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DEFINITIONS 

Biometric: “A measurable, physical characteristic or biological characteristic used to 

recognize the identity or verify these claimed identity of an enrollee” (Association 

of Biometrics, 1999, p.2). 

Biometric Aging: “The gradual decrease in a system performance caused by the changes suffered 

by the users’ trait in the long-term (which cannot be avoided as is inherent to human 

nature)” (Lanitis, 2010, p.32). 

Biometric non-mated comparison trials: They “have historically been referred to as ‘impostor 

trials’” (ISO / IEC JTC 1 SC 37, 2005, p.19). 

Chameleon: “A person who is a chameleon matches well in general, both to themselves 

and to others. They are likely to cause false accepts but not false rejects” 

(Teli et al., 2011, p.6). 

Detection error trade-off curve (DET curve): A “modified ROC curve that plots error 

rates on both axes (false positives on the x-axis and false negatives on the y-axis)” 

(ISO / IEC JTC 1 SC 37, 2005, p.7). 

Dove: “A person who is a dove matches very well against themselves and poorly against 

others” (Teli et al., 2011, p.6). 

Failure to acquire rate (FTAR): The “proportion of a specified set of biometric acquisition 

processes that were failures to acquire” (ISO / IEC JTC 1 SC 37, 2005, p.20). 

Failure to enrol rate (FTER): The “proportion of a specified set of biometric enrolment 

transactions that resulted in a failure to enroll” (ISO / IEC JTC 1 SC 37, 2005, p.5). 
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False match rate (FMR): The “proportion of zero-effort impostor attempt sample features 

falsely declared to match the compared non-self” (ISO / IEC JTC 1 SC 37, 2005, 

p.5). 

False non-match rate (FNMR): The “proportion of genuine attempt sample features 

falsely declared not to match the template of the same characteristic from the 

same user supplying the sample” (ISO / IEC JTC 1 SC 37, 2005, p.5). 

Genuine attempt: A “single good-faith attempt by a user to match their own stored 

template” (ISO / IEC JTC 1 SC 37, 2005, p.2). 

Habituation: The “degree of familiarity of a biometric capture subject with the biometric capture 

process” (ISO / IEC JTC 1 SC 37, 2017, p.14). 

Identification: The “process of searching against a biometric enrolment database to find and 

return the biometric reference identifier(s) attributable to a single individual (ISO / IEC 

JTC 1 SC 37, 2005, p.18). 

Impostor attempt: An “attempt of an individual to match the stored template of a different 

individual by presenting a simulated or reproduced biometric sample or by 

intentionally modifying his/her own biometric characteristics” (ISO / IEC JTC 1 

SC 37, 2005, p.3). 

Matching score: “Measure of the similarity between features derived from a sample and a 

stored template or a measure of how well these features fit a user’s reference 

model” (ISO / IEC JTC 1 SC 37, 2005, p.2). 

Phantom: “A person who is a phantom matches poorly in general, both to themselves and 

to others. They are likely to cause false rejects but not false accepts” (Teli et al., 2011, 

p.6). 
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Receiver operating characteristic curve (ROC curve): A “plot of the rate of “false 

positives” (i.e., impostor attempts accepted) on the x-axis against the 

corresponding rate of “true positives”” (ISO / IEC JTC 1 SC 37, 2005, p.6). 

Template: A “user’s stored reference measure based on features extracted from 

enrollment samples” (ISO / IEC JTC 1 SC 37, 2005, p.2). 

Template Aging: “Occurs when the quality of the match between an enrolled biometric sample 

and a sample to be verified degrades with increased elapsed time between the two 

samples” (Fenker & Bowyer, 2011). 

Verification: The “application in which the user makes a positive claim to an identity, 

features derived from the submitted sample biometric measure are compared to 

the enrolled template for the claimed identity, and an accept or reject decision 

regarding the identity claim is returned” (ISO / IEC JTC 1 SC 37, 2005, p.4). 

Worm: “A person who is a worm matches themselves poorly and other people relatively 

well. They result in a disproportionate number of errors, both false rejects and 

false accepts” (Teli et al., 2011, p.6). 
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LIST OF ABBREVIATIONS 

DET Curve: Detection error tradeoff curve 

EER: Equal error rate 

FMR: False match rate 

FNMR: False non-match rate 

FTA: Failure to acquire 

FTX: Failure to extract 

ROC Curve: Receiver operating characteristic curve 

SSI: Stability Score Index 
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ABSTRACT 

In this study, any change in fingerprint performance, image quality and minutiae count 

for infants in three different age groups was evaluated (0-6, 7-12, and >12 months). This was 

done to determine whether there is a difference in performance between infant age groups for a 

fingerprint recognition system. 

The purpose of this research was to determine whether there is a difference in infant 

fingerprint performance and image quality metrics, between three different age groups (0-6, 7-

12, and >12 months old), using the same optical sensor? The data used for this secondary 

analysis was collected as part of a longitudinal multimodal infant study, using the Digital 

Persona U.are.U 4500. DET curves, zoo analysis, and image quality metrics were used to 

evaluate performance and quality factored by infant age group. 

This study found that there was a difference in image quality and minutiae count, genuine 

and impostor match scores, and performance error rates (EER) between the three age groups. 

Therefore, quality and performance were dependent on age. While there was a difference in 

performance between age groups, there was generally stability for subjects who overlapped 

between multiple age groups. Difference in performance was most likely due to the difference in 

physical characteristics between subjects in each age group, rather than individual instability. 

The results showed that it could potentially be feasible to use fingerprint recognition for children 

over the age of 12 months. 
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 INTRODUCTION 

1.1 Introduction 

According to Cummins & Midlo (1961), biological evidence shows that fingerprints are 

fully formed after six months of fetal life, thus are fully developed at birth. This points toward 

fingerprint as a usable modality for infant biometrics. However, the quality of an infant’s 

fingerprint tends to be very poor (Jain et al., 2016). The question then revolves around how 

infants perform and in what ways can that process be improved. When dealing with infants, their 

natural behavior does not lend itself well to collecting biometric data. Though, if the infant’s 

physical fingerprints are fully developed, then it may be possible with more testing to develop a 

sensor or technology for this population. 

According to Muramoto (2015), it may be possible to distinguish between a latent 

fingerprint that is one day or one week old, one week or one month old, one month and a couple 

of months old, and so on. It could then also be possible to distinguish live scan fingerprints and 

their biometric performance between these age groups. Certain age groups may be better or 

worse performers, and if so, this knowledge could potentially be used a tool to guide researchers 

toward a subset of infants where fingerprint recognition or a technology can be adequately used. 

 This chapter serves to introduce the topic of interest and lay the groundwork for the rest 

of this study. This first chapter can be used as a guide to better understand the rest of this thesis 

by including the significance of the problem, statement of purpose, scope, research question, 

assumptions, limitations, and delimitations.  
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1.2 Statement of the Problem 

Infant biometrics are still largely in a research phase with a lot still left to be discovered, 

as large datasets on infants are very difficult to obtain (Jain et al., 2016). Fingerprint recognition 

as it stands today is commonly viewed as unviable for use with the infant population (Jain et al., 

2016). This creates a knowledge gap regarding the cause of poor infant fingerprint performance. 

Poor performance could unavoidable, but maybe it is the device being used, or maybe there are 

specific infant age groups that consistently perform better or worse. This prods researchers to ask 

the following question: “for infants, does the particular sensor matter?”, and “does their specific 

age matter?” 

1.3 Research Question/Hypotheses 

The research question being addressed is as follows: is there a difference in infant 

fingerprint performance and image quality metrics, between different age groups (0-6 months, 7-

12 months, and >12 months old), using the same optical sensor? 

Metrics used to evaluate include: Image quality and minutiae count, genuine and impostor 

match scores, detection error tradeoff (DET) curves and equal error rates (EER), and zoo 

analysis. 

Sub Questions: 

• Is there a difference in performance between infant age groups? 

o Metrics include: FTX rates, Genuine & Impostor Match Scores, DET Curves & 

EER, Zoo Analysis 

• Is there a difference in image quality metrics between infant age groups? 

o Metrics include: Image Quality & Minutiae Count 
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• Is there individual stability in performance for infants who aged into a different age group 

during the longitudinal data collection? 

o Metrics include: Zoo Analysis, Stability Score Index 

The hypotheses were as follows: 

There is no difference in infant fingerprint performance between the three age groups 

• Ho: µ1 = µ2 = µ3 

Ha: µ1 ≠ µ2 ≠ µ3 

Where µ1 is the 0-6 months old group, µ2 is the 7-12 months old group, and µ3 is the 

>12 months old group. 

There is no difference in infant fingerprint image quality metrics between the three age groups 

• Ho: µ1 = µ2 = µ3 

Ha: µ1 ≠ µ2 ≠ µ3 

Where µ1 is the 0-6 months old group, µ2 is the 7-12 months old group, and µ3 is the 

>12 months old group. 

There is stability in individual infant fingerprint performance for those who aged into a different 

group during the longitudinal data collection 

• Ho: µ1 = µ2 = µ3 

Ha: µ1 ≠ µ2 ≠ µ3 

Where µ1 is the 0-6 months old group, µ2 is the 7-12 months old group, and µ3 is the 

>12 months old group. 
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1.4 Significance of the Problem 

According to Bharadwaj et al. (2010), Corby et al. (2006), Jain et al. (2014), Jain et al. 

(2016), Jain et al. (2017), Jia et al. (2010), and Jia et al. (2012), clean and precise infant 

biometrics are extremely difficult to obtain due to an infants’ rapidly changing physical growth 

and development, their natural unintentionally uncooperative behavior, and the fact that most 

biometric systems are designed with a population of adults in mind. Additionally, there are a lot 

of factors or variables to consider within a biometric system. These factors, caused by individual 

(their fingerprint) and the machine (algorithm/template aging), may each affect quality and 

performance. Age is just one of them, and there currently is no one method that is sufficient for 

use in infant fingerprint recognition (Jain et al., 2014). 

According to Jain et al. (2014), Jain et al. (2016), and Jain et al. (2017), the quality of 

captured fingerprint images tends to be very poor in infants. This is mostly due to the difficulty 

of getting infants to properly interact with a fingerprint sensor. Infants’ fingers get wet from 

them putting their fingers in their mouth, they often time clench and unclench their fists and 

move their hands and fingers in seemingly random patterns, can be balled up (Jain et al., 2014). 

Additionally, the spacing of ridges and valleys in infants’ fingerprints is smaller and more 

compact than that of an adult fingerprint (Jain et al., 2014). This creates an additional step in 

feature extraction, accounting for this spacing discrepancy (Jain et al., 2014). This research 

looked at whether the difference in fingerprints due to specific age ranges accounted for any of 

these discrepancies and impacted quality or performance. 

There has recently been an emphasis by researchers, such as those from Bharadwaj et al. 

(2010), Corby et al. (2006), Jain et al. (2014), Jain et al. (2016), Jain et al. (2017), Jia et al. 

(2010), and Jia et al. (2012), to study the effect that age has on biometrics (specifically with 

infants) and how to mitigate some issues that age presents. In addition to the effect that age and 
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infants have on biometric performance, there has also been a larger emphasis on being able to 

non-intrusively identify or verify a child’s identity to combat child and infant trafficking 

(UNICEF USA, 2019). According to UNICEF USA (2019), child trafficking occurs in all 50 

U.S. states, and 1 in 4 victims of all trafficking are children. In many places, including Nigeria, 

infant trafficking has been growing since 2006 (Makinde, 2015). With a successful and proven 

method of identifying/verifying infants using fingerprint recognition, child trafficking could be 

better protected against and it could add to the knowledge and ability needed to develop more 

accurate biometric systems in general. 

1.5 Statement of Purpose/Scope 

The research questions this study attempted to answer are as follows: “is there a 

difference in infant fingerprint performance and image quality metrics, between different age 

groups (0-6 months, 7-12 months, and >12 months old), using the same optical sensor? 

Additionally, is there stability in individual infant fingerprint performance across age groups for 

children who aged into a separate age group during the longitudinal data collection?” 

Quantifying the change that can occur in a fingerprint recognition system is important, as 

biometrics are becoming used more frequently for authentication purposes (identification and 

verification) as time passes. An “ideal” biometric should contain permanence (Jain et al., 2002). 

However, people are known to  age and physically change over time, and aging is a factor that 

can be difficult to properly evaluate due to a compromise of factors when developing biometric 

systems, or the lack of a sufficient sample size. Time is just one variable that affects fingerprint 

recognition systems. There are many other variables such as the type of sensor technology, type 

of interaction, the force being applied by the individual, and the environment data is being 

captured in that affects fingerprint performance. There are other obvious circumstances that 
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could affect a user’s ability to perform well on a fingerprint scanner. These include an individual 

injuring their hand or losing a finger, or physical deformities at birth. There are also more subtle 

occurrences, such as a decrease in fingerprint definition due to wear and tear or a decrease in 

elasticity (Lanitis, 2010). However, time and more specifically, aging, is an area of research 

where much is still left to be uncovered. 

This research conducted secondary analysis to establish how much change in 

performance and image quality for infant fingerprints between specific infant age groups (0-6, 7-

12, and >12 months old). Data were collected using the Digital Persona U.are.U 4500 fingerprint 

sensor. This dataset was chosen for this secondary analysis because it is taken from the same 

multimodal infant biometric data collection that Hutchison (2018) used for their secondary 

analysis on infant iris recognition. This study  builds upon the findings of that study and adds to 

the general body of knowledge in infant biometrics by focusing on fingerprint recognition. Since 

the variable of interest is age, any differences in performance or image quality would be 

attributed to the variable of infant age. 

1.6 Assumptions 

Assumptions in this study include: 

 

1. The data was properly collected and was not compromised or inaccurate. 

1.7 Limitations 

This study was limited by the following. 

 

1. The infants may have been uncooperative, which could have affected the quality of the 

collected data. 
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2. This study analyzes fingerprint recognition in only three specific age groups (0-6, 7-12, 

and >12 months old). 

3. This was a secondary data analysis. 

1.8 Delimitations 

This project’s delimitations include the following. 

  

1. Fingerprint was the only modality investigated in this study, all other modalities (iris, 

face, etc.) were not evaluated. 

2. The correlation between fingerprint image quality metrics and an individual’s matching 

performance will not be evaluated. 

3. Only one fingerprint sensor and matching algorithm was used in this study The 

performance of different sensors or algorithms were not investigated, as the affect these 

would have on performance was beyond the scope of this study. Infant behavior was 

beyond the scope of this study. 
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 REVIEW OF LITERATURE 

This study evaluated the performance and image quality of infant fingerprints. The 

literature review was divided into seven main subsections: biometrics and authentication, the 

basics of fingerprint recognition, performance and evaluation metrics, aging, general infant 

biometrics, infant fingerprint recognition, and challenges with collecting infant data. 

2.1 Biometrics and Authentication 

In biometrics, people are identified by behavioral and physiological attributes. 

Physiological characteristics consist of unique traits that individuals were born with. Behavioral 

characteristics are traits that are developed over time, such as writing a signature. Biometrics are 

used for authentication purposes, evaluating these physiological and behavioral traits that belong 

to a given individual. Biometrics are separated into modalities. A biometric modality is a 

category by which a biometric system is classified based on the human trait that acts as the data 

input (Jagadeesan, 2010). Some common modalities that are or have been proposed for  

implementeion include voice, fingerprint, iris, face, voice, ear, gait, keystroke dynamics, 

signature, palm, and hand geometry. Each modality possesses strengths and weaknesses and 

could be more beneficial to use than other modalities depending on the specific application. 

Furthermore, ease of use, throughput, and other additional factors also contribute to the selection 

of a biometric modality. For example, if a facility storing classified information needed to be 

secured, the accurate protection of the sensitive information would be prioritized before 

achieving faster throughput. If the use-case only required access control for a public location, 

such as office or apartment buildings (Senseon Secure Access, 2020), high-efficiency throughput 

might be prioritized over maximum security. 
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Authentication has been described as the binding of an identity to a subject (Bishop, 

2003) and can be performed using various methods. Authentication can be performed based upon 

what one has, what one is, or what one knows. What one knows would consist of intangible 

codes, such as passwords and PINs (personal identification numbers). What someone has, or a 

token, would include passports, badges, and ID cards. With regards to access control, someone 

might have a key or a card that grants them access to a room. These two methods of 

identification “are not able to meet the growing demands for stringent security in applications 

such as national ID cards, border crossings, government benefits, and access control” (Jain & 

Kumar, 2010). As a result, biometric recognition is being developed to adjust and adapt to the 

rapidly growing quantity of applications used for authentication. Biometrics are used to analyze 

and determine who someone is based upon traits that are specific to them, such as fingerprint, 

face, and iris recognition. Sometimes more than one biometric modality can be used at the same 

time. This would be two-factor authentication. An example of two-factor authentication is a hand 

geometry device. Hand geometry combines a biometric and a PIN (or magnetic stripe, depending 

on the implementation method), that is linked to the specific individual. Biometrics have been 

shown to be ‘universal’, as a good quality biometric sample can be acquired from all but two 

percent of the population, due to constraints such as disabilities and scars (Jain, 2005). 

According to Zibran (2012), while biometric traits are ‘universal’, they are not always 

‘invariant’. This adds another ripple to the accuracy and security conundrum of a biometric 

system. 

The general biometric model, displayed below in Figure 2.1, provides a comprehensive 

overview of the authentication process for a generic biometric trait and is a valid for any 

biometric modality. There are five important stages that are identified: data capture, signal 
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processing, data storage, matching, and decision making. Enrolment is the initial presentation of 

the biometric trait, the template creation, and its storage. There are two modes of performance, 

verification, and identification. Verification is a 1:1 comparison, verifying that a user is who they 

claim to be. Identification is a 1:N comparison, identifying a specific individual amongst a 

population of individuals (ISO / IEC 2382-37, 2017).  

 

Figure 2.1  General Biometric Model (ISO/IEC TR 24741, 2006) 

 

When the authentication process is initiated, for either verification or identification, the 

user presents their biometric trait to the sensor again and this new presentation is compared to the 

stored template image. This is the matching portion of the general biometric model. A similarity 

score is produced, evaluating how similar those two images are to each other. A genuine match 

score is the result of a user compared against themselves. An impostor match score is the result 

of a user compared against anyone else. Figure 2.2 illustrates an example of an estimated 

probability density of this distribution. Depending upon the system’s threshold, it is determined 
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whether the user is who they say they are. This is the decision-making portion of the general 

model. 

 

Figure 2.2  Distribution of Impostor and Genuine Scores 

 

The distribution of genuine and impostor match scores shown above is used to evaluate a 

biometric system’s performance level. The similarity score is produced by the matching 

algorithm and determines how similar the new sample presented for identification/verification is 

to the stored template. The threshold can be set, appropriate to a specific biometric system, based 

on these distributions. An example of this would be an individual using their fingerprint to 

unlock their phone. If the biometric threshold is set too high, then the genuine user could be 

denied access. This would likely cause frustration since the device belongs to them. However, if 

the threshold is set to low, then an impostor attempt could be granted access. This could 

potentially be much worse since annoyance is being traded for a lack of security. Analysis of 

biometric performance allows for the proper threshold to be set, according to the application and 
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level of convenience/security that is required. Ground-truthing is used to verify that an individual 

is truly being matched against themselves, and correctly produces high genuine and low impostor 

match scores. This provides a system check for the system to ensure accurate and precise results. 

However, ground-truthing is performed by the researcher or data collector rather than a 

computer. There are challenges to this approach since the process is only as accurate as the 

individual is. 

2.2 Basics of Fingerprint Recognition 

The most common biometric modality employed worldwide for authentication purposes 

is the fingerprint (Violino, 2015). Fingerprint sensors are in phones and laptops and are the most 

common biometric in law enforcement and border control. Good and consistent performance 

matters when using technology of all kinds, and biometrics are no different. Border safety and 

municipal security, such as face recognition cameras in police stations or airports, are important 

for the well-being of those that live in that country or city. Additionally, the privacy and security 

of personal information that is stored on a personal phone or computer are also important. 

Regarding the previously explained general biometric model, using fingerprint 

recognition as an example, the first part is the enrollment process. It is generally assumed that the 

same fingerprint sensor used for the enrollment process is used for the verification process 

(AlShehri, Hussain, AboAlSamh & AlZuair, 2018). If a different sensor is used, some biometric 

performance can be more exposed to technological and environmental factors. An individual 

presents their finger to the sensor, and the image is captured. After the image is successfully 

captured the features of the individual’s fingerprint are extracted and analyzed, and it is 

determined whether image quality expectations have been met. There are three common types of 

fingerprint matching algorithm: minutiae based, pattern-based, and hybrid. A matching algorithm 
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can either be live-scan or latent. Live-scan refers to a live presentation of the fingerprint and 

latent refers to a fingerprint that has been left behind. The algorithm used for this study was live-

scan and minutiae-based. For a minutiae-based matching algorithm extracts minutiae points from 

a fingerprint. These fingerprint features include ridge endings, bifurcations, deltas, and cores. If 

quality expectations have not been met then no information was extracted from the fingerprint, 

resulting in a failure to acquire (FTA). If the image passes the quality check, it is stored as that 

user’s template. The template is based on biometric features extracted from enrollment samples 

(ISO / IEC JTC 1 SC 37, 2017). “Biometric templates store a coded representation of specific 

personal characteristics of a subject that can be used for personal identification” (Lanitis, 2010, 

p. 1). A template is the enrolment image that is captured upon an individual’s first presentation to 

the biometric system. This template is then stored in the system’s database and is compared to 

the captured image from all future presentations claiming to belong to that user. 

Of the 150 different local ridge characteristics, two of the most prominent ridge 

characteristics that minutiae-based algorithms look for are ridge endings and ridge bifurcations. 

(Hong, 1998, p. 777). An ending is where a ridge ends abruptly, and a bifurcation is where one 

ridge branches or splits into two ridges (Hong, 1998, p. 777). Flat captures refer to a user 

presenting their fingerprint by pressing it flat against the sensor’s scanning area. Rolled captures 

refer to a user placing one side of their finger against the sensor’s scanning area and rolling it 

across to the other side of their finger. Flat fingerprints can generally produce up to 40 minutiae 

points, whereas rolled fingerprints can usually generate up to 140 minutiae points (Hong, 1998, 

p. 777). Larger scanning areas allow the sensor to capture more minutiae, and rolling a 

fingerprint creates more minutiae points for the sensor to pick up (Hong, 1998). For minutiae-

based algorithms, this could potentially present a problem as missing minutiae or extra minutiae 
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could negatively impact the matching algorithm’s ability to correctly identify an individual. 

These algorithms not only have to identify the correct points within a fingerprint and correctly 

match them to the right fingerprints, but they also need to be able to differentiate the fingerprint 

minutiae from smudges around the edges of the scanning area that are not part of the finger being 

presented. This can result in added minutiae points being marked, thus affecting the algorithm’s 

ability to properly match fingerprints (Hong, 1998). 

The presentation of the fingerprint could also affect the quality of the captured image due 

to uneven force or pressure being applied to the sensor’s scanning area. When pressed too hard, 

the ridges can fold over and appear dark, as they overlap the area occupied by the valleys 

(Mason, 2014, p. 587). Too little pressure being applied can lead to the ridges being too light on 

the fingerprint image. This makes identifying specific ridge characteristics, or minutiae points, 

extremely hard (Mason, 2014, p. 587). This not only contributes to poor image quality, but it also 

creates problems for minutiae based-matching algorithms. According to Petrelli (2009), force 

significantly impacts performance on a ten-print fingerprint sensor. “For image quality among 

the thumbs, the highest quality images were gathered from the 6N – 12N force level”, and “the 

recommended force range to collect thumb images from a subject is 6N-12N” (Petrelli, 2009, p. 

101). For the other four fingers, “higher quality images occur when a subject exerts from 12N-

20N” (Petrelli, 2009, p. 101). Additionally, rolling fingerprints can create smudges due to uneven 

force being applied throughout the rotation of the finger. The finger can slide and create a blur in 

the image which negatively impacts the image quality of the captured fingerprint (Alonso-

Fernandez, 2006, p. 423). In Figure 2.3, Khan (2015) shows a good quality fingerprint, a 

medium quality fingerprint, and a poor-quality fingerprint, from left to right. Figure 2.4 shows 
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different types of fingerprint pattern classes as well as commonly identified minutiae points of a 

fingerprint. 

 

Figure 2.3  Examples of Good, Medium, and Poor Quality Fingerprint Captures (Khan, 2015) 

 

 

Figure 2.4  Fingerprint Pattern Classes and Minutiae Points (Patel et al., 2013) 

2.3 Performance and Evaluation Metrics 

There is a difference between overall group performance and individual performance. If 

performance curves from each sensor in a data collection show the same false acceptance and 

false rejection rates, this indicates that the same group of people performed identically on each 
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sensor. Some individuals appear to perform better on certain devices or even modalities than 

they do on others. 

A failure to acquire rate, or FTA(R), refers to when a biometric trait is presented but the 

sensor does not capture an image. This can result from many factors, such as poor not enough 

applied pressure, the subject not holding still, or the alignment of the biometric with respect to 

the sensor. Though not always the case, these are often a product of the user’s interaction or the 

environment rather than the technology. A failure to extract, or FTX, occurs when a biometric 

trait is presented, and an image is capture but quality information cannot be extracted. This 

occurs when the features of the biometric trait are not clear to the extraction and quality 

software. This can result from similar factors as an FTA and, like an FTA, is often a product of 

the user’s interaction or environment. A true acceptance rate, or TAR, refers to the rate at which 

the matching algorithm correctly matches and identifies a genuine user as themselves. A false 

acceptance rate, or FAR, occurs when an impostor attempt is misidentified as a genuine attempt 

and incorrectly granted access. A false rejection rate, or FRR, occurs when a genuine user is 

rejected or failed to be identified as themselves. The threshold of the biometric system 

determines at what rate these will occur, as explained below. 

A receiver operating characteristic curve (ROC curve) is a “plot of the rate of ‘false 

positives’ (i.e., impostor attempts accepted) on the x-axis against the corresponding rate of ‘true 

positives’” (ISO / IEC JTC 1 SC 37, 2005, p.6). A detection error trade-off curve (DET curve) is 

a “modified ROC curve that plots error rates on both axes (false positives on the x-axis and false 

negatives on the y-axis)” (ISO / IEC JTC 1 SC 37, 2005, p.7). ROC and DET curves are used 

commonly and extensively for biometric system performance analysis. They “show the 

relationship between sensitivity (the number of true positives divided by the total number of 
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ground-truth positives) and specificity (true negatives divided by ground-truth negatives)” (Park, 

Goo, & Jo, 2004). DET curves are used to calculate an EER, which reports when the false match 

rate (FMR) and false non-match rate (FNMR) are equal. In a verification scenario, the FMR is 

the rate when the matcher falsely identifies two images as being from the same finger from the 

same person. The FNMR is the rate at which the matcher falsely identifies two images as being 

from different fingers or different people. 

However, there are other factors that impact performance such as an individual’s gender 

and age, and the quality of the data being captured. These covariates are not considered in ROC 

and DET curves. The performance of the individual can greatly impact population biometric 

performance and it is important to evaluate the individual since the population performance 

curves might not properly illustrate what is occurring within a biometric system. Additional 

characteristics of biometric performance that are measured to evaluate individual performance 

include “zoo menagerie”, animal characteristics (Dunstone & Yager, 2009). The biometric zoo 

menagerie characterizes an individual’s performance by numerically and graphically classifying 

performance using descriptors of animals. This enables one to assess a system’s and an 

individual’s true performance more easily and readily. This allows for a more accurate or 

optimized system. Regarding fingerprints, a genuine score is the result of a user’s fingerprint 

matched with another image of the same finger from the same user. An impostor score is the 

result of a user’s fingerprint matched with the image of any finger from another user or a 

different finger from the same user. For genuine matches, genuine scores should be high and 

impostor scores should be low. 

The zoo menagerie is credited to Doddington, Liggett, Martin, Przybocki, and Reynolds 

(1998) and has been used with several biometric modalities, including the face, fingerprint, 
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keystroke dynamics, and voice. They originally identified the following animal classifications: 

sheep, wolves, lambs, and goats. A goat is an individual who is difficult to match. Goats lie 

below the 2.5 percentile of average match score. Wolves were easy to match as they possessed 

match scores above the 97.5 percentile. They produce a higher false acceptance rate as they can 

imitate others well (Doddington et al., 1998). “A lamb is an individual who is particularly easy to 

imitate and has characteristics similar to others in the dataset. These animals generate scores 

similar to everyone, which could lead to false accepts. Sheep are those who have higher genuine 

scores and lower impostor scores, resulting in lower false match rates and low false accepts” 

(O’Connor, 2013, p. 16-17). Alternative animal classifications have been identified by others. 

These include chameleons, worms, doves, and phantoms (Yager & Dunstone, 2010). 

Within the Yager and Dunstone (2010) classification, “chameleons” possess high genuine 

and impostor match scores, meaning that they look like themselves and everyone else. 

Chameleons are “in the top 25% of the genuine distribution and the top 25% of the impostor 

distribution” (O’Connor, 2013, p. 17). Doves are “the best performing individuals” and are “in 

both the top 25% of the genuine distribution and the bottom 25% of the impostors” (O’Connor, 

2013, p. 17). “Phantoms” have low genuine and impostor scores and do not match well against 

anyone, including themselves. This means that they are “in the bottom 25% of the genuine and 

impostor distributions” (O’Connor, 2013, p. 17). “Worms” (the worst performing individuals) 

have low genuine scores and high impostor scores (Yager, 2007). This means they do not look 

like themselves but do look like everyone else. Worms reside in the bottom 25% of the genuine 

matches and in the top 25% of the impostor matches. Figure 2.5 displays a zoo plot using the 

Yager and Dunstone zoo methodology. Genuine match scores are plotted on the x-axis and 

imposter match scores are plotted on the y-axis. Doves (top right quadrant), phantoms (top left 
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quadrant), worms (bottom left quadrant), and chameleons (bottom right quadrant) are all shown 

in Figure 2.5. The middle portion of the zoo plot contains the “Normal” classified individuals. 

These individuals do not fit within any of the quadrants (percentiles). However, “the zoo 

philosophy is not well-accepted in the community because it has not been proven significant” 

(O’Connor, 2013, p. 16). 

 

 

Figure 2.5  Example of Zoo Plot Analysis (O’Connor, 2013) 

 

2.4 Aging 

There are various factors that affect the performance of a biometric system’s performance 

and the individual is just one of them. “Environment, image quality, and device selection play an 

important role in the successful implementation of a biometric system” (Elliott et al., 2007, p. 5). 
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Other factors include algorithm, force, time, and aging (O’Connor, 2013). According to Petrelli 

(2009), user preference and comfort is an additional factor that can impact an individual’s 

biometric performance. There has been an emphasis, until recently, on the sensor and its 

technology rather than these additional factors. “Research in fingerprinting techniques has 

favored development of software algorithms over the fingerprint acquisition process to increase 

recognition system performance” (Petrelli, 2009, p. 3). In biometrics, aging can be separated into 

two categories, biological and template aging. Biological aging is “the gradual decrease in a 

system performance caused by the changes suffered by the users’ trait in the long-term (which 

cannot be avoided as is inherent to human nature)” (Lanitis, 2010, p.32) or “the deterioration 

of the body over time” (Carls, 2009, p. xix). This occurs when the physical biometric trait ages. 

Individuals experience physical aging with the passage of time, as do their biometric traits and 

features. Template aging is “when the quality of the match between an enrolled biometric sample 

and a sample to be verified degrades with increased elapsed time between the two samples” 

(Fenker & Bowyer, 2011), or “the degree to which biometric data evolves and changes over 

time, and the process by which templates account for this change” (Carls, 2009, p. xix). This 

occurs when the template created for future comparisons becomes outdated. As an individual 

physically ages, the gap in time or technology between the previously stored template and their 

current physical characteristics can affect the performance and accuracy of the system. In this 

scenario, the template may need to be updated so it more accurately reflects the current state of 

the genuine user’s biometric trait. 

The aging process occurs for various biometric modalities. Some modalities may be 

considered intrusive, but this perspective may differ between user age groups (Fairhurst et al., 

2015). For fingerprint recognition, according to Lanitis (2010), “aging causes reduced skin 
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elasticity that affects the fingerprint scanning process as the contact between dry skins and 

scanners is not firm” and “at increased age the possibility of observing damaged fingerprints due 

to wearing and injuries increases.” For facial recognition, appearance “is affected considerably 

by the aging process” and “facial aging is mainly attributed to bone movement and growth and 

skin-related deformations” (Lanitis, 2010). For iris recognition, the iris is “regarded to be 

invariant to within-class variation, presenting in that way an ideal biometric feature. The 

appearance of the iris is formed within a few months from an infant’s birth and remains 

relatively unchanged throughout a person’s lifetime. For this reason, the iris is regarded as an 

aging invariant biometric feature” (Lanitis, 2010). When comparing iris images from sequential 

and non-sequential visits, Petry (2015) found that while individual scores might change, overall 

stability did not. There was “statistical stability of the iris within the month duration range” 

(Petry, 2015, p. 97). However, Bowyer et al. (2007) determined that eye-related diseases such as 

cataract and glaucoma can affect the stability of the iris over time and impact the accuracy of an 

iris recognition system, and these diseases tend to increase in prevalence with age. 

According to Fairhurst et al. (2015), the effects of biological aging can be categorized 

into two categories: feature-related and age progression. Feature-related aging issues refer to the 

differences over time in specific features a biometric system evaluates for a given biometric trait. 

For example, the ridges in a fingerprint can wear out over time and become less differentiated 

from valleys. For face recognition, surface texture can change over time in adult faces (such as 

wrinkles, marks, and scars). The physical shape can change over time in the faces of children. 

For signature recognition, the velocity, acceleration, and frequency/duration of pen lifts can 

change with age. Additionally, “template aging occurs as a result of accumulated changes in 

biometric data during the time which elapses between enrollment (when reference data are first 
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recorded and stored) and authentication (a specific identification/verification event)” (Fairhurst 

et al., 2015). Previous studies have also been conducted to begin analyzing the effect time and 

age has on fingerprint recognition at small time intervals. 

In Galbally (2019), fingerprint analysis was split into children (0-17 years old), adults 

(18-25 years old), and elderly (65-98 years old). It was discovered that the elderly group was the 

most challenging to collect quality data from. For children, the most “problematic group is 0-4. 

For ages 5-12 fingerprint quality is already acceptable, while for 13-17 it is equivalent to that of 

adults” (Galbally, 2019, p. 1357). Performance increased drastically between the ages of 0 and 4 

years old, increased more slowly between the ages of 5 and 12 years old, and stabilized between 

12 and 17 years old. Peak performance appeared to occur for individuals in the adult group (18-

25 years old) and the worst performance occurred in the elderly group, particularly between the 

ages of 81 and 98 years old. It was also found that performance circled back as age increased, as 

the elderly at 70 years old performed similarly to children between the age of 4 and 5 years old. 

This was due to fingerprint quality of the elderly at 70 years old being “equivalent to that of 4-5 

years old children” (Galbally, 2019, p. 1358). Sickler (2005) also found that the elderly 

population, ages 55 and older, did not perform well. The increase of age and corresponding 

decrease in fingerprint moisture “are correlated to lower fingerprint image quality” (Sickler, 

2005, p. 1). 

Regarding the physical fingerprint, the ridges become brittle with the passage of time 

which creates a loss of mass due to erosion from friction and air. The moisture in a fingertip also 

fluctuates over time. While there may not be a lot of mass in the fingertip, it does not take a lot 

of change to significantly affect the mass with respect to its original value. It has been observed 

that a decrease in the concentration of lipids, unsaturated fatty acids, triglycerides, cholesterol, 
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and squalene within the fingertip occurs over time, altering the chemical composition of the 

finger. This could then negatively affect fingerprint performance and biologically impact the 

aging of the fingerprint over time (Cadd et al, 2015, p. 224-226). 

According to Carls et al. (2008), there have been studies done to evaluate the effects of 

template aging, however, most of these have focused on face recognition. Ryu et al. (2007) 

conducted an analysis of fingerprint template aging, measuring image quality and matching 

performance (EER and genuine match score). Ling et al. (2007) conducted a fingerprint 

recognition study over time, analyzing 86 individuals over a 16-week period. According to 

Fairhurst et al. (2015), one common obstacle with studies such as these is the lack of datasets 

with a long enough time lapse. Determining the impact that the template may have on image 

quality and performance could help decide whether spending the time and money on template 

renewal is worth it or not. There may be differing levels of force applied across presentations of 

the same finger from the same user. Matching algorithms are proprietary, so while they each 

perform the same function, the method by which they do so can vary across algorithms. There 

are many layers, often more than can be anticipated or predicted. 

Template aging is very hard to quantify and evaluate due to numerous covariates over 

any given period. A robust calculation of this phenomenon is very difficult to obtain due to these 

numerous covariates and their difficulty to control experimentally (Harvey et al., 2017). Harvey 

et al. (2017), identified biometric permanence with regards to false non-match ratio (FNMR), 

since most biometric modalities do not experience large changes in FNMR. Simplifying the 

evaluation method and first quantifying the effects of time, in general, might be the first step in 

understanding this effect. Additionally, renewing the template periodically could potentially 

reduce or alleviate the negative effects produced by template aging (Ross, 2004). There are 
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different sizes of templates and different speeds of template creation. These factors could 

potentially impact the performance of a biometric system. Regarding fingerprints, the fingerprint 

can become worn over time. Changes or advancements in technology and scarring could also 

necessitate the renewal of the template. This could be time consuming and expensive. 

2.5 General Infant Biometrics 

Previous studies have analyzed the effects of aging on biometric performance, however, 

there has been difficulty in obtaining a large enough sample size and a great enough time 

difference. According to Michalski et al. (2018), the National Institute of Standards and 

Technology (NIST) conducts Facial Recognition Vendor Tests (FRVTs) to evaluate biometric 

performance. “These evaluations have predominantly focused on images of adults however, 

studies that have been conducted on images of children have found that algorithm performance is 

consistently lower than with images of adults. This is likely due to the considerable amount of 

facial growth occurring in childhood” (Michalski et al., 2018, p. 217). However, it is difficult to 

evaluate facial recognition with children due to smaller sample sizes. Other variables such as 

pose, illumination, and expression could also be impacting performance. It is difficult “to 

determine how age and age variation impacts on performance throughout childhood” and “it is 

critical to determine how performance changes throughout childhood at the lowest level 

possible” (Michalski et al., 2018, p. 217). 

Fingerprints were the first biometric used to attempt to identify infants and children. “In 

1899, Galton first captured ink-on-paper fingerprints of a single child from birth until the age of 

4.5 years, manually compared the prints, and concluded that the print of a child at the age of 2.5 

years would serve to identify him ever after” (Jain et al., 2016, p. 1). However, according to 

Bharadwaj et al. (2010), Corby et al. (2006), Jain et al. (2014), Jain et al. (2016), Jain et al. 
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(2017), Jia et al. (2010), and Jia et al. (2012), clean and precise infant biometrics are extremely 

difficult to obtain due to an infants’ rapidly changing physical growth and development, their 

natural unintentionally uncooperative behavior, and the fact that most biometric systems are 

designed with a population of adults in mind. 

For footprint recognition, it was found that it was easier to collect images when infants 

were asleep rather awake (Jia et al., 2012). However, this is not always practical. For palmprint 

recognition, it was found that ink and paper methods were not effective at all, with the best 

results coming via an optical finger/palm sensor (Weingaertner et al., 2008). Additionally, the 

performance was less accurate than fingerprint recognition. For ear recognition, it was found that 

the performance of samples collected from infants were very similar to the performance of 

samples collected from adults (Tiwari, Singh, and Singh, 2011). A big challenge with ear 

recognition is the lack of data on both adults and infants, but especially on adults. This clouds the 

viability or ability to extrapolate results for an entire population, as ear recognition is not widely 

used. Since there already are established modalities for collecting adult biometrics and the 

identification of new modalities or methods focuses more on infants than adults, this mismatch 

creates an unbalance which makes it difficult to compare infant performance against adult 

performance. This currently limits our understanding of ear recognition on infants. 

For face recognition, neutral facial expressions are typically preferred, and infants exhibit a 

wide range of facial expressions. They also struggle to comprehend directions and instruction. 

Movement can cause blurry images and closed eyes can make it difficult for the algorithm to 

detect the face. It was found that when quality face images were captured the system performed 

decently well, however it was very difficult to capture high quality face images (Bachenheimer, 

2016). Closed eyes obviously negatively impact iris recognition performance as well. However, 
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iris recognition does show promise as possibly the most accurate method of biometric 

recognition (Corby et al., 2006). It was found that marginal quality images were still able to be 

successfully matched, and it was rare than an infant had two low-quality and unusable irises. The 

biggest issue was a high failure to acquire rate, but when successfully captured, it tended to work 

well compared to other infant biometric modalities. 

One of the largest challenges when it comes to infant biometrics is the sheer difficulty in 

obtaining a large enough sample size to test and design biometric systems. Without a large 

enough test sample, it is hard to fine tune a system for that specific population (Fairhurst et al. 

(2015). Additionally, there is the ethical debate of collecting biometric data (Rebera & Mordini, 

2013). This, and a lack of motivation from researchers due to the natural non-cooperation of 

infants, increases the difficulty of infant data collection. 

2.6 Infant Fingerprint Recognition 

In infants, the quality of captured fingerprint images tends to be very poor (Jain et al., 

2016). Since palmprint and footprint recognition both use ridge-based biometric feature 

extraction like fingerprint recognition, many of the same challenges apply to these modalities as 

well. Though, according to Jain et al. (2017), a high-resolution fingerprint scanner made for the 

specific purpose of collecting infant fingerprints may mitigate some of these issues. 

In Jain et al. (2014), fingerprint images were collected in a controlled environment at 

Michigan State University, using the Digital Persona U.are.U 4500 (same device that will be 

used in this study). Fingerprints were collected from infants 0-4 years old, over five visits. The 

first and last visits for each infant were one week apart. Images of each infant’s right and left 

index fingers and thumbs were collected. A latent algorithm and live-scan algorithm were used 

to match these images and it was discovered that the latent algorithm performed better than the 
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live-scan algorithm. This was due to infant fingerprints sharing quality characteristics with latent 

adult fingerprints and suffering from the same issues as latent adult fingerprints, such as 

incomplete prints or poor ridge and valley contrast. 

Matching algorithms and devices have been primarily developed for the adult population 

and were tested on the adult population. This results in unanticipated issues, or possibly ones that 

cannot be addressed due to the system’s operational baseline as determined by the ‘typical’ adult 

fingerprint. Another cause of this discrepancy could be the general difficulty of successfully 

matching or extracting quality metrics from latent fingerprints. Since latent prints are dealing 

with whatever portion of a fingerprint that was been left behind, there are many uncontrollable 

variables. The algorithm, even when accounting for this, could have difficulty in reading 

information with any degree of certainty, for both infant and adult latent fingerprints. 

In Jain et al. (2016), fingerprint images were collected from 66 infants between 0-6 months 

old. Three images each of both left and right thumbs were taken from each infant that 

participated in this study. Images were collected over two separate visits. A set of images was 

obtained on the infant’s first visit and another set was obtained between 2 and 4 days later. For 

analysis in a verification scenario, the first set of images for each infant was used as templates 

and the images obtained in the infant’s subsequent visit were used as the current presentation of 

the same fingers to verify they are who they are supposed to be. The frequency of true 

acceptances and false acceptances (equivalent to a false match rate) were evaluated. For the 

identification scenario, each fingerprint was compared to a background database of fingerprints 

belonging to known subjects. Encouraging results were discovered with their custom fingerprint 

sensor. This sensor was designed to be compact and high-resolution to detect the details of an 

infant fingerprint more successfully and accurately. The dimensions of the sensor were 7 cm x 3 
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cm x 7.5mm, and the resolution was 1,270 ppi. This was much higher than the ~500 ppi 

resolution of standard commercially available fingerprint sensors that have been used in the other 

mentioned studies. Using this custom sensor, infants older than 4 weeks old produced a true 

acceptance rate (TAR) of 83.55% and a false acceptance rate (FAR) of 1%, in a verification 

scenario. In an identification scenario, an 79.95% success rate was achieved. Though with 

infants younger or equal to 4 weeks old, the results were still unfavorable. Here, the TAR was 

only 54.55% in a verification scenario and the success rate in an identification scenario was only 

44.05%. However, to the researchers’ knowledge this was the first time that fingerprints with 

visible ridge details were captured from infants as young as 6 hours old. 

Jain et al. (2017) used the same custom fingerprint sensor that was used previously in Jain 

et al. (2016) and built upon that research. In Jain et al. (2017), fingerprint data was collected 

from 309 subjects aged 0-5 years old. These children were separated into three different age 

groups: 0-6 months old, 7-12 months old, and >12 months old. Three data sets were used, all 

consisting primarily of fingerprint images captured from infants 0-6 months old. Dataset A (204 

infants) consisted of fingerprint images collected on both the custom 1,270 ppi sensor and a 

standard 500 ppi sensor, over four visits. Dataset B (65 infants) consisted of fingerprint images 

collected on the custom sensor only, over three visits. Dataset C (40 infants) consisted of 

fingerprint images collected on the custom sensor only, over two visits. 

It was discovered that children fingerprints do “possess the salient features necessary to 

uniquely recognize each child” (Jain et al., 2017, p.12). Additionally, it was determined that it is 

“possible to capture a child’s fingerprints with sufficient fidelity for recognition” at the age of 12 

months old (TAR = 99.5% at FAR = 0.1%) when using a standard sensor with a 500 ppi 

resolution, and at 6 months old (TAR = 98.9% at FAR = 0.1%) when using the custom sensor 
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with a 1,270 ppi resolution (Jain et al., 2017, p.12). A standard resolution sensor would be 

adequate for children 12 months and older. However, for fingerprint recognition on children as 

young as 6 months old, the higher resolution custom sensor would be necessary. It was also 

found that a child’s age at the time of enrolment played a larger role in affecting genuine match 

scores than the time lapse between enrolment and re-presentation of the finger, and the genuine 

match scores did not significantly decrease over the time lapses of 6-12 months. Matching was 

more affected by the physical age of the child than the passage of time. This was likely due to 

younger children supplying poorer quality enrolment images which later affected the matching 

performance. However, once quality information was captured and stored as a template, the 

matching performance was largely unaffected (Jain et al., 2017). 

Figure 2.6 shows images of the left thumbprint belonging to the same child taken at three 

separate times. From left to right, the infant’s thumbprint was captured at 1 day old, 3 months 

old, and 6 months old. It is hard to differentiate between the ridges and valleys for each 

fingerprint. 

 

Figure 2.6  Example of Left Thumb Images from the Same Infant Child (Jain et al., 2017) 

 

Figure 2.7 shows a teenager’s fingerprint. The ridges and valleys are much more visible 

and distinguished. 
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Figure 2.7  Example of Quality of a Teenager’s Fingerprint (Jain et al., 2017) 

 

 Figure 2.8 shows an example of a fingerprint captured from the elderly. The ridges and 

valleys are visibly interfered with by scars and creases, from aging and wear and tear on the 

fingers. 

 

Figure 2.8  Example of a Fingerprint Capture from the Elderly (Jain et al., 2017) 

 

2.7 Challenges with Collecting Infant Data 

It is difficult to collect biometric data from infants (Jain et al., 2014). This is mostly due to 

the difficulty of getting infants to properly interact with a fingerprint sensor. Infants’ fingers get 

wet from them putting their fingers in their mouth, they often time clench and unclench their fists 

and move their hands and fingers in seemingly random patterns, can be balled up (Jain et al., 
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2014). Additionally, the spacing of ridges and valleys in infants’ fingerprints is smaller and more 

compact than that of an adult fingerprint. This creates an additional step in feature extraction, 

accounting for this spacing discrepancy (Jain et al., 2014). 

According to the Dutch Ministry of the Interior and Kingdom Relations (2005), infants 

younger than 8 or 9 months old often make strong fists which are difficult to open and inhibit the 

fingerprint data collection process. Children’s hands are often moist from them sucking their 

thumbs and need to be dried off often, however drying off their hands does not fully address the 

issue of the skin becoming softer. This resulting malleable nature of the skin means a much 

higher difficulty in capturing a good quality fingerprint image. It was difficult, but possible, to 

capture fingerprints from children around 3 or 4 years old. The primary finger that was 

successfully capture was the thumb. This was presumably because it has a larger surface area 

than the other fingers, which results in more potential data points that can be captured and 

extracted. It was exceedingly difficult to collect fingerprint data from children younger than 3 or 

4 years old. 

It was also said to be “virtually impossible to obtain fingerprints from children aged under 

4 years” (Dutch Ministry of the Interior and Kingdom Relations, 2005, p.25). This conclusion 

was derived from the failure to capture rate exceeding 50% until children reached 4 years of age. 

And even at 50%, that is a very high failure to capture rate and a very low successful capture 

rate. 
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 METHODOLOGY 

The methodology was divided into four sections, an introduction, the data collection 

procedures, device specifications, and the data calculation and analysis methods. 

3.1 Introduction 

Fingerprint recognition is commonly viewed as unviable for use with the infant population 

(Dutch Ministry of the Interior and Kingdom Relations, 2005).  The research question being 

addressed is as follows: is there a difference in infant fingerprint performance and image quality 

metrics, between different age groups (0-6 months, 7-12 months, and >12 months old), using the 

same optical sensor? Additionally, is there stability in individual infant fingerprint performance 

across age groups for children who aged into a separate age group during the longitudinal data 

collection? This research is quantitative and will analyze each age group as a separate 

population.  

3.2 Infant Data Collection 

The data for the three age groups (0-6, 7-12, and >12 months old) used in this secondary 

analysis was captured in multiple visits as part of a longitudinal multimodal infant data 

collection. Hutchison (2018) evaluated infant iris recognition using data collected from the same 

longitudinal study. The iris analysis was separated into three infant age groups: “0 to 6 months 

old, 7 to 12 months old, 13 to 24 months old” (Hutchison, 2018, p. 55), and thus, for comparison 

to this analysis, the same age groups were chosen  

Subjects were separated into these different, independent age groups based upon their 

current age at the time of data collection. Some individuals appeared in one age group at the 
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beginning of the longitudinal data collection and appeared in another age group by the end. This 

created an element of overlap between age groups when a subject aged out of one group and 

entered into another. This overlap was evaluated to determine whether individual stability was 

present across age groups. The data collection procedures from the original study that this 

research is utilizing are described below. 

The parents/guardians were shown how to place the finger on the device. For children 

under the age of 24-months-old, the parent/guardian would hold the fingerprint sensor up to the 

child with one hand, and then with their other hand, place the infants right or left index finger 

onto the device. The number of attempts were not defined due to many subjects needing 

numerous attempts in a short period of time before being upset. This was determined by 

parent/guardian or test administrator’s level of comfort. Images of both the left and right index 

fingers were captured for each child, and the parent/guardian decided which index finger to start 

with since the child would sometimes have a toy in one of their hands. Left and right index 

fingers for each child were treated independently since the left index is a different finger from 

the right index. This data collection consisted of 2,769 total images, collected from 38 children in 

the 0-6 months old group, 44 children in the 7-12 months old group, and 58 children in the >12 

months old group. Table 3.1 illustrates the breakdown of these age groups. The expected 

numbers column accounts for when and where an FTX occurred. 

Table 3.1  Separation of Subjects by Age Group 

Age (Months) Total Subjects Total Images Expected Images 

0-6 38 523 574 

7-12 44 918 926 

>12 58 1,269 1,269 
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3.3 Device Specifications 

The device used for all fingerprint captures was the Digital Persona U.are.U 4500, as 

shown below in Figure 3.1. The specifications for this sensor are listed below in Table 3.2. 

Table 3.2  Digital Persona U.are.U 4500 Specifications 

Specification Value 

Manufacturer DigitalPersona, Inc. 

Sensor Type Optical 

Interaction Touch 

Platen Size (mm) 15 x 18 

Resolution (ppi) 512 

Illumination Blue LEDs 

Device Size (mm) 65 x 36 x 16 

Connection USB 2.0 

Supported OS Windows, Linux, Android 

 

 

Figure 3.1  Image of Digital Persona U.are.U 4500 

3.4 Calculation and Analysis Method 

Image quality and minutiae count were the evaluated image quality metrics. Image 

quality scores were computed by the Neurotechnology 10 SDK, on a scale from 0 to 100. Images 

that fail to produce quality information were categorized as an FTX. An FTX is derived from 

images that failed to produce quality data divided by the total number of images. Genuine and 
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impostor match scores were the evaluated performance metrics. This was demonstrated using 

DET curves and zoo analysis. A one-way MANOVA was used to measure statistical significance 

in different image quality metrics, by age group. Additionally, a one-way MANOVA was used to 

measure statistical significance in genuine and impostor match scores by each age group. A one-

way MANOVA was selected since both analyses include one independent variable with 3 levels 

(age group) and more than one dependent variable (2). For both analyses, the independent 

variable was age group (0-6, 7-12, and >12 months old). For the analysis of the image quality 

metrics, the dependent variables were image quality and minutiae count. For the MANOVA 

analysis of the matching performance, the dependent variables were genuine and impostor match 

scores. 

The zoo menagerie and stability score index (SSI) were used to evaluate stability, for 

children who overlapped between more than one age group during the multimodal data 

collection. The zoo menagerie was used to graphically evaluate stability and the SSI was used to 

numerically evaluate stability. The SSI formula, shown below in Figure 3.2, evaluates stability 

by providing a numeric value between 0 and 1, where 0 indicates no difference is present and 1 

indicates the maximum difference possible occurred. 

 

Figure 3.2  Stability Score Index Formula (O’Connor, 2013) 

 

The SSI calculates the individual stability between two levels of any one variable. In this 

study the variable was age and the levels were the specific age group. “X1 and X2 represent the 

genuine match scores for the two levels examined. Y1 and Y2 represent the individual’s impostor 
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match scores from each level. Xmax and Xmin represent the maximum obtained genuine score and 

minimum possible score that was seen at all levels. Ymax and Ymin represent the maximum 

obtained impostor score and the minimum possible score that was seen at all levels. The 

numerator represents the individual’s movement over the two levels and the denominator 

represents the maximum possible movement amongst all levels” (O’Connor, 2013, p. 52). The 

result of this calculation is an index value between 0 and 1, where 0 indicates most stability and 

1 indicates the most instability. 

 

Again, the research questions were as follows: 

1. Is there a difference in fingerprint matching performance between infant age groups? 

Metrics include: FTX rates, Genuine and Impostor match scores, DET curves and EER, 

Zoo analysis 

2. Is there a difference in fingerprint image quality metrics between infant age groups? 

Metrics include: Image Quality and Minutiae Count 

3. Is there individual stability in performance for infants who aged into a different age group 

during the longitudinal data collection? 

Metrics include: Zoo Analysis, Stability Score Index 

 

And the hypotheses were as follows: 

1. There is no difference in infant fingerprint performance between the three age groups. 

2. There is no difference in infant fingerprint image quality metrics between the three age 

groups. 
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3. There is stability in individual infant fingerprint performance for those who aged into a 

different group during the longitudinal data collection. 

3.5 Methodology Summary 

This study was performed to answer the previously stated research question, “is there a 

difference in fingerprint matching performance between different age groups (0-6 months, 7-12 

months, and >12 months old), using the same optical sensor?”, by comparing genuine and 

impostor match scores from children in three different age groups. Whether there was stability in 

individual infant fingerprint performance across age groups for children who aged into a separate 

age group during the longitudinal data collection was also analyzed. Using the same optical 

sensor isolates age group as the variable of interest. Measuring and quantifying changes and 

differences in infant fingerprint performance, by age group, would be very impactful. This would 

add to the body of knowledge, could discover differences that may point toward specific age 

groups to use or avoid for infant fingerprint recognition, and could assist in the understanding of 

biometric systems and their successful implementation and integration with the infant 

population. 
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 RESULTS 

The analysis was divided into four sections, the data cleaning procedures, analysis of the 

matching performance (DETs), analysis of the image quality metrics (one-way MANOVA), and 

analysis of genuine and impostor match scores (one-way MANOVA and Zoo Plots). 

4.1 Data Cleaning Procedures 

The data used for this secondary analysis consisted of 2,769 total images. Fingerprint 

image quality metrics were calculated using the Neurotechnology 10 SDK. All fingerprint 

images that failed to produce quality data were labeled and removed from the analysis. These 

images were unusable for analysis since they could not even produce a score zero. For inclusion 

in the secondary analysis, subjects needed to have at least two images that were captured and 

were able to produce quality data. The failure to extract rates for each age group are shown in 

Table 4.1. The remaining images with valid quality data were used to create templates, which 

were input to the MegaMatcher 10 matching algorithm to assess performance. 

Sample images from this dataset are displayed below in Figure 4.1, illustrating examples 

of images that were removed from the analysis due to a failure to extract. This meant that the 

image was captured but was of such poor quality that the necessary fingerprint features used to 

compute quality could not be extracted. For the data collection, the quality software threshold for 

acquiring a minimum number of minutiae points was set to zero so that a fingerprint was 

captured. This means that there were likely less attempts resulting in a failure to acquire (FTA) 

than there would have been otherwise, however there were also likely more FTXs than there 

would if the minutiae count threshold had been turned on. Some common quality issues with 

fingerprint images were found with these images in Figure 4.1. Images appear to be smudged or 
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the valleys appear to be missing. This is likely due to there being too much or uneven pressure 

being applied during the fingerprint capture process. Another issue that is evident here includes 

the angle or placement location of the finger during the capture process.   

 

 

Figure 4.1  Failure to Extract (Left Index from Subject 27, Right Index from Subject 42) 

 

 This left 2,710 total images, of which there were 254 left index and 269 right index 

images from children in the 0-6 months group, 458 left index and 460 right index images from 

children in the 7-12 months group, and 622 left index and 647 right index images from children 

in the >12 months group. There were 60 subjects that overlapped between the 0-6 and 7-12 

months age groups, 62 subjects that overlapped between the 7-12 and >12 months age groups, 

and 40 subjects that overlapped between all three age groups. 

4.1.1 Failure to Extract Rate by Age Group 

The failure to extract rates for each age group decreased as age increased, as shown in Table 4.1. 

Table 4.1  Failure to Extract Rate by Age Group 

Age (Months) Failure to Extracts Total Images FTX Rate (%) 

0-6 51 574 8.89 

7-12 8 926 0.86 

>12 0 1,269 0.00 
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4.2 Analysis of Image Quality Metrics 

Sample images from this dataset are displayed below in Figures 4.2-4.6. There are 

examples of fingers, with poor, fair, good, very good, and excellent quality, as computed by the 

Neurotechnology 10 SDK. The two examples of excellent quality, Figure 4.6, show more even 

applied pressure, a more central finger placement on the sensor, and a more complete image with 

proper contrast of the ridges and valleys. 

 

 

Figure 4.2  Poor Quality (Left Index from Subject 5, Right Index from Subject 7) 

 

 

Figure 4.3  Fair Quality (Right Index from Subject 64) 

 

   

Figure 4.4 Good Quality (Left Index from Subject 71, Right Index from Subject 12) 
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Figure 4.5 Very Good Quality (Left Index from Subject 31, Right Index from Subject 12) 

 

 

Figure 4.6 Excellent Quality (Left Index from Subject 75, Right Index from Subject 89) 

 

To analyze whether there is a difference in image quality and minutiae count between age 

groups (0-6, 7-12, and >12 months), a one-way MANOVA was run at a significance level of .05. 

The independent variable was age and the dependent variables were image quality and minutiae 

count. Since the one-way MANOVA only indicates if a difference in group means exists and not 

which specific group means are different, a Tukey (equal variances are assumed) or Games-

Howell (equal variances are not assumed) post hoc test was run in order to identify which 

specific group means are significantly different. 

Assumptions for running a one-way MANOVA were met. There were two or more 

continuous dependent variables and the independent variable consisted of two or more 

categorical and independent groups. Additionally, there was independence of observations, an 



 

58 

adequate sample size (more cases in each group than the number of dependent variables being 

analyzed), and there was no multicollinearity. 

The Levene’s test for equality of variances was run to determine homogeneity of variance. 

The Levene’s test was significant for image quality (p < .001), meaning there was a statistical 

difference in variances for image quality. Thus, the Games-Howell test was used for post hoc 

analysis. The Levene’s test was not significant for minutiae count (p = .14), meaning there was 

not a statistical difference in variances for minutiae count. Thus, the Tukey test was used for post 

hoc analysis. Descriptive statistics for the image quality analysis are displayed below in Table 

4.2. Image quality and minutiae count appeared to increase with age. Additionally, since image 

quality scores were computed on a scale from 0 to 100, the quality was still poor despite the 

large increase with age. The mean image quality peaked with the >12 months age group, but only 

produced an average quality score of 42.51 out of 100. 

The one-way MANOVA found that there was a statistically significant difference in 

quality based upon a child’s age, F (4, 5412) = 306.20, p < .001; Wilk’s Λ = .67, partial η2 = .19. 

Additionally, age group had a statistically significant effect on both image quality (F (2, 2707) = 

661.47; p < .001; partial η2 = .33) and minutiae count (F (2, 2707) = 152.88; p < .001; partial 

η2 = .10). The Games-Howell test showed that image quality was significantly different between 

all age group comparisons (p < .001) and the Tukey test showed that minutiae count was 

significantly different between all age group comparisons (p < .001). 
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Table 4.2  Descriptive Statistics Summary: Mean Image Quality 

Metric Age (Months) Mean 

Quality 0-6 17.83 

 7-12 24.25 

 >12 42.51 

Minutiae 0-6 28.78 

 7-12 31.21 

 >12 35.64 

 

 

4.3 Analysis of Matching Performance (DETs) 

DET curves and EERs were computed using Oxford Wave Research Bio-Metrics OWR 

performance software. These are displayed below in Figures 4.7-4.8. Figure 4.7 displays the 

DET curve and EER for all children in this study. This served as a baseline for comparing the 

performance of each individual age group. 

 

Figure 4.7  Overall DET Curves for All Subjects 
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 Figure 4.8 displays the DET curves and EERs for each age group, 0-6 months, 7-12 

months, and >12 months. The EERs by age group are displayed in Table 4.3 and are compared to 

the overall EER which included all children in Table 4.4. 

 

Figure 4.8  DET Curves by Age Group 

 

Table 4.3  EERs by Age Group 

Age (Months) EER (%) FAR (%) FRR (%) 

0-6 36.00 0.1 87.91 

7-12 30.31 0.1 77.49 

>12 14.25 0.1 45.90 

 

Table 4.4  EERs: Each Age Group Compared to All 

Age (Months) EER (%) FAR (%) FRR (%) 

0-6 36.00 0.1 87.91 

7-12 30.31 0.1 77.49 

>12 14.25 0.1 45.90 

All Groups 25.74 0.1 73.15 
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There was a difference in equal error rate between age groups. The overall system error 

decreased as the age of the children increased. The largest change occurred between the 7-12 

months and >12 months groups (30.31% to 14.25%), whereas the difference between the 0-6 

months and 7-12 months group was much smaller (36.00% to 30.31%). Additionally, as shown 

in Table 4.4, children over the age of 12 months were the only age group to perform better than 

the overall performance with all children included for both the EER and FRR metrics. The other 

two age groups had higher EERs and FRRs at the same FAR. Therefore, in accordance with Jain 

et al. (2017), 12 months old appeared to be a benchmark age for using fingerprint recognition on 

children.  

4.4 Analysis of Genuine and Impostor Match Scores 

Statistical analysis of the genuine and impostor match scores was conducted by running a 

one-way MANOVA, since there was one independent variable (age group) and two dependent 

variables (genuine match score and impostor match score). 

 

4.4.1 Differences in Genuine and Impostor Match Scores Across the Groups 

To analyze whether there is a difference in genuine and impostor match scores between 

age groups (0-6, 7-12, and >12 months), a one-way MANOVA was run at a significance level 

of .05. Since the one-way MANOVA only indicates if a difference in group means exists and not 

which specific group means are different, a Games-Howell (equal variances are not assumed) 

post hoc test was run in order to identify which specific group means are significantly different. 

Assumptions for running a one-way MANOVA were met. There were two or more 

continuous dependent variables and the independent variable consisted of two or more 
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categorical and independent groups. Additionally, all observations were independent, there was a 

large enough sample (there were more observations than the number of dependent variables), and 

there was no multicollinearity. 

The Levene’s test for equality of variances was run to determine homogeneity of variance. 

The Levene’s test was significant for image quality (p < .001), meaning there was a statistical 

difference in variances for image quality. Descriptive statistics for the image quality analysis are 

displayed below in Table 4.5. Image quality and minutiae count appear to increase with age. 

The one-way MANOVA found that there was a statistically significant difference in 

quality based upon a child’s age, F (4, 544) = 151.45, p < .001; Wilk’s Λ = .22, partial η2 = .53. 

Additionally, age group had a statistically significant effect on both image quality (F (2, 273) = 

37.58; p < .001; partial η2 = .22) and minutiae count (F (2, 273) = 391.14; p < .001; partial 

η2 = .74). The Games-Howell test showed that genuine match score was significantly different 

between all age group comparisons. However, the difference between the 0-6 months and 7-12 

months groups exhibited only a minor significance (p = .05), whereas all other comparisons 

exhibited significance (p < .001). The Games-Howell test also showed that impostor match score 

was significantly different between all age group comparisons (p < .001). 

Table 4.5  Descriptive Statistics Summary: Mean Match Scores 

Match Score Age (Months) Mean 

Genuine 0-6 50.76 

 7-12 62.38 

 >12 123.96 

Impostor 0-6 37.97 

 7-12 34.93 

 >12 25.53 
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4.4.2 Zoo Analysis and Stability Score Index 

The zoo analysis was conducted to evaluate stability across age groups for children who 

aged into a separate group during the longitudinal data collection. Individual stability was 

evaluated since the DET curves showed a difference between age groups, but DET curves do not 

show whether this difference was caused by the system or the individual. Subjects were 

separated into different, independent age groups based upon their current age at the time of data 

collection. Since some individuals appeared in one age group at the beginning of the longitudinal 

data collection and appeared in another age group by the end, there was some overlap between 

age groups when a subject aged out of one group and into another. Table A.1, attached at the end 

as Appendix A, displays which subjects aged into a different age bracket and which age groups 

they overlapped. 

A zoo plot shows the performance of each individual in a dataset, relative to all other 

individuals within the same dataset. Typically, the individuals would be spread out with a higher 

concentration towards the center of the plot, where subjects with the “normal” animal 

classification are located. However, for this study, there was a lot of clustering in the top left 

corner of the plots. Less spread across the individuals represents more consistency. However, 

this study found that children, especially those in the 0-6 and 7-12 month groups, consistently 

performed poorly. The tendency for younger children to cluster in the top left corner, classified 

as “phantoms”, meant that they matched poorly against themselves and everyone else in the 

dataset. This was likely due to very low genuine match scores and the fact that the genuine and 

impostor scores were very similar, making it difficult for the algorithm to differentiate between 

the children. Figure 4.9 illustrates an example of a typical adult zoo plot.  
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Figure 4.9  Example of Adult Zoo Plot (O’Connor, 2013) 

 

4.4.2.1 Overlap Between 0-6 Months and 7-12 Months 

Figures 4.10-4.15 display the zoo analysis for individuals who were in both the 0-6 

months and the 7-12 months age groups. Figure 4.10 shows the zoo analysis on overlapping 

subjects in the 0-6 months old group and Figure 4.11 shows the zoo analysis on overlapping 

subjects in the 7-12 months old group. Table 4.6 displays the overall animal classification 

breakdown by age group for subjects who were in both the 0-6 months and 7-12 months groups. 

Appendix B displays the individual breakdown by age of animal classifications and genuine and 

impostor match scores for each subject. 
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Figure 4.10  Zoo Plot: 0-6 Months Old (0-6 Months and 7-12 Months Overlap) 

 

 

Figure 4.11  Zoo Plot: 7-12 Months Old (0-6 Months and 7-12 Months Overlap) 
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Table 4.6  Animal Classification Breakdown: 0-6 and 7-12 Months Overlap 

Animal Classification 0-6 months 7-12 months 

Chameleon 1 1 

Dove 10 9 

Normal 47 42 

Phantom 1 1 

Worm 1 7 

Total 60 60 

 

Overall, subjects were unstable across the 0-6 months and 7-12 months age groups. 

Individuals did not always remain the same animal across age groups. For example, subject 39 

was a chameleon in the 0-6 months group and a normal classification in the 7-12 months group, 

where subject 55 was a normal classification in the 0-6 months group and a chameleon 

classification in the 7-12 months group. Subject 55’s genuine match score increased by 41.62 

and their impostor match score decreased by 2.32. Subject 55’s SSI value was 0.096, much 

greater than the mean and median SSI values of 0.031 and 0.018, respectively. This illustrated 

individual instability. Subject 1 was a phantom in the 0-6 months group and a normal 

classification in the 7-12 months group, where subject 17 was normal classification in the 0-6 

months group and a phantom classification in the 7-12 months group. Subject 17’s genuine 

match score decreased by 3.41 and their impostor match score decreased by 3.22. However, this 

would be considered a borderline case since subject 17’s SSI value was 0.011, less than the mean 

and median SSI values of 0.031 and 0.018, respectively. This demonstrates the importance of not 

relying solely on match scores and instead using the stability score index to further evaluate 

individual performance. 

It was interesting to note that there was a decrease in normal and dove classifications and 

an increase in worm classifications, as subjects aged from the 0-6 months group into the 7-12 

months group. The genuine and impostor match scores remained similar between the 0-6 and 7-
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12-month groups. The increase in worm classifications was likely a result of their lack of 

improvement as other subjects improved. This means that while the DET curves showed a slight 

improvement in EER between 0-6 months and 7-12 months, these individuals now classified as 

worms performed worse compared to others in the 7-12 months group than they did in the 0-6 

months old group, despite similar match scores. 

 

4.4.2.1.1 Stability Between 0-6 Months and 7-12 Months 

Figures 4.12 and 4.13 illustrate an example of individual stability across age the 0-6 

months and 7-12 months age group. 

 

 

Figure 4.12  Zoo Plot: Subject LI1 at 0-6 Months Old 
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Figure 4.13  Zoo Plot: Subject LI1 at 7-12 Months Old 

 

In Figure 4.12, while in the 0-6 months age group, the left index finger of subject 1 had 

an average genuine match score of 43.00 and an average impostor match score of 36.80. In 

Figure 4.13, while in the 7-12 months age group, the left index finger of subject 1 had an 

average genuine match score of 44.28 and an average impostor match score of 35.23. The 

minimal change in match scores across age groups resulted in an SSI value of 0.005. In 

comparison, the mean and median SSI for the 0-6 months and 7-12 months overlap was 0.031 

and 0.018, respectively. This represented stability in subject 1’s individual fingerprint 

performance. 

4.4.2.1.2 Instability Between 0-6 Months and 7-12 Months 

Figures 4.14 and 4.15 illustrate an example of individual instability across age the 0-6 

months and 7-12 months age group. 
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Figure 4.14  Zoo Plot: Subject LI50 at 0-6 Months Old 

 

 

Figure 4.15  Zoo Plot: Subject LI50 at 7-12 Months Old 
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In Figure 4.14, while in the 0-6 months age group, the left index finger of subject 50 had 

an average genuine match score of 64.78 and an average impostor match score of 35.24. In 

Figure 4.15, while in the 7-12 months age group, the left index finger of subject 50 had an 

average genuine match score of 152.67 and an average impostor match score of 26.94. The larger 

change in match scores across age groups resulted in an SSI of 0.204. In comparison, the mean 

and median SSI for the 0-6 months and 7-12 months overlap was 0.031 and 0.018, respectively. 

This represented instability in subject 50’s individual fingerprint performance. 

4.4.2.2 Overlap Between 7-12 Months and >12 Months 

 Figures 4.16-4.21 display the zoo analysis for individuals who were in both the 7-12 

months and the >12 months age groups Figure 4.16 shows the zoo analysis on overlapping 

subjects in the 7-12 months old group and Figure 4.17 shows the zoo analysis on overlapping 

subjects in the >12 months old group. Table 4.7 displays the overall animal classification 

breakdown by age group for subjects who were in both the 7-12 months and >12 months groups. 
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Figure 4.16  Zoo Plot: 7-12 Months Old (7-12 Months and >12 Months Overlap) 

 

 

Figure 4.17  Zoo Plot: >12 Months Old (7-12 Months and >12 Months Overlap) 
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Table 4.7  Animal Classification Breakdown: 7-12 and >12 Months Overlap 

Animal Classification 7-12 months >12 months 

Chameleon 1 0 

Dove 10 8 

Normal 42 47 

Worm 9 7 

Total 62 62 

 

 Overall, subjects were unstable across the 7-12 months and >12 months age groups. It 

was interesting to note that there was an increase in normal classifications and a decrease in both 

dove and worm classifications, as subjects from the 7-12 months group aged into the >12 months 

group. This means that while the DET curves showed improvement in EER between 7-12 

months and >12 months, some of these individuals performed worse with respect to the >12 

months population than they did in comparison to the 7-12 months old group. 

4.4.2.2.1 Stability Between 7-12 Months and >12 Months 

Figures 4.18 and 4.19 illustrate an example of individual stability across the 7-12 months 

and >12 months age groups. 
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Figure 4.18  Zoo Plot: Subject LI8 at 7-12 Months Old 

 

  

Figure 4.19  Zoo Plot: Subject LI8 at >12 Months Old 

 



 

74 

In Figure 4.18, while in the 7-12 months age group, the left index finger of subject 8 had 

an average genuine match score of 42.04 and an average impostor match score of 35.97. In 

Figure 4.19, while in the >12 months age group, the left index finger of subject 8 had an average 

genuine match score of 51.30 and an average impostor match score of 34.26. This minimal 

change in match scores across age groups resulted in an SSI of 0.022. In comparison, the mean 

and median SSI for the 7-12 months and >12 months overlap was 0.081 and 0.049, respectively. 

This represented stability in subject 8’s individual fingerprint performance. 

4.4.2.2.2 Instability Between 7-12 Months and >12 Months 

Figures 4.20 and 4.21 illustrate an example of individual instability across the 7-12 

months and >12 months age groups 

 

  

Figure 4.20  Zoo Plot: Subject LI3 at 7-12 Months Old 
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Figure 4.21  Zoo Plot: Subject LI3 at >12 Months Old 

 

In Figure 4.20, while in the 7-12 months age group, the left index finger of subject 3 had 

an average genuine match score of 37.67 and an average impostor match score of 37.41. In 

Figure 4.21, while in the >12 months age group, the left index finger of subject 3 had an average 

genuine match score of 469.33 and an average impostor match score of 22.17. The larger change 

in match scores across age groups resulted in an SSI of 0.998. In comparison, the mean and 

median SSI for the 7-12 months and >12 months overlap was 0.081 and 0.049, respectively. This 

represented instability in subject 3’s individual fingerprint performance. 

4.4.2.3 Overlap Between the 0-6, 7-12, and >12 Months Age Groups 

Figures 4.22-4.30 display the zoo analysis for individuals who were in all three age 

groups. Figure 4.22 shows the zoo analysis on overlapping subjects in the 0-6 months old group, 

Figure 4.23 shows the zoo analysis on overlapping subjects in the 7-12 months old group, and 

Figure 4.24 shows the zoo analysis on overlapping subjects in the >12 months old group. Table 
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4.8 displays the overall animal classification breakdown by age group for subjects who were in 

all three age groups. 

 

 

Figure 4.22  Zoo Plot: 0-6 Months Old (Overlap Between All Three Groups) 
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Figure 4.23  Zoo Plot: 7-12 Months Old (Overlap Between All Three Groups) 

 

 

Figure 4.24  Zoo Plot: >12 Months Old (Overlap Between All Three Groups) 
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Table 4.8  Animal Classification Breakdown: Overlap Between All Three Groups 

Animal Classification 0-6 months 7-12 months >12 months 

Chameleon 1 1 0 

Dove 7 6 3 

Normal 30 26 34 

Phantom 1 0 0 

Worm 1 7 3 

Total 40 40 40 

 

 Overall, subjects were unstable across all three age groups. There was less stability across 

all groups than in either of the other two previously evaluated group overlaps. There were also 

some instances of animal classifications flipping back and forth. As age increased, the number of 

dove classifications decreased. It was interesting to note that there was a decrease in normal 

classifications between 0-6 months and 7-12 months, and then an increase in normal 

classifications between 7-12 months and >12 months. There was also an increase in worm 

classifications between 0-6 months and 7-12 months, and then a decrease in worm classifications 

between 7-12 months and >12 months. 

4.4.2.3.1 Stability Between All Three Groups 

Figures 4.25-4.27 illustrate an example of individual stability across all three age groups.  



 

79 

 

 

Figure 4.25  Zoo Plot: Subject LI44 at 0-6 Months Old 

 

 

Figure 4.26  Zoo Plot: Subject LI44 at 7-12 Months Old 
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Figure 4.27  Zoo Plot: Subject LI44 at >12 Months Old 

 

In Figure 4.25, while in the 0-6 months age group, the left index finger of subject 44 had 

an average genuine match score of 63.50 and an average impostor match score of 38.40. In 

Figure 4.26, while in the 7-12 months age group, the left index finger of subject 44 had an 

average genuine match score of 48.33 and an average impostor match score of 34.51. In Figure 

4.27, while in the >12 months age group, the left index finger of subject 44 had an average 

genuine match score of 51.14 and an average impostor match score of 31.16. This minimal 

change in match scores across age groups represented stability in subject 44’s individual 

fingerprint performance. The SSI values for subject LI44 between all age groups are displayed 

below in Table 4.9. 

Table 4.9  SSI: Subject LI44 

Age Group G1-G2 G2-G3 G1-G3 

LI44 0.036 0.010 0.033 

Overall Mean 0.031 0.073 0.074 
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4.4.2.3.2 Instability Between All Three Age Groups 

Figures 4.28-4.30 illustrate an example of individual instability across all age groups. 

 

 

Figure 4.28  Zoo Plot: Subject RI28 at 0-6 Months Old 

 

Figure 4.29  Zoo Plot: Subject RI28 at 7-12 Months Old 
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Figure 4.30  Zoo Plot: Subject RI28 at >12 Months Old 

 

In Figure 4.28, while in the 0-6 months age group, the right index finger of subject 28 

had an average genuine match score of 111.33 and an average impostor match score of 28.89. In 

Figure 4.29, while in the 7-12 months age group, the right index finger of subject 28 had an 

average genuine match score of 51.49 and an average impostor match score of 32.60. In Figure 

4.30, while in the >12 months age group, the right index finger of subject 28 had an average 

genuine match score of 97.63 and an average impostor match score of 29.80. This large change 

in match scores across age groups represented stability in subject 28’s individual fingerprint 

performance. The SSI values for subject RI28 between all age groups are displayed below in 

Table 4.10. 
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Table 4.10  SSI: Subject RI28 

Age Group G1-G2 G2-G3 G1-G3 

RI28 0.139 0.107 0.032 

Overall Mean 0.031 0.073 0.074 

4.4.2.4 Overall Stability Score Index 

The stability score index (SSI) was used to evaluate the stability of each individual as they 

aged into different age groups during the data collection process. Tables 4.11, displayed below, 

illustrates the overall mean and median SSI between age groups for children who overlapped 

between each of those two groups. Table 4.12 shows the SSI by age group for children who 

overlapped between all three age groups. Appendix C illustrates the SSI for each child. Group 1 

refers to the 0-6 months group, group 2 refers to the 7-12 months group, and group 3 refers to the 

>12 months old group. 

Table 4.11  SSI: Overlap Between Each Age Group 

 G1-G2 G2-G3 

Mean 0.0308 0.0814 

Median 0.0180 0.0494 

 

Table 4.12  SSI: Overlap Between All Three Groups 

 G1-G2 G2-G3 G1-G3 

Mean 0.0313 0.0726 0.0742 

Median 0.0216 0.0543 0.0427 

 

 In Table 4.11, both the mean and median SSI values increase from the 0-6 months & 7-12 

months comparison to the 7-12 months & >12 months comparison. This represented an increase 

in instability, or a larger change in individual performance. In Table 4.12, both the mean and 

median SSI values exhibited the same increase from 0-6 & 7-12 months to 7-12 & >12 months. 

This represented the same increase in instability. However, the SSI values did not change 

between the 7-12 months & >12 months and 0-6 months & >12 months comparison. This 
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represented stability between both comparisons, and further illustrated that there was no 

difference in performance between the 0-6 months group and 7-12 months group. The difference 

between the 7-12 months group and >12 months group was most responsible for the difference in 

individual performance, following the same trend found earlier when evaluating overall system 

performance. Overall, there was individual instability across age groups which likely impacted 

system performance and influenced the DET curves. 
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 CONCLUSIONS AND FUTURE WORK 

This chapter is divided into two sections. The first section discusses the conclusions 

regarding the hypotheses of this study. The second section discusses future work to be done in 

infant fingerprint recognition, and recommendations based on the findings of this study and 

items that this study did not cover. 

5.1 Conclusions 

One conclusion that was drawn from this research was image quality and minutiae count 

are impacted by age. There was a significant difference in quality metrics based upon a child’s 

age, F (4, 5412) = 306.20, p < .001; Wilk’s Λ = .67, partial η2 = .19. Age group had a statistically 

significant effect on both image quality (F (2, 2707) = 661.47; p < .001; partial η2 = .33) and 

minutiae count (F (2, 2707) = 152.88; p < .001; partial η2 = .10). The Games-Howell test showed 

that image quality was significantly different between all age group comparisons (p < .001) and 

the Tukey test showed that minutiae count was significantly different between all age group 

comparisons (p < .001). 

Additionally, analysis of DET curves, zoo characteristics, and the stability score index all 

showed a larger change between the >12 months group and all other age groups, meaning that 12 

months old serves as an intriguing age to focus on for further research and the development and 

testing of new technology. In accordance with Jain et al. (2017), 12 months old appeared to be a 

benchmark age for using fingerprint recognition on children. However, there was a much larger 

FRR at the same FAR found in this study than was found in Galbally (2019). This could be a 

result of this study including more subjects who were less than 12 months old and the minutiae 

count threshold being turned off for this study’s data collection. Table 4.5 compares the DET 
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curves (FAR and FRR) of this study, Reiff (2020), with the performance of children (0-4 years 

old), adults (18-25 years old), and the elderly (65-98 years old) that was found in Galbally 

(2019). 

Table 5.1  FAR and FRR: Comparison with Previous Study by Age Group 

Study Age (Years) FAR (%) FRR (%) 

Galbally (2019) 0-4 0.1 37.00 

 18-25 0.1 1.50 

 65-98 0.1 6.50 

Reiff (2020) 0-5 0.1 73.15 

 

 

Another conclusion that can be drawn is that infant fingerprint recognition performance 

increased with age. As the age group got older the EER rates decreased from 36.00% to 14.25%, 

indicating less matching error within the system as age was increased. FTX rates decreased from 

8.89% to 0% as age increased. By 7 months old, the FTX rates decreased to a level 0.86%. The 

genuine match scores increased from 50.76 to 123.96 as age increased, and impostor match 

scores decreased from 37.97 to 25.53 as age increased. This means that matching performance 

improved with age. Again, this supports 12 months old as an intriguing age for the research of 

infant fingerprint recognition. 

While there was a difference in performance between age groups, there was generally 

stability for subjects who overlapped between multiple age groups. It was concluded based upon 

this study, that individual instability did not significantly impact overall performance. Difference 

in performance would most likely be attributed to the difference in physical characteristics 

between subjects in each age group. 
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According to the Dutch Ministry of the Interior and Kingdom Relations (2005), infant 

fingerprints appear unviable for fingerprint recognition purposes, However, from this study it 

was concluded that 12 months old appears to be a turning point where fingerprint quality and 

matching performance improve. This serves as a potential benchmark for using fingerprint 

recognition with children. 

5.2 Future Work 

The dataset for this study was chosen for secondary analysis because Hutchison (2018) 

used the same multimodal infant biometric data collection for their secondary analysis on infant 

iris recognition. There it was recommended that “a comparison of the same subjects across 

different biometric modalities will help the biometric research community understand the most 

suitable biometrics for infants” (Hutchison, 2018, p. 70). In accordance with Hutchison (2018), 

one recommendation would be to conduct research that combines biometric modalities on the 

same children. This could help determine whether certain age groups perform better or worse, in 

general, as well as if poor performance in certain individuals is due to their specific behavioral or 

physical traits. This could also be used to analyze if a capture method or additional modality 

could be used to mitigate any of these challenges associated with infant fingerprint recognition 

and improve the overall biometric system performance. Examples of this would in adult 

biometric recognition include the use of face and iris multimodal recognition systems, where an 

image of both is taken. Using both can help mitigate shortcomings of either modality by itself. It 

would be interesting to see what could work in this manner for infant biometrics. 

Another recommendation would be to collect more infant fingerprints and over a longer 

period. There has not been a lot of promising test results for infant fingerprint recognition, using 

the technologies we currently have available to us. Galbally (2019) discovered that fingerprint 
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quality and performance increased with age for children, peaked at the young adult stage, and 

then proceeded to regress by the elderly stage. A lot of research has been conducted to analyze 

and interpret the decrease in performance as young adults age into the elderly population. 

However, it would also be important to analyze the increase in performance with age from 

children to adults. This could provide a more accurate view of the larger picture, regarding aging, 

and could lead to better utilization or development of biometric systems. Additionally, this study 

used the same subjects as Hutchison (2018), therefore a multimodal analysis to determine 

potential correlation between fingerprint and iris recognition on the same infants could also be 

conducted. 

Infant interaction and behavior were not recorded and analyzed for this study. The 

understanding of these phenomena could help understand infant biometric recognition and where 

technology/system improvements can and cannot be made. It would be interesting to determine 

whether FTXs occurred as a product of the user or environment. It would be recommended to 

analyze whether children who produce an FTX consistently perform worse than others or if it 

was a random occurrence. Additionally, it would be interesting to know whether random or 

consistent FTXs exhibit any pattern or consistency with which attempt or which order that the 

FTX occurred. Pressure/force level would be another behavioral factor worth reviewing. Uneven 

pressure being applied when capturing infant fingerprint images may be contributing to quality 

issues. Ideal force level may be different for infant fingers than adult fingers due to factors such 

as size or chemical composition. Since parents/guardians may need to place the infant’s finger on 

the sensor, knowing the correct amount of applied force needed could help improve the quality 

of data being collected. Hand dominance is also another behavioral trait that could be further 

examined as children age and develop hand dominance. 
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Another recommendation is to test different sensors or sensor technologies. Certain 

behavioral or physical characteristics can be mitigated with sensors that use a different capture 

technology (optical, capacitive, etc.) or that have a different shape and size that may benefit the 

smaller fingers of infants. 

Testing all ten fingers from each infant could allow us to determine whether other fingers 

are likely to be negatively affected by an infant’s behavioral characteristics, or if better 

performance/capture methods can be achieved. Thumbs have a larger surface area than other 

fingers and more minutiae points may help mitigate some quality issues with infant fingerprints. 

Moving forward, it is important to identify what qualifies as good quality, good 

performance, and the best practices to achieve this. As future research is conducted on infant 

fingerprint recognition and other infant biometrics, some of these guidelines can be considered 

and put into place. It is very difficult for researchers to make concrete conclusions until it is 

known what constitutes as success in a practical application or environment. This study adds to 

the body of knowledge and serves as a continuation of prior research. Future work will increase 

this knowledge and continue to add insight that the brackets around good quality and 

performance can be tightened and more clearly defined, for all modalities of infant biometrics. 

With this in place, it may be possible to design new technology or better use current systems for 

the purpose of infant biometric recognition. 
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APPENDIX A 

Table A.1  Subject Age Groups 

SID 0-6 Months 7-12 Months >12 Months 

1 X X  

2   X 

3  X X 

4   X 

5 X X  

6  X X 

7  X X 

8 X X X 

9 X X X 

10  X  

11  X X 

12  X X 

13 X X X 

14  X X 

15 X X X 

16 X X  

17 X X X 

19 X X X 

20 X   

21 X X X 

24 X X X 

25 X X  

26  X  

27 X X X 

28 X X X 

29  X X 

30 X X X 

31 X X X 

34 X X X 

36 X   

37 X X X 

38 X X  

39 X X X 

40  X X 

41 X X  

42 X X X 

44 X X X 

45 X   
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46 X X X 

47 X  X 

48  X X 

49 X X X 

50 X X  

51 X   

52 X   

53  X X 

54 X   

55 X X X 

56 X X  

57  X  

63   X 

64   X 

67   X 

68   X 

72 X X  

73   X 

74   X 

75   X 

76   X 

77   X 

78   X 

79   X 

80   X 

83 X X  

84   X 

85   X 

87   X 

88   X 

89   X 

90   X 

91  X X 

92   X 

93   X 

94   X 

98   X 
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APPENDIX B 

Table B.1  Animal Classification Breakdown: 0-6 Months and 7-12 Months Overlap 

Subject ID 

Age Group 

(Months) 

Animal 

Classification 

Genuine 

Score 

Impostor 

Score 

LI1 0-6 Normal 43.00 36.80 

LI1 7-12 Normal 44.28 35.23 

RI1 0-6 Phantom 38.50 36.16 

RI1 7-12 Normal 37.89 34.99 

LI5 0-6 Normal 39.00 37.96 

LI5 7-12 Normal 50.17 35.83 

RI5 0-6 Normal 49.75 37.15 

RI5 7-12 Normal 47.33 36.52 

LI8 0-6 Normal 45.80 39.85 

LI8 7-12 Normal 42.04 36.18 

RI8 0-6 Normal 41.80 39.13 

RI8 7-12 Worm 44.04 36.90 

LI9 0-6 Dove 62.77 34.63 

LI9 7-12 Dove 82.28 33.01 

RI9 0-6 Normal 52.10 38.11 

RI9 7-12 Dove 68.16 33.71 

LI13 0-6 Normal 42.55 37.82 

LI13 7-12 Normal 56.34 35.43 

RI13 0-6 Normal 41.96 38.01 

RI13 7-12 Worm 42.83 36.85 

LI15 0-6 Normal 42.83 38.83 

LI15 7-12 Normal 44.47 35.86 

RI15 0-6 Normal 43.17 39.16 

RI15 7-12 Normal 45.18 37.14 

LI16 0-6 Normal 41.99 37.48 

LI16 7-12 Normal 50.59 37.15 

RI16 0-6 Normal 47.03 39.39 

RI16 7-12 Normal 49.15 37.33 

LI17 0-6 Normal 40.48 37.46 

LI17 7-12 Phantom 37.07 34.25 

RI17 0-6 Normal 37.57 36.90 

RI17 7-12 Normal 49.64 35.56 

LI19 0-6 Normal 58.43 37.55 

LI19 7-12 Normal 46.31 36.49 

RI19 0-6 Normal 45.40 37.09 

RI19 7-12 Normal 58.26 34.61 

LI21 0-6 Normal 52.03 37.60 
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LI21 7-12 Normal 60.07 33.77 

RI21 0-6 Dove 60.59 36.67 

RI21 7-12 Dove 71.96 33.59 

LI24 0-6 Dove 96.27 34.90 

LI24 7-12 Dove 73.36 29.47 

RI24 0-6 Dove 64.46 35.68 

RI24 7-12 Normal 51.79 34.88 

LI25 0-6 Normal 43.33 40.17 

LI25 7-12 Normal 46.70 34.74 

RI25 0-6 Normal 47.70 39.23 

RI25 7-12 Normal 39.31 35.35 

LI27 0-6 Normal 47.00 40.19 

LI27 7-12 Worm 43.37 37.31 

RI27 0-6 Normal 44.35 39.33 

RI27 7-12 Worm 44.25 38.31 

LI28 0-6 Dove 92.00 28.21 

LI28 7-12 Normal 59.38 32.78 

RI28 0-6 Dove 111.33 29.09 

RI28 7-12 Normal 51.49 32.67 

LI30 0-6 Normal 40.17 37.22 

LI30 7-12 Normal 45.94 36.14 

RI30 0-6 Normal 58.05 37.88 

RI30 7-12 Normal 48.92 35.93 

LI31 0-6 Normal 47.35 35.38 

LI31 7-12 Dove 81.54 30.16 

RI31 0-6 Dove 66.15 34.34 

RI31 7-12 Dove 66.77 32.38 

LI34 0-6 Normal 44.72 38.75 

LI34 7-12 Normal 45.19 36.69 

RI34 0-6 Normal 40.78 37.32 

RI34 7-12 Normal 45.68 35.75 

LI37 0-6 Normal 44.00 39.69 

LI37 7-12 Normal 45.12 37.13 

RI37 0-6 Worm 41.67 40.09 

RI37 7-12 Normal 45.38 35.90 

LI38 0-6 Dove 60.15 35.31 

LI38 7-12 Normal 90.67 36.34 

RI38 0-6 Normal 52.11 37.16 

RI38 7-12 Worm 44.17 37.01 

LI39 0-6 Chameleon 74.33 41.22 

LI39 7-12 Normal 49.88 34.90 

RI39 0-6 Normal 45.83 38.84 

RI39 7-12 Normal 54.42 35.12 

LI41 0-6 Normal 49.06 41.15 
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LI41 7-12 Normal 44.38 36.21 

RI41 0-6 Normal 45.29 40.28 

RI41 7-12 Normal 50.79 35.57 

LI42 0-6 Normal 45.55 38.42 

LI42 7-12 Normal 46.73 36.20 

RI42 0-6 Normal 52.32 39.21 

RI42 7-12 Normal 45.94 37.55 

LI44 0-6 Normal 63.50 38.38 

LI44 7-12 Normal 48.33 34.50 

RI44 0-6 Normal 49.00 39.23 

RI44 7-12 Dove 60.69 33.70 

LI46 0-6 Normal 92.00 37.35 

LI46 7-12 Normal 69.36 34.71 

RI46 0-6 Normal 42.50 38.33 

RI46 7-12 Normal 51.22 34.86 

LI49 0-6 Normal 41.74 38.01 

LI49 7-12 Worm 38.00 36.86 

RI49 0-6 Normal 40.28 38.26 

RI49 7-12 Normal 47.33 35.47 

LI50 0-6 Dove 64.78 35.24 

LI50 7-12 Dove 152.67 26.84 

RI50 0-6 Dove 61.25 32.85 

RI50 7-12 Dove 86.67 29.20 

LI55 0-6 Normal 44.57 39.24 

LI55 7-12 Normal 95.67 35.03 

RI55 0-6 Normal 46.38 39.83 

RI55 7-12 Chameleon 88.00 37.51 

LI56 0-6 Normal 37.55 37.20 

LI56 7-12 Normal 68.97 35.93 

RI56 0-6 Normal 42.00 38.43 

RI56 7-12 Normal 45.55 36.36 

LI72 0-6 Normal 42.13 38.14 

LI72 7-12 Normal 43.50 35.74 

RI72 0-6 Normal 42.83 39.34 

RI72 7-12 Worm 41.10 36.73 

LI83 0-6 Normal 43.00 37.34 

LI83 7-12 Normal 47.25 35.99 

RI83 0-6 Normal 43.00 35.89 

RI83 7-12 Normal 45.00 35.43 
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Table B.2  Animal Classification Breakdown: 7-12 Months and >12 Months Overlap 

Subject ID 

Age Group 

(Months) 

Animal 

Classification 

Genuine 

Score 

Impostor 

Score 

LI3 7-12 Worm 37.67 37.41 

LI3 >12 Dove 469.33 22.17 

RI3 7-12 Normal 48.00 39.67 

RI3 >12 Normal 84.00 24.77 

LI6 7-12 Normal 48.17 38.19 

LI6 >12 Worm 38.67 32.31 

RI6 7-12 Normal 39.00 36.05 

RI6 >12 Worm 45.17 33.46 

LI7 7-12 Normal 41.74 36.35 

LI7 >12 Normal 46.45 31.83 

RI7 7-12 Normal 43.62 35.04 

RI7 >12 Normal 45.27 31.40 

LI8 7-12 Normal 42.04 35.97 

LI8 >12 Normal 51.30 34.26 

RI8 7-12 Worm 44.04 36.62 

RI8 >12 Normal 47.27 30.99 

LI9 7-12 Dove 82.28 32.96 

LI9 >12 Dove 105.26 27.38 

RI9 7-12 Normal 68.16 33.88 

RI9 >12 Normal 87.00 29.28 

LI11 7-12 Dove 145.30 29.75 

LI11 >12 Dove 146.27 24.89 

RI11 7-12 Dove 94.17 27.92 

RI11 >12 Normal 97.77 26.33 

LI12 7-12 Normal 46.50 36.37 

LI12 >12 Normal 94.17 25.89 

RI12 7-12 Normal 48.79 34.83 

RI12 >12 Normal 76.90 26.16 

LI13 7-12 Normal 56.34 35.08 

LI13 >12 Normal 69.83 31.83 

RI13 7-12 Normal 42.83 36.62 

RI13 >12 Normal 59.50 32.65 

LI14 7-12 Dove 74.93 32.02 

LI14 >12 Dove 135.02 25.71 

RI14 7-12 Dove 78.37 32.52 

RI14 >12 Dove 119.18 26.38 

LI15 7-12 Normal 44.47 35.65 

LI15 >12 Normal 41.09 31.71 

RI15 7-12 Worm 45.18 36.76 

RI15 >12 Worm 40.50 31.92 

LI17 7-12 Normal 37.07 34.12 
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LI17 >12 Normal 67.63 31.30 

RI17 7-12 Normal 49.64 35.51 

RI17 >12 Normal 136.00 31.50 

LI19 7-12 Normal 46.31 36.08 

LI19 >12 Normal 108.91 28.82 

RI19 7-12 Normal 58.26 34.22 

RI19 >12 Dove 155.28 26.75 

LI21 7-12 Normal 60.07 33.61 

LI21 >12 Normal 176.33 29.09 

RI21 7-12 Dove 71.96 33.45 

RI21 >12 Normal 123.17 30.42 

LI24 7-12 Dove 73.36 29.32 

LI24 >12 Dove 137.34 22.75 

RI24 7-12 Normal 51.79 34.68 

RI24 >12 Normal 76.01 28.91 

LI27 7-12 Worm 43.37 37.00 

LI27 >12 Normal 78.15 32.45 

RI27 7-12 Worm 44.25 37.95 

RI27 >12 Normal 133.17 30.55 

LI28 7-12 Normal 59.38 32.55 

LI28 >12 Normal 91.37 27.25 

RI28 7-12 Normal 51.49 32.41 

RI28 >12 Normal 97.63 29.66 

LI29 7-12 Normal 61.22 34.88 

LI29 >12 Normal 72.34 30.12 

RI29 7-12 Normal 50.18 34.65 

RI29 >12 Normal 103.66 31.69 

LI30 7-12 Normal 45.94 35.79 

LI30 >12 Worm 46.51 32.03 

RI30 7-12 Normal 48.92 35.55 

RI30 >12 Normal 47.55 31.55 

LI31 7-12 Dove 81.54 29.82 

LI31 >12 Dove 103.92 22.69 

RI31 7-12 Normal 66.77 32.25 

RI31 >12 Normal 58.91 24.31 

LI34 7-12 Normal 45.19 36.38 

LI34 >12 Normal 81.08 29.50 

RI34 7-12 Normal 45.68 35.50 

RI34 >12 Normal 90.00 29.35 

LI37 7-12 Worm 45.12 36.76 

LI37 >12 Normal 68.41 32.44 

RI37 7-12 Normal 45.38 35.67 

RI37 >12 Normal 114.08 29.50 

LI39 7-12 Normal 49.88 34.76 
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LI39 >12 Normal 72.73 30.17 

RI39 7-12 Normal 54.42 35.04 

RI39 >12 Normal 99.03 27.75 

LI40 7-12 Normal 79.30 33.68 

LI40 >12 Normal 61.59 31.56 

RI40 7-12 Dove 86.96 33.24 

RI40 >12 Normal 59.16 32.05 

LI42 7-12 Normal 46.73 35.84 

LI42 >12 Normal 44.02 31.00 

RI42 7-12 Normal 45.94 37.29 

RI42 >12 Worm 47.43 32.94 

LI44 7-12 Normal 48.33 34.47 

LI44 >12 Normal 51.14 30.74 

RI44 7-12 Normal 60.69 33.69 

RI44 >12 Normal 63.71 31.16 

LI46 7-12 Normal 69.36 34.46 

LI46 >12 Normal 87.88 28.49 

RI46 7-12 Normal 51.22 34.53 

RI46 >12 Normal 69.61 29.05 

LI48 7-12 Worm 44.09 36.63 

LI48 >12 Normal 56.02 31.46 

RI48 7-12 Normal 53.08 37.63 

RI48 >12 Normal 53.07 30.58 

LI49 7-12 Worm 38.00 36.59 

LI49 >12 Worm 41.51 33.69 

RI49 7-12 Normal 47.33 35.14 

RI49 >12 Worm 42.34 34.10 

LI53 7-12 Normal 63.57 35.56 

LI53 >12 Normal 79.55 30.24 

RI53 7-12 Normal 69.59 35.90 

RI53 >12 Normal 61.57 31.45 

LI55 7-12 Normal 95.67 34.69 

LI55 >12 Normal 52.44 32.97 

RI55 7-12 Chameleon 88.00 37.09 

RI55 >12 Normal 63.64 31.89 

LI91 7-12 Normal 45.22 33.05 

LI91 >12 Normal 42.80 30.47 

RI91 7-12 Dove 116.83 32.44 

RI91 >12 Normal 41.77 29.62 
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Table B.3  Animal Classification Breakdown: Overlap Between All Three Groups 

Subject ID 

Age Group 

(Months) 

Animal 

Classification 

Genuine 

Score 

Impostor 

Score 

LI8 0-6 Normal 45.80 39.72 

LI8 7-12 Normal 42.04 36.06 

LI8 >12 Normal 51.30 34.78 

RI8 0-6 Normal 41.80 39.11 

RI8 7-12 Worm 44.04 36.77 

RI8 >12 Normal 47.27 31.37 

LI9 0-6 Dove 62.77 34.26 

LI9 7-12 Dove 82.28 32.86 

LI9 >12 Dove 105.26 27.36 

RI9 0-6 Normal 52.10 38.05 

RI9 7-12 Dove 68.16 33.68 

RI9 >12 Normal 87.00 29.18 

LI13 0-6 Normal 42.55 37.97 

LI13 7-12 Normal 56.34 35.26 

LI13 >12 Normal 69.83 32.63 

RI13 0-6 Normal 41.96 38.14 

RI13 7-12 Worm 42.83 36.77 

RI13 >12 Normal 59.50 33.17 

LI15 0-6 Normal 42.83 38.88 

LI15 7-12 Normal 44.47 35.82 

LI15 >12 Normal 41.09 32.21 

RI15 0-6 Normal 43.17 39.19 

RI15 7-12 Worm 45.18 37.03 

RI15 >12 Normal 40.50 32.46 

LI17 0-6 Normal 40.48 37.36 

LI17 7-12 Normal 37.07 34.25 

LI17 >12 Normal 67.63 31.42 

RI17 0-6 Phantom 37.57 36.90 

RI17 7-12 Normal 49.64 35.54 

RI17 >12 Normal 136.00 31.55 

LI19 0-6 Normal 58.43 37.47 

LI19 7-12 Normal 46.31 36.33 

LI19 >12 Normal 108.91 29.32 

RI19 0-6 Normal 45.40 36.97 

RI19 7-12 Normal 58.26 34.48 

RI19 >12 Dove 155.28 27.18 

LI21 0-6 Normal 52.03 37.74 

LI21 7-12 Normal 60.07 33.78 

LI21 >12 Normal 176.33 29.64 

RI21 0-6 Normal 60.59 36.83 
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RI21 7-12 Dove 71.96 33.70 

RI21 >12 Normal 123.17 30.77 

LI24 0-6 Dove 96.27 34.65 

LI24 7-12 Dove 73.36 29.40 

LI24 >12 Dove 137.34 22.92 

RI24 0-6 Dove 64.46 35.58 

RI24 7-12 Normal 51.79 34.83 

RI24 >12 Normal 76.01 29.14 

LI27 0-6 Normal 47.00 40.15 

LI27 7-12 Worm 43.37 37.24 

LI27 >12 Normal 78.15 32.52 

RI27 0-6 Normal 44.35 39.31 

RI27 7-12 Worm 44.25 38.24 

RI27 >12 Normal 133.17 30.88 

LI28 0-6 Dove 92.00 27.85 

LI28 7-12 Normal 59.38 32.70 

LI28 >12 Normal 91.37 27.59 

RI28 0-6 Dove 111.33 28.89 

RI28 7-12 Normal 51.49 32.60 

RI28 >12 Normal 97.63 29.80 

LI30 0-6 Normal 40.17 37.32 

LI30 7-12 Normal 45.94 36.06 

LI30 >12 Normal 46.51 32.46 

RI30 0-6 Normal 58.05 38.13 

RI30 7-12 Normal 48.92 35.85 

RI30 >12 Normal 47.55 32.10 

LI31 0-6 Normal 47.35 35.36 

LI31 7-12 Dove 81.54 29.99 

LI31 >12 Normal 103.92 23.39 

RI31 0-6 Dove 66.15 34.48 

RI31 7-12 Dove 66.77 32.34 

RI31 >12 Normal 58.91 24.70 

LI34 0-6 Normal 44.72 38.76 

LI34 7-12 Normal 45.19 36.59 

LI34 >12 Normal 81.08 30.04 

RI34 0-6 Normal 40.78 37.35 

RI34 7-12 Normal 45.68 35.69 

RI34 >12 Normal 90.00 29.87 

LI37 0-6 Normal 44.00 39.64 

LI37 7-12 Worm 45.12 36.93 

LI37 >12 Normal 68.41 32.68 

RI37 0-6 Worm 41.67 40.00 

RI37 7-12 Normal 45.38 35.74 

RI37 >12 Normal 114.08 29.80 
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LI39 0-6 Chameleon 74.33 40.81 

LI39 7-12 Normal 49.88 34.83 

LI39 >12 Normal 72.73 30.30 

RI39 0-6 Normal 45.83 38.62 

RI39 7-12 Normal 54.42 35.02 

RI39 >12 Normal 99.03 27.63 

LI42 0-6 Normal 45.55 38.51 

LI42 7-12 Normal 46.73 36.12 

LI42 >12 Normal 44.02 31.78 

RI42 0-6 Normal 52.32 39.40 

RI42 7-12 Normal 45.94 37.52 

RI42 >12 Worm 47.43 33.61 

LI44 0-6 Normal 63.50 38.40 

LI44 7-12 Normal 48.33 34.51 

LI44 >12 Normal 51.14 31.16 

RI44 0-6 Normal 49.00 39.29 

RI44 7-12 Normal 60.69 33.79 

RI44 >12 Normal 63.71 31.63 

LI46 0-6 Dove 92.00 36.96 

LI46 7-12 Normal 69.36 34.63 

LI46 >12 Normal 87.88 29.00 

RI46 0-6 Normal 42.50 38.24 

RI46 7-12 Normal 51.22 34.78 

RI46 >12 Normal 69.61 29.51 

LI49 0-6 Normal 41.74 38.11 

LI49 7-12 Worm 38.00 36.77 

LI49 >12 Worm 41.51 34.13 

RI49 0-6 Normal 40.28 38.40 

RI49 7-12 Normal 47.33 35.44 

RI49 >12 Worm 42.34 34.43 

LI55 0-6 Normal 44.57 39.39 

LI55 7-12 Normal 95.67 35.03 

LI55 >12 Normal 52.44 33.47 

RI55 0-6 Normal 46.38 39.87 

RI55 7-12 Chameleon 88.00 37.46 

RI55 >12 Normal 63.64 32.62 
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APPENDIX C 

Table C.1  Individual SSI Values for 0-6 Months and 7-12 Months Overlap 

SID SSI 

LI1 0.004667 

LI13 0.032361 

LI15 0.007835 

LI16 0.019901 

LI17 0.010833 

LI19 0.028122 

LI21 0.020592 

LI24 0.054404 

LI25 0.014782 

LI27 0.010707 

LI28 0.076135 

LI30 0.013584 

LI31 0.079935 

LI34 0.004876 

LI37 0.006469 

LI38 0.070559 

LI39 0.058366 

LI41 0.015736 

LI42 0.005805 

LI44 0.036185 

LI46 0.052669 

LI49 0.009035 

LI5 0.026269 

LI50 0.204028 

LI55 0.118494 

LI56 0.072668 

LI72 0.006395 

LI8 0.01215 

LI83 0.010305 

LI9 0.045248 

RI1 0.003055 

RI13 0.003353 

RI15 0.006597 

RI16 0.00685 

RI17 0.028068 

RI19 0.03027 

RI21 0.027224 

RI24 0.029345 
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RI25 0.021367 

RI27 0.002372 

RI28 0.138548 

RI30 0.021582 

RI31 0.004754 

RI34 0.011886 

RI37 0.012938 

RI38 0.01837 

RI39 0.021631 

RI41 0.016725 

RI42 0.015232 

RI44 0.029882 

RI46 0.021685 

RI49 0.017534 

RI5 0.005769 

RI50 0.059343 

RI55 0.096344 

RI56 0.009498 

RI72 0.007242 

RI8 0.007321 

RI83 0.004743 

RI9 0.038484 

 

Table C.2  Individual SSI Values for 7-12 Months and >12 Months Overlap 

SID SSI 

LI11 0.011473 

LI12 0.112799 

LI13 0.032074 

LI14 0.139654 

LI15 0.012013 

LI17 0.070941 

LI19 0.145651 

LI21 0.268901 

LI24 0.148638 

LI27 0.081064 

LI28 0.074943 

LI29 0.027963 

LI3 0.998268 

LI30 0.008797 

LI31 0.054291 

LI34 0.084472 

LI37 0.054751 

LI39 0.053863 
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LI40 0.04123 

LI42 0.012826 

LI44 0.010773 

LI46 0.044969 

LI48 0.030056 

LI49 0.010522 

LI53 0.038919 

LI55 0.099972 

LI6 0.025827 

LI7 0.015095 

LI8 0.021766 

LI9 0.05467 

LI91 0.008178 

RI11 0.009099 

RI12 0.067985 

RI13 0.039596 

RI14 0.095377 

RI15 0.015563 

RI17 0.199805 

RI19 0.224887 

RI21 0.118549 

RI24 0.057533 

RI27 0.206218 

RI28 0.106829 

RI29 0.123791 

RI3 0.090048 

RI30 0.00978 

RI31 0.025817 

RI34 0.103409 

RI37 0.159417 

RI39 0.104463 

RI40 0.064312 

RI42 0.010619 

RI44 0.009095 

RI46 0.044369 

RI48 0.016284 

RI49 0.011785 

RI53 0.021184 

RI55 0.057567 

RI6 0.015462 

RI7 0.009213 

RI8 0.014978 
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Table C.3  Individual SSI Values for Overlap of All 3 Groups 

SID G1-G2 G2-G3 G1-G3 

LI13 0.032493 0.03177 0.064263 

LI15 0.008013 0.011443 0.015925 

LI17 0.010662 0.070942 0.064245 

LI19 0.028141 0.145583 0.118177 

LI21 0.020734 0.268869 0.287904 

LI24 0.054312 0.148617 0.098714 

LI27 0.010759 0.081116 0.074124 

LI28 0.076231 0.074877 0.001583 

LI30 0.01367 0.00842 0.018476 

LI31 0.07999 0.053935 0.133649 

LI34 0.00513 0.084336 0.086427 

LI37 0.006771 0.054722 0.05866 

LI39 0.05817 0.053839 0.024589 

LI42 0.006157 0.011811 0.015943 

LI44 0.036186 0.010108 0.033112 

LI46 0.052593 0.044733 0.02071 

LI49 0.009172 0.01014 0.009201 

LI55 0.118523 0.099958 0.022771 

LI8 0.012122 0.02161 0.017086 

LI9 0.045209 0.054621 0.0995 

RI13 0.00376 0.039406 0.04213 

RI15 0.006824 0.015114 0.016735 

RI17 0.028076 0.199802 0.227823 

RI19 0.030274 0.224858 0.254953 

RI21 0.027261 0.118535 0.145299 

RI24 0.029338 0.057493 0.030555 

RI27 0.002495 0.206209 0.206201 

RI28 0.138567 0.106835 0.031732 

RI30 0.021757 0.009227 0.027987 

RI31 0.005158 0.025325 0.028123 

RI34 0.011958 0.103307 0.115058 

RI37 0.01305 0.159372 0.169017 

RI39 0.021528 0.104503 0.125549 

RI42 0.015372 0.009678 0.017529 

RI44 0.02987 0.008571 0.038333 

RI46 0.021675 0.044225 0.065829 

RI49 0.017688 0.011772 0.010347 

RI55 0.096356 0.057403 0.043268 

RI8 0.007494 0.014523 0.021892 

RI9 0.038458 0.044774 0.083222 

 


