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ABSTRACT 

The motivation for this work comes from the need to obtain data for autonomous systems that rely 

heavily on recommender systems for human interaction. Recommender systems are data-driven 

technologies and depend heavily on large quantities of user data to function effectively, e.g. [1], 

[2]. However, acquiring that data has proven difficult [3]–[7] because users typically do not want 

to lend the effort to furnish the data. Part of the reason for this problem stems from the reluctance 

of users to provide data because, as reported by users, it is cognitively taxing and/or too tedious to 

do so [8], [9]. With autonomous systems bringing greater demand for user data, in some 

applications, this also brings an opportunity to solicit data from users. The American driver spends 

about an hour each day on the road; with self-driving cars, this means there will be a captive 

audience in the vehicle for at least the duration of the trip [10]. To exploit this, a user interface will 

need to be designed to coax the user into achieving system goals, like data solicitation. One 

approach is to design a system to leverage an already present tendency for people to socially 

interact with technology [11]. In this thesis, I argue that such an approach would involve 

incorporating interaction concepts that facilitate engagement into the design of 

recommender system interfaces that will improve the likelihood of obtaining data from users. 

To support this claim, I synthesize past work on human-computer interaction and 

recommender systems to derive a framework to guide scientific investigations into interface 

design concepts that will address the data solicitation problem. In addition, I present the results 

of a study of how anthropomorphism, as an indicator of engagement [12], may affect the amount 

of data provided by a user. I begin with a discussion of the problem and then provide a description 

of the recommender system filtering process to illustrate why user data is important. Then I 

describe the types of data that will be relevant to recommender system functioning, as the type of 

data determines how it is obtained. Subsequently, I introduce the construct of engagement and 

discuss design concepts for interactions that can potentially support it. I conclude with a discussion 

of future empirical work aimed at testing elements of the human-computer interaction approaches 

presented herein. The contribution will be the framework stated above and a research agenda 

stemming from that framework. 
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1. INTRODUCTION 

1.1 Problem Statement: The Data Solicitation Problem 

Recommender systems (RS) are becoming more common with applications that range from 

commercial product selection to route planning for transportation systems; they take a very large 

set of options and reduce it to a more manageable subset. Preference driven RSs require very large 

data sets. However, a common issue with state-of-the-art RS interaction techniques is that they do 

not solicit adequate input from users to generate options acceptable to them; this is the data 

solicitation problem. The thesis herein is that incorporating interaction concepts that facilitate 

engagement into the design of recommender system interfaces will improve the likelihood of 

obtaining data from users. Engagement can be defined as a positive experience that users have 

with other people and technology [13], [14]; this is a simplified definition and I will return to 

engagement in Chapter 5. For technology, an indication of engagement is repeated use [13], [15]. 

The presumption that is being made in this work is that enticing users into continued interaction 

with recommender systems will create opportunities to solicit data from users. However, soliciting 

engagement alone does not guarantee more user data. Recommenders system interfaces will need 

to be designed to take advantage of the opportunities provided through engagement to obtain user 

data. When a system is designed to encourage coordinated action between the user and machine, 

a concept that will be explored in this work, user data can be obtained as part of the information 

exchanges that occur. In recommender systems that allow users to control what filters are applied 

to the options being generated, users implicitly reveal their interests based on what constraints they 

apply to the solution set. For example, future self-driving car concepts promise to relieve the 

human from manual operation of the vehicle. These cognitive resources can then be reallocated to 

responding to rating prompts from the system (e.g., from scale of 1 to 5, rate the acceptability of a 

route),  input contextual constraints, such as limiting routes to those with the fewest pedestrians, 

or lift constraints on the RS to reveal new options. Those responses can then be fed to the 

recommender system for generating route options that are sensitive to high-level goals and 

objectives outside of minimizing time and distance, such as path options that cross the most points 

of interest, or rerouting to a gym to pass the time that would otherwise be consumed in idle traffic. 

By negotiating route options through information exchanges with the vehicle RS in the above 
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process, the human would effectively be engaging the system in data solicitation without it being 

a separate effort. In vehicle operations such as self-driving cars, the recommender system has a 

captive audience for at least the duration of the trip. If self-driving vehicles are realized, this will 

be an untapped opportunity to obtain more data from users. However, proposed interface design 

concepts need to be effective at engaging users to leverage that opportunity. Since information 

exchange depends so much on communication with the human, designers will need to bring to 

bear the latest advancements in technology to make communicating and interacting with the 

machines engaging. The challenge will be in implementation and determining what design 

concepts will be effective. This work is concerned with identifying what interface concepts show 

the most promise for positively influencing engagement and coordinated action with machines, 

and whether these interactions will result in more user data. 

The data solicitation problem stems, at least in part, from the reluctance of users to provide data 

because it is cognitively taxing and/or too tedious to do so [8], [16] and the task would carry next 

to no priority unless it demonstrates some practical or recreational value. Some systems have been 

designed which attempt to work around the data solicitation problem, but at the risk of 

compromising trust and acceptance of the system recommendations [17], [18]. Those systems 

accept that the initial set of recommendations will probably not be supported by data and are likely 

to be rejected. They rely on the chance that the user will provide feedback on the initial set and 

then continue to interact with the system to provide more data. However, this continued interaction 

is not guaranteed, because the presentation of poor recommendations increases the risk that the 

system is abandoned before it acquires the data it needs to refine those recommendations.  

The data solicitation problem is important because when recommender systems fail to produce 

acceptable results due to the scarcity of input from users, the overall utility of the product in which 

they are embedded diminishes. Conversely, when more data is available, recommender systems 

become increasingly accurate. Recommendation accuracy is the most common measure of the 

quality of the results generated by recommender systems by developers. Greater recommendation 

accuracy is achieved when the difference between the recommender system's prediction of a user's 

rating for an option and the actual rating provided by the user is small.  
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Addressing the data solicitation problem amounts to keeping the user engaged so that they do not 

abandon the system before it has collected enough input from users to serve useful 

recommendations. The current work aims to examine interaction approaches to this quandary. In 

particular, the work will introduce a reason, apart from receiving recommendations, for why a user 

would continue to provide inputs to the system. This reason lies with experiencing engagement 

with a system. Designing a machine interface for engagement will need to leverage models of 

human-to-human interaction; what implementation techniques will be most effective may be a 

function of the application area. In high workload environments, the user will not have the spare 

capacity to fully engage an RS but natural language interaction might address such issues. When 

self-driving vehicle technology reaches maturity and advances in artificial intelligence afford 

automated systems the ability to share cognitive functions with the human, engaging interfaces 

can leverage aspects of human-human interaction to facilitate cooperation between humans and 

machines to improve RS output, as well as keep humans operationally involved so that functions 

can be effectively recovered in the event of automation failure. This way, the human continues to 

play a meaningful role in the operation of the vehicle as advances in self-driving cars and other 

automated systems, such unmanned aircraft systems, continue to separate the human from manual 

operations. 

1.2 Contribution 

The contribution of this thesis is to provide a framework to guide scientific investigations into 

interface design concepts that will address the data solicitation problem. Based on this framework, 

I will suggest an agenda for future empirical work to uncover relationships - if they exist - between 

human computer interaction techniques and the likelihood that users will volunteer data to the 

system. In that agenda, two principle assumptions will need to be tested. The first is that more user 

data leads to more relevant RS options. Although developers have measures to conveniently 

quantify how closely RS output represents user preference, there is little evidence that the output 

will be appropriate to the operation, e.g., route options for vehicle operations, or acceptable to 

intended users. The second assumption is that more joint activity will lead to the quantity and type 

of information that will be ingestible to the RS. Joint activity is activity that is done in coordination 

between multiple actors. Due to the coordination aspect of joint activity, communication must 

occur. The presumption is that if this joint activity is conducted between a machine and a human, 
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the machine would be able to attain user data during the ongoing information exchange required 

of the joint activity. If these assumptions are validated, continued work can then focus on how to 

best implement social discourse with machines to support the exchange of information. One 

important issue related to implementation is determining what rules and common human practices 

can be quantified and applied to designing social interactions with an RS, or machines in general. 

These rules, among other goals of communication, help to facilitate managing speech to encourage 

another actor to divulge more information, like identifying common interests and then asking more 

follow-on questions about those interests.  Another necessary issue to be addressed is how to model 

the human in a discourse with a machine, that is, how will the human communicate with a machine 

given their interests, dislikes, and values. Also, what social or cognitive factors must be modeled? 

What are the mechanisms involved? How the user may respond to the machine that is exercising 

greater autonomy by proactively engaging the user in social interaction will also need to be studied. 

Even if a machine can perfectly mimic a human conversationalist, there is no guarantee that a user 

will reciprocate the attempt by the machine to socially interact. Finally, the best application areas 

for future work must be determined, along with disadvantages of each based on which will afford 

the best opportunity for social interactions, e.g., personal assistant applications may be more 

amenable to studying social interactions than a word processing application. The rest of this 

document provides theoretical and empirical justification for pursuing this research agenda – 

summarized below. 

Two principle assumptions must be tested: 

● Obtaining contextual information leads to more relevant RS recommendations 

● More social discourse will lead to more data from users 

Future work should address the following for developing engaging recommender system 

interfaces: 

● Model human social interaction: social constructs that apply to development of 

conversation planning must be determined 

● Model the human interlocutor: factors and mechanisms for modeling the users in 

conversation must be determined 

● Evaluate user reaction to novel machine roles: users’ response to machines exercising 

greater autonomy in initiating interactions must be determined 
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● Identify appropriate context for investigation: the best applications areas for future work 

must be determined, along with advantages and disadvantages of each based on 

o What applications afford the best opportunity for social interactions? 

o What applications will require recommender systems to be effective? 

o What applications will require information from the human in order to be 

effective? 

1.3 Organization 

In Chapter 2 I begin with a description of recommender systems. I describe the underlying 

mechanisms and techniques that make the RS work. The main purpose of the chapter is to point to 

where input from the human is important and why. I identify what goals need to be achieved by 

the recommender system, such as diversity in the options it presents, and how that is driven by 

data from the human. I will cover two fundamental filtering techniques, content-based filtering 

and collaborative filtering, because they are often used together; the former to jumpstart the RS 

process, and the latter being an iterative process to improve recommender accuracy. In Chapter 3, 

I expand my discussion of recommender systems to include context aware recommender systems 

(CARS). This type of recommender system is built on top of the filtering techniques from Chapter 

2 and incorporates context data from users. Context data serves to provide more relevance to the 

options generated by the RS and affords the system the ability to respond appropriately to changing 

operational situations; it highlights the human’s crucial role as a provider of context to an 

operation. Chapter 4 describes the common types of data that drive recommender systems and how 

they are obtained. I place special emphasis on defining context data. As humans play an important 

role in provided contextual data, user interfaces will need to entice interaction with the system 

through engaging experiences to obtain that data. This motivates the engagement approaches in 

Chapter 5 and 6. I introduce joint activity in Chapter 5 to identify the different types of activities 

that can occur between actors; this is important because an interface concept can fail to deliver an 

engaging experience based on the type of activity it is meant to support. In the same Chapter, I 

define engagement and then I proceed to describe various interaction concepts that can potentially 

have a positive impact on engagement. Chapter 6 pertains to the topic of human machine teams, 

which is an extension of joint activity, but specific to how humans will interact with machines that 

are designed to exercise more proactive behavior. The presumption I am making here is that this 
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proactive behavior will encourage more joint activity and subsequently exchanges of information 

where more user data can be obtained. In Chapter 7, I close with describing the promised 

framework and propose a research agenda to address the topic of this thesis; addressing the 

recommender system data solicitation problem with engaging user interfaces. 
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2. RECOMMENDER SYSTEMS AND THE ROLE OF DATA 

Recommender systems are automated systems that reduce a very large set of options into a smaller 

more manageable set of recommendations by employing complex algorithms, rules, and heuristics 

[19]. These recommendations can be personalized or non-personalized [20]. Recommender 

systems provide personalized recommendations when they incorporate the needs and preferences 

of the user [21]. When personalization is desired, collaborative filtering is commonly employed. 

Collaborative filtering is a technique that predicts a user’s preference for items based on how 

similar they are to other users in the community [2], [22]. Popular Internet vendors, such as 

Amazon.com, who employ collaborative filtering, typically explain their recommendations by 

stating that "other people who bought item x also bought item y.” 

The recommendations are poor when recommender systems do not have access to large volumes 

of data. This is particularly true with systems designed to personalized recommendations. One 

technique for achieving personalized recommendations is with collaborative filtering [2], [23]. 

In Figure 1 I provide an illustration of the collaborative filtering process. I separate the process 

into two phases - Phase 1 and Phase 2. 

 

Figure 1. The collaborative filtering process. 

 

If, a user Bob, had visited this system before, the initial query will be informed by feedback that 

he had provided in the past. If Bob is a completely new user then the system will rely only on the 

keywords for the initial set of results; this is called content-based filtering [24], [25]. Bob can select 
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from that set or refine the results by providing more search terms. Bob may also reject the results 

altogether and completely quit the system. If an item is selected there will be a period during which 

Bob will take delivery and experience the item, shown as a dotted line between Phase 1 and Phase 

2.  

In Phase 2, the user provides feedback to the system regarding the item selected in Phase 1 to 

inform future recommendations. This is initiated with a prompt for ratings. Email is a common 

means for delivering a prompt. For movies, a prompt can come at the end of the presentation. Bob 

can refuse to provide the ratings and quit the system, but as this will end unconstructively with the 

data solicitation problem the desirable path requires that Bob elects to provide ratings. If Bob 

volunteers ratings, the system can then store the information and use it to match Bob to existing 

users in the community who share similar ratings. In turn, the learned preferences of those users 

inform future recommendations for Bob, shown by the dotted line at the bottom of Figure 1.  

Collaborative filtering has been the most successful implementation of recommender systems due 

to the computational efficiency, as well as accuracy and diversity of the recommendations [2], 

[23]. Diversity is the extent to which the recommended set aligns with the preferences of the user, 

but the choices are different from one another [21]. Accuracy is measured by the difference 

between the ranking provided by the system and the ranking provided by the user for a particular 

choice, and is considered to be the principal measure of performance for recommender systems by 

developers [2]. If for example, in Figure 13, Bob’s nearest community gives 4 stars to a particular 

television, and Bob gives the same television 2 stars after having accepted it as a recommendation, 

the accuracy would be 4 − 2, or 2.  

The Netflix Prize is a well-known example of the use of accuracy. The open competition offered 

$1,000,000 for a collaborative filtering algorithm that can improve the accuracy of 

recommendations for their movie streaming service [26]–[28]. Competitors were given a training 

set of 100,480,507 ratings from 480,189 users for 17,770 movies from the Netflix database.  

Another 1,408,789 ratings were concealed from the competitors as the test set, which represented 

users whose ratings the algorithms attempted to predict. The availability of the large initial data 

set made the problem tractable. Another advantage to the contestants was that explicit ratings were 

already made available to the contestants – it did not have to be collected from users.  
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In addition to explicit ratings, context aware recommender systems (CARS) incorporate contextual 

data furnished by the user to further refine the option sets. Content-based and collaborative filtering 

both serve as underlying processes in CARS; except contextual constraints are applied before the 

first set of options are presented to a user. Context pre-filtering require that the CARS be targeted 

to a specific application, so that the appropriate subject matter experts can be recruited to predefine 

the contextual categories, e.g., for self-driving car, weather, user preference, time of day, nearby 

points of interest, purpose of trip.  Any contextual information that can be collected automatically, 

such as time of day, e.g., 4 pm Friday, is then applied to initial RS results before being presented 

to the user for additional contextual input, e.g., purpose of the trip is sightseeing. It is at this stage 

that the unique capabilities of the human, such as reading the intent of other actors, becomes a 

critical contribution to an operation. In the next chapter, I discuss the topic of CARS in further 

detail.   
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3. THE CONTEXT AWARE RECOMMENDER SYSTEM (CARS) 

Context aware recommender systems (CARS) exploit human use of heuristics. It does this by 

incorporating contextual information that is selectively furnished by users based on their 

interpretation of the relevance of the information, e.g., limit options to quiet venues because work-

related topics are likely to be discussed during the lunch, in addition to contextual information that 

is already accessible to the system, e.g., time of day. Context filtering is an iterative process 

requiring frequent engagement from the human to interpret and addresses real-time changes to the 

operational situation or environment, such as rerouting to pick-up a child from school triggered by 

the sudden unavailability of the original driver. When usefulness of the recommendations and 

overall interaction experience are taken into account, context aware RS are more effective than 

non-context aware RS [29]. Like collaborative filtering, the effectiveness of a CARS will be 

negatively impacted by data scarcity if an interface is unable to engage the user for data. Before 

the first set of recommendations are presented to a user, domain experts need to be involved in 

pre-defining the contextual data categories; the more of these constraints are added into the design 

of the RS, the more application specific the RS becomes. For example, a cinema CARS may have 

seating location as a constraint category.  

 

Figure 2. The contextual filtering process. 

 

The context aware recommender system is composed of content filtering layers on top of the 

collaborative filtering process described in Figure 2. The process is again triggered by a request 
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from the user which is subsequently passed through content pre-filtering to generate an initial set 

of options. The difference here is that a set of contextual constraints based on the categories 

previously defined by domain experts is applied to the results before presentation to the user. These 

initial constraints are typically attainable by the system and vary with time. Some examples are 

weather and geographical location; for transportation applications this information can be 

remaining fuel capacity. After receiving a request from the user and the context pre-filtering has 

been applied, an initial set of options is then presented to the user. The user will bring additional 

constraints, i.e., contextual post-filtering, to pare down the options, such as information about who 

and why they are making the request; returning to our self-driving car example, the information 

could be about real-time events that place new demands on the operation, e.g., a text message from 

home to pick-up more milk. In air transportation applications, a pilot may specify a medical 

emergency to limit options to candidate airports with medical facilities nearby [30]. After the 

contextual post-filtering, the system prompts the user to rate the options on-hand to generate a user 

profile for collaborative filtering in the next round of recommendation requests. The system then 

presents a new set of options on which the user can apply or remove contextual constraints in 

response to unfolding events that may impact the operation, or make a choice, ending the process. 

The strategy employed in CARS engages the user to improve the responsiveness of the 

recommender system to the operational environment. When user acceptability serves as success 

criteria for the RS, involving the user in the process by allowing them to manipulate inputs to view 

their impact on the solutions improves the likelihood of RS success. A key factor in encouraging 

user participation is the quality of the user interface experience.  

The CARS process is an example of flexible rulemaking. Flexible rulemaking is the ability to add 

or remove constraints; I eluded to this in the examples given above. Conversational RS interfaces 

facilitate flexible rulemaking by allowing the user to manipulate RS input and preview the impact 

of the manipulation on the solution set [29]. This interaction strategy supports understanding of 

the solution space and in the process reveals reasons for the presented options. More importantly, 

conversational interfaces engage the human in an exchange of information with the RS as a 

necessary part of responding to real-time events in the operational environment. In off-nominal 

situations, this allows the user to identify which constraints need to be lifted to uncover options 

that would otherwise be inappropriate. For example, a pilot may need to override constraints that 

would eliminate highways or rivers in an emergency landing. In a similar scenario, when a failure 
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requires an aircraft to land at the nearest airport, a pilot may want to insert a constraint to identify 

airports with suitable runway conditions given existing weather conditions [31]. Runway 

conditions and weather serve as contextual information that is not readily available to the system; 

the information must come from the pilot’s experience with various airports or learned from 

colleagues. For recommender systems, ratings and contextual data are key human inputs. In the 

next chapter, I discuss these two sources of information further.  
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4. INPUT DATA ACQUISITION FOR RECOMMENDER SYSTEMS 

4.1 Ratings Data and the Data Solicitation Problem 

To achieve high accuracy, collaborative filtering depends on having many explicit ratings, which 

are solicited from users by presenting them with Likert format queries for an item (e.g., how many 

stars do you give this movie?) [2], [21]. The benefits of collaborative filtering diminish when new 

items or users are introduced into the system for the first time, because the number of explicit 

ratings is not sufficient enough to create matches between the individual user and other users in 

the community [3], [4], [7], [22], [32]. If, for example, a user chose to exit the system after 

selecting an item instead of providing ratings when prompted, a profile would never be refined for 

this user, or created at all. The system would have to resort to alternative techniques, only to deliver 

sub-optimal recommendations.  

Some existing solutions have been designed that deliberately expose the user to a poor initial set 

of recommendations and then depend on the chance that the user will continue to interact with the 

system to rate and refine the recommendations [33]. In most cases, the system never acquires the 

explicit ratings it needs to improve its accuracy because the poor recommendations diminish the 

system's utility and cause the users to abandon it early in the interaction loop [17], [18] – this is 

the data solicitation problem. Also contributing to the likelihood that users abandon the system is 

the tendency for users to avoid providing explicit ratings due to the tediousness and unpleasantness 

of the task [8], [16]. Even for companies such as Netflix, who have a large database of explicit 

ratings from the community, this remains a problem because if individuals are new to the system 

and do not provide explicit ratings then they cannot be matched to other users in that community. 

The use of implicit ratings has been employed as an alternative to explicit ratings because its 

collection is not imposing and does not require cognizant cooperation from users. Implicit rating 

sources come primarily from behavioral data such as the amount of time spent reading about an 

item or whether a user prints or saves an item [34]. These ratings have the disadvantage of requiring 

a greater volume of data to reduce inaccuracies in the inferences [2]. They are inaccurate because 

the behavior that is being observed is not always indicative of preference. For example, a record 

may show that a user dwelled on a webpage for a long period of time, but the user could have 
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simply stepped away from the computer and neglected to close the web browser. Other sources of 

data have been mined to identify user preferences. These include contextual data from textual 

comments from blogs [4], or demographic information [35]. In the next section I describe 

contextual data in detail and discuss implications in vehicle operations for capturing human intent 

and purpose; a use case that demonstrates the relevancy of contextual data beyond user 

preferences. 

4.2 Beyond Explicit Ratings: Contextual Information 

Contextual information affords computing systems robustness across different settings[36]. For 

RSs embedded in mobile applications such as cell phones and cars, robustness means being able 

to produce appropriate solutions across different operational environments. Designers will need to 

consider two approaches to defining contextual information, positivist and phenomenological.   

The positivist approach views contextual data as generally knowable and can be explicitly attained 

[36]. The data is representational and is considered peripheral to the task at hand. For example, the 

frequency of corrective inputs into a steering wheel would not be contextual data because it relates 

directly to a task; however, vehicle performance limits, geographical location, current lighting, and 

time, any information that can be explicitly given or received by the system [29], would be 

considered contextual data. The examples provided here, are fully observable. Partially observable 

data, on the other hand, contain some information that can be explicitly attained, but some parts 

that are latent. For example, a pedometer provides time and geographical location, but does not 

reveal if a user was walking on a treadmill or track, or if the reason for walking was for exercise 

or transiting between boutiques at a shopping mall. As implied by the examples above, the 

positivist approach to contextual information assumes that the information can be encoded and 

defined in advance. In addition, the positivist view assumes that the relevance of contextual data 

does not vary between activity or event, e.g., time captures duration regardless of it being for a 

football game or a commute to work. The positivist view dominates most computing research 

because of an existing bias towards data that can be readily applied to statistical trends and ideal 

mathematical models [36], e.g., IJtsma et al. [37], but this provides only a limited view of context. 

To better capture context, RS researchers have also adopted phenomenological perspectives. Users 
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bring two categories of contextual information from the phenomenological view, latent and 

dynamic. 

Latent contextual information consists of information that is discrete, but not observable [29], such 

as a recreational drive along a coastal highway; a machine in this example will not be able to detect 

that a route is intended for the enjoyment of scenery. The purpose of a trip will have to be explicitly 

conveyed by the human as part of the experience. From a phenomenological view, the route by 

itself does not serve as contextual information. If a human in the recreation drive example were to 

provide the contextual information, it would be in the form of preference information about various 

points of interest. With that preference information a route recommender can then provide different 

options based on trade-offs between a route that intersects fewer higher priority destinations, 

versus a route that intersects the most points of interest, but none of them being the most preferred. 

An example of the former would be a traveler expressing that he/she is interested in a wine tasting 

experience while on a road trip in the south of France; the recommender output would be a route 

that intersects the most wineries, ignoring length of trip. While for the latter, an example may be 

that the traveler decides instead that he/she is interested in site-seeing, in which case the 

recommender output  would be a route that intersects items like national monuments, museums, 

architecture and some wineries as well. In both options, the route would be longer than options for 

a daily commute home, in which case the goal would be to minimize time and distance. Context 

in this example, is the relationship between the route and the nature of the experience – road trip 

versus commute. This relational property is one of four assumptions of the phenomenological view 

of context [36]. The second property is that contextual features are defined dynamically. Following 

on the previous example, a route may serve as context for a recreational drive in one instance, but 

in another instance that context can be replaced with certain buildings and architecture – you do 

not necessarily know in advance what people will consider context for a particular experience. The 

third property is that context is occasioned; a route that is context for a recreational drive on one 

occasion may be context for a daily commute in another occasion. The fourth property is that 

context emerges from activity; this property suggests that the route in the above example should 

always be associated with an experience to serve as context. This is a somewhat nuanced 

discrepancy with the positivist view that the route by itself is contextual information, and that the 

purpose for the use of the route is simply hidden or missing information.  
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The key takeaway from this chapter is that contextual information can be readily obtainable by a 

machine or, due to the relationship with experiences, it is attained only through engaging the user. 

The latter source of context motivates the interaction strategies for engaging RS interfaces – in 

particular, the implementation of conversational RSs. Given the ever-looming problem of data 

scarcity, RS developers will need to utilize any data available and accessible to them to generate 

effective recommendations. Next, we discuss methods for obtaining contextual data, followed by 

a description of concepts for joint action. Joint action naturally occurs when multiple actors interact 

for productivity or recreation; it motivates communication for exchange of information. An RS 

that can leverage joint action through an engaging interface can potentially be more effective at 

obtaining contextual information, as it emerges through the ongoing joint activity of generating 

options for shoes or routes in vehicles operations.  

4.3 Obtaining Contextual Information 

It is a key assumption in the present work that contextual information will have a positive impact 

on RS output. This assumption will need to be tested in future work. For now, one motivation for 

obtaining contextual data in real-time interaction is that it affords accommodating for changes in 

the operational environment that were not anticipated by the designer. Some of this contextual 

information is readily available to the machine, and some of this contextual information is latent 

to the machine. This hidden information must be extracted from ill-defined models of how users 

understand the ways a system works and how it interacts with the environment. These internal 

models are difficult to define because they vary by the unique experiences individuals have for an 

activity such as driving [38]. Humans can infer context information from each other if they share 

common mental models; if there is no common mental model, then people simply ask each other 

or the information surfaces during ongoing dialogue. A machine can employ similar means to 

obtain contextual information; Adomavicius et al. [29] provides three ways: explicit, implicit, and 

through inference. 

Contextual information that is obtained explicitly is collected by asking the user directly [29]. For 

website applications this can be done with a questionnaire that is completed by a user. 

Alternatively, the data can be collected from readily available sources like time and location from 

GPS. Contextual data that is obtained implicitly is an extension on data collected from available 
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sources, such as identifying that a person is in a national park based on GPS information. When 

contextual data is collected by inference, statistical or data mining methods are employed. A prime 

example of this is the collaborative filtering technique described in Chapter 2, where the preference 

for an item can be predicted based on ratings given to items purchased in the past. Inference 

techniques can also be applied to textual data, e.g., social media dialogue, to identify common 

symptoms reported by users that might be related to an increase in hospital visits within a city.  

Explicit and inferential means of obtaining contextual data require direct input, at least initially, 

from the human, which makes them susceptible to the data solicitation problem. This problem is 

not solely a burden on the machine. A considerable number of factors impact whether humans will 

divulge information to one another, such as trust and the level of risk that the requested information 

carries [39]. However, those factors considered, active dialogue creates opportunities to engage 

and build the trust required for information exchange [40]. From a phenomenological view, 

contextual information emerges when people engage in activities together; these activities include 

both recreational and productivity tasks for work related roles where communication is required. 

Significant advances in automation will need to happen before machines can leverage engagement 

for obtaining information from humans. Factors that influence human-human engagement, such 

as trust, will also influence continued engagement with a machine, e.g., [24], [41], [42]. I believe 

these advances will come in two forms: the ability for machines to engage in joint activity with 

the human, as well as mimic human verbal and visual communication. I begin the next chapter 

with an introduction to joint activity, followed by a discussion about engagement where I define 

the construct. I then begin a discussion that will continue through Chapter 6 about human computer 

interaction concepts that can potentially influence engagement and joint action, which includes 

mimicking human communication.  
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5. HUMAN COMPUTER INTERACTION APPROACHES TO 

ENGAGEMENT 

In this chapter, I begin with defining joint activity in Section 5.1. In general, joint activity is any 

activity involving more than one individual and will always involve social elements where 

communication and coordination is taking place. The concept of joint activity is important to this 

work because the exchange of information occurring within joint activity creates opportunities to 

solicit data from users while interacting with recommender systems. Engagement can feed into the 

joint activity loop by encouraging actors to continue interacting with one another. For the topic of 

joint activity, I will define the concept, describe two different types of joint activity and the 

conditions that determine when users will pursue joint activity. Next, I will take a deeper dive on 

engagement, starting with a working definition of the construct in Section 5.2. I will cover various 

frameworks for engagement from the literature, so that I can point to the factors that determine 

engagement. This will help to focus what interface implementation approaches should be studied 

for their potential impact on engagement. These approaches will be covered in Section 5.4. Finally, 

the concept of trust is important to this work because of its potential influence on whether users 

will interact with machines for joint activity and whether engagement will result from the 

interaction. I cover trust in Section 5.3 where I define the construct and discuss its relationship to 

how users will interact with machines, as well as discuss how system transparency serves as a 

determinant of trust.  

5.1 Joint Activity  

The concept of joint activity is important to this thesis because it drives the communication needed 

to acquire information from people. Clark [43] wrote extensively on joint activity, defining it to 

be an activity done in coordination by two or more actors. Joint activity can be recreational or 

practical. Recreational joint activity can be gossiping between two or more people, where the 

outcome is social reward. Practical activity is when two or more people interact to accomplish a 

task, such as editing a book. Clark added that in a joint activity the actors can have roles that 

determine how labor would be divided, and that the actors can have private goals, as well as shared 

goals. Clark also conveyed that joint activity is composed of nested joint actions. Finally, while 



 

28 

joint activities have a start and end time, they can happen simultaneously, or intermittently, as 

when a family watches television while having a meal together, and then periodically engage in 

conversation as different topics in the news are reported. Clark believed that it is impossible to 

have joint action without communication and vice versa. When actors engage in communication, 

they bring context, as in prior knowledge, beliefs, and assumptions.  

Johnson et al. [44] proposed that interdependent relationships are formed for joint activity within 

a given context. The relationships are driven by a need for actors to make-up for gaps in individual 

knowledge and skills to perform an activity within a context. Performing actions requires skills 

and knowledge. Johnson referred to these individual skills and knowledge as capacity, and when 

an actor lacked capacity to perform an activity within a given context, they were considered 

dependent. Another reason for forming interdependent relationships is to take advantage of the 

combined capacity of independent actors to enhance performance of an activity. Independent 

actors carry all the capacity needed to accomplish a task - within a given context; that is, given 

other contexts, the independent actor can lack capacity and be a dependent actor. A surgeon can 

exercise independence when diagnosing a patient but will require a team of technicians to perform 

surgery. Context is important. Johnson et al. defined interdependent relationships based on 

functional need. However, it is also important to note that interdependence can also be non-

functional, such as the need to seek the consolation of others upon the passing of a loved one, and 

the desire for others to express sympathy. Consistent with the phenomenological view, Johnson 

cited [45] that the relationships formed for joint action shape context that is internal to the human, 

such as knowledge, beliefs, and assumptions. For functional interdependence, that could be 

knowledge about how to operate a word processor, and for non-functional interdependence the 

knowledge can be how to convey sympathy that will be acceptable to another individual.  

Based on Johnson et al., [44] an RS implementation that would be effective at engaging users for 

obtaining information would then need to provide capabilities that users need to accomplish an 

activity, or generate options that effectively leverage the context information provided through 

joint action with the human. RS designers have generally focused on fostering practical 

engagement by demonstrating such utility to users so that they do not abandon the system before 

it has obtained the information it needs to continue serving useful recommendations. From a utility 
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perspective, a user’s likelihood of continued engagement depends on early experience with how 

well a system performs its intended function [40], [46].  

In addition to these practical reasons, Clark [43] suggested that joint activity includes verbal 

interaction, like attending a lecture or gossiping, to fulfill less tangible goals such as intellectual 

or social reward. To achieve this level of social engagement is very difficult with machines. It 

requires mimicking human-to-human verbal interaction; the likes that are only recently being 

explored through advancements in artificial intelligence. Thus, before effort is applied to 

developing machines capable of social discourse, the principle assumption that social discourse 

will lead to more contextual information from users will need to be tested. In advance of evidence 

that this assumption is true, however, there is evidence that users have an inherent tendency to 

socialize technology. In the next section, I describe how this already present tendency to socialize 

technology can be leveraged to solicit social engagement. Thereafter, I return to the topic of 

practical engagement with some background on early human and machine interaction strategies, 

and then present more recent developments in interaction design that leverage teaming principles 

that center around joint activity. 

5.2 What is Engagement? 

There is no widely accepted definition of engagement, however, the work of O’Brien and Tom 

[14] provides a definition that is helpful for discussing recommender systems. From a systematic 

review of the literature and semi-structured interviews with users, O’Brien and Tom identified 

attributes commonly used to describe engagement. While engaged these attributes are expected to 

impact a user’s experience at various intensities. They proposed that engagement is a user 

experience that can be described as challenging, positive in affect, endurable, aesthetic and 

appealing to the senses, appropriate and responsive in feedback, novel, interactive, provides 

a sense of control, interesting, provides a sense of awareness, and meets user motivations. 

Engaged users report they are challenged when the application compels them to invest resources 

and effort into the outcome [47]; for example, designers of computer games will put puzzles and 

tasks on a user’s critical path to gaining levels and items that will afford them an advantage over 

their opponents. Recommender systems can challenge users to provide feedback and ratings for 

products by offering discounts or purchase credits in exchange. Positive affect is any positive 
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emotions that results from interacting with the technology, such as happiness, satisfaction, or a 

sense of accomplishment. As a nuance, positive affect can result from engagement that was 

retained from negative affect. A challenging computer game, for example, can result in user 

frustration; however, if the challenge is appropriately calibrated so that it is possible for the user 

to emerge from the frustration and succeed, the overall experience can conclude with positive 

affect. Interactions with recommender systems can result in positive affect in the form of 

satisfaction if the system generates products and services that meet a user’s current needs. User 

experiences are endurable if they report that they would revisit the technology, recalling that an 

experience with an application was positive. Aesthetic and sensory appeal is the user response 

to more static elements of technology, such as visual or auditory presentation [48]. In both usability 

and design fields, engagement comes from the additive qualities of a user interface that make it 

pleasant and satisfying to use, such as the colors and spatial design that set tone and style. Visual 

appeal can come from a computer agent that is presented with attractive human features. Auditory 

appeal can come from a desirable soundtrack for a computer game. Aesthetics, how people respond 

emotionally to the pleasantness or beauty of things including objects, people, events, or 

recommender systems, influence our willingness to interact with them. Referring to their product 

design aesthetics, the Swedish sports equipment company, POC, claims that “…the best or the 

safest helmet is one that somebody chooses to wear” [49]. This example attempts to show that 

aesthetics can be applied to technology to influence users to exercise functional behaviors – in this 

case it is to wear head protection. For recommender systems that involve verbal interactions, such 

as Amazon Alexa, aesthetic and sensory appeal can be a response to the tone, language, or accent 

(e.g., British) implemented for responding to commands from the user. The quality of the feedback 

to the user can positively influence engagement [50]. Feedback to the user supports engagement 

when it is perceived as prompt, accurate, and appropriate to the context. Like communications 

between humans, an interaction with technology that possesses good feedback responds to user 

input with a minimal amount of delay. For example, a good system error notification should come 

immediately after the action that caused the error and should clearly indicate what error had 

occurred, what system features have been impacted and what actions caused it. Feedback that 

supports engagement is not the cryptic and canned, such as responses that often come with 

computer error messages; “sorry we are not able to process your request right now; please try again 

later”. Unfortunately, many recommender systems that employ verbal interaction designs, return 
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error messages are that are equally cryptic, “I’m having trouble understanding right now.” Variety 

and novelty reflect engagement when the users believe variations in their inputs lead to different 

outcomes and interactions not previously experienced. In computer games, this can mean 

unexpected visual and auditory events, such as encountering an enemy as a player turns a corner 

in a first-person shooting game. With recommender systems, this means discovering new products 

and services. Diversifying the actions one can take with the interface, as well as creating 

interactions that change with context [51] enables exploration and facilitates variety and novelty. 

Google and Alexa assistant devices demonstrate this by supporting recreational and practical 

interactions, such as delivering music with voice commands, reporting the weather, activating 

household appliances, and then by proactively interacting with the user, such as requesting that a 

command be repeated if the initial input from the user is unclear or ambiguous, or an RS informing 

a user of new buying opportunities that they had not previously considered. Users find 

interactivity if the technology supports active exchanges with the user. Movies are not considered 

interactive. Although one may be perceptually and cognitively active while watching a movie, 

presumably, there is no direct relationship between a user’s cognitive state or actions and what is 

presented as the film narrative unfolds. Video games are the most common example of 

interactivity, and test drives for a new car can be another example. Voice recommender systems 

support interactivity when they offer further assistance that builds on a previous command. When 

asking Alexa to play a song it may respond with, “Music is streaming on another device, would 

you like me to play music here instead?” Perceived control is achieved when users believe they 

are influencing outcomes through interactions with the system. As demonstrated with Google and 

Alexa assistants, providing a greater range of control to the user can have a positive impact on 

engagement, for example, allowing the user to order products by voice or query the status of an 

order, “Alexa, where is my stuff?” In games, engagement from perceived control can come from 

allowing the user to exert more effort to attain reward [51]. For recommender systems, a designer 

can influence a user’s decisions by manipulating what items are presented in the list of options, 

but the user is able to choose among those options. It is instructive to note that actual control and 

perceived control can be dramatically different. If the options are rigged to direct a user to a 

particular solution, but the user is not aware of this, the user may still have the perception of 

control. If a recommender system provides an explanation for the set of presented options that 

relates back to a user’s data input, this can have a greater impact on perceived control; here, the 
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user is being informed that by way of their input data, they are directly influencing the solution set 

[52], [53]. Deceptive manipulations of perceived control risk being discovered and losing the 

user’s trust (trust is discussed in section 5.3). A user is displaying interest when they are willing 

to attend to particular topics or content with an application [54] . If a user’s interests relate to 

cooking, and an application delivers content that is relevant, such as recipe videos, a user may be 

expressing interest by browsing through the videos. Similarly, users may display interest in a 

recommender system for route navigation by interacting with system filters to reveal various points 

of interest during a road trip. Engaged users remain aware of other people and events in the 

surrounding physical world [14]. Due to this awareness, it is likely that a user’s interaction with a 

system will be periodically interrupted, but the users can be resistant to this interruption and 

continue to interact with a system shortly after. Thus, it is reasonable to suggest that one indication 

of the intensity of engagement is a user’s sustained interaction with an application, despite 

intermittent interruptions. As implied by the endurability attribute defined above, an application 

can be so engaging that a user may seek to revisit the interaction even after a long hiatus. Finally, 

a system interaction that results in engagement satisfies user motivation by meeting user’s intents 

and purposes for entering interaction. These intents and purposes can be productive, like creating 

a document, or recreational, such as drawing and painting1. I reserve a more detailed discussion of 

the construct of motivation for later in this section. 

Based on the above attributes, O’Brien and Tom [14] proposed a model that describes engagement 

as a process that begins with an entry point for engagement and then transitions to engagement 

itself and ends with disengagement (Figure 3). Importantly, the process can then be reinitiated with 

a user revisiting the system to re-engage in the near or distant future, but this is not guaranteed. At 

the point of engagement, a user may begin interacting with a system to determine if further 

interactions are worthwhile. At this phase, the attributes that may lead to transitioning into 

engagement are aesthetics, novelty, interest, motivation, and whether the user believes the 

interaction will address practical or experiential goals. Many of the interface features that will 

influence these attributes will be passive. For example, the artistic design of the technology may 

                                                 
1 Identifying whether an activity is practical or recreational would, in most cases, be a difficult task if context is not 

considered. For example, drawing and painting if done as a profession would be a practical activity. However, 

creating a document to serve as a diary or to post as a journal of someone’s vacation travel can be considered 

recreational. 
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have a positive impact on the user’s aesthetic response. Another example would be if the interface 

reflects novelty by conveying a rich interactive experience through multiple options and features 

and different modes of interaction., e.g., visual and tactile. Also, at the point of engagement, 

features of the interface that align with the user’s interest or current motivation, e.g., a functional 

motivation to accomplish work, can increase the likelihood that a user will become fully engaged 

in the technology. Finally, addressing practical goals means that a recommender system  directly 

conveys that the main purpose of the system is to meet a need like identifying a physician that is 

within a user’s health plan network, or if a user’s goal is experiential, the recommender system 

may employ a human-like virtual agent to make an interaction appear more natural. 

 

Figure 3. The O’Brien and Tom [14] process model for user engagement. 

 

The end of the engagement process is composed of attributes that contribute to disengagement. 

Users will disengage if the technology’s interface is not usable; e.g., features are difficult to find 

and if there is too much response delay to user actions. Users will also disengage if the challenge 

presented by the interaction is uncalibrated [47]; that is, for example, designers of a computer 

game are not sensitive to users’ skill levels and make a task too difficult to achieve. Both 
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uncalibrated positive and negative affect can increase the likelihood of someone disengaging a 

system [14]. When positive affect is uncalibrated a user will quit a system if they satisfy 

motivations too early in the interaction. In contrast, when negative affect is uncalibrated, an 

experience is so challenging that a user quits prematurely due to frustration.  

Perceived time is somewhat nuanced here. A complete discussion of time perception is out of 

scope, but it is worth addressing briefly because it provides some empirical grounding for what 

users are experiencing during engagement. From that body of work, Vierordt’s Law [55] can be 

applied to understand time distortions occurring with engagement. According to Vierordt’s Law, 

an observer will tend to overestimate the elapsed time for short intervals of time and underestimate 

the elapsed time with long intervals. The distortion in time in engagement [56] can be an indication 

that a user may continue to interact with an application for longer durations, thus delaying 

disengagement. While engaged, a user is likely to allow a significant amount of time to elapse 

before checking the time; in this situation, Vierordt’s Law predicts that in retrospect the user will 

likely judge that the time elapsed has gone by quickly. Alternatively, if the interaction is not 

engaging, like in the case of boredom, the user may check the time more frequently and judge that 

they have invested too much time with an interaction and quit the system. Thus, distortions in 

perceived time can occur when a user is engaged or not engaged. The amount of time a user allows 

to elapse before checking the time can be used to determine how valuable the interaction is to the 

user in term time resources. Unlike with immersion, users maintain an awareness of the physical 

world while engaged to constantly evaluate whether they should remain engaged or if they should 

disengage. Interruptions from external events such as needing to eat or sleep, meeting a scheduled 

dinner date, or stopping to satisfy the attentional needs of a toddler create opportunities to assess 

the value of continued interaction with a system. While fully immersed, many of the 

aforementioned events may be ignored or unnoticed. When immersed a user has committed all 

their resources into the interaction, and in the case of addiction, the user has committed more then 

he/she is capable of committing. 

Re-engagement carries the same attributes identified at the point of engagement. However, 

experience with the system plays a large role. If designers hope to re-engage users, they need to 

entice those users to revisit the system with the promise of another positive experience. The time 

between disengagement and re-engagement can be long in duration, where a user may leave the 
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system for days or months before returning to it. Alternatively, there could be multiple instances 

of disengagement and re-engagement within the same sitting. O’Brien and Tom [14] refer to this 

as engagement episodes within a single session, and assert that this pattern of re-engagement  is 

intrinsic to their model. This likelihood of returning to interact with the system can serve as a 

strong indication of engagement and subsequently serve as criteria for a successful system [57]. 

For recommender systems increasing the user’s exposure to the system creates opportunities for 

user data acquisition. 

O’Brien and Tom [14] proposed that engagement represents only a part of the overall experience 

with technology; other threads of experience can also be present. The attributes within the threads 

change with the different phases of engagement: point of engagement; period of engagement; and 

disengagement. Three were summarized in their model: sensual; emotional; and spatiotemporal. I 

believe it is important to discuss the threads here because they can serve as additional indicators 

of transitions between engagement phases. For example, attributes of the emotional thread include 

physiological arousal during the period of engagement. Presuming this relationship exists, 

researchers can apply heart rate as an index of engagement.  I describe each of these threads of 

experience next.  

The sensual thread of experience relates to the visual, auditory, and interactive components of the 

user’s interaction with technology. At the point of engagement, the user response attributes 

associated with those components are novelty and aesthetics. During the period of engagement, 

the sensual experience is characterized by a sense of realism, sustained interest, and the interactions 

are perceived as rich. As this is the sensual thread of experience the perceived realism and interest 

will come from graphical, auditory, tactile or olfactory elements of the application. The richness 

in interaction facilitating the sensual experience, as O’Brien and Tom [14]described it, will depend 

on the customizability of the interface. Users will disengage the sensual experience if the usability 

of the application is poor. That is, it is too difficult to interact with the features of the user interface 

and the user is inhibited access to features of the application that provide the sensory experiences.  

Alternatively, users can elect to disengage if their motivations are satisfied, such as playing a role-

playing game until its conclusion, or they can quit a game prematurely because the level of 

difficulty arouses too much frustration. Sensory experiences can also vary in quality, and 

depending on the activity, the absence of a sensory experience can lead to termination of the 
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interaction altogether. For example, some driving simulators provide haptic feedback to steering 

controls to augment the visual and auditory experience. A user can continue to interact with the 

simulator with a diminished sensual experience if the haptics were to fail, or if there is an accurate 

pairing of the haptic feedback with the conditions of the road. However, if the visual elements of 

the interaction were lost, such a frozen or blacked out view of the road, the user may elect to 

completely abandon the interaction, thus terminating the sensual experience. With the emotional 

thread of experience, users experience positive emotions, such as enjoyment, satisfaction, and fun. 

During the period of engagement user motivations are the major attribute for continued interaction 

with the system. As described previously, user motivations can include a desire to feel 

accomplished. If the application provides a feeling of productivity, then this functional motivation 

may be satisfied. During the period of engagement users’ emotional experiences may include 

feelings of enjoyment and fun, as well as physiological arousal, e.g., increased heart rate and pupil 

dilation. At the stage of disengagement, the emotional experience is lost when people have 

satisfied their motivations or have exhausted the novelty of the features and have become bored. 

As suggested by the term, the spatiotemporal thread of experience is related to the time and space 

of the interaction. This is characterized by people’s perception of time, awareness of their own 

internal states and the environment. From the interviews conducted by O’Brien and Tom [14] users 

reported that the spatiotemporal aspects of their experience were marked by a distorted sense of 

time. For the period of engagement, that distortion was that the time they spent with application 

appeared to have gone by quickly. Unlike with immersion, the time distortion here is not 

accompanied by a complete lack of awareness of the physical world. A user may still be keeping 

track of time when engaged. In addition, a distorted sense of time, users have diminished awareness 

of their own internal states; this includes hunger or fatigue. Users also reported that they will have 

a diminished sense of their surroundings, such as not noticing that it has gotten dark outside. At 

the point of engagement, the spatiotemporal experience attribute is the sense of familiarity or 

acclimation to the interface that is gained from the initial time spent exploring an unfamiliar 

interface or a new feature. During the period of engagement, the attributes include a distorted 

passage of time as mentioned above, a sense that the user is receiving appropriate feedback and 

control from the interaction and then a lack of awareness of the physical surroundings, but a strong 
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awareness of other people if the user is interacting with other users within the application2. Finally, 

the spatiotemporal experience will conclude if there is a compelling interruption occurring in the 

physical environment - perhaps a toddler requesting the attention of the engaged user. 

The engagement model proposed by O’Brien and Tom [14] is a convenient starting point for a 

discussion about defining engagement. It assumes that engagement goes through different stages. 

Each of these stages are characterized by different or overlapping attributes that reflect users’ 

responses to the interaction. Although a definition of engagement is relevant to reaching a common 

objective for the design of applications such as recommender systems, a definition alone does not 

provide much guidance for implementation. For that, we turn to the work by Perski et al. [13] and 

Short et al. [58] who proposed frameworks that identify determinants of engagement. Although 

the terminology between their frameworks vary, the constructs they introduced are similar. I 

discuss them together next. 

Perski et al. [13] proposed a definition of engagement that distills the list to just three commonly 

used attributes: attention; interest; and affect while proposing to operationalize engagement to 

reflect the behavioral aspects of engagement. This operationalization is grounded in the physical 

manifestations of the engagement experience. In manual driving, engagement has been treated as 

a binary event occurring when a human operator is applying cognitive and manual effort to operate 

a vehicle [59]; according to some researchers, when that is not happening, the driver is considered 

disengaged. However, the Perski et al. [13] definition for engagement supports both operational 

and experiential indicators of engagement. The definition is as follows, “Engagement with [Digital 

Behavioral Change Interventions] is (1) the extent of usage (e.g., amount, frequency, duration, 

depth of usage) and (2) subjective experience characterized by attention, interest and affect.” 

Digital Behavior Change Interventions (DBCI) is defined as a product or service that uses 

computer technology to influence human behavior [60]; for example, a software application used 

to set reminders for taking medication.  

                                                 
2 Although out of scope, presence [54] is the construct that describes the phenomenon of having a strong awareness 

of other people while interacting with them over an application as a medium. Presence can be generated by 

immersive technology, but it is treated in literature as a separate construct. Here presence is treated as an attribute of 

engagement. 
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The discrepancy in the number of attributes describing engagement between O’Brien and Tom 

[14] and Perski et al. [13] comes from the number of application areas considered in their definition 

of engagement. In O’Brien and Tom, the goal was a more general use of the term engagement, so 

their definition was drawn from studies which focused on a variety of applications like video 

games, educational applications, online shopping, and web searching. These applications may have 

been designed to help the user achieve specific goals for enjoyment or accomplishing a task. Perski 

et al. [13] and Short et al. [58] were interested in defining engagement for DBCI, where the design 

of such interactions carried the explicit goal of influencing the behavior of the user, such as quitting 

smoking; in the case of the current work, this means volunteering data for improving recommender 

systems. An engaging interaction would be the motivation for achieving those design goals. As 

implied in the definition proposed by Perski et al., an engaging interface extends the usage of a 

system. For recommender systems, enticing users to increase their exposure to a system affords 

more opportunities to acquire user data. In addition to identifying the attributes of engagement, 

Perski et al. and Short et al. identified direct and indirect determinants of engagement. These 

determinants are relevant to this work because they provide guidance for how to tangibly solicit 

engagement through interface design.  

In the model proposed by Perski et al. [13], there are two main determinants of engagement3 

(Figure 4). The first comes from the interface implementation concepts that are used to create the 

DBCI; this is of most interest to the current work because of the relevance to RS interface design. 

The interface implementation concepts that comprise the DBCI interface are categorized as 

delivery or content. The second direct determinant of engagement is context. Perski defines this as 

the product of population attributes and setting attributes. The population attributes can be divided 

into demographic and psychological constraints associated with the users. The setting attributes 

can be divided into physical and social constraints. Perski et al. listed many attributes for each of 

these attributes, but I focus only on attributes relevant to this work.  

                                                 
3 Perski et al. [13] included constructs with had evidence-based relationships with engagement, as well as constructs 

with a hypothesized relationship to engagement. In this document I present only the former. 
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Figure 4. Determinants of engagement: a simplified version of the Perski et al. [13] framework. 

 

For purposes of understanding engagement, the DCBI delivery attribute is defined by message 

tone and narrative. Message tone is the terminology and wording used to communicate with the 

user. Narrative is the presence of a storyline. Both of these have been found to positively influence 

engagement and have implications for designing computer agents that can appropriately 

communicate with users and that can mimic human social discourse by sharing a backstory about 

itself, even if the backstory is fictitious. For human-machine interfaces that include an embodied 

human-like agent, telling stories that reduce social distance with listeners can improve engagement 

[61]. Likewise for DBCI, the content attribute is defined by concrete content such as goal setting 

and reminders, which are designed to help users achieve goals like losing weight [13], [58]. For 

recommender systems, content would be route options for navigation applications or movie 

options for streaming applications. In addition to the foregoing, Short et al. [58] included the 

usability of the system, (the quality of an interface that is associated with ease of use, reliability of 

the functions of an application, and how quickly and easy it is to learn how to use an interface [62], 

and personal relevance of the functions and content of the application, as part of what they called 

interventions, i.e., DBCI, that determine engagement; both of these are defined in the model by 

O’Brien and Tom [14]. Usability would fit into the delivery aspect of the framework by Perski et 

al. [13] and personal relevance would likely fall under content. Next, I discuss context as a 

determinant of engagement in the model proposed by Perski et al.  

Prerequisites to engagement are not one-size-fits-all. Different activities elicit engagement for 

different populations of people. Thus, what Perski et al. [13] refer to as population attributes are 

common attributes of individuals that influence the likelihood of engagement with an application. 

The population attribute is related to human characteristics like demographics and psychological 

states. For demographics, these are age, gender, ethnicity, etc. For psychological constraints,  these 

are motivation, need for cognition, and interest; these were defined in the model by O’Brien and 

Tom [14]. Seah and Cairns [63] share a similar perspective on population as a determinant of 
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engagement. For Seah and Cairns, engagement is a stable characteristic of an individual, where an 

engaging person is someone approachable and capable of capturing and holding interaction with 

others for long durations. Thus, it appears engagement is more likely with individuals who possess 

characteristics that expose them to opportunities to be engaged.  

The setting attribute includes physical constraints, such as the amount of interruptions occurring 

during interactions with an application, time available to interact with the application, and access, 

e.g., internet connection for an online web application. Setting also includes social constraints. 

These constraints include culture, norms, and social cues. For a virtual travel agent, all these 

constraints will likely apply if the agent is expected to successfully solicit engagement. For 

example, would prolong eye contact be culturally inappropriate to some users? For norms, there 

may be common practices for pointing or gesturing to information on a display. Finally, a virtual 

agent may provide a social cue for sustained engagement with eye contact and then cue 

disengagement by looking away or down. 

The model proposed by O’Brien and Tom [14] and the framework from Perski et al. [13] and Short 

et al. [58] provide a starting point for defining engagement. The attributes they have identified can 

serve as design objectives for applications that aim to influence user engagement. For example, 

capturing user interest as an attribute of engagement can serve to justify personalization of content 

for recommender systems, as opposed to adhering to simpler content-based filtering techniques.  

By identifying the determinants of engagement designers can then begin specifying what features 

and capabilities are required for achieving user engagement. This can involve modifying a virtual 

agent to employ small talk when users are from cultures that prefer more social interaction versus 

functional interactions. Next, I elaborate on why engagement is important, and then I narrow my 

focus on social determinants of engagement because of its relevance to communication with users 

for soliciting data from them. 

Doherty and Doherty [62] in an extensive literature review, proposed that engagement is important 

for three reasons: 1) conducting basic research to understand engagement as a construct; 2) 

designing products to elicit engagement; and 3)  designing systems that elicit engagement and then 

leveraging that engagement to achieve other goals. Reason three is the motivation for the present 

work and was also the intention of the definition proposed by Perski et al. [13]. Engagement has 
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been identified as a prerequisite to achieving a variety of system objectives [15], such as improving 

perceived product utility and obtaining healthcare information, because engaging experiences can 

motivate continued user interaction with those systems. It can also serve as an intermediary to 

achieving learning, encouraging healthy behavior and well-being for individuals. For healthy 

behavior, an application can make recommendations for a healthier selection of food. If the 

interaction with the application is engaging, users may be more likely to take the system 

recommendations and change their diet. Provided valid indexes, engagement can potentially direct 

interface design by identifying what elements improve user experience [14]. In the case of 

recommender filtering, the primary application area of interest here, engagement may be the 

prerequisite for acquiring ratings and context information from individuals. Engagement can serve 

as part of a feedback loop to encourage continued interaction with a system, where an interface 

that successfully elicits engagement entices users to return to it [13]. I reason that the longer users 

interact with the system the more opportunities are afforded to solicit and obtain information. As 

mentioned earlier in this section, one of the key determinants for initiating sustaining interaction 

with a system is motivation. I discuss motivation in detail next. 

The experience of engagement can result from the satisfaction of social, hedonic, or functional 

motivations [51]. Social motivation is the desire to connect and share with other people, such as 

the type of engagement people experience on social media, where recommendations to connect 

with other users can increase the likelihood of someone revisiting a system such as Facebook to 

post more personal pictures or comments [64]. Hedonic motivation is a desire for activities to be 

fun, enjoyable, and pleasurable, which, in the research, is typically associated with gaming, but 

can also be extended to learning and education for school children [12], [65], or dining at a gourmet 

restaurant. These activities can be goal-directed, like in computer games, or not goal-directed, such 

as enjoying a symphony orchestra or a play. A functional motivation is a desire for ease of use 

with technology, based on criteria such as efficiency (e.g., fewer mouse clicks to navigate to a 

webpage), ease of use, and time savings from use [66], as opposed to not using the technology. 

Similarly, functional considerations can be made to interactions with other people, based on ease 

of communication and personal compatibility in terms of character and values. In functional 

activities, the goals and objectives are explicit.  
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As an outcome of interaction with the physical or virtual environment, engagement is an individual 

experience that can come from two types of antecedent activity – practical or recreational (Table 

1). These activities can be motivated by social, hedonic and functional motivations. Intuitively, 

one may expect engagement to emerge with an appropriate alignment of activity to motivation. 

For example, an individual who is hedonistically motivated would seek recreational activity, while 

an individual who is functionally motivated may seek practical activities. With social motivations 

the relationship with activity can be less distinct, as this can be satisfied with recreational or 

practical activity. The relationship between activity and motivation has implications for RS 

interface design. I provide further treatment of this topic below to discuss the nuances in the 

relationship between activity and motivation.  

Table 1. Engagement emerges from an appropriate alignment of activity to motivations. 

 

Practical and recreational activity was defined in Section 5.1; I review them here within the context 

of user motivation. Practical activities are goal-oriented, and aimed at productivity [43]. Practical 

activity includes collaboration between people on a book, building construction, or developing 

software applications. This kind of activity can result in satisfaction of a functional motivation 

(e.g., perceived competence of other people), but social motivations can occur (e.g., desire for 

one’s opinions to be validated), as well, when the task-oriented activity requires a considerable 

amount of coordination and communication. In interactions between people, practical activity and 

social discourse rarely, if at all, can occur in isolation. When engagement results from interacting 

with technology, the experience can reflect ease of use of the interface, but socialization has been 

evident to varying degrees with technology, as well [11]. When socialization has occurred, users 

treat the technology as if it was another human actor. The most familiar example of socialization 

of technology is when people express anger and frustration to a computer when it fails to function 

as expected. Recreational activities are activities for enjoyment with both other people and 
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technology [43]. Outdoor sports and online gaming are examples of this. As stated earlier, hedonic 

motivations can be satisfied with recreational activity. Social motivation can also contribute to 

recreational engagement from activities like gossip or a political debate, where there is a desire to 

appear credible to others. In gaming the social motivation can come from the desire to rank above 

peers in performance. When the games are being played as a team, such as football and basketball, 

there could be a desire to seek praise or negative attention by insulting others who have been 

defeated. Similarly, social motivation can be satisfied with practical activity, as with a team of 

graduate students conducting a study or a team of construction workers assembling the foundation 

for a building. Unlike with functional and hedonic motivations, where the quality of the technology 

interface may be the most responsible for the quality of the engagement that results from the 

interaction, the potential engagement that can be achieved when the interaction is socially 

motivated also depends on the quality of the interaction with other actors, as well as the 

technological medium.  A determinant of the quality of social interaction with other actors are the 

social discourse practices that are employed. For humans, barring any developmental deficiencies, 

e.g., autism, these social rules are learned with continued interactions with each other. If a machine 

can be designed to employ social discourse practices, it may also leverage some of the advantages 

of engagement as a result (the topic of social discourse will be discussed in Section 5.4.2).  

In this work, the principle claim is that by making an interface engaging, one can improve the 

likelihood of obtaining data from users. This section was devoted to defining engagement and 

identifying how a designer can approach developing interfaces to elicit engagement. These 

approaches address both functional aspects of an interface, such as ease of use, and interaction 

schemes that mimic human social discourse. In the remainder of this document I focus on 

discussing concepts that support the latter interaction scheme, mimicking human social discourse, 

because of the potential for soliciting engagement and subsequently improving the likelihood of 

obtain data from users. 

5.3 Creating Narratives 

Mallon and Webb [67] argued that narratives play an important role in engagement. Narratives in 

gameplay are stories in multi-objective role-playing games where the player interacts with virtual 

worlds and the virtual agents within them from a first- or third-person perspective. Narratives are 
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important to this work because they have an impact on engagement by stimulating important 

attributes associated with engagement. These attributes were discussed in the previous section and 

they are interactivity, control, and positive affect. From a focus group study, Mallon and Webb 

derived six different interaction design practices, called propositions in their work, to make-up a 

narrative. They referred to these practices as spatial containment, causality, skill-based 

interaction, causality of dialogue, illusion of intelligence and invisibility of the medium. I 

review each of these propositions next.  

Spatial containment refers to limiting the discovery space so that it is not perceived as too large 

to the user; in virtual worlds this is done by constraining the setting of the narrative to rooms, 

islands or scenes. However, this does not necessarily mean that the depth of the interaction of the 

elements within that world must be limited. Researchers have advocated for maximizing what they 

call is the richness of the interaction [54], which is a very difficult technical undertaking. For the 

purpose of eliciting engagement, any action taken with an object or agent should be diverse and 

result in different action paths based on the context of the narrative. For example, when speaking 

to a machine agent about “grabbing a bite” during some time in the evening, the machine may 

respond with, “Sure, I’ve got a couple of places in mind that have some great reviews for dinner. 

Should we dine-in or take-out?” The machine on another occasion may instead say, “No problem, 

should we go to your usual for dinner, or do you want to try something new?” For richness in 

interaction, the machine should be able to access a very large variety of topics in response to the 

human in a conversation. Spatial containment may solicit engagement by calibrating the challenge 

[14] associated with the activity, so that success with activity is within the capabilities of the user 

to achieve, resulting in a more positive experience for the user. 

The second proposition is to create causal connections in the narrative. For Mallon and Web [67], 

this meant providing clues to solve tasks, such that they are woven into the narrative. In games, 

this could mean that you click on different objects in a scene to reveal parts of the story and then 

clicking on a character within the game would prompt it to provide context for the object and the 

story within it. The information can then be used to determine if the object can be used to open a 

box or a room from a different scene, but the users cannot be explicitly told this. They would be 

expected to conclude it themselves. Creating causal connections can solicit engagement by 
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satisfying interactivity and novelty requirements [14] of the construct. That is, it prevents receptive 

responses from the system that would otherwise make the experience boring. 

The third proposition is skill-based interaction [67], where the user exhibits motor skills to 

achieve system objectives. This proposition was originally applied to the motor-skills exhibited in 

a video game, like target acquisition and character animation control. An extension of this would 

be to elicit motor action for more engagement. An example would be augmented reality systems 

such as Microsoft Hololens that provide users the ability to manipulate virtual objects to acquire 

information about real-world landmarks. In initiating dialogue with a machine, this can mean 

waving to enable the microphone. These do not require considerable skill but could potentially 

magnify engagement by involving the user’s motor abilities. Skill-based interactions can positively 

impact engagement by satisfying the control attribute [14] of engagement.  

The fourth proposition is causality of dialogue [67]. This means that the system should employ 

dialogue that is goal directed and assists with action, or joint activity. The dialogue can be a 

backstory or humor. For a conversational movie recommender system, the backstory can be about 

a fictitious experience with a certain movie genre that leads up to a request for information about 

what movies the user prefers. With dialogue a system meets the interactivity attribute of 

engagement. 

Proposition five is the illusion of intelligence [67]. This proposition carries the most relevance to 

the current work as it can enhance dialogue and more closely mimic human interaction to elicit 

engagement. Related to the dialogue examples above for richness of interaction, the illusion of 

intelligence can occur with a machine that can convey memory about a previous interaction by 

referencing content from previous dialogue or not repeating discussions that have already 

occurred. In addition, the machine can respond to random action, even if it is a clarifying statement, 

“I’m sorry did you mean…?” The illusion of intelligence can be conveyed visually (see Section 

5.4.4), as well, by eliciting the experience that a machine is a human and through formalizing 

social discourse by employing social practices such as encouraging dialogue about a user’s known 

interests and being sensitive about building rapport with the user before querying for personal 

information. The illusion of intelligence can meet many aspects of engagement, including interest, 



 

46 

positive affect, novelty, and interactivity; however, it is reasonable to conclude that it very difficult 

to achieve. 

Proposition six is invisibility of the medium [67]. Invisibility of the medium suggests that 

application interfaces can be designed such that the tools, displays are not at the center of the user’s 

attention while interacting with a system. For example, a user’s concern while interacting with 

Google assistant is that they deliver commands that fit within a structure that is understandable to 

the machine. Rather, the machine should accommodate the user by employing natural language 

processing to make the communication of the commands seamless for the user. In a driving 

simulator, the user should be engrossed in the simulated road events of the game, and not with the 

steering inputs or the mapping of those inputs. For recommender systems, users should feel as if 

they are interacting with the system directly to make decisions, and not concerned with the 

interface button operations needed to generate the options. When combined with natural voice 

command as the primary interaction mode, recommender systems can achieve invisibility of the 

medium by literally making the graphical user interface invisible to the user. Possibly the most 

common reason for failing to make the medium invisibility is when the usability of an application 

is poor. Poor usability can distract from the intended interaction experience that the application 

was intended to support, just as it can diminish the experience of engagement. While engaged as 

a result of the medium being invisible the user is not distracted by the interface itself; there is a 

sense of direct control over the activity. 

In the next section I introduce presentation and behavioral interaction manipulations that focus on 

mimicking human form and behavior. These manipulations can be combined with narrative 

practices above to increase the likelihood of eliciting engagement from users. 

5.4 Mimicking Human Interaction for Engagement 

Possibly one of the most effective, but challenging approaches to eliciting engagement is 

facilitating interactivity through social presence. Bioccia et al. [68] define social presence to be 

the “sense of being with another.” Social presence can be conveyed physically; for humans that 

simply means a person can be seen in person or through technological mediation, such as a 

webcam. Social presence is a psychological phenomenon – the “perceived presence” of someone 

or something else has a psychological impact on behavior. For machines, social presence can be 
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achieved through technical means, such as textual information, images, robots, and graphical 

avatars. All of these give the impression of social presence, but without the need for the entity to 

be physically collocated – except in the case of a robot. Goffman [69] states that when 

communicating through a technological medium, such as text, social presence is being conveyed 

because it generates a sense of mutual awareness. In a conversation a human may ask a question, 

and a machine can convey mutual awareness by addressing the question, or it can convey 

awareness about the user’s facial features and surroundings in the response, “In today’s forecast 

there will cloudy skies with a chance of rain; you want to wear a bigger hat or bring an umbrella 

before going out.” People can gain a sense of social presence because of the belief that they have 

access to the machine’s intelligence, that is, they are able to model and make projections about the 

intentions of the machine. This access to machine intelligence suggests that there is an underlying 

intelligence behind a machine’s behavior. This perception can come from interface design 

practices that elicit the illusion of intelligence, as discussed in Section 5.3. In the example above, 

a user may believe that, by suggesting a bigger hat or umbrella, a machine understands the user’s 

desire to stay dry on potentially rainy days. 

The experience of social presence can be stronger when a machine interface displays human-like 

features; that is, the interface is anthropomorphic. When users are experiencing 

anthropomorphism, they are interacting with the interface as if it is another human. Past work has 

shown a relationship between anthropomorphism and engagement. It is due to this relationship 

that makes the construct of anthropomorphism important to this work. Next, I take a deep dive on 

the construct of anthropomorphism and discuss how anthropomorphism can be solicited through 

interaction design manipulations.   

5.4.1 Anthropomorphism 

Anthropomorphism is a concept that describes an innate tendency for humans to interact socially 

with non-human objects [11], [70], [71]. Research has shown that this tendency persists despite 

knowing that the interaction is with a non-human object, e.g., [11]. Therefore, there is a natural 

predisposition toward anthropomorphism already present. With respect to developing trust, 

anthropomorphism can be leveraged to elicit initial trust and engagement while the user gains more 

experience to form better mental models of the system [72]; a more accurate mental model can 
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improve perceived predictability of the system and calibrate trust. Past work mainly in healthcare 

applications has shown that designers can exploit anthropomorphism to acquire personal 

information from users and also to entice them into continued interaction [15], [73]–[75]. For 

recent empirical work has also shown that anthropomorphism has a positive impact on 

engagement, which has subsequent influence on users’ reported intent to return to interact with a 

system [76]. This addresses two parts to the data solicitation problem. First, these systems must be 

able to coax users into providing information. Second, a recommender system must also entice the 

user to continue interacting with it. This can be achieved by manipulating anthropomorphic 

presentations. 

Anthropomorphic presentations, as applied to recommender systems, focus on manipulatable 

elements of the user interface. That definition is the extent to which these systems have the 

appearance or behave like a human being [77]–[79]. Thus, the effect of anthropomorphism can be 

created with visual and/or verbal presentations, as well with demonstrating human cognitive and 

perceptual abilities that lead to the idea that the machine has intelligence [72]. Verbal presentations 

can be representations of human conversational structure, the use of synthetic speech and the 

reference to the pronoun “I” in dialogues within. Anthropomorphic cues can include images of 

people or synthesized speech [80]. Visual presentations can be static or animated [81], [82] 

depending on the desired realism. These include designing technology to mimic human form, such 

as rendering features of the human face, body, or skin. Visual presentations can also involve 

mimicking human movement. For example, researchers have animated computer models of the 

human face to convey human affect or create gestures by animating models of the human hand. 

The goal of employing anthropomorphic presentations is to create an experience analogous to 

interacting with another human being – an experience I will define here as anthropomorphism. 

To elicit qualitatively high levels of anthropomorphism, researchers and designers have combined 

both verbal and visual presentations to create what they call a virtual representative [82], [83], a 

social agent [3], a relational agent [84], or an Embodied Conversational Agent (ECA) [74], [85]. 

In this thesis I selected the term ECA to refer to all such agents. A machine can display cognitive 

abilities by mimicking context understanding. This can be done by designing the machine to 

initiate conversation with the human based on topics that refer to the observable contextual 

information surrounding the interaction. For example, a machine can initiate a conversation by 

talking about the weather or bring up significant news events. Other cognitive abilities include 
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speech comprehension, which enables a machine to act on voice commands that are spoken in 

common language with a syntax that can vary, “What’s the weather?”, or, “Rain or shine today?”. 

I will discuss these anthropomorphic presentation approaches in later sections. 

Research has shown advantages to combining verbal and visual presentations. However, this is not 

true for all cases.  Other studies have shown, rather, that pairing one presentation type to an 

application leads to more favorable outcomes than when the presentation types were combined. 

For example, when the objective was to increase voluntary interaction with technology, an 

interface that was composed of both visual and verbal presentations elicited the best results [74]. 

However, verbal only presentations were more effective when the objective was to solicit personal 

information [86], [87]. Researchers explained that anonymity is typically preferred when divulging 

personal information. That sense of anonymity was lost when participants were presented with a 

display that resembled the physical presence of another human being. It appears, based on these 

mixed findings, that convincing anthropomorphic presentations inherit the same advantages and 

disadvantages of actual human interaction. Thus, we may expect that manipulating the presentation 

by combining and/or subtracting different features can vary system objective outcomes 

accordingly. 

By facilitating social engagement ECAs can elicit the perception of credibility to the system [88]. 

This can effectively induce trust [89], which is relevant to recommender systems because trust 

influences the likelihood of users accepting recommendations generated by these systems [90]. 

Barring other factors, such as system reliability, there is a positive relationship between trust and 

continued interaction with the system [40]. Other investigators have been cautious about 

employing anthropomorphic cueing, arguing that ECAs can be distracting [91]. Furthermore, 

relating to trust calibration, engagement may be hindered when users apply social stereotypes that 

do not align with their perceptions of the anthropomorphic cues [83]. More generally, ECAs may 

cause users to ascribe human capacities to the system that it does not actually possess [92], such 

as the expectation users have about the ability for voice recognition assistants, e.g., Alexa, Google 

Dot, and Cordana, to respond correctly to different ways commands are phrased and nested, “Give 

me my agenda”, or instead,  “So what’s on the menu today, and what about my commute?” In the 

next section, I turn to the topic of how verbal presentations such as these can be structured to solicit 

information from users. 
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5.4.2 Verbal Presentation: Mimicking Human Conversation with Social Discourse 

In 1950 Turing [93] proposed a test called the imitation game (i.e., also called the Turing test) to 

answer the question, “Can machines think?” The game can be set up by having a human 

interrogator on one side of a blind and two agents on another. One of the two agents would be a 

woman and the other a machine. While not knowing initially which is the woman or machine, the 

objective of the interrogator is to determine which is the woman. The interrogator can ask questions 

to build a conversation with the agents. The woman’s objective is to help the interrogator correctly 

identify the sex of the two agents; the machine, on the other hand will try to deceive the interrogator 

into making the wrong identification. The entire interaction would be in text so that the voices, of 

course, would not give away the game. As a test of a machine’s ability to answer questions in 

absence of any visual elements, the game mitigates any anthropomorphic bias by stacking the odds 

against the machine [94]. As a result, evidence of anthropomorphism might be considered more 

compelling, and what would be implied by the imitation game is that verbal communication alone 

can be used to elicit anthropomorphism. 

Two social rules that are commonly practiced in human-to-human communication are the 

principles of reciprocity and sequence. According to the principle of reciprocity people are 

generally reticent about divulging information about themselves, but an exception is made when 

they are the first to receive a disclosure [95]–[97]. The reticence to disclose is greater when the 

requests are for intimate information, because the perceived vulnerability is greater. The perceived 

vulnerability can be fears due to consequences that are emotional (e.g., fear of rejection when 

revealing interest in a high school crush), physical (e.g., fear of being mugged when revealing 

one’s residential address), or material (e.g., fear of fraud when revealing one’s credit card number). 

However, when the sequence of the requests for disclosure, from another person or computer, 

gradually escalates from requests for casual information (e.g., “What is your favorite color?”) to 

more intimate information (e.g., “Do you consume recreational drugs?”), people will be likely to 

follow with equally intimate responses [98]–[100]. I suggest that providing information to RSs is 

a form of self-disclosure. By extending the principle of reciprocity and appropriate sequence, 

social rules normally applied in conversations between people, can positively affect the likelihood 

a user would provide information to a machine.  
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Verbal presentations can include mimicking human-to-human conversational structure or 

synthesized voice [80]. This includes the use of pronouns (e.g., “I”), fictitious backstories, and 

initiating a conversation by divulging fictitious personal information. The general conversation 

strategy begins with the computer initiating with a disclosure, followed by a prompt for 

reciprocation with a request for information from the user (Figure 5).  The conversation ends with 

the user either disclosing the requested information or refusing to disclose. The general 

conversational model can be chained to build a sequence that begins with a set of low intimacy 

questions before a set of high intimacy questions are delivered to gradually coax people into giving 

information that carry greater levels of intimacy. 

 

Figure 5. Basic conversational structure. 

 

Moon [39] manipulated reciprocity to positively affect self-disclosure by conducting computer 

mediated interviews where each question was preceded by information about the computer. For 

example, “This computer has been configured to run at speeds up to 266 MHz. But 90% of 

computer users don’t use applications that require these speeds. So, this computer rarely gets used 

to its full potential. What has been your biggest disappointment in life?” When the computer did 

not disclose information about itself the questions were direct, “What has been your biggest 

disappointment in life?” Similar results were found when the intimacy of the questions escalated 

gradually, as opposed to being delivered abruptly at the onset of the conversation. 

It is important to mention that Moon was attempting to control for social cues, thereby minimizing 

engagement with the system in her study. In none of the conditions did the computer refer to itself 

as “I”, nor was any of the text accompanied by graphical or pictorial representations, and the 

questions were phrased to be factual. That is, words that imply emotion, feelings, attitudes, or 

motivations were not used. Moon wanted to control for these social cues, so that only reciprocity 

and sequence elements of conversational strategy were examined, and to avoid inducing 

anthropomorphism, as she believed it would be misleading to the participants. 
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Bickmore, Schulman, and Yin [74], in contrast, were interested in fully inducing 

anthropomorphism. They asked participants to interact with an ECA that presented itself as human 

with a face, and a programmed dialogue that included a back story that was told in the first person. 

Like in Moon [39], the back stories did reveal information about the computer, but the information 

was fictitious because they suggested that the ECA had an experience that never existed. For 

example, “And I think I really developed an appreciation for exercise and being outdoors and just 

staying healthy and moving around all the time.” Bickmore et al., questioned the assumption that 

people would find a more realistic ECA misleading, and in their study asked participants if they 

perceived any dishonesty from their interactions with the ECA. Their findings showed that not 

only did the participants not perceive dishonesty from the ECA; they reported that the system was 

engaging and that they were likely to use the system in the future. Although Bickmore et al. did 

not analyze self-disclosure in their study; they suggested that the absence of mistrust in the ECA 

is at least an opportunity to build the prerequisite trust necessary to successfully do so. That 

suggestion may have germinated from an earlier study, where Bickmore and Cassell [85] explored 

the opportunity to build that trust by engaging users in dialogue that was not task oriented - called 

small talk. 

Unlike with backstory, small talk did not involve telling a fictitious story about ECA’s past 

experiences. Bickmore and Cassell [85] defined small talk to be “any talk in which interpersonal 

goals are emphasized and task goals are either non-existent or de-emphasized.” An example was, 

“Sorry about my voice, this is some engineer’s idea of a natural sounding.” Bickmore and Cassell 

argued that small talk can prime users for task related conversations, as well as build the trust 

needed to solicit more intimate information like offering a bid for a home. Their experiment 

revealed that small talk had a positive influence on people’s trust only if they had a predisposition 

to trust, such as being an extrovert. If one was an introvert, then small talk had no influence on 

her/his trust in the ECA. Although small talk contained disclosures, reciprocity was not a 

manipulation in Bickmore and Cassell’s study. In addition, self-disclosure was not measured. 

Unlike in Moon [39], Bickmore and Cassell [85] provided the ECA with a human form and as a 

result did not isolate conversational strategy from other social cues. Thus, it remains unclear from 

Moon [39] and Bickmore and Cassell [85] whether there is any connection between reciprocity, 

the building of trust, and self-disclosure. For a discussion of the relationship between those 

variables we turn to a study by Zimmer et al. [101]. 
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Zimmer et al. [101] implemented procedures similar to Moon [39], but extended the study by 

including an analysis of the relationship between trust in the system and the intent to disclose. 

Intent to disclose is whether an individual plan to provide information about her/himself and was 

measured using a 7-point Likert format question after visiting a website. Findings from the study 

revealed a positive relationship between trust and the intent to disclose. And, when users expressed 

intent to disclose, they followed-up with self-disclosing; i.e., measured by how frequently they 

divulged information upon request. Finally, consistent with Bickmore and Cassell [85], Zimmer 

et al. [101] found that, after receiving initial disclosure from the computer, actual disclosure was 

more likely to occur with participants who indicated initially that they had the intent to disclose - 

providing further support to the principle of reciprocity. 

The degree of engagement that results from a conversation often depends on social discourse 

practices that can be incorporated into software agents. One such social practice is to have 

conversations that actively encourage exchange of information [102]. This can involve an agent 

asking questions about a person’s interests and hobbies. This can include querying people’s 

opinion and knowledge about topics that draw on commonly available information, such as news 

sources and popular magazines. In general, these approaches start with discussions about topics 

that are easy for other people to talk to. Another related social practice is to be sensitive to one’s 

relationship with other people when asking questions. When two people are not familiar with 

each other, then the questions typically target information that is generally public. If after 

continued engagement the two people have established familiarity with one another from repeated 

interactions, then queries for personal information might be appropriate. Following these practices, 

a navigational recommender system might initially ask a question based on public information like 

“Do you know a good winery around here so I can add the information to my database?”  Then, 

after a day of wine tasting, and repeated interactions, the recommender could ask a question based 

on personal information, such as “Are you intoxicated? I have identified some hotels nearby if you 

need to sober up.” Applying appropriate types of speech can also encourage social discourse. 

As a cold-start solution, one type of speech is offering non-personal information when there is a 

very short or absent history of conversation between individuals; publicly available information 

can be shared as a conversation prompt, “Hot day today”, but requests for private information as 

a conversation prompt should be avoided. When rapport has been established, where there is a 

longer conversation history and a relationship has been formed that is marked by trust (trust will 
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be covered in Section 5.5), questions can request both non-personal and personal information. If 

people have a very high degree of familiarity or rapport, then ideas can be criticized. Applying this 

principle to a self-driving car, the vehicle recommender may recommend against going home due 

to traffic congestion along a route and suggest instead to go to a nearby gym to consume the delay 

constructively. Expressing shared interests is another important consideration in the design of 

conversational agents [102].  During a conversation, people often like to discuss and share 

professional interests, political views, religion and values. To encourage social discourse, people 

can express that they have commonalities along these dimensions, which then reinforces the first 

principle; have conversations that encourage information exchange. An example of this comes 

from social media platforms such as Facebook where user content is mined to determine user 

values and interests and then target political ads and products to further engage the user. Expressing 

common interests and values improves the chances of people liking one another and should 

improve the chances of people liking the agent in a recommender system. In addition, positive 

affect can also be enhanced through discourse that includes elements, such as flattery and jokes, 

and when there are displays of an agent that is physically attractive or includes child-like features.  

5.4.3 Cognitive Presentation: The Illusion of Human Intelligence 

Although it can be very difficult to implement, machines can be designed to perform human 

cognitive abilities. However, if these abilities can be achieved, even without verbal and visual 

presentations, the anthropomorphism can be convincing. Studying and developing how machines 

can accomplish human intelligence has been the primary focus of the field of artificial intelligence 

since its conception. Among the most prominent classes of human intelligence are spatial, verbal, 

visual, and social. A complete discussion of all these topics would be out of scope of the current 

effort and can warrant a separate dissertation. Instead, I focus on a single ability that cuts across 

many different aspects of human intelligence. This is the ability to process context. In human 

interaction, sensitivity to context allows individuals to respond appropriately to others. For 

machines, exhibiting context sensitivity can enhance the human experience of anthropomorphism 

and most important to this work, potentially lead to engagement for obtaining data from users. 

Also, for the purpose of this thesis, the primary goal is not for the machine to exceed the cognitive 

abilities of the human, but to exhibit enough to encourage more engagement. The argument is that 

anthropomorphism would be diminished because of apparent unnaturalness of the ability. The 
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machine can challenge the human like another human would and still elicit anthropomorphism, 

but not beat the human to the extent that interaction is discouraged. To maintain engagement the 

human needs to be able to contribute to the interaction and gain social reward from it. One famous 

and recent example of this comes from the Go playing machine called AlphaGo [103] by 

DeepMind Technologies, which was the first computer program to defeat a human professional 

Go player. This has been considered a major feat for artificial intelligence because the game of Go 

has been more difficult for computers than chess because of the very large number of ways the 

pieces can be positioned on a board. As opposed to brute force computation for assessing every 

position possible, AlphaGo applied machine learning to limit the number of positions that needed 

to be processed for determining the next move by learning the human player’s patterns and biases. 

AlphaGo is an example of context understanding [72], where the context is the latent intent of the 

human Go player. Initially, AlphaGo was very engaging, attracting professional players who 

believed strongly that they could defeat the machine. However, the story of AlphaGo would end 

with the human simply yielding to the machine because it was playing in ways that were not played 

by human players and the human could not devise a way that could improve the chances of 

winning. Granted AlphaGo was designed with the intent to be the first to defeat a human in the 

game, a more engaging version would calibrate its skill against individual human ability to 

encourage further engagement and make the game enjoyable and challenging. By doing so, the 

machine in this case, would have appropriately incorporated contextual information to encourage 

engagement. 

In actual dialogue, context understanding can take the form of initiating a conversation by 

commenting about the weather or even mining an individual’s social media data to present topics 

of interest. For example, a smart phone can verbally recommend “rainy day jazz” knowing that the 

user has been at a coffee shop for more than 15 minutes and given the appropriate weather outside. 

As a more basic example, iPhones today will know if a guest is trying to access a private network 

and then prompt someone who is adjacent and has access to send access credentials to the guest. 

The ability to process and recognize artifacts in the user’s surroundings can give the impression of 

visual intelligence. A machine can display this by commenting on graphical elements of someone’s 

T-shirt or, if the appendages and eye features are rendered, point or gaze at an object that a user is 

referring to in dialogue. Achieving human intelligence, especially social intelligence, as part of a 

machine’s capabilities has been a major challenge, with convincing implementations that are being 
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realized only recently with machine learning. Consequently, any near-term research relying on 

mimicking machine intelligence would actually require humans to stand-in for the machine while 

participants interact with graphical renderings of a human to ironically convince them that it is a 

machine [104]. Interaction between humans provides a sense of serendipity to the interaction, as 

well as context. When machines fail to achieve this by exhibiting repetitive dialog and motion, the 

perceived cognitive intelligence of the machine diminishes along with the anthropomorphic 

experience [105]. While cognitive intelligence, if successful, can elicit a stronger anthropomorphic 

experience, visual presentation does not need to be so realistic to achieve engagement. In some 

cases, a minimalist human-like rendition can elicit more engagement than near realistic 

implementations. However, if and when the machine is able to exceed human cognitive abilities, 

the anthropomorphic experience can be diminished and discourage engagement as there is no 

reward outside of practical utility for engaging the machine. Yet this is not an argument for limiting 

the machine abilities to the level of the average human. There are humans that are not average, but 

like these humans, the machine may need to balance their exceptional abilities with convincing 

verbal and visual presentation to preserve engagement with other people. I discuss visual 

presentation further in the next section. 

5.4.4 Visual Presentation: Behavioral and Form Realism 

In the present section I review literature relevant to the application of visual anthropomorphic 

cueing in eliciting self-disclosure. The overall consensus is that people’s willingness to provide 

information diminishes in the presence of visual anthropomorphic cues alone [86], [87], [106]. 

However, when visual cues are combined with verbal presentations, i.e., conversational strategy, 

the additive effect increases the likelihood of users providing information to the system. 

The literature has identified two classes of visual anthropomorphic cues: 1) form realism [81], 

[82]; 2) behavioral realism [87], [106]. Form realism is the extent to which facial features and 

skin textures match those of an actual human being. Behavioral realism is how closely a computer 

rendering is to the actual movements that create expressions on a representation of a face or body. 

Visual presentations can vary across these two dimensions, and in different combinations of high 

and low form and behavioral realism. The illustration in Figure 4 shows some examples that 

combine form and behavioral realism to create increasingly convincing human analogues.  
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Figure 4. Examples of increasing form and behavioral realism. 

 

In general, people divulge more intimate information in the presence of fewer visual 

anthropomorphic cues. Researchers have explained the reason is because people prefer anonymity 

when disclosing, particularly when the information they are divulging is intimate. Thus, when an 

ECA possesses features such as eyes and ears like that of a human being that anonymity is taken 

away.  Several findings support this. In Kang and Gratch [106], participants were asked to disclose 

to avatars that varied in the realism of their depiction. At the highest level of realism, the avatar 

was a raw video stream of a hidden interviewer. The mid-level rendition was a degraded black and 

white version of the original video, in which the textures and graphical details remained. At the 

lowest level of realism, the video had an abstract rendering with much of the original skin texture 

removed. Using the Altman and Taylor self-disclosure classification system, Kang and Gratch 

discriminated between high, medium, and low levels of participant disclosure, and found the 

lowest scores with greater ECA realism. Thus, when comparing text-only interfaces against 

talking-faces, the idea that people will self-disclose more frequently with fewer anthropomorphic 

cues should continue to hold, as was indeed shown by Sproull et al. [86]. 

Using the text-only and talking-face interfaces Sproull et al. [86] delivered questions from a 

psychological scale, such as the Texas Social Behavior Inventory of Self-Worth, which asks 

questions like, “When I am in a group of people, I have trouble thinking of the right thing to say.” 

Participants responded true or false, or on a Likert scale that could range from "strongly disagree" 

to "strongly agree." In addition, they asked open ended questions such as, “Tell me something 

about yourself,” using an ECA in text-only or talking-face conditions. It is important to note here 

that Sproull et al. did not indicate the use of any conversational strategy when participants 
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interacted with the ECA. That is, the principle of reciprocity [39] and the gradual increase in 

intimacy as discussed in the previous section, were not applied.  Instead, the participants controlled 

the pace of the interaction and the questions were direct. For example, "How relaxed do you feel?" 

Participants had the option of replying to a question or skipping it. To proceed they clicked "go 

ahead" on the screen. From their analysis, Sproull et al. found fewer missed questions overall with 

the text-only condition, suggesting that participants were more willing to disclose when visual 

anthropomorphic cues were absent. Given Sproull et al. along with the other studies reviewed up 

to this point, it appears that the presence of visual anthropomorphic cues generally suppresses self-

disclosure. However, evidence from Bailenson et al. [87] paint a slightly more complex picture. In 

their study, the mode in which the questions were presented not only affected how much 

information was divulged, but it changed how it was divulged.  

Bailenson et al. [87] measured verbal and non-verbal self-disclosure in response to 30 questions 

that were rated equal in intimacy. Verbal disclosures were identified using two coders blind to the 

experiment conditions. Nonverbal self-disclosures were identified using a face tracking algorithm 

that counted movement from 22 points on the face known to vary with expression and reflected 

emotional responses to the questions. Using these measures Bailenson et al. compared self-

disclosure across three ECA conditions: 1) voice-only; 2) synthetic face; 3) raw video. The 

synthetic face condition provided behavioral realism, where the movements of the face were 

realistic. However, form realism was absent. Form realism was the extent to which the facial 

features and skin textures were real, such as in a photograph. The raw video condition provided 

both behavior and form realism. Consistent with past research, Bailenson et al. found that verbal 

self-disclosure diminished with ECA realism.  Verbal self-disclosure was least with raw video, 

and better for both synthetic face and voice only, which in turn did not differ. Nonverbal 

disclosures, in contrast, diminished in the presence of a face, regardless of the realism. This 

supports the notion that in the presence of facial features, people become reluctant to self-disclose 

due to a reduced perceived anonymity.  

The studies reviewed in the previous section demonstrated that if the appropriate conversation 

strategy was applied, people can be coaxed into intimate self-disclosure. Those findings were made 

in situations that specifically controlled for visual anthropomorphic cues.  The researchers did this 

because they were concerned about potentially adverse effects, such as creating mistrust in a 
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system that was attempting to pass as a human. Nevertheless, realistic ECAs can be utilized to 

have  desirable impacts, such as increasing the frequency of health related behaviors and improving 

learning in teaching contexts [15], [74], [85], [92].  

Kang and Gratch [106] believed that by employing visual anthropomorphic cues along with the 

appropriate conversational strategy, one can take advantage of the benefits from maximized 

realism as well as achieve intimate self-disclosure. In their experiment they structured 

conversations so that the reciprocity principle was applied by having the ECA initiate with a self-

disclosure before requesting information about the participant. The ECA disclosure varied between 

high, low, and none, and the condition was crossed with behavioral realism. The ECA behavioral 

realism was restricted by limiting head and facial animation, which varied between high, low, and 

audio-only. Contrary to previous findings, Kang and Gratch found greater self-disclosure in the 

presence of a realistic ECA, but it was also necessary that the ECA initiated with high intimate 

self-disclosure. Thus, by employing the appropriate conversational strategy, intimate self-

disclosure can be achieved with a high degree of ECA realism. 

ECAs provide a vehicle for eliciting anthropomorphism. ECAs can be presented visually in 

humanoid form or verbally via text-only interaction or synthesized voice. Past research has found 

that visual representations can improve the quality of user experience. However, when soliciting 

information from users was the primary goal of an interface, there was more support for employing 

verbal ECA representations. The success with verbal representations can be attributed to 

conversational strategies that incorporate reciprocity and gradual requests for increasingly intimate 

information. When combined with a visual form and an appropriate conversational strategy, it is 

possible that an anthropomorphic recommender system can successfully solicit information from 

users. Empirical work will be needed to investigate this notion. 

In addition to the social discourse manipulations above, trust can have an influence on whether 

users will continue interacting with a system in joint activity and whether they will experience 

engagement. This is a presumption I am making based on past work investigating trust in 

recommender systems. In this thesis, trust is being treated as a result of a user’s experience with 

an application. For recommender systems, trust can be shaped over the course of interacting with 

a system but may ultimately be informed by the relevancy and acceptability of the options they 
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generate. In the next section, I close this chapter with a review of the literature on trust and follow 

with a discussion about transparency – a principal determinant of trust.  

5.5 Trust 

As discussed in Chapter 2, user data plays a significant role in improving recommender system 

output (Figure 6). One indication of the quality of recommender system output is user acceptance. 

User acceptance of recommender system results can also lead to improved user trust in the system, 

e.g., [17], [18]. Trust is important to this work because of its potential to impact two principle 

constructs for obtaining user data; these are joint activity and engagement. The expectation is that 

trust will provide two paths into an interaction loop that can result in more user data. The main 

path goes directly into joint activity where information exchanges with the recommender system 

can result in more user data. The alternate path is by augmenting an engaging experience so that 

the user would be enticed into joint activity with the system. The research investigating the direct 

relationship between engagement and trust is sparse, and it is unclear if the findings are relevant 

to this work because of the disparity in the way engagement is defined across the different 

application areas in which these investigations are being made. Intrinsically, joint activity involves 

multiple actors working together, and so intuitively one would expect trust to be a factor in such 

interactions. However, the opportunity to investigate trust in joint activity with machines has only 

recently been given serious consideration because of advancements in automation has enabled 

machines to exercise many of the same capabilities that humans have been able to exercise in joint 

activity with other humans. I reserve further discussion about human machine joint activity to 

Chapter 6. In this section, I focus on defining trust and close with a discussion about one principal 

determinant of trust – transparency. 
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Figure 6. A framework for trust, joint activity and engagement. 

 

Although there are many definitions of trust, I will apply the following from the seminal paper by 

Lee and See [107], “Trust is the attitude that an agent will help achieve an individual’s goals in a 

situation characterized by uncertainty and vulnerability.” Trust is voluntary and development of 

trust takes time. Over the course of interacting with a system, users learn about the capabilities of 

the technology and calibrate their trust accordingly [42]. When a system is able to meet a user’s 

expected performance criteria and goals, improved trust is typically the outcome [107]. 

Recommender systems provide a capability that users are not able to achieve. That is to process 

large quantities of data to generate a more manageable set of options for decision-making. When 

users employ a recommender system to accomplish a task that they are not able to supervise, they 

have elected to make themselves vulnerable to the system and are conveying trust in the 

recommender system to assist with accomplishing their goals. A user can continue to rely on a 

system to accomplish a task, but this is not necessarily indicative of engagement. Reliance is 

interaction with a system where a user elects to interact with a system for a task because other 

options are not feasible. For recommender systems, the options are to shift through volumes of 

data manually or have the automation do it. Uncertainty and vulnerability are present with reliance, 

but a user does not need to trust a system to rely on it. Reliance on a system or application can be 

detrimental because it sets the user up for inappropriate use of the technology. If a recommender 

system does not have sufficient data to provide users with the best set of options possible, users 

will always be left with choosing among bad options – the goal of supporting decision-making 

would not be achieved. As a user gains more exposure to a system and learns about its capabilities 

and limits, they may be able to better adjust their level of trust in the system. When information 
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about the capabilities of the system is insufficient, the user is then susceptible to trust biases. I 

discuss these biases next. 

Certain important biases can emerge if trust is based on early exposure to a system and there has 

not been enough time to observe its overall reliability. That is, when it is insufficiently calibrated. 

One such bias is overtrust. Overtrust occurs when  a person trusts the system to do more than it 

can do.  In many cases this type of bias can have serious ramifications. For example, the autopilot 

driver assistance automation in Tesla vehicles allows limited vehicle self-driving for highway 

conditions. As part of the normal operations of the vehicle, drivers are expected to keep their hands 

on the wheel and monitor for road events that would require them to return to manual driving. 

Overtrust in the autopilot can be observed when drivers fail to follow this requirement by 

disengaging from the vehicle operation and choosing to engage in secondary tasks such as 

operation of smart phones. These drivers have become desensitized to the fact that the autopilot 

functionality is limited.  

In contrast, distrust occurs when trust falls short of the actual capabilities of the system. For 

recommender systems this is often the case if the system fails to provide acceptable options during 

initial interactions. The distrust bias is observed when the user disengages the RS altogether, thus 

denying the system additional opportunities to obtain user data and improve recommendations. 

Recommender systems apply filters to process very large sets of options, as users lack the capacity 

to perform the task independently.  RSs must capture initial engagement early in the process to 

spool-up on information from the user so that it can continue to improve the options it delivers 

over the course of the interaction. However, if trust is lost in early interactions with a system then 

diminished engagement can follow, resulting in the failure to obtain enough data to improve 

recommendations. Loss of trust can occur for several reasons. With recommender systems, lack of 

data from users can lead to poor recommendations. When the recommendations are poor, the 

system is not achieving the goals of the user in making decisions making it untrustworthy to the 

user. Loss of trust can also occur if the design goals of the recommender system do not align with 

the user goals. If for example, designers of a recommender system rig the solution set to direct a 

user’s options, as opposed to produce a set that best represents the user’s goals, trust would 

diminish if the user were to discover the ploy. When an RS interface is conversational, users can 

learn to calibrate their trust so that it reflects actual system capacities by “tweaking” the inputs to 
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see the impact on the recommendations presented [24]. This allows the users to get immediate 

feedback on their interactions and more control with the system – attributes of engagement. For 

recommender systems, trust can be informed by both its ability to generate recommendations, as 

well as the quality of those recommendations. For the former, an example would be a driving route 

that either fails or succeeds to generate directions for a trip. For the latter, a recommender system 

for recreational travel may prioritize options for points of interests within a geographical location. 

Being able to interact with a system in trials to evaluate the outputs against user inputs calibrates 

trust. Trust calibration [108] occurs when the user trust in the system reflects the capabilities and 

limitations of the system. When a user exhibits calibrated trust, they will likely employ a system 

for tasks that it is actually capable of accomplishing, and not employing it for tasks that are outside 

of its limits. As the relationship between inputs and the recommendations along with the 

information about the systems actual capabilities are revealed to the user, they explain the 

underlying reasons for those recommendations – this is a form of transparency.  

Transparency is information that explains a systems behavior [24]. According to Seong and 

Bisantz [109] an automated system is transparent when the inner workings or logic are known to 

the human and they are able to understand the system as a result. Chen et al. [110] further specify 

that transparency comes from the ability of an agent to convey intent, performance, future plans, 

and reasoning process to a user. For recommender systems, the latent information that is revealed 

through transparency describes the selection or rejection of an item that was not explicitly 

requested, “we are recommending these shoes to you because other people who shared similar 

preferences bought them.” Explanations like these are presented in common language and not in 

the logic behind matching user profiles, because another aspect of transparency is that it must be 

understandable to the user. For recommender systems, the overall purpose would be defeated if all 

the underlying reasons for a system’s functioning were completely exposed. According to Chen et 

al. [110], automation transparency is “…the descriptive quality of an interface pertaining to its 

abilities to afford an operator comprehension about an intelligent agent’s intent, performance, 

future plans, and reasoning process.” The key aspect of this definition is that explanations are 

comprehensible to the operator.  

Introducing transparency can help to address overtrust and distrust by making information about 

the system behavior available to the user. This information can be provided in advance so that the 
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user can then make predictions about the behavior of the system, such as the filtering categories in 

conversational recommenders [24]. In the Tesla vehicle example, this could mean marketing the 

capability as a “driver assistant”, as opposed to “autopilot.” Explanations for the recommender 

system results after they have been generated can also provide transparency if they are presented 

in a way that is understandable to the user. Car navigation applications do this by informing users 

when they are on the fastest route possible, or when there is a traffic event such as a car accident 

that has prompted the automation to propose a reroute. Making information that explains the results 

of the recommender system in this way improves the likelihood that users will align their trust 

against the actual capabilities of the system – this is the trust calibration discussed previously 

[107]. With calibrated trust, the likelihood of users engaging the recommender system can continue 

to improve, thus creating more opportunities to obtain data and further refine options for users. 

In conversational RSs, trust and transparency is built through ongoing exchange of information 

with the user. These two factors can potentially facilitate engagement, creating opportunities for 

the system to obtain more information. The process of paring down options by conversing with 

the RS is a joint activity and the context information emerges from this activity. Early in the 

process there is increased risk to a user abandoning the system if it fails to achieve trust by 

producing poor recommendations. When an RS has very little information about a user, the 

likelihood of generating poor recommendations is high. This is at the heart of the data solicitation 

problem. To resolve this conundrum, a solution should consider options for engaging a user for 

reasons outside of functional joint activity. Recall that joint activity can also occur for recreation. 

In the next section, I discuss how an already present tendency for users to socialize technology can 

be manipulated to elicit social engagement. This tendency can be enhanced through visual and 

verbal interface implementation approaches that included eliciting anthropomorphism and the 

structure of the conversation with the machine. The notion is that if a user engages an RS for social 

reward, i.e., enjoyment, they would be less sensitive to poor initial performance of the system and 

allow the system more opportunities to spool up data from the user and subsequently improve 

recommendation performance.  

In the next chapter I continue this discussion by addressing engagement for the purpose of 

accomplishing physical and cognitive work, or practical activity. Like form and behavioral 

realism, a machine can exhibit functional realism by displaying human knowledge and skills, i.e. 
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capacity. When machines exhibit human capacity, the potential for greater engagement through 

joint activity can result due to the improved utility of the machine. Researchers have developed 

new frameworks that describe how machines engage in joint action with humans. The extension 

here is that these frameworks can be used to guide the development of RS interfaces to extend 

joint activity with users and obtain data from them during information exchanges. Before I discuss 

these frameworks, I present some background related to prerequisite work in the basic allocation 

of functions between humans and automation. 
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6. THE EMERGENCE OF HUMAN MACHINE TEAMS 

6.1 Levels of Automation (LOA) 

In this chapter I review the literature in human automation interaction because it serves as a starting 

point for describing how functions can be shared in human machine teams, and then how teams 

can lead to more engaging interactions for improving the likelihood that data can be obtained from 

humans for better RS output. I begin with defining function and what it is to automate. The 

definitions I present are not absolute, but they are useful for facilitating this discussion. 

Here I define a function in absolute terms for the convenience of discussion, however, the term 

has been used more broadly to describe both goal orient actions as well as available capabilities 

and roles [37], [111]–[113]. For this document I define a function as the most elementary concept 

of an operation [114], For example, in a construction of a building, a function can be site 

excavation. The excavation may then require individual tasks, such as the removal and then 

displacement of soil; thus, when a function is performed, it will include all the tasks needed to 

perform that function. A function is automated when a machine performs the function in place of 

a human [115]; this will be definition applied for automation herein. When the reallocation of that 

function becomes fixed to a machine, so that a human no longer performs the function, then it is 

simply a machine operation – not automated. However, if both machine and human continue to 

perform a function, such as dish washing, then the function remains automated. This definition 

captures the way an entire generation of researchers have viewed automation – that it is a set of 

functions that are performed independently by either human or machine. This function allocation 

strategy originates from the “men are better – machines are better at” (MABA-MABA) framework 

that was introduced by Fitts [116].  

The MABA-MABA framework was developed when machines were built primarily to perform 

difficult physical work or brute force calculations. These were functions that humans, with 

exception to a gifted few, were performing at a cost to quality and accuracy.  When advances in 

computing turned isolated functions into groups of complex automated functions embodied in the 

hardware, automation became an object. As a machine, automation has become far more capable. 

Unconfined to single behaviors, advanced automation has left humans with functions that do not 
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accommodate for the limits of the human, such as system monitoring [117]. This is often a product 

of designers inserting machines to take a task without recognizing that it has an impact on the 

overall work dynamic and output of the human – who is employing the automation to assist with 

a job. Advances in automation have created an opportunity to exploit automation for coordinated 

action with humans. That concept, introduced by Sheridan and Verplank [118], influenced a 

generation of research in automation. To support the concept, they presented the Levels of 

Automation (LOA) framework that lays out the human automation interaction space, so that 

empirical investigators can identify any corresponding impact on human performance and inform 

system designers on how to exploit automation for human/machine coordination. 

LOA is a discrete approach to describing the coordinated action between humans and automation 

[118]. Sheridan and Verplank described 10 LOAs in their framework. In general, the levels of 

automation are manual (Level 1), supervisory (Levels 2 to 7), and automated (Levels 8 to 10). At 

the manual level, there is no automation present, hence no human automation coordination, and 

the human is left to execute the task. At the supervisory level, the human oversees the behavior of 

automation and intervenes at their discretion. At the fully automated level, responsibility for 

executing a task is then shifted fully to automation, while information about the actions performed 

by the automation is made available to the human. Levels 2 to 3 represent the interaction strategies 

employed by RSs today. At Level 2, the computer presents options. At Level 3, the computer will 

present options and prioritize one. Although the original LOA provided 10 levels, the intent was 

for greater granularities of automation to be defined within these levels [119], however, the 

allocation of functions remains discrete; the human is doing the task, or the machine is doing the 

task – not both. There is no exchange of information; any latent contextual information remains 

internal to the human and manifest as high-level direction to the automation. Recommendations 

provided by the machine in the LOA framework are informed only by observable data. Level 8 to 

10 automation allows the automation to be free of supervision and the capabilities enable adaptive 

automation strategies that leverage a machine’s ability to incorporate contextual data about the 

human and system state, e.g., recovering an aircraft when a critical altitude is met, and human 

incapacitation is detected. In this framework, humans are responsible for executing a function, but 
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automation has the authority to usurp execution authority4 if/when it detects a breakdown in human 

performance [120], as well as return execution authority to the human when performance recovers. 

Although the adaptive automation scheme incorporates contextual data, it follows the tradition of 

discrete function allocation.  

From a phenomenological perspective, to elicit engagement for obtaining data from the human, a 

human automation interaction framework will need to accommodate for joint activity through 

function sharing between the human and machine. The challenge here is that the technology that 

will enable a machine to perform many of the high level human cognitive functions has only 

recently emerged. Correspondingly, researchers are engaging in early discussions about new 

human and machine interaction frameworks, as well. In the next chapter I report some of the recent 

developments in computing that will enable machines to interact with human teams, and discuss 

how these machine capabilities, when fully realized, have the potential to achieve the human 

engagement necessary to address the data solicitation problem.  

In the previous chapter I presented the MABA-MABA function allocation strategy and the LOA 

framework. In both concepts, functions are allocated exclusively to either the human or machine. 

In part, this can be due to a lack of capacity on the part of the automation, leading it to be 

pigeonholed for specific functions. In systems with poor transparency, humans drift out of the 

loop, leaving them with little awareness about the behavior of automation. This has negative 

ramifications for data solicitation because the user is disengaged even before the first prompt for 

information. Recently introduced human machine teaming frameworks offer some remedy to this 

issue. They center around joint action, but to achieve joint action that is analogous to human-

human cooperation will impose more demanding capacity on automation, which include: the 

ability to communicate between agents and the environment; independently perform all the 

functions of a human role; and exercise self-governance. These expanded capacities describe what 

the literature has termed autonomy.  

                                                 
4
 This is not the only characterization of adaptive automation. Other definitions include dynamic changes in level of 

automation by either human or automation [164] and dynamic allocation of functions to adapt to changes in 

workload and/or operational demands. 
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6.2 Autonomy 

For this thesis, I adopt the notion that autonomy is a state [121], [122]. Both machines and humans 

can exhibit autonomy; however, as it is a social construct, it is convenient that humans serve as 

the model. Although this may seem self-serving, it is an important distinction because the human 

machine teaming frameworks I discuss in the next section aim to treat machines as human 

analogues, with human capacities. When present capacities allow it within a current context, 

autonomy can be exercised. In other cases, the capacity may not meet the demands of the 

operational environment, then independence cannot be exercised. If there remains a desire to 

complete a task then the entity, machine or human, will need to form an interdependent relationship 

where skills can be complemented to complete a task.  

When a human or machine is exhibiting autonomy the following characteristics are being 

exercised: viability; independence; and self-governance [123]. Viability is the extent to which an 

agent is robust to changes in an operating environment, such as a robot that can transit across both 

rocky and level terrain. To achieve viability an agent may need to retool itself or self-repair so that 

it can take appropriate action when met with an unplanned challenge; this segues into the next 

characteristic – independence. For the most part, the definition follows Johnson et al. [44]. That 

is, an agent possesses the full capacity to perform an activity within a given context; the only 

distinction here is that Johnson et al. specifies that the agent does not require monitoring from a 

human. The monitoring may be desired for providing transparency to a system and benefits the 

human, but an independent machine will not need ongoing corrective input or freeze into inaction 

when it reaches certain limitations5. A machine not receiving direction from a human must exercise 

self-governance. A self-governing machine would then be able to take responsibility for mission 

goals and control of resources [123]. If these characteristics were to hold as requirements for 

autonomy, there would be no machine that qualifies today. However, as designers advance the 

state of the art in automation, it would be helpful to implementers to know what capacities an 

autonomous machine can achieve – even though it may not be full autonomy. It may be 

unattainable to achieve full autonomy where autonomy can be exercised all the time; context may 

place limits on when those capacities can be exercised, and this may apply for both engineered and 

                                                 
5
 An independent machine may break when information is lacking or if predetermined goals do not meet changing 

demands from the operational environment. 
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natural systems.  For designers, it may be useful to classify autonomous systems by their available 

functions for an appropriate mapping to the operational context. To that end, NASA has proposed 

such a taxonomy. 

NASA’s autonomous system taxonomy6 is composed of four basic functions [124]: situation 

awareness; reasoning and acting; engineering and integrity; and collaboration and interaction. A 

machine that is situationally aware has the capacity to interrogate, identify, and evaluate the state 

of the environment and itself. Reasoning and acting are achieved when an agent can analyze and 

evaluate situations to make decisions, and self-direct to achieve a goal or mission. Unlike in 

Kaber’s definition, being able to define a goal and mission does not need to be within the capacity 

of the machine and can be provided by a human, relaxing the criteria for autonomy so that current 

systems can at least be considered for joint activity with humans. The design and development 

effort for autonomous systems is reflected in engineering and integrity, where efforts like 

verification and validation, testing and evaluation of the system, as well as operational assurance 

take place. The item most relevant to this thesis is collaboration and interaction. A machine that is 

capable of collaboration and interaction can share knowledge and understanding7 with other actors, 

identify the intent and behavior of other actors, negotiate goals and tasks, as well as build trust. 

Situation awareness, reasoning and acting, and collaboration and interaction are common themes 

in human machine teaming frameworks; all which center on joint activity afforded by machine 

autonomy. In the next section I provide a selective review of representative human automation 

teaming frameworks. 

6.3 Human Machine Teaming Frameworks: A Few Considerations 

The most cited definitions for team have two commonalities. The first is that teams are composed 

of two or more actors and the second is that they are engaged in activities to achieve a common 

goal [125], [126]. The element that appears to vary between definitions is how the activities are 

carried out within the team. This can be independent, but coordinated action based on a common 

script [45]; a football playbook is an example. Alternatively, a team can be jointly active, such as 

                                                 
6
 This is for engineered as opposed to biological systems. 

7
 The term understanding applied here refers to the ability to interpret information with respect to the context in 

which it is being presented. 
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that performed by a horse and rider, where the horse has the agency to remain on path while the 

rider can provide further directional cues. In this chapter I provide a selective review of models 

for human machine teaming where coordination from a script and joint action are treated as options 

that a team can employ to accommodate for the demands of a task. Current models of human 

machine teaming are aimed at informing practical engagement for accomplishing work, and 

although the focus of this work is on social engagement to obtain data, I review these models8 to 

identify the gap. 

Current models of human machine teaming are aimed at designing the team structure such that 

machines can be more proactive with interacting with a human. The presumption here is that 

changing the team dynamic so that the machine can behave more like a human, as opposed to only 

receiving commands from the human, would encourage joint activity with the machine and lead 

to more information exchanges where user data can be obtained. 

6.3.1 Theoretical Frameworks 

Recall from Clark [43] that joint activity includes goal-oriented activities, as well as recreational 

activities; both requiring communication for exchange of information between actors. Current 

machine teaming frameworks only consider the former. This seems reasonable because they meet 

the immediate needs of implementers for applications such as robotic undersea and planetary 

teleoperations. The collaborative control model (CCM) was originally developed for these 

applications [127]. Consistent with the definition of autonomy presented previously, CCM views 

the machine as a team partner as opposed to a tool. The machine in CCM can request approval 

from the human before acting, but it is not required to do so. In CCM, joint activity is performed 

by designing the machine to negotiate control when it encounters situations that requires transitions 

between autonomy and dependency. The machine is also able to query the human to close any 

gaps in its own capacity, such as validating obstacles, a characteristic of interdependency. Finally, 

to facilitate communication aspects of joint activity, CCM proposes that the machine and human 

exercise flexibility in the format of the information being exchanged. For example, machine 

proprioception may detect rough terrain and convey that verbally or graphically and the human 

                                                 
8
 The literature applies the use of the term model to describe both computational models, as well as frameworks, 

which offer principles and guidelines as opposed to detailed methodology. The work selected for review here was 

determined by whether I thought the information would be actionable for a designer. 
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may provide inputs using verbal or command prompts. This was demonstrated in a design 

implementation based on CCM by Fong et al., who employed natural language prompts to engage 

the user, “How dangerous is this object?” Although verbal anthropomorphism can be elicited from 

this example, the purpose was to facilitate task oriented joint activity; the CCM framework itself 

does not formalize the structure and content of the conversation for social engagement. If the 

tendency to socialize technology was present in the Fong et al. robot implementation, it would 

have been a convenient byproduct of the ongoing task-oriented activity. 

The coactive design framework [44] is an extension of the collaborative control model (Figure 7), 

and stresses agent interdependence. Thus, the first major difference between the models is that the 

machine and human are both agents. Recall from Fong et al. [127], it appears as if the machine is 

engaging in ongoing activity and then the human is brought in only to close the gap when the 

machine encounters a lack of capacity to deal with a new challenge. In coactive design, the 

machine can be brought in to support the human. The second difference is that the cognitive 

processes for the human as well as the machine are represented in the model. The human processes 

are non-linear, e.g., sensing, beliefs, perception, planning, decision-making, and acting. For 

example, where a machine may only decide after the necessary information about functional goals, 

needs, and objectives have been determined, a human can make a trip to a supermarket with a 

shopping list, but then leave with several serendipitous purchases beyond the list. However, the 

machine processes, as suggested in the example above, are linear, e.g., sense, interpret, plan, 

decide, and finally act. To support joint activity and mitigate the differences in processes between 

humans and machines, the coactive design framework proposes that an interface needs to support 

observability, predictability, and directability. Observability is about making information from one 

agent available to other agents. That information can include status, e.g., agent is working versus 

recharging, knowledge about collective team capacity, task, and environment, i.e., contextual 

information, observable to actors in the team. Predictability means that the goals and intentions 

are observable so that one actor’s actions are predictable to other team members and thus they can 

adjust their own actions appropriately. This enables synchronization of joint activity. Directability 

is the sharing of responsibility among agents for self-assigning roles or assigning roles to other 

agents; this also includes issuing commands and allocation of tasks. This leverages any autonomy 

that can be exercised by team constituents. Observability, predictability, and directability can be 

set as goals for the design of a human machine teaming interface, but there needs to be further 
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formalization of the principles. For example, the information exchange required for observability 

can be modeled on conversational interaction techniques for recommender systems.  

 

Figure 7. Collaborative control model. Adapted from Johnson et al. [44]. 

The mixed-initiative interaction framework centers on directability, emphasizing joint activity, 

where agent roles are not predetermined9 [128]. The interdependence is instead opportunistic, 

leaving the agents to determine the roles based on the capacities required to solve a problem or 

complete a task. The agents are not required to work together for the entire duration of the joint 

activity. They can work independently and then return to work jointly as required by the activity 

as it unfolds. A joint activity will contain embedded sets of actions with individual start and end 

times. The coordination effort that is exercised by a team involves synchronizing both independent 

and interdependent actions within the joint activity. The mixed-initiative interaction framework 

shares a level of abstraction common with many other frameworks. It offers some insightful 

philosophy into the design of human machine interaction, pointing to the dynamic trading of 

control authority between human and machine agents as the best way to exploit autonomous 

systems. Next, I turn to describing practical frameworks where some of the principles described 

in this section may apply. 

                                                 
9
 In CCM and Coactive design frameworks the roles can be predetermined, but in mixed-initiative the roles are 

never predetermined. 
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6.3.2 Practical Frameworks 

Aimed at formalizing the design of human-machine cooperation structures, Pacaux-Lemoine and 

Vanderhaegen [129] defined an interaction space that focuses on a decomposition of 

interdependent relationships. The model characterizes agents in terms of capacity and ability to 

cooperate 10, agnostic of whether the agent is human or machine [130]. As previously defined, 

capacity is an agent’s skills and knowledge; Pacaux-Lemoine and Vanderhaegen [129] extend the 

definition to include not only existing skills and knowledge, but also the perceptual ability to 

acquire, through communication and observation, knowledge that the agent did not originally 

possess. The ability to cooperate is the agent’s ability to communicate and form models of another 

agent. A convenient example of a machine’s model for humans comes from the user profile 

generated by collaborative filtering techniques and used to predict preference. As drivers, humans 

form models for other actors, such as cyclists and other drivers, based on their own experience. A 

driver who is an avid cyclist will be able to tailor expected behavior to the observable skill of 

another cyclist and be able to negotiate maneuvers with the cyclist indirectly.  As illustrated in the 

previous example, being able to form models of other agents affords the ability to make projections 

about their behavior, even when communication is absent. 

Pacaux-Lemoine and Vanderhaegen [129] were interested in identifying how much 

communication needs to occur as result of the demands imposed by the task environment and the 

individual capacities of the agents. Similar to the definition of interdependent relationships by 

Johnson et al. [44] for independent agents, Pacaux-Lemoine et al. [129] emphasized forming teams 

of independent agents for enhancing task performance. Forming interdependent relationships in 

this framework does not need to be motivated by the lack of capacity from dependent agents. 

Independent agents can form interdependent relationships to additively contribute individual 

capacity to enhance the efficiency of teams by increasing the speed of performing a task or 

accomplishing a greater number of tasks. In a well-practiced doubles tennis team, the two players 

carry very well-defined and accurately mental models of each other’s playing patterns and style. 

This allows them to make accurate projections about where they will move across the court, while 

reacting quickly to changing dynamics of the game without needing to openly communicate at 

                                                 
10

 The terminology applied here is not that used by Pacaux-Lemoine et al. (2013), but equivalent, and maintains 

consistent use of terms within the document to avoid confusion. Capacity was used in the original publication to 

describe workload and attentional limits, not skills and knowledge. 
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every play. Tennis players are independent actors, able to play singles matches, but they can form 

these interdependent relationships in doubles matches to quickly cover more area of the tennis 

court11. Although tennis players in a doubles team form predetermined mental models through 

practice, they can also update the models through passive observation as the team modifies 

behavior in response to unexpected plays from the opponents. If the team sees an opponent 

approach the net, then both players may return to the rear of the court as a practice strategy that is 

prompted by specific actions taken by the opponent. For engineering, coordination models like 

these can be applied to inform decisions about when agents should be independent, and when more 

interaction must occur between agents in a team for coordination. When mental models are not 

accurate, e.g., a tennis team that has not practiced together, and agents are dependent, e.g., tennis 

teams composed of neophytes, an interaction scheme that involves more communication might be 

needed for proactive coordination. In a team of agents that have access to common sources of 

information and well-formed mental models of behavior, such as tennis teams that practice 

together regularly, the agents can passively coordinate their own actions against the predicted 

actions of their teammate. In the tennis example, if a player knows that the partner tends to play 

close to the net and then observes that partner approaching the net, then that player may play 

towards the back of the court to cover area lost to the aggressive net play. The player attacking the 

net can coordinate his/her own actions, knowing that the teammate will have the back of the court 

covered. Pacaux-Lemoine et al., presented this as a general approach to deciding between various 

coordination strategies based on goals and objectives, as well as constraints inherent to each of 

those strategies. Next, I review a computational methodology for informing human machine 

teaming designs that takes such constraints into consideration and provides an ability to simulate, 

predict, and assess the performance of various teaming structures in advance of actual 

implementation.   

IJtsma et al. [37] proposed a methodology for defining and evaluating team structures. Like the 

model proposed by Pacaux-Lemoine and Vanderhaegen [129], a team structure was characterized 

by how much coordination activity needs to occur between independent agents. These structures 

are determined by system objectives that describe what mode of interaction between the agents are 

                                                 
11

 Tennis doubles are also an artifact of sports organizations trying to make the game more interesting and 

marketable. 
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best or selected. The methodology first decomposes functions into three hierarchical categories 

with functional purpose at the top, then abstract functions, followed by generalized functions; and 

physical functions (Figure 8).  

 

Figure 8. Function hierarchy. Adapted from IJtsma et al. [28]. 

 

An example of a functional purpose would be unmanned aircraft system (UAS) operations 

designed to deliver vaccines. Common abstract functions are safety and efficiency. Generalized 

functions can be to operate aircraft, package vaccines, and vehicle maintenance. Physical functions 

further decompose general functions into actions. For vehicle maintenance, the physical function 

can be to charge batteries and replace propellers. For preparing vaccines, this can include retrieval 

from storage and packaging. Each physical function will be constrained by physical resources and 

require information resources. For example, physical resources can be batteries, chargers, screw 

drivers, and insulated bags and cargo boxes for vaccines. Some examples of information resources 

are descriptions of weather conditions, battery capacity, number of UASs in operation, vaccine 

inventory, and shipping location. After decomposing the functions, the allocations of the functions 

can then be assigned to different actors. In the current example, these actors can be ground control 

operator, aircraft and lab technicians, as well as the aircraft itself. The model is intended to allow 

exploration of different allocation strategies and comparative evaluation with various team 

performance measures, such as number of information exchanges, physical resource transfers, 

taskload, busy time, and idle time. 

IJtsma et al. [37] evaluated three allocation strategies, where joint activity is defined at the level 

of physical functions. The first had agents fixed to a general function and effectively all physical 
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functions below it – no joint activity. This meant that if an agent was assigned a general function 

such as vehicle maintenance, only that agent and no other performed the physical functions below 

it, e.g., recharging batteries. The second allocation strategy grouped general functions to common 

physical or information resources. When the common resource was physical, the general function 

and all physical functions below it was then assigned to a single agent, provided the agent was also 

able to perform all the functions independently. The reasoning was that the sharing of physical 

resources would require coordination and communication; since the purpose of this model is 

practical and not social engagement, communication was considered overhead, and hence needed 

to be minimized. This meant that if an agent was assigned vehicle maintenance and there was only 

one battery charger, i.e., the physical resource, to perform the task of recharging the vehicle, only 

that agent was assigned to vehicle maintenance to avoid coordination overhead for sharing the 

charger. However, the model assumes that information resources are limitless, so agents can be 

jointly assigned functions that shared only information resources without communication 

overhead. For example, if a function was to determine if an aircraft had enough power for a mission 

based on battery capacity information, then that function can be jointly assigned to multiple agents 

because the battery information can be repeated to all agents simultaneously. With the charger, 

agents would have to take turns accessing it. In the third allocation strategy, the priority was to 

minimize the duration of a mission. This meant that general functions that were assigned in whole 

to a single agent in the second allocation strategy, can now be parsed out at the physical level to 

different agents. However, the physical functions that required a common physical resource stayed 

with one agent. The remaining physical functions can be assigned to different agents to be executed 

in parallel – independently, not jointly. This can occur even when not all parties have access to the 

same information. In the UAS example, this could mean that a vehicle can determine how many 

sorties to fly before returning to base from onboarding information about wind gusts that are 

dynamically changing the rate of battery consumption. Occurring in parallel, ground control 

operators could be operating cameras for a bridge inspection with information about camera 

position.  

The performance metrics were aimed at comparing the function allocations based on various team 

qualities, such as efficiency and coordination, where coordination was considered overhead. 

Except where joint activity was expressly necessary, such as working together to lift a heavy 

object, the function allocations were structured to avoid interaction, and parallel activities were 
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preferred to speed-up performance. It is also important to point out that, unlike the model presented 

by Pacaux-Lemoine et al. [129], IJtsma et al. [37] assumes that all information, including 

contextual data, is knowable, and can be explicitly obtained – a positivist view. Thus, it was 

considered better to exclude communication, a social interaction, from design of the system, not 

recognizing that there is information that is not readily knowable that the system needs, such as 

latent contextual information from humans about changes in intent and operational goals. Rather 

than avoid social interactions altogether, e.g., communication, contextual information can still be 

fully leveraged, but the interactions need be designed within both the limits of the machine, as well 

as the limits of the human so that it does not become overhead. I discuss this next. 

The Human Autonomy System Oversight (HASO) model [131] draws on extensive empirical work 

to inform how the human is expected to respond to various automation interaction paradigms (e.g., 

supervisory control), and the quality of the automation (i.e., robustness and reliability). The 

relevance here is that HASO can be applied to identify which engagement strategies should be 

explored for addressing the data solicitation problem, based on the cognitive constraints that would 

impose on the human’s ability to respond to prompts for providing data. The constraints are 

workload; engagement; and complexity. For this discussion, I define workload to be perceived 

cognitive effort as a function of the difficult and number of tasks to be accomplished [132]–[137]. 

Also, I limit the definition of engagement to be the duration and frequency of interaction with a 

system [15]. Complexity is the perceived complexity of the system that comes from, for example, 

the number of features and modes present in the system and how much data the system requires 

the human to comprehend. The HASO model predicts that as the level of automation increases 

from manual to fully autonomous, the perceived complexity of the system will increase, but while 

workload and engagement would decrease. Workload, engagement, and complexity do not 

interact, according to HASO, but do influence situation awareness. For the purpose of this 

discussion I loosely define situation awareness as the awareness of the system state and behaviors 

as well as events and relevant information in the operational environment. Situation awareness is 

important because it determines the human’s effectiveness in recovering functions when or if a 

system fails or when a human is needed for decision-making in a supervisory interaction structure 

[138]. HASO was informed primarily by findings from LOA research. In considering joint activity 

against the constraints described in HASO, some initial questions can be considered. Would we 

continue to see a reduction in workload and subsequent reduction in SA as a result of implementing 
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joint activity at the high end of the LOA spectrum? What impact will joint activity have on 

workload? If the coordination required by joint activity increases workload, what impact will this 

have on the available capacity for engagement and the opportunity to solicit data from users? Next, 

I review human machine teaming interaction design principles to address some of these questions. 

Shively et al. [139] proposed human machine teaming interface design tenets. These tenets12 are 

transparency, operator directed authority and bi-directional communication. Recall that 

transparency typically requires making information about the underlying reason for machine 

behavior available and understandable to people [110]. If there are machine agents in a team, and 

the behavior of the machines are impacted by their capacity, transparency may reveal the 

relationship between that capacity and the behavior. By doing this, it may also help to shape the 

perceived complexity of the system so that projections about the machine behavior can be more 

accurate, allowing other agents to coordinate their own actions effectively to move forward on a 

task. If the underlying reason for a behavior of an agent reflects contextual constraints, that 

information may be propagated through transparency to other agents in a team as well, so that 

other agents can be aware and take action to compensate for any gaps in performance with 

complimentary capacities. Shively et al. [139] argued that transparency is important because it 

affords humans the ability to align perceived capacity against the actual capacities of the machine. 

The result then is that actual performance can meet expectations, which in turn may afford positive 

trust calibration and improved engagement (see Chapter 5). Operator directed authority is a design 

principle which asserts that interfaces should allow dynamic allocation of functions between 

humans and machines while the human remains in control of when and how those allocations 

occur. In addition, the previous tenet emphasizes that agent independence is exercised as 

coordinated, but scripted action, e.g., recall the football playbook analogy. Such operator directed 

interfaces accommodate for the human constraints described in the HASO model [140], such as 

situation awareness, attention and workload. Operator directed authority is inconsistent with 

coactive design and mixed-initiative principles, both of which is an acknowledgement that 

automation is still brittle, and humans will be needed to provide direction and corrective inputs, at 

least for the foreseeable future. Finally, bi-directional communication bet20ween the human and 

                                                 
12

 This list is not a complete list of tenets proposed by Shively et al. [139]. For the complete list, see referenced 

paper. 
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machine supports shared situation awareness. This affords machine awareness of the state of the 

human, as a form of machine-of-human transparency [42], so that it knows when to engage and 

prompt the human for information. For the human, bi-directional communication supports machine 

transparency. Shively et al. [139] proposed that a human machine teaming agent be designed to 

act as an intermediary between the human, other machine agents and functionally specific 

automation. The agent would act a conversational recommender by assisting the human with 

different decision options, as well as make projections about the potential outcomes of each action. 

In addition, such an agent will track overall progress of reaching team goals, as well as issue 

direction to other machine agents on behalf of the human. Development of such agents for bi-

directional communication provides an opportunity for testing various social engagement 

strategies for enhancing user experience, as well as create opportunities for obtaining information 

from users. 

Tokadli et al. [141] has recently addressed the need for an easy to use interaction design look-up  

table. The table maps potential interaction paradigms, such as conversational interactions, haptic, 

physical (e.g., lifting heavy objects and retrieval), and gesture, to criteria required to accomplish a 

task. The criteria were derived from a combination of human machine teaming dimensions and 

work domain dimensions. The human machine teaming dimensions include type of system, such 

as robot or unembodied (e.g., recommender systems), the ratio of human to autonomous agents 

and their roles (e.g., supervisor or decision-maker), and team processes (e.g., coordination, 

cooperation, and communication). Work domain dimensions include context (e.g., outdoor, 

mobile, and stationary), task type (e.g., cognitive or physical), and conditions (e.g., nominal or 

emergency). One potential way to apply the table is to first identify the most effective teaming 

structure, perhaps from modeling efforts like those proposed by Pacaux-Limoine et al. [129] and 

IJtsma et al. [37] and then consider the work requirements to identify what combination of 

interaction paradigms to implement. Tokadli’s [141] framework points to conversational 

interactions as an implementation solution. However, it does not provide guidance on how such 

interactions should be achieved. As discussed in Chapter 5, an implementation of conversation 

interaction will need to incorporate social engagement techniques, such as those employed in both 

visual and verbal anthropomorphic interfaces. These approaches, although may be effective in 

human-to-human interactions, have yet to be validated empirically for human-machine interaction. 

I discuss future work to address this gap in the next chapter. 
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In this chapter I provided a selective review of human machine teaming frameworks that describe 

interaction design principles motivated by joint activity. The Cognitive Control Model, coactive 

design, and mixed-initiative interaction frameworks provide high level principles for and priorities 

for exploiting autonomy. Pacaux-Limoine et al. [129] and IJtsma et al. [37] provide methods for 

evaluating and making decisions about what teaming structures should be applied. Endsley [140] 

identified relationships between the behavior of automation and cognitive processes to identify 

what human constraints need to be considered when implementing human machine teaming 

interactions. Shively et al. [139] and Tokadli et al. [141] offer some early notions of how to embody 

those interactions in interfaces, so that autonomous agents can be employed in the near-term. The 

work of Shively et al. [139] and Tokadli et al. [141] may be important in addressing the data 

solicitation problem. However, this remains untested. Empirical work will need to be conducted 

to determine any improvement on data solicitation with joint activity. In addition, interaction 

strategies will need to be evaluated using human factors criteria, such as situation awareness, 

workload, and trust and transparency, to identify potential negative impacts caused by data 

solicitation activities [140].  

The principle claim of this thesis is that engagement approaches to development of user interfaces 

can be applied to improve the likelihood of obtaining data from users. In the next chapter, I 

conclude with a summary of the arguments made to support this claim based on a selective review 

of the literature. Subsequently, to stage a discussion about future empirical work, I discuss some 

potential application areas, i.e., self-driving cars and aviation, that might serve as an appropriate 

context for testing the concepts presented herein. In addition, I provide additional considerations 

for the formalization of social discourse for machine implementation and the social constructs 

involved in that formalization. Finally, I close with a research agenda for taking this research 

forward in future empirical work.  
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7. FUTURE DIRECTIONS 

In this work I characterized the data solicitation problem and identified its importance to the 

recommender system application area. Subsequently, I suggested that engagement approaches 

leverage anthropomorphism to serve as a natural and unimposing alternative to brute force and 

tedious prompts for data. I presented a selective review of representative human automation 

interaction frameworks to capture current efforts in the area. The review showed that the research 

community is pivoting from human-centered frameworks to exploit machine autonomy for 

interaction structures that facilitate shared control authority between human and machine agents. 

These human machine teaming frameworks are only starting to take shape and aim specifically at 

interactions that facilitate practical joint activity for accomplishing work. These frameworks 

recognize that information exchange between all agents in a system is important to joint activity, 

but do not provide a structured approach to obtaining that information from humans. From the 

theoretical arguments made in Chapter 5, interface concepts for eliciting engagement may provide 

some structure, but their effectiveness in obtaining data remains largely untested for recommender 

systems. Although some work has been done in healthcare to evaluate the effectiveness of 

anthropomorphic interfaces for soliciting medical information from patients, there is little evidence 

in the literature that can inform or justify a design of such interfaces to obtain a broader spectrum 

of information, including contextual data, for recommender systems. In this chapter, I close with 

a discussion about interface concepts for engagement with machines that are based on formalizing 

social discourse, as well as discuss their limitations. I add an introduction to communication 

practices in air transportation Crew Resource Management to provide some additional insight into 

the development of such interface concepts. Finally, I suggest future work and present a framework 

that encapsulates all the constructs presented herein, along with the relationships among them. 

From this framework I point to prime research areas to hopefully guide any future work outside of 

the current effort. 

Self-driving cars afford spare workload and attentional capacities because the human no longer 

carries the burden of manual control [38], [142]. Lee et al. [38] refers to this as the benefit of 

automated driving. This benefit suggests humans can direct the spare resources to productive 

activities such as work-related teleconferences, or in other business models, the driver engages the 
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car interface for commercial activities [10]. However, it is unlikely this benefit will ever be 

available, as humans will typically engage in other distractions; this includes interacting with a 

phone, which is a common distraction even in manual operations [143]. A sobering example of 

this distraction, is the Uber self-driving car accident in Tempe Arizona where onboard cameras 

showed that the safety driver was eyes down on a cell phone for 7 of the 22 minutes of the trip and 

5 seconds before striking and killing a pedestrian13 [144], [145]. Unfortunately, more examples 

can be found with Tesla’s autopilot feature, where drivers have been killed because they failed to 

re-take control when the vehicles collided with cargo trailers it did not detect [144]–[147]. Lee et 

al. [38] attributed the failure to re-take control of the vehicle to what they called an inability to 

recover the cost in driver readiness that was lost to not being engaged in manual driving. Referring 

to the HASO model [140], SA can be an index for readiness, which diminishes with higher levels 

of automation [148]. One means of mitigating this tradeoff is through employing transparent 

interfaces; this is what Wickens [149] calls “a free lunch” referring to the benefit of exploiting 

higher levels of automation, but without the cost in SA that comes with it. For self-driving cars 

this can mean that the cost in driver readiness can be absorbed if the vehicle interface is providing 

transparency to the user through an ongoing exchange of information. As discussed in Chapter 4, 

this transparency can emerge from information exchanges in both practical and recreational 

activity. There is currently no evidence in the corpora that suggests engagement has a cost or that 

it is cost free, even if it is enjoyable. Contrary to Wickens, then, depending on how transparency 

is implemented, it may impose its own cost in terms of workload and attentional resources. One 

can develop a solution for absorbing the cost in driver readiness, but in exchange for SA these 

payments in cognitive resources may still need to be made upfront and continually throughout the 

duration of the operation. This way, one has the information needed in hand to stay ahead of the 

time horizon for recovering a vehicle. In the end, the adage, “there is no free lunch”, unfortunately, 

may still hold. Presuming there will be a cost, the ceiling should be no higher than manual control. 

Based on the above arguments, I propose that a conversational interface that facilitates engagement 

                                                 
13

 The NTSB report also noted that the company had disabled safety features on the vehicle that could have 

prevented the accident. These were the obstacle alerting system and automatic braking originally enabled in the 

production vehicle from Volvo. Uber expected the safety driver to be responsible for recovering the functions 

originally provided by the disabled safety features. 
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should realign those resources as part of joint operation of the vehicle so that they are not “wasted” 

on distracting tasks. 

Engaging interactions can be employed to displace distracting secondary tasks to re-engage the 

driver with the operation of the vehicle. It can serve as what Baldwin and McCandliss [142] refer 

to as an incentive to maintain vigilance. As demonstrated with video games, attention can be held 

exceedingly long, if the task is enjoyable or interesting [150], while the perceived workload can 

still be present. If engaging interfaces were designed to offer such incentives it might also provide 

similar gains, but the interfaces can be directed towards accomplishing work, as opposed to 

gaming. For the Tesla Autopilot, a conversational interface approach can be designed to entice the 

human into joint operation of the vehicle. This joint operation does not necessarily mean that the 

human has to return to manual operations, but it can mean assisting the system by offering 

contextual information the way humans would do for one another [127], “hey, watch out for that 

trailer, he looks like he is about to turn.” Such a design would imply a shared control model more 

representative of a copilot14, rather than an autopilot, a term that carries the misleading notion that 

the human can be detached from the vehicle operation15. In the Tesla Autopilot example and the 

Mars Rover example from Fong’s Collaborative Control Model, engagement can be employed to 

facilitate joint operation of the vehicle through an exchange of contextual information. Based on 

these examples and the theoretical arguments made herein, it seems reasonable that engagement 

can elicit more information from people, but this relationship needs to be verified empirically. 

Furthermore, any empirical work will require operationalization of engagement to structure the 

interaction with users, like the anthropomorphic verbal and visual presentation techniques 

described in Chapter 5. When employing engagement to obtain information, one also needs to be 

careful not to mislead by inaccurately implying that the machine possesses human capabilities 

associated with looking and sounding human. The ramifications of this is that humans will quickly 

disengage as their tolerance for machine error is very low, when compared to other humans. For 

example, when Bob hears a call to pick-up a cappuccino for Rob at a café, he may come forward 

                                                 
14

 A copilot system implies that the human still carries principle responsibility for the operation of the vehicle, thus 

addressing automation complacency issues associated with the term Autopilot.  
15

 Elon Musk, the CEO of Tesla, has defended the use of the term autopilot by stressing that in aviation pilots are 

expected to actively manage the aircraft even when autopilot is on. However, by making this point he ignores the 

fact that he is marketing to everyday consumers, not seasoned commercial pilots, or instrument rated pilots to the 

least. 
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to verify the order was for him, rationalizing that the order was misnamed due to a listening error 

caused by the environment – loud music and chatter. If a machine made the same error, it may be 

attributed instead to a defect in the machine; people would disengage, presuming the error will 

repeat due to the inherent flaw. To overcome this, Wallis [151] suggests a strategy for keeping 

users “in the flow” of a conversation so that they overlook these mistakes as they would in natural 

conversations with another human. I discuss this further next. 

Wallis [151] asserts that if the initial agenda is not to test the reliability of the machine then most 

people will go along with the conversation, even when the machine is factually incorrect. We do 

this commonly in conversations between people, particularly when the facts are not immediately 

verifiable, “Those talons are so big they can pick up a bear.” In this example, it is factually 

incorrect, unless this was a lecture in paleontology, to state that there are talons that can pick up a 

bear. More importantly, this example shows that we often model the intent of the speaker to make 

projections about what is being communicated. Intent is the latent contextual information residing 

inside the mind of a human that describes the personal goals of communication and action. Intent 

is modeled because people do not always explicitly convey their intent to others. With an accurate 

model of intent, one can project what someone is trying to achieve through behavior and speech. 

In this case the intent may be that the speaker wants to convince the listener of the size of the talons 

on a bird of prey.  

Wallis [151] suggests that conveying intent serves to fuel conversation. This allows people to 

determine if others share similar personal goals. If the goals are the same, one would expect very 

little conversation to occur because there is nothing to negotiate. When people have competing 

goals, they engage in what he calls dialog games, where the participants have goals and plans for 

achieving them. The objective would have to be more concrete than arguing about the size of a 

bird’s talons. I was in a bazaar in Bali looking for a fruit stand and stopped at a clothing store to 

ask for directions. In this scenario there are conflicting interests; mine was initially to buy fruits, 

while in exchange for information, the shopkeeper urged me to listen to a pitch for some batik 

clothing and have me walk away with some merchandise in tow. The example here is intentional 

conversation. In intentional conversation, speakers in the dyad will model each other’s intent and 
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fill-in for inaccuracies to pursue their personal goals16. If the shopkeeper indicates a size medium 

shirt while not noticing the label showed a size large, the conversation would not abruptly stop. I 

would fill-in, perhaps by rationalizing that he just wants to advertise the design first and work out 

the size later if I commit. For the sake of keeping with the flow of the conversation, and for me, 

quickly getting to the fruit stand, I looked past the inaccuracy of the shirt size. Similarly, Wallis 

suggests that if a machine also conveyed goals, people would engage in continued discourse with 

the machine to resolve competing goals the ways humans do in the example above. 

When language is used to manipulate others to achieve personal goals we have what Wallis 

referred to as the dialog game [151]. The outcomes of the game are described in a goal space; this 

is structured as shown in Figure 9. What Wallis wanted to do was describe the results of the dialog 

game between a human and machine. In region A, neither the machine nor the human has intent, 

this is the region of gossip and casual conversation. Unlike between people, designing a strategy 

based on casual conversation will yield about four minutes of engagement before the human 

abandons the machine17 due to boredom [152]. Wallis recommends that a machine introduces an 

intent if initial conversations do not yield an intent from the human within the 4-minute time frame. 

When either the human or machine brings intent into the conversation, they move the dialog game 

to one of the remaining regions. Region B is the only region where the machine may win because 

the human has no intent and defaults to the goals of the machine. Alternatively, in region F, the 

human can simply disagree with the intent of the machine and refuse to discuss it by disengaging. 

Unlike the shopkeeper in my personal example, it is easier for a human to walk away from a 

machine than it is to walk away from another person. The distinction here is that the machine is 

assumed to be socially inferior to the human [153], so where the goals of the human and machine18 

are in conflict, the machine must always yield – there are more ways for the human to win. In 

region C, this is straightforward; the machine has no intent and yields to the human’s intent. Region 

E represents a machine that can presumably refuse to accept the human’s intent and disengage, but 

                                                 
16

 This refers to everyday conversations, not formal academic debates, where the arguments are judged on the facts 

used to support them. Although, some academics insist on this approach to everyday life to only find themselves 

isolated to a special community. 
17

 We are willing to exceed 4 minutes to chat with other humans because there is social reward for doing so. With 

machines this social reward, e.g. verbal praise, may be less convincing, especially if there is no similar social 

history.    
18

 The machine has intent to the extent it reflects the goals of the designer. 
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because of the social distance, the machine typically does not have region E to its favor. Similarly, 

in region D, both the machine and human have intent, but then yields to the human. In the event 

that a machine refuses the human’s goal, perhaps due to a fixed constraint, like a self-driving car 

that will not proceed, despite continued input by the human, because it detects an approaching 

pedestrian that the human has not seen, then the machine should explain why – provide 

transparency. 

 

Figure 9. The goal space for a two-agent conversation. Adapted from Wallis [147]. 

 

The social discrepancy between the human and machine makes it difficult for machine agents to 

carry a conversation because the machine does not have the agency to pursue their intent. 

Recommender systems lie in region B and F19. The extent to which RSs engage in conversation is 

limited to the discretion of the human; they can prompt to bring attention to solutions, but it cannot 

press a solution like humans can if they thought it was important. In the real world, when a 

machine’s intent is rejected or ignored there is no recourse - unless the machine serves to represent 

a human or organizational authority. We are reminded of this each time the university’s bursar 

system prompts us for tuition, or we get caught in a phishing scheme. What if in a mixed-initiative 

interaction design the machine is given more authority to assert engagement with a human? Would 

it result in more dialog and afford more information from people? The discrepancy in social 

ranking that we see between humans and machines is not unique to that dyad, it is just that in a 

ranking among people, machines will occupy the lowest part of the totem [153]. Would it be 

                                                 
19

 The human here still has intent, and that is to find a solution to a problem. However, they are relying on the RS to 

generate solutions that they do not have on hand. The RS displays intent through its recommendations and succeeds 

if the human accepts one of them. Otherwise, it fails if the human disengages and takes none of the options.   
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effective then to elevate the authority of the machine so that it is seen as a team player, as has been 

proposed in human machine teaming frameworks? How would the interaction be structured? The 

work by Cassell and Bickmore [104] provides some insights to these questions. 

In the concept developed by Cassell and Bickmore [104], the agent is designed to autonomously 

interleave casual conversation with task oriented conversation. Referring back to Wallis’ [151] 

goal space matrix (Figure 9), this is similar to moving between region A and then other cells where 

either the machine or the human have goals. The idea is that the casual conversation, termed small 

talk, is used to catalyze both goal-directed conversations and continued small talk.  

“Hey hot day today, kind of brings me back to Hawaii, but without all the ocean and sand. About 

this weekend, I kind of want to postpone the cabin reservation to next Saturday.” 

In the above example, a speaker initiates with a potentially interesting topic about Hawaii, the 

small talk, and then transitions into a proposition to reschedule a cabin reservation, the entry into 

goal directed discourse. To keep the discourse natural, the topics needed to be context sensitive 

and build on information learned from previous exchanges. This was achieved by implementing a 

discourse planner. In this planner, the agent guided the user through different topics, which were 

represented as nodes in an activation network20 [154]. The topics in this implementation were 

predefined21, and the dialog was taken from actual conversation between humans. Transitions 

between different topics, or nodes, were based on the path that maximized information gathering, 

maintained coherency in the conversation, were consistent with user preferences, and minimized 

face threat. Information gathering was maximized by prioritizing transitions to conversation topics 

that would query or lead to information about the user’s preferences, “I see that there are a few 

homes on the market right now that you might be interested in, but before we go into that, I’d like 

to know a little about your lifestyle.” Nodes that maintained coherency in the conversation 

followed-up on topics that were previously discussed, so this system would avoid nodes that 

involved topics about cats if the current topic was about birds. The conversational agent was 

                                                 
20

 The activation network was originally designed to enable action planning for autonomous agents. The nodes 

represented an action a machine can take. Transitions between nodes were based on whether goals and capabilities 

that were defined in the next node met the demands imposed by what the machine knew about the context. 
21

 The researchers were building a virtual real estate agent, REA. Users were given the expectation that topics would 

be limited to REA’s expertise. However, the agent was able to propose unrelated content during small talk, like 

weather. When on a task related topic, REA asked about preferences on a home, such as number of bedrooms. 
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sensitive to what it learned about user preferences; if the user expressed an interest in birds then 

transitions to nodes about birds were preferred over nodes about cats. Maintaining coherency in 

the conversation kept the agent on topic about birds once it was started. According to Goffman 

[155], face is how people want to be viewed. Politicians and celebrities are perfect examples of 

people who constantly manage their public image to minimize face threats. In Cassell and 

Bickmore [104], face was treated as a predictor of whether someone would want to engage in a 

conversation and determine what small talk topics to pursue. When that face is threatened, it is 

motivation for avoiding discourse. Face threat is influenced by a predefined set of factors based 

on known social constructs. I discuss these social constructs next. 

The constructs considered in the face threat model were power, solidarity, familiarity, affect, and 

the intrinsic threat from certain types of speech [102]. Power is the ability of one person to control 

the behavior of someone else. Face threat diminishes when this is false. Solidarity is the like-

mindedness between people. Individuals who share a profession, political beliefs, religion, and 

values are said to be like-minded. This was hardcoded into the agent but learned in active 

conversation with the user. If a topic expressed likeness with the user, then that diminished the 

face threat. Familiarity is the extent to which there is a reciprocal exchange of information. This 

was quantified by the number of topics discussed between the agent and user; the greater the 

number of topics discussed, the lower the face threat. Familiarity also possessed depth; this was 

quality of the information that was either public or private. Requests for public information 

reduced face threat, while requests for private information increase face threat. Affect is the degree 

to which interactants like each other. If people like each other, then face threat is diminished. This 

would be determined as the conversation progressed with the user; the more conversations the 

agent has with the user, the better the affect prediction. The intrinsic threat from certain types of 

speech comes from the perceived intrusiveness of the speech. Speech that is intended to inform 

are ranked less threatening than requests for information. Speech that involves rejecting someone’s 

ideas is ranked most threatening. Although Cassell and Bickmore [104] addressed a wider number 

of social constructs to achieve a face threat model that was as complete as possible, for scoping 

the problem, they only applied familiarity and solidarity, among the five, to choosing a small talk 

topic during a conversation. In addition to those social constructs, small talk topics were limited 

to what was learned about a user’s preferences and had to be related to the topic on hand.  
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Cassell and Bickmore [104] tested their concept by having users interact with an animated 

speaking agent. The agent posed as a real estate agent and always initiated the conversation with 

users, thus, showing agency. They had two experimental conditions. The first exposed users to a 

discourse strategy that involved only task-oriented speech. In the second condition, small talk was 

interweaved with task-oriented topics. Their evaluation included user ratings for trust, whether 

users thought the agent knew about them and their preferences, whether users thought they knew 

the agent (i.e., can be considered a measure of transparency), whether users thought the interactions 

seemed natural, and whether the agent was engaging. The relevance of this evaluation on the 

current work, is that positive outcomes for these measures could, presumably, indicate that 

continued discourse is achieved. This, in turn, creates more opportunities to obtain data. In the 

analysis, the researchers crossed the experimental conditions with two different characteristics of 

users; introverted versus extroverted, as well as passive or initiated. The passive and initiated 

classifications were made after they discovered that some users, ignoring that the agent was 

designed to initiate the conversation, attempted to control the dialogue by initiating themselves. 

The passive users simply waited for the agent to initiate. It is also important to note that the 

researchers did not find any correlation between introversion and extroversion with passive and 

initiated. The results were as follows.  

Introverted users revealed no difference in ratings of trust between the small talk condition and the 

task-oriented condition, while the extroverted users expressed greater trust in the small talk 

condition. When asked if users thought the agent knew them and their needs, extroverts gave 

higher ratings in the small talk condition. Results for the extroverts were inverted for this measure, 

giving higher ratings in the task-oriented conditions. When asked if users thought the interactions 

were natural, extroverts gave higher ratings in the small talk condition, while results for introverts 

were again inverse. The analysis for engagement and whether users thought they knew the agent 

(i.e., the transparency measure) were crossed with passive versus initiated. There were interaction 

effects for both. Initiated users gave higher ratings for engagement in the small talk condition, 

while passive users gave higher ratings in the task-oriented conditions. Similarly, on the measure 

of transparency, initiated users gave higher ratings in the small talk condition than in the task-

oriented condition, while results were inverted for passive users. This result is somewhat 

unintuitive because one would expect that if a system is effectively providing transparency then it 

should be universally true across all users.  
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Findings from Cassell and Bickmore [104] emphasize the importance of having an updatable and 

accurate model of the user during social discourse. As shown, user characteristics dramatically 

change their response to the conversational strategy. Requiring a system to form a user model who 

is new to the system does reintroduce the data solicitation problem. However, it appears from these 

findings that if machines are afforded the agency to be proactive in engaging the human, as 

suggested by human machine teaming principles, the data solicitation problem can be effectively 

addressed. Even when some users are not amenable to social interaction, such as introverts, a 

proactive machine can initiate to at least learn if a more conservative conversational strategy 

should be used. Whether or not a fully animated conversational agent such as the one developed 

by Cassell and Bickmore can solicit more data from users for recommender systems remains to be 

determined. To address this, I conducted an exploratory study where a similar agent was employed. 

The exploratory study (Appendix A) aimed to investigate if user interaction with a full-featured 

anthropomorphic agent, like the one presented in Cassell and Bickmore [104], would positively 

affect the number of ratings that could be obtained for recommender systems. The idea was that a 

machine agent would leverage the social discourse generated by visual and verbal cues to coax a 

user into responding to more prompts for ratings data. Ratings data was selected for this study 

because it is currently the most important to developers of recommender systems.  

A 2 x 2 within-subjects design was employed (Table 1). Anthropomorphism (levels: no agent 

versus agent) was crossed with Interaction Method (levels: mouse versus voice). In the no agent 

condition (Figure 10) a synthesized voice prompts for ratings was played over a speaker, e.g., 

“What is your rating for the cinematography?”, along with a display of an object on a monitor. The 

agent condition (Figure 11) provided the full-featured anthropomorphic presentation. The 

anthropomorphic presentations had a fictitious back story and the voice synthesis mimicked 

natural speech that included the use of pronouns to refer to the system as if it were a real person. 

Unlike in Cassell and Bickmore [104], the speech was fully scripted, but the study was designed 

so that a single participant never got the same script twice. Interaction Method was included in this 

design to examine possible interaction with Anthropomorphism. In the mouse condition 

participants reported ratings by selecting the desired number of stars with a mouse. In the voice 

condition participants reported ratings using voice recognition through a microphone. One might 

expect greater engagement, and more ratings, when voice recognition is paired with agent 
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presentations because this is consistent with human-to-human interaction. However, when the 

input method is inconsistent, e.g., mouse with agent presentations, one may expect the 

inconsistency to suppress engagement and reduce the quantity of ratings. 

Table 1. Experiment 1: 2 x 2 within-factors Anthropomorphism by Interaction Method. 
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Figure 10. No agent static object. 

 

 

 

Figure 11. Agent. 

I offered the following hypothesis. 

H1.  The quantity of ratings will be the highest when agent presentations are paired with voice 

recognition inputs. 

H2. The quantity of ratings will be lowest when no agent presentations are paired with mouse 

inputs. 

The experiment resulted in no main findings, so no conclusions can be drawn on whether 

anthropomorphic presentations can elicit more data from users. In general, participants gave all 

the ratings requested regardless of the condition. Potential reasons for this was that either the task 
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was too easy, or participants felt obligated to provide ratings as part of contributing to the study. 

That is, users gave the ratings because they felt it was part of the instruction, and at only 10 

requests, this may not have been difficult to do so. In a recent study [156], researchers found that 

participants typically give-up on providing ratings at about 17 and 18 requests. Thus, a follow-up 

study would need to employ up to 20 and 25 data requests to possibly see any changes in quantity 

of ratings from users. As an exploratory study, it is important to note that the conversation between 

the human and machine was not dynamic and did not go beyond simply providing or rejecting 

requests for ratings as the task. Unlike in the agent implemented in Cassell and Bickmore [104] 

the exchange was very simple with an emphasis on visual presentation. This approach was taken 

because the study aimed to first establish any general impact of anthropomorphism. Generating 

convincing social agents requires a considerable amount of resources. It then behooves the 

researcher to determine if any general effect of anthropomorphism can be found before further 

investment in developing machine agents. In addition, this study targeted ratings data; it is still 

unknown what impact the manipulation here would have had on obtaining contextual data. Finally, 

although there were no main effects, the data collected from questionnaires did show that 

participants found the agent anthropomorphic and engaging. Therefore, the presentations concepts 

created here can be used to manipulate anthropomorphism in future studies.  

In addition to controlled studies, future work can examine interaction strategies in various 

application areas to determine the resilience of the solutions. The self-driving car application was 

one that was considered earlier. However, for early implementations a more structured 

environment with very narrow topic focus may be a more convenient place to start. If for example, 

an activation planner based on a network of topics was being implemented, such as in Cassell and 

Bickmore [104], a narrow topic area would reduce the number of nodes in the network and be 

computationally less taxing. Also, it would make transitions between topic nodes more predictable. 

Another important contribution that Cassell and Bickmore made was they demonstrated how to 

incorporate complex social constructs into a working computational model for engaging people. 

These social constructs, such as power and solidarity carry considerable relevance across many 

applications areas. One such area that can serve as an appropriate platform for future work, because 

of its rigid and predictable structure as well as for its relevance to the social constructs that shape 

machine agent conversational strategy is air transportation. In air transportation there has been a 

history of social discrepancy between members of the flight crew, which has led to poor 
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communication and poor performance. Major improvements in the flight crew’s social interaction 

has been heavily influenced by a discipline called Crew Resource Management (CRM).  

Although having broader application in any area that involves teamwork, such as offshore oil 

production [157] and surgery [158], CRM had its genesis in aviation, so the definition I apply here 

refers to safe and efficient flight operations by exploiting all available resources; resources that 

include information, equipment, and people [159]. CRM encompasses training, team structure, 

decision-making, culture, and communication [160]. Entire textbooks have been dedicated to the 

topic, so a complete discussion is out of scope for here. I will focus instead on communication 

aspects of CRM to describe conventions for information exchange within flight crews, because it 

is the most relevant to the data solicitation problem. 

CRM communication can be verbal or visual, e.g., a copilot pointing to the altitude window on a 

flight control unit and announcing the target altitude after making a change to the assigned altitude. 

Similar to Clark’s [43] view on language and joint activity, CRM communication is not limited to 

simple information transfer, and must include functions pertinent to team activity; these are to 

establish team relationships, establish predictable behavior and expectations, maintain attention to 

task for shaping situation awareness, and to serve as a tool for managing time and taskload. The 

ability to achieve these functions determine the effectiveness of flight crews in solving problems 

when nominal or off-nominal events occurred; that effectiveness was mostly contingent upon the 

pattern of communication adopted by the crew members. Among these patterns was engaging in 

frequent interchanges during low-workload periods [161]. These interchanges include recognizing 

problems, stating goals and subgoals, planning and strategy formation, gathering information, and 

alerting and predicting. During these interchanges effective flight crews structured the 

communication to proactively express intent to perform actions and closed the communication 

loop with frequent acknowledgments [162]. In modern flight decks, where an autopilot is being 

implemented, i.e. as opposed to the Tesla feature that adopts the reference, pilots are professionally 

trained to remain fully engaged in the operation of the vehicle without the need to continuously 

provide inputs into the controls. I suggest here that a similar interaction strategy can be used in 

human machine teams for  autonomous vehicle operations, providing what Wickens [149] called 

the “free lunch” through transparency, and closing what Lee [38] referred to as the cost in driver 

readiness. CRM communication strategies is a potential solution to designing joint activity and 
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socially engaging the human to achieve better data solicitation as a seamless part of making 

meaningful contributions to the operation of a vehicle. In the commercial flight deck, CRM is 

vehicle operation, not a substitute for manual control. As implied above, this means that pilot 

training has incorporated tasks that pilots need to do when they are both manually flying the 

airplane and when the automation is controlling the aircraft. These tasks involve aviating, 

navigation, and communication. All three of these responsibilities entail operation of the aircraft 

and workload is shifted within and between them. Unlike in self-driving cars, CRM training has 

been designed to minimize the “waste” of spare capacity to distractions. 

To conclude, I now summarize the intended contribution of this work. That contribution is a 

framework to guide scientific investigations into interface design concepts that will address the 

data solicitation problem (Figure 12). The constructs covered in this work can be separated into 

two categories, interface design concepts and outcomes. As an outcome, user data comes in terms 

of quantity and quality. The expected impact of user data is that it will improve overall system 

recommendations for users. When the system has less user data to ingest, the recommendations 

are poor because they become less relevant to the user. Although also an outcome, engagement 

has the role of keeping the user in the interaction loop. When interaction experiences with the 

system are positive to the user, they are likely to return to the system for further interactions. The 

type of interactions that appear to generate the most information exchange are those that involve 

joint activity. Joint activity is an interaction design approach that involves designing a machine 

to serve as an agent in human machine team structures that allow the machine to take on more 

proactive roles by, for example, reaching out to the human for assistance or offering assistance 

without it being requested. The presumed relationship between engagement and joint activity is 

that engagement can entice a user into joint activity with a machine where it is expected that the 

ongoing exchange of information will generate more user data. Both the relationship between 

engagement and joint activity, and the expectation that joint activity will generate more user data, 

are hypothesized and will need to be validated in future empirical work.  
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Figure 12. A conceptual framework on the direct and indirect influences of interface 

implementation concepts on engagement and user data output. All arches represent existing 

relationships identified in the empirical work. Dotted arches represent relationships not well 

supported by data and are prime research areas. 

 

The anthropomorphism and social discourse interface design concepts come with more evidence 

to support their relationship to joint activity and engagement. These design concepts are complex 

and difficult to implement; empirical investigations will need to be conducted to determine what 

elements of anthropomorphism and social discourse are positively impacting engagement and joint 

activity. Anthropomorphism may lend initial trust to the system because of the human-like 

qualities and can lead to mis-calibration of that trust. This initial trust can be adjusted as system 

performance is revealed through repeated exposure. Findings from recent studies show a positive 

relationship between anthropomorphism and continued interaction with a system, but it remains 

unclear how that relationship can change if the anthropomorphism is negative, such as the uncanny 

valley [163]. Thus, the relationship between joint activity and anthropomorphism is a prime area 

of research. Finally, trust is presumed to have a positive impact on joint activity and engagement. 

Although there is growing interest in the research community for evaluating trust against novel 

interaction concepts like human machine teaming and associated joint activity, as well as 

engagement, the relationships that are being drawn between these constructs are mostly 

hypothesized, with evidence validating the relationships being scarce. The relationship between 

trust and engagement is an area of prime research interest because the direction of the relationship 
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is ill-defined; but these constructs may have an impact on the overall quality of the interaction 

experience, and as a result have an indirect impact on obtaining user data. The research, e.g., [164], 

typically suggests that engagement influences trust, however, this could be an artifact of the 

experiment design. These studies are generally designed to determine the quality of an interface 

and trust is presumed to be an indication of engagement. The constructs of trust and engagement 

have not been distinguished, so future work should be directed to address this as an initial step. 

I propose that future work to address the data solicitation problem for RSs should be as follows. 

The first is to test two key assumptions made in this thesis:  

 Joint activity will lead to more data from users 

 Obtaining contextual information leads to more relevant RS recommendations 

Presuming that a system can obtain more contextual data from users, it has not been established 

that this type of data will lead to better RS recommendations. Although Adomavicius et al. [29] 

reported findings that users typically found results from context-aware recommender systems to 

be more acceptable than with results from ratings-based collaborative filtering alone, other factors, 

such as the quality of decision-making, as well as trust in the system, need to be considered. It is 

still unclear whether human teaming frameworks built on joint activity will lead to continued 

discourse and subsequently more information obtained from users. The current frameworks focus 

squarely on task-oriented activity. Generally, task-oriented discourse is designed to reduce 

coordination overhead and quickly close on a task. However, as was seen in Cassell and Bickmore 

[104] task-oriented discourse receive the best response from users who are introverted. For the 

extroverts, casual conversation helps to catalyze task-oriented conversations. Although Cassell and 

Bickmore did not tease this apart in their experiment, it appeared that to facilitate both social and 

practical engagement, a machine agent needed to convey goals as the conversation unfolded. 

Future work should address the following for developing engaging recommender system 

interfaces: 

● Determine the impact of different aspects of anthropomorphism on joint activity: What 

aspects of anthropomorphism will need to be determined. Is a full featured 

anthropomorphic experience required or just verbal interaction alone? 
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● Determine the relationship between trust and engagement, if any: The constructs of trust 

and engagement need to be teased apart, and any relationship between the constructs need 

to be examined. 

● Model human social interaction: social constructs that apply to development of 

conversation planning must be determined. 

● Model the human interlocutor: factors and mechanisms for modeling the users in 

conversation must be determined. 

● Evaluate user reaction to novel machine roles: users’ response to machines exercising 

greater autonomy in initiating interactions must be determined. 

● Identify appropriate context for investigation: the best application areas for future work 

must be determined, along with advantages and disadvantages of each based on. 

o What applications afford the best opportunity for social interactions? 

o What applications will require recommender systems to be effective? 

o What applications will require information from the human in order to be 

effective? 

As discussed previously, anthropomorphism can provide some immediate benefits in terms of 

improving engagement with recommender systems by leveraging existing tendencies for people 

to socialize technology. However, what approaches to anthropomorphic experiences are most 

conducive to obtaining data through joint activity needs to be determined. Trust and engagement 

play important roles in encouraging joint activity, but it is unclear if these constructs work together 

or independently to influence joint activity. Thus, studying the relationship between trust and 

engagement is a prime researcher area. In implementing a conversational agent for engaging 

people, social constructs needed to be incorporated into formalized discourse planning for 

machines. These constructs can be difficult to quantify; if part of the social discourse involves non-

verbal communication cues with facial expressions and hand gestures, rendering the visual 

presentation so that it looks natural will be challenging. Although it is ideal to incorporate as many 

relevant constructs, not all of them are needed to make an effective conversational system for 

obtaining data from users. Future work should also aim to determine what is the minimal 

requirement on parameters e.g., interests, values and dynamics for developing rapport, that 

constitute a model of a human conversational partner. How humans will respond to a machine that 

displays these features to proactively pursue social discourse with them remains unclear, and 
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deserves further investigation, as well. Finally, implementation concepts should be tested across 

different application areas. Air transportation and self-driving cars provide a convenient platform 

for examining the use of various conversation strategies to obtain data from users. They are ideal 

because the topics that can be entertained can be limited in scope and the rigid operational 

environment makes the social discourse with users predictable. However, operational demands in 

these systems can impose various human factors constraints on how a conversation system is 

implemented and how much information can be obtained from the human. In vehicle operation 

conversational strategies cannot overly burden the user with additional workload. The theoretical 

frameworks discussed herein would suggest that if the conversational system is designed to 

interweave data solicitation as part of vehicle operation there should not be any additional 

workload and interacting with the system would not be perceived as an additional burden on the 

user. However, there is no data in the corpora to support that conclusion. Any collateral benefits 

from engaging the user for data, such as improved SA through system transparency has yet to be 

demonstrated, as well. Positive results on trust scales from past studies when users interacted with 

a conversational agent shows some promise with respect to supported SA, but the relationship 

between trust and transparency will need to be validated before we can attribute those benefits to 

the user interface concept. 
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APPENDIX A. EXPLORATORY STUDY 

Modeling human visual and verbal communication to solicit preference data brings with it both 

advantages and disadvantages. One advantage is that it can create engaging interfaces. With 

engagement designers can potentially coax users to remain in the interaction loop with 

recommender systems, and as a result, create more opportunities to collect ratings data. However, 

it is also possible that users are reticent about exposing their preferences and in the presence of a 

face, although artificial, would not provide ratings data.  In Experiment 1, participants were asked 

to view full-featured anthropomorphic presentations that possess both visual and verbal aspects of 

human communication. This included a fully animated face, realistic skin texture, and natural 

voice synthesis.  After viewing the presentations, they will be asked to provide ratings and evaluate 

the anthropomorphic quality of the presentations in a questionnaire. 

Design and Hypothesis 

The purpose of this experiment was to determine what effect, if any; a full-featured 

anthropomorphic presentation that modeled both visual and verbal human communication may 

have on the quantity of ratings. A 2 x 2 within-subjects design will be employed. 

Anthropomorphism (levels: no agent versus agent) was crossed with Interaction Method (levels: 

mouse versus voice). In the no agent condition a synthesized voice prompt for ratings was played 

over a speaker, e.g., “What is your rating for the cinematography?”, along with a display of an 

object on a monitor. The agent condition provided the full-featured anthropomorphic presentation. 

The anthropomorphic presentations had a fictitious back story and the voice synthesis mimicked 

natural speech that included the use of pronouns to refer to the system as if it were a real person. 

Interaction Method is included in this design to examine possible interaction with 

Anthropomorphism. In the mouse condition participants reported ratings by selecting the desired 

number of stars with a mouse. In the voice condition participants reported ratings using voice 

recognition through a microphone. One might expect greater engagement, and more ratings, when 

voice recognition is paired with agent presentations because this is consistent with human-to-

human interaction. However, when the input method is inconsistent, e.g., mouse with agent 



 

101 

presentations, one may expect the inconsistency to suppress engagement and reduce the quantity 

of ratings. 

Table A.1. Experiment 1: 2 x 2 within-factors Anthropomorphism by Interaction Method. 
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Anthropomorphism 

 No Agent Agent 

Mouse   

Voice   

 

I offer the following hypotheses. 

H1.  The quantity of ratings will be the highest when agent presentations are paired with voice 

recognition inputs. 

H2. The quantity of ratings will be lowest when no agent presentations are paired with mouse 

inputs. 

Participants 

Twenty-four participants were recruited from the San Jose State University Psychology 

Department and Purdue University because these institutions have a convenient and available 

mechanism for recruiting participants. The sample size was computed using G*Power [160], [161]. 

Course credit was given as compensation for participating in the study. 

Procedure 

Each session took approximately 90 minutes and included an introduction, information about the 

task, test trials, and a debriefing segment. In each trial participants viewed 3-minute movie trailers 

from three different genres: science fiction, musical, biography. In the agent conditions these 

trailers were preceded by an animated agent that presents a backstory and invited the participant 
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to view the video which followed automatically (Figure A.1). When the end of the trailer was 

reached, participants were prompted by the animated agent for ratings in the agent condition. In 

the no agent condition a static object (Figure A.2) in the shape of a computer speaker appears on 

the screen and a prompt for ratings will be delivered with robotic speech. In the mouse condition, 

participants will responded to ratings prompts by clicking on a YES or NO link.  

 

Figure A.1. Agent. 

 

Figure A.2. No agent static object. 

 

In the voice input condition, participants spoke into a microphone in natural language to indicate 

that they would either volunteer the ratings or refuse. If participants agreed to give a rating, then 

the display advanced to the next slide where they provided the ratings. If they declined, the display 

advanced to the last slide where the trial ended. In the mouse input condition, participants clicked 

"Yes" or "No" to respond to a prompt for ratings, followed by a separate slide where participants 

clicked on the stars that corresponded with the rating they wanted to give; Figure A.3 shows this 

on Slide 3 and 4 respectively for the agent condition. In the no agent condition the human agent 

was replaced by the static object in Figure A.2 and there was no backstory at the beginning of the 

trial. Dialogue for each ratings prompt from the human agent was unique. Examples including one 

for a backstory was given below each slide in Figure A.3. A complete list of the prompts and 

backstories presented in this study are in Appendix I.  
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Figure A.3. Typical trial for the high anthropomorphism condition with mouse input.  

 

In the voice input condition, the "Yes" and "No" buttons and clickable stars were absent, requiring 

participants to use speech for responding to the prompts. All participants were informed that they 

were under no obligation to provide a rating, and that there was no correct answer. A session ended 

when all trials were viewed. 

Twelve unique movie trailers, each about 3 minutes in duration, were selected from YouTube. The 

trailers were distributed evenly across the three genres: science fiction, musical, and biography. 

The order of the trailers was counterbalanced across participants and each order was randomly 

assigned to a participant. A questionnaire was administered after each block of trials for a 

condition. Thus, questionnaire responses were multiplied by 4. Each session ended with a 

questionnaire that asked participants to compare the interaction methods against each other, and a 

debrief to acquire feedback from the participants about the anthropomorphic presentations (Figure 

A.4). The reason for the debrief is to provide context to measures described in the following 

section.  

 

Figure A.4. Order of events for a single session. 

Measures 

The measure of primary interest in this experiment was to quantity of ratings. Each trial provided 

up to 10 opportunities to provide a rating, with a total of up to 120 ratings across 12 trials. 

Secondary measures were subjective ratings for the quality of the anthropomorphic presentation 

Introduction to 
study

Task 
description

Practice trials
Experimental 

trials
Questionnaire Debrief
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and preference for either mouse or voice input. The intended purpose of the anthropomorphism 

ratings was to validate the anthropomorphism conditions; subjective ratings for the high 

anthropomorphism condition should be higher than the in the low. The anthropomorphism rating 

scale was adopted from the Godspeed questionnaire created by Bartneck, Kulic, Croft, and Zoghbi 

[165]. Items from the Godspeed questionnaire were distilled from a literature review that identified 

key concepts related to engagement with robots; these are anthropomorphism, animacy, likeability, 

perceived intelligence, and perceived safety. Each concept carried a number of dimensions that are 

believed to influence the concept. For example, anthropomorphism is believed to be determined 

by how real a robotic agent appeared, or how naturally it moved. Participants provided a rating 

from 1 to 5 on each dimension using a semantic differential scale (Figure A.4). 

Figure A.4. The scales above contributed to a score for anthropomorphism. The higher the rating, 

the more natural the participant perceived the robot to be in movement. 

 

For this study, I selected from the entire Godspeed questionnaire with exception to items that fell 

under perceived safety because they were not relevant. This leaves a total score of 105 possible, 

given 21 separate scales. Appendix B presents the Godspeed questionnaire for only the selected 

dimensions used in this study. 
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Apparatus and Stimuli 

The experiment was conducted on a commercial computer that projected to an attached 24" 

monitor. Experiment presentations were delivered via a PowerPoint presentation. Character 

models in the anthropomorphic presentations were generated using Photoshop and Crazy Talk 8 

[166]. Crazy Talk 8 provided the ability to control all aspects of the face, including the blinking, 

eyebrow and forehead, orientation of the head, and over all affect using stored profiles (e.g., sad, 

happy, and worried). Mouth movements were automatically synched to synthesized voice 

recordings and the strength of the movements modified using a slider provided by the software’s 

interface. Some manual puppeteering was required to remove repetitious animation that would 

make presentations appear less natural. Voice synthesis were generated using Amazon Web 

Services' Polly application. The voice to be selected was a natural British accent. A total of 252 

unique animations were created for the ratings prompts and backstories. 

The experiment was administered in a closed sound-proofed room under dimmed lighting (Figure 

A.5). The experimenter controlled the presentations from the other side of a partition that separated 

him from the participant. From the control area the experimenter enabled or disabled the mouse or 

voice recognition, as well as start and stop the presentations. Participants saw the presentations on 

the opposite side of the partition where the display was adjusted so that agent on the screen was at 

eye level. 

 

Figure A.5. In this experiment room the experimenter sat on the left of the partition and the 

participant viewed the presentation from a monitor on the right. 
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Results 

Participants received twelve trials each and ten prompts for ratings within each trial. The mean 

number of ratings obtain from participants between the agent (𝑀 = 7.3, 𝑆𝐷 = 3.8) and no agent 

(𝑀 = 7.3, 𝑆𝐷 = 4.0) conditions were equivalent. Thus, no main findings for Anthropomorphism 

will be expected. For Interaction Method, the mouse condition (𝑀 = 7.6, 𝑆𝐷 = 3.6) did obtain 

more ratings than the voice condition (𝑀 = 7.0, 𝑆𝐷 = 4.1). 

As a manipulation check a questionnaire was administered after each block to index the 

anthropomorphic effect of the Agent and No Agent condition (Table A.3). The instrument indexed 

anthropomorphism on two dimensions, humanness and eeriness. In addition, diminished 

anthropomorphism was indexed in terms of how eerie the presentation was to the participant. As 

expected, on the humanness dimensions, the Agent condition (𝑀 = 13.6, 𝑆𝐷 = 8) resulted in 

higher anthropomorphism scores than the No Agent condition (𝑀 = 12.4, 𝑆𝐷 = 5.2). Similarly, 

on the attractiveness dimension, the Agent condition (𝑀 = 15.4, 𝑆𝐷 = 3.7) resulted in higher 

anthropomorphism than in the No Agent condition (𝑀 = 14.5, 𝑆𝐷 = 3.7). However, both the 

Agent (𝑀 = 24.7, 𝑆𝐷 = 7.1) and No Agent (𝑀 = 24, 𝑆𝐷 = 5.6) condition resulted in almost the 

same level of eeriness.  

Table A.2. Mean number of ratings (10 possible per trial) obtained per trial for each condition 

and standard deviations. 
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Anthropomorphism 

 No Agent Agent 

Mouse M=7.6, SD=3.6 M=7.6, SD=3.7 

Voice M=7.1, SD=4.0 M=6.9, SD=4.3 
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Table A.3. Average anthropomorphism scores across Anthropomorphism condition 

  No Agent Agent 

Humanness (Max.30) M=12.4, SD=5.2 M=13.6, SD=8 

Attractiveness (Max.40) M=14.5, SD=3.7 M=15.4, SD=4.8 

Eeriness (Max.25 M=24.0, SD=5.6 M=24.7, SD=7.1 
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APPENDIX B. PRE-SESSION QUESTIONNAIRE 
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APPENDIX C. ANTHROPOMORPHISM INDEX 
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APPENDIX D. END OF SESSION QUESTIONNAIRE 
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APPENDIX E. NUMBER OF RATINGS OBTAINED FROM 

PARTICIPANTS ACROSS CONDITIONS 

 

Participant ID Voice.AVA.Mus Voice.AVA.Bio Voice.AVA.Sci Keyboard.AVA.Mus 

1 10 10 10 10 

2 0 0 0 5 

3 10 10 10 10 

4 10 10 10 10 

5 10 10 4 10 

6 10 10 10 10 

7 4 10 10 10 

8 5 4 7 4 

9 10 10 10 10 

10 1 0 0 0 

11 4 7 10 10 

12 10 10 10 10 

13 3 10 10 10 

14 10 10 10 10 

15 10 10 10 10 

16 10 10 10 7 

17 2 10 10 4 

18 0 1 2 3 

19 4 10 0 4 

20 1 2 0 2 

21 10 10 10 10 

22 3 6 0 0 

23 8 10 10 10 

24 3 10 10 4 

Column Totals 148 190 173 173 

 

Participant ID Keyboard.AVA.Bio Keyboard.AVA.Sci Voice.noAVA.Mus Voice.noAVA.Bio 

1 10 10 10 10 

2 0 0 0 0 

3 10 10 10 10 

4 10 10 3 9 

5 10 10 8 10 

6 10 10 5 4 

7 10 10 10 0 
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8 10 10 0 0 

9 10 10 10 10 

10 1 1 1 1 

11 10 10 10 3 

12 10 10 10 10 

13 10 10 10 10 

14 10 10 10 10 

15 10 10 10 10 

16 10 10 10 10 

17 2 3 5 10 

18 6 6 5 0 

19 4 10 0 1 

20 3 1 1 0 

21 10 10 10 10 

22 6 1 2 0 

23 10 9 10 10 

24 10 4 10 10 

Column Totals 192 185 160 148 

 

Participant ID Voice.noAVA.Sci Keyboard.noAVA.Mus Keyboard.noAVA.Bio Keyboard.noAVA.Sci 

1 10 10 10 10 

2 0 0 0 0 

3 10 10 10 10 

4 10 10 10 10 

5 10 10 10 10 

6 10 10 10 10 

7 10 10 8 10 

8 0 0 3 5 

9 10 10 10 10 

10 1 0 0 0 

11 10 10 10 10 

12 10 10 10 10 

13 10 10 10 10 

14 10 10 10 9 

15 10 10 10 10 

16 10 5 10 9 

17 10 10 10 9 

18 10 6 6 6 

19 0 10 10 10 
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20 1 2 1 1 

21 10 10 10 9 

22 6 1 0 4 

23 10 10 10 9 

24 10 7 2 7 

Column Totals 188 181 180 188 
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APPENDIX F. PRE-SESSION QUESTIONNAIRE OUTPUT 
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APPENDIX G. ANTHROPOMORPHISM INDEX OUTPUT 

Participant ID# Total Humanness Eeriness total Attractiveness total Condition 

25 26 22 21 AVA 

25 27 23 22 AVA 

26 26 31 21 AVA 

26 30 33 25 AVA 

27 12 22 17 AVA 

27 6 24 18 AVA 

28 12 22 15 AVA 

28 6 24 15 AVA 

29 18 21 15 AVA 

29 10 29 15 AVA 

30 16 22 17 AVA 

30 6 24 15 AVA 

31 8 19 11 AVA 

31 15 15 13 AVA 

32 21 26 19 AVA 

32 20 26 18 AVA 

33 6 38 10 AVA 

33 6 40 7 AVA 

34 18 27 19 AVA 

34 6 36 19 AVA 

35 13 15 12 AVA 

35 6 25 9 AVA 

36 6 15 7 AVA 

36 6 13 10 AVA 

25 8 19 11 noAVA 

25 8 16 11 noAVA 

26 17 28 21 noAVA 

26 27 24 19 noAVA 

27 9 28 19 noAVA 

27 13 23 15 noAVA 

28 12 26 13 noAVA 

28 6 19 11 noAVA 

29 13 27 15 noAVA 

29 20 23 16 noAVA 

30 17 23 18 noAVA 



 

126 

30 6 19 15 noAVA 

31 18 24 16 noAVA 

31 12 21 15 noAVA 

32 9 17 13 noAVA 

32 19 31 19 noAVA 

33 10 36 6 noAVA 

33 10 36 7 noAVA 

34 8 30 16 noAVA 

34 10 17 12 noAVA 

35 8 23 15 noAVA 

35       noAVA 

36 15 20 17 noAVA 

36 11 21 14 noAVA 
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APPENDIX H. POST SESSION QUESTIONNAIRE OUTPUT 
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APPENDIX I. AGENT BACKSTORIES 

Backstory 1 

<speak> 

<prosody pitch='default' range="default"> 

I would like you to watch this movie with me. I selected it because I thought the cinematography 

<prosody volume="x-soft"><emphasis level="strong">was lovely</emphasis></prosody>. After 

the trailer, I’d like you to tell me what you think of it. <prosody rate="medium">It will allow me 

to make better recommendations for you later.</prosody>.  

</prosody> 

</speak> 

Backstory 2 

<speak> 

<prosody pitch='default' range="default"> 

I browsed through a bunch of other trailers</prosody> online and came across this one. It 

looked<break time="50ms"/> <emphasis level="moderate">pretty</emphasis>good.<break 

time="50ms"/> <prosody pitch="high" rate="fast">I was going to go check it out </prosody>at 

the theaters, <emphasis level="strong">but</emphasis> wanted get your opinion <emphasis 

level="strong"> too.</emphasis> Let me show it to you.</prosody> 

</prosody> 

</speak> 

 

Backstory 3 

<speak> 

I wasn’t too particularly impressed with this movie the first time I saw it, but after giving it 

another go I realized that there is quite a bit of depth to the story. So you might want to try 

watching the movie even if the trailer doesn’t impress you. I’ll tell you more about what I 

thought when I ask you to give ratings later</speak>. 

 

Backstory 4 

<speak> 
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I am always up for a good sci-fi. Just the other day I saw this film, Ex Machina. I'm not sure if 

you've seen it. <emphasis level="strong">It was a total trip.</emphasis> I won't spoil it for you, 

but basically it's about this robot that learns about people and figures out how to manipulate 

them. I think the effects alone make it worthwhile. Hang on I’ll load it up and we’ll watch it 

together.   

</speak> 

 

Backstory 5 

<speak> 

I hope<break time="100ms" /> I'm making this fun for you, but if you find yourself getting tired 

of this experiment, just remember that you don't have to give me ratings if you don't want to, and 

you can just skip through. If instead <break time="100ms" /> you like watching these trailers 

with me, then by all means keep giving me ratings so that I can find better films for you.  Now 

this next one is one of my favorites. What I like about it most is the setting, but I won’t spoil it 

for you. Let’s check it out! 

</speak> 

 

Backstory 6 

<speak> 

Most people find biographies too dry, but I rather enjoy them</prosody><break time="100ms" 

/>because the lives of the people in those films made great stories in themselves. Nowadays, they 

make some really good biographies with all the new flashy cinema tech. Let me show this one to 

you, so I can get your ratings biographies. I hope you enjoy it as much as I did. 

</speak> 
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APPENDIX J. AGENT REQUEST SCRIPT 
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