf ), tf ) (3.53)

Some of the advantages of the Dynamic Programming schemes include that the constraints

on the states and control variables are easily incorporated, DP yields the optimal control
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in a feedback form, and, it utilizes the principle of optimality to dramatically reduce the

number of calculations required to determine the optimal control laws. Furthermore, the

HJB equation is in concert with the Maximum Principle, and should be integrated backwards

in time. The value function may not be differentiable [  96 ].
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4. CISLUNAR TRAJECTORY DESIGN FRAMEWORK

Within the context of trajectory design for vehicles powered by low-thrust engines in the

vicinity of the Moon, the generation of locally optimal solutions for the control history of the

thrust orientation vector is a non-trivial process, challenging in terms of both time-of-flight

and propellant usage [  97 ], [  98 ]. Multiple geometries exist in the design of low-cost low-

thrust transfers between libration point orbits. These geometries depend upon the physical

constraints of the low-thrust engine, in terms of both magnitude and orientation of the thrust

vector, and on the stability characteristics of the destination and departure orbits. Within

the context of the unperturbed Circular Restricted Three-Body Problem (CR3BP), where

the primary bodies are assumed to be point masses, the dynamical equations of motion

that describe the behavior of a spacecraft in this system are time-invariant [  99 ]. With the

introduction of a thrust force, the time dependency also induces an energy variation. In

this investigation, the geometries of the transfer trajectories for a low-thrust vehicle, are

described in terms of three types of categories for low-thrust transfers between libration

point orbits.

• Direct transfers: transfers that resemble the geometry of minimum impulsive burn

trajectories.

Figure 4.1. Sample Direct Transfer

• Interior Transfers or Sliding-Type Geometry: transfers that access multiple members of

periodic orbit families, to generate solutions that do not depart the vicinity of interest.
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Figure 4.2. Sample Interior Transfer or Sliding-Type Geometry

• Exterior Transfers or Escape-Type Geometry: trajectories that utilize exterior mani-

fold arcs and/or exterior-type orbits, to generate transfers that depart the vicinity of

interest with a possible return.

Figure 4.3. Sample Exterior Transfer or Escape-Type Geometry

The sliding algorithm described in this investigation accommodates all three categories of

transfer geometries by exploiting an orbit chaining framework [ 100 ].

The orbit chaining framework employs any type of dynamical structure. The main goal

of the sliding algorithm strategy is, then, to identify natural dynamical structures, such as

periodic orbits or invariant manifold branches, to traverse the gaps in position and velocity

space between a departure and an arrival orbit. The orbit chain is constructed following the

six-steps below:
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1. Analyze any dynamical structures that exist in the vicinity of the departure and arrival

orbits.

2. Select natural arcs that offer high-efficiency energy paths

3. Clip the sections of the arcs that best suit the transfer requirements and form an initial

guess.

4. Subdivide the initial guess for the trajectory into smaller segments and patch points.

5. Stack additional revolutions of the initial and final orbits as appropriate.

6. Define the control history by utilizing either a differential corrections process or an

optimizer, to produce a converged solution.

The previous steps detailed the procedure realized in the adaptive algorithm to construct

locally optimal solutions via orbit chaining, by identifying and utilizing the minimum num-

ber of intermediate arcs to link together from the departure to the arrival orbits which

subsequently produces an end-to-end transfer.

Transfers with a sliding-type geometry exploit natural arcs within an orbit chaining

framework and offer the capability to identify interior transfer geometries when manifolds

arcs are not available. The orbit chaining framework then allows any periodic orbit that

exists within the model to be leveraged as an intermediate arc and to generate suitable

initial guesses for all the various type of transfers:

1. To generate direct transfers, the adaptive sliding algorithm selects the values for the

maximum thrust acceleration level, and the engine specific impulse, to resemble those

of chemical engines.

2. To compute interior transfers, the adaptive sliding algorithm utilizes arcs from families

of periodic orbits within the vicinity of interest.

3. To produce exterior transfers, the adaptive sliding algorithm exploits arcs from families

of periodic orbits that experience long transits throughout the Earth-Moon system.
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The complexity in designing these transfer trajectories is first addressed by exploring the

dynamics for the low-thrust spacecraft in an environment where the motion of the vehicle

is described in a multi-body scenario. The adaptive sliding algorithm is formulated within

this context. Thus, the various energy levels and stability characteristics across families

of multi-body orbits that exist within this model —the Low-Thrust augmented Circular

Restricted Three Body Problem (CR3BP-LT)— are exploited. The fidelity of the results

from this algorithm is further expanded to an ephemeris model that includes the gravitational

attraction of the Sun, the Earth and the Moon (SEM ephemeris model).

4.1 Generation of Exterior Transfers

In this investigation, the proposed scheme for constructing initial guesses to deliver

exterior-type geometries for low-thrust spacecraft trajectory is summarized in the diagram

in Figure  4.4 . The spacecraft originates in the vicinity of the libration point orbits in the

CR3BP as represented for the Earth-Moon system. The strategy then varies for spacecraft

pathways to link two stable orbits, two unstable orbits, or a combination.

Figure 4.4. Graphical representation of the algorithm for generation of exte-
rior trajectories
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Within the context of the CR3BP a periodic orbit is a solution to the nonlinear differential

equations and represents the motion of the spacecraft as a closed periodic path. To analyze

the stability of periodic orbits, the model is formulated in terms of a set of linear variational

equations [ 101 ]. The solution to this linear system is:

δx̄(t) = Φ(t, t0)δx̄(t0) (4.1)

where δx̄(t) represents the variations of the state vector at time t, Φ(t, t0) corresponds to the

State Transition Matrix (STM) and δx̄(t0) identifies the initial variations of the state vector.

The eigenvalues of the monodromy matrix are the modes that dictate the linear behavior in

the vicinity of a periodic orbit and, therefore, its stability.

The state vector in the natural CR3BP —that is, the system for which the low-thrust

acceleration has not been incorporated— is six-dimensional (three dimensions corresponding

to the position elements, and three for the velocity components). Representing a periodic

orbit as a fixed point, its stability is assessed via the monodromy matrix (i.e., the state

transition matrix after precisely one period of the orbit). For a given location along the

orbit, the monodromy matrix corresponding to each fixed point possesses six eigenvalues

and a corresponding set of associated eigenvectors. Two eigenvalues, denoted the trivial pair,

are always equal to one; the remaining four eigenvalues, denoted the nontrivial eigenvalues,

occur as two reciprocal pairs, and are of the form λi = a ± bj, with i = 1, , 4 and j = 1, 2,

where a and b are real numbers. Figure  4.5 offers a representation of the magnitude of the

eigenvalues in the complex plane.

The linear stability of a periodic orbit is determined by considering the form and mag-

nitude of each of the four nontrivial eigenvalues; there are two possible forms for each of the

nontrivial pairs [ 102 ]:

• Complex roots, i.e., λ1,2 = a ± bi. If the roots lie on the unit circle, the solution is

bounded, or marginally stable; a perturbed path neither approaches nor departs from

the reference over time.

• Real roots, i.e., b = 0 and λ1 = a, λ2 = 1/a. These roots correspond to exponential

growth or decay of the variation between the reference and perturbed paths over time.
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Figure 4.5. Graphical representation of Magnitude of the Eigenvalues of the
Monodromy Matrix in the Complex Plane

Following the schematic in Figure  4.4 , if one or both of the departure and arrival orbits

exhibit unstable behavior, a Poincaré map analysis is completed. Alternatively, if both

orbits exhibit stable behavior, an alternate structure is sought as an intermediate arc, one

that exists in the form of manifold structures or exterior-type periodic orbits, for example,

resonant orbits, and drive the geometry of the final transfer.

One of the most common approaches to generate resonant orbits consist of correction

strategies and/or continuation methods, to transform a two-body resonant periodic orbit into

the three-body model. Within the context of the Earth-Moon CR3BP model, a spacecraft

is defined to be in p:q resonance with the Moon, if it completes p orbits with respect to the

Earth in the same time interval in which the Moon achieves exactly q orbits [ 22 ]. In this

definition, p and q are two positive integers. Employing a continuation method, a family of

resonant orbits is generated and, similar to the families of libration point orbits, may offer

useful options for constructing trajectories in more complex scenarios. Figure  4.6 represents
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a 3:4 resonant family of orbits as an example of suitable candidates for the initial guess

generation of exterior transfers.

(a) Sample 3:4 Resonant Family. Spatial
View.

(b) Sample 3:4 Resonant Family. Energy
Evolution.

Figure 4.6. Sample 3:4 3D Resonant Family in the Earth-Moon CR3BP

Significant insight into the flow along a trajectory is accomplished by reducing the di-

mension of the system such that implicit information is captured in a lower dimensional

visual representation. Poincaré mapping is a very useful approach to effectively reduce the

dimensionality of a dynamical system and allow for concise visualization of the flow.

4.1.1 Poincaré Mapping

Poincaré maps are a very powerful tool for understanding and visualizing the underlying

dynamics of a particular region of space. These maps are greatly used in the trajectory

design problem to construct initial conditions for spacecraft transfers.

To construct such a map, a hyperplane or surface of section (Σ+) is selected as illustrated

in Figure  4.7 , at which crossings of a propagated trajectory for a variety of initial conditions,

x̄1, are recorded. The mapping x̄1 → ρ(x̄1) is then termed the Poincaré map, and each time

a propagation crosses the hyperplane, its information is recorded [  28 ]. The quantity ρ(x̄1) is

referred to as an iteration of the initial condition, x̄1.

Any initial state on a Poincaré map unveils the set of all intersections recorded on the

hyperplane, offering a deeper understanding of the dynamical system behaviour in the spec-
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Figure 4.7. Graphical representation of a Poincaré section

ified region of interest. The generation of exterior trajectories for linking unstable orbits is

then accomplished by propagating the branches from the invariant manifolds or from ex-

terior resonant orbits and represent them on a map [ 103 ]. The corresponding intermediate

arcs are extracted for inclusion in the construction of an initial guess. An infinite number of

possibilities exist for the selection of intermediate orbits —or arcs— and a few are examined

in this investigation.

A Poincaré map can be generated either using short- or long-duration simulations of the

initial conditions; however, utilizing short-duration arcs generally yields incomplete struc-

tures, that do not provide sufficient insight into the natural flow. In the low-thrust tra-

jectory design problem for generating transfers between periodic orbits within the context

of the CR3BP, Poincaré mapping techniques are utilized to capture the recording of long

manifold arcs emanating from unstable periodic orbits into a specified hyperplane. Figure

 4.8 illustrate a sample for the unstable and stable branches of the manifold arcs that natu-

rally approach the periodic orbit. The Red and Magenta arcs correspond to the positive and

negative directions of the unstable manifold branches, respectively, propagated in forward

time from the periodic orbit. Similarly, the blue and cyan arcs represent the positive and

negative directions of the stable manifold branches, propagated backwards in time from the

periodic orbit.
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Figure 4.8. Sample Representation of Unstable and Stable Manifold Branches
for Libration Point Orbits in the CR3BP.

The intersection of these manifold crossings on the hyperplane of the Poincaré map are

presented in Figure  4.9 ; each point on the map correspond to a distinct ballistic trajectory.

Blue points represent the crossings of positive stable manifold branch, and the red points

represent the crossings of positive unstable manifold branch; the selection of points that

overlap in the Poincaré map, serves as the initial guess trajectory for finding transfer options

between these libration point orbits.

4.2 Generation of Interior Transfers: Adaptive Sliding Algorithm

The proposed decision process for constructing sliding-type solutions in the CR3BP-LT

model, is summarized in Figure  4.10 . Note that the framework ultimately incorporates slides

through any number of different families that are then stacked to reach a destination. To

estimate the minimum number of intermediate orbits for ‘sliding’ enroute to the destination,

the procedure relies on a parametrization of the energy evolution for the family in consid-

eration, along with an accessible region —in configuration space— provided by the thrust

capabilities of the spacecraft. This accessible region is denoted the Thrust Range Surface

(TRS).
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Figure 4.9. Sample Representation of a Poincaré Map Reflecting the Cross-
ings of the Unstable and Stable Manifold Branches for a Libration Point Orbit
in the CR3BP.

The algorithm is initialized by supplying three user-defined inputs: the departure and desti-

nation orbits as well as the maximum thrust acceleration level available due to the physical

capabilities of the spacecraft. The output is a fully converged locally optimal transfer be-

tween the two orbits of interest. Furthermore, the solutions of this type do not depart the

lunar vicinity (or some other bounded region in configuration space). The approach for

constructing sliding-type geometry transfers is summarized, and visually represented, in the

two steps described below. The sample transfer for a 14kg low-thrust spacecraft from a L2

Southern (S) Near Rectilinear Halo Orbit (NRHO) to a L2 Northern (N) halo orbit, with

a maximum thrust acceleration level consistent with that of the Lunar IceCube spacecraft,

8 × 10−5m/s2 is described as follows:

Step 1. Once the departure and arrival orbits are identified, as in Figure  4.11 (a), the

algorithm loads (or computes) a full representation of the families to which these orbits of

interest belong. The capability does exist to represent additional families in the vicinity.

For each family of interest, its representation in configuration space, as well as its period

and energy evolution, are populated. While there exist multiple ways of parametrizing the
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Figure 4.10. Energy-Informed Sliding Algorithm for Generation of Interior Trajectories

energy evolution along a family of periodic orbits, the strategy in this algorithm employs

a representation of the Jacobi constant evolution across the members of the family against

the maximum and minimum x- coordinates for each orbit member as illustrated in Figure

 4.11 (b); this representation produces a surface denoted the Energy Surface (ES) along the

family, from which a limited grid search is conducted to select the intermediate orbits to

serve as the initial guess for the transfer.

When the Energy Surface in Figure  4.11 (b) exhibits monotonic growth (i.e., no extrema

along the curve), this behavior indicates that no two orbits in the family possess the same

value of Jacobi constant. Hence, once a direction of motion is identified, intermediate orbits

for sliding are directly selected from the Energy Surface, either to increase or to decrease the

energy to a value equal to that of the target orbit.

When the energy surface exerts a non-monotonic growth (i.e., extrema along the curve),

it suggests that the energy associated with each member of the family is no longer unique,

and an extra step is required to identify the intermediate orbits best suited to slide through
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(a) Sample Departure and Arrival Orbits
from the L2 S and N Halo Families of Or-
bits.

(b) Energy Surface for the L2 S Halo Fam-
ily.

Figure 4.11. Sample Problem Setup for the Adaptive Sliding Algorithm

enroute to the destination orbit. This remark also suggests that the sliding direction across

the family is not unique, i.e., there exist multiple ways to construct initial guesses for the

sliding-type geometry. Two approaches for the selection of the intermediate orbits when

energy is not unique, are explored in this investigation: 1. A Thrust Range Surface (TRS)

(Figure  4.12 ), jumps along the Energy Surface, skipping the extrema in energy, and reducing

the redundancies; 2. The algorithm decreases and/or increases energy in a non-monotonic

fashion, by shifting the Energy Surface without skipping the extrema.

A Thrust Range Surface is a map in configuration space; the values of the components of the

state vector are recorded at the end of a propagation segment that is initiated with the same

set of initial conditions, but with only the thrust direction modified for each outcome. This

surface supplies initial guesses for arcs that do not slide incrementally through the family,

rather arcs that are jumping along the Energy Surface to a value for which the selection of

the orbit ultimately becomes unique. The shape and reach of a Thrust Range Surface is a

function of the acceleration magnitude as well as the orbit being examined.
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Figure 4.12. Thrust Range Surface for a L2 Southern Near Rectilinear Halo
Orbit (NRHO); TRS, Used to Skip Extrema along the Energy Surface

Step 2. To generate a converged locally optimal solution, the strategy then involves the

formulation of an energy-informed minimization problem. The goal is the determination of

the smallest number of intermediate orbits, N , that minimize the following cost function:

J = min
N∈N


W1

1
2

N∑
j=1

∆C2
j

− [W2ToF ]

 (4.2)

where Cj represents the energy of each intermediate orbit as reflected in the corresponding

value of the Jacobi constant, and ToF is the total time-of-flight along the transfer. This

nondimensional objective function is comprised of two different terms: (i) an energy related

term, whose main purpose is the reduction of the number of energy changes from one prop-

agation arc along the transfer to the next; such a minimization is accomplished by means of

a mass-optimal solution; and (ii) a time-of-flight term, included in the objective function to

accommodate time-optimal trajectories. The weights associated with each of the individual

terms are represented by W1,2, respectively, and aid in prioritizing the type of optimal trans-

fer to be delivered. The problem formulation then requires an initial guess for the optimal

number of intermediates orbits, N0, as well as for the change of energy per orbit, ∆Cj0.

To generate mass locally optimal transfers with a sliding-type geometry, the sliding algo-

rithm solves the minimization problem in Equation (  4.2 ), by initially assigning W1 = 1 and
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W2 = 0. From the initial guess, a feasible solution is first generated by means of a multiple-

shooting differential corrections scheme that discretizes each intermediate orbit into patch

points and segments (each of which is allowed to thrust or coast over the duration of the arc);

The discretization scheme allows n total points and n − 1 total segments, as illustrated in

Figure  4.13 , where x̄j represents the state vector for each segment j, and the control variables

required per arc segment are identified. The orientation of the thrust vector is defined by the

control angles α and β that correspond to the in-plane and out-of-plane angles, respectively,

and orient the thrust acceleration vector in the barycentric rotating frame. The algorithm

employs a turn-and-hold control logic, such that the same thrust magnitude and orientation

are fixed over the duration of each thrust/coast arc.

Figure 4.13. Illustration of a Multiple Shooting Differential Corrections
Strategy for Low-Thrust Trajectory Solutions

4.2.1 Energy-Informed Initial Guess Generation

The basic framework in the adaptive algorithm is identifying the intermediate arcs through

which the vehicle ‘slides’ enroute to its destination. As a first step, assume that the goal is

‘sliding’ along a single family of orbits employing a low-thrust force to accomplish the corre-

sponding energy change. The main goal of the reduced algorithm is, then, the construction

of the minimum number of intermediate orbits through which to ‘slide’ from departure to

destination.

The initial guess estimate for the minimum number of intermediate orbits, N0, that are

required for sliding-type transfers between cislunar orbits that exist within the same family
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in the CR3BP model, is accomplished by leveraging the Jacobi constant of integration. For

any particular transfer, once the departure and arrival orbits are identified, the total net

energy change to accomplish the transfer is deduced from the simple relationship:

∆C = Cdeparture − Carrival = Ci − Cf

where Ci = Cdeparture is the energy of the initial/departure orbit, and Cf = Carrival corre-

sponds to the energy of the final/destination orbit. Furthermore, the energy of the arrival

orbit is decomposed in terms of the change in energy between each pair of intermediate orbits

as follows:

Cf = Ci +
N∑

j=1
∆Cj (4.3)

To determine the initial direction of motion along the energy surface in Figure  4.11 (b), i.e.,

the initial orientation of the thrust vector, the following logic is implemented:


āT ‖v̄ if Cf,j < Ci,j

āT ‖ − v̄ if Cf,j > Ci,j

If Ci,j represents the energy of the current intermediate orbit, and Cf,j is the energy of the next

intermediate orbit, the algorithm induces thrust along the relative velocity direction whether

or not an increase in energy is desired per Equation (  4.3 ). Once the initial thrust arc is

propagated for a fixed duration, the algorithm evaluates a linear approximation for the initial

change in energy per orbit as described in Figure  4.14 (a), and employs this approximation to

estimate an initial guess for the number of intermediate orbits. This process is represented

graphically as described in Figure  4.14 (b), and computed numerically as follows:

∆Cj0 ≈ dCj = Cf,j − Ci,j

xf,j − xi,j
(4.4)

N0,j = ∆C
∆Cj0

(4.5)
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(a) Linear Approximation of Energy
Change due to Maximum Thrust Acceler-
ation Magnitude.

(b) Initial Estimate for Number of Inter-
mediate Orbits in the L2 S Halo Energy
Space.

Figure 4.14. Visual Representation of the Energy-Informed Initial Guess
Generation Process

Consider the regular expression for the Jacobi constant and its time derivative, augmented

by the thrust acceleration term, where U∗ is the pseudo-potential function of the natural

CR3BP dynamics:

C = C (r̄, v̄, āT ) = 2U∗ − v2 + 2 (r̄ · āT ) (4.6)

dC

dt
= 2 d

dt
(U∗) − d

dt

(
x2 + y2 + z2

)
+ 2 d

dt
(r̄ · āT )

= 2
(
U∗

x ẋ+ U∗
y ẏ + U∗

z ż
)

− 2 (ẋẍ+ ẏÿ + żz̈) + 2
(

˙̄r · āT + r̄ · ˙̄aT

)
= 2

[
ẋ (U∗

x − ẍ) + ẏ
(
U∗

y − ÿ
)

+ ż (U∗
z − z̈) +

(
˙̄r · āT + r̄ · ˙̄aT

)]
= 2

[
−2ẋẏ + 2ẏẋ+ ż (0) +

(
˙̄r · āT + r̄ · ˙̄aT

)]
= 2

(
˙̄r · āT + r̄ · ˙̄aT

)
(4.7)

Equation (  4.7 ) represents the exact relationship between the rate of change of energy with

respect to time, and the thrust acceleration level of the spacecraft. Moreover, using a Taylor

series representation, the energy-like function in Figure  4.14 (a) is expressed as:
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C = C1 + dC

dx
(x− x1) + 1

2!
d2C

dx2 (x− x1)2 + ... (4.8)

Let ∆C = C − C1 be the total change in energy from point (x1, C1) to point (x,C). Fur-

thermore, from assumptions in direct optimization methods, approximate dx = (x − x1) to

be small but finite, such that the following equations is valid:

dC = dC
dx
dx, and d2C = d2C

dx2 dx
2

To produce the general representation for the change of energy over a thrust segment:

∆C = dC + 1
2!d

2C + ... (4.9)

Equation ( 4.9 ) is then generalized to solve the optimization problem of interest, in Equation

( 4.2 ), such that the total change of energy per intermediate orbit is evaluated as:

∆Cj = dCj + 1
2!d

2Cj + ... (4.10)

where Cj corresponds to the energy-like function in Equation (  4.6 ), and its derivatives are

computed numerically by the sliding algorithm as follows:

dCj = ∂Cj

∂r̄
dr̄ + ∂Cj

∂v̄
dv̄ + ∂Cj

∂āT

dāT (4.11)

As indicated in the diagram in Figure  4.10 , the process continues for each family that is

incorporated into the construction of a particular initial guess for a transfer with a sliding-

type geometry. For the sample scenario being examined, a visual representation of the initial

guess in configuration space is illustrated in Figure  4.15 (a). The algorithm then utilizes a

direct optimization process via a multiple-shooting approach, as described in the previous

section, to generate the optimal solution in the CR3BP-LT model in Figure  4.15 (b).

To produce this solution, the sliding algorithm employs two intermediate orbits —one

member of the southern halo family and one member of the northern halo family— combined

with the TRS generated for the departure orbit, while guaranteeing that the constraint on the

maximum thrust acceleration magnitude is not violated. To further evaluate the accuracy
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(a) Initial Guess from the Sliding Algo-
rithm.

(b) Mass Optimal Converged Solution.

Figure 4.15. Sample Transfer Scenario from a L2 S NRHO to a L2 N Halo
Orbit in the CR3BP-LT Model via Sliding Algorithm. Red and blue arcs
represent thrust and coast arcs, respectively

and robustness of the adaptive sliding algorithm, all results are transitioned to a higher-

fidelity ephemeris force model.

4.3 Corrections Algorithm for Low-Thrust Trajectory Solutions in the CR3BP-
LT

The corrections process is implemented via a multiple-shooting scheme, one that seeks to

generate a feasible solution that is continuous in the position, velocity and mass states. This

multiple-shooting approach determines a solution by employing a multi-dimensional iterative

Newton strategy, in which the update equation is based on the minimum norm solution as:

X̄j+1 = X̄j −DF (X̄j)T
[
DF (X̄j)DF (X̄j)T

]T
F̄ (X̄j) (4.12)

where X̄j represents the vector of free variables —or controls— as in Figure  4.13 , F̄ (X̄j)

corresponds to the vector of constraints, and DF (X̄j) is the Jacobian matrix comprised of

the partial derivatives of the constraints with respect to the free variables. Furthermore, all

inequality constraints are converted into equality constraints via the use of slack variables,

such that those constraints are also included in the vector F̄ (X̄j) [ 104 ]. This conversion
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impacts the dimensionality of the problem, as each slack variable is also added to the vector

of free variables, X̄j, as follows:

Ti − Tmax sin2(ηTi) = 0 , ti − ηti = 0

αi − 2π sin2(ηαi) = 0 , βi − π sin2(ηβi) = 0

τD − PD sin2(ητD
) = 0 , τA − PA sin2(ητA

) = 0 (4.13)

where ηTi , corresponds to the slack variable related to the thrust magnitude for arc i; ηti is the

slack variable associated with the integration time along segment i; ηαi and ηβi are the slack

variables related to the thrust orientation vector along the ith arc; ητD
and ητA

correspond to

the slack variables associated with the time-like parameters, τD and τA, that represent the

coast segments along the departure and arrival orbits14; and, finally, the variables PD and

PA are evaluated as the orbital period of the departure and arrival orbits, respectively.

The Jacobian matrix, DF (X̄j) = ∂F (X̄j)
∂X̄j

, is constructed either analytically or via finite

difference numerical derivatives. Once a feasible solution is generated, it serves as an initial

guess for a direct optimization procedure as implemented in MATLAB’s fmincon optimiza-

tion function. The objective is the minimization of the performance function specified in

Equation ( 4.2 ), subject to:
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the differential constraints ẍ = 2ẏ + U∗
x + T

m
cos (α) cos (β)

ÿ = −2ẋ+ U∗
y + T

m
sin (α) cos (β)

z̈ = U∗
z + T

m
sin (β)

ṁ = − T 2

2P
the prescribed conditions x̄0 = x̄D, m0 = 1, t0 = 0, N0, x̄n = x̄τA

the inequality constraints 0 ≤ T1 · · ·Tn−1 ≤ Tmax, t1 · · · tn−1 > 0

0 ≤ α1 · · ·αn−1 ≤ 2π, − π/2 ≤ β1 · · · βn−1 ≤ π/2

0 ≤ τD ≤ PD, 0 ≤ τA ≤ PA

and the path constraints x̄1 = x̄τD
, x̄2 = x̄t

1, · · · , x̄n = x̄t
n−1 (4.14)

where x̄j vectors (for j = 1, .., n) correspond to the states at the beginning of each arc segment,

and x̄t
j represent the states at the termination point on that particular segment. To ensure

that the spacecraft departs and arrives at the specified destination and arrival orbits, two

time-like parameters, τD and τA, are introduced into the multiple shooting algorithm as

additional constraint variables to enforce coast arcs along the orbits of interest. Note that,

in this strategy, τD is propagated forward in time, while τA is propagated backwards on the

destination orbit.

4.4 Transition from CR3BP-LT to the Ephemeris Model

There exist multiple strategies to transition a sliding solution from the CR3BP-LT to the

ephemeris model, two of which are explored in this investigation. Strategy I: using the

sliding algorithm, generate a converged locally optimal trajectory in the CR3BP-LT model;

transition the full solution to the ephemeris model by transforming each position, velocity,

and thrust orientation state from rotating to inertial coordinates; correct —and possibly

optimize— in the ephemeris model [ 105 ]. The transfer in Figure  4.16 (a) is a locally op-

timal solution generated from the sliding algorithm in the CRTBP-LT model. Strategy I
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dictates that this transfer be transformed into inertial coordinates, and later re-converged

using a higher-fidelity ephemeris model, with a goal that the transfer geometry be generally

preserved, as illustrated in Figure  4.16 (b).

(a) L2 S NRHO to L2 N Halo Transfer in the
CRTBP-LT via Sliding Algorithm.

(b) L2 S NRHO to L2 N Halo Transfer in
the Ephemeris Model via Strategy I.

Figure 4.16. Strategy I for Constructing Sliding Geometry Transfers in the
Ephemeris Model. Red and Blue Arcs Represent Thrust and Coast Segments
in the CR3BP-LT model; Magenta and Cyan correspond to Thrust and Coast
Segments in the Ephemeris Model

Strategy II: using the sliding algorithm, populate the initial guess for the minimum num-

ber of intermediate orbits necessary to slide through the family from the departure to the

destination orbit; transform the position and velocity states for each intermediate periodic

orbit into inertial coordinates; specify the thrust orientation vector control law with inertial

pointing; correct —and possibly optimize— in the ephemeris model. Figure  4.17 (a) is a vi-

sual representation of the initial guess that is generated by the sliding algorithm, describing

the minimum number of intermediate orbits to accomplish the transfer. Transitioning these

individual periodic orbits into the ephemeris model and, then, using a corrections algorithm

to compute a converged trajectory, is the procedure from Strategy II that produces the path

in Figure  4.17 (b).

The ephemeris trajectory in Figure  4.16 (b) preserves the geometry of the CR3BP-LT

transfer utilized as initial guess in Strategy I; whereas, the ephemeris path in Figure  4.17 (b),

includes multiple revolutions of each intermediate CR3BP orbit member, as generated by the
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(a) L2 S NRHO to L2 N Halo Initial Guess in
the CRTBP-LT from Sliding Algorithm.

(b) L2 S NRHO to L2 N Halo Transfer in
the Ephemeris Model via Strategy II.

Figure 4.17. Strategy II for Constructing Sliding Geometry Transfers in
the Ephemeris Model. Magenta and Cyan correspond to Thrust and Coast
Segments in the Ephemeris Model

sliding algorithm in the construction of the initial guess for Strategy II. Thus, the time-of-

flight required for the spacecraft to travel from the departure to the arrival orbit in Strategy

II, 164.7831 days, is larger than the travel time required in Strategy I, of 50.3245 days.

Regardless of the strategy, converging a trajectory in the ephemeris model is an epoch

dependent problem. Depending on the position of the Sun as well as the other perturbing

bodies added to the model at a specific epoch, the sensitivity of the problem might change,

causing the corrections algorithm to increase the number of iterations to produce a con-

verged solution. To alleviate convergence issues based on epoch dependencies, the concept

of a roughness parameter is implemented to increase the probability of convergence for a

particular epoch.

4.4.1 Roughness Parameter Technique

One of the main challenges in the design of spacecraft transfer trajectories in the ephemeris

model, is the selection of the initial epoch. Since the ephemeris model is a time-dependent

system, in which the position of the celestial bodies is no longer assumed to be static (as

it is the case for simplified force models), the epoch plays an important role as it dictates
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the correct phasing of the gravitational bodies in the dynamical model; Thus, selecting the

correct epoch may aid in the convergence of a transfer solution; however, the efficiency of

the corrections algorithm can decrease by selecting an epoch with the wrong phasing.

To reduce the sensitivity of the trajectory convergence in the ephemeris model to the

initial epoch, the concept of a Roughness Parameter (RP) is introduced. In its pure mathe-

matical definition, the roughness parameter is a quantity used to assess the smoothness of a

curve [  106 ]. The smoothness is quantified by measuring the discontinuities along the path.

A fully continuous path should yield a null RP and, as the path evolves into a piecewise

continuous function, the RP value should increase. Thus, as discontinuities emerge, the RP

value grows larger than zero.

In astrodynamics applications, the roughness parameter calculation is utilized in the gen-

eration of spacecraft trajectories in the ephemeris model [  107 ]. There are multiple ways to

compute the RP value and the method selected depends on the type of variations, or the

characteristics of the path, to be assessed. Assume that position is potted as a function

of time. If the vertical characteristics of the profile are desired, then amplitude roughness

parameters are employed. If instead, the horizontal characteristics of the profile are sought,

spacing roughness parameters are more useful. Lastly, a combination of vertical and horizon-

tal characteristics of a profile can be evaluated by computing a hybrid roughness parameter.

In this investigation, the Root Mean Square (RMS) value of the profile for the magnitude

of the position vector of the spacecraft relative to the central body, is employed as the rough-

ness parameter measure. The process for leveraging this RP concept within the ephemeris

model is accomplished as follows:

1. Stack a specified number of revolutions on the initial and final orbits in the CR3BP-LT

model

2. For a selected initial epoch, transform the converged CR3BP-LT position, velocity and

thrust orientation vector states into inertial coordinates, to generate an inertial initial

guess

3. Propagate the trajectory initial guess in the ephemeris model, and discretize it into a

finite number of points
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4. Compute the magnitude of the ephemeris position vector of the spacecraft relative to

the central body as illustrated in Figure  4.18 

Figure 4.18. Sample profile for the magnitude of the position vector of a
spacecraft relative to the Moon, in a higher-fidelity ephemeris model, for a
selected initial epoch. The red line represents the lunar radius

5. Compute the roughness parameter value (RMS) corresponding to that particular tra-

jectory and epoch; store each value

6. Repeat steps 1 through 5 for a variety of different epochs, and for various numbers

of stacked revolutions, to generate the map in Figure  4.19 denoted the Roughness

Parameter Map (RPM)

7. Use the RPM to select the combination of epoch and number of stacked revolutions

with the lowest RMS value; use a corrections algorithm to converge this initial guess

for the selected variables in the ephemeris model
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Figure 4.19. Sample RPM map for epoch selection when transitioning from
the CR3BP-LT to the ephemeris model

8. If a specific epoch is desired for the ephemeris trajectory, apply a natural parameter

continuation process on the epoch converged in Step 7; re-converge the solution until

the specified epoch is achieved

Figure  4.18 depicts a sample representation for the magnitude of the position of a spacecraft

in the vicinity of the Moon. The RMS value for this position profile is simply computed as:

Rms =

√√√√1
k

k∑
i=1

p2
i (4.15)

where k represents the number of discretization points in the profile, and pi, (i = 1, ..., k)

corresponds to the parameter of interest at point i. The RMS value is straightforward to

evaluate.

While the RMS quantity is one of the most popular amplitude roughness parameter

measures, there exist other options for amplitude parameters, for example, the maximum
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height of the profile, the amplitude density function, or the power spectral density function.

Some of the most popular spacing roughness parameters include the measure of the number

of peaks in the profile, and the number of inflection points.
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5. APPLICATIONS

A near-term goal for the expansion of activities in the Earth-Moon neighborhood is the

capability to maintain a facility near the Moon that serves as a staging node for excursions to

other cislunar destinations. Support for low-thrust vehicles in this dynamically sensitive re-

gion include functional requirements that depend upon the scientific mission constraints and

on the limitations introduced by the physical capabilities of the spacecraft. The applications

described in this investigation offer an adaptive strategy for generating locally optimal solu-

tions for low-thrust spacecraft in the lunar vicinity, by exploiting the energy parametrization

of multi-body families of orbits. Results are validated in a higher-fidelity ephemeris model

and are demonstrated for a variety of transfers with a wide range of thrust acceleration

levels. The methodology proves successful for achieving large orbital plane changes evolving

entirely within the lunar vicinity, as well as for generating suitable initial guesses for long

spiral transfers approaching low lunar orbits.

5.1 Cislunar Low-Thrust Transfers Between Libration Point Orbits

The adaptive sliding algorithm in the CR3BP-LT model is employed to generate a variety

of transfers in the cislunar region that, combined with the roughness parameter procedure,

generates higher-fidelity interior and exterior geometry solutions. The acceleration levels

considered in this investigation are consistent with those flown in previous missions, as

represented in Table  5.1 . An interesting fact is the realization that larger spacecraft initial

mass do not necessarily signify larger a thrust acceleration level. On the contrary, the

magnitude of the thrust acceleration is dictated by the thrust force to mass ratio given by

Equation  2.63 .

Table 5.1. Low-Thrust Parameters for Previously Flown Missions

Mission aTmax [m/s2] Initial Mass [kg]

Deep Space 1 1.91 × 10−4 486.3
Dawn 7.47 × 10−5 1217.8
Hayabusa 2 4.44 × 10−5 608.6
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It has been demonstrated by previous authors that the smaller the acceleration level of

the low-thrust engine, the more challenging it is to design transfers for those spacecraft,

since the time required to modify the energy level of the current path of the vehicle is larger

for smaller engines. To overcome some of these challenges, a natural parameter continuation

method is employed on the thrust acceleration magnitude of the spacecraft, such that, a

low-thrust transfer is first computed for a high value of the thrust magnitude; this converged

solution is then utilized as an initial guess for a second low-thrust transfer for which the

maximum allowed thrust acceleration magnitude is reduced. The process continues until the

constraint on the desired value of the thrust acceleration level is achieved.

5.1.1 Mass-Optimal Interior Transfer from a L2 Lyapunov to a L2 Vertical Orbit

To illustrate the performance of the sliding algorithm consider the design of a low-thrust

transfer with a sliding-type geometry for a 500 kg spacecraft from a L2 Lyapunov orbit

with the energy level JC = 3.0001 to an L2 vertical orbit with energy JC = 2.7172 in the

Earth-Moon CR3BP system, with a maximum thrust acceleration level of 4×10−4m/s2. The

biggest challenge when designing this transfer is the large change in the inclination between

the two families; thus, it is beneficial to leverage one or more orbits from an intermediate

family to gradually alter the inclination of each intermediate orbit and, thus, accomplish the

sliding type transfer. The inputs to the sliding algorithm are then the departure and arrival

orbits, the maximum thrust acceleration level allowed by the spacecraft, and the inclusion

of an intermediate family of orbits.

As apparent in Figures  5.1 the algorithm proceeds to generate the energy parametriza-

tion for each of the individual families, as this parametrization is the key factor for later

selection of the individual orbits to incorporate as the intermediate arcs along the transfer.

Figures  5.1 (a) and  5.1 (b) correspond to the spatial configuration of each orbit member of

the Lyapunov and vertical families respectively; Figures  5.1 (c) and  5.1 (d) are a parametriza-

tion of the Jacobi constant value versus the orbital period for each orbit member; Figures

 5.1 (e) and  5.1 (f) are the energy surfaces generated by the sliding algorithm for each family

of interest.
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(a) L2 Lyapunov Configuration Space. (b) L2 Vertical Configuration Space.

(c) L2 Lyapunov Energy Evolution. (d) L2 Vertical Energy Evolution.

(e) L2 Lyapunov Energy Surface. (f) L2 Vertical Energy Surface.

Figure 5.1. Energy Parametrization for the L2 Lyapunov and L2 Vertical
Families of Orbits

Both of these families exert monotonic behaviour on the energy parametrization, which

suggest that there exist only one energy level —one value of Jacobi constant— for each
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individual member in each family. The monotonic growth of the energy surfaces does make

the selection of the intermediate arcs a straightforward process on the sliding algorithm, that,

based on the reach of the maximum thrust acceleration magnitude of the spacecraft, performs

a grid search in one direction to gradually increase the energy level from the Lyapunov orbit

to that of the arrival vertical orbit. Furthermore, based on the evolution of each member of

the L2 axial family depicted in Figure  5.2 , its energy span, and its ‘reach’ in z-amplitude,

this additional family is selected for inclusion. Note that the selection of an intermediate

family is arbitrary. However, an informed choice is beneficial.

(a) L2 Axial Configuration Space. (b) L2 Axial Energy Evolution.

(c) L2 Axial Energy Surface.

Figure 5.2. Energy Parametrization for the L2 Axial Family of Orbits

After the energy parametrization of each family of interest is completed, the adaptive sliding

algorithm proceeds to generate the initial guess plotted in Figure  5.3 (a); the algorithm

selects one orbit from the Lyapunov family —the departure orbit—, one orbit form the
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vertical family —the arrival orbit—, and six orbits from the axial family. The initial guess is

subjected to the corrections algorithm and energy-informed minimization problem detailed

in Section  4.2 , from which the converged mass-optimal solution in the CR3BP-LT model

depicted in Figure  5.3 (b) is obtained. As expected, the final transfer resembles the geometry

of the initial guess, where blue and red arcs represent coast and thrust arcs in the CR3BP-LT

model;

(a) CR3BP-LT Initial Guess (b) CR3BP-LT Converged Transfer.

Figure 5.3. Performance for a Mass Optimal Interior LT Transfer from a L2
Lyapunov to a L2 Vertical via L2 Axial in the CR3BP-LT Model

The energy evolution and the thrust acceleration levels in the converged solution in the

CR3BP-LT model are detailed in Figure  5.4 . In this model, the spacecraft requires 132.9845

days from the time of departure from the initial orbit (represented in Figure  5.3 as the

first thrusting arc) until the time it arrives on the destination orbit (i.e., the last thrusting

arc). The spacecraft arrives at its final destination with 99.1754% of its initial mass, thus,

only 0.8246kg of the 500kg initial mass was expended for the transfer. Converting this

performance to an equivalent ∆V results in 324.7892m/s of propellant consumption, which

is within the range of the theoretical minimum ∆V required for motion from the departure

to the destination orbits represented in Figure  5.5 .

Following the strategy in Section  4.4 , the converged solution from the CR3BP-LT model

is utilized as the initial guess for the corrections algorithm in the Sun-Earth-Moon (SEM)
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Figure 5.4. CR3BP-LT Energy and Acceleration Evolution

ephemeris model to generate the mass-optimal trajectories illustrated in Figure  5.6 , where

cyan and magenta segments correspond to coast and thrust arcs, respectively. In this model,

only the point mass gravitational perturbations of the Sun, the Earth and the Moon, are

included. The transition process follows Strategy I from Section  4.4 , for which the converged

solution in the CR3BP-LT model is augmented by multiple revolutions of the departure and

arrival orbits.

Figure  5.6 (a) represents the converged mass-optimal trajectory as viewed in a J2000

inertial frame centered at the Moon; Figure  5.6 (b) is an inertial view from an observer

centered at the Earth; Figure  5.6 (c) is the view in the ecliptic frame from an observer

centered at the Moon. The departure epoch is selected based on the roughness parameter

map illustrated in Figure  5.7 , for which March 1, 2021 is selected.

For this particular epoch in the SEM ephemeris model, the equivalent ∆V consumption

is reduced to 292.6643m/s, that corresponds to 0.9981% of the 500kg initial mass, while the

total time-of-flight required is 117.7946 days. Recall, since the ephemeris model is a time-
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Figure 5.5. Theoretical Minimum ∆V .

dependent system, the propellant consumption does vary with the epoch selected, suggesting

that, the performances reported in this investigation might increase or decrease depending

on the position of the celestial bodies at each instant of time.

5.1.2 Time-Optimal Transfer from a L2 Lyapunov to a L2 Vertical Orbit

To illustrate the effects of the maximum thrust acceleration magnitude on the trajectory

design framework, consider re-designing the low-thrust transfer for a 500 kg spacecraft with a

maximum thrust acceleration level of 4 × 10−4m/s2, from a JC = 3.0001 L2 Lyapunov orbit

to a JC = 2.7172 L2 vertical orbit in the Earth-Moon CR3BP system, as a time-optimal

solution. The adaptive sliding algorithm proceeds to modify the weights on the objective

function in Equation ( 4.2 ), such that priority is shifted to the time-of-flight minimization

term.

To initiate the design, the process utilizes the initial guess illustrated in Figure  5.10 .

The converged time-optimal solution produced by the adaptive sliding algorithm is plotted
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(a) J2000 Moon-Centered Ephemeris. (b) Earth-Centered Ecliptic Ephemeris.

(c) Moon-Centered Ecliptic Ephemeris.

Figure 5.6. Performance for a Mass Optimal Interior LT Transfer from a L2
Lyapunov to a L2 Vertical via L2 Axial in the SEM Ephemeris Model

in Figure  5.10 , while the energy and time-of-flight evolution are represented in Figure  5.11 .

Comparing these two locally optimal solutions (i.e., the mass-optimal solution in Figures  5.3 

and the time-optimal solution in Figures  5.10 ), the time-of-flight required for the spacecraft

from departure to destination is reduced from 132.9845 days to 11.6653 days from the mass-

optimal to the time-optimal solution; the propellant consumption, however, increases from

0.9981% to 1.0277% of the 500kg initial mass, that, in terms of equivalent ∆V , indicates that

the mass consumption increases from 324.7892m/s in the mass-optimal case to 405.2372m/s

in the time-optimal solution. These performances suggest that for this particular application,

the time-optimal solution offers a suitable trade-off between transfer time and propellant cost
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Figure 5.7. Roughness Parameter Map

benefits, as the penalty in increasing the cost is largely overshadowed by the reduction in

travel time.

As a result of maintaining active thrusters over the entire duration of the trajectory, the

energy evolution for the time-optimal transfer in Figure  5.11 is a smooth curve; alternatively,

the energy evolution of the mass-optimal trajectory in Figure  5.5 exerts a staircase-like

behaviour, reflecting the spacecraft passage through each intermediate orbit, to gradually

accomplish the large change in inclination required to transition from a planar to a spatial

orbit, while ensuring the least locally possible propellant consumption.

These time-optimal results are further examined via a natural parameter continuation

procedure on the maximum thrust acceleration level experienced by the spacecraft, to pro-

duce a family of minimum time-of-flight solutions from departure to arrival orbit, as illus-

trated in Figure  5.10 . As the maximum thrust acceleration level is gradually decreased from

4×10−4m/s2 to 2×10−4m/s2, an acceleration level consistent with that of the DAWN space-

craft, a new path is constructed by the adaptive sliding algorithm, and its representation in
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Figure 5.8. CR3BP-LT Converged Transfer

configuration space in plotted as a new lighter shade of the darker red trajectory in Figure

 5.10 .

Moreover, the time-of-flight and the equivalent ∆V performance for each trajectory are

depicted in Figure  5.11 , where it is apparent that as the thrust acceleration level decreases,

the time-of-flight of the time-optimal solution generally increases, as well as the equivalent

∆V .

The results from the time-optimal solutions in Figures  5.10 and  5.11 are coherent within

the context of the expected behaviour of the low-thrust spacecraft. If all other parameters

remain fixed (e.g., departure and destination orbit, and engine specific impulse), the smaller

the thrust acceleration level, the greater the time interval required for the vehicle to navigate

the same region in space, and the more propellant-expensive the transfer.

5.1.3 Mass-Optimal Exterior Transfer from a L2 Lyapunov to a L2 Vertical Orbit

To illustrate the performance of the adaptive sliding algorithm in generating exterior-

type trajectories, consider the design of a low-thrust transfer for a 500 kg spacecraft with a

maximum thrust acceleration level of 4 × 10−4m/s2, from a L2 Lyapunov orbit with energy

JC = 3.0001 to a L2 Vertical orbit with energy JC = 2.7172; it is assumed that an escape-
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Figure 5.9. CR3BP-LT Energy and Acceleration Evolution. Performance for
a Time Optimal LT Transfer from a L2 Lyapunov to a L2 Vertical via L2 Axial
in the CR3BP-LT Model

type geometry is sought to move the vehicle between these two particular orbits. Following

the steps outlined in the algorithm in Figure  4.4 , it is noted that both the L2 Lyapunov

and the L2 Vertical families are unstable in the linear sense; therefore, an initial guess for

this escape-type geometry is constructed by leveraging invariant manifolds from each of the

periodic orbits. The branches from the stable and unstable manifolds are depicted in Figure

 5.12 , where the blue and cyan trajectories correspond to branches of the stable manifolds,

while red and magenta represent flow from the unstable branches, respectively. A hyperplane

is selected according to the procedure described in Section  4.1.1 , such that, the crossings from

each of the manifold branches are recorded in a Poincaré map as illustrated in Figure  5.13 .

From the Poincaré map analysis, the algorithm proceeds to generate the initial guess

for the transfer depicted in Figure  5.14 (a), while the converged solution appears in Figure

 5.14 (b). The final transfer resembles the expected exterior geometry of the initial guess.

Blue arcs represent coast arcs, while the red segments correspond to the times for which
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Figure 5.10. CR3BP-LT Time-Optimal Family of Solutions

the low-thrust engine is turned on. The energy evolution and thrust acceleration of the

converged solution are represented in Figure  5.14 (d). The spacecraft requires 124.0840 days

to travel from departure (represented in Figure  5.14 as the first thrusting arc) to arrival

on the destination orbit. The transfer expends 0.6904kg of the 500kg initial mass, which

corresponds to an equivalent ∆V of 271.7434m/s. Comparing this propellant performance

to the theoretical minimum ∆V required to travel from the departure to the destination

orbit in Figure  5.14 (c), suggest that this trajectory corresponds to a mass-optimal solution.

5.1.4 Mass-Optimal Interior Transfer from a L2 Southern (S) NRHO to a L2
Northern (N) NRHO

To illustrate the performance of the sliding algorithm, consider a sliding-type low-thrust

transfer for a 14 kg spacecraft with a maximum acceleration level of 8 × 10−5m/s2, from a

L2 Southern Near Rectilinear Halo Orbit (NRHO) with energy JC = 3.0553 to a L2 North-

ern NRHO with energy JC = 3.0441 in the Earth-Moon CR3BP-LT system. The energy

parametrization for both families of interest appears in Figures  5.15 and  5.16 , respectively.
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Figure 5.11. CR3BP-LT Cost and ToF Performance. Performance for a
Time Optimal Family LT Transfer from a L2 Lyapunov to a L2 Vertical via
L2 Axial in the CR3BP-LT Model

Figures  5.15 (a) and  5.16 (a) represent the corresponding halo family of orbits in configuration

space. Figures  5.15 (b) and  5.16 (b) are a representation of the Jacobi constant value of each

orbit member of the family versus its orbital period; in both cases, i.e., for the northern and

southern families, this energy parametrization depicts non-monotonic growth, such that, the

value of the Jacobi constant for each orbit is not unique. The non-uniqueness of the energy

of each individual orbit member of the Halo families is also assessed in the parametrization

illustrated in Figures  5.15 (c) and  5.16 (c), in which, the energy surface for each individual

family is represented.

Once the energy parametization is computed, the algorithm proceeds to perform a grid

search to identify the individual intermediate orbits from each family to include in the initial

guess of the transfer. The initial guess generated from the sliding algorithm in the CR3BP-

LT model is plotted in Figure  5.17 (a). The converged mass-optimal solution —that is,

the output of the adaptive sliding algorithm— in the CR3BP-LT model, appears in Figure

 5.17 (b); blue and red arcs correspond to coast and thrust arcs in the CR3BP-LT model.

The evolution of the energy and thrust acceleration level for the converged solution are
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Figure 5.12. Manifold Branches of the L2 Vertical Orbit

represented in Figure  5.17 (d). Each horizontal segment in the Jacobi constant versus time

plot represents the spacecraft coasting along one of the intermediate orbits; the acceleration

level versus time plot demonstrates that the constraint on the maximum thrust magnitude

that the spacecraft can achieve is never violated.

Utilizing the roughness parameter map illustrated in  5.18 (a), the trajectory is transitioned

to the ephemeris model for the selected epoch of September 1, 2021. The corresponding

trajectories in different views of the Sun-Earth-Moon (SEM) ephemeris model are depicted

in Figures  5.18 (b)- 5.18 (d); cyan and magenta arcs represent coast and thrust segments in

the ephemeris model, respectively.

In the CR3BP-LT model, the spacecraft requires 72.9701 days from the time it departs

the original orbit (represented in Figure  5.17 as the first thrusting arc) until arrival on the

destination orbit (i.e., the last thrusting arc). The transfer path requires about 0.0461kg

(0.3335%) of the 14kg initial mass, which corresponds to an equivalent ∆V of 81.8931m/s. In

the ephemeris model, for this particular epoch, the equivalent ∆V consumption increases to

103.1541m/s or 0.0588kg of the initial spacecraft mass, while the time-of-flight is reduced to

72.6896 days. Note that, since the performance in the ephemeris model is epoch dependent,
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Figure 5.13. Poincaré Map for Stable and Unstable Manifold Branches of
the L2 Lyapunov and L2 Vertical Orbits of Interest

the ∆V consumption is modified by re-converging this locally mass-optimal solution for a

different time epoch.

To assess the performance of the solution, the propellant consumption is compared with

the theoretical minimum ∆V estimated for this transfer, as illustrated in Figure  5.17 (c).

In terms of propellant consumption, note that the sliding algorithm produces a path more

costly than the theoretical minimum. However, there exists a trade-off between reducing

propellant cost, and producing a trajectory that, despite the highly dynamically sensitive

region of space —such as the cislunar region— the spacecraft remains within the vicinity of

the Moon over the entire duration of the transfer. Moreover, the sliding algorithm produces

transfers leveraging the dynamical environment, even though the departure and arrival orbits

are stable in the Lyapunov sense, i.e., they do not possess arcs that naturally depart and/or

approach the periodic orbit.
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(a) CR3BP-LT Initial Guess (b) CR3BP-LT Converged Transfer.

(c) Theoretical Minimum ∆V . (d) CR3BP-LT Energy and Acceleration
Evolution.

Figure 5.14. Performance for a Mass Optimal Exterior LT Transfer from a
L2 Lyapunov to a L2 Vertical in the CR3BP-LT Model

5.2 Lunar IceCube Potential Mission Options

Upon deployment as a secondary payload from the Artemis-1 spacecraft, Lunar IceCube

(LIC), a 6U CubeSat equipped with a 1.24mN maximum thrust engine [  62 ], will transfer to

an orbit in the lunar vicinity from which it will complete its primary science and technology

demonstration objectives. The efficiency of LIC’s low-thrust engine enables the spacecraft to

pursue extended mission objectives; however, the low acceleration level available to LIC offers

significant challenges for the design of orbits and transfers. This investigation suggests a

framework for the construction of low-thrust transfers between multi-body orbits in the lunar

vicinity for applications with the LIC acceleration level. Low-thrust transfers are computed
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(a) L2 S Halo Configuration Space. (b) L2 S Halo Energy Evolution.

(c) L2 S Halo Energy Surface.

Figure 5.15. Energy Parametrization for the L2 S Halo Families of Orbits

to and from a variety of multi-body orbits that exist in the vicinity of the Moon, e.g.,

Lyapunov, distant retrograde, and halo orbits. The proposed methodology offers a strategy

applicable not only to the LIC mission but extendable to other low-thrust missions in the

lunar vicinity, whether the acceleration capabilities are greater or less than LIC, particularly

when science objectives, line of sight constraints, or orbital determination requirements,

necessitate the use of multi- body orbits. Cost-time efficiency transfer performance is assessed

that demonstrates the flexibility of the framework and delivers a new variety of mission

options for the LIC spacecraft.

To develop a general framework for trajectory design for the Lunar IceCube (LIC) space-

craft, the process is divided into three phases; this division does not only facilitate the

accommodation for modified Earth deployment state epochs in the primary mission, but
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(a) L2 N Halo Configuration Space. (b) L2 N Halo Energy Evolution.

(c) L2 N Halo Energy Surface.

Figure 5.16. Energy Parametrization for the L2 N Halo Families of Orbits

also generalizes the search for extended mission applications that are independent of the

arrival epoch of the LIC into its primary science mission orbit. The LIC’s primary mission is

comprised of phases I and II [ 105 ], while the potential extended applications are investigated

in phase III [ 107 ].

After arriving on the science orbit dictated by the primary mission, the LIC is expected

to remain in an L2 S 9:2 NRHO performing its science and technology demonstrations. The

examples and ephemeris epochs examined in this investigation assume that the spacecraft’s

propellant reserve to perform any potential extended mission application is of 13.6 kg at

best.

By leveraging the natural structures that exist within the CR3BP model, and, utilizing

an energy-informed adaptive algorithm to generate interior-type trajectories, a variety of
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(a) CR3BP-LT Initial Guess (b) CR3BP-LT Converged Transfer.

(c) Theoretical Minimum ∆V . (d) CR3BP-LT Energy and Acceleration Evo-
lution.

Figure 5.17. Performance for a Mass Optimal Interior LT Transfer from a
L2 S NRHO to a L2 N NRHO in the CR3BP-LT Model

different transfer from the L2 S 9:2 NRHO to other multi-body orbits in the lunar vicinity

are explored as possible candidates for LIC extended mission options. The initial guess

for all transfers is generated within the context of CR3PB system, and later corrected in a

higher-fidelity ephemeris model that includes the gravitational perturbations of the Sun, the

Earth and the Moon. All transfers are locally optimal solutions generated via a Sequential

Quadratic Programming (SQP) direct optimization scheme.
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(a) Roughness Parameter Map. (b) J2000 Moon-Centered Ephemeris.

(c) Earth-Centered Ecliptic Ephemeris. (d) Moon-Centered Ecliptic Ephemeris.

Figure 5.18. Performance for a Mass Optimal LT Interior Transfer from a
L2 S NRHO to a L2 N NRHO in the SEM Ephemeris Model

5.2.1 Transfer from a NRHO to a Lunar Distant Retrograde Orbit (DRO)

Consider the design of a low-thrust spacecraft trajectory from a L2 S 9:2 NRHO to

a 70,000km-altitude Distant Retrograde Orbit (DRO) around the Moon. The design of

this trajectory is particularly challenging, as both the departure and the arrival orbits are

considered to be stable orbits in the Lyapunov sense. This stability characteristic suggests

that there are no structures that depart or arrive into the orbits naturally, such as invariant
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manifold structures; hence, a creative strategy for generating informed initial guesses is

required.

The orbit chaining framework within the context of the energy-informed adaptive algo-

rithm provides such strategy. It creates an informed initial guess for an interior transfer in

the CR3BP model by selecting orbits from the L2 S halo and the P2 DRO families of orbits

as illustrated in Figure  5.19 (a) , and delivers the mass-optimal solution in Figure  5.19 (b),

that utilizes the minimum possible number of intermediate arcs. Figure  5.19 (d) represents

the evolution of the Jacobi constant as well as the thrust acceleration level of the spacecraft

throughout the trajectory.

(a) CR3BP-LT Initial Guess (b) CR3BP-LT Converged Transfer.

(c) Theoretical Minimum ∆V . (d) CR3BP-LT Energy and Acceleration Evo-
lution.

Figure 5.19. Performance for a Mass Optimal Interior LT Transfer from a
L2 S NRHO to a P2 DRO in the CR3BP-LT Model
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The CR3BP solution is fed as the initial guess for converging the interior trajectory in

the higher-fidelity ephemeris model. The mass-optimal interior solution in the ephemeris

model is depicted in Figures  5.20 (b)-(d) for representations in three different frames, with

varying central bodies. Red arcs in the figures correspond to thrusting segments, while the

arcs represent the times at which LIC is coasting. Figure  5.20 (a) correspond to the RPM

utilized to select the departure epoch. For the case of the interior transferin the ephemeris

model, the spacecraft requires 118.7911 days to travel from the departure to the arrival orbit,

while consuming 0.2647 kg of the 13.6 kg of the assuming remaining spacecraft mass from

phases I and II. A second strategy in the trajectory design framework of LIC’s phase III

explores the generation of exterior-type transfers, by utilizing nearby structures that depart

the vicinity of the Earth-Moon system. Such is the case of some of the exterior resonant

orbits that exist within the context of the CR3BP force model.

A 3:4 resonant arc is then utilized to generate an informed initial guess for constructing

an exterior trajectory from the L2 S 9:2 NRHO science orbit to the 70,000km-altitude DRO.

Even though many resonant families do exist within the CR3BP force model, the 3:4 family

is chosen due to its wide range of energy span, as well as its three-dimensional reach in

configuration space, which is advantageous when constructing initial guesses for transfers

between highly inclined (i.e., out-of-plane) orbits.

The initial guess is converged and optimized in the lower-fidelity CR3BP force model,

and that solution is later utilized to generate the exterior ephemeris mas-optimal trajectories

in Figures  5.21 (a)-(c), where its representation as seen by different observers is depicted. As

expected, LIC departs the vicinity of the Moon to accomplish the required plane and energy

changes, to later re-enter the system and arrive on its destination orbit. Majority of the

thrusting happens away from the lunar region. For the case of the exterior-type transfers,

LIC requires 110.1077 days to travel from the science orbit to the DRO, and, it consumes

about 0.1481 kg of the remaining 13.6 kg mass.

5.2.2 Transfer from a NRHO to a ‘Flat’ Halo Orbit

As a second extended option for the LIC spacecraft, this investigation studies the design

of a low-thrust spacecraft trajectory from a L2 S 9:2 NRHO to a Northern (N) ‘flat’ halo
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(a) Roughness Parameter Map. (b) J2000 Moon-Centered Ephemeris.

(c) Earth-Centered Ecliptic Ephemeris. (d) Moon-Centered Ecliptic Ephemeris.

Figure 5.20. Performance for a Mass Optimal Interior LT Transfer from a
L2 S NRHO to a P2 DRO in the SEM Ephemeris Model

orbit in the vicinity of the 2 libration point. Even though the arrival halo orbit is unstable

in the Lyapunov sense, which suggest the existence of manifold structures leaving to and

from the periodic orbit, the energy-informed adaptive algorithm is once again leveraged to

construct an interior-type initial guess in Figure  5.22 (a), that is corrected in the lower-fidelity

CR3BP model as illustrated in  5.22 (b), utilizing the minimum number of intermediate orbits

required to travel from departure to destination.

The CR3BP mass-optimal solution is re-converged in the ephemeris model for a November

1st, 2022 selected epoch. This epoch is chosen from the roughness parameter technique

shown in Figure  5.23 (a), to enable LIC to complete its primary mission around the L2 S 9:2

NRHO science orbit. Figures  5.23 (b)-(d) represent the mass-optimal solution corrected in
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(a) J2000 Moon-Centered Ephemeris. (b) Earth-Centered Ecliptic Ephemeris.

(c) Moon-Centered Ecliptic Ephemeris.

Figure 5.21. Performance for a Mass Optimal Exterior LT Transfer from a
L2 S NRHO to a P2 DRO in the SEM Ephemeris Model

a higher-fidelity ephemeris model, for an observer fixed in three different reference frames.

The trajectory design framework selects the use of the sliding algorithm over the use of

manifold structures, to guarantee that the spacecraft does not exhibit long transits around

the Earth-Moon system.

For all three observers, it is seen that the spacecraft does not depart the vicinity of the

Moon, behavior that is consistent with that of interior-type transfer trajectories. For each

of the plots in Figure  5.23 , the red portions of the transfer represent segments where the

thrust is active, while the blue arcs correspond to segments where the spacecraft’s engine

is turned off. LIC performance for this potential extended mission interior transfer requires

164.1934 days of transit from the departure to the arrival orbits, and it consumes 0.3046 kg

of propellant.
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(a) CR3BP-LT Initial Guess (b) CR3BP-LT Converged Transfer.

(c) Theoretical Minimum ∆V . (d) CR3BP-LT Energy and Acceleration Evo-
lution.

Figure 5.22. Performance for a Mass Optimal Interior LT Transfer from a
L2 S NRHO to a L2 ‘Flat’ Halo in the CR3BP-LT Model

An exterior-type transfer is also generated for the case of LIC traveling from the L2 S

9:2 NRHO science orbit to a L2 ‘flat’ halo orbit as shown in Figures  5.24 (a)-(c).

In this scenario, it is noted that the arrival orbit is unstable in the Lyapunov sense, hence,

it does possess natural structures that depart and arrive into the orbit in a ballistic fashion.

These structures are computed via invariant manifold theory, and along with a Poincaré

mapping technique, are utilized to construct initial guesses for the exterior transfers in the

CR3BP force model. Once the initial guess is converged as a mass-optimal continuous solu-

tion in the lower-fidelity model, this result is fed into the higher-fidelity ephemeris dynamics

as initial guess, producing the exterior-type transfers in Figure  5.24 , where the motion is

visualized as seen from an observer placed in three different reference frames. In this case,
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(a) Roughness Parameter Map. (b) J2000 Moon-Centered Ephemeris.

(c) Earth-Centered Ecliptic Ephemeris. (d) Moon-Centered Ecliptic Ephemeris.

Figure 5.23. Performance for a Mass Optimal Interior LT Transfer from a
L2 S NRHO to a L2 ‘Flat’ Halo in the SEM Ephemeris Model

LIC requires 106.4887 days to travel from the departure primary mission science orbit to the

arrival orbit near the L2 libration point. The propellant consumption is such that 0.1745 kg

of the phase II 13.6 kg remaining are consumed.

5.2.3 Transfer from a NRHO to a Low Lunar Elliptical Orbit (LLO)

The last potential extended mission scenario studied in this investigation, considers trans-

ferring LIC from the L2 S 9:2 NRHO science orbit to a low lunar elliptical orbit with a 100km
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(a) J2000 Moon-Centered Ephemeris. (b) Earth-Centered Ecliptic Ephemeris.

(c) Moon-Centered Ecliptic Ephemeris.

Figure 5.24. Performance for a Mass Optimal Exterior LT Transfer from a
L2 S NRHO to a ‘Flat’ Halo in the SEM Ephemeris Model

periapsis altitude and a 5,000 km apoapsis altitude. The full set of Keplerian orbital ele-

ments that defined the arrival orbit are summarized in Table  5.2 . An interior-type transfer

is sought from the generalized trajectory design framework.

Table 5.2. Summary of Keplerian orbital elements defined in a Moon-centered
inertial frame for the selected arrival low lunar elliptical orbit

Orbital Elements Value
Semi-Major Axis, a 4,287.4 km
Eccentricity, e 0.5714
Inclination, i 56 deg
RAAN, Ω 65 deg
Argument of Periapsis, ω 355 deg

The orbital inclination is measured relative to the Moon’s equator and the right ascension

of the ascending node (RAAN) is defined with respect to the vernal equinox vector. The

main challenge encountered on the design of this trajectory is derived from the large energy

gap between the departure and arrival orbits. Furthermore, the energy-informed adaptive

sliding algorithm needs to accommodate that the two orbits exist in different dynamical
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models, as the departure orbit resides within the context of the CR3BP force model, while

the arrival orbit is a Keplerian conic defined in the context of the Two-Body Problem (2BP).

The first step in the trajectory design framework is then to transform the Keplerian orbit to

its correspondent trajectory in the CR3BP force model, as illustrated in Figure  5.25 , where

it is seen that the LLO is no longer a conic section nor it is a periodic orbit. The path

is propagated for 160 revolutions of the original Keplerian orbit, whose orbital period is of

about seven hours.

Once the arrival orbit is transformed into CR3BP coordinates, the trajectory design is

split into two steps:

1. Backwards propagation with a suboptimal thrust spiral from the LLO until the tra-

jectory crosses a selected surface of section in the lunar region

2. Slide through a number of intermediate members of the L2 S halo family, until the

energy of the intermediate orbit matches the energy of the thrust spiral trajectory on

the surface of section

Figure 5.25. Low lunar elliptical orbit transformed into the CR3BP dynamical model

The initial guess constructed from this design methodology in the CR3PB is depicted in

Figure  5.26 . The energy-informed adaptive sliding algorithm suggests that three members
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of the southern halo family of orbits near the L2 libration point, be incorporated from the

orbit chaining framework.

To fully generate a converge solution, it is necessary to link steps 1. and 2. from

the trajectory design process, by means of a differential corrections scheme, that delivers

an interior-type path continuous in position, velocity and mass states. Such solution is

represented in Figure  5.27 for the CR3BP force model, where the red and blue arcs correspond

to thrust and coast segments, respectively. The spacecraft requires 72.9701 days to travel

from the departure to the destination orbit, and it consumes about 0.4671 kg of the remaining

propellant mass from LIC’s phases I and II primary mission. The solution in Figure  5.27 is a

mass-optimal trajectory. By utilizing the roughness parameter technique, a departure epoch

of September 1st, 2022 is selected to transition the CR3BP solution into a higher-fidelity

trajectory, depicted in Figures  5.28 (a)-(c), for an observer fixed in three different reference

frames.

Figure 5.26. Initial guess for the interior trajectory from a L2 S NRHO to
an Elliptical LLO in the CR3BP-LT

In all three ephemeris plots for the different central bodies and reference frames in Figure

 5.28 , the J2000 inertial frame centered at the Earth, the ecliptic frame center at the Moon,
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and the barycentric rotating frame, it is observed that the energy-informed adaptive sliding

algorithm is successful in producing a mass-optimal solution in the higher-fidelity ephemeris

model that does not need to depart the Earth-Moon system to accomplish the required

change in energy. The LIC spacecraft requires 66.0889 days to travel from the 2 S 9:2 NRHO

science orbit to the low lunar elliptical arrival orbit, and it consumes 0.5356 kg of propellant

from the 13.6kg remaining from phases I and II.

As expected, the transfer geometry when observed from the barycentric rotating frame in

the ephemeris model resembles that of the mass-optimal solution converged in the CR3BP-

LT.

Figure 5.27. Converged solution for the interior trajectory from a L2 S NRHO
to an Elliptical LLO in the CR3BP-LT

5.2.4 Summary of Potential Extended Mission Options

Table  5.3 depicts a summary of the results obtained in this investigation, for a variety

of sample candidate transfer options for the Lunar IceCube spacecraft, after the completion

of its primary science and technology demonstration mission objectives. All interior and

exterior transfers are generated utilizing an energy-informed adaptive sliding algorithm and

optimized for propellant consumption in a higher-fidelity ephemeris model that includes the
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point mass gravitational acceleration of the Sun, the Earth and the Moon. Furthermore,

all interior and exterior trajectories are evaluated for a range of different epochs starting in

March 1st, 2022, epoch after which LIC would have already arrived in its primary science

mission orbit. By leveraging the roughness parameter technique, via measurement of the

RMS value of the position profile of each initial guess trajectory for every epoch in con-

sideration, a departure epoch from the L2 S 9:2 NRHO science orbit was selected for each

transfer scenario. All transfers constructed with this trajectory design framework meet the

propellant and time-of-flight requirement for possible extended mission options for the Lunar

IceCube spacecraft.

Table 5.3. Summary of results for Phases III of LIC potential extended
mission options trajectories from the primary science mission orbit

Orbit Type ∆m[kg] ToF [days]
DRO Interior 0.2647 118.7911

Exterior 0.1481 110.1077
‘Flat’ halo Interior 0.3046 164.1934

Exterior 0.1745 106.4887
LLO Interior 0.5356 66.0889
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(a) Roughness Parameter Map. (b) J2000 Moon-Centered Ephemeris.

(c) Earth-Centered Ecliptic
Ephemeris.

(d) Moon-Centered Ecliptic Ephemeris.

Figure 5.28. Performance for a Mass Optimal Interior LT Transfer from a
L2 S NRHO to an Elliptical LLO in the SEM Ephemeris Model
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6. CONCLUDING REMARKS

Low-thrust spacecraft trajectory design in the cislunar region is highly driven by the

dynamical regime utilized to describe the equations of motion. To accurately represent this

dynamical environment, different levels of fidelity —the circular restricted three-body prob-

lem system and the higher-fidelity ephemeris model—, are considered in this investigation,

and presented for applications of vehicles travelling between libration point orbits in the

Earth-Moon system. Strategies for rapid and accurate generation of initial guesses for low-

thrust spacecraft trajectory design is evolving in such a way, that the filed of numerical

methods continue to be both a driving factor and a constraint when finding converged so-

lutions that satisfy all of the mission requirements. A number of numerical approaches are

presented in this investigation, including multiple shooting and direct optimization schemes,

that are used to perform an extensive analysis of the motion of vehicles powered by low-thrust

engines, travelling in the vicinity of the Moon within the context of the circular restricted

three-body problem.

6.1 Investigation Summary

A new method for constructing initial guesses, for transfers between libration point orbits

in the Earth-Moon CR3BP-LT system, has been explored, via exploitation of the energy

parametrization of the periodic orbit families. This method yields to a type of transfer

geometry, which in this investigation is denoted the sliding-type geometry; the spacecraft

slides through a set of intermediate members of specific periodic orbit families, to transfer

from a departure orbit to a target destination.

The time-of-flight versus the propellant consumption trade-off, experienced in the sliding-

type trajectories, is compared side by side with the most popular escape-type geometries;

the spacecraft leaves the system to gain sufficient energy to perform plane changes, and

reduce propellant cost. It has been discovered in this investigation, that with the sliding-

type geometry, similar trajectory performances are achieved. The sliding method is valid in

any CR3BP-LT model, employs members of different families as intermediate orbits —orbit

chaining method—.
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6.1.1 Adaptive Orbit Chaining Approach

The adaptive sliding algorithm successfully produces transfers over a range of low-thrust

problems of varying complexity. While manifold arcs aid in constructing interior and exterior

transfer geometries, the energy-informed adaptive sliding algorithm offers the capability for

identifying interior transfer geometries when manifolds arcs are not available, e.g., when

moving between stable periodic orbits. Furthermore, the sliding methodology is valid for

any CR3BP-LT model, and employs members of different families as intermediate orbits,

consistent with an orbit chaining method. Since the geometry of the converged solution

relies heavily on the initial guess, there are an infinite number of options for sliding through

a bounded region of space and transferring between departure and arrival orbits.

Trajectories resulting from this algorithm are successfully transitioned into a higher-

fidelity ephemeris model with solar and lunar gravitational perturbations. Sliding geometry

transfers are transitioned into the higher-fidelity ephemeris model from either a converged

solution in the CR3BP-LT model, or, from a set of periodic orbits generated as the initial

guess by the sliding algorithm. The roughness parameter maps aid in generalizing this

transition, by offering a range of possible epochs that reduce the sensitivity of the problem,

and guarantees a smooth performance of the multiple shooting corrections process. The

weighting parameters in the objective function in the adaptive sliding algorithm are easily

modified to accommodate either mass-optimal or time-optimal solutions. Regardless of the

prioritization for this minimization function, the algorithm delivers a locally optimal solution

with the minimum number of intermediate orbits from departure to destination.

Understanding the effects of the changes in the thrust magnitude, on the final transfer

geometry of the solution, is the main query of the third fundamental question proposed in this

investigation. One possibility to closely examine this impact, is by applying a continuation

strategy on the thrust magnitude of locally optimal solutions that exhibit no coast arcs, i.e.,

solutions that are optimized for a minimum time-of-flight:

min J = ToF.
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It is known that transfers converged with lower acceleration levels, will automatically modify

the transfer geometry –will deviate from the precomputed reference path–; thus, understand-

ing the impact of the acceleration level when transitioning to the ephemeris model, aids in

evaluating the validity of the methods and solutions developed in this investigation.

6.1.2 Lunar IceCube Mission

In this investigation presents a trajectory design framework for generating lunar IceCube

(LIC) traansfers from its primary science mission orbit to other extended potential candidate

periodic orbits in the lunar vicinity is explored, in an aim to exploit the efficiency of the

low-thrust engine. Candidate periodic orbits that exist within the context of the CR3BP

dynamical model are selected and optimized via both indirect and direct optimization tech-

niques, to produce locally optimal solutions that satisfy the physical constraints introduced

by the lunar IceCube spacecraft.

The adaptive sliding algorithm strategy developed in this work is utilized to construct

initial guesses for CubeSat-type spacecraft transfers, under the assumptions of the Two-Body

Problem (2BP) and the Circular Restricted Three-Body Problem (CR3BP) lower fidelity

force models, that are later transitioned into a higher fidelity ephemeris model. Low-thrust

trajectories for spacecraft traveling in cislunar space are generated via a modified version

of the traditional orbit chaining framework. This strategy is employed regardless of the

force model in which the departure and arrival orbits exits, and, a step-by-step approach is

provided for the construction of informed initial guesses for the trajectory design problem.

6.2 Recommendations for Future Work

The type of low-thrust engine examined in this investigation is consistent with the electric

propulsion technology, whose efficiency and capabilities are continuously evolving. There-

fore, the flexibility of the trajectory design framework must also evolve to be consistent with

the new technological advances. This feature signifies for the low-thrust trajectory design

framework to be flexible enough such that it does not depend on the type of vehicle utilized,

nor on the dynamical model employed to construct the initial estimate. Some of the direc-
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tions for future work recommendations concerning the initial guess generation of low-thrust

spacecraft trajectories between libration point orbits are outlined below:

6.2.1 A Modified Adaptive Orbit Chaining Framework

A modified orbit chaining strategy consist of dividing the problem of transferring a low-

thrust spacecraft from a departure to an arrival orbit into multiple subproblems. The pro-

cess is outlined as follows: from the target arrival orbit, a family of destination orbits is

constructed via a continuation method, such that, the first member of said family is the

target arrival orbit, and, the last member of the family of destination orbits is the last orbit

computed via the continuation method. The goal of the first subproblem in the modified

orbit chaining strategy is then to deliver the spacecraft from the departure orbit to the last

member of the family of arrival orbits, and each subsequent subproblem utilizes the pre-

viously generated converged solution, to deliver the spacecraft from the departure orbit to

the next member of the family of destinations orbits. The problem is divided into as many

subproblems as the number of destination orbits generated in the family of arrival orbits.

A natural parameter continuation method can then be successfully introduced into the

implementation of a generalized modified orbit chaining technique, that leverages an energy-

informed adaptive sliding algorithm to navigate the cislunar space in the construction of

informed initial guesses, and delivers optimal trajectories for low-thrust spacecraft moving

in the vicinity of the Moon, that are easily transition from lower fidelity force models into

a higher fidelity model that includes the gravitational attraction of the Sun, the Earth and

the Moon.

6.2.2 Applications to Orbit Maintenance Methods

When trying to maintain a low-thrust spacecraft in a particular orbit in the vicinity of

the Moon, it is necessary to understand the effects of changes in the control variables, on the

stability of the trajectory. This implies the ability for a particular corrections or targeting

algorithm to provide precise information for the thrust acceleration level and orientation

of the thrust vector, required to follow a particular reference path. Since only low-thrust
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maneuvers are being analyzed in this investigation, the capability to control the duration

for which the vehicle remains within a specified region in space, under the effects of the

thrust acceleration vector, is of great interest in this analysis. The development of linear

and nonlinear control strategies to further refine the a priori construction of the control

history to achieve the desired ordered motion of the spacecraft, will aid in maintaining the

spacecraft in a specified orbit for a longer duration of time.

It is then necessary to explore the effects of the perturbations acting on the baseline

trajectories generated by the adaptive sliding algorithm —errors in position/velocity,burn

errors—, and perform an analysis on the response of the control effort required to satisfy the

mission constraints under the new dynamical regime. Furthermore, a critical value of the

thrust acceleration magnitude can be determined by performing a global sensitivity analysis,

for which the transfer geometry no longer resembles that of the reference path.
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